xref: /linux/mm/hugetlb.c (revision 3f31a806a62e44f7498e2d17719c03f816553f11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41 
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46 
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56 
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60 
61 __initdata nodemask_t hugetlb_bootmem_nodes;
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
64 
65 /*
66  * Due to ordering constraints across the init code for various
67  * architectures, hugetlb hstate cmdline parameters can't simply
68  * be early_param. early_param might call the setup function
69  * before valid hugetlb page sizes are determined, leading to
70  * incorrect rejection of valid hugepagesz= options.
71  *
72  * So, record the parameters early and consume them whenever the
73  * init code is ready for them, by calling hugetlb_parse_params().
74  */
75 
76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
77 #define HUGE_MAX_CMDLINE_ARGS	(2 * HUGE_MAX_HSTATE + 1)
78 struct hugetlb_cmdline {
79 	char *val;
80 	int (*setup)(char *val);
81 };
82 
83 /* for command line parsing */
84 static struct hstate * __initdata parsed_hstate;
85 static unsigned long __initdata default_hstate_max_huge_pages;
86 static bool __initdata parsed_valid_hugepagesz = true;
87 static bool __initdata parsed_default_hugepagesz;
88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
89 static unsigned long hugepage_allocation_threads __initdata;
90 
91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
92 static int hstate_cmdline_index __initdata;
93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
94 static int hugetlb_param_index __initdata;
95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
96 static __init void hugetlb_parse_params(void);
97 
98 #define hugetlb_early_param(str, func) \
99 static __init int func##args(char *s) \
100 { \
101 	return hugetlb_add_param(s, func); \
102 } \
103 early_param(str, func##args)
104 
105 /*
106  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
107  * free_huge_pages, and surplus_huge_pages.
108  */
109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
110 
111 /*
112  * Serializes faults on the same logical page.  This is used to
113  * prevent spurious OOMs when the hugepage pool is fully utilized.
114  */
115 static int num_fault_mutexes __ro_after_init;
116 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
117 
118 /* Forward declaration */
119 static int hugetlb_acct_memory(struct hstate *h, long delta);
120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
124 		unsigned long start, unsigned long end, bool take_locks);
125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
126 
hugetlb_free_folio(struct folio * folio)127 static void hugetlb_free_folio(struct folio *folio)
128 {
129 	if (folio_test_hugetlb_cma(folio)) {
130 		hugetlb_cma_free_folio(folio);
131 		return;
132 	}
133 
134 	folio_put(folio);
135 }
136 
subpool_is_free(struct hugepage_subpool * spool)137 static inline bool subpool_is_free(struct hugepage_subpool *spool)
138 {
139 	if (spool->count)
140 		return false;
141 	if (spool->max_hpages != -1)
142 		return spool->used_hpages == 0;
143 	if (spool->min_hpages != -1)
144 		return spool->rsv_hpages == spool->min_hpages;
145 
146 	return true;
147 }
148 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
150 						unsigned long irq_flags)
151 {
152 	spin_unlock_irqrestore(&spool->lock, irq_flags);
153 
154 	/* If no pages are used, and no other handles to the subpool
155 	 * remain, give up any reservations based on minimum size and
156 	 * free the subpool */
157 	if (subpool_is_free(spool)) {
158 		if (spool->min_hpages != -1)
159 			hugetlb_acct_memory(spool->hstate,
160 						-spool->min_hpages);
161 		kfree(spool);
162 	}
163 }
164 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
166 						long min_hpages)
167 {
168 	struct hugepage_subpool *spool;
169 
170 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
171 	if (!spool)
172 		return NULL;
173 
174 	spin_lock_init(&spool->lock);
175 	spool->count = 1;
176 	spool->max_hpages = max_hpages;
177 	spool->hstate = h;
178 	spool->min_hpages = min_hpages;
179 
180 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
181 		kfree(spool);
182 		return NULL;
183 	}
184 	spool->rsv_hpages = min_hpages;
185 
186 	return spool;
187 }
188 
hugepage_put_subpool(struct hugepage_subpool * spool)189 void hugepage_put_subpool(struct hugepage_subpool *spool)
190 {
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&spool->lock, flags);
194 	BUG_ON(!spool->count);
195 	spool->count--;
196 	unlock_or_release_subpool(spool, flags);
197 }
198 
199 /*
200  * Subpool accounting for allocating and reserving pages.
201  * Return -ENOMEM if there are not enough resources to satisfy the
202  * request.  Otherwise, return the number of pages by which the
203  * global pools must be adjusted (upward).  The returned value may
204  * only be different than the passed value (delta) in the case where
205  * a subpool minimum size must be maintained.
206  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
208 				      long delta)
209 {
210 	long ret = delta;
211 
212 	if (!spool)
213 		return ret;
214 
215 	spin_lock_irq(&spool->lock);
216 
217 	if (spool->max_hpages != -1) {		/* maximum size accounting */
218 		if ((spool->used_hpages + delta) <= spool->max_hpages)
219 			spool->used_hpages += delta;
220 		else {
221 			ret = -ENOMEM;
222 			goto unlock_ret;
223 		}
224 	}
225 
226 	/* minimum size accounting */
227 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
228 		if (delta > spool->rsv_hpages) {
229 			/*
230 			 * Asking for more reserves than those already taken on
231 			 * behalf of subpool.  Return difference.
232 			 */
233 			ret = delta - spool->rsv_hpages;
234 			spool->rsv_hpages = 0;
235 		} else {
236 			ret = 0;	/* reserves already accounted for */
237 			spool->rsv_hpages -= delta;
238 		}
239 	}
240 
241 unlock_ret:
242 	spin_unlock_irq(&spool->lock);
243 	return ret;
244 }
245 
246 /*
247  * Subpool accounting for freeing and unreserving pages.
248  * Return the number of global page reservations that must be dropped.
249  * The return value may only be different than the passed value (delta)
250  * in the case where a subpool minimum size must be maintained.
251  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
253 				       long delta)
254 {
255 	long ret = delta;
256 	unsigned long flags;
257 
258 	if (!spool)
259 		return delta;
260 
261 	spin_lock_irqsave(&spool->lock, flags);
262 
263 	if (spool->max_hpages != -1)		/* maximum size accounting */
264 		spool->used_hpages -= delta;
265 
266 	 /* minimum size accounting */
267 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
268 		if (spool->rsv_hpages + delta <= spool->min_hpages)
269 			ret = 0;
270 		else
271 			ret = spool->rsv_hpages + delta - spool->min_hpages;
272 
273 		spool->rsv_hpages += delta;
274 		if (spool->rsv_hpages > spool->min_hpages)
275 			spool->rsv_hpages = spool->min_hpages;
276 	}
277 
278 	/*
279 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
280 	 * quota reference, free it now.
281 	 */
282 	unlock_or_release_subpool(spool, flags);
283 
284 	return ret;
285 }
286 
subpool_inode(struct inode * inode)287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
288 {
289 	return HUGETLBFS_SB(inode->i_sb)->spool;
290 }
291 
subpool_vma(struct vm_area_struct * vma)292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
293 {
294 	return subpool_inode(file_inode(vma->vm_file));
295 }
296 
297 /*
298  * hugetlb vma_lock helper routines
299  */
hugetlb_vma_lock_read(struct vm_area_struct * vma)300 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
301 {
302 	if (__vma_shareable_lock(vma)) {
303 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304 
305 		down_read(&vma_lock->rw_sema);
306 	} else if (__vma_private_lock(vma)) {
307 		struct resv_map *resv_map = vma_resv_map(vma);
308 
309 		down_read(&resv_map->rw_sema);
310 	}
311 }
312 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
314 {
315 	if (__vma_shareable_lock(vma)) {
316 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317 
318 		up_read(&vma_lock->rw_sema);
319 	} else if (__vma_private_lock(vma)) {
320 		struct resv_map *resv_map = vma_resv_map(vma);
321 
322 		up_read(&resv_map->rw_sema);
323 	}
324 }
325 
hugetlb_vma_lock_write(struct vm_area_struct * vma)326 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
327 {
328 	if (__vma_shareable_lock(vma)) {
329 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
330 
331 		down_write(&vma_lock->rw_sema);
332 	} else if (__vma_private_lock(vma)) {
333 		struct resv_map *resv_map = vma_resv_map(vma);
334 
335 		down_write(&resv_map->rw_sema);
336 	}
337 }
338 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
340 {
341 	if (__vma_shareable_lock(vma)) {
342 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
343 
344 		up_write(&vma_lock->rw_sema);
345 	} else if (__vma_private_lock(vma)) {
346 		struct resv_map *resv_map = vma_resv_map(vma);
347 
348 		up_write(&resv_map->rw_sema);
349 	}
350 }
351 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
353 {
354 
355 	if (__vma_shareable_lock(vma)) {
356 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
357 
358 		return down_write_trylock(&vma_lock->rw_sema);
359 	} else if (__vma_private_lock(vma)) {
360 		struct resv_map *resv_map = vma_resv_map(vma);
361 
362 		return down_write_trylock(&resv_map->rw_sema);
363 	}
364 
365 	return 1;
366 }
367 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
369 {
370 	if (__vma_shareable_lock(vma)) {
371 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
372 
373 		lockdep_assert_held(&vma_lock->rw_sema);
374 	} else if (__vma_private_lock(vma)) {
375 		struct resv_map *resv_map = vma_resv_map(vma);
376 
377 		lockdep_assert_held(&resv_map->rw_sema);
378 	}
379 }
380 
hugetlb_vma_lock_release(struct kref * kref)381 void hugetlb_vma_lock_release(struct kref *kref)
382 {
383 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
384 			struct hugetlb_vma_lock, refs);
385 
386 	kfree(vma_lock);
387 }
388 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
390 {
391 	struct vm_area_struct *vma = vma_lock->vma;
392 
393 	/*
394 	 * vma_lock structure may or not be released as a result of put,
395 	 * it certainly will no longer be attached to vma so clear pointer.
396 	 * Semaphore synchronizes access to vma_lock->vma field.
397 	 */
398 	vma_lock->vma = NULL;
399 	vma->vm_private_data = NULL;
400 	up_write(&vma_lock->rw_sema);
401 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
402 }
403 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
405 {
406 	if (__vma_shareable_lock(vma)) {
407 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
408 
409 		__hugetlb_vma_unlock_write_put(vma_lock);
410 	} else if (__vma_private_lock(vma)) {
411 		struct resv_map *resv_map = vma_resv_map(vma);
412 
413 		/* no free for anon vmas, but still need to unlock */
414 		up_write(&resv_map->rw_sema);
415 	}
416 }
417 
hugetlb_vma_lock_free(struct vm_area_struct * vma)418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
419 {
420 	/*
421 	 * Only present in sharable vmas.
422 	 */
423 	if (!vma || !__vma_shareable_lock(vma))
424 		return;
425 
426 	if (vma->vm_private_data) {
427 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
428 
429 		down_write(&vma_lock->rw_sema);
430 		__hugetlb_vma_unlock_write_put(vma_lock);
431 	}
432 }
433 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
435 {
436 	struct hugetlb_vma_lock *vma_lock;
437 
438 	/* Only establish in (flags) sharable vmas */
439 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
440 		return;
441 
442 	/* Should never get here with non-NULL vm_private_data */
443 	if (vma->vm_private_data)
444 		return;
445 
446 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
447 	if (!vma_lock) {
448 		/*
449 		 * If we can not allocate structure, then vma can not
450 		 * participate in pmd sharing.  This is only a possible
451 		 * performance enhancement and memory saving issue.
452 		 * However, the lock is also used to synchronize page
453 		 * faults with truncation.  If the lock is not present,
454 		 * unlikely races could leave pages in a file past i_size
455 		 * until the file is removed.  Warn in the unlikely case of
456 		 * allocation failure.
457 		 */
458 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
459 		return;
460 	}
461 
462 	kref_init(&vma_lock->refs);
463 	init_rwsem(&vma_lock->rw_sema);
464 	vma_lock->vma = vma;
465 	vma->vm_private_data = vma_lock;
466 }
467 
468 /* Helper that removes a struct file_region from the resv_map cache and returns
469  * it for use.
470  */
471 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
473 {
474 	struct file_region *nrg;
475 
476 	VM_BUG_ON(resv->region_cache_count <= 0);
477 
478 	resv->region_cache_count--;
479 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
480 	list_del(&nrg->link);
481 
482 	nrg->from = from;
483 	nrg->to = to;
484 
485 	return nrg;
486 }
487 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
489 					      struct file_region *rg)
490 {
491 #ifdef CONFIG_CGROUP_HUGETLB
492 	nrg->reservation_counter = rg->reservation_counter;
493 	nrg->css = rg->css;
494 	if (rg->css)
495 		css_get(rg->css);
496 #endif
497 }
498 
499 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
501 						struct hstate *h,
502 						struct resv_map *resv,
503 						struct file_region *nrg)
504 {
505 #ifdef CONFIG_CGROUP_HUGETLB
506 	if (h_cg) {
507 		nrg->reservation_counter =
508 			&h_cg->rsvd_hugepage[hstate_index(h)];
509 		nrg->css = &h_cg->css;
510 		/*
511 		 * The caller will hold exactly one h_cg->css reference for the
512 		 * whole contiguous reservation region. But this area might be
513 		 * scattered when there are already some file_regions reside in
514 		 * it. As a result, many file_regions may share only one css
515 		 * reference. In order to ensure that one file_region must hold
516 		 * exactly one h_cg->css reference, we should do css_get for
517 		 * each file_region and leave the reference held by caller
518 		 * untouched.
519 		 */
520 		css_get(&h_cg->css);
521 		if (!resv->pages_per_hpage)
522 			resv->pages_per_hpage = pages_per_huge_page(h);
523 		/* pages_per_hpage should be the same for all entries in
524 		 * a resv_map.
525 		 */
526 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
527 	} else {
528 		nrg->reservation_counter = NULL;
529 		nrg->css = NULL;
530 	}
531 #endif
532 }
533 
put_uncharge_info(struct file_region * rg)534 static void put_uncharge_info(struct file_region *rg)
535 {
536 #ifdef CONFIG_CGROUP_HUGETLB
537 	if (rg->css)
538 		css_put(rg->css);
539 #endif
540 }
541 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)542 static bool has_same_uncharge_info(struct file_region *rg,
543 				   struct file_region *org)
544 {
545 #ifdef CONFIG_CGROUP_HUGETLB
546 	return rg->reservation_counter == org->reservation_counter &&
547 	       rg->css == org->css;
548 
549 #else
550 	return true;
551 #endif
552 }
553 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
555 {
556 	struct file_region *nrg, *prg;
557 
558 	prg = list_prev_entry(rg, link);
559 	if (&prg->link != &resv->regions && prg->to == rg->from &&
560 	    has_same_uncharge_info(prg, rg)) {
561 		prg->to = rg->to;
562 
563 		list_del(&rg->link);
564 		put_uncharge_info(rg);
565 		kfree(rg);
566 
567 		rg = prg;
568 	}
569 
570 	nrg = list_next_entry(rg, link);
571 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
572 	    has_same_uncharge_info(nrg, rg)) {
573 		nrg->from = rg->from;
574 
575 		list_del(&rg->link);
576 		put_uncharge_info(rg);
577 		kfree(rg);
578 	}
579 }
580 
581 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
583 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
584 		     long *regions_needed)
585 {
586 	struct file_region *nrg;
587 
588 	if (!regions_needed) {
589 		nrg = get_file_region_entry_from_cache(map, from, to);
590 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
591 		list_add(&nrg->link, rg);
592 		coalesce_file_region(map, nrg);
593 	} else
594 		*regions_needed += 1;
595 
596 	return to - from;
597 }
598 
599 /*
600  * Must be called with resv->lock held.
601  *
602  * Calling this with regions_needed != NULL will count the number of pages
603  * to be added but will not modify the linked list. And regions_needed will
604  * indicate the number of file_regions needed in the cache to carry out to add
605  * the regions for this range.
606  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)607 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
608 				     struct hugetlb_cgroup *h_cg,
609 				     struct hstate *h, long *regions_needed)
610 {
611 	long add = 0;
612 	struct list_head *head = &resv->regions;
613 	long last_accounted_offset = f;
614 	struct file_region *iter, *trg = NULL;
615 	struct list_head *rg = NULL;
616 
617 	if (regions_needed)
618 		*regions_needed = 0;
619 
620 	/* In this loop, we essentially handle an entry for the range
621 	 * [last_accounted_offset, iter->from), at every iteration, with some
622 	 * bounds checking.
623 	 */
624 	list_for_each_entry_safe(iter, trg, head, link) {
625 		/* Skip irrelevant regions that start before our range. */
626 		if (iter->from < f) {
627 			/* If this region ends after the last accounted offset,
628 			 * then we need to update last_accounted_offset.
629 			 */
630 			if (iter->to > last_accounted_offset)
631 				last_accounted_offset = iter->to;
632 			continue;
633 		}
634 
635 		/* When we find a region that starts beyond our range, we've
636 		 * finished.
637 		 */
638 		if (iter->from >= t) {
639 			rg = iter->link.prev;
640 			break;
641 		}
642 
643 		/* Add an entry for last_accounted_offset -> iter->from, and
644 		 * update last_accounted_offset.
645 		 */
646 		if (iter->from > last_accounted_offset)
647 			add += hugetlb_resv_map_add(resv, iter->link.prev,
648 						    last_accounted_offset,
649 						    iter->from, h, h_cg,
650 						    regions_needed);
651 
652 		last_accounted_offset = iter->to;
653 	}
654 
655 	/* Handle the case where our range extends beyond
656 	 * last_accounted_offset.
657 	 */
658 	if (!rg)
659 		rg = head->prev;
660 	if (last_accounted_offset < t)
661 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
662 					    t, h, h_cg, regions_needed);
663 
664 	return add;
665 }
666 
667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
668  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)669 static int allocate_file_region_entries(struct resv_map *resv,
670 					int regions_needed)
671 	__must_hold(&resv->lock)
672 {
673 	LIST_HEAD(allocated_regions);
674 	int to_allocate = 0, i = 0;
675 	struct file_region *trg = NULL, *rg = NULL;
676 
677 	VM_BUG_ON(regions_needed < 0);
678 
679 	/*
680 	 * Check for sufficient descriptors in the cache to accommodate
681 	 * the number of in progress add operations plus regions_needed.
682 	 *
683 	 * This is a while loop because when we drop the lock, some other call
684 	 * to region_add or region_del may have consumed some region_entries,
685 	 * so we keep looping here until we finally have enough entries for
686 	 * (adds_in_progress + regions_needed).
687 	 */
688 	while (resv->region_cache_count <
689 	       (resv->adds_in_progress + regions_needed)) {
690 		to_allocate = resv->adds_in_progress + regions_needed -
691 			      resv->region_cache_count;
692 
693 		/* At this point, we should have enough entries in the cache
694 		 * for all the existing adds_in_progress. We should only be
695 		 * needing to allocate for regions_needed.
696 		 */
697 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
698 
699 		spin_unlock(&resv->lock);
700 		for (i = 0; i < to_allocate; i++) {
701 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
702 			if (!trg)
703 				goto out_of_memory;
704 			list_add(&trg->link, &allocated_regions);
705 		}
706 
707 		spin_lock(&resv->lock);
708 
709 		list_splice(&allocated_regions, &resv->region_cache);
710 		resv->region_cache_count += to_allocate;
711 	}
712 
713 	return 0;
714 
715 out_of_memory:
716 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
717 		list_del(&rg->link);
718 		kfree(rg);
719 	}
720 	return -ENOMEM;
721 }
722 
723 /*
724  * Add the huge page range represented by [f, t) to the reserve
725  * map.  Regions will be taken from the cache to fill in this range.
726  * Sufficient regions should exist in the cache due to the previous
727  * call to region_chg with the same range, but in some cases the cache will not
728  * have sufficient entries due to races with other code doing region_add or
729  * region_del.  The extra needed entries will be allocated.
730  *
731  * regions_needed is the out value provided by a previous call to region_chg.
732  *
733  * Return the number of new huge pages added to the map.  This number is greater
734  * than or equal to zero.  If file_region entries needed to be allocated for
735  * this operation and we were not able to allocate, it returns -ENOMEM.
736  * region_add of regions of length 1 never allocate file_regions and cannot
737  * fail; region_chg will always allocate at least 1 entry and a region_add for
738  * 1 page will only require at most 1 entry.
739  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)740 static long region_add(struct resv_map *resv, long f, long t,
741 		       long in_regions_needed, struct hstate *h,
742 		       struct hugetlb_cgroup *h_cg)
743 {
744 	long add = 0, actual_regions_needed = 0;
745 
746 	spin_lock(&resv->lock);
747 retry:
748 
749 	/* Count how many regions are actually needed to execute this add. */
750 	add_reservation_in_range(resv, f, t, NULL, NULL,
751 				 &actual_regions_needed);
752 
753 	/*
754 	 * Check for sufficient descriptors in the cache to accommodate
755 	 * this add operation. Note that actual_regions_needed may be greater
756 	 * than in_regions_needed, as the resv_map may have been modified since
757 	 * the region_chg call. In this case, we need to make sure that we
758 	 * allocate extra entries, such that we have enough for all the
759 	 * existing adds_in_progress, plus the excess needed for this
760 	 * operation.
761 	 */
762 	if (actual_regions_needed > in_regions_needed &&
763 	    resv->region_cache_count <
764 		    resv->adds_in_progress +
765 			    (actual_regions_needed - in_regions_needed)) {
766 		/* region_add operation of range 1 should never need to
767 		 * allocate file_region entries.
768 		 */
769 		VM_BUG_ON(t - f <= 1);
770 
771 		if (allocate_file_region_entries(
772 			    resv, actual_regions_needed - in_regions_needed)) {
773 			return -ENOMEM;
774 		}
775 
776 		goto retry;
777 	}
778 
779 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
780 
781 	resv->adds_in_progress -= in_regions_needed;
782 
783 	spin_unlock(&resv->lock);
784 	return add;
785 }
786 
787 /*
788  * Examine the existing reserve map and determine how many
789  * huge pages in the specified range [f, t) are NOT currently
790  * represented.  This routine is called before a subsequent
791  * call to region_add that will actually modify the reserve
792  * map to add the specified range [f, t).  region_chg does
793  * not change the number of huge pages represented by the
794  * map.  A number of new file_region structures is added to the cache as a
795  * placeholder, for the subsequent region_add call to use. At least 1
796  * file_region structure is added.
797  *
798  * out_regions_needed is the number of regions added to the
799  * resv->adds_in_progress.  This value needs to be provided to a follow up call
800  * to region_add or region_abort for proper accounting.
801  *
802  * Returns the number of huge pages that need to be added to the existing
803  * reservation map for the range [f, t).  This number is greater or equal to
804  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
805  * is needed and can not be allocated.
806  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)807 static long region_chg(struct resv_map *resv, long f, long t,
808 		       long *out_regions_needed)
809 {
810 	long chg = 0;
811 
812 	spin_lock(&resv->lock);
813 
814 	/* Count how many hugepages in this range are NOT represented. */
815 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
816 				       out_regions_needed);
817 
818 	if (*out_regions_needed == 0)
819 		*out_regions_needed = 1;
820 
821 	if (allocate_file_region_entries(resv, *out_regions_needed))
822 		return -ENOMEM;
823 
824 	resv->adds_in_progress += *out_regions_needed;
825 
826 	spin_unlock(&resv->lock);
827 	return chg;
828 }
829 
830 /*
831  * Abort the in progress add operation.  The adds_in_progress field
832  * of the resv_map keeps track of the operations in progress between
833  * calls to region_chg and region_add.  Operations are sometimes
834  * aborted after the call to region_chg.  In such cases, region_abort
835  * is called to decrement the adds_in_progress counter. regions_needed
836  * is the value returned by the region_chg call, it is used to decrement
837  * the adds_in_progress counter.
838  *
839  * NOTE: The range arguments [f, t) are not needed or used in this
840  * routine.  They are kept to make reading the calling code easier as
841  * arguments will match the associated region_chg call.
842  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)843 static void region_abort(struct resv_map *resv, long f, long t,
844 			 long regions_needed)
845 {
846 	spin_lock(&resv->lock);
847 	VM_BUG_ON(!resv->region_cache_count);
848 	resv->adds_in_progress -= regions_needed;
849 	spin_unlock(&resv->lock);
850 }
851 
852 /*
853  * Delete the specified range [f, t) from the reserve map.  If the
854  * t parameter is LONG_MAX, this indicates that ALL regions after f
855  * should be deleted.  Locate the regions which intersect [f, t)
856  * and either trim, delete or split the existing regions.
857  *
858  * Returns the number of huge pages deleted from the reserve map.
859  * In the normal case, the return value is zero or more.  In the
860  * case where a region must be split, a new region descriptor must
861  * be allocated.  If the allocation fails, -ENOMEM will be returned.
862  * NOTE: If the parameter t == LONG_MAX, then we will never split
863  * a region and possibly return -ENOMEM.  Callers specifying
864  * t == LONG_MAX do not need to check for -ENOMEM error.
865  */
region_del(struct resv_map * resv,long f,long t)866 static long region_del(struct resv_map *resv, long f, long t)
867 {
868 	struct list_head *head = &resv->regions;
869 	struct file_region *rg, *trg;
870 	struct file_region *nrg = NULL;
871 	long del = 0;
872 
873 retry:
874 	spin_lock(&resv->lock);
875 	list_for_each_entry_safe(rg, trg, head, link) {
876 		/*
877 		 * Skip regions before the range to be deleted.  file_region
878 		 * ranges are normally of the form [from, to).  However, there
879 		 * may be a "placeholder" entry in the map which is of the form
880 		 * (from, to) with from == to.  Check for placeholder entries
881 		 * at the beginning of the range to be deleted.
882 		 */
883 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
884 			continue;
885 
886 		if (rg->from >= t)
887 			break;
888 
889 		if (f > rg->from && t < rg->to) { /* Must split region */
890 			/*
891 			 * Check for an entry in the cache before dropping
892 			 * lock and attempting allocation.
893 			 */
894 			if (!nrg &&
895 			    resv->region_cache_count > resv->adds_in_progress) {
896 				nrg = list_first_entry(&resv->region_cache,
897 							struct file_region,
898 							link);
899 				list_del(&nrg->link);
900 				resv->region_cache_count--;
901 			}
902 
903 			if (!nrg) {
904 				spin_unlock(&resv->lock);
905 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
906 				if (!nrg)
907 					return -ENOMEM;
908 				goto retry;
909 			}
910 
911 			del += t - f;
912 			hugetlb_cgroup_uncharge_file_region(
913 				resv, rg, t - f, false);
914 
915 			/* New entry for end of split region */
916 			nrg->from = t;
917 			nrg->to = rg->to;
918 
919 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
920 
921 			INIT_LIST_HEAD(&nrg->link);
922 
923 			/* Original entry is trimmed */
924 			rg->to = f;
925 
926 			list_add(&nrg->link, &rg->link);
927 			nrg = NULL;
928 			break;
929 		}
930 
931 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
932 			del += rg->to - rg->from;
933 			hugetlb_cgroup_uncharge_file_region(resv, rg,
934 							    rg->to - rg->from, true);
935 			list_del(&rg->link);
936 			kfree(rg);
937 			continue;
938 		}
939 
940 		if (f <= rg->from) {	/* Trim beginning of region */
941 			hugetlb_cgroup_uncharge_file_region(resv, rg,
942 							    t - rg->from, false);
943 
944 			del += t - rg->from;
945 			rg->from = t;
946 		} else {		/* Trim end of region */
947 			hugetlb_cgroup_uncharge_file_region(resv, rg,
948 							    rg->to - f, false);
949 
950 			del += rg->to - f;
951 			rg->to = f;
952 		}
953 	}
954 
955 	spin_unlock(&resv->lock);
956 	kfree(nrg);
957 	return del;
958 }
959 
960 /*
961  * A rare out of memory error was encountered which prevented removal of
962  * the reserve map region for a page.  The huge page itself was free'ed
963  * and removed from the page cache.  This routine will adjust the subpool
964  * usage count, and the global reserve count if needed.  By incrementing
965  * these counts, the reserve map entry which could not be deleted will
966  * appear as a "reserved" entry instead of simply dangling with incorrect
967  * counts.
968  */
hugetlb_fix_reserve_counts(struct inode * inode)969 void hugetlb_fix_reserve_counts(struct inode *inode)
970 {
971 	struct hugepage_subpool *spool = subpool_inode(inode);
972 	long rsv_adjust;
973 	bool reserved = false;
974 
975 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
976 	if (rsv_adjust > 0) {
977 		struct hstate *h = hstate_inode(inode);
978 
979 		if (!hugetlb_acct_memory(h, 1))
980 			reserved = true;
981 	} else if (!rsv_adjust) {
982 		reserved = true;
983 	}
984 
985 	if (!reserved)
986 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
987 }
988 
989 /*
990  * Count and return the number of huge pages in the reserve map
991  * that intersect with the range [f, t).
992  */
region_count(struct resv_map * resv,long f,long t)993 static long region_count(struct resv_map *resv, long f, long t)
994 {
995 	struct list_head *head = &resv->regions;
996 	struct file_region *rg;
997 	long chg = 0;
998 
999 	spin_lock(&resv->lock);
1000 	/* Locate each segment we overlap with, and count that overlap. */
1001 	list_for_each_entry(rg, head, link) {
1002 		long seg_from;
1003 		long seg_to;
1004 
1005 		if (rg->to <= f)
1006 			continue;
1007 		if (rg->from >= t)
1008 			break;
1009 
1010 		seg_from = max(rg->from, f);
1011 		seg_to = min(rg->to, t);
1012 
1013 		chg += seg_to - seg_from;
1014 	}
1015 	spin_unlock(&resv->lock);
1016 
1017 	return chg;
1018 }
1019 
1020 /*
1021  * Convert the address within this vma to the page offset within
1022  * the mapping, huge page units here.
1023  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1024 static pgoff_t vma_hugecache_offset(struct hstate *h,
1025 			struct vm_area_struct *vma, unsigned long address)
1026 {
1027 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
1028 			(vma->vm_pgoff >> huge_page_order(h));
1029 }
1030 
1031 /**
1032  * vma_kernel_pagesize - Page size granularity for this VMA.
1033  * @vma: The user mapping.
1034  *
1035  * Folios in this VMA will be aligned to, and at least the size of the
1036  * number of bytes returned by this function.
1037  *
1038  * Return: The default size of the folios allocated when backing a VMA.
1039  */
vma_kernel_pagesize(struct vm_area_struct * vma)1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1041 {
1042 	if (vma->vm_ops && vma->vm_ops->pagesize)
1043 		return vma->vm_ops->pagesize(vma);
1044 	return PAGE_SIZE;
1045 }
1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1047 
1048 /*
1049  * Return the page size being used by the MMU to back a VMA. In the majority
1050  * of cases, the page size used by the kernel matches the MMU size. On
1051  * architectures where it differs, an architecture-specific 'strong'
1052  * version of this symbol is required.
1053  */
vma_mmu_pagesize(struct vm_area_struct * vma)1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1055 {
1056 	return vma_kernel_pagesize(vma);
1057 }
1058 
1059 /*
1060  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1061  * bits of the reservation map pointer, which are always clear due to
1062  * alignment.
1063  */
1064 #define HPAGE_RESV_OWNER    (1UL << 0)
1065 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1067 
1068 /*
1069  * These helpers are used to track how many pages are reserved for
1070  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1071  * is guaranteed to have their future faults succeed.
1072  *
1073  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1074  * the reserve counters are updated with the hugetlb_lock held. It is safe
1075  * to reset the VMA at fork() time as it is not in use yet and there is no
1076  * chance of the global counters getting corrupted as a result of the values.
1077  *
1078  * The private mapping reservation is represented in a subtly different
1079  * manner to a shared mapping.  A shared mapping has a region map associated
1080  * with the underlying file, this region map represents the backing file
1081  * pages which have ever had a reservation assigned which this persists even
1082  * after the page is instantiated.  A private mapping has a region map
1083  * associated with the original mmap which is attached to all VMAs which
1084  * reference it, this region map represents those offsets which have consumed
1085  * reservation ie. where pages have been instantiated.
1086  */
get_vma_private_data(struct vm_area_struct * vma)1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1088 {
1089 	return (unsigned long)vma->vm_private_data;
1090 }
1091 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1092 static void set_vma_private_data(struct vm_area_struct *vma,
1093 							unsigned long value)
1094 {
1095 	vma->vm_private_data = (void *)value;
1096 }
1097 
1098 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1100 					  struct hugetlb_cgroup *h_cg,
1101 					  struct hstate *h)
1102 {
1103 #ifdef CONFIG_CGROUP_HUGETLB
1104 	if (!h_cg || !h) {
1105 		resv_map->reservation_counter = NULL;
1106 		resv_map->pages_per_hpage = 0;
1107 		resv_map->css = NULL;
1108 	} else {
1109 		resv_map->reservation_counter =
1110 			&h_cg->rsvd_hugepage[hstate_index(h)];
1111 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1112 		resv_map->css = &h_cg->css;
1113 	}
1114 #endif
1115 }
1116 
resv_map_alloc(void)1117 struct resv_map *resv_map_alloc(void)
1118 {
1119 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1120 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1121 
1122 	if (!resv_map || !rg) {
1123 		kfree(resv_map);
1124 		kfree(rg);
1125 		return NULL;
1126 	}
1127 
1128 	kref_init(&resv_map->refs);
1129 	spin_lock_init(&resv_map->lock);
1130 	INIT_LIST_HEAD(&resv_map->regions);
1131 	init_rwsem(&resv_map->rw_sema);
1132 
1133 	resv_map->adds_in_progress = 0;
1134 	/*
1135 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1136 	 * fields don't do cgroup accounting. On private mappings, these will be
1137 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1138 	 * reservations are to be un-charged from here.
1139 	 */
1140 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1141 
1142 	INIT_LIST_HEAD(&resv_map->region_cache);
1143 	list_add(&rg->link, &resv_map->region_cache);
1144 	resv_map->region_cache_count = 1;
1145 
1146 	return resv_map;
1147 }
1148 
resv_map_release(struct kref * ref)1149 void resv_map_release(struct kref *ref)
1150 {
1151 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1152 	struct list_head *head = &resv_map->region_cache;
1153 	struct file_region *rg, *trg;
1154 
1155 	/* Clear out any active regions before we release the map. */
1156 	region_del(resv_map, 0, LONG_MAX);
1157 
1158 	/* ... and any entries left in the cache */
1159 	list_for_each_entry_safe(rg, trg, head, link) {
1160 		list_del(&rg->link);
1161 		kfree(rg);
1162 	}
1163 
1164 	VM_BUG_ON(resv_map->adds_in_progress);
1165 
1166 	kfree(resv_map);
1167 }
1168 
inode_resv_map(struct inode * inode)1169 static inline struct resv_map *inode_resv_map(struct inode *inode)
1170 {
1171 	/*
1172 	 * At inode evict time, i_mapping may not point to the original
1173 	 * address space within the inode.  This original address space
1174 	 * contains the pointer to the resv_map.  So, always use the
1175 	 * address space embedded within the inode.
1176 	 * The VERY common case is inode->mapping == &inode->i_data but,
1177 	 * this may not be true for device special inodes.
1178 	 */
1179 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1180 }
1181 
vma_resv_map(struct vm_area_struct * vma)1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1183 {
1184 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1185 	if (vma->vm_flags & VM_MAYSHARE) {
1186 		struct address_space *mapping = vma->vm_file->f_mapping;
1187 		struct inode *inode = mapping->host;
1188 
1189 		return inode_resv_map(inode);
1190 
1191 	} else {
1192 		return (struct resv_map *)(get_vma_private_data(vma) &
1193 							~HPAGE_RESV_MASK);
1194 	}
1195 }
1196 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1198 {
1199 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1200 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1201 
1202 	set_vma_private_data(vma, (unsigned long)map);
1203 }
1204 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1206 {
1207 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1208 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1209 
1210 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1211 }
1212 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1214 {
1215 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1216 
1217 	return (get_vma_private_data(vma) & flag) != 0;
1218 }
1219 
__vma_private_lock(struct vm_area_struct * vma)1220 bool __vma_private_lock(struct vm_area_struct *vma)
1221 {
1222 	return !(vma->vm_flags & VM_MAYSHARE) &&
1223 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1224 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1225 }
1226 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1228 {
1229 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1230 	/*
1231 	 * Clear vm_private_data
1232 	 * - For shared mappings this is a per-vma semaphore that may be
1233 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1234 	 *   Before clearing, make sure pointer is not associated with vma
1235 	 *   as this will leak the structure.  This is the case when called
1236 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1237 	 *   been called to allocate a new structure.
1238 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1239 	 *   not apply to children.  Faults generated by the children are
1240 	 *   not guaranteed to succeed, even if read-only.
1241 	 */
1242 	if (vma->vm_flags & VM_MAYSHARE) {
1243 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1244 
1245 		if (vma_lock && vma_lock->vma != vma)
1246 			vma->vm_private_data = NULL;
1247 	} else
1248 		vma->vm_private_data = NULL;
1249 }
1250 
1251 /*
1252  * Reset and decrement one ref on hugepage private reservation.
1253  * Called with mm->mmap_lock writer semaphore held.
1254  * This function should be only used by mremap and operate on
1255  * same sized vma. It should never come here with last ref on the
1256  * reservation.
1257  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1259 {
1260 	/*
1261 	 * Clear the old hugetlb private page reservation.
1262 	 * It has already been transferred to new_vma.
1263 	 *
1264 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1265 	 * which copies vma into new_vma and unmaps vma. After the copy
1266 	 * operation both new_vma and vma share a reference to the resv_map
1267 	 * struct, and at that point vma is about to be unmapped. We don't
1268 	 * want to return the reservation to the pool at unmap of vma because
1269 	 * the reservation still lives on in new_vma, so simply decrement the
1270 	 * ref here and remove the resv_map reference from this vma.
1271 	 */
1272 	struct resv_map *reservations = vma_resv_map(vma);
1273 
1274 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1275 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1276 		kref_put(&reservations->refs, resv_map_release);
1277 	}
1278 
1279 	hugetlb_dup_vma_private(vma);
1280 }
1281 
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1283 {
1284 	int nid = folio_nid(folio);
1285 
1286 	lockdep_assert_held(&hugetlb_lock);
1287 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1288 
1289 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1290 	h->free_huge_pages++;
1291 	h->free_huge_pages_node[nid]++;
1292 	folio_set_hugetlb_freed(folio);
1293 }
1294 
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1296 								int nid)
1297 {
1298 	struct folio *folio;
1299 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1300 
1301 	lockdep_assert_held(&hugetlb_lock);
1302 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1303 		if (pin && !folio_is_longterm_pinnable(folio))
1304 			continue;
1305 
1306 		if (folio_test_hwpoison(folio))
1307 			continue;
1308 
1309 		if (is_migrate_isolate_page(&folio->page))
1310 			continue;
1311 
1312 		list_move(&folio->lru, &h->hugepage_activelist);
1313 		folio_ref_unfreeze(folio, 1);
1314 		folio_clear_hugetlb_freed(folio);
1315 		h->free_huge_pages--;
1316 		h->free_huge_pages_node[nid]--;
1317 		return folio;
1318 	}
1319 
1320 	return NULL;
1321 }
1322 
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1324 							int nid, nodemask_t *nmask)
1325 {
1326 	unsigned int cpuset_mems_cookie;
1327 	struct zonelist *zonelist;
1328 	struct zone *zone;
1329 	struct zoneref *z;
1330 	int node = NUMA_NO_NODE;
1331 
1332 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1333 	if (nid == NUMA_NO_NODE)
1334 		nid = numa_node_id();
1335 
1336 	zonelist = node_zonelist(nid, gfp_mask);
1337 
1338 retry_cpuset:
1339 	cpuset_mems_cookie = read_mems_allowed_begin();
1340 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1341 		struct folio *folio;
1342 
1343 		if (!cpuset_zone_allowed(zone, gfp_mask))
1344 			continue;
1345 		/*
1346 		 * no need to ask again on the same node. Pool is node rather than
1347 		 * zone aware
1348 		 */
1349 		if (zone_to_nid(zone) == node)
1350 			continue;
1351 		node = zone_to_nid(zone);
1352 
1353 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1354 		if (folio)
1355 			return folio;
1356 	}
1357 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1358 		goto retry_cpuset;
1359 
1360 	return NULL;
1361 }
1362 
available_huge_pages(struct hstate * h)1363 static unsigned long available_huge_pages(struct hstate *h)
1364 {
1365 	return h->free_huge_pages - h->resv_huge_pages;
1366 }
1367 
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1369 				struct vm_area_struct *vma,
1370 				unsigned long address, long gbl_chg)
1371 {
1372 	struct folio *folio = NULL;
1373 	struct mempolicy *mpol;
1374 	gfp_t gfp_mask;
1375 	nodemask_t *nodemask;
1376 	int nid;
1377 
1378 	/*
1379 	 * gbl_chg==1 means the allocation requires a new page that was not
1380 	 * reserved before.  Making sure there's at least one free page.
1381 	 */
1382 	if (gbl_chg && !available_huge_pages(h))
1383 		goto err;
1384 
1385 	gfp_mask = htlb_alloc_mask(h);
1386 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1387 
1388 	if (mpol_is_preferred_many(mpol)) {
1389 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1390 							nid, nodemask);
1391 
1392 		/* Fallback to all nodes if page==NULL */
1393 		nodemask = NULL;
1394 	}
1395 
1396 	if (!folio)
1397 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1398 							nid, nodemask);
1399 
1400 	mpol_cond_put(mpol);
1401 	return folio;
1402 
1403 err:
1404 	return NULL;
1405 }
1406 
1407 /*
1408  * common helper functions for hstate_next_node_to_{alloc|free}.
1409  * We may have allocated or freed a huge page based on a different
1410  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411  * be outside of *nodes_allowed.  Ensure that we use an allowed
1412  * node for alloc or free.
1413  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 {
1416 	nid = next_node_in(nid, *nodes_allowed);
1417 	VM_BUG_ON(nid >= MAX_NUMNODES);
1418 
1419 	return nid;
1420 }
1421 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1423 {
1424 	if (!node_isset(nid, *nodes_allowed))
1425 		nid = next_node_allowed(nid, nodes_allowed);
1426 	return nid;
1427 }
1428 
1429 /*
1430  * returns the previously saved node ["this node"] from which to
1431  * allocate a persistent huge page for the pool and advance the
1432  * next node from which to allocate, handling wrap at end of node
1433  * mask.
1434  */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1435 static int hstate_next_node_to_alloc(int *next_node,
1436 					nodemask_t *nodes_allowed)
1437 {
1438 	int nid;
1439 
1440 	VM_BUG_ON(!nodes_allowed);
1441 
1442 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1443 	*next_node = next_node_allowed(nid, nodes_allowed);
1444 
1445 	return nid;
1446 }
1447 
1448 /*
1449  * helper for remove_pool_hugetlb_folio() - return the previously saved
1450  * node ["this node"] from which to free a huge page.  Advance the
1451  * next node id whether or not we find a free huge page to free so
1452  * that the next attempt to free addresses the next node.
1453  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1455 {
1456 	int nid;
1457 
1458 	VM_BUG_ON(!nodes_allowed);
1459 
1460 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1462 
1463 	return nid;
1464 }
1465 
1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1473 	for (nr_nodes = nodes_weight(*mask);				\
1474 		nr_nodes > 0 &&						\
1475 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1476 		nr_nodes--)
1477 
1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1479 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1481 		int nid, nodemask_t *nodemask)
1482 {
1483 	struct folio *folio;
1484 	int order = huge_page_order(h);
1485 	bool retried = false;
1486 
1487 	if (nid == NUMA_NO_NODE)
1488 		nid = numa_mem_id();
1489 retry:
1490 	folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1491 	if (!folio) {
1492 		if (hugetlb_cma_exclusive_alloc())
1493 			return NULL;
1494 
1495 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1496 		if (!folio)
1497 			return NULL;
1498 	}
1499 
1500 	if (folio_ref_freeze(folio, 1))
1501 		return folio;
1502 
1503 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1504 	hugetlb_free_folio(folio);
1505 	if (!retried) {
1506 		retried = true;
1507 		goto retry;
1508 	}
1509 	return NULL;
1510 }
1511 
1512 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 					int nid, nodemask_t *nodemask)
1515 {
1516 	return NULL;
1517 }
1518 #endif /* CONFIG_CONTIG_ALLOC */
1519 
1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1522 					int nid, nodemask_t *nodemask)
1523 {
1524 	return NULL;
1525 }
1526 #endif
1527 
1528 /*
1529  * Remove hugetlb folio from lists.
1530  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1531  * folio appears as just a compound page.  Otherwise, wait until after
1532  * allocating vmemmap to clear the flag.
1533  *
1534  * Must be called with hugetlb lock held.
1535  */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1537 							bool adjust_surplus)
1538 {
1539 	int nid = folio_nid(folio);
1540 
1541 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1542 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1543 
1544 	lockdep_assert_held(&hugetlb_lock);
1545 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1546 		return;
1547 
1548 	list_del(&folio->lru);
1549 
1550 	if (folio_test_hugetlb_freed(folio)) {
1551 		folio_clear_hugetlb_freed(folio);
1552 		h->free_huge_pages--;
1553 		h->free_huge_pages_node[nid]--;
1554 	}
1555 	if (adjust_surplus) {
1556 		h->surplus_huge_pages--;
1557 		h->surplus_huge_pages_node[nid]--;
1558 	}
1559 
1560 	/*
1561 	 * We can only clear the hugetlb flag after allocating vmemmap
1562 	 * pages.  Otherwise, someone (memory error handling) may try to write
1563 	 * to tail struct pages.
1564 	 */
1565 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1566 		__folio_clear_hugetlb(folio);
1567 
1568 	h->nr_huge_pages--;
1569 	h->nr_huge_pages_node[nid]--;
1570 }
1571 
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1573 			     bool adjust_surplus)
1574 {
1575 	int nid = folio_nid(folio);
1576 
1577 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1578 
1579 	lockdep_assert_held(&hugetlb_lock);
1580 
1581 	INIT_LIST_HEAD(&folio->lru);
1582 	h->nr_huge_pages++;
1583 	h->nr_huge_pages_node[nid]++;
1584 
1585 	if (adjust_surplus) {
1586 		h->surplus_huge_pages++;
1587 		h->surplus_huge_pages_node[nid]++;
1588 	}
1589 
1590 	__folio_set_hugetlb(folio);
1591 	folio_change_private(folio, NULL);
1592 	/*
1593 	 * We have to set hugetlb_vmemmap_optimized again as above
1594 	 * folio_change_private(folio, NULL) cleared it.
1595 	 */
1596 	folio_set_hugetlb_vmemmap_optimized(folio);
1597 
1598 	arch_clear_hugetlb_flags(folio);
1599 	enqueue_hugetlb_folio(h, folio);
1600 }
1601 
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1602 static void __update_and_free_hugetlb_folio(struct hstate *h,
1603 						struct folio *folio)
1604 {
1605 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1606 
1607 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1608 		return;
1609 
1610 	/*
1611 	 * If we don't know which subpages are hwpoisoned, we can't free
1612 	 * the hugepage, so it's leaked intentionally.
1613 	 */
1614 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1615 		return;
1616 
1617 	/*
1618 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1619 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1620 	 * can only be passed hugetlb pages and will BUG otherwise.
1621 	 */
1622 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1623 		spin_lock_irq(&hugetlb_lock);
1624 		/*
1625 		 * If we cannot allocate vmemmap pages, just refuse to free the
1626 		 * page and put the page back on the hugetlb free list and treat
1627 		 * as a surplus page.
1628 		 */
1629 		add_hugetlb_folio(h, folio, true);
1630 		spin_unlock_irq(&hugetlb_lock);
1631 		return;
1632 	}
1633 
1634 	/*
1635 	 * If vmemmap pages were allocated above, then we need to clear the
1636 	 * hugetlb flag under the hugetlb lock.
1637 	 */
1638 	if (folio_test_hugetlb(folio)) {
1639 		spin_lock_irq(&hugetlb_lock);
1640 		__folio_clear_hugetlb(folio);
1641 		spin_unlock_irq(&hugetlb_lock);
1642 	}
1643 
1644 	/*
1645 	 * Move PageHWPoison flag from head page to the raw error pages,
1646 	 * which makes any healthy subpages reusable.
1647 	 */
1648 	if (unlikely(folio_test_hwpoison(folio)))
1649 		folio_clear_hugetlb_hwpoison(folio);
1650 
1651 	folio_ref_unfreeze(folio, 1);
1652 
1653 	hugetlb_free_folio(folio);
1654 }
1655 
1656 /*
1657  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1658  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1659  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1660  * the vmemmap pages.
1661  *
1662  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1663  * freed and frees them one-by-one. As the page->mapping pointer is going
1664  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1665  * structure of a lockless linked list of huge pages to be freed.
1666  */
1667 static LLIST_HEAD(hpage_freelist);
1668 
free_hpage_workfn(struct work_struct * work)1669 static void free_hpage_workfn(struct work_struct *work)
1670 {
1671 	struct llist_node *node;
1672 
1673 	node = llist_del_all(&hpage_freelist);
1674 
1675 	while (node) {
1676 		struct folio *folio;
1677 		struct hstate *h;
1678 
1679 		folio = container_of((struct address_space **)node,
1680 				     struct folio, mapping);
1681 		node = node->next;
1682 		folio->mapping = NULL;
1683 		/*
1684 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1685 		 * folio_hstate() is going to trigger because a previous call to
1686 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1687 		 * not use folio_hstate() directly.
1688 		 */
1689 		h = size_to_hstate(folio_size(folio));
1690 
1691 		__update_and_free_hugetlb_folio(h, folio);
1692 
1693 		cond_resched();
1694 	}
1695 }
1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1697 
flush_free_hpage_work(struct hstate * h)1698 static inline void flush_free_hpage_work(struct hstate *h)
1699 {
1700 	if (hugetlb_vmemmap_optimizable(h))
1701 		flush_work(&free_hpage_work);
1702 }
1703 
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1705 				 bool atomic)
1706 {
1707 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1708 		__update_and_free_hugetlb_folio(h, folio);
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1714 	 *
1715 	 * Only call schedule_work() if hpage_freelist is previously
1716 	 * empty. Otherwise, schedule_work() had been called but the workfn
1717 	 * hasn't retrieved the list yet.
1718 	 */
1719 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1720 		schedule_work(&free_hpage_work);
1721 }
1722 
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1723 static void bulk_vmemmap_restore_error(struct hstate *h,
1724 					struct list_head *folio_list,
1725 					struct list_head *non_hvo_folios)
1726 {
1727 	struct folio *folio, *t_folio;
1728 
1729 	if (!list_empty(non_hvo_folios)) {
1730 		/*
1731 		 * Free any restored hugetlb pages so that restore of the
1732 		 * entire list can be retried.
1733 		 * The idea is that in the common case of ENOMEM errors freeing
1734 		 * hugetlb pages with vmemmap we will free up memory so that we
1735 		 * can allocate vmemmap for more hugetlb pages.
1736 		 */
1737 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1738 			list_del(&folio->lru);
1739 			spin_lock_irq(&hugetlb_lock);
1740 			__folio_clear_hugetlb(folio);
1741 			spin_unlock_irq(&hugetlb_lock);
1742 			update_and_free_hugetlb_folio(h, folio, false);
1743 			cond_resched();
1744 		}
1745 	} else {
1746 		/*
1747 		 * In the case where there are no folios which can be
1748 		 * immediately freed, we loop through the list trying to restore
1749 		 * vmemmap individually in the hope that someone elsewhere may
1750 		 * have done something to cause success (such as freeing some
1751 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1752 		 * page is made a surplus page and removed from the list.
1753 		 * If are able to restore vmemmap and free one hugetlb page, we
1754 		 * quit processing the list to retry the bulk operation.
1755 		 */
1756 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1757 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1758 				list_del(&folio->lru);
1759 				spin_lock_irq(&hugetlb_lock);
1760 				add_hugetlb_folio(h, folio, true);
1761 				spin_unlock_irq(&hugetlb_lock);
1762 			} else {
1763 				list_del(&folio->lru);
1764 				spin_lock_irq(&hugetlb_lock);
1765 				__folio_clear_hugetlb(folio);
1766 				spin_unlock_irq(&hugetlb_lock);
1767 				update_and_free_hugetlb_folio(h, folio, false);
1768 				cond_resched();
1769 				break;
1770 			}
1771 	}
1772 }
1773 
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1774 static void update_and_free_pages_bulk(struct hstate *h,
1775 						struct list_head *folio_list)
1776 {
1777 	long ret;
1778 	struct folio *folio, *t_folio;
1779 	LIST_HEAD(non_hvo_folios);
1780 
1781 	/*
1782 	 * First allocate required vmemmmap (if necessary) for all folios.
1783 	 * Carefully handle errors and free up any available hugetlb pages
1784 	 * in an effort to make forward progress.
1785 	 */
1786 retry:
1787 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1788 	if (ret < 0) {
1789 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1790 		goto retry;
1791 	}
1792 
1793 	/*
1794 	 * At this point, list should be empty, ret should be >= 0 and there
1795 	 * should only be pages on the non_hvo_folios list.
1796 	 * Do note that the non_hvo_folios list could be empty.
1797 	 * Without HVO enabled, ret will be 0 and there is no need to call
1798 	 * __folio_clear_hugetlb as this was done previously.
1799 	 */
1800 	VM_WARN_ON(!list_empty(folio_list));
1801 	VM_WARN_ON(ret < 0);
1802 	if (!list_empty(&non_hvo_folios) && ret) {
1803 		spin_lock_irq(&hugetlb_lock);
1804 		list_for_each_entry(folio, &non_hvo_folios, lru)
1805 			__folio_clear_hugetlb(folio);
1806 		spin_unlock_irq(&hugetlb_lock);
1807 	}
1808 
1809 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1810 		update_and_free_hugetlb_folio(h, folio, false);
1811 		cond_resched();
1812 	}
1813 }
1814 
size_to_hstate(unsigned long size)1815 struct hstate *size_to_hstate(unsigned long size)
1816 {
1817 	struct hstate *h;
1818 
1819 	for_each_hstate(h) {
1820 		if (huge_page_size(h) == size)
1821 			return h;
1822 	}
1823 	return NULL;
1824 }
1825 
free_huge_folio(struct folio * folio)1826 void free_huge_folio(struct folio *folio)
1827 {
1828 	/*
1829 	 * Can't pass hstate in here because it is called from the
1830 	 * generic mm code.
1831 	 */
1832 	struct hstate *h = folio_hstate(folio);
1833 	int nid = folio_nid(folio);
1834 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1835 	bool restore_reserve;
1836 	unsigned long flags;
1837 
1838 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1839 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1840 
1841 	hugetlb_set_folio_subpool(folio, NULL);
1842 	if (folio_test_anon(folio))
1843 		__ClearPageAnonExclusive(&folio->page);
1844 	folio->mapping = NULL;
1845 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1846 	folio_clear_hugetlb_restore_reserve(folio);
1847 
1848 	/*
1849 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1850 	 * reservation.  If the page was associated with a subpool, there
1851 	 * would have been a page reserved in the subpool before allocation
1852 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1853 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1854 	 * remove the reserved page from the subpool.
1855 	 */
1856 	if (!restore_reserve) {
1857 		/*
1858 		 * A return code of zero implies that the subpool will be
1859 		 * under its minimum size if the reservation is not restored
1860 		 * after page is free.  Therefore, force restore_reserve
1861 		 * operation.
1862 		 */
1863 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1864 			restore_reserve = true;
1865 	}
1866 
1867 	spin_lock_irqsave(&hugetlb_lock, flags);
1868 	folio_clear_hugetlb_migratable(folio);
1869 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1870 				     pages_per_huge_page(h), folio);
1871 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1872 					  pages_per_huge_page(h), folio);
1873 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1874 	mem_cgroup_uncharge(folio);
1875 	if (restore_reserve)
1876 		h->resv_huge_pages++;
1877 
1878 	if (folio_test_hugetlb_temporary(folio)) {
1879 		remove_hugetlb_folio(h, folio, false);
1880 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1881 		update_and_free_hugetlb_folio(h, folio, true);
1882 	} else if (h->surplus_huge_pages_node[nid]) {
1883 		/* remove the page from active list */
1884 		remove_hugetlb_folio(h, folio, true);
1885 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1886 		update_and_free_hugetlb_folio(h, folio, true);
1887 	} else {
1888 		arch_clear_hugetlb_flags(folio);
1889 		enqueue_hugetlb_folio(h, folio);
1890 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1891 	}
1892 }
1893 
1894 /*
1895  * Must be called with the hugetlb lock held
1896  */
__prep_account_new_huge_page(struct hstate * h,int nid)1897 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1898 {
1899 	lockdep_assert_held(&hugetlb_lock);
1900 	h->nr_huge_pages++;
1901 	h->nr_huge_pages_node[nid]++;
1902 }
1903 
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1905 {
1906 	__folio_set_hugetlb(folio);
1907 	INIT_LIST_HEAD(&folio->lru);
1908 	hugetlb_set_folio_subpool(folio, NULL);
1909 	set_hugetlb_cgroup(folio, NULL);
1910 	set_hugetlb_cgroup_rsvd(folio, NULL);
1911 }
1912 
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1914 {
1915 	init_new_hugetlb_folio(h, folio);
1916 	hugetlb_vmemmap_optimize_folio(h, folio);
1917 }
1918 
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1920 {
1921 	__prep_new_hugetlb_folio(h, folio);
1922 	spin_lock_irq(&hugetlb_lock);
1923 	__prep_account_new_huge_page(h, nid);
1924 	spin_unlock_irq(&hugetlb_lock);
1925 }
1926 
1927 /*
1928  * Find and lock address space (mapping) in write mode.
1929  *
1930  * Upon entry, the folio is locked which means that folio_mapping() is
1931  * stable.  Due to locking order, we can only trylock_write.  If we can
1932  * not get the lock, simply return NULL to caller.
1933  */
hugetlb_folio_mapping_lock_write(struct folio * folio)1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1935 {
1936 	struct address_space *mapping = folio_mapping(folio);
1937 
1938 	if (!mapping)
1939 		return mapping;
1940 
1941 	if (i_mmap_trylock_write(mapping))
1942 		return mapping;
1943 
1944 	return NULL;
1945 }
1946 
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1948 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1949 		nodemask_t *node_alloc_noretry)
1950 {
1951 	int order = huge_page_order(h);
1952 	struct folio *folio;
1953 	bool alloc_try_hard = true;
1954 
1955 	/*
1956 	 * By default we always try hard to allocate the folio with
1957 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1958 	 * a loop (to adjust global huge page counts) and previous allocation
1959 	 * failed, do not continue to try hard on the same node.  Use the
1960 	 * node_alloc_noretry bitmap to manage this state information.
1961 	 */
1962 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 		alloc_try_hard = false;
1964 	if (alloc_try_hard)
1965 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 	if (nid == NUMA_NO_NODE)
1967 		nid = numa_mem_id();
1968 
1969 	folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1970 
1971 	/*
1972 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 	 * folio this indicates an overall state change.  Clear bit so
1974 	 * that we resume normal 'try hard' allocations.
1975 	 */
1976 	if (node_alloc_noretry && folio && !alloc_try_hard)
1977 		node_clear(nid, *node_alloc_noretry);
1978 
1979 	/*
1980 	 * If we tried hard to get a folio but failed, set bit so that
1981 	 * subsequent attempts will not try as hard until there is an
1982 	 * overall state change.
1983 	 */
1984 	if (node_alloc_noretry && !folio && alloc_try_hard)
1985 		node_set(nid, *node_alloc_noretry);
1986 
1987 	if (!folio) {
1988 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 		return NULL;
1990 	}
1991 
1992 	__count_vm_event(HTLB_BUDDY_PGALLOC);
1993 	return folio;
1994 }
1995 
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 		nodemask_t *node_alloc_noretry)
1999 {
2000 	struct folio *folio;
2001 
2002 	if (hstate_is_gigantic(h))
2003 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 	else
2005 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 	if (folio)
2007 		init_new_hugetlb_folio(h, folio);
2008 	return folio;
2009 }
2010 
2011 /*
2012  * Common helper to allocate a fresh hugetlb page. All specific allocators
2013  * should use this function to get new hugetlb pages
2014  *
2015  * Note that returned page is 'frozen':  ref count of head page and all tail
2016  * pages is zero.
2017  */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 	struct folio *folio;
2022 
2023 	if (hstate_is_gigantic(h))
2024 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 	else
2026 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 	if (!folio)
2028 		return NULL;
2029 
2030 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 	return folio;
2032 }
2033 
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 					struct list_head *folio_list)
2036 {
2037 	unsigned long flags;
2038 	struct folio *folio, *tmp_f;
2039 
2040 	/* Send list for bulk vmemmap optimization processing */
2041 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2042 
2043 	/* Add all new pool pages to free lists in one lock cycle */
2044 	spin_lock_irqsave(&hugetlb_lock, flags);
2045 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 		__prep_account_new_huge_page(h, folio_nid(folio));
2047 		enqueue_hugetlb_folio(h, folio);
2048 	}
2049 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051 
2052 /*
2053  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2054  * will later be added to the appropriate hugetlb pool.
2055  */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 					nodemask_t *nodes_allowed,
2058 					nodemask_t *node_alloc_noretry,
2059 					int *next_node)
2060 {
2061 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 	int nr_nodes, node;
2063 
2064 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 		struct folio *folio;
2066 
2067 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 					nodes_allowed, node_alloc_noretry);
2069 		if (folio)
2070 			return folio;
2071 	}
2072 
2073 	return NULL;
2074 }
2075 
2076 /*
2077  * Remove huge page from pool from next node to free.  Attempt to keep
2078  * persistent huge pages more or less balanced over allowed nodes.
2079  * This routine only 'removes' the hugetlb page.  The caller must make
2080  * an additional call to free the page to low level allocators.
2081  * Called with hugetlb_lock locked.
2082  */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 		nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 	int nr_nodes, node;
2087 	struct folio *folio = NULL;
2088 
2089 	lockdep_assert_held(&hugetlb_lock);
2090 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 		/*
2092 		 * If we're returning unused surplus pages, only examine
2093 		 * nodes with surplus pages.
2094 		 */
2095 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 		    !list_empty(&h->hugepage_freelists[node])) {
2097 			folio = list_entry(h->hugepage_freelists[node].next,
2098 					  struct folio, lru);
2099 			remove_hugetlb_folio(h, folio, acct_surplus);
2100 			break;
2101 		}
2102 	}
2103 
2104 	return folio;
2105 }
2106 
2107 /*
2108  * Dissolve a given free hugetlb folio into free buddy pages. This function
2109  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110  * This function returns values like below:
2111  *
2112  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113  *           when the system is under memory pressure and the feature of
2114  *           freeing unused vmemmap pages associated with each hugetlb page
2115  *           is enabled.
2116  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2117  *           (allocated or reserved.)
2118  *       0:  successfully dissolved free hugepages or the page is not a
2119  *           hugepage (considered as already dissolved)
2120  */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 	int rc = -EBUSY;
2124 
2125 retry:
2126 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 	if (!folio_test_hugetlb(folio))
2128 		return 0;
2129 
2130 	spin_lock_irq(&hugetlb_lock);
2131 	if (!folio_test_hugetlb(folio)) {
2132 		rc = 0;
2133 		goto out;
2134 	}
2135 
2136 	if (!folio_ref_count(folio)) {
2137 		struct hstate *h = folio_hstate(folio);
2138 		bool adjust_surplus = false;
2139 
2140 		if (!available_huge_pages(h))
2141 			goto out;
2142 
2143 		/*
2144 		 * We should make sure that the page is already on the free list
2145 		 * when it is dissolved.
2146 		 */
2147 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2148 			spin_unlock_irq(&hugetlb_lock);
2149 			cond_resched();
2150 
2151 			/*
2152 			 * Theoretically, we should return -EBUSY when we
2153 			 * encounter this race. In fact, we have a chance
2154 			 * to successfully dissolve the page if we do a
2155 			 * retry. Because the race window is quite small.
2156 			 * If we seize this opportunity, it is an optimization
2157 			 * for increasing the success rate of dissolving page.
2158 			 */
2159 			goto retry;
2160 		}
2161 
2162 		if (h->surplus_huge_pages_node[folio_nid(folio)])
2163 			adjust_surplus = true;
2164 		remove_hugetlb_folio(h, folio, adjust_surplus);
2165 		h->max_huge_pages--;
2166 		spin_unlock_irq(&hugetlb_lock);
2167 
2168 		/*
2169 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2170 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2171 		 * free the page if it can not allocate required vmemmap.  We
2172 		 * need to adjust max_huge_pages if the page is not freed.
2173 		 * Attempt to allocate vmemmmap here so that we can take
2174 		 * appropriate action on failure.
2175 		 *
2176 		 * The folio_test_hugetlb check here is because
2177 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2178 		 * non-vmemmap optimized hugetlb folios.
2179 		 */
2180 		if (folio_test_hugetlb(folio)) {
2181 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2182 			if (rc) {
2183 				spin_lock_irq(&hugetlb_lock);
2184 				add_hugetlb_folio(h, folio, adjust_surplus);
2185 				h->max_huge_pages++;
2186 				goto out;
2187 			}
2188 		} else
2189 			rc = 0;
2190 
2191 		update_and_free_hugetlb_folio(h, folio, false);
2192 		return rc;
2193 	}
2194 out:
2195 	spin_unlock_irq(&hugetlb_lock);
2196 	return rc;
2197 }
2198 
2199 /*
2200  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201  * make specified memory blocks removable from the system.
2202  * Note that this will dissolve a free gigantic hugepage completely, if any
2203  * part of it lies within the given range.
2204  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2205  * free hugetlb folios that were dissolved before that error are lost.
2206  */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209 	unsigned long pfn;
2210 	struct folio *folio;
2211 	int rc = 0;
2212 	unsigned int order;
2213 	struct hstate *h;
2214 
2215 	if (!hugepages_supported())
2216 		return rc;
2217 
2218 	order = huge_page_order(&default_hstate);
2219 	for_each_hstate(h)
2220 		order = min(order, huge_page_order(h));
2221 
2222 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223 		folio = pfn_folio(pfn);
2224 		rc = dissolve_free_hugetlb_folio(folio);
2225 		if (rc)
2226 			break;
2227 	}
2228 
2229 	return rc;
2230 }
2231 
2232 /*
2233  * Allocates a fresh surplus page from the page allocator.
2234  */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2236 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2237 {
2238 	struct folio *folio = NULL;
2239 
2240 	if (hstate_is_gigantic(h))
2241 		return NULL;
2242 
2243 	spin_lock_irq(&hugetlb_lock);
2244 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 		goto out_unlock;
2246 	spin_unlock_irq(&hugetlb_lock);
2247 
2248 	folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2249 	if (!folio)
2250 		return NULL;
2251 
2252 	hugetlb_vmemmap_optimize_folio(h, folio);
2253 
2254 	spin_lock_irq(&hugetlb_lock);
2255 	/*
2256 	 * nr_huge_pages needs to be adjusted within the same lock cycle
2257 	 * as surplus_pages, otherwise it might confuse
2258 	 * persistent_huge_pages() momentarily.
2259 	 */
2260 	__prep_account_new_huge_page(h, folio_nid(folio));
2261 
2262 	/*
2263 	 * We could have raced with the pool size change.
2264 	 * Double check that and simply deallocate the new page
2265 	 * if we would end up overcommiting the surpluses. Abuse
2266 	 * temporary page to workaround the nasty free_huge_folio
2267 	 * codeflow
2268 	 */
2269 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2270 		folio_set_hugetlb_temporary(folio);
2271 		spin_unlock_irq(&hugetlb_lock);
2272 		free_huge_folio(folio);
2273 		return NULL;
2274 	}
2275 
2276 	h->surplus_huge_pages++;
2277 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2278 
2279 out_unlock:
2280 	spin_unlock_irq(&hugetlb_lock);
2281 
2282 	return folio;
2283 }
2284 
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2286 				     int nid, nodemask_t *nmask)
2287 {
2288 	struct folio *folio;
2289 
2290 	if (hstate_is_gigantic(h))
2291 		return NULL;
2292 
2293 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2294 	if (!folio)
2295 		return NULL;
2296 
2297 	/* fresh huge pages are frozen */
2298 	folio_ref_unfreeze(folio, 1);
2299 	/*
2300 	 * We do not account these pages as surplus because they are only
2301 	 * temporary and will be released properly on the last reference
2302 	 */
2303 	folio_set_hugetlb_temporary(folio);
2304 
2305 	return folio;
2306 }
2307 
2308 /*
2309  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2310  */
2311 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2313 		struct vm_area_struct *vma, unsigned long addr)
2314 {
2315 	struct folio *folio = NULL;
2316 	struct mempolicy *mpol;
2317 	gfp_t gfp_mask = htlb_alloc_mask(h);
2318 	int nid;
2319 	nodemask_t *nodemask;
2320 
2321 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2322 	if (mpol_is_preferred_many(mpol)) {
2323 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2324 
2325 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2326 
2327 		/* Fallback to all nodes if page==NULL */
2328 		nodemask = NULL;
2329 	}
2330 
2331 	if (!folio)
2332 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2333 	mpol_cond_put(mpol);
2334 	return folio;
2335 }
2336 
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2338 		nodemask_t *nmask, gfp_t gfp_mask)
2339 {
2340 	struct folio *folio;
2341 
2342 	spin_lock_irq(&hugetlb_lock);
2343 	if (!h->resv_huge_pages) {
2344 		spin_unlock_irq(&hugetlb_lock);
2345 		return NULL;
2346 	}
2347 
2348 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2349 					       nmask);
2350 	if (folio)
2351 		h->resv_huge_pages--;
2352 
2353 	spin_unlock_irq(&hugetlb_lock);
2354 	return folio;
2355 }
2356 
2357 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2358 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2359 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2360 {
2361 	spin_lock_irq(&hugetlb_lock);
2362 	if (available_huge_pages(h)) {
2363 		struct folio *folio;
2364 
2365 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2366 						preferred_nid, nmask);
2367 		if (folio) {
2368 			spin_unlock_irq(&hugetlb_lock);
2369 			return folio;
2370 		}
2371 	}
2372 	spin_unlock_irq(&hugetlb_lock);
2373 
2374 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2375 	if (!allow_alloc_fallback)
2376 		gfp_mask |= __GFP_THISNODE;
2377 
2378 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2379 }
2380 
policy_mbind_nodemask(gfp_t gfp)2381 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2382 {
2383 #ifdef CONFIG_NUMA
2384 	struct mempolicy *mpol = get_task_policy(current);
2385 
2386 	/*
2387 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2388 	 * (from policy_nodemask) specifically for hugetlb case
2389 	 */
2390 	if (mpol->mode == MPOL_BIND &&
2391 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2392 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2393 		return &mpol->nodes;
2394 #endif
2395 	return NULL;
2396 }
2397 
2398 /*
2399  * Increase the hugetlb pool such that it can accommodate a reservation
2400  * of size 'delta'.
2401  */
gather_surplus_pages(struct hstate * h,long delta)2402 static int gather_surplus_pages(struct hstate *h, long delta)
2403 	__must_hold(&hugetlb_lock)
2404 {
2405 	LIST_HEAD(surplus_list);
2406 	struct folio *folio, *tmp;
2407 	int ret;
2408 	long i;
2409 	long needed, allocated;
2410 	bool alloc_ok = true;
2411 	nodemask_t *mbind_nodemask, alloc_nodemask;
2412 
2413 	mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2414 	if (mbind_nodemask)
2415 		nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2416 	else
2417 		alloc_nodemask = cpuset_current_mems_allowed;
2418 
2419 	lockdep_assert_held(&hugetlb_lock);
2420 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2421 	if (needed <= 0) {
2422 		h->resv_huge_pages += delta;
2423 		return 0;
2424 	}
2425 
2426 	allocated = 0;
2427 
2428 	ret = -ENOMEM;
2429 retry:
2430 	spin_unlock_irq(&hugetlb_lock);
2431 	for (i = 0; i < needed; i++) {
2432 		folio = NULL;
2433 
2434 		/*
2435 		 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2436 		 * down the road to pick the current node if that is the case.
2437 		 */
2438 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2439 						    NUMA_NO_NODE, &alloc_nodemask);
2440 		if (!folio) {
2441 			alloc_ok = false;
2442 			break;
2443 		}
2444 		list_add(&folio->lru, &surplus_list);
2445 		cond_resched();
2446 	}
2447 	allocated += i;
2448 
2449 	/*
2450 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2451 	 * because either resv_huge_pages or free_huge_pages may have changed.
2452 	 */
2453 	spin_lock_irq(&hugetlb_lock);
2454 	needed = (h->resv_huge_pages + delta) -
2455 			(h->free_huge_pages + allocated);
2456 	if (needed > 0) {
2457 		if (alloc_ok)
2458 			goto retry;
2459 		/*
2460 		 * We were not able to allocate enough pages to
2461 		 * satisfy the entire reservation so we free what
2462 		 * we've allocated so far.
2463 		 */
2464 		goto free;
2465 	}
2466 	/*
2467 	 * The surplus_list now contains _at_least_ the number of extra pages
2468 	 * needed to accommodate the reservation.  Add the appropriate number
2469 	 * of pages to the hugetlb pool and free the extras back to the buddy
2470 	 * allocator.  Commit the entire reservation here to prevent another
2471 	 * process from stealing the pages as they are added to the pool but
2472 	 * before they are reserved.
2473 	 */
2474 	needed += allocated;
2475 	h->resv_huge_pages += delta;
2476 	ret = 0;
2477 
2478 	/* Free the needed pages to the hugetlb pool */
2479 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2480 		if ((--needed) < 0)
2481 			break;
2482 		/* Add the page to the hugetlb allocator */
2483 		enqueue_hugetlb_folio(h, folio);
2484 	}
2485 free:
2486 	spin_unlock_irq(&hugetlb_lock);
2487 
2488 	/*
2489 	 * Free unnecessary surplus pages to the buddy allocator.
2490 	 * Pages have no ref count, call free_huge_folio directly.
2491 	 */
2492 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2493 		free_huge_folio(folio);
2494 	spin_lock_irq(&hugetlb_lock);
2495 
2496 	return ret;
2497 }
2498 
2499 /*
2500  * This routine has two main purposes:
2501  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2502  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2503  *    to the associated reservation map.
2504  * 2) Free any unused surplus pages that may have been allocated to satisfy
2505  *    the reservation.  As many as unused_resv_pages may be freed.
2506  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2507 static void return_unused_surplus_pages(struct hstate *h,
2508 					unsigned long unused_resv_pages)
2509 {
2510 	unsigned long nr_pages;
2511 	LIST_HEAD(page_list);
2512 
2513 	lockdep_assert_held(&hugetlb_lock);
2514 	/* Uncommit the reservation */
2515 	h->resv_huge_pages -= unused_resv_pages;
2516 
2517 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2518 		goto out;
2519 
2520 	/*
2521 	 * Part (or even all) of the reservation could have been backed
2522 	 * by pre-allocated pages. Only free surplus pages.
2523 	 */
2524 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2525 
2526 	/*
2527 	 * We want to release as many surplus pages as possible, spread
2528 	 * evenly across all nodes with memory. Iterate across these nodes
2529 	 * until we can no longer free unreserved surplus pages. This occurs
2530 	 * when the nodes with surplus pages have no free pages.
2531 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2532 	 * on-line nodes with memory and will handle the hstate accounting.
2533 	 */
2534 	while (nr_pages--) {
2535 		struct folio *folio;
2536 
2537 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2538 		if (!folio)
2539 			goto out;
2540 
2541 		list_add(&folio->lru, &page_list);
2542 	}
2543 
2544 out:
2545 	spin_unlock_irq(&hugetlb_lock);
2546 	update_and_free_pages_bulk(h, &page_list);
2547 	spin_lock_irq(&hugetlb_lock);
2548 }
2549 
2550 
2551 /*
2552  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2553  * are used by the huge page allocation routines to manage reservations.
2554  *
2555  * vma_needs_reservation is called to determine if the huge page at addr
2556  * within the vma has an associated reservation.  If a reservation is
2557  * needed, the value 1 is returned.  The caller is then responsible for
2558  * managing the global reservation and subpool usage counts.  After
2559  * the huge page has been allocated, vma_commit_reservation is called
2560  * to add the page to the reservation map.  If the page allocation fails,
2561  * the reservation must be ended instead of committed.  vma_end_reservation
2562  * is called in such cases.
2563  *
2564  * In the normal case, vma_commit_reservation returns the same value
2565  * as the preceding vma_needs_reservation call.  The only time this
2566  * is not the case is if a reserve map was changed between calls.  It
2567  * is the responsibility of the caller to notice the difference and
2568  * take appropriate action.
2569  *
2570  * vma_add_reservation is used in error paths where a reservation must
2571  * be restored when a newly allocated huge page must be freed.  It is
2572  * to be called after calling vma_needs_reservation to determine if a
2573  * reservation exists.
2574  *
2575  * vma_del_reservation is used in error paths where an entry in the reserve
2576  * map was created during huge page allocation and must be removed.  It is to
2577  * be called after calling vma_needs_reservation to determine if a reservation
2578  * exists.
2579  */
2580 enum vma_resv_mode {
2581 	VMA_NEEDS_RESV,
2582 	VMA_COMMIT_RESV,
2583 	VMA_END_RESV,
2584 	VMA_ADD_RESV,
2585 	VMA_DEL_RESV,
2586 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2587 static long __vma_reservation_common(struct hstate *h,
2588 				struct vm_area_struct *vma, unsigned long addr,
2589 				enum vma_resv_mode mode)
2590 {
2591 	struct resv_map *resv;
2592 	pgoff_t idx;
2593 	long ret;
2594 	long dummy_out_regions_needed;
2595 
2596 	resv = vma_resv_map(vma);
2597 	if (!resv)
2598 		return 1;
2599 
2600 	idx = vma_hugecache_offset(h, vma, addr);
2601 	switch (mode) {
2602 	case VMA_NEEDS_RESV:
2603 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2604 		/* We assume that vma_reservation_* routines always operate on
2605 		 * 1 page, and that adding to resv map a 1 page entry can only
2606 		 * ever require 1 region.
2607 		 */
2608 		VM_BUG_ON(dummy_out_regions_needed != 1);
2609 		break;
2610 	case VMA_COMMIT_RESV:
2611 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2612 		/* region_add calls of range 1 should never fail. */
2613 		VM_BUG_ON(ret < 0);
2614 		break;
2615 	case VMA_END_RESV:
2616 		region_abort(resv, idx, idx + 1, 1);
2617 		ret = 0;
2618 		break;
2619 	case VMA_ADD_RESV:
2620 		if (vma->vm_flags & VM_MAYSHARE) {
2621 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2622 			/* region_add calls of range 1 should never fail. */
2623 			VM_BUG_ON(ret < 0);
2624 		} else {
2625 			region_abort(resv, idx, idx + 1, 1);
2626 			ret = region_del(resv, idx, idx + 1);
2627 		}
2628 		break;
2629 	case VMA_DEL_RESV:
2630 		if (vma->vm_flags & VM_MAYSHARE) {
2631 			region_abort(resv, idx, idx + 1, 1);
2632 			ret = region_del(resv, idx, idx + 1);
2633 		} else {
2634 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2635 			/* region_add calls of range 1 should never fail. */
2636 			VM_BUG_ON(ret < 0);
2637 		}
2638 		break;
2639 	default:
2640 		BUG();
2641 	}
2642 
2643 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2644 		return ret;
2645 	/*
2646 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2647 	 *
2648 	 * In most cases, reserves always exist for private mappings.
2649 	 * However, a file associated with mapping could have been
2650 	 * hole punched or truncated after reserves were consumed.
2651 	 * As subsequent fault on such a range will not use reserves.
2652 	 * Subtle - The reserve map for private mappings has the
2653 	 * opposite meaning than that of shared mappings.  If NO
2654 	 * entry is in the reserve map, it means a reservation exists.
2655 	 * If an entry exists in the reserve map, it means the
2656 	 * reservation has already been consumed.  As a result, the
2657 	 * return value of this routine is the opposite of the
2658 	 * value returned from reserve map manipulation routines above.
2659 	 */
2660 	if (ret > 0)
2661 		return 0;
2662 	if (ret == 0)
2663 		return 1;
2664 	return ret;
2665 }
2666 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2667 static long vma_needs_reservation(struct hstate *h,
2668 			struct vm_area_struct *vma, unsigned long addr)
2669 {
2670 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2671 }
2672 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2673 static long vma_commit_reservation(struct hstate *h,
2674 			struct vm_area_struct *vma, unsigned long addr)
2675 {
2676 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2677 }
2678 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2679 static void vma_end_reservation(struct hstate *h,
2680 			struct vm_area_struct *vma, unsigned long addr)
2681 {
2682 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2683 }
2684 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2685 static long vma_add_reservation(struct hstate *h,
2686 			struct vm_area_struct *vma, unsigned long addr)
2687 {
2688 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2689 }
2690 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2691 static long vma_del_reservation(struct hstate *h,
2692 			struct vm_area_struct *vma, unsigned long addr)
2693 {
2694 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2695 }
2696 
2697 /*
2698  * This routine is called to restore reservation information on error paths.
2699  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2700  * and the hugetlb mutex should remain held when calling this routine.
2701  *
2702  * It handles two specific cases:
2703  * 1) A reservation was in place and the folio consumed the reservation.
2704  *    hugetlb_restore_reserve is set in the folio.
2705  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2706  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2707  *
2708  * In case 1, free_huge_folio later in the error path will increment the
2709  * global reserve count.  But, free_huge_folio does not have enough context
2710  * to adjust the reservation map.  This case deals primarily with private
2711  * mappings.  Adjust the reserve map here to be consistent with global
2712  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2713  * reserve map indicates there is a reservation present.
2714  *
2715  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2716  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2717 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2718 			unsigned long address, struct folio *folio)
2719 {
2720 	long rc = vma_needs_reservation(h, vma, address);
2721 
2722 	if (folio_test_hugetlb_restore_reserve(folio)) {
2723 		if (unlikely(rc < 0))
2724 			/*
2725 			 * Rare out of memory condition in reserve map
2726 			 * manipulation.  Clear hugetlb_restore_reserve so
2727 			 * that global reserve count will not be incremented
2728 			 * by free_huge_folio.  This will make it appear
2729 			 * as though the reservation for this folio was
2730 			 * consumed.  This may prevent the task from
2731 			 * faulting in the folio at a later time.  This
2732 			 * is better than inconsistent global huge page
2733 			 * accounting of reserve counts.
2734 			 */
2735 			folio_clear_hugetlb_restore_reserve(folio);
2736 		else if (rc)
2737 			(void)vma_add_reservation(h, vma, address);
2738 		else
2739 			vma_end_reservation(h, vma, address);
2740 	} else {
2741 		if (!rc) {
2742 			/*
2743 			 * This indicates there is an entry in the reserve map
2744 			 * not added by alloc_hugetlb_folio.  We know it was added
2745 			 * before the alloc_hugetlb_folio call, otherwise
2746 			 * hugetlb_restore_reserve would be set on the folio.
2747 			 * Remove the entry so that a subsequent allocation
2748 			 * does not consume a reservation.
2749 			 */
2750 			rc = vma_del_reservation(h, vma, address);
2751 			if (rc < 0)
2752 				/*
2753 				 * VERY rare out of memory condition.  Since
2754 				 * we can not delete the entry, set
2755 				 * hugetlb_restore_reserve so that the reserve
2756 				 * count will be incremented when the folio
2757 				 * is freed.  This reserve will be consumed
2758 				 * on a subsequent allocation.
2759 				 */
2760 				folio_set_hugetlb_restore_reserve(folio);
2761 		} else if (rc < 0) {
2762 			/*
2763 			 * Rare out of memory condition from
2764 			 * vma_needs_reservation call.  Memory allocation is
2765 			 * only attempted if a new entry is needed.  Therefore,
2766 			 * this implies there is not an entry in the
2767 			 * reserve map.
2768 			 *
2769 			 * For shared mappings, no entry in the map indicates
2770 			 * no reservation.  We are done.
2771 			 */
2772 			if (!(vma->vm_flags & VM_MAYSHARE))
2773 				/*
2774 				 * For private mappings, no entry indicates
2775 				 * a reservation is present.  Since we can
2776 				 * not add an entry, set hugetlb_restore_reserve
2777 				 * on the folio so reserve count will be
2778 				 * incremented when freed.  This reserve will
2779 				 * be consumed on a subsequent allocation.
2780 				 */
2781 				folio_set_hugetlb_restore_reserve(folio);
2782 		} else
2783 			/*
2784 			 * No reservation present, do nothing
2785 			 */
2786 			 vma_end_reservation(h, vma, address);
2787 	}
2788 }
2789 
2790 /*
2791  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2792  * the old one
2793  * @old_folio: Old folio to dissolve
2794  * @list: List to isolate the page in case we need to
2795  * Returns 0 on success, otherwise negated error.
2796  */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2797 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2798 			struct list_head *list)
2799 {
2800 	gfp_t gfp_mask;
2801 	struct hstate *h;
2802 	int nid = folio_nid(old_folio);
2803 	struct folio *new_folio = NULL;
2804 	int ret = 0;
2805 
2806 retry:
2807 	/*
2808 	 * The old_folio might have been dissolved from under our feet, so make sure
2809 	 * to carefully check the state under the lock.
2810 	 */
2811 	spin_lock_irq(&hugetlb_lock);
2812 	if (!folio_test_hugetlb(old_folio)) {
2813 		/*
2814 		 * Freed from under us. Drop new_folio too.
2815 		 */
2816 		goto free_new;
2817 	} else if (folio_ref_count(old_folio)) {
2818 		bool isolated;
2819 
2820 		/*
2821 		 * Someone has grabbed the folio, try to isolate it here.
2822 		 * Fail with -EBUSY if not possible.
2823 		 */
2824 		spin_unlock_irq(&hugetlb_lock);
2825 		isolated = folio_isolate_hugetlb(old_folio, list);
2826 		ret = isolated ? 0 : -EBUSY;
2827 		spin_lock_irq(&hugetlb_lock);
2828 		goto free_new;
2829 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2830 		/*
2831 		 * Folio's refcount is 0 but it has not been enqueued in the
2832 		 * freelist yet. Race window is small, so we can succeed here if
2833 		 * we retry.
2834 		 */
2835 		spin_unlock_irq(&hugetlb_lock);
2836 		cond_resched();
2837 		goto retry;
2838 	} else {
2839 		h = folio_hstate(old_folio);
2840 		if (!new_folio) {
2841 			spin_unlock_irq(&hugetlb_lock);
2842 			gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2843 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2844 							      NULL, NULL);
2845 			if (!new_folio)
2846 				return -ENOMEM;
2847 			__prep_new_hugetlb_folio(h, new_folio);
2848 			goto retry;
2849 		}
2850 
2851 		/*
2852 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2853 		 * the freelist and decrease the counters. These will be
2854 		 * incremented again when calling __prep_account_new_huge_page()
2855 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2856 		 * remain stable since this happens under the lock.
2857 		 */
2858 		remove_hugetlb_folio(h, old_folio, false);
2859 
2860 		/*
2861 		 * Ref count on new_folio is already zero as it was dropped
2862 		 * earlier.  It can be directly added to the pool free list.
2863 		 */
2864 		__prep_account_new_huge_page(h, nid);
2865 		enqueue_hugetlb_folio(h, new_folio);
2866 
2867 		/*
2868 		 * Folio has been replaced, we can safely free the old one.
2869 		 */
2870 		spin_unlock_irq(&hugetlb_lock);
2871 		update_and_free_hugetlb_folio(h, old_folio, false);
2872 	}
2873 
2874 	return ret;
2875 
2876 free_new:
2877 	spin_unlock_irq(&hugetlb_lock);
2878 	if (new_folio)
2879 		update_and_free_hugetlb_folio(h, new_folio, false);
2880 
2881 	return ret;
2882 }
2883 
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2884 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2885 {
2886 	int ret = -EBUSY;
2887 
2888 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2889 	if (!folio_test_hugetlb(folio))
2890 		return 0;
2891 
2892 	/*
2893 	 * Fence off gigantic pages as there is a cyclic dependency between
2894 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2895 	 * of bailing out right away without further retrying.
2896 	 */
2897 	if (folio_order(folio) > MAX_PAGE_ORDER)
2898 		return -ENOMEM;
2899 
2900 	if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2901 		ret = 0;
2902 	else if (!folio_ref_count(folio))
2903 		ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2904 
2905 	return ret;
2906 }
2907 
2908 /*
2909  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2910  *  range with new folios.
2911  *  @start_pfn: start pfn of the given pfn range
2912  *  @end_pfn: end pfn of the given pfn range
2913  *  Returns 0 on success, otherwise negated error.
2914  */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2916 {
2917 	struct folio *folio;
2918 	int ret = 0;
2919 
2920 	LIST_HEAD(isolate_list);
2921 
2922 	while (start_pfn < end_pfn) {
2923 		folio = pfn_folio(start_pfn);
2924 
2925 		/* Not to disrupt normal path by vainly holding hugetlb_lock */
2926 		if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2927 			ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2928 			if (ret)
2929 				break;
2930 
2931 			putback_movable_pages(&isolate_list);
2932 		}
2933 		start_pfn++;
2934 	}
2935 
2936 	return ret;
2937 }
2938 
wait_for_freed_hugetlb_folios(void)2939 void wait_for_freed_hugetlb_folios(void)
2940 {
2941 	if (llist_empty(&hpage_freelist))
2942 		return;
2943 
2944 	flush_work(&free_hpage_work);
2945 }
2946 
2947 typedef enum {
2948 	/*
2949 	 * For either 0/1: we checked the per-vma resv map, and one resv
2950 	 * count either can be reused (0), or an extra needed (1).
2951 	 */
2952 	MAP_CHG_REUSE = 0,
2953 	MAP_CHG_NEEDED = 1,
2954 	/*
2955 	 * Cannot use per-vma resv count can be used, hence a new resv
2956 	 * count is enforced.
2957 	 *
2958 	 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2959 	 * that currently vma_needs_reservation() has an unwanted side
2960 	 * effect to either use end() or commit() to complete the
2961 	 * transaction.	 Hence it needs to differenciate from NEEDED.
2962 	 */
2963 	MAP_CHG_ENFORCED = 2,
2964 } map_chg_state;
2965 
2966 /*
2967  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2968  * faults of hugetlb private mappings on top of a non-page-cache folio (in
2969  * which case even if there's a private vma resv map it won't cover such
2970  * allocation).  New call sites should (probably) never set it to true!!
2971  * When it's set, the allocation will bypass all vma level reservations.
2972  */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2973 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2974 				    unsigned long addr, bool cow_from_owner)
2975 {
2976 	struct hugepage_subpool *spool = subpool_vma(vma);
2977 	struct hstate *h = hstate_vma(vma);
2978 	struct folio *folio;
2979 	long retval, gbl_chg, gbl_reserve;
2980 	map_chg_state map_chg;
2981 	int ret, idx;
2982 	struct hugetlb_cgroup *h_cg = NULL;
2983 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2984 
2985 	idx = hstate_index(h);
2986 
2987 	/* Whether we need a separate per-vma reservation? */
2988 	if (cow_from_owner) {
2989 		/*
2990 		 * Special case!  Since it's a CoW on top of a reserved
2991 		 * page, the private resv map doesn't count.  So it cannot
2992 		 * consume the per-vma resv map even if it's reserved.
2993 		 */
2994 		map_chg = MAP_CHG_ENFORCED;
2995 	} else {
2996 		/*
2997 		 * Examine the region/reserve map to determine if the process
2998 		 * has a reservation for the page to be allocated.  A return
2999 		 * code of zero indicates a reservation exists (no change).
3000 		 */
3001 		retval = vma_needs_reservation(h, vma, addr);
3002 		if (retval < 0)
3003 			return ERR_PTR(-ENOMEM);
3004 		map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3005 	}
3006 
3007 	/*
3008 	 * Whether we need a separate global reservation?
3009 	 *
3010 	 * Processes that did not create the mapping will have no
3011 	 * reserves as indicated by the region/reserve map. Check
3012 	 * that the allocation will not exceed the subpool limit.
3013 	 * Or if it can get one from the pool reservation directly.
3014 	 */
3015 	if (map_chg) {
3016 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3017 		if (gbl_chg < 0)
3018 			goto out_end_reservation;
3019 	} else {
3020 		/*
3021 		 * If we have the vma reservation ready, no need for extra
3022 		 * global reservation.
3023 		 */
3024 		gbl_chg = 0;
3025 	}
3026 
3027 	/*
3028 	 * If this allocation is not consuming a per-vma reservation,
3029 	 * charge the hugetlb cgroup now.
3030 	 */
3031 	if (map_chg) {
3032 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3033 			idx, pages_per_huge_page(h), &h_cg);
3034 		if (ret)
3035 			goto out_subpool_put;
3036 	}
3037 
3038 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3039 	if (ret)
3040 		goto out_uncharge_cgroup_reservation;
3041 
3042 	spin_lock_irq(&hugetlb_lock);
3043 	/*
3044 	 * glb_chg is passed to indicate whether or not a page must be taken
3045 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3046 	 * a reservation exists for the allocation.
3047 	 */
3048 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3049 	if (!folio) {
3050 		spin_unlock_irq(&hugetlb_lock);
3051 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3052 		if (!folio)
3053 			goto out_uncharge_cgroup;
3054 		spin_lock_irq(&hugetlb_lock);
3055 		list_add(&folio->lru, &h->hugepage_activelist);
3056 		folio_ref_unfreeze(folio, 1);
3057 		/* Fall through */
3058 	}
3059 
3060 	/*
3061 	 * Either dequeued or buddy-allocated folio needs to add special
3062 	 * mark to the folio when it consumes a global reservation.
3063 	 */
3064 	if (!gbl_chg) {
3065 		folio_set_hugetlb_restore_reserve(folio);
3066 		h->resv_huge_pages--;
3067 	}
3068 
3069 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3070 	/* If allocation is not consuming a reservation, also store the
3071 	 * hugetlb_cgroup pointer on the page.
3072 	 */
3073 	if (map_chg) {
3074 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3075 						  h_cg, folio);
3076 	}
3077 
3078 	spin_unlock_irq(&hugetlb_lock);
3079 
3080 	hugetlb_set_folio_subpool(folio, spool);
3081 
3082 	if (map_chg != MAP_CHG_ENFORCED) {
3083 		/* commit() is only needed if the map_chg is not enforced */
3084 		retval = vma_commit_reservation(h, vma, addr);
3085 		/*
3086 		 * Check for possible race conditions. When it happens..
3087 		 * The page was added to the reservation map between
3088 		 * vma_needs_reservation and vma_commit_reservation.
3089 		 * This indicates a race with hugetlb_reserve_pages.
3090 		 * Adjust for the subpool count incremented above AND
3091 		 * in hugetlb_reserve_pages for the same page.	Also,
3092 		 * the reservation count added in hugetlb_reserve_pages
3093 		 * no longer applies.
3094 		 */
3095 		if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3096 			long rsv_adjust;
3097 
3098 			rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3099 			hugetlb_acct_memory(h, -rsv_adjust);
3100 			if (map_chg) {
3101 				spin_lock_irq(&hugetlb_lock);
3102 				hugetlb_cgroup_uncharge_folio_rsvd(
3103 				    hstate_index(h), pages_per_huge_page(h),
3104 				    folio);
3105 				spin_unlock_irq(&hugetlb_lock);
3106 			}
3107 		}
3108 	}
3109 
3110 	ret = mem_cgroup_charge_hugetlb(folio, gfp);
3111 	/*
3112 	 * Unconditionally increment NR_HUGETLB here. If it turns out that
3113 	 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3114 	 * decrement NR_HUGETLB.
3115 	 */
3116 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3117 
3118 	if (ret == -ENOMEM) {
3119 		free_huge_folio(folio);
3120 		return ERR_PTR(-ENOMEM);
3121 	}
3122 
3123 	return folio;
3124 
3125 out_uncharge_cgroup:
3126 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3127 out_uncharge_cgroup_reservation:
3128 	if (map_chg)
3129 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3130 						    h_cg);
3131 out_subpool_put:
3132 	/*
3133 	 * put page to subpool iff the quota of subpool's rsv_hpages is used
3134 	 * during hugepage_subpool_get_pages.
3135 	 */
3136 	if (map_chg && !gbl_chg) {
3137 		gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3138 		hugetlb_acct_memory(h, -gbl_reserve);
3139 	}
3140 
3141 
3142 out_end_reservation:
3143 	if (map_chg != MAP_CHG_ENFORCED)
3144 		vma_end_reservation(h, vma, addr);
3145 	return ERR_PTR(-ENOSPC);
3146 }
3147 
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3148 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3149 {
3150 	struct huge_bootmem_page *m;
3151 	int listnode = nid;
3152 
3153 	if (hugetlb_early_cma(h))
3154 		m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3155 	else {
3156 		if (node_exact)
3157 			m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3158 				huge_page_size(h), 0,
3159 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3160 		else {
3161 			m = memblock_alloc_try_nid_raw(huge_page_size(h),
3162 				huge_page_size(h), 0,
3163 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3164 			/*
3165 			 * For pre-HVO to work correctly, pages need to be on
3166 			 * the list for the node they were actually allocated
3167 			 * from. That node may be different in the case of
3168 			 * fallback by memblock_alloc_try_nid_raw. So,
3169 			 * extract the actual node first.
3170 			 */
3171 			if (m)
3172 				listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3173 		}
3174 
3175 		if (m) {
3176 			m->flags = 0;
3177 			m->cma = NULL;
3178 		}
3179 	}
3180 
3181 	if (m) {
3182 		/*
3183 		 * Use the beginning of the huge page to store the
3184 		 * huge_bootmem_page struct (until gather_bootmem
3185 		 * puts them into the mem_map).
3186 		 *
3187 		 * Put them into a private list first because mem_map
3188 		 * is not up yet.
3189 		 */
3190 		INIT_LIST_HEAD(&m->list);
3191 		list_add(&m->list, &huge_boot_pages[listnode]);
3192 		m->hstate = h;
3193 	}
3194 
3195 	return m;
3196 }
3197 
3198 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3199 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3200 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3201 {
3202 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3203 	int nr_nodes, node = nid;
3204 
3205 	/* do node specific alloc */
3206 	if (nid != NUMA_NO_NODE) {
3207 		m = alloc_bootmem(h, node, true);
3208 		if (!m)
3209 			return 0;
3210 		goto found;
3211 	}
3212 
3213 	/* allocate from next node when distributing huge pages */
3214 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3215 				    &hugetlb_bootmem_nodes) {
3216 		m = alloc_bootmem(h, node, false);
3217 		if (!m)
3218 			return 0;
3219 		goto found;
3220 	}
3221 
3222 found:
3223 
3224 	/*
3225 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3226 	 * rest of the struct pages will be initialized by the HugeTLB
3227 	 * subsystem itself.
3228 	 * The head struct page is used to get folio information by the HugeTLB
3229 	 * subsystem like zone id and node id.
3230 	 */
3231 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3232 		huge_page_size(h) - PAGE_SIZE);
3233 
3234 	return 1;
3235 }
3236 
3237 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3238 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3239 					unsigned long start_page_number,
3240 					unsigned long end_page_number)
3241 {
3242 	enum zone_type zone = zone_idx(folio_zone(folio));
3243 	int nid = folio_nid(folio);
3244 	unsigned long head_pfn = folio_pfn(folio);
3245 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3246 	int ret;
3247 
3248 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3249 		struct page *page = pfn_to_page(pfn);
3250 
3251 		__init_single_page(page, pfn, zone, nid);
3252 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3253 		ret = page_ref_freeze(page, 1);
3254 		VM_BUG_ON(!ret);
3255 	}
3256 }
3257 
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3258 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3259 					      struct hstate *h,
3260 					      unsigned long nr_pages)
3261 {
3262 	int ret;
3263 
3264 	/* Prepare folio head */
3265 	__folio_clear_reserved(folio);
3266 	__folio_set_head(folio);
3267 	ret = folio_ref_freeze(folio, 1);
3268 	VM_BUG_ON(!ret);
3269 	/* Initialize the necessary tail struct pages */
3270 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3271 	prep_compound_head((struct page *)folio, huge_page_order(h));
3272 }
3273 
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3274 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3275 {
3276 	return m->flags & HUGE_BOOTMEM_HVO;
3277 }
3278 
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3279 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3280 {
3281 	return m->flags & HUGE_BOOTMEM_CMA;
3282 }
3283 
3284 /*
3285  * memblock-allocated pageblocks might not have the migrate type set
3286  * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3287  * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3288  * reservation.
3289  *
3290  * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3291  * read-only, but that's ok - for sparse vmemmap this does not write to
3292  * the page structure.
3293  */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3294 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3295 							  struct hstate *h)
3296 {
3297 	unsigned long nr_pages = pages_per_huge_page(h), i;
3298 
3299 	WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3300 
3301 	for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3302 		if (folio_test_hugetlb_cma(folio))
3303 			init_cma_pageblock(folio_page(folio, i));
3304 		else
3305 			set_pageblock_migratetype(folio_page(folio, i),
3306 					  MIGRATE_MOVABLE);
3307 	}
3308 }
3309 
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3310 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3311 					struct list_head *folio_list)
3312 {
3313 	unsigned long flags;
3314 	struct folio *folio, *tmp_f;
3315 
3316 	/* Send list for bulk vmemmap optimization processing */
3317 	hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3318 
3319 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3320 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3321 			/*
3322 			 * If HVO fails, initialize all tail struct pages
3323 			 * We do not worry about potential long lock hold
3324 			 * time as this is early in boot and there should
3325 			 * be no contention.
3326 			 */
3327 			hugetlb_folio_init_tail_vmemmap(folio,
3328 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3329 					pages_per_huge_page(h));
3330 		}
3331 		hugetlb_bootmem_init_migratetype(folio, h);
3332 		/* Subdivide locks to achieve better parallel performance */
3333 		spin_lock_irqsave(&hugetlb_lock, flags);
3334 		__prep_account_new_huge_page(h, folio_nid(folio));
3335 		enqueue_hugetlb_folio(h, folio);
3336 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3337 	}
3338 }
3339 
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3340 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3341 					     struct huge_bootmem_page *m)
3342 {
3343 	unsigned long start_pfn;
3344 	bool valid;
3345 
3346 	if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3347 		/*
3348 		 * Already validated, skip check.
3349 		 */
3350 		return true;
3351 	}
3352 
3353 	if (hugetlb_bootmem_page_earlycma(m)) {
3354 		valid = cma_validate_zones(m->cma);
3355 		goto out;
3356 	}
3357 
3358 	start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3359 
3360 	valid = !pfn_range_intersects_zones(nid, start_pfn,
3361 			pages_per_huge_page(m->hstate));
3362 out:
3363 	if (!valid)
3364 		hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3365 
3366 	return valid;
3367 }
3368 
3369 /*
3370  * Free a bootmem page that was found to be invalid (intersecting with
3371  * multiple zones).
3372  *
3373  * Since it intersects with multiple zones, we can't just do a free
3374  * operation on all pages at once, but instead have to walk all
3375  * pages, freeing them one by one.
3376  */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3377 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3378 					     struct hstate *h)
3379 {
3380 	unsigned long npages = pages_per_huge_page(h);
3381 	unsigned long pfn;
3382 
3383 	while (npages--) {
3384 		pfn = page_to_pfn(page);
3385 		__init_page_from_nid(pfn, nid);
3386 		free_reserved_page(page);
3387 		page++;
3388 	}
3389 }
3390 
3391 /*
3392  * Put bootmem huge pages into the standard lists after mem_map is up.
3393  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3394  */
gather_bootmem_prealloc_node(unsigned long nid)3395 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3396 {
3397 	LIST_HEAD(folio_list);
3398 	struct huge_bootmem_page *m, *tm;
3399 	struct hstate *h = NULL, *prev_h = NULL;
3400 
3401 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3402 		struct page *page = virt_to_page(m);
3403 		struct folio *folio = (void *)page;
3404 
3405 		h = m->hstate;
3406 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3407 			/*
3408 			 * Can't use this page. Initialize the
3409 			 * page structures if that hasn't already
3410 			 * been done, and give them to the page
3411 			 * allocator.
3412 			 */
3413 			hugetlb_bootmem_free_invalid_page(nid, page, h);
3414 			continue;
3415 		}
3416 
3417 		/*
3418 		 * It is possible to have multiple huge page sizes (hstates)
3419 		 * in this list.  If so, process each size separately.
3420 		 */
3421 		if (h != prev_h && prev_h != NULL)
3422 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3423 		prev_h = h;
3424 
3425 		VM_BUG_ON(!hstate_is_gigantic(h));
3426 		WARN_ON(folio_ref_count(folio) != 1);
3427 
3428 		hugetlb_folio_init_vmemmap(folio, h,
3429 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3430 		init_new_hugetlb_folio(h, folio);
3431 
3432 		if (hugetlb_bootmem_page_prehvo(m))
3433 			/*
3434 			 * If pre-HVO was done, just set the
3435 			 * flag, the HVO code will then skip
3436 			 * this folio.
3437 			 */
3438 			folio_set_hugetlb_vmemmap_optimized(folio);
3439 
3440 		if (hugetlb_bootmem_page_earlycma(m))
3441 			folio_set_hugetlb_cma(folio);
3442 
3443 		list_add(&folio->lru, &folio_list);
3444 
3445 		/*
3446 		 * We need to restore the 'stolen' pages to totalram_pages
3447 		 * in order to fix confusing memory reports from free(1) and
3448 		 * other side-effects, like CommitLimit going negative.
3449 		 *
3450 		 * For CMA pages, this is done in init_cma_pageblock
3451 		 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3452 		 */
3453 		if (!folio_test_hugetlb_cma(folio))
3454 			adjust_managed_page_count(page, pages_per_huge_page(h));
3455 		cond_resched();
3456 	}
3457 
3458 	prep_and_add_bootmem_folios(h, &folio_list);
3459 }
3460 
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3461 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3462 						    unsigned long end, void *arg)
3463 {
3464 	int nid;
3465 
3466 	for (nid = start; nid < end; nid++)
3467 		gather_bootmem_prealloc_node(nid);
3468 }
3469 
gather_bootmem_prealloc(void)3470 static void __init gather_bootmem_prealloc(void)
3471 {
3472 	struct padata_mt_job job = {
3473 		.thread_fn	= gather_bootmem_prealloc_parallel,
3474 		.fn_arg		= NULL,
3475 		.start		= 0,
3476 		.size		= nr_node_ids,
3477 		.align		= 1,
3478 		.min_chunk	= 1,
3479 		.max_threads	= num_node_state(N_MEMORY),
3480 		.numa_aware	= true,
3481 	};
3482 
3483 	padata_do_multithreaded(&job);
3484 }
3485 
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3486 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3487 {
3488 	unsigned long i;
3489 	char buf[32];
3490 	LIST_HEAD(folio_list);
3491 
3492 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3493 		if (hstate_is_gigantic(h)) {
3494 			if (!alloc_bootmem_huge_page(h, nid))
3495 				break;
3496 		} else {
3497 			struct folio *folio;
3498 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3499 
3500 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3501 					&node_states[N_MEMORY], NULL);
3502 			if (!folio)
3503 				break;
3504 			list_add(&folio->lru, &folio_list);
3505 		}
3506 		cond_resched();
3507 	}
3508 
3509 	if (!list_empty(&folio_list))
3510 		prep_and_add_allocated_folios(h, &folio_list);
3511 
3512 	if (i == h->max_huge_pages_node[nid])
3513 		return;
3514 
3515 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3516 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3517 		h->max_huge_pages_node[nid], buf, nid, i);
3518 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3519 	h->max_huge_pages_node[nid] = i;
3520 }
3521 
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3522 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3523 {
3524 	int i;
3525 	bool node_specific_alloc = false;
3526 
3527 	for_each_online_node(i) {
3528 		if (h->max_huge_pages_node[i] > 0) {
3529 			hugetlb_hstate_alloc_pages_onenode(h, i);
3530 			node_specific_alloc = true;
3531 		}
3532 	}
3533 
3534 	return node_specific_alloc;
3535 }
3536 
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3537 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3538 {
3539 	if (allocated < h->max_huge_pages) {
3540 		char buf[32];
3541 
3542 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3543 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3544 			h->max_huge_pages, buf, allocated);
3545 		h->max_huge_pages = allocated;
3546 	}
3547 }
3548 
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3549 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3550 {
3551 	struct hstate *h = (struct hstate *)arg;
3552 	int i, num = end - start;
3553 	nodemask_t node_alloc_noretry;
3554 	LIST_HEAD(folio_list);
3555 	int next_node = first_online_node;
3556 
3557 	/* Bit mask controlling how hard we retry per-node allocations.*/
3558 	nodes_clear(node_alloc_noretry);
3559 
3560 	for (i = 0; i < num; ++i) {
3561 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3562 						&node_alloc_noretry, &next_node);
3563 		if (!folio)
3564 			break;
3565 
3566 		list_move(&folio->lru, &folio_list);
3567 		cond_resched();
3568 	}
3569 
3570 	prep_and_add_allocated_folios(h, &folio_list);
3571 }
3572 
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3573 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3574 {
3575 	unsigned long i;
3576 
3577 	for (i = 0; i < h->max_huge_pages; ++i) {
3578 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3579 			break;
3580 		cond_resched();
3581 	}
3582 
3583 	return i;
3584 }
3585 
hugetlb_pages_alloc_boot(struct hstate * h)3586 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3587 {
3588 	struct padata_mt_job job = {
3589 		.fn_arg		= h,
3590 		.align		= 1,
3591 		.numa_aware	= true
3592 	};
3593 
3594 	unsigned long jiffies_start;
3595 	unsigned long jiffies_end;
3596 
3597 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3598 	job.start	= 0;
3599 	job.size	= h->max_huge_pages;
3600 
3601 	/*
3602 	 * job.max_threads is 25% of the available cpu threads by default.
3603 	 *
3604 	 * On large servers with terabytes of memory, huge page allocation
3605 	 * can consume a considerably amount of time.
3606 	 *
3607 	 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3608 	 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3609 	 *
3610 	 * +-----------------------+-------+-------+-------+-------+-------+
3611 	 * | threads               |   8   |   16  |   32  |   64  |   128 |
3612 	 * +-----------------------+-------+-------+-------+-------+-------+
3613 	 * | skylake      144 cpus |   44s |   22s |   16s |   19s |   20s |
3614 	 * | cascade lake 192 cpus |   39s |   20s |   11s |   10s |    9s |
3615 	 * +-----------------------+-------+-------+-------+-------+-------+
3616 	 */
3617 	if (hugepage_allocation_threads == 0) {
3618 		hugepage_allocation_threads = num_online_cpus() / 4;
3619 		hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3620 	}
3621 
3622 	job.max_threads	= hugepage_allocation_threads;
3623 	job.min_chunk	= h->max_huge_pages / hugepage_allocation_threads;
3624 
3625 	jiffies_start = jiffies;
3626 	padata_do_multithreaded(&job);
3627 	jiffies_end = jiffies;
3628 
3629 	pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3630 		jiffies_to_msecs(jiffies_end - jiffies_start),
3631 		hugepage_allocation_threads);
3632 
3633 	return h->nr_huge_pages;
3634 }
3635 
3636 /*
3637  * NOTE: this routine is called in different contexts for gigantic and
3638  * non-gigantic pages.
3639  * - For gigantic pages, this is called early in the boot process and
3640  *   pages are allocated from memblock allocated or something similar.
3641  *   Gigantic pages are actually added to pools later with the routine
3642  *   gather_bootmem_prealloc.
3643  * - For non-gigantic pages, this is called later in the boot process after
3644  *   all of mm is up and functional.  Pages are allocated from buddy and
3645  *   then added to hugetlb pools.
3646  */
hugetlb_hstate_alloc_pages(struct hstate * h)3647 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3648 {
3649 	unsigned long allocated;
3650 
3651 	/*
3652 	 * Skip gigantic hugepages allocation if early CMA
3653 	 * reservations are not available.
3654 	 */
3655 	if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3656 	    !hugetlb_early_cma(h)) {
3657 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3658 		return;
3659 	}
3660 
3661 	/* do node specific alloc */
3662 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3663 		return;
3664 
3665 	/* below will do all node balanced alloc */
3666 	if (hstate_is_gigantic(h))
3667 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3668 	else
3669 		allocated = hugetlb_pages_alloc_boot(h);
3670 
3671 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3672 }
3673 
hugetlb_init_hstates(void)3674 static void __init hugetlb_init_hstates(void)
3675 {
3676 	struct hstate *h, *h2;
3677 
3678 	for_each_hstate(h) {
3679 		/*
3680 		 * Always reset to first_memory_node here, even if
3681 		 * next_nid_to_alloc was set before - we can't
3682 		 * reference hugetlb_bootmem_nodes after init, and
3683 		 * first_memory_node is right for all further allocations.
3684 		 */
3685 		h->next_nid_to_alloc = first_memory_node;
3686 		h->next_nid_to_free = first_memory_node;
3687 
3688 		/* oversize hugepages were init'ed in early boot */
3689 		if (!hstate_is_gigantic(h))
3690 			hugetlb_hstate_alloc_pages(h);
3691 
3692 		/*
3693 		 * Set demote order for each hstate.  Note that
3694 		 * h->demote_order is initially 0.
3695 		 * - We can not demote gigantic pages if runtime freeing
3696 		 *   is not supported, so skip this.
3697 		 * - If CMA allocation is possible, we can not demote
3698 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3699 		 */
3700 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3701 			continue;
3702 		if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3703 			continue;
3704 		for_each_hstate(h2) {
3705 			if (h2 == h)
3706 				continue;
3707 			if (h2->order < h->order &&
3708 			    h2->order > h->demote_order)
3709 				h->demote_order = h2->order;
3710 		}
3711 	}
3712 }
3713 
report_hugepages(void)3714 static void __init report_hugepages(void)
3715 {
3716 	struct hstate *h;
3717 	unsigned long nrinvalid;
3718 
3719 	for_each_hstate(h) {
3720 		char buf[32];
3721 
3722 		nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3723 		h->max_huge_pages -= nrinvalid;
3724 
3725 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3726 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3727 			buf, h->nr_huge_pages);
3728 		if (nrinvalid)
3729 			pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3730 					buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3731 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3732 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3733 	}
3734 }
3735 
3736 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3737 static void try_to_free_low(struct hstate *h, unsigned long count,
3738 						nodemask_t *nodes_allowed)
3739 {
3740 	int i;
3741 	LIST_HEAD(page_list);
3742 
3743 	lockdep_assert_held(&hugetlb_lock);
3744 	if (hstate_is_gigantic(h))
3745 		return;
3746 
3747 	/*
3748 	 * Collect pages to be freed on a list, and free after dropping lock
3749 	 */
3750 	for_each_node_mask(i, *nodes_allowed) {
3751 		struct folio *folio, *next;
3752 		struct list_head *freel = &h->hugepage_freelists[i];
3753 		list_for_each_entry_safe(folio, next, freel, lru) {
3754 			if (count >= h->nr_huge_pages)
3755 				goto out;
3756 			if (folio_test_highmem(folio))
3757 				continue;
3758 			remove_hugetlb_folio(h, folio, false);
3759 			list_add(&folio->lru, &page_list);
3760 		}
3761 	}
3762 
3763 out:
3764 	spin_unlock_irq(&hugetlb_lock);
3765 	update_and_free_pages_bulk(h, &page_list);
3766 	spin_lock_irq(&hugetlb_lock);
3767 }
3768 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3769 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3770 						nodemask_t *nodes_allowed)
3771 {
3772 }
3773 #endif
3774 
3775 /*
3776  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3777  * balanced by operating on them in a round-robin fashion.
3778  * Returns 1 if an adjustment was made.
3779  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3780 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3781 				int delta)
3782 {
3783 	int nr_nodes, node;
3784 
3785 	lockdep_assert_held(&hugetlb_lock);
3786 	VM_BUG_ON(delta != -1 && delta != 1);
3787 
3788 	if (delta < 0) {
3789 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3790 			if (h->surplus_huge_pages_node[node])
3791 				goto found;
3792 		}
3793 	} else {
3794 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3795 			if (h->surplus_huge_pages_node[node] <
3796 					h->nr_huge_pages_node[node])
3797 				goto found;
3798 		}
3799 	}
3800 	return 0;
3801 
3802 found:
3803 	h->surplus_huge_pages += delta;
3804 	h->surplus_huge_pages_node[node] += delta;
3805 	return 1;
3806 }
3807 
3808 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3809 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3810 			      nodemask_t *nodes_allowed)
3811 {
3812 	unsigned long persistent_free_count;
3813 	unsigned long min_count;
3814 	unsigned long allocated;
3815 	struct folio *folio;
3816 	LIST_HEAD(page_list);
3817 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3818 
3819 	/*
3820 	 * Bit mask controlling how hard we retry per-node allocations.
3821 	 * If we can not allocate the bit mask, do not attempt to allocate
3822 	 * the requested huge pages.
3823 	 */
3824 	if (node_alloc_noretry)
3825 		nodes_clear(*node_alloc_noretry);
3826 	else
3827 		return -ENOMEM;
3828 
3829 	/*
3830 	 * resize_lock mutex prevents concurrent adjustments to number of
3831 	 * pages in hstate via the proc/sysfs interfaces.
3832 	 */
3833 	mutex_lock(&h->resize_lock);
3834 	flush_free_hpage_work(h);
3835 	spin_lock_irq(&hugetlb_lock);
3836 
3837 	/*
3838 	 * Check for a node specific request.
3839 	 * Changing node specific huge page count may require a corresponding
3840 	 * change to the global count.  In any case, the passed node mask
3841 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3842 	 */
3843 	if (nid != NUMA_NO_NODE) {
3844 		unsigned long old_count = count;
3845 
3846 		count += persistent_huge_pages(h) -
3847 			 (h->nr_huge_pages_node[nid] -
3848 			  h->surplus_huge_pages_node[nid]);
3849 		/*
3850 		 * User may have specified a large count value which caused the
3851 		 * above calculation to overflow.  In this case, they wanted
3852 		 * to allocate as many huge pages as possible.  Set count to
3853 		 * largest possible value to align with their intention.
3854 		 */
3855 		if (count < old_count)
3856 			count = ULONG_MAX;
3857 	}
3858 
3859 	/*
3860 	 * Gigantic pages runtime allocation depend on the capability for large
3861 	 * page range allocation.
3862 	 * If the system does not provide this feature, return an error when
3863 	 * the user tries to allocate gigantic pages but let the user free the
3864 	 * boottime allocated gigantic pages.
3865 	 */
3866 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3867 		if (count > persistent_huge_pages(h)) {
3868 			spin_unlock_irq(&hugetlb_lock);
3869 			mutex_unlock(&h->resize_lock);
3870 			NODEMASK_FREE(node_alloc_noretry);
3871 			return -EINVAL;
3872 		}
3873 		/* Fall through to decrease pool */
3874 	}
3875 
3876 	/*
3877 	 * Increase the pool size
3878 	 * First take pages out of surplus state.  Then make up the
3879 	 * remaining difference by allocating fresh huge pages.
3880 	 *
3881 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3882 	 * to convert a surplus huge page to a normal huge page. That is
3883 	 * not critical, though, it just means the overall size of the
3884 	 * pool might be one hugepage larger than it needs to be, but
3885 	 * within all the constraints specified by the sysctls.
3886 	 */
3887 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3888 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3889 			break;
3890 	}
3891 
3892 	allocated = 0;
3893 	while (count > (persistent_huge_pages(h) + allocated)) {
3894 		/*
3895 		 * If this allocation races such that we no longer need the
3896 		 * page, free_huge_folio will handle it by freeing the page
3897 		 * and reducing the surplus.
3898 		 */
3899 		spin_unlock_irq(&hugetlb_lock);
3900 
3901 		/* yield cpu to avoid soft lockup */
3902 		cond_resched();
3903 
3904 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3905 						node_alloc_noretry,
3906 						&h->next_nid_to_alloc);
3907 		if (!folio) {
3908 			prep_and_add_allocated_folios(h, &page_list);
3909 			spin_lock_irq(&hugetlb_lock);
3910 			goto out;
3911 		}
3912 
3913 		list_add(&folio->lru, &page_list);
3914 		allocated++;
3915 
3916 		/* Bail for signals. Probably ctrl-c from user */
3917 		if (signal_pending(current)) {
3918 			prep_and_add_allocated_folios(h, &page_list);
3919 			spin_lock_irq(&hugetlb_lock);
3920 			goto out;
3921 		}
3922 
3923 		spin_lock_irq(&hugetlb_lock);
3924 	}
3925 
3926 	/* Add allocated pages to the pool */
3927 	if (!list_empty(&page_list)) {
3928 		spin_unlock_irq(&hugetlb_lock);
3929 		prep_and_add_allocated_folios(h, &page_list);
3930 		spin_lock_irq(&hugetlb_lock);
3931 	}
3932 
3933 	/*
3934 	 * Decrease the pool size
3935 	 * First return free pages to the buddy allocator (being careful
3936 	 * to keep enough around to satisfy reservations).  Then place
3937 	 * pages into surplus state as needed so the pool will shrink
3938 	 * to the desired size as pages become free.
3939 	 *
3940 	 * By placing pages into the surplus state independent of the
3941 	 * overcommit value, we are allowing the surplus pool size to
3942 	 * exceed overcommit. There are few sane options here. Since
3943 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3944 	 * though, we'll note that we're not allowed to exceed surplus
3945 	 * and won't grow the pool anywhere else. Not until one of the
3946 	 * sysctls are changed, or the surplus pages go out of use.
3947 	 *
3948 	 * min_count is the expected number of persistent pages, we
3949 	 * shouldn't calculate min_count by using
3950 	 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3951 	 * because there may exist free surplus huge pages, and this will
3952 	 * lead to subtracting twice. Free surplus huge pages come from HVO
3953 	 * failing to restore vmemmap, see comments in the callers of
3954 	 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3955 	 * persistent free count first.
3956 	 */
3957 	persistent_free_count = h->free_huge_pages;
3958 	if (h->free_huge_pages > persistent_huge_pages(h)) {
3959 		if (h->free_huge_pages > h->surplus_huge_pages)
3960 			persistent_free_count -= h->surplus_huge_pages;
3961 		else
3962 			persistent_free_count = 0;
3963 	}
3964 	min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3965 	min_count = max(count, min_count);
3966 	try_to_free_low(h, min_count, nodes_allowed);
3967 
3968 	/*
3969 	 * Collect pages to be removed on list without dropping lock
3970 	 */
3971 	while (min_count < persistent_huge_pages(h)) {
3972 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3973 		if (!folio)
3974 			break;
3975 
3976 		list_add(&folio->lru, &page_list);
3977 	}
3978 	/* free the pages after dropping lock */
3979 	spin_unlock_irq(&hugetlb_lock);
3980 	update_and_free_pages_bulk(h, &page_list);
3981 	flush_free_hpage_work(h);
3982 	spin_lock_irq(&hugetlb_lock);
3983 
3984 	while (count < persistent_huge_pages(h)) {
3985 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3986 			break;
3987 	}
3988 out:
3989 	h->max_huge_pages = persistent_huge_pages(h);
3990 	spin_unlock_irq(&hugetlb_lock);
3991 	mutex_unlock(&h->resize_lock);
3992 
3993 	NODEMASK_FREE(node_alloc_noretry);
3994 
3995 	return 0;
3996 }
3997 
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3998 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3999 				       struct list_head *src_list)
4000 {
4001 	long rc;
4002 	struct folio *folio, *next;
4003 	LIST_HEAD(dst_list);
4004 	LIST_HEAD(ret_list);
4005 
4006 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4007 	list_splice_init(&ret_list, src_list);
4008 
4009 	/*
4010 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4011 	 * Without the mutex, pages added to target hstate could be marked
4012 	 * as surplus.
4013 	 *
4014 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
4015 	 * use the convention of always taking larger size hstate mutex first.
4016 	 */
4017 	mutex_lock(&dst->resize_lock);
4018 
4019 	list_for_each_entry_safe(folio, next, src_list, lru) {
4020 		int i;
4021 		bool cma;
4022 
4023 		if (folio_test_hugetlb_vmemmap_optimized(folio))
4024 			continue;
4025 
4026 		cma = folio_test_hugetlb_cma(folio);
4027 
4028 		list_del(&folio->lru);
4029 
4030 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4031 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4032 
4033 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4034 			struct page *page = folio_page(folio, i);
4035 			/* Careful: see __split_huge_page_tail() */
4036 			struct folio *new_folio = (struct folio *)page;
4037 
4038 			clear_compound_head(page);
4039 			prep_compound_page(page, dst->order);
4040 
4041 			new_folio->mapping = NULL;
4042 			init_new_hugetlb_folio(dst, new_folio);
4043 			/* Copy the CMA flag so that it is freed correctly */
4044 			if (cma)
4045 				folio_set_hugetlb_cma(new_folio);
4046 			list_add(&new_folio->lru, &dst_list);
4047 		}
4048 	}
4049 
4050 	prep_and_add_allocated_folios(dst, &dst_list);
4051 
4052 	mutex_unlock(&dst->resize_lock);
4053 
4054 	return rc;
4055 }
4056 
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4057 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4058 				  unsigned long nr_to_demote)
4059 	__must_hold(&hugetlb_lock)
4060 {
4061 	int nr_nodes, node;
4062 	struct hstate *dst;
4063 	long rc = 0;
4064 	long nr_demoted = 0;
4065 
4066 	lockdep_assert_held(&hugetlb_lock);
4067 
4068 	/* We should never get here if no demote order */
4069 	if (!src->demote_order) {
4070 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4071 		return -EINVAL;		/* internal error */
4072 	}
4073 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4074 
4075 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4076 		LIST_HEAD(list);
4077 		struct folio *folio, *next;
4078 
4079 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4080 			if (folio_test_hwpoison(folio))
4081 				continue;
4082 
4083 			remove_hugetlb_folio(src, folio, false);
4084 			list_add(&folio->lru, &list);
4085 
4086 			if (++nr_demoted == nr_to_demote)
4087 				break;
4088 		}
4089 
4090 		spin_unlock_irq(&hugetlb_lock);
4091 
4092 		rc = demote_free_hugetlb_folios(src, dst, &list);
4093 
4094 		spin_lock_irq(&hugetlb_lock);
4095 
4096 		list_for_each_entry_safe(folio, next, &list, lru) {
4097 			list_del(&folio->lru);
4098 			add_hugetlb_folio(src, folio, false);
4099 
4100 			nr_demoted--;
4101 		}
4102 
4103 		if (rc < 0 || nr_demoted == nr_to_demote)
4104 			break;
4105 	}
4106 
4107 	/*
4108 	 * Not absolutely necessary, but for consistency update max_huge_pages
4109 	 * based on pool changes for the demoted page.
4110 	 */
4111 	src->max_huge_pages -= nr_demoted;
4112 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4113 
4114 	if (rc < 0)
4115 		return rc;
4116 
4117 	if (nr_demoted)
4118 		return nr_demoted;
4119 	/*
4120 	 * Only way to get here is if all pages on free lists are poisoned.
4121 	 * Return -EBUSY so that caller will not retry.
4122 	 */
4123 	return -EBUSY;
4124 }
4125 
4126 #define HSTATE_ATTR_RO(_name) \
4127 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4128 
4129 #define HSTATE_ATTR_WO(_name) \
4130 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4131 
4132 #define HSTATE_ATTR(_name) \
4133 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4134 
4135 static struct kobject *hugepages_kobj;
4136 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4137 
4138 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4139 
kobj_to_hstate(struct kobject * kobj,int * nidp)4140 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4141 {
4142 	int i;
4143 
4144 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4145 		if (hstate_kobjs[i] == kobj) {
4146 			if (nidp)
4147 				*nidp = NUMA_NO_NODE;
4148 			return &hstates[i];
4149 		}
4150 
4151 	return kobj_to_node_hstate(kobj, nidp);
4152 }
4153 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4154 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4155 					struct kobj_attribute *attr, char *buf)
4156 {
4157 	struct hstate *h;
4158 	unsigned long nr_huge_pages;
4159 	int nid;
4160 
4161 	h = kobj_to_hstate(kobj, &nid);
4162 	if (nid == NUMA_NO_NODE)
4163 		nr_huge_pages = h->nr_huge_pages;
4164 	else
4165 		nr_huge_pages = h->nr_huge_pages_node[nid];
4166 
4167 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4168 }
4169 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4170 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4171 					   struct hstate *h, int nid,
4172 					   unsigned long count, size_t len)
4173 {
4174 	int err;
4175 	nodemask_t nodes_allowed, *n_mask;
4176 
4177 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4178 		return -EINVAL;
4179 
4180 	if (nid == NUMA_NO_NODE) {
4181 		/*
4182 		 * global hstate attribute
4183 		 */
4184 		if (!(obey_mempolicy &&
4185 				init_nodemask_of_mempolicy(&nodes_allowed)))
4186 			n_mask = &node_states[N_MEMORY];
4187 		else
4188 			n_mask = &nodes_allowed;
4189 	} else {
4190 		/*
4191 		 * Node specific request.  count adjustment happens in
4192 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4193 		 */
4194 		init_nodemask_of_node(&nodes_allowed, nid);
4195 		n_mask = &nodes_allowed;
4196 	}
4197 
4198 	err = set_max_huge_pages(h, count, nid, n_mask);
4199 
4200 	return err ? err : len;
4201 }
4202 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4203 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4204 					 struct kobject *kobj, const char *buf,
4205 					 size_t len)
4206 {
4207 	struct hstate *h;
4208 	unsigned long count;
4209 	int nid;
4210 	int err;
4211 
4212 	err = kstrtoul(buf, 10, &count);
4213 	if (err)
4214 		return err;
4215 
4216 	h = kobj_to_hstate(kobj, &nid);
4217 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4218 }
4219 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4220 static ssize_t nr_hugepages_show(struct kobject *kobj,
4221 				       struct kobj_attribute *attr, char *buf)
4222 {
4223 	return nr_hugepages_show_common(kobj, attr, buf);
4224 }
4225 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4226 static ssize_t nr_hugepages_store(struct kobject *kobj,
4227 	       struct kobj_attribute *attr, const char *buf, size_t len)
4228 {
4229 	return nr_hugepages_store_common(false, kobj, buf, len);
4230 }
4231 HSTATE_ATTR(nr_hugepages);
4232 
4233 #ifdef CONFIG_NUMA
4234 
4235 /*
4236  * hstate attribute for optionally mempolicy-based constraint on persistent
4237  * huge page alloc/free.
4238  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4239 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4240 					   struct kobj_attribute *attr,
4241 					   char *buf)
4242 {
4243 	return nr_hugepages_show_common(kobj, attr, buf);
4244 }
4245 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4246 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4247 	       struct kobj_attribute *attr, const char *buf, size_t len)
4248 {
4249 	return nr_hugepages_store_common(true, kobj, buf, len);
4250 }
4251 HSTATE_ATTR(nr_hugepages_mempolicy);
4252 #endif
4253 
4254 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4255 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4256 					struct kobj_attribute *attr, char *buf)
4257 {
4258 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4259 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4260 }
4261 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4262 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4263 		struct kobj_attribute *attr, const char *buf, size_t count)
4264 {
4265 	int err;
4266 	unsigned long input;
4267 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4268 
4269 	if (hstate_is_gigantic(h))
4270 		return -EINVAL;
4271 
4272 	err = kstrtoul(buf, 10, &input);
4273 	if (err)
4274 		return err;
4275 
4276 	spin_lock_irq(&hugetlb_lock);
4277 	h->nr_overcommit_huge_pages = input;
4278 	spin_unlock_irq(&hugetlb_lock);
4279 
4280 	return count;
4281 }
4282 HSTATE_ATTR(nr_overcommit_hugepages);
4283 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4284 static ssize_t free_hugepages_show(struct kobject *kobj,
4285 					struct kobj_attribute *attr, char *buf)
4286 {
4287 	struct hstate *h;
4288 	unsigned long free_huge_pages;
4289 	int nid;
4290 
4291 	h = kobj_to_hstate(kobj, &nid);
4292 	if (nid == NUMA_NO_NODE)
4293 		free_huge_pages = h->free_huge_pages;
4294 	else
4295 		free_huge_pages = h->free_huge_pages_node[nid];
4296 
4297 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4298 }
4299 HSTATE_ATTR_RO(free_hugepages);
4300 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4301 static ssize_t resv_hugepages_show(struct kobject *kobj,
4302 					struct kobj_attribute *attr, char *buf)
4303 {
4304 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4305 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4306 }
4307 HSTATE_ATTR_RO(resv_hugepages);
4308 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4309 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4310 					struct kobj_attribute *attr, char *buf)
4311 {
4312 	struct hstate *h;
4313 	unsigned long surplus_huge_pages;
4314 	int nid;
4315 
4316 	h = kobj_to_hstate(kobj, &nid);
4317 	if (nid == NUMA_NO_NODE)
4318 		surplus_huge_pages = h->surplus_huge_pages;
4319 	else
4320 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4321 
4322 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4323 }
4324 HSTATE_ATTR_RO(surplus_hugepages);
4325 
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4326 static ssize_t demote_store(struct kobject *kobj,
4327 	       struct kobj_attribute *attr, const char *buf, size_t len)
4328 {
4329 	unsigned long nr_demote;
4330 	unsigned long nr_available;
4331 	nodemask_t nodes_allowed, *n_mask;
4332 	struct hstate *h;
4333 	int err;
4334 	int nid;
4335 
4336 	err = kstrtoul(buf, 10, &nr_demote);
4337 	if (err)
4338 		return err;
4339 	h = kobj_to_hstate(kobj, &nid);
4340 
4341 	if (nid != NUMA_NO_NODE) {
4342 		init_nodemask_of_node(&nodes_allowed, nid);
4343 		n_mask = &nodes_allowed;
4344 	} else {
4345 		n_mask = &node_states[N_MEMORY];
4346 	}
4347 
4348 	/* Synchronize with other sysfs operations modifying huge pages */
4349 	mutex_lock(&h->resize_lock);
4350 	spin_lock_irq(&hugetlb_lock);
4351 
4352 	while (nr_demote) {
4353 		long rc;
4354 
4355 		/*
4356 		 * Check for available pages to demote each time thorough the
4357 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4358 		 */
4359 		if (nid != NUMA_NO_NODE)
4360 			nr_available = h->free_huge_pages_node[nid];
4361 		else
4362 			nr_available = h->free_huge_pages;
4363 		nr_available -= h->resv_huge_pages;
4364 		if (!nr_available)
4365 			break;
4366 
4367 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4368 		if (rc < 0) {
4369 			err = rc;
4370 			break;
4371 		}
4372 
4373 		nr_demote -= rc;
4374 	}
4375 
4376 	spin_unlock_irq(&hugetlb_lock);
4377 	mutex_unlock(&h->resize_lock);
4378 
4379 	if (err)
4380 		return err;
4381 	return len;
4382 }
4383 HSTATE_ATTR_WO(demote);
4384 
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4385 static ssize_t demote_size_show(struct kobject *kobj,
4386 					struct kobj_attribute *attr, char *buf)
4387 {
4388 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4389 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4390 
4391 	return sysfs_emit(buf, "%lukB\n", demote_size);
4392 }
4393 
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4394 static ssize_t demote_size_store(struct kobject *kobj,
4395 					struct kobj_attribute *attr,
4396 					const char *buf, size_t count)
4397 {
4398 	struct hstate *h, *demote_hstate;
4399 	unsigned long demote_size;
4400 	unsigned int demote_order;
4401 
4402 	demote_size = (unsigned long)memparse(buf, NULL);
4403 
4404 	demote_hstate = size_to_hstate(demote_size);
4405 	if (!demote_hstate)
4406 		return -EINVAL;
4407 	demote_order = demote_hstate->order;
4408 	if (demote_order < HUGETLB_PAGE_ORDER)
4409 		return -EINVAL;
4410 
4411 	/* demote order must be smaller than hstate order */
4412 	h = kobj_to_hstate(kobj, NULL);
4413 	if (demote_order >= h->order)
4414 		return -EINVAL;
4415 
4416 	/* resize_lock synchronizes access to demote size and writes */
4417 	mutex_lock(&h->resize_lock);
4418 	h->demote_order = demote_order;
4419 	mutex_unlock(&h->resize_lock);
4420 
4421 	return count;
4422 }
4423 HSTATE_ATTR(demote_size);
4424 
4425 static struct attribute *hstate_attrs[] = {
4426 	&nr_hugepages_attr.attr,
4427 	&nr_overcommit_hugepages_attr.attr,
4428 	&free_hugepages_attr.attr,
4429 	&resv_hugepages_attr.attr,
4430 	&surplus_hugepages_attr.attr,
4431 #ifdef CONFIG_NUMA
4432 	&nr_hugepages_mempolicy_attr.attr,
4433 #endif
4434 	NULL,
4435 };
4436 
4437 static const struct attribute_group hstate_attr_group = {
4438 	.attrs = hstate_attrs,
4439 };
4440 
4441 static struct attribute *hstate_demote_attrs[] = {
4442 	&demote_size_attr.attr,
4443 	&demote_attr.attr,
4444 	NULL,
4445 };
4446 
4447 static const struct attribute_group hstate_demote_attr_group = {
4448 	.attrs = hstate_demote_attrs,
4449 };
4450 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4451 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4452 				    struct kobject **hstate_kobjs,
4453 				    const struct attribute_group *hstate_attr_group)
4454 {
4455 	int retval;
4456 	int hi = hstate_index(h);
4457 
4458 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4459 	if (!hstate_kobjs[hi])
4460 		return -ENOMEM;
4461 
4462 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4463 	if (retval) {
4464 		kobject_put(hstate_kobjs[hi]);
4465 		hstate_kobjs[hi] = NULL;
4466 		return retval;
4467 	}
4468 
4469 	if (h->demote_order) {
4470 		retval = sysfs_create_group(hstate_kobjs[hi],
4471 					    &hstate_demote_attr_group);
4472 		if (retval) {
4473 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4474 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4475 			kobject_put(hstate_kobjs[hi]);
4476 			hstate_kobjs[hi] = NULL;
4477 			return retval;
4478 		}
4479 	}
4480 
4481 	return 0;
4482 }
4483 
4484 #ifdef CONFIG_NUMA
4485 static bool hugetlb_sysfs_initialized __ro_after_init;
4486 
4487 /*
4488  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4489  * with node devices in node_devices[] using a parallel array.  The array
4490  * index of a node device or _hstate == node id.
4491  * This is here to avoid any static dependency of the node device driver, in
4492  * the base kernel, on the hugetlb module.
4493  */
4494 struct node_hstate {
4495 	struct kobject		*hugepages_kobj;
4496 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4497 };
4498 static struct node_hstate node_hstates[MAX_NUMNODES];
4499 
4500 /*
4501  * A subset of global hstate attributes for node devices
4502  */
4503 static struct attribute *per_node_hstate_attrs[] = {
4504 	&nr_hugepages_attr.attr,
4505 	&free_hugepages_attr.attr,
4506 	&surplus_hugepages_attr.attr,
4507 	NULL,
4508 };
4509 
4510 static const struct attribute_group per_node_hstate_attr_group = {
4511 	.attrs = per_node_hstate_attrs,
4512 };
4513 
4514 /*
4515  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4516  * Returns node id via non-NULL nidp.
4517  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4518 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4519 {
4520 	int nid;
4521 
4522 	for (nid = 0; nid < nr_node_ids; nid++) {
4523 		struct node_hstate *nhs = &node_hstates[nid];
4524 		int i;
4525 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4526 			if (nhs->hstate_kobjs[i] == kobj) {
4527 				if (nidp)
4528 					*nidp = nid;
4529 				return &hstates[i];
4530 			}
4531 	}
4532 
4533 	BUG();
4534 	return NULL;
4535 }
4536 
4537 /*
4538  * Unregister hstate attributes from a single node device.
4539  * No-op if no hstate attributes attached.
4540  */
hugetlb_unregister_node(struct node * node)4541 void hugetlb_unregister_node(struct node *node)
4542 {
4543 	struct hstate *h;
4544 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4545 
4546 	if (!nhs->hugepages_kobj)
4547 		return;		/* no hstate attributes */
4548 
4549 	for_each_hstate(h) {
4550 		int idx = hstate_index(h);
4551 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4552 
4553 		if (!hstate_kobj)
4554 			continue;
4555 		if (h->demote_order)
4556 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4557 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4558 		kobject_put(hstate_kobj);
4559 		nhs->hstate_kobjs[idx] = NULL;
4560 	}
4561 
4562 	kobject_put(nhs->hugepages_kobj);
4563 	nhs->hugepages_kobj = NULL;
4564 }
4565 
4566 
4567 /*
4568  * Register hstate attributes for a single node device.
4569  * No-op if attributes already registered.
4570  */
hugetlb_register_node(struct node * node)4571 void hugetlb_register_node(struct node *node)
4572 {
4573 	struct hstate *h;
4574 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4575 	int err;
4576 
4577 	if (!hugetlb_sysfs_initialized)
4578 		return;
4579 
4580 	if (nhs->hugepages_kobj)
4581 		return;		/* already allocated */
4582 
4583 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4584 							&node->dev.kobj);
4585 	if (!nhs->hugepages_kobj)
4586 		return;
4587 
4588 	for_each_hstate(h) {
4589 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4590 						nhs->hstate_kobjs,
4591 						&per_node_hstate_attr_group);
4592 		if (err) {
4593 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4594 				h->name, node->dev.id);
4595 			hugetlb_unregister_node(node);
4596 			break;
4597 		}
4598 	}
4599 }
4600 
4601 /*
4602  * hugetlb init time:  register hstate attributes for all registered node
4603  * devices of nodes that have memory.  All on-line nodes should have
4604  * registered their associated device by this time.
4605  */
hugetlb_register_all_nodes(void)4606 static void __init hugetlb_register_all_nodes(void)
4607 {
4608 	int nid;
4609 
4610 	for_each_online_node(nid)
4611 		hugetlb_register_node(node_devices[nid]);
4612 }
4613 #else	/* !CONFIG_NUMA */
4614 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4615 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4616 {
4617 	BUG();
4618 	if (nidp)
4619 		*nidp = -1;
4620 	return NULL;
4621 }
4622 
hugetlb_register_all_nodes(void)4623 static void hugetlb_register_all_nodes(void) { }
4624 
4625 #endif
4626 
hugetlb_sysfs_init(void)4627 static void __init hugetlb_sysfs_init(void)
4628 {
4629 	struct hstate *h;
4630 	int err;
4631 
4632 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4633 	if (!hugepages_kobj)
4634 		return;
4635 
4636 	for_each_hstate(h) {
4637 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4638 					 hstate_kobjs, &hstate_attr_group);
4639 		if (err)
4640 			pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4641 	}
4642 
4643 #ifdef CONFIG_NUMA
4644 	hugetlb_sysfs_initialized = true;
4645 #endif
4646 	hugetlb_register_all_nodes();
4647 }
4648 
4649 #ifdef CONFIG_SYSCTL
4650 static void hugetlb_sysctl_init(void);
4651 #else
hugetlb_sysctl_init(void)4652 static inline void hugetlb_sysctl_init(void) { }
4653 #endif
4654 
hugetlb_init(void)4655 static int __init hugetlb_init(void)
4656 {
4657 	int i;
4658 
4659 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4660 			__NR_HPAGEFLAGS);
4661 
4662 	if (!hugepages_supported()) {
4663 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4664 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4665 		return 0;
4666 	}
4667 
4668 	/*
4669 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4670 	 * architectures depend on setup being done here.
4671 	 */
4672 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4673 	if (!parsed_default_hugepagesz) {
4674 		/*
4675 		 * If we did not parse a default huge page size, set
4676 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4677 		 * number of huge pages for this default size was implicitly
4678 		 * specified, set that here as well.
4679 		 * Note that the implicit setting will overwrite an explicit
4680 		 * setting.  A warning will be printed in this case.
4681 		 */
4682 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4683 		if (default_hstate_max_huge_pages) {
4684 			if (default_hstate.max_huge_pages) {
4685 				char buf[32];
4686 
4687 				string_get_size(huge_page_size(&default_hstate),
4688 					1, STRING_UNITS_2, buf, 32);
4689 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4690 					default_hstate.max_huge_pages, buf);
4691 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4692 					default_hstate_max_huge_pages);
4693 			}
4694 			default_hstate.max_huge_pages =
4695 				default_hstate_max_huge_pages;
4696 
4697 			for_each_online_node(i)
4698 				default_hstate.max_huge_pages_node[i] =
4699 					default_hugepages_in_node[i];
4700 		}
4701 	}
4702 
4703 	hugetlb_cma_check();
4704 	hugetlb_init_hstates();
4705 	gather_bootmem_prealloc();
4706 	report_hugepages();
4707 
4708 	hugetlb_sysfs_init();
4709 	hugetlb_cgroup_file_init();
4710 	hugetlb_sysctl_init();
4711 
4712 #ifdef CONFIG_SMP
4713 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4714 #else
4715 	num_fault_mutexes = 1;
4716 #endif
4717 	hugetlb_fault_mutex_table =
4718 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4719 			      GFP_KERNEL);
4720 	BUG_ON(!hugetlb_fault_mutex_table);
4721 
4722 	for (i = 0; i < num_fault_mutexes; i++)
4723 		mutex_init(&hugetlb_fault_mutex_table[i]);
4724 	return 0;
4725 }
4726 subsys_initcall(hugetlb_init);
4727 
4728 /* Overwritten by architectures with more huge page sizes */
__init(weak)4729 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4730 {
4731 	return size == HPAGE_SIZE;
4732 }
4733 
hugetlb_add_hstate(unsigned int order)4734 void __init hugetlb_add_hstate(unsigned int order)
4735 {
4736 	struct hstate *h;
4737 	unsigned long i;
4738 
4739 	if (size_to_hstate(PAGE_SIZE << order)) {
4740 		return;
4741 	}
4742 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4743 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4744 	h = &hstates[hugetlb_max_hstate++];
4745 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4746 	h->order = order;
4747 	h->mask = ~(huge_page_size(h) - 1);
4748 	for (i = 0; i < MAX_NUMNODES; ++i)
4749 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4750 	INIT_LIST_HEAD(&h->hugepage_activelist);
4751 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4752 					huge_page_size(h)/SZ_1K);
4753 
4754 	parsed_hstate = h;
4755 }
4756 
hugetlb_node_alloc_supported(void)4757 bool __init __weak hugetlb_node_alloc_supported(void)
4758 {
4759 	return true;
4760 }
4761 
hugepages_clear_pages_in_node(void)4762 static void __init hugepages_clear_pages_in_node(void)
4763 {
4764 	if (!hugetlb_max_hstate) {
4765 		default_hstate_max_huge_pages = 0;
4766 		memset(default_hugepages_in_node, 0,
4767 			sizeof(default_hugepages_in_node));
4768 	} else {
4769 		parsed_hstate->max_huge_pages = 0;
4770 		memset(parsed_hstate->max_huge_pages_node, 0,
4771 			sizeof(parsed_hstate->max_huge_pages_node));
4772 	}
4773 }
4774 
hugetlb_add_param(char * s,int (* setup)(char *))4775 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4776 {
4777 	size_t len;
4778 	char *p;
4779 
4780 	if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4781 		return -EINVAL;
4782 
4783 	len = strlen(s) + 1;
4784 	if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4785 		return -EINVAL;
4786 
4787 	p = &hstate_cmdline_buf[hstate_cmdline_index];
4788 	memcpy(p, s, len);
4789 	hstate_cmdline_index += len;
4790 
4791 	hugetlb_params[hugetlb_param_index].val = p;
4792 	hugetlb_params[hugetlb_param_index].setup = setup;
4793 
4794 	hugetlb_param_index++;
4795 
4796 	return 0;
4797 }
4798 
hugetlb_parse_params(void)4799 static __init void hugetlb_parse_params(void)
4800 {
4801 	int i;
4802 	struct hugetlb_cmdline *hcp;
4803 
4804 	for (i = 0; i < hugetlb_param_index; i++) {
4805 		hcp = &hugetlb_params[i];
4806 
4807 		hcp->setup(hcp->val);
4808 	}
4809 
4810 	hugetlb_cma_validate_params();
4811 }
4812 
4813 /*
4814  * hugepages command line processing
4815  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4816  * specification.  If not, ignore the hugepages value.  hugepages can also
4817  * be the first huge page command line  option in which case it implicitly
4818  * specifies the number of huge pages for the default size.
4819  */
hugepages_setup(char * s)4820 static int __init hugepages_setup(char *s)
4821 {
4822 	unsigned long *mhp;
4823 	static unsigned long *last_mhp;
4824 	int node = NUMA_NO_NODE;
4825 	int count;
4826 	unsigned long tmp;
4827 	char *p = s;
4828 
4829 	if (!parsed_valid_hugepagesz) {
4830 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4831 		parsed_valid_hugepagesz = true;
4832 		return -EINVAL;
4833 	}
4834 
4835 	/*
4836 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4837 	 * yet, so this hugepages= parameter goes to the "default hstate".
4838 	 * Otherwise, it goes with the previously parsed hugepagesz or
4839 	 * default_hugepagesz.
4840 	 */
4841 	else if (!hugetlb_max_hstate)
4842 		mhp = &default_hstate_max_huge_pages;
4843 	else
4844 		mhp = &parsed_hstate->max_huge_pages;
4845 
4846 	if (mhp == last_mhp) {
4847 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4848 		return 1;
4849 	}
4850 
4851 	while (*p) {
4852 		count = 0;
4853 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4854 			goto invalid;
4855 		/* Parameter is node format */
4856 		if (p[count] == ':') {
4857 			if (!hugetlb_node_alloc_supported()) {
4858 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4859 				return 1;
4860 			}
4861 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4862 				goto invalid;
4863 			node = array_index_nospec(tmp, MAX_NUMNODES);
4864 			p += count + 1;
4865 			/* Parse hugepages */
4866 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4867 				goto invalid;
4868 			if (!hugetlb_max_hstate)
4869 				default_hugepages_in_node[node] = tmp;
4870 			else
4871 				parsed_hstate->max_huge_pages_node[node] = tmp;
4872 			*mhp += tmp;
4873 			/* Go to parse next node*/
4874 			if (p[count] == ',')
4875 				p += count + 1;
4876 			else
4877 				break;
4878 		} else {
4879 			if (p != s)
4880 				goto invalid;
4881 			*mhp = tmp;
4882 			break;
4883 		}
4884 	}
4885 
4886 	last_mhp = mhp;
4887 
4888 	return 0;
4889 
4890 invalid:
4891 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4892 	hugepages_clear_pages_in_node();
4893 	return -EINVAL;
4894 }
4895 hugetlb_early_param("hugepages", hugepages_setup);
4896 
4897 /*
4898  * hugepagesz command line processing
4899  * A specific huge page size can only be specified once with hugepagesz.
4900  * hugepagesz is followed by hugepages on the command line.  The global
4901  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4902  * hugepagesz argument was valid.
4903  */
hugepagesz_setup(char * s)4904 static int __init hugepagesz_setup(char *s)
4905 {
4906 	unsigned long size;
4907 	struct hstate *h;
4908 
4909 	parsed_valid_hugepagesz = false;
4910 	size = (unsigned long)memparse(s, NULL);
4911 
4912 	if (!arch_hugetlb_valid_size(size)) {
4913 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4914 		return -EINVAL;
4915 	}
4916 
4917 	h = size_to_hstate(size);
4918 	if (h) {
4919 		/*
4920 		 * hstate for this size already exists.  This is normally
4921 		 * an error, but is allowed if the existing hstate is the
4922 		 * default hstate.  More specifically, it is only allowed if
4923 		 * the number of huge pages for the default hstate was not
4924 		 * previously specified.
4925 		 */
4926 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4927 		    default_hstate.max_huge_pages) {
4928 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4929 			return -EINVAL;
4930 		}
4931 
4932 		/*
4933 		 * No need to call hugetlb_add_hstate() as hstate already
4934 		 * exists.  But, do set parsed_hstate so that a following
4935 		 * hugepages= parameter will be applied to this hstate.
4936 		 */
4937 		parsed_hstate = h;
4938 		parsed_valid_hugepagesz = true;
4939 		return 0;
4940 	}
4941 
4942 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4943 	parsed_valid_hugepagesz = true;
4944 	return 0;
4945 }
4946 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4947 
4948 /*
4949  * default_hugepagesz command line input
4950  * Only one instance of default_hugepagesz allowed on command line.
4951  */
default_hugepagesz_setup(char * s)4952 static int __init default_hugepagesz_setup(char *s)
4953 {
4954 	unsigned long size;
4955 	int i;
4956 
4957 	parsed_valid_hugepagesz = false;
4958 	if (parsed_default_hugepagesz) {
4959 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4960 		return -EINVAL;
4961 	}
4962 
4963 	size = (unsigned long)memparse(s, NULL);
4964 
4965 	if (!arch_hugetlb_valid_size(size)) {
4966 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4967 		return -EINVAL;
4968 	}
4969 
4970 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4971 	parsed_valid_hugepagesz = true;
4972 	parsed_default_hugepagesz = true;
4973 	default_hstate_idx = hstate_index(size_to_hstate(size));
4974 
4975 	/*
4976 	 * The number of default huge pages (for this size) could have been
4977 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4978 	 * then default_hstate_max_huge_pages is set.  If the default huge
4979 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4980 	 * allocated here from bootmem allocator.
4981 	 */
4982 	if (default_hstate_max_huge_pages) {
4983 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4984 		/*
4985 		 * Since this is an early parameter, we can't check
4986 		 * NUMA node state yet, so loop through MAX_NUMNODES.
4987 		 */
4988 		for (i = 0; i < MAX_NUMNODES; i++) {
4989 			if (default_hugepages_in_node[i] != 0)
4990 				default_hstate.max_huge_pages_node[i] =
4991 					default_hugepages_in_node[i];
4992 		}
4993 		default_hstate_max_huge_pages = 0;
4994 	}
4995 
4996 	return 0;
4997 }
4998 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4999 
hugetlb_bootmem_set_nodes(void)5000 void __init hugetlb_bootmem_set_nodes(void)
5001 {
5002 	int i, nid;
5003 	unsigned long start_pfn, end_pfn;
5004 
5005 	if (!nodes_empty(hugetlb_bootmem_nodes))
5006 		return;
5007 
5008 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5009 		if (end_pfn > start_pfn)
5010 			node_set(nid, hugetlb_bootmem_nodes);
5011 	}
5012 }
5013 
5014 static bool __hugetlb_bootmem_allocated __initdata;
5015 
hugetlb_bootmem_allocated(void)5016 bool __init hugetlb_bootmem_allocated(void)
5017 {
5018 	return __hugetlb_bootmem_allocated;
5019 }
5020 
hugetlb_bootmem_alloc(void)5021 void __init hugetlb_bootmem_alloc(void)
5022 {
5023 	struct hstate *h;
5024 	int i;
5025 
5026 	if (__hugetlb_bootmem_allocated)
5027 		return;
5028 
5029 	hugetlb_bootmem_set_nodes();
5030 
5031 	for (i = 0; i < MAX_NUMNODES; i++)
5032 		INIT_LIST_HEAD(&huge_boot_pages[i]);
5033 
5034 	hugetlb_parse_params();
5035 
5036 	for_each_hstate(h) {
5037 		h->next_nid_to_alloc = first_online_node;
5038 
5039 		if (hstate_is_gigantic(h))
5040 			hugetlb_hstate_alloc_pages(h);
5041 	}
5042 
5043 	__hugetlb_bootmem_allocated = true;
5044 }
5045 
5046 /*
5047  * hugepage_alloc_threads command line parsing.
5048  *
5049  * When set, use this specific number of threads for the boot
5050  * allocation of hugepages.
5051  */
hugepage_alloc_threads_setup(char * s)5052 static int __init hugepage_alloc_threads_setup(char *s)
5053 {
5054 	unsigned long allocation_threads;
5055 
5056 	if (kstrtoul(s, 0, &allocation_threads) != 0)
5057 		return 1;
5058 
5059 	if (allocation_threads == 0)
5060 		return 1;
5061 
5062 	hugepage_allocation_threads = allocation_threads;
5063 
5064 	return 1;
5065 }
5066 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5067 
allowed_mems_nr(struct hstate * h)5068 static unsigned int allowed_mems_nr(struct hstate *h)
5069 {
5070 	int node;
5071 	unsigned int nr = 0;
5072 	nodemask_t *mbind_nodemask;
5073 	unsigned int *array = h->free_huge_pages_node;
5074 	gfp_t gfp_mask = htlb_alloc_mask(h);
5075 
5076 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5077 	for_each_node_mask(node, cpuset_current_mems_allowed) {
5078 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5079 			nr += array[node];
5080 	}
5081 
5082 	return nr;
5083 }
5084 
5085 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5086 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5087 					  void *buffer, size_t *length,
5088 					  loff_t *ppos, unsigned long *out)
5089 {
5090 	struct ctl_table dup_table;
5091 
5092 	/*
5093 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5094 	 * can duplicate the @table and alter the duplicate of it.
5095 	 */
5096 	dup_table = *table;
5097 	dup_table.data = out;
5098 
5099 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5100 }
5101 
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5102 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5103 			 const struct ctl_table *table, int write,
5104 			 void *buffer, size_t *length, loff_t *ppos)
5105 {
5106 	struct hstate *h = &default_hstate;
5107 	unsigned long tmp = h->max_huge_pages;
5108 	int ret;
5109 
5110 	if (!hugepages_supported())
5111 		return -EOPNOTSUPP;
5112 
5113 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5114 					     &tmp);
5115 	if (ret)
5116 		goto out;
5117 
5118 	if (write)
5119 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
5120 						  NUMA_NO_NODE, tmp, *length);
5121 out:
5122 	return ret;
5123 }
5124 
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5125 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5126 			  void *buffer, size_t *length, loff_t *ppos)
5127 {
5128 
5129 	return hugetlb_sysctl_handler_common(false, table, write,
5130 							buffer, length, ppos);
5131 }
5132 
5133 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5134 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5135 			  void *buffer, size_t *length, loff_t *ppos)
5136 {
5137 	return hugetlb_sysctl_handler_common(true, table, write,
5138 							buffer, length, ppos);
5139 }
5140 #endif /* CONFIG_NUMA */
5141 
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5142 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5143 		void *buffer, size_t *length, loff_t *ppos)
5144 {
5145 	struct hstate *h = &default_hstate;
5146 	unsigned long tmp;
5147 	int ret;
5148 
5149 	if (!hugepages_supported())
5150 		return -EOPNOTSUPP;
5151 
5152 	tmp = h->nr_overcommit_huge_pages;
5153 
5154 	if (write && hstate_is_gigantic(h))
5155 		return -EINVAL;
5156 
5157 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5158 					     &tmp);
5159 	if (ret)
5160 		goto out;
5161 
5162 	if (write) {
5163 		spin_lock_irq(&hugetlb_lock);
5164 		h->nr_overcommit_huge_pages = tmp;
5165 		spin_unlock_irq(&hugetlb_lock);
5166 	}
5167 out:
5168 	return ret;
5169 }
5170 
5171 static const struct ctl_table hugetlb_table[] = {
5172 	{
5173 		.procname	= "nr_hugepages",
5174 		.data		= NULL,
5175 		.maxlen		= sizeof(unsigned long),
5176 		.mode		= 0644,
5177 		.proc_handler	= hugetlb_sysctl_handler,
5178 	},
5179 #ifdef CONFIG_NUMA
5180 	{
5181 		.procname       = "nr_hugepages_mempolicy",
5182 		.data           = NULL,
5183 		.maxlen         = sizeof(unsigned long),
5184 		.mode           = 0644,
5185 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5186 	},
5187 #endif
5188 	{
5189 		.procname	= "hugetlb_shm_group",
5190 		.data		= &sysctl_hugetlb_shm_group,
5191 		.maxlen		= sizeof(gid_t),
5192 		.mode		= 0644,
5193 		.proc_handler	= proc_dointvec,
5194 	},
5195 	{
5196 		.procname	= "nr_overcommit_hugepages",
5197 		.data		= NULL,
5198 		.maxlen		= sizeof(unsigned long),
5199 		.mode		= 0644,
5200 		.proc_handler	= hugetlb_overcommit_handler,
5201 	},
5202 };
5203 
hugetlb_sysctl_init(void)5204 static void __init hugetlb_sysctl_init(void)
5205 {
5206 	register_sysctl_init("vm", hugetlb_table);
5207 }
5208 #endif /* CONFIG_SYSCTL */
5209 
hugetlb_report_meminfo(struct seq_file * m)5210 void hugetlb_report_meminfo(struct seq_file *m)
5211 {
5212 	struct hstate *h;
5213 	unsigned long total = 0;
5214 
5215 	if (!hugepages_supported())
5216 		return;
5217 
5218 	for_each_hstate(h) {
5219 		unsigned long count = h->nr_huge_pages;
5220 
5221 		total += huge_page_size(h) * count;
5222 
5223 		if (h == &default_hstate)
5224 			seq_printf(m,
5225 				   "HugePages_Total:   %5lu\n"
5226 				   "HugePages_Free:    %5lu\n"
5227 				   "HugePages_Rsvd:    %5lu\n"
5228 				   "HugePages_Surp:    %5lu\n"
5229 				   "Hugepagesize:   %8lu kB\n",
5230 				   count,
5231 				   h->free_huge_pages,
5232 				   h->resv_huge_pages,
5233 				   h->surplus_huge_pages,
5234 				   huge_page_size(h) / SZ_1K);
5235 	}
5236 
5237 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5238 }
5239 
hugetlb_report_node_meminfo(char * buf,int len,int nid)5240 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5241 {
5242 	struct hstate *h = &default_hstate;
5243 
5244 	if (!hugepages_supported())
5245 		return 0;
5246 
5247 	return sysfs_emit_at(buf, len,
5248 			     "Node %d HugePages_Total: %5u\n"
5249 			     "Node %d HugePages_Free:  %5u\n"
5250 			     "Node %d HugePages_Surp:  %5u\n",
5251 			     nid, h->nr_huge_pages_node[nid],
5252 			     nid, h->free_huge_pages_node[nid],
5253 			     nid, h->surplus_huge_pages_node[nid]);
5254 }
5255 
hugetlb_show_meminfo_node(int nid)5256 void hugetlb_show_meminfo_node(int nid)
5257 {
5258 	struct hstate *h;
5259 
5260 	if (!hugepages_supported())
5261 		return;
5262 
5263 	for_each_hstate(h)
5264 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5265 			nid,
5266 			h->nr_huge_pages_node[nid],
5267 			h->free_huge_pages_node[nid],
5268 			h->surplus_huge_pages_node[nid],
5269 			huge_page_size(h) / SZ_1K);
5270 }
5271 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5272 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5273 {
5274 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5275 		   K(atomic_long_read(&mm->hugetlb_usage)));
5276 }
5277 
5278 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5279 unsigned long hugetlb_total_pages(void)
5280 {
5281 	struct hstate *h;
5282 	unsigned long nr_total_pages = 0;
5283 
5284 	for_each_hstate(h)
5285 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5286 	return nr_total_pages;
5287 }
5288 
hugetlb_acct_memory(struct hstate * h,long delta)5289 static int hugetlb_acct_memory(struct hstate *h, long delta)
5290 {
5291 	int ret = -ENOMEM;
5292 
5293 	if (!delta)
5294 		return 0;
5295 
5296 	spin_lock_irq(&hugetlb_lock);
5297 	/*
5298 	 * When cpuset is configured, it breaks the strict hugetlb page
5299 	 * reservation as the accounting is done on a global variable. Such
5300 	 * reservation is completely rubbish in the presence of cpuset because
5301 	 * the reservation is not checked against page availability for the
5302 	 * current cpuset. Application can still potentially OOM'ed by kernel
5303 	 * with lack of free htlb page in cpuset that the task is in.
5304 	 * Attempt to enforce strict accounting with cpuset is almost
5305 	 * impossible (or too ugly) because cpuset is too fluid that
5306 	 * task or memory node can be dynamically moved between cpusets.
5307 	 *
5308 	 * The change of semantics for shared hugetlb mapping with cpuset is
5309 	 * undesirable. However, in order to preserve some of the semantics,
5310 	 * we fall back to check against current free page availability as
5311 	 * a best attempt and hopefully to minimize the impact of changing
5312 	 * semantics that cpuset has.
5313 	 *
5314 	 * Apart from cpuset, we also have memory policy mechanism that
5315 	 * also determines from which node the kernel will allocate memory
5316 	 * in a NUMA system. So similar to cpuset, we also should consider
5317 	 * the memory policy of the current task. Similar to the description
5318 	 * above.
5319 	 */
5320 	if (delta > 0) {
5321 		if (gather_surplus_pages(h, delta) < 0)
5322 			goto out;
5323 
5324 		if (delta > allowed_mems_nr(h)) {
5325 			return_unused_surplus_pages(h, delta);
5326 			goto out;
5327 		}
5328 	}
5329 
5330 	ret = 0;
5331 	if (delta < 0)
5332 		return_unused_surplus_pages(h, (unsigned long) -delta);
5333 
5334 out:
5335 	spin_unlock_irq(&hugetlb_lock);
5336 	return ret;
5337 }
5338 
hugetlb_vm_op_open(struct vm_area_struct * vma)5339 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5340 {
5341 	struct resv_map *resv = vma_resv_map(vma);
5342 
5343 	/*
5344 	 * HPAGE_RESV_OWNER indicates a private mapping.
5345 	 * This new VMA should share its siblings reservation map if present.
5346 	 * The VMA will only ever have a valid reservation map pointer where
5347 	 * it is being copied for another still existing VMA.  As that VMA
5348 	 * has a reference to the reservation map it cannot disappear until
5349 	 * after this open call completes.  It is therefore safe to take a
5350 	 * new reference here without additional locking.
5351 	 */
5352 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5353 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5354 		kref_get(&resv->refs);
5355 	}
5356 
5357 	/*
5358 	 * vma_lock structure for sharable mappings is vma specific.
5359 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5360 	 * new structure.  Before clearing, make sure vma_lock is not
5361 	 * for this vma.
5362 	 */
5363 	if (vma->vm_flags & VM_MAYSHARE) {
5364 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5365 
5366 		if (vma_lock) {
5367 			if (vma_lock->vma != vma) {
5368 				vma->vm_private_data = NULL;
5369 				hugetlb_vma_lock_alloc(vma);
5370 			} else
5371 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5372 		} else
5373 			hugetlb_vma_lock_alloc(vma);
5374 	}
5375 }
5376 
hugetlb_vm_op_close(struct vm_area_struct * vma)5377 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5378 {
5379 	struct hstate *h = hstate_vma(vma);
5380 	struct resv_map *resv;
5381 	struct hugepage_subpool *spool = subpool_vma(vma);
5382 	unsigned long reserve, start, end;
5383 	long gbl_reserve;
5384 
5385 	hugetlb_vma_lock_free(vma);
5386 
5387 	resv = vma_resv_map(vma);
5388 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5389 		return;
5390 
5391 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5392 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5393 
5394 	reserve = (end - start) - region_count(resv, start, end);
5395 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5396 	if (reserve) {
5397 		/*
5398 		 * Decrement reserve counts.  The global reserve count may be
5399 		 * adjusted if the subpool has a minimum size.
5400 		 */
5401 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5402 		hugetlb_acct_memory(h, -gbl_reserve);
5403 	}
5404 
5405 	kref_put(&resv->refs, resv_map_release);
5406 }
5407 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5408 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5409 {
5410 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5411 		return -EINVAL;
5412 	return 0;
5413 }
5414 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5415 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5416 {
5417 	/*
5418 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5419 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5420 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5421 	 * This function is called in the middle of a VMA split operation, with
5422 	 * MM, VMA and rmap all write-locked to prevent concurrent page table
5423 	 * walks (except hardware and gup_fast()).
5424 	 */
5425 	vma_assert_write_locked(vma);
5426 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5427 
5428 	if (addr & ~PUD_MASK) {
5429 		unsigned long floor = addr & PUD_MASK;
5430 		unsigned long ceil = floor + PUD_SIZE;
5431 
5432 		if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5433 			/*
5434 			 * Locking:
5435 			 * Use take_locks=false here.
5436 			 * The file rmap lock is already held.
5437 			 * The hugetlb VMA lock can't be taken when we already
5438 			 * hold the file rmap lock, and we don't need it because
5439 			 * its purpose is to synchronize against concurrent page
5440 			 * table walks, which are not possible thanks to the
5441 			 * locks held by our caller.
5442 			 */
5443 			hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5444 		}
5445 	}
5446 }
5447 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5448 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5449 {
5450 	return huge_page_size(hstate_vma(vma));
5451 }
5452 
5453 /*
5454  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5455  * handle_mm_fault() to try to instantiate regular-sized pages in the
5456  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5457  * this far.
5458  */
hugetlb_vm_op_fault(struct vm_fault * vmf)5459 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5460 {
5461 	BUG();
5462 	return 0;
5463 }
5464 
5465 /*
5466  * When a new function is introduced to vm_operations_struct and added
5467  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5468  * This is because under System V memory model, mappings created via
5469  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5470  * their original vm_ops are overwritten with shm_vm_ops.
5471  */
5472 const struct vm_operations_struct hugetlb_vm_ops = {
5473 	.fault = hugetlb_vm_op_fault,
5474 	.open = hugetlb_vm_op_open,
5475 	.close = hugetlb_vm_op_close,
5476 	.may_split = hugetlb_vm_op_split,
5477 	.pagesize = hugetlb_vm_op_pagesize,
5478 };
5479 
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5480 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5481 		bool try_mkwrite)
5482 {
5483 	pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5484 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5485 
5486 	if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5487 		entry = pte_mkwrite_novma(pte_mkdirty(entry));
5488 	} else {
5489 		entry = pte_wrprotect(entry);
5490 	}
5491 	entry = pte_mkyoung(entry);
5492 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5493 
5494 	return entry;
5495 }
5496 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5497 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5498 				   unsigned long address, pte_t *ptep)
5499 {
5500 	pte_t entry;
5501 
5502 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5503 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5504 		update_mmu_cache(vma, address, ptep);
5505 }
5506 
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5507 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5508 					 unsigned long address, pte_t *ptep)
5509 {
5510 	if (vma->vm_flags & VM_WRITE)
5511 		set_huge_ptep_writable(vma, address, ptep);
5512 }
5513 
is_hugetlb_entry_migration(pte_t pte)5514 bool is_hugetlb_entry_migration(pte_t pte)
5515 {
5516 	swp_entry_t swp;
5517 
5518 	if (huge_pte_none(pte) || pte_present(pte))
5519 		return false;
5520 	swp = pte_to_swp_entry(pte);
5521 	if (is_migration_entry(swp))
5522 		return true;
5523 	else
5524 		return false;
5525 }
5526 
is_hugetlb_entry_hwpoisoned(pte_t pte)5527 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5528 {
5529 	swp_entry_t swp;
5530 
5531 	if (huge_pte_none(pte) || pte_present(pte))
5532 		return false;
5533 	swp = pte_to_swp_entry(pte);
5534 	if (is_hwpoison_entry(swp))
5535 		return true;
5536 	else
5537 		return false;
5538 }
5539 
5540 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5541 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5542 		      struct folio *new_folio, pte_t old, unsigned long sz)
5543 {
5544 	pte_t newpte = make_huge_pte(vma, new_folio, true);
5545 
5546 	__folio_mark_uptodate(new_folio);
5547 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5548 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5549 		newpte = huge_pte_mkuffd_wp(newpte);
5550 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5551 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5552 	folio_set_hugetlb_migratable(new_folio);
5553 }
5554 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5555 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5556 			    struct vm_area_struct *dst_vma,
5557 			    struct vm_area_struct *src_vma)
5558 {
5559 	pte_t *src_pte, *dst_pte, entry;
5560 	struct folio *pte_folio;
5561 	unsigned long addr;
5562 	bool cow = is_cow_mapping(src_vma->vm_flags);
5563 	struct hstate *h = hstate_vma(src_vma);
5564 	unsigned long sz = huge_page_size(h);
5565 	unsigned long npages = pages_per_huge_page(h);
5566 	struct mmu_notifier_range range;
5567 	unsigned long last_addr_mask;
5568 	int ret = 0;
5569 
5570 	if (cow) {
5571 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5572 					src_vma->vm_start,
5573 					src_vma->vm_end);
5574 		mmu_notifier_invalidate_range_start(&range);
5575 		vma_assert_write_locked(src_vma);
5576 		raw_write_seqcount_begin(&src->write_protect_seq);
5577 	} else {
5578 		/*
5579 		 * For shared mappings the vma lock must be held before
5580 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5581 		 * returned ptep could go away if part of a shared pmd and
5582 		 * another thread calls huge_pmd_unshare.
5583 		 */
5584 		hugetlb_vma_lock_read(src_vma);
5585 	}
5586 
5587 	last_addr_mask = hugetlb_mask_last_page(h);
5588 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5589 		spinlock_t *src_ptl, *dst_ptl;
5590 		src_pte = hugetlb_walk(src_vma, addr, sz);
5591 		if (!src_pte) {
5592 			addr |= last_addr_mask;
5593 			continue;
5594 		}
5595 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5596 		if (!dst_pte) {
5597 			ret = -ENOMEM;
5598 			break;
5599 		}
5600 
5601 		/*
5602 		 * If the pagetables are shared don't copy or take references.
5603 		 *
5604 		 * dst_pte == src_pte is the common case of src/dest sharing.
5605 		 * However, src could have 'unshared' and dst shares with
5606 		 * another vma. So page_count of ptep page is checked instead
5607 		 * to reliably determine whether pte is shared.
5608 		 */
5609 		if (page_count(virt_to_page(dst_pte)) > 1) {
5610 			addr |= last_addr_mask;
5611 			continue;
5612 		}
5613 
5614 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5615 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5616 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5617 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5618 again:
5619 		if (huge_pte_none(entry)) {
5620 			/*
5621 			 * Skip if src entry none.
5622 			 */
5623 			;
5624 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5625 			if (!userfaultfd_wp(dst_vma))
5626 				entry = huge_pte_clear_uffd_wp(entry);
5627 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5628 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5629 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5630 			bool uffd_wp = pte_swp_uffd_wp(entry);
5631 
5632 			if (!is_readable_migration_entry(swp_entry) && cow) {
5633 				/*
5634 				 * COW mappings require pages in both
5635 				 * parent and child to be set to read.
5636 				 */
5637 				swp_entry = make_readable_migration_entry(
5638 							swp_offset(swp_entry));
5639 				entry = swp_entry_to_pte(swp_entry);
5640 				if (userfaultfd_wp(src_vma) && uffd_wp)
5641 					entry = pte_swp_mkuffd_wp(entry);
5642 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5643 			}
5644 			if (!userfaultfd_wp(dst_vma))
5645 				entry = huge_pte_clear_uffd_wp(entry);
5646 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5647 		} else if (unlikely(is_pte_marker(entry))) {
5648 			pte_marker marker = copy_pte_marker(
5649 				pte_to_swp_entry(entry), dst_vma);
5650 
5651 			if (marker)
5652 				set_huge_pte_at(dst, addr, dst_pte,
5653 						make_pte_marker(marker), sz);
5654 		} else {
5655 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5656 			pte_folio = page_folio(pte_page(entry));
5657 			folio_get(pte_folio);
5658 
5659 			/*
5660 			 * Failing to duplicate the anon rmap is a rare case
5661 			 * where we see pinned hugetlb pages while they're
5662 			 * prone to COW. We need to do the COW earlier during
5663 			 * fork.
5664 			 *
5665 			 * When pre-allocating the page or copying data, we
5666 			 * need to be without the pgtable locks since we could
5667 			 * sleep during the process.
5668 			 */
5669 			if (!folio_test_anon(pte_folio)) {
5670 				hugetlb_add_file_rmap(pte_folio);
5671 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5672 				pte_t src_pte_old = entry;
5673 				struct folio *new_folio;
5674 
5675 				spin_unlock(src_ptl);
5676 				spin_unlock(dst_ptl);
5677 				/* Do not use reserve as it's private owned */
5678 				new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5679 				if (IS_ERR(new_folio)) {
5680 					folio_put(pte_folio);
5681 					ret = PTR_ERR(new_folio);
5682 					break;
5683 				}
5684 				ret = copy_user_large_folio(new_folio, pte_folio,
5685 							    addr, dst_vma);
5686 				folio_put(pte_folio);
5687 				if (ret) {
5688 					folio_put(new_folio);
5689 					break;
5690 				}
5691 
5692 				/* Install the new hugetlb folio if src pte stable */
5693 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5694 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5695 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5696 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5697 				if (!pte_same(src_pte_old, entry)) {
5698 					restore_reserve_on_error(h, dst_vma, addr,
5699 								new_folio);
5700 					folio_put(new_folio);
5701 					/* huge_ptep of dst_pte won't change as in child */
5702 					goto again;
5703 				}
5704 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5705 						      new_folio, src_pte_old, sz);
5706 				spin_unlock(src_ptl);
5707 				spin_unlock(dst_ptl);
5708 				continue;
5709 			}
5710 
5711 			if (cow) {
5712 				/*
5713 				 * No need to notify as we are downgrading page
5714 				 * table protection not changing it to point
5715 				 * to a new page.
5716 				 *
5717 				 * See Documentation/mm/mmu_notifier.rst
5718 				 */
5719 				huge_ptep_set_wrprotect(src, addr, src_pte);
5720 				entry = huge_pte_wrprotect(entry);
5721 			}
5722 
5723 			if (!userfaultfd_wp(dst_vma))
5724 				entry = huge_pte_clear_uffd_wp(entry);
5725 
5726 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5727 			hugetlb_count_add(npages, dst);
5728 		}
5729 		spin_unlock(src_ptl);
5730 		spin_unlock(dst_ptl);
5731 	}
5732 
5733 	if (cow) {
5734 		raw_write_seqcount_end(&src->write_protect_seq);
5735 		mmu_notifier_invalidate_range_end(&range);
5736 	} else {
5737 		hugetlb_vma_unlock_read(src_vma);
5738 	}
5739 
5740 	return ret;
5741 }
5742 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5743 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5744 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5745 			  unsigned long sz)
5746 {
5747 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5748 	struct hstate *h = hstate_vma(vma);
5749 	struct mm_struct *mm = vma->vm_mm;
5750 	spinlock_t *src_ptl, *dst_ptl;
5751 	pte_t pte;
5752 
5753 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5754 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5755 
5756 	/*
5757 	 * We don't have to worry about the ordering of src and dst ptlocks
5758 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5759 	 */
5760 	if (src_ptl != dst_ptl)
5761 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5762 
5763 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5764 
5765 	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5766 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5767 	else {
5768 		if (need_clear_uffd_wp) {
5769 			if (pte_present(pte))
5770 				pte = huge_pte_clear_uffd_wp(pte);
5771 			else if (is_swap_pte(pte))
5772 				pte = pte_swp_clear_uffd_wp(pte);
5773 		}
5774 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5775 	}
5776 
5777 	if (src_ptl != dst_ptl)
5778 		spin_unlock(src_ptl);
5779 	spin_unlock(dst_ptl);
5780 }
5781 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5782 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5783 			     struct vm_area_struct *new_vma,
5784 			     unsigned long old_addr, unsigned long new_addr,
5785 			     unsigned long len)
5786 {
5787 	struct hstate *h = hstate_vma(vma);
5788 	struct address_space *mapping = vma->vm_file->f_mapping;
5789 	unsigned long sz = huge_page_size(h);
5790 	struct mm_struct *mm = vma->vm_mm;
5791 	unsigned long old_end = old_addr + len;
5792 	unsigned long last_addr_mask;
5793 	pte_t *src_pte, *dst_pte;
5794 	struct mmu_notifier_range range;
5795 	bool shared_pmd = false;
5796 
5797 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5798 				old_end);
5799 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5800 	/*
5801 	 * In case of shared PMDs, we should cover the maximum possible
5802 	 * range.
5803 	 */
5804 	flush_cache_range(vma, range.start, range.end);
5805 
5806 	mmu_notifier_invalidate_range_start(&range);
5807 	last_addr_mask = hugetlb_mask_last_page(h);
5808 	/* Prevent race with file truncation */
5809 	hugetlb_vma_lock_write(vma);
5810 	i_mmap_lock_write(mapping);
5811 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5812 		src_pte = hugetlb_walk(vma, old_addr, sz);
5813 		if (!src_pte) {
5814 			old_addr |= last_addr_mask;
5815 			new_addr |= last_addr_mask;
5816 			continue;
5817 		}
5818 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5819 			continue;
5820 
5821 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5822 			shared_pmd = true;
5823 			old_addr |= last_addr_mask;
5824 			new_addr |= last_addr_mask;
5825 			continue;
5826 		}
5827 
5828 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5829 		if (!dst_pte)
5830 			break;
5831 
5832 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5833 	}
5834 
5835 	if (shared_pmd)
5836 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5837 	else
5838 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5839 	mmu_notifier_invalidate_range_end(&range);
5840 	i_mmap_unlock_write(mapping);
5841 	hugetlb_vma_unlock_write(vma);
5842 
5843 	return len + old_addr - old_end;
5844 }
5845 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5846 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5847 			    unsigned long start, unsigned long end,
5848 			    struct folio *folio, zap_flags_t zap_flags)
5849 {
5850 	struct mm_struct *mm = vma->vm_mm;
5851 	const bool folio_provided = !!folio;
5852 	unsigned long address;
5853 	pte_t *ptep;
5854 	pte_t pte;
5855 	spinlock_t *ptl;
5856 	struct hstate *h = hstate_vma(vma);
5857 	unsigned long sz = huge_page_size(h);
5858 	bool adjust_reservation = false;
5859 	unsigned long last_addr_mask;
5860 	bool force_flush = false;
5861 
5862 	WARN_ON(!is_vm_hugetlb_page(vma));
5863 	BUG_ON(start & ~huge_page_mask(h));
5864 	BUG_ON(end & ~huge_page_mask(h));
5865 
5866 	/*
5867 	 * This is a hugetlb vma, all the pte entries should point
5868 	 * to huge page.
5869 	 */
5870 	tlb_change_page_size(tlb, sz);
5871 	tlb_start_vma(tlb, vma);
5872 
5873 	last_addr_mask = hugetlb_mask_last_page(h);
5874 	address = start;
5875 	for (; address < end; address += sz) {
5876 		ptep = hugetlb_walk(vma, address, sz);
5877 		if (!ptep) {
5878 			address |= last_addr_mask;
5879 			continue;
5880 		}
5881 
5882 		ptl = huge_pte_lock(h, mm, ptep);
5883 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5884 			spin_unlock(ptl);
5885 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5886 			force_flush = true;
5887 			address |= last_addr_mask;
5888 			continue;
5889 		}
5890 
5891 		pte = huge_ptep_get(mm, address, ptep);
5892 		if (huge_pte_none(pte)) {
5893 			spin_unlock(ptl);
5894 			continue;
5895 		}
5896 
5897 		/*
5898 		 * Migrating hugepage or HWPoisoned hugepage is already
5899 		 * unmapped and its refcount is dropped, so just clear pte here.
5900 		 */
5901 		if (unlikely(!pte_present(pte))) {
5902 			/*
5903 			 * If the pte was wr-protected by uffd-wp in any of the
5904 			 * swap forms, meanwhile the caller does not want to
5905 			 * drop the uffd-wp bit in this zap, then replace the
5906 			 * pte with a marker.
5907 			 */
5908 			if (pte_swp_uffd_wp_any(pte) &&
5909 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5910 				set_huge_pte_at(mm, address, ptep,
5911 						make_pte_marker(PTE_MARKER_UFFD_WP),
5912 						sz);
5913 			else
5914 				huge_pte_clear(mm, address, ptep, sz);
5915 			spin_unlock(ptl);
5916 			continue;
5917 		}
5918 
5919 		/*
5920 		 * If a folio is supplied, it is because a specific
5921 		 * folio is being unmapped, not a range. Ensure the folio we
5922 		 * are about to unmap is the actual folio of interest.
5923 		 */
5924 		if (folio_provided) {
5925 			if (folio != page_folio(pte_page(pte))) {
5926 				spin_unlock(ptl);
5927 				continue;
5928 			}
5929 			/*
5930 			 * Mark the VMA as having unmapped its page so that
5931 			 * future faults in this VMA will fail rather than
5932 			 * looking like data was lost
5933 			 */
5934 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5935 		} else {
5936 			folio = page_folio(pte_page(pte));
5937 		}
5938 
5939 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5940 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5941 		if (huge_pte_dirty(pte))
5942 			folio_mark_dirty(folio);
5943 		/* Leave a uffd-wp pte marker if needed */
5944 		if (huge_pte_uffd_wp(pte) &&
5945 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5946 			set_huge_pte_at(mm, address, ptep,
5947 					make_pte_marker(PTE_MARKER_UFFD_WP),
5948 					sz);
5949 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5950 		hugetlb_remove_rmap(folio);
5951 
5952 		/*
5953 		 * Restore the reservation for anonymous page, otherwise the
5954 		 * backing page could be stolen by someone.
5955 		 * If there we are freeing a surplus, do not set the restore
5956 		 * reservation bit.
5957 		 */
5958 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5959 		    folio_test_anon(folio)) {
5960 			folio_set_hugetlb_restore_reserve(folio);
5961 			/* Reservation to be adjusted after the spin lock */
5962 			adjust_reservation = true;
5963 		}
5964 
5965 		spin_unlock(ptl);
5966 
5967 		/*
5968 		 * Adjust the reservation for the region that will have the
5969 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5970 		 * resv->adds_in_progress if it succeeds. If this is not done,
5971 		 * do_exit() will not see it, and will keep the reservation
5972 		 * forever.
5973 		 */
5974 		if (adjust_reservation) {
5975 			int rc = vma_needs_reservation(h, vma, address);
5976 
5977 			if (rc < 0)
5978 				/* Pressumably allocate_file_region_entries failed
5979 				 * to allocate a file_region struct. Clear
5980 				 * hugetlb_restore_reserve so that global reserve
5981 				 * count will not be incremented by free_huge_folio.
5982 				 * Act as if we consumed the reservation.
5983 				 */
5984 				folio_clear_hugetlb_restore_reserve(folio);
5985 			else if (rc)
5986 				vma_add_reservation(h, vma, address);
5987 		}
5988 
5989 		tlb_remove_page_size(tlb, folio_page(folio, 0),
5990 				     folio_size(folio));
5991 		/*
5992 		 * If we were instructed to unmap a specific folio, we're done.
5993 		 */
5994 		if (folio_provided)
5995 			break;
5996 	}
5997 	tlb_end_vma(tlb, vma);
5998 
5999 	/*
6000 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
6001 	 * could defer the flush until now, since by holding i_mmap_rwsem we
6002 	 * guaranteed that the last refernece would not be dropped. But we must
6003 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6004 	 * dropped and the last reference to the shared PMDs page might be
6005 	 * dropped as well.
6006 	 *
6007 	 * In theory we could defer the freeing of the PMD pages as well, but
6008 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6009 	 * detect sharing, so we cannot defer the release of the page either.
6010 	 * Instead, do flush now.
6011 	 */
6012 	if (force_flush)
6013 		tlb_flush_mmu_tlbonly(tlb);
6014 }
6015 
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6016 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6017 			 unsigned long *start, unsigned long *end)
6018 {
6019 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6020 		return;
6021 
6022 	adjust_range_if_pmd_sharing_possible(vma, start, end);
6023 	hugetlb_vma_lock_write(vma);
6024 	if (vma->vm_file)
6025 		i_mmap_lock_write(vma->vm_file->f_mapping);
6026 }
6027 
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6028 void __hugetlb_zap_end(struct vm_area_struct *vma,
6029 		       struct zap_details *details)
6030 {
6031 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
6032 
6033 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6034 		return;
6035 
6036 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
6037 		/*
6038 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6039 		 * When the vma_lock is freed, this makes the vma ineligible
6040 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
6041 		 * pmd sharing.  This is important as page tables for this
6042 		 * unmapped range will be asynchrously deleted.  If the page
6043 		 * tables are shared, there will be issues when accessed by
6044 		 * someone else.
6045 		 */
6046 		__hugetlb_vma_unlock_write_free(vma);
6047 	} else {
6048 		hugetlb_vma_unlock_write(vma);
6049 	}
6050 
6051 	if (vma->vm_file)
6052 		i_mmap_unlock_write(vma->vm_file->f_mapping);
6053 }
6054 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6055 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6056 			  unsigned long end, struct folio *folio,
6057 			  zap_flags_t zap_flags)
6058 {
6059 	struct mmu_notifier_range range;
6060 	struct mmu_gather tlb;
6061 
6062 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6063 				start, end);
6064 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6065 	mmu_notifier_invalidate_range_start(&range);
6066 	tlb_gather_mmu(&tlb, vma->vm_mm);
6067 
6068 	__unmap_hugepage_range(&tlb, vma, start, end,
6069 			       folio, zap_flags);
6070 
6071 	mmu_notifier_invalidate_range_end(&range);
6072 	tlb_finish_mmu(&tlb);
6073 }
6074 
6075 /*
6076  * This is called when the original mapper is failing to COW a MAP_PRIVATE
6077  * mapping it owns the reserve page for. The intention is to unmap the page
6078  * from other VMAs and let the children be SIGKILLed if they are faulting the
6079  * same region.
6080  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6082 			      struct folio *folio, unsigned long address)
6083 {
6084 	struct hstate *h = hstate_vma(vma);
6085 	struct vm_area_struct *iter_vma;
6086 	struct address_space *mapping;
6087 	pgoff_t pgoff;
6088 
6089 	/*
6090 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6091 	 * from page cache lookup which is in HPAGE_SIZE units.
6092 	 */
6093 	address = address & huge_page_mask(h);
6094 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6095 			vma->vm_pgoff;
6096 	mapping = vma->vm_file->f_mapping;
6097 
6098 	/*
6099 	 * Take the mapping lock for the duration of the table walk. As
6100 	 * this mapping should be shared between all the VMAs,
6101 	 * __unmap_hugepage_range() is called as the lock is already held
6102 	 */
6103 	i_mmap_lock_write(mapping);
6104 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6105 		/* Do not unmap the current VMA */
6106 		if (iter_vma == vma)
6107 			continue;
6108 
6109 		/*
6110 		 * Shared VMAs have their own reserves and do not affect
6111 		 * MAP_PRIVATE accounting but it is possible that a shared
6112 		 * VMA is using the same page so check and skip such VMAs.
6113 		 */
6114 		if (iter_vma->vm_flags & VM_MAYSHARE)
6115 			continue;
6116 
6117 		/*
6118 		 * Unmap the page from other VMAs without their own reserves.
6119 		 * They get marked to be SIGKILLed if they fault in these
6120 		 * areas. This is because a future no-page fault on this VMA
6121 		 * could insert a zeroed page instead of the data existing
6122 		 * from the time of fork. This would look like data corruption
6123 		 */
6124 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6125 			unmap_hugepage_range(iter_vma, address,
6126 					     address + huge_page_size(h),
6127 					     folio, 0);
6128 	}
6129 	i_mmap_unlock_write(mapping);
6130 }
6131 
6132 /*
6133  * hugetlb_wp() should be called with page lock of the original hugepage held.
6134  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6135  * cannot race with other handlers or page migration.
6136  * Keep the pte_same checks anyway to make transition from the mutex easier.
6137  */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6138 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6139 		       struct vm_fault *vmf)
6140 {
6141 	struct vm_area_struct *vma = vmf->vma;
6142 	struct mm_struct *mm = vma->vm_mm;
6143 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6144 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6145 	struct hstate *h = hstate_vma(vma);
6146 	struct folio *old_folio;
6147 	struct folio *new_folio;
6148 	bool cow_from_owner = 0;
6149 	vm_fault_t ret = 0;
6150 	struct mmu_notifier_range range;
6151 
6152 	/*
6153 	 * Never handle CoW for uffd-wp protected pages.  It should be only
6154 	 * handled when the uffd-wp protection is removed.
6155 	 *
6156 	 * Note that only the CoW optimization path (in hugetlb_no_page())
6157 	 * can trigger this, because hugetlb_fault() will always resolve
6158 	 * uffd-wp bit first.
6159 	 */
6160 	if (!unshare && huge_pte_uffd_wp(pte))
6161 		return 0;
6162 
6163 	/* Let's take out MAP_SHARED mappings first. */
6164 	if (vma->vm_flags & VM_MAYSHARE) {
6165 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6166 		return 0;
6167 	}
6168 
6169 	old_folio = page_folio(pte_page(pte));
6170 
6171 	delayacct_wpcopy_start();
6172 
6173 retry_avoidcopy:
6174 	/*
6175 	 * If no-one else is actually using this page, we're the exclusive
6176 	 * owner and can reuse this page.
6177 	 *
6178 	 * Note that we don't rely on the (safer) folio refcount here, because
6179 	 * copying the hugetlb folio when there are unexpected (temporary)
6180 	 * folio references could harm simple fork()+exit() users when
6181 	 * we run out of free hugetlb folios: we would have to kill processes
6182 	 * in scenarios that used to work. As a side effect, there can still
6183 	 * be leaks between processes, for example, with FOLL_GET users.
6184 	 */
6185 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6186 		if (!PageAnonExclusive(&old_folio->page)) {
6187 			folio_move_anon_rmap(old_folio, vma);
6188 			SetPageAnonExclusive(&old_folio->page);
6189 		}
6190 		if (likely(!unshare))
6191 			set_huge_ptep_maybe_writable(vma, vmf->address,
6192 						     vmf->pte);
6193 
6194 		delayacct_wpcopy_end();
6195 		return 0;
6196 	}
6197 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6198 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
6199 
6200 	/*
6201 	 * If the process that created a MAP_PRIVATE mapping is about to
6202 	 * perform a COW due to a shared page count, attempt to satisfy
6203 	 * the allocation without using the existing reserves. The pagecache
6204 	 * page is used to determine if the reserve at this address was
6205 	 * consumed or not. If reserves were used, a partial faulted mapping
6206 	 * at the time of fork() could consume its reserves on COW instead
6207 	 * of the full address range.
6208 	 */
6209 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6210 			old_folio != pagecache_folio)
6211 		cow_from_owner = true;
6212 
6213 	folio_get(old_folio);
6214 
6215 	/*
6216 	 * Drop page table lock as buddy allocator may be called. It will
6217 	 * be acquired again before returning to the caller, as expected.
6218 	 */
6219 	spin_unlock(vmf->ptl);
6220 	new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6221 
6222 	if (IS_ERR(new_folio)) {
6223 		/*
6224 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6225 		 * it is due to references held by a child and an insufficient
6226 		 * huge page pool. To guarantee the original mappers
6227 		 * reliability, unmap the page from child processes. The child
6228 		 * may get SIGKILLed if it later faults.
6229 		 */
6230 		if (cow_from_owner) {
6231 			struct address_space *mapping = vma->vm_file->f_mapping;
6232 			pgoff_t idx;
6233 			u32 hash;
6234 
6235 			folio_put(old_folio);
6236 			/*
6237 			 * Drop hugetlb_fault_mutex and vma_lock before
6238 			 * unmapping.  unmapping needs to hold vma_lock
6239 			 * in write mode.  Dropping vma_lock in read mode
6240 			 * here is OK as COW mappings do not interact with
6241 			 * PMD sharing.
6242 			 *
6243 			 * Reacquire both after unmap operation.
6244 			 */
6245 			idx = vma_hugecache_offset(h, vma, vmf->address);
6246 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6247 			hugetlb_vma_unlock_read(vma);
6248 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6249 
6250 			unmap_ref_private(mm, vma, old_folio, vmf->address);
6251 
6252 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6253 			hugetlb_vma_lock_read(vma);
6254 			spin_lock(vmf->ptl);
6255 			vmf->pte = hugetlb_walk(vma, vmf->address,
6256 					huge_page_size(h));
6257 			if (likely(vmf->pte &&
6258 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6259 				goto retry_avoidcopy;
6260 			/*
6261 			 * race occurs while re-acquiring page table
6262 			 * lock, and our job is done.
6263 			 */
6264 			delayacct_wpcopy_end();
6265 			return 0;
6266 		}
6267 
6268 		ret = vmf_error(PTR_ERR(new_folio));
6269 		goto out_release_old;
6270 	}
6271 
6272 	/*
6273 	 * When the original hugepage is shared one, it does not have
6274 	 * anon_vma prepared.
6275 	 */
6276 	ret = __vmf_anon_prepare(vmf);
6277 	if (unlikely(ret))
6278 		goto out_release_all;
6279 
6280 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6281 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6282 		goto out_release_all;
6283 	}
6284 	__folio_mark_uptodate(new_folio);
6285 
6286 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6287 				vmf->address + huge_page_size(h));
6288 	mmu_notifier_invalidate_range_start(&range);
6289 
6290 	/*
6291 	 * Retake the page table lock to check for racing updates
6292 	 * before the page tables are altered
6293 	 */
6294 	spin_lock(vmf->ptl);
6295 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6296 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6297 		pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6298 
6299 		/* Break COW or unshare */
6300 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6301 		hugetlb_remove_rmap(old_folio);
6302 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6303 		if (huge_pte_uffd_wp(pte))
6304 			newpte = huge_pte_mkuffd_wp(newpte);
6305 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6306 				huge_page_size(h));
6307 		folio_set_hugetlb_migratable(new_folio);
6308 		/* Make the old page be freed below */
6309 		new_folio = old_folio;
6310 	}
6311 	spin_unlock(vmf->ptl);
6312 	mmu_notifier_invalidate_range_end(&range);
6313 out_release_all:
6314 	/*
6315 	 * No restore in case of successful pagetable update (Break COW or
6316 	 * unshare)
6317 	 */
6318 	if (new_folio != old_folio)
6319 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6320 	folio_put(new_folio);
6321 out_release_old:
6322 	folio_put(old_folio);
6323 
6324 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6325 
6326 	delayacct_wpcopy_end();
6327 	return ret;
6328 }
6329 
6330 /*
6331  * Return whether there is a pagecache page to back given address within VMA.
6332  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6333 bool hugetlbfs_pagecache_present(struct hstate *h,
6334 				 struct vm_area_struct *vma, unsigned long address)
6335 {
6336 	struct address_space *mapping = vma->vm_file->f_mapping;
6337 	pgoff_t idx = linear_page_index(vma, address);
6338 	struct folio *folio;
6339 
6340 	folio = filemap_get_folio(mapping, idx);
6341 	if (IS_ERR(folio))
6342 		return false;
6343 	folio_put(folio);
6344 	return true;
6345 }
6346 
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6347 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6348 			   pgoff_t idx)
6349 {
6350 	struct inode *inode = mapping->host;
6351 	struct hstate *h = hstate_inode(inode);
6352 	int err;
6353 
6354 	idx <<= huge_page_order(h);
6355 	__folio_set_locked(folio);
6356 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6357 
6358 	if (unlikely(err)) {
6359 		__folio_clear_locked(folio);
6360 		return err;
6361 	}
6362 	folio_clear_hugetlb_restore_reserve(folio);
6363 
6364 	/*
6365 	 * mark folio dirty so that it will not be removed from cache/file
6366 	 * by non-hugetlbfs specific code paths.
6367 	 */
6368 	folio_mark_dirty(folio);
6369 
6370 	spin_lock(&inode->i_lock);
6371 	inode->i_blocks += blocks_per_huge_page(h);
6372 	spin_unlock(&inode->i_lock);
6373 	return 0;
6374 }
6375 
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6376 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6377 						  struct address_space *mapping,
6378 						  unsigned long reason)
6379 {
6380 	u32 hash;
6381 
6382 	/*
6383 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6384 	 * userfault. Also mmap_lock could be dropped due to handling
6385 	 * userfault, any vma operation should be careful from here.
6386 	 */
6387 	hugetlb_vma_unlock_read(vmf->vma);
6388 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6389 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6390 	return handle_userfault(vmf, reason);
6391 }
6392 
6393 /*
6394  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6395  * false if pte changed or is changing.
6396  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6397 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6398 			       pte_t *ptep, pte_t old_pte)
6399 {
6400 	spinlock_t *ptl;
6401 	bool same;
6402 
6403 	ptl = huge_pte_lock(h, mm, ptep);
6404 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6405 	spin_unlock(ptl);
6406 
6407 	return same;
6408 }
6409 
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6410 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6411 			struct vm_fault *vmf)
6412 {
6413 	struct vm_area_struct *vma = vmf->vma;
6414 	struct mm_struct *mm = vma->vm_mm;
6415 	struct hstate *h = hstate_vma(vma);
6416 	vm_fault_t ret = VM_FAULT_SIGBUS;
6417 	int anon_rmap = 0;
6418 	unsigned long size;
6419 	struct folio *folio;
6420 	pte_t new_pte;
6421 	bool new_folio, new_pagecache_folio = false;
6422 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6423 
6424 	/*
6425 	 * Currently, we are forced to kill the process in the event the
6426 	 * original mapper has unmapped pages from the child due to a failed
6427 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6428 	 * be obvious.
6429 	 */
6430 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6431 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6432 			   current->pid);
6433 		goto out;
6434 	}
6435 
6436 	/*
6437 	 * Use page lock to guard against racing truncation
6438 	 * before we get page_table_lock.
6439 	 */
6440 	new_folio = false;
6441 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6442 	if (IS_ERR(folio)) {
6443 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6444 		if (vmf->pgoff >= size)
6445 			goto out;
6446 		/* Check for page in userfault range */
6447 		if (userfaultfd_missing(vma)) {
6448 			/*
6449 			 * Since hugetlb_no_page() was examining pte
6450 			 * without pgtable lock, we need to re-test under
6451 			 * lock because the pte may not be stable and could
6452 			 * have changed from under us.  Try to detect
6453 			 * either changed or during-changing ptes and retry
6454 			 * properly when needed.
6455 			 *
6456 			 * Note that userfaultfd is actually fine with
6457 			 * false positives (e.g. caused by pte changed),
6458 			 * but not wrong logical events (e.g. caused by
6459 			 * reading a pte during changing).  The latter can
6460 			 * confuse the userspace, so the strictness is very
6461 			 * much preferred.  E.g., MISSING event should
6462 			 * never happen on the page after UFFDIO_COPY has
6463 			 * correctly installed the page and returned.
6464 			 */
6465 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6466 				ret = 0;
6467 				goto out;
6468 			}
6469 
6470 			return hugetlb_handle_userfault(vmf, mapping,
6471 							VM_UFFD_MISSING);
6472 		}
6473 
6474 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6475 			ret = __vmf_anon_prepare(vmf);
6476 			if (unlikely(ret))
6477 				goto out;
6478 		}
6479 
6480 		folio = alloc_hugetlb_folio(vma, vmf->address, false);
6481 		if (IS_ERR(folio)) {
6482 			/*
6483 			 * Returning error will result in faulting task being
6484 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6485 			 * tasks from racing to fault in the same page which
6486 			 * could result in false unable to allocate errors.
6487 			 * Page migration does not take the fault mutex, but
6488 			 * does a clear then write of pte's under page table
6489 			 * lock.  Page fault code could race with migration,
6490 			 * notice the clear pte and try to allocate a page
6491 			 * here.  Before returning error, get ptl and make
6492 			 * sure there really is no pte entry.
6493 			 */
6494 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6495 				ret = vmf_error(PTR_ERR(folio));
6496 			else
6497 				ret = 0;
6498 			goto out;
6499 		}
6500 		folio_zero_user(folio, vmf->real_address);
6501 		__folio_mark_uptodate(folio);
6502 		new_folio = true;
6503 
6504 		if (vma->vm_flags & VM_MAYSHARE) {
6505 			int err = hugetlb_add_to_page_cache(folio, mapping,
6506 							vmf->pgoff);
6507 			if (err) {
6508 				/*
6509 				 * err can't be -EEXIST which implies someone
6510 				 * else consumed the reservation since hugetlb
6511 				 * fault mutex is held when add a hugetlb page
6512 				 * to the page cache. So it's safe to call
6513 				 * restore_reserve_on_error() here.
6514 				 */
6515 				restore_reserve_on_error(h, vma, vmf->address,
6516 							folio);
6517 				folio_put(folio);
6518 				ret = VM_FAULT_SIGBUS;
6519 				goto out;
6520 			}
6521 			new_pagecache_folio = true;
6522 		} else {
6523 			folio_lock(folio);
6524 			anon_rmap = 1;
6525 		}
6526 	} else {
6527 		/*
6528 		 * If memory error occurs between mmap() and fault, some process
6529 		 * don't have hwpoisoned swap entry for errored virtual address.
6530 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6531 		 */
6532 		if (unlikely(folio_test_hwpoison(folio))) {
6533 			ret = VM_FAULT_HWPOISON_LARGE |
6534 				VM_FAULT_SET_HINDEX(hstate_index(h));
6535 			goto backout_unlocked;
6536 		}
6537 
6538 		/* Check for page in userfault range. */
6539 		if (userfaultfd_minor(vma)) {
6540 			folio_unlock(folio);
6541 			folio_put(folio);
6542 			/* See comment in userfaultfd_missing() block above */
6543 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6544 				ret = 0;
6545 				goto out;
6546 			}
6547 			return hugetlb_handle_userfault(vmf, mapping,
6548 							VM_UFFD_MINOR);
6549 		}
6550 	}
6551 
6552 	/*
6553 	 * If we are going to COW a private mapping later, we examine the
6554 	 * pending reservations for this page now. This will ensure that
6555 	 * any allocations necessary to record that reservation occur outside
6556 	 * the spinlock.
6557 	 */
6558 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6559 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6560 			ret = VM_FAULT_OOM;
6561 			goto backout_unlocked;
6562 		}
6563 		/* Just decrements count, does not deallocate */
6564 		vma_end_reservation(h, vma, vmf->address);
6565 	}
6566 
6567 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6568 	ret = 0;
6569 	/* If pte changed from under us, retry */
6570 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6571 		goto backout;
6572 
6573 	if (anon_rmap)
6574 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6575 	else
6576 		hugetlb_add_file_rmap(folio);
6577 	new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6578 	/*
6579 	 * If this pte was previously wr-protected, keep it wr-protected even
6580 	 * if populated.
6581 	 */
6582 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6583 		new_pte = huge_pte_mkuffd_wp(new_pte);
6584 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6585 
6586 	hugetlb_count_add(pages_per_huge_page(h), mm);
6587 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6588 		/* Optimization, do the COW without a second fault */
6589 		ret = hugetlb_wp(folio, vmf);
6590 	}
6591 
6592 	spin_unlock(vmf->ptl);
6593 
6594 	/*
6595 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6596 	 * found in the pagecache may not have hugetlb_migratable if they have
6597 	 * been isolated for migration.
6598 	 */
6599 	if (new_folio)
6600 		folio_set_hugetlb_migratable(folio);
6601 
6602 	folio_unlock(folio);
6603 out:
6604 	hugetlb_vma_unlock_read(vma);
6605 
6606 	/*
6607 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6608 	 * the only way ret can be set to VM_FAULT_RETRY.
6609 	 */
6610 	if (unlikely(ret & VM_FAULT_RETRY))
6611 		vma_end_read(vma);
6612 
6613 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6614 	return ret;
6615 
6616 backout:
6617 	spin_unlock(vmf->ptl);
6618 backout_unlocked:
6619 	if (new_folio && !new_pagecache_folio)
6620 		restore_reserve_on_error(h, vma, vmf->address, folio);
6621 
6622 	folio_unlock(folio);
6623 	folio_put(folio);
6624 	goto out;
6625 }
6626 
6627 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6628 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6629 {
6630 	unsigned long key[2];
6631 	u32 hash;
6632 
6633 	key[0] = (unsigned long) mapping;
6634 	key[1] = idx;
6635 
6636 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6637 
6638 	return hash & (num_fault_mutexes - 1);
6639 }
6640 #else
6641 /*
6642  * For uniprocessor systems we always use a single mutex, so just
6643  * return 0 and avoid the hashing overhead.
6644  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6646 {
6647 	return 0;
6648 }
6649 #endif
6650 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6651 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6652 			unsigned long address, unsigned int flags)
6653 {
6654 	vm_fault_t ret;
6655 	u32 hash;
6656 	struct folio *folio = NULL;
6657 	struct folio *pagecache_folio = NULL;
6658 	struct hstate *h = hstate_vma(vma);
6659 	struct address_space *mapping;
6660 	int need_wait_lock = 0;
6661 	struct vm_fault vmf = {
6662 		.vma = vma,
6663 		.address = address & huge_page_mask(h),
6664 		.real_address = address,
6665 		.flags = flags,
6666 		.pgoff = vma_hugecache_offset(h, vma,
6667 				address & huge_page_mask(h)),
6668 		/* TODO: Track hugetlb faults using vm_fault */
6669 
6670 		/*
6671 		 * Some fields may not be initialized, be careful as it may
6672 		 * be hard to debug if called functions make assumptions
6673 		 */
6674 	};
6675 
6676 	/*
6677 	 * Serialize hugepage allocation and instantiation, so that we don't
6678 	 * get spurious allocation failures if two CPUs race to instantiate
6679 	 * the same page in the page cache.
6680 	 */
6681 	mapping = vma->vm_file->f_mapping;
6682 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6683 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6684 
6685 	/*
6686 	 * Acquire vma lock before calling huge_pte_alloc and hold
6687 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6688 	 * being called elsewhere and making the vmf.pte no longer valid.
6689 	 */
6690 	hugetlb_vma_lock_read(vma);
6691 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6692 	if (!vmf.pte) {
6693 		hugetlb_vma_unlock_read(vma);
6694 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6695 		return VM_FAULT_OOM;
6696 	}
6697 
6698 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6699 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6700 		if (is_pte_marker(vmf.orig_pte)) {
6701 			pte_marker marker =
6702 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6703 
6704 			if (marker & PTE_MARKER_POISONED) {
6705 				ret = VM_FAULT_HWPOISON_LARGE |
6706 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6707 				goto out_mutex;
6708 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6709 				/* This isn't supported in hugetlb. */
6710 				ret = VM_FAULT_SIGSEGV;
6711 				goto out_mutex;
6712 			}
6713 		}
6714 
6715 		/*
6716 		 * Other PTE markers should be handled the same way as none PTE.
6717 		 *
6718 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6719 		 * mutex internally, which make us return immediately.
6720 		 */
6721 		return hugetlb_no_page(mapping, &vmf);
6722 	}
6723 
6724 	ret = 0;
6725 
6726 	/*
6727 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6728 	 * point, so this check prevents the kernel from going below assuming
6729 	 * that we have an active hugepage in pagecache. This goto expects
6730 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6731 	 * check will properly handle it.
6732 	 */
6733 	if (!pte_present(vmf.orig_pte)) {
6734 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6735 			/*
6736 			 * Release the hugetlb fault lock now, but retain
6737 			 * the vma lock, because it is needed to guard the
6738 			 * huge_pte_lockptr() later in
6739 			 * migration_entry_wait_huge(). The vma lock will
6740 			 * be released there.
6741 			 */
6742 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6743 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6744 			return 0;
6745 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6746 			ret = VM_FAULT_HWPOISON_LARGE |
6747 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6748 		goto out_mutex;
6749 	}
6750 
6751 	/*
6752 	 * If we are going to COW/unshare the mapping later, we examine the
6753 	 * pending reservations for this page now. This will ensure that any
6754 	 * allocations necessary to record that reservation occur outside the
6755 	 * spinlock. Also lookup the pagecache page now as it is used to
6756 	 * determine if a reservation has been consumed.
6757 	 */
6758 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6759 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6760 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6761 			ret = VM_FAULT_OOM;
6762 			goto out_mutex;
6763 		}
6764 		/* Just decrements count, does not deallocate */
6765 		vma_end_reservation(h, vma, vmf.address);
6766 
6767 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6768 							     vmf.pgoff);
6769 		if (IS_ERR(pagecache_folio))
6770 			pagecache_folio = NULL;
6771 	}
6772 
6773 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6774 
6775 	/* Check for a racing update before calling hugetlb_wp() */
6776 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6777 		goto out_ptl;
6778 
6779 	/* Handle userfault-wp first, before trying to lock more pages */
6780 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6781 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6782 		if (!userfaultfd_wp_async(vma)) {
6783 			spin_unlock(vmf.ptl);
6784 			if (pagecache_folio) {
6785 				folio_unlock(pagecache_folio);
6786 				folio_put(pagecache_folio);
6787 			}
6788 			hugetlb_vma_unlock_read(vma);
6789 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6790 			return handle_userfault(&vmf, VM_UFFD_WP);
6791 		}
6792 
6793 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6794 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6795 				huge_page_size(hstate_vma(vma)));
6796 		/* Fallthrough to CoW */
6797 	}
6798 
6799 	/*
6800 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6801 	 * pagecache_folio, so here we need take the former one
6802 	 * when folio != pagecache_folio or !pagecache_folio.
6803 	 */
6804 	folio = page_folio(pte_page(vmf.orig_pte));
6805 	if (folio != pagecache_folio)
6806 		if (!folio_trylock(folio)) {
6807 			need_wait_lock = 1;
6808 			goto out_ptl;
6809 		}
6810 
6811 	folio_get(folio);
6812 
6813 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6814 		if (!huge_pte_write(vmf.orig_pte)) {
6815 			ret = hugetlb_wp(pagecache_folio, &vmf);
6816 			goto out_put_page;
6817 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6818 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6819 		}
6820 	}
6821 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6822 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6823 						flags & FAULT_FLAG_WRITE))
6824 		update_mmu_cache(vma, vmf.address, vmf.pte);
6825 out_put_page:
6826 	if (folio != pagecache_folio)
6827 		folio_unlock(folio);
6828 	folio_put(folio);
6829 out_ptl:
6830 	spin_unlock(vmf.ptl);
6831 
6832 	if (pagecache_folio) {
6833 		folio_unlock(pagecache_folio);
6834 		folio_put(pagecache_folio);
6835 	}
6836 out_mutex:
6837 	hugetlb_vma_unlock_read(vma);
6838 
6839 	/*
6840 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6841 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6842 	 */
6843 	if (unlikely(ret & VM_FAULT_RETRY))
6844 		vma_end_read(vma);
6845 
6846 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6847 	/*
6848 	 * Generally it's safe to hold refcount during waiting page lock. But
6849 	 * here we just wait to defer the next page fault to avoid busy loop and
6850 	 * the page is not used after unlocked before returning from the current
6851 	 * page fault. So we are safe from accessing freed page, even if we wait
6852 	 * here without taking refcount.
6853 	 */
6854 	if (need_wait_lock)
6855 		folio_wait_locked(folio);
6856 	return ret;
6857 }
6858 
6859 #ifdef CONFIG_USERFAULTFD
6860 /*
6861  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6862  */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6863 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6864 		struct vm_area_struct *vma, unsigned long address)
6865 {
6866 	struct mempolicy *mpol;
6867 	nodemask_t *nodemask;
6868 	struct folio *folio;
6869 	gfp_t gfp_mask;
6870 	int node;
6871 
6872 	gfp_mask = htlb_alloc_mask(h);
6873 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6874 	/*
6875 	 * This is used to allocate a temporary hugetlb to hold the copied
6876 	 * content, which will then be copied again to the final hugetlb
6877 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6878 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6879 	 */
6880 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6881 	mpol_cond_put(mpol);
6882 
6883 	return folio;
6884 }
6885 
6886 /*
6887  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6888  * with modifications for hugetlb pages.
6889  */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6890 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6891 			     struct vm_area_struct *dst_vma,
6892 			     unsigned long dst_addr,
6893 			     unsigned long src_addr,
6894 			     uffd_flags_t flags,
6895 			     struct folio **foliop)
6896 {
6897 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6898 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6899 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6900 	struct hstate *h = hstate_vma(dst_vma);
6901 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6902 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6903 	unsigned long size = huge_page_size(h);
6904 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6905 	pte_t _dst_pte;
6906 	spinlock_t *ptl;
6907 	int ret = -ENOMEM;
6908 	struct folio *folio;
6909 	bool folio_in_pagecache = false;
6910 
6911 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6912 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6913 
6914 		/* Don't overwrite any existing PTEs (even markers) */
6915 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6916 			spin_unlock(ptl);
6917 			return -EEXIST;
6918 		}
6919 
6920 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6921 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6922 
6923 		/* No need to invalidate - it was non-present before */
6924 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6925 
6926 		spin_unlock(ptl);
6927 		return 0;
6928 	}
6929 
6930 	if (is_continue) {
6931 		ret = -EFAULT;
6932 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6933 		if (IS_ERR(folio))
6934 			goto out;
6935 		folio_in_pagecache = true;
6936 	} else if (!*foliop) {
6937 		/* If a folio already exists, then it's UFFDIO_COPY for
6938 		 * a non-missing case. Return -EEXIST.
6939 		 */
6940 		if (vm_shared &&
6941 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6942 			ret = -EEXIST;
6943 			goto out;
6944 		}
6945 
6946 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6947 		if (IS_ERR(folio)) {
6948 			ret = -ENOMEM;
6949 			goto out;
6950 		}
6951 
6952 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6953 					   false);
6954 
6955 		/* fallback to copy_from_user outside mmap_lock */
6956 		if (unlikely(ret)) {
6957 			ret = -ENOENT;
6958 			/* Free the allocated folio which may have
6959 			 * consumed a reservation.
6960 			 */
6961 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6962 			folio_put(folio);
6963 
6964 			/* Allocate a temporary folio to hold the copied
6965 			 * contents.
6966 			 */
6967 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6968 			if (!folio) {
6969 				ret = -ENOMEM;
6970 				goto out;
6971 			}
6972 			*foliop = folio;
6973 			/* Set the outparam foliop and return to the caller to
6974 			 * copy the contents outside the lock. Don't free the
6975 			 * folio.
6976 			 */
6977 			goto out;
6978 		}
6979 	} else {
6980 		if (vm_shared &&
6981 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6982 			folio_put(*foliop);
6983 			ret = -EEXIST;
6984 			*foliop = NULL;
6985 			goto out;
6986 		}
6987 
6988 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6989 		if (IS_ERR(folio)) {
6990 			folio_put(*foliop);
6991 			ret = -ENOMEM;
6992 			*foliop = NULL;
6993 			goto out;
6994 		}
6995 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6996 		folio_put(*foliop);
6997 		*foliop = NULL;
6998 		if (ret) {
6999 			folio_put(folio);
7000 			goto out;
7001 		}
7002 	}
7003 
7004 	/*
7005 	 * If we just allocated a new page, we need a memory barrier to ensure
7006 	 * that preceding stores to the page become visible before the
7007 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7008 	 * is what we need.
7009 	 *
7010 	 * In the case where we have not allocated a new page (is_continue),
7011 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7012 	 * an earlier smp_wmb() to ensure that prior stores will be visible
7013 	 * before the set_pte_at() write.
7014 	 */
7015 	if (!is_continue)
7016 		__folio_mark_uptodate(folio);
7017 	else
7018 		WARN_ON_ONCE(!folio_test_uptodate(folio));
7019 
7020 	/* Add shared, newly allocated pages to the page cache. */
7021 	if (vm_shared && !is_continue) {
7022 		ret = -EFAULT;
7023 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7024 			goto out_release_nounlock;
7025 
7026 		/*
7027 		 * Serialization between remove_inode_hugepages() and
7028 		 * hugetlb_add_to_page_cache() below happens through the
7029 		 * hugetlb_fault_mutex_table that here must be hold by
7030 		 * the caller.
7031 		 */
7032 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7033 		if (ret)
7034 			goto out_release_nounlock;
7035 		folio_in_pagecache = true;
7036 	}
7037 
7038 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
7039 
7040 	ret = -EIO;
7041 	if (folio_test_hwpoison(folio))
7042 		goto out_release_unlock;
7043 
7044 	/*
7045 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
7046 	 * registered, we firstly wr-protect a none pte which has no page cache
7047 	 * page backing it, then access the page.
7048 	 */
7049 	ret = -EEXIST;
7050 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7051 		goto out_release_unlock;
7052 
7053 	if (folio_in_pagecache)
7054 		hugetlb_add_file_rmap(folio);
7055 	else
7056 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7057 
7058 	/*
7059 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7060 	 * with wp flag set, don't set pte write bit.
7061 	 */
7062 	_dst_pte = make_huge_pte(dst_vma, folio,
7063 				 !wp_enabled && !(is_continue && !vm_shared));
7064 	/*
7065 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
7066 	 * extremely important for hugetlbfs for now since swapping is not
7067 	 * supported, but we should still be clear in that this page cannot be
7068 	 * thrown away at will, even if write bit not set.
7069 	 */
7070 	_dst_pte = huge_pte_mkdirty(_dst_pte);
7071 	_dst_pte = pte_mkyoung(_dst_pte);
7072 
7073 	if (wp_enabled)
7074 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7075 
7076 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7077 
7078 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7079 
7080 	/* No need to invalidate - it was non-present before */
7081 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
7082 
7083 	spin_unlock(ptl);
7084 	if (!is_continue)
7085 		folio_set_hugetlb_migratable(folio);
7086 	if (vm_shared || is_continue)
7087 		folio_unlock(folio);
7088 	ret = 0;
7089 out:
7090 	return ret;
7091 out_release_unlock:
7092 	spin_unlock(ptl);
7093 	if (vm_shared || is_continue)
7094 		folio_unlock(folio);
7095 out_release_nounlock:
7096 	if (!folio_in_pagecache)
7097 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7098 	folio_put(folio);
7099 	goto out;
7100 }
7101 #endif /* CONFIG_USERFAULTFD */
7102 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7103 long hugetlb_change_protection(struct vm_area_struct *vma,
7104 		unsigned long address, unsigned long end,
7105 		pgprot_t newprot, unsigned long cp_flags)
7106 {
7107 	struct mm_struct *mm = vma->vm_mm;
7108 	unsigned long start = address;
7109 	pte_t *ptep;
7110 	pte_t pte;
7111 	struct hstate *h = hstate_vma(vma);
7112 	long pages = 0, psize = huge_page_size(h);
7113 	bool shared_pmd = false;
7114 	struct mmu_notifier_range range;
7115 	unsigned long last_addr_mask;
7116 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7117 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7118 
7119 	/*
7120 	 * In the case of shared PMDs, the area to flush could be beyond
7121 	 * start/end.  Set range.start/range.end to cover the maximum possible
7122 	 * range if PMD sharing is possible.
7123 	 */
7124 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7125 				0, mm, start, end);
7126 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7127 
7128 	BUG_ON(address >= end);
7129 	flush_cache_range(vma, range.start, range.end);
7130 
7131 	mmu_notifier_invalidate_range_start(&range);
7132 	hugetlb_vma_lock_write(vma);
7133 	i_mmap_lock_write(vma->vm_file->f_mapping);
7134 	last_addr_mask = hugetlb_mask_last_page(h);
7135 	for (; address < end; address += psize) {
7136 		spinlock_t *ptl;
7137 		ptep = hugetlb_walk(vma, address, psize);
7138 		if (!ptep) {
7139 			if (!uffd_wp) {
7140 				address |= last_addr_mask;
7141 				continue;
7142 			}
7143 			/*
7144 			 * Userfaultfd wr-protect requires pgtable
7145 			 * pre-allocations to install pte markers.
7146 			 */
7147 			ptep = huge_pte_alloc(mm, vma, address, psize);
7148 			if (!ptep) {
7149 				pages = -ENOMEM;
7150 				break;
7151 			}
7152 		}
7153 		ptl = huge_pte_lock(h, mm, ptep);
7154 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
7155 			/*
7156 			 * When uffd-wp is enabled on the vma, unshare
7157 			 * shouldn't happen at all.  Warn about it if it
7158 			 * happened due to some reason.
7159 			 */
7160 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7161 			pages++;
7162 			spin_unlock(ptl);
7163 			shared_pmd = true;
7164 			address |= last_addr_mask;
7165 			continue;
7166 		}
7167 		pte = huge_ptep_get(mm, address, ptep);
7168 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7169 			/* Nothing to do. */
7170 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
7171 			swp_entry_t entry = pte_to_swp_entry(pte);
7172 			struct page *page = pfn_swap_entry_to_page(entry);
7173 			pte_t newpte = pte;
7174 
7175 			if (is_writable_migration_entry(entry)) {
7176 				if (PageAnon(page))
7177 					entry = make_readable_exclusive_migration_entry(
7178 								swp_offset(entry));
7179 				else
7180 					entry = make_readable_migration_entry(
7181 								swp_offset(entry));
7182 				newpte = swp_entry_to_pte(entry);
7183 				pages++;
7184 			}
7185 
7186 			if (uffd_wp)
7187 				newpte = pte_swp_mkuffd_wp(newpte);
7188 			else if (uffd_wp_resolve)
7189 				newpte = pte_swp_clear_uffd_wp(newpte);
7190 			if (!pte_same(pte, newpte))
7191 				set_huge_pte_at(mm, address, ptep, newpte, psize);
7192 		} else if (unlikely(is_pte_marker(pte))) {
7193 			/*
7194 			 * Do nothing on a poison marker; page is
7195 			 * corrupted, permissons do not apply.  Here
7196 			 * pte_marker_uffd_wp()==true implies !poison
7197 			 * because they're mutual exclusive.
7198 			 */
7199 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7200 				/* Safe to modify directly (non-present->none). */
7201 				huge_pte_clear(mm, address, ptep, psize);
7202 		} else if (!huge_pte_none(pte)) {
7203 			pte_t old_pte;
7204 			unsigned int shift = huge_page_shift(hstate_vma(vma));
7205 
7206 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7207 			pte = huge_pte_modify(old_pte, newprot);
7208 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7209 			if (uffd_wp)
7210 				pte = huge_pte_mkuffd_wp(pte);
7211 			else if (uffd_wp_resolve)
7212 				pte = huge_pte_clear_uffd_wp(pte);
7213 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7214 			pages++;
7215 		} else {
7216 			/* None pte */
7217 			if (unlikely(uffd_wp))
7218 				/* Safe to modify directly (none->non-present). */
7219 				set_huge_pte_at(mm, address, ptep,
7220 						make_pte_marker(PTE_MARKER_UFFD_WP),
7221 						psize);
7222 		}
7223 		spin_unlock(ptl);
7224 	}
7225 	/*
7226 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7227 	 * may have cleared our pud entry and done put_page on the page table:
7228 	 * once we release i_mmap_rwsem, another task can do the final put_page
7229 	 * and that page table be reused and filled with junk.  If we actually
7230 	 * did unshare a page of pmds, flush the range corresponding to the pud.
7231 	 */
7232 	if (shared_pmd)
7233 		flush_hugetlb_tlb_range(vma, range.start, range.end);
7234 	else
7235 		flush_hugetlb_tlb_range(vma, start, end);
7236 	/*
7237 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7238 	 * downgrading page table protection not changing it to point to a new
7239 	 * page.
7240 	 *
7241 	 * See Documentation/mm/mmu_notifier.rst
7242 	 */
7243 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7244 	hugetlb_vma_unlock_write(vma);
7245 	mmu_notifier_invalidate_range_end(&range);
7246 
7247 	return pages > 0 ? (pages << h->order) : pages;
7248 }
7249 
7250 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7251 bool hugetlb_reserve_pages(struct inode *inode,
7252 					long from, long to,
7253 					struct vm_area_struct *vma,
7254 					vm_flags_t vm_flags)
7255 {
7256 	long chg = -1, add = -1, spool_resv, gbl_resv;
7257 	struct hstate *h = hstate_inode(inode);
7258 	struct hugepage_subpool *spool = subpool_inode(inode);
7259 	struct resv_map *resv_map;
7260 	struct hugetlb_cgroup *h_cg = NULL;
7261 	long gbl_reserve, regions_needed = 0;
7262 
7263 	/* This should never happen */
7264 	if (from > to) {
7265 		VM_WARN(1, "%s called with a negative range\n", __func__);
7266 		return false;
7267 	}
7268 
7269 	/*
7270 	 * vma specific semaphore used for pmd sharing and fault/truncation
7271 	 * synchronization
7272 	 */
7273 	hugetlb_vma_lock_alloc(vma);
7274 
7275 	/*
7276 	 * Only apply hugepage reservation if asked. At fault time, an
7277 	 * attempt will be made for VM_NORESERVE to allocate a page
7278 	 * without using reserves
7279 	 */
7280 	if (vm_flags & VM_NORESERVE)
7281 		return true;
7282 
7283 	/*
7284 	 * Shared mappings base their reservation on the number of pages that
7285 	 * are already allocated on behalf of the file. Private mappings need
7286 	 * to reserve the full area even if read-only as mprotect() may be
7287 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7288 	 */
7289 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7290 		/*
7291 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7292 		 * called for inodes for which resv_maps were created (see
7293 		 * hugetlbfs_get_inode).
7294 		 */
7295 		resv_map = inode_resv_map(inode);
7296 
7297 		chg = region_chg(resv_map, from, to, &regions_needed);
7298 	} else {
7299 		/* Private mapping. */
7300 		resv_map = resv_map_alloc();
7301 		if (!resv_map)
7302 			goto out_err;
7303 
7304 		chg = to - from;
7305 
7306 		set_vma_resv_map(vma, resv_map);
7307 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7308 	}
7309 
7310 	if (chg < 0)
7311 		goto out_err;
7312 
7313 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7314 				chg * pages_per_huge_page(h), &h_cg) < 0)
7315 		goto out_err;
7316 
7317 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7318 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7319 		 * of the resv_map.
7320 		 */
7321 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7322 	}
7323 
7324 	/*
7325 	 * There must be enough pages in the subpool for the mapping. If
7326 	 * the subpool has a minimum size, there may be some global
7327 	 * reservations already in place (gbl_reserve).
7328 	 */
7329 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7330 	if (gbl_reserve < 0)
7331 		goto out_uncharge_cgroup;
7332 
7333 	/*
7334 	 * Check enough hugepages are available for the reservation.
7335 	 * Hand the pages back to the subpool if there are not
7336 	 */
7337 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7338 		goto out_put_pages;
7339 
7340 	/*
7341 	 * Account for the reservations made. Shared mappings record regions
7342 	 * that have reservations as they are shared by multiple VMAs.
7343 	 * When the last VMA disappears, the region map says how much
7344 	 * the reservation was and the page cache tells how much of
7345 	 * the reservation was consumed. Private mappings are per-VMA and
7346 	 * only the consumed reservations are tracked. When the VMA
7347 	 * disappears, the original reservation is the VMA size and the
7348 	 * consumed reservations are stored in the map. Hence, nothing
7349 	 * else has to be done for private mappings here
7350 	 */
7351 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7352 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7353 
7354 		if (unlikely(add < 0)) {
7355 			hugetlb_acct_memory(h, -gbl_reserve);
7356 			goto out_put_pages;
7357 		} else if (unlikely(chg > add)) {
7358 			/*
7359 			 * pages in this range were added to the reserve
7360 			 * map between region_chg and region_add.  This
7361 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7362 			 * the subpool and reserve counts modified above
7363 			 * based on the difference.
7364 			 */
7365 			long rsv_adjust;
7366 
7367 			/*
7368 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7369 			 * reference to h_cg->css. See comment below for detail.
7370 			 */
7371 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7372 				hstate_index(h),
7373 				(chg - add) * pages_per_huge_page(h), h_cg);
7374 
7375 			rsv_adjust = hugepage_subpool_put_pages(spool,
7376 								chg - add);
7377 			hugetlb_acct_memory(h, -rsv_adjust);
7378 		} else if (h_cg) {
7379 			/*
7380 			 * The file_regions will hold their own reference to
7381 			 * h_cg->css. So we should release the reference held
7382 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7383 			 * done.
7384 			 */
7385 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7386 		}
7387 	}
7388 	return true;
7389 
7390 out_put_pages:
7391 	spool_resv = chg - gbl_reserve;
7392 	if (spool_resv) {
7393 		/* put sub pool's reservation back, chg - gbl_reserve */
7394 		gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7395 		/*
7396 		 * subpool's reserved pages can not be put back due to race,
7397 		 * return to hstate.
7398 		 */
7399 		hugetlb_acct_memory(h, -gbl_resv);
7400 	}
7401 out_uncharge_cgroup:
7402 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7403 					    chg * pages_per_huge_page(h), h_cg);
7404 out_err:
7405 	hugetlb_vma_lock_free(vma);
7406 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7407 		/* Only call region_abort if the region_chg succeeded but the
7408 		 * region_add failed or didn't run.
7409 		 */
7410 		if (chg >= 0 && add < 0)
7411 			region_abort(resv_map, from, to, regions_needed);
7412 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7413 		kref_put(&resv_map->refs, resv_map_release);
7414 		set_vma_resv_map(vma, NULL);
7415 	}
7416 	return false;
7417 }
7418 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7419 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7420 								long freed)
7421 {
7422 	struct hstate *h = hstate_inode(inode);
7423 	struct resv_map *resv_map = inode_resv_map(inode);
7424 	long chg = 0;
7425 	struct hugepage_subpool *spool = subpool_inode(inode);
7426 	long gbl_reserve;
7427 
7428 	/*
7429 	 * Since this routine can be called in the evict inode path for all
7430 	 * hugetlbfs inodes, resv_map could be NULL.
7431 	 */
7432 	if (resv_map) {
7433 		chg = region_del(resv_map, start, end);
7434 		/*
7435 		 * region_del() can fail in the rare case where a region
7436 		 * must be split and another region descriptor can not be
7437 		 * allocated.  If end == LONG_MAX, it will not fail.
7438 		 */
7439 		if (chg < 0)
7440 			return chg;
7441 	}
7442 
7443 	spin_lock(&inode->i_lock);
7444 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7445 	spin_unlock(&inode->i_lock);
7446 
7447 	/*
7448 	 * If the subpool has a minimum size, the number of global
7449 	 * reservations to be released may be adjusted.
7450 	 *
7451 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7452 	 * won't go negative.
7453 	 */
7454 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7455 	hugetlb_acct_memory(h, -gbl_reserve);
7456 
7457 	return 0;
7458 }
7459 
7460 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7461 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7462 				struct vm_area_struct *vma,
7463 				unsigned long addr, pgoff_t idx)
7464 {
7465 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7466 				svma->vm_start;
7467 	unsigned long sbase = saddr & PUD_MASK;
7468 	unsigned long s_end = sbase + PUD_SIZE;
7469 
7470 	/* Allow segments to share if only one is marked locked */
7471 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7472 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7473 
7474 	/*
7475 	 * match the virtual addresses, permission and the alignment of the
7476 	 * page table page.
7477 	 *
7478 	 * Also, vma_lock (vm_private_data) is required for sharing.
7479 	 */
7480 	if (pmd_index(addr) != pmd_index(saddr) ||
7481 	    vm_flags != svm_flags ||
7482 	    !range_in_vma(svma, sbase, s_end) ||
7483 	    !svma->vm_private_data)
7484 		return 0;
7485 
7486 	return saddr;
7487 }
7488 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7489 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7490 {
7491 	unsigned long start = addr & PUD_MASK;
7492 	unsigned long end = start + PUD_SIZE;
7493 
7494 #ifdef CONFIG_USERFAULTFD
7495 	if (uffd_disable_huge_pmd_share(vma))
7496 		return false;
7497 #endif
7498 	/*
7499 	 * check on proper vm_flags and page table alignment
7500 	 */
7501 	if (!(vma->vm_flags & VM_MAYSHARE))
7502 		return false;
7503 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7504 		return false;
7505 	if (!range_in_vma(vma, start, end))
7506 		return false;
7507 	return true;
7508 }
7509 
7510 /*
7511  * Determine if start,end range within vma could be mapped by shared pmd.
7512  * If yes, adjust start and end to cover range associated with possible
7513  * shared pmd mappings.
7514  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7515 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7516 				unsigned long *start, unsigned long *end)
7517 {
7518 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7519 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7520 
7521 	/*
7522 	 * vma needs to span at least one aligned PUD size, and the range
7523 	 * must be at least partially within in.
7524 	 */
7525 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7526 		(*end <= v_start) || (*start >= v_end))
7527 		return;
7528 
7529 	/* Extend the range to be PUD aligned for a worst case scenario */
7530 	if (*start > v_start)
7531 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7532 
7533 	if (*end < v_end)
7534 		*end = ALIGN(*end, PUD_SIZE);
7535 }
7536 
7537 /*
7538  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7539  * and returns the corresponding pte. While this is not necessary for the
7540  * !shared pmd case because we can allocate the pmd later as well, it makes the
7541  * code much cleaner. pmd allocation is essential for the shared case because
7542  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7543  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7544  * bad pmd for sharing.
7545  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7546 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7547 		      unsigned long addr, pud_t *pud)
7548 {
7549 	struct address_space *mapping = vma->vm_file->f_mapping;
7550 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7551 			vma->vm_pgoff;
7552 	struct vm_area_struct *svma;
7553 	unsigned long saddr;
7554 	pte_t *spte = NULL;
7555 	pte_t *pte;
7556 
7557 	i_mmap_lock_read(mapping);
7558 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7559 		if (svma == vma)
7560 			continue;
7561 
7562 		saddr = page_table_shareable(svma, vma, addr, idx);
7563 		if (saddr) {
7564 			spte = hugetlb_walk(svma, saddr,
7565 					    vma_mmu_pagesize(svma));
7566 			if (spte) {
7567 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7568 				break;
7569 			}
7570 		}
7571 	}
7572 
7573 	if (!spte)
7574 		goto out;
7575 
7576 	spin_lock(&mm->page_table_lock);
7577 	if (pud_none(*pud)) {
7578 		pud_populate(mm, pud,
7579 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7580 		mm_inc_nr_pmds(mm);
7581 	} else {
7582 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7583 	}
7584 	spin_unlock(&mm->page_table_lock);
7585 out:
7586 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7587 	i_mmap_unlock_read(mapping);
7588 	return pte;
7589 }
7590 
7591 /*
7592  * unmap huge page backed by shared pte.
7593  *
7594  * Called with page table lock held.
7595  *
7596  * returns: 1 successfully unmapped a shared pte page
7597  *	    0 the underlying pte page is not shared, or it is the last user
7598  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7599 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7600 					unsigned long addr, pte_t *ptep)
7601 {
7602 	unsigned long sz = huge_page_size(hstate_vma(vma));
7603 	pgd_t *pgd = pgd_offset(mm, addr);
7604 	p4d_t *p4d = p4d_offset(pgd, addr);
7605 	pud_t *pud = pud_offset(p4d, addr);
7606 
7607 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7608 	hugetlb_vma_assert_locked(vma);
7609 	if (sz != PMD_SIZE)
7610 		return 0;
7611 	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7612 		return 0;
7613 
7614 	pud_clear(pud);
7615 	/*
7616 	 * Once our caller drops the rmap lock, some other process might be
7617 	 * using this page table as a normal, non-hugetlb page table.
7618 	 * Wait for pending gup_fast() in other threads to finish before letting
7619 	 * that happen.
7620 	 */
7621 	tlb_remove_table_sync_one();
7622 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7623 	mm_dec_nr_pmds(mm);
7624 	return 1;
7625 }
7626 
7627 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7628 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7629 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7630 		      unsigned long addr, pud_t *pud)
7631 {
7632 	return NULL;
7633 }
7634 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7635 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7636 				unsigned long addr, pte_t *ptep)
7637 {
7638 	return 0;
7639 }
7640 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7641 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7642 				unsigned long *start, unsigned long *end)
7643 {
7644 }
7645 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7646 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7647 {
7648 	return false;
7649 }
7650 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7651 
7652 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7653 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7654 			unsigned long addr, unsigned long sz)
7655 {
7656 	pgd_t *pgd;
7657 	p4d_t *p4d;
7658 	pud_t *pud;
7659 	pte_t *pte = NULL;
7660 
7661 	pgd = pgd_offset(mm, addr);
7662 	p4d = p4d_alloc(mm, pgd, addr);
7663 	if (!p4d)
7664 		return NULL;
7665 	pud = pud_alloc(mm, p4d, addr);
7666 	if (pud) {
7667 		if (sz == PUD_SIZE) {
7668 			pte = (pte_t *)pud;
7669 		} else {
7670 			BUG_ON(sz != PMD_SIZE);
7671 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7672 				pte = huge_pmd_share(mm, vma, addr, pud);
7673 			else
7674 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7675 		}
7676 	}
7677 
7678 	if (pte) {
7679 		pte_t pteval = ptep_get_lockless(pte);
7680 
7681 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7682 	}
7683 
7684 	return pte;
7685 }
7686 
7687 /*
7688  * huge_pte_offset() - Walk the page table to resolve the hugepage
7689  * entry at address @addr
7690  *
7691  * Return: Pointer to page table entry (PUD or PMD) for
7692  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7693  * size @sz doesn't match the hugepage size at this level of the page
7694  * table.
7695  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7696 pte_t *huge_pte_offset(struct mm_struct *mm,
7697 		       unsigned long addr, unsigned long sz)
7698 {
7699 	pgd_t *pgd;
7700 	p4d_t *p4d;
7701 	pud_t *pud;
7702 	pmd_t *pmd;
7703 
7704 	pgd = pgd_offset(mm, addr);
7705 	if (!pgd_present(*pgd))
7706 		return NULL;
7707 	p4d = p4d_offset(pgd, addr);
7708 	if (!p4d_present(*p4d))
7709 		return NULL;
7710 
7711 	pud = pud_offset(p4d, addr);
7712 	if (sz == PUD_SIZE)
7713 		/* must be pud huge, non-present or none */
7714 		return (pte_t *)pud;
7715 	if (!pud_present(*pud))
7716 		return NULL;
7717 	/* must have a valid entry and size to go further */
7718 
7719 	pmd = pmd_offset(pud, addr);
7720 	/* must be pmd huge, non-present or none */
7721 	return (pte_t *)pmd;
7722 }
7723 
7724 /*
7725  * Return a mask that can be used to update an address to the last huge
7726  * page in a page table page mapping size.  Used to skip non-present
7727  * page table entries when linearly scanning address ranges.  Architectures
7728  * with unique huge page to page table relationships can define their own
7729  * version of this routine.
7730  */
hugetlb_mask_last_page(struct hstate * h)7731 unsigned long hugetlb_mask_last_page(struct hstate *h)
7732 {
7733 	unsigned long hp_size = huge_page_size(h);
7734 
7735 	if (hp_size == PUD_SIZE)
7736 		return P4D_SIZE - PUD_SIZE;
7737 	else if (hp_size == PMD_SIZE)
7738 		return PUD_SIZE - PMD_SIZE;
7739 	else
7740 		return 0UL;
7741 }
7742 
7743 #else
7744 
7745 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7746 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7747 {
7748 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7749 	if (huge_page_size(h) == PMD_SIZE)
7750 		return PUD_SIZE - PMD_SIZE;
7751 #endif
7752 	return 0UL;
7753 }
7754 
7755 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7756 
7757 /**
7758  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7759  * @folio: the folio to isolate
7760  * @list: the list to add the folio to on success
7761  *
7762  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7763  * isolated/non-migratable, and moving it from the active list to the
7764  * given list.
7765  *
7766  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7767  * it is already isolated/non-migratable.
7768  *
7769  * On success, an additional folio reference is taken that must be dropped
7770  * using folio_putback_hugetlb() to undo the isolation.
7771  *
7772  * Return: True if isolation worked, otherwise False.
7773  */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7774 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7775 {
7776 	bool ret = true;
7777 
7778 	spin_lock_irq(&hugetlb_lock);
7779 	if (!folio_test_hugetlb(folio) ||
7780 	    !folio_test_hugetlb_migratable(folio) ||
7781 	    !folio_try_get(folio)) {
7782 		ret = false;
7783 		goto unlock;
7784 	}
7785 	folio_clear_hugetlb_migratable(folio);
7786 	list_move_tail(&folio->lru, list);
7787 unlock:
7788 	spin_unlock_irq(&hugetlb_lock);
7789 	return ret;
7790 }
7791 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7792 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7793 {
7794 	int ret = 0;
7795 
7796 	*hugetlb = false;
7797 	spin_lock_irq(&hugetlb_lock);
7798 	if (folio_test_hugetlb(folio)) {
7799 		*hugetlb = true;
7800 		if (folio_test_hugetlb_freed(folio))
7801 			ret = 0;
7802 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7803 			ret = folio_try_get(folio);
7804 		else
7805 			ret = -EBUSY;
7806 	}
7807 	spin_unlock_irq(&hugetlb_lock);
7808 	return ret;
7809 }
7810 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7811 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7812 				bool *migratable_cleared)
7813 {
7814 	int ret;
7815 
7816 	spin_lock_irq(&hugetlb_lock);
7817 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7818 	spin_unlock_irq(&hugetlb_lock);
7819 	return ret;
7820 }
7821 
7822 /**
7823  * folio_putback_hugetlb - unisolate a hugetlb folio
7824  * @folio: the isolated hugetlb folio
7825  *
7826  * Putback/un-isolate the hugetlb folio that was previous isolated using
7827  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7828  * back onto the active list.
7829  *
7830  * Will drop the additional folio reference obtained through
7831  * folio_isolate_hugetlb().
7832  */
folio_putback_hugetlb(struct folio * folio)7833 void folio_putback_hugetlb(struct folio *folio)
7834 {
7835 	spin_lock_irq(&hugetlb_lock);
7836 	folio_set_hugetlb_migratable(folio);
7837 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7838 	spin_unlock_irq(&hugetlb_lock);
7839 	folio_put(folio);
7840 }
7841 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7842 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7843 {
7844 	struct hstate *h = folio_hstate(old_folio);
7845 
7846 	hugetlb_cgroup_migrate(old_folio, new_folio);
7847 	set_page_owner_migrate_reason(&new_folio->page, reason);
7848 
7849 	/*
7850 	 * transfer temporary state of the new hugetlb folio. This is
7851 	 * reverse to other transitions because the newpage is going to
7852 	 * be final while the old one will be freed so it takes over
7853 	 * the temporary status.
7854 	 *
7855 	 * Also note that we have to transfer the per-node surplus state
7856 	 * here as well otherwise the global surplus count will not match
7857 	 * the per-node's.
7858 	 */
7859 	if (folio_test_hugetlb_temporary(new_folio)) {
7860 		int old_nid = folio_nid(old_folio);
7861 		int new_nid = folio_nid(new_folio);
7862 
7863 		folio_set_hugetlb_temporary(old_folio);
7864 		folio_clear_hugetlb_temporary(new_folio);
7865 
7866 
7867 		/*
7868 		 * There is no need to transfer the per-node surplus state
7869 		 * when we do not cross the node.
7870 		 */
7871 		if (new_nid == old_nid)
7872 			return;
7873 		spin_lock_irq(&hugetlb_lock);
7874 		if (h->surplus_huge_pages_node[old_nid]) {
7875 			h->surplus_huge_pages_node[old_nid]--;
7876 			h->surplus_huge_pages_node[new_nid]++;
7877 		}
7878 		spin_unlock_irq(&hugetlb_lock);
7879 	}
7880 
7881 	/*
7882 	 * Our old folio is isolated and has "migratable" cleared until it
7883 	 * is putback. As migration succeeded, set the new folio "migratable"
7884 	 * and add it to the active list.
7885 	 */
7886 	spin_lock_irq(&hugetlb_lock);
7887 	folio_set_hugetlb_migratable(new_folio);
7888 	list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7889 	spin_unlock_irq(&hugetlb_lock);
7890 }
7891 
7892 /*
7893  * If @take_locks is false, the caller must ensure that no concurrent page table
7894  * access can happen (except for gup_fast() and hardware page walks).
7895  * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7896  * concurrent page fault handling) and the file rmap lock.
7897  */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7898 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7899 				   unsigned long start,
7900 				   unsigned long end,
7901 				   bool take_locks)
7902 {
7903 	struct hstate *h = hstate_vma(vma);
7904 	unsigned long sz = huge_page_size(h);
7905 	struct mm_struct *mm = vma->vm_mm;
7906 	struct mmu_notifier_range range;
7907 	unsigned long address;
7908 	spinlock_t *ptl;
7909 	pte_t *ptep;
7910 
7911 	if (!(vma->vm_flags & VM_MAYSHARE))
7912 		return;
7913 
7914 	if (start >= end)
7915 		return;
7916 
7917 	flush_cache_range(vma, start, end);
7918 	/*
7919 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7920 	 * we have already done the PUD_SIZE alignment.
7921 	 */
7922 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7923 				start, end);
7924 	mmu_notifier_invalidate_range_start(&range);
7925 	if (take_locks) {
7926 		hugetlb_vma_lock_write(vma);
7927 		i_mmap_lock_write(vma->vm_file->f_mapping);
7928 	} else {
7929 		i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7930 	}
7931 	for (address = start; address < end; address += PUD_SIZE) {
7932 		ptep = hugetlb_walk(vma, address, sz);
7933 		if (!ptep)
7934 			continue;
7935 		ptl = huge_pte_lock(h, mm, ptep);
7936 		huge_pmd_unshare(mm, vma, address, ptep);
7937 		spin_unlock(ptl);
7938 	}
7939 	flush_hugetlb_tlb_range(vma, start, end);
7940 	if (take_locks) {
7941 		i_mmap_unlock_write(vma->vm_file->f_mapping);
7942 		hugetlb_vma_unlock_write(vma);
7943 	}
7944 	/*
7945 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7946 	 * Documentation/mm/mmu_notifier.rst.
7947 	 */
7948 	mmu_notifier_invalidate_range_end(&range);
7949 }
7950 
7951 /*
7952  * This function will unconditionally remove all the shared pmd pgtable entries
7953  * within the specific vma for a hugetlbfs memory range.
7954  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7955 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7956 {
7957 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7958 			ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7959 			/* take_locks = */ true);
7960 }
7961 
7962 /*
7963  * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7964  * performed, we permit both the old and new VMAs to reference the same
7965  * reservation.
7966  *
7967  * We fix this up after the operation succeeds, or if a newly allocated VMA
7968  * is closed as a result of a failure to allocate memory.
7969  */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7970 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7971 {
7972 	if (is_vm_hugetlb_page(vma))
7973 		clear_vma_resv_huge_pages(vma);
7974 }
7975