xref: /linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 
9 #include <drm/drm_print.h>
10 
11 #include "intel_alpm.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_cx0_phy_regs.h"
14 #include "intel_ddi.h"
15 #include "intel_ddi_buf_trans.h"
16 #include "intel_de.h"
17 #include "intel_display_types.h"
18 #include "intel_display_utils.h"
19 #include "intel_dp.h"
20 #include "intel_hdmi.h"
21 #include "intel_lt_phy.h"
22 #include "intel_panel.h"
23 #include "intel_psr.h"
24 #include "intel_snps_hdmi_pll.h"
25 #include "intel_tc.h"
26 
27 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
28 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
29 		for_each_if((__lane_mask) & BIT(__lane))
30 
31 #define INTEL_CX0_LANE0		BIT(0)
32 #define INTEL_CX0_LANE1		BIT(1)
33 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
34 
35 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
36 {
37 	struct intel_display *display = to_intel_display(encoder);
38 	enum phy phy = intel_encoder_to_phy(encoder);
39 
40 	if (display->platform.pantherlake) {
41 		if (display->platform.pantherlake_wildcatlake)
42 			return phy <= PHY_B;
43 		else
44 			return phy == PHY_A;
45 	}
46 
47 	if ((display->platform.lunarlake || display->platform.meteorlake) && phy < PHY_C)
48 		return true;
49 
50 	return false;
51 }
52 
53 static int lane_mask_to_lane(u8 lane_mask)
54 {
55 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
56 		    hweight8(lane_mask) != 1))
57 		return 0;
58 
59 	return ilog2(lane_mask);
60 }
61 
62 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
63 {
64 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
65 
66 	if (!intel_tc_port_in_dp_alt_mode(dig_port))
67 		return INTEL_CX0_BOTH_LANES;
68 
69 	/*
70 	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
71 	 * by display and lane 1 is owned by USB.
72 	 */
73 	return intel_tc_port_max_lane_count(dig_port) > 2
74 		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
75 }
76 
77 static void
78 assert_dc_off(struct intel_display *display)
79 {
80 	bool enabled;
81 
82 	enabled = intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF);
83 	drm_WARN_ON(display->drm, !enabled);
84 }
85 
86 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
87 {
88 	struct intel_display *display = to_intel_display(encoder);
89 	int lane;
90 
91 	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
92 		intel_de_rmw(display,
93 			     XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
94 			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
95 			     XELPDP_PORT_MSGBUS_TIMER_VAL);
96 }
97 
98 /*
99  * Prepare HW for CX0 phy transactions.
100  *
101  * It is required that PSR and DC5/6 are disabled before any CX0 message
102  * bus transaction is executed.
103  *
104  * We also do the msgbus timer programming here to ensure that the timer
105  * is already programmed before any access to the msgbus.
106  */
107 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
108 {
109 	struct intel_display *display = to_intel_display(encoder);
110 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
111 	intel_wakeref_t wakeref;
112 
113 	intel_psr_pause(intel_dp);
114 	wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
115 	intel_cx0_program_msgbus_timer(encoder);
116 
117 	return wakeref;
118 }
119 
120 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
121 {
122 	struct intel_display *display = to_intel_display(encoder);
123 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
124 
125 	intel_psr_resume(intel_dp);
126 	intel_display_power_put(display, POWER_DOMAIN_DC_OFF, wakeref);
127 }
128 
129 void intel_clear_response_ready_flag(struct intel_encoder *encoder,
130 				     int lane)
131 {
132 	struct intel_display *display = to_intel_display(encoder);
133 
134 	intel_de_rmw(display,
135 		     XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
136 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
137 }
138 
139 void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
140 {
141 	struct intel_display *display = to_intel_display(encoder);
142 	enum port port = encoder->port;
143 	enum phy phy = intel_encoder_to_phy(encoder);
144 
145 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
146 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
147 
148 	if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
149 				       XELPDP_PORT_M2P_TRANSACTION_RESET,
150 				       XELPDP_MSGBUS_TIMEOUT_MS)) {
151 		drm_err_once(display->drm,
152 			     "Failed to bring PHY %c to idle.\n",
153 			     phy_name(phy));
154 		return;
155 	}
156 
157 	intel_clear_response_ready_flag(encoder, lane);
158 }
159 
160 int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
161 			   int command, int lane, u32 *val)
162 {
163 	struct intel_display *display = to_intel_display(encoder);
164 	enum port port = encoder->port;
165 	enum phy phy = intel_encoder_to_phy(encoder);
166 
167 	if (intel_de_wait_ms(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
168 			     XELPDP_PORT_P2M_RESPONSE_READY,
169 			     XELPDP_PORT_P2M_RESPONSE_READY,
170 			     XELPDP_MSGBUS_TIMEOUT_MS, val)) {
171 		drm_dbg_kms(display->drm,
172 			    "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
173 			    phy_name(phy), *val);
174 
175 		if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
176 		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
177 			drm_dbg_kms(display->drm,
178 				    "PHY %c Hardware did not detect a timeout\n",
179 				    phy_name(phy));
180 
181 		intel_cx0_bus_reset(encoder, lane);
182 		return -ETIMEDOUT;
183 	}
184 
185 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
186 		drm_dbg_kms(display->drm,
187 			    "PHY %c Error occurred during %s command. Status: 0x%x\n",
188 			    phy_name(phy),
189 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
190 		intel_cx0_bus_reset(encoder, lane);
191 		return -EINVAL;
192 	}
193 
194 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
195 		drm_dbg_kms(display->drm,
196 			    "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
197 			    phy_name(phy),
198 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
199 		intel_cx0_bus_reset(encoder, lane);
200 		return -EINVAL;
201 	}
202 
203 	return 0;
204 }
205 
206 static int __intel_cx0_read_once(struct intel_encoder *encoder,
207 				 int lane, u16 addr)
208 {
209 	struct intel_display *display = to_intel_display(encoder);
210 	enum port port = encoder->port;
211 	enum phy phy = intel_encoder_to_phy(encoder);
212 	int ack;
213 	u32 val;
214 
215 	if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
216 				       XELPDP_PORT_M2P_TRANSACTION_PENDING,
217 				       XELPDP_MSGBUS_TIMEOUT_MS)) {
218 		drm_dbg_kms(display->drm,
219 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
220 		intel_cx0_bus_reset(encoder, lane);
221 		return -ETIMEDOUT;
222 	}
223 
224 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
225 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
226 		       XELPDP_PORT_M2P_COMMAND_READ |
227 		       XELPDP_PORT_M2P_ADDRESS(addr));
228 
229 	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
230 	if (ack < 0)
231 		return ack;
232 
233 	intel_clear_response_ready_flag(encoder, lane);
234 
235 	/*
236 	 * FIXME: Workaround to let HW to settle
237 	 * down and let the message bus to end up
238 	 * in a known state
239 	 */
240 	if (DISPLAY_VER(display) < 30)
241 		intel_cx0_bus_reset(encoder, lane);
242 
243 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
244 }
245 
246 static u8 __intel_cx0_read(struct intel_encoder *encoder,
247 			   int lane, u16 addr)
248 {
249 	struct intel_display *display = to_intel_display(encoder);
250 	enum phy phy = intel_encoder_to_phy(encoder);
251 	int i, status;
252 
253 	assert_dc_off(display);
254 
255 	/* 3 tries is assumed to be enough to read successfully */
256 	for (i = 0; i < 3; i++) {
257 		status = __intel_cx0_read_once(encoder, lane, addr);
258 
259 		if (status >= 0)
260 			return status;
261 	}
262 
263 	drm_err_once(display->drm,
264 		     "PHY %c Read %04x failed after %d retries.\n",
265 		     phy_name(phy), addr, i);
266 
267 	return 0;
268 }
269 
270 u8 intel_cx0_read(struct intel_encoder *encoder, u8 lane_mask, u16 addr)
271 {
272 	int lane = lane_mask_to_lane(lane_mask);
273 
274 	return __intel_cx0_read(encoder, lane, addr);
275 }
276 
277 static int __intel_cx0_write_once(struct intel_encoder *encoder,
278 				  int lane, u16 addr, u8 data, bool committed)
279 {
280 	struct intel_display *display = to_intel_display(encoder);
281 	enum port port = encoder->port;
282 	enum phy phy = intel_encoder_to_phy(encoder);
283 	int ack;
284 	u32 val;
285 
286 	if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
287 				       XELPDP_PORT_M2P_TRANSACTION_PENDING,
288 				       XELPDP_MSGBUS_TIMEOUT_MS)) {
289 		drm_dbg_kms(display->drm,
290 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
291 		intel_cx0_bus_reset(encoder, lane);
292 		return -ETIMEDOUT;
293 	}
294 
295 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
296 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
297 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
298 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
299 		       XELPDP_PORT_M2P_DATA(data) |
300 		       XELPDP_PORT_M2P_ADDRESS(addr));
301 
302 	if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
303 				       XELPDP_PORT_M2P_TRANSACTION_PENDING,
304 				       XELPDP_MSGBUS_TIMEOUT_MS)) {
305 		drm_dbg_kms(display->drm,
306 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
307 		intel_cx0_bus_reset(encoder, lane);
308 		return -ETIMEDOUT;
309 	}
310 
311 	if (committed) {
312 		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
313 		if (ack < 0)
314 			return ack;
315 	} else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
316 		    XELPDP_PORT_P2M_ERROR_SET)) {
317 		drm_dbg_kms(display->drm,
318 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
319 		intel_cx0_bus_reset(encoder, lane);
320 		return -EINVAL;
321 	}
322 
323 	intel_clear_response_ready_flag(encoder, lane);
324 
325 	/*
326 	 * FIXME: Workaround to let HW to settle
327 	 * down and let the message bus to end up
328 	 * in a known state
329 	 */
330 	if (DISPLAY_VER(display) < 30)
331 		intel_cx0_bus_reset(encoder, lane);
332 
333 	return 0;
334 }
335 
336 static void __intel_cx0_write(struct intel_encoder *encoder,
337 			      int lane, u16 addr, u8 data, bool committed)
338 {
339 	struct intel_display *display = to_intel_display(encoder);
340 	enum phy phy = intel_encoder_to_phy(encoder);
341 	int i, status;
342 
343 	assert_dc_off(display);
344 
345 	/* 3 tries is assumed to be enough to write successfully */
346 	for (i = 0; i < 3; i++) {
347 		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
348 
349 		if (status == 0)
350 			return;
351 	}
352 
353 	drm_err_once(display->drm,
354 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
355 }
356 
357 void intel_cx0_write(struct intel_encoder *encoder,
358 		     u8 lane_mask, u16 addr, u8 data, bool committed)
359 {
360 	int lane;
361 
362 	for_each_cx0_lane_in_mask(lane_mask, lane)
363 		__intel_cx0_write(encoder, lane, addr, data, committed);
364 }
365 
366 static void intel_c20_sram_write(struct intel_encoder *encoder,
367 				 int lane, u16 addr, u16 data)
368 {
369 	struct intel_display *display = to_intel_display(encoder);
370 
371 	assert_dc_off(display);
372 
373 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
374 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
375 
376 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
377 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
378 }
379 
380 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
381 			       int lane, u16 addr)
382 {
383 	struct intel_display *display = to_intel_display(encoder);
384 	u16 val;
385 
386 	assert_dc_off(display);
387 
388 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
389 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
390 
391 	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
392 	val <<= 8;
393 	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
394 
395 	return val;
396 }
397 
398 static void __intel_cx0_rmw(struct intel_encoder *encoder,
399 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
400 {
401 	u8 old, val;
402 
403 	old = __intel_cx0_read(encoder, lane, addr);
404 	val = (old & ~clear) | set;
405 
406 	if (val != old)
407 		__intel_cx0_write(encoder, lane, addr, val, committed);
408 }
409 
410 void intel_cx0_rmw(struct intel_encoder *encoder,
411 		   u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
412 {
413 	u8 lane;
414 
415 	for_each_cx0_lane_in_mask(lane_mask, lane)
416 		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
417 }
418 
419 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
420 {
421 	if (intel_crtc_has_dp_encoder(crtc_state)) {
422 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
423 		    (crtc_state->port_clock == 540000 ||
424 		     crtc_state->port_clock == 810000))
425 			return 5;
426 		else
427 			return 4;
428 	} else {
429 		return 5;
430 	}
431 }
432 
433 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
434 {
435 	if (intel_crtc_has_dp_encoder(crtc_state)) {
436 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
437 		    (crtc_state->port_clock == 540000 ||
438 		     crtc_state->port_clock == 810000))
439 			return 5;
440 		else
441 			return 2;
442 	} else {
443 		return 6;
444 	}
445 }
446 
447 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
448 				     const struct intel_crtc_state *crtc_state)
449 {
450 	struct intel_display *display = to_intel_display(encoder);
451 	const struct intel_ddi_buf_trans *trans;
452 	u8 owned_lane_mask;
453 	intel_wakeref_t wakeref;
454 	int n_entries, ln;
455 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
456 
457 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
458 		return;
459 
460 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
461 
462 	wakeref = intel_cx0_phy_transaction_begin(encoder);
463 
464 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
465 	if (drm_WARN_ON_ONCE(display->drm, !trans)) {
466 		intel_cx0_phy_transaction_end(encoder, wakeref);
467 		return;
468 	}
469 
470 	if (intel_encoder_is_c10phy(encoder)) {
471 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
472 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
473 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
474 			      C10_CMN3_TXVBOOST_MASK,
475 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
476 			      MB_WRITE_UNCOMMITTED);
477 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
478 			      C10_TX1_TERMCTL_MASK,
479 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
480 			      MB_WRITE_COMMITTED);
481 	}
482 
483 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
484 		int level = intel_ddi_level(encoder, crtc_state, ln);
485 		int lane = ln / 2;
486 		int tx = ln % 2;
487 		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
488 
489 		if (!(lane_mask & owned_lane_mask))
490 			continue;
491 
492 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
493 			      C10_PHY_OVRD_LEVEL_MASK,
494 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
495 			      MB_WRITE_COMMITTED);
496 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
497 			      C10_PHY_OVRD_LEVEL_MASK,
498 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
499 			      MB_WRITE_COMMITTED);
500 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
501 			      C10_PHY_OVRD_LEVEL_MASK,
502 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
503 			      MB_WRITE_COMMITTED);
504 	}
505 
506 	/* Write Override enables in 0xD71 */
507 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
508 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
509 		      MB_WRITE_COMMITTED);
510 
511 	if (intel_encoder_is_c10phy(encoder))
512 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
513 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
514 
515 	intel_cx0_phy_transaction_end(encoder, wakeref);
516 }
517 
518 /*
519  * Basic DP link rates with 38.4 MHz reference clock.
520  * Note: The tables below are with SSC. In non-ssc
521  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
522  * programmed 0.
523  */
524 
525 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
526 	.clock = 162000,
527 	.tx = 0x10,
528 	.cmn = 0x21,
529 	.pll[0] = 0xB4,
530 	.pll[1] = 0,
531 	.pll[2] = 0x30,
532 	.pll[3] = 0x1,
533 	.pll[4] = 0x26,
534 	.pll[5] = 0x0C,
535 	.pll[6] = 0x98,
536 	.pll[7] = 0x46,
537 	.pll[8] = 0x1,
538 	.pll[9] = 0x1,
539 	.pll[10] = 0,
540 	.pll[11] = 0,
541 	.pll[12] = 0xC0,
542 	.pll[13] = 0,
543 	.pll[14] = 0,
544 	.pll[15] = 0x2,
545 	.pll[16] = 0x84,
546 	.pll[17] = 0x4F,
547 	.pll[18] = 0xE5,
548 	.pll[19] = 0x23,
549 };
550 
551 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
552 	.clock = 216000,
553 	.tx = 0x10,
554 	.cmn = 0x21,
555 	.pll[0] = 0x4,
556 	.pll[1] = 0,
557 	.pll[2] = 0xA2,
558 	.pll[3] = 0x1,
559 	.pll[4] = 0x33,
560 	.pll[5] = 0x10,
561 	.pll[6] = 0x75,
562 	.pll[7] = 0xB3,
563 	.pll[8] = 0x1,
564 	.pll[9] = 0x1,
565 	.pll[10] = 0,
566 	.pll[11] = 0,
567 	.pll[12] = 0,
568 	.pll[13] = 0,
569 	.pll[14] = 0,
570 	.pll[15] = 0x2,
571 	.pll[16] = 0x85,
572 	.pll[17] = 0x0F,
573 	.pll[18] = 0xE6,
574 	.pll[19] = 0x23,
575 };
576 
577 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
578 	.clock = 243000,
579 	.tx = 0x10,
580 	.cmn = 0x21,
581 	.pll[0] = 0x34,
582 	.pll[1] = 0,
583 	.pll[2] = 0xDA,
584 	.pll[3] = 0x1,
585 	.pll[4] = 0x39,
586 	.pll[5] = 0x12,
587 	.pll[6] = 0xE3,
588 	.pll[7] = 0xE9,
589 	.pll[8] = 0x1,
590 	.pll[9] = 0x1,
591 	.pll[10] = 0,
592 	.pll[11] = 0,
593 	.pll[12] = 0x20,
594 	.pll[13] = 0,
595 	.pll[14] = 0,
596 	.pll[15] = 0x2,
597 	.pll[16] = 0x85,
598 	.pll[17] = 0x8F,
599 	.pll[18] = 0xE6,
600 	.pll[19] = 0x23,
601 };
602 
603 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
604 	.clock = 270000,
605 	.tx = 0x10,
606 	.cmn = 0x21,
607 	.pll[0] = 0xF4,
608 	.pll[1] = 0,
609 	.pll[2] = 0xF8,
610 	.pll[3] = 0x0,
611 	.pll[4] = 0x20,
612 	.pll[5] = 0x0A,
613 	.pll[6] = 0x29,
614 	.pll[7] = 0x10,
615 	.pll[8] = 0x1,   /* Verify */
616 	.pll[9] = 0x1,
617 	.pll[10] = 0,
618 	.pll[11] = 0,
619 	.pll[12] = 0xA0,
620 	.pll[13] = 0,
621 	.pll[14] = 0,
622 	.pll[15] = 0x1,
623 	.pll[16] = 0x84,
624 	.pll[17] = 0x4F,
625 	.pll[18] = 0xE5,
626 	.pll[19] = 0x23,
627 };
628 
629 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
630 	.clock = 324000,
631 	.tx = 0x10,
632 	.cmn = 0x21,
633 	.pll[0] = 0xB4,
634 	.pll[1] = 0,
635 	.pll[2] = 0x30,
636 	.pll[3] = 0x1,
637 	.pll[4] = 0x26,
638 	.pll[5] = 0x0C,
639 	.pll[6] = 0x98,
640 	.pll[7] = 0x46,
641 	.pll[8] = 0x1,
642 	.pll[9] = 0x1,
643 	.pll[10] = 0,
644 	.pll[11] = 0,
645 	.pll[12] = 0xC0,
646 	.pll[13] = 0,
647 	.pll[14] = 0,
648 	.pll[15] = 0x1,
649 	.pll[16] = 0x85,
650 	.pll[17] = 0x4F,
651 	.pll[18] = 0xE6,
652 	.pll[19] = 0x23,
653 };
654 
655 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
656 	.clock = 432000,
657 	.tx = 0x10,
658 	.cmn = 0x21,
659 	.pll[0] = 0x4,
660 	.pll[1] = 0,
661 	.pll[2] = 0xA2,
662 	.pll[3] = 0x1,
663 	.pll[4] = 0x33,
664 	.pll[5] = 0x10,
665 	.pll[6] = 0x75,
666 	.pll[7] = 0xB3,
667 	.pll[8] = 0x1,
668 	.pll[9] = 0x1,
669 	.pll[10] = 0,
670 	.pll[11] = 0,
671 	.pll[12] = 0,
672 	.pll[13] = 0,
673 	.pll[14] = 0,
674 	.pll[15] = 0x1,
675 	.pll[16] = 0x85,
676 	.pll[17] = 0x0F,
677 	.pll[18] = 0xE6,
678 	.pll[19] = 0x23,
679 };
680 
681 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
682 	.clock = 540000,
683 	.tx = 0x10,
684 	.cmn = 0x21,
685 	.pll[0] = 0xF4,
686 	.pll[1] = 0,
687 	.pll[2] = 0xF8,
688 	.pll[3] = 0,
689 	.pll[4] = 0x20,
690 	.pll[5] = 0x0A,
691 	.pll[6] = 0x29,
692 	.pll[7] = 0x10,
693 	.pll[8] = 0x1,
694 	.pll[9] = 0x1,
695 	.pll[10] = 0,
696 	.pll[11] = 0,
697 	.pll[12] = 0xA0,
698 	.pll[13] = 0,
699 	.pll[14] = 0,
700 	.pll[15] = 0,
701 	.pll[16] = 0x84,
702 	.pll[17] = 0x4F,
703 	.pll[18] = 0xE5,
704 	.pll[19] = 0x23,
705 };
706 
707 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
708 	.clock = 675000,
709 	.tx = 0x10,
710 	.cmn = 0x21,
711 	.pll[0] = 0xB4,
712 	.pll[1] = 0,
713 	.pll[2] = 0x3E,
714 	.pll[3] = 0x1,
715 	.pll[4] = 0xA8,
716 	.pll[5] = 0x0C,
717 	.pll[6] = 0x33,
718 	.pll[7] = 0x54,
719 	.pll[8] = 0x1,
720 	.pll[9] = 0x1,
721 	.pll[10] = 0,
722 	.pll[11] = 0,
723 	.pll[12] = 0xC8,
724 	.pll[13] = 0,
725 	.pll[14] = 0,
726 	.pll[15] = 0,
727 	.pll[16] = 0x85,
728 	.pll[17] = 0x8F,
729 	.pll[18] = 0xE6,
730 	.pll[19] = 0x23,
731 };
732 
733 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
734 	.clock = 810000,
735 	.tx = 0x10,
736 	.cmn = 0x21,
737 	.pll[0] = 0x34,
738 	.pll[1] = 0,
739 	.pll[2] = 0x84,
740 	.pll[3] = 0x1,
741 	.pll[4] = 0x30,
742 	.pll[5] = 0x0F,
743 	.pll[6] = 0x3D,
744 	.pll[7] = 0x98,
745 	.pll[8] = 0x1,
746 	.pll[9] = 0x1,
747 	.pll[10] = 0,
748 	.pll[11] = 0,
749 	.pll[12] = 0xF0,
750 	.pll[13] = 0,
751 	.pll[14] = 0,
752 	.pll[15] = 0,
753 	.pll[16] = 0x84,
754 	.pll[17] = 0x0F,
755 	.pll[18] = 0xE5,
756 	.pll[19] = 0x23,
757 };
758 
759 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
760 	&mtl_c10_dp_rbr,
761 	&mtl_c10_dp_hbr1,
762 	&mtl_c10_dp_hbr2,
763 	&mtl_c10_dp_hbr3,
764 	NULL,
765 };
766 
767 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
768 	&mtl_c10_dp_rbr,
769 	&mtl_c10_edp_r216,
770 	&mtl_c10_edp_r243,
771 	&mtl_c10_dp_hbr1,
772 	&mtl_c10_edp_r324,
773 	&mtl_c10_edp_r432,
774 	&mtl_c10_dp_hbr2,
775 	&mtl_c10_edp_r675,
776 	&mtl_c10_dp_hbr3,
777 	NULL,
778 };
779 
780 /* C20 basic DP 1.4 tables */
781 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
782 	.clock = 162000,
783 	.tx = {	0xbe88, /* tx cfg0 */
784 		0x5800, /* tx cfg1 */
785 		0x0000, /* tx cfg2 */
786 		},
787 	.cmn = {0x0500, /* cmn cfg0*/
788 		0x0005, /* cmn cfg1 */
789 		0x0000, /* cmn cfg2 */
790 		0x0000, /* cmn cfg3 */
791 		},
792 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
793 		0x2120,		/* mpllb cfg1 */
794 		0xcd9a,		/* mpllb cfg2 */
795 		0xbfc1,		/* mpllb cfg3 */
796 		0x5ab8,         /* mpllb cfg4 */
797 		0x4c34,         /* mpllb cfg5 */
798 		0x2000,		/* mpllb cfg6 */
799 		0x0001,		/* mpllb cfg7 */
800 		0x6000,		/* mpllb cfg8 */
801 		0x0000,		/* mpllb cfg9 */
802 		0x0000,		/* mpllb cfg10 */
803 		},
804 };
805 
806 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
807 	.clock = 270000,
808 	.tx = {	0xbe88, /* tx cfg0 */
809 		0x4800, /* tx cfg1 */
810 		0x0000, /* tx cfg2 */
811 		},
812 	.cmn = {0x0500, /* cmn cfg0*/
813 		0x0005, /* cmn cfg1 */
814 		0x0000, /* cmn cfg2 */
815 		0x0000, /* cmn cfg3 */
816 		},
817 	.mpllb = { 0x308c,	/* mpllb cfg0 */
818 		0x2110,		/* mpllb cfg1 */
819 		0xcc9c,		/* mpllb cfg2 */
820 		0xbfc1,		/* mpllb cfg3 */
821 		0x4b9a,         /* mpllb cfg4 */
822 		0x3f81,         /* mpllb cfg5 */
823 		0x2000,		/* mpllb cfg6 */
824 		0x0001,		/* mpllb cfg7 */
825 		0x5000,		/* mpllb cfg8 */
826 		0x0000,		/* mpllb cfg9 */
827 		0x0000,		/* mpllb cfg10 */
828 		},
829 };
830 
831 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
832 	.clock = 540000,
833 	.tx = {	0xbe88, /* tx cfg0 */
834 		0x4800, /* tx cfg1 */
835 		0x0000, /* tx cfg2 */
836 		},
837 	.cmn = {0x0500, /* cmn cfg0*/
838 		0x0005, /* cmn cfg1 */
839 		0x0000, /* cmn cfg2 */
840 		0x0000, /* cmn cfg3 */
841 		},
842 	.mpllb = { 0x108c,	/* mpllb cfg0 */
843 		0x2108,		/* mpllb cfg1 */
844 		0xcc9c,		/* mpllb cfg2 */
845 		0xbfc1,		/* mpllb cfg3 */
846 		0x4b9a,         /* mpllb cfg4 */
847 		0x3f81,         /* mpllb cfg5 */
848 		0x2000,		/* mpllb cfg6 */
849 		0x0001,		/* mpllb cfg7 */
850 		0x5000,		/* mpllb cfg8 */
851 		0x0000,		/* mpllb cfg9 */
852 		0x0000,		/* mpllb cfg10 */
853 		},
854 };
855 
856 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
857 	.clock = 810000,
858 	.tx = {	0xbe88, /* tx cfg0 */
859 		0x4800, /* tx cfg1 */
860 		0x0000, /* tx cfg2 */
861 		},
862 	.cmn = {0x0500, /* cmn cfg0*/
863 		0x0005, /* cmn cfg1 */
864 		0x0000, /* cmn cfg2 */
865 		0x0000, /* cmn cfg3 */
866 		},
867 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
868 		0x2108,		/* mpllb cfg1 */
869 		0x8d98,		/* mpllb cfg2 */
870 		0xbfc1,		/* mpllb cfg3 */
871 		0x7166,         /* mpllb cfg4 */
872 		0x5f42,         /* mpllb cfg5 */
873 		0x2000,		/* mpllb cfg6 */
874 		0x0001,		/* mpllb cfg7 */
875 		0x7800,		/* mpllb cfg8 */
876 		0x0000,		/* mpllb cfg9 */
877 		0x0000,		/* mpllb cfg10 */
878 		},
879 };
880 
881 /* C20 basic DP 2.0 tables */
882 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
883 	.clock = 1000000, /* 10 Gbps */
884 	.tx = {	0xbe21, /* tx cfg0 */
885 		0xe800, /* tx cfg1 */
886 		0x0000, /* tx cfg2 */
887 		},
888 	.cmn = {0x0700, /* cmn cfg0*/
889 		0x0005, /* cmn cfg1 */
890 		0x0000, /* cmn cfg2 */
891 		0x0000, /* cmn cfg3 */
892 		},
893 	.mplla = { 0x3104,	/* mplla cfg0 */
894 		0xd105,		/* mplla cfg1 */
895 		0xc025,		/* mplla cfg2 */
896 		0xc025,		/* mplla cfg3 */
897 		0x8c00,		/* mplla cfg4 */
898 		0x759a,		/* mplla cfg5 */
899 		0x4000,		/* mplla cfg6 */
900 		0x0003,		/* mplla cfg7 */
901 		0x3555,		/* mplla cfg8 */
902 		0x0001,		/* mplla cfg9 */
903 		},
904 };
905 
906 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
907 	.clock = 1350000, /* 13.5 Gbps */
908 	.tx = {	0xbea0, /* tx cfg0 */
909 		0x4800, /* tx cfg1 */
910 		0x0000, /* tx cfg2 */
911 		},
912 	.cmn = {0x0500, /* cmn cfg0*/
913 		0x0005, /* cmn cfg1 */
914 		0x0000, /* cmn cfg2 */
915 		0x0000, /* cmn cfg3 */
916 		},
917 	.mpllb = { 0x015f,	/* mpllb cfg0 */
918 		0x2205,		/* mpllb cfg1 */
919 		0x1b17,		/* mpllb cfg2 */
920 		0xffc1,		/* mpllb cfg3 */
921 		0xe100,		/* mpllb cfg4 */
922 		0xbd00,		/* mpllb cfg5 */
923 		0x2000,		/* mpllb cfg6 */
924 		0x0001,		/* mpllb cfg7 */
925 		0x4800,		/* mpllb cfg8 */
926 		0x0000,		/* mpllb cfg9 */
927 		0x0000,		/* mpllb cfg10 */
928 		},
929 };
930 
931 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
932 	.clock = 2000000, /* 20 Gbps */
933 	.tx = {	0xbe20, /* tx cfg0 */
934 		0x4800, /* tx cfg1 */
935 		0x0000, /* tx cfg2 */
936 		},
937 	.cmn = {0x0500, /* cmn cfg0*/
938 		0x0005, /* cmn cfg1 */
939 		0x0000, /* cmn cfg2 */
940 		0x0000, /* cmn cfg3 */
941 		},
942 	.mplla = { 0x3104,	/* mplla cfg0 */
943 		0xd105,		/* mplla cfg1 */
944 		0x9217,		/* mplla cfg2 */
945 		0x9217,		/* mplla cfg3 */
946 		0x8c00,		/* mplla cfg4 */
947 		0x759a,		/* mplla cfg5 */
948 		0x4000,		/* mplla cfg6 */
949 		0x0003,		/* mplla cfg7 */
950 		0x3555,		/* mplla cfg8 */
951 		0x0001,		/* mplla cfg9 */
952 		},
953 };
954 
955 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
956 	&mtl_c20_dp_rbr,
957 	&mtl_c20_dp_hbr1,
958 	&mtl_c20_dp_hbr2,
959 	&mtl_c20_dp_hbr3,
960 	&mtl_c20_dp_uhbr10,
961 	&mtl_c20_dp_uhbr13_5,
962 	&mtl_c20_dp_uhbr20,
963 	NULL,
964 };
965 
966 /*
967  * eDP link rates with 38.4 MHz reference clock.
968  */
969 
970 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
971 	.clock = 216000,
972 	.tx = { 0xbe88,
973 		0x4800,
974 		0x0000,
975 		},
976 	.cmn = { 0x0500,
977 		 0x0005,
978 		 0x0000,
979 		 0x0000,
980 		},
981 	.mpllb = { 0x50e1,
982 		   0x2120,
983 		   0x8e18,
984 		   0xbfc1,
985 		   0x9000,
986 		   0x78f6,
987 		   0x0000,
988 		   0x0000,
989 		   0x0000,
990 		   0x0000,
991 		   0x0000,
992 		  },
993 };
994 
995 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
996 	.clock = 243000,
997 	.tx = { 0xbe88,
998 		0x4800,
999 		0x0000,
1000 		},
1001 	.cmn = { 0x0500,
1002 		 0x0005,
1003 		 0x0000,
1004 		 0x0000,
1005 		},
1006 	.mpllb = { 0x50fd,
1007 		   0x2120,
1008 		   0x8f18,
1009 		   0xbfc1,
1010 		   0xa200,
1011 		   0x8814,
1012 		   0x2000,
1013 		   0x0001,
1014 		   0x1000,
1015 		   0x0000,
1016 		   0x0000,
1017 		  },
1018 };
1019 
1020 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1021 	.clock = 324000,
1022 	.tx = { 0xbe88,
1023 		0x4800,
1024 		0x0000,
1025 		},
1026 	.cmn = { 0x0500,
1027 		 0x0005,
1028 		 0x0000,
1029 		 0x0000,
1030 		},
1031 	.mpllb = { 0x30a8,
1032 		   0x2110,
1033 		   0xcd9a,
1034 		   0xbfc1,
1035 		   0x6c00,
1036 		   0x5ab8,
1037 		   0x2000,
1038 		   0x0001,
1039 		   0x6000,
1040 		   0x0000,
1041 		   0x0000,
1042 		  },
1043 };
1044 
1045 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1046 	.clock = 432000,
1047 	.tx = { 0xbe88,
1048 		0x4800,
1049 		0x0000,
1050 		},
1051 	.cmn = { 0x0500,
1052 		 0x0005,
1053 		 0x0000,
1054 		 0x0000,
1055 		},
1056 	.mpllb = { 0x30e1,
1057 		   0x2110,
1058 		   0x8e18,
1059 		   0xbfc1,
1060 		   0x9000,
1061 		   0x78f6,
1062 		   0x0000,
1063 		   0x0000,
1064 		   0x0000,
1065 		   0x0000,
1066 		   0x0000,
1067 		  },
1068 };
1069 
1070 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1071 	.clock = 675000,
1072 	.tx = { 0xbe88,
1073 		0x4800,
1074 		0x0000,
1075 		},
1076 	.cmn = { 0x0500,
1077 		 0x0005,
1078 		 0x0000,
1079 		 0x0000,
1080 		},
1081 	.mpllb = { 0x10af,
1082 		   0x2108,
1083 		   0xce1a,
1084 		   0xbfc1,
1085 		   0x7080,
1086 		   0x5e80,
1087 		   0x2000,
1088 		   0x0001,
1089 		   0x6400,
1090 		   0x0000,
1091 		   0x0000,
1092 		  },
1093 };
1094 
1095 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1096 	&mtl_c20_dp_rbr,
1097 	&xe2hpd_c20_edp_r216,
1098 	&xe2hpd_c20_edp_r243,
1099 	&mtl_c20_dp_hbr1,
1100 	&xe2hpd_c20_edp_r324,
1101 	&xe2hpd_c20_edp_r432,
1102 	&mtl_c20_dp_hbr2,
1103 	&xe2hpd_c20_edp_r675,
1104 	&mtl_c20_dp_hbr3,
1105 	NULL,
1106 };
1107 
1108 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1109 	.clock = 1350000, /* 13.5 Gbps */
1110 	.tx = {	0xbea0, /* tx cfg0 */
1111 		0x4800, /* tx cfg1 */
1112 		0x0000, /* tx cfg2 */
1113 		},
1114 	.cmn = {0x0500, /* cmn cfg0*/
1115 		0x0005, /* cmn cfg1 */
1116 		0x0000, /* cmn cfg2 */
1117 		0x0000, /* cmn cfg3 */
1118 		},
1119 	.mpllb = { 0x015f,	/* mpllb cfg0 */
1120 		0x2205,		/* mpllb cfg1 */
1121 		0x1b17,		/* mpllb cfg2 */
1122 		0xffc1,		/* mpllb cfg3 */
1123 		0xbd00,		/* mpllb cfg4 */
1124 		0x9ec3,		/* mpllb cfg5 */
1125 		0x2000,		/* mpllb cfg6 */
1126 		0x0001,		/* mpllb cfg7 */
1127 		0x4800,		/* mpllb cfg8 */
1128 		0x0000,		/* mpllb cfg9 */
1129 		0x0000,		/* mpllb cfg10 */
1130 		},
1131 };
1132 
1133 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1134 	&mtl_c20_dp_rbr,
1135 	&mtl_c20_dp_hbr1,
1136 	&mtl_c20_dp_hbr2,
1137 	&mtl_c20_dp_hbr3,
1138 	&mtl_c20_dp_uhbr10,
1139 	&xe2hpd_c20_dp_uhbr13_5,
1140 	NULL,
1141 };
1142 
1143 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1144 	&mtl_c20_dp_rbr,
1145 	&xe2hpd_c20_edp_r216,
1146 	&xe2hpd_c20_edp_r243,
1147 	&mtl_c20_dp_hbr1,
1148 	&xe2hpd_c20_edp_r324,
1149 	&xe2hpd_c20_edp_r432,
1150 	&mtl_c20_dp_hbr2,
1151 	&xe2hpd_c20_edp_r675,
1152 	&mtl_c20_dp_hbr3,
1153 	&mtl_c20_dp_uhbr10,
1154 	&xe2hpd_c20_dp_uhbr13_5,
1155 	&mtl_c20_dp_uhbr20,
1156 	NULL,
1157 };
1158 
1159 /*
1160  * HDMI link rates with 38.4 MHz reference clock.
1161  */
1162 
1163 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1164 	.clock = 25200,
1165 	.tx = 0x10,
1166 	.cmn = 0x1,
1167 	.pll[0] = 0x4,
1168 	.pll[1] = 0,
1169 	.pll[2] = 0xB2,
1170 	.pll[3] = 0,
1171 	.pll[4] = 0,
1172 	.pll[5] = 0,
1173 	.pll[6] = 0,
1174 	.pll[7] = 0,
1175 	.pll[8] = 0x20,
1176 	.pll[9] = 0x1,
1177 	.pll[10] = 0,
1178 	.pll[11] = 0,
1179 	.pll[12] = 0,
1180 	.pll[13] = 0,
1181 	.pll[14] = 0,
1182 	.pll[15] = 0xD,
1183 	.pll[16] = 0x6,
1184 	.pll[17] = 0x8F,
1185 	.pll[18] = 0x84,
1186 	.pll[19] = 0x23,
1187 };
1188 
1189 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1190 	.clock = 27000,
1191 	.tx = 0x10,
1192 	.cmn = 0x1,
1193 	.pll[0] = 0x34,
1194 	.pll[1] = 0,
1195 	.pll[2] = 0xC0,
1196 	.pll[3] = 0,
1197 	.pll[4] = 0,
1198 	.pll[5] = 0,
1199 	.pll[6] = 0,
1200 	.pll[7] = 0,
1201 	.pll[8] = 0x20,
1202 	.pll[9] = 0x1,
1203 	.pll[10] = 0,
1204 	.pll[11] = 0,
1205 	.pll[12] = 0x80,
1206 	.pll[13] = 0,
1207 	.pll[14] = 0,
1208 	.pll[15] = 0xD,
1209 	.pll[16] = 0x6,
1210 	.pll[17] = 0xCF,
1211 	.pll[18] = 0x84,
1212 	.pll[19] = 0x23,
1213 };
1214 
1215 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1216 	.clock = 74250,
1217 	.tx = 0x10,
1218 	.cmn = 0x1,
1219 	.pll[0] = 0xF4,
1220 	.pll[1] = 0,
1221 	.pll[2] = 0x7A,
1222 	.pll[3] = 0,
1223 	.pll[4] = 0,
1224 	.pll[5] = 0,
1225 	.pll[6] = 0,
1226 	.pll[7] = 0,
1227 	.pll[8] = 0x20,
1228 	.pll[9] = 0x1,
1229 	.pll[10] = 0,
1230 	.pll[11] = 0,
1231 	.pll[12] = 0x58,
1232 	.pll[13] = 0,
1233 	.pll[14] = 0,
1234 	.pll[15] = 0xB,
1235 	.pll[16] = 0x6,
1236 	.pll[17] = 0xF,
1237 	.pll[18] = 0x85,
1238 	.pll[19] = 0x23,
1239 };
1240 
1241 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1242 	.clock = 148500,
1243 	.tx = 0x10,
1244 	.cmn = 0x1,
1245 	.pll[0] = 0xF4,
1246 	.pll[1] = 0,
1247 	.pll[2] = 0x7A,
1248 	.pll[3] = 0,
1249 	.pll[4] = 0,
1250 	.pll[5] = 0,
1251 	.pll[6] = 0,
1252 	.pll[7] = 0,
1253 	.pll[8] = 0x20,
1254 	.pll[9] = 0x1,
1255 	.pll[10] = 0,
1256 	.pll[11] = 0,
1257 	.pll[12] = 0x58,
1258 	.pll[13] = 0,
1259 	.pll[14] = 0,
1260 	.pll[15] = 0xA,
1261 	.pll[16] = 0x6,
1262 	.pll[17] = 0xF,
1263 	.pll[18] = 0x85,
1264 	.pll[19] = 0x23,
1265 };
1266 
1267 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1268 	.clock = 594000,
1269 	.tx = 0x10,
1270 	.cmn = 0x1,
1271 	.pll[0] = 0xF4,
1272 	.pll[1] = 0,
1273 	.pll[2] = 0x7A,
1274 	.pll[3] = 0,
1275 	.pll[4] = 0,
1276 	.pll[5] = 0,
1277 	.pll[6] = 0,
1278 	.pll[7] = 0,
1279 	.pll[8] = 0x20,
1280 	.pll[9] = 0x1,
1281 	.pll[10] = 0,
1282 	.pll[11] = 0,
1283 	.pll[12] = 0x58,
1284 	.pll[13] = 0,
1285 	.pll[14] = 0,
1286 	.pll[15] = 0x8,
1287 	.pll[16] = 0x6,
1288 	.pll[17] = 0xF,
1289 	.pll[18] = 0x85,
1290 	.pll[19] = 0x23,
1291 };
1292 
1293 /* Precomputed C10 HDMI PLL tables */
1294 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1295 	.clock = 27027,
1296 	.tx = 0x10,
1297 	.cmn = 0x1,
1298 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1299 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1300 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1301 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1302 };
1303 
1304 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1305 	.clock = 28320,
1306 	.tx = 0x10,
1307 	.cmn = 0x1,
1308 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1309 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1310 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1311 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1312 };
1313 
1314 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1315 	.clock = 30240,
1316 	.tx = 0x10,
1317 	.cmn = 0x1,
1318 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1319 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1320 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1321 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1322 };
1323 
1324 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1325 	.clock = 31500,
1326 	.tx = 0x10,
1327 	.cmn = 0x1,
1328 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1329 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1330 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1331 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1332 };
1333 
1334 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1335 	.clock = 36000,
1336 	.tx = 0x10,
1337 	.cmn = 0x1,
1338 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1339 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1340 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1341 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1342 };
1343 
1344 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1345 	.clock = 40000,
1346 	.tx = 0x10,
1347 	.cmn = 0x1,
1348 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1349 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1350 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1351 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1352 };
1353 
1354 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1355 	.clock = 49500,
1356 	.tx = 0x10,
1357 	.cmn = 0x1,
1358 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1359 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1360 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1361 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1362 };
1363 
1364 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1365 	.clock = 50000,
1366 	.tx = 0x10,
1367 	.cmn = 0x1,
1368 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1369 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1370 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1371 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1372 };
1373 
1374 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1375 	.clock = 57284,
1376 	.tx = 0x10,
1377 	.cmn = 0x1,
1378 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1379 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1380 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1381 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1382 };
1383 
1384 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1385 	.clock = 58000,
1386 	.tx = 0x10,
1387 	.cmn = 0x1,
1388 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1389 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1390 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1391 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1392 };
1393 
1394 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1395 	.clock = 65000,
1396 	.tx = 0x10,
1397 	.cmn = 0x1,
1398 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1399 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1400 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1401 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1402 };
1403 
1404 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1405 	.clock = 71000,
1406 	.tx = 0x10,
1407 	.cmn = 0x1,
1408 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1409 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1410 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1411 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1412 };
1413 
1414 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1415 	.clock = 74176,
1416 	.tx = 0x10,
1417 	.cmn = 0x1,
1418 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1419 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1420 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1421 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1422 };
1423 
1424 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1425 	.clock = 75000,
1426 	.tx = 0x10,
1427 	.cmn = 0x1,
1428 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1429 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1430 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1431 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1432 };
1433 
1434 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1435 	.clock = 78750,
1436 	.tx = 0x10,
1437 	.cmn = 0x1,
1438 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1439 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1440 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1441 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1442 };
1443 
1444 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1445 	.clock = 85500,
1446 	.tx = 0x10,
1447 	.cmn = 0x1,
1448 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1449 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1450 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1451 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1452 };
1453 
1454 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1455 	.clock = 88750,
1456 	.tx = 0x10,
1457 	.cmn = 0x1,
1458 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1459 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1460 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1461 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1462 };
1463 
1464 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1465 	.clock = 106500,
1466 	.tx = 0x10,
1467 	.cmn = 0x1,
1468 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1469 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1470 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1471 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1472 };
1473 
1474 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1475 	.clock = 108000,
1476 	.tx = 0x10,
1477 	.cmn = 0x1,
1478 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1479 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1480 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1481 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1482 };
1483 
1484 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1485 	.clock = 115500,
1486 	.tx = 0x10,
1487 	.cmn = 0x1,
1488 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1489 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1490 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1491 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1492 };
1493 
1494 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1495 	.clock = 119000,
1496 	.tx = 0x10,
1497 	.cmn = 0x1,
1498 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1499 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1500 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1501 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1502 };
1503 
1504 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1505 	.clock = 135000,
1506 	.tx = 0x10,
1507 	.cmn = 0x1,
1508 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1509 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1510 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1511 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1512 };
1513 
1514 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1515 	.clock = 138500,
1516 	.tx = 0x10,
1517 	.cmn = 0x1,
1518 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1519 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1520 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1521 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1522 };
1523 
1524 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1525 	.clock = 147160,
1526 	.tx = 0x10,
1527 	.cmn = 0x1,
1528 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1529 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1530 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1531 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1532 };
1533 
1534 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1535 	.clock = 148352,
1536 	.tx = 0x10,
1537 	.cmn = 0x1,
1538 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1539 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1540 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1541 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1542 };
1543 
1544 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1545 	.clock = 154000,
1546 	.tx = 0x10,
1547 	.cmn = 0x1,
1548 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1549 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1550 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1551 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1552 };
1553 
1554 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1555 	.clock = 162000,
1556 	.tx = 0x10,
1557 	.cmn = 0x1,
1558 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1559 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1560 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1561 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1562 };
1563 
1564 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1565 	.clock = 167000,
1566 	.tx = 0x10,
1567 	.cmn = 0x1,
1568 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1569 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1570 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1571 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1572 };
1573 
1574 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1575 	.clock = 197802,
1576 	.tx = 0x10,
1577 	.cmn = 0x1,
1578 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1579 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1580 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1581 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1582 };
1583 
1584 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1585 	.clock = 198000,
1586 	.tx = 0x10,
1587 	.cmn = 0x1,
1588 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1589 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1590 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1591 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1592 };
1593 
1594 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1595 	.clock = 209800,
1596 	.tx = 0x10,
1597 	.cmn = 0x1,
1598 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1599 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1600 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1601 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1602 };
1603 
1604 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1605 	.clock = 241500,
1606 	.tx = 0x10,
1607 	.cmn = 0x1,
1608 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1609 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1610 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1611 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1612 };
1613 
1614 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1615 	.clock = 262750,
1616 	.tx = 0x10,
1617 	.cmn = 0x1,
1618 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1619 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1620 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1621 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1622 };
1623 
1624 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1625 	.clock = 268500,
1626 	.tx = 0x10,
1627 	.cmn = 0x1,
1628 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1629 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1630 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1631 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1632 };
1633 
1634 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1635 	.clock = 296703,
1636 	.tx = 0x10,
1637 	.cmn = 0x1,
1638 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1639 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1640 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1641 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1642 };
1643 
1644 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1645 	.clock = 297000,
1646 	.tx = 0x10,
1647 	.cmn = 0x1,
1648 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1649 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1650 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1651 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1652 };
1653 
1654 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1655 	.clock = 319750,
1656 	.tx = 0x10,
1657 	.cmn = 0x1,
1658 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1659 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1660 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1661 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1662 };
1663 
1664 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1665 	.clock = 497750,
1666 	.tx = 0x10,
1667 	.cmn = 0x1,
1668 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1669 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1670 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1671 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1672 };
1673 
1674 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1675 	.clock = 592000,
1676 	.tx = 0x10,
1677 	.cmn = 0x1,
1678 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1679 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1680 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1681 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1682 };
1683 
1684 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1685 	.clock = 593407,
1686 	.tx = 0x10,
1687 	.cmn = 0x1,
1688 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1689 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1690 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1691 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1692 };
1693 
1694 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1695 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1696 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1697 	&mtl_c10_hdmi_27027,
1698 	&mtl_c10_hdmi_28320,
1699 	&mtl_c10_hdmi_30240,
1700 	&mtl_c10_hdmi_31500,
1701 	&mtl_c10_hdmi_36000,
1702 	&mtl_c10_hdmi_40000,
1703 	&mtl_c10_hdmi_49500,
1704 	&mtl_c10_hdmi_50000,
1705 	&mtl_c10_hdmi_57284,
1706 	&mtl_c10_hdmi_58000,
1707 	&mtl_c10_hdmi_65000,
1708 	&mtl_c10_hdmi_71000,
1709 	&mtl_c10_hdmi_74176,
1710 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1711 	&mtl_c10_hdmi_75000,
1712 	&mtl_c10_hdmi_78750,
1713 	&mtl_c10_hdmi_85500,
1714 	&mtl_c10_hdmi_88750,
1715 	&mtl_c10_hdmi_106500,
1716 	&mtl_c10_hdmi_108000,
1717 	&mtl_c10_hdmi_115500,
1718 	&mtl_c10_hdmi_119000,
1719 	&mtl_c10_hdmi_135000,
1720 	&mtl_c10_hdmi_138500,
1721 	&mtl_c10_hdmi_147160,
1722 	&mtl_c10_hdmi_148352,
1723 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1724 	&mtl_c10_hdmi_154000,
1725 	&mtl_c10_hdmi_162000,
1726 	&mtl_c10_hdmi_167000,
1727 	&mtl_c10_hdmi_197802,
1728 	&mtl_c10_hdmi_198000,
1729 	&mtl_c10_hdmi_209800,
1730 	&mtl_c10_hdmi_241500,
1731 	&mtl_c10_hdmi_262750,
1732 	&mtl_c10_hdmi_268500,
1733 	&mtl_c10_hdmi_296703,
1734 	&mtl_c10_hdmi_297000,
1735 	&mtl_c10_hdmi_319750,
1736 	&mtl_c10_hdmi_497750,
1737 	&mtl_c10_hdmi_592000,
1738 	&mtl_c10_hdmi_593407,
1739 	&mtl_c10_hdmi_594, /* Consolidated Table */
1740 	NULL,
1741 };
1742 
1743 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1744 	.clock = 25175,
1745 	.tx = {  0xbe88, /* tx cfg0 */
1746 		  0x9800, /* tx cfg1 */
1747 		  0x0000, /* tx cfg2 */
1748 		},
1749 	.cmn = { 0x0500, /* cmn cfg0*/
1750 		  0x0005, /* cmn cfg1 */
1751 		  0x0000, /* cmn cfg2 */
1752 		  0x0000, /* cmn cfg3 */
1753 		},
1754 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1755 		   0x7d80,	/* mpllb cfg1 */
1756 		   0x0906,	/* mpllb cfg2 */
1757 		   0xbe40,	/* mpllb cfg3 */
1758 		   0x0000,	/* mpllb cfg4 */
1759 		   0x0000,	/* mpllb cfg5 */
1760 		   0x0200,	/* mpllb cfg6 */
1761 		   0x0001,	/* mpllb cfg7 */
1762 		   0x0000,	/* mpllb cfg8 */
1763 		   0x0000,	/* mpllb cfg9 */
1764 		   0x0001,	/* mpllb cfg10 */
1765 		},
1766 };
1767 
1768 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1769 	.clock = 27000,
1770 	.tx = {  0xbe88, /* tx cfg0 */
1771 		  0x9800, /* tx cfg1 */
1772 		  0x0000, /* tx cfg2 */
1773 		},
1774 	.cmn = { 0x0500, /* cmn cfg0*/
1775 		  0x0005, /* cmn cfg1 */
1776 		  0x0000, /* cmn cfg2 */
1777 		  0x0000, /* cmn cfg3 */
1778 		},
1779 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1780 		   0x7d80,	/* mpllb cfg1 */
1781 		   0x0906,	/* mpllb cfg2 */
1782 		   0xbe40,	/* mpllb cfg3 */
1783 		   0x0000,	/* mpllb cfg4 */
1784 		   0x0000,	/* mpllb cfg5 */
1785 		   0x2200,	/* mpllb cfg6 */
1786 		   0x0001,	/* mpllb cfg7 */
1787 		   0x8000,	/* mpllb cfg8 */
1788 		   0x0000,	/* mpllb cfg9 */
1789 		   0x0001,	/* mpllb cfg10 */
1790 		},
1791 };
1792 
1793 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1794 	.clock = 74250,
1795 	.tx = {  0xbe88, /* tx cfg0 */
1796 		  0x9800, /* tx cfg1 */
1797 		  0x0000, /* tx cfg2 */
1798 		},
1799 	.cmn = { 0x0500, /* cmn cfg0*/
1800 		  0x0005, /* cmn cfg1 */
1801 		  0x0000, /* cmn cfg2 */
1802 		  0x0000, /* cmn cfg3 */
1803 		},
1804 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1805 		   0x7d40,	/* mpllb cfg1 */
1806 		   0xca06,	/* mpllb cfg2 */
1807 		   0xbe40,	/* mpllb cfg3 */
1808 		   0x0000,	/* mpllb cfg4 */
1809 		   0x0000,	/* mpllb cfg5 */
1810 		   0x2200,	/* mpllb cfg6 */
1811 		   0x0001,	/* mpllb cfg7 */
1812 		   0x5800,	/* mpllb cfg8 */
1813 		   0x0000,	/* mpllb cfg9 */
1814 		   0x0001,	/* mpllb cfg10 */
1815 		},
1816 };
1817 
1818 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1819 	.clock = 148500,
1820 	.tx = {  0xbe88, /* tx cfg0 */
1821 		  0x9800, /* tx cfg1 */
1822 		  0x0000, /* tx cfg2 */
1823 		},
1824 	.cmn = { 0x0500, /* cmn cfg0*/
1825 		  0x0005, /* cmn cfg1 */
1826 		  0x0000, /* cmn cfg2 */
1827 		  0x0000, /* cmn cfg3 */
1828 		},
1829 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1830 		   0x7d20,	/* mpllb cfg1 */
1831 		   0xca06,	/* mpllb cfg2 */
1832 		   0xbe40,	/* mpllb cfg3 */
1833 		   0x0000,	/* mpllb cfg4 */
1834 		   0x0000,	/* mpllb cfg5 */
1835 		   0x2200,	/* mpllb cfg6 */
1836 		   0x0001,	/* mpllb cfg7 */
1837 		   0x5800,	/* mpllb cfg8 */
1838 		   0x0000,	/* mpllb cfg9 */
1839 		   0x0001,	/* mpllb cfg10 */
1840 		},
1841 };
1842 
1843 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1844 	.clock = 594000,
1845 	.tx = {  0xbe88, /* tx cfg0 */
1846 		  0x9800, /* tx cfg1 */
1847 		  0x0000, /* tx cfg2 */
1848 		},
1849 	.cmn = { 0x0500, /* cmn cfg0*/
1850 		  0x0005, /* cmn cfg1 */
1851 		  0x0000, /* cmn cfg2 */
1852 		  0x0000, /* cmn cfg3 */
1853 		},
1854 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1855 		   0x7d08,	/* mpllb cfg1 */
1856 		   0xca06,	/* mpllb cfg2 */
1857 		   0xbe40,	/* mpllb cfg3 */
1858 		   0x0000,	/* mpllb cfg4 */
1859 		   0x0000,	/* mpllb cfg5 */
1860 		   0x2200,	/* mpllb cfg6 */
1861 		   0x0001,	/* mpllb cfg7 */
1862 		   0x5800,	/* mpllb cfg8 */
1863 		   0x0000,	/* mpllb cfg9 */
1864 		   0x0001,	/* mpllb cfg10 */
1865 		},
1866 };
1867 
1868 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1869 	.clock = 3000000,
1870 	.tx = {  0xbe98, /* tx cfg0 */
1871 		  0x8800, /* tx cfg1 */
1872 		  0x0000, /* tx cfg2 */
1873 		},
1874 	.cmn = { 0x0500, /* cmn cfg0*/
1875 		  0x0005, /* cmn cfg1 */
1876 		  0x0000, /* cmn cfg2 */
1877 		  0x0000, /* cmn cfg3 */
1878 		},
1879 	.mpllb = { 0x309c,	/* mpllb cfg0 */
1880 		   0x2110,	/* mpllb cfg1 */
1881 		   0xca06,	/* mpllb cfg2 */
1882 		   0xbe40,	/* mpllb cfg3 */
1883 		   0x0000,	/* mpllb cfg4 */
1884 		   0x0000,	/* mpllb cfg5 */
1885 		   0x2200,	/* mpllb cfg6 */
1886 		   0x0001,	/* mpllb cfg7 */
1887 		   0x2000,	/* mpllb cfg8 */
1888 		   0x0000,	/* mpllb cfg9 */
1889 		   0x0004,	/* mpllb cfg10 */
1890 		},
1891 };
1892 
1893 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1894 	.clock = 6000000,
1895 	.tx = {  0xbe98, /* tx cfg0 */
1896 		  0x8800, /* tx cfg1 */
1897 		  0x0000, /* tx cfg2 */
1898 		},
1899 	.cmn = { 0x0500, /* cmn cfg0*/
1900 		  0x0005, /* cmn cfg1 */
1901 		  0x0000, /* cmn cfg2 */
1902 		  0x0000, /* cmn cfg3 */
1903 		},
1904 	.mpllb = { 0x109c,	/* mpllb cfg0 */
1905 		   0x2108,	/* mpllb cfg1 */
1906 		   0xca06,	/* mpllb cfg2 */
1907 		   0xbe40,	/* mpllb cfg3 */
1908 		   0x0000,	/* mpllb cfg4 */
1909 		   0x0000,	/* mpllb cfg5 */
1910 		   0x2200,	/* mpllb cfg6 */
1911 		   0x0001,	/* mpllb cfg7 */
1912 		   0x2000,	/* mpllb cfg8 */
1913 		   0x0000,	/* mpllb cfg9 */
1914 		   0x0004,	/* mpllb cfg10 */
1915 		},
1916 };
1917 
1918 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1919 	.clock = 8000000,
1920 	.tx = {  0xbe98, /* tx cfg0 */
1921 		  0x8800, /* tx cfg1 */
1922 		  0x0000, /* tx cfg2 */
1923 		},
1924 	.cmn = { 0x0500, /* cmn cfg0*/
1925 		  0x0005, /* cmn cfg1 */
1926 		  0x0000, /* cmn cfg2 */
1927 		  0x0000, /* cmn cfg3 */
1928 		},
1929 	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1930 		   0x2108,	/* mpllb cfg1 */
1931 		   0x4a06,	/* mpllb cfg2 */
1932 		   0xbe40,	/* mpllb cfg3 */
1933 		   0x0000,	/* mpllb cfg4 */
1934 		   0x0000,	/* mpllb cfg5 */
1935 		   0x2200,	/* mpllb cfg6 */
1936 		   0x0003,	/* mpllb cfg7 */
1937 		   0x2aaa,	/* mpllb cfg8 */
1938 		   0x0002,	/* mpllb cfg9 */
1939 		   0x0004,	/* mpllb cfg10 */
1940 		},
1941 };
1942 
1943 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1944 	.clock = 10000000,
1945 	.tx = {  0xbe98, /* tx cfg0 */
1946 		  0x8800, /* tx cfg1 */
1947 		  0x0000, /* tx cfg2 */
1948 		},
1949 	.cmn = { 0x0500, /* cmn cfg0*/
1950 		  0x0005, /* cmn cfg1 */
1951 		  0x0000, /* cmn cfg2 */
1952 		  0x0000, /* cmn cfg3 */
1953 		},
1954 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1955 		   0x2108,	/* mpllb cfg1 */
1956 		   0x0a06,	/* mpllb cfg2 */
1957 		   0xbe40,	/* mpllb cfg3 */
1958 		   0x0000,	/* mpllb cfg4 */
1959 		   0x0000,	/* mpllb cfg5 */
1960 		   0x2200,	/* mpllb cfg6 */
1961 		   0x0003,	/* mpllb cfg7 */
1962 		   0x3555,	/* mpllb cfg8 */
1963 		   0x0001,	/* mpllb cfg9 */
1964 		   0x0004,	/* mpllb cfg10 */
1965 		},
1966 };
1967 
1968 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1969 	.clock = 12000000,
1970 	.tx = {  0xbe98, /* tx cfg0 */
1971 		  0x8800, /* tx cfg1 */
1972 		  0x0000, /* tx cfg2 */
1973 		},
1974 	.cmn = { 0x0500, /* cmn cfg0*/
1975 		  0x0005, /* cmn cfg1 */
1976 		  0x0000, /* cmn cfg2 */
1977 		  0x0000, /* cmn cfg3 */
1978 		},
1979 	.mpllb = { 0x1138,	/* mpllb cfg0 */
1980 		   0x2108,	/* mpllb cfg1 */
1981 		   0x5486,	/* mpllb cfg2 */
1982 		   0xfe40,	/* mpllb cfg3 */
1983 		   0x0000,	/* mpllb cfg4 */
1984 		   0x0000,	/* mpllb cfg5 */
1985 		   0x2200,	/* mpllb cfg6 */
1986 		   0x0001,	/* mpllb cfg7 */
1987 		   0x4000,	/* mpllb cfg8 */
1988 		   0x0000,	/* mpllb cfg9 */
1989 		   0x0004,	/* mpllb cfg10 */
1990 		},
1991 };
1992 
1993 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1994 	&mtl_c20_hdmi_25_175,
1995 	&mtl_c20_hdmi_27_0,
1996 	&mtl_c20_hdmi_74_25,
1997 	&mtl_c20_hdmi_148_5,
1998 	&mtl_c20_hdmi_594,
1999 	&mtl_c20_hdmi_300,
2000 	&mtl_c20_hdmi_600,
2001 	&mtl_c20_hdmi_800,
2002 	&mtl_c20_hdmi_1000,
2003 	&mtl_c20_hdmi_1200,
2004 	NULL,
2005 };
2006 
2007 static const struct intel_c10pll_state * const *
2008 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2009 			struct intel_encoder *encoder)
2010 {
2011 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2012 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2013 			return mtl_c10_edp_tables;
2014 		else
2015 			return mtl_c10_dp_tables;
2016 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2017 		return mtl_c10_hdmi_tables;
2018 	}
2019 
2020 	MISSING_CASE(encoder->type);
2021 	return NULL;
2022 }
2023 
2024 static void intel_cx0pll_update_ssc(struct intel_encoder *encoder,
2025 				    struct intel_cx0pll_state *pll_state, bool is_dp)
2026 {
2027 	struct intel_display *display = to_intel_display(encoder);
2028 
2029 	if (is_dp) {
2030 		if (intel_panel_use_ssc(display)) {
2031 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2032 			pll_state->ssc_enabled =
2033 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2034 		}
2035 	}
2036 }
2037 
2038 static void intel_c10pll_update_pll(struct intel_encoder *encoder,
2039 				    struct intel_cx0pll_state *pll_state)
2040 {
2041 	struct intel_display *display = to_intel_display(encoder);
2042 	int i;
2043 
2044 	if (pll_state->ssc_enabled)
2045 		return;
2046 
2047 	drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2048 	for (i = 4; i < 9; i++)
2049 		pll_state->c10.pll[i] = 0;
2050 }
2051 
2052 static int intel_c10pll_calc_state_from_table(struct intel_encoder *encoder,
2053 					      const struct intel_c10pll_state * const *tables,
2054 					      bool is_dp, int port_clock,
2055 					      struct intel_cx0pll_state *pll_state)
2056 {
2057 	int i;
2058 
2059 	for (i = 0; tables[i]; i++) {
2060 		if (port_clock == tables[i]->clock) {
2061 			pll_state->c10 = *tables[i];
2062 			intel_cx0pll_update_ssc(encoder, pll_state, is_dp);
2063 			intel_c10pll_update_pll(encoder, pll_state);
2064 			pll_state->use_c10 = true;
2065 
2066 			return 0;
2067 		}
2068 	}
2069 
2070 	return -EINVAL;
2071 }
2072 
2073 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2074 				   struct intel_encoder *encoder)
2075 {
2076 	const struct intel_c10pll_state * const *tables;
2077 	int err;
2078 
2079 	tables = intel_c10pll_tables_get(crtc_state, encoder);
2080 	if (!tables)
2081 		return -EINVAL;
2082 
2083 	err = intel_c10pll_calc_state_from_table(encoder, tables,
2084 						 intel_crtc_has_dp_encoder(crtc_state),
2085 						 crtc_state->port_clock,
2086 						 &crtc_state->dpll_hw_state.cx0pll);
2087 
2088 	if (err == 0 || !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2089 		return err;
2090 
2091 	/* For HDMI PLLs try SNPS PHY algorithm, if there are no precomputed tables */
2092 	intel_snps_hdmi_pll_compute_c10pll(&crtc_state->dpll_hw_state.cx0pll.c10,
2093 					   crtc_state->port_clock);
2094 	intel_c10pll_update_pll(encoder,
2095 				&crtc_state->dpll_hw_state.cx0pll);
2096 	crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2097 
2098 	return 0;
2099 }
2100 
2101 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2102 					const struct intel_c10pll_state *pll_state);
2103 
2104 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2105 					  struct intel_c10pll_state *pll_state)
2106 {
2107 	u8 lane = INTEL_CX0_LANE0;
2108 	intel_wakeref_t wakeref;
2109 	int i;
2110 
2111 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2112 
2113 	/*
2114 	 * According to C10 VDR Register programming Sequence we need
2115 	 * to do this to read PHY internal registers from MsgBus.
2116 	 */
2117 	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2118 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2119 		      MB_WRITE_COMMITTED);
2120 
2121 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2122 		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2123 
2124 	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2125 	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2126 
2127 	intel_cx0_phy_transaction_end(encoder, wakeref);
2128 
2129 	pll_state->clock = intel_c10pll_calc_port_clock(encoder, pll_state);
2130 }
2131 
2132 static void intel_c10_pll_program(struct intel_display *display,
2133 				  struct intel_encoder *encoder,
2134 				  const struct intel_c10pll_state *pll_state)
2135 {
2136 	int i;
2137 
2138 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2139 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2140 		      MB_WRITE_COMMITTED);
2141 
2142 	/* Program the pll values only for the master lane */
2143 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2144 		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2145 				pll_state->pll[i],
2146 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2147 
2148 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2149 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2150 
2151 	/* Custom width needs to be programmed to 0 for both the phy lanes */
2152 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2153 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2154 		      MB_WRITE_COMMITTED);
2155 	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2156 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2157 		      MB_WRITE_COMMITTED);
2158 }
2159 
2160 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2161 				       const struct intel_c10pll_state *hw_state)
2162 {
2163 	bool fracen;
2164 	int i;
2165 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2166 	unsigned int multiplier, tx_clk_div;
2167 
2168 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2169 	drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2170 		    str_yes_no(fracen));
2171 
2172 	if (fracen) {
2173 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2174 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
2175 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
2176 		drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2177 			    frac_quot, frac_rem, frac_den);
2178 	}
2179 
2180 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2181 		      hw_state->pll[2]) / 2 + 16;
2182 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2183 	drm_dbg_kms(display->drm,
2184 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2185 
2186 	drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2187 	drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2188 		    hw_state->cmn);
2189 
2190 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2191 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2192 		drm_dbg_kms(display->drm,
2193 			    "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2194 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2195 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2196 }
2197 
2198 /*
2199  * Some ARLs SoCs have the same drm PCI IDs, so need a helper to differentiate based
2200  * on the host bridge device ID to get the correct txx_mics value.
2201  */
2202 static bool is_arrowlake_s_by_host_bridge(void)
2203 {
2204 	struct pci_dev *pdev = NULL;
2205 	u16 host_bridge_pci_dev_id;
2206 
2207 	while ((pdev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, pdev)))
2208 		host_bridge_pci_dev_id = pdev->device;
2209 
2210 	return pdev && IS_ARROWLAKE_S_BY_HOST_BRIDGE_ID(host_bridge_pci_dev_id);
2211 }
2212 
2213 static u16 intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state *crtc_state)
2214 {
2215 	struct intel_display *display = to_intel_display(crtc_state);
2216 	u16 tx_misc;
2217 	u16 tx_dcc_cal_dac_ctrl_range = 8;
2218 	u16 tx_term_ctrl = 2;
2219 
2220 	if (DISPLAY_VER(display) >= 20) {
2221 		tx_misc = 5;
2222 		tx_term_ctrl = 4;
2223 	} else if (display->platform.battlemage) {
2224 		tx_misc = 0;
2225 	} else if (display->platform.meteorlake_u ||
2226 		   is_arrowlake_s_by_host_bridge()) {
2227 		tx_misc = 3;
2228 	} else {
2229 		tx_misc = 7;
2230 	}
2231 
2232 	return (C20_PHY_TX_MISC(tx_misc) |
2233 		C20_PHY_TX_DCC_CAL_RANGE(tx_dcc_cal_dac_ctrl_range) |
2234 		C20_PHY_TX_DCC_BYPASS | C20_PHY_TX_TERM_CTL(tx_term_ctrl));
2235 }
2236 
2237 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2238 {
2239 	struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2240 	u64 datarate;
2241 	u64 mpll_tx_clk_div;
2242 	u64 vco_freq_shift;
2243 	u64 vco_freq;
2244 	u64 multiplier;
2245 	u64 mpll_multiplier;
2246 	u64 mpll_fracn_quot;
2247 	u64 mpll_fracn_rem;
2248 	u8  mpllb_ana_freq_vco;
2249 	u8  mpll_div_multiplier;
2250 
2251 	if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2252 		return -EINVAL;
2253 
2254 	datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2255 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2256 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2257 	vco_freq = (datarate << vco_freq_shift) >> 8;
2258 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2259 	mpll_multiplier = 2 * (multiplier >> 32);
2260 
2261 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2262 	mpll_fracn_rem  = multiplier & 0xFFFF;
2263 
2264 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2265 						  datarate), 255);
2266 
2267 	if (vco_freq <= DATARATE_3000000000)
2268 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2269 	else if (vco_freq <= DATARATE_3500000000)
2270 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2271 	else if (vco_freq <= DATARATE_4000000000)
2272 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2273 	else
2274 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2275 
2276 	pll_state->clock	= crtc_state->port_clock;
2277 	pll_state->tx[0]	= 0xbe88;
2278 	pll_state->tx[1]	= intel_c20_hdmi_tmds_tx_cgf_1(crtc_state);
2279 	pll_state->tx[2]	= 0x0000;
2280 	pll_state->cmn[0]	= 0x0500;
2281 	pll_state->cmn[1]	= 0x0005;
2282 	pll_state->cmn[2]	= 0x0000;
2283 	pll_state->cmn[3]	= 0x0000;
2284 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2285 				   MPLL_MULTIPLIER(mpll_multiplier));
2286 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2287 				   WORD_CLK_DIV |
2288 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2289 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2290 				   CP_PROP(CP_PROP_20) |
2291 				   CP_INT(CP_INT_6));
2292 	pll_state->mpllb[3]	= (V2I(V2I_2) |
2293 				   CP_PROP_GS(CP_PROP_GS_30) |
2294 				   CP_INT_GS(CP_INT_GS_28));
2295 	pll_state->mpllb[4]	= 0x0000;
2296 	pll_state->mpllb[5]	= 0x0000;
2297 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2298 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2299 	pll_state->mpllb[8]	= mpll_fracn_quot;
2300 	pll_state->mpllb[9]	= mpll_fracn_rem;
2301 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2302 
2303 	return 0;
2304 }
2305 
2306 static const struct intel_c20pll_state * const *
2307 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2308 			 struct intel_encoder *encoder)
2309 {
2310 	struct intel_display *display = to_intel_display(crtc_state);
2311 
2312 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2313 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2314 			if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2315 				return xe3lpd_c20_dp_edp_tables;
2316 			if (DISPLAY_VERx100(display) == 1401)
2317 				return xe2hpd_c20_edp_tables;
2318 		}
2319 
2320 		if (DISPLAY_VER(display) >= 30)
2321 			return xe3lpd_c20_dp_edp_tables;
2322 		else if (DISPLAY_VERx100(display) == 1401)
2323 			return xe2hpd_c20_dp_tables;
2324 		else
2325 			return mtl_c20_dp_tables;
2326 
2327 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2328 		return mtl_c20_hdmi_tables;
2329 	}
2330 
2331 	MISSING_CASE(encoder->type);
2332 	return NULL;
2333 }
2334 
2335 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2336 				   struct intel_encoder *encoder)
2337 {
2338 	const struct intel_c20pll_state * const *tables;
2339 	int i;
2340 
2341 	/* try computed C20 HDMI tables before using consolidated tables */
2342 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2343 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2344 			return 0;
2345 	}
2346 
2347 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2348 	if (!tables)
2349 		return -EINVAL;
2350 
2351 	for (i = 0; tables[i]; i++) {
2352 		if (crtc_state->port_clock == tables[i]->clock) {
2353 			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2354 			intel_cx0pll_update_ssc(encoder,
2355 						&crtc_state->dpll_hw_state.cx0pll,
2356 						intel_crtc_has_dp_encoder(crtc_state));
2357 			crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2358 			return 0;
2359 		}
2360 	}
2361 
2362 	return -EINVAL;
2363 }
2364 
2365 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2366 			    struct intel_encoder *encoder)
2367 {
2368 	if (intel_encoder_is_c10phy(encoder))
2369 		return intel_c10pll_calc_state(crtc_state, encoder);
2370 	return intel_c20pll_calc_state(crtc_state, encoder);
2371 }
2372 
2373 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2374 {
2375 	return state->tx[0] & C20_PHY_USE_MPLLB;
2376 }
2377 
2378 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2379 					const struct intel_c20pll_state *pll_state)
2380 {
2381 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2382 	unsigned int multiplier, refclk = 38400;
2383 	unsigned int tx_clk_div;
2384 	unsigned int ref_clk_mpllb_div;
2385 	unsigned int fb_clk_div4_en;
2386 	unsigned int ref, vco;
2387 	unsigned int tx_rate_mult;
2388 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2389 
2390 	if (intel_c20phy_use_mpllb(pll_state)) {
2391 		tx_rate_mult = 1;
2392 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2393 		frac_quot = pll_state->mpllb[8];
2394 		frac_rem =  pll_state->mpllb[9];
2395 		frac_den =  pll_state->mpllb[7];
2396 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2397 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2398 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2399 		fb_clk_div4_en = 0;
2400 	} else {
2401 		tx_rate_mult = 2;
2402 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2403 		frac_quot = pll_state->mplla[8];
2404 		frac_rem =  pll_state->mplla[9];
2405 		frac_den =  pll_state->mplla[7];
2406 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2407 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2408 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2409 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2410 	}
2411 
2412 	if (frac_en)
2413 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2414 	else
2415 		frac = 0;
2416 
2417 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2418 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2419 
2420 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2421 }
2422 
2423 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2424 					  struct intel_c20pll_state *pll_state)
2425 {
2426 	struct intel_display *display = to_intel_display(encoder);
2427 	bool cntx;
2428 	intel_wakeref_t wakeref;
2429 	int i;
2430 
2431 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2432 
2433 	/* 1. Read current context selection */
2434 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2435 
2436 	/* Read Tx configuration */
2437 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2438 		if (cntx)
2439 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2440 							       INTEL_CX0_LANE0,
2441 							       PHY_C20_B_TX_CNTX_CFG(display, i));
2442 		else
2443 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2444 							       INTEL_CX0_LANE0,
2445 							       PHY_C20_A_TX_CNTX_CFG(display, i));
2446 	}
2447 
2448 	/* Read common configuration */
2449 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2450 		if (cntx)
2451 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2452 								INTEL_CX0_LANE0,
2453 								PHY_C20_B_CMN_CNTX_CFG(display, i));
2454 		else
2455 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2456 								INTEL_CX0_LANE0,
2457 								PHY_C20_A_CMN_CNTX_CFG(display, i));
2458 	}
2459 
2460 	if (intel_c20phy_use_mpllb(pll_state)) {
2461 		/* MPLLB configuration */
2462 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2463 			if (cntx)
2464 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2465 									  INTEL_CX0_LANE0,
2466 									  PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2467 			else
2468 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2469 									  INTEL_CX0_LANE0,
2470 									  PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2471 		}
2472 	} else {
2473 		/* MPLLA configuration */
2474 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2475 			if (cntx)
2476 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2477 									  INTEL_CX0_LANE0,
2478 									  PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2479 			else
2480 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2481 									  INTEL_CX0_LANE0,
2482 									  PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2483 		}
2484 	}
2485 
2486 	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2487 
2488 	intel_cx0_phy_transaction_end(encoder, wakeref);
2489 }
2490 
2491 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2492 				       const struct intel_c20pll_state *hw_state)
2493 {
2494 	int i;
2495 
2496 	drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2497 	drm_dbg_kms(display->drm,
2498 		    "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2499 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2500 	drm_dbg_kms(display->drm,
2501 		    "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2502 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2503 
2504 	if (intel_c20phy_use_mpllb(hw_state)) {
2505 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2506 			drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2507 				    hw_state->mpllb[i]);
2508 	} else {
2509 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2510 			drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2511 				    hw_state->mplla[i]);
2512 	}
2513 }
2514 
2515 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2516 				const struct intel_cx0pll_state *hw_state)
2517 {
2518 	if (hw_state->use_c10)
2519 		intel_c10pll_dump_hw_state(display, &hw_state->c10);
2520 	else
2521 		intel_c20pll_dump_hw_state(display, &hw_state->c20);
2522 }
2523 
2524 static u8 intel_c20_get_dp_rate(u32 clock)
2525 {
2526 	switch (clock) {
2527 	case 162000: /* 1.62 Gbps DP1.4 */
2528 		return 0;
2529 	case 270000: /* 2.7 Gbps DP1.4 */
2530 		return 1;
2531 	case 540000: /* 5.4 Gbps DP 1.4 */
2532 		return 2;
2533 	case 810000: /* 8.1 Gbps DP1.4 */
2534 		return 3;
2535 	case 216000: /* 2.16 Gbps eDP */
2536 		return 4;
2537 	case 243000: /* 2.43 Gbps eDP */
2538 		return 5;
2539 	case 324000: /* 3.24 Gbps eDP */
2540 		return 6;
2541 	case 432000: /* 4.32 Gbps eDP */
2542 		return 7;
2543 	case 1000000: /* 10 Gbps DP2.0 */
2544 		return 8;
2545 	case 1350000: /* 13.5 Gbps DP2.0 */
2546 		return 9;
2547 	case 2000000: /* 20 Gbps DP2.0 */
2548 		return 10;
2549 	case 648000: /* 6.48 Gbps eDP*/
2550 		return 11;
2551 	case 675000: /* 6.75 Gbps eDP*/
2552 		return 12;
2553 	default:
2554 		MISSING_CASE(clock);
2555 		return 0;
2556 	}
2557 }
2558 
2559 static u8 intel_c20_get_hdmi_rate(u32 clock)
2560 {
2561 	if (clock >= 25175 && clock <= 600000)
2562 		return 0;
2563 
2564 	switch (clock) {
2565 	case 300000: /* 3 Gbps */
2566 	case 600000: /* 6 Gbps */
2567 	case 1200000: /* 12 Gbps */
2568 		return 1;
2569 	case 800000: /* 8 Gbps */
2570 		return 2;
2571 	case 1000000: /* 10 Gbps */
2572 		return 3;
2573 	default:
2574 		MISSING_CASE(clock);
2575 		return 0;
2576 	}
2577 }
2578 
2579 static bool is_dp2(u32 clock)
2580 {
2581 	/* DP2.0 clock rates */
2582 	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2583 		return true;
2584 
2585 	return false;
2586 }
2587 
2588 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2589 {
2590 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2591 
2592 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2593 	/* TODO: optimize re-calibration in legacy mode */
2594 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2595 }
2596 
2597 static int intel_get_c20_custom_width(u32 clock, bool dp)
2598 {
2599 	if (dp && is_dp2(clock))
2600 		return 2;
2601 	else if (intel_hdmi_is_frl(clock))
2602 		return 1;
2603 	else
2604 		return 0;
2605 }
2606 
2607 static void intel_c20_pll_program(struct intel_display *display,
2608 				  struct intel_encoder *encoder,
2609 				  const struct intel_c20pll_state *pll_state,
2610 				  bool is_dp, int port_clock)
2611 {
2612 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2613 	u8 serdes;
2614 	bool cntx;
2615 	int i;
2616 
2617 	/* 1. Read current context selection */
2618 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) &
2619 		PHY_C20_CONTEXT_TOGGLE;
2620 
2621 	/*
2622 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2623 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2624 	 * Protocol switch is only applicable for MPLLA
2625 	 */
2626 	if (intel_c20_protocol_switch_valid(encoder)) {
2627 		for (i = 0; i < 4; i++)
2628 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2629 		usleep_range(4000, 4100);
2630 	}
2631 
2632 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2633 	/* 3.1 Tx configuration */
2634 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2635 		if (cntx)
2636 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2637 					     PHY_C20_A_TX_CNTX_CFG(display, i),
2638 					     pll_state->tx[i]);
2639 		else
2640 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2641 					     PHY_C20_B_TX_CNTX_CFG(display, i),
2642 					     pll_state->tx[i]);
2643 	}
2644 
2645 	/* 3.2 common configuration */
2646 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2647 		if (cntx)
2648 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2649 					     PHY_C20_A_CMN_CNTX_CFG(display, i),
2650 					     pll_state->cmn[i]);
2651 		else
2652 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2653 					     PHY_C20_B_CMN_CNTX_CFG(display, i),
2654 					     pll_state->cmn[i]);
2655 	}
2656 
2657 	/* 3.3 mpllb or mplla configuration */
2658 	if (intel_c20phy_use_mpllb(pll_state)) {
2659 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2660 			if (cntx)
2661 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2662 						     PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2663 						     pll_state->mpllb[i]);
2664 			else
2665 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2666 						     PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2667 						     pll_state->mpllb[i]);
2668 		}
2669 	} else {
2670 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2671 			if (cntx)
2672 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2673 						     PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2674 						     pll_state->mplla[i]);
2675 			else
2676 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2677 						     PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2678 						     pll_state->mplla[i]);
2679 		}
2680 	}
2681 
2682 	/* 4. Program custom width to match the link protocol */
2683 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2684 		      PHY_C20_CUSTOM_WIDTH_MASK,
2685 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(port_clock, is_dp)),
2686 		      MB_WRITE_COMMITTED);
2687 
2688 	/* 5. For DP or 6. For HDMI */
2689 	serdes = 0;
2690 	if (is_dp)
2691 		serdes = PHY_C20_IS_DP |
2692 			 PHY_C20_DP_RATE(intel_c20_get_dp_rate(port_clock));
2693 	else if (intel_hdmi_is_frl(port_clock))
2694 		serdes = PHY_C20_IS_HDMI_FRL;
2695 
2696 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2697 		      PHY_C20_IS_DP | PHY_C20_DP_RATE_MASK | PHY_C20_IS_HDMI_FRL,
2698 		      serdes,
2699 		      MB_WRITE_COMMITTED);
2700 
2701 	if (!is_dp)
2702 		intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2703 			      PHY_C20_HDMI_RATE_MASK,
2704 			      intel_c20_get_hdmi_rate(port_clock),
2705 			      MB_WRITE_COMMITTED);
2706 
2707 	/*
2708 	 * 7. Write Vendor specific registers to toggle context setting to load
2709 	 * the updated programming toggle context bit
2710 	 */
2711 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2712 		      PHY_C20_CONTEXT_TOGGLE, cntx ? 0 : PHY_C20_CONTEXT_TOGGLE,
2713 		      MB_WRITE_COMMITTED);
2714 }
2715 
2716 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2717 					const struct intel_c10pll_state *pll_state)
2718 {
2719 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2720 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2721 	int tmpclk = 0;
2722 
2723 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2724 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2725 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2726 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2727 	}
2728 
2729 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2730 		      pll_state->pll[2]) / 2 + 16;
2731 
2732 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2733 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2734 
2735 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2736 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2737 				     10 << (tx_clk_div + 16));
2738 	tmpclk *= (hdmi_div ? 2 : 1);
2739 
2740 	return tmpclk;
2741 }
2742 
2743 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2744 					 const struct intel_cx0pll_state *pll_state,
2745 					 bool is_dp, int port_clock,
2746 					 bool lane_reversal)
2747 {
2748 	struct intel_display *display = to_intel_display(encoder);
2749 	u32 val = 0;
2750 
2751 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2752 		     XELPDP_PORT_REVERSAL,
2753 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2754 
2755 	if (lane_reversal)
2756 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2757 
2758 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2759 
2760 	if (!is_dp && intel_hdmi_is_frl(port_clock))
2761 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2762 	else
2763 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2764 
2765 	/* TODO: HDMI FRL */
2766 	/* DP2.0 10G and 20G rates enable MPLLA*/
2767 	if (port_clock == 1000000 || port_clock == 2000000)
2768 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2769 	else
2770 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2771 
2772 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2773 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2774 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_SSC_ENABLE_PLLA |
2775 		     XELPDP_SSC_ENABLE_PLLB, val);
2776 }
2777 
2778 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2779 {
2780 	u32 val = 0;
2781 	int lane = 0;
2782 
2783 	for_each_cx0_lane_in_mask(lane_mask, lane)
2784 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2785 
2786 	return val;
2787 }
2788 
2789 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2790 {
2791 	u32 val = 0;
2792 	int lane = 0;
2793 
2794 	for_each_cx0_lane_in_mask(lane_mask, lane)
2795 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2796 
2797 	return val;
2798 }
2799 
2800 void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2801 					 u8 lane_mask, u8 state)
2802 {
2803 	struct intel_display *display = to_intel_display(encoder);
2804 	enum port port = encoder->port;
2805 	enum phy phy = intel_encoder_to_phy(encoder);
2806 	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2807 	int lane;
2808 
2809 	intel_de_rmw(display, buf_ctl2_reg,
2810 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2811 		     intel_cx0_get_powerdown_state(lane_mask, state));
2812 
2813 	/* Wait for pending transactions.*/
2814 	for_each_cx0_lane_in_mask(lane_mask, lane)
2815 		if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2816 					       XELPDP_PORT_M2P_TRANSACTION_PENDING,
2817 					       XELPDP_MSGBUS_TIMEOUT_MS)) {
2818 			drm_dbg_kms(display->drm,
2819 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2820 				    phy_name(phy));
2821 			intel_cx0_bus_reset(encoder, lane);
2822 		}
2823 
2824 	intel_de_rmw(display, buf_ctl2_reg,
2825 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2826 		     intel_cx0_get_powerdown_update(lane_mask));
2827 
2828 	/* Update Timeout Value */
2829 	if (intel_de_wait_for_clear_ms(display, buf_ctl2_reg,
2830 				       intel_cx0_get_powerdown_update(lane_mask),
2831 				       XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_MS))
2832 		drm_warn(display->drm,
2833 			 "PHY %c failed to bring out of lane reset\n",
2834 			 phy_name(phy));
2835 }
2836 
2837 void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2838 {
2839 	struct intel_display *display = to_intel_display(encoder);
2840 	enum port port = encoder->port;
2841 
2842 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2843 		     XELPDP_POWER_STATE_READY_MASK,
2844 		     XELPDP_POWER_STATE_READY(XELPDP_P2_STATE_READY));
2845 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2846 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2847 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2848 		     XELPDP_POWER_STATE_ACTIVE(XELPDP_P0_STATE_ACTIVE) |
2849 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2850 }
2851 
2852 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2853 {
2854 	u32 val = 0;
2855 	int lane = 0;
2856 
2857 	for_each_cx0_lane_in_mask(lane_mask, lane)
2858 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2859 
2860 	return val;
2861 }
2862 
2863 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2864 {
2865 	u32 val = 0;
2866 	int lane = 0;
2867 
2868 	for_each_cx0_lane_in_mask(lane_mask, lane)
2869 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2870 
2871 	return val;
2872 }
2873 
2874 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2875 				     bool lane_reversal)
2876 {
2877 	struct intel_display *display = to_intel_display(encoder);
2878 	enum port port = encoder->port;
2879 	enum phy phy = intel_encoder_to_phy(encoder);
2880 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2881 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2882 	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2883 				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2884 				: XELPDP_LANE_PIPE_RESET(0);
2885 	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2886 					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2887 					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2888 					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2889 
2890 	if (intel_de_wait_for_set_us(display, XELPDP_PORT_BUF_CTL1(display, port),
2891 				     XELPDP_PORT_BUF_SOC_PHY_READY,
2892 				     XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US))
2893 		drm_warn(display->drm,
2894 			 "PHY %c failed to bring out of SOC reset\n",
2895 			 phy_name(phy));
2896 
2897 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2898 		     lane_pipe_reset);
2899 
2900 	if (intel_de_wait_for_set_us(display, XELPDP_PORT_BUF_CTL2(display, port),
2901 				     lane_phy_current_status,
2902 				     XELPDP_PORT_RESET_START_TIMEOUT_US))
2903 		drm_warn(display->drm,
2904 			 "PHY %c failed to bring out of lane reset\n",
2905 			 phy_name(phy));
2906 
2907 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2908 		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2909 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2910 
2911 	if (intel_de_wait_us(display, XELPDP_PORT_CLOCK_CTL(display, port),
2912 			     intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2913 			     intel_cx0_get_pclk_refclk_ack(lane_mask),
2914 			     XELPDP_REFCLK_ENABLE_TIMEOUT_US, NULL))
2915 		drm_warn(display->drm,
2916 			 "PHY %c failed to request refclk\n",
2917 			 phy_name(phy));
2918 
2919 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2920 					    XELPDP_P2_STATE_RESET);
2921 	intel_cx0_setup_powerdown(encoder);
2922 
2923 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2924 
2925 	if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_BUF_CTL2(display, port),
2926 				       lane_phy_current_status,
2927 				       XELPDP_PORT_RESET_END_TIMEOUT_MS))
2928 		drm_warn(display->drm,
2929 			 "PHY %c failed to bring out of lane reset\n",
2930 			 phy_name(phy));
2931 }
2932 
2933 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2934 				       bool lane_reversal)
2935 {
2936 	int i;
2937 	u8 disables;
2938 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2939 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2940 
2941 	if (intel_encoder_is_c10phy(encoder))
2942 		intel_cx0_rmw(encoder, owned_lane_mask,
2943 			      PHY_C10_VDR_CONTROL(1), 0,
2944 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2945 			      MB_WRITE_COMMITTED);
2946 
2947 	if (lane_reversal)
2948 		disables = REG_GENMASK8(3, 0) >> lane_count;
2949 	else
2950 		disables = REG_GENMASK8(3, 0) << lane_count;
2951 
2952 	if (dp_alt_mode && lane_count == 1) {
2953 		disables &= ~REG_GENMASK8(1, 0);
2954 		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2955 	}
2956 
2957 	for (i = 0; i < 4; i++) {
2958 		int tx = i % 2 + 1;
2959 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2960 
2961 		if (!(owned_lane_mask & lane_mask))
2962 			continue;
2963 
2964 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2965 			      CONTROL2_DISABLE_SINGLE_TX,
2966 			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2967 			      MB_WRITE_COMMITTED);
2968 	}
2969 
2970 	if (intel_encoder_is_c10phy(encoder))
2971 		intel_cx0_rmw(encoder, owned_lane_mask,
2972 			      PHY_C10_VDR_CONTROL(1), 0,
2973 			      C10_VDR_CTRL_UPDATE_CFG,
2974 			      MB_WRITE_COMMITTED);
2975 }
2976 
2977 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2978 {
2979 	u32 val = 0;
2980 	int lane = 0;
2981 
2982 	for_each_cx0_lane_in_mask(lane_mask, lane)
2983 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2984 
2985 	return val;
2986 }
2987 
2988 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2989 {
2990 	u32 val = 0;
2991 	int lane = 0;
2992 
2993 	for_each_cx0_lane_in_mask(lane_mask, lane)
2994 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2995 
2996 	return val;
2997 }
2998 
2999 static void __intel_cx0pll_enable(struct intel_encoder *encoder,
3000 				  const struct intel_cx0pll_state *pll_state,
3001 				  bool is_dp, int port_clock, int lane_count)
3002 {
3003 	struct intel_display *display = to_intel_display(encoder);
3004 	enum phy phy = intel_encoder_to_phy(encoder);
3005 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3006 	bool lane_reversal = dig_port->lane_reversal;
3007 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
3008 					  INTEL_CX0_LANE0;
3009 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3010 
3011 	/*
3012 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3013 	 * clock muxes, gating and SSC
3014 	 */
3015 	intel_program_port_clock_ctl(encoder, pll_state, is_dp, port_clock, lane_reversal);
3016 
3017 	/* 2. Bring PHY out of reset. */
3018 	intel_cx0_phy_lane_reset(encoder, lane_reversal);
3019 
3020 	/*
3021 	 * 3. Change Phy power state to Ready.
3022 	 * TODO: For DP alt mode use only one lane.
3023 	 */
3024 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3025 					    XELPDP_P2_STATE_READY);
3026 
3027 	/*
3028 	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3029 	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3030 	 *    the right timer thresholds for readouts too.)
3031 	 */
3032 
3033 	/* 5. Program PHY internal PLL internal registers. */
3034 	if (intel_encoder_is_c10phy(encoder))
3035 		intel_c10_pll_program(display, encoder, &pll_state->c10);
3036 	else
3037 		intel_c20_pll_program(display, encoder, &pll_state->c20, is_dp, port_clock);
3038 
3039 	/*
3040 	 * 6. Program the enabled and disabled owned PHY lane
3041 	 * transmitters over message bus
3042 	 */
3043 	intel_cx0_program_phy_lane(encoder, lane_count, lane_reversal);
3044 
3045 	/*
3046 	 * 7. Follow the Display Voltage Frequency Switching - Sequence
3047 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3048 	 */
3049 
3050 	/*
3051 	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3052 	 * clock frequency.
3053 	 */
3054 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), port_clock);
3055 
3056 	/*
3057 	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3058 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
3059 	 */
3060 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3061 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3062 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
3063 
3064 	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3065 	if (intel_de_wait_us(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3066 			     intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3067 			     intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3068 			     XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, NULL))
3069 		drm_warn(display->drm, "Port %c PLL not locked\n",
3070 			 phy_name(phy));
3071 
3072 	/*
3073 	 * 11. Follow the Display Voltage Frequency Switching Sequence After
3074 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3075 	 */
3076 
3077 	/* TODO: enable TBT-ALT mode */
3078 	intel_cx0_phy_transaction_end(encoder, wakeref);
3079 }
3080 
3081 static void intel_cx0pll_enable(struct intel_encoder *encoder,
3082 				const struct intel_crtc_state *crtc_state)
3083 {
3084 	__intel_cx0pll_enable(encoder, &crtc_state->dpll_hw_state.cx0pll,
3085 			      intel_crtc_has_dp_encoder(crtc_state),
3086 			      crtc_state->port_clock, crtc_state->lane_count);
3087 }
3088 
3089 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3090 {
3091 	struct intel_display *display = to_intel_display(encoder);
3092 	u32 clock, val;
3093 
3094 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3095 
3096 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3097 
3098 	drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3099 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3100 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3101 
3102 	switch (clock) {
3103 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3104 		return 162000;
3105 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3106 		return 270000;
3107 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3108 		return 540000;
3109 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3110 		return 810000;
3111 	case XELPDP_DDI_CLOCK_SELECT_TBT_312_5:
3112 		return 1000000;
3113 	case XELPDP_DDI_CLOCK_SELECT_TBT_625:
3114 		return 2000000;
3115 	default:
3116 		MISSING_CASE(clock);
3117 		return 162000;
3118 	}
3119 }
3120 
3121 static int intel_mtl_tbt_clock_select(struct intel_display *display,
3122 				      int clock)
3123 {
3124 	switch (clock) {
3125 	case 162000:
3126 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3127 	case 270000:
3128 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3129 	case 540000:
3130 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3131 	case 810000:
3132 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3133 	case 1000000:
3134 		if (DISPLAY_VER(display) < 30) {
3135 			drm_WARN_ON(display->drm, "UHBR10 not supported for the platform\n");
3136 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3137 		}
3138 		return XELPDP_DDI_CLOCK_SELECT_TBT_312_5;
3139 	case 2000000:
3140 		if (DISPLAY_VER(display) < 30) {
3141 			drm_WARN_ON(display->drm, "UHBR20 not supported for the platform\n");
3142 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3143 		}
3144 		return XELPDP_DDI_CLOCK_SELECT_TBT_625;
3145 	default:
3146 		MISSING_CASE(clock);
3147 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3148 	}
3149 }
3150 
3151 void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3152 			      const struct intel_crtc_state *crtc_state)
3153 {
3154 	struct intel_display *display = to_intel_display(encoder);
3155 	enum phy phy = intel_encoder_to_phy(encoder);
3156 	u32 val = 0;
3157 	u32 mask;
3158 
3159 	/*
3160 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3161 	 * clock muxes, gating and SSC
3162 	 */
3163 
3164 	mask = XELPDP_DDI_CLOCK_SELECT_MASK(display);
3165 	val |= XELPDP_DDI_CLOCK_SELECT_PREP(display,
3166 					    intel_mtl_tbt_clock_select(display, crtc_state->port_clock));
3167 
3168 	mask |= XELPDP_FORWARD_CLOCK_UNGATE;
3169 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
3170 
3171 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3172 		     mask, val);
3173 
3174 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
3175 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3176 
3177 	/*
3178 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
3179 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3180 	 */
3181 
3182 	/*
3183 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3184 	 */
3185 	val |= XELPDP_TBT_CLOCK_REQUEST;
3186 	intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3187 
3188 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3189 	if (intel_de_wait_for_set_us(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3190 				     XELPDP_TBT_CLOCK_ACK, 100))
3191 		drm_warn(display->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked\n",
3192 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3193 
3194 	/*
3195 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3196 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3197 	 */
3198 
3199 	/*
3200 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3201 	 * clock frequency.
3202 	 */
3203 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3204 		       crtc_state->port_clock);
3205 }
3206 
3207 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3208 			  const struct intel_crtc_state *crtc_state)
3209 {
3210 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3211 
3212 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3213 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
3214 	else
3215 		intel_cx0pll_enable(encoder, crtc_state);
3216 }
3217 
3218 /*
3219  * According to HAS we need to enable MAC Transmitting LFPS in the "PHY Common
3220  * Control 0" PIPE register in case of AUX Less ALPM is going to be used. This
3221  * function is doing that and is called by link retrain sequence.
3222  */
3223 void intel_lnl_mac_transmit_lfps(struct intel_encoder *encoder,
3224 				 const struct intel_crtc_state *crtc_state)
3225 {
3226 	struct intel_display *display = to_intel_display(encoder);
3227 	intel_wakeref_t wakeref;
3228 	int i;
3229 	u8 owned_lane_mask;
3230 
3231 	if (DISPLAY_VER(display) < 20 ||
3232 	    !intel_alpm_is_alpm_aux_less(enc_to_intel_dp(encoder), crtc_state))
3233 		return;
3234 
3235 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
3236 
3237 	wakeref = intel_cx0_phy_transaction_begin(encoder);
3238 
3239 	if (intel_encoder_is_c10phy(encoder))
3240 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0,
3241 			      C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
3242 
3243 	for (i = 0; i < 4; i++) {
3244 		int tx = i % 2 + 1;
3245 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
3246 
3247 		if (!(owned_lane_mask & lane_mask))
3248 			continue;
3249 
3250 		intel_cx0_rmw(encoder, lane_mask, PHY_CMN1_CONTROL(tx, 0),
3251 			      CONTROL0_MAC_TRANSMIT_LFPS,
3252 			      CONTROL0_MAC_TRANSMIT_LFPS, MB_WRITE_COMMITTED);
3253 	}
3254 
3255 	intel_cx0_phy_transaction_end(encoder, wakeref);
3256 }
3257 
3258 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3259 {
3260 	struct intel_display *display = to_intel_display(encoder);
3261 
3262 	if (intel_encoder_is_c10phy(encoder))
3263 		return XELPDP_P2PG_STATE_DISABLE;
3264 
3265 	if ((display->platform.battlemage && encoder->port == PORT_A) ||
3266 	    (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3267 		return XELPDP_P2PG_STATE_DISABLE;
3268 
3269 	return XELPDP_P4PG_STATE_DISABLE;
3270 }
3271 
3272 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3273 {
3274 	struct intel_display *display = to_intel_display(encoder);
3275 	enum phy phy = intel_encoder_to_phy(encoder);
3276 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3277 
3278 	/* 1. Change owned PHY lane power to Disable state. */
3279 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3280 					    cx0_power_control_disable_val(encoder));
3281 
3282 	/*
3283 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3284 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3285 	 */
3286 
3287 	/*
3288 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3289 	 * to "0" to disable PLL.
3290 	 */
3291 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3292 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3293 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3294 
3295 	/* 4. Program DDI_CLK_VALFREQ to 0. */
3296 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3297 
3298 	/*
3299 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3300 	 */
3301 	if (intel_de_wait_for_clear_us(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3302 				       intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3303 				       intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES),
3304 				       XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US))
3305 		drm_warn(display->drm, "Port %c PLL not unlocked\n",
3306 			 phy_name(phy));
3307 
3308 	/*
3309 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3310 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3311 	 */
3312 
3313 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3314 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3315 		     XELPDP_DDI_CLOCK_SELECT_MASK(display), 0);
3316 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3317 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3318 
3319 	intel_cx0_phy_transaction_end(encoder, wakeref);
3320 }
3321 
3322 static bool intel_cx0_pll_is_enabled(struct intel_encoder *encoder)
3323 {
3324 	struct intel_display *display = to_intel_display(encoder);
3325 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3326 	u8 lane = dig_port->lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
3327 
3328 	return intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port)) &
3329 			     intel_cx0_get_pclk_pll_request(lane);
3330 }
3331 
3332 void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3333 {
3334 	struct intel_display *display = to_intel_display(encoder);
3335 	enum phy phy = intel_encoder_to_phy(encoder);
3336 
3337 	/*
3338 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3339 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3340 	 */
3341 
3342 	/*
3343 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3344 	 */
3345 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3346 		     XELPDP_TBT_CLOCK_REQUEST, 0);
3347 
3348 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3349 	if (intel_de_wait_for_clear_us(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3350 				       XELPDP_TBT_CLOCK_ACK, 10))
3351 		drm_warn(display->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked\n",
3352 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3353 
3354 	/*
3355 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
3356 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3357 	 */
3358 
3359 	/*
3360 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3361 	 */
3362 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3363 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) |
3364 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3365 
3366 	/* 6. Program DDI_CLK_VALFREQ to 0. */
3367 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3368 }
3369 
3370 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3371 {
3372 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3373 
3374 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3375 		intel_mtl_tbt_pll_disable(encoder);
3376 	else
3377 		intel_cx0pll_disable(encoder);
3378 }
3379 
3380 enum icl_port_dpll_id
3381 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3382 			const struct intel_crtc_state *crtc_state)
3383 {
3384 	struct intel_display *display = to_intel_display(encoder);
3385 	u32 val, clock;
3386 
3387 	/*
3388 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3389 	 * handling is done via the standard shared DPLL framework.
3390 	 */
3391 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3392 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3393 
3394 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3395 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3396 		return ICL_PORT_DPLL_MG_PHY;
3397 	else
3398 		return ICL_PORT_DPLL_DEFAULT;
3399 }
3400 
3401 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3402 				      struct intel_crtc *crtc,
3403 				      struct intel_encoder *encoder,
3404 				      struct intel_c10pll_state *mpllb_hw_state)
3405 {
3406 	struct intel_display *display = to_intel_display(state);
3407 	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3408 	int i;
3409 
3410 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3411 		u8 expected = mpllb_sw_state->pll[i];
3412 
3413 		INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3414 					 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3415 					 crtc->base.base.id, crtc->base.name, i,
3416 					 expected, mpllb_hw_state->pll[i]);
3417 	}
3418 
3419 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3420 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3421 				 crtc->base.base.id, crtc->base.name,
3422 				 mpllb_sw_state->tx, mpllb_hw_state->tx);
3423 
3424 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3425 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3426 				 crtc->base.base.id, crtc->base.name,
3427 				 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3428 }
3429 
3430 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3431 				   struct intel_cx0pll_state *pll_state)
3432 {
3433 	pll_state->use_c10 = false;
3434 
3435 	pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3436 	if (pll_state->tbt_mode)
3437 		return;
3438 
3439 	if (intel_encoder_is_c10phy(encoder)) {
3440 		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3441 		pll_state->use_c10 = true;
3442 	} else {
3443 		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3444 	}
3445 }
3446 
3447 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3448 				     const struct intel_c10pll_state *b)
3449 {
3450 	if (a->tx != b->tx)
3451 		return false;
3452 
3453 	if (a->cmn != b->cmn)
3454 		return false;
3455 
3456 	if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3457 		return false;
3458 
3459 	return true;
3460 }
3461 
3462 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3463 				     const struct intel_c20pll_state *b)
3464 {
3465 	if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3466 		return false;
3467 
3468 	if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3469 		return false;
3470 
3471 	if (a->tx[0] & C20_PHY_USE_MPLLB) {
3472 		if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3473 			return false;
3474 	} else {
3475 		if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3476 			return false;
3477 	}
3478 
3479 	return true;
3480 }
3481 
3482 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3483 				   const struct intel_cx0pll_state *b)
3484 {
3485 	if (a->tbt_mode || b->tbt_mode)
3486 		return true;
3487 
3488 	if (a->use_c10 != b->use_c10)
3489 		return false;
3490 
3491 	if (a->use_c10)
3492 		return mtl_compare_hw_state_c10(&a->c10,
3493 						&b->c10);
3494 	else
3495 		return mtl_compare_hw_state_c20(&a->c20,
3496 						&b->c20);
3497 }
3498 
3499 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3500 				 const struct intel_cx0pll_state *pll_state)
3501 {
3502 	if (intel_encoder_is_c10phy(encoder))
3503 		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3504 
3505 	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3506 }
3507 
3508 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3509 				      struct intel_crtc *crtc,
3510 				      struct intel_encoder *encoder,
3511 				      struct intel_c20pll_state *mpll_hw_state)
3512 {
3513 	struct intel_display *display = to_intel_display(state);
3514 	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3515 	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3516 	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3517 	int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3518 	int i;
3519 
3520 	INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3521 				 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3522 				 crtc->base.base.id, crtc->base.name,
3523 				 mpll_sw_state->clock, mpll_hw_state->clock);
3524 
3525 	INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3526 				 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3527 				 crtc->base.base.id, crtc->base.name,
3528 				 sw_use_mpllb, hw_use_mpllb);
3529 
3530 	if (hw_use_mpllb) {
3531 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3532 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3533 						 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3534 						 crtc->base.base.id, crtc->base.name, i,
3535 						 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3536 		}
3537 	} else {
3538 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3539 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3540 						 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3541 						 crtc->base.base.id, crtc->base.name, i,
3542 						 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3543 		}
3544 	}
3545 
3546 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3547 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3548 					 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3549 					 crtc->base.base.id, crtc->base.name, i,
3550 					 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3551 	}
3552 
3553 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3554 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3555 					 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3556 					 crtc->base.base.id, crtc->base.name, i,
3557 					 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3558 	}
3559 }
3560 
3561 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3562 			       struct intel_crtc *crtc)
3563 {
3564 	struct intel_display *display = to_intel_display(state);
3565 	const struct intel_crtc_state *new_crtc_state =
3566 		intel_atomic_get_new_crtc_state(state, crtc);
3567 	struct intel_encoder *encoder;
3568 	struct intel_cx0pll_state mpll_hw_state = {};
3569 
3570 	if (!IS_DISPLAY_VER(display, 14, 30))
3571 		return;
3572 
3573 	if (!new_crtc_state->hw.active)
3574 		return;
3575 
3576 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3577 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3578 	    !intel_crtc_needs_fastset(new_crtc_state))
3579 		return;
3580 
3581 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3582 	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3583 
3584 	if (mpll_hw_state.tbt_mode)
3585 		return;
3586 
3587 	if (intel_encoder_is_c10phy(encoder))
3588 		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3589 	else
3590 		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3591 }
3592 
3593 /*
3594  * WA 14022081154
3595  * The dedicated display PHYs reset to a power state that blocks S0ix, increasing idle
3596  * system power. After a system reset (cold boot, S3/4/5, warm reset) if a dedicated
3597  * PHY is not being brought up shortly, use these steps to move the PHY to the lowest
3598  * power state to save power. For PTL the workaround is needed only for port A. Port B
3599  * is not connected.
3600  *
3601  * 1. Follow the PLL Enable Sequence, using any valid frequency such as DP 1.62 GHz.
3602  *    This brings lanes out of reset and enables the PLL to allow powerdown to be moved
3603  *    to the Disable state.
3604  * 2. Follow PLL Disable Sequence. This moves powerdown to the Disable state and disables the PLL.
3605  */
3606 void intel_cx0_pll_power_save_wa(struct intel_display *display)
3607 {
3608 	struct intel_encoder *encoder;
3609 
3610 	if (DISPLAY_VER(display) != 30)
3611 		return;
3612 
3613 	for_each_intel_encoder(display->drm, encoder) {
3614 		struct intel_cx0pll_state pll_state = {};
3615 		int port_clock = 162000;
3616 
3617 		if (!intel_encoder_is_dig_port(encoder))
3618 			continue;
3619 
3620 		if (!intel_encoder_is_c10phy(encoder))
3621 			continue;
3622 
3623 		if (intel_cx0_pll_is_enabled(encoder))
3624 			continue;
3625 
3626 		if (intel_c10pll_calc_state_from_table(encoder,
3627 						       mtl_c10_edp_tables,
3628 						       true, port_clock,
3629 						       &pll_state) < 0) {
3630 			drm_WARN_ON(display->drm,
3631 				    "Unable to calc C10 state from the tables\n");
3632 			continue;
3633 		}
3634 
3635 		drm_dbg_kms(display->drm,
3636 			    "[ENCODER:%d:%s] Applying power saving workaround on disabled PLL\n",
3637 			    encoder->base.base.id, encoder->base.name);
3638 
3639 		__intel_cx0pll_enable(encoder, &pll_state, true, port_clock, 4);
3640 		intel_cx0pll_disable(encoder);
3641 	}
3642 }
3643