1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7
8 /*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 * SYSTIMEH SYSTIMEL
47 * +--------------+ +--------------+
48 * X540 | 32 | | 1 | 3 | 28 |
49 * *--------------+ +--------------+
50 * \________ 36 bits ______/ fract
51 *
52 * +--------------+ +--------------+
53 * 82599 | 32 | | 8 | 3 | 21 |
54 * *--------------+ +--------------+
55 * \________ 43 bits ______/ fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 * 2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB 0x40000000
65 #define IXGBE_INCVAL_100 0x50000000
66
67 #define IXGBE_INCVAL_SHIFT_10GB 28
68 #define IXGBE_INCVAL_SHIFT_1GB 24
69 #define IXGBE_INCVAL_SHIFT_100 21
70
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73
74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT (HZ)
76
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80 #define NS_PER_SEC 1000000000ULL
81 #define NS_PER_HALF_SEC 500000000ULL
82
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 * SYSTIMEH SYSTIMEL SYSTIMER
97 * +--------------+ +--------------+ +-------------+
98 * X550 | 32 | | 32 | | 32 |
99 * *--------------+ +--------------+ +-------------+
100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting scaled_ppm into TIMINCA values is fairly
117 * straightforward.
118 *
119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120 *
121 * To avoid overflow, we simply use mul_u64_u64_div_u64.
122 *
123 * This assumes that scaled_ppm is never high enough to create a value bigger
124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125 * measured in parts per billion. Calculating this value is also simple.
126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127 *
128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129 * 12.5 nanoseconds. This means that the Max ppb is 39999999
130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
131 * register can only hold slightly under 0.5 nanoseconds.
132 *
133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134 * into 2^-32 units, which is
135 *
136 * 12.5 * 2^32 = C80000000
137 *
138 * Some revisions of hardware have a faster base frequency than the registers
139 * were defined for. To fix this, we use a timecounter structure with the
140 * proper mult and shift to convert the cycles into nanoseconds of time.
141 */
142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143 #define IXGBE_E610_BASE_PERIOD 0x333333333ULL
144 #define INCVALUE_MASK 0x7FFFFFFF
145 #define ISGN 0x80000000
146
147 /**
148 * ixgbe_ptp_setup_sdp_X540
149 * @adapter: private adapter structure
150 *
151 * this function enables or disables the clock out feature on SDP0 for
152 * the X540 device. It will create a 1 second periodic output that can
153 * be used as the PPS (via an interrupt).
154 *
155 * It calculates when the system time will be on an exact second, and then
156 * aligns the start of the PPS signal to that value.
157 *
158 * This works by using the cycle counter shift and mult values in reverse, and
159 * assumes that the values we're shifting will not overflow.
160 */
ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter * adapter)161 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
162 {
163 struct cyclecounter *cc = &adapter->hw_cc;
164 struct ixgbe_hw *hw = &adapter->hw;
165 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
166 u64 ns = 0, clock_edge = 0, clock_period;
167 unsigned long flags;
168
169 /* disable the pin first */
170 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
171 IXGBE_WRITE_FLUSH(hw);
172
173 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
174 return;
175
176 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
177
178 /* enable the SDP0 pin as output, and connected to the
179 * native function for Timesync (ClockOut)
180 */
181 esdp |= IXGBE_ESDP_SDP0_DIR |
182 IXGBE_ESDP_SDP0_NATIVE;
183
184 /* enable the Clock Out feature on SDP0, and allow
185 * interrupts to occur when the pin changes
186 */
187 tsauxc = (IXGBE_TSAUXC_EN_CLK |
188 IXGBE_TSAUXC_SYNCLK |
189 IXGBE_TSAUXC_SDP0_INT);
190
191 /* Determine the clock time period to use. This assumes that the
192 * cycle counter shift is small enough to avoid overflow.
193 */
194 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
195 clktiml = (u32)(clock_period);
196 clktimh = (u32)(clock_period >> 32);
197
198 /* Read the current clock time, and save the cycle counter value */
199 spin_lock_irqsave(&adapter->tmreg_lock, flags);
200 ns = timecounter_read(&adapter->hw_tc);
201 clock_edge = adapter->hw_tc.cycle_last;
202 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
203
204 /* Figure out how many seconds to add in order to round up */
205 div_u64_rem(ns, NS_PER_SEC, &rem);
206
207 /* Figure out how many nanoseconds to add to round the clock edge up
208 * to the next full second
209 */
210 rem = (NS_PER_SEC - rem);
211
212 /* Adjust the clock edge to align with the next full second. */
213 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
214 trgttiml = (u32)clock_edge;
215 trgttimh = (u32)(clock_edge >> 32);
216
217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
218 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
220 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
221
222 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
223 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
224
225 IXGBE_WRITE_FLUSH(hw);
226 }
227
228 /**
229 * ixgbe_ptp_setup_sdp_X550
230 * @adapter: private adapter structure
231 *
232 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
233 *
234 * Use the target time feature to align the output signal on the next full
235 * second.
236 *
237 * This works by using the cycle counter shift and mult values in reverse, and
238 * assumes that the values we're shifting will not overflow.
239 */
ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter * adapter)240 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
241 {
242 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
243 struct cyclecounter *cc = &adapter->hw_cc;
244 struct ixgbe_hw *hw = &adapter->hw;
245 u64 ns = 0, clock_edge = 0;
246 struct timespec64 ts;
247 unsigned long flags;
248
249 /* disable the pin first */
250 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
251 IXGBE_WRITE_FLUSH(hw);
252
253 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
254 return;
255
256 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
257
258 /* enable the SDP0 pin as output, and connected to the
259 * native function for Timesync (ClockOut)
260 */
261 esdp |= IXGBE_ESDP_SDP0_DIR |
262 IXGBE_ESDP_SDP0_NATIVE;
263
264 /* enable the Clock Out feature on SDP0, and use Target Time 0 to
265 * enable generation of interrupts on the clock change.
266 */
267 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
268 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
269 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
270 IXGBE_TSAUXC_DIS_TS_CLEAR);
271
272 tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
273 IXGBE_TSSDP_TS_SDP0_CLK0);
274
275 /* Determine the clock time period to use. This assumes that the
276 * cycle counter shift is small enough to avoid overflowing a 32bit
277 * value.
278 */
279 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
280
281 /* Read the current clock time, and save the cycle counter value */
282 spin_lock_irqsave(&adapter->tmreg_lock, flags);
283 ns = timecounter_read(&adapter->hw_tc);
284 clock_edge = adapter->hw_tc.cycle_last;
285 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
286
287 /* Figure out how far past the next second we are */
288 div_u64_rem(ns, NS_PER_SEC, &rem);
289
290 /* Figure out how many nanoseconds to add to round the clock edge up
291 * to the next full second
292 */
293 rem = (NS_PER_SEC - rem);
294
295 /* Adjust the clock edge to align with the next full second. */
296 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
297
298 /* X550 hardware stores the time in 32bits of 'billions of cycles' and
299 * 32bits of 'cycles'. There's no guarantee that cycles represents
300 * nanoseconds. However, we can use the math from a timespec64 to
301 * convert into the hardware representation.
302 *
303 * See ixgbe_ptp_read_X550() for more details.
304 */
305 ts = ns_to_timespec64(clock_edge);
306 trgttiml = (u32)ts.tv_nsec;
307 trgttimh = (u32)ts.tv_sec;
308
309 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
311 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
312
313 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
314 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
315 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
316
317 IXGBE_WRITE_FLUSH(hw);
318 }
319
320 /**
321 * ixgbe_ptp_read_X550 - read cycle counter value
322 * @cc: cyclecounter structure
323 *
324 * This function reads SYSTIME registers. It is called by the cyclecounter
325 * structure to convert from internal representation into nanoseconds. We need
326 * this for X550 since some skews do not have expected clock frequency and
327 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
328 * "cycles", rather than seconds and nanoseconds.
329 */
ixgbe_ptp_read_X550(const struct cyclecounter * cc)330 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
331 {
332 struct ixgbe_adapter *adapter =
333 container_of(cc, struct ixgbe_adapter, hw_cc);
334 struct ixgbe_hw *hw = &adapter->hw;
335 struct timespec64 ts;
336
337 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
338 * Some revisions of hardware run at a higher frequency and so the
339 * cycles are not guaranteed to be nanoseconds. The timespec64 created
340 * here is used for its math/conversions but does not necessarily
341 * represent nominal time.
342 *
343 * It should be noted that this cyclecounter will overflow at a
344 * non-bitmask field since we have to convert our billions of cycles
345 * into an actual cycles count. This results in some possible weird
346 * situations at high cycle counter stamps. However given that 32 bits
347 * of "seconds" is ~138 years this isn't a problem. Even at the
348 * increased frequency of some revisions, this is still ~103 years.
349 * Since the SYSTIME values start at 0 and we never write them, it is
350 * highly unlikely for the cyclecounter to overflow in practice.
351 */
352 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
353 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
354 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
355
356 return (u64)timespec64_to_ns(&ts);
357 }
358
359 /**
360 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
361 * @cc: the cyclecounter structure
362 *
363 * this function reads the cyclecounter registers and is called by the
364 * cyclecounter structure used to construct a ns counter from the
365 * arbitrary fixed point registers
366 */
ixgbe_ptp_read_82599(const struct cyclecounter * cc)367 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
368 {
369 struct ixgbe_adapter *adapter =
370 container_of(cc, struct ixgbe_adapter, hw_cc);
371 struct ixgbe_hw *hw = &adapter->hw;
372 u64 stamp = 0;
373
374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
375 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
376
377 return stamp;
378 }
379
380 /**
381 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
382 * @adapter: private adapter structure
383 * @hwtstamp: stack timestamp structure
384 * @timestamp: unsigned 64bit system time value
385 *
386 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
387 * which can be used by the stack's ptp functions.
388 *
389 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
390 * registers. However, it does not need to protect against the Rx or Tx
391 * timestamp registers, as there can't be a new timestamp until the old one is
392 * unlatched by reading.
393 *
394 * In addition to the timestamp in hardware, some controllers need a software
395 * overflow cyclecounter, and this function takes this into account as well.
396 **/
ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter * adapter,struct skb_shared_hwtstamps * hwtstamp,u64 timestamp)397 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
398 struct skb_shared_hwtstamps *hwtstamp,
399 u64 timestamp)
400 {
401 unsigned long flags;
402 struct timespec64 systime;
403 u64 ns;
404
405 memset(hwtstamp, 0, sizeof(*hwtstamp));
406
407 switch (adapter->hw.mac.type) {
408 /* X550 and later hardware supposedly represent time using a seconds
409 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
410 * to convert the timestamp into cycles before it can be fed to the
411 * cyclecounter. We need an actual cyclecounter because some revisions
412 * of hardware run at a higher frequency and thus the counter does
413 * not represent seconds/nanoseconds. Instead it can be thought of as
414 * cycles and billions of cycles.
415 */
416 case ixgbe_mac_X550:
417 case ixgbe_mac_X550EM_x:
418 case ixgbe_mac_x550em_a:
419 case ixgbe_mac_e610:
420 /* Upper 32 bits represent billions of cycles, lower 32 bits
421 * represent cycles. However, we use timespec64_to_ns for the
422 * correct math even though the units haven't been corrected
423 * yet.
424 */
425 systime.tv_sec = timestamp >> 32;
426 systime.tv_nsec = timestamp & 0xFFFFFFFF;
427
428 timestamp = timespec64_to_ns(&systime);
429 break;
430 default:
431 break;
432 }
433
434 spin_lock_irqsave(&adapter->tmreg_lock, flags);
435 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
436 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
437
438 hwtstamp->hwtstamp = ns_to_ktime(ns);
439 }
440
441 /**
442 * ixgbe_ptp_adjfine_82599
443 * @ptp: the ptp clock structure
444 * @scaled_ppm: scaled parts per million adjustment from base
445 *
446 * Adjust the frequency of the ptp cycle counter by the
447 * indicated scaled_ppm from the base frequency.
448 *
449 * Scaled parts per million is ppm with a 16-bit binary fractional field.
450 */
ixgbe_ptp_adjfine_82599(struct ptp_clock_info * ptp,long scaled_ppm)451 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
452 {
453 struct ixgbe_adapter *adapter =
454 container_of(ptp, struct ixgbe_adapter, ptp_caps);
455 struct ixgbe_hw *hw = &adapter->hw;
456 u64 incval;
457
458 smp_mb();
459 incval = READ_ONCE(adapter->base_incval);
460 incval = adjust_by_scaled_ppm(incval, scaled_ppm);
461
462 switch (hw->mac.type) {
463 case ixgbe_mac_X540:
464 if (incval > 0xFFFFFFFFULL)
465 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
466 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
467 break;
468 case ixgbe_mac_82599EB:
469 if (incval > 0x00FFFFFFULL)
470 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
471 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
472 BIT(IXGBE_INCPER_SHIFT_82599) |
473 ((u32)incval & 0x00FFFFFFUL));
474 break;
475 default:
476 break;
477 }
478
479 return 0;
480 }
481
482 /**
483 * ixgbe_ptp_adjfine_X550
484 * @ptp: the ptp clock structure
485 * @scaled_ppm: scaled parts per million adjustment from base
486 *
487 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
488 * from base frequency.
489 *
490 * Scaled parts per million is ppm with a 16-bit binary fractional field.
491 */
ixgbe_ptp_adjfine_X550(struct ptp_clock_info * ptp,long scaled_ppm)492 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
493 {
494 struct ixgbe_adapter *adapter =
495 container_of(ptp, struct ixgbe_adapter, ptp_caps);
496 struct ixgbe_hw *hw = &adapter->hw;
497 u64 rate, base;
498 bool neg_adj;
499 u32 inca;
500
501 base = hw->mac.type == ixgbe_mac_e610 ? IXGBE_E610_BASE_PERIOD :
502 IXGBE_X550_BASE_PERIOD;
503 neg_adj = diff_by_scaled_ppm(base, scaled_ppm, &rate);
504
505 /* warn if rate is too large */
506 if (rate >= INCVALUE_MASK)
507 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
508
509 inca = rate & INCVALUE_MASK;
510 if (neg_adj)
511 inca |= ISGN;
512
513 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
514
515 return 0;
516 }
517
518 /**
519 * ixgbe_ptp_adjtime
520 * @ptp: the ptp clock structure
521 * @delta: offset to adjust the cycle counter by
522 *
523 * adjust the timer by resetting the timecounter structure.
524 */
ixgbe_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)525 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
526 {
527 struct ixgbe_adapter *adapter =
528 container_of(ptp, struct ixgbe_adapter, ptp_caps);
529 unsigned long flags;
530
531 spin_lock_irqsave(&adapter->tmreg_lock, flags);
532 timecounter_adjtime(&adapter->hw_tc, delta);
533 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
534
535 if (adapter->ptp_setup_sdp)
536 adapter->ptp_setup_sdp(adapter);
537
538 return 0;
539 }
540
541 /**
542 * ixgbe_ptp_gettimex
543 * @ptp: the ptp clock structure
544 * @ts: timespec to hold the PHC timestamp
545 * @sts: structure to hold the system time before and after reading the PHC
546 *
547 * read the timecounter and return the correct value on ns,
548 * after converting it into a struct timespec.
549 */
ixgbe_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)550 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
551 struct timespec64 *ts,
552 struct ptp_system_timestamp *sts)
553 {
554 struct ixgbe_adapter *adapter =
555 container_of(ptp, struct ixgbe_adapter, ptp_caps);
556 struct ixgbe_hw *hw = &adapter->hw;
557 unsigned long flags;
558 u64 ns, stamp;
559
560 spin_lock_irqsave(&adapter->tmreg_lock, flags);
561
562 switch (adapter->hw.mac.type) {
563 case ixgbe_mac_X550:
564 case ixgbe_mac_X550EM_x:
565 case ixgbe_mac_x550em_a:
566 case ixgbe_mac_e610:
567 /* Upper 32 bits represent billions of cycles, lower 32 bits
568 * represent cycles. However, we use timespec64_to_ns for the
569 * correct math even though the units haven't been corrected
570 * yet.
571 */
572 ptp_read_system_prets(sts);
573 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
574 ptp_read_system_postts(sts);
575 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
576 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
577 stamp = timespec64_to_ns(ts);
578 break;
579 default:
580 ptp_read_system_prets(sts);
581 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
582 ptp_read_system_postts(sts);
583 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
584 break;
585 }
586
587 ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
588
589 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
590
591 *ts = ns_to_timespec64(ns);
592
593 return 0;
594 }
595
596 /**
597 * ixgbe_ptp_settime
598 * @ptp: the ptp clock structure
599 * @ts: the timespec containing the new time for the cycle counter
600 *
601 * reset the timecounter to use a new base value instead of the kernel
602 * wall timer value.
603 */
ixgbe_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)604 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
605 const struct timespec64 *ts)
606 {
607 struct ixgbe_adapter *adapter =
608 container_of(ptp, struct ixgbe_adapter, ptp_caps);
609 unsigned long flags;
610 u64 ns = timespec64_to_ns(ts);
611
612 /* reset the timecounter */
613 spin_lock_irqsave(&adapter->tmreg_lock, flags);
614 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
615 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
616
617 if (adapter->ptp_setup_sdp)
618 adapter->ptp_setup_sdp(adapter);
619 return 0;
620 }
621
622 /**
623 * ixgbe_ptp_feature_enable
624 * @ptp: the ptp clock structure
625 * @rq: the requested feature to change
626 * @on: whether to enable or disable the feature
627 *
628 * enable (or disable) ancillary features of the phc subsystem.
629 * our driver only supports the PPS feature on the X540
630 */
ixgbe_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)631 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
632 struct ptp_clock_request *rq, int on)
633 {
634 struct ixgbe_adapter *adapter =
635 container_of(ptp, struct ixgbe_adapter, ptp_caps);
636
637 /**
638 * When PPS is enabled, unmask the interrupt for the ClockOut
639 * feature, so that the interrupt handler can send the PPS
640 * event when the clock SDP triggers. Clear mask when PPS is
641 * disabled
642 */
643 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
644 return -ENOTSUPP;
645
646 if (on)
647 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
648 else
649 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
650
651 adapter->ptp_setup_sdp(adapter);
652 return 0;
653 }
654
655 /**
656 * ixgbe_ptp_check_pps_event
657 * @adapter: the private adapter structure
658 *
659 * This function is called by the interrupt routine when checking for
660 * interrupts. It will check and handle a pps event.
661 */
ixgbe_ptp_check_pps_event(struct ixgbe_adapter * adapter)662 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
663 {
664 struct ixgbe_hw *hw = &adapter->hw;
665 struct ptp_clock_event event;
666
667 event.type = PTP_CLOCK_PPS;
668
669 /* this check is necessary in case the interrupt was enabled via some
670 * alternative means (ex. debug_fs). Better to check here than
671 * everywhere that calls this function.
672 */
673 if (!adapter->ptp_clock)
674 return;
675
676 switch (hw->mac.type) {
677 case ixgbe_mac_X540:
678 ptp_clock_event(adapter->ptp_clock, &event);
679 break;
680 default:
681 break;
682 }
683 }
684
685 /**
686 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
687 * @adapter: private adapter struct
688 *
689 * this watchdog task periodically reads the timecounter
690 * in order to prevent missing when the system time registers wrap
691 * around. This needs to be run approximately twice a minute.
692 */
ixgbe_ptp_overflow_check(struct ixgbe_adapter * adapter)693 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
694 {
695 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
696 IXGBE_OVERFLOW_PERIOD);
697 unsigned long flags;
698
699 if (timeout) {
700 /* Update the timecounter */
701 spin_lock_irqsave(&adapter->tmreg_lock, flags);
702 timecounter_read(&adapter->hw_tc);
703 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
704
705 adapter->last_overflow_check = jiffies;
706 }
707 }
708
709 /**
710 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
711 * @adapter: private network adapter structure
712 *
713 * this watchdog task is scheduled to detect error case where hardware has
714 * dropped an Rx packet that was timestamped when the ring is full. The
715 * particular error is rare but leaves the device in a state unable to timestamp
716 * any future packets.
717 */
ixgbe_ptp_rx_hang(struct ixgbe_adapter * adapter)718 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
719 {
720 struct ixgbe_hw *hw = &adapter->hw;
721 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
722 struct ixgbe_ring *rx_ring;
723 unsigned long rx_event;
724 int n;
725
726 /* if we don't have a valid timestamp in the registers, just update the
727 * timeout counter and exit
728 */
729 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
730 adapter->last_rx_ptp_check = jiffies;
731 return;
732 }
733
734 /* determine the most recent watchdog or rx_timestamp event */
735 rx_event = adapter->last_rx_ptp_check;
736 for (n = 0; n < adapter->num_rx_queues; n++) {
737 rx_ring = adapter->rx_ring[n];
738 if (time_after(rx_ring->last_rx_timestamp, rx_event))
739 rx_event = rx_ring->last_rx_timestamp;
740 }
741
742 /* only need to read the high RXSTMP register to clear the lock */
743 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
744 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
745 adapter->last_rx_ptp_check = jiffies;
746
747 adapter->rx_hwtstamp_cleared++;
748 e_warn(drv, "clearing RX Timestamp hang\n");
749 }
750 }
751
752 /**
753 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
754 * @adapter: the private adapter structure
755 *
756 * This function should be called whenever the state related to a Tx timestamp
757 * needs to be cleared. This helps ensure that all related bits are reset for
758 * the next Tx timestamp event.
759 */
ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter * adapter)760 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
761 {
762 struct ixgbe_hw *hw = &adapter->hw;
763
764 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
765 if (adapter->ptp_tx_skb) {
766 dev_kfree_skb_any(adapter->ptp_tx_skb);
767 adapter->ptp_tx_skb = NULL;
768 }
769 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
770 }
771
772 /**
773 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
774 * @adapter: private network adapter structure
775 */
ixgbe_ptp_tx_hang(struct ixgbe_adapter * adapter)776 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
777 {
778 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
779 IXGBE_PTP_TX_TIMEOUT);
780
781 if (!adapter->ptp_tx_skb)
782 return;
783
784 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
785 return;
786
787 /* If we haven't received a timestamp within the timeout, it is
788 * reasonable to assume that it will never occur, so we can unlock the
789 * timestamp bit when this occurs.
790 */
791 if (timeout) {
792 cancel_work_sync(&adapter->ptp_tx_work);
793 ixgbe_ptp_clear_tx_timestamp(adapter);
794 adapter->tx_hwtstamp_timeouts++;
795 e_warn(drv, "clearing Tx timestamp hang\n");
796 }
797 }
798
799 /**
800 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
801 * @adapter: the private adapter struct
802 *
803 * if the timestamp is valid, we convert it into the timecounter ns
804 * value, then store that result into the shhwtstamps structure which
805 * is passed up the network stack
806 */
ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter * adapter)807 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
808 {
809 struct sk_buff *skb = adapter->ptp_tx_skb;
810 struct ixgbe_hw *hw = &adapter->hw;
811 struct skb_shared_hwtstamps shhwtstamps;
812 u64 regval = 0;
813
814 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
815 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
816 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
817
818 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
819 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
820 * well behaved applications from attempting to timestamp again prior
821 * to the lock bit being clear.
822 */
823 adapter->ptp_tx_skb = NULL;
824 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
825
826 /* Notify the stack and then free the skb after we've unlocked */
827 skb_tstamp_tx(skb, &shhwtstamps);
828 dev_kfree_skb_any(skb);
829 }
830
831 /**
832 * ixgbe_ptp_tx_hwtstamp_work
833 * @work: pointer to the work struct
834 *
835 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
836 * timestamp has been taken for the current skb. It is necessary, because the
837 * descriptor's "done" bit does not correlate with the timestamp event.
838 */
ixgbe_ptp_tx_hwtstamp_work(struct work_struct * work)839 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
840 {
841 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
842 ptp_tx_work);
843 struct ixgbe_hw *hw = &adapter->hw;
844 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
845 IXGBE_PTP_TX_TIMEOUT);
846 u32 tsynctxctl;
847
848 /* we have to have a valid skb to poll for a timestamp */
849 if (!adapter->ptp_tx_skb) {
850 ixgbe_ptp_clear_tx_timestamp(adapter);
851 return;
852 }
853
854 /* stop polling once we have a valid timestamp */
855 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
856 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
857 ixgbe_ptp_tx_hwtstamp(adapter);
858 return;
859 }
860
861 if (timeout) {
862 ixgbe_ptp_clear_tx_timestamp(adapter);
863 adapter->tx_hwtstamp_timeouts++;
864 e_warn(drv, "clearing Tx Timestamp hang\n");
865 } else {
866 /* reschedule to keep checking if it's not available yet */
867 schedule_work(&adapter->ptp_tx_work);
868 }
869 }
870
871 /**
872 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
873 * @q_vector: structure containing interrupt and ring information
874 * @skb: the packet
875 *
876 * This function will be called by the Rx routine of the timestamp for this
877 * packet is stored in the buffer. The value is stored in little endian format
878 * starting at the end of the packet data.
879 */
ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)880 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
881 struct sk_buff *skb)
882 {
883 __le64 regval;
884
885 /* copy the bits out of the skb, and then trim the skb length */
886 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
887 IXGBE_TS_HDR_LEN);
888 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
889
890 /* The timestamp is recorded in little endian format, and is stored at
891 * the end of the packet.
892 *
893 * DWORD: N N + 1 N + 2
894 * Field: End of Packet SYSTIMH SYSTIML
895 */
896 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
897 le64_to_cpu(regval));
898 }
899
900 /**
901 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
902 * @q_vector: structure containing interrupt and ring information
903 * @skb: particular skb to send timestamp with
904 *
905 * if the timestamp is valid, we convert it into the timecounter ns
906 * value, then store that result into the shhwtstamps structure which
907 * is passed up the network stack
908 */
ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)909 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
910 struct sk_buff *skb)
911 {
912 struct ixgbe_adapter *adapter;
913 struct ixgbe_hw *hw;
914 u64 regval = 0;
915 u32 tsyncrxctl;
916
917 /* we cannot process timestamps on a ring without a q_vector */
918 if (!q_vector || !q_vector->adapter)
919 return;
920
921 adapter = q_vector->adapter;
922 hw = &adapter->hw;
923
924 /* Read the tsyncrxctl register afterwards in order to prevent taking an
925 * I/O hit on every packet.
926 */
927
928 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
929 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
930 return;
931
932 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
933 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
934
935 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
936 }
937
938 /**
939 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
940 * @adapter: pointer to adapter structure
941 * @ifr: ioctl data
942 *
943 * This function returns the current timestamping settings. Rather than
944 * attempt to deconstruct registers to fill in the values, simply keep a copy
945 * of the old settings around, and return a copy when requested.
946 */
ixgbe_ptp_get_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)947 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
948 {
949 struct hwtstamp_config *config = &adapter->tstamp_config;
950
951 return copy_to_user(ifr->ifr_data, config,
952 sizeof(*config)) ? -EFAULT : 0;
953 }
954
955 /**
956 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
957 * @adapter: the private ixgbe adapter structure
958 * @config: the hwtstamp configuration requested
959 *
960 * Outgoing time stamping can be enabled and disabled. Play nice and
961 * disable it when requested, although it shouldn't cause any overhead
962 * when no packet needs it. At most one packet in the queue may be
963 * marked for time stamping, otherwise it would be impossible to tell
964 * for sure to which packet the hardware time stamp belongs.
965 *
966 * Incoming time stamping has to be configured via the hardware
967 * filters. Not all combinations are supported, in particular event
968 * type has to be specified. Matching the kind of event packet is
969 * not supported, with the exception of "all V2 events regardless of
970 * level 2 or 4".
971 *
972 * Since hardware always timestamps Path delay packets when timestamping V2
973 * packets, regardless of the type specified in the register, only use V2
974 * Event mode. This more accurately tells the user what the hardware is going
975 * to do anyways.
976 *
977 * Note: this may modify the hwtstamp configuration towards a more general
978 * mode, if required to support the specifically requested mode.
979 */
ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter * adapter,struct hwtstamp_config * config)980 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
981 struct hwtstamp_config *config)
982 {
983 struct ixgbe_hw *hw = &adapter->hw;
984 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
985 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
986 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
987 u32 aflags = adapter->flags;
988 bool is_l2 = false;
989 u32 regval;
990
991 switch (config->tx_type) {
992 case HWTSTAMP_TX_OFF:
993 tsync_tx_ctl = 0;
994 break;
995 case HWTSTAMP_TX_ON:
996 break;
997 default:
998 return -ERANGE;
999 }
1000
1001 switch (config->rx_filter) {
1002 case HWTSTAMP_FILTER_NONE:
1003 tsync_rx_ctl = 0;
1004 tsync_rx_mtrl = 0;
1005 aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1006 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1007 break;
1008 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1009 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1010 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1011 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1012 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1013 break;
1014 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1015 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1016 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1017 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1018 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1019 break;
1020 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1021 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1022 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1023 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1024 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1025 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1026 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1027 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1028 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1029 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1030 is_l2 = true;
1031 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1032 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1033 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1034 break;
1035 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1036 case HWTSTAMP_FILTER_NTP_ALL:
1037 case HWTSTAMP_FILTER_ALL:
1038 /* The X550 controller is capable of timestamping all packets,
1039 * which allows it to accept any filter.
1040 */
1041 if (hw->mac.type >= ixgbe_mac_X550) {
1042 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1043 config->rx_filter = HWTSTAMP_FILTER_ALL;
1044 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1045 break;
1046 }
1047 fallthrough;
1048 default:
1049 /*
1050 * register RXMTRL must be set in order to do V1 packets,
1051 * therefore it is not possible to time stamp both V1 Sync and
1052 * Delay_Req messages and hardware does not support
1053 * timestamping all packets => return error
1054 */
1055 config->rx_filter = HWTSTAMP_FILTER_NONE;
1056 return -ERANGE;
1057 }
1058
1059 if (hw->mac.type == ixgbe_mac_82598EB) {
1060 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1061 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1062 if (tsync_rx_ctl | tsync_tx_ctl)
1063 return -ERANGE;
1064 return 0;
1065 }
1066
1067 /* Per-packet timestamping only works if the filter is set to all
1068 * packets. Since this is desired, always timestamp all packets as long
1069 * as any Rx filter was configured.
1070 */
1071 switch (hw->mac.type) {
1072 case ixgbe_mac_X550:
1073 case ixgbe_mac_X550EM_x:
1074 case ixgbe_mac_x550em_a:
1075 case ixgbe_mac_e610:
1076 /* enable timestamping all packets only if at least some
1077 * packets were requested. Otherwise, play nice and disable
1078 * timestamping
1079 */
1080 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1081 break;
1082
1083 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1084 IXGBE_TSYNCRXCTL_TYPE_ALL |
1085 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1086 config->rx_filter = HWTSTAMP_FILTER_ALL;
1087 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1088 aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1089 is_l2 = true;
1090 break;
1091 default:
1092 break;
1093 }
1094
1095 /* define ethertype filter for timestamping L2 packets */
1096 if (is_l2)
1097 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1098 (IXGBE_ETQF_FILTER_EN | /* enable filter */
1099 IXGBE_ETQF_1588 | /* enable timestamping */
1100 ETH_P_1588)); /* 1588 eth protocol type */
1101 else
1102 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1103
1104 /* enable/disable TX */
1105 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1106 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1107 regval |= tsync_tx_ctl;
1108 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1109
1110 /* enable/disable RX */
1111 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1112 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1113 regval |= tsync_rx_ctl;
1114 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1115
1116 /* define which PTP packets are time stamped */
1117 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1118
1119 IXGBE_WRITE_FLUSH(hw);
1120
1121 /* configure adapter flags only when HW is actually configured */
1122 adapter->flags = aflags;
1123
1124 /* clear TX/RX time stamp registers, just to be sure */
1125 ixgbe_ptp_clear_tx_timestamp(adapter);
1126 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1127
1128 return 0;
1129 }
1130
1131 /**
1132 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1133 * @adapter: pointer to adapter struct
1134 * @ifr: ioctl data
1135 *
1136 * Set hardware to requested mode. If unsupported, return an error with no
1137 * changes. Otherwise, store the mode for future reference.
1138 */
ixgbe_ptp_set_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)1139 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1140 {
1141 struct hwtstamp_config config;
1142 int err;
1143
1144 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1145 return -EFAULT;
1146
1147 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1148 if (err)
1149 return err;
1150
1151 /* save these settings for future reference */
1152 memcpy(&adapter->tstamp_config, &config,
1153 sizeof(adapter->tstamp_config));
1154
1155 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1156 -EFAULT : 0;
1157 }
1158
ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter * adapter,u32 * shift,u32 * incval)1159 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1160 u32 *shift, u32 *incval)
1161 {
1162 /**
1163 * Scale the NIC cycle counter by a large factor so that
1164 * relatively small corrections to the frequency can be added
1165 * or subtracted. The drawbacks of a large factor include
1166 * (a) the clock register overflows more quickly, (b) the cycle
1167 * counter structure must be able to convert the systime value
1168 * to nanoseconds using only a multiplier and a right-shift,
1169 * and (c) the value must fit within the timinca register space
1170 * => math based on internal DMA clock rate and available bits
1171 *
1172 * Note that when there is no link, internal DMA clock is same as when
1173 * link speed is 10Gb. Set the registers correctly even when link is
1174 * down to preserve the clock setting
1175 */
1176 switch (adapter->link_speed) {
1177 case IXGBE_LINK_SPEED_100_FULL:
1178 *shift = IXGBE_INCVAL_SHIFT_100;
1179 *incval = IXGBE_INCVAL_100;
1180 break;
1181 case IXGBE_LINK_SPEED_1GB_FULL:
1182 *shift = IXGBE_INCVAL_SHIFT_1GB;
1183 *incval = IXGBE_INCVAL_1GB;
1184 break;
1185 case IXGBE_LINK_SPEED_10GB_FULL:
1186 default:
1187 *shift = IXGBE_INCVAL_SHIFT_10GB;
1188 *incval = IXGBE_INCVAL_10GB;
1189 break;
1190 }
1191 }
1192
1193 /**
1194 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1195 * @adapter: pointer to the adapter structure
1196 *
1197 * This function should be called to set the proper values for the TIMINCA
1198 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1199 * is. It does not directly modify SYSTIME registers or the timecounter
1200 * structure. It should be called whenever a new TIMINCA value is necessary,
1201 * such as during initialization or when the link speed changes.
1202 */
ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter * adapter)1203 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1204 {
1205 struct ixgbe_hw *hw = &adapter->hw;
1206 struct cyclecounter cc;
1207 unsigned long flags;
1208 u32 incval = 0;
1209 u32 fuse0 = 0;
1210
1211 /* For some of the boards below this mask is technically incorrect.
1212 * The timestamp mask overflows at approximately 61bits. However the
1213 * particular hardware does not overflow on an even bitmask value.
1214 * Instead, it overflows due to conversion of upper 32bits billions of
1215 * cycles. Timecounters are not really intended for this purpose so
1216 * they do not properly function if the overflow point isn't 2^N-1.
1217 * However, the actual SYSTIME values in question take ~138 years to
1218 * overflow. In practice this means they won't actually overflow. A
1219 * proper fix to this problem would require modification of the
1220 * timecounter delta calculations.
1221 */
1222 cc.mask = CLOCKSOURCE_MASK(64);
1223 cc.mult = 1;
1224 cc.shift = 0;
1225
1226 switch (hw->mac.type) {
1227 case ixgbe_mac_X550EM_x:
1228 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1229 * designed to represent seconds and nanoseconds when this is
1230 * the case. However, some revisions of hardware have a 400Mhz
1231 * clock and we have to compensate for this frequency
1232 * variation using corrected mult and shift values.
1233 */
1234 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1235 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1236 cc.mult = 3;
1237 cc.shift = 2;
1238 }
1239 fallthrough;
1240 case ixgbe_mac_x550em_a:
1241 case ixgbe_mac_X550:
1242 case ixgbe_mac_e610:
1243 cc.read = ixgbe_ptp_read_X550;
1244 break;
1245 case ixgbe_mac_X540:
1246 cc.read = ixgbe_ptp_read_82599;
1247
1248 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1249 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1250 break;
1251 case ixgbe_mac_82599EB:
1252 cc.read = ixgbe_ptp_read_82599;
1253
1254 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1255 incval >>= IXGBE_INCVAL_SHIFT_82599;
1256 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1257 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1258 BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1259 break;
1260 default:
1261 /* other devices aren't supported */
1262 return;
1263 }
1264
1265 /* update the base incval used to calculate frequency adjustment */
1266 WRITE_ONCE(adapter->base_incval, incval);
1267 smp_mb();
1268
1269 /* need lock to prevent incorrect read while modifying cyclecounter */
1270 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1271 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1272 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1273 }
1274
1275 /**
1276 * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1277 * @adapter: the ixgbe private board structure
1278 *
1279 * Initialize and start the SYSTIME registers.
1280 */
ixgbe_ptp_init_systime(struct ixgbe_adapter * adapter)1281 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1282 {
1283 struct ixgbe_hw *hw = &adapter->hw;
1284 u32 tsauxc;
1285
1286 switch (hw->mac.type) {
1287 case ixgbe_mac_X550EM_x:
1288 case ixgbe_mac_x550em_a:
1289 case ixgbe_mac_X550:
1290 case ixgbe_mac_e610:
1291 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1292
1293 /* Reset SYSTIME registers to 0 */
1294 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1295 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1296 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1297
1298 /* Reset interrupt settings */
1299 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1300 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1301
1302 /* Activate the SYSTIME counter */
1303 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1304 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1305 break;
1306 case ixgbe_mac_X540:
1307 case ixgbe_mac_82599EB:
1308 /* Reset SYSTIME registers to 0 */
1309 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1310 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1311 break;
1312 default:
1313 /* Other devices aren't supported */
1314 return;
1315 }
1316
1317 IXGBE_WRITE_FLUSH(hw);
1318 }
1319
1320 /**
1321 * ixgbe_ptp_reset
1322 * @adapter: the ixgbe private board structure
1323 *
1324 * When the MAC resets, all the hardware bits for timesync are reset. This
1325 * function is used to re-enable the device for PTP based on current settings.
1326 * We do lose the current clock time, so just reset the cyclecounter to the
1327 * system real clock time.
1328 *
1329 * This function will maintain hwtstamp_config settings, and resets the SDP
1330 * output if it was enabled.
1331 */
ixgbe_ptp_reset(struct ixgbe_adapter * adapter)1332 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1333 {
1334 struct ixgbe_hw *hw = &adapter->hw;
1335 unsigned long flags;
1336
1337 /* reset the hardware timestamping mode */
1338 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1339
1340 /* 82598 does not support PTP */
1341 if (hw->mac.type == ixgbe_mac_82598EB)
1342 return;
1343
1344 ixgbe_ptp_start_cyclecounter(adapter);
1345
1346 ixgbe_ptp_init_systime(adapter);
1347
1348 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1349 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1350 ktime_to_ns(ktime_get_real()));
1351 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1352
1353 adapter->last_overflow_check = jiffies;
1354
1355 /* Now that the shift has been calculated and the systime
1356 * registers reset, (re-)enable the Clock out feature
1357 */
1358 if (adapter->ptp_setup_sdp)
1359 adapter->ptp_setup_sdp(adapter);
1360 }
1361
1362 /**
1363 * ixgbe_ptp_create_clock
1364 * @adapter: the ixgbe private adapter structure
1365 *
1366 * This function performs setup of the user entry point function table and
1367 * initializes the PTP clock device, which is used to access the clock-like
1368 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1369 * reuse a previously initialized clock (such as during a suspend/resume
1370 * cycle).
1371 */
ixgbe_ptp_create_clock(struct ixgbe_adapter * adapter)1372 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1373 {
1374 struct net_device *netdev = adapter->netdev;
1375 long err;
1376
1377 /* do nothing if we already have a clock device */
1378 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1379 return 0;
1380
1381 switch (adapter->hw.mac.type) {
1382 case ixgbe_mac_X540:
1383 snprintf(adapter->ptp_caps.name,
1384 sizeof(adapter->ptp_caps.name),
1385 "%s", netdev->name);
1386 adapter->ptp_caps.owner = THIS_MODULE;
1387 adapter->ptp_caps.max_adj = 250000000;
1388 adapter->ptp_caps.n_alarm = 0;
1389 adapter->ptp_caps.n_ext_ts = 0;
1390 adapter->ptp_caps.n_per_out = 0;
1391 adapter->ptp_caps.pps = 1;
1392 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1393 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1394 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1395 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1396 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1397 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1398 break;
1399 case ixgbe_mac_82599EB:
1400 snprintf(adapter->ptp_caps.name,
1401 sizeof(adapter->ptp_caps.name),
1402 "%s", netdev->name);
1403 adapter->ptp_caps.owner = THIS_MODULE;
1404 adapter->ptp_caps.max_adj = 250000000;
1405 adapter->ptp_caps.n_alarm = 0;
1406 adapter->ptp_caps.n_ext_ts = 0;
1407 adapter->ptp_caps.n_per_out = 0;
1408 adapter->ptp_caps.pps = 0;
1409 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1410 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1411 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1412 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1413 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1414 break;
1415 case ixgbe_mac_X550:
1416 case ixgbe_mac_X550EM_x:
1417 case ixgbe_mac_x550em_a:
1418 case ixgbe_mac_e610:
1419 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1420 adapter->ptp_caps.owner = THIS_MODULE;
1421 adapter->ptp_caps.max_adj = 30000000;
1422 adapter->ptp_caps.n_alarm = 0;
1423 adapter->ptp_caps.n_ext_ts = 0;
1424 adapter->ptp_caps.n_per_out = 0;
1425 adapter->ptp_caps.pps = 1;
1426 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1427 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1428 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1429 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1430 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1431 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1432 break;
1433 default:
1434 adapter->ptp_clock = NULL;
1435 adapter->ptp_setup_sdp = NULL;
1436 return -EOPNOTSUPP;
1437 }
1438
1439 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1440 &adapter->pdev->dev);
1441 if (IS_ERR(adapter->ptp_clock)) {
1442 err = PTR_ERR(adapter->ptp_clock);
1443 adapter->ptp_clock = NULL;
1444 e_dev_err("ptp_clock_register failed\n");
1445 return err;
1446 } else if (adapter->ptp_clock)
1447 e_dev_info("registered PHC device on %s\n", netdev->name);
1448
1449 /* set default timestamp mode to disabled here. We do this in
1450 * create_clock instead of init, because we don't want to override the
1451 * previous settings during a resume cycle.
1452 */
1453 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1454 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1455
1456 return 0;
1457 }
1458
1459 /**
1460 * ixgbe_ptp_init
1461 * @adapter: the ixgbe private adapter structure
1462 *
1463 * This function performs the required steps for enabling PTP
1464 * support. If PTP support has already been loaded it simply calls the
1465 * cyclecounter init routine and exits.
1466 */
ixgbe_ptp_init(struct ixgbe_adapter * adapter)1467 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1468 {
1469 /* initialize the spin lock first since we can't control when a user
1470 * will call the entry functions once we have initialized the clock
1471 * device
1472 */
1473 spin_lock_init(&adapter->tmreg_lock);
1474
1475 /* obtain a PTP device, or re-use an existing device */
1476 if (ixgbe_ptp_create_clock(adapter))
1477 return;
1478
1479 /* we have a clock so we can initialize work now */
1480 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1481
1482 /* reset the PTP related hardware bits */
1483 ixgbe_ptp_reset(adapter);
1484
1485 /* enter the IXGBE_PTP_RUNNING state */
1486 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1487
1488 return;
1489 }
1490
1491 /**
1492 * ixgbe_ptp_suspend - stop PTP work items
1493 * @adapter: pointer to adapter struct
1494 *
1495 * this function suspends PTP activity, and prevents more PTP work from being
1496 * generated, but does not destroy the PTP clock device.
1497 */
ixgbe_ptp_suspend(struct ixgbe_adapter * adapter)1498 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1499 {
1500 /* Leave the IXGBE_PTP_RUNNING state. */
1501 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1502 return;
1503
1504 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1505 if (adapter->ptp_setup_sdp)
1506 adapter->ptp_setup_sdp(adapter);
1507
1508 /* ensure that we cancel any pending PTP Tx work item in progress */
1509 cancel_work_sync(&adapter->ptp_tx_work);
1510 ixgbe_ptp_clear_tx_timestamp(adapter);
1511 }
1512
1513 /**
1514 * ixgbe_ptp_stop - close the PTP device
1515 * @adapter: pointer to adapter struct
1516 *
1517 * completely destroy the PTP device, should only be called when the device is
1518 * being fully closed.
1519 */
ixgbe_ptp_stop(struct ixgbe_adapter * adapter)1520 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1521 {
1522 /* first, suspend PTP activity */
1523 ixgbe_ptp_suspend(adapter);
1524
1525 /* disable the PTP clock device */
1526 if (adapter->ptp_clock) {
1527 ptp_clock_unregister(adapter->ptp_clock);
1528 adapter->ptp_clock = NULL;
1529 e_dev_info("removed PHC on %s\n",
1530 adapter->netdev->name);
1531 }
1532 }
1533