1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "disk-io.h"
17 #include "extent-tree.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "dev-replace.h"
22 #include "sysfs.h"
23 #include "tree-checker.h"
24 #include "space-info.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "zoned.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "uuid-tree.h"
31 #include "ioctl.h"
32 #include "relocation.h"
33 #include "scrub.h"
34 #include "super.h"
35 #include "raid-stripe-tree.h"
36
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
38 BTRFS_BLOCK_GROUP_RAID10 | \
39 BTRFS_BLOCK_GROUP_RAID56_MASK)
40
41 struct btrfs_io_geometry {
42 u32 stripe_index;
43 u32 stripe_nr;
44 int mirror_num;
45 int num_stripes;
46 u64 stripe_offset;
47 u64 raid56_full_stripe_start;
48 int max_errors;
49 enum btrfs_map_op op;
50 bool use_rst;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags)
217 return;
218
219 #define DESCRIBE_FLAG(flag, desc) \
220 do { \
221 if (flags & (flag)) { \
222 ret = snprintf(bp, size_bp, "%s|", (desc)); \
223 if (ret < 0 || ret >= size_bp) \
224 goto out_overflow; \
225 size_bp -= ret; \
226 bp += ret; \
227 flags &= ~(flag); \
228 } \
229 } while (0)
230
231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
234
235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
238 btrfs_raid_array[i].raid_name);
239 #undef DESCRIBE_FLAG
240
241 if (flags) {
242 ret = snprintf(bp, size_bp, "0x%llx|", flags);
243 size_bp -= ret;
244 }
245
246 if (size_bp < size_buf)
247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
248
249 /*
250 * The text is trimmed, it's up to the caller to provide sufficiently
251 * large buffer
252 */
253 out_overflow:;
254 }
255
256 static int init_first_rw_device(struct btrfs_trans_handle *trans);
257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
259
260 /*
261 * Device locking
262 * ==============
263 *
264 * There are several mutexes that protect manipulation of devices and low-level
265 * structures like chunks but not block groups, extents or files
266 *
267 * uuid_mutex (global lock)
268 * ------------------------
269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
271 * device) or requested by the device= mount option
272 *
273 * the mutex can be very coarse and can cover long-running operations
274 *
275 * protects: updates to fs_devices counters like missing devices, rw devices,
276 * seeding, structure cloning, opening/closing devices at mount/umount time
277 *
278 * global::fs_devs - add, remove, updates to the global list
279 *
280 * does not protect: manipulation of the fs_devices::devices list in general
281 * but in mount context it could be used to exclude list modifications by eg.
282 * scan ioctl
283 *
284 * btrfs_device::name - renames (write side), read is RCU
285 *
286 * fs_devices::device_list_mutex (per-fs, with RCU)
287 * ------------------------------------------------
288 * protects updates to fs_devices::devices, ie. adding and deleting
289 *
290 * simple list traversal with read-only actions can be done with RCU protection
291 *
292 * may be used to exclude some operations from running concurrently without any
293 * modifications to the list (see write_all_supers)
294 *
295 * Is not required at mount and close times, because our device list is
296 * protected by the uuid_mutex at that point.
297 *
298 * balance_mutex
299 * -------------
300 * protects balance structures (status, state) and context accessed from
301 * several places (internally, ioctl)
302 *
303 * chunk_mutex
304 * -----------
305 * protects chunks, adding or removing during allocation, trim or when a new
306 * device is added/removed. Additionally it also protects post_commit_list of
307 * individual devices, since they can be added to the transaction's
308 * post_commit_list only with chunk_mutex held.
309 *
310 * cleaner_mutex
311 * -------------
312 * a big lock that is held by the cleaner thread and prevents running subvolume
313 * cleaning together with relocation or delayed iputs
314 *
315 *
316 * Lock nesting
317 * ============
318 *
319 * uuid_mutex
320 * device_list_mutex
321 * chunk_mutex
322 * balance_mutex
323 *
324 *
325 * Exclusive operations
326 * ====================
327 *
328 * Maintains the exclusivity of the following operations that apply to the
329 * whole filesystem and cannot run in parallel.
330 *
331 * - Balance (*)
332 * - Device add
333 * - Device remove
334 * - Device replace (*)
335 * - Resize
336 *
337 * The device operations (as above) can be in one of the following states:
338 *
339 * - Running state
340 * - Paused state
341 * - Completed state
342 *
343 * Only device operations marked with (*) can go into the Paused state for the
344 * following reasons:
345 *
346 * - ioctl (only Balance can be Paused through ioctl)
347 * - filesystem remounted as read-only
348 * - filesystem unmounted and mounted as read-only
349 * - system power-cycle and filesystem mounted as read-only
350 * - filesystem or device errors leading to forced read-only
351 *
352 * The status of exclusive operation is set and cleared atomically.
353 * During the course of Paused state, fs_info::exclusive_operation remains set.
354 * A device operation in Paused or Running state can be canceled or resumed
355 * either by ioctl (Balance only) or when remounted as read-write.
356 * The exclusive status is cleared when the device operation is canceled or
357 * completed.
358 */
359
360 DEFINE_MUTEX(uuid_mutex);
361 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
363 {
364 return &fs_uuids;
365 }
366
367 /*
368 * Allocate new btrfs_fs_devices structure identified by a fsid.
369 *
370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
371 * fs_devices::metadata_fsid
372 *
373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374 * The returned struct is not linked onto any lists and can be destroyed with
375 * kfree() right away.
376 */
alloc_fs_devices(const u8 * fsid)377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
378 {
379 struct btrfs_fs_devices *fs_devs;
380
381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
382 if (!fs_devs)
383 return ERR_PTR(-ENOMEM);
384
385 mutex_init(&fs_devs->device_list_mutex);
386
387 INIT_LIST_HEAD(&fs_devs->devices);
388 INIT_LIST_HEAD(&fs_devs->alloc_list);
389 INIT_LIST_HEAD(&fs_devs->fs_list);
390 INIT_LIST_HEAD(&fs_devs->seed_list);
391
392 if (fsid) {
393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 }
396
397 return fs_devs;
398 }
399
btrfs_free_device(struct btrfs_device * device)400 static void btrfs_free_device(struct btrfs_device *device)
401 {
402 WARN_ON(!list_empty(&device->post_commit_list));
403 /*
404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is
405 * reading the device name.
406 */
407 kfree(rcu_dereference_raw(device->name));
408 btrfs_extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411 }
412
free_fs_devices(struct btrfs_fs_devices * fs_devices)413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 WARN_ON(fs_devices->holding);
419 while (!list_empty(&fs_devices->devices)) {
420 device = list_first_entry(&fs_devices->devices,
421 struct btrfs_device, dev_list);
422 list_del(&device->dev_list);
423 btrfs_free_device(device);
424 }
425 kfree(fs_devices);
426 }
427
btrfs_cleanup_fs_uuids(void)428 void __exit btrfs_cleanup_fs_uuids(void)
429 {
430 struct btrfs_fs_devices *fs_devices;
431
432 while (!list_empty(&fs_uuids)) {
433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices,
434 fs_list);
435 list_del(&fs_devices->fs_list);
436 free_fs_devices(fs_devices);
437 }
438 }
439
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
441 const u8 *fsid, const u8 *metadata_fsid)
442 {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
444 return false;
445
446 if (!metadata_fsid)
447 return true;
448
449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
450 return false;
451
452 return true;
453 }
454
find_fsid(const u8 * fsid,const u8 * metadata_fsid)455 static noinline struct btrfs_fs_devices *find_fsid(
456 const u8 *fsid, const u8 *metadata_fsid)
457 {
458 struct btrfs_fs_devices *fs_devices;
459
460 ASSERT(fsid);
461
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
465 return fs_devices;
466 }
467 return NULL;
468 }
469
470 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
472 int flush, struct file **bdev_file,
473 struct btrfs_super_block **disk_super)
474 {
475 struct block_device *bdev;
476 int ret;
477
478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops);
479
480 if (IS_ERR(*bdev_file)) {
481 ret = PTR_ERR(*bdev_file);
482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
483 device_path, flags, ret);
484 goto error;
485 }
486 bdev = file_bdev(*bdev_file);
487
488 if (flush)
489 sync_blockdev(bdev);
490 if (holder) {
491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
492 if (ret) {
493 bdev_fput(*bdev_file);
494 goto error;
495 }
496 }
497 invalidate_bdev(bdev);
498 *disk_super = btrfs_read_disk_super(bdev, 0, false);
499 if (IS_ERR(*disk_super)) {
500 ret = PTR_ERR(*disk_super);
501 bdev_fput(*bdev_file);
502 goto error;
503 }
504
505 return 0;
506
507 error:
508 *disk_super = NULL;
509 *bdev_file = NULL;
510 return ret;
511 }
512
513 /*
514 * Search and remove all stale devices (which are not mounted). When both
515 * inputs are NULL, it will search and release all stale devices.
516 *
517 * @devt: Optional. When provided will it release all unmounted devices
518 * matching this devt only.
519 * @skip_device: Optional. Will skip this device when searching for the stale
520 * devices.
521 *
522 * Return: 0 for success or if @devt is 0.
523 * -EBUSY if @devt is a mounted device.
524 * -ENOENT if @devt does not match any device in the list.
525 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
527 {
528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
529 struct btrfs_device *device, *tmp_device;
530 int ret;
531 bool freed = false;
532
533 lockdep_assert_held(&uuid_mutex);
534
535 /* Return good status if there is no instance of devt. */
536 ret = 0;
537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
538
539 mutex_lock(&fs_devices->device_list_mutex);
540 list_for_each_entry_safe(device, tmp_device,
541 &fs_devices->devices, dev_list) {
542 if (skip_device && skip_device == device)
543 continue;
544 if (devt && devt != device->devt)
545 continue;
546 if (fs_devices->opened || fs_devices->holding) {
547 if (devt)
548 ret = -EBUSY;
549 break;
550 }
551
552 /* delete the stale device */
553 fs_devices->num_devices--;
554 list_del(&device->dev_list);
555 btrfs_free_device(device);
556
557 freed = true;
558 }
559 mutex_unlock(&fs_devices->device_list_mutex);
560
561 if (fs_devices->num_devices == 0) {
562 btrfs_sysfs_remove_fsid(fs_devices);
563 list_del(&fs_devices->fs_list);
564 free_fs_devices(fs_devices);
565 }
566 }
567
568 /* If there is at least one freed device return 0. */
569 if (freed)
570 return 0;
571
572 return ret;
573 }
574
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)575 static struct btrfs_fs_devices *find_fsid_by_device(
576 struct btrfs_super_block *disk_super,
577 dev_t devt, bool *same_fsid_diff_dev)
578 {
579 struct btrfs_fs_devices *fsid_fs_devices;
580 struct btrfs_fs_devices *devt_fs_devices;
581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
583 bool found_by_devt = false;
584
585 /* Find the fs_device by the usual method, if found use it. */
586 fsid_fs_devices = find_fsid(disk_super->fsid,
587 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
588
589 /* The temp_fsid feature is supported only with single device filesystem. */
590 if (btrfs_super_num_devices(disk_super) != 1)
591 return fsid_fs_devices;
592
593 /*
594 * A seed device is an integral component of the sprout device, which
595 * functions as a multi-device filesystem. So, temp-fsid feature is
596 * not supported.
597 */
598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
599 return fsid_fs_devices;
600
601 /* Try to find a fs_devices by matching devt. */
602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
603 struct btrfs_device *device;
604
605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
606 if (device->devt == devt) {
607 found_by_devt = true;
608 break;
609 }
610 }
611 if (found_by_devt)
612 break;
613 }
614
615 if (found_by_devt) {
616 /* Existing device. */
617 if (fsid_fs_devices == NULL) {
618 if (devt_fs_devices->opened == 0) {
619 /* Stale device. */
620 return NULL;
621 } else {
622 /* temp_fsid is mounting a subvol. */
623 return devt_fs_devices;
624 }
625 } else {
626 /* Regular or temp_fsid device mounting a subvol. */
627 return devt_fs_devices;
628 }
629 } else {
630 /* New device. */
631 if (fsid_fs_devices == NULL) {
632 return NULL;
633 } else {
634 /* sb::fsid is already used create a new temp_fsid. */
635 *same_fsid_diff_dev = true;
636 return NULL;
637 }
638 }
639
640 /* Not reached. */
641 }
642
643 /*
644 * This is only used on mount, and we are protected from competing things
645 * messing with our fs_devices by the uuid_mutex, thus we do not need the
646 * fs_devices->device_list_mutex here.
647 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
649 struct btrfs_device *device, blk_mode_t flags,
650 void *holder)
651 {
652 struct file *bdev_file;
653 struct btrfs_super_block *disk_super;
654 u64 devid;
655 int ret;
656
657 if (device->bdev)
658 return -EINVAL;
659 if (!device->name)
660 return -EINVAL;
661
662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1,
663 &bdev_file, &disk_super);
664 if (ret)
665 return ret;
666
667 devid = btrfs_stack_device_id(&disk_super->dev_item);
668 if (devid != device->devid)
669 goto error_free_page;
670
671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
672 goto error_free_page;
673
674 device->generation = btrfs_super_generation(disk_super);
675
676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
677 if (btrfs_super_incompat_flags(disk_super) &
678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
679 btrfs_err(NULL,
680 "invalid seeding and uuid-changed device detected");
681 goto error_free_page;
682 }
683
684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 fs_devices->seeding = true;
686 } else {
687 if (bdev_read_only(file_bdev(bdev_file)))
688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
689 else
690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 }
692
693 if (!bdev_nonrot(file_bdev(bdev_file)))
694 fs_devices->rotating = true;
695
696 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
697 fs_devices->discardable = true;
698
699 device->bdev_file = bdev_file;
700 device->bdev = file_bdev(bdev_file);
701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
702
703 if (device->devt != device->bdev->bd_dev) {
704 btrfs_warn(NULL,
705 "device %s maj:min changed from %d:%d to %d:%d",
706 rcu_dereference_raw(device->name), MAJOR(device->devt),
707 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
708 MINOR(device->bdev->bd_dev));
709
710 device->devt = device->bdev->bd_dev;
711 }
712
713 fs_devices->open_devices++;
714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
715 device->devid != BTRFS_DEV_REPLACE_DEVID) {
716 fs_devices->rw_devices++;
717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
718 }
719 btrfs_release_disk_super(disk_super);
720
721 return 0;
722
723 error_free_page:
724 btrfs_release_disk_super(disk_super);
725 bdev_fput(bdev_file);
726
727 return -EINVAL;
728 }
729
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
731 {
732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
734
735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
736 }
737
is_same_device(struct btrfs_device * device,const char * new_path)738 static bool is_same_device(struct btrfs_device *device, const char *new_path)
739 {
740 struct path old = { .mnt = NULL, .dentry = NULL };
741 struct path new = { .mnt = NULL, .dentry = NULL };
742 char *old_path = NULL;
743 bool is_same = false;
744 int ret;
745
746 if (!device->name)
747 goto out;
748
749 old_path = kzalloc(PATH_MAX, GFP_NOFS);
750 if (!old_path)
751 goto out;
752
753 rcu_read_lock();
754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX);
755 rcu_read_unlock();
756 if (ret < 0)
757 goto out;
758
759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
760 if (ret)
761 goto out;
762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
763 if (ret)
764 goto out;
765 if (path_equal(&old, &new))
766 is_same = true;
767 out:
768 kfree(old_path);
769 path_put(&old);
770 path_put(&new);
771 return is_same;
772 }
773
774 /*
775 * Add new device to list of registered devices
776 *
777 * Returns:
778 * device pointer which was just added or updated when successful
779 * error pointer when failed
780 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)781 static noinline struct btrfs_device *device_list_add(const char *path,
782 struct btrfs_super_block *disk_super,
783 bool *new_device_added)
784 {
785 struct btrfs_device *device;
786 struct btrfs_fs_devices *fs_devices = NULL;
787 const char *name;
788 u64 found_transid = btrfs_super_generation(disk_super);
789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
790 dev_t path_devt;
791 int ret;
792 bool same_fsid_diff_dev = false;
793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795
796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
797 btrfs_err(NULL,
798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
799 path);
800 return ERR_PTR(-EAGAIN);
801 }
802
803 ret = lookup_bdev(path, &path_devt);
804 if (ret) {
805 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
806 path, ret);
807 return ERR_PTR(ret);
808 }
809
810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
811
812 if (!fs_devices) {
813 fs_devices = alloc_fs_devices(disk_super->fsid);
814 if (IS_ERR(fs_devices))
815 return ERR_CAST(fs_devices);
816
817 if (has_metadata_uuid)
818 memcpy(fs_devices->metadata_uuid,
819 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
820
821 if (same_fsid_diff_dev) {
822 generate_random_uuid(fs_devices->fsid);
823 fs_devices->temp_fsid = true;
824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU",
825 path, MAJOR(path_devt), MINOR(path_devt),
826 fs_devices->fsid);
827 }
828
829 mutex_lock(&fs_devices->device_list_mutex);
830 list_add(&fs_devices->fs_list, &fs_uuids);
831
832 device = NULL;
833 } else {
834 struct btrfs_dev_lookup_args args = {
835 .devid = devid,
836 .uuid = disk_super->dev_item.uuid,
837 };
838
839 mutex_lock(&fs_devices->device_list_mutex);
840 device = btrfs_find_device(fs_devices, &args);
841
842 if (found_transid > fs_devices->latest_generation) {
843 memcpy(fs_devices->fsid, disk_super->fsid,
844 BTRFS_FSID_SIZE);
845 memcpy(fs_devices->metadata_uuid,
846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, MAJOR(path_devt), MINOR(path_devt),
857 fs_devices->fsid, current->comm,
858 task_pid_nr(current));
859 mutex_unlock(&fs_devices->device_list_mutex);
860 return ERR_PTR(-EBUSY);
861 }
862
863 nofs_flag = memalloc_nofs_save();
864 device = btrfs_alloc_device(NULL, &devid,
865 disk_super->dev_item.uuid, path);
866 memalloc_nofs_restore(nofs_flag);
867 if (IS_ERR(device)) {
868 mutex_unlock(&fs_devices->device_list_mutex);
869 /* we can safely leave the fs_devices entry around */
870 return device;
871 }
872
873 device->devt = path_devt;
874
875 list_add_rcu(&device->dev_list, &fs_devices->devices);
876 fs_devices->num_devices++;
877
878 device->fs_devices = fs_devices;
879 *new_device_added = true;
880
881 if (disk_super->label[0])
882 pr_info(
883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
884 disk_super->label, devid, found_transid, path,
885 MAJOR(path_devt), MINOR(path_devt),
886 current->comm, task_pid_nr(current));
887 else
888 pr_info(
889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
890 disk_super->fsid, devid, found_transid, path,
891 MAJOR(path_devt), MINOR(path_devt),
892 current->comm, task_pid_nr(current));
893
894 } else if (!device->name || !is_same_device(device, path)) {
895 const char *old_name;
896
897 /*
898 * When FS is already mounted.
899 * 1. If you are here and if the device->name is NULL that
900 * means this device was missing at time of FS mount.
901 * 2. If you are here and if the device->name is different
902 * from 'path' that means either
903 * a. The same device disappeared and reappeared with
904 * different name. or
905 * b. The missing-disk-which-was-replaced, has
906 * reappeared now.
907 *
908 * We must allow 1 and 2a above. But 2b would be a spurious
909 * and unintentional.
910 *
911 * Further in case of 1 and 2a above, the disk at 'path'
912 * would have missed some transaction when it was away and
913 * in case of 2a the stale bdev has to be updated as well.
914 * 2b must not be allowed at all time.
915 */
916
917 /*
918 * For now, we do allow update to btrfs_fs_device through the
919 * btrfs dev scan cli after FS has been mounted. We're still
920 * tracking a problem where systems fail mount by subvolume id
921 * when we reject replacement on a mounted FS.
922 */
923 if (!fs_devices->opened && found_transid < device->generation) {
924 /*
925 * That is if the FS is _not_ mounted and if you
926 * are here, that means there is more than one
927 * disk with same uuid and devid.We keep the one
928 * with larger generation number or the last-in if
929 * generation are equal.
930 */
931 mutex_unlock(&fs_devices->device_list_mutex);
932 btrfs_err(NULL,
933 "device %s already registered with a higher generation, found %llu expect %llu",
934 path, found_transid, device->generation);
935 return ERR_PTR(-EEXIST);
936 }
937
938 /*
939 * We are going to replace the device path for a given devid,
940 * make sure it's the same device if the device is mounted
941 *
942 * NOTE: the device->fs_info may not be reliable here so pass
943 * in a NULL to message helpers instead. This avoids a possible
944 * use-after-free when the fs_info and fs_info->sb are already
945 * torn down.
946 */
947 if (device->bdev) {
948 if (device->devt != path_devt) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 btrfs_warn(NULL,
951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
952 path, devid, found_transid,
953 current->comm,
954 task_pid_nr(current));
955 return ERR_PTR(-EEXIST);
956 }
957 btrfs_info(NULL,
958 "devid %llu device path %s changed to %s scanned by %s (%d)",
959 devid, btrfs_dev_name(device),
960 path, current->comm,
961 task_pid_nr(current));
962 }
963
964 name = kstrdup(path, GFP_NOFS);
965 if (!name) {
966 mutex_unlock(&fs_devices->device_list_mutex);
967 return ERR_PTR(-ENOMEM);
968 }
969 rcu_read_lock();
970 old_name = rcu_dereference(device->name);
971 rcu_read_unlock();
972 rcu_assign_pointer(device->name, name);
973 kfree_rcu_mightsleep(old_name);
974
975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
976 fs_devices->missing_devices--;
977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
978 }
979 device->devt = path_devt;
980 }
981
982 /*
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
986 * (as above).
987 */
988 if (!fs_devices->opened) {
989 device->generation = found_transid;
990 fs_devices->latest_generation = max_t(u64, found_transid,
991 fs_devices->latest_generation);
992 }
993
994 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return device;
998 }
999
clone_fs_devices(struct btrfs_fs_devices * orig)1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 struct btrfs_fs_devices *fs_devices;
1003 struct btrfs_device *device;
1004 struct btrfs_device *orig_dev;
1005 int ret = 0;
1006
1007 lockdep_assert_held(&uuid_mutex);
1008
1009 fs_devices = alloc_fs_devices(orig->fsid);
1010 if (IS_ERR(fs_devices))
1011 return fs_devices;
1012
1013 fs_devices->total_devices = orig->total_devices;
1014
1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1016 const char *dev_path = NULL;
1017
1018 /*
1019 * This is ok to do without RCU read locked because we hold the
1020 * uuid mutex so nothing we touch in here is going to disappear.
1021 */
1022 if (orig_dev->name)
1023 dev_path = rcu_dereference_raw(orig_dev->name);
1024
1025 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1026 orig_dev->uuid, dev_path);
1027 if (IS_ERR(device)) {
1028 ret = PTR_ERR(device);
1029 goto error;
1030 }
1031
1032 if (orig_dev->zone_info) {
1033 struct btrfs_zoned_device_info *zone_info;
1034
1035 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1036 if (!zone_info) {
1037 btrfs_free_device(device);
1038 ret = -ENOMEM;
1039 goto error;
1040 }
1041 device->zone_info = zone_info;
1042 }
1043
1044 list_add(&device->dev_list, &fs_devices->devices);
1045 device->fs_devices = fs_devices;
1046 fs_devices->num_devices++;
1047 }
1048 return fs_devices;
1049 error:
1050 free_fs_devices(fs_devices);
1051 return ERR_PTR(ret);
1052 }
1053
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1055 struct btrfs_device **latest_dev)
1056 {
1057 struct btrfs_device *device, *next;
1058
1059 /* This is the initialized path, it is safe to release the devices. */
1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1063 &device->dev_state) &&
1064 !test_bit(BTRFS_DEV_STATE_MISSING,
1065 &device->dev_state) &&
1066 (!*latest_dev ||
1067 device->generation > (*latest_dev)->generation)) {
1068 *latest_dev = device;
1069 }
1070 continue;
1071 }
1072
1073 /*
1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1075 * in btrfs_init_dev_replace() so just continue.
1076 */
1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1078 continue;
1079
1080 if (device->bdev_file) {
1081 bdev_fput(device->bdev_file);
1082 device->bdev = NULL;
1083 device->bdev_file = NULL;
1084 fs_devices->open_devices--;
1085 }
1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1087 list_del_init(&device->dev_alloc_list);
1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1089 fs_devices->rw_devices--;
1090 }
1091 list_del_init(&device->dev_list);
1092 fs_devices->num_devices--;
1093 btrfs_free_device(device);
1094 }
1095
1096 }
1097
1098 /*
1099 * After we have read the system tree and know devids belonging to this
1100 * filesystem, remove the device which does not belong there.
1101 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1103 {
1104 struct btrfs_device *latest_dev = NULL;
1105 struct btrfs_fs_devices *seed_dev;
1106
1107 mutex_lock(&uuid_mutex);
1108 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1109
1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1111 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1112
1113 fs_devices->latest_dev = latest_dev;
1114
1115 mutex_unlock(&uuid_mutex);
1116 }
1117
btrfs_close_bdev(struct btrfs_device * device)1118 static void btrfs_close_bdev(struct btrfs_device *device)
1119 {
1120 if (!device->bdev)
1121 return;
1122
1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1124 sync_blockdev(device->bdev);
1125 invalidate_bdev(device->bdev);
1126 }
1127
1128 bdev_fput(device->bdev_file);
1129 }
1130
btrfs_close_one_device(struct btrfs_device * device)1131 static void btrfs_close_one_device(struct btrfs_device *device)
1132 {
1133 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1134
1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1136 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1137 list_del_init(&device->dev_alloc_list);
1138 fs_devices->rw_devices--;
1139 }
1140
1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1143
1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1146 fs_devices->missing_devices--;
1147 }
1148
1149 btrfs_close_bdev(device);
1150 if (device->bdev) {
1151 fs_devices->open_devices--;
1152 device->bdev = NULL;
1153 device->bdev_file = NULL;
1154 }
1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156 btrfs_destroy_dev_zone_info(device);
1157
1158 device->fs_info = NULL;
1159 atomic_set(&device->dev_stats_ccnt, 0);
1160 btrfs_extent_io_tree_release(&device->alloc_state);
1161
1162 /*
1163 * Reset the flush error record. We might have a transient flush error
1164 * in this mount, and if so we aborted the current transaction and set
1165 * the fs to an error state, guaranteeing no super blocks can be further
1166 * committed. However that error might be transient and if we unmount the
1167 * filesystem and mount it again, we should allow the mount to succeed
1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1169 * filesystem again we still get flush errors, then we will again abort
1170 * any transaction and set the error state, guaranteeing no commits of
1171 * unsafe super blocks.
1172 */
1173 device->last_flush_error = 0;
1174
1175 /* Verify the device is back in a pristine state */
1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1178 WARN_ON(!list_empty(&device->dev_alloc_list));
1179 WARN_ON(!list_empty(&device->post_commit_list));
1180 }
1181
close_fs_devices(struct btrfs_fs_devices * fs_devices)1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1183 {
1184 struct btrfs_device *device, *tmp;
1185
1186 lockdep_assert_held(&uuid_mutex);
1187
1188 if (--fs_devices->opened > 0)
1189 return;
1190
1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1192 btrfs_close_one_device(device);
1193
1194 WARN_ON(fs_devices->open_devices);
1195 WARN_ON(fs_devices->rw_devices);
1196 fs_devices->opened = 0;
1197 fs_devices->seeding = false;
1198 fs_devices->fs_info = NULL;
1199 }
1200
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1202 {
1203 LIST_HEAD(list);
1204 struct btrfs_fs_devices *tmp;
1205
1206 mutex_lock(&uuid_mutex);
1207 close_fs_devices(fs_devices);
1208 if (!fs_devices->opened && !fs_devices->holding) {
1209 list_splice_init(&fs_devices->seed_list, &list);
1210
1211 /*
1212 * If the struct btrfs_fs_devices is not assembled with any
1213 * other device, it can be re-initialized during the next mount
1214 * without the needing device-scan step. Therefore, it can be
1215 * fully freed.
1216 */
1217 if (fs_devices->num_devices == 1) {
1218 list_del(&fs_devices->fs_list);
1219 free_fs_devices(fs_devices);
1220 }
1221 }
1222
1223
1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1225 close_fs_devices(fs_devices);
1226 list_del(&fs_devices->seed_list);
1227 free_fs_devices(fs_devices);
1228 }
1229 mutex_unlock(&uuid_mutex);
1230 }
1231
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1233 blk_mode_t flags, void *holder)
1234 {
1235 struct btrfs_device *device;
1236 struct btrfs_device *latest_dev = NULL;
1237 struct btrfs_device *tmp_device;
1238 s64 __maybe_unused value = 0;
1239 int ret = 0;
1240
1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1242 dev_list) {
1243 int ret2;
1244
1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1246 if (ret2 == 0 &&
1247 (!latest_dev || device->generation > latest_dev->generation)) {
1248 latest_dev = device;
1249 } else if (ret2 == -ENODATA) {
1250 fs_devices->num_devices--;
1251 list_del(&device->dev_list);
1252 btrfs_free_device(device);
1253 }
1254 if (ret == 0 && ret2 != 0)
1255 ret = ret2;
1256 }
1257
1258 if (fs_devices->open_devices == 0) {
1259 if (ret)
1260 return ret;
1261 return -EINVAL;
1262 }
1263
1264 fs_devices->opened = 1;
1265 fs_devices->latest_dev = latest_dev;
1266 fs_devices->total_rw_bytes = 0;
1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL
1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ;
1270 fs_devices->read_devid = latest_dev->devid;
1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(),
1272 &value);
1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1274 fs_devices->collect_fs_stats = true;
1275
1276 if (value) {
1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1278 fs_devices->rr_min_contig_read = value;
1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID)
1280 fs_devices->read_devid = value;
1281 }
1282 #else
1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1284 #endif
1285
1286 return 0;
1287 }
1288
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1289 static int devid_cmp(void *priv, const struct list_head *a,
1290 const struct list_head *b)
1291 {
1292 const struct btrfs_device *dev1, *dev2;
1293
1294 dev1 = list_entry(a, struct btrfs_device, dev_list);
1295 dev2 = list_entry(b, struct btrfs_device, dev_list);
1296
1297 if (dev1->devid < dev2->devid)
1298 return -1;
1299 else if (dev1->devid > dev2->devid)
1300 return 1;
1301 return 0;
1302 }
1303
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1305 blk_mode_t flags, void *holder)
1306 {
1307 int ret;
1308
1309 lockdep_assert_held(&uuid_mutex);
1310 /*
1311 * The device_list_mutex cannot be taken here in case opening the
1312 * underlying device takes further locks like open_mutex.
1313 *
1314 * We also don't need the lock here as this is called during mount and
1315 * exclusion is provided by uuid_mutex
1316 */
1317
1318 if (fs_devices->opened) {
1319 fs_devices->opened++;
1320 ret = 0;
1321 } else {
1322 list_sort(NULL, &fs_devices->devices, devid_cmp);
1323 ret = open_fs_devices(fs_devices, flags, holder);
1324 }
1325
1326 return ret;
1327 }
1328
btrfs_release_disk_super(struct btrfs_super_block * super)1329 void btrfs_release_disk_super(struct btrfs_super_block *super)
1330 {
1331 struct page *page = virt_to_page(super);
1332
1333 put_page(page);
1334 }
1335
btrfs_read_disk_super(struct block_device * bdev,int copy_num,bool drop_cache)1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1337 int copy_num, bool drop_cache)
1338 {
1339 struct btrfs_super_block *super;
1340 struct page *page;
1341 u64 bytenr, bytenr_orig;
1342 struct address_space *mapping = bdev->bd_mapping;
1343 int ret;
1344
1345 bytenr_orig = btrfs_sb_offset(copy_num);
1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
1347 if (ret < 0) {
1348 if (ret == -ENOENT)
1349 ret = -EINVAL;
1350 return ERR_PTR(ret);
1351 }
1352
1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
1354 return ERR_PTR(-EINVAL);
1355
1356 if (drop_cache) {
1357 /* This should only be called with the primary sb. */
1358 ASSERT(copy_num == 0);
1359
1360 /*
1361 * Drop the page of the primary superblock, so later read will
1362 * always read from the device.
1363 */
1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT,
1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
1366 }
1367
1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
1369 if (IS_ERR(page))
1370 return ERR_CAST(page);
1371
1372 super = page_address(page);
1373 if (btrfs_super_magic(super) != BTRFS_MAGIC ||
1374 btrfs_super_bytenr(super) != bytenr_orig) {
1375 btrfs_release_disk_super(super);
1376 return ERR_PTR(-EINVAL);
1377 }
1378
1379 /*
1380 * Make sure the last byte of label is properly NUL termiated. We use
1381 * '%s' to print the label, if not properly NUL termiated we can access
1382 * beyond the label.
1383 */
1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1])
1385 super->label[BTRFS_LABEL_SIZE - 1] = 0;
1386
1387 return super;
1388 }
1389
btrfs_forget_devices(dev_t devt)1390 int btrfs_forget_devices(dev_t devt)
1391 {
1392 int ret;
1393
1394 mutex_lock(&uuid_mutex);
1395 ret = btrfs_free_stale_devices(devt, NULL);
1396 mutex_unlock(&uuid_mutex);
1397
1398 return ret;
1399 }
1400
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1402 const char *path, dev_t devt,
1403 bool mount_arg_dev)
1404 {
1405 struct btrfs_fs_devices *fs_devices;
1406
1407 /*
1408 * Do not skip device registration for mounted devices with matching
1409 * maj:min but different paths. Booting without initrd relies on
1410 * /dev/root initially, later replaced with the actual root device.
1411 * A successful scan ensures grub2-probe selects the correct device.
1412 */
1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1414 struct btrfs_device *device;
1415
1416 mutex_lock(&fs_devices->device_list_mutex);
1417
1418 if (!fs_devices->opened) {
1419 mutex_unlock(&fs_devices->device_list_mutex);
1420 continue;
1421 }
1422
1423 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1424 if (device->bdev && (device->bdev->bd_dev == devt) &&
1425 strcmp(rcu_dereference_raw(device->name), path) != 0) {
1426 mutex_unlock(&fs_devices->device_list_mutex);
1427
1428 /* Do not skip registration. */
1429 return false;
1430 }
1431 }
1432 mutex_unlock(&fs_devices->device_list_mutex);
1433 }
1434
1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1437 return true;
1438
1439 return false;
1440 }
1441
1442 /*
1443 * Look for a btrfs signature on a device. This may be called out of the mount path
1444 * and we are not allowed to call set_blocksize during the scan. The superblock
1445 * is read via pagecache.
1446 *
1447 * With @mount_arg_dev it's a scan during mount time that will always register
1448 * the device or return an error. Multi-device and seeding devices are registered
1449 * in both cases.
1450 */
btrfs_scan_one_device(const char * path,bool mount_arg_dev)1451 struct btrfs_device *btrfs_scan_one_device(const char *path,
1452 bool mount_arg_dev)
1453 {
1454 struct btrfs_super_block *disk_super;
1455 bool new_device_added = false;
1456 struct btrfs_device *device = NULL;
1457 struct file *bdev_file;
1458 dev_t devt;
1459
1460 lockdep_assert_held(&uuid_mutex);
1461
1462 /*
1463 * Avoid an exclusive open here, as the systemd-udev may initiate the
1464 * device scan which may race with the user's mount or mkfs command,
1465 * resulting in failure.
1466 * Since the device scan is solely for reading purposes, there is no
1467 * need for an exclusive open. Additionally, the devices are read again
1468 * during the mount process. It is ok to get some inconsistent
1469 * values temporarily, as the device paths of the fsid are the only
1470 * required information for assembling the volume.
1471 */
1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL);
1473 if (IS_ERR(bdev_file))
1474 return ERR_CAST(bdev_file);
1475
1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false);
1477 if (IS_ERR(disk_super)) {
1478 device = ERR_CAST(disk_super);
1479 goto error_bdev_put;
1480 }
1481
1482 devt = file_bdev(bdev_file)->bd_dev;
1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)",
1485 path, MAJOR(devt), MINOR(devt));
1486
1487 btrfs_free_stale_devices(devt, NULL);
1488
1489 device = NULL;
1490 goto free_disk_super;
1491 }
1492
1493 device = device_list_add(path, disk_super, &new_device_added);
1494 if (!IS_ERR(device) && new_device_added)
1495 btrfs_free_stale_devices(device->devt, device);
1496
1497 free_disk_super:
1498 btrfs_release_disk_super(disk_super);
1499
1500 error_bdev_put:
1501 bdev_fput(bdev_file);
1502
1503 return device;
1504 }
1505
1506 /*
1507 * Try to find a chunk that intersects [start, start + len] range and when one
1508 * such is found, record the end of it in *start
1509 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1511 u64 len)
1512 {
1513 u64 physical_start, physical_end;
1514
1515 lockdep_assert_held(&device->fs_info->chunk_mutex);
1516
1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start,
1518 &physical_start, &physical_end,
1519 CHUNK_ALLOCATED, NULL)) {
1520
1521 if (in_range(physical_start, *start, len) ||
1522 in_range(*start, physical_start,
1523 physical_end + 1 - physical_start)) {
1524 *start = physical_end + 1;
1525 return true;
1526 }
1527 }
1528 return false;
1529 }
1530
dev_extent_search_start(struct btrfs_device * device)1531 static u64 dev_extent_search_start(struct btrfs_device *device)
1532 {
1533 switch (device->fs_devices->chunk_alloc_policy) {
1534 default:
1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1536 fallthrough;
1537 case BTRFS_CHUNK_ALLOC_REGULAR:
1538 return BTRFS_DEVICE_RANGE_RESERVED;
1539 case BTRFS_CHUNK_ALLOC_ZONED:
1540 /*
1541 * We don't care about the starting region like regular
1542 * allocator, because we anyway use/reserve the first two zones
1543 * for superblock logging.
1544 */
1545 return 0;
1546 }
1547 }
1548
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1550 u64 *hole_start, u64 *hole_size,
1551 u64 num_bytes)
1552 {
1553 u64 zone_size = device->zone_info->zone_size;
1554 u64 pos;
1555 int ret;
1556 bool changed = false;
1557
1558 ASSERT(IS_ALIGNED(*hole_start, zone_size),
1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size);
1560
1561 while (*hole_size > 0) {
1562 pos = btrfs_find_allocatable_zones(device, *hole_start,
1563 *hole_start + *hole_size,
1564 num_bytes);
1565 if (pos != *hole_start) {
1566 *hole_size = *hole_start + *hole_size - pos;
1567 *hole_start = pos;
1568 changed = true;
1569 if (*hole_size < num_bytes)
1570 break;
1571 }
1572
1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1574
1575 /* Range is ensured to be empty */
1576 if (!ret)
1577 return changed;
1578
1579 /* Given hole range was invalid (outside of device) */
1580 if (ret == -ERANGE) {
1581 *hole_start += *hole_size;
1582 *hole_size = 0;
1583 return true;
1584 }
1585
1586 *hole_start += zone_size;
1587 *hole_size -= zone_size;
1588 changed = true;
1589 }
1590
1591 return changed;
1592 }
1593
1594 /*
1595 * Check if specified hole is suitable for allocation.
1596 *
1597 * @device: the device which we have the hole
1598 * @hole_start: starting position of the hole
1599 * @hole_size: the size of the hole
1600 * @num_bytes: the size of the free space that we need
1601 *
1602 * This function may modify @hole_start and @hole_size to reflect the suitable
1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1604 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1606 u64 *hole_size, u64 num_bytes)
1607 {
1608 bool changed = false;
1609 u64 hole_end = *hole_start + *hole_size;
1610
1611 for (;;) {
1612 /*
1613 * Check before we set max_hole_start, otherwise we could end up
1614 * sending back this offset anyway.
1615 */
1616 if (contains_pending_extent(device, hole_start, *hole_size)) {
1617 if (hole_end >= *hole_start)
1618 *hole_size = hole_end - *hole_start;
1619 else
1620 *hole_size = 0;
1621 changed = true;
1622 }
1623
1624 switch (device->fs_devices->chunk_alloc_policy) {
1625 default:
1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1627 fallthrough;
1628 case BTRFS_CHUNK_ALLOC_REGULAR:
1629 /* No extra check */
1630 break;
1631 case BTRFS_CHUNK_ALLOC_ZONED:
1632 if (dev_extent_hole_check_zoned(device, hole_start,
1633 hole_size, num_bytes)) {
1634 changed = true;
1635 /*
1636 * The changed hole can contain pending extent.
1637 * Loop again to check that.
1638 */
1639 continue;
1640 }
1641 break;
1642 }
1643
1644 break;
1645 }
1646
1647 return changed;
1648 }
1649
1650 /*
1651 * Find free space in the specified device.
1652 *
1653 * @device: the device which we search the free space in
1654 * @num_bytes: the size of the free space that we need
1655 * @search_start: the position from which to begin the search
1656 * @start: store the start of the free space.
1657 * @len: the size of the free space. that we find, or the size
1658 * of the max free space if we don't find suitable free space
1659 *
1660 * This does a pretty simple search, the expectation is that it is called very
1661 * infrequently and that a given device has a small number of extents.
1662 *
1663 * @start is used to store the start of the free space if we find. But if we
1664 * don't find suitable free space, it will be used to store the start position
1665 * of the max free space.
1666 *
1667 * @len is used to store the size of the free space that we find.
1668 * But if we don't find suitable free space, it is used to store the size of
1669 * the max free space.
1670 *
1671 * NOTE: This function will search *commit* root of device tree, and does extra
1672 * check to ensure dev extents are not double allocated.
1673 * This makes the function safe to allocate dev extents but may not report
1674 * correct usable device space, as device extent freed in current transaction
1675 * is not reported as available.
1676 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1678 u64 *start, u64 *len)
1679 {
1680 struct btrfs_fs_info *fs_info = device->fs_info;
1681 struct btrfs_root *root = fs_info->dev_root;
1682 struct btrfs_key key;
1683 struct btrfs_dev_extent *dev_extent;
1684 struct btrfs_path *path;
1685 u64 search_start;
1686 u64 hole_size;
1687 u64 max_hole_start;
1688 u64 max_hole_size = 0;
1689 u64 extent_end;
1690 u64 search_end = device->total_bytes;
1691 int ret;
1692 int slot;
1693 struct extent_buffer *l;
1694
1695 search_start = dev_extent_search_start(device);
1696 max_hole_start = search_start;
1697
1698 WARN_ON(device->zone_info &&
1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1700
1701 path = btrfs_alloc_path();
1702 if (!path) {
1703 ret = -ENOMEM;
1704 goto out;
1705 }
1706 again:
1707 if (search_start >= search_end ||
1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1709 ret = -ENOSPC;
1710 goto out;
1711 }
1712
1713 path->reada = READA_FORWARD;
1714 path->search_commit_root = 1;
1715 path->skip_locking = 1;
1716
1717 key.objectid = device->devid;
1718 key.type = BTRFS_DEV_EXTENT_KEY;
1719 key.offset = search_start;
1720
1721 ret = btrfs_search_backwards(root, &key, path);
1722 if (ret < 0)
1723 goto out;
1724
1725 while (search_start < search_end) {
1726 l = path->nodes[0];
1727 slot = path->slots[0];
1728 if (slot >= btrfs_header_nritems(l)) {
1729 ret = btrfs_next_leaf(root, path);
1730 if (ret == 0)
1731 continue;
1732 if (ret < 0)
1733 goto out;
1734
1735 break;
1736 }
1737 btrfs_item_key_to_cpu(l, &key, slot);
1738
1739 if (key.objectid < device->devid)
1740 goto next;
1741
1742 if (key.objectid > device->devid)
1743 break;
1744
1745 if (key.type != BTRFS_DEV_EXTENT_KEY)
1746 goto next;
1747
1748 if (key.offset > search_end)
1749 break;
1750
1751 if (key.offset > search_start) {
1752 hole_size = key.offset - search_start;
1753 dev_extent_hole_check(device, &search_start, &hole_size,
1754 num_bytes);
1755
1756 if (hole_size > max_hole_size) {
1757 max_hole_start = search_start;
1758 max_hole_size = hole_size;
1759 }
1760
1761 /*
1762 * If this free space is greater than which we need,
1763 * it must be the max free space that we have found
1764 * until now, so max_hole_start must point to the start
1765 * of this free space and the length of this free space
1766 * is stored in max_hole_size. Thus, we return
1767 * max_hole_start and max_hole_size and go back to the
1768 * caller.
1769 */
1770 if (hole_size >= num_bytes) {
1771 ret = 0;
1772 goto out;
1773 }
1774 }
1775
1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1777 extent_end = key.offset + btrfs_dev_extent_length(l,
1778 dev_extent);
1779 if (extent_end > search_start)
1780 search_start = extent_end;
1781 next:
1782 path->slots[0]++;
1783 cond_resched();
1784 }
1785
1786 /*
1787 * At this point, search_start should be the end of
1788 * allocated dev extents, and when shrinking the device,
1789 * search_end may be smaller than search_start.
1790 */
1791 if (search_end > search_start) {
1792 hole_size = search_end - search_start;
1793 if (dev_extent_hole_check(device, &search_start, &hole_size,
1794 num_bytes)) {
1795 btrfs_release_path(path);
1796 goto again;
1797 }
1798
1799 if (hole_size > max_hole_size) {
1800 max_hole_start = search_start;
1801 max_hole_size = hole_size;
1802 }
1803 }
1804
1805 /* See above. */
1806 if (max_hole_size < num_bytes)
1807 ret = -ENOSPC;
1808 else
1809 ret = 0;
1810
1811 ASSERT(max_hole_start + max_hole_size <= search_end,
1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu",
1813 max_hole_start, max_hole_size, search_end);
1814 out:
1815 btrfs_free_path(path);
1816 *start = max_hole_start;
1817 if (len)
1818 *len = max_hole_size;
1819 return ret;
1820 }
1821
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1823 struct btrfs_device *device,
1824 u64 start, u64 *dev_extent_len)
1825 {
1826 struct btrfs_fs_info *fs_info = device->fs_info;
1827 struct btrfs_root *root = fs_info->dev_root;
1828 int ret;
1829 struct btrfs_path *path;
1830 struct btrfs_key key;
1831 struct btrfs_key found_key;
1832 struct extent_buffer *leaf = NULL;
1833 struct btrfs_dev_extent *extent = NULL;
1834
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
1838
1839 key.objectid = device->devid;
1840 key.type = BTRFS_DEV_EXTENT_KEY;
1841 key.offset = start;
1842 again:
1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1844 if (ret > 0) {
1845 ret = btrfs_previous_item(root, path, key.objectid,
1846 BTRFS_DEV_EXTENT_KEY);
1847 if (ret)
1848 goto out;
1849 leaf = path->nodes[0];
1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1851 extent = btrfs_item_ptr(leaf, path->slots[0],
1852 struct btrfs_dev_extent);
1853 BUG_ON(found_key.offset > start || found_key.offset +
1854 btrfs_dev_extent_length(leaf, extent) < start);
1855 key = found_key;
1856 btrfs_release_path(path);
1857 goto again;
1858 } else if (ret == 0) {
1859 leaf = path->nodes[0];
1860 extent = btrfs_item_ptr(leaf, path->slots[0],
1861 struct btrfs_dev_extent);
1862 } else {
1863 goto out;
1864 }
1865
1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1867
1868 ret = btrfs_del_item(trans, root, path);
1869 if (ret == 0)
1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1871 out:
1872 btrfs_free_path(path);
1873 return ret;
1874 }
1875
find_next_chunk(struct btrfs_fs_info * fs_info)1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1877 {
1878 struct rb_node *n;
1879 u64 ret = 0;
1880
1881 read_lock(&fs_info->mapping_tree_lock);
1882 n = rb_last(&fs_info->mapping_tree.rb_root);
1883 if (n) {
1884 struct btrfs_chunk_map *map;
1885
1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1887 ret = map->start + map->chunk_len;
1888 }
1889 read_unlock(&fs_info->mapping_tree_lock);
1890
1891 return ret;
1892 }
1893
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1895 u64 *devid_ret)
1896 {
1897 int ret;
1898 struct btrfs_key key;
1899 struct btrfs_key found_key;
1900 struct btrfs_path *path;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = (u64)-1;
1909
1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1911 if (ret < 0)
1912 goto error;
1913
1914 if (ret == 0) {
1915 /* Corruption */
1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1917 ret = -EUCLEAN;
1918 goto error;
1919 }
1920
1921 ret = btrfs_previous_item(fs_info->chunk_root, path,
1922 BTRFS_DEV_ITEMS_OBJECTID,
1923 BTRFS_DEV_ITEM_KEY);
1924 if (ret) {
1925 *devid_ret = 1;
1926 } else {
1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1928 path->slots[0]);
1929 *devid_ret = found_key.offset + 1;
1930 }
1931 ret = 0;
1932 error:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 /*
1938 * the device information is stored in the chunk root
1939 * the btrfs_device struct should be fully filled in
1940 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1942 struct btrfs_device *device)
1943 {
1944 int ret;
1945 struct btrfs_path *path;
1946 struct btrfs_dev_item *dev_item;
1947 struct extent_buffer *leaf;
1948 struct btrfs_key key;
1949 unsigned long ptr;
1950
1951 path = btrfs_alloc_path();
1952 if (!path)
1953 return -ENOMEM;
1954
1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1956 key.type = BTRFS_DEV_ITEM_KEY;
1957 key.offset = device->devid;
1958
1959 btrfs_reserve_chunk_metadata(trans, true);
1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1961 &key, sizeof(*dev_item));
1962 btrfs_trans_release_chunk_metadata(trans);
1963 if (ret)
1964 goto out;
1965
1966 leaf = path->nodes[0];
1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1968
1969 btrfs_set_device_id(leaf, dev_item, device->devid);
1970 btrfs_set_device_generation(leaf, dev_item, 0);
1971 btrfs_set_device_type(leaf, dev_item, device->type);
1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1975 btrfs_set_device_total_bytes(leaf, dev_item,
1976 btrfs_device_get_disk_total_bytes(device));
1977 btrfs_set_device_bytes_used(leaf, dev_item,
1978 btrfs_device_get_bytes_used(device));
1979 btrfs_set_device_group(leaf, dev_item, 0);
1980 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1981 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1982 btrfs_set_device_start_offset(leaf, dev_item, 0);
1983
1984 ptr = btrfs_device_uuid(dev_item);
1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1986 ptr = btrfs_device_fsid(dev_item);
1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1988 ptr, BTRFS_FSID_SIZE);
1989
1990 ret = 0;
1991 out:
1992 btrfs_free_path(path);
1993 return ret;
1994 }
1995
1996 /*
1997 * Function to update ctime/mtime for a given device path.
1998 * Mainly used for ctime/mtime based probe like libblkid.
1999 *
2000 * We don't care about errors here, this is just to be kind to userspace.
2001 */
update_dev_time(const char * device_path)2002 static void update_dev_time(const char *device_path)
2003 {
2004 struct path path;
2005 int ret;
2006
2007 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2008 if (ret)
2009 return;
2010
2011 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2012 path_put(&path);
2013 }
2014
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2015 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2016 struct btrfs_device *device)
2017 {
2018 struct btrfs_root *root = device->fs_info->chunk_root;
2019 int ret;
2020 struct btrfs_path *path;
2021 struct btrfs_key key;
2022
2023 path = btrfs_alloc_path();
2024 if (!path)
2025 return -ENOMEM;
2026
2027 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2028 key.type = BTRFS_DEV_ITEM_KEY;
2029 key.offset = device->devid;
2030
2031 btrfs_reserve_chunk_metadata(trans, false);
2032 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2033 btrfs_trans_release_chunk_metadata(trans);
2034 if (ret) {
2035 if (ret > 0)
2036 ret = -ENOENT;
2037 goto out;
2038 }
2039
2040 ret = btrfs_del_item(trans, root, path);
2041 out:
2042 btrfs_free_path(path);
2043 return ret;
2044 }
2045
2046 /*
2047 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2048 * filesystem. It's up to the caller to adjust that number regarding eg. device
2049 * replace.
2050 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2051 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2052 u64 num_devices)
2053 {
2054 u64 all_avail;
2055 unsigned seq;
2056 int i;
2057
2058 do {
2059 seq = read_seqbegin(&fs_info->profiles_lock);
2060
2061 all_avail = fs_info->avail_data_alloc_bits |
2062 fs_info->avail_system_alloc_bits |
2063 fs_info->avail_metadata_alloc_bits;
2064 } while (read_seqretry(&fs_info->profiles_lock, seq));
2065
2066 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2067 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2068 continue;
2069
2070 if (num_devices < btrfs_raid_array[i].devs_min)
2071 return btrfs_raid_array[i].mindev_error;
2072 }
2073
2074 return 0;
2075 }
2076
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2077 static struct btrfs_device * btrfs_find_next_active_device(
2078 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2079 {
2080 struct btrfs_device *next_device;
2081
2082 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2083 if (next_device != device &&
2084 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2085 && next_device->bdev)
2086 return next_device;
2087 }
2088
2089 return NULL;
2090 }
2091
2092 /*
2093 * Helper function to check if the given device is part of s_bdev / latest_dev
2094 * and replace it with the provided or the next active device, in the context
2095 * where this function called, there should be always be another device (or
2096 * this_dev) which is active.
2097 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2098 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2099 struct btrfs_device *next_device)
2100 {
2101 struct btrfs_fs_info *fs_info = device->fs_info;
2102
2103 if (!next_device)
2104 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2105 device);
2106 ASSERT(next_device);
2107
2108 if (fs_info->sb->s_bdev &&
2109 (fs_info->sb->s_bdev == device->bdev))
2110 fs_info->sb->s_bdev = next_device->bdev;
2111
2112 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2113 fs_info->fs_devices->latest_dev = next_device;
2114 }
2115
2116 /*
2117 * Return btrfs_fs_devices::num_devices excluding the device that's being
2118 * currently replaced.
2119 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2120 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2121 {
2122 u64 num_devices = fs_info->fs_devices->num_devices;
2123
2124 down_read(&fs_info->dev_replace.rwsem);
2125 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2126 ASSERT(num_devices > 1, "num_devices=%llu", num_devices);
2127 num_devices--;
2128 }
2129 up_read(&fs_info->dev_replace.rwsem);
2130
2131 return num_devices;
2132 }
2133
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2134 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2135 struct block_device *bdev, int copy_num)
2136 {
2137 struct btrfs_super_block *disk_super;
2138 const size_t len = sizeof(disk_super->magic);
2139 const u64 bytenr = btrfs_sb_offset(copy_num);
2140 int ret;
2141
2142 disk_super = btrfs_read_disk_super(bdev, copy_num, false);
2143 if (IS_ERR(disk_super))
2144 return;
2145
2146 memset(&disk_super->magic, 0, len);
2147 folio_mark_dirty(virt_to_folio(disk_super));
2148 btrfs_release_disk_super(disk_super);
2149
2150 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2151 if (ret)
2152 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2153 copy_num, ret);
2154 }
2155
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2156 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2157 {
2158 int copy_num;
2159 struct block_device *bdev = device->bdev;
2160
2161 if (!bdev)
2162 return;
2163
2164 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2165 if (bdev_is_zoned(bdev))
2166 btrfs_reset_sb_log_zones(bdev, copy_num);
2167 else
2168 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2169 }
2170
2171 /* Notify udev that device has changed */
2172 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2173
2174 /* Update ctime/mtime for device path for libblkid */
2175 update_dev_time(rcu_dereference_raw(device->name));
2176 }
2177
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2178 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2179 struct btrfs_dev_lookup_args *args,
2180 struct file **bdev_file)
2181 {
2182 struct btrfs_trans_handle *trans;
2183 struct btrfs_device *device;
2184 struct btrfs_fs_devices *cur_devices;
2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186 u64 num_devices;
2187 int ret = 0;
2188
2189 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2190 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2191 return -EINVAL;
2192 }
2193
2194 /*
2195 * The device list in fs_devices is accessed without locks (neither
2196 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2197 * filesystem and another device rm cannot run.
2198 */
2199 num_devices = btrfs_num_devices(fs_info);
2200
2201 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2202 if (ret)
2203 return ret;
2204
2205 device = btrfs_find_device(fs_info->fs_devices, args);
2206 if (!device) {
2207 if (args->missing)
2208 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2209 else
2210 ret = -ENOENT;
2211 return ret;
2212 }
2213
2214 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2215 btrfs_warn(fs_info,
2216 "cannot remove device %s (devid %llu) due to active swapfile",
2217 btrfs_dev_name(device), device->devid);
2218 return -ETXTBSY;
2219 }
2220
2221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2222 return BTRFS_ERROR_DEV_TGT_REPLACE;
2223
2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2225 fs_info->fs_devices->rw_devices == 1)
2226 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2227
2228 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2229 mutex_lock(&fs_info->chunk_mutex);
2230 list_del_init(&device->dev_alloc_list);
2231 device->fs_devices->rw_devices--;
2232 mutex_unlock(&fs_info->chunk_mutex);
2233 }
2234
2235 ret = btrfs_shrink_device(device, 0);
2236 if (ret)
2237 goto error_undo;
2238
2239 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2240 if (IS_ERR(trans)) {
2241 ret = PTR_ERR(trans);
2242 goto error_undo;
2243 }
2244
2245 ret = btrfs_rm_dev_item(trans, device);
2246 if (ret) {
2247 /* Any error in dev item removal is critical */
2248 btrfs_crit(fs_info,
2249 "failed to remove device item for devid %llu: %d",
2250 device->devid, ret);
2251 btrfs_abort_transaction(trans, ret);
2252 btrfs_end_transaction(trans);
2253 return ret;
2254 }
2255
2256 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2257 btrfs_scrub_cancel_dev(device);
2258
2259 /*
2260 * the device list mutex makes sure that we don't change
2261 * the device list while someone else is writing out all
2262 * the device supers. Whoever is writing all supers, should
2263 * lock the device list mutex before getting the number of
2264 * devices in the super block (super_copy). Conversely,
2265 * whoever updates the number of devices in the super block
2266 * (super_copy) should hold the device list mutex.
2267 */
2268
2269 /*
2270 * In normal cases the cur_devices == fs_devices. But in case
2271 * of deleting a seed device, the cur_devices should point to
2272 * its own fs_devices listed under the fs_devices->seed_list.
2273 */
2274 cur_devices = device->fs_devices;
2275 mutex_lock(&fs_devices->device_list_mutex);
2276 list_del_rcu(&device->dev_list);
2277
2278 cur_devices->num_devices--;
2279 cur_devices->total_devices--;
2280 /* Update total_devices of the parent fs_devices if it's seed */
2281 if (cur_devices != fs_devices)
2282 fs_devices->total_devices--;
2283
2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2285 cur_devices->missing_devices--;
2286
2287 btrfs_assign_next_active_device(device, NULL);
2288
2289 if (device->bdev_file) {
2290 cur_devices->open_devices--;
2291 /* remove sysfs entry */
2292 btrfs_sysfs_remove_device(device);
2293 }
2294
2295 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2296 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2297 mutex_unlock(&fs_devices->device_list_mutex);
2298
2299 /*
2300 * At this point, the device is zero sized and detached from the
2301 * devices list. All that's left is to zero out the old supers and
2302 * free the device.
2303 *
2304 * We cannot call btrfs_close_bdev() here because we're holding the sb
2305 * write lock, and bdev_fput() on the block device will pull in the
2306 * ->open_mutex on the block device and it's dependencies. Instead
2307 * just flush the device and let the caller do the final bdev_release.
2308 */
2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2310 btrfs_scratch_superblocks(fs_info, device);
2311 if (device->bdev) {
2312 sync_blockdev(device->bdev);
2313 invalidate_bdev(device->bdev);
2314 }
2315 }
2316
2317 *bdev_file = device->bdev_file;
2318 synchronize_rcu();
2319 btrfs_free_device(device);
2320
2321 /*
2322 * This can happen if cur_devices is the private seed devices list. We
2323 * cannot call close_fs_devices() here because it expects the uuid_mutex
2324 * to be held, but in fact we don't need that for the private
2325 * seed_devices, we can simply decrement cur_devices->opened and then
2326 * remove it from our list and free the fs_devices.
2327 */
2328 if (cur_devices->num_devices == 0) {
2329 list_del_init(&cur_devices->seed_list);
2330 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened);
2331 cur_devices->opened--;
2332 free_fs_devices(cur_devices);
2333 }
2334
2335 ret = btrfs_commit_transaction(trans);
2336
2337 return ret;
2338
2339 error_undo:
2340 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2341 mutex_lock(&fs_info->chunk_mutex);
2342 list_add(&device->dev_alloc_list,
2343 &fs_devices->alloc_list);
2344 device->fs_devices->rw_devices++;
2345 mutex_unlock(&fs_info->chunk_mutex);
2346 }
2347 return ret;
2348 }
2349
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2350 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2351 {
2352 struct btrfs_fs_devices *fs_devices;
2353
2354 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2355
2356 /*
2357 * in case of fs with no seed, srcdev->fs_devices will point
2358 * to fs_devices of fs_info. However when the dev being replaced is
2359 * a seed dev it will point to the seed's local fs_devices. In short
2360 * srcdev will have its correct fs_devices in both the cases.
2361 */
2362 fs_devices = srcdev->fs_devices;
2363
2364 list_del_rcu(&srcdev->dev_list);
2365 list_del(&srcdev->dev_alloc_list);
2366 fs_devices->num_devices--;
2367 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2368 fs_devices->missing_devices--;
2369
2370 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2371 fs_devices->rw_devices--;
2372
2373 if (srcdev->bdev)
2374 fs_devices->open_devices--;
2375 }
2376
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2377 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2378 {
2379 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2380
2381 mutex_lock(&uuid_mutex);
2382
2383 btrfs_close_bdev(srcdev);
2384 synchronize_rcu();
2385 btrfs_free_device(srcdev);
2386
2387 /* if this is no devs we rather delete the fs_devices */
2388 if (!fs_devices->num_devices) {
2389 /*
2390 * On a mounted FS, num_devices can't be zero unless it's a
2391 * seed. In case of a seed device being replaced, the replace
2392 * target added to the sprout FS, so there will be no more
2393 * device left under the seed FS.
2394 */
2395 ASSERT(fs_devices->seeding);
2396
2397 list_del_init(&fs_devices->seed_list);
2398 close_fs_devices(fs_devices);
2399 free_fs_devices(fs_devices);
2400 }
2401 mutex_unlock(&uuid_mutex);
2402 }
2403
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2404 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2405 {
2406 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2407
2408 mutex_lock(&fs_devices->device_list_mutex);
2409
2410 btrfs_sysfs_remove_device(tgtdev);
2411
2412 if (tgtdev->bdev)
2413 fs_devices->open_devices--;
2414
2415 fs_devices->num_devices--;
2416
2417 btrfs_assign_next_active_device(tgtdev, NULL);
2418
2419 list_del_rcu(&tgtdev->dev_list);
2420
2421 mutex_unlock(&fs_devices->device_list_mutex);
2422
2423 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2424
2425 btrfs_close_bdev(tgtdev);
2426 synchronize_rcu();
2427 btrfs_free_device(tgtdev);
2428 }
2429
2430 /*
2431 * Populate args from device at path.
2432 *
2433 * @fs_info: the filesystem
2434 * @args: the args to populate
2435 * @path: the path to the device
2436 *
2437 * This will read the super block of the device at @path and populate @args with
2438 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2439 * lookup a device to operate on, but need to do it before we take any locks.
2440 * This properly handles the special case of "missing" that a user may pass in,
2441 * and does some basic sanity checks. The caller must make sure that @path is
2442 * properly NUL terminated before calling in, and must call
2443 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2444 * uuid buffers.
2445 *
2446 * Return: 0 for success, -errno for failure
2447 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2448 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2449 struct btrfs_dev_lookup_args *args,
2450 const char *path)
2451 {
2452 struct btrfs_super_block *disk_super;
2453 struct file *bdev_file;
2454 int ret;
2455
2456 if (!path || !path[0])
2457 return -EINVAL;
2458 if (!strcmp(path, "missing")) {
2459 args->missing = true;
2460 return 0;
2461 }
2462
2463 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2464 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2465 if (!args->uuid || !args->fsid) {
2466 btrfs_put_dev_args_from_path(args);
2467 return -ENOMEM;
2468 }
2469
2470 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2471 &bdev_file, &disk_super);
2472 if (ret) {
2473 btrfs_put_dev_args_from_path(args);
2474 return ret;
2475 }
2476
2477 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2478 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2479 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2480 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2481 else
2482 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2483 btrfs_release_disk_super(disk_super);
2484 bdev_fput(bdev_file);
2485 return 0;
2486 }
2487
2488 /*
2489 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2490 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2491 * that don't need to be freed.
2492 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2493 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2494 {
2495 kfree(args->uuid);
2496 kfree(args->fsid);
2497 args->uuid = NULL;
2498 args->fsid = NULL;
2499 }
2500
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2501 struct btrfs_device *btrfs_find_device_by_devspec(
2502 struct btrfs_fs_info *fs_info, u64 devid,
2503 const char *device_path)
2504 {
2505 BTRFS_DEV_LOOKUP_ARGS(args);
2506 struct btrfs_device *device;
2507 int ret;
2508
2509 if (devid) {
2510 args.devid = devid;
2511 device = btrfs_find_device(fs_info->fs_devices, &args);
2512 if (!device)
2513 return ERR_PTR(-ENOENT);
2514 return device;
2515 }
2516
2517 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2518 if (ret)
2519 return ERR_PTR(ret);
2520 device = btrfs_find_device(fs_info->fs_devices, &args);
2521 btrfs_put_dev_args_from_path(&args);
2522 if (!device)
2523 return ERR_PTR(-ENOENT);
2524 return device;
2525 }
2526
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2527 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2528 {
2529 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2530 struct btrfs_fs_devices *old_devices;
2531 struct btrfs_fs_devices *seed_devices;
2532
2533 lockdep_assert_held(&uuid_mutex);
2534 if (!fs_devices->seeding)
2535 return ERR_PTR(-EINVAL);
2536
2537 /*
2538 * Private copy of the seed devices, anchored at
2539 * fs_info->fs_devices->seed_list
2540 */
2541 seed_devices = alloc_fs_devices(NULL);
2542 if (IS_ERR(seed_devices))
2543 return seed_devices;
2544
2545 /*
2546 * It's necessary to retain a copy of the original seed fs_devices in
2547 * fs_uuids so that filesystems which have been seeded can successfully
2548 * reference the seed device from open_seed_devices. This also supports
2549 * multiple fs seed.
2550 */
2551 old_devices = clone_fs_devices(fs_devices);
2552 if (IS_ERR(old_devices)) {
2553 kfree(seed_devices);
2554 return old_devices;
2555 }
2556
2557 list_add(&old_devices->fs_list, &fs_uuids);
2558
2559 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2560 seed_devices->opened = 1;
2561 INIT_LIST_HEAD(&seed_devices->devices);
2562 INIT_LIST_HEAD(&seed_devices->alloc_list);
2563 mutex_init(&seed_devices->device_list_mutex);
2564
2565 return seed_devices;
2566 }
2567
2568 /*
2569 * Splice seed devices into the sprout fs_devices.
2570 * Generate a new fsid for the sprouted read-write filesystem.
2571 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2572 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2573 struct btrfs_fs_devices *seed_devices)
2574 {
2575 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2576 struct btrfs_super_block *disk_super = fs_info->super_copy;
2577 struct btrfs_device *device;
2578 u64 super_flags;
2579
2580 /*
2581 * We are updating the fsid, the thread leading to device_list_add()
2582 * could race, so uuid_mutex is needed.
2583 */
2584 lockdep_assert_held(&uuid_mutex);
2585
2586 /*
2587 * The threads listed below may traverse dev_list but can do that without
2588 * device_list_mutex:
2589 * - All device ops and balance - as we are in btrfs_exclop_start.
2590 * - Various dev_list readers - are using RCU.
2591 * - btrfs_ioctl_fitrim() - is using RCU.
2592 *
2593 * For-read threads as below are using device_list_mutex:
2594 * - Readonly scrub btrfs_scrub_dev()
2595 * - Readonly scrub btrfs_scrub_progress()
2596 * - btrfs_get_dev_stats()
2597 */
2598 lockdep_assert_held(&fs_devices->device_list_mutex);
2599
2600 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2601 synchronize_rcu);
2602 list_for_each_entry(device, &seed_devices->devices, dev_list)
2603 device->fs_devices = seed_devices;
2604
2605 fs_devices->seeding = false;
2606 fs_devices->num_devices = 0;
2607 fs_devices->open_devices = 0;
2608 fs_devices->missing_devices = 0;
2609 fs_devices->rotating = false;
2610 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2611
2612 generate_random_uuid(fs_devices->fsid);
2613 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2614 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2615
2616 super_flags = btrfs_super_flags(disk_super) &
2617 ~BTRFS_SUPER_FLAG_SEEDING;
2618 btrfs_set_super_flags(disk_super, super_flags);
2619 }
2620
2621 /*
2622 * Store the expected generation for seed devices in device items.
2623 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2624 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2625 {
2626 BTRFS_DEV_LOOKUP_ARGS(args);
2627 struct btrfs_fs_info *fs_info = trans->fs_info;
2628 struct btrfs_root *root = fs_info->chunk_root;
2629 struct btrfs_path *path;
2630 struct extent_buffer *leaf;
2631 struct btrfs_dev_item *dev_item;
2632 struct btrfs_device *device;
2633 struct btrfs_key key;
2634 u8 fs_uuid[BTRFS_FSID_SIZE];
2635 u8 dev_uuid[BTRFS_UUID_SIZE];
2636 int ret;
2637
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return -ENOMEM;
2641
2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 key.type = BTRFS_DEV_ITEM_KEY;
2644 key.offset = 0;
2645
2646 while (1) {
2647 btrfs_reserve_chunk_metadata(trans, false);
2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2649 btrfs_trans_release_chunk_metadata(trans);
2650 if (ret < 0)
2651 goto error;
2652
2653 leaf = path->nodes[0];
2654 next_slot:
2655 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2656 ret = btrfs_next_leaf(root, path);
2657 if (ret > 0)
2658 break;
2659 if (ret < 0)
2660 goto error;
2661 leaf = path->nodes[0];
2662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2663 btrfs_release_path(path);
2664 continue;
2665 }
2666
2667 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2668 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2669 key.type != BTRFS_DEV_ITEM_KEY)
2670 break;
2671
2672 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2673 struct btrfs_dev_item);
2674 args.devid = btrfs_device_id(leaf, dev_item);
2675 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2676 BTRFS_UUID_SIZE);
2677 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2678 BTRFS_FSID_SIZE);
2679 args.uuid = dev_uuid;
2680 args.fsid = fs_uuid;
2681 device = btrfs_find_device(fs_info->fs_devices, &args);
2682 BUG_ON(!device); /* Logic error */
2683
2684 if (device->fs_devices->seeding)
2685 btrfs_set_device_generation(leaf, dev_item,
2686 device->generation);
2687
2688 path->slots[0]++;
2689 goto next_slot;
2690 }
2691 ret = 0;
2692 error:
2693 btrfs_free_path(path);
2694 return ret;
2695 }
2696
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2697 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2698 {
2699 struct btrfs_root *root = fs_info->dev_root;
2700 struct btrfs_trans_handle *trans;
2701 struct btrfs_device *device;
2702 struct file *bdev_file;
2703 struct super_block *sb = fs_info->sb;
2704 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2705 struct btrfs_fs_devices *seed_devices = NULL;
2706 u64 orig_super_total_bytes;
2707 u64 orig_super_num_devices;
2708 int ret = 0;
2709 bool seeding_dev = false;
2710 bool locked = false;
2711
2712 if (sb_rdonly(sb) && !fs_devices->seeding)
2713 return -EROFS;
2714
2715 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2716 fs_info->sb, &fs_holder_ops);
2717 if (IS_ERR(bdev_file))
2718 return PTR_ERR(bdev_file);
2719
2720 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2721 ret = -EINVAL;
2722 goto error;
2723 }
2724
2725 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) {
2726 ret = -EINVAL;
2727 goto error;
2728 }
2729
2730 if (fs_devices->seeding) {
2731 seeding_dev = true;
2732 down_write(&sb->s_umount);
2733 mutex_lock(&uuid_mutex);
2734 locked = true;
2735 }
2736
2737 sync_blockdev(file_bdev(bdev_file));
2738
2739 rcu_read_lock();
2740 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2741 if (device->bdev == file_bdev(bdev_file)) {
2742 ret = -EEXIST;
2743 rcu_read_unlock();
2744 goto error;
2745 }
2746 }
2747 rcu_read_unlock();
2748
2749 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2750 if (IS_ERR(device)) {
2751 /* we can safely leave the fs_devices entry around */
2752 ret = PTR_ERR(device);
2753 goto error;
2754 }
2755
2756 device->fs_info = fs_info;
2757 device->bdev_file = bdev_file;
2758 device->bdev = file_bdev(bdev_file);
2759 ret = lookup_bdev(device_path, &device->devt);
2760 if (ret)
2761 goto error_free_device;
2762
2763 ret = btrfs_get_dev_zone_info(device, false);
2764 if (ret)
2765 goto error_free_device;
2766
2767 trans = btrfs_start_transaction(root, 0);
2768 if (IS_ERR(trans)) {
2769 ret = PTR_ERR(trans);
2770 goto error_free_zone;
2771 }
2772
2773 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2774 device->generation = trans->transid;
2775 device->io_width = fs_info->sectorsize;
2776 device->io_align = fs_info->sectorsize;
2777 device->sector_size = fs_info->sectorsize;
2778 device->total_bytes =
2779 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2780 device->disk_total_bytes = device->total_bytes;
2781 device->commit_total_bytes = device->total_bytes;
2782 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2783 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2784 device->dev_stats_valid = 1;
2785 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2786
2787 if (seeding_dev) {
2788 /* GFP_KERNEL allocation must not be under device_list_mutex */
2789 seed_devices = btrfs_init_sprout(fs_info);
2790 if (IS_ERR(seed_devices)) {
2791 ret = PTR_ERR(seed_devices);
2792 btrfs_abort_transaction(trans, ret);
2793 goto error_trans;
2794 }
2795 }
2796
2797 mutex_lock(&fs_devices->device_list_mutex);
2798 if (seeding_dev) {
2799 btrfs_setup_sprout(fs_info, seed_devices);
2800 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2801 device);
2802 }
2803
2804 device->fs_devices = fs_devices;
2805
2806 mutex_lock(&fs_info->chunk_mutex);
2807 list_add_rcu(&device->dev_list, &fs_devices->devices);
2808 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2809 fs_devices->num_devices++;
2810 fs_devices->open_devices++;
2811 fs_devices->rw_devices++;
2812 fs_devices->total_devices++;
2813 fs_devices->total_rw_bytes += device->total_bytes;
2814
2815 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2816
2817 if (!bdev_nonrot(device->bdev))
2818 fs_devices->rotating = true;
2819
2820 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2821 btrfs_set_super_total_bytes(fs_info->super_copy,
2822 round_down(orig_super_total_bytes + device->total_bytes,
2823 fs_info->sectorsize));
2824
2825 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2826 btrfs_set_super_num_devices(fs_info->super_copy,
2827 orig_super_num_devices + 1);
2828
2829 /*
2830 * we've got more storage, clear any full flags on the space
2831 * infos
2832 */
2833 btrfs_clear_space_info_full(fs_info);
2834
2835 mutex_unlock(&fs_info->chunk_mutex);
2836
2837 /* Add sysfs device entry */
2838 btrfs_sysfs_add_device(device);
2839
2840 mutex_unlock(&fs_devices->device_list_mutex);
2841
2842 if (seeding_dev) {
2843 mutex_lock(&fs_info->chunk_mutex);
2844 ret = init_first_rw_device(trans);
2845 mutex_unlock(&fs_info->chunk_mutex);
2846 if (ret) {
2847 btrfs_abort_transaction(trans, ret);
2848 goto error_sysfs;
2849 }
2850 }
2851
2852 ret = btrfs_add_dev_item(trans, device);
2853 if (ret) {
2854 btrfs_abort_transaction(trans, ret);
2855 goto error_sysfs;
2856 }
2857
2858 if (seeding_dev) {
2859 ret = btrfs_finish_sprout(trans);
2860 if (ret) {
2861 btrfs_abort_transaction(trans, ret);
2862 goto error_sysfs;
2863 }
2864
2865 /*
2866 * fs_devices now represents the newly sprouted filesystem and
2867 * its fsid has been changed by btrfs_sprout_splice().
2868 */
2869 btrfs_sysfs_update_sprout_fsid(fs_devices);
2870 }
2871
2872 ret = btrfs_commit_transaction(trans);
2873
2874 if (seeding_dev) {
2875 mutex_unlock(&uuid_mutex);
2876 up_write(&sb->s_umount);
2877 locked = false;
2878
2879 if (ret) /* transaction commit */
2880 return ret;
2881
2882 ret = btrfs_relocate_sys_chunks(fs_info);
2883 if (ret < 0)
2884 btrfs_handle_fs_error(fs_info, ret,
2885 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2886 trans = btrfs_attach_transaction(root);
2887 if (IS_ERR(trans)) {
2888 if (PTR_ERR(trans) == -ENOENT)
2889 return 0;
2890 ret = PTR_ERR(trans);
2891 trans = NULL;
2892 goto error_sysfs;
2893 }
2894 ret = btrfs_commit_transaction(trans);
2895 }
2896
2897 /*
2898 * Now that we have written a new super block to this device, check all
2899 * other fs_devices list if device_path alienates any other scanned
2900 * device.
2901 * We can ignore the return value as it typically returns -EINVAL and
2902 * only succeeds if the device was an alien.
2903 */
2904 btrfs_forget_devices(device->devt);
2905
2906 /* Update ctime/mtime for blkid or udev */
2907 update_dev_time(device_path);
2908
2909 return ret;
2910
2911 error_sysfs:
2912 btrfs_sysfs_remove_device(device);
2913 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2914 mutex_lock(&fs_info->chunk_mutex);
2915 list_del_rcu(&device->dev_list);
2916 list_del(&device->dev_alloc_list);
2917 fs_info->fs_devices->num_devices--;
2918 fs_info->fs_devices->open_devices--;
2919 fs_info->fs_devices->rw_devices--;
2920 fs_info->fs_devices->total_devices--;
2921 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2922 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2923 btrfs_set_super_total_bytes(fs_info->super_copy,
2924 orig_super_total_bytes);
2925 btrfs_set_super_num_devices(fs_info->super_copy,
2926 orig_super_num_devices);
2927 mutex_unlock(&fs_info->chunk_mutex);
2928 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2929 error_trans:
2930 if (trans)
2931 btrfs_end_transaction(trans);
2932 error_free_zone:
2933 btrfs_destroy_dev_zone_info(device);
2934 error_free_device:
2935 btrfs_free_device(device);
2936 error:
2937 bdev_fput(bdev_file);
2938 if (locked) {
2939 mutex_unlock(&uuid_mutex);
2940 up_write(&sb->s_umount);
2941 }
2942 return ret;
2943 }
2944
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2945 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2946 struct btrfs_device *device)
2947 {
2948 int ret;
2949 struct btrfs_path *path;
2950 struct btrfs_root *root = device->fs_info->chunk_root;
2951 struct btrfs_dev_item *dev_item;
2952 struct extent_buffer *leaf;
2953 struct btrfs_key key;
2954
2955 path = btrfs_alloc_path();
2956 if (!path)
2957 return -ENOMEM;
2958
2959 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2960 key.type = BTRFS_DEV_ITEM_KEY;
2961 key.offset = device->devid;
2962
2963 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2964 if (ret < 0)
2965 goto out;
2966
2967 if (ret > 0) {
2968 ret = -ENOENT;
2969 goto out;
2970 }
2971
2972 leaf = path->nodes[0];
2973 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2974
2975 btrfs_set_device_id(leaf, dev_item, device->devid);
2976 btrfs_set_device_type(leaf, dev_item, device->type);
2977 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2978 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2979 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2980 btrfs_set_device_total_bytes(leaf, dev_item,
2981 btrfs_device_get_disk_total_bytes(device));
2982 btrfs_set_device_bytes_used(leaf, dev_item,
2983 btrfs_device_get_bytes_used(device));
2984 out:
2985 btrfs_free_path(path);
2986 return ret;
2987 }
2988
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2989 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2990 struct btrfs_device *device, u64 new_size)
2991 {
2992 struct btrfs_fs_info *fs_info = device->fs_info;
2993 struct btrfs_super_block *super_copy = fs_info->super_copy;
2994 u64 old_total;
2995 u64 diff;
2996 int ret;
2997
2998 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2999 return -EACCES;
3000
3001 new_size = round_down(new_size, fs_info->sectorsize);
3002
3003 mutex_lock(&fs_info->chunk_mutex);
3004 old_total = btrfs_super_total_bytes(super_copy);
3005 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3006
3007 if (new_size <= device->total_bytes ||
3008 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3009 mutex_unlock(&fs_info->chunk_mutex);
3010 return -EINVAL;
3011 }
3012
3013 btrfs_set_super_total_bytes(super_copy,
3014 round_down(old_total + diff, fs_info->sectorsize));
3015 device->fs_devices->total_rw_bytes += diff;
3016 atomic64_add(diff, &fs_info->free_chunk_space);
3017
3018 btrfs_device_set_total_bytes(device, new_size);
3019 btrfs_device_set_disk_total_bytes(device, new_size);
3020 btrfs_clear_space_info_full(device->fs_info);
3021 if (list_empty(&device->post_commit_list))
3022 list_add_tail(&device->post_commit_list,
3023 &trans->transaction->dev_update_list);
3024 mutex_unlock(&fs_info->chunk_mutex);
3025
3026 btrfs_reserve_chunk_metadata(trans, false);
3027 ret = btrfs_update_device(trans, device);
3028 btrfs_trans_release_chunk_metadata(trans);
3029
3030 return ret;
3031 }
3032
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3033 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3034 {
3035 struct btrfs_fs_info *fs_info = trans->fs_info;
3036 struct btrfs_root *root = fs_info->chunk_root;
3037 int ret;
3038 struct btrfs_path *path;
3039 struct btrfs_key key;
3040
3041 path = btrfs_alloc_path();
3042 if (!path)
3043 return -ENOMEM;
3044
3045 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3046 key.type = BTRFS_CHUNK_ITEM_KEY;
3047 key.offset = chunk_offset;
3048
3049 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3050 if (ret < 0)
3051 goto out;
3052 else if (ret > 0) { /* Logic error or corruption */
3053 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3054 chunk_offset);
3055 btrfs_abort_transaction(trans, -ENOENT);
3056 ret = -EUCLEAN;
3057 goto out;
3058 }
3059
3060 ret = btrfs_del_item(trans, root, path);
3061 if (ret < 0) {
3062 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3063 btrfs_abort_transaction(trans, ret);
3064 goto out;
3065 }
3066 out:
3067 btrfs_free_path(path);
3068 return ret;
3069 }
3070
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3071 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3072 {
3073 struct btrfs_super_block *super_copy = fs_info->super_copy;
3074 struct btrfs_disk_key *disk_key;
3075 struct btrfs_chunk *chunk;
3076 u8 *ptr;
3077 int ret = 0;
3078 u32 num_stripes;
3079 u32 array_size;
3080 u32 len = 0;
3081 u32 cur;
3082 struct btrfs_key key;
3083
3084 lockdep_assert_held(&fs_info->chunk_mutex);
3085 array_size = btrfs_super_sys_array_size(super_copy);
3086
3087 ptr = super_copy->sys_chunk_array;
3088 cur = 0;
3089
3090 while (cur < array_size) {
3091 disk_key = (struct btrfs_disk_key *)ptr;
3092 btrfs_disk_key_to_cpu(&key, disk_key);
3093
3094 len = sizeof(*disk_key);
3095
3096 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3097 chunk = (struct btrfs_chunk *)(ptr + len);
3098 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3099 len += btrfs_chunk_item_size(num_stripes);
3100 } else {
3101 ret = -EIO;
3102 break;
3103 }
3104 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3105 key.offset == chunk_offset) {
3106 memmove(ptr, ptr + len, array_size - (cur + len));
3107 array_size -= len;
3108 btrfs_set_super_sys_array_size(super_copy, array_size);
3109 } else {
3110 ptr += len;
3111 cur += len;
3112 }
3113 }
3114 return ret;
3115 }
3116
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3117 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3118 u64 logical, u64 length)
3119 {
3120 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3121 struct rb_node *prev = NULL;
3122 struct rb_node *orig_prev;
3123 struct btrfs_chunk_map *map;
3124 struct btrfs_chunk_map *prev_map = NULL;
3125
3126 while (node) {
3127 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3128 prev = node;
3129 prev_map = map;
3130
3131 if (logical < map->start) {
3132 node = node->rb_left;
3133 } else if (logical >= map->start + map->chunk_len) {
3134 node = node->rb_right;
3135 } else {
3136 refcount_inc(&map->refs);
3137 return map;
3138 }
3139 }
3140
3141 if (!prev)
3142 return NULL;
3143
3144 orig_prev = prev;
3145 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3146 prev = rb_next(prev);
3147 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3148 }
3149
3150 if (!prev) {
3151 prev = orig_prev;
3152 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3153 while (prev && logical < prev_map->start) {
3154 prev = rb_prev(prev);
3155 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3156 }
3157 }
3158
3159 if (prev) {
3160 u64 end = logical + length;
3161
3162 /*
3163 * Caller can pass a U64_MAX length when it wants to get any
3164 * chunk starting at an offset of 'logical' or higher, so deal
3165 * with underflow by resetting the end offset to U64_MAX.
3166 */
3167 if (end < logical)
3168 end = U64_MAX;
3169
3170 if (end > prev_map->start &&
3171 logical < prev_map->start + prev_map->chunk_len) {
3172 refcount_inc(&prev_map->refs);
3173 return prev_map;
3174 }
3175 }
3176
3177 return NULL;
3178 }
3179
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3180 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3181 u64 logical, u64 length)
3182 {
3183 struct btrfs_chunk_map *map;
3184
3185 read_lock(&fs_info->mapping_tree_lock);
3186 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3187 read_unlock(&fs_info->mapping_tree_lock);
3188
3189 return map;
3190 }
3191
3192 /*
3193 * Find the mapping containing the given logical extent.
3194 *
3195 * @logical: Logical block offset in bytes.
3196 * @length: Length of extent in bytes.
3197 *
3198 * Return: Chunk mapping or ERR_PTR.
3199 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3200 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3201 u64 logical, u64 length)
3202 {
3203 struct btrfs_chunk_map *map;
3204
3205 map = btrfs_find_chunk_map(fs_info, logical, length);
3206
3207 if (unlikely(!map)) {
3208 btrfs_crit(fs_info,
3209 "unable to find chunk map for logical %llu length %llu",
3210 logical, length);
3211 return ERR_PTR(-EINVAL);
3212 }
3213
3214 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3215 btrfs_crit(fs_info,
3216 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3217 logical, logical + length, map->start,
3218 map->start + map->chunk_len);
3219 btrfs_free_chunk_map(map);
3220 return ERR_PTR(-EINVAL);
3221 }
3222
3223 /* Callers are responsible for dropping the reference. */
3224 return map;
3225 }
3226
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3227 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3228 struct btrfs_chunk_map *map, u64 chunk_offset)
3229 {
3230 int i;
3231
3232 /*
3233 * Removing chunk items and updating the device items in the chunks btree
3234 * requires holding the chunk_mutex.
3235 * See the comment at btrfs_chunk_alloc() for the details.
3236 */
3237 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3238
3239 for (i = 0; i < map->num_stripes; i++) {
3240 int ret;
3241
3242 ret = btrfs_update_device(trans, map->stripes[i].dev);
3243 if (ret)
3244 return ret;
3245 }
3246
3247 return btrfs_free_chunk(trans, chunk_offset);
3248 }
3249
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3250 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3251 {
3252 struct btrfs_fs_info *fs_info = trans->fs_info;
3253 struct btrfs_chunk_map *map;
3254 u64 dev_extent_len = 0;
3255 int i, ret = 0;
3256 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3257
3258 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3259 if (IS_ERR(map)) {
3260 /*
3261 * This is a logic error, but we don't want to just rely on the
3262 * user having built with ASSERT enabled, so if ASSERT doesn't
3263 * do anything we still error out.
3264 */
3265 DEBUG_WARN("errr %ld reading chunk map at offset %llu",
3266 PTR_ERR(map), chunk_offset);
3267 return PTR_ERR(map);
3268 }
3269
3270 /*
3271 * First delete the device extent items from the devices btree.
3272 * We take the device_list_mutex to avoid racing with the finishing phase
3273 * of a device replace operation. See the comment below before acquiring
3274 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3275 * because that can result in a deadlock when deleting the device extent
3276 * items from the devices btree - COWing an extent buffer from the btree
3277 * may result in allocating a new metadata chunk, which would attempt to
3278 * lock again fs_info->chunk_mutex.
3279 */
3280 mutex_lock(&fs_devices->device_list_mutex);
3281 for (i = 0; i < map->num_stripes; i++) {
3282 struct btrfs_device *device = map->stripes[i].dev;
3283 ret = btrfs_free_dev_extent(trans, device,
3284 map->stripes[i].physical,
3285 &dev_extent_len);
3286 if (ret) {
3287 mutex_unlock(&fs_devices->device_list_mutex);
3288 btrfs_abort_transaction(trans, ret);
3289 goto out;
3290 }
3291
3292 if (device->bytes_used > 0) {
3293 mutex_lock(&fs_info->chunk_mutex);
3294 btrfs_device_set_bytes_used(device,
3295 device->bytes_used - dev_extent_len);
3296 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3297 btrfs_clear_space_info_full(fs_info);
3298
3299 if (list_empty(&device->post_commit_list)) {
3300 list_add_tail(&device->post_commit_list,
3301 &trans->transaction->dev_update_list);
3302 }
3303
3304 mutex_unlock(&fs_info->chunk_mutex);
3305 }
3306 }
3307 mutex_unlock(&fs_devices->device_list_mutex);
3308
3309 /*
3310 * We acquire fs_info->chunk_mutex for 2 reasons:
3311 *
3312 * 1) Just like with the first phase of the chunk allocation, we must
3313 * reserve system space, do all chunk btree updates and deletions, and
3314 * update the system chunk array in the superblock while holding this
3315 * mutex. This is for similar reasons as explained on the comment at
3316 * the top of btrfs_chunk_alloc();
3317 *
3318 * 2) Prevent races with the final phase of a device replace operation
3319 * that replaces the device object associated with the map's stripes,
3320 * because the device object's id can change at any time during that
3321 * final phase of the device replace operation
3322 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3323 * replaced device and then see it with an ID of
3324 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3325 * the device item, which does not exists on the chunk btree.
3326 * The finishing phase of device replace acquires both the
3327 * device_list_mutex and the chunk_mutex, in that order, so we are
3328 * safe by just acquiring the chunk_mutex.
3329 */
3330 trans->removing_chunk = true;
3331 mutex_lock(&fs_info->chunk_mutex);
3332
3333 check_system_chunk(trans, map->type);
3334
3335 ret = remove_chunk_item(trans, map, chunk_offset);
3336 /*
3337 * Normally we should not get -ENOSPC since we reserved space before
3338 * through the call to check_system_chunk().
3339 *
3340 * Despite our system space_info having enough free space, we may not
3341 * be able to allocate extents from its block groups, because all have
3342 * an incompatible profile, which will force us to allocate a new system
3343 * block group with the right profile, or right after we called
3344 * check_system_space() above, a scrub turned the only system block group
3345 * with enough free space into RO mode.
3346 * This is explained with more detail at do_chunk_alloc().
3347 *
3348 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3349 */
3350 if (ret == -ENOSPC) {
3351 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3352 struct btrfs_block_group *sys_bg;
3353 struct btrfs_space_info *space_info;
3354
3355 space_info = btrfs_find_space_info(fs_info, sys_flags);
3356 if (!space_info) {
3357 ret = -EINVAL;
3358 btrfs_abort_transaction(trans, ret);
3359 goto out;
3360 }
3361
3362 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags);
3363 if (IS_ERR(sys_bg)) {
3364 ret = PTR_ERR(sys_bg);
3365 btrfs_abort_transaction(trans, ret);
3366 goto out;
3367 }
3368
3369 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3370 if (ret) {
3371 btrfs_abort_transaction(trans, ret);
3372 goto out;
3373 }
3374
3375 ret = remove_chunk_item(trans, map, chunk_offset);
3376 if (ret) {
3377 btrfs_abort_transaction(trans, ret);
3378 goto out;
3379 }
3380 } else if (ret) {
3381 btrfs_abort_transaction(trans, ret);
3382 goto out;
3383 }
3384
3385 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3386
3387 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3388 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3389 if (ret) {
3390 btrfs_abort_transaction(trans, ret);
3391 goto out;
3392 }
3393 }
3394
3395 mutex_unlock(&fs_info->chunk_mutex);
3396 trans->removing_chunk = false;
3397
3398 /*
3399 * We are done with chunk btree updates and deletions, so release the
3400 * system space we previously reserved (with check_system_chunk()).
3401 */
3402 btrfs_trans_release_chunk_metadata(trans);
3403
3404 ret = btrfs_remove_block_group(trans, map);
3405 if (ret) {
3406 btrfs_abort_transaction(trans, ret);
3407 goto out;
3408 }
3409
3410 out:
3411 if (trans->removing_chunk) {
3412 mutex_unlock(&fs_info->chunk_mutex);
3413 trans->removing_chunk = false;
3414 }
3415 /* once for us */
3416 btrfs_free_chunk_map(map);
3417 return ret;
3418 }
3419
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset,bool verbose)3420 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3421 bool verbose)
3422 {
3423 struct btrfs_root *root = fs_info->chunk_root;
3424 struct btrfs_trans_handle *trans;
3425 struct btrfs_block_group *block_group;
3426 u64 length;
3427 int ret;
3428
3429 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3430 btrfs_err(fs_info,
3431 "relocate: not supported on extent tree v2 yet");
3432 return -EINVAL;
3433 }
3434
3435 /*
3436 * Prevent races with automatic removal of unused block groups.
3437 * After we relocate and before we remove the chunk with offset
3438 * chunk_offset, automatic removal of the block group can kick in,
3439 * resulting in a failure when calling btrfs_remove_chunk() below.
3440 *
3441 * Make sure to acquire this mutex before doing a tree search (dev
3442 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3443 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3444 * we release the path used to search the chunk/dev tree and before
3445 * the current task acquires this mutex and calls us.
3446 */
3447 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3448
3449 /* step one, relocate all the extents inside this chunk */
3450 btrfs_scrub_pause(fs_info);
3451 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true);
3452 btrfs_scrub_continue(fs_info);
3453 if (ret) {
3454 /*
3455 * If we had a transaction abort, stop all running scrubs.
3456 * See transaction.c:cleanup_transaction() why we do it here.
3457 */
3458 if (BTRFS_FS_ERROR(fs_info))
3459 btrfs_scrub_cancel(fs_info);
3460 return ret;
3461 }
3462
3463 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3464 if (!block_group)
3465 return -ENOENT;
3466 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3467 length = block_group->length;
3468 btrfs_put_block_group(block_group);
3469
3470 /*
3471 * On a zoned file system, discard the whole block group, this will
3472 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3473 * resetting the zone fails, don't treat it as a fatal problem from the
3474 * filesystem's point of view.
3475 */
3476 if (btrfs_is_zoned(fs_info)) {
3477 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3478 if (ret)
3479 btrfs_info(fs_info,
3480 "failed to reset zone %llu after relocation",
3481 chunk_offset);
3482 }
3483
3484 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3485 chunk_offset);
3486 if (IS_ERR(trans)) {
3487 ret = PTR_ERR(trans);
3488 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3489 return ret;
3490 }
3491
3492 /*
3493 * step two, delete the device extents and the
3494 * chunk tree entries
3495 */
3496 ret = btrfs_remove_chunk(trans, chunk_offset);
3497 btrfs_end_transaction(trans);
3498 return ret;
3499 }
3500
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3501 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3502 {
3503 struct btrfs_root *chunk_root = fs_info->chunk_root;
3504 struct btrfs_path *path;
3505 struct extent_buffer *leaf;
3506 struct btrfs_chunk *chunk;
3507 struct btrfs_key key;
3508 struct btrfs_key found_key;
3509 u64 chunk_type;
3510 bool retried = false;
3511 int failed = 0;
3512 int ret;
3513
3514 path = btrfs_alloc_path();
3515 if (!path)
3516 return -ENOMEM;
3517
3518 again:
3519 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3520 key.type = BTRFS_CHUNK_ITEM_KEY;
3521 key.offset = (u64)-1;
3522
3523 while (1) {
3524 mutex_lock(&fs_info->reclaim_bgs_lock);
3525 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3526 if (ret < 0) {
3527 mutex_unlock(&fs_info->reclaim_bgs_lock);
3528 goto error;
3529 }
3530 if (ret == 0) {
3531 /*
3532 * On the first search we would find chunk tree with
3533 * offset -1, which is not possible. On subsequent
3534 * loops this would find an existing item on an invalid
3535 * offset (one less than the previous one, wrong
3536 * alignment and size).
3537 */
3538 ret = -EUCLEAN;
3539 mutex_unlock(&fs_info->reclaim_bgs_lock);
3540 goto error;
3541 }
3542
3543 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3544 key.type);
3545 if (ret)
3546 mutex_unlock(&fs_info->reclaim_bgs_lock);
3547 if (ret < 0)
3548 goto error;
3549 if (ret > 0)
3550 break;
3551
3552 leaf = path->nodes[0];
3553 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3554
3555 chunk = btrfs_item_ptr(leaf, path->slots[0],
3556 struct btrfs_chunk);
3557 chunk_type = btrfs_chunk_type(leaf, chunk);
3558 btrfs_release_path(path);
3559
3560 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3561 ret = btrfs_relocate_chunk(fs_info, found_key.offset,
3562 true);
3563 if (ret == -ENOSPC)
3564 failed++;
3565 else
3566 BUG_ON(ret);
3567 }
3568 mutex_unlock(&fs_info->reclaim_bgs_lock);
3569
3570 if (found_key.offset == 0)
3571 break;
3572 key.offset = found_key.offset - 1;
3573 }
3574 ret = 0;
3575 if (failed && !retried) {
3576 failed = 0;
3577 retried = true;
3578 goto again;
3579 } else if (WARN_ON(failed && retried)) {
3580 ret = -ENOSPC;
3581 }
3582 error:
3583 btrfs_free_path(path);
3584 return ret;
3585 }
3586
3587 /*
3588 * return 1 : allocate a data chunk successfully,
3589 * return <0: errors during allocating a data chunk,
3590 * return 0 : no need to allocate a data chunk.
3591 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3592 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3593 u64 chunk_offset)
3594 {
3595 struct btrfs_block_group *cache;
3596 u64 bytes_used;
3597 u64 chunk_type;
3598
3599 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3600 ASSERT(cache);
3601 chunk_type = cache->flags;
3602 btrfs_put_block_group(cache);
3603
3604 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3605 return 0;
3606
3607 spin_lock(&fs_info->data_sinfo->lock);
3608 bytes_used = fs_info->data_sinfo->bytes_used;
3609 spin_unlock(&fs_info->data_sinfo->lock);
3610
3611 if (!bytes_used) {
3612 struct btrfs_trans_handle *trans;
3613 int ret;
3614
3615 trans = btrfs_join_transaction(fs_info->tree_root);
3616 if (IS_ERR(trans))
3617 return PTR_ERR(trans);
3618
3619 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3620 btrfs_end_transaction(trans);
3621 if (ret < 0)
3622 return ret;
3623 return 1;
3624 }
3625
3626 return 0;
3627 }
3628
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3629 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3630 const struct btrfs_disk_balance_args *disk)
3631 {
3632 memset(cpu, 0, sizeof(*cpu));
3633
3634 cpu->profiles = le64_to_cpu(disk->profiles);
3635 cpu->usage = le64_to_cpu(disk->usage);
3636 cpu->devid = le64_to_cpu(disk->devid);
3637 cpu->pstart = le64_to_cpu(disk->pstart);
3638 cpu->pend = le64_to_cpu(disk->pend);
3639 cpu->vstart = le64_to_cpu(disk->vstart);
3640 cpu->vend = le64_to_cpu(disk->vend);
3641 cpu->target = le64_to_cpu(disk->target);
3642 cpu->flags = le64_to_cpu(disk->flags);
3643 cpu->limit = le64_to_cpu(disk->limit);
3644 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3645 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3646 }
3647
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3648 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3649 const struct btrfs_balance_args *cpu)
3650 {
3651 memset(disk, 0, sizeof(*disk));
3652
3653 disk->profiles = cpu_to_le64(cpu->profiles);
3654 disk->usage = cpu_to_le64(cpu->usage);
3655 disk->devid = cpu_to_le64(cpu->devid);
3656 disk->pstart = cpu_to_le64(cpu->pstart);
3657 disk->pend = cpu_to_le64(cpu->pend);
3658 disk->vstart = cpu_to_le64(cpu->vstart);
3659 disk->vend = cpu_to_le64(cpu->vend);
3660 disk->target = cpu_to_le64(cpu->target);
3661 disk->flags = cpu_to_le64(cpu->flags);
3662 disk->limit = cpu_to_le64(cpu->limit);
3663 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3664 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3665 }
3666
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3667 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3668 struct btrfs_balance_control *bctl)
3669 {
3670 struct btrfs_root *root = fs_info->tree_root;
3671 struct btrfs_trans_handle *trans;
3672 struct btrfs_balance_item *item;
3673 struct btrfs_disk_balance_args disk_bargs;
3674 struct btrfs_path *path;
3675 struct extent_buffer *leaf;
3676 struct btrfs_key key;
3677 int ret, err;
3678
3679 path = btrfs_alloc_path();
3680 if (!path)
3681 return -ENOMEM;
3682
3683 trans = btrfs_start_transaction(root, 0);
3684 if (IS_ERR(trans)) {
3685 btrfs_free_path(path);
3686 return PTR_ERR(trans);
3687 }
3688
3689 key.objectid = BTRFS_BALANCE_OBJECTID;
3690 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3691 key.offset = 0;
3692
3693 ret = btrfs_insert_empty_item(trans, root, path, &key,
3694 sizeof(*item));
3695 if (ret)
3696 goto out;
3697
3698 leaf = path->nodes[0];
3699 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3700
3701 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3702
3703 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3704 btrfs_set_balance_data(leaf, item, &disk_bargs);
3705 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3706 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3707 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3708 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3709 btrfs_set_balance_flags(leaf, item, bctl->flags);
3710 out:
3711 btrfs_free_path(path);
3712 err = btrfs_commit_transaction(trans);
3713 if (err && !ret)
3714 ret = err;
3715 return ret;
3716 }
3717
del_balance_item(struct btrfs_fs_info * fs_info)3718 static int del_balance_item(struct btrfs_fs_info *fs_info)
3719 {
3720 struct btrfs_root *root = fs_info->tree_root;
3721 struct btrfs_trans_handle *trans;
3722 struct btrfs_path *path;
3723 struct btrfs_key key;
3724 int ret, err;
3725
3726 path = btrfs_alloc_path();
3727 if (!path)
3728 return -ENOMEM;
3729
3730 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3731 if (IS_ERR(trans)) {
3732 btrfs_free_path(path);
3733 return PTR_ERR(trans);
3734 }
3735
3736 key.objectid = BTRFS_BALANCE_OBJECTID;
3737 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3738 key.offset = 0;
3739
3740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3741 if (ret < 0)
3742 goto out;
3743 if (ret > 0) {
3744 ret = -ENOENT;
3745 goto out;
3746 }
3747
3748 ret = btrfs_del_item(trans, root, path);
3749 out:
3750 btrfs_free_path(path);
3751 err = btrfs_commit_transaction(trans);
3752 if (err && !ret)
3753 ret = err;
3754 return ret;
3755 }
3756
3757 /*
3758 * This is a heuristic used to reduce the number of chunks balanced on
3759 * resume after balance was interrupted.
3760 */
update_balance_args(struct btrfs_balance_control * bctl)3761 static void update_balance_args(struct btrfs_balance_control *bctl)
3762 {
3763 /*
3764 * Turn on soft mode for chunk types that were being converted.
3765 */
3766 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3767 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3768 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3769 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3770 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3771 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3772
3773 /*
3774 * Turn on usage filter if is not already used. The idea is
3775 * that chunks that we have already balanced should be
3776 * reasonably full. Don't do it for chunks that are being
3777 * converted - that will keep us from relocating unconverted
3778 * (albeit full) chunks.
3779 */
3780 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3781 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3782 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3783 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3784 bctl->data.usage = 90;
3785 }
3786 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3787 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3788 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3789 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3790 bctl->sys.usage = 90;
3791 }
3792 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3793 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3794 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3795 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3796 bctl->meta.usage = 90;
3797 }
3798 }
3799
3800 /*
3801 * Clear the balance status in fs_info and delete the balance item from disk.
3802 */
reset_balance_state(struct btrfs_fs_info * fs_info)3803 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3804 {
3805 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3806 int ret;
3807
3808 ASSERT(fs_info->balance_ctl);
3809
3810 spin_lock(&fs_info->balance_lock);
3811 fs_info->balance_ctl = NULL;
3812 spin_unlock(&fs_info->balance_lock);
3813
3814 kfree(bctl);
3815 ret = del_balance_item(fs_info);
3816 if (ret)
3817 btrfs_handle_fs_error(fs_info, ret, NULL);
3818 }
3819
3820 /*
3821 * Balance filters. Return 1 if chunk should be filtered out
3822 * (should not be balanced).
3823 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3824 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3825 {
3826 chunk_type = chunk_to_extended(chunk_type) &
3827 BTRFS_EXTENDED_PROFILE_MASK;
3828
3829 if (bargs->profiles & chunk_type)
3830 return false;
3831
3832 return true;
3833 }
3834
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3835 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3836 struct btrfs_balance_args *bargs)
3837 {
3838 struct btrfs_block_group *cache;
3839 u64 chunk_used;
3840 u64 user_thresh_min;
3841 u64 user_thresh_max;
3842 bool ret = true;
3843
3844 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3845 chunk_used = cache->used;
3846
3847 if (bargs->usage_min == 0)
3848 user_thresh_min = 0;
3849 else
3850 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3851
3852 if (bargs->usage_max == 0)
3853 user_thresh_max = 1;
3854 else if (bargs->usage_max > 100)
3855 user_thresh_max = cache->length;
3856 else
3857 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3858
3859 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3860 ret = false;
3861
3862 btrfs_put_block_group(cache);
3863 return ret;
3864 }
3865
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3866 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3867 struct btrfs_balance_args *bargs)
3868 {
3869 struct btrfs_block_group *cache;
3870 u64 chunk_used, user_thresh;
3871 bool ret = true;
3872
3873 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3874 chunk_used = cache->used;
3875
3876 if (bargs->usage_min == 0)
3877 user_thresh = 1;
3878 else if (bargs->usage > 100)
3879 user_thresh = cache->length;
3880 else
3881 user_thresh = mult_perc(cache->length, bargs->usage);
3882
3883 if (chunk_used < user_thresh)
3884 ret = false;
3885
3886 btrfs_put_block_group(cache);
3887 return ret;
3888 }
3889
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3890 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3891 struct btrfs_balance_args *bargs)
3892 {
3893 struct btrfs_stripe *stripe;
3894 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3895 int i;
3896
3897 for (i = 0; i < num_stripes; i++) {
3898 stripe = btrfs_stripe_nr(chunk, i);
3899 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3900 return false;
3901 }
3902
3903 return true;
3904 }
3905
calc_data_stripes(u64 type,int num_stripes)3906 static u64 calc_data_stripes(u64 type, int num_stripes)
3907 {
3908 const int index = btrfs_bg_flags_to_raid_index(type);
3909 const int ncopies = btrfs_raid_array[index].ncopies;
3910 const int nparity = btrfs_raid_array[index].nparity;
3911
3912 return (num_stripes - nparity) / ncopies;
3913 }
3914
3915 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3916 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3917 struct btrfs_balance_args *bargs)
3918 {
3919 struct btrfs_stripe *stripe;
3920 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3921 u64 stripe_offset;
3922 u64 stripe_length;
3923 u64 type;
3924 int factor;
3925 int i;
3926
3927 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3928 return false;
3929
3930 type = btrfs_chunk_type(leaf, chunk);
3931 factor = calc_data_stripes(type, num_stripes);
3932
3933 for (i = 0; i < num_stripes; i++) {
3934 stripe = btrfs_stripe_nr(chunk, i);
3935 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3936 continue;
3937
3938 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3939 stripe_length = btrfs_chunk_length(leaf, chunk);
3940 stripe_length = div_u64(stripe_length, factor);
3941
3942 if (stripe_offset < bargs->pend &&
3943 stripe_offset + stripe_length > bargs->pstart)
3944 return false;
3945 }
3946
3947 return true;
3948 }
3949
3950 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3951 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3952 u64 chunk_offset, struct btrfs_balance_args *bargs)
3953 {
3954 if (chunk_offset < bargs->vend &&
3955 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3956 /* at least part of the chunk is inside this vrange */
3957 return false;
3958
3959 return true;
3960 }
3961
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3962 static bool chunk_stripes_range_filter(struct extent_buffer *leaf,
3963 struct btrfs_chunk *chunk,
3964 struct btrfs_balance_args *bargs)
3965 {
3966 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3967
3968 if (bargs->stripes_min <= num_stripes
3969 && num_stripes <= bargs->stripes_max)
3970 return false;
3971
3972 return true;
3973 }
3974
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3975 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3976 {
3977 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3978 return false;
3979
3980 chunk_type = chunk_to_extended(chunk_type) &
3981 BTRFS_EXTENDED_PROFILE_MASK;
3982
3983 if (bargs->target == chunk_type)
3984 return true;
3985
3986 return false;
3987 }
3988
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3989 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3990 u64 chunk_offset)
3991 {
3992 struct btrfs_fs_info *fs_info = leaf->fs_info;
3993 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3994 struct btrfs_balance_args *bargs = NULL;
3995 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3996
3997 /* type filter */
3998 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3999 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4000 return false;
4001 }
4002
4003 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4004 bargs = &bctl->data;
4005 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4006 bargs = &bctl->sys;
4007 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4008 bargs = &bctl->meta;
4009
4010 /* profiles filter */
4011 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4012 chunk_profiles_filter(chunk_type, bargs)) {
4013 return false;
4014 }
4015
4016 /* usage filter */
4017 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4018 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4019 return false;
4020 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4021 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4022 return false;
4023 }
4024
4025 /* devid filter */
4026 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4027 chunk_devid_filter(leaf, chunk, bargs)) {
4028 return false;
4029 }
4030
4031 /* drange filter, makes sense only with devid filter */
4032 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4033 chunk_drange_filter(leaf, chunk, bargs)) {
4034 return false;
4035 }
4036
4037 /* vrange filter */
4038 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4039 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4040 return false;
4041 }
4042
4043 /* stripes filter */
4044 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4045 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4046 return false;
4047 }
4048
4049 /* soft profile changing mode */
4050 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4051 chunk_soft_convert_filter(chunk_type, bargs)) {
4052 return false;
4053 }
4054
4055 /*
4056 * limited by count, must be the last filter
4057 */
4058 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4059 if (bargs->limit == 0)
4060 return false;
4061 else
4062 bargs->limit--;
4063 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4064 /*
4065 * Same logic as the 'limit' filter; the minimum cannot be
4066 * determined here because we do not have the global information
4067 * about the count of all chunks that satisfy the filters.
4068 */
4069 if (bargs->limit_max == 0)
4070 return false;
4071 else
4072 bargs->limit_max--;
4073 }
4074
4075 return true;
4076 }
4077
__btrfs_balance(struct btrfs_fs_info * fs_info)4078 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4079 {
4080 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4081 struct btrfs_root *chunk_root = fs_info->chunk_root;
4082 u64 chunk_type;
4083 struct btrfs_chunk *chunk;
4084 struct btrfs_path *path = NULL;
4085 struct btrfs_key key;
4086 struct btrfs_key found_key;
4087 struct extent_buffer *leaf;
4088 int slot;
4089 int ret;
4090 int enospc_errors = 0;
4091 bool counting = true;
4092 /* The single value limit and min/max limits use the same bytes in the */
4093 u64 limit_data = bctl->data.limit;
4094 u64 limit_meta = bctl->meta.limit;
4095 u64 limit_sys = bctl->sys.limit;
4096 u32 count_data = 0;
4097 u32 count_meta = 0;
4098 u32 count_sys = 0;
4099 int chunk_reserved = 0;
4100
4101 path = btrfs_alloc_path();
4102 if (!path) {
4103 ret = -ENOMEM;
4104 goto error;
4105 }
4106
4107 /* zero out stat counters */
4108 spin_lock(&fs_info->balance_lock);
4109 memset(&bctl->stat, 0, sizeof(bctl->stat));
4110 spin_unlock(&fs_info->balance_lock);
4111 again:
4112 if (!counting) {
4113 /*
4114 * The single value limit and min/max limits use the same bytes
4115 * in the
4116 */
4117 bctl->data.limit = limit_data;
4118 bctl->meta.limit = limit_meta;
4119 bctl->sys.limit = limit_sys;
4120 }
4121 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4122 key.type = BTRFS_CHUNK_ITEM_KEY;
4123 key.offset = (u64)-1;
4124
4125 while (1) {
4126 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4127 atomic_read(&fs_info->balance_cancel_req)) {
4128 ret = -ECANCELED;
4129 goto error;
4130 }
4131
4132 mutex_lock(&fs_info->reclaim_bgs_lock);
4133 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4134 if (ret < 0) {
4135 mutex_unlock(&fs_info->reclaim_bgs_lock);
4136 goto error;
4137 }
4138
4139 /*
4140 * this shouldn't happen, it means the last relocate
4141 * failed
4142 */
4143 if (ret == 0)
4144 BUG(); /* FIXME break ? */
4145
4146 ret = btrfs_previous_item(chunk_root, path, 0,
4147 BTRFS_CHUNK_ITEM_KEY);
4148 if (ret) {
4149 mutex_unlock(&fs_info->reclaim_bgs_lock);
4150 ret = 0;
4151 break;
4152 }
4153
4154 leaf = path->nodes[0];
4155 slot = path->slots[0];
4156 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4157
4158 if (found_key.objectid != key.objectid) {
4159 mutex_unlock(&fs_info->reclaim_bgs_lock);
4160 break;
4161 }
4162
4163 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4164 chunk_type = btrfs_chunk_type(leaf, chunk);
4165
4166 if (!counting) {
4167 spin_lock(&fs_info->balance_lock);
4168 bctl->stat.considered++;
4169 spin_unlock(&fs_info->balance_lock);
4170 }
4171
4172 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4173
4174 btrfs_release_path(path);
4175 if (!ret) {
4176 mutex_unlock(&fs_info->reclaim_bgs_lock);
4177 goto loop;
4178 }
4179
4180 if (counting) {
4181 mutex_unlock(&fs_info->reclaim_bgs_lock);
4182 spin_lock(&fs_info->balance_lock);
4183 bctl->stat.expected++;
4184 spin_unlock(&fs_info->balance_lock);
4185
4186 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4187 count_data++;
4188 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4189 count_sys++;
4190 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4191 count_meta++;
4192
4193 goto loop;
4194 }
4195
4196 /*
4197 * Apply limit_min filter, no need to check if the LIMITS
4198 * filter is used, limit_min is 0 by default
4199 */
4200 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4201 count_data < bctl->data.limit_min)
4202 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4203 count_meta < bctl->meta.limit_min)
4204 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4205 count_sys < bctl->sys.limit_min)) {
4206 mutex_unlock(&fs_info->reclaim_bgs_lock);
4207 goto loop;
4208 }
4209
4210 if (!chunk_reserved) {
4211 /*
4212 * We may be relocating the only data chunk we have,
4213 * which could potentially end up with losing data's
4214 * raid profile, so lets allocate an empty one in
4215 * advance.
4216 */
4217 ret = btrfs_may_alloc_data_chunk(fs_info,
4218 found_key.offset);
4219 if (ret < 0) {
4220 mutex_unlock(&fs_info->reclaim_bgs_lock);
4221 goto error;
4222 } else if (ret == 1) {
4223 chunk_reserved = 1;
4224 }
4225 }
4226
4227 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true);
4228 mutex_unlock(&fs_info->reclaim_bgs_lock);
4229 if (ret == -ENOSPC) {
4230 enospc_errors++;
4231 } else if (ret == -ETXTBSY) {
4232 btrfs_info(fs_info,
4233 "skipping relocation of block group %llu due to active swapfile",
4234 found_key.offset);
4235 ret = 0;
4236 } else if (ret) {
4237 goto error;
4238 } else {
4239 spin_lock(&fs_info->balance_lock);
4240 bctl->stat.completed++;
4241 spin_unlock(&fs_info->balance_lock);
4242 }
4243 loop:
4244 if (found_key.offset == 0)
4245 break;
4246 key.offset = found_key.offset - 1;
4247 }
4248
4249 if (counting) {
4250 btrfs_release_path(path);
4251 counting = false;
4252 goto again;
4253 }
4254 error:
4255 btrfs_free_path(path);
4256 if (enospc_errors) {
4257 btrfs_info(fs_info, "%d enospc errors during balance",
4258 enospc_errors);
4259 if (!ret)
4260 ret = -ENOSPC;
4261 }
4262
4263 return ret;
4264 }
4265
4266 /*
4267 * See if a given profile is valid and reduced.
4268 *
4269 * @flags: profile to validate
4270 * @extended: if true @flags is treated as an extended profile
4271 */
alloc_profile_is_valid(u64 flags,int extended)4272 static int alloc_profile_is_valid(u64 flags, int extended)
4273 {
4274 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4275 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4276
4277 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4278
4279 /* 1) check that all other bits are zeroed */
4280 if (flags & ~mask)
4281 return 0;
4282
4283 /* 2) see if profile is reduced */
4284 if (flags == 0)
4285 return !extended; /* "0" is valid for usual profiles */
4286
4287 return has_single_bit_set(flags);
4288 }
4289
4290 /*
4291 * Validate target profile against allowed profiles and return true if it's OK.
4292 * Otherwise print the error message and return false.
4293 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4294 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4295 const struct btrfs_balance_args *bargs,
4296 u64 allowed, const char *type)
4297 {
4298 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4299 return true;
4300
4301 /* Profile is valid and does not have bits outside of the allowed set */
4302 if (alloc_profile_is_valid(bargs->target, 1) &&
4303 (bargs->target & ~allowed) == 0)
4304 return true;
4305
4306 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4307 type, btrfs_bg_type_to_raid_name(bargs->target));
4308 return false;
4309 }
4310
4311 /*
4312 * Fill @buf with textual description of balance filter flags @bargs, up to
4313 * @size_buf including the terminating null. The output may be trimmed if it
4314 * does not fit into the provided buffer.
4315 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4316 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4317 u32 size_buf)
4318 {
4319 int ret;
4320 u32 size_bp = size_buf;
4321 char *bp = buf;
4322 u64 flags = bargs->flags;
4323 char tmp_buf[128] = {'\0'};
4324
4325 if (!flags)
4326 return;
4327
4328 #define CHECK_APPEND_NOARG(a) \
4329 do { \
4330 ret = snprintf(bp, size_bp, (a)); \
4331 if (ret < 0 || ret >= size_bp) \
4332 goto out_overflow; \
4333 size_bp -= ret; \
4334 bp += ret; \
4335 } while (0)
4336
4337 #define CHECK_APPEND_1ARG(a, v1) \
4338 do { \
4339 ret = snprintf(bp, size_bp, (a), (v1)); \
4340 if (ret < 0 || ret >= size_bp) \
4341 goto out_overflow; \
4342 size_bp -= ret; \
4343 bp += ret; \
4344 } while (0)
4345
4346 #define CHECK_APPEND_2ARG(a, v1, v2) \
4347 do { \
4348 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4349 if (ret < 0 || ret >= size_bp) \
4350 goto out_overflow; \
4351 size_bp -= ret; \
4352 bp += ret; \
4353 } while (0)
4354
4355 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4356 CHECK_APPEND_1ARG("convert=%s,",
4357 btrfs_bg_type_to_raid_name(bargs->target));
4358
4359 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4360 CHECK_APPEND_NOARG("soft,");
4361
4362 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4363 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4364 sizeof(tmp_buf));
4365 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4366 }
4367
4368 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4369 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4370
4371 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4372 CHECK_APPEND_2ARG("usage=%u..%u,",
4373 bargs->usage_min, bargs->usage_max);
4374
4375 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4376 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4377
4378 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4379 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4380 bargs->pstart, bargs->pend);
4381
4382 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4383 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4384 bargs->vstart, bargs->vend);
4385
4386 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4387 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4388
4389 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4390 CHECK_APPEND_2ARG("limit=%u..%u,",
4391 bargs->limit_min, bargs->limit_max);
4392
4393 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4394 CHECK_APPEND_2ARG("stripes=%u..%u,",
4395 bargs->stripes_min, bargs->stripes_max);
4396
4397 #undef CHECK_APPEND_2ARG
4398 #undef CHECK_APPEND_1ARG
4399 #undef CHECK_APPEND_NOARG
4400
4401 out_overflow:
4402
4403 if (size_bp < size_buf)
4404 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4405 else
4406 buf[0] = '\0';
4407 }
4408
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4409 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4410 {
4411 u32 size_buf = 1024;
4412 char tmp_buf[192] = {'\0'};
4413 char *buf;
4414 char *bp;
4415 u32 size_bp = size_buf;
4416 int ret;
4417 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4418
4419 buf = kzalloc(size_buf, GFP_KERNEL);
4420 if (!buf)
4421 return;
4422
4423 bp = buf;
4424
4425 #define CHECK_APPEND_1ARG(a, v1) \
4426 do { \
4427 ret = snprintf(bp, size_bp, (a), (v1)); \
4428 if (ret < 0 || ret >= size_bp) \
4429 goto out_overflow; \
4430 size_bp -= ret; \
4431 bp += ret; \
4432 } while (0)
4433
4434 if (bctl->flags & BTRFS_BALANCE_FORCE)
4435 CHECK_APPEND_1ARG("%s", "-f ");
4436
4437 if (bctl->flags & BTRFS_BALANCE_DATA) {
4438 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4439 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4440 }
4441
4442 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4443 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4444 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4445 }
4446
4447 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4448 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4449 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4450 }
4451
4452 #undef CHECK_APPEND_1ARG
4453
4454 out_overflow:
4455
4456 if (size_bp < size_buf)
4457 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4458 btrfs_info(fs_info, "balance: %s %s",
4459 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4460 "resume" : "start", buf);
4461
4462 kfree(buf);
4463 }
4464
4465 /*
4466 * Should be called with balance mutexe held
4467 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4468 int btrfs_balance(struct btrfs_fs_info *fs_info,
4469 struct btrfs_balance_control *bctl,
4470 struct btrfs_ioctl_balance_args *bargs)
4471 {
4472 u64 meta_target, data_target;
4473 u64 allowed;
4474 int mixed = 0;
4475 int ret;
4476 u64 num_devices;
4477 unsigned seq;
4478 bool reducing_redundancy;
4479 bool paused = false;
4480 int i;
4481
4482 if (btrfs_fs_closing(fs_info) ||
4483 atomic_read(&fs_info->balance_pause_req) ||
4484 btrfs_should_cancel_balance(fs_info)) {
4485 ret = -EINVAL;
4486 goto out;
4487 }
4488
4489 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4490 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4491 mixed = 1;
4492
4493 /*
4494 * In case of mixed groups both data and meta should be picked,
4495 * and identical options should be given for both of them.
4496 */
4497 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4498 if (mixed && (bctl->flags & allowed)) {
4499 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4500 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4501 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4502 btrfs_err(fs_info,
4503 "balance: mixed groups data and metadata options must be the same");
4504 ret = -EINVAL;
4505 goto out;
4506 }
4507 }
4508
4509 /*
4510 * rw_devices will not change at the moment, device add/delete/replace
4511 * are exclusive
4512 */
4513 num_devices = fs_info->fs_devices->rw_devices;
4514
4515 /*
4516 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4517 * special bit for it, to make it easier to distinguish. Thus we need
4518 * to set it manually, or balance would refuse the profile.
4519 */
4520 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4521 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4522 if (num_devices >= btrfs_raid_array[i].devs_min)
4523 allowed |= btrfs_raid_array[i].bg_flag;
4524
4525 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4526 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4527 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4528 ret = -EINVAL;
4529 goto out;
4530 }
4531
4532 /*
4533 * Allow to reduce metadata or system integrity only if force set for
4534 * profiles with redundancy (copies, parity)
4535 */
4536 allowed = 0;
4537 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4538 if (btrfs_raid_array[i].ncopies >= 2 ||
4539 btrfs_raid_array[i].tolerated_failures >= 1)
4540 allowed |= btrfs_raid_array[i].bg_flag;
4541 }
4542 do {
4543 seq = read_seqbegin(&fs_info->profiles_lock);
4544
4545 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4546 (fs_info->avail_system_alloc_bits & allowed) &&
4547 !(bctl->sys.target & allowed)) ||
4548 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4549 (fs_info->avail_metadata_alloc_bits & allowed) &&
4550 !(bctl->meta.target & allowed)))
4551 reducing_redundancy = true;
4552 else
4553 reducing_redundancy = false;
4554
4555 /* if we're not converting, the target field is uninitialized */
4556 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4557 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4558 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4559 bctl->data.target : fs_info->avail_data_alloc_bits;
4560 } while (read_seqretry(&fs_info->profiles_lock, seq));
4561
4562 if (reducing_redundancy) {
4563 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4564 btrfs_info(fs_info,
4565 "balance: force reducing metadata redundancy");
4566 } else {
4567 btrfs_err(fs_info,
4568 "balance: reduces metadata redundancy, use --force if you want this");
4569 ret = -EINVAL;
4570 goto out;
4571 }
4572 }
4573
4574 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4575 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4576 btrfs_warn(fs_info,
4577 "balance: metadata profile %s has lower redundancy than data profile %s",
4578 btrfs_bg_type_to_raid_name(meta_target),
4579 btrfs_bg_type_to_raid_name(data_target));
4580 }
4581
4582 ret = insert_balance_item(fs_info, bctl);
4583 if (ret && ret != -EEXIST)
4584 goto out;
4585
4586 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4587 BUG_ON(ret == -EEXIST);
4588 BUG_ON(fs_info->balance_ctl);
4589 spin_lock(&fs_info->balance_lock);
4590 fs_info->balance_ctl = bctl;
4591 spin_unlock(&fs_info->balance_lock);
4592 } else {
4593 BUG_ON(ret != -EEXIST);
4594 spin_lock(&fs_info->balance_lock);
4595 update_balance_args(bctl);
4596 spin_unlock(&fs_info->balance_lock);
4597 }
4598
4599 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4600 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4601 describe_balance_start_or_resume(fs_info);
4602 mutex_unlock(&fs_info->balance_mutex);
4603
4604 ret = __btrfs_balance(fs_info);
4605
4606 mutex_lock(&fs_info->balance_mutex);
4607 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4608 btrfs_info(fs_info, "balance: paused");
4609 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4610 paused = true;
4611 }
4612 /*
4613 * Balance can be canceled by:
4614 *
4615 * - Regular cancel request
4616 * Then ret == -ECANCELED and balance_cancel_req > 0
4617 *
4618 * - Fatal signal to "btrfs" process
4619 * Either the signal caught by wait_reserve_ticket() and callers
4620 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4621 * got -ECANCELED.
4622 * Either way, in this case balance_cancel_req = 0, and
4623 * ret == -EINTR or ret == -ECANCELED.
4624 *
4625 * So here we only check the return value to catch canceled balance.
4626 */
4627 else if (ret == -ECANCELED || ret == -EINTR)
4628 btrfs_info(fs_info, "balance: canceled");
4629 else
4630 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4631
4632 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4633
4634 if (bargs) {
4635 memset(bargs, 0, sizeof(*bargs));
4636 btrfs_update_ioctl_balance_args(fs_info, bargs);
4637 }
4638
4639 /* We didn't pause, we can clean everything up. */
4640 if (!paused) {
4641 reset_balance_state(fs_info);
4642 btrfs_exclop_finish(fs_info);
4643 }
4644
4645 wake_up(&fs_info->balance_wait_q);
4646
4647 return ret;
4648 out:
4649 if (bctl->flags & BTRFS_BALANCE_RESUME)
4650 reset_balance_state(fs_info);
4651 else
4652 kfree(bctl);
4653 btrfs_exclop_finish(fs_info);
4654
4655 return ret;
4656 }
4657
balance_kthread(void * data)4658 static int balance_kthread(void *data)
4659 {
4660 struct btrfs_fs_info *fs_info = data;
4661 int ret = 0;
4662
4663 sb_start_write(fs_info->sb);
4664 mutex_lock(&fs_info->balance_mutex);
4665 if (fs_info->balance_ctl)
4666 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4667 mutex_unlock(&fs_info->balance_mutex);
4668 sb_end_write(fs_info->sb);
4669
4670 return ret;
4671 }
4672
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4673 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4674 {
4675 struct task_struct *tsk;
4676
4677 mutex_lock(&fs_info->balance_mutex);
4678 if (!fs_info->balance_ctl) {
4679 mutex_unlock(&fs_info->balance_mutex);
4680 return 0;
4681 }
4682 mutex_unlock(&fs_info->balance_mutex);
4683
4684 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4685 btrfs_info(fs_info, "balance: resume skipped");
4686 return 0;
4687 }
4688
4689 spin_lock(&fs_info->super_lock);
4690 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED,
4691 "exclusive_operation=%d", fs_info->exclusive_operation);
4692 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4693 spin_unlock(&fs_info->super_lock);
4694 /*
4695 * A ro->rw remount sequence should continue with the paused balance
4696 * regardless of who pauses it, system or the user as of now, so set
4697 * the resume flag.
4698 */
4699 spin_lock(&fs_info->balance_lock);
4700 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4701 spin_unlock(&fs_info->balance_lock);
4702
4703 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4704 return PTR_ERR_OR_ZERO(tsk);
4705 }
4706
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4707 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4708 {
4709 struct btrfs_balance_control *bctl;
4710 struct btrfs_balance_item *item;
4711 struct btrfs_disk_balance_args disk_bargs;
4712 struct btrfs_path *path;
4713 struct extent_buffer *leaf;
4714 struct btrfs_key key;
4715 int ret;
4716
4717 path = btrfs_alloc_path();
4718 if (!path)
4719 return -ENOMEM;
4720
4721 key.objectid = BTRFS_BALANCE_OBJECTID;
4722 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4723 key.offset = 0;
4724
4725 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4726 if (ret < 0)
4727 goto out;
4728 if (ret > 0) { /* ret = -ENOENT; */
4729 ret = 0;
4730 goto out;
4731 }
4732
4733 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4734 if (!bctl) {
4735 ret = -ENOMEM;
4736 goto out;
4737 }
4738
4739 leaf = path->nodes[0];
4740 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4741
4742 bctl->flags = btrfs_balance_flags(leaf, item);
4743 bctl->flags |= BTRFS_BALANCE_RESUME;
4744
4745 btrfs_balance_data(leaf, item, &disk_bargs);
4746 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4747 btrfs_balance_meta(leaf, item, &disk_bargs);
4748 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4749 btrfs_balance_sys(leaf, item, &disk_bargs);
4750 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4751
4752 /*
4753 * This should never happen, as the paused balance state is recovered
4754 * during mount without any chance of other exclusive ops to collide.
4755 *
4756 * This gives the exclusive op status to balance and keeps in paused
4757 * state until user intervention (cancel or umount). If the ownership
4758 * cannot be assigned, show a message but do not fail. The balance
4759 * is in a paused state and must have fs_info::balance_ctl properly
4760 * set up.
4761 */
4762 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4763 btrfs_warn(fs_info,
4764 "balance: cannot set exclusive op status, resume manually");
4765
4766 btrfs_release_path(path);
4767
4768 mutex_lock(&fs_info->balance_mutex);
4769 BUG_ON(fs_info->balance_ctl);
4770 spin_lock(&fs_info->balance_lock);
4771 fs_info->balance_ctl = bctl;
4772 spin_unlock(&fs_info->balance_lock);
4773 mutex_unlock(&fs_info->balance_mutex);
4774 out:
4775 btrfs_free_path(path);
4776 return ret;
4777 }
4778
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4779 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4780 {
4781 int ret = 0;
4782
4783 mutex_lock(&fs_info->balance_mutex);
4784 if (!fs_info->balance_ctl) {
4785 mutex_unlock(&fs_info->balance_mutex);
4786 return -ENOTCONN;
4787 }
4788
4789 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4790 atomic_inc(&fs_info->balance_pause_req);
4791 mutex_unlock(&fs_info->balance_mutex);
4792
4793 wait_event(fs_info->balance_wait_q,
4794 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4795
4796 mutex_lock(&fs_info->balance_mutex);
4797 /* we are good with balance_ctl ripped off from under us */
4798 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4799 atomic_dec(&fs_info->balance_pause_req);
4800 } else {
4801 ret = -ENOTCONN;
4802 }
4803
4804 mutex_unlock(&fs_info->balance_mutex);
4805 return ret;
4806 }
4807
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4808 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4809 {
4810 mutex_lock(&fs_info->balance_mutex);
4811 if (!fs_info->balance_ctl) {
4812 mutex_unlock(&fs_info->balance_mutex);
4813 return -ENOTCONN;
4814 }
4815
4816 /*
4817 * A paused balance with the item stored on disk can be resumed at
4818 * mount time if the mount is read-write. Otherwise it's still paused
4819 * and we must not allow cancelling as it deletes the item.
4820 */
4821 if (sb_rdonly(fs_info->sb)) {
4822 mutex_unlock(&fs_info->balance_mutex);
4823 return -EROFS;
4824 }
4825
4826 atomic_inc(&fs_info->balance_cancel_req);
4827 /*
4828 * if we are running just wait and return, balance item is
4829 * deleted in btrfs_balance in this case
4830 */
4831 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4832 mutex_unlock(&fs_info->balance_mutex);
4833 wait_event(fs_info->balance_wait_q,
4834 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4835 mutex_lock(&fs_info->balance_mutex);
4836 } else {
4837 mutex_unlock(&fs_info->balance_mutex);
4838 /*
4839 * Lock released to allow other waiters to continue, we'll
4840 * reexamine the status again.
4841 */
4842 mutex_lock(&fs_info->balance_mutex);
4843
4844 if (fs_info->balance_ctl) {
4845 reset_balance_state(fs_info);
4846 btrfs_exclop_finish(fs_info);
4847 btrfs_info(fs_info, "balance: canceled");
4848 }
4849 }
4850
4851 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4852 atomic_dec(&fs_info->balance_cancel_req);
4853 mutex_unlock(&fs_info->balance_mutex);
4854 return 0;
4855 }
4856
4857 /*
4858 * shrinking a device means finding all of the device extents past
4859 * the new size, and then following the back refs to the chunks.
4860 * The chunk relocation code actually frees the device extent
4861 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4862 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4863 {
4864 struct btrfs_fs_info *fs_info = device->fs_info;
4865 struct btrfs_root *root = fs_info->dev_root;
4866 struct btrfs_trans_handle *trans;
4867 struct btrfs_dev_extent *dev_extent = NULL;
4868 struct btrfs_path *path;
4869 u64 length;
4870 u64 chunk_offset;
4871 int ret;
4872 int slot;
4873 int failed = 0;
4874 bool retried = false;
4875 struct extent_buffer *l;
4876 struct btrfs_key key;
4877 struct btrfs_super_block *super_copy = fs_info->super_copy;
4878 u64 old_total = btrfs_super_total_bytes(super_copy);
4879 u64 old_size = btrfs_device_get_total_bytes(device);
4880 u64 diff;
4881 u64 start;
4882 u64 free_diff = 0;
4883
4884 new_size = round_down(new_size, fs_info->sectorsize);
4885 start = new_size;
4886 diff = round_down(old_size - new_size, fs_info->sectorsize);
4887
4888 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4889 return -EINVAL;
4890
4891 path = btrfs_alloc_path();
4892 if (!path)
4893 return -ENOMEM;
4894
4895 path->reada = READA_BACK;
4896
4897 trans = btrfs_start_transaction(root, 0);
4898 if (IS_ERR(trans)) {
4899 btrfs_free_path(path);
4900 return PTR_ERR(trans);
4901 }
4902
4903 mutex_lock(&fs_info->chunk_mutex);
4904
4905 btrfs_device_set_total_bytes(device, new_size);
4906 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4907 device->fs_devices->total_rw_bytes -= diff;
4908
4909 /*
4910 * The new free_chunk_space is new_size - used, so we have to
4911 * subtract the delta of the old free_chunk_space which included
4912 * old_size - used. If used > new_size then just subtract this
4913 * entire device's free space.
4914 */
4915 if (device->bytes_used < new_size)
4916 free_diff = (old_size - device->bytes_used) -
4917 (new_size - device->bytes_used);
4918 else
4919 free_diff = old_size - device->bytes_used;
4920 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4921 }
4922
4923 /*
4924 * Once the device's size has been set to the new size, ensure all
4925 * in-memory chunks are synced to disk so that the loop below sees them
4926 * and relocates them accordingly.
4927 */
4928 if (contains_pending_extent(device, &start, diff)) {
4929 mutex_unlock(&fs_info->chunk_mutex);
4930 ret = btrfs_commit_transaction(trans);
4931 if (ret)
4932 goto done;
4933 } else {
4934 mutex_unlock(&fs_info->chunk_mutex);
4935 btrfs_end_transaction(trans);
4936 }
4937
4938 again:
4939 key.objectid = device->devid;
4940 key.type = BTRFS_DEV_EXTENT_KEY;
4941 key.offset = (u64)-1;
4942
4943 do {
4944 mutex_lock(&fs_info->reclaim_bgs_lock);
4945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4946 if (ret < 0) {
4947 mutex_unlock(&fs_info->reclaim_bgs_lock);
4948 goto done;
4949 }
4950
4951 ret = btrfs_previous_item(root, path, 0, key.type);
4952 if (ret) {
4953 mutex_unlock(&fs_info->reclaim_bgs_lock);
4954 if (ret < 0)
4955 goto done;
4956 ret = 0;
4957 btrfs_release_path(path);
4958 break;
4959 }
4960
4961 l = path->nodes[0];
4962 slot = path->slots[0];
4963 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4964
4965 if (key.objectid != device->devid) {
4966 mutex_unlock(&fs_info->reclaim_bgs_lock);
4967 btrfs_release_path(path);
4968 break;
4969 }
4970
4971 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4972 length = btrfs_dev_extent_length(l, dev_extent);
4973
4974 if (key.offset + length <= new_size) {
4975 mutex_unlock(&fs_info->reclaim_bgs_lock);
4976 btrfs_release_path(path);
4977 break;
4978 }
4979
4980 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4981 btrfs_release_path(path);
4982
4983 /*
4984 * We may be relocating the only data chunk we have,
4985 * which could potentially end up with losing data's
4986 * raid profile, so lets allocate an empty one in
4987 * advance.
4988 */
4989 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4990 if (ret < 0) {
4991 mutex_unlock(&fs_info->reclaim_bgs_lock);
4992 goto done;
4993 }
4994
4995 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true);
4996 mutex_unlock(&fs_info->reclaim_bgs_lock);
4997 if (ret == -ENOSPC) {
4998 failed++;
4999 } else if (ret) {
5000 if (ret == -ETXTBSY) {
5001 btrfs_warn(fs_info,
5002 "could not shrink block group %llu due to active swapfile",
5003 chunk_offset);
5004 }
5005 goto done;
5006 }
5007 } while (key.offset-- > 0);
5008
5009 if (failed && !retried) {
5010 failed = 0;
5011 retried = true;
5012 goto again;
5013 } else if (failed && retried) {
5014 ret = -ENOSPC;
5015 goto done;
5016 }
5017
5018 /* Shrinking succeeded, else we would be at "done". */
5019 trans = btrfs_start_transaction(root, 0);
5020 if (IS_ERR(trans)) {
5021 ret = PTR_ERR(trans);
5022 goto done;
5023 }
5024
5025 mutex_lock(&fs_info->chunk_mutex);
5026 /* Clear all state bits beyond the shrunk device size */
5027 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1,
5028 CHUNK_STATE_MASK, NULL);
5029
5030 btrfs_device_set_disk_total_bytes(device, new_size);
5031 if (list_empty(&device->post_commit_list))
5032 list_add_tail(&device->post_commit_list,
5033 &trans->transaction->dev_update_list);
5034
5035 WARN_ON(diff > old_total);
5036 btrfs_set_super_total_bytes(super_copy,
5037 round_down(old_total - diff, fs_info->sectorsize));
5038 mutex_unlock(&fs_info->chunk_mutex);
5039
5040 btrfs_reserve_chunk_metadata(trans, false);
5041 /* Now btrfs_update_device() will change the on-disk size. */
5042 ret = btrfs_update_device(trans, device);
5043 btrfs_trans_release_chunk_metadata(trans);
5044 if (ret < 0) {
5045 btrfs_abort_transaction(trans, ret);
5046 btrfs_end_transaction(trans);
5047 } else {
5048 ret = btrfs_commit_transaction(trans);
5049 }
5050 done:
5051 btrfs_free_path(path);
5052 if (ret) {
5053 mutex_lock(&fs_info->chunk_mutex);
5054 btrfs_device_set_total_bytes(device, old_size);
5055 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5056 device->fs_devices->total_rw_bytes += diff;
5057 atomic64_add(free_diff, &fs_info->free_chunk_space);
5058 }
5059 mutex_unlock(&fs_info->chunk_mutex);
5060 }
5061 return ret;
5062 }
5063
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5064 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5065 struct btrfs_key *key,
5066 struct btrfs_chunk *chunk, int item_size)
5067 {
5068 struct btrfs_super_block *super_copy = fs_info->super_copy;
5069 struct btrfs_disk_key disk_key;
5070 u32 array_size;
5071 u8 *ptr;
5072
5073 lockdep_assert_held(&fs_info->chunk_mutex);
5074
5075 array_size = btrfs_super_sys_array_size(super_copy);
5076 if (array_size + item_size + sizeof(disk_key)
5077 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5078 return -EFBIG;
5079
5080 ptr = super_copy->sys_chunk_array + array_size;
5081 btrfs_cpu_key_to_disk(&disk_key, key);
5082 memcpy(ptr, &disk_key, sizeof(disk_key));
5083 ptr += sizeof(disk_key);
5084 memcpy(ptr, chunk, item_size);
5085 item_size += sizeof(disk_key);
5086 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5087
5088 return 0;
5089 }
5090
5091 /*
5092 * sort the devices in descending order by max_avail, total_avail
5093 */
btrfs_cmp_device_info(const void * a,const void * b)5094 static int btrfs_cmp_device_info(const void *a, const void *b)
5095 {
5096 const struct btrfs_device_info *di_a = a;
5097 const struct btrfs_device_info *di_b = b;
5098
5099 if (di_a->max_avail > di_b->max_avail)
5100 return -1;
5101 if (di_a->max_avail < di_b->max_avail)
5102 return 1;
5103 if (di_a->total_avail > di_b->total_avail)
5104 return -1;
5105 if (di_a->total_avail < di_b->total_avail)
5106 return 1;
5107 return 0;
5108 }
5109
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5110 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5111 {
5112 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5113 return;
5114
5115 btrfs_set_fs_incompat(info, RAID56);
5116 }
5117
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5118 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5119 {
5120 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5121 return;
5122
5123 btrfs_set_fs_incompat(info, RAID1C34);
5124 }
5125
5126 /*
5127 * Structure used internally for btrfs_create_chunk() function.
5128 * Wraps needed parameters.
5129 */
5130 struct alloc_chunk_ctl {
5131 u64 start;
5132 u64 type;
5133 /* Total number of stripes to allocate */
5134 int num_stripes;
5135 /* sub_stripes info for map */
5136 int sub_stripes;
5137 /* Stripes per device */
5138 int dev_stripes;
5139 /* Maximum number of devices to use */
5140 int devs_max;
5141 /* Minimum number of devices to use */
5142 int devs_min;
5143 /* ndevs has to be a multiple of this */
5144 int devs_increment;
5145 /* Number of copies */
5146 int ncopies;
5147 /* Number of stripes worth of bytes to store parity information */
5148 int nparity;
5149 u64 max_stripe_size;
5150 u64 max_chunk_size;
5151 u64 dev_extent_min;
5152 u64 stripe_size;
5153 u64 chunk_size;
5154 int ndevs;
5155 /* Space_info the block group is going to belong. */
5156 struct btrfs_space_info *space_info;
5157 };
5158
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5159 static void init_alloc_chunk_ctl_policy_regular(
5160 struct btrfs_fs_devices *fs_devices,
5161 struct alloc_chunk_ctl *ctl)
5162 {
5163 struct btrfs_space_info *space_info;
5164
5165 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5166 ASSERT(space_info);
5167
5168 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5169 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5170
5171 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5172 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5173
5174 /* We don't want a chunk larger than 10% of writable space */
5175 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5176 ctl->max_chunk_size);
5177 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5178 }
5179
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5180 static void init_alloc_chunk_ctl_policy_zoned(
5181 struct btrfs_fs_devices *fs_devices,
5182 struct alloc_chunk_ctl *ctl)
5183 {
5184 u64 zone_size = fs_devices->fs_info->zone_size;
5185 u64 limit;
5186 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5187 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5188 u64 min_chunk_size = min_data_stripes * zone_size;
5189 u64 type = ctl->type;
5190
5191 ctl->max_stripe_size = zone_size;
5192 if (type & BTRFS_BLOCK_GROUP_DATA) {
5193 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5194 zone_size);
5195 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5196 ctl->max_chunk_size = ctl->max_stripe_size;
5197 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5198 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5199 ctl->devs_max = min_t(int, ctl->devs_max,
5200 BTRFS_MAX_DEVS_SYS_CHUNK);
5201 } else {
5202 BUG();
5203 }
5204
5205 /* We don't want a chunk larger than 10% of writable space */
5206 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5207 zone_size),
5208 min_chunk_size);
5209 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5210 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5211 }
5212
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5213 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5214 struct alloc_chunk_ctl *ctl)
5215 {
5216 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5217
5218 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5219 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5220 ctl->devs_max = btrfs_raid_array[index].devs_max;
5221 if (!ctl->devs_max)
5222 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5223 ctl->devs_min = btrfs_raid_array[index].devs_min;
5224 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5225 ctl->ncopies = btrfs_raid_array[index].ncopies;
5226 ctl->nparity = btrfs_raid_array[index].nparity;
5227 ctl->ndevs = 0;
5228
5229 switch (fs_devices->chunk_alloc_policy) {
5230 default:
5231 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5232 fallthrough;
5233 case BTRFS_CHUNK_ALLOC_REGULAR:
5234 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5235 break;
5236 case BTRFS_CHUNK_ALLOC_ZONED:
5237 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5238 break;
5239 }
5240 }
5241
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5242 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5243 struct alloc_chunk_ctl *ctl,
5244 struct btrfs_device_info *devices_info)
5245 {
5246 struct btrfs_fs_info *info = fs_devices->fs_info;
5247 struct btrfs_device *device;
5248 u64 total_avail;
5249 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5250 int ret;
5251 int ndevs = 0;
5252 u64 max_avail;
5253 u64 dev_offset;
5254
5255 /*
5256 * in the first pass through the devices list, we gather information
5257 * about the available holes on each device.
5258 */
5259 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5260 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5261 WARN(1, KERN_ERR
5262 "BTRFS: read-only device in alloc_list\n");
5263 continue;
5264 }
5265
5266 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5267 &device->dev_state) ||
5268 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5269 continue;
5270
5271 if (device->total_bytes > device->bytes_used)
5272 total_avail = device->total_bytes - device->bytes_used;
5273 else
5274 total_avail = 0;
5275
5276 /* If there is no space on this device, skip it. */
5277 if (total_avail < ctl->dev_extent_min)
5278 continue;
5279
5280 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5281 &max_avail);
5282 if (ret && ret != -ENOSPC)
5283 return ret;
5284
5285 if (ret == 0)
5286 max_avail = dev_extent_want;
5287
5288 if (max_avail < ctl->dev_extent_min) {
5289 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5290 btrfs_debug(info,
5291 "%s: devid %llu has no free space, have=%llu want=%llu",
5292 __func__, device->devid, max_avail,
5293 ctl->dev_extent_min);
5294 continue;
5295 }
5296
5297 if (ndevs == fs_devices->rw_devices) {
5298 WARN(1, "%s: found more than %llu devices\n",
5299 __func__, fs_devices->rw_devices);
5300 break;
5301 }
5302 devices_info[ndevs].dev_offset = dev_offset;
5303 devices_info[ndevs].max_avail = max_avail;
5304 devices_info[ndevs].total_avail = total_avail;
5305 devices_info[ndevs].dev = device;
5306 ++ndevs;
5307 }
5308 ctl->ndevs = ndevs;
5309
5310 /*
5311 * now sort the devices by hole size / available space
5312 */
5313 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5314 btrfs_cmp_device_info, NULL);
5315
5316 return 0;
5317 }
5318
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5319 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5320 struct btrfs_device_info *devices_info)
5321 {
5322 /* Number of stripes that count for block group size */
5323 int data_stripes;
5324
5325 /*
5326 * The primary goal is to maximize the number of stripes, so use as
5327 * many devices as possible, even if the stripes are not maximum sized.
5328 *
5329 * The DUP profile stores more than one stripe per device, the
5330 * max_avail is the total size so we have to adjust.
5331 */
5332 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5333 ctl->dev_stripes);
5334 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5335
5336 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5337 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5338
5339 /*
5340 * Use the number of data stripes to figure out how big this chunk is
5341 * really going to be in terms of logical address space, and compare
5342 * that answer with the max chunk size. If it's higher, we try to
5343 * reduce stripe_size.
5344 */
5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5346 /*
5347 * Reduce stripe_size, round it up to a 16MB boundary again and
5348 * then use it, unless it ends up being even bigger than the
5349 * previous value we had already.
5350 */
5351 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5352 data_stripes), SZ_16M),
5353 ctl->stripe_size);
5354 }
5355
5356 /* Stripe size should not go beyond 1G. */
5357 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5358
5359 /* Align to BTRFS_STRIPE_LEN */
5360 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5361 ctl->chunk_size = ctl->stripe_size * data_stripes;
5362
5363 return 0;
5364 }
5365
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5366 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5367 struct btrfs_device_info *devices_info)
5368 {
5369 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5370 /* Number of stripes that count for block group size */
5371 int data_stripes;
5372
5373 /*
5374 * It should hold because:
5375 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5376 */
5377 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min,
5378 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs,
5379 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min);
5380
5381 ctl->stripe_size = zone_size;
5382 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5383 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5384
5385 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5386 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5387 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5388 ctl->stripe_size) + ctl->nparity,
5389 ctl->dev_stripes);
5390 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5391 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5392 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size,
5393 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu",
5394 ctl->stripe_size, data_stripes, ctl->max_chunk_size);
5395 }
5396
5397 ctl->chunk_size = ctl->stripe_size * data_stripes;
5398
5399 return 0;
5400 }
5401
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5402 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5403 struct alloc_chunk_ctl *ctl,
5404 struct btrfs_device_info *devices_info)
5405 {
5406 struct btrfs_fs_info *info = fs_devices->fs_info;
5407
5408 /*
5409 * Round down to number of usable stripes, devs_increment can be any
5410 * number so we can't use round_down() that requires power of 2, while
5411 * rounddown is safe.
5412 */
5413 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5414
5415 if (ctl->ndevs < ctl->devs_min) {
5416 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5417 btrfs_debug(info,
5418 "%s: not enough devices with free space: have=%d minimum required=%d",
5419 __func__, ctl->ndevs, ctl->devs_min);
5420 }
5421 return -ENOSPC;
5422 }
5423
5424 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5425
5426 switch (fs_devices->chunk_alloc_policy) {
5427 default:
5428 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5429 fallthrough;
5430 case BTRFS_CHUNK_ALLOC_REGULAR:
5431 return decide_stripe_size_regular(ctl, devices_info);
5432 case BTRFS_CHUNK_ALLOC_ZONED:
5433 return decide_stripe_size_zoned(ctl, devices_info);
5434 }
5435 }
5436
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5437 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5438 {
5439 for (int i = 0; i < map->num_stripes; i++) {
5440 struct btrfs_io_stripe *stripe = &map->stripes[i];
5441 struct btrfs_device *device = stripe->dev;
5442
5443 btrfs_set_extent_bit(&device->alloc_state, stripe->physical,
5444 stripe->physical + map->stripe_size - 1,
5445 bits | EXTENT_NOWAIT, NULL);
5446 }
5447 }
5448
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5449 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5450 {
5451 for (int i = 0; i < map->num_stripes; i++) {
5452 struct btrfs_io_stripe *stripe = &map->stripes[i];
5453 struct btrfs_device *device = stripe->dev;
5454
5455 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical,
5456 stripe->physical + map->stripe_size - 1,
5457 bits | EXTENT_NOWAIT, NULL);
5458 }
5459 }
5460
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5461 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5462 {
5463 write_lock(&fs_info->mapping_tree_lock);
5464 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5465 RB_CLEAR_NODE(&map->rb_node);
5466 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5467 write_unlock(&fs_info->mapping_tree_lock);
5468
5469 /* Once for the tree reference. */
5470 btrfs_free_chunk_map(map);
5471 }
5472
btrfs_chunk_map_cmp(const struct rb_node * new,const struct rb_node * exist)5473 static int btrfs_chunk_map_cmp(const struct rb_node *new,
5474 const struct rb_node *exist)
5475 {
5476 const struct btrfs_chunk_map *new_map =
5477 rb_entry(new, struct btrfs_chunk_map, rb_node);
5478 const struct btrfs_chunk_map *exist_map =
5479 rb_entry(exist, struct btrfs_chunk_map, rb_node);
5480
5481 if (new_map->start == exist_map->start)
5482 return 0;
5483 if (new_map->start < exist_map->start)
5484 return -1;
5485 return 1;
5486 }
5487
5488 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5489 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5490 {
5491 struct rb_node *exist;
5492
5493 write_lock(&fs_info->mapping_tree_lock);
5494 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree,
5495 btrfs_chunk_map_cmp);
5496
5497 if (exist) {
5498 write_unlock(&fs_info->mapping_tree_lock);
5499 return -EEXIST;
5500 }
5501 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5502 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5503 write_unlock(&fs_info->mapping_tree_lock);
5504
5505 return 0;
5506 }
5507
5508 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5509 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5510 {
5511 struct btrfs_chunk_map *map;
5512
5513 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5514 if (!map)
5515 return NULL;
5516
5517 refcount_set(&map->refs, 1);
5518 RB_CLEAR_NODE(&map->rb_node);
5519
5520 return map;
5521 }
5522
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5523 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5524 struct alloc_chunk_ctl *ctl,
5525 struct btrfs_device_info *devices_info)
5526 {
5527 struct btrfs_fs_info *info = trans->fs_info;
5528 struct btrfs_chunk_map *map;
5529 struct btrfs_block_group *block_group;
5530 u64 start = ctl->start;
5531 u64 type = ctl->type;
5532 int ret;
5533
5534 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5535 if (!map)
5536 return ERR_PTR(-ENOMEM);
5537
5538 map->start = start;
5539 map->chunk_len = ctl->chunk_size;
5540 map->stripe_size = ctl->stripe_size;
5541 map->type = type;
5542 map->io_align = BTRFS_STRIPE_LEN;
5543 map->io_width = BTRFS_STRIPE_LEN;
5544 map->sub_stripes = ctl->sub_stripes;
5545 map->num_stripes = ctl->num_stripes;
5546
5547 for (int i = 0; i < ctl->ndevs; i++) {
5548 for (int j = 0; j < ctl->dev_stripes; j++) {
5549 int s = i * ctl->dev_stripes + j;
5550 map->stripes[s].dev = devices_info[i].dev;
5551 map->stripes[s].physical = devices_info[i].dev_offset +
5552 j * ctl->stripe_size;
5553 }
5554 }
5555
5556 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5557
5558 ret = btrfs_add_chunk_map(info, map);
5559 if (ret) {
5560 btrfs_free_chunk_map(map);
5561 return ERR_PTR(ret);
5562 }
5563
5564 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start,
5565 ctl->chunk_size);
5566 if (IS_ERR(block_group)) {
5567 btrfs_remove_chunk_map(info, map);
5568 return block_group;
5569 }
5570
5571 for (int i = 0; i < map->num_stripes; i++) {
5572 struct btrfs_device *dev = map->stripes[i].dev;
5573
5574 btrfs_device_set_bytes_used(dev,
5575 dev->bytes_used + ctl->stripe_size);
5576 if (list_empty(&dev->post_commit_list))
5577 list_add_tail(&dev->post_commit_list,
5578 &trans->transaction->dev_update_list);
5579 }
5580
5581 atomic64_sub(ctl->stripe_size * map->num_stripes,
5582 &info->free_chunk_space);
5583
5584 check_raid56_incompat_flag(info, type);
5585 check_raid1c34_incompat_flag(info, type);
5586
5587 return block_group;
5588 }
5589
btrfs_create_chunk(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type)5590 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5591 struct btrfs_space_info *space_info,
5592 u64 type)
5593 {
5594 struct btrfs_fs_info *info = trans->fs_info;
5595 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5596 struct btrfs_device_info *devices_info = NULL;
5597 struct alloc_chunk_ctl ctl;
5598 struct btrfs_block_group *block_group;
5599 int ret;
5600
5601 lockdep_assert_held(&info->chunk_mutex);
5602
5603 if (!alloc_profile_is_valid(type, 0)) {
5604 DEBUG_WARN("invalid alloc profile for type %llu", type);
5605 return ERR_PTR(-EINVAL);
5606 }
5607
5608 if (list_empty(&fs_devices->alloc_list)) {
5609 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5610 btrfs_debug(info, "%s: no writable device", __func__);
5611 return ERR_PTR(-ENOSPC);
5612 }
5613
5614 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5615 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5616 DEBUG_WARN();
5617 return ERR_PTR(-EINVAL);
5618 }
5619
5620 ctl.start = find_next_chunk(info);
5621 ctl.type = type;
5622 ctl.space_info = space_info;
5623 init_alloc_chunk_ctl(fs_devices, &ctl);
5624
5625 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5626 GFP_NOFS);
5627 if (!devices_info)
5628 return ERR_PTR(-ENOMEM);
5629
5630 ret = gather_device_info(fs_devices, &ctl, devices_info);
5631 if (ret < 0) {
5632 block_group = ERR_PTR(ret);
5633 goto out;
5634 }
5635
5636 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5637 if (ret < 0) {
5638 block_group = ERR_PTR(ret);
5639 goto out;
5640 }
5641
5642 block_group = create_chunk(trans, &ctl, devices_info);
5643
5644 out:
5645 kfree(devices_info);
5646 return block_group;
5647 }
5648
5649 /*
5650 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5651 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5652 * chunks.
5653 *
5654 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5655 * phases.
5656 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5657 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5658 struct btrfs_block_group *bg)
5659 {
5660 struct btrfs_fs_info *fs_info = trans->fs_info;
5661 struct btrfs_root *chunk_root = fs_info->chunk_root;
5662 struct btrfs_key key;
5663 struct btrfs_chunk *chunk;
5664 struct btrfs_stripe *stripe;
5665 struct btrfs_chunk_map *map;
5666 size_t item_size;
5667 int i;
5668 int ret;
5669
5670 /*
5671 * We take the chunk_mutex for 2 reasons:
5672 *
5673 * 1) Updates and insertions in the chunk btree must be done while holding
5674 * the chunk_mutex, as well as updating the system chunk array in the
5675 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5676 * details;
5677 *
5678 * 2) To prevent races with the final phase of a device replace operation
5679 * that replaces the device object associated with the map's stripes,
5680 * because the device object's id can change at any time during that
5681 * final phase of the device replace operation
5682 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5683 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5684 * which would cause a failure when updating the device item, which does
5685 * not exists, or persisting a stripe of the chunk item with such ID.
5686 * Here we can't use the device_list_mutex because our caller already
5687 * has locked the chunk_mutex, and the final phase of device replace
5688 * acquires both mutexes - first the device_list_mutex and then the
5689 * chunk_mutex. Using any of those two mutexes protects us from a
5690 * concurrent device replace.
5691 */
5692 lockdep_assert_held(&fs_info->chunk_mutex);
5693
5694 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5695 if (IS_ERR(map)) {
5696 ret = PTR_ERR(map);
5697 btrfs_abort_transaction(trans, ret);
5698 return ret;
5699 }
5700
5701 item_size = btrfs_chunk_item_size(map->num_stripes);
5702
5703 chunk = kzalloc(item_size, GFP_NOFS);
5704 if (!chunk) {
5705 ret = -ENOMEM;
5706 btrfs_abort_transaction(trans, ret);
5707 goto out;
5708 }
5709
5710 for (i = 0; i < map->num_stripes; i++) {
5711 struct btrfs_device *device = map->stripes[i].dev;
5712
5713 ret = btrfs_update_device(trans, device);
5714 if (ret)
5715 goto out;
5716 }
5717
5718 stripe = &chunk->stripe;
5719 for (i = 0; i < map->num_stripes; i++) {
5720 struct btrfs_device *device = map->stripes[i].dev;
5721 const u64 dev_offset = map->stripes[i].physical;
5722
5723 btrfs_set_stack_stripe_devid(stripe, device->devid);
5724 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5725 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5726 stripe++;
5727 }
5728
5729 btrfs_set_stack_chunk_length(chunk, bg->length);
5730 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5731 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5732 btrfs_set_stack_chunk_type(chunk, map->type);
5733 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5734 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5735 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5736 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5737 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5738
5739 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5740 key.type = BTRFS_CHUNK_ITEM_KEY;
5741 key.offset = bg->start;
5742
5743 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5744 if (ret)
5745 goto out;
5746
5747 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5748
5749 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5750 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5751 if (ret)
5752 goto out;
5753 }
5754
5755 out:
5756 kfree(chunk);
5757 btrfs_free_chunk_map(map);
5758 return ret;
5759 }
5760
init_first_rw_device(struct btrfs_trans_handle * trans)5761 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5762 {
5763 struct btrfs_fs_info *fs_info = trans->fs_info;
5764 u64 alloc_profile;
5765 struct btrfs_block_group *meta_bg;
5766 struct btrfs_space_info *meta_space_info;
5767 struct btrfs_block_group *sys_bg;
5768 struct btrfs_space_info *sys_space_info;
5769
5770 /*
5771 * When adding a new device for sprouting, the seed device is read-only
5772 * so we must first allocate a metadata and a system chunk. But before
5773 * adding the block group items to the extent, device and chunk btrees,
5774 * we must first:
5775 *
5776 * 1) Create both chunks without doing any changes to the btrees, as
5777 * otherwise we would get -ENOSPC since the block groups from the
5778 * seed device are read-only;
5779 *
5780 * 2) Add the device item for the new sprout device - finishing the setup
5781 * of a new block group requires updating the device item in the chunk
5782 * btree, so it must exist when we attempt to do it. The previous step
5783 * ensures this does not fail with -ENOSPC.
5784 *
5785 * After that we can add the block group items to their btrees:
5786 * update existing device item in the chunk btree, add a new block group
5787 * item to the extent btree, add a new chunk item to the chunk btree and
5788 * finally add the new device extent items to the devices btree.
5789 */
5790
5791 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5792 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5793 if (!meta_space_info) {
5794 DEBUG_WARN();
5795 return -EINVAL;
5796 }
5797 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5800
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5803 if (!sys_space_info) {
5804 DEBUG_WARN();
5805 return -EINVAL;
5806 }
5807 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile);
5808 if (IS_ERR(sys_bg))
5809 return PTR_ERR(sys_bg);
5810
5811 return 0;
5812 }
5813
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5814 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5815 {
5816 const int index = btrfs_bg_flags_to_raid_index(map->type);
5817
5818 return btrfs_raid_array[index].tolerated_failures;
5819 }
5820
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5821 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5822 {
5823 struct btrfs_chunk_map *map;
5824 int miss_ndevs = 0;
5825 int i;
5826 bool ret = true;
5827
5828 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5829 if (IS_ERR(map))
5830 return false;
5831
5832 for (i = 0; i < map->num_stripes; i++) {
5833 if (test_bit(BTRFS_DEV_STATE_MISSING,
5834 &map->stripes[i].dev->dev_state)) {
5835 miss_ndevs++;
5836 continue;
5837 }
5838 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5839 &map->stripes[i].dev->dev_state)) {
5840 ret = false;
5841 goto end;
5842 }
5843 }
5844
5845 /*
5846 * If the number of missing devices is larger than max errors, we can
5847 * not write the data into that chunk successfully.
5848 */
5849 if (miss_ndevs > btrfs_chunk_max_errors(map))
5850 ret = false;
5851 end:
5852 btrfs_free_chunk_map(map);
5853 return ret;
5854 }
5855
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5856 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5857 {
5858 write_lock(&fs_info->mapping_tree_lock);
5859 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5860 struct btrfs_chunk_map *map;
5861 struct rb_node *node;
5862
5863 node = rb_first_cached(&fs_info->mapping_tree);
5864 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5865 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5866 RB_CLEAR_NODE(&map->rb_node);
5867 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5868 /* Once for the tree ref. */
5869 btrfs_free_chunk_map(map);
5870 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5871 }
5872 write_unlock(&fs_info->mapping_tree_lock);
5873 }
5874
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5875 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5876 {
5877 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5878
5879 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5880 return 2;
5881
5882 /*
5883 * There could be two corrupted data stripes, we need to loop retry in
5884 * order to rebuild the correct data.
5885 *
5886 * Fail a stripe at a time on every retry except the stripe under
5887 * reconstruction.
5888 */
5889 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5890 return map->num_stripes;
5891
5892 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5893 return btrfs_raid_array[index].ncopies;
5894 }
5895
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5896 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5897 {
5898 struct btrfs_chunk_map *map;
5899 int ret;
5900
5901 map = btrfs_get_chunk_map(fs_info, logical, len);
5902 if (IS_ERR(map))
5903 /*
5904 * We could return errors for these cases, but that could get
5905 * ugly and we'd probably do the same thing which is just not do
5906 * anything else and exit, so return 1 so the callers don't try
5907 * to use other copies.
5908 */
5909 return 1;
5910
5911 ret = btrfs_chunk_map_num_copies(map);
5912 btrfs_free_chunk_map(map);
5913 return ret;
5914 }
5915
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5916 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5917 u64 logical)
5918 {
5919 struct btrfs_chunk_map *map;
5920 unsigned long len = fs_info->sectorsize;
5921
5922 if (!btrfs_fs_incompat(fs_info, RAID56))
5923 return len;
5924
5925 map = btrfs_get_chunk_map(fs_info, logical, len);
5926
5927 if (!WARN_ON(IS_ERR(map))) {
5928 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5929 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5930 btrfs_free_chunk_map(map);
5931 }
5932 return len;
5933 }
5934
5935 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_read_preferred(struct btrfs_chunk_map * map,int first,int num_stripes)5936 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes)
5937 {
5938 for (int index = first; index < first + num_stripes; index++) {
5939 const struct btrfs_device *device = map->stripes[index].dev;
5940
5941 if (device->devid == READ_ONCE(device->fs_devices->read_devid))
5942 return index;
5943 }
5944
5945 /* If no read-preferred device is set use the first stripe. */
5946 return first;
5947 }
5948
5949 struct stripe_mirror {
5950 u64 devid;
5951 int num;
5952 };
5953
btrfs_cmp_devid(const void * a,const void * b)5954 static int btrfs_cmp_devid(const void *a, const void *b)
5955 {
5956 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a;
5957 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b;
5958
5959 if (s1->devid < s2->devid)
5960 return -1;
5961 if (s1->devid > s2->devid)
5962 return 1;
5963 return 0;
5964 }
5965
5966 /*
5967 * Select a stripe for reading using the round-robin algorithm.
5968 *
5969 * 1. Compute the read cycle as the total sectors read divided by the minimum
5970 * sectors per device.
5971 * 2. Determine the stripe number for the current read by taking the modulus
5972 * of the read cycle with the total number of stripes:
5973 *
5974 * stripe index = (total sectors / min sectors per dev) % num stripes
5975 *
5976 * The calculated stripe index is then used to select the corresponding device
5977 * from the list of devices, which is ordered by devid.
5978 */
btrfs_read_rr(const struct btrfs_chunk_map * map,int first,int num_stripes)5979 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes)
5980 {
5981 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 };
5982 struct btrfs_device *device = map->stripes[first].dev;
5983 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info;
5984 unsigned int read_cycle;
5985 unsigned int total_reads;
5986 unsigned int min_reads_per_dev;
5987
5988 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks);
5989 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >>
5990 fs_info->sectorsize_bits;
5991
5992 for (int index = 0, i = first; i < first + num_stripes; i++) {
5993 stripes[index].devid = map->stripes[i].dev->devid;
5994 stripes[index].num = i;
5995 index++;
5996 }
5997 sort(stripes, num_stripes, sizeof(struct stripe_mirror),
5998 btrfs_cmp_devid, NULL);
5999
6000 read_cycle = total_reads / min_reads_per_dev;
6001 return stripes[read_cycle % num_stripes].num;
6002 }
6003 #endif
6004
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,bool dev_replace_is_ongoing)6005 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6006 struct btrfs_chunk_map *map, int first,
6007 bool dev_replace_is_ongoing)
6008 {
6009 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6010 int i;
6011 int num_stripes;
6012 int preferred_mirror;
6013 int tolerance;
6014 struct btrfs_device *srcdev;
6015
6016 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)),
6017 "type=%llu", map->type);
6018
6019 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6020 num_stripes = map->sub_stripes;
6021 else
6022 num_stripes = map->num_stripes;
6023
6024 switch (policy) {
6025 default:
6026 /* Shouldn't happen, just warn and use pid instead of failing */
6027 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6028 policy);
6029 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6030 fallthrough;
6031 case BTRFS_READ_POLICY_PID:
6032 preferred_mirror = first + (current->pid % num_stripes);
6033 break;
6034 #ifdef CONFIG_BTRFS_EXPERIMENTAL
6035 case BTRFS_READ_POLICY_RR:
6036 preferred_mirror = btrfs_read_rr(map, first, num_stripes);
6037 break;
6038 case BTRFS_READ_POLICY_DEVID:
6039 preferred_mirror = btrfs_read_preferred(map, first, num_stripes);
6040 break;
6041 #endif
6042 }
6043
6044 if (dev_replace_is_ongoing &&
6045 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6046 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6047 srcdev = fs_info->dev_replace.srcdev;
6048 else
6049 srcdev = NULL;
6050
6051 /*
6052 * try to avoid the drive that is the source drive for a
6053 * dev-replace procedure, only choose it if no other non-missing
6054 * mirror is available
6055 */
6056 for (tolerance = 0; tolerance < 2; tolerance++) {
6057 if (map->stripes[preferred_mirror].dev->bdev &&
6058 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6059 return preferred_mirror;
6060 for (i = first; i < first + num_stripes; i++) {
6061 if (map->stripes[i].dev->bdev &&
6062 (tolerance || map->stripes[i].dev != srcdev))
6063 return i;
6064 }
6065 }
6066
6067 /* we couldn't find one that doesn't fail. Just return something
6068 * and the io error handling code will clean up eventually
6069 */
6070 return preferred_mirror;
6071 }
6072
6073 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6074 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6075 u64 logical, u16 total_stripes)
6076 {
6077 struct btrfs_io_context *bioc;
6078
6079 bioc = kzalloc(
6080 /* The size of btrfs_io_context */
6081 sizeof(struct btrfs_io_context) +
6082 /* Plus the variable array for the stripes */
6083 sizeof(struct btrfs_io_stripe) * (total_stripes),
6084 GFP_NOFS);
6085
6086 if (!bioc)
6087 return NULL;
6088
6089 refcount_set(&bioc->refs, 1);
6090
6091 bioc->fs_info = fs_info;
6092 bioc->replace_stripe_src = -1;
6093 bioc->full_stripe_logical = (u64)-1;
6094 bioc->logical = logical;
6095
6096 return bioc;
6097 }
6098
btrfs_get_bioc(struct btrfs_io_context * bioc)6099 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6100 {
6101 WARN_ON(!refcount_read(&bioc->refs));
6102 refcount_inc(&bioc->refs);
6103 }
6104
btrfs_put_bioc(struct btrfs_io_context * bioc)6105 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6106 {
6107 if (!bioc)
6108 return;
6109 if (refcount_dec_and_test(&bioc->refs))
6110 kfree(bioc);
6111 }
6112
6113 /*
6114 * Please note that, discard won't be sent to target device of device
6115 * replace.
6116 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6117 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6118 u64 logical, u64 *length_ret,
6119 u32 *num_stripes)
6120 {
6121 struct btrfs_chunk_map *map;
6122 struct btrfs_discard_stripe *stripes;
6123 u64 length = *length_ret;
6124 u64 offset;
6125 u32 stripe_nr;
6126 u32 stripe_nr_end;
6127 u32 stripe_cnt;
6128 u64 stripe_end_offset;
6129 u64 stripe_offset;
6130 u32 stripe_index;
6131 u32 factor = 0;
6132 u32 sub_stripes = 0;
6133 u32 stripes_per_dev = 0;
6134 u32 remaining_stripes = 0;
6135 u32 last_stripe = 0;
6136 int ret;
6137 int i;
6138
6139 map = btrfs_get_chunk_map(fs_info, logical, length);
6140 if (IS_ERR(map))
6141 return ERR_CAST(map);
6142
6143 /* we don't discard raid56 yet */
6144 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6145 ret = -EOPNOTSUPP;
6146 goto out_free_map;
6147 }
6148
6149 offset = logical - map->start;
6150 length = min_t(u64, map->start + map->chunk_len - logical, length);
6151 *length_ret = length;
6152
6153 /*
6154 * stripe_nr counts the total number of stripes we have to stride
6155 * to get to this block
6156 */
6157 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6158
6159 /* stripe_offset is the offset of this block in its stripe */
6160 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6161
6162 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6163 BTRFS_STRIPE_LEN_SHIFT;
6164 stripe_cnt = stripe_nr_end - stripe_nr;
6165 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6166 (offset + length);
6167 /*
6168 * after this, stripe_nr is the number of stripes on this
6169 * device we have to walk to find the data, and stripe_index is
6170 * the number of our device in the stripe array
6171 */
6172 *num_stripes = 1;
6173 stripe_index = 0;
6174 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6175 BTRFS_BLOCK_GROUP_RAID10)) {
6176 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6177 sub_stripes = 1;
6178 else
6179 sub_stripes = map->sub_stripes;
6180
6181 factor = map->num_stripes / sub_stripes;
6182 *num_stripes = min_t(u64, map->num_stripes,
6183 sub_stripes * stripe_cnt);
6184 stripe_index = stripe_nr % factor;
6185 stripe_nr /= factor;
6186 stripe_index *= sub_stripes;
6187
6188 remaining_stripes = stripe_cnt % factor;
6189 stripes_per_dev = stripe_cnt / factor;
6190 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6191 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6192 BTRFS_BLOCK_GROUP_DUP)) {
6193 *num_stripes = map->num_stripes;
6194 } else {
6195 stripe_index = stripe_nr % map->num_stripes;
6196 stripe_nr /= map->num_stripes;
6197 }
6198
6199 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6200 if (!stripes) {
6201 ret = -ENOMEM;
6202 goto out_free_map;
6203 }
6204
6205 for (i = 0; i < *num_stripes; i++) {
6206 stripes[i].physical =
6207 map->stripes[stripe_index].physical +
6208 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6209 stripes[i].dev = map->stripes[stripe_index].dev;
6210
6211 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6212 BTRFS_BLOCK_GROUP_RAID10)) {
6213 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6214
6215 if (i / sub_stripes < remaining_stripes)
6216 stripes[i].length += BTRFS_STRIPE_LEN;
6217
6218 /*
6219 * Special for the first stripe and
6220 * the last stripe:
6221 *
6222 * |-------|...|-------|
6223 * |----------|
6224 * off end_off
6225 */
6226 if (i < sub_stripes)
6227 stripes[i].length -= stripe_offset;
6228
6229 if (stripe_index >= last_stripe &&
6230 stripe_index <= (last_stripe +
6231 sub_stripes - 1))
6232 stripes[i].length -= stripe_end_offset;
6233
6234 if (i == sub_stripes - 1)
6235 stripe_offset = 0;
6236 } else {
6237 stripes[i].length = length;
6238 }
6239
6240 stripe_index++;
6241 if (stripe_index == map->num_stripes) {
6242 stripe_index = 0;
6243 stripe_nr++;
6244 }
6245 }
6246
6247 btrfs_free_chunk_map(map);
6248 return stripes;
6249 out_free_map:
6250 btrfs_free_chunk_map(map);
6251 return ERR_PTR(ret);
6252 }
6253
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6254 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6255 {
6256 struct btrfs_block_group *cache;
6257 bool ret;
6258
6259 /* Non zoned filesystem does not use "to_copy" flag */
6260 if (!btrfs_is_zoned(fs_info))
6261 return false;
6262
6263 cache = btrfs_lookup_block_group(fs_info, logical);
6264
6265 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6266
6267 btrfs_put_block_group(cache);
6268 return ret;
6269 }
6270
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6271 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6272 struct btrfs_dev_replace *dev_replace,
6273 u64 logical,
6274 struct btrfs_io_geometry *io_geom)
6275 {
6276 u64 srcdev_devid = dev_replace->srcdev->devid;
6277 /*
6278 * At this stage, num_stripes is still the real number of stripes,
6279 * excluding the duplicated stripes.
6280 */
6281 int num_stripes = io_geom->num_stripes;
6282 int max_errors = io_geom->max_errors;
6283 int nr_extra_stripes = 0;
6284 int i;
6285
6286 /*
6287 * A block group which has "to_copy" set will eventually be copied by
6288 * the dev-replace process. We can avoid cloning IO here.
6289 */
6290 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6291 return;
6292
6293 /*
6294 * Duplicate the write operations while the dev-replace procedure is
6295 * running. Since the copying of the old disk to the new disk takes
6296 * place at run time while the filesystem is mounted writable, the
6297 * regular write operations to the old disk have to be duplicated to go
6298 * to the new disk as well.
6299 *
6300 * Note that device->missing is handled by the caller, and that the
6301 * write to the old disk is already set up in the stripes array.
6302 */
6303 for (i = 0; i < num_stripes; i++) {
6304 struct btrfs_io_stripe *old = &bioc->stripes[i];
6305 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6306
6307 if (old->dev->devid != srcdev_devid)
6308 continue;
6309
6310 new->physical = old->physical;
6311 new->dev = dev_replace->tgtdev;
6312 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6313 bioc->replace_stripe_src = i;
6314 nr_extra_stripes++;
6315 }
6316
6317 /* We can only have at most 2 extra nr_stripes (for DUP). */
6318 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes);
6319 /*
6320 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6321 * replace.
6322 * If we have 2 extra stripes, only choose the one with smaller physical.
6323 */
6324 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6325 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6326 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6327
6328 /* Only DUP can have two extra stripes. */
6329 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP,
6330 "map_type=%llu", bioc->map_type);
6331
6332 /*
6333 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6334 * The extra stripe would still be there, but won't be accessed.
6335 */
6336 if (first->physical > second->physical) {
6337 swap(second->physical, first->physical);
6338 swap(second->dev, first->dev);
6339 nr_extra_stripes--;
6340 }
6341 }
6342
6343 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6344 io_geom->max_errors = max_errors + nr_extra_stripes;
6345 bioc->replace_nr_stripes = nr_extra_stripes;
6346 }
6347
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6348 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6349 struct btrfs_io_geometry *io_geom)
6350 {
6351 /*
6352 * Stripe_nr is the stripe where this block falls. stripe_offset is
6353 * the offset of this block in its stripe.
6354 */
6355 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6356 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6357 ASSERT(io_geom->stripe_offset < U32_MAX,
6358 "stripe_offset=%llu", io_geom->stripe_offset);
6359
6360 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6361 unsigned long full_stripe_len =
6362 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6363
6364 /*
6365 * For full stripe start, we use previously calculated
6366 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6367 * STRIPE_LEN.
6368 *
6369 * By this we can avoid u64 division completely. And we have
6370 * to go rounddown(), not round_down(), as nr_data_stripes is
6371 * not ensured to be power of 2.
6372 */
6373 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6374 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6375
6376 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset,
6377 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu",
6378 io_geom->raid56_full_stripe_start, full_stripe_len, offset);
6379 ASSERT(io_geom->raid56_full_stripe_start <= offset,
6380 "raid56_full_stripe_start=%llu offset=%llu",
6381 io_geom->raid56_full_stripe_start, offset);
6382 /*
6383 * For writes to RAID56, allow to write a full stripe set, but
6384 * no straddling of stripe sets.
6385 */
6386 if (io_geom->op == BTRFS_MAP_WRITE)
6387 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6388 }
6389
6390 /*
6391 * For other RAID types and for RAID56 reads, allow a single stripe (on
6392 * a single disk).
6393 */
6394 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6395 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6396 return U64_MAX;
6397 }
6398
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6399 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6400 u64 *length, struct btrfs_io_stripe *dst,
6401 struct btrfs_chunk_map *map,
6402 struct btrfs_io_geometry *io_geom)
6403 {
6404 dst->dev = map->stripes[io_geom->stripe_index].dev;
6405
6406 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst)
6407 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6408 map->type,
6409 io_geom->stripe_index, dst);
6410
6411 dst->physical = map->stripes[io_geom->stripe_index].physical +
6412 io_geom->stripe_offset +
6413 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6414 return 0;
6415 }
6416
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,struct btrfs_io_geometry * io_geom)6417 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6418 const struct btrfs_io_stripe *smap,
6419 const struct btrfs_chunk_map *map,
6420 int num_alloc_stripes,
6421 struct btrfs_io_geometry *io_geom)
6422 {
6423 if (!smap)
6424 return false;
6425
6426 if (num_alloc_stripes != 1)
6427 return false;
6428
6429 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ)
6430 return false;
6431
6432 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1)
6433 return false;
6434
6435 return true;
6436 }
6437
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6438 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6439 struct btrfs_io_geometry *io_geom)
6440 {
6441 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6442 io_geom->stripe_nr /= map->num_stripes;
6443 if (io_geom->op == BTRFS_MAP_READ)
6444 io_geom->mirror_num = 1;
6445 }
6446
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6447 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6448 struct btrfs_chunk_map *map,
6449 struct btrfs_io_geometry *io_geom,
6450 bool dev_replace_is_ongoing)
6451 {
6452 if (io_geom->op != BTRFS_MAP_READ) {
6453 io_geom->num_stripes = map->num_stripes;
6454 return;
6455 }
6456
6457 if (io_geom->mirror_num) {
6458 io_geom->stripe_index = io_geom->mirror_num - 1;
6459 return;
6460 }
6461
6462 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6463 dev_replace_is_ongoing);
6464 io_geom->mirror_num = io_geom->stripe_index + 1;
6465 }
6466
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6467 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6468 struct btrfs_io_geometry *io_geom)
6469 {
6470 if (io_geom->op != BTRFS_MAP_READ) {
6471 io_geom->num_stripes = map->num_stripes;
6472 return;
6473 }
6474
6475 if (io_geom->mirror_num) {
6476 io_geom->stripe_index = io_geom->mirror_num - 1;
6477 return;
6478 }
6479
6480 io_geom->mirror_num = 1;
6481 }
6482
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6483 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6484 struct btrfs_chunk_map *map,
6485 struct btrfs_io_geometry *io_geom,
6486 bool dev_replace_is_ongoing)
6487 {
6488 u32 factor = map->num_stripes / map->sub_stripes;
6489 int old_stripe_index;
6490
6491 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6492 io_geom->stripe_nr /= factor;
6493
6494 if (io_geom->op != BTRFS_MAP_READ) {
6495 io_geom->num_stripes = map->sub_stripes;
6496 return;
6497 }
6498
6499 if (io_geom->mirror_num) {
6500 io_geom->stripe_index += io_geom->mirror_num - 1;
6501 return;
6502 }
6503
6504 old_stripe_index = io_geom->stripe_index;
6505 io_geom->stripe_index = find_live_mirror(fs_info, map,
6506 io_geom->stripe_index,
6507 dev_replace_is_ongoing);
6508 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6509 }
6510
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6511 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6512 struct btrfs_io_geometry *io_geom,
6513 u64 logical, u64 *length)
6514 {
6515 int data_stripes = nr_data_stripes(map);
6516
6517 /*
6518 * Needs full stripe mapping.
6519 *
6520 * Push stripe_nr back to the start of the full stripe For those cases
6521 * needing a full stripe, @stripe_nr is the full stripe number.
6522 *
6523 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6524 * that can be expensive. Here we just divide @stripe_nr with
6525 * @data_stripes.
6526 */
6527 io_geom->stripe_nr /= data_stripes;
6528
6529 /* RAID[56] write or recovery. Return all stripes */
6530 io_geom->num_stripes = map->num_stripes;
6531 io_geom->max_errors = btrfs_chunk_max_errors(map);
6532
6533 /* Return the length to the full stripe end. */
6534 *length = min(logical + *length,
6535 io_geom->raid56_full_stripe_start + map->start +
6536 btrfs_stripe_nr_to_offset(data_stripes)) -
6537 logical;
6538 io_geom->stripe_index = 0;
6539 io_geom->stripe_offset = 0;
6540 }
6541
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6542 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6543 struct btrfs_io_geometry *io_geom)
6544 {
6545 int data_stripes = nr_data_stripes(map);
6546
6547 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num);
6548 /* Just grab the data stripe directly. */
6549 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6550 io_geom->stripe_nr /= data_stripes;
6551
6552 /* We distribute the parity blocks across stripes. */
6553 io_geom->stripe_index =
6554 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6555
6556 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6557 io_geom->mirror_num = 1;
6558 }
6559
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6560 static void map_blocks_single(const struct btrfs_chunk_map *map,
6561 struct btrfs_io_geometry *io_geom)
6562 {
6563 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6564 io_geom->stripe_nr /= map->num_stripes;
6565 io_geom->mirror_num = io_geom->stripe_index + 1;
6566 }
6567
6568 /*
6569 * Map one logical range to one or more physical ranges.
6570 *
6571 * @length: (Mandatory) mapped length of this run.
6572 * One logical range can be split into different segments
6573 * due to factors like zones and RAID0/5/6/10 stripe
6574 * boundaries.
6575 *
6576 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6577 * which has one or more physical ranges (btrfs_io_stripe)
6578 * recorded inside.
6579 * Caller should call btrfs_put_bioc() to free it after use.
6580 *
6581 * @smap: (Optional) single physical range optimization.
6582 * If the map request can be fulfilled by one single
6583 * physical range, and this is parameter is not NULL,
6584 * then @bioc_ret would be NULL, and @smap would be
6585 * updated.
6586 *
6587 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6588 * value is 0.
6589 *
6590 * Mirror number 0 means to choose any live mirrors.
6591 *
6592 * For non-RAID56 profiles, non-zero mirror_num means
6593 * the Nth mirror. (e.g. mirror_num 1 means the first
6594 * copy).
6595 *
6596 * For RAID56 profile, mirror 1 means rebuild from P and
6597 * the remaining data stripes.
6598 *
6599 * For RAID6 profile, mirror > 2 means mark another
6600 * data/P stripe error and rebuild from the remaining
6601 * stripes..
6602 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6603 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6604 u64 logical, u64 *length,
6605 struct btrfs_io_context **bioc_ret,
6606 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6607 {
6608 struct btrfs_chunk_map *map;
6609 struct btrfs_io_geometry io_geom = { 0 };
6610 u64 map_offset;
6611 int ret = 0;
6612 int num_copies;
6613 struct btrfs_io_context *bioc = NULL;
6614 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6615 bool dev_replace_is_ongoing = false;
6616 u16 num_alloc_stripes;
6617 u64 max_len;
6618
6619 ASSERT(bioc_ret);
6620
6621 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6622 io_geom.num_stripes = 1;
6623 io_geom.stripe_index = 0;
6624 io_geom.op = op;
6625
6626 map = btrfs_get_chunk_map(fs_info, logical, *length);
6627 if (IS_ERR(map))
6628 return PTR_ERR(map);
6629
6630 num_copies = btrfs_chunk_map_num_copies(map);
6631 if (io_geom.mirror_num > num_copies)
6632 return -EINVAL;
6633
6634 map_offset = logical - map->start;
6635 io_geom.raid56_full_stripe_start = (u64)-1;
6636 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6637 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6638 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type);
6639
6640 if (dev_replace->replace_task != current)
6641 down_read(&dev_replace->rwsem);
6642
6643 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6644 /*
6645 * Hold the semaphore for read during the whole operation, write is
6646 * requested at commit time but must wait.
6647 */
6648 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6649 up_read(&dev_replace->rwsem);
6650
6651 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6652 case BTRFS_BLOCK_GROUP_RAID0:
6653 map_blocks_raid0(map, &io_geom);
6654 break;
6655 case BTRFS_BLOCK_GROUP_RAID1:
6656 case BTRFS_BLOCK_GROUP_RAID1C3:
6657 case BTRFS_BLOCK_GROUP_RAID1C4:
6658 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6659 break;
6660 case BTRFS_BLOCK_GROUP_DUP:
6661 map_blocks_dup(map, &io_geom);
6662 break;
6663 case BTRFS_BLOCK_GROUP_RAID10:
6664 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6665 break;
6666 case BTRFS_BLOCK_GROUP_RAID5:
6667 case BTRFS_BLOCK_GROUP_RAID6:
6668 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6669 map_blocks_raid56_write(map, &io_geom, logical, length);
6670 else
6671 map_blocks_raid56_read(map, &io_geom);
6672 break;
6673 default:
6674 /*
6675 * After this, stripe_nr is the number of stripes on this
6676 * device we have to walk to find the data, and stripe_index is
6677 * the number of our device in the stripe array
6678 */
6679 map_blocks_single(map, &io_geom);
6680 break;
6681 }
6682 if (io_geom.stripe_index >= map->num_stripes) {
6683 btrfs_crit(fs_info,
6684 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6685 io_geom.stripe_index, map->num_stripes);
6686 ret = -EINVAL;
6687 goto out;
6688 }
6689
6690 num_alloc_stripes = io_geom.num_stripes;
6691 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6692 op != BTRFS_MAP_READ)
6693 /*
6694 * For replace case, we need to add extra stripes for extra
6695 * duplicated stripes.
6696 *
6697 * For both WRITE and GET_READ_MIRRORS, we may have at most
6698 * 2 more stripes (DUP types, otherwise 1).
6699 */
6700 num_alloc_stripes += 2;
6701
6702 /*
6703 * If this I/O maps to a single device, try to return the device and
6704 * physical block information on the stack instead of allocating an
6705 * I/O context structure.
6706 */
6707 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) {
6708 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6709 if (mirror_num_ret)
6710 *mirror_num_ret = io_geom.mirror_num;
6711 *bioc_ret = NULL;
6712 goto out;
6713 }
6714
6715 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6716 if (!bioc) {
6717 ret = -ENOMEM;
6718 goto out;
6719 }
6720 bioc->map_type = map->type;
6721 bioc->use_rst = io_geom.use_rst;
6722
6723 /*
6724 * For RAID56 full map, we need to make sure the stripes[] follows the
6725 * rule that data stripes are all ordered, then followed with P and Q
6726 * (if we have).
6727 *
6728 * It's still mostly the same as other profiles, just with extra rotation.
6729 */
6730 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6731 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6732 /*
6733 * For RAID56 @stripe_nr is already the number of full stripes
6734 * before us, which is also the rotation value (needs to modulo
6735 * with num_stripes).
6736 *
6737 * In this case, we just add @stripe_nr with @i, then do the
6738 * modulo, to reduce one modulo call.
6739 */
6740 bioc->full_stripe_logical = map->start +
6741 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6742 nr_data_stripes(map));
6743 for (int i = 0; i < io_geom.num_stripes; i++) {
6744 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6745 u32 stripe_index;
6746
6747 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6748 dst->dev = map->stripes[stripe_index].dev;
6749 dst->physical =
6750 map->stripes[stripe_index].physical +
6751 io_geom.stripe_offset +
6752 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6753 }
6754 } else {
6755 /*
6756 * For all other non-RAID56 profiles, just copy the target
6757 * stripe into the bioc.
6758 */
6759 for (int i = 0; i < io_geom.num_stripes; i++) {
6760 ret = set_io_stripe(fs_info, logical, length,
6761 &bioc->stripes[i], map, &io_geom);
6762 if (ret < 0)
6763 break;
6764 io_geom.stripe_index++;
6765 }
6766 }
6767
6768 if (ret) {
6769 *bioc_ret = NULL;
6770 btrfs_put_bioc(bioc);
6771 goto out;
6772 }
6773
6774 if (op != BTRFS_MAP_READ)
6775 io_geom.max_errors = btrfs_chunk_max_errors(map);
6776
6777 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6778 op != BTRFS_MAP_READ) {
6779 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6780 }
6781
6782 *bioc_ret = bioc;
6783 bioc->num_stripes = io_geom.num_stripes;
6784 bioc->max_errors = io_geom.max_errors;
6785 bioc->mirror_num = io_geom.mirror_num;
6786
6787 out:
6788 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6789 lockdep_assert_held(&dev_replace->rwsem);
6790 /* Unlock and let waiting writers proceed */
6791 up_read(&dev_replace->rwsem);
6792 }
6793 btrfs_free_chunk_map(map);
6794 return ret;
6795 }
6796
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6797 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6798 const struct btrfs_fs_devices *fs_devices)
6799 {
6800 if (args->fsid == NULL)
6801 return true;
6802 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6803 return true;
6804 return false;
6805 }
6806
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6807 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6808 const struct btrfs_device *device)
6809 {
6810 if (args->missing) {
6811 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6812 !device->bdev)
6813 return true;
6814 return false;
6815 }
6816
6817 if (device->devid != args->devid)
6818 return false;
6819 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6820 return false;
6821 return true;
6822 }
6823
6824 /*
6825 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6826 * return NULL.
6827 *
6828 * If devid and uuid are both specified, the match must be exact, otherwise
6829 * only devid is used.
6830 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6831 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6832 const struct btrfs_dev_lookup_args *args)
6833 {
6834 struct btrfs_device *device;
6835 struct btrfs_fs_devices *seed_devs;
6836
6837 if (dev_args_match_fs_devices(args, fs_devices)) {
6838 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6839 if (dev_args_match_device(args, device))
6840 return device;
6841 }
6842 }
6843
6844 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6845 if (!dev_args_match_fs_devices(args, seed_devs))
6846 continue;
6847 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6848 if (dev_args_match_device(args, device))
6849 return device;
6850 }
6851 }
6852
6853 return NULL;
6854 }
6855
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6856 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6857 u64 devid, u8 *dev_uuid)
6858 {
6859 struct btrfs_device *device;
6860 unsigned int nofs_flag;
6861
6862 /*
6863 * We call this under the chunk_mutex, so we want to use NOFS for this
6864 * allocation, however we don't want to change btrfs_alloc_device() to
6865 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6866 * places.
6867 */
6868
6869 nofs_flag = memalloc_nofs_save();
6870 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6871 memalloc_nofs_restore(nofs_flag);
6872 if (IS_ERR(device))
6873 return device;
6874
6875 list_add(&device->dev_list, &fs_devices->devices);
6876 device->fs_devices = fs_devices;
6877 fs_devices->num_devices++;
6878
6879 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6880 fs_devices->missing_devices++;
6881
6882 return device;
6883 }
6884
6885 /*
6886 * Allocate new device struct, set up devid and UUID.
6887 *
6888 * @fs_info: used only for generating a new devid, can be NULL if
6889 * devid is provided (i.e. @devid != NULL).
6890 * @devid: a pointer to devid for this device. If NULL a new devid
6891 * is generated.
6892 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6893 * is generated.
6894 * @path: a pointer to device path if available, NULL otherwise.
6895 *
6896 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6897 * on error. Returned struct is not linked onto any lists and must be
6898 * destroyed with btrfs_free_device.
6899 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6900 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6901 const u64 *devid, const u8 *uuid,
6902 const char *path)
6903 {
6904 struct btrfs_device *dev;
6905 u64 tmp;
6906
6907 if (WARN_ON(!devid && !fs_info))
6908 return ERR_PTR(-EINVAL);
6909
6910 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6911 if (!dev)
6912 return ERR_PTR(-ENOMEM);
6913
6914 INIT_LIST_HEAD(&dev->dev_list);
6915 INIT_LIST_HEAD(&dev->dev_alloc_list);
6916 INIT_LIST_HEAD(&dev->post_commit_list);
6917
6918 atomic_set(&dev->dev_stats_ccnt, 0);
6919 btrfs_device_data_ordered_init(dev);
6920 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6921
6922 if (devid)
6923 tmp = *devid;
6924 else {
6925 int ret;
6926
6927 ret = find_next_devid(fs_info, &tmp);
6928 if (ret) {
6929 btrfs_free_device(dev);
6930 return ERR_PTR(ret);
6931 }
6932 }
6933 dev->devid = tmp;
6934
6935 if (uuid)
6936 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6937 else
6938 generate_random_uuid(dev->uuid);
6939
6940 if (path) {
6941 const char *name;
6942
6943 name = kstrdup(path, GFP_KERNEL);
6944 if (!name) {
6945 btrfs_free_device(dev);
6946 return ERR_PTR(-ENOMEM);
6947 }
6948 rcu_assign_pointer(dev->name, name);
6949 }
6950
6951 return dev;
6952 }
6953
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6954 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6955 u64 devid, u8 *uuid, bool error)
6956 {
6957 if (error)
6958 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6959 devid, uuid);
6960 else
6961 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6962 devid, uuid);
6963 }
6964
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6965 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6966 {
6967 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6968
6969 return div_u64(map->chunk_len, data_stripes);
6970 }
6971
6972 #if BITS_PER_LONG == 32
6973 /*
6974 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6975 * can't be accessed on 32bit systems.
6976 *
6977 * This function do mount time check to reject the fs if it already has
6978 * metadata chunk beyond that limit.
6979 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6980 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6981 u64 logical, u64 length, u64 type)
6982 {
6983 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6984 return 0;
6985
6986 if (logical + length < MAX_LFS_FILESIZE)
6987 return 0;
6988
6989 btrfs_err_32bit_limit(fs_info);
6990 return -EOVERFLOW;
6991 }
6992
6993 /*
6994 * This is to give early warning for any metadata chunk reaching
6995 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6996 * Although we can still access the metadata, it's not going to be possible
6997 * once the limit is reached.
6998 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6999 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7000 u64 logical, u64 length, u64 type)
7001 {
7002 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7003 return;
7004
7005 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7006 return;
7007
7008 btrfs_warn_32bit_limit(fs_info);
7009 }
7010 #endif
7011
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7012 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7013 u64 devid, u8 *uuid)
7014 {
7015 struct btrfs_device *dev;
7016
7017 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7018 btrfs_report_missing_device(fs_info, devid, uuid, true);
7019 return ERR_PTR(-ENOENT);
7020 }
7021
7022 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7023 if (IS_ERR(dev)) {
7024 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7025 devid, PTR_ERR(dev));
7026 return dev;
7027 }
7028 btrfs_report_missing_device(fs_info, devid, uuid, false);
7029
7030 return dev;
7031 }
7032
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7033 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7034 struct btrfs_chunk *chunk)
7035 {
7036 BTRFS_DEV_LOOKUP_ARGS(args);
7037 struct btrfs_fs_info *fs_info = leaf->fs_info;
7038 struct btrfs_chunk_map *map;
7039 u64 logical;
7040 u64 length;
7041 u64 devid;
7042 u64 type;
7043 u8 uuid[BTRFS_UUID_SIZE];
7044 int index;
7045 int num_stripes;
7046 int ret;
7047 int i;
7048
7049 logical = key->offset;
7050 length = btrfs_chunk_length(leaf, chunk);
7051 type = btrfs_chunk_type(leaf, chunk);
7052 index = btrfs_bg_flags_to_raid_index(type);
7053 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7054
7055 #if BITS_PER_LONG == 32
7056 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7057 if (ret < 0)
7058 return ret;
7059 warn_32bit_meta_chunk(fs_info, logical, length, type);
7060 #endif
7061
7062 map = btrfs_find_chunk_map(fs_info, logical, 1);
7063
7064 /* already mapped? */
7065 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7066 btrfs_free_chunk_map(map);
7067 return 0;
7068 } else if (map) {
7069 btrfs_free_chunk_map(map);
7070 }
7071
7072 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7073 if (!map)
7074 return -ENOMEM;
7075
7076 map->start = logical;
7077 map->chunk_len = length;
7078 map->num_stripes = num_stripes;
7079 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7080 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7081 map->type = type;
7082 /*
7083 * We can't use the sub_stripes value, as for profiles other than
7084 * RAID10, they may have 0 as sub_stripes for filesystems created by
7085 * older mkfs (<v5.4).
7086 * In that case, it can cause divide-by-zero errors later.
7087 * Since currently sub_stripes is fixed for each profile, let's
7088 * use the trusted value instead.
7089 */
7090 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7091 map->verified_stripes = 0;
7092 map->stripe_size = btrfs_calc_stripe_length(map);
7093 for (i = 0; i < num_stripes; i++) {
7094 map->stripes[i].physical =
7095 btrfs_stripe_offset_nr(leaf, chunk, i);
7096 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7097 args.devid = devid;
7098 read_extent_buffer(leaf, uuid, (unsigned long)
7099 btrfs_stripe_dev_uuid_nr(chunk, i),
7100 BTRFS_UUID_SIZE);
7101 args.uuid = uuid;
7102 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7103 if (!map->stripes[i].dev) {
7104 map->stripes[i].dev = handle_missing_device(fs_info,
7105 devid, uuid);
7106 if (IS_ERR(map->stripes[i].dev)) {
7107 ret = PTR_ERR(map->stripes[i].dev);
7108 btrfs_free_chunk_map(map);
7109 return ret;
7110 }
7111 }
7112
7113 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7114 &(map->stripes[i].dev->dev_state));
7115 }
7116
7117 ret = btrfs_add_chunk_map(fs_info, map);
7118 if (ret < 0) {
7119 btrfs_err(fs_info,
7120 "failed to add chunk map, start=%llu len=%llu: %d",
7121 map->start, map->chunk_len, ret);
7122 btrfs_free_chunk_map(map);
7123 }
7124
7125 return ret;
7126 }
7127
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7128 static void fill_device_from_item(struct extent_buffer *leaf,
7129 struct btrfs_dev_item *dev_item,
7130 struct btrfs_device *device)
7131 {
7132 unsigned long ptr;
7133
7134 device->devid = btrfs_device_id(leaf, dev_item);
7135 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7136 device->total_bytes = device->disk_total_bytes;
7137 device->commit_total_bytes = device->disk_total_bytes;
7138 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7139 device->commit_bytes_used = device->bytes_used;
7140 device->type = btrfs_device_type(leaf, dev_item);
7141 device->io_align = btrfs_device_io_align(leaf, dev_item);
7142 device->io_width = btrfs_device_io_width(leaf, dev_item);
7143 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7144 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7145 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7146
7147 ptr = btrfs_device_uuid(dev_item);
7148 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7149 }
7150
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7151 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7152 u8 *fsid)
7153 {
7154 struct btrfs_fs_devices *fs_devices;
7155 int ret;
7156
7157 lockdep_assert_held(&uuid_mutex);
7158 ASSERT(fsid);
7159
7160 /* This will match only for multi-device seed fs */
7161 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7162 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7163 return fs_devices;
7164
7165
7166 fs_devices = find_fsid(fsid, NULL);
7167 if (!fs_devices) {
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_err(fs_info,
7170 "failed to find fsid %pU when attempting to open seed devices",
7171 fsid);
7172 return ERR_PTR(-ENOENT);
7173 }
7174
7175 fs_devices = alloc_fs_devices(fsid);
7176 if (IS_ERR(fs_devices))
7177 return fs_devices;
7178
7179 fs_devices->seeding = true;
7180 fs_devices->opened = 1;
7181 return fs_devices;
7182 }
7183
7184 /*
7185 * Upon first call for a seed fs fsid, just create a private copy of the
7186 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7187 */
7188 fs_devices = clone_fs_devices(fs_devices);
7189 if (IS_ERR(fs_devices))
7190 return fs_devices;
7191
7192 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb);
7193 if (ret) {
7194 free_fs_devices(fs_devices);
7195 return ERR_PTR(ret);
7196 }
7197
7198 if (!fs_devices->seeding) {
7199 close_fs_devices(fs_devices);
7200 free_fs_devices(fs_devices);
7201 return ERR_PTR(-EINVAL);
7202 }
7203
7204 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7205
7206 return fs_devices;
7207 }
7208
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7209 static int read_one_dev(struct extent_buffer *leaf,
7210 struct btrfs_dev_item *dev_item)
7211 {
7212 BTRFS_DEV_LOOKUP_ARGS(args);
7213 struct btrfs_fs_info *fs_info = leaf->fs_info;
7214 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7215 struct btrfs_device *device;
7216 u64 devid;
7217 int ret;
7218 u8 fs_uuid[BTRFS_FSID_SIZE];
7219 u8 dev_uuid[BTRFS_UUID_SIZE];
7220
7221 devid = btrfs_device_id(leaf, dev_item);
7222 args.devid = devid;
7223 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7224 BTRFS_UUID_SIZE);
7225 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7226 BTRFS_FSID_SIZE);
7227 args.uuid = dev_uuid;
7228 args.fsid = fs_uuid;
7229
7230 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7231 fs_devices = open_seed_devices(fs_info, fs_uuid);
7232 if (IS_ERR(fs_devices))
7233 return PTR_ERR(fs_devices);
7234 }
7235
7236 device = btrfs_find_device(fs_info->fs_devices, &args);
7237 if (!device) {
7238 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7239 btrfs_report_missing_device(fs_info, devid,
7240 dev_uuid, true);
7241 return -ENOENT;
7242 }
7243
7244 device = add_missing_dev(fs_devices, devid, dev_uuid);
7245 if (IS_ERR(device)) {
7246 btrfs_err(fs_info,
7247 "failed to add missing dev %llu: %ld",
7248 devid, PTR_ERR(device));
7249 return PTR_ERR(device);
7250 }
7251 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7252 } else {
7253 if (!device->bdev) {
7254 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7255 btrfs_report_missing_device(fs_info,
7256 devid, dev_uuid, true);
7257 return -ENOENT;
7258 }
7259 btrfs_report_missing_device(fs_info, devid,
7260 dev_uuid, false);
7261 }
7262
7263 if (!device->bdev &&
7264 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7265 /*
7266 * this happens when a device that was properly setup
7267 * in the device info lists suddenly goes bad.
7268 * device->bdev is NULL, and so we have to set
7269 * device->missing to one here
7270 */
7271 device->fs_devices->missing_devices++;
7272 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7273 }
7274
7275 /* Move the device to its own fs_devices */
7276 if (device->fs_devices != fs_devices) {
7277 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7278 &device->dev_state));
7279
7280 list_move(&device->dev_list, &fs_devices->devices);
7281 device->fs_devices->num_devices--;
7282 fs_devices->num_devices++;
7283
7284 device->fs_devices->missing_devices--;
7285 fs_devices->missing_devices++;
7286
7287 device->fs_devices = fs_devices;
7288 }
7289 }
7290
7291 if (device->fs_devices != fs_info->fs_devices) {
7292 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7293 if (device->generation !=
7294 btrfs_device_generation(leaf, dev_item))
7295 return -EINVAL;
7296 }
7297
7298 fill_device_from_item(leaf, dev_item, device);
7299 if (device->bdev) {
7300 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7301
7302 if (device->total_bytes > max_total_bytes) {
7303 btrfs_err(fs_info,
7304 "device total_bytes should be at most %llu but found %llu",
7305 max_total_bytes, device->total_bytes);
7306 return -EINVAL;
7307 }
7308 }
7309 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7310 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7311 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7312 device->fs_devices->total_rw_bytes += device->total_bytes;
7313 atomic64_add(device->total_bytes - device->bytes_used,
7314 &fs_info->free_chunk_space);
7315 }
7316 ret = 0;
7317 return ret;
7318 }
7319
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7320 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7321 {
7322 struct btrfs_super_block *super_copy = fs_info->super_copy;
7323 struct extent_buffer *sb;
7324 u8 *array_ptr;
7325 unsigned long sb_array_offset;
7326 int ret = 0;
7327 u32 array_size;
7328 u32 cur_offset;
7329 struct btrfs_key key;
7330
7331 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7332
7333 /*
7334 * We allocated a dummy extent, just to use extent buffer accessors.
7335 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7336 * that's fine, we will not go beyond system chunk array anyway.
7337 */
7338 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7339 if (!sb)
7340 return -ENOMEM;
7341 set_extent_buffer_uptodate(sb);
7342
7343 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7344 array_size = btrfs_super_sys_array_size(super_copy);
7345
7346 array_ptr = super_copy->sys_chunk_array;
7347 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7348 cur_offset = 0;
7349
7350 while (cur_offset < array_size) {
7351 struct btrfs_chunk *chunk;
7352 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr;
7353 u32 len = sizeof(*disk_key);
7354
7355 /*
7356 * The sys_chunk_array has been already verified at super block
7357 * read time. Only do ASSERT()s for basic checks.
7358 */
7359 ASSERT(cur_offset + len <= array_size);
7360
7361 btrfs_disk_key_to_cpu(&key, disk_key);
7362
7363 array_ptr += len;
7364 sb_array_offset += len;
7365 cur_offset += len;
7366
7367 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY);
7368
7369 chunk = (struct btrfs_chunk *)sb_array_offset;
7370 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM);
7371
7372 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk));
7373
7374 ASSERT(cur_offset + len <= array_size);
7375
7376 ret = read_one_chunk(&key, sb, chunk);
7377 if (ret)
7378 break;
7379
7380 array_ptr += len;
7381 sb_array_offset += len;
7382 cur_offset += len;
7383 }
7384 clear_extent_buffer_uptodate(sb);
7385 free_extent_buffer_stale(sb);
7386 return ret;
7387 }
7388
7389 /*
7390 * Check if all chunks in the fs are OK for read-write degraded mount
7391 *
7392 * If the @failing_dev is specified, it's accounted as missing.
7393 *
7394 * Return true if all chunks meet the minimal RW mount requirements.
7395 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7396 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7397 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7398 struct btrfs_device *failing_dev)
7399 {
7400 struct btrfs_chunk_map *map;
7401 u64 next_start;
7402 bool ret = true;
7403
7404 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7405 /* No chunk at all? Return false anyway */
7406 if (!map) {
7407 ret = false;
7408 goto out;
7409 }
7410 while (map) {
7411 int missing = 0;
7412 int max_tolerated;
7413 int i;
7414
7415 max_tolerated =
7416 btrfs_get_num_tolerated_disk_barrier_failures(
7417 map->type);
7418 for (i = 0; i < map->num_stripes; i++) {
7419 struct btrfs_device *dev = map->stripes[i].dev;
7420
7421 if (!dev || !dev->bdev ||
7422 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7423 dev->last_flush_error)
7424 missing++;
7425 else if (failing_dev && failing_dev == dev)
7426 missing++;
7427 }
7428 if (missing > max_tolerated) {
7429 if (!failing_dev)
7430 btrfs_warn(fs_info,
7431 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7432 map->start, missing, max_tolerated);
7433 btrfs_free_chunk_map(map);
7434 ret = false;
7435 goto out;
7436 }
7437 next_start = map->start + map->chunk_len;
7438 btrfs_free_chunk_map(map);
7439
7440 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7441 }
7442 out:
7443 return ret;
7444 }
7445
readahead_tree_node_children(struct extent_buffer * node)7446 static void readahead_tree_node_children(struct extent_buffer *node)
7447 {
7448 int i;
7449 const int nr_items = btrfs_header_nritems(node);
7450
7451 for (i = 0; i < nr_items; i++)
7452 btrfs_readahead_node_child(node, i);
7453 }
7454
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7455 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7456 {
7457 struct btrfs_root *root = fs_info->chunk_root;
7458 struct btrfs_path *path;
7459 struct extent_buffer *leaf;
7460 struct btrfs_key key;
7461 struct btrfs_key found_key;
7462 int ret;
7463 int slot;
7464 int iter_ret = 0;
7465 u64 total_dev = 0;
7466 u64 last_ra_node = 0;
7467
7468 path = btrfs_alloc_path();
7469 if (!path)
7470 return -ENOMEM;
7471
7472 /*
7473 * uuid_mutex is needed only if we are mounting a sprout FS
7474 * otherwise we don't need it.
7475 */
7476 mutex_lock(&uuid_mutex);
7477
7478 /*
7479 * It is possible for mount and umount to race in such a way that
7480 * we execute this code path, but open_fs_devices failed to clear
7481 * total_rw_bytes. We certainly want it cleared before reading the
7482 * device items, so clear it here.
7483 */
7484 fs_info->fs_devices->total_rw_bytes = 0;
7485
7486 /*
7487 * Lockdep complains about possible circular locking dependency between
7488 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7489 * used for freeze procection of a fs (struct super_block.s_writers),
7490 * which we take when starting a transaction, and extent buffers of the
7491 * chunk tree if we call read_one_dev() while holding a lock on an
7492 * extent buffer of the chunk tree. Since we are mounting the filesystem
7493 * and at this point there can't be any concurrent task modifying the
7494 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7495 */
7496 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7497 path->skip_locking = 1;
7498
7499 /*
7500 * Read all device items, and then all the chunk items. All
7501 * device items are found before any chunk item (their object id
7502 * is smaller than the lowest possible object id for a chunk
7503 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7504 */
7505 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7506 key.type = 0;
7507 key.offset = 0;
7508 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7509 struct extent_buffer *node = path->nodes[1];
7510
7511 leaf = path->nodes[0];
7512 slot = path->slots[0];
7513
7514 if (node) {
7515 if (last_ra_node != node->start) {
7516 readahead_tree_node_children(node);
7517 last_ra_node = node->start;
7518 }
7519 }
7520 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7521 struct btrfs_dev_item *dev_item;
7522 dev_item = btrfs_item_ptr(leaf, slot,
7523 struct btrfs_dev_item);
7524 ret = read_one_dev(leaf, dev_item);
7525 if (ret)
7526 goto error;
7527 total_dev++;
7528 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7529 struct btrfs_chunk *chunk;
7530
7531 /*
7532 * We are only called at mount time, so no need to take
7533 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7534 * we always lock first fs_info->chunk_mutex before
7535 * acquiring any locks on the chunk tree. This is a
7536 * requirement for chunk allocation, see the comment on
7537 * top of btrfs_chunk_alloc() for details.
7538 */
7539 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7540 ret = read_one_chunk(&found_key, leaf, chunk);
7541 if (ret)
7542 goto error;
7543 }
7544 }
7545 /* Catch error found during iteration */
7546 if (iter_ret < 0) {
7547 ret = iter_ret;
7548 goto error;
7549 }
7550
7551 /*
7552 * After loading chunk tree, we've got all device information,
7553 * do another round of validation checks.
7554 */
7555 if (total_dev != fs_info->fs_devices->total_devices) {
7556 btrfs_warn(fs_info,
7557 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7558 btrfs_super_num_devices(fs_info->super_copy),
7559 total_dev);
7560 fs_info->fs_devices->total_devices = total_dev;
7561 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7562 }
7563 if (btrfs_super_total_bytes(fs_info->super_copy) <
7564 fs_info->fs_devices->total_rw_bytes) {
7565 btrfs_err(fs_info,
7566 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7567 btrfs_super_total_bytes(fs_info->super_copy),
7568 fs_info->fs_devices->total_rw_bytes);
7569 ret = -EINVAL;
7570 goto error;
7571 }
7572 ret = 0;
7573 error:
7574 mutex_unlock(&uuid_mutex);
7575
7576 btrfs_free_path(path);
7577 return ret;
7578 }
7579
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7580 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7581 {
7582 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7583 struct btrfs_device *device;
7584 int ret = 0;
7585
7586 mutex_lock(&fs_devices->device_list_mutex);
7587 list_for_each_entry(device, &fs_devices->devices, dev_list)
7588 device->fs_info = fs_info;
7589
7590 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7591 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7592 device->fs_info = fs_info;
7593 ret = btrfs_get_dev_zone_info(device, false);
7594 if (ret)
7595 break;
7596 }
7597
7598 seed_devs->fs_info = fs_info;
7599 }
7600 mutex_unlock(&fs_devices->device_list_mutex);
7601
7602 return ret;
7603 }
7604
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7605 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7606 const struct btrfs_dev_stats_item *ptr,
7607 int index)
7608 {
7609 u64 val;
7610
7611 read_extent_buffer(eb, &val,
7612 offsetof(struct btrfs_dev_stats_item, values) +
7613 ((unsigned long)ptr) + (index * sizeof(u64)),
7614 sizeof(val));
7615 return val;
7616 }
7617
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7618 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7619 struct btrfs_dev_stats_item *ptr,
7620 int index, u64 val)
7621 {
7622 write_extent_buffer(eb, &val,
7623 offsetof(struct btrfs_dev_stats_item, values) +
7624 ((unsigned long)ptr) + (index * sizeof(u64)),
7625 sizeof(val));
7626 }
7627
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7628 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7629 struct btrfs_path *path)
7630 {
7631 struct btrfs_dev_stats_item *ptr;
7632 struct extent_buffer *eb;
7633 struct btrfs_key key;
7634 int item_size;
7635 int i, ret, slot;
7636
7637 if (!device->fs_info->dev_root)
7638 return 0;
7639
7640 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7641 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7642 key.offset = device->devid;
7643 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7644 if (ret) {
7645 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7646 btrfs_dev_stat_set(device, i, 0);
7647 device->dev_stats_valid = 1;
7648 btrfs_release_path(path);
7649 return ret < 0 ? ret : 0;
7650 }
7651 slot = path->slots[0];
7652 eb = path->nodes[0];
7653 item_size = btrfs_item_size(eb, slot);
7654
7655 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7656
7657 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7658 if (item_size >= (1 + i) * sizeof(__le64))
7659 btrfs_dev_stat_set(device, i,
7660 btrfs_dev_stats_value(eb, ptr, i));
7661 else
7662 btrfs_dev_stat_set(device, i, 0);
7663 }
7664
7665 device->dev_stats_valid = 1;
7666 btrfs_dev_stat_print_on_load(device);
7667 btrfs_release_path(path);
7668
7669 return 0;
7670 }
7671
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7672 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7673 {
7674 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7675 struct btrfs_device *device;
7676 struct btrfs_path *path = NULL;
7677 int ret = 0;
7678
7679 path = btrfs_alloc_path();
7680 if (!path)
7681 return -ENOMEM;
7682
7683 mutex_lock(&fs_devices->device_list_mutex);
7684 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7685 ret = btrfs_device_init_dev_stats(device, path);
7686 if (ret)
7687 goto out;
7688 }
7689 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7690 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7691 ret = btrfs_device_init_dev_stats(device, path);
7692 if (ret)
7693 goto out;
7694 }
7695 }
7696 out:
7697 mutex_unlock(&fs_devices->device_list_mutex);
7698
7699 btrfs_free_path(path);
7700 return ret;
7701 }
7702
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7703 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7704 struct btrfs_device *device)
7705 {
7706 struct btrfs_fs_info *fs_info = trans->fs_info;
7707 struct btrfs_root *dev_root = fs_info->dev_root;
7708 struct btrfs_path *path;
7709 struct btrfs_key key;
7710 struct extent_buffer *eb;
7711 struct btrfs_dev_stats_item *ptr;
7712 int ret;
7713 int i;
7714
7715 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7716 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7717 key.offset = device->devid;
7718
7719 path = btrfs_alloc_path();
7720 if (!path)
7721 return -ENOMEM;
7722 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7723 if (ret < 0) {
7724 btrfs_warn(fs_info,
7725 "error %d while searching for dev_stats item for device %s",
7726 ret, btrfs_dev_name(device));
7727 goto out;
7728 }
7729
7730 if (ret == 0 &&
7731 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7732 /* need to delete old one and insert a new one */
7733 ret = btrfs_del_item(trans, dev_root, path);
7734 if (ret != 0) {
7735 btrfs_warn(fs_info,
7736 "delete too small dev_stats item for device %s failed %d",
7737 btrfs_dev_name(device), ret);
7738 goto out;
7739 }
7740 ret = 1;
7741 }
7742
7743 if (ret == 1) {
7744 /* need to insert a new item */
7745 btrfs_release_path(path);
7746 ret = btrfs_insert_empty_item(trans, dev_root, path,
7747 &key, sizeof(*ptr));
7748 if (ret < 0) {
7749 btrfs_warn(fs_info,
7750 "insert dev_stats item for device %s failed %d",
7751 btrfs_dev_name(device), ret);
7752 goto out;
7753 }
7754 }
7755
7756 eb = path->nodes[0];
7757 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759 btrfs_set_dev_stats_value(eb, ptr, i,
7760 btrfs_dev_stat_read(device, i));
7761 out:
7762 btrfs_free_path(path);
7763 return ret;
7764 }
7765
7766 /*
7767 * called from commit_transaction. Writes all changed device stats to disk.
7768 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7769 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7770 {
7771 struct btrfs_fs_info *fs_info = trans->fs_info;
7772 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7773 struct btrfs_device *device;
7774 int stats_cnt;
7775 int ret = 0;
7776
7777 mutex_lock(&fs_devices->device_list_mutex);
7778 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7779 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7780 if (!device->dev_stats_valid || stats_cnt == 0)
7781 continue;
7782
7783
7784 /*
7785 * There is a LOAD-LOAD control dependency between the value of
7786 * dev_stats_ccnt and updating the on-disk values which requires
7787 * reading the in-memory counters. Such control dependencies
7788 * require explicit read memory barriers.
7789 *
7790 * This memory barriers pairs with smp_mb__before_atomic in
7791 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7792 * barrier implied by atomic_xchg in
7793 * btrfs_dev_stats_read_and_reset
7794 */
7795 smp_rmb();
7796
7797 ret = update_dev_stat_item(trans, device);
7798 if (!ret)
7799 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7800 }
7801 mutex_unlock(&fs_devices->device_list_mutex);
7802
7803 return ret;
7804 }
7805
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7806 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7807 {
7808 btrfs_dev_stat_inc(dev, index);
7809
7810 if (!dev->dev_stats_valid)
7811 return;
7812 btrfs_err_rl(dev->fs_info,
7813 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7814 btrfs_dev_name(dev),
7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7819 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7820 }
7821
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7822 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7823 {
7824 int i;
7825
7826 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7827 if (btrfs_dev_stat_read(dev, i) != 0)
7828 break;
7829 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7830 return; /* all values == 0, suppress message */
7831
7832 btrfs_info(dev->fs_info,
7833 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7834 btrfs_dev_name(dev),
7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7837 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7838 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7839 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7840 }
7841
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7842 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7843 struct btrfs_ioctl_get_dev_stats *stats)
7844 {
7845 BTRFS_DEV_LOOKUP_ARGS(args);
7846 struct btrfs_device *dev;
7847 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7848 int i;
7849
7850 mutex_lock(&fs_devices->device_list_mutex);
7851 args.devid = stats->devid;
7852 dev = btrfs_find_device(fs_info->fs_devices, &args);
7853 mutex_unlock(&fs_devices->device_list_mutex);
7854
7855 if (!dev) {
7856 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7857 return -ENODEV;
7858 } else if (!dev->dev_stats_valid) {
7859 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7860 return -ENODEV;
7861 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7862 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7863 if (stats->nr_items > i)
7864 stats->values[i] =
7865 btrfs_dev_stat_read_and_reset(dev, i);
7866 else
7867 btrfs_dev_stat_set(dev, i, 0);
7868 }
7869 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7870 current->comm, task_pid_nr(current));
7871 } else {
7872 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7873 if (stats->nr_items > i)
7874 stats->values[i] = btrfs_dev_stat_read(dev, i);
7875 }
7876 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7877 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7878 return 0;
7879 }
7880
7881 /*
7882 * Update the size and bytes used for each device where it changed. This is
7883 * delayed since we would otherwise get errors while writing out the
7884 * superblocks.
7885 *
7886 * Must be invoked during transaction commit.
7887 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7888 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7889 {
7890 struct btrfs_device *curr, *next;
7891
7892 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state);
7893
7894 if (list_empty(&trans->dev_update_list))
7895 return;
7896
7897 /*
7898 * We don't need the device_list_mutex here. This list is owned by the
7899 * transaction and the transaction must complete before the device is
7900 * released.
7901 */
7902 mutex_lock(&trans->fs_info->chunk_mutex);
7903 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7904 post_commit_list) {
7905 list_del_init(&curr->post_commit_list);
7906 curr->commit_total_bytes = curr->disk_total_bytes;
7907 curr->commit_bytes_used = curr->bytes_used;
7908 }
7909 mutex_unlock(&trans->fs_info->chunk_mutex);
7910 }
7911
7912 /*
7913 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7914 */
btrfs_bg_type_to_factor(u64 flags)7915 int btrfs_bg_type_to_factor(u64 flags)
7916 {
7917 const int index = btrfs_bg_flags_to_raid_index(flags);
7918
7919 return btrfs_raid_array[index].ncopies;
7920 }
7921
7922
7923
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7924 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7925 u64 chunk_offset, u64 devid,
7926 u64 physical_offset, u64 physical_len)
7927 {
7928 struct btrfs_dev_lookup_args args = { .devid = devid };
7929 struct btrfs_chunk_map *map;
7930 struct btrfs_device *dev;
7931 u64 stripe_len;
7932 bool found = false;
7933 int ret = 0;
7934 int i;
7935
7936 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7937 if (!map) {
7938 btrfs_err(fs_info,
7939 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7940 physical_offset, devid);
7941 ret = -EUCLEAN;
7942 goto out;
7943 }
7944
7945 stripe_len = btrfs_calc_stripe_length(map);
7946 if (physical_len != stripe_len) {
7947 btrfs_err(fs_info,
7948 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7949 physical_offset, devid, map->start, physical_len,
7950 stripe_len);
7951 ret = -EUCLEAN;
7952 goto out;
7953 }
7954
7955 /*
7956 * Very old mkfs.btrfs (before v4.15) will not respect the reserved
7957 * space. Although kernel can handle it without problem, better to warn
7958 * the users.
7959 */
7960 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7961 btrfs_warn(fs_info,
7962 "devid %llu physical %llu len %llu inside the reserved space",
7963 devid, physical_offset, physical_len);
7964
7965 for (i = 0; i < map->num_stripes; i++) {
7966 if (map->stripes[i].dev->devid == devid &&
7967 map->stripes[i].physical == physical_offset) {
7968 found = true;
7969 if (map->verified_stripes >= map->num_stripes) {
7970 btrfs_err(fs_info,
7971 "too many dev extents for chunk %llu found",
7972 map->start);
7973 ret = -EUCLEAN;
7974 goto out;
7975 }
7976 map->verified_stripes++;
7977 break;
7978 }
7979 }
7980 if (!found) {
7981 btrfs_err(fs_info,
7982 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7983 physical_offset, devid);
7984 ret = -EUCLEAN;
7985 }
7986
7987 /* Make sure no dev extent is beyond device boundary */
7988 dev = btrfs_find_device(fs_info->fs_devices, &args);
7989 if (!dev) {
7990 btrfs_err(fs_info, "failed to find devid %llu", devid);
7991 ret = -EUCLEAN;
7992 goto out;
7993 }
7994
7995 if (physical_offset + physical_len > dev->disk_total_bytes) {
7996 btrfs_err(fs_info,
7997 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7998 devid, physical_offset, physical_len,
7999 dev->disk_total_bytes);
8000 ret = -EUCLEAN;
8001 goto out;
8002 }
8003
8004 if (dev->zone_info) {
8005 u64 zone_size = dev->zone_info->zone_size;
8006
8007 if (!IS_ALIGNED(physical_offset, zone_size) ||
8008 !IS_ALIGNED(physical_len, zone_size)) {
8009 btrfs_err(fs_info,
8010 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8011 devid, physical_offset, physical_len);
8012 ret = -EUCLEAN;
8013 goto out;
8014 }
8015 }
8016
8017 out:
8018 btrfs_free_chunk_map(map);
8019 return ret;
8020 }
8021
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8022 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8023 {
8024 struct rb_node *node;
8025 int ret = 0;
8026
8027 read_lock(&fs_info->mapping_tree_lock);
8028 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8029 struct btrfs_chunk_map *map;
8030
8031 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8032 if (map->num_stripes != map->verified_stripes) {
8033 btrfs_err(fs_info,
8034 "chunk %llu has missing dev extent, have %d expect %d",
8035 map->start, map->verified_stripes, map->num_stripes);
8036 ret = -EUCLEAN;
8037 goto out;
8038 }
8039 }
8040 out:
8041 read_unlock(&fs_info->mapping_tree_lock);
8042 return ret;
8043 }
8044
8045 /*
8046 * Ensure that all dev extents are mapped to correct chunk, otherwise
8047 * later chunk allocation/free would cause unexpected behavior.
8048 *
8049 * NOTE: This will iterate through the whole device tree, which should be of
8050 * the same size level as the chunk tree. This slightly increases mount time.
8051 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8052 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8053 {
8054 struct btrfs_path *path;
8055 struct btrfs_root *root = fs_info->dev_root;
8056 struct btrfs_key key;
8057 u64 prev_devid = 0;
8058 u64 prev_dev_ext_end = 0;
8059 int ret = 0;
8060
8061 /*
8062 * We don't have a dev_root because we mounted with ignorebadroots and
8063 * failed to load the root, so we want to skip the verification in this
8064 * case for sure.
8065 *
8066 * However if the dev root is fine, but the tree itself is corrupted
8067 * we'd still fail to mount. This verification is only to make sure
8068 * writes can happen safely, so instead just bypass this check
8069 * completely in the case of IGNOREBADROOTS.
8070 */
8071 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8072 return 0;
8073
8074 key.objectid = 1;
8075 key.type = BTRFS_DEV_EXTENT_KEY;
8076 key.offset = 0;
8077
8078 path = btrfs_alloc_path();
8079 if (!path)
8080 return -ENOMEM;
8081
8082 path->reada = READA_FORWARD;
8083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8084 if (ret < 0)
8085 goto out;
8086
8087 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8088 ret = btrfs_next_leaf(root, path);
8089 if (ret < 0)
8090 goto out;
8091 /* No dev extents at all? Not good */
8092 if (ret > 0) {
8093 ret = -EUCLEAN;
8094 goto out;
8095 }
8096 }
8097 while (1) {
8098 struct extent_buffer *leaf = path->nodes[0];
8099 struct btrfs_dev_extent *dext;
8100 int slot = path->slots[0];
8101 u64 chunk_offset;
8102 u64 physical_offset;
8103 u64 physical_len;
8104 u64 devid;
8105
8106 btrfs_item_key_to_cpu(leaf, &key, slot);
8107 if (key.type != BTRFS_DEV_EXTENT_KEY)
8108 break;
8109 devid = key.objectid;
8110 physical_offset = key.offset;
8111
8112 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8113 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8114 physical_len = btrfs_dev_extent_length(leaf, dext);
8115
8116 /* Check if this dev extent overlaps with the previous one */
8117 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8118 btrfs_err(fs_info,
8119 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8120 devid, physical_offset, prev_dev_ext_end);
8121 ret = -EUCLEAN;
8122 goto out;
8123 }
8124
8125 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8126 physical_offset, physical_len);
8127 if (ret < 0)
8128 goto out;
8129 prev_devid = devid;
8130 prev_dev_ext_end = physical_offset + physical_len;
8131
8132 ret = btrfs_next_item(root, path);
8133 if (ret < 0)
8134 goto out;
8135 if (ret > 0) {
8136 ret = 0;
8137 break;
8138 }
8139 }
8140
8141 /* Ensure all chunks have corresponding dev extents */
8142 ret = verify_chunk_dev_extent_mapping(fs_info);
8143 out:
8144 btrfs_free_path(path);
8145 return ret;
8146 }
8147
8148 /*
8149 * Check whether the given block group or device is pinned by any inode being
8150 * used as a swapfile.
8151 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8152 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8153 {
8154 struct btrfs_swapfile_pin *sp;
8155 struct rb_node *node;
8156
8157 spin_lock(&fs_info->swapfile_pins_lock);
8158 node = fs_info->swapfile_pins.rb_node;
8159 while (node) {
8160 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8161 if (ptr < sp->ptr)
8162 node = node->rb_left;
8163 else if (ptr > sp->ptr)
8164 node = node->rb_right;
8165 else
8166 break;
8167 }
8168 spin_unlock(&fs_info->swapfile_pins_lock);
8169 return node != NULL;
8170 }
8171
relocating_repair_kthread(void * data)8172 static int relocating_repair_kthread(void *data)
8173 {
8174 struct btrfs_block_group *cache = data;
8175 struct btrfs_fs_info *fs_info = cache->fs_info;
8176 u64 target;
8177 int ret = 0;
8178
8179 target = cache->start;
8180 btrfs_put_block_group(cache);
8181
8182 sb_start_write(fs_info->sb);
8183 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8184 btrfs_info(fs_info,
8185 "zoned: skip relocating block group %llu to repair: EBUSY",
8186 target);
8187 sb_end_write(fs_info->sb);
8188 return -EBUSY;
8189 }
8190
8191 mutex_lock(&fs_info->reclaim_bgs_lock);
8192
8193 /* Ensure block group still exists */
8194 cache = btrfs_lookup_block_group(fs_info, target);
8195 if (!cache)
8196 goto out;
8197
8198 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8199 goto out;
8200
8201 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8202 if (ret < 0)
8203 goto out;
8204
8205 btrfs_info(fs_info,
8206 "zoned: relocating block group %llu to repair IO failure",
8207 target);
8208 ret = btrfs_relocate_chunk(fs_info, target, true);
8209
8210 out:
8211 if (cache)
8212 btrfs_put_block_group(cache);
8213 mutex_unlock(&fs_info->reclaim_bgs_lock);
8214 btrfs_exclop_finish(fs_info);
8215 sb_end_write(fs_info->sb);
8216
8217 return ret;
8218 }
8219
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8220 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8221 {
8222 struct btrfs_block_group *cache;
8223
8224 if (!btrfs_is_zoned(fs_info))
8225 return false;
8226
8227 /* Do not attempt to repair in degraded state */
8228 if (btrfs_test_opt(fs_info, DEGRADED))
8229 return true;
8230
8231 cache = btrfs_lookup_block_group(fs_info, logical);
8232 if (!cache)
8233 return true;
8234
8235 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8236 btrfs_put_block_group(cache);
8237 return true;
8238 }
8239
8240 kthread_run(relocating_repair_kthread, cache,
8241 "btrfs-relocating-repair");
8242
8243 return true;
8244 }
8245
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8246 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8247 struct btrfs_io_stripe *smap,
8248 u64 logical)
8249 {
8250 int data_stripes = nr_bioc_data_stripes(bioc);
8251 int i;
8252
8253 for (i = 0; i < data_stripes; i++) {
8254 u64 stripe_start = bioc->full_stripe_logical +
8255 btrfs_stripe_nr_to_offset(i);
8256
8257 if (logical >= stripe_start &&
8258 logical < stripe_start + BTRFS_STRIPE_LEN)
8259 break;
8260 }
8261 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes);
8262 smap->dev = bioc->stripes[i].dev;
8263 smap->physical = bioc->stripes[i].physical +
8264 ((logical - bioc->full_stripe_logical) &
8265 BTRFS_STRIPE_LEN_MASK);
8266 }
8267
8268 /*
8269 * Map a repair write into a single device.
8270 *
8271 * A repair write is triggered by read time repair or scrub, which would only
8272 * update the contents of a single device.
8273 * Not update any other mirrors nor go through RMW path.
8274 *
8275 * Callers should ensure:
8276 *
8277 * - Call btrfs_bio_counter_inc_blocked() first
8278 * - The range does not cross stripe boundary
8279 * - Has a valid @mirror_num passed in.
8280 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8281 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8282 struct btrfs_io_stripe *smap, u64 logical,
8283 u32 length, int mirror_num)
8284 {
8285 struct btrfs_io_context *bioc = NULL;
8286 u64 map_length = length;
8287 int mirror_ret = mirror_num;
8288 int ret;
8289
8290 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num);
8291
8292 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8293 &bioc, smap, &mirror_ret);
8294 if (ret < 0)
8295 return ret;
8296
8297 /* The map range should not cross stripe boundary. */
8298 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length);
8299
8300 /* Already mapped to single stripe. */
8301 if (!bioc)
8302 goto out;
8303
8304 /* Map the RAID56 multi-stripe writes to a single one. */
8305 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8306 map_raid56_repair_block(bioc, smap, logical);
8307 goto out;
8308 }
8309
8310 ASSERT(mirror_num <= bioc->num_stripes,
8311 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes);
8312 smap->dev = bioc->stripes[mirror_num - 1].dev;
8313 smap->physical = bioc->stripes[mirror_num - 1].physical;
8314 out:
8315 btrfs_put_bioc(bioc);
8316 ASSERT(smap->dev);
8317 return 0;
8318 }
8319