1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 #include "i915_reg.h"
9 #include "intel_cx0_phy.h"
10 #include "intel_cx0_phy_regs.h"
11 #include "intel_ddi.h"
12 #include "intel_ddi_buf_trans.h"
13 #include "intel_de.h"
14 #include "intel_display_types.h"
15 #include "intel_dp.h"
16 #include "intel_hdmi.h"
17 #include "intel_panel.h"
18 #include "intel_psr.h"
19 #include "intel_tc.h"
20
21 #define MB_WRITE_COMMITTED true
22 #define MB_WRITE_UNCOMMITTED false
23
24 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25 for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26 for_each_if((__lane_mask) & BIT(__lane))
27
28 #define INTEL_CX0_LANE0 BIT(0)
29 #define INTEL_CX0_LANE1 BIT(1)
30 #define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31
intel_encoder_is_c10phy(struct intel_encoder * encoder)32 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
33 {
34 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
35 enum phy phy = intel_encoder_to_phy(encoder);
36
37 if (IS_PANTHERLAKE(i915) && phy == PHY_A)
38 return true;
39
40 if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
41 return true;
42
43 return false;
44 }
45
lane_mask_to_lane(u8 lane_mask)46 static int lane_mask_to_lane(u8 lane_mask)
47 {
48 if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
49 hweight8(lane_mask) != 1))
50 return 0;
51
52 return ilog2(lane_mask);
53 }
54
intel_cx0_get_owned_lane_mask(struct intel_encoder * encoder)55 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
56 {
57 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
58
59 if (!intel_tc_port_in_dp_alt_mode(dig_port))
60 return INTEL_CX0_BOTH_LANES;
61
62 /*
63 * In DP-alt with pin assignment D, only PHY lane 0 is owned
64 * by display and lane 1 is owned by USB.
65 */
66 return intel_tc_port_max_lane_count(dig_port) > 2
67 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
68 }
69
70 static void
assert_dc_off(struct intel_display * display)71 assert_dc_off(struct intel_display *display)
72 {
73 struct drm_i915_private *i915 = to_i915(display->drm);
74 bool enabled;
75
76 enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
77 drm_WARN_ON(display->drm, !enabled);
78 }
79
intel_cx0_program_msgbus_timer(struct intel_encoder * encoder)80 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
81 {
82 struct intel_display *display = to_intel_display(encoder);
83 int lane;
84
85 for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
86 intel_de_rmw(display,
87 XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
88 XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
89 XELPDP_PORT_MSGBUS_TIMER_VAL);
90 }
91
92 /*
93 * Prepare HW for CX0 phy transactions.
94 *
95 * It is required that PSR and DC5/6 are disabled before any CX0 message
96 * bus transaction is executed.
97 *
98 * We also do the msgbus timer programming here to ensure that the timer
99 * is already programmed before any access to the msgbus.
100 */
intel_cx0_phy_transaction_begin(struct intel_encoder * encoder)101 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
102 {
103 intel_wakeref_t wakeref;
104 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
105 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
106
107 intel_psr_pause(intel_dp);
108 wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
109 intel_cx0_program_msgbus_timer(encoder);
110
111 return wakeref;
112 }
113
intel_cx0_phy_transaction_end(struct intel_encoder * encoder,intel_wakeref_t wakeref)114 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
115 {
116 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
117 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
118
119 intel_psr_resume(intel_dp);
120 intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
121 }
122
intel_clear_response_ready_flag(struct intel_encoder * encoder,int lane)123 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
124 int lane)
125 {
126 struct intel_display *display = to_intel_display(encoder);
127
128 intel_de_rmw(display,
129 XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
130 0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
131 }
132
intel_cx0_bus_reset(struct intel_encoder * encoder,int lane)133 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
134 {
135 struct intel_display *display = to_intel_display(encoder);
136 enum port port = encoder->port;
137 enum phy phy = intel_encoder_to_phy(encoder);
138
139 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
140 XELPDP_PORT_M2P_TRANSACTION_RESET);
141
142 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
143 XELPDP_PORT_M2P_TRANSACTION_RESET,
144 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
145 drm_err_once(display->drm,
146 "Failed to bring PHY %c to idle.\n",
147 phy_name(phy));
148 return;
149 }
150
151 intel_clear_response_ready_flag(encoder, lane);
152 }
153
intel_cx0_wait_for_ack(struct intel_encoder * encoder,int command,int lane,u32 * val)154 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
155 int command, int lane, u32 *val)
156 {
157 struct intel_display *display = to_intel_display(encoder);
158 enum port port = encoder->port;
159 enum phy phy = intel_encoder_to_phy(encoder);
160
161 if (intel_de_wait_custom(display,
162 XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
163 XELPDP_PORT_P2M_RESPONSE_READY,
164 XELPDP_PORT_P2M_RESPONSE_READY,
165 XELPDP_MSGBUS_TIMEOUT_FAST_US,
166 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
167 drm_dbg_kms(display->drm,
168 "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
169 phy_name(phy), *val);
170
171 if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
172 XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
173 drm_dbg_kms(display->drm,
174 "PHY %c Hardware did not detect a timeout\n",
175 phy_name(phy));
176
177 intel_cx0_bus_reset(encoder, lane);
178 return -ETIMEDOUT;
179 }
180
181 if (*val & XELPDP_PORT_P2M_ERROR_SET) {
182 drm_dbg_kms(display->drm,
183 "PHY %c Error occurred during %s command. Status: 0x%x\n",
184 phy_name(phy),
185 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
186 intel_cx0_bus_reset(encoder, lane);
187 return -EINVAL;
188 }
189
190 if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
191 drm_dbg_kms(display->drm,
192 "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
193 phy_name(phy),
194 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
195 intel_cx0_bus_reset(encoder, lane);
196 return -EINVAL;
197 }
198
199 return 0;
200 }
201
__intel_cx0_read_once(struct intel_encoder * encoder,int lane,u16 addr)202 static int __intel_cx0_read_once(struct intel_encoder *encoder,
203 int lane, u16 addr)
204 {
205 struct intel_display *display = to_intel_display(encoder);
206 enum port port = encoder->port;
207 enum phy phy = intel_encoder_to_phy(encoder);
208 int ack;
209 u32 val;
210
211 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
212 XELPDP_PORT_M2P_TRANSACTION_PENDING,
213 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
214 drm_dbg_kms(display->drm,
215 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
216 intel_cx0_bus_reset(encoder, lane);
217 return -ETIMEDOUT;
218 }
219
220 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
221 XELPDP_PORT_M2P_TRANSACTION_PENDING |
222 XELPDP_PORT_M2P_COMMAND_READ |
223 XELPDP_PORT_M2P_ADDRESS(addr));
224
225 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
226 if (ack < 0)
227 return ack;
228
229 intel_clear_response_ready_flag(encoder, lane);
230
231 /*
232 * FIXME: Workaround to let HW to settle
233 * down and let the message bus to end up
234 * in a known state
235 */
236 if (DISPLAY_VER(display) < 30)
237 intel_cx0_bus_reset(encoder, lane);
238
239 return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
240 }
241
__intel_cx0_read(struct intel_encoder * encoder,int lane,u16 addr)242 static u8 __intel_cx0_read(struct intel_encoder *encoder,
243 int lane, u16 addr)
244 {
245 struct intel_display *display = to_intel_display(encoder);
246 enum phy phy = intel_encoder_to_phy(encoder);
247 int i, status;
248
249 assert_dc_off(display);
250
251 /* 3 tries is assumed to be enough to read successfully */
252 for (i = 0; i < 3; i++) {
253 status = __intel_cx0_read_once(encoder, lane, addr);
254
255 if (status >= 0)
256 return status;
257 }
258
259 drm_err_once(display->drm,
260 "PHY %c Read %04x failed after %d retries.\n",
261 phy_name(phy), addr, i);
262
263 return 0;
264 }
265
intel_cx0_read(struct intel_encoder * encoder,u8 lane_mask,u16 addr)266 static u8 intel_cx0_read(struct intel_encoder *encoder,
267 u8 lane_mask, u16 addr)
268 {
269 int lane = lane_mask_to_lane(lane_mask);
270
271 return __intel_cx0_read(encoder, lane, addr);
272 }
273
__intel_cx0_write_once(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)274 static int __intel_cx0_write_once(struct intel_encoder *encoder,
275 int lane, u16 addr, u8 data, bool committed)
276 {
277 struct intel_display *display = to_intel_display(encoder);
278 enum port port = encoder->port;
279 enum phy phy = intel_encoder_to_phy(encoder);
280 int ack;
281 u32 val;
282
283 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
284 XELPDP_PORT_M2P_TRANSACTION_PENDING,
285 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
286 drm_dbg_kms(display->drm,
287 "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
288 intel_cx0_bus_reset(encoder, lane);
289 return -ETIMEDOUT;
290 }
291
292 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
293 XELPDP_PORT_M2P_TRANSACTION_PENDING |
294 (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
295 XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
296 XELPDP_PORT_M2P_DATA(data) |
297 XELPDP_PORT_M2P_ADDRESS(addr));
298
299 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
300 XELPDP_PORT_M2P_TRANSACTION_PENDING,
301 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
302 drm_dbg_kms(display->drm,
303 "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
304 intel_cx0_bus_reset(encoder, lane);
305 return -ETIMEDOUT;
306 }
307
308 if (committed) {
309 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
310 if (ack < 0)
311 return ack;
312 } else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
313 XELPDP_PORT_P2M_ERROR_SET)) {
314 drm_dbg_kms(display->drm,
315 "PHY %c Error occurred during write command.\n", phy_name(phy));
316 intel_cx0_bus_reset(encoder, lane);
317 return -EINVAL;
318 }
319
320 intel_clear_response_ready_flag(encoder, lane);
321
322 /*
323 * FIXME: Workaround to let HW to settle
324 * down and let the message bus to end up
325 * in a known state
326 */
327 if (DISPLAY_VER(display) < 30)
328 intel_cx0_bus_reset(encoder, lane);
329
330 return 0;
331 }
332
__intel_cx0_write(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)333 static void __intel_cx0_write(struct intel_encoder *encoder,
334 int lane, u16 addr, u8 data, bool committed)
335 {
336 struct intel_display *display = to_intel_display(encoder);
337 enum phy phy = intel_encoder_to_phy(encoder);
338 int i, status;
339
340 assert_dc_off(display);
341
342 /* 3 tries is assumed to be enough to write successfully */
343 for (i = 0; i < 3; i++) {
344 status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
345
346 if (status == 0)
347 return;
348 }
349
350 drm_err_once(display->drm,
351 "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
352 }
353
intel_cx0_write(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 data,bool committed)354 static void intel_cx0_write(struct intel_encoder *encoder,
355 u8 lane_mask, u16 addr, u8 data, bool committed)
356 {
357 int lane;
358
359 for_each_cx0_lane_in_mask(lane_mask, lane)
360 __intel_cx0_write(encoder, lane, addr, data, committed);
361 }
362
intel_c20_sram_write(struct intel_encoder * encoder,int lane,u16 addr,u16 data)363 static void intel_c20_sram_write(struct intel_encoder *encoder,
364 int lane, u16 addr, u16 data)
365 {
366 struct intel_display *display = to_intel_display(encoder);
367
368 assert_dc_off(display);
369
370 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
371 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
372
373 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
374 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
375 }
376
intel_c20_sram_read(struct intel_encoder * encoder,int lane,u16 addr)377 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
378 int lane, u16 addr)
379 {
380 struct intel_display *display = to_intel_display(encoder);
381 u16 val;
382
383 assert_dc_off(display);
384
385 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
386 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
387
388 val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
389 val <<= 8;
390 val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
391
392 return val;
393 }
394
__intel_cx0_rmw(struct intel_encoder * encoder,int lane,u16 addr,u8 clear,u8 set,bool committed)395 static void __intel_cx0_rmw(struct intel_encoder *encoder,
396 int lane, u16 addr, u8 clear, u8 set, bool committed)
397 {
398 u8 old, val;
399
400 old = __intel_cx0_read(encoder, lane, addr);
401 val = (old & ~clear) | set;
402
403 if (val != old)
404 __intel_cx0_write(encoder, lane, addr, val, committed);
405 }
406
intel_cx0_rmw(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 clear,u8 set,bool committed)407 static void intel_cx0_rmw(struct intel_encoder *encoder,
408 u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
409 {
410 u8 lane;
411
412 for_each_cx0_lane_in_mask(lane_mask, lane)
413 __intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
414 }
415
intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state * crtc_state)416 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
417 {
418 if (intel_crtc_has_dp_encoder(crtc_state)) {
419 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
420 (crtc_state->port_clock == 540000 ||
421 crtc_state->port_clock == 810000))
422 return 5;
423 else
424 return 4;
425 } else {
426 return 5;
427 }
428 }
429
intel_c10_get_tx_term_ctl(const struct intel_crtc_state * crtc_state)430 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
431 {
432 if (intel_crtc_has_dp_encoder(crtc_state)) {
433 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
434 (crtc_state->port_clock == 540000 ||
435 crtc_state->port_clock == 810000))
436 return 5;
437 else
438 return 2;
439 } else {
440 return 6;
441 }
442 }
443
intel_cx0_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)444 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
445 const struct intel_crtc_state *crtc_state)
446 {
447 struct intel_display *display = to_intel_display(encoder);
448 const struct intel_ddi_buf_trans *trans;
449 u8 owned_lane_mask;
450 intel_wakeref_t wakeref;
451 int n_entries, ln;
452 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
453
454 if (intel_tc_port_in_tbt_alt_mode(dig_port))
455 return;
456
457 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
458
459 wakeref = intel_cx0_phy_transaction_begin(encoder);
460
461 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
462 if (drm_WARN_ON_ONCE(display->drm, !trans)) {
463 intel_cx0_phy_transaction_end(encoder, wakeref);
464 return;
465 }
466
467 if (intel_encoder_is_c10phy(encoder)) {
468 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
469 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
470 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
471 C10_CMN3_TXVBOOST_MASK,
472 C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
473 MB_WRITE_UNCOMMITTED);
474 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
475 C10_TX1_TERMCTL_MASK,
476 C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
477 MB_WRITE_COMMITTED);
478 }
479
480 for (ln = 0; ln < crtc_state->lane_count; ln++) {
481 int level = intel_ddi_level(encoder, crtc_state, ln);
482 int lane = ln / 2;
483 int tx = ln % 2;
484 u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
485
486 if (!(lane_mask & owned_lane_mask))
487 continue;
488
489 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
490 C10_PHY_OVRD_LEVEL_MASK,
491 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
492 MB_WRITE_COMMITTED);
493 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
494 C10_PHY_OVRD_LEVEL_MASK,
495 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
496 MB_WRITE_COMMITTED);
497 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
498 C10_PHY_OVRD_LEVEL_MASK,
499 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
500 MB_WRITE_COMMITTED);
501 }
502
503 /* Write Override enables in 0xD71 */
504 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
505 0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
506 MB_WRITE_COMMITTED);
507
508 if (intel_encoder_is_c10phy(encoder))
509 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
510 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
511
512 intel_cx0_phy_transaction_end(encoder, wakeref);
513 }
514
515 /*
516 * Basic DP link rates with 38.4 MHz reference clock.
517 * Note: The tables below are with SSC. In non-ssc
518 * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
519 * programmed 0.
520 */
521
522 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
523 .clock = 162000,
524 .tx = 0x10,
525 .cmn = 0x21,
526 .pll[0] = 0xB4,
527 .pll[1] = 0,
528 .pll[2] = 0x30,
529 .pll[3] = 0x1,
530 .pll[4] = 0x26,
531 .pll[5] = 0x0C,
532 .pll[6] = 0x98,
533 .pll[7] = 0x46,
534 .pll[8] = 0x1,
535 .pll[9] = 0x1,
536 .pll[10] = 0,
537 .pll[11] = 0,
538 .pll[12] = 0xC0,
539 .pll[13] = 0,
540 .pll[14] = 0,
541 .pll[15] = 0x2,
542 .pll[16] = 0x84,
543 .pll[17] = 0x4F,
544 .pll[18] = 0xE5,
545 .pll[19] = 0x23,
546 };
547
548 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
549 .clock = 216000,
550 .tx = 0x10,
551 .cmn = 0x21,
552 .pll[0] = 0x4,
553 .pll[1] = 0,
554 .pll[2] = 0xA2,
555 .pll[3] = 0x1,
556 .pll[4] = 0x33,
557 .pll[5] = 0x10,
558 .pll[6] = 0x75,
559 .pll[7] = 0xB3,
560 .pll[8] = 0x1,
561 .pll[9] = 0x1,
562 .pll[10] = 0,
563 .pll[11] = 0,
564 .pll[12] = 0,
565 .pll[13] = 0,
566 .pll[14] = 0,
567 .pll[15] = 0x2,
568 .pll[16] = 0x85,
569 .pll[17] = 0x0F,
570 .pll[18] = 0xE6,
571 .pll[19] = 0x23,
572 };
573
574 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
575 .clock = 243000,
576 .tx = 0x10,
577 .cmn = 0x21,
578 .pll[0] = 0x34,
579 .pll[1] = 0,
580 .pll[2] = 0xDA,
581 .pll[3] = 0x1,
582 .pll[4] = 0x39,
583 .pll[5] = 0x12,
584 .pll[6] = 0xE3,
585 .pll[7] = 0xE9,
586 .pll[8] = 0x1,
587 .pll[9] = 0x1,
588 .pll[10] = 0,
589 .pll[11] = 0,
590 .pll[12] = 0x20,
591 .pll[13] = 0,
592 .pll[14] = 0,
593 .pll[15] = 0x2,
594 .pll[16] = 0x85,
595 .pll[17] = 0x8F,
596 .pll[18] = 0xE6,
597 .pll[19] = 0x23,
598 };
599
600 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
601 .clock = 270000,
602 .tx = 0x10,
603 .cmn = 0x21,
604 .pll[0] = 0xF4,
605 .pll[1] = 0,
606 .pll[2] = 0xF8,
607 .pll[3] = 0x0,
608 .pll[4] = 0x20,
609 .pll[5] = 0x0A,
610 .pll[6] = 0x29,
611 .pll[7] = 0x10,
612 .pll[8] = 0x1, /* Verify */
613 .pll[9] = 0x1,
614 .pll[10] = 0,
615 .pll[11] = 0,
616 .pll[12] = 0xA0,
617 .pll[13] = 0,
618 .pll[14] = 0,
619 .pll[15] = 0x1,
620 .pll[16] = 0x84,
621 .pll[17] = 0x4F,
622 .pll[18] = 0xE5,
623 .pll[19] = 0x23,
624 };
625
626 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
627 .clock = 324000,
628 .tx = 0x10,
629 .cmn = 0x21,
630 .pll[0] = 0xB4,
631 .pll[1] = 0,
632 .pll[2] = 0x30,
633 .pll[3] = 0x1,
634 .pll[4] = 0x26,
635 .pll[5] = 0x0C,
636 .pll[6] = 0x98,
637 .pll[7] = 0x46,
638 .pll[8] = 0x1,
639 .pll[9] = 0x1,
640 .pll[10] = 0,
641 .pll[11] = 0,
642 .pll[12] = 0xC0,
643 .pll[13] = 0,
644 .pll[14] = 0,
645 .pll[15] = 0x1,
646 .pll[16] = 0x85,
647 .pll[17] = 0x4F,
648 .pll[18] = 0xE6,
649 .pll[19] = 0x23,
650 };
651
652 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
653 .clock = 432000,
654 .tx = 0x10,
655 .cmn = 0x21,
656 .pll[0] = 0x4,
657 .pll[1] = 0,
658 .pll[2] = 0xA2,
659 .pll[3] = 0x1,
660 .pll[4] = 0x33,
661 .pll[5] = 0x10,
662 .pll[6] = 0x75,
663 .pll[7] = 0xB3,
664 .pll[8] = 0x1,
665 .pll[9] = 0x1,
666 .pll[10] = 0,
667 .pll[11] = 0,
668 .pll[12] = 0,
669 .pll[13] = 0,
670 .pll[14] = 0,
671 .pll[15] = 0x1,
672 .pll[16] = 0x85,
673 .pll[17] = 0x0F,
674 .pll[18] = 0xE6,
675 .pll[19] = 0x23,
676 };
677
678 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
679 .clock = 540000,
680 .tx = 0x10,
681 .cmn = 0x21,
682 .pll[0] = 0xF4,
683 .pll[1] = 0,
684 .pll[2] = 0xF8,
685 .pll[3] = 0,
686 .pll[4] = 0x20,
687 .pll[5] = 0x0A,
688 .pll[6] = 0x29,
689 .pll[7] = 0x10,
690 .pll[8] = 0x1,
691 .pll[9] = 0x1,
692 .pll[10] = 0,
693 .pll[11] = 0,
694 .pll[12] = 0xA0,
695 .pll[13] = 0,
696 .pll[14] = 0,
697 .pll[15] = 0,
698 .pll[16] = 0x84,
699 .pll[17] = 0x4F,
700 .pll[18] = 0xE5,
701 .pll[19] = 0x23,
702 };
703
704 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
705 .clock = 675000,
706 .tx = 0x10,
707 .cmn = 0x21,
708 .pll[0] = 0xB4,
709 .pll[1] = 0,
710 .pll[2] = 0x3E,
711 .pll[3] = 0x1,
712 .pll[4] = 0xA8,
713 .pll[5] = 0x0C,
714 .pll[6] = 0x33,
715 .pll[7] = 0x54,
716 .pll[8] = 0x1,
717 .pll[9] = 0x1,
718 .pll[10] = 0,
719 .pll[11] = 0,
720 .pll[12] = 0xC8,
721 .pll[13] = 0,
722 .pll[14] = 0,
723 .pll[15] = 0,
724 .pll[16] = 0x85,
725 .pll[17] = 0x8F,
726 .pll[18] = 0xE6,
727 .pll[19] = 0x23,
728 };
729
730 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
731 .clock = 810000,
732 .tx = 0x10,
733 .cmn = 0x21,
734 .pll[0] = 0x34,
735 .pll[1] = 0,
736 .pll[2] = 0x84,
737 .pll[3] = 0x1,
738 .pll[4] = 0x30,
739 .pll[5] = 0x0F,
740 .pll[6] = 0x3D,
741 .pll[7] = 0x98,
742 .pll[8] = 0x1,
743 .pll[9] = 0x1,
744 .pll[10] = 0,
745 .pll[11] = 0,
746 .pll[12] = 0xF0,
747 .pll[13] = 0,
748 .pll[14] = 0,
749 .pll[15] = 0,
750 .pll[16] = 0x84,
751 .pll[17] = 0x0F,
752 .pll[18] = 0xE5,
753 .pll[19] = 0x23,
754 };
755
756 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
757 &mtl_c10_dp_rbr,
758 &mtl_c10_dp_hbr1,
759 &mtl_c10_dp_hbr2,
760 &mtl_c10_dp_hbr3,
761 NULL,
762 };
763
764 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
765 &mtl_c10_dp_rbr,
766 &mtl_c10_edp_r216,
767 &mtl_c10_edp_r243,
768 &mtl_c10_dp_hbr1,
769 &mtl_c10_edp_r324,
770 &mtl_c10_edp_r432,
771 &mtl_c10_dp_hbr2,
772 &mtl_c10_edp_r675,
773 &mtl_c10_dp_hbr3,
774 NULL,
775 };
776
777 /* C20 basic DP 1.4 tables */
778 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
779 .clock = 162000,
780 .tx = { 0xbe88, /* tx cfg0 */
781 0x5800, /* tx cfg1 */
782 0x0000, /* tx cfg2 */
783 },
784 .cmn = {0x0500, /* cmn cfg0*/
785 0x0005, /* cmn cfg1 */
786 0x0000, /* cmn cfg2 */
787 0x0000, /* cmn cfg3 */
788 },
789 .mpllb = { 0x50a8, /* mpllb cfg0 */
790 0x2120, /* mpllb cfg1 */
791 0xcd9a, /* mpllb cfg2 */
792 0xbfc1, /* mpllb cfg3 */
793 0x5ab8, /* mpllb cfg4 */
794 0x4c34, /* mpllb cfg5 */
795 0x2000, /* mpllb cfg6 */
796 0x0001, /* mpllb cfg7 */
797 0x6000, /* mpllb cfg8 */
798 0x0000, /* mpllb cfg9 */
799 0x0000, /* mpllb cfg10 */
800 },
801 };
802
803 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
804 .clock = 270000,
805 .tx = { 0xbe88, /* tx cfg0 */
806 0x4800, /* tx cfg1 */
807 0x0000, /* tx cfg2 */
808 },
809 .cmn = {0x0500, /* cmn cfg0*/
810 0x0005, /* cmn cfg1 */
811 0x0000, /* cmn cfg2 */
812 0x0000, /* cmn cfg3 */
813 },
814 .mpllb = { 0x308c, /* mpllb cfg0 */
815 0x2110, /* mpllb cfg1 */
816 0xcc9c, /* mpllb cfg2 */
817 0xbfc1, /* mpllb cfg3 */
818 0x4b9a, /* mpllb cfg4 */
819 0x3f81, /* mpllb cfg5 */
820 0x2000, /* mpllb cfg6 */
821 0x0001, /* mpllb cfg7 */
822 0x5000, /* mpllb cfg8 */
823 0x0000, /* mpllb cfg9 */
824 0x0000, /* mpllb cfg10 */
825 },
826 };
827
828 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
829 .clock = 540000,
830 .tx = { 0xbe88, /* tx cfg0 */
831 0x4800, /* tx cfg1 */
832 0x0000, /* tx cfg2 */
833 },
834 .cmn = {0x0500, /* cmn cfg0*/
835 0x0005, /* cmn cfg1 */
836 0x0000, /* cmn cfg2 */
837 0x0000, /* cmn cfg3 */
838 },
839 .mpllb = { 0x108c, /* mpllb cfg0 */
840 0x2108, /* mpllb cfg1 */
841 0xcc9c, /* mpllb cfg2 */
842 0xbfc1, /* mpllb cfg3 */
843 0x4b9a, /* mpllb cfg4 */
844 0x3f81, /* mpllb cfg5 */
845 0x2000, /* mpllb cfg6 */
846 0x0001, /* mpllb cfg7 */
847 0x5000, /* mpllb cfg8 */
848 0x0000, /* mpllb cfg9 */
849 0x0000, /* mpllb cfg10 */
850 },
851 };
852
853 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
854 .clock = 810000,
855 .tx = { 0xbe88, /* tx cfg0 */
856 0x4800, /* tx cfg1 */
857 0x0000, /* tx cfg2 */
858 },
859 .cmn = {0x0500, /* cmn cfg0*/
860 0x0005, /* cmn cfg1 */
861 0x0000, /* cmn cfg2 */
862 0x0000, /* cmn cfg3 */
863 },
864 .mpllb = { 0x10d2, /* mpllb cfg0 */
865 0x2108, /* mpllb cfg1 */
866 0x8d98, /* mpllb cfg2 */
867 0xbfc1, /* mpllb cfg3 */
868 0x7166, /* mpllb cfg4 */
869 0x5f42, /* mpllb cfg5 */
870 0x2000, /* mpllb cfg6 */
871 0x0001, /* mpllb cfg7 */
872 0x7800, /* mpllb cfg8 */
873 0x0000, /* mpllb cfg9 */
874 0x0000, /* mpllb cfg10 */
875 },
876 };
877
878 /* C20 basic DP 2.0 tables */
879 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
880 .clock = 1000000, /* 10 Gbps */
881 .tx = { 0xbe21, /* tx cfg0 */
882 0xe800, /* tx cfg1 */
883 0x0000, /* tx cfg2 */
884 },
885 .cmn = {0x0700, /* cmn cfg0*/
886 0x0005, /* cmn cfg1 */
887 0x0000, /* cmn cfg2 */
888 0x0000, /* cmn cfg3 */
889 },
890 .mplla = { 0x3104, /* mplla cfg0 */
891 0xd105, /* mplla cfg1 */
892 0xc025, /* mplla cfg2 */
893 0xc025, /* mplla cfg3 */
894 0x8c00, /* mplla cfg4 */
895 0x759a, /* mplla cfg5 */
896 0x4000, /* mplla cfg6 */
897 0x0003, /* mplla cfg7 */
898 0x3555, /* mplla cfg8 */
899 0x0001, /* mplla cfg9 */
900 },
901 };
902
903 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
904 .clock = 1350000, /* 13.5 Gbps */
905 .tx = { 0xbea0, /* tx cfg0 */
906 0x4800, /* tx cfg1 */
907 0x0000, /* tx cfg2 */
908 },
909 .cmn = {0x0500, /* cmn cfg0*/
910 0x0005, /* cmn cfg1 */
911 0x0000, /* cmn cfg2 */
912 0x0000, /* cmn cfg3 */
913 },
914 .mpllb = { 0x015f, /* mpllb cfg0 */
915 0x2205, /* mpllb cfg1 */
916 0x1b17, /* mpllb cfg2 */
917 0xffc1, /* mpllb cfg3 */
918 0xe100, /* mpllb cfg4 */
919 0xbd00, /* mpllb cfg5 */
920 0x2000, /* mpllb cfg6 */
921 0x0001, /* mpllb cfg7 */
922 0x4800, /* mpllb cfg8 */
923 0x0000, /* mpllb cfg9 */
924 0x0000, /* mpllb cfg10 */
925 },
926 };
927
928 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
929 .clock = 2000000, /* 20 Gbps */
930 .tx = { 0xbe20, /* tx cfg0 */
931 0x4800, /* tx cfg1 */
932 0x0000, /* tx cfg2 */
933 },
934 .cmn = {0x0500, /* cmn cfg0*/
935 0x0005, /* cmn cfg1 */
936 0x0000, /* cmn cfg2 */
937 0x0000, /* cmn cfg3 */
938 },
939 .mplla = { 0x3104, /* mplla cfg0 */
940 0xd105, /* mplla cfg1 */
941 0x9217, /* mplla cfg2 */
942 0x9217, /* mplla cfg3 */
943 0x8c00, /* mplla cfg4 */
944 0x759a, /* mplla cfg5 */
945 0x4000, /* mplla cfg6 */
946 0x0003, /* mplla cfg7 */
947 0x3555, /* mplla cfg8 */
948 0x0001, /* mplla cfg9 */
949 },
950 };
951
952 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
953 &mtl_c20_dp_rbr,
954 &mtl_c20_dp_hbr1,
955 &mtl_c20_dp_hbr2,
956 &mtl_c20_dp_hbr3,
957 &mtl_c20_dp_uhbr10,
958 &mtl_c20_dp_uhbr13_5,
959 &mtl_c20_dp_uhbr20,
960 NULL,
961 };
962
963 /*
964 * eDP link rates with 38.4 MHz reference clock.
965 */
966
967 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
968 .clock = 216000,
969 .tx = { 0xbe88,
970 0x4800,
971 0x0000,
972 },
973 .cmn = { 0x0500,
974 0x0005,
975 0x0000,
976 0x0000,
977 },
978 .mpllb = { 0x50e1,
979 0x2120,
980 0x8e18,
981 0xbfc1,
982 0x9000,
983 0x78f6,
984 0x0000,
985 0x0000,
986 0x0000,
987 0x0000,
988 0x0000,
989 },
990 };
991
992 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
993 .clock = 243000,
994 .tx = { 0xbe88,
995 0x4800,
996 0x0000,
997 },
998 .cmn = { 0x0500,
999 0x0005,
1000 0x0000,
1001 0x0000,
1002 },
1003 .mpllb = { 0x50fd,
1004 0x2120,
1005 0x8f18,
1006 0xbfc1,
1007 0xa200,
1008 0x8814,
1009 0x2000,
1010 0x0001,
1011 0x1000,
1012 0x0000,
1013 0x0000,
1014 },
1015 };
1016
1017 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1018 .clock = 324000,
1019 .tx = { 0xbe88,
1020 0x4800,
1021 0x0000,
1022 },
1023 .cmn = { 0x0500,
1024 0x0005,
1025 0x0000,
1026 0x0000,
1027 },
1028 .mpllb = { 0x30a8,
1029 0x2110,
1030 0xcd9a,
1031 0xbfc1,
1032 0x6c00,
1033 0x5ab8,
1034 0x2000,
1035 0x0001,
1036 0x6000,
1037 0x0000,
1038 0x0000,
1039 },
1040 };
1041
1042 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1043 .clock = 432000,
1044 .tx = { 0xbe88,
1045 0x4800,
1046 0x0000,
1047 },
1048 .cmn = { 0x0500,
1049 0x0005,
1050 0x0000,
1051 0x0000,
1052 },
1053 .mpllb = { 0x30e1,
1054 0x2110,
1055 0x8e18,
1056 0xbfc1,
1057 0x9000,
1058 0x78f6,
1059 0x0000,
1060 0x0000,
1061 0x0000,
1062 0x0000,
1063 0x0000,
1064 },
1065 };
1066
1067 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1068 .clock = 675000,
1069 .tx = { 0xbe88,
1070 0x4800,
1071 0x0000,
1072 },
1073 .cmn = { 0x0500,
1074 0x0005,
1075 0x0000,
1076 0x0000,
1077 },
1078 .mpllb = { 0x10af,
1079 0x2108,
1080 0xce1a,
1081 0xbfc1,
1082 0x7080,
1083 0x5e80,
1084 0x2000,
1085 0x0001,
1086 0x6400,
1087 0x0000,
1088 0x0000,
1089 },
1090 };
1091
1092 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1093 &mtl_c20_dp_rbr,
1094 &xe2hpd_c20_edp_r216,
1095 &xe2hpd_c20_edp_r243,
1096 &mtl_c20_dp_hbr1,
1097 &xe2hpd_c20_edp_r324,
1098 &xe2hpd_c20_edp_r432,
1099 &mtl_c20_dp_hbr2,
1100 &xe2hpd_c20_edp_r675,
1101 &mtl_c20_dp_hbr3,
1102 NULL,
1103 };
1104
1105 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1106 .clock = 1350000, /* 13.5 Gbps */
1107 .tx = { 0xbea0, /* tx cfg0 */
1108 0x4800, /* tx cfg1 */
1109 0x0000, /* tx cfg2 */
1110 },
1111 .cmn = {0x0500, /* cmn cfg0*/
1112 0x0005, /* cmn cfg1 */
1113 0x0000, /* cmn cfg2 */
1114 0x0000, /* cmn cfg3 */
1115 },
1116 .mpllb = { 0x015f, /* mpllb cfg0 */
1117 0x2205, /* mpllb cfg1 */
1118 0x1b17, /* mpllb cfg2 */
1119 0xffc1, /* mpllb cfg3 */
1120 0xbd00, /* mpllb cfg4 */
1121 0x9ec3, /* mpllb cfg5 */
1122 0x2000, /* mpllb cfg6 */
1123 0x0001, /* mpllb cfg7 */
1124 0x4800, /* mpllb cfg8 */
1125 0x0000, /* mpllb cfg9 */
1126 0x0000, /* mpllb cfg10 */
1127 },
1128 };
1129
1130 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1131 &mtl_c20_dp_rbr,
1132 &mtl_c20_dp_hbr1,
1133 &mtl_c20_dp_hbr2,
1134 &mtl_c20_dp_hbr3,
1135 &mtl_c20_dp_uhbr10,
1136 &xe2hpd_c20_dp_uhbr13_5,
1137 NULL,
1138 };
1139
1140 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1141 &mtl_c20_dp_rbr,
1142 &xe2hpd_c20_edp_r216,
1143 &xe2hpd_c20_edp_r243,
1144 &mtl_c20_dp_hbr1,
1145 &xe2hpd_c20_edp_r324,
1146 &xe2hpd_c20_edp_r432,
1147 &mtl_c20_dp_hbr2,
1148 &xe2hpd_c20_edp_r675,
1149 &mtl_c20_dp_hbr3,
1150 &mtl_c20_dp_uhbr10,
1151 &xe2hpd_c20_dp_uhbr13_5,
1152 &mtl_c20_dp_uhbr20,
1153 NULL,
1154 };
1155
1156 /*
1157 * HDMI link rates with 38.4 MHz reference clock.
1158 */
1159
1160 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1161 .clock = 25200,
1162 .tx = 0x10,
1163 .cmn = 0x1,
1164 .pll[0] = 0x4,
1165 .pll[1] = 0,
1166 .pll[2] = 0xB2,
1167 .pll[3] = 0,
1168 .pll[4] = 0,
1169 .pll[5] = 0,
1170 .pll[6] = 0,
1171 .pll[7] = 0,
1172 .pll[8] = 0x20,
1173 .pll[9] = 0x1,
1174 .pll[10] = 0,
1175 .pll[11] = 0,
1176 .pll[12] = 0,
1177 .pll[13] = 0,
1178 .pll[14] = 0,
1179 .pll[15] = 0xD,
1180 .pll[16] = 0x6,
1181 .pll[17] = 0x8F,
1182 .pll[18] = 0x84,
1183 .pll[19] = 0x23,
1184 };
1185
1186 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1187 .clock = 27000,
1188 .tx = 0x10,
1189 .cmn = 0x1,
1190 .pll[0] = 0x34,
1191 .pll[1] = 0,
1192 .pll[2] = 0xC0,
1193 .pll[3] = 0,
1194 .pll[4] = 0,
1195 .pll[5] = 0,
1196 .pll[6] = 0,
1197 .pll[7] = 0,
1198 .pll[8] = 0x20,
1199 .pll[9] = 0x1,
1200 .pll[10] = 0,
1201 .pll[11] = 0,
1202 .pll[12] = 0x80,
1203 .pll[13] = 0,
1204 .pll[14] = 0,
1205 .pll[15] = 0xD,
1206 .pll[16] = 0x6,
1207 .pll[17] = 0xCF,
1208 .pll[18] = 0x84,
1209 .pll[19] = 0x23,
1210 };
1211
1212 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1213 .clock = 74250,
1214 .tx = 0x10,
1215 .cmn = 0x1,
1216 .pll[0] = 0xF4,
1217 .pll[1] = 0,
1218 .pll[2] = 0x7A,
1219 .pll[3] = 0,
1220 .pll[4] = 0,
1221 .pll[5] = 0,
1222 .pll[6] = 0,
1223 .pll[7] = 0,
1224 .pll[8] = 0x20,
1225 .pll[9] = 0x1,
1226 .pll[10] = 0,
1227 .pll[11] = 0,
1228 .pll[12] = 0x58,
1229 .pll[13] = 0,
1230 .pll[14] = 0,
1231 .pll[15] = 0xB,
1232 .pll[16] = 0x6,
1233 .pll[17] = 0xF,
1234 .pll[18] = 0x85,
1235 .pll[19] = 0x23,
1236 };
1237
1238 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1239 .clock = 148500,
1240 .tx = 0x10,
1241 .cmn = 0x1,
1242 .pll[0] = 0xF4,
1243 .pll[1] = 0,
1244 .pll[2] = 0x7A,
1245 .pll[3] = 0,
1246 .pll[4] = 0,
1247 .pll[5] = 0,
1248 .pll[6] = 0,
1249 .pll[7] = 0,
1250 .pll[8] = 0x20,
1251 .pll[9] = 0x1,
1252 .pll[10] = 0,
1253 .pll[11] = 0,
1254 .pll[12] = 0x58,
1255 .pll[13] = 0,
1256 .pll[14] = 0,
1257 .pll[15] = 0xA,
1258 .pll[16] = 0x6,
1259 .pll[17] = 0xF,
1260 .pll[18] = 0x85,
1261 .pll[19] = 0x23,
1262 };
1263
1264 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1265 .clock = 594000,
1266 .tx = 0x10,
1267 .cmn = 0x1,
1268 .pll[0] = 0xF4,
1269 .pll[1] = 0,
1270 .pll[2] = 0x7A,
1271 .pll[3] = 0,
1272 .pll[4] = 0,
1273 .pll[5] = 0,
1274 .pll[6] = 0,
1275 .pll[7] = 0,
1276 .pll[8] = 0x20,
1277 .pll[9] = 0x1,
1278 .pll[10] = 0,
1279 .pll[11] = 0,
1280 .pll[12] = 0x58,
1281 .pll[13] = 0,
1282 .pll[14] = 0,
1283 .pll[15] = 0x8,
1284 .pll[16] = 0x6,
1285 .pll[17] = 0xF,
1286 .pll[18] = 0x85,
1287 .pll[19] = 0x23,
1288 };
1289
1290 /* Precomputed C10 HDMI PLL tables */
1291 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1292 .clock = 27027,
1293 .tx = 0x10,
1294 .cmn = 0x1,
1295 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1296 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1297 .pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1298 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1299 };
1300
1301 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1302 .clock = 28320,
1303 .tx = 0x10,
1304 .cmn = 0x1,
1305 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1306 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1307 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1308 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1309 };
1310
1311 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1312 .clock = 30240,
1313 .tx = 0x10,
1314 .cmn = 0x1,
1315 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1316 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1317 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1318 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1319 };
1320
1321 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1322 .clock = 31500,
1323 .tx = 0x10,
1324 .cmn = 0x1,
1325 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1326 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1327 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1328 .pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1329 };
1330
1331 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1332 .clock = 36000,
1333 .tx = 0x10,
1334 .cmn = 0x1,
1335 .pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1336 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1337 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1338 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1339 };
1340
1341 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1342 .clock = 40000,
1343 .tx = 0x10,
1344 .cmn = 0x1,
1345 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1346 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1347 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1348 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1349 };
1350
1351 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1352 .clock = 49500,
1353 .tx = 0x10,
1354 .cmn = 0x1,
1355 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1356 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1357 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1358 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1359 };
1360
1361 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1362 .clock = 50000,
1363 .tx = 0x10,
1364 .cmn = 0x1,
1365 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1366 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1367 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1368 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1369 };
1370
1371 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1372 .clock = 57284,
1373 .tx = 0x10,
1374 .cmn = 0x1,
1375 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1376 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1377 .pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1378 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1379 };
1380
1381 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1382 .clock = 58000,
1383 .tx = 0x10,
1384 .cmn = 0x1,
1385 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1386 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1387 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1388 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1389 };
1390
1391 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1392 .clock = 65000,
1393 .tx = 0x10,
1394 .cmn = 0x1,
1395 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1396 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1397 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1398 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1399 };
1400
1401 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1402 .clock = 71000,
1403 .tx = 0x10,
1404 .cmn = 0x1,
1405 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1406 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1407 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1408 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1409 };
1410
1411 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1412 .clock = 74176,
1413 .tx = 0x10,
1414 .cmn = 0x1,
1415 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1416 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1417 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1418 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1419 };
1420
1421 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1422 .clock = 75000,
1423 .tx = 0x10,
1424 .cmn = 0x1,
1425 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1426 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1427 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1428 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1429 };
1430
1431 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1432 .clock = 78750,
1433 .tx = 0x10,
1434 .cmn = 0x1,
1435 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1436 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1437 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1438 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1439 };
1440
1441 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1442 .clock = 85500,
1443 .tx = 0x10,
1444 .cmn = 0x1,
1445 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1446 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1447 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1448 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1449 };
1450
1451 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1452 .clock = 88750,
1453 .tx = 0x10,
1454 .cmn = 0x1,
1455 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1456 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1457 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1458 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1459 };
1460
1461 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1462 .clock = 106500,
1463 .tx = 0x10,
1464 .cmn = 0x1,
1465 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1466 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1467 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1468 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1469 };
1470
1471 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1472 .clock = 108000,
1473 .tx = 0x10,
1474 .cmn = 0x1,
1475 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1476 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1477 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1478 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1479 };
1480
1481 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1482 .clock = 115500,
1483 .tx = 0x10,
1484 .cmn = 0x1,
1485 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1486 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1487 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1488 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1489 };
1490
1491 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1492 .clock = 119000,
1493 .tx = 0x10,
1494 .cmn = 0x1,
1495 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1496 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1497 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1498 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1499 };
1500
1501 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1502 .clock = 135000,
1503 .tx = 0x10,
1504 .cmn = 0x1,
1505 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1506 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1507 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1508 .pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1509 };
1510
1511 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1512 .clock = 138500,
1513 .tx = 0x10,
1514 .cmn = 0x1,
1515 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1516 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1517 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1518 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1519 };
1520
1521 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1522 .clock = 147160,
1523 .tx = 0x10,
1524 .cmn = 0x1,
1525 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1526 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1527 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1528 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1529 };
1530
1531 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1532 .clock = 148352,
1533 .tx = 0x10,
1534 .cmn = 0x1,
1535 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1536 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1537 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1538 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1539 };
1540
1541 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1542 .clock = 154000,
1543 .tx = 0x10,
1544 .cmn = 0x1,
1545 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1546 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1547 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1548 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1549 };
1550
1551 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1552 .clock = 162000,
1553 .tx = 0x10,
1554 .cmn = 0x1,
1555 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1556 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1557 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1558 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1559 };
1560
1561 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1562 .clock = 167000,
1563 .tx = 0x10,
1564 .cmn = 0x1,
1565 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1566 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1567 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1568 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1569 };
1570
1571 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1572 .clock = 197802,
1573 .tx = 0x10,
1574 .cmn = 0x1,
1575 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1576 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1577 .pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1578 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1579 };
1580
1581 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1582 .clock = 198000,
1583 .tx = 0x10,
1584 .cmn = 0x1,
1585 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1586 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1587 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1588 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1589 };
1590
1591 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1592 .clock = 209800,
1593 .tx = 0x10,
1594 .cmn = 0x1,
1595 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1596 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1597 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1598 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1599 };
1600
1601 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1602 .clock = 241500,
1603 .tx = 0x10,
1604 .cmn = 0x1,
1605 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1606 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1607 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1608 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1609 };
1610
1611 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1612 .clock = 262750,
1613 .tx = 0x10,
1614 .cmn = 0x1,
1615 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1616 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1617 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1618 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1619 };
1620
1621 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1622 .clock = 268500,
1623 .tx = 0x10,
1624 .cmn = 0x1,
1625 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1626 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1627 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1628 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1629 };
1630
1631 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1632 .clock = 296703,
1633 .tx = 0x10,
1634 .cmn = 0x1,
1635 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1636 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1637 .pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1638 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1639 };
1640
1641 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1642 .clock = 297000,
1643 .tx = 0x10,
1644 .cmn = 0x1,
1645 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1646 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1647 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1648 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1649 };
1650
1651 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1652 .clock = 319750,
1653 .tx = 0x10,
1654 .cmn = 0x1,
1655 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1656 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1657 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1658 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1659 };
1660
1661 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1662 .clock = 497750,
1663 .tx = 0x10,
1664 .cmn = 0x1,
1665 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1666 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1667 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1668 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1669 };
1670
1671 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1672 .clock = 592000,
1673 .tx = 0x10,
1674 .cmn = 0x1,
1675 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1676 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1677 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1678 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1679 };
1680
1681 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1682 .clock = 593407,
1683 .tx = 0x10,
1684 .cmn = 0x1,
1685 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1686 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1687 .pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1688 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1689 };
1690
1691 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1692 &mtl_c10_hdmi_25_2, /* Consolidated Table */
1693 &mtl_c10_hdmi_27_0, /* Consolidated Table */
1694 &mtl_c10_hdmi_27027,
1695 &mtl_c10_hdmi_28320,
1696 &mtl_c10_hdmi_30240,
1697 &mtl_c10_hdmi_31500,
1698 &mtl_c10_hdmi_36000,
1699 &mtl_c10_hdmi_40000,
1700 &mtl_c10_hdmi_49500,
1701 &mtl_c10_hdmi_50000,
1702 &mtl_c10_hdmi_57284,
1703 &mtl_c10_hdmi_58000,
1704 &mtl_c10_hdmi_65000,
1705 &mtl_c10_hdmi_71000,
1706 &mtl_c10_hdmi_74176,
1707 &mtl_c10_hdmi_74_25, /* Consolidated Table */
1708 &mtl_c10_hdmi_75000,
1709 &mtl_c10_hdmi_78750,
1710 &mtl_c10_hdmi_85500,
1711 &mtl_c10_hdmi_88750,
1712 &mtl_c10_hdmi_106500,
1713 &mtl_c10_hdmi_108000,
1714 &mtl_c10_hdmi_115500,
1715 &mtl_c10_hdmi_119000,
1716 &mtl_c10_hdmi_135000,
1717 &mtl_c10_hdmi_138500,
1718 &mtl_c10_hdmi_147160,
1719 &mtl_c10_hdmi_148352,
1720 &mtl_c10_hdmi_148_5, /* Consolidated Table */
1721 &mtl_c10_hdmi_154000,
1722 &mtl_c10_hdmi_162000,
1723 &mtl_c10_hdmi_167000,
1724 &mtl_c10_hdmi_197802,
1725 &mtl_c10_hdmi_198000,
1726 &mtl_c10_hdmi_209800,
1727 &mtl_c10_hdmi_241500,
1728 &mtl_c10_hdmi_262750,
1729 &mtl_c10_hdmi_268500,
1730 &mtl_c10_hdmi_296703,
1731 &mtl_c10_hdmi_297000,
1732 &mtl_c10_hdmi_319750,
1733 &mtl_c10_hdmi_497750,
1734 &mtl_c10_hdmi_592000,
1735 &mtl_c10_hdmi_593407,
1736 &mtl_c10_hdmi_594, /* Consolidated Table */
1737 NULL,
1738 };
1739
1740 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1741 .clock = 25175,
1742 .tx = { 0xbe88, /* tx cfg0 */
1743 0x9800, /* tx cfg1 */
1744 0x0000, /* tx cfg2 */
1745 },
1746 .cmn = { 0x0500, /* cmn cfg0*/
1747 0x0005, /* cmn cfg1 */
1748 0x0000, /* cmn cfg2 */
1749 0x0000, /* cmn cfg3 */
1750 },
1751 .mpllb = { 0xa0d2, /* mpllb cfg0 */
1752 0x7d80, /* mpllb cfg1 */
1753 0x0906, /* mpllb cfg2 */
1754 0xbe40, /* mpllb cfg3 */
1755 0x0000, /* mpllb cfg4 */
1756 0x0000, /* mpllb cfg5 */
1757 0x0200, /* mpllb cfg6 */
1758 0x0001, /* mpllb cfg7 */
1759 0x0000, /* mpllb cfg8 */
1760 0x0000, /* mpllb cfg9 */
1761 0x0001, /* mpllb cfg10 */
1762 },
1763 };
1764
1765 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1766 .clock = 27000,
1767 .tx = { 0xbe88, /* tx cfg0 */
1768 0x9800, /* tx cfg1 */
1769 0x0000, /* tx cfg2 */
1770 },
1771 .cmn = { 0x0500, /* cmn cfg0*/
1772 0x0005, /* cmn cfg1 */
1773 0x0000, /* cmn cfg2 */
1774 0x0000, /* cmn cfg3 */
1775 },
1776 .mpllb = { 0xa0e0, /* mpllb cfg0 */
1777 0x7d80, /* mpllb cfg1 */
1778 0x0906, /* mpllb cfg2 */
1779 0xbe40, /* mpllb cfg3 */
1780 0x0000, /* mpllb cfg4 */
1781 0x0000, /* mpllb cfg5 */
1782 0x2200, /* mpllb cfg6 */
1783 0x0001, /* mpllb cfg7 */
1784 0x8000, /* mpllb cfg8 */
1785 0x0000, /* mpllb cfg9 */
1786 0x0001, /* mpllb cfg10 */
1787 },
1788 };
1789
1790 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1791 .clock = 74250,
1792 .tx = { 0xbe88, /* tx cfg0 */
1793 0x9800, /* tx cfg1 */
1794 0x0000, /* tx cfg2 */
1795 },
1796 .cmn = { 0x0500, /* cmn cfg0*/
1797 0x0005, /* cmn cfg1 */
1798 0x0000, /* cmn cfg2 */
1799 0x0000, /* cmn cfg3 */
1800 },
1801 .mpllb = { 0x609a, /* mpllb cfg0 */
1802 0x7d40, /* mpllb cfg1 */
1803 0xca06, /* mpllb cfg2 */
1804 0xbe40, /* mpllb cfg3 */
1805 0x0000, /* mpllb cfg4 */
1806 0x0000, /* mpllb cfg5 */
1807 0x2200, /* mpllb cfg6 */
1808 0x0001, /* mpllb cfg7 */
1809 0x5800, /* mpllb cfg8 */
1810 0x0000, /* mpllb cfg9 */
1811 0x0001, /* mpllb cfg10 */
1812 },
1813 };
1814
1815 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1816 .clock = 148500,
1817 .tx = { 0xbe88, /* tx cfg0 */
1818 0x9800, /* tx cfg1 */
1819 0x0000, /* tx cfg2 */
1820 },
1821 .cmn = { 0x0500, /* cmn cfg0*/
1822 0x0005, /* cmn cfg1 */
1823 0x0000, /* cmn cfg2 */
1824 0x0000, /* cmn cfg3 */
1825 },
1826 .mpllb = { 0x409a, /* mpllb cfg0 */
1827 0x7d20, /* mpllb cfg1 */
1828 0xca06, /* mpllb cfg2 */
1829 0xbe40, /* mpllb cfg3 */
1830 0x0000, /* mpllb cfg4 */
1831 0x0000, /* mpllb cfg5 */
1832 0x2200, /* mpllb cfg6 */
1833 0x0001, /* mpllb cfg7 */
1834 0x5800, /* mpllb cfg8 */
1835 0x0000, /* mpllb cfg9 */
1836 0x0001, /* mpllb cfg10 */
1837 },
1838 };
1839
1840 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1841 .clock = 594000,
1842 .tx = { 0xbe88, /* tx cfg0 */
1843 0x9800, /* tx cfg1 */
1844 0x0000, /* tx cfg2 */
1845 },
1846 .cmn = { 0x0500, /* cmn cfg0*/
1847 0x0005, /* cmn cfg1 */
1848 0x0000, /* cmn cfg2 */
1849 0x0000, /* cmn cfg3 */
1850 },
1851 .mpllb = { 0x009a, /* mpllb cfg0 */
1852 0x7d08, /* mpllb cfg1 */
1853 0xca06, /* mpllb cfg2 */
1854 0xbe40, /* mpllb cfg3 */
1855 0x0000, /* mpllb cfg4 */
1856 0x0000, /* mpllb cfg5 */
1857 0x2200, /* mpllb cfg6 */
1858 0x0001, /* mpllb cfg7 */
1859 0x5800, /* mpllb cfg8 */
1860 0x0000, /* mpllb cfg9 */
1861 0x0001, /* mpllb cfg10 */
1862 },
1863 };
1864
1865 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1866 .clock = 3000000,
1867 .tx = { 0xbe98, /* tx cfg0 */
1868 0x8800, /* tx cfg1 */
1869 0x0000, /* tx cfg2 */
1870 },
1871 .cmn = { 0x0500, /* cmn cfg0*/
1872 0x0005, /* cmn cfg1 */
1873 0x0000, /* cmn cfg2 */
1874 0x0000, /* cmn cfg3 */
1875 },
1876 .mpllb = { 0x309c, /* mpllb cfg0 */
1877 0x2110, /* mpllb cfg1 */
1878 0xca06, /* mpllb cfg2 */
1879 0xbe40, /* mpllb cfg3 */
1880 0x0000, /* mpllb cfg4 */
1881 0x0000, /* mpllb cfg5 */
1882 0x2200, /* mpllb cfg6 */
1883 0x0001, /* mpllb cfg7 */
1884 0x2000, /* mpllb cfg8 */
1885 0x0000, /* mpllb cfg9 */
1886 0x0004, /* mpllb cfg10 */
1887 },
1888 };
1889
1890 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1891 .clock = 6000000,
1892 .tx = { 0xbe98, /* tx cfg0 */
1893 0x8800, /* tx cfg1 */
1894 0x0000, /* tx cfg2 */
1895 },
1896 .cmn = { 0x0500, /* cmn cfg0*/
1897 0x0005, /* cmn cfg1 */
1898 0x0000, /* cmn cfg2 */
1899 0x0000, /* cmn cfg3 */
1900 },
1901 .mpllb = { 0x109c, /* mpllb cfg0 */
1902 0x2108, /* mpllb cfg1 */
1903 0xca06, /* mpllb cfg2 */
1904 0xbe40, /* mpllb cfg3 */
1905 0x0000, /* mpllb cfg4 */
1906 0x0000, /* mpllb cfg5 */
1907 0x2200, /* mpllb cfg6 */
1908 0x0001, /* mpllb cfg7 */
1909 0x2000, /* mpllb cfg8 */
1910 0x0000, /* mpllb cfg9 */
1911 0x0004, /* mpllb cfg10 */
1912 },
1913 };
1914
1915 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1916 .clock = 8000000,
1917 .tx = { 0xbe98, /* tx cfg0 */
1918 0x8800, /* tx cfg1 */
1919 0x0000, /* tx cfg2 */
1920 },
1921 .cmn = { 0x0500, /* cmn cfg0*/
1922 0x0005, /* cmn cfg1 */
1923 0x0000, /* cmn cfg2 */
1924 0x0000, /* cmn cfg3 */
1925 },
1926 .mpllb = { 0x10d0, /* mpllb cfg0 */
1927 0x2108, /* mpllb cfg1 */
1928 0x4a06, /* mpllb cfg2 */
1929 0xbe40, /* mpllb cfg3 */
1930 0x0000, /* mpllb cfg4 */
1931 0x0000, /* mpllb cfg5 */
1932 0x2200, /* mpllb cfg6 */
1933 0x0003, /* mpllb cfg7 */
1934 0x2aaa, /* mpllb cfg8 */
1935 0x0002, /* mpllb cfg9 */
1936 0x0004, /* mpllb cfg10 */
1937 },
1938 };
1939
1940 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1941 .clock = 10000000,
1942 .tx = { 0xbe98, /* tx cfg0 */
1943 0x8800, /* tx cfg1 */
1944 0x0000, /* tx cfg2 */
1945 },
1946 .cmn = { 0x0500, /* cmn cfg0*/
1947 0x0005, /* cmn cfg1 */
1948 0x0000, /* cmn cfg2 */
1949 0x0000, /* cmn cfg3 */
1950 },
1951 .mpllb = { 0x1104, /* mpllb cfg0 */
1952 0x2108, /* mpllb cfg1 */
1953 0x0a06, /* mpllb cfg2 */
1954 0xbe40, /* mpllb cfg3 */
1955 0x0000, /* mpllb cfg4 */
1956 0x0000, /* mpllb cfg5 */
1957 0x2200, /* mpllb cfg6 */
1958 0x0003, /* mpllb cfg7 */
1959 0x3555, /* mpllb cfg8 */
1960 0x0001, /* mpllb cfg9 */
1961 0x0004, /* mpllb cfg10 */
1962 },
1963 };
1964
1965 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1966 .clock = 12000000,
1967 .tx = { 0xbe98, /* tx cfg0 */
1968 0x8800, /* tx cfg1 */
1969 0x0000, /* tx cfg2 */
1970 },
1971 .cmn = { 0x0500, /* cmn cfg0*/
1972 0x0005, /* cmn cfg1 */
1973 0x0000, /* cmn cfg2 */
1974 0x0000, /* cmn cfg3 */
1975 },
1976 .mpllb = { 0x1138, /* mpllb cfg0 */
1977 0x2108, /* mpllb cfg1 */
1978 0x5486, /* mpllb cfg2 */
1979 0xfe40, /* mpllb cfg3 */
1980 0x0000, /* mpllb cfg4 */
1981 0x0000, /* mpllb cfg5 */
1982 0x2200, /* mpllb cfg6 */
1983 0x0001, /* mpllb cfg7 */
1984 0x4000, /* mpllb cfg8 */
1985 0x0000, /* mpllb cfg9 */
1986 0x0004, /* mpllb cfg10 */
1987 },
1988 };
1989
1990 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1991 &mtl_c20_hdmi_25_175,
1992 &mtl_c20_hdmi_27_0,
1993 &mtl_c20_hdmi_74_25,
1994 &mtl_c20_hdmi_148_5,
1995 &mtl_c20_hdmi_594,
1996 &mtl_c20_hdmi_300,
1997 &mtl_c20_hdmi_600,
1998 &mtl_c20_hdmi_800,
1999 &mtl_c20_hdmi_1000,
2000 &mtl_c20_hdmi_1200,
2001 NULL,
2002 };
2003
intel_c10_phy_check_hdmi_link_rate(int clock)2004 static int intel_c10_phy_check_hdmi_link_rate(int clock)
2005 {
2006 const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
2007 int i;
2008
2009 for (i = 0; tables[i]; i++) {
2010 if (clock == tables[i]->clock)
2011 return MODE_OK;
2012 }
2013
2014 return MODE_CLOCK_RANGE;
2015 }
2016
2017 static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2018 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2019 struct intel_encoder *encoder)
2020 {
2021 if (intel_crtc_has_dp_encoder(crtc_state)) {
2022 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2023 return mtl_c10_edp_tables;
2024 else
2025 return mtl_c10_dp_tables;
2026 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2027 return mtl_c10_hdmi_tables;
2028 }
2029
2030 MISSING_CASE(encoder->type);
2031 return NULL;
2032 }
2033
intel_c10pll_update_pll(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2034 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
2035 struct intel_encoder *encoder)
2036 {
2037 struct intel_display *display = to_intel_display(encoder);
2038 struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
2039 int i;
2040
2041 if (intel_crtc_has_dp_encoder(crtc_state)) {
2042 if (intel_panel_use_ssc(display)) {
2043 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2044
2045 pll_state->ssc_enabled =
2046 (intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2047 }
2048 }
2049
2050 if (pll_state->ssc_enabled)
2051 return;
2052
2053 drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2054 for (i = 4; i < 9; i++)
2055 pll_state->c10.pll[i] = 0;
2056 }
2057
intel_c10pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2058 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2059 struct intel_encoder *encoder)
2060 {
2061 const struct intel_c10pll_state * const *tables;
2062 int i;
2063
2064 tables = intel_c10pll_tables_get(crtc_state, encoder);
2065 if (!tables)
2066 return -EINVAL;
2067
2068 for (i = 0; tables[i]; i++) {
2069 if (crtc_state->port_clock == tables[i]->clock) {
2070 crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
2071 intel_c10pll_update_pll(crtc_state, encoder);
2072 crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2073
2074 return 0;
2075 }
2076 }
2077
2078 return -EINVAL;
2079 }
2080
intel_c10pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c10pll_state * pll_state)2081 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2082 struct intel_c10pll_state *pll_state)
2083 {
2084 u8 lane = INTEL_CX0_LANE0;
2085 intel_wakeref_t wakeref;
2086 int i;
2087
2088 wakeref = intel_cx0_phy_transaction_begin(encoder);
2089
2090 /*
2091 * According to C10 VDR Register programming Sequence we need
2092 * to do this to read PHY internal registers from MsgBus.
2093 */
2094 intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2095 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2096 MB_WRITE_COMMITTED);
2097
2098 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2099 pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2100
2101 pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2102 pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2103
2104 intel_cx0_phy_transaction_end(encoder, wakeref);
2105 }
2106
intel_c10_pll_program(struct intel_display * display,const struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2107 static void intel_c10_pll_program(struct intel_display *display,
2108 const struct intel_crtc_state *crtc_state,
2109 struct intel_encoder *encoder)
2110 {
2111 const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
2112 int i;
2113
2114 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2115 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2116 MB_WRITE_COMMITTED);
2117
2118 /* Program the pll values only for the master lane */
2119 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2120 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2121 pll_state->pll[i],
2122 (i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2123
2124 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2125 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2126
2127 /* Custom width needs to be programmed to 0 for both the phy lanes */
2128 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2129 C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2130 MB_WRITE_COMMITTED);
2131 intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2132 0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2133 MB_WRITE_COMMITTED);
2134 }
2135
intel_c10pll_dump_hw_state(struct intel_display * display,const struct intel_c10pll_state * hw_state)2136 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2137 const struct intel_c10pll_state *hw_state)
2138 {
2139 bool fracen;
2140 int i;
2141 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2142 unsigned int multiplier, tx_clk_div;
2143
2144 fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2145 drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2146 str_yes_no(fracen));
2147
2148 if (fracen) {
2149 frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2150 frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13];
2151 frac_den = hw_state->pll[10] << 8 | hw_state->pll[9];
2152 drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2153 frac_quot, frac_rem, frac_den);
2154 }
2155
2156 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2157 hw_state->pll[2]) / 2 + 16;
2158 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2159 drm_dbg_kms(display->drm,
2160 "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2161
2162 drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2163 drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2164 hw_state->cmn);
2165
2166 BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2167 for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2168 drm_dbg_kms(display->drm,
2169 "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2170 i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2171 i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2172 }
2173
intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state * crtc_state)2174 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2175 {
2176 struct intel_display *display = to_intel_display(crtc_state);
2177 struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2178 u64 datarate;
2179 u64 mpll_tx_clk_div;
2180 u64 vco_freq_shift;
2181 u64 vco_freq;
2182 u64 multiplier;
2183 u64 mpll_multiplier;
2184 u64 mpll_fracn_quot;
2185 u64 mpll_fracn_rem;
2186 u16 tx_misc;
2187 u8 mpllb_ana_freq_vco;
2188 u8 mpll_div_multiplier;
2189
2190 if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2191 return -EINVAL;
2192
2193 datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2194 mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2195 vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2196 vco_freq = (datarate << vco_freq_shift) >> 8;
2197 multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2198 mpll_multiplier = 2 * (multiplier >> 32);
2199
2200 mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2201 mpll_fracn_rem = multiplier & 0xFFFF;
2202
2203 mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2204 datarate), 255);
2205
2206 if (DISPLAY_VER(display) >= 20)
2207 tx_misc = 0x5;
2208 else
2209 tx_misc = 0x0;
2210
2211 if (vco_freq <= DATARATE_3000000000)
2212 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2213 else if (vco_freq <= DATARATE_3500000000)
2214 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2215 else if (vco_freq <= DATARATE_4000000000)
2216 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2217 else
2218 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2219
2220 pll_state->clock = crtc_state->port_clock;
2221 pll_state->tx[0] = 0xbe88;
2222 pll_state->tx[1] = 0x9800 | C20_PHY_TX_MISC(tx_misc);
2223 pll_state->tx[2] = 0x0000;
2224 pll_state->cmn[0] = 0x0500;
2225 pll_state->cmn[1] = 0x0005;
2226 pll_state->cmn[2] = 0x0000;
2227 pll_state->cmn[3] = 0x0000;
2228 pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2229 MPLL_MULTIPLIER(mpll_multiplier));
2230 pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2231 WORD_CLK_DIV |
2232 MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2233 pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2234 CP_PROP(CP_PROP_20) |
2235 CP_INT(CP_INT_6));
2236 pll_state->mpllb[3] = (V2I(V2I_2) |
2237 CP_PROP_GS(CP_PROP_GS_30) |
2238 CP_INT_GS(CP_INT_GS_28));
2239 pll_state->mpllb[4] = 0x0000;
2240 pll_state->mpllb[5] = 0x0000;
2241 pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2242 pll_state->mpllb[7] = MPLL_FRACN_DEN;
2243 pll_state->mpllb[8] = mpll_fracn_quot;
2244 pll_state->mpllb[9] = mpll_fracn_rem;
2245 pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1);
2246
2247 return 0;
2248 }
2249
intel_c20_phy_check_hdmi_link_rate(int clock)2250 static int intel_c20_phy_check_hdmi_link_rate(int clock)
2251 {
2252 const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
2253 int i;
2254
2255 for (i = 0; tables[i]; i++) {
2256 if (clock == tables[i]->clock)
2257 return MODE_OK;
2258 }
2259
2260 if (clock >= 25175 && clock <= 594000)
2261 return MODE_OK;
2262
2263 return MODE_CLOCK_RANGE;
2264 }
2265
intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi * hdmi,int clock)2266 int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
2267 {
2268 struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
2269
2270 if (intel_encoder_is_c10phy(&dig_port->base))
2271 return intel_c10_phy_check_hdmi_link_rate(clock);
2272 return intel_c20_phy_check_hdmi_link_rate(clock);
2273 }
2274
2275 static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2276 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2277 struct intel_encoder *encoder)
2278 {
2279 struct intel_display *display = to_intel_display(crtc_state);
2280
2281 if (intel_crtc_has_dp_encoder(crtc_state)) {
2282 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2283 if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2284 return xe3lpd_c20_dp_edp_tables;
2285 if (DISPLAY_VERx100(display) == 1401)
2286 return xe2hpd_c20_edp_tables;
2287 }
2288
2289 if (DISPLAY_VER(display) >= 30)
2290 return xe3lpd_c20_dp_edp_tables;
2291 else if (DISPLAY_VERx100(display) == 1401)
2292 return xe2hpd_c20_dp_tables;
2293 else
2294 return mtl_c20_dp_tables;
2295
2296 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2297 return mtl_c20_hdmi_tables;
2298 }
2299
2300 MISSING_CASE(encoder->type);
2301 return NULL;
2302 }
2303
intel_c20pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2304 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2305 struct intel_encoder *encoder)
2306 {
2307 const struct intel_c20pll_state * const *tables;
2308 int i;
2309
2310 /* try computed C20 HDMI tables before using consolidated tables */
2311 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2312 if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2313 return 0;
2314 }
2315
2316 tables = intel_c20_pll_tables_get(crtc_state, encoder);
2317 if (!tables)
2318 return -EINVAL;
2319
2320 for (i = 0; tables[i]; i++) {
2321 if (crtc_state->port_clock == tables[i]->clock) {
2322 crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2323 crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2324 return 0;
2325 }
2326 }
2327
2328 return -EINVAL;
2329 }
2330
intel_cx0pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2331 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2332 struct intel_encoder *encoder)
2333 {
2334 if (intel_encoder_is_c10phy(encoder))
2335 return intel_c10pll_calc_state(crtc_state, encoder);
2336 return intel_c20pll_calc_state(crtc_state, encoder);
2337 }
2338
intel_c20phy_use_mpllb(const struct intel_c20pll_state * state)2339 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2340 {
2341 return state->tx[0] & C20_PHY_USE_MPLLB;
2342 }
2343
intel_c20pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state)2344 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2345 const struct intel_c20pll_state *pll_state)
2346 {
2347 unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2348 unsigned int multiplier, refclk = 38400;
2349 unsigned int tx_clk_div;
2350 unsigned int ref_clk_mpllb_div;
2351 unsigned int fb_clk_div4_en;
2352 unsigned int ref, vco;
2353 unsigned int tx_rate_mult;
2354 unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2355
2356 if (intel_c20phy_use_mpllb(pll_state)) {
2357 tx_rate_mult = 1;
2358 frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2359 frac_quot = pll_state->mpllb[8];
2360 frac_rem = pll_state->mpllb[9];
2361 frac_den = pll_state->mpllb[7];
2362 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2363 tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2364 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2365 fb_clk_div4_en = 0;
2366 } else {
2367 tx_rate_mult = 2;
2368 frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2369 frac_quot = pll_state->mplla[8];
2370 frac_rem = pll_state->mplla[9];
2371 frac_den = pll_state->mplla[7];
2372 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2373 tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2374 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2375 fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2376 }
2377
2378 if (frac_en)
2379 frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2380 else
2381 frac = 0;
2382
2383 ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2384 vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2385
2386 return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2387 }
2388
intel_c20pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c20pll_state * pll_state)2389 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2390 struct intel_c20pll_state *pll_state)
2391 {
2392 struct intel_display *display = to_intel_display(encoder);
2393 bool cntx;
2394 intel_wakeref_t wakeref;
2395 int i;
2396
2397 wakeref = intel_cx0_phy_transaction_begin(encoder);
2398
2399 /* 1. Read current context selection */
2400 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2401
2402 /* Read Tx configuration */
2403 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2404 if (cntx)
2405 pll_state->tx[i] = intel_c20_sram_read(encoder,
2406 INTEL_CX0_LANE0,
2407 PHY_C20_B_TX_CNTX_CFG(display, i));
2408 else
2409 pll_state->tx[i] = intel_c20_sram_read(encoder,
2410 INTEL_CX0_LANE0,
2411 PHY_C20_A_TX_CNTX_CFG(display, i));
2412 }
2413
2414 /* Read common configuration */
2415 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2416 if (cntx)
2417 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2418 INTEL_CX0_LANE0,
2419 PHY_C20_B_CMN_CNTX_CFG(display, i));
2420 else
2421 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2422 INTEL_CX0_LANE0,
2423 PHY_C20_A_CMN_CNTX_CFG(display, i));
2424 }
2425
2426 if (intel_c20phy_use_mpllb(pll_state)) {
2427 /* MPLLB configuration */
2428 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2429 if (cntx)
2430 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2431 INTEL_CX0_LANE0,
2432 PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2433 else
2434 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2435 INTEL_CX0_LANE0,
2436 PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2437 }
2438 } else {
2439 /* MPLLA configuration */
2440 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2441 if (cntx)
2442 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2443 INTEL_CX0_LANE0,
2444 PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2445 else
2446 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2447 INTEL_CX0_LANE0,
2448 PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2449 }
2450 }
2451
2452 pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2453
2454 intel_cx0_phy_transaction_end(encoder, wakeref);
2455 }
2456
intel_c20pll_dump_hw_state(struct intel_display * display,const struct intel_c20pll_state * hw_state)2457 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2458 const struct intel_c20pll_state *hw_state)
2459 {
2460 int i;
2461
2462 drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2463 drm_dbg_kms(display->drm,
2464 "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2465 hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2466 drm_dbg_kms(display->drm,
2467 "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2468 hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2469
2470 if (intel_c20phy_use_mpllb(hw_state)) {
2471 for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2472 drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2473 hw_state->mpllb[i]);
2474 } else {
2475 for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2476 drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2477 hw_state->mplla[i]);
2478 }
2479 }
2480
intel_cx0pll_dump_hw_state(struct intel_display * display,const struct intel_cx0pll_state * hw_state)2481 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2482 const struct intel_cx0pll_state *hw_state)
2483 {
2484 if (hw_state->use_c10)
2485 intel_c10pll_dump_hw_state(display, &hw_state->c10);
2486 else
2487 intel_c20pll_dump_hw_state(display, &hw_state->c20);
2488 }
2489
intel_c20_get_dp_rate(u32 clock)2490 static u8 intel_c20_get_dp_rate(u32 clock)
2491 {
2492 switch (clock) {
2493 case 162000: /* 1.62 Gbps DP1.4 */
2494 return 0;
2495 case 270000: /* 2.7 Gbps DP1.4 */
2496 return 1;
2497 case 540000: /* 5.4 Gbps DP 1.4 */
2498 return 2;
2499 case 810000: /* 8.1 Gbps DP1.4 */
2500 return 3;
2501 case 216000: /* 2.16 Gbps eDP */
2502 return 4;
2503 case 243000: /* 2.43 Gbps eDP */
2504 return 5;
2505 case 324000: /* 3.24 Gbps eDP */
2506 return 6;
2507 case 432000: /* 4.32 Gbps eDP */
2508 return 7;
2509 case 1000000: /* 10 Gbps DP2.0 */
2510 return 8;
2511 case 1350000: /* 13.5 Gbps DP2.0 */
2512 return 9;
2513 case 2000000: /* 20 Gbps DP2.0 */
2514 return 10;
2515 case 648000: /* 6.48 Gbps eDP*/
2516 return 11;
2517 case 675000: /* 6.75 Gbps eDP*/
2518 return 12;
2519 default:
2520 MISSING_CASE(clock);
2521 return 0;
2522 }
2523 }
2524
intel_c20_get_hdmi_rate(u32 clock)2525 static u8 intel_c20_get_hdmi_rate(u32 clock)
2526 {
2527 if (clock >= 25175 && clock <= 600000)
2528 return 0;
2529
2530 switch (clock) {
2531 case 300000: /* 3 Gbps */
2532 case 600000: /* 6 Gbps */
2533 case 1200000: /* 12 Gbps */
2534 return 1;
2535 case 800000: /* 8 Gbps */
2536 return 2;
2537 case 1000000: /* 10 Gbps */
2538 return 3;
2539 default:
2540 MISSING_CASE(clock);
2541 return 0;
2542 }
2543 }
2544
is_dp2(u32 clock)2545 static bool is_dp2(u32 clock)
2546 {
2547 /* DP2.0 clock rates */
2548 if (clock == 1000000 || clock == 1350000 || clock == 2000000)
2549 return true;
2550
2551 return false;
2552 }
2553
is_hdmi_frl(u32 clock)2554 static bool is_hdmi_frl(u32 clock)
2555 {
2556 switch (clock) {
2557 case 300000: /* 3 Gbps */
2558 case 600000: /* 6 Gbps */
2559 case 800000: /* 8 Gbps */
2560 case 1000000: /* 10 Gbps */
2561 case 1200000: /* 12 Gbps */
2562 return true;
2563 default:
2564 return false;
2565 }
2566 }
2567
intel_c20_protocol_switch_valid(struct intel_encoder * encoder)2568 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2569 {
2570 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2571
2572 /* banks should not be cleared for DPALT/USB4/TBT modes */
2573 /* TODO: optimize re-calibration in legacy mode */
2574 return intel_tc_port_in_legacy_mode(intel_dig_port);
2575 }
2576
intel_get_c20_custom_width(u32 clock,bool dp)2577 static int intel_get_c20_custom_width(u32 clock, bool dp)
2578 {
2579 if (dp && is_dp2(clock))
2580 return 2;
2581 else if (is_hdmi_frl(clock))
2582 return 1;
2583 else
2584 return 0;
2585 }
2586
intel_c20_pll_program(struct intel_display * display,const struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2587 static void intel_c20_pll_program(struct intel_display *display,
2588 const struct intel_crtc_state *crtc_state,
2589 struct intel_encoder *encoder)
2590 {
2591 const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2592 bool dp = false;
2593 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2594 u32 clock = crtc_state->port_clock;
2595 bool cntx;
2596 int i;
2597
2598 if (intel_crtc_has_dp_encoder(crtc_state))
2599 dp = true;
2600
2601 /* 1. Read current context selection */
2602 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2603
2604 /*
2605 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2606 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2607 * Protocol switch is only applicable for MPLLA
2608 */
2609 if (intel_c20_protocol_switch_valid(encoder)) {
2610 for (i = 0; i < 4; i++)
2611 intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2612 usleep_range(4000, 4100);
2613 }
2614
2615 /* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2616 /* 3.1 Tx configuration */
2617 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2618 if (cntx)
2619 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2620 PHY_C20_A_TX_CNTX_CFG(display, i),
2621 pll_state->tx[i]);
2622 else
2623 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2624 PHY_C20_B_TX_CNTX_CFG(display, i),
2625 pll_state->tx[i]);
2626 }
2627
2628 /* 3.2 common configuration */
2629 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2630 if (cntx)
2631 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2632 PHY_C20_A_CMN_CNTX_CFG(display, i),
2633 pll_state->cmn[i]);
2634 else
2635 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2636 PHY_C20_B_CMN_CNTX_CFG(display, i),
2637 pll_state->cmn[i]);
2638 }
2639
2640 /* 3.3 mpllb or mplla configuration */
2641 if (intel_c20phy_use_mpllb(pll_state)) {
2642 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2643 if (cntx)
2644 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2645 PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2646 pll_state->mpllb[i]);
2647 else
2648 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2649 PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2650 pll_state->mpllb[i]);
2651 }
2652 } else {
2653 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2654 if (cntx)
2655 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2656 PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2657 pll_state->mplla[i]);
2658 else
2659 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2660 PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2661 pll_state->mplla[i]);
2662 }
2663 }
2664
2665 /* 4. Program custom width to match the link protocol */
2666 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2667 PHY_C20_CUSTOM_WIDTH_MASK,
2668 PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
2669 MB_WRITE_COMMITTED);
2670
2671 /* 5. For DP or 6. For HDMI */
2672 if (dp) {
2673 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2674 BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2675 BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
2676 MB_WRITE_COMMITTED);
2677 } else {
2678 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2679 BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2680 is_hdmi_frl(clock) ? BIT(7) : 0,
2681 MB_WRITE_COMMITTED);
2682
2683 intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2684 intel_c20_get_hdmi_rate(clock),
2685 MB_WRITE_COMMITTED);
2686 }
2687
2688 /*
2689 * 7. Write Vendor specific registers to toggle context setting to load
2690 * the updated programming toggle context bit
2691 */
2692 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2693 BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2694 }
2695
intel_c10pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2696 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2697 const struct intel_c10pll_state *pll_state)
2698 {
2699 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2700 unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2701 int tmpclk = 0;
2702
2703 if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2704 frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2705 frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13];
2706 frac_den = pll_state->pll[10] << 8 | pll_state->pll[9];
2707 }
2708
2709 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2710 pll_state->pll[2]) / 2 + 16;
2711
2712 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2713 hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2714
2715 tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2716 DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2717 10 << (tx_clk_div + 16));
2718 tmpclk *= (hdmi_div ? 2 : 1);
2719
2720 return tmpclk;
2721 }
2722
intel_program_port_clock_ctl(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool lane_reversal)2723 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2724 const struct intel_crtc_state *crtc_state,
2725 bool lane_reversal)
2726 {
2727 struct intel_display *display = to_intel_display(encoder);
2728 u32 val = 0;
2729
2730 intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2731 XELPDP_PORT_REVERSAL,
2732 lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2733
2734 if (lane_reversal)
2735 val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2736
2737 val |= XELPDP_FORWARD_CLOCK_UNGATE;
2738
2739 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2740 is_hdmi_frl(crtc_state->port_clock))
2741 val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2742 else
2743 val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2744
2745 /* TODO: HDMI FRL */
2746 /* DP2.0 10G and 20G rates enable MPLLA*/
2747 if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2748 val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2749 else
2750 val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2751
2752 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2753 XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2754 XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2755 XELPDP_SSC_ENABLE_PLLB, val);
2756 }
2757
intel_cx0_get_powerdown_update(u8 lane_mask)2758 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2759 {
2760 u32 val = 0;
2761 int lane = 0;
2762
2763 for_each_cx0_lane_in_mask(lane_mask, lane)
2764 val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2765
2766 return val;
2767 }
2768
intel_cx0_get_powerdown_state(u8 lane_mask,u8 state)2769 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2770 {
2771 u32 val = 0;
2772 int lane = 0;
2773
2774 for_each_cx0_lane_in_mask(lane_mask, lane)
2775 val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2776
2777 return val;
2778 }
2779
intel_cx0_powerdown_change_sequence(struct intel_encoder * encoder,u8 lane_mask,u8 state)2780 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2781 u8 lane_mask, u8 state)
2782 {
2783 struct intel_display *display = to_intel_display(encoder);
2784 enum port port = encoder->port;
2785 enum phy phy = intel_encoder_to_phy(encoder);
2786 i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2787 int lane;
2788
2789 intel_de_rmw(display, buf_ctl2_reg,
2790 intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2791 intel_cx0_get_powerdown_state(lane_mask, state));
2792
2793 /* Wait for pending transactions.*/
2794 for_each_cx0_lane_in_mask(lane_mask, lane)
2795 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2796 XELPDP_PORT_M2P_TRANSACTION_PENDING,
2797 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2798 drm_dbg_kms(display->drm,
2799 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2800 phy_name(phy));
2801 intel_cx0_bus_reset(encoder, lane);
2802 }
2803
2804 intel_de_rmw(display, buf_ctl2_reg,
2805 intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2806 intel_cx0_get_powerdown_update(lane_mask));
2807
2808 /* Update Timeout Value */
2809 if (intel_de_wait_custom(display, buf_ctl2_reg,
2810 intel_cx0_get_powerdown_update(lane_mask), 0,
2811 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2812 drm_warn(display->drm,
2813 "PHY %c failed to bring out of Lane reset after %dus.\n",
2814 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2815 }
2816
intel_cx0_setup_powerdown(struct intel_encoder * encoder)2817 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2818 {
2819 struct intel_display *display = to_intel_display(encoder);
2820 enum port port = encoder->port;
2821
2822 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2823 XELPDP_POWER_STATE_READY_MASK,
2824 XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2825 intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2826 XELPDP_POWER_STATE_ACTIVE_MASK |
2827 XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2828 XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2829 XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2830 }
2831
intel_cx0_get_pclk_refclk_request(u8 lane_mask)2832 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2833 {
2834 u32 val = 0;
2835 int lane = 0;
2836
2837 for_each_cx0_lane_in_mask(lane_mask, lane)
2838 val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2839
2840 return val;
2841 }
2842
intel_cx0_get_pclk_refclk_ack(u8 lane_mask)2843 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2844 {
2845 u32 val = 0;
2846 int lane = 0;
2847
2848 for_each_cx0_lane_in_mask(lane_mask, lane)
2849 val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2850
2851 return val;
2852 }
2853
intel_cx0_phy_lane_reset(struct intel_encoder * encoder,bool lane_reversal)2854 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2855 bool lane_reversal)
2856 {
2857 struct intel_display *display = to_intel_display(encoder);
2858 enum port port = encoder->port;
2859 enum phy phy = intel_encoder_to_phy(encoder);
2860 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2861 u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2862 u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2863 ? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2864 : XELPDP_LANE_PIPE_RESET(0);
2865 u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2866 ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2867 XELPDP_LANE_PHY_CURRENT_STATUS(1))
2868 : XELPDP_LANE_PHY_CURRENT_STATUS(0);
2869
2870 if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL1(display, port),
2871 XELPDP_PORT_BUF_SOC_PHY_READY,
2872 XELPDP_PORT_BUF_SOC_PHY_READY,
2873 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2874 drm_warn(display->drm,
2875 "PHY %c failed to bring out of SOC reset after %dus.\n",
2876 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2877
2878 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2879 lane_pipe_reset);
2880
2881 if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL2(display, port),
2882 lane_phy_current_status, lane_phy_current_status,
2883 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2884 drm_warn(display->drm,
2885 "PHY %c failed to bring out of Lane reset after %dus.\n",
2886 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2887
2888 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2889 intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2890 intel_cx0_get_pclk_refclk_request(lane_mask));
2891
2892 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, port),
2893 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2894 intel_cx0_get_pclk_refclk_ack(lane_mask),
2895 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2896 drm_warn(display->drm,
2897 "PHY %c failed to request refclk after %dus.\n",
2898 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2899
2900 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2901 CX0_P2_STATE_RESET);
2902 intel_cx0_setup_powerdown(encoder);
2903
2904 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2905
2906 if (intel_de_wait_for_clear(display, XELPDP_PORT_BUF_CTL2(display, port),
2907 lane_phy_current_status,
2908 XELPDP_PORT_RESET_END_TIMEOUT))
2909 drm_warn(display->drm,
2910 "PHY %c failed to bring out of Lane reset after %dms.\n",
2911 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2912 }
2913
intel_cx0_program_phy_lane(struct intel_encoder * encoder,int lane_count,bool lane_reversal)2914 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2915 bool lane_reversal)
2916 {
2917 int i;
2918 u8 disables;
2919 bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2920 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2921
2922 if (intel_encoder_is_c10phy(encoder))
2923 intel_cx0_rmw(encoder, owned_lane_mask,
2924 PHY_C10_VDR_CONTROL(1), 0,
2925 C10_VDR_CTRL_MSGBUS_ACCESS,
2926 MB_WRITE_COMMITTED);
2927
2928 if (lane_reversal)
2929 disables = REG_GENMASK8(3, 0) >> lane_count;
2930 else
2931 disables = REG_GENMASK8(3, 0) << lane_count;
2932
2933 if (dp_alt_mode && lane_count == 1) {
2934 disables &= ~REG_GENMASK8(1, 0);
2935 disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2936 }
2937
2938 for (i = 0; i < 4; i++) {
2939 int tx = i % 2 + 1;
2940 u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2941
2942 if (!(owned_lane_mask & lane_mask))
2943 continue;
2944
2945 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2946 CONTROL2_DISABLE_SINGLE_TX,
2947 disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2948 MB_WRITE_COMMITTED);
2949 }
2950
2951 if (intel_encoder_is_c10phy(encoder))
2952 intel_cx0_rmw(encoder, owned_lane_mask,
2953 PHY_C10_VDR_CONTROL(1), 0,
2954 C10_VDR_CTRL_UPDATE_CFG,
2955 MB_WRITE_COMMITTED);
2956 }
2957
intel_cx0_get_pclk_pll_request(u8 lane_mask)2958 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2959 {
2960 u32 val = 0;
2961 int lane = 0;
2962
2963 for_each_cx0_lane_in_mask(lane_mask, lane)
2964 val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2965
2966 return val;
2967 }
2968
intel_cx0_get_pclk_pll_ack(u8 lane_mask)2969 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2970 {
2971 u32 val = 0;
2972 int lane = 0;
2973
2974 for_each_cx0_lane_in_mask(lane_mask, lane)
2975 val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2976
2977 return val;
2978 }
2979
intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)2980 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2981 const struct intel_crtc_state *crtc_state)
2982 {
2983 struct intel_display *display = to_intel_display(encoder);
2984 enum phy phy = intel_encoder_to_phy(encoder);
2985 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2986 bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2987 u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2988 INTEL_CX0_LANE0;
2989 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2990
2991 /*
2992 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2993 * clock muxes, gating and SSC
2994 */
2995 intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2996
2997 /* 2. Bring PHY out of reset. */
2998 intel_cx0_phy_lane_reset(encoder, lane_reversal);
2999
3000 /*
3001 * 3. Change Phy power state to Ready.
3002 * TODO: For DP alt mode use only one lane.
3003 */
3004 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3005 CX0_P2_STATE_READY);
3006
3007 /*
3008 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3009 * (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3010 * the right timer thresholds for readouts too.)
3011 */
3012
3013 /* 5. Program PHY internal PLL internal registers. */
3014 if (intel_encoder_is_c10phy(encoder))
3015 intel_c10_pll_program(display, crtc_state, encoder);
3016 else
3017 intel_c20_pll_program(display, crtc_state, encoder);
3018
3019 /*
3020 * 6. Program the enabled and disabled owned PHY lane
3021 * transmitters over message bus
3022 */
3023 intel_cx0_program_phy_lane(encoder, crtc_state->lane_count, lane_reversal);
3024
3025 /*
3026 * 7. Follow the Display Voltage Frequency Switching - Sequence
3027 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3028 */
3029
3030 /*
3031 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3032 * clock frequency.
3033 */
3034 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3035 crtc_state->port_clock);
3036
3037 /*
3038 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3039 * LN<Lane for maxPCLK> to "1" to enable PLL.
3040 */
3041 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3042 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3043 intel_cx0_get_pclk_pll_request(maxpclk_lane));
3044
3045 /* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3046 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3047 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3048 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3049 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3050 drm_warn(display->drm, "Port %c PLL not locked after %dus.\n",
3051 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3052
3053 /*
3054 * 11. Follow the Display Voltage Frequency Switching Sequence After
3055 * Frequency Change. We handle this step in bxt_set_cdclk().
3056 */
3057
3058 /* TODO: enable TBT-ALT mode */
3059 intel_cx0_phy_transaction_end(encoder, wakeref);
3060 }
3061
intel_mtl_tbt_calc_port_clock(struct intel_encoder * encoder)3062 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3063 {
3064 struct intel_display *display = to_intel_display(encoder);
3065 u32 clock, val;
3066
3067 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3068
3069 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3070
3071 drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3072 drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3073 drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3074
3075 switch (clock) {
3076 case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3077 return 162000;
3078 case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3079 return 270000;
3080 case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3081 return 540000;
3082 case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3083 return 810000;
3084 default:
3085 MISSING_CASE(clock);
3086 return 162000;
3087 }
3088 }
3089
intel_mtl_tbt_clock_select(int clock)3090 static int intel_mtl_tbt_clock_select(int clock)
3091 {
3092 switch (clock) {
3093 case 162000:
3094 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3095 case 270000:
3096 return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3097 case 540000:
3098 return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3099 case 810000:
3100 return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3101 default:
3102 MISSING_CASE(clock);
3103 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3104 }
3105 }
3106
intel_mtl_tbt_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3107 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3108 const struct intel_crtc_state *crtc_state)
3109 {
3110 struct intel_display *display = to_intel_display(encoder);
3111 enum phy phy = intel_encoder_to_phy(encoder);
3112 u32 val = 0;
3113
3114 /*
3115 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3116 * clock muxes, gating and SSC
3117 */
3118 val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(crtc_state->port_clock));
3119 val |= XELPDP_FORWARD_CLOCK_UNGATE;
3120 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3121 XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
3122
3123 /* 2. Read back PORT_CLOCK_CTL REGISTER */
3124 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3125
3126 /*
3127 * 3. Follow the Display Voltage Frequency Switching - Sequence
3128 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3129 */
3130
3131 /*
3132 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3133 */
3134 val |= XELPDP_TBT_CLOCK_REQUEST;
3135 intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3136
3137 /* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3138 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3139 XELPDP_TBT_CLOCK_ACK,
3140 XELPDP_TBT_CLOCK_ACK,
3141 100, 0, NULL))
3142 drm_warn(display->drm,
3143 "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3144 encoder->base.base.id, encoder->base.name, phy_name(phy));
3145
3146 /*
3147 * 6. Follow the Display Voltage Frequency Switching Sequence After
3148 * Frequency Change. We handle this step in bxt_set_cdclk().
3149 */
3150
3151 /*
3152 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3153 * clock frequency.
3154 */
3155 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3156 crtc_state->port_clock);
3157 }
3158
intel_mtl_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3159 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3160 const struct intel_crtc_state *crtc_state)
3161 {
3162 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3163
3164 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3165 intel_mtl_tbt_pll_enable(encoder, crtc_state);
3166 else
3167 intel_cx0pll_enable(encoder, crtc_state);
3168 }
3169
cx0_power_control_disable_val(struct intel_encoder * encoder)3170 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3171 {
3172 struct intel_display *display = to_intel_display(encoder);
3173 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3174
3175 if (intel_encoder_is_c10phy(encoder))
3176 return CX0_P2PG_STATE_DISABLE;
3177
3178 if ((IS_BATTLEMAGE(i915) && encoder->port == PORT_A) ||
3179 (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3180 return CX0_P2PG_STATE_DISABLE;
3181
3182 return CX0_P4PG_STATE_DISABLE;
3183 }
3184
intel_cx0pll_disable(struct intel_encoder * encoder)3185 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3186 {
3187 struct intel_display *display = to_intel_display(encoder);
3188 enum phy phy = intel_encoder_to_phy(encoder);
3189 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3190
3191 /* 1. Change owned PHY lane power to Disable state. */
3192 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3193 cx0_power_control_disable_val(encoder));
3194
3195 /*
3196 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3197 * Frequency Change. We handle this step in bxt_set_cdclk().
3198 */
3199
3200 /*
3201 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3202 * to "0" to disable PLL.
3203 */
3204 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3205 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3206 intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3207
3208 /* 4. Program DDI_CLK_VALFREQ to 0. */
3209 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3210
3211 /*
3212 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3213 */
3214 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3215 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3216 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3217 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3218 drm_warn(display->drm,
3219 "Port %c PLL not unlocked after %dus.\n",
3220 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3221
3222 /*
3223 * 6. Follow the Display Voltage Frequency Switching Sequence After
3224 * Frequency Change. We handle this step in bxt_set_cdclk().
3225 */
3226
3227 /* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3228 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3229 XELPDP_DDI_CLOCK_SELECT_MASK, 0);
3230 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3231 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3232
3233 intel_cx0_phy_transaction_end(encoder, wakeref);
3234 }
3235
intel_mtl_tbt_pll_disable(struct intel_encoder * encoder)3236 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3237 {
3238 struct intel_display *display = to_intel_display(encoder);
3239 enum phy phy = intel_encoder_to_phy(encoder);
3240
3241 /*
3242 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3243 * Frequency Change. We handle this step in bxt_set_cdclk().
3244 */
3245
3246 /*
3247 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3248 */
3249 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3250 XELPDP_TBT_CLOCK_REQUEST, 0);
3251
3252 /* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3253 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3254 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3255 drm_warn(display->drm,
3256 "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3257 encoder->base.base.id, encoder->base.name, phy_name(phy));
3258
3259 /*
3260 * 4. Follow the Display Voltage Frequency Switching Sequence After
3261 * Frequency Change. We handle this step in bxt_set_cdclk().
3262 */
3263
3264 /*
3265 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3266 */
3267 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3268 XELPDP_DDI_CLOCK_SELECT_MASK |
3269 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3270
3271 /* 6. Program DDI_CLK_VALFREQ to 0. */
3272 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3273 }
3274
intel_mtl_pll_disable(struct intel_encoder * encoder)3275 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3276 {
3277 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3278
3279 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3280 intel_mtl_tbt_pll_disable(encoder);
3281 else
3282 intel_cx0pll_disable(encoder);
3283 }
3284
3285 enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3286 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3287 const struct intel_crtc_state *crtc_state)
3288 {
3289 struct intel_display *display = to_intel_display(encoder);
3290 u32 val, clock;
3291
3292 /*
3293 * TODO: Determine the PLL type from the SW state, once MTL PLL
3294 * handling is done via the standard shared DPLL framework.
3295 */
3296 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3297 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3298
3299 if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3300 clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3301 return ICL_PORT_DPLL_MG_PHY;
3302 else
3303 return ICL_PORT_DPLL_DEFAULT;
3304 }
3305
intel_c10pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c10pll_state * mpllb_hw_state)3306 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3307 struct intel_crtc *crtc,
3308 struct intel_encoder *encoder,
3309 struct intel_c10pll_state *mpllb_hw_state)
3310 {
3311 struct intel_display *display = to_intel_display(state);
3312 const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3313 int i;
3314
3315 for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3316 u8 expected = mpllb_sw_state->pll[i];
3317
3318 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3319 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3320 crtc->base.base.id, crtc->base.name, i,
3321 expected, mpllb_hw_state->pll[i]);
3322 }
3323
3324 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3325 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3326 crtc->base.base.id, crtc->base.name,
3327 mpllb_sw_state->tx, mpllb_hw_state->tx);
3328
3329 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3330 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3331 crtc->base.base.id, crtc->base.name,
3332 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3333 }
3334
intel_cx0pll_readout_hw_state(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)3335 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3336 struct intel_cx0pll_state *pll_state)
3337 {
3338 pll_state->use_c10 = false;
3339
3340 pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3341 if (pll_state->tbt_mode)
3342 return;
3343
3344 if (intel_encoder_is_c10phy(encoder)) {
3345 intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3346 pll_state->use_c10 = true;
3347 } else {
3348 intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3349 }
3350 }
3351
mtl_compare_hw_state_c10(const struct intel_c10pll_state * a,const struct intel_c10pll_state * b)3352 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3353 const struct intel_c10pll_state *b)
3354 {
3355 if (a->tx != b->tx)
3356 return false;
3357
3358 if (a->cmn != b->cmn)
3359 return false;
3360
3361 if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3362 return false;
3363
3364 return true;
3365 }
3366
mtl_compare_hw_state_c20(const struct intel_c20pll_state * a,const struct intel_c20pll_state * b)3367 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3368 const struct intel_c20pll_state *b)
3369 {
3370 if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3371 return false;
3372
3373 if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3374 return false;
3375
3376 if (a->tx[0] & C20_PHY_USE_MPLLB) {
3377 if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3378 return false;
3379 } else {
3380 if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3381 return false;
3382 }
3383
3384 return true;
3385 }
3386
intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state * a,const struct intel_cx0pll_state * b)3387 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3388 const struct intel_cx0pll_state *b)
3389 {
3390 if (a->tbt_mode || b->tbt_mode)
3391 return true;
3392
3393 if (a->use_c10 != b->use_c10)
3394 return false;
3395
3396 if (a->use_c10)
3397 return mtl_compare_hw_state_c10(&a->c10,
3398 &b->c10);
3399 else
3400 return mtl_compare_hw_state_c20(&a->c20,
3401 &b->c20);
3402 }
3403
intel_cx0pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state)3404 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3405 const struct intel_cx0pll_state *pll_state)
3406 {
3407 if (intel_encoder_is_c10phy(encoder))
3408 return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3409
3410 return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3411 }
3412
intel_c20pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c20pll_state * mpll_hw_state)3413 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3414 struct intel_crtc *crtc,
3415 struct intel_encoder *encoder,
3416 struct intel_c20pll_state *mpll_hw_state)
3417 {
3418 struct intel_display *display = to_intel_display(state);
3419 const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3420 bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3421 bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3422 int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3423 int i;
3424
3425 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3426 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3427 crtc->base.base.id, crtc->base.name,
3428 mpll_sw_state->clock, mpll_hw_state->clock);
3429
3430 INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3431 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3432 crtc->base.base.id, crtc->base.name,
3433 sw_use_mpllb, hw_use_mpllb);
3434
3435 if (hw_use_mpllb) {
3436 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3437 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3438 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3439 crtc->base.base.id, crtc->base.name, i,
3440 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3441 }
3442 } else {
3443 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3444 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3445 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3446 crtc->base.base.id, crtc->base.name, i,
3447 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3448 }
3449 }
3450
3451 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3452 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3453 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3454 crtc->base.base.id, crtc->base.name, i,
3455 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3456 }
3457
3458 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3459 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3460 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3461 crtc->base.base.id, crtc->base.name, i,
3462 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3463 }
3464 }
3465
intel_cx0pll_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3466 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3467 struct intel_crtc *crtc)
3468 {
3469 struct intel_display *display = to_intel_display(state);
3470 const struct intel_crtc_state *new_crtc_state =
3471 intel_atomic_get_new_crtc_state(state, crtc);
3472 struct intel_encoder *encoder;
3473 struct intel_cx0pll_state mpll_hw_state = {};
3474
3475 if (DISPLAY_VER(display) < 14)
3476 return;
3477
3478 if (!new_crtc_state->hw.active)
3479 return;
3480
3481 /* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3482 if (!intel_crtc_needs_modeset(new_crtc_state) &&
3483 !intel_crtc_needs_fastset(new_crtc_state))
3484 return;
3485
3486 encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3487 intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3488
3489 if (mpll_hw_state.tbt_mode)
3490 return;
3491
3492 if (intel_encoder_is_c10phy(encoder))
3493 intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3494 else
3495 intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3496 }
3497