1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_CAN, ARPHRD_MCTP,
482 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
483 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
484 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
485 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
486 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
487 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
488 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
489 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
490 ARPHRD_IEEE80211_RADIOTAP,
491 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
492 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
493 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
494 ARPHRD_VSOCKMON,
495 ARPHRD_VOID, ARPHRD_NONE};
496
497 static const char *const netdev_lock_name[] = {
498 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
499 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
500 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
501 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
502 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
503 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
504 "_xmit_CAN", "_xmit_MCTP",
505 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
506 "_xmit_RAWHDLC", "_xmit_RAWIP",
507 "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
508 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
509 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
510 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
511 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
512 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
513 "_xmit_IEEE80211_RADIOTAP",
514 "_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
515 "_xmit_PHONET", "_xmit_PHONET_PIPE",
516 "_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
517 "_xmit_VSOCKMON",
518 "_xmit_VOID", "_xmit_NONE"};
519
520 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
521 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
522
netdev_lock_pos(unsigned short dev_type)523 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
524 {
525 int i;
526
527 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
528 if (netdev_lock_type[i] == dev_type)
529 return i;
530 /* the last key is used by default */
531 WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
532 return ARRAY_SIZE(netdev_lock_type) - 1;
533 }
534
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)535 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
536 unsigned short dev_type)
537 {
538 int i;
539
540 i = netdev_lock_pos(dev_type);
541 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
542 netdev_lock_name[i]);
543 }
544
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 int i;
548
549 i = netdev_lock_pos(dev->type);
550 lockdep_set_class_and_name(&dev->addr_list_lock,
551 &netdev_addr_lock_key[i],
552 netdev_lock_name[i]);
553 }
554 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)555 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
556 unsigned short dev_type)
557 {
558 }
559
netdev_set_addr_lockdep_class(struct net_device * dev)560 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
561 {
562 }
563 #endif
564
565 /*******************************************************************************
566 *
567 * Protocol management and registration routines
568 *
569 *******************************************************************************/
570
571
572 /*
573 * Add a protocol ID to the list. Now that the input handler is
574 * smarter we can dispense with all the messy stuff that used to be
575 * here.
576 *
577 * BEWARE!!! Protocol handlers, mangling input packets,
578 * MUST BE last in hash buckets and checking protocol handlers
579 * MUST start from promiscuous ptype_all chain in net_bh.
580 * It is true now, do not change it.
581 * Explanation follows: if protocol handler, mangling packet, will
582 * be the first on list, it is not able to sense, that packet
583 * is cloned and should be copied-on-write, so that it will
584 * change it and subsequent readers will get broken packet.
585 * --ANK (980803)
586 */
587
ptype_head(const struct packet_type * pt)588 static inline struct list_head *ptype_head(const struct packet_type *pt)
589 {
590 if (pt->type == htons(ETH_P_ALL)) {
591 if (!pt->af_packet_net && !pt->dev)
592 return NULL;
593
594 return pt->dev ? &pt->dev->ptype_all :
595 &pt->af_packet_net->ptype_all;
596 }
597
598 if (pt->dev)
599 return &pt->dev->ptype_specific;
600
601 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
602 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
603 }
604
605 /**
606 * dev_add_pack - add packet handler
607 * @pt: packet type declaration
608 *
609 * Add a protocol handler to the networking stack. The passed &packet_type
610 * is linked into kernel lists and may not be freed until it has been
611 * removed from the kernel lists.
612 *
613 * This call does not sleep therefore it can not
614 * guarantee all CPU's that are in middle of receiving packets
615 * will see the new packet type (until the next received packet).
616 */
617
dev_add_pack(struct packet_type * pt)618 void dev_add_pack(struct packet_type *pt)
619 {
620 struct list_head *head = ptype_head(pt);
621
622 if (WARN_ON_ONCE(!head))
623 return;
624
625 spin_lock(&ptype_lock);
626 list_add_rcu(&pt->list, head);
627 spin_unlock(&ptype_lock);
628 }
629 EXPORT_SYMBOL(dev_add_pack);
630
631 /**
632 * __dev_remove_pack - remove packet handler
633 * @pt: packet type declaration
634 *
635 * Remove a protocol handler that was previously added to the kernel
636 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
637 * from the kernel lists and can be freed or reused once this function
638 * returns.
639 *
640 * The packet type might still be in use by receivers
641 * and must not be freed until after all the CPU's have gone
642 * through a quiescent state.
643 */
__dev_remove_pack(struct packet_type * pt)644 void __dev_remove_pack(struct packet_type *pt)
645 {
646 struct list_head *head = ptype_head(pt);
647 struct packet_type *pt1;
648
649 if (!head)
650 return;
651
652 spin_lock(&ptype_lock);
653
654 list_for_each_entry(pt1, head, list) {
655 if (pt == pt1) {
656 list_del_rcu(&pt->list);
657 goto out;
658 }
659 }
660
661 pr_warn("dev_remove_pack: %p not found\n", pt);
662 out:
663 spin_unlock(&ptype_lock);
664 }
665 EXPORT_SYMBOL(__dev_remove_pack);
666
667 /**
668 * dev_remove_pack - remove packet handler
669 * @pt: packet type declaration
670 *
671 * Remove a protocol handler that was previously added to the kernel
672 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
673 * from the kernel lists and can be freed or reused once this function
674 * returns.
675 *
676 * This call sleeps to guarantee that no CPU is looking at the packet
677 * type after return.
678 */
dev_remove_pack(struct packet_type * pt)679 void dev_remove_pack(struct packet_type *pt)
680 {
681 __dev_remove_pack(pt);
682
683 synchronize_net();
684 }
685 EXPORT_SYMBOL(dev_remove_pack);
686
687
688 /*******************************************************************************
689 *
690 * Device Interface Subroutines
691 *
692 *******************************************************************************/
693
694 /**
695 * dev_get_iflink - get 'iflink' value of a interface
696 * @dev: targeted interface
697 *
698 * Indicates the ifindex the interface is linked to.
699 * Physical interfaces have the same 'ifindex' and 'iflink' values.
700 */
701
dev_get_iflink(const struct net_device * dev)702 int dev_get_iflink(const struct net_device *dev)
703 {
704 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
705 return dev->netdev_ops->ndo_get_iflink(dev);
706
707 return READ_ONCE(dev->ifindex);
708 }
709 EXPORT_SYMBOL(dev_get_iflink);
710
711 /**
712 * dev_fill_metadata_dst - Retrieve tunnel egress information.
713 * @dev: targeted interface
714 * @skb: The packet.
715 *
716 * For better visibility of tunnel traffic OVS needs to retrieve
717 * egress tunnel information for a packet. Following API allows
718 * user to get this info.
719 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)720 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
721 {
722 struct ip_tunnel_info *info;
723
724 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
725 return -EINVAL;
726
727 info = skb_tunnel_info_unclone(skb);
728 if (!info)
729 return -ENOMEM;
730 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
731 return -EINVAL;
732
733 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
736
dev_fwd_path(struct net_device_path_stack * stack)737 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
738 {
739 int k = stack->num_paths++;
740
741 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
742 return NULL;
743
744 return &stack->path[k];
745 }
746
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)747 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
748 struct net_device_path_stack *stack)
749 {
750 const struct net_device *last_dev;
751 struct net_device_path_ctx ctx = {
752 .dev = dev,
753 };
754 struct net_device_path *path;
755 int ret = 0;
756
757 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
758 stack->num_paths = 0;
759 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
760 last_dev = ctx.dev;
761 path = dev_fwd_path(stack);
762 if (!path)
763 return -1;
764
765 memset(path, 0, sizeof(struct net_device_path));
766 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
767 if (ret < 0)
768 return -1;
769
770 if (WARN_ON_ONCE(last_dev == ctx.dev))
771 return -1;
772 }
773
774 if (!ctx.dev)
775 return ret;
776
777 path = dev_fwd_path(stack);
778 if (!path)
779 return -1;
780 path->type = DEV_PATH_ETHERNET;
781 path->dev = ctx.dev;
782
783 return ret;
784 }
785 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)788 static struct napi_struct *napi_by_id(unsigned int napi_id)
789 {
790 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
791 struct napi_struct *napi;
792
793 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
794 if (napi->napi_id == napi_id)
795 return napi;
796
797 return NULL;
798 }
799
800 /* must be called under rcu_read_lock(), as we dont take a reference */
801 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)802 netdev_napi_by_id(struct net *net, unsigned int napi_id)
803 {
804 struct napi_struct *napi;
805
806 napi = napi_by_id(napi_id);
807 if (!napi)
808 return NULL;
809
810 if (WARN_ON_ONCE(!napi->dev))
811 return NULL;
812 if (!net_eq(net, dev_net(napi->dev)))
813 return NULL;
814
815 return napi;
816 }
817
818 /**
819 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
820 * @net: the applicable net namespace
821 * @napi_id: ID of a NAPI of a target device
822 *
823 * Find a NAPI instance with @napi_id. Lock its device.
824 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
825 * netdev_unlock() must be called to release it.
826 *
827 * Return: pointer to NAPI, its device with lock held, NULL if not found.
828 */
829 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)830 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
831 {
832 struct napi_struct *napi;
833 struct net_device *dev;
834
835 rcu_read_lock();
836 napi = netdev_napi_by_id(net, napi_id);
837 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
838 rcu_read_unlock();
839 return NULL;
840 }
841
842 dev = napi->dev;
843 dev_hold(dev);
844 rcu_read_unlock();
845
846 dev = __netdev_put_lock(dev, net);
847 if (!dev)
848 return NULL;
849
850 rcu_read_lock();
851 napi = netdev_napi_by_id(net, napi_id);
852 if (napi && napi->dev != dev)
853 napi = NULL;
854 rcu_read_unlock();
855
856 if (!napi)
857 netdev_unlock(dev);
858 return napi;
859 }
860
861 /**
862 * __dev_get_by_name - find a device by its name
863 * @net: the applicable net namespace
864 * @name: name to find
865 *
866 * Find an interface by name. Must be called under RTNL semaphore.
867 * If the name is found a pointer to the device is returned.
868 * If the name is not found then %NULL is returned. The
869 * reference counters are not incremented so the caller must be
870 * careful with locks.
871 */
872
__dev_get_by_name(struct net * net,const char * name)873 struct net_device *__dev_get_by_name(struct net *net, const char *name)
874 {
875 struct netdev_name_node *node_name;
876
877 node_name = netdev_name_node_lookup(net, name);
878 return node_name ? node_name->dev : NULL;
879 }
880 EXPORT_SYMBOL(__dev_get_by_name);
881
882 /**
883 * dev_get_by_name_rcu - find a device by its name
884 * @net: the applicable net namespace
885 * @name: name to find
886 *
887 * Find an interface by name.
888 * If the name is found a pointer to the device is returned.
889 * If the name is not found then %NULL is returned.
890 * The reference counters are not incremented so the caller must be
891 * careful with locks. The caller must hold RCU lock.
892 */
893
dev_get_by_name_rcu(struct net * net,const char * name)894 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
895 {
896 struct netdev_name_node *node_name;
897
898 node_name = netdev_name_node_lookup_rcu(net, name);
899 return node_name ? node_name->dev : NULL;
900 }
901 EXPORT_SYMBOL(dev_get_by_name_rcu);
902
903 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)904 struct net_device *dev_get_by_name(struct net *net, const char *name)
905 {
906 struct net_device *dev;
907
908 rcu_read_lock();
909 dev = dev_get_by_name_rcu(net, name);
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917 * netdev_get_by_name() - find a device by its name
918 * @net: the applicable net namespace
919 * @name: name to find
920 * @tracker: tracking object for the acquired reference
921 * @gfp: allocation flags for the tracker
922 *
923 * Find an interface by name. This can be called from any
924 * context and does its own locking. The returned handle has
925 * the usage count incremented and the caller must use netdev_put() to
926 * release it when it is no longer needed. %NULL is returned if no
927 * matching device is found.
928 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)929 struct net_device *netdev_get_by_name(struct net *net, const char *name,
930 netdevice_tracker *tracker, gfp_t gfp)
931 {
932 struct net_device *dev;
933
934 dev = dev_get_by_name(net, name);
935 if (dev)
936 netdev_tracker_alloc(dev, tracker, gfp);
937 return dev;
938 }
939 EXPORT_SYMBOL(netdev_get_by_name);
940
941 /**
942 * __dev_get_by_index - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold the RTNL semaphore.
950 */
951
__dev_get_by_index(struct net * net,int ifindex)952 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
953 {
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962 }
963 EXPORT_SYMBOL(__dev_get_by_index);
964
965 /**
966 * dev_get_by_index_rcu - find a device by its ifindex
967 * @net: the applicable net namespace
968 * @ifindex: index of device
969 *
970 * Search for an interface by index. Returns %NULL if the device
971 * is not found or a pointer to the device. The device has not
972 * had its reference counter increased so the caller must be careful
973 * about locking. The caller must hold RCU lock.
974 */
975
dev_get_by_index_rcu(struct net * net,int ifindex)976 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
977 {
978 struct net_device *dev;
979 struct hlist_head *head = dev_index_hash(net, ifindex);
980
981 hlist_for_each_entry_rcu(dev, head, index_hlist)
982 if (dev->ifindex == ifindex)
983 return dev;
984
985 return NULL;
986 }
987 EXPORT_SYMBOL(dev_get_by_index_rcu);
988
989 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)990 struct net_device *dev_get_by_index(struct net *net, int ifindex)
991 {
992 struct net_device *dev;
993
994 rcu_read_lock();
995 dev = dev_get_by_index_rcu(net, ifindex);
996 dev_hold(dev);
997 rcu_read_unlock();
998 return dev;
999 }
1000 EXPORT_SYMBOL(dev_get_by_index);
1001
1002 /**
1003 * netdev_get_by_index() - find a device by its ifindex
1004 * @net: the applicable net namespace
1005 * @ifindex: index of device
1006 * @tracker: tracking object for the acquired reference
1007 * @gfp: allocation flags for the tracker
1008 *
1009 * Search for an interface by index. Returns NULL if the device
1010 * is not found or a pointer to the device. The device returned has
1011 * had a reference added and the pointer is safe until the user calls
1012 * netdev_put() to indicate they have finished with it.
1013 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1014 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1015 netdevice_tracker *tracker, gfp_t gfp)
1016 {
1017 struct net_device *dev;
1018
1019 dev = dev_get_by_index(net, ifindex);
1020 if (dev)
1021 netdev_tracker_alloc(dev, tracker, gfp);
1022 return dev;
1023 }
1024 EXPORT_SYMBOL(netdev_get_by_index);
1025
1026 /**
1027 * dev_get_by_napi_id - find a device by napi_id
1028 * @napi_id: ID of the NAPI struct
1029 *
1030 * Search for an interface by NAPI ID. Returns %NULL if the device
1031 * is not found or a pointer to the device. The device has not had
1032 * its reference counter increased so the caller must be careful
1033 * about locking. The caller must hold RCU lock.
1034 */
dev_get_by_napi_id(unsigned int napi_id)1035 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1036 {
1037 struct napi_struct *napi;
1038
1039 WARN_ON_ONCE(!rcu_read_lock_held());
1040
1041 if (!napi_id_valid(napi_id))
1042 return NULL;
1043
1044 napi = napi_by_id(napi_id);
1045
1046 return napi ? napi->dev : NULL;
1047 }
1048
1049 /* Release the held reference on the net_device, and if the net_device
1050 * is still registered try to lock the instance lock. If device is being
1051 * unregistered NULL will be returned (but the reference has been released,
1052 * either way!)
1053 *
1054 * This helper is intended for locking net_device after it has been looked up
1055 * using a lockless lookup helper. Lock prevents the instance from going away.
1056 */
__netdev_put_lock(struct net_device * dev,struct net * net)1057 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1058 {
1059 netdev_lock(dev);
1060 if (dev->reg_state > NETREG_REGISTERED ||
1061 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1062 netdev_unlock(dev);
1063 dev_put(dev);
1064 return NULL;
1065 }
1066 dev_put(dev);
1067 return dev;
1068 }
1069
1070 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1071 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1072 {
1073 netdev_lock_ops_compat(dev);
1074 if (dev->reg_state > NETREG_REGISTERED ||
1075 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1076 netdev_unlock_ops_compat(dev);
1077 dev_put(dev);
1078 return NULL;
1079 }
1080 dev_put(dev);
1081 return dev;
1082 }
1083
1084 /**
1085 * netdev_get_by_index_lock() - find a device by its ifindex
1086 * @net: the applicable net namespace
1087 * @ifindex: index of device
1088 *
1089 * Search for an interface by index. If a valid device
1090 * with @ifindex is found it will be returned with netdev->lock held.
1091 * netdev_unlock() must be called to release it.
1092 *
1093 * Return: pointer to a device with lock held, NULL if not found.
1094 */
netdev_get_by_index_lock(struct net * net,int ifindex)1095 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1096 {
1097 struct net_device *dev;
1098
1099 dev = dev_get_by_index(net, ifindex);
1100 if (!dev)
1101 return NULL;
1102
1103 return __netdev_put_lock(dev, net);
1104 }
1105
1106 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1107 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1108 {
1109 struct net_device *dev;
1110
1111 dev = dev_get_by_index(net, ifindex);
1112 if (!dev)
1113 return NULL;
1114
1115 return __netdev_put_lock_ops_compat(dev, net);
1116 }
1117
1118 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1119 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1120 unsigned long *index)
1121 {
1122 if (dev)
1123 netdev_unlock(dev);
1124
1125 do {
1126 rcu_read_lock();
1127 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1128 if (!dev) {
1129 rcu_read_unlock();
1130 return NULL;
1131 }
1132 dev_hold(dev);
1133 rcu_read_unlock();
1134
1135 dev = __netdev_put_lock(dev, net);
1136 if (dev)
1137 return dev;
1138
1139 (*index)++;
1140 } while (true);
1141 }
1142
1143 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1144 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1145 unsigned long *index)
1146 {
1147 if (dev)
1148 netdev_unlock_ops_compat(dev);
1149
1150 do {
1151 rcu_read_lock();
1152 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1153 if (!dev) {
1154 rcu_read_unlock();
1155 return NULL;
1156 }
1157 dev_hold(dev);
1158 rcu_read_unlock();
1159
1160 dev = __netdev_put_lock_ops_compat(dev, net);
1161 if (dev)
1162 return dev;
1163
1164 (*index)++;
1165 } while (true);
1166 }
1167
1168 static DEFINE_SEQLOCK(netdev_rename_lock);
1169
netdev_copy_name(struct net_device * dev,char * name)1170 void netdev_copy_name(struct net_device *dev, char *name)
1171 {
1172 unsigned int seq;
1173
1174 do {
1175 seq = read_seqbegin(&netdev_rename_lock);
1176 strscpy(name, dev->name, IFNAMSIZ);
1177 } while (read_seqretry(&netdev_rename_lock, seq));
1178 }
1179 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1180
1181 /**
1182 * netdev_get_name - get a netdevice name, knowing its ifindex.
1183 * @net: network namespace
1184 * @name: a pointer to the buffer where the name will be stored.
1185 * @ifindex: the ifindex of the interface to get the name from.
1186 */
netdev_get_name(struct net * net,char * name,int ifindex)1187 int netdev_get_name(struct net *net, char *name, int ifindex)
1188 {
1189 struct net_device *dev;
1190 int ret;
1191
1192 rcu_read_lock();
1193
1194 dev = dev_get_by_index_rcu(net, ifindex);
1195 if (!dev) {
1196 ret = -ENODEV;
1197 goto out;
1198 }
1199
1200 netdev_copy_name(dev, name);
1201
1202 ret = 0;
1203 out:
1204 rcu_read_unlock();
1205 return ret;
1206 }
1207
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1208 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1209 const char *ha)
1210 {
1211 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1212 }
1213
1214 /**
1215 * dev_getbyhwaddr_rcu - find a device by its hardware address
1216 * @net: the applicable net namespace
1217 * @type: media type of device
1218 * @ha: hardware address
1219 *
1220 * Search for an interface by MAC address. Returns NULL if the device
1221 * is not found or a pointer to the device.
1222 * The caller must hold RCU.
1223 * The returned device has not had its ref count increased
1224 * and the caller must therefore be careful about locking
1225 *
1226 */
1227
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1228 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1229 const char *ha)
1230 {
1231 struct net_device *dev;
1232
1233 for_each_netdev_rcu(net, dev)
1234 if (dev_addr_cmp(dev, type, ha))
1235 return dev;
1236
1237 return NULL;
1238 }
1239 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1240
1241 /**
1242 * dev_getbyhwaddr() - find a device by its hardware address
1243 * @net: the applicable net namespace
1244 * @type: media type of device
1245 * @ha: hardware address
1246 *
1247 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1248 * rtnl_lock.
1249 *
1250 * Context: rtnl_lock() must be held.
1251 * Return: pointer to the net_device, or NULL if not found
1252 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1253 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1254 const char *ha)
1255 {
1256 struct net_device *dev;
1257
1258 ASSERT_RTNL();
1259 for_each_netdev(net, dev)
1260 if (dev_addr_cmp(dev, type, ha))
1261 return dev;
1262
1263 return NULL;
1264 }
1265 EXPORT_SYMBOL(dev_getbyhwaddr);
1266
dev_getfirstbyhwtype(struct net * net,unsigned short type)1267 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1268 {
1269 struct net_device *dev, *ret = NULL;
1270
1271 rcu_read_lock();
1272 for_each_netdev_rcu(net, dev)
1273 if (dev->type == type) {
1274 dev_hold(dev);
1275 ret = dev;
1276 break;
1277 }
1278 rcu_read_unlock();
1279 return ret;
1280 }
1281 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1282
1283 /**
1284 * netdev_get_by_flags_rcu - find any device with given flags
1285 * @net: the applicable net namespace
1286 * @tracker: tracking object for the acquired reference
1287 * @if_flags: IFF_* values
1288 * @mask: bitmask of bits in if_flags to check
1289 *
1290 * Search for any interface with the given flags.
1291 *
1292 * Context: rcu_read_lock() must be held.
1293 * Returns: NULL if a device is not found or a pointer to the device.
1294 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1295 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1296 unsigned short if_flags, unsigned short mask)
1297 {
1298 struct net_device *dev;
1299
1300 for_each_netdev_rcu(net, dev) {
1301 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1302 netdev_hold(dev, tracker, GFP_ATOMIC);
1303 return dev;
1304 }
1305 }
1306
1307 return NULL;
1308 }
1309 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1310
1311 /**
1312 * dev_valid_name - check if name is okay for network device
1313 * @name: name string
1314 *
1315 * Network device names need to be valid file names to
1316 * allow sysfs to work. We also disallow any kind of
1317 * whitespace.
1318 */
dev_valid_name(const char * name)1319 bool dev_valid_name(const char *name)
1320 {
1321 if (*name == '\0')
1322 return false;
1323 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1324 return false;
1325 if (!strcmp(name, ".") || !strcmp(name, ".."))
1326 return false;
1327
1328 while (*name) {
1329 if (*name == '/' || *name == ':' || isspace(*name))
1330 return false;
1331 name++;
1332 }
1333 return true;
1334 }
1335 EXPORT_SYMBOL(dev_valid_name);
1336
1337 /**
1338 * __dev_alloc_name - allocate a name for a device
1339 * @net: network namespace to allocate the device name in
1340 * @name: name format string
1341 * @res: result name string
1342 *
1343 * Passed a format string - eg "lt%d" it will try and find a suitable
1344 * id. It scans list of devices to build up a free map, then chooses
1345 * the first empty slot. The caller must hold the dev_base or rtnl lock
1346 * while allocating the name and adding the device in order to avoid
1347 * duplicates.
1348 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1349 * Returns the number of the unit assigned or a negative errno code.
1350 */
1351
__dev_alloc_name(struct net * net,const char * name,char * res)1352 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1353 {
1354 int i = 0;
1355 const char *p;
1356 const int max_netdevices = 8*PAGE_SIZE;
1357 unsigned long *inuse;
1358 struct net_device *d;
1359 char buf[IFNAMSIZ];
1360
1361 /* Verify the string as this thing may have come from the user.
1362 * There must be one "%d" and no other "%" characters.
1363 */
1364 p = strchr(name, '%');
1365 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1366 return -EINVAL;
1367
1368 /* Use one page as a bit array of possible slots */
1369 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1370 if (!inuse)
1371 return -ENOMEM;
1372
1373 for_each_netdev(net, d) {
1374 struct netdev_name_node *name_node;
1375
1376 netdev_for_each_altname(d, name_node) {
1377 if (!sscanf(name_node->name, name, &i))
1378 continue;
1379 if (i < 0 || i >= max_netdevices)
1380 continue;
1381
1382 /* avoid cases where sscanf is not exact inverse of printf */
1383 snprintf(buf, IFNAMSIZ, name, i);
1384 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1385 __set_bit(i, inuse);
1386 }
1387 if (!sscanf(d->name, name, &i))
1388 continue;
1389 if (i < 0 || i >= max_netdevices)
1390 continue;
1391
1392 /* avoid cases where sscanf is not exact inverse of printf */
1393 snprintf(buf, IFNAMSIZ, name, i);
1394 if (!strncmp(buf, d->name, IFNAMSIZ))
1395 __set_bit(i, inuse);
1396 }
1397
1398 i = find_first_zero_bit(inuse, max_netdevices);
1399 bitmap_free(inuse);
1400 if (i == max_netdevices)
1401 return -ENFILE;
1402
1403 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1404 strscpy(buf, name, IFNAMSIZ);
1405 snprintf(res, IFNAMSIZ, buf, i);
1406 return i;
1407 }
1408
1409 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1410 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1411 const char *want_name, char *out_name,
1412 int dup_errno)
1413 {
1414 if (!dev_valid_name(want_name))
1415 return -EINVAL;
1416
1417 if (strchr(want_name, '%'))
1418 return __dev_alloc_name(net, want_name, out_name);
1419
1420 if (netdev_name_in_use(net, want_name))
1421 return -dup_errno;
1422 if (out_name != want_name)
1423 strscpy(out_name, want_name, IFNAMSIZ);
1424 return 0;
1425 }
1426
1427 /**
1428 * dev_alloc_name - allocate a name for a device
1429 * @dev: device
1430 * @name: name format string
1431 *
1432 * Passed a format string - eg "lt%d" it will try and find a suitable
1433 * id. It scans list of devices to build up a free map, then chooses
1434 * the first empty slot. The caller must hold the dev_base or rtnl lock
1435 * while allocating the name and adding the device in order to avoid
1436 * duplicates.
1437 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1438 * Returns the number of the unit assigned or a negative errno code.
1439 */
1440
dev_alloc_name(struct net_device * dev,const char * name)1441 int dev_alloc_name(struct net_device *dev, const char *name)
1442 {
1443 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1444 }
1445 EXPORT_SYMBOL(dev_alloc_name);
1446
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1447 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1448 const char *name)
1449 {
1450 int ret;
1451
1452 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1453 return ret < 0 ? ret : 0;
1454 }
1455
netif_change_name(struct net_device * dev,const char * newname)1456 int netif_change_name(struct net_device *dev, const char *newname)
1457 {
1458 struct net *net = dev_net(dev);
1459 unsigned char old_assign_type;
1460 char oldname[IFNAMSIZ];
1461 int err = 0;
1462 int ret;
1463
1464 ASSERT_RTNL_NET(net);
1465
1466 if (!strncmp(newname, dev->name, IFNAMSIZ))
1467 return 0;
1468
1469 memcpy(oldname, dev->name, IFNAMSIZ);
1470
1471 write_seqlock_bh(&netdev_rename_lock);
1472 err = dev_get_valid_name(net, dev, newname);
1473 write_sequnlock_bh(&netdev_rename_lock);
1474
1475 if (err < 0)
1476 return err;
1477
1478 if (oldname[0] && !strchr(oldname, '%'))
1479 netdev_info(dev, "renamed from %s%s\n", oldname,
1480 dev->flags & IFF_UP ? " (while UP)" : "");
1481
1482 old_assign_type = dev->name_assign_type;
1483 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1484
1485 rollback:
1486 ret = device_rename(&dev->dev, dev->name);
1487 if (ret) {
1488 write_seqlock_bh(&netdev_rename_lock);
1489 memcpy(dev->name, oldname, IFNAMSIZ);
1490 write_sequnlock_bh(&netdev_rename_lock);
1491 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1492 return ret;
1493 }
1494
1495 netdev_adjacent_rename_links(dev, oldname);
1496
1497 netdev_name_node_del(dev->name_node);
1498
1499 synchronize_net();
1500
1501 netdev_name_node_add(net, dev->name_node);
1502
1503 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1504 ret = notifier_to_errno(ret);
1505
1506 if (ret) {
1507 /* err >= 0 after dev_alloc_name() or stores the first errno */
1508 if (err >= 0) {
1509 err = ret;
1510 write_seqlock_bh(&netdev_rename_lock);
1511 memcpy(dev->name, oldname, IFNAMSIZ);
1512 write_sequnlock_bh(&netdev_rename_lock);
1513 memcpy(oldname, newname, IFNAMSIZ);
1514 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1515 old_assign_type = NET_NAME_RENAMED;
1516 goto rollback;
1517 } else {
1518 netdev_err(dev, "name change rollback failed: %d\n",
1519 ret);
1520 }
1521 }
1522
1523 return err;
1524 }
1525
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1526 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1527 {
1528 struct dev_ifalias *new_alias = NULL;
1529
1530 if (len >= IFALIASZ)
1531 return -EINVAL;
1532
1533 if (len) {
1534 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1535 if (!new_alias)
1536 return -ENOMEM;
1537
1538 memcpy(new_alias->ifalias, alias, len);
1539 new_alias->ifalias[len] = 0;
1540 }
1541
1542 mutex_lock(&ifalias_mutex);
1543 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1544 mutex_is_locked(&ifalias_mutex));
1545 mutex_unlock(&ifalias_mutex);
1546
1547 if (new_alias)
1548 kfree_rcu(new_alias, rcuhead);
1549
1550 return len;
1551 }
1552
1553 /**
1554 * dev_get_alias - get ifalias of a device
1555 * @dev: device
1556 * @name: buffer to store name of ifalias
1557 * @len: size of buffer
1558 *
1559 * get ifalias for a device. Caller must make sure dev cannot go
1560 * away, e.g. rcu read lock or own a reference count to device.
1561 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1562 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1563 {
1564 const struct dev_ifalias *alias;
1565 int ret = 0;
1566
1567 rcu_read_lock();
1568 alias = rcu_dereference(dev->ifalias);
1569 if (alias)
1570 ret = snprintf(name, len, "%s", alias->ifalias);
1571 rcu_read_unlock();
1572
1573 return ret;
1574 }
1575
1576 /**
1577 * netdev_features_change - device changes features
1578 * @dev: device to cause notification
1579 *
1580 * Called to indicate a device has changed features.
1581 */
netdev_features_change(struct net_device * dev)1582 void netdev_features_change(struct net_device *dev)
1583 {
1584 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1585 }
1586 EXPORT_SYMBOL(netdev_features_change);
1587
netif_state_change(struct net_device * dev)1588 void netif_state_change(struct net_device *dev)
1589 {
1590 netdev_ops_assert_locked_or_invisible(dev);
1591
1592 if (dev->flags & IFF_UP) {
1593 struct netdev_notifier_change_info change_info = {
1594 .info.dev = dev,
1595 };
1596
1597 call_netdevice_notifiers_info(NETDEV_CHANGE,
1598 &change_info.info);
1599 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1600 }
1601 }
1602
1603 /**
1604 * __netdev_notify_peers - notify network peers about existence of @dev,
1605 * to be called when rtnl lock is already held.
1606 * @dev: network device
1607 *
1608 * Generate traffic such that interested network peers are aware of
1609 * @dev, such as by generating a gratuitous ARP. This may be used when
1610 * a device wants to inform the rest of the network about some sort of
1611 * reconfiguration such as a failover event or virtual machine
1612 * migration.
1613 */
__netdev_notify_peers(struct net_device * dev)1614 void __netdev_notify_peers(struct net_device *dev)
1615 {
1616 ASSERT_RTNL();
1617 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1618 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1619 }
1620 EXPORT_SYMBOL(__netdev_notify_peers);
1621
1622 /**
1623 * netdev_notify_peers - notify network peers about existence of @dev
1624 * @dev: network device
1625 *
1626 * Generate traffic such that interested network peers are aware of
1627 * @dev, such as by generating a gratuitous ARP. This may be used when
1628 * a device wants to inform the rest of the network about some sort of
1629 * reconfiguration such as a failover event or virtual machine
1630 * migration.
1631 */
netdev_notify_peers(struct net_device * dev)1632 void netdev_notify_peers(struct net_device *dev)
1633 {
1634 rtnl_lock();
1635 __netdev_notify_peers(dev);
1636 rtnl_unlock();
1637 }
1638 EXPORT_SYMBOL(netdev_notify_peers);
1639
1640 static int napi_threaded_poll(void *data);
1641
napi_kthread_create(struct napi_struct * n)1642 static int napi_kthread_create(struct napi_struct *n)
1643 {
1644 int err = 0;
1645
1646 /* Create and wake up the kthread once to put it in
1647 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1648 * warning and work with loadavg.
1649 */
1650 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1651 n->dev->name, n->napi_id);
1652 if (IS_ERR(n->thread)) {
1653 err = PTR_ERR(n->thread);
1654 pr_err("kthread_run failed with err %d\n", err);
1655 n->thread = NULL;
1656 }
1657
1658 return err;
1659 }
1660
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1661 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1662 {
1663 const struct net_device_ops *ops = dev->netdev_ops;
1664 int ret;
1665
1666 ASSERT_RTNL();
1667 dev_addr_check(dev);
1668
1669 if (!netif_device_present(dev)) {
1670 /* may be detached because parent is runtime-suspended */
1671 if (dev->dev.parent)
1672 pm_runtime_resume(dev->dev.parent);
1673 if (!netif_device_present(dev))
1674 return -ENODEV;
1675 }
1676
1677 /* Block netpoll from trying to do any rx path servicing.
1678 * If we don't do this there is a chance ndo_poll_controller
1679 * or ndo_poll may be running while we open the device
1680 */
1681 netpoll_poll_disable(dev);
1682
1683 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1684 ret = notifier_to_errno(ret);
1685 if (ret)
1686 return ret;
1687
1688 set_bit(__LINK_STATE_START, &dev->state);
1689
1690 netdev_ops_assert_locked(dev);
1691
1692 if (ops->ndo_validate_addr)
1693 ret = ops->ndo_validate_addr(dev);
1694
1695 if (!ret && ops->ndo_open)
1696 ret = ops->ndo_open(dev);
1697
1698 netpoll_poll_enable(dev);
1699
1700 if (ret)
1701 clear_bit(__LINK_STATE_START, &dev->state);
1702 else {
1703 netif_set_up(dev, true);
1704 dev_set_rx_mode(dev);
1705 dev_activate(dev);
1706 add_device_randomness(dev->dev_addr, dev->addr_len);
1707 }
1708
1709 return ret;
1710 }
1711
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1712 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1713 {
1714 int ret;
1715
1716 if (dev->flags & IFF_UP)
1717 return 0;
1718
1719 ret = __dev_open(dev, extack);
1720 if (ret < 0)
1721 return ret;
1722
1723 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1724 call_netdevice_notifiers(NETDEV_UP, dev);
1725
1726 return ret;
1727 }
1728
__dev_close_many(struct list_head * head)1729 static void __dev_close_many(struct list_head *head)
1730 {
1731 struct net_device *dev;
1732
1733 ASSERT_RTNL();
1734 might_sleep();
1735
1736 list_for_each_entry(dev, head, close_list) {
1737 /* Temporarily disable netpoll until the interface is down */
1738 netpoll_poll_disable(dev);
1739
1740 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1741
1742 clear_bit(__LINK_STATE_START, &dev->state);
1743
1744 /* Synchronize to scheduled poll. We cannot touch poll list, it
1745 * can be even on different cpu. So just clear netif_running().
1746 *
1747 * dev->stop() will invoke napi_disable() on all of it's
1748 * napi_struct instances on this device.
1749 */
1750 smp_mb__after_atomic(); /* Commit netif_running(). */
1751 }
1752
1753 dev_deactivate_many(head);
1754
1755 list_for_each_entry(dev, head, close_list) {
1756 const struct net_device_ops *ops = dev->netdev_ops;
1757
1758 /*
1759 * Call the device specific close. This cannot fail.
1760 * Only if device is UP
1761 *
1762 * We allow it to be called even after a DETACH hot-plug
1763 * event.
1764 */
1765
1766 netdev_ops_assert_locked(dev);
1767
1768 if (ops->ndo_stop)
1769 ops->ndo_stop(dev);
1770
1771 netif_set_up(dev, false);
1772 netpoll_poll_enable(dev);
1773 }
1774 }
1775
__dev_close(struct net_device * dev)1776 static void __dev_close(struct net_device *dev)
1777 {
1778 LIST_HEAD(single);
1779
1780 list_add(&dev->close_list, &single);
1781 __dev_close_many(&single);
1782 list_del(&single);
1783 }
1784
netif_close_many(struct list_head * head,bool unlink)1785 void netif_close_many(struct list_head *head, bool unlink)
1786 {
1787 struct net_device *dev, *tmp;
1788
1789 /* Remove the devices that don't need to be closed */
1790 list_for_each_entry_safe(dev, tmp, head, close_list)
1791 if (!(dev->flags & IFF_UP))
1792 list_del_init(&dev->close_list);
1793
1794 __dev_close_many(head);
1795
1796 list_for_each_entry_safe(dev, tmp, head, close_list) {
1797 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1798 call_netdevice_notifiers(NETDEV_DOWN, dev);
1799 if (unlink)
1800 list_del_init(&dev->close_list);
1801 }
1802 }
1803 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1804
netif_close(struct net_device * dev)1805 void netif_close(struct net_device *dev)
1806 {
1807 if (dev->flags & IFF_UP) {
1808 LIST_HEAD(single);
1809
1810 list_add(&dev->close_list, &single);
1811 netif_close_many(&single, true);
1812 list_del(&single);
1813 }
1814 }
1815 EXPORT_SYMBOL(netif_close);
1816
netif_disable_lro(struct net_device * dev)1817 void netif_disable_lro(struct net_device *dev)
1818 {
1819 struct net_device *lower_dev;
1820 struct list_head *iter;
1821
1822 dev->wanted_features &= ~NETIF_F_LRO;
1823 netdev_update_features(dev);
1824
1825 if (unlikely(dev->features & NETIF_F_LRO))
1826 netdev_WARN(dev, "failed to disable LRO!\n");
1827
1828 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1829 netdev_lock_ops(lower_dev);
1830 netif_disable_lro(lower_dev);
1831 netdev_unlock_ops(lower_dev);
1832 }
1833 }
1834 EXPORT_IPV6_MOD(netif_disable_lro);
1835
1836 /**
1837 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1838 * @dev: device
1839 *
1840 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1841 * called under RTNL. This is needed if Generic XDP is installed on
1842 * the device.
1843 */
dev_disable_gro_hw(struct net_device * dev)1844 static void dev_disable_gro_hw(struct net_device *dev)
1845 {
1846 dev->wanted_features &= ~NETIF_F_GRO_HW;
1847 netdev_update_features(dev);
1848
1849 if (unlikely(dev->features & NETIF_F_GRO_HW))
1850 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1851 }
1852
netdev_cmd_to_name(enum netdev_cmd cmd)1853 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1854 {
1855 #define N(val) \
1856 case NETDEV_##val: \
1857 return "NETDEV_" __stringify(val);
1858 switch (cmd) {
1859 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1860 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1861 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1862 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1863 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1864 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1865 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1866 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1867 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1868 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1869 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1870 N(XDP_FEAT_CHANGE)
1871 }
1872 #undef N
1873 return "UNKNOWN_NETDEV_EVENT";
1874 }
1875 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1876
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1877 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1878 struct net_device *dev)
1879 {
1880 struct netdev_notifier_info info = {
1881 .dev = dev,
1882 };
1883
1884 return nb->notifier_call(nb, val, &info);
1885 }
1886
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1887 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1888 struct net_device *dev)
1889 {
1890 int err;
1891
1892 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1893 err = notifier_to_errno(err);
1894 if (err)
1895 return err;
1896
1897 if (!(dev->flags & IFF_UP))
1898 return 0;
1899
1900 call_netdevice_notifier(nb, NETDEV_UP, dev);
1901 return 0;
1902 }
1903
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1904 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1905 struct net_device *dev)
1906 {
1907 if (dev->flags & IFF_UP) {
1908 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1909 dev);
1910 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1911 }
1912 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1913 }
1914
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1915 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1916 struct net *net)
1917 {
1918 struct net_device *dev;
1919 int err;
1920
1921 for_each_netdev(net, dev) {
1922 netdev_lock_ops(dev);
1923 err = call_netdevice_register_notifiers(nb, dev);
1924 netdev_unlock_ops(dev);
1925 if (err)
1926 goto rollback;
1927 }
1928 return 0;
1929
1930 rollback:
1931 for_each_netdev_continue_reverse(net, dev)
1932 call_netdevice_unregister_notifiers(nb, dev);
1933 return err;
1934 }
1935
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1936 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1937 struct net *net)
1938 {
1939 struct net_device *dev;
1940
1941 for_each_netdev(net, dev)
1942 call_netdevice_unregister_notifiers(nb, dev);
1943 }
1944
1945 static int dev_boot_phase = 1;
1946
1947 /**
1948 * register_netdevice_notifier - register a network notifier block
1949 * @nb: notifier
1950 *
1951 * Register a notifier to be called when network device events occur.
1952 * The notifier passed is linked into the kernel structures and must
1953 * not be reused until it has been unregistered. A negative errno code
1954 * is returned on a failure.
1955 *
1956 * When registered all registration and up events are replayed
1957 * to the new notifier to allow device to have a race free
1958 * view of the network device list.
1959 */
1960
register_netdevice_notifier(struct notifier_block * nb)1961 int register_netdevice_notifier(struct notifier_block *nb)
1962 {
1963 struct net *net;
1964 int err;
1965
1966 /* Close race with setup_net() and cleanup_net() */
1967 down_write(&pernet_ops_rwsem);
1968
1969 /* When RTNL is removed, we need protection for netdev_chain. */
1970 rtnl_lock();
1971
1972 err = raw_notifier_chain_register(&netdev_chain, nb);
1973 if (err)
1974 goto unlock;
1975 if (dev_boot_phase)
1976 goto unlock;
1977 for_each_net(net) {
1978 __rtnl_net_lock(net);
1979 err = call_netdevice_register_net_notifiers(nb, net);
1980 __rtnl_net_unlock(net);
1981 if (err)
1982 goto rollback;
1983 }
1984
1985 unlock:
1986 rtnl_unlock();
1987 up_write(&pernet_ops_rwsem);
1988 return err;
1989
1990 rollback:
1991 for_each_net_continue_reverse(net) {
1992 __rtnl_net_lock(net);
1993 call_netdevice_unregister_net_notifiers(nb, net);
1994 __rtnl_net_unlock(net);
1995 }
1996
1997 raw_notifier_chain_unregister(&netdev_chain, nb);
1998 goto unlock;
1999 }
2000 EXPORT_SYMBOL(register_netdevice_notifier);
2001
2002 /**
2003 * unregister_netdevice_notifier - unregister a network notifier block
2004 * @nb: notifier
2005 *
2006 * Unregister a notifier previously registered by
2007 * register_netdevice_notifier(). The notifier is unlinked into the
2008 * kernel structures and may then be reused. A negative errno code
2009 * is returned on a failure.
2010 *
2011 * After unregistering unregister and down device events are synthesized
2012 * for all devices on the device list to the removed notifier to remove
2013 * the need for special case cleanup code.
2014 */
2015
unregister_netdevice_notifier(struct notifier_block * nb)2016 int unregister_netdevice_notifier(struct notifier_block *nb)
2017 {
2018 struct net *net;
2019 int err;
2020
2021 /* Close race with setup_net() and cleanup_net() */
2022 down_write(&pernet_ops_rwsem);
2023 rtnl_lock();
2024 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2025 if (err)
2026 goto unlock;
2027
2028 for_each_net(net) {
2029 __rtnl_net_lock(net);
2030 call_netdevice_unregister_net_notifiers(nb, net);
2031 __rtnl_net_unlock(net);
2032 }
2033
2034 unlock:
2035 rtnl_unlock();
2036 up_write(&pernet_ops_rwsem);
2037 return err;
2038 }
2039 EXPORT_SYMBOL(unregister_netdevice_notifier);
2040
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2041 static int __register_netdevice_notifier_net(struct net *net,
2042 struct notifier_block *nb,
2043 bool ignore_call_fail)
2044 {
2045 int err;
2046
2047 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2048 if (err)
2049 return err;
2050 if (dev_boot_phase)
2051 return 0;
2052
2053 err = call_netdevice_register_net_notifiers(nb, net);
2054 if (err && !ignore_call_fail)
2055 goto chain_unregister;
2056
2057 return 0;
2058
2059 chain_unregister:
2060 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2061 return err;
2062 }
2063
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2064 static int __unregister_netdevice_notifier_net(struct net *net,
2065 struct notifier_block *nb)
2066 {
2067 int err;
2068
2069 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2070 if (err)
2071 return err;
2072
2073 call_netdevice_unregister_net_notifiers(nb, net);
2074 return 0;
2075 }
2076
2077 /**
2078 * register_netdevice_notifier_net - register a per-netns network notifier block
2079 * @net: network namespace
2080 * @nb: notifier
2081 *
2082 * Register a notifier to be called when network device events occur.
2083 * The notifier passed is linked into the kernel structures and must
2084 * not be reused until it has been unregistered. A negative errno code
2085 * is returned on a failure.
2086 *
2087 * When registered all registration and up events are replayed
2088 * to the new notifier to allow device to have a race free
2089 * view of the network device list.
2090 */
2091
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2092 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2093 {
2094 int err;
2095
2096 rtnl_net_lock(net);
2097 err = __register_netdevice_notifier_net(net, nb, false);
2098 rtnl_net_unlock(net);
2099
2100 return err;
2101 }
2102 EXPORT_SYMBOL(register_netdevice_notifier_net);
2103
2104 /**
2105 * unregister_netdevice_notifier_net - unregister a per-netns
2106 * network notifier block
2107 * @net: network namespace
2108 * @nb: notifier
2109 *
2110 * Unregister a notifier previously registered by
2111 * register_netdevice_notifier_net(). The notifier is unlinked from the
2112 * kernel structures and may then be reused. A negative errno code
2113 * is returned on a failure.
2114 *
2115 * After unregistering unregister and down device events are synthesized
2116 * for all devices on the device list to the removed notifier to remove
2117 * the need for special case cleanup code.
2118 */
2119
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2120 int unregister_netdevice_notifier_net(struct net *net,
2121 struct notifier_block *nb)
2122 {
2123 int err;
2124
2125 rtnl_net_lock(net);
2126 err = __unregister_netdevice_notifier_net(net, nb);
2127 rtnl_net_unlock(net);
2128
2129 return err;
2130 }
2131 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2132
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2133 static void __move_netdevice_notifier_net(struct net *src_net,
2134 struct net *dst_net,
2135 struct notifier_block *nb)
2136 {
2137 __unregister_netdevice_notifier_net(src_net, nb);
2138 __register_netdevice_notifier_net(dst_net, nb, true);
2139 }
2140
rtnl_net_dev_lock(struct net_device * dev)2141 static void rtnl_net_dev_lock(struct net_device *dev)
2142 {
2143 bool again;
2144
2145 do {
2146 struct net *net;
2147
2148 again = false;
2149
2150 /* netns might be being dismantled. */
2151 rcu_read_lock();
2152 net = dev_net_rcu(dev);
2153 net_passive_inc(net);
2154 rcu_read_unlock();
2155
2156 rtnl_net_lock(net);
2157
2158 #ifdef CONFIG_NET_NS
2159 /* dev might have been moved to another netns. */
2160 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2161 rtnl_net_unlock(net);
2162 net_passive_dec(net);
2163 again = true;
2164 }
2165 #endif
2166 } while (again);
2167 }
2168
rtnl_net_dev_unlock(struct net_device * dev)2169 static void rtnl_net_dev_unlock(struct net_device *dev)
2170 {
2171 struct net *net = dev_net(dev);
2172
2173 rtnl_net_unlock(net);
2174 net_passive_dec(net);
2175 }
2176
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2177 int register_netdevice_notifier_dev_net(struct net_device *dev,
2178 struct notifier_block *nb,
2179 struct netdev_net_notifier *nn)
2180 {
2181 int err;
2182
2183 rtnl_net_dev_lock(dev);
2184 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2185 if (!err) {
2186 nn->nb = nb;
2187 list_add(&nn->list, &dev->net_notifier_list);
2188 }
2189 rtnl_net_dev_unlock(dev);
2190
2191 return err;
2192 }
2193 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2194
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2195 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2196 struct notifier_block *nb,
2197 struct netdev_net_notifier *nn)
2198 {
2199 int err;
2200
2201 rtnl_net_dev_lock(dev);
2202 list_del(&nn->list);
2203 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2204 rtnl_net_dev_unlock(dev);
2205
2206 return err;
2207 }
2208 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2209
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2210 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2211 struct net *net)
2212 {
2213 struct netdev_net_notifier *nn;
2214
2215 list_for_each_entry(nn, &dev->net_notifier_list, list)
2216 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2217 }
2218
2219 /**
2220 * call_netdevice_notifiers_info - call all network notifier blocks
2221 * @val: value passed unmodified to notifier function
2222 * @info: notifier information data
2223 *
2224 * Call all network notifier blocks. Parameters and return value
2225 * are as for raw_notifier_call_chain().
2226 */
2227
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2228 int call_netdevice_notifiers_info(unsigned long val,
2229 struct netdev_notifier_info *info)
2230 {
2231 struct net *net = dev_net(info->dev);
2232 int ret;
2233
2234 ASSERT_RTNL();
2235
2236 /* Run per-netns notifier block chain first, then run the global one.
2237 * Hopefully, one day, the global one is going to be removed after
2238 * all notifier block registrators get converted to be per-netns.
2239 */
2240 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2241 if (ret & NOTIFY_STOP_MASK)
2242 return ret;
2243 return raw_notifier_call_chain(&netdev_chain, val, info);
2244 }
2245
2246 /**
2247 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2248 * for and rollback on error
2249 * @val_up: value passed unmodified to notifier function
2250 * @val_down: value passed unmodified to the notifier function when
2251 * recovering from an error on @val_up
2252 * @info: notifier information data
2253 *
2254 * Call all per-netns network notifier blocks, but not notifier blocks on
2255 * the global notifier chain. Parameters and return value are as for
2256 * raw_notifier_call_chain_robust().
2257 */
2258
2259 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2260 call_netdevice_notifiers_info_robust(unsigned long val_up,
2261 unsigned long val_down,
2262 struct netdev_notifier_info *info)
2263 {
2264 struct net *net = dev_net(info->dev);
2265
2266 ASSERT_RTNL();
2267
2268 return raw_notifier_call_chain_robust(&net->netdev_chain,
2269 val_up, val_down, info);
2270 }
2271
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2272 static int call_netdevice_notifiers_extack(unsigned long val,
2273 struct net_device *dev,
2274 struct netlink_ext_ack *extack)
2275 {
2276 struct netdev_notifier_info info = {
2277 .dev = dev,
2278 .extack = extack,
2279 };
2280
2281 return call_netdevice_notifiers_info(val, &info);
2282 }
2283
2284 /**
2285 * call_netdevice_notifiers - call all network notifier blocks
2286 * @val: value passed unmodified to notifier function
2287 * @dev: net_device pointer passed unmodified to notifier function
2288 *
2289 * Call all network notifier blocks. Parameters and return value
2290 * are as for raw_notifier_call_chain().
2291 */
2292
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2293 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2294 {
2295 return call_netdevice_notifiers_extack(val, dev, NULL);
2296 }
2297 EXPORT_SYMBOL(call_netdevice_notifiers);
2298
2299 /**
2300 * call_netdevice_notifiers_mtu - call all network notifier blocks
2301 * @val: value passed unmodified to notifier function
2302 * @dev: net_device pointer passed unmodified to notifier function
2303 * @arg: additional u32 argument passed to the notifier function
2304 *
2305 * Call all network notifier blocks. Parameters and return value
2306 * are as for raw_notifier_call_chain().
2307 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2308 static int call_netdevice_notifiers_mtu(unsigned long val,
2309 struct net_device *dev, u32 arg)
2310 {
2311 struct netdev_notifier_info_ext info = {
2312 .info.dev = dev,
2313 .ext.mtu = arg,
2314 };
2315
2316 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2317
2318 return call_netdevice_notifiers_info(val, &info.info);
2319 }
2320
2321 #ifdef CONFIG_NET_INGRESS
2322 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2323
net_inc_ingress_queue(void)2324 void net_inc_ingress_queue(void)
2325 {
2326 static_branch_inc(&ingress_needed_key);
2327 }
2328 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2329
net_dec_ingress_queue(void)2330 void net_dec_ingress_queue(void)
2331 {
2332 static_branch_dec(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2335 #endif
2336
2337 #ifdef CONFIG_NET_EGRESS
2338 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2339
net_inc_egress_queue(void)2340 void net_inc_egress_queue(void)
2341 {
2342 static_branch_inc(&egress_needed_key);
2343 }
2344 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2345
net_dec_egress_queue(void)2346 void net_dec_egress_queue(void)
2347 {
2348 static_branch_dec(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2351 #endif
2352
2353 #ifdef CONFIG_NET_CLS_ACT
2354 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2355 EXPORT_SYMBOL(tcf_sw_enabled_key);
2356 #endif
2357
2358 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2359 EXPORT_SYMBOL(netstamp_needed_key);
2360 #ifdef CONFIG_JUMP_LABEL
2361 static atomic_t netstamp_needed_deferred;
2362 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2363 static void netstamp_clear(struct work_struct *work)
2364 {
2365 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2366 int wanted;
2367
2368 wanted = atomic_add_return(deferred, &netstamp_wanted);
2369 if (wanted > 0)
2370 static_branch_enable(&netstamp_needed_key);
2371 else
2372 static_branch_disable(&netstamp_needed_key);
2373 }
2374 static DECLARE_WORK(netstamp_work, netstamp_clear);
2375 #endif
2376
net_enable_timestamp(void)2377 void net_enable_timestamp(void)
2378 {
2379 #ifdef CONFIG_JUMP_LABEL
2380 int wanted = atomic_read(&netstamp_wanted);
2381
2382 while (wanted > 0) {
2383 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2384 return;
2385 }
2386 atomic_inc(&netstamp_needed_deferred);
2387 schedule_work(&netstamp_work);
2388 #else
2389 static_branch_inc(&netstamp_needed_key);
2390 #endif
2391 }
2392 EXPORT_SYMBOL(net_enable_timestamp);
2393
net_disable_timestamp(void)2394 void net_disable_timestamp(void)
2395 {
2396 #ifdef CONFIG_JUMP_LABEL
2397 int wanted = atomic_read(&netstamp_wanted);
2398
2399 while (wanted > 1) {
2400 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2401 return;
2402 }
2403 atomic_dec(&netstamp_needed_deferred);
2404 schedule_work(&netstamp_work);
2405 #else
2406 static_branch_dec(&netstamp_needed_key);
2407 #endif
2408 }
2409 EXPORT_SYMBOL(net_disable_timestamp);
2410
net_timestamp_set(struct sk_buff * skb)2411 static inline void net_timestamp_set(struct sk_buff *skb)
2412 {
2413 skb->tstamp = 0;
2414 skb->tstamp_type = SKB_CLOCK_REALTIME;
2415 if (static_branch_unlikely(&netstamp_needed_key))
2416 skb->tstamp = ktime_get_real();
2417 }
2418
2419 #define net_timestamp_check(COND, SKB) \
2420 if (static_branch_unlikely(&netstamp_needed_key)) { \
2421 if ((COND) && !(SKB)->tstamp) \
2422 (SKB)->tstamp = ktime_get_real(); \
2423 } \
2424
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2425 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2426 {
2427 return __is_skb_forwardable(dev, skb, true);
2428 }
2429 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2430
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2431 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2432 bool check_mtu)
2433 {
2434 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2435
2436 if (likely(!ret)) {
2437 skb->protocol = eth_type_trans(skb, dev);
2438 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2439 }
2440
2441 return ret;
2442 }
2443
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2444 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2445 {
2446 return __dev_forward_skb2(dev, skb, true);
2447 }
2448 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2449
2450 /**
2451 * dev_forward_skb - loopback an skb to another netif
2452 *
2453 * @dev: destination network device
2454 * @skb: buffer to forward
2455 *
2456 * return values:
2457 * NET_RX_SUCCESS (no congestion)
2458 * NET_RX_DROP (packet was dropped, but freed)
2459 *
2460 * dev_forward_skb can be used for injecting an skb from the
2461 * start_xmit function of one device into the receive queue
2462 * of another device.
2463 *
2464 * The receiving device may be in another namespace, so
2465 * we have to clear all information in the skb that could
2466 * impact namespace isolation.
2467 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2468 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2469 {
2470 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2471 }
2472 EXPORT_SYMBOL_GPL(dev_forward_skb);
2473
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2477 }
2478
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2479 static int deliver_skb(struct sk_buff *skb,
2480 struct packet_type *pt_prev,
2481 struct net_device *orig_dev)
2482 {
2483 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2484 return -ENOMEM;
2485 refcount_inc(&skb->users);
2486 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2487 }
2488
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2489 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2490 struct packet_type **pt,
2491 struct net_device *orig_dev,
2492 __be16 type,
2493 struct list_head *ptype_list)
2494 {
2495 struct packet_type *ptype, *pt_prev = *pt;
2496
2497 list_for_each_entry_rcu(ptype, ptype_list, list) {
2498 if (ptype->type != type)
2499 continue;
2500 if (unlikely(pt_prev))
2501 deliver_skb(skb, pt_prev, orig_dev);
2502 pt_prev = ptype;
2503 }
2504 *pt = pt_prev;
2505 }
2506
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2507 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2508 {
2509 if (!ptype->af_packet_priv || !skb->sk)
2510 return false;
2511
2512 if (ptype->id_match)
2513 return ptype->id_match(ptype, skb->sk);
2514 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2515 return true;
2516
2517 return false;
2518 }
2519
2520 /**
2521 * dev_nit_active_rcu - return true if any network interface taps are in use
2522 *
2523 * The caller must hold the RCU lock
2524 *
2525 * @dev: network device to check for the presence of taps
2526 */
dev_nit_active_rcu(const struct net_device * dev)2527 bool dev_nit_active_rcu(const struct net_device *dev)
2528 {
2529 /* Callers may hold either RCU or RCU BH lock */
2530 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2531
2532 return !list_empty(&dev_net(dev)->ptype_all) ||
2533 !list_empty(&dev->ptype_all);
2534 }
2535 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2536
2537 /*
2538 * Support routine. Sends outgoing frames to any network
2539 * taps currently in use.
2540 */
2541
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2542 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2543 {
2544 struct packet_type *ptype, *pt_prev = NULL;
2545 struct list_head *ptype_list;
2546 struct sk_buff *skb2 = NULL;
2547
2548 rcu_read_lock();
2549 ptype_list = &dev_net_rcu(dev)->ptype_all;
2550 again:
2551 list_for_each_entry_rcu(ptype, ptype_list, list) {
2552 if (READ_ONCE(ptype->ignore_outgoing))
2553 continue;
2554
2555 /* Never send packets back to the socket
2556 * they originated from - MvS (miquels@drinkel.ow.org)
2557 */
2558 if (skb_loop_sk(ptype, skb))
2559 continue;
2560
2561 if (unlikely(pt_prev)) {
2562 deliver_skb(skb2, pt_prev, skb->dev);
2563 pt_prev = ptype;
2564 continue;
2565 }
2566
2567 /* need to clone skb, done only once */
2568 skb2 = skb_clone(skb, GFP_ATOMIC);
2569 if (!skb2)
2570 goto out_unlock;
2571
2572 net_timestamp_set(skb2);
2573
2574 /* skb->nh should be correctly
2575 * set by sender, so that the second statement is
2576 * just protection against buggy protocols.
2577 */
2578 skb_reset_mac_header(skb2);
2579
2580 if (skb_network_header(skb2) < skb2->data ||
2581 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2582 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2583 ntohs(skb2->protocol),
2584 dev->name);
2585 skb_reset_network_header(skb2);
2586 }
2587
2588 skb2->transport_header = skb2->network_header;
2589 skb2->pkt_type = PACKET_OUTGOING;
2590 pt_prev = ptype;
2591 }
2592
2593 if (ptype_list != &dev->ptype_all) {
2594 ptype_list = &dev->ptype_all;
2595 goto again;
2596 }
2597 out_unlock:
2598 if (pt_prev) {
2599 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2600 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2601 else
2602 kfree_skb(skb2);
2603 }
2604 rcu_read_unlock();
2605 }
2606 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2607
2608 /**
2609 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2610 * @dev: Network device
2611 * @txq: number of queues available
2612 *
2613 * If real_num_tx_queues is changed the tc mappings may no longer be
2614 * valid. To resolve this verify the tc mapping remains valid and if
2615 * not NULL the mapping. With no priorities mapping to this
2616 * offset/count pair it will no longer be used. In the worst case TC0
2617 * is invalid nothing can be done so disable priority mappings. If is
2618 * expected that drivers will fix this mapping if they can before
2619 * calling netif_set_real_num_tx_queues.
2620 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2621 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2622 {
2623 int i;
2624 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2625
2626 /* If TC0 is invalidated disable TC mapping */
2627 if (tc->offset + tc->count > txq) {
2628 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2629 dev->num_tc = 0;
2630 return;
2631 }
2632
2633 /* Invalidated prio to tc mappings set to TC0 */
2634 for (i = 1; i < TC_BITMASK + 1; i++) {
2635 int q = netdev_get_prio_tc_map(dev, i);
2636
2637 tc = &dev->tc_to_txq[q];
2638 if (tc->offset + tc->count > txq) {
2639 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2640 i, q);
2641 netdev_set_prio_tc_map(dev, i, 0);
2642 }
2643 }
2644 }
2645
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2646 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2647 {
2648 if (dev->num_tc) {
2649 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2650 int i;
2651
2652 /* walk through the TCs and see if it falls into any of them */
2653 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2654 if ((txq - tc->offset) < tc->count)
2655 return i;
2656 }
2657
2658 /* didn't find it, just return -1 to indicate no match */
2659 return -1;
2660 }
2661
2662 return 0;
2663 }
2664 EXPORT_SYMBOL(netdev_txq_to_tc);
2665
2666 #ifdef CONFIG_XPS
2667 static struct static_key xps_needed __read_mostly;
2668 static struct static_key xps_rxqs_needed __read_mostly;
2669 static DEFINE_MUTEX(xps_map_mutex);
2670 #define xmap_dereference(P) \
2671 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2672
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2673 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2674 struct xps_dev_maps *old_maps, int tci, u16 index)
2675 {
2676 struct xps_map *map = NULL;
2677 int pos;
2678
2679 map = xmap_dereference(dev_maps->attr_map[tci]);
2680 if (!map)
2681 return false;
2682
2683 for (pos = map->len; pos--;) {
2684 if (map->queues[pos] != index)
2685 continue;
2686
2687 if (map->len > 1) {
2688 map->queues[pos] = map->queues[--map->len];
2689 break;
2690 }
2691
2692 if (old_maps)
2693 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2694 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2695 kfree_rcu(map, rcu);
2696 return false;
2697 }
2698
2699 return true;
2700 }
2701
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2702 static bool remove_xps_queue_cpu(struct net_device *dev,
2703 struct xps_dev_maps *dev_maps,
2704 int cpu, u16 offset, u16 count)
2705 {
2706 int num_tc = dev_maps->num_tc;
2707 bool active = false;
2708 int tci;
2709
2710 for (tci = cpu * num_tc; num_tc--; tci++) {
2711 int i, j;
2712
2713 for (i = count, j = offset; i--; j++) {
2714 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2715 break;
2716 }
2717
2718 active |= i < 0;
2719 }
2720
2721 return active;
2722 }
2723
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2724 static void reset_xps_maps(struct net_device *dev,
2725 struct xps_dev_maps *dev_maps,
2726 enum xps_map_type type)
2727 {
2728 static_key_slow_dec_cpuslocked(&xps_needed);
2729 if (type == XPS_RXQS)
2730 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2731
2732 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2733
2734 kfree_rcu(dev_maps, rcu);
2735 }
2736
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2737 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2738 u16 offset, u16 count)
2739 {
2740 struct xps_dev_maps *dev_maps;
2741 bool active = false;
2742 int i, j;
2743
2744 dev_maps = xmap_dereference(dev->xps_maps[type]);
2745 if (!dev_maps)
2746 return;
2747
2748 for (j = 0; j < dev_maps->nr_ids; j++)
2749 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2750 if (!active)
2751 reset_xps_maps(dev, dev_maps, type);
2752
2753 if (type == XPS_CPUS) {
2754 for (i = offset + (count - 1); count--; i--)
2755 netdev_queue_numa_node_write(
2756 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2757 }
2758 }
2759
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2760 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2761 u16 count)
2762 {
2763 if (!static_key_false(&xps_needed))
2764 return;
2765
2766 cpus_read_lock();
2767 mutex_lock(&xps_map_mutex);
2768
2769 if (static_key_false(&xps_rxqs_needed))
2770 clean_xps_maps(dev, XPS_RXQS, offset, count);
2771
2772 clean_xps_maps(dev, XPS_CPUS, offset, count);
2773
2774 mutex_unlock(&xps_map_mutex);
2775 cpus_read_unlock();
2776 }
2777
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2778 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2779 {
2780 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2781 }
2782
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2783 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2784 u16 index, bool is_rxqs_map)
2785 {
2786 struct xps_map *new_map;
2787 int alloc_len = XPS_MIN_MAP_ALLOC;
2788 int i, pos;
2789
2790 for (pos = 0; map && pos < map->len; pos++) {
2791 if (map->queues[pos] != index)
2792 continue;
2793 return map;
2794 }
2795
2796 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2797 if (map) {
2798 if (pos < map->alloc_len)
2799 return map;
2800
2801 alloc_len = map->alloc_len * 2;
2802 }
2803
2804 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2805 * map
2806 */
2807 if (is_rxqs_map)
2808 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2809 else
2810 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2811 cpu_to_node(attr_index));
2812 if (!new_map)
2813 return NULL;
2814
2815 for (i = 0; i < pos; i++)
2816 new_map->queues[i] = map->queues[i];
2817 new_map->alloc_len = alloc_len;
2818 new_map->len = pos;
2819
2820 return new_map;
2821 }
2822
2823 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2824 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2825 struct xps_dev_maps *new_dev_maps, int index,
2826 int tc, bool skip_tc)
2827 {
2828 int i, tci = index * dev_maps->num_tc;
2829 struct xps_map *map;
2830
2831 /* copy maps belonging to foreign traffic classes */
2832 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2833 if (i == tc && skip_tc)
2834 continue;
2835
2836 /* fill in the new device map from the old device map */
2837 map = xmap_dereference(dev_maps->attr_map[tci]);
2838 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2839 }
2840 }
2841
2842 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2843 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2844 u16 index, enum xps_map_type type)
2845 {
2846 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2847 const unsigned long *online_mask = NULL;
2848 bool active = false, copy = false;
2849 int i, j, tci, numa_node_id = -2;
2850 int maps_sz, num_tc = 1, tc = 0;
2851 struct xps_map *map, *new_map;
2852 unsigned int nr_ids;
2853
2854 WARN_ON_ONCE(index >= dev->num_tx_queues);
2855
2856 if (dev->num_tc) {
2857 /* Do not allow XPS on subordinate device directly */
2858 num_tc = dev->num_tc;
2859 if (num_tc < 0)
2860 return -EINVAL;
2861
2862 /* If queue belongs to subordinate dev use its map */
2863 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2864
2865 tc = netdev_txq_to_tc(dev, index);
2866 if (tc < 0)
2867 return -EINVAL;
2868 }
2869
2870 mutex_lock(&xps_map_mutex);
2871
2872 dev_maps = xmap_dereference(dev->xps_maps[type]);
2873 if (type == XPS_RXQS) {
2874 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2875 nr_ids = dev->num_rx_queues;
2876 } else {
2877 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2878 if (num_possible_cpus() > 1)
2879 online_mask = cpumask_bits(cpu_online_mask);
2880 nr_ids = nr_cpu_ids;
2881 }
2882
2883 if (maps_sz < L1_CACHE_BYTES)
2884 maps_sz = L1_CACHE_BYTES;
2885
2886 /* The old dev_maps could be larger or smaller than the one we're
2887 * setting up now, as dev->num_tc or nr_ids could have been updated in
2888 * between. We could try to be smart, but let's be safe instead and only
2889 * copy foreign traffic classes if the two map sizes match.
2890 */
2891 if (dev_maps &&
2892 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2893 copy = true;
2894
2895 /* allocate memory for queue storage */
2896 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2897 j < nr_ids;) {
2898 if (!new_dev_maps) {
2899 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2900 if (!new_dev_maps) {
2901 mutex_unlock(&xps_map_mutex);
2902 return -ENOMEM;
2903 }
2904
2905 new_dev_maps->nr_ids = nr_ids;
2906 new_dev_maps->num_tc = num_tc;
2907 }
2908
2909 tci = j * num_tc + tc;
2910 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2911
2912 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2913 if (!map)
2914 goto error;
2915
2916 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2917 }
2918
2919 if (!new_dev_maps)
2920 goto out_no_new_maps;
2921
2922 if (!dev_maps) {
2923 /* Increment static keys at most once per type */
2924 static_key_slow_inc_cpuslocked(&xps_needed);
2925 if (type == XPS_RXQS)
2926 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2927 }
2928
2929 for (j = 0; j < nr_ids; j++) {
2930 bool skip_tc = false;
2931
2932 tci = j * num_tc + tc;
2933 if (netif_attr_test_mask(j, mask, nr_ids) &&
2934 netif_attr_test_online(j, online_mask, nr_ids)) {
2935 /* add tx-queue to CPU/rx-queue maps */
2936 int pos = 0;
2937
2938 skip_tc = true;
2939
2940 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2941 while ((pos < map->len) && (map->queues[pos] != index))
2942 pos++;
2943
2944 if (pos == map->len)
2945 map->queues[map->len++] = index;
2946 #ifdef CONFIG_NUMA
2947 if (type == XPS_CPUS) {
2948 if (numa_node_id == -2)
2949 numa_node_id = cpu_to_node(j);
2950 else if (numa_node_id != cpu_to_node(j))
2951 numa_node_id = -1;
2952 }
2953 #endif
2954 }
2955
2956 if (copy)
2957 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2958 skip_tc);
2959 }
2960
2961 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2962
2963 /* Cleanup old maps */
2964 if (!dev_maps)
2965 goto out_no_old_maps;
2966
2967 for (j = 0; j < dev_maps->nr_ids; j++) {
2968 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2969 map = xmap_dereference(dev_maps->attr_map[tci]);
2970 if (!map)
2971 continue;
2972
2973 if (copy) {
2974 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2975 if (map == new_map)
2976 continue;
2977 }
2978
2979 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2980 kfree_rcu(map, rcu);
2981 }
2982 }
2983
2984 old_dev_maps = dev_maps;
2985
2986 out_no_old_maps:
2987 dev_maps = new_dev_maps;
2988 active = true;
2989
2990 out_no_new_maps:
2991 if (type == XPS_CPUS)
2992 /* update Tx queue numa node */
2993 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2994 (numa_node_id >= 0) ?
2995 numa_node_id : NUMA_NO_NODE);
2996
2997 if (!dev_maps)
2998 goto out_no_maps;
2999
3000 /* removes tx-queue from unused CPUs/rx-queues */
3001 for (j = 0; j < dev_maps->nr_ids; j++) {
3002 tci = j * dev_maps->num_tc;
3003
3004 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3005 if (i == tc &&
3006 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3007 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3008 continue;
3009
3010 active |= remove_xps_queue(dev_maps,
3011 copy ? old_dev_maps : NULL,
3012 tci, index);
3013 }
3014 }
3015
3016 if (old_dev_maps)
3017 kfree_rcu(old_dev_maps, rcu);
3018
3019 /* free map if not active */
3020 if (!active)
3021 reset_xps_maps(dev, dev_maps, type);
3022
3023 out_no_maps:
3024 mutex_unlock(&xps_map_mutex);
3025
3026 return 0;
3027 error:
3028 /* remove any maps that we added */
3029 for (j = 0; j < nr_ids; j++) {
3030 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3031 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3032 map = copy ?
3033 xmap_dereference(dev_maps->attr_map[tci]) :
3034 NULL;
3035 if (new_map && new_map != map)
3036 kfree(new_map);
3037 }
3038 }
3039
3040 mutex_unlock(&xps_map_mutex);
3041
3042 kfree(new_dev_maps);
3043 return -ENOMEM;
3044 }
3045 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3046
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3047 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3048 u16 index)
3049 {
3050 int ret;
3051
3052 cpus_read_lock();
3053 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3054 cpus_read_unlock();
3055
3056 return ret;
3057 }
3058 EXPORT_SYMBOL(netif_set_xps_queue);
3059
3060 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3061 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3062 {
3063 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3064
3065 /* Unbind any subordinate channels */
3066 while (txq-- != &dev->_tx[0]) {
3067 if (txq->sb_dev)
3068 netdev_unbind_sb_channel(dev, txq->sb_dev);
3069 }
3070 }
3071
netdev_reset_tc(struct net_device * dev)3072 void netdev_reset_tc(struct net_device *dev)
3073 {
3074 #ifdef CONFIG_XPS
3075 netif_reset_xps_queues_gt(dev, 0);
3076 #endif
3077 netdev_unbind_all_sb_channels(dev);
3078
3079 /* Reset TC configuration of device */
3080 dev->num_tc = 0;
3081 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3082 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3083 }
3084 EXPORT_SYMBOL(netdev_reset_tc);
3085
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3086 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3087 {
3088 if (tc >= dev->num_tc)
3089 return -EINVAL;
3090
3091 #ifdef CONFIG_XPS
3092 netif_reset_xps_queues(dev, offset, count);
3093 #endif
3094 dev->tc_to_txq[tc].count = count;
3095 dev->tc_to_txq[tc].offset = offset;
3096 return 0;
3097 }
3098 EXPORT_SYMBOL(netdev_set_tc_queue);
3099
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3100 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3101 {
3102 if (num_tc > TC_MAX_QUEUE)
3103 return -EINVAL;
3104
3105 #ifdef CONFIG_XPS
3106 netif_reset_xps_queues_gt(dev, 0);
3107 #endif
3108 netdev_unbind_all_sb_channels(dev);
3109
3110 dev->num_tc = num_tc;
3111 return 0;
3112 }
3113 EXPORT_SYMBOL(netdev_set_num_tc);
3114
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3115 void netdev_unbind_sb_channel(struct net_device *dev,
3116 struct net_device *sb_dev)
3117 {
3118 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3119
3120 #ifdef CONFIG_XPS
3121 netif_reset_xps_queues_gt(sb_dev, 0);
3122 #endif
3123 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3124 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3125
3126 while (txq-- != &dev->_tx[0]) {
3127 if (txq->sb_dev == sb_dev)
3128 txq->sb_dev = NULL;
3129 }
3130 }
3131 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3132
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3133 int netdev_bind_sb_channel_queue(struct net_device *dev,
3134 struct net_device *sb_dev,
3135 u8 tc, u16 count, u16 offset)
3136 {
3137 /* Make certain the sb_dev and dev are already configured */
3138 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3139 return -EINVAL;
3140
3141 /* We cannot hand out queues we don't have */
3142 if ((offset + count) > dev->real_num_tx_queues)
3143 return -EINVAL;
3144
3145 /* Record the mapping */
3146 sb_dev->tc_to_txq[tc].count = count;
3147 sb_dev->tc_to_txq[tc].offset = offset;
3148
3149 /* Provide a way for Tx queue to find the tc_to_txq map or
3150 * XPS map for itself.
3151 */
3152 while (count--)
3153 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3154
3155 return 0;
3156 }
3157 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3158
netdev_set_sb_channel(struct net_device * dev,u16 channel)3159 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3160 {
3161 /* Do not use a multiqueue device to represent a subordinate channel */
3162 if (netif_is_multiqueue(dev))
3163 return -ENODEV;
3164
3165 /* We allow channels 1 - 32767 to be used for subordinate channels.
3166 * Channel 0 is meant to be "native" mode and used only to represent
3167 * the main root device. We allow writing 0 to reset the device back
3168 * to normal mode after being used as a subordinate channel.
3169 */
3170 if (channel > S16_MAX)
3171 return -EINVAL;
3172
3173 dev->num_tc = -channel;
3174
3175 return 0;
3176 }
3177 EXPORT_SYMBOL(netdev_set_sb_channel);
3178
3179 /*
3180 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3181 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3182 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3183 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3184 {
3185 bool disabling;
3186 int rc;
3187
3188 disabling = txq < dev->real_num_tx_queues;
3189
3190 if (txq < 1 || txq > dev->num_tx_queues)
3191 return -EINVAL;
3192
3193 if (dev->reg_state == NETREG_REGISTERED ||
3194 dev->reg_state == NETREG_UNREGISTERING) {
3195 netdev_ops_assert_locked(dev);
3196
3197 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3198 txq);
3199 if (rc)
3200 return rc;
3201
3202 if (dev->num_tc)
3203 netif_setup_tc(dev, txq);
3204
3205 net_shaper_set_real_num_tx_queues(dev, txq);
3206
3207 dev_qdisc_change_real_num_tx(dev, txq);
3208
3209 dev->real_num_tx_queues = txq;
3210
3211 if (disabling) {
3212 synchronize_net();
3213 qdisc_reset_all_tx_gt(dev, txq);
3214 #ifdef CONFIG_XPS
3215 netif_reset_xps_queues_gt(dev, txq);
3216 #endif
3217 }
3218 } else {
3219 dev->real_num_tx_queues = txq;
3220 }
3221
3222 return 0;
3223 }
3224 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3225
3226 /**
3227 * netif_set_real_num_rx_queues - set actual number of RX queues used
3228 * @dev: Network device
3229 * @rxq: Actual number of RX queues
3230 *
3231 * This must be called either with the rtnl_lock held or before
3232 * registration of the net device. Returns 0 on success, or a
3233 * negative error code. If called before registration, it always
3234 * succeeds.
3235 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3236 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3237 {
3238 int rc;
3239
3240 if (rxq < 1 || rxq > dev->num_rx_queues)
3241 return -EINVAL;
3242
3243 if (dev->reg_state == NETREG_REGISTERED) {
3244 netdev_ops_assert_locked(dev);
3245
3246 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3247 rxq);
3248 if (rc)
3249 return rc;
3250 }
3251
3252 dev->real_num_rx_queues = rxq;
3253 return 0;
3254 }
3255 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3256
3257 /**
3258 * netif_set_real_num_queues - set actual number of RX and TX queues used
3259 * @dev: Network device
3260 * @txq: Actual number of TX queues
3261 * @rxq: Actual number of RX queues
3262 *
3263 * Set the real number of both TX and RX queues.
3264 * Does nothing if the number of queues is already correct.
3265 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3266 int netif_set_real_num_queues(struct net_device *dev,
3267 unsigned int txq, unsigned int rxq)
3268 {
3269 unsigned int old_rxq = dev->real_num_rx_queues;
3270 int err;
3271
3272 if (txq < 1 || txq > dev->num_tx_queues ||
3273 rxq < 1 || rxq > dev->num_rx_queues)
3274 return -EINVAL;
3275
3276 /* Start from increases, so the error path only does decreases -
3277 * decreases can't fail.
3278 */
3279 if (rxq > dev->real_num_rx_queues) {
3280 err = netif_set_real_num_rx_queues(dev, rxq);
3281 if (err)
3282 return err;
3283 }
3284 if (txq > dev->real_num_tx_queues) {
3285 err = netif_set_real_num_tx_queues(dev, txq);
3286 if (err)
3287 goto undo_rx;
3288 }
3289 if (rxq < dev->real_num_rx_queues)
3290 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3291 if (txq < dev->real_num_tx_queues)
3292 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3293
3294 return 0;
3295 undo_rx:
3296 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3297 return err;
3298 }
3299 EXPORT_SYMBOL(netif_set_real_num_queues);
3300
3301 /**
3302 * netif_set_tso_max_size() - set the max size of TSO frames supported
3303 * @dev: netdev to update
3304 * @size: max skb->len of a TSO frame
3305 *
3306 * Set the limit on the size of TSO super-frames the device can handle.
3307 * Unless explicitly set the stack will assume the value of
3308 * %GSO_LEGACY_MAX_SIZE.
3309 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3310 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3311 {
3312 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3313 if (size < READ_ONCE(dev->gso_max_size))
3314 netif_set_gso_max_size(dev, size);
3315 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3316 netif_set_gso_ipv4_max_size(dev, size);
3317 }
3318 EXPORT_SYMBOL(netif_set_tso_max_size);
3319
3320 /**
3321 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3322 * @dev: netdev to update
3323 * @segs: max number of TCP segments
3324 *
3325 * Set the limit on the number of TCP segments the device can generate from
3326 * a single TSO super-frame.
3327 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3328 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3329 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3330 {
3331 dev->tso_max_segs = segs;
3332 if (segs < READ_ONCE(dev->gso_max_segs))
3333 netif_set_gso_max_segs(dev, segs);
3334 }
3335 EXPORT_SYMBOL(netif_set_tso_max_segs);
3336
3337 /**
3338 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3339 * @to: netdev to update
3340 * @from: netdev from which to copy the limits
3341 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3342 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3343 {
3344 netif_set_tso_max_size(to, from->tso_max_size);
3345 netif_set_tso_max_segs(to, from->tso_max_segs);
3346 }
3347 EXPORT_SYMBOL(netif_inherit_tso_max);
3348
3349 /**
3350 * netif_get_num_default_rss_queues - default number of RSS queues
3351 *
3352 * Default value is the number of physical cores if there are only 1 or 2, or
3353 * divided by 2 if there are more.
3354 */
netif_get_num_default_rss_queues(void)3355 int netif_get_num_default_rss_queues(void)
3356 {
3357 cpumask_var_t cpus;
3358 int cpu, count = 0;
3359
3360 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3361 return 1;
3362
3363 cpumask_copy(cpus, cpu_online_mask);
3364 for_each_cpu(cpu, cpus) {
3365 ++count;
3366 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3367 }
3368 free_cpumask_var(cpus);
3369
3370 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3371 }
3372 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3373
__netif_reschedule(struct Qdisc * q)3374 static void __netif_reschedule(struct Qdisc *q)
3375 {
3376 struct softnet_data *sd;
3377 unsigned long flags;
3378
3379 local_irq_save(flags);
3380 sd = this_cpu_ptr(&softnet_data);
3381 q->next_sched = NULL;
3382 *sd->output_queue_tailp = q;
3383 sd->output_queue_tailp = &q->next_sched;
3384 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3385 local_irq_restore(flags);
3386 }
3387
__netif_schedule(struct Qdisc * q)3388 void __netif_schedule(struct Qdisc *q)
3389 {
3390 /* If q->defer_list is not empty, at least one thread is
3391 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3392 * This thread will attempt to run the queue.
3393 */
3394 if (!llist_empty(&q->defer_list))
3395 return;
3396
3397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3398 __netif_reschedule(q);
3399 }
3400 EXPORT_SYMBOL(__netif_schedule);
3401
3402 struct dev_kfree_skb_cb {
3403 enum skb_drop_reason reason;
3404 };
3405
get_kfree_skb_cb(const struct sk_buff * skb)3406 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3407 {
3408 return (struct dev_kfree_skb_cb *)skb->cb;
3409 }
3410
netif_schedule_queue(struct netdev_queue * txq)3411 void netif_schedule_queue(struct netdev_queue *txq)
3412 {
3413 rcu_read_lock();
3414 if (!netif_xmit_stopped(txq)) {
3415 struct Qdisc *q = rcu_dereference(txq->qdisc);
3416
3417 __netif_schedule(q);
3418 }
3419 rcu_read_unlock();
3420 }
3421 EXPORT_SYMBOL(netif_schedule_queue);
3422
netif_tx_wake_queue(struct netdev_queue * dev_queue)3423 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3424 {
3425 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3426 struct Qdisc *q;
3427
3428 rcu_read_lock();
3429 q = rcu_dereference(dev_queue->qdisc);
3430 __netif_schedule(q);
3431 rcu_read_unlock();
3432 }
3433 }
3434 EXPORT_SYMBOL(netif_tx_wake_queue);
3435
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3436 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3437 {
3438 unsigned long flags;
3439
3440 if (unlikely(!skb))
3441 return;
3442
3443 if (likely(refcount_read(&skb->users) == 1)) {
3444 smp_rmb();
3445 refcount_set(&skb->users, 0);
3446 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3447 return;
3448 }
3449 get_kfree_skb_cb(skb)->reason = reason;
3450 local_irq_save(flags);
3451 skb->next = __this_cpu_read(softnet_data.completion_queue);
3452 __this_cpu_write(softnet_data.completion_queue, skb);
3453 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3454 local_irq_restore(flags);
3455 }
3456 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3457
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3458 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3459 {
3460 if (in_hardirq() || irqs_disabled())
3461 dev_kfree_skb_irq_reason(skb, reason);
3462 else
3463 kfree_skb_reason(skb, reason);
3464 }
3465 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3466
3467
3468 /**
3469 * netif_device_detach - mark device as removed
3470 * @dev: network device
3471 *
3472 * Mark device as removed from system and therefore no longer available.
3473 */
netif_device_detach(struct net_device * dev)3474 void netif_device_detach(struct net_device *dev)
3475 {
3476 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3477 netif_running(dev)) {
3478 netif_tx_stop_all_queues(dev);
3479 }
3480 }
3481 EXPORT_SYMBOL(netif_device_detach);
3482
3483 /**
3484 * netif_device_attach - mark device as attached
3485 * @dev: network device
3486 *
3487 * Mark device as attached from system and restart if needed.
3488 */
netif_device_attach(struct net_device * dev)3489 void netif_device_attach(struct net_device *dev)
3490 {
3491 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3492 netif_running(dev)) {
3493 netif_tx_wake_all_queues(dev);
3494 netdev_watchdog_up(dev);
3495 }
3496 }
3497 EXPORT_SYMBOL(netif_device_attach);
3498
3499 /*
3500 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3501 * to be used as a distribution range.
3502 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3503 static u16 skb_tx_hash(const struct net_device *dev,
3504 const struct net_device *sb_dev,
3505 struct sk_buff *skb)
3506 {
3507 u32 hash;
3508 u16 qoffset = 0;
3509 u16 qcount = dev->real_num_tx_queues;
3510
3511 if (dev->num_tc) {
3512 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3513
3514 qoffset = sb_dev->tc_to_txq[tc].offset;
3515 qcount = sb_dev->tc_to_txq[tc].count;
3516 if (unlikely(!qcount)) {
3517 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3518 sb_dev->name, qoffset, tc);
3519 qoffset = 0;
3520 qcount = dev->real_num_tx_queues;
3521 }
3522 }
3523
3524 if (skb_rx_queue_recorded(skb)) {
3525 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3526 hash = skb_get_rx_queue(skb);
3527 if (hash >= qoffset)
3528 hash -= qoffset;
3529 while (unlikely(hash >= qcount))
3530 hash -= qcount;
3531 return hash + qoffset;
3532 }
3533
3534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3535 }
3536
skb_warn_bad_offload(const struct sk_buff * skb)3537 void skb_warn_bad_offload(const struct sk_buff *skb)
3538 {
3539 static const netdev_features_t null_features;
3540 struct net_device *dev = skb->dev;
3541 const char *name = "";
3542
3543 if (!net_ratelimit())
3544 return;
3545
3546 if (dev) {
3547 if (dev->dev.parent)
3548 name = dev_driver_string(dev->dev.parent);
3549 else
3550 name = netdev_name(dev);
3551 }
3552 skb_dump(KERN_WARNING, skb, false);
3553 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3554 name, dev ? &dev->features : &null_features,
3555 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3556 }
3557
3558 /*
3559 * Invalidate hardware checksum when packet is to be mangled, and
3560 * complete checksum manually on outgoing path.
3561 */
skb_checksum_help(struct sk_buff * skb)3562 int skb_checksum_help(struct sk_buff *skb)
3563 {
3564 __wsum csum;
3565 int ret = 0, offset;
3566
3567 if (skb->ip_summed == CHECKSUM_COMPLETE)
3568 goto out_set_summed;
3569
3570 if (unlikely(skb_is_gso(skb))) {
3571 skb_warn_bad_offload(skb);
3572 return -EINVAL;
3573 }
3574
3575 if (!skb_frags_readable(skb)) {
3576 return -EFAULT;
3577 }
3578
3579 /* Before computing a checksum, we should make sure no frag could
3580 * be modified by an external entity : checksum could be wrong.
3581 */
3582 if (skb_has_shared_frag(skb)) {
3583 ret = __skb_linearize(skb);
3584 if (ret)
3585 goto out;
3586 }
3587
3588 offset = skb_checksum_start_offset(skb);
3589 ret = -EINVAL;
3590 if (unlikely(offset >= skb_headlen(skb))) {
3591 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3592 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3593 offset, skb_headlen(skb));
3594 goto out;
3595 }
3596 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3597
3598 offset += skb->csum_offset;
3599 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3600 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3601 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3602 offset + sizeof(__sum16), skb_headlen(skb));
3603 goto out;
3604 }
3605 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3606 if (ret)
3607 goto out;
3608
3609 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3610 out_set_summed:
3611 skb->ip_summed = CHECKSUM_NONE;
3612 out:
3613 return ret;
3614 }
3615 EXPORT_SYMBOL(skb_checksum_help);
3616
3617 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3618 int skb_crc32c_csum_help(struct sk_buff *skb)
3619 {
3620 u32 crc;
3621 int ret = 0, offset, start;
3622
3623 if (skb->ip_summed != CHECKSUM_PARTIAL)
3624 goto out;
3625
3626 if (unlikely(skb_is_gso(skb)))
3627 goto out;
3628
3629 /* Before computing a checksum, we should make sure no frag could
3630 * be modified by an external entity : checksum could be wrong.
3631 */
3632 if (unlikely(skb_has_shared_frag(skb))) {
3633 ret = __skb_linearize(skb);
3634 if (ret)
3635 goto out;
3636 }
3637 start = skb_checksum_start_offset(skb);
3638 offset = start + offsetof(struct sctphdr, checksum);
3639 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3640 ret = -EINVAL;
3641 goto out;
3642 }
3643
3644 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3645 if (ret)
3646 goto out;
3647
3648 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3649 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3650 skb_reset_csum_not_inet(skb);
3651 out:
3652 return ret;
3653 }
3654 EXPORT_SYMBOL(skb_crc32c_csum_help);
3655 #endif /* CONFIG_NET_CRC32C */
3656
skb_network_protocol(struct sk_buff * skb,int * depth)3657 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3658 {
3659 __be16 type = skb->protocol;
3660
3661 /* Tunnel gso handlers can set protocol to ethernet. */
3662 if (type == htons(ETH_P_TEB)) {
3663 struct ethhdr *eth;
3664
3665 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3666 return 0;
3667
3668 eth = (struct ethhdr *)skb->data;
3669 type = eth->h_proto;
3670 }
3671
3672 return vlan_get_protocol_and_depth(skb, type, depth);
3673 }
3674
3675
3676 /* Take action when hardware reception checksum errors are detected. */
3677 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3678 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3679 {
3680 netdev_err(dev, "hw csum failure\n");
3681 skb_dump(KERN_ERR, skb, true);
3682 dump_stack();
3683 }
3684
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3685 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3686 {
3687 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3688 }
3689 EXPORT_SYMBOL(netdev_rx_csum_fault);
3690 #endif
3691
3692 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3693 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3694 {
3695 #ifdef CONFIG_HIGHMEM
3696 int i;
3697
3698 if (!(dev->features & NETIF_F_HIGHDMA)) {
3699 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3700 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3701 struct page *page = skb_frag_page(frag);
3702
3703 if (page && PageHighMem(page))
3704 return 1;
3705 }
3706 }
3707 #endif
3708 return 0;
3709 }
3710
3711 /* If MPLS offload request, verify we are testing hardware MPLS features
3712 * instead of standard features for the netdev.
3713 */
3714 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3715 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3716 netdev_features_t features,
3717 __be16 type)
3718 {
3719 if (eth_p_mpls(type))
3720 features &= skb->dev->mpls_features;
3721
3722 return features;
3723 }
3724 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3725 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3726 netdev_features_t features,
3727 __be16 type)
3728 {
3729 return features;
3730 }
3731 #endif
3732
harmonize_features(struct sk_buff * skb,netdev_features_t features)3733 static netdev_features_t harmonize_features(struct sk_buff *skb,
3734 netdev_features_t features)
3735 {
3736 __be16 type;
3737
3738 type = skb_network_protocol(skb, NULL);
3739 features = net_mpls_features(skb, features, type);
3740
3741 if (skb->ip_summed != CHECKSUM_NONE &&
3742 !can_checksum_protocol(features, type)) {
3743 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3744 }
3745 if (illegal_highdma(skb->dev, skb))
3746 features &= ~NETIF_F_SG;
3747
3748 return features;
3749 }
3750
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3751 netdev_features_t passthru_features_check(struct sk_buff *skb,
3752 struct net_device *dev,
3753 netdev_features_t features)
3754 {
3755 return features;
3756 }
3757 EXPORT_SYMBOL(passthru_features_check);
3758
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3759 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3760 struct net_device *dev,
3761 netdev_features_t features)
3762 {
3763 return vlan_features_check(skb, features);
3764 }
3765
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3766 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3767 struct net_device *dev,
3768 netdev_features_t features)
3769 {
3770 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3771
3772 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3773 return features & ~NETIF_F_GSO_MASK;
3774
3775 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3776 return features & ~NETIF_F_GSO_MASK;
3777
3778 if (!skb_shinfo(skb)->gso_type) {
3779 skb_warn_bad_offload(skb);
3780 return features & ~NETIF_F_GSO_MASK;
3781 }
3782
3783 /* Support for GSO partial features requires software
3784 * intervention before we can actually process the packets
3785 * so we need to strip support for any partial features now
3786 * and we can pull them back in after we have partially
3787 * segmented the frame.
3788 */
3789 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3790 features &= ~dev->gso_partial_features;
3791
3792 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3793 * has the potential to be fragmented so that TSO does not generate
3794 * segments with the same ID. For encapsulated packets, the ID mangling
3795 * feature is guaranteed not to use the same ID for the outer IPv4
3796 * headers of the generated segments if the headers have the potential
3797 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3798 * feature (see the section about NETIF_F_TSO_MANGLEID in
3799 * segmentation-offloads.rst).
3800 */
3801 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3802 struct iphdr *iph = skb->encapsulation ?
3803 inner_ip_hdr(skb) : ip_hdr(skb);
3804
3805 if (!(iph->frag_off & htons(IP_DF)))
3806 features &= ~NETIF_F_TSO_MANGLEID;
3807 }
3808
3809 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3810 * so neither does TSO that depends on it.
3811 */
3812 if (features & NETIF_F_IPV6_CSUM &&
3813 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3814 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3815 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3816 skb_transport_header_was_set(skb) &&
3817 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3818 !ipv6_has_hopopt_jumbo(skb))
3819 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3820
3821 return features;
3822 }
3823
netif_skb_features(struct sk_buff * skb)3824 netdev_features_t netif_skb_features(struct sk_buff *skb)
3825 {
3826 struct net_device *dev = skb->dev;
3827 netdev_features_t features = dev->features;
3828
3829 if (skb_is_gso(skb))
3830 features = gso_features_check(skb, dev, features);
3831
3832 /* If encapsulation offload request, verify we are testing
3833 * hardware encapsulation features instead of standard
3834 * features for the netdev
3835 */
3836 if (skb->encapsulation)
3837 features &= dev->hw_enc_features;
3838
3839 if (skb_vlan_tagged(skb))
3840 features = netdev_intersect_features(features,
3841 dev->vlan_features |
3842 NETIF_F_HW_VLAN_CTAG_TX |
3843 NETIF_F_HW_VLAN_STAG_TX);
3844
3845 if (dev->netdev_ops->ndo_features_check)
3846 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3847 features);
3848 else
3849 features &= dflt_features_check(skb, dev, features);
3850
3851 return harmonize_features(skb, features);
3852 }
3853 EXPORT_SYMBOL(netif_skb_features);
3854
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3855 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3856 struct netdev_queue *txq, bool more)
3857 {
3858 unsigned int len;
3859 int rc;
3860
3861 if (dev_nit_active_rcu(dev))
3862 dev_queue_xmit_nit(skb, dev);
3863
3864 len = skb->len;
3865 trace_net_dev_start_xmit(skb, dev);
3866 rc = netdev_start_xmit(skb, dev, txq, more);
3867 trace_net_dev_xmit(skb, rc, dev, len);
3868
3869 return rc;
3870 }
3871
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3872 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3873 struct netdev_queue *txq, int *ret)
3874 {
3875 struct sk_buff *skb = first;
3876 int rc = NETDEV_TX_OK;
3877
3878 while (skb) {
3879 struct sk_buff *next = skb->next;
3880
3881 skb_mark_not_on_list(skb);
3882 rc = xmit_one(skb, dev, txq, next != NULL);
3883 if (unlikely(!dev_xmit_complete(rc))) {
3884 skb->next = next;
3885 goto out;
3886 }
3887
3888 skb = next;
3889 if (netif_tx_queue_stopped(txq) && skb) {
3890 rc = NETDEV_TX_BUSY;
3891 break;
3892 }
3893 }
3894
3895 out:
3896 *ret = rc;
3897 return skb;
3898 }
3899
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3900 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3901 netdev_features_t features)
3902 {
3903 if (skb_vlan_tag_present(skb) &&
3904 !vlan_hw_offload_capable(features, skb->vlan_proto))
3905 skb = __vlan_hwaccel_push_inside(skb);
3906 return skb;
3907 }
3908
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3909 int skb_csum_hwoffload_help(struct sk_buff *skb,
3910 const netdev_features_t features)
3911 {
3912 if (unlikely(skb_csum_is_sctp(skb)))
3913 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3914 skb_crc32c_csum_help(skb);
3915
3916 if (features & NETIF_F_HW_CSUM)
3917 return 0;
3918
3919 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3920 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3921 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3922 !ipv6_has_hopopt_jumbo(skb))
3923 goto sw_checksum;
3924
3925 switch (skb->csum_offset) {
3926 case offsetof(struct tcphdr, check):
3927 case offsetof(struct udphdr, check):
3928 return 0;
3929 }
3930 }
3931
3932 sw_checksum:
3933 return skb_checksum_help(skb);
3934 }
3935 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3936
3937 /* Checks if this SKB belongs to an HW offloaded socket
3938 * and whether any SW fallbacks are required based on dev.
3939 * Check decrypted mark in case skb_orphan() cleared socket.
3940 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3941 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3942 struct net_device *dev)
3943 {
3944 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3945 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3946 struct sk_buff *skb);
3947 struct sock *sk = skb->sk;
3948
3949 sk_validate = NULL;
3950 if (sk) {
3951 if (sk_fullsock(sk))
3952 sk_validate = sk->sk_validate_xmit_skb;
3953 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3954 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3955 }
3956
3957 if (sk_validate) {
3958 skb = sk_validate(sk, dev, skb);
3959 } else if (unlikely(skb_is_decrypted(skb))) {
3960 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3961 kfree_skb(skb);
3962 skb = NULL;
3963 }
3964 #endif
3965
3966 return skb;
3967 }
3968
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3969 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3970 struct net_device *dev)
3971 {
3972 struct skb_shared_info *shinfo;
3973 struct net_iov *niov;
3974
3975 if (likely(skb_frags_readable(skb)))
3976 goto out;
3977
3978 if (!dev->netmem_tx)
3979 goto out_free;
3980
3981 shinfo = skb_shinfo(skb);
3982
3983 if (shinfo->nr_frags > 0) {
3984 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3985 if (net_is_devmem_iov(niov) &&
3986 net_devmem_iov_binding(niov)->dev != dev)
3987 goto out_free;
3988 }
3989
3990 out:
3991 return skb;
3992
3993 out_free:
3994 kfree_skb(skb);
3995 return NULL;
3996 }
3997
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3998 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3999 {
4000 netdev_features_t features;
4001
4002 skb = validate_xmit_unreadable_skb(skb, dev);
4003 if (unlikely(!skb))
4004 goto out_null;
4005
4006 features = netif_skb_features(skb);
4007 skb = validate_xmit_vlan(skb, features);
4008 if (unlikely(!skb))
4009 goto out_null;
4010
4011 skb = sk_validate_xmit_skb(skb, dev);
4012 if (unlikely(!skb))
4013 goto out_null;
4014
4015 if (netif_needs_gso(skb, features)) {
4016 struct sk_buff *segs;
4017
4018 segs = skb_gso_segment(skb, features);
4019 if (IS_ERR(segs)) {
4020 goto out_kfree_skb;
4021 } else if (segs) {
4022 consume_skb(skb);
4023 skb = segs;
4024 }
4025 } else {
4026 if (skb_needs_linearize(skb, features) &&
4027 __skb_linearize(skb))
4028 goto out_kfree_skb;
4029
4030 /* If packet is not checksummed and device does not
4031 * support checksumming for this protocol, complete
4032 * checksumming here.
4033 */
4034 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4035 if (skb->encapsulation)
4036 skb_set_inner_transport_header(skb,
4037 skb_checksum_start_offset(skb));
4038 else
4039 skb_set_transport_header(skb,
4040 skb_checksum_start_offset(skb));
4041 if (skb_csum_hwoffload_help(skb, features))
4042 goto out_kfree_skb;
4043 }
4044 }
4045
4046 skb = validate_xmit_xfrm(skb, features, again);
4047
4048 return skb;
4049
4050 out_kfree_skb:
4051 kfree_skb(skb);
4052 out_null:
4053 dev_core_stats_tx_dropped_inc(dev);
4054 return NULL;
4055 }
4056
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4057 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4058 {
4059 struct sk_buff *next, *head = NULL, *tail;
4060
4061 for (; skb != NULL; skb = next) {
4062 next = skb->next;
4063 skb_mark_not_on_list(skb);
4064
4065 /* in case skb won't be segmented, point to itself */
4066 skb->prev = skb;
4067
4068 skb = validate_xmit_skb(skb, dev, again);
4069 if (!skb)
4070 continue;
4071
4072 if (!head)
4073 head = skb;
4074 else
4075 tail->next = skb;
4076 /* If skb was segmented, skb->prev points to
4077 * the last segment. If not, it still contains skb.
4078 */
4079 tail = skb->prev;
4080 }
4081 return head;
4082 }
4083 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4084
qdisc_pkt_len_segs_init(struct sk_buff * skb)4085 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4086 {
4087 struct skb_shared_info *shinfo = skb_shinfo(skb);
4088 u16 gso_segs;
4089
4090 qdisc_skb_cb(skb)->pkt_len = skb->len;
4091 if (!shinfo->gso_size) {
4092 qdisc_skb_cb(skb)->pkt_segs = 1;
4093 return;
4094 }
4095
4096 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4097
4098 /* To get more precise estimation of bytes sent on wire,
4099 * we add to pkt_len the headers size of all segments
4100 */
4101 if (skb_transport_header_was_set(skb)) {
4102 unsigned int hdr_len;
4103
4104 /* mac layer + network layer */
4105 if (!skb->encapsulation)
4106 hdr_len = skb_transport_offset(skb);
4107 else
4108 hdr_len = skb_inner_transport_offset(skb);
4109
4110 /* + transport layer */
4111 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4112 const struct tcphdr *th;
4113 struct tcphdr _tcphdr;
4114
4115 th = skb_header_pointer(skb, hdr_len,
4116 sizeof(_tcphdr), &_tcphdr);
4117 if (likely(th))
4118 hdr_len += __tcp_hdrlen(th);
4119 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4120 struct udphdr _udphdr;
4121
4122 if (skb_header_pointer(skb, hdr_len,
4123 sizeof(_udphdr), &_udphdr))
4124 hdr_len += sizeof(struct udphdr);
4125 }
4126
4127 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4128 int payload = skb->len - hdr_len;
4129
4130 /* Malicious packet. */
4131 if (payload <= 0)
4132 return;
4133 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4134 shinfo->gso_segs = gso_segs;
4135 qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4136 }
4137 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4138 }
4139 }
4140
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4141 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4142 struct sk_buff **to_free,
4143 struct netdev_queue *txq)
4144 {
4145 int rc;
4146
4147 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4148 if (rc == NET_XMIT_SUCCESS)
4149 trace_qdisc_enqueue(q, txq, skb);
4150 return rc;
4151 }
4152
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4153 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4154 struct net_device *dev,
4155 struct netdev_queue *txq)
4156 {
4157 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4158 spinlock_t *root_lock = qdisc_lock(q);
4159 struct llist_node *ll_list, *first_n;
4160 unsigned long defer_count = 0;
4161 int rc;
4162
4163 qdisc_calculate_pkt_len(skb, q);
4164
4165 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4166
4167 if (q->flags & TCQ_F_NOLOCK) {
4168 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4169 qdisc_run_begin(q)) {
4170 /* Retest nolock_qdisc_is_empty() within the protection
4171 * of q->seqlock to protect from racing with requeuing.
4172 */
4173 if (unlikely(!nolock_qdisc_is_empty(q))) {
4174 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4175 __qdisc_run(q);
4176 to_free2 = qdisc_run_end(q);
4177
4178 goto free_skbs;
4179 }
4180
4181 qdisc_bstats_cpu_update(q, skb);
4182 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4183 !nolock_qdisc_is_empty(q))
4184 __qdisc_run(q);
4185
4186 to_free2 = qdisc_run_end(q);
4187 rc = NET_XMIT_SUCCESS;
4188 goto free_skbs;
4189 }
4190
4191 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4192 to_free2 = qdisc_run(q);
4193 goto free_skbs;
4194 }
4195
4196 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4197 * In the try_cmpxchg() loop, we want to increment q->defer_count
4198 * at most once to limit the number of skbs in defer_list.
4199 * We perform the defer_count increment only if the list is not empty,
4200 * because some arches have slow atomic_long_inc_return().
4201 */
4202 first_n = READ_ONCE(q->defer_list.first);
4203 do {
4204 if (first_n && !defer_count) {
4205 defer_count = atomic_long_inc_return(&q->defer_count);
4206 if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4207 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4208 return NET_XMIT_DROP;
4209 }
4210 }
4211 skb->ll_node.next = first_n;
4212 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4213
4214 /* If defer_list was not empty, we know the cpu which queued
4215 * the first skb will process the whole list for us.
4216 */
4217 if (first_n)
4218 return NET_XMIT_SUCCESS;
4219
4220 spin_lock(root_lock);
4221
4222 ll_list = llist_del_all(&q->defer_list);
4223 /* There is a small race because we clear defer_count not atomically
4224 * with the prior llist_del_all(). This means defer_list could grow
4225 * over qdisc_max_burst.
4226 */
4227 atomic_long_set(&q->defer_count, 0);
4228
4229 ll_list = llist_reverse_order(ll_list);
4230
4231 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4232 llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4233 __qdisc_drop(skb, &to_free);
4234 rc = NET_XMIT_DROP;
4235 goto unlock;
4236 }
4237 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4238 !llist_next(ll_list) && qdisc_run_begin(q)) {
4239 /*
4240 * This is a work-conserving queue; there are no old skbs
4241 * waiting to be sent out; and the qdisc is not running -
4242 * xmit the skb directly.
4243 */
4244
4245 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4246 struct sk_buff,
4247 ll_node));
4248 qdisc_bstats_update(q, skb);
4249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4250 __qdisc_run(q);
4251 to_free2 = qdisc_run_end(q);
4252 rc = NET_XMIT_SUCCESS;
4253 } else {
4254 int count = 0;
4255
4256 llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4257 if (next) {
4258 prefetch(next);
4259 prefetch(&next->priority);
4260 skb_mark_not_on_list(skb);
4261 }
4262 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4263 count++;
4264 }
4265 to_free2 = qdisc_run(q);
4266 if (count != 1)
4267 rc = NET_XMIT_SUCCESS;
4268 }
4269 unlock:
4270 spin_unlock(root_lock);
4271
4272 free_skbs:
4273 tcf_kfree_skb_list(to_free);
4274 tcf_kfree_skb_list(to_free2);
4275 return rc;
4276 }
4277
4278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4279 static void skb_update_prio(struct sk_buff *skb)
4280 {
4281 const struct netprio_map *map;
4282 const struct sock *sk;
4283 unsigned int prioidx;
4284
4285 if (skb->priority)
4286 return;
4287 map = rcu_dereference_bh(skb->dev->priomap);
4288 if (!map)
4289 return;
4290 sk = skb_to_full_sk(skb);
4291 if (!sk)
4292 return;
4293
4294 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4295
4296 if (prioidx < map->priomap_len)
4297 skb->priority = map->priomap[prioidx];
4298 }
4299 #else
4300 #define skb_update_prio(skb)
4301 #endif
4302
4303 /**
4304 * dev_loopback_xmit - loop back @skb
4305 * @net: network namespace this loopback is happening in
4306 * @sk: sk needed to be a netfilter okfn
4307 * @skb: buffer to transmit
4308 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4309 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4310 {
4311 skb_reset_mac_header(skb);
4312 __skb_pull(skb, skb_network_offset(skb));
4313 skb->pkt_type = PACKET_LOOPBACK;
4314 if (skb->ip_summed == CHECKSUM_NONE)
4315 skb->ip_summed = CHECKSUM_UNNECESSARY;
4316 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4317 skb_dst_force(skb);
4318 netif_rx(skb);
4319 return 0;
4320 }
4321 EXPORT_SYMBOL(dev_loopback_xmit);
4322
4323 #ifdef CONFIG_NET_EGRESS
4324 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4325 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4326 {
4327 int qm = skb_get_queue_mapping(skb);
4328
4329 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4330 }
4331
4332 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4333 static bool netdev_xmit_txqueue_skipped(void)
4334 {
4335 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4336 }
4337
netdev_xmit_skip_txqueue(bool skip)4338 void netdev_xmit_skip_txqueue(bool skip)
4339 {
4340 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4341 }
4342 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4343
4344 #else
netdev_xmit_txqueue_skipped(void)4345 static bool netdev_xmit_txqueue_skipped(void)
4346 {
4347 return current->net_xmit.skip_txqueue;
4348 }
4349
netdev_xmit_skip_txqueue(bool skip)4350 void netdev_xmit_skip_txqueue(bool skip)
4351 {
4352 current->net_xmit.skip_txqueue = skip;
4353 }
4354 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4355 #endif
4356 #endif /* CONFIG_NET_EGRESS */
4357
4358 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4359 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4360 enum skb_drop_reason *drop_reason)
4361 {
4362 int ret = TC_ACT_UNSPEC;
4363 #ifdef CONFIG_NET_CLS_ACT
4364 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4365 struct tcf_result res;
4366
4367 if (!miniq)
4368 return ret;
4369
4370 /* Global bypass */
4371 if (!static_branch_likely(&tcf_sw_enabled_key))
4372 return ret;
4373
4374 /* Block-wise bypass */
4375 if (tcf_block_bypass_sw(miniq->block))
4376 return ret;
4377
4378 tc_skb_cb(skb)->mru = 0;
4379 qdisc_skb_cb(skb)->post_ct = false;
4380 tcf_set_drop_reason(skb, *drop_reason);
4381
4382 mini_qdisc_bstats_cpu_update(miniq, skb);
4383 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4384 /* Only tcf related quirks below. */
4385 switch (ret) {
4386 case TC_ACT_SHOT:
4387 *drop_reason = tcf_get_drop_reason(skb);
4388 mini_qdisc_qstats_cpu_drop(miniq);
4389 break;
4390 case TC_ACT_OK:
4391 case TC_ACT_RECLASSIFY:
4392 skb->tc_index = TC_H_MIN(res.classid);
4393 break;
4394 }
4395 #endif /* CONFIG_NET_CLS_ACT */
4396 return ret;
4397 }
4398
4399 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4400
tcx_inc(void)4401 void tcx_inc(void)
4402 {
4403 static_branch_inc(&tcx_needed_key);
4404 }
4405
tcx_dec(void)4406 void tcx_dec(void)
4407 {
4408 static_branch_dec(&tcx_needed_key);
4409 }
4410
4411 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4412 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4413 const bool needs_mac)
4414 {
4415 const struct bpf_mprog_fp *fp;
4416 const struct bpf_prog *prog;
4417 int ret = TCX_NEXT;
4418
4419 if (needs_mac)
4420 __skb_push(skb, skb->mac_len);
4421 bpf_mprog_foreach_prog(entry, fp, prog) {
4422 bpf_compute_data_pointers(skb);
4423 ret = bpf_prog_run(prog, skb);
4424 if (ret != TCX_NEXT)
4425 break;
4426 }
4427 if (needs_mac)
4428 __skb_pull(skb, skb->mac_len);
4429 return tcx_action_code(skb, ret);
4430 }
4431
4432 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4433 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4434 struct net_device *orig_dev, bool *another)
4435 {
4436 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4437 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4438 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4439 int sch_ret;
4440
4441 if (!entry)
4442 return skb;
4443
4444 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4445 if (unlikely(*pt_prev)) {
4446 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4447 *pt_prev = NULL;
4448 }
4449
4450 qdisc_pkt_len_segs_init(skb);
4451 tcx_set_ingress(skb, true);
4452
4453 if (static_branch_unlikely(&tcx_needed_key)) {
4454 sch_ret = tcx_run(entry, skb, true);
4455 if (sch_ret != TC_ACT_UNSPEC)
4456 goto ingress_verdict;
4457 }
4458 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4459 ingress_verdict:
4460 switch (sch_ret) {
4461 case TC_ACT_REDIRECT:
4462 /* skb_mac_header check was done by BPF, so we can safely
4463 * push the L2 header back before redirecting to another
4464 * netdev.
4465 */
4466 __skb_push(skb, skb->mac_len);
4467 if (skb_do_redirect(skb) == -EAGAIN) {
4468 __skb_pull(skb, skb->mac_len);
4469 *another = true;
4470 break;
4471 }
4472 *ret = NET_RX_SUCCESS;
4473 bpf_net_ctx_clear(bpf_net_ctx);
4474 return NULL;
4475 case TC_ACT_SHOT:
4476 kfree_skb_reason(skb, drop_reason);
4477 *ret = NET_RX_DROP;
4478 bpf_net_ctx_clear(bpf_net_ctx);
4479 return NULL;
4480 /* used by tc_run */
4481 case TC_ACT_STOLEN:
4482 case TC_ACT_QUEUED:
4483 case TC_ACT_TRAP:
4484 consume_skb(skb);
4485 fallthrough;
4486 case TC_ACT_CONSUMED:
4487 *ret = NET_RX_SUCCESS;
4488 bpf_net_ctx_clear(bpf_net_ctx);
4489 return NULL;
4490 }
4491 bpf_net_ctx_clear(bpf_net_ctx);
4492
4493 return skb;
4494 }
4495
4496 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4497 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4498 {
4499 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4500 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4501 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4502 int sch_ret;
4503
4504 if (!entry)
4505 return skb;
4506
4507 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4508
4509 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4510 * already set by the caller.
4511 */
4512 if (static_branch_unlikely(&tcx_needed_key)) {
4513 sch_ret = tcx_run(entry, skb, false);
4514 if (sch_ret != TC_ACT_UNSPEC)
4515 goto egress_verdict;
4516 }
4517 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4518 egress_verdict:
4519 switch (sch_ret) {
4520 case TC_ACT_REDIRECT:
4521 /* No need to push/pop skb's mac_header here on egress! */
4522 skb_do_redirect(skb);
4523 *ret = NET_XMIT_SUCCESS;
4524 bpf_net_ctx_clear(bpf_net_ctx);
4525 return NULL;
4526 case TC_ACT_SHOT:
4527 kfree_skb_reason(skb, drop_reason);
4528 *ret = NET_XMIT_DROP;
4529 bpf_net_ctx_clear(bpf_net_ctx);
4530 return NULL;
4531 /* used by tc_run */
4532 case TC_ACT_STOLEN:
4533 case TC_ACT_QUEUED:
4534 case TC_ACT_TRAP:
4535 consume_skb(skb);
4536 fallthrough;
4537 case TC_ACT_CONSUMED:
4538 *ret = NET_XMIT_SUCCESS;
4539 bpf_net_ctx_clear(bpf_net_ctx);
4540 return NULL;
4541 }
4542 bpf_net_ctx_clear(bpf_net_ctx);
4543
4544 return skb;
4545 }
4546 #else
4547 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4548 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4549 struct net_device *orig_dev, bool *another)
4550 {
4551 return skb;
4552 }
4553
4554 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4555 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4556 {
4557 return skb;
4558 }
4559 #endif /* CONFIG_NET_XGRESS */
4560
4561 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4563 struct xps_dev_maps *dev_maps, unsigned int tci)
4564 {
4565 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4566 struct xps_map *map;
4567 int queue_index = -1;
4568
4569 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4570 return queue_index;
4571
4572 tci *= dev_maps->num_tc;
4573 tci += tc;
4574
4575 map = rcu_dereference(dev_maps->attr_map[tci]);
4576 if (map) {
4577 if (map->len == 1)
4578 queue_index = map->queues[0];
4579 else
4580 queue_index = map->queues[reciprocal_scale(
4581 skb_get_hash(skb), map->len)];
4582 if (unlikely(queue_index >= dev->real_num_tx_queues))
4583 queue_index = -1;
4584 }
4585 return queue_index;
4586 }
4587 #endif
4588
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4589 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4590 struct sk_buff *skb)
4591 {
4592 #ifdef CONFIG_XPS
4593 struct xps_dev_maps *dev_maps;
4594 struct sock *sk = skb->sk;
4595 int queue_index = -1;
4596
4597 if (!static_key_false(&xps_needed))
4598 return -1;
4599
4600 rcu_read_lock();
4601 if (!static_key_false(&xps_rxqs_needed))
4602 goto get_cpus_map;
4603
4604 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4605 if (dev_maps) {
4606 int tci = sk_rx_queue_get(sk);
4607
4608 if (tci >= 0)
4609 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4610 tci);
4611 }
4612
4613 get_cpus_map:
4614 if (queue_index < 0) {
4615 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4616 if (dev_maps) {
4617 unsigned int tci = skb->sender_cpu - 1;
4618
4619 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4620 tci);
4621 }
4622 }
4623 rcu_read_unlock();
4624
4625 return queue_index;
4626 #else
4627 return -1;
4628 #endif
4629 }
4630
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4631 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4632 struct net_device *sb_dev)
4633 {
4634 return 0;
4635 }
4636 EXPORT_SYMBOL(dev_pick_tx_zero);
4637
sk_tx_queue_get(const struct sock * sk)4638 int sk_tx_queue_get(const struct sock *sk)
4639 {
4640 int resel, val;
4641
4642 if (!sk)
4643 return -1;
4644 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4645 * and sk_tx_queue_set().
4646 */
4647 val = READ_ONCE(sk->sk_tx_queue_mapping);
4648
4649 if (val == NO_QUEUE_MAPPING)
4650 return -1;
4651
4652 if (!sk_fullsock(sk))
4653 return val;
4654
4655 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4656 if (resel && time_is_before_jiffies(
4657 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4658 return -1;
4659
4660 return val;
4661 }
4662 EXPORT_SYMBOL(sk_tx_queue_get);
4663
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4664 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4665 struct net_device *sb_dev)
4666 {
4667 struct sock *sk = skb->sk;
4668 int queue_index = sk_tx_queue_get(sk);
4669
4670 sb_dev = sb_dev ? : dev;
4671
4672 if (queue_index < 0 || skb->ooo_okay ||
4673 queue_index >= dev->real_num_tx_queues) {
4674 int new_index = get_xps_queue(dev, sb_dev, skb);
4675
4676 if (new_index < 0)
4677 new_index = skb_tx_hash(dev, sb_dev, skb);
4678
4679 if (sk && sk_fullsock(sk) &&
4680 rcu_access_pointer(sk->sk_dst_cache))
4681 sk_tx_queue_set(sk, new_index);
4682
4683 queue_index = new_index;
4684 }
4685
4686 return queue_index;
4687 }
4688 EXPORT_SYMBOL(netdev_pick_tx);
4689
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4690 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4691 struct sk_buff *skb,
4692 struct net_device *sb_dev)
4693 {
4694 int queue_index = 0;
4695
4696 #ifdef CONFIG_XPS
4697 u32 sender_cpu = skb->sender_cpu - 1;
4698
4699 if (sender_cpu >= (u32)NR_CPUS)
4700 skb->sender_cpu = raw_smp_processor_id() + 1;
4701 #endif
4702
4703 if (dev->real_num_tx_queues != 1) {
4704 const struct net_device_ops *ops = dev->netdev_ops;
4705
4706 if (ops->ndo_select_queue)
4707 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4708 else
4709 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4710
4711 queue_index = netdev_cap_txqueue(dev, queue_index);
4712 }
4713
4714 skb_set_queue_mapping(skb, queue_index);
4715 return netdev_get_tx_queue(dev, queue_index);
4716 }
4717
4718 /**
4719 * __dev_queue_xmit() - transmit a buffer
4720 * @skb: buffer to transmit
4721 * @sb_dev: suboordinate device used for L2 forwarding offload
4722 *
4723 * Queue a buffer for transmission to a network device. The caller must
4724 * have set the device and priority and built the buffer before calling
4725 * this function. The function can be called from an interrupt.
4726 *
4727 * When calling this method, interrupts MUST be enabled. This is because
4728 * the BH enable code must have IRQs enabled so that it will not deadlock.
4729 *
4730 * Regardless of the return value, the skb is consumed, so it is currently
4731 * difficult to retry a send to this method. (You can bump the ref count
4732 * before sending to hold a reference for retry if you are careful.)
4733 *
4734 * Return:
4735 * * 0 - buffer successfully transmitted
4736 * * positive qdisc return code - NET_XMIT_DROP etc.
4737 * * negative errno - other errors
4738 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4739 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4740 {
4741 struct net_device *dev = skb->dev;
4742 struct netdev_queue *txq = NULL;
4743 struct Qdisc *q;
4744 int rc = -ENOMEM;
4745 bool again = false;
4746
4747 skb_reset_mac_header(skb);
4748 skb_assert_len(skb);
4749
4750 if (unlikely(skb_shinfo(skb)->tx_flags &
4751 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4752 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4753
4754 /* Disable soft irqs for various locks below. Also
4755 * stops preemption for RCU.
4756 */
4757 rcu_read_lock_bh();
4758
4759 skb_update_prio(skb);
4760
4761 qdisc_pkt_len_segs_init(skb);
4762 tcx_set_ingress(skb, false);
4763 #ifdef CONFIG_NET_EGRESS
4764 if (static_branch_unlikely(&egress_needed_key)) {
4765 if (nf_hook_egress_active()) {
4766 skb = nf_hook_egress(skb, &rc, dev);
4767 if (!skb)
4768 goto out;
4769 }
4770
4771 netdev_xmit_skip_txqueue(false);
4772
4773 nf_skip_egress(skb, true);
4774 skb = sch_handle_egress(skb, &rc, dev);
4775 if (!skb)
4776 goto out;
4777 nf_skip_egress(skb, false);
4778
4779 if (netdev_xmit_txqueue_skipped())
4780 txq = netdev_tx_queue_mapping(dev, skb);
4781 }
4782 #endif
4783 /* If device/qdisc don't need skb->dst, release it right now while
4784 * its hot in this cpu cache.
4785 */
4786 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4787 skb_dst_drop(skb);
4788 else
4789 skb_dst_force(skb);
4790
4791 if (!txq)
4792 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4793
4794 q = rcu_dereference_bh(txq->qdisc);
4795
4796 trace_net_dev_queue(skb);
4797 if (q->enqueue) {
4798 rc = __dev_xmit_skb(skb, q, dev, txq);
4799 goto out;
4800 }
4801
4802 /* The device has no queue. Common case for software devices:
4803 * loopback, all the sorts of tunnels...
4804
4805 * Really, it is unlikely that netif_tx_lock protection is necessary
4806 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4807 * counters.)
4808 * However, it is possible, that they rely on protection
4809 * made by us here.
4810
4811 * Check this and shot the lock. It is not prone from deadlocks.
4812 *Either shot noqueue qdisc, it is even simpler 8)
4813 */
4814 if (dev->flags & IFF_UP) {
4815 int cpu = smp_processor_id(); /* ok because BHs are off */
4816
4817 /* Other cpus might concurrently change txq->xmit_lock_owner
4818 * to -1 or to their cpu id, but not to our id.
4819 */
4820 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4821 if (dev_xmit_recursion())
4822 goto recursion_alert;
4823
4824 skb = validate_xmit_skb(skb, dev, &again);
4825 if (!skb)
4826 goto out;
4827
4828 HARD_TX_LOCK(dev, txq, cpu);
4829
4830 if (!netif_xmit_stopped(txq)) {
4831 dev_xmit_recursion_inc();
4832 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4833 dev_xmit_recursion_dec();
4834 if (dev_xmit_complete(rc)) {
4835 HARD_TX_UNLOCK(dev, txq);
4836 goto out;
4837 }
4838 }
4839 HARD_TX_UNLOCK(dev, txq);
4840 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4841 dev->name);
4842 } else {
4843 /* Recursion is detected! It is possible,
4844 * unfortunately
4845 */
4846 recursion_alert:
4847 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4848 dev->name);
4849 }
4850 }
4851
4852 rc = -ENETDOWN;
4853 rcu_read_unlock_bh();
4854
4855 dev_core_stats_tx_dropped_inc(dev);
4856 kfree_skb_list(skb);
4857 return rc;
4858 out:
4859 rcu_read_unlock_bh();
4860 return rc;
4861 }
4862 EXPORT_SYMBOL(__dev_queue_xmit);
4863
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4864 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4865 {
4866 struct net_device *dev = skb->dev;
4867 struct sk_buff *orig_skb = skb;
4868 struct netdev_queue *txq;
4869 int ret = NETDEV_TX_BUSY;
4870 bool again = false;
4871
4872 if (unlikely(!netif_running(dev) ||
4873 !netif_carrier_ok(dev)))
4874 goto drop;
4875
4876 skb = validate_xmit_skb_list(skb, dev, &again);
4877 if (skb != orig_skb)
4878 goto drop;
4879
4880 skb_set_queue_mapping(skb, queue_id);
4881 txq = skb_get_tx_queue(dev, skb);
4882
4883 local_bh_disable();
4884
4885 dev_xmit_recursion_inc();
4886 HARD_TX_LOCK(dev, txq, smp_processor_id());
4887 if (!netif_xmit_frozen_or_drv_stopped(txq))
4888 ret = netdev_start_xmit(skb, dev, txq, false);
4889 HARD_TX_UNLOCK(dev, txq);
4890 dev_xmit_recursion_dec();
4891
4892 local_bh_enable();
4893 return ret;
4894 drop:
4895 dev_core_stats_tx_dropped_inc(dev);
4896 kfree_skb_list(skb);
4897 return NET_XMIT_DROP;
4898 }
4899 EXPORT_SYMBOL(__dev_direct_xmit);
4900
4901 /*************************************************************************
4902 * Receiver routines
4903 *************************************************************************/
4904 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4905
4906 int weight_p __read_mostly = 64; /* old backlog weight */
4907 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4908 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4909
4910 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4911 static inline void ____napi_schedule(struct softnet_data *sd,
4912 struct napi_struct *napi)
4913 {
4914 struct task_struct *thread;
4915
4916 lockdep_assert_irqs_disabled();
4917
4918 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4919 /* Paired with smp_mb__before_atomic() in
4920 * napi_enable()/netif_set_threaded().
4921 * Use READ_ONCE() to guarantee a complete
4922 * read on napi->thread. Only call
4923 * wake_up_process() when it's not NULL.
4924 */
4925 thread = READ_ONCE(napi->thread);
4926 if (thread) {
4927 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4928 goto use_local_napi;
4929
4930 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4931 wake_up_process(thread);
4932 return;
4933 }
4934 }
4935
4936 use_local_napi:
4937 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4938 list_add_tail(&napi->poll_list, &sd->poll_list);
4939 WRITE_ONCE(napi->list_owner, smp_processor_id());
4940 /* If not called from net_rx_action()
4941 * we have to raise NET_RX_SOFTIRQ.
4942 */
4943 if (!sd->in_net_rx_action)
4944 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4945 }
4946
4947 #ifdef CONFIG_RPS
4948
4949 struct static_key_false rps_needed __read_mostly;
4950 EXPORT_SYMBOL(rps_needed);
4951 struct static_key_false rfs_needed __read_mostly;
4952 EXPORT_SYMBOL(rfs_needed);
4953
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4954 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4955 {
4956 return hash_32(hash, flow_table->log);
4957 }
4958
4959 #ifdef CONFIG_RFS_ACCEL
4960 /**
4961 * rps_flow_is_active - check whether the flow is recently active.
4962 * @rflow: Specific flow to check activity.
4963 * @flow_table: per-queue flowtable that @rflow belongs to.
4964 * @cpu: CPU saved in @rflow.
4965 *
4966 * If the CPU has processed many packets since the flow's last activity
4967 * (beyond 10 times the table size), the flow is considered stale.
4968 *
4969 * Return: true if flow was recently active.
4970 */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4971 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4972 struct rps_dev_flow_table *flow_table,
4973 unsigned int cpu)
4974 {
4975 unsigned int flow_last_active;
4976 unsigned int sd_input_head;
4977
4978 if (cpu >= nr_cpu_ids)
4979 return false;
4980
4981 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4982 flow_last_active = READ_ONCE(rflow->last_qtail);
4983
4984 return (int)(sd_input_head - flow_last_active) <
4985 (int)(10 << flow_table->log);
4986 }
4987 #endif
4988
4989 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4990 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4991 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4992 u32 flow_id)
4993 {
4994 if (next_cpu < nr_cpu_ids) {
4995 u32 head;
4996 #ifdef CONFIG_RFS_ACCEL
4997 struct netdev_rx_queue *rxqueue;
4998 struct rps_dev_flow_table *flow_table;
4999 struct rps_dev_flow *old_rflow;
5000 struct rps_dev_flow *tmp_rflow;
5001 unsigned int tmp_cpu;
5002 u16 rxq_index;
5003 int rc;
5004
5005 /* Should we steer this flow to a different hardware queue? */
5006 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5007 !(dev->features & NETIF_F_NTUPLE))
5008 goto out;
5009 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5010 if (rxq_index == skb_get_rx_queue(skb))
5011 goto out;
5012
5013 rxqueue = dev->_rx + rxq_index;
5014 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5015 if (!flow_table)
5016 goto out;
5017
5018 tmp_rflow = &flow_table->flows[flow_id];
5019 tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5020
5021 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5022 if (rps_flow_is_active(tmp_rflow, flow_table,
5023 tmp_cpu)) {
5024 if (hash != READ_ONCE(tmp_rflow->hash) ||
5025 next_cpu == tmp_cpu)
5026 goto out;
5027 }
5028 }
5029
5030 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5031 rxq_index, flow_id);
5032 if (rc < 0)
5033 goto out;
5034
5035 old_rflow = rflow;
5036 rflow = tmp_rflow;
5037 WRITE_ONCE(rflow->filter, rc);
5038 WRITE_ONCE(rflow->hash, hash);
5039
5040 if (old_rflow->filter == rc)
5041 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5042 out:
5043 #endif
5044 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5045 rps_input_queue_tail_save(&rflow->last_qtail, head);
5046 }
5047
5048 WRITE_ONCE(rflow->cpu, next_cpu);
5049 return rflow;
5050 }
5051
5052 /*
5053 * get_rps_cpu is called from netif_receive_skb and returns the target
5054 * CPU from the RPS map of the receiving queue for a given skb.
5055 * rcu_read_lock must be held on entry.
5056 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5057 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5058 struct rps_dev_flow **rflowp)
5059 {
5060 const struct rps_sock_flow_table *sock_flow_table;
5061 struct netdev_rx_queue *rxqueue = dev->_rx;
5062 struct rps_dev_flow_table *flow_table;
5063 struct rps_map *map;
5064 int cpu = -1;
5065 u32 flow_id;
5066 u32 tcpu;
5067 u32 hash;
5068
5069 if (skb_rx_queue_recorded(skb)) {
5070 u16 index = skb_get_rx_queue(skb);
5071
5072 if (unlikely(index >= dev->real_num_rx_queues)) {
5073 WARN_ONCE(dev->real_num_rx_queues > 1,
5074 "%s received packet on queue %u, but number "
5075 "of RX queues is %u\n",
5076 dev->name, index, dev->real_num_rx_queues);
5077 goto done;
5078 }
5079 rxqueue += index;
5080 }
5081
5082 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5083
5084 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5085 map = rcu_dereference(rxqueue->rps_map);
5086 if (!flow_table && !map)
5087 goto done;
5088
5089 skb_reset_network_header(skb);
5090 hash = skb_get_hash(skb);
5091 if (!hash)
5092 goto done;
5093
5094 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5095 if (flow_table && sock_flow_table) {
5096 struct rps_dev_flow *rflow;
5097 u32 next_cpu;
5098 u32 ident;
5099
5100 /* First check into global flow table if there is a match.
5101 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5102 */
5103 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5104 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5105 goto try_rps;
5106
5107 next_cpu = ident & net_hotdata.rps_cpu_mask;
5108
5109 /* OK, now we know there is a match,
5110 * we can look at the local (per receive queue) flow table
5111 */
5112 flow_id = rfs_slot(hash, flow_table);
5113 rflow = &flow_table->flows[flow_id];
5114 tcpu = rflow->cpu;
5115
5116 /*
5117 * If the desired CPU (where last recvmsg was done) is
5118 * different from current CPU (one in the rx-queue flow
5119 * table entry), switch if one of the following holds:
5120 * - Current CPU is unset (>= nr_cpu_ids).
5121 * - Current CPU is offline.
5122 * - The current CPU's queue tail has advanced beyond the
5123 * last packet that was enqueued using this table entry.
5124 * This guarantees that all previous packets for the flow
5125 * have been dequeued, thus preserving in order delivery.
5126 */
5127 if (unlikely(tcpu != next_cpu) &&
5128 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5129 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5130 rflow->last_qtail)) >= 0)) {
5131 tcpu = next_cpu;
5132 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5133 flow_id);
5134 }
5135
5136 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5137 *rflowp = rflow;
5138 cpu = tcpu;
5139 goto done;
5140 }
5141 }
5142
5143 try_rps:
5144
5145 if (map) {
5146 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5147 if (cpu_online(tcpu)) {
5148 cpu = tcpu;
5149 goto done;
5150 }
5151 }
5152
5153 done:
5154 return cpu;
5155 }
5156
5157 #ifdef CONFIG_RFS_ACCEL
5158
5159 /**
5160 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5161 * @dev: Device on which the filter was set
5162 * @rxq_index: RX queue index
5163 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5164 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5165 *
5166 * Drivers that implement ndo_rx_flow_steer() should periodically call
5167 * this function for each installed filter and remove the filters for
5168 * which it returns %true.
5169 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5170 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5171 u32 flow_id, u16 filter_id)
5172 {
5173 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5174 struct rps_dev_flow_table *flow_table;
5175 struct rps_dev_flow *rflow;
5176 bool expire = true;
5177
5178 rcu_read_lock();
5179 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5180 if (flow_table && flow_id < (1UL << flow_table->log)) {
5181 unsigned int cpu;
5182
5183 rflow = &flow_table->flows[flow_id];
5184 cpu = READ_ONCE(rflow->cpu);
5185 if (READ_ONCE(rflow->filter) == filter_id &&
5186 rps_flow_is_active(rflow, flow_table, cpu))
5187 expire = false;
5188 }
5189 rcu_read_unlock();
5190 return expire;
5191 }
5192 EXPORT_SYMBOL(rps_may_expire_flow);
5193
5194 #endif /* CONFIG_RFS_ACCEL */
5195
5196 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5197 static void rps_trigger_softirq(void *data)
5198 {
5199 struct softnet_data *sd = data;
5200
5201 ____napi_schedule(sd, &sd->backlog);
5202 /* Pairs with READ_ONCE() in softnet_seq_show() */
5203 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5204 }
5205
5206 #endif /* CONFIG_RPS */
5207
5208 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5209 static void trigger_rx_softirq(void *data)
5210 {
5211 struct softnet_data *sd = data;
5212
5213 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5214 smp_store_release(&sd->defer_ipi_scheduled, 0);
5215 }
5216
5217 /*
5218 * After we queued a packet into sd->input_pkt_queue,
5219 * we need to make sure this queue is serviced soon.
5220 *
5221 * - If this is another cpu queue, link it to our rps_ipi_list,
5222 * and make sure we will process rps_ipi_list from net_rx_action().
5223 *
5224 * - If this is our own queue, NAPI schedule our backlog.
5225 * Note that this also raises NET_RX_SOFTIRQ.
5226 */
napi_schedule_rps(struct softnet_data * sd)5227 static void napi_schedule_rps(struct softnet_data *sd)
5228 {
5229 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5230
5231 #ifdef CONFIG_RPS
5232 if (sd != mysd) {
5233 if (use_backlog_threads()) {
5234 __napi_schedule_irqoff(&sd->backlog);
5235 return;
5236 }
5237
5238 sd->rps_ipi_next = mysd->rps_ipi_list;
5239 mysd->rps_ipi_list = sd;
5240
5241 /* If not called from net_rx_action() or napi_threaded_poll()
5242 * we have to raise NET_RX_SOFTIRQ.
5243 */
5244 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246 return;
5247 }
5248 #endif /* CONFIG_RPS */
5249 __napi_schedule_irqoff(&mysd->backlog);
5250 }
5251
kick_defer_list_purge(unsigned int cpu)5252 void kick_defer_list_purge(unsigned int cpu)
5253 {
5254 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5255 unsigned long flags;
5256
5257 if (use_backlog_threads()) {
5258 backlog_lock_irq_save(sd, &flags);
5259
5260 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5261 __napi_schedule_irqoff(&sd->backlog);
5262
5263 backlog_unlock_irq_restore(sd, &flags);
5264
5265 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5266 smp_call_function_single_async(cpu, &sd->defer_csd);
5267 }
5268 }
5269
5270 #ifdef CONFIG_NET_FLOW_LIMIT
5271 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5272 #endif
5273
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5274 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5275 int max_backlog)
5276 {
5277 #ifdef CONFIG_NET_FLOW_LIMIT
5278 unsigned int old_flow, new_flow;
5279 const struct softnet_data *sd;
5280 struct sd_flow_limit *fl;
5281
5282 if (likely(qlen < (max_backlog >> 1)))
5283 return false;
5284
5285 sd = this_cpu_ptr(&softnet_data);
5286
5287 rcu_read_lock();
5288 fl = rcu_dereference(sd->flow_limit);
5289 if (fl) {
5290 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5291 old_flow = fl->history[fl->history_head];
5292 fl->history[fl->history_head] = new_flow;
5293
5294 fl->history_head++;
5295 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5296
5297 if (likely(fl->buckets[old_flow]))
5298 fl->buckets[old_flow]--;
5299
5300 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5301 /* Pairs with READ_ONCE() in softnet_seq_show() */
5302 WRITE_ONCE(fl->count, fl->count + 1);
5303 rcu_read_unlock();
5304 return true;
5305 }
5306 }
5307 rcu_read_unlock();
5308 #endif
5309 return false;
5310 }
5311
5312 /*
5313 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5314 * queue (may be a remote CPU queue).
5315 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5316 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5317 unsigned int *qtail)
5318 {
5319 enum skb_drop_reason reason;
5320 struct softnet_data *sd;
5321 unsigned long flags;
5322 unsigned int qlen;
5323 int max_backlog;
5324 u32 tail;
5325
5326 reason = SKB_DROP_REASON_DEV_READY;
5327 if (unlikely(!netif_running(skb->dev)))
5328 goto bad_dev;
5329
5330 sd = &per_cpu(softnet_data, cpu);
5331
5332 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5333 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5334 if (unlikely(qlen > max_backlog) ||
5335 skb_flow_limit(skb, qlen, max_backlog))
5336 goto cpu_backlog_drop;
5337 backlog_lock_irq_save(sd, &flags);
5338 qlen = skb_queue_len(&sd->input_pkt_queue);
5339 if (likely(qlen <= max_backlog)) {
5340 if (!qlen) {
5341 /* Schedule NAPI for backlog device. We can use
5342 * non atomic operation as we own the queue lock.
5343 */
5344 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5345 &sd->backlog.state))
5346 napi_schedule_rps(sd);
5347 }
5348 __skb_queue_tail(&sd->input_pkt_queue, skb);
5349 tail = rps_input_queue_tail_incr(sd);
5350 backlog_unlock_irq_restore(sd, &flags);
5351
5352 /* save the tail outside of the critical section */
5353 rps_input_queue_tail_save(qtail, tail);
5354 return NET_RX_SUCCESS;
5355 }
5356
5357 backlog_unlock_irq_restore(sd, &flags);
5358
5359 cpu_backlog_drop:
5360 reason = SKB_DROP_REASON_CPU_BACKLOG;
5361 numa_drop_add(&sd->drop_counters, 1);
5362 bad_dev:
5363 dev_core_stats_rx_dropped_inc(skb->dev);
5364 kfree_skb_reason(skb, reason);
5365 return NET_RX_DROP;
5366 }
5367
netif_get_rxqueue(struct sk_buff * skb)5368 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5369 {
5370 struct net_device *dev = skb->dev;
5371 struct netdev_rx_queue *rxqueue;
5372
5373 rxqueue = dev->_rx;
5374
5375 if (skb_rx_queue_recorded(skb)) {
5376 u16 index = skb_get_rx_queue(skb);
5377
5378 if (unlikely(index >= dev->real_num_rx_queues)) {
5379 WARN_ONCE(dev->real_num_rx_queues > 1,
5380 "%s received packet on queue %u, but number "
5381 "of RX queues is %u\n",
5382 dev->name, index, dev->real_num_rx_queues);
5383
5384 return rxqueue; /* Return first rxqueue */
5385 }
5386 rxqueue += index;
5387 }
5388 return rxqueue;
5389 }
5390
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5391 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5392 const struct bpf_prog *xdp_prog)
5393 {
5394 void *orig_data, *orig_data_end, *hard_start;
5395 struct netdev_rx_queue *rxqueue;
5396 bool orig_bcast, orig_host;
5397 u32 mac_len, frame_sz;
5398 __be16 orig_eth_type;
5399 struct ethhdr *eth;
5400 u32 metalen, act;
5401 int off;
5402
5403 /* The XDP program wants to see the packet starting at the MAC
5404 * header.
5405 */
5406 mac_len = skb->data - skb_mac_header(skb);
5407 hard_start = skb->data - skb_headroom(skb);
5408
5409 /* SKB "head" area always have tailroom for skb_shared_info */
5410 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5411 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5412
5413 rxqueue = netif_get_rxqueue(skb);
5414 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5415 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5416 skb_headlen(skb) + mac_len, true);
5417 if (skb_is_nonlinear(skb)) {
5418 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5419 xdp_buff_set_frags_flag(xdp);
5420 } else {
5421 xdp_buff_clear_frags_flag(xdp);
5422 }
5423
5424 orig_data_end = xdp->data_end;
5425 orig_data = xdp->data;
5426 eth = (struct ethhdr *)xdp->data;
5427 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5428 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5429 orig_eth_type = eth->h_proto;
5430
5431 act = bpf_prog_run_xdp(xdp_prog, xdp);
5432
5433 /* check if bpf_xdp_adjust_head was used */
5434 off = xdp->data - orig_data;
5435 if (off) {
5436 if (off > 0)
5437 __skb_pull(skb, off);
5438 else if (off < 0)
5439 __skb_push(skb, -off);
5440
5441 skb->mac_header += off;
5442 skb_reset_network_header(skb);
5443 }
5444
5445 /* check if bpf_xdp_adjust_tail was used */
5446 off = xdp->data_end - orig_data_end;
5447 if (off != 0) {
5448 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5449 skb->len += off; /* positive on grow, negative on shrink */
5450 }
5451
5452 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5453 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5454 */
5455 if (xdp_buff_has_frags(xdp))
5456 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5457 else
5458 skb->data_len = 0;
5459
5460 /* check if XDP changed eth hdr such SKB needs update */
5461 eth = (struct ethhdr *)xdp->data;
5462 if ((orig_eth_type != eth->h_proto) ||
5463 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5464 skb->dev->dev_addr)) ||
5465 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5466 __skb_push(skb, ETH_HLEN);
5467 skb->pkt_type = PACKET_HOST;
5468 skb->protocol = eth_type_trans(skb, skb->dev);
5469 }
5470
5471 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5472 * before calling us again on redirect path. We do not call do_redirect
5473 * as we leave that up to the caller.
5474 *
5475 * Caller is responsible for managing lifetime of skb (i.e. calling
5476 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5477 */
5478 switch (act) {
5479 case XDP_REDIRECT:
5480 case XDP_TX:
5481 __skb_push(skb, mac_len);
5482 break;
5483 case XDP_PASS:
5484 metalen = xdp->data - xdp->data_meta;
5485 if (metalen)
5486 skb_metadata_set(skb, metalen);
5487 break;
5488 }
5489
5490 return act;
5491 }
5492
5493 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5494 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5495 {
5496 struct sk_buff *skb = *pskb;
5497 int err, hroom, troom;
5498
5499 local_lock_nested_bh(&system_page_pool.bh_lock);
5500 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5501 local_unlock_nested_bh(&system_page_pool.bh_lock);
5502 if (!err)
5503 return 0;
5504
5505 /* In case we have to go down the path and also linearize,
5506 * then lets do the pskb_expand_head() work just once here.
5507 */
5508 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5509 troom = skb->tail + skb->data_len - skb->end;
5510 err = pskb_expand_head(skb,
5511 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5512 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5513 if (err)
5514 return err;
5515
5516 return skb_linearize(skb);
5517 }
5518
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5519 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5520 struct xdp_buff *xdp,
5521 const struct bpf_prog *xdp_prog)
5522 {
5523 struct sk_buff *skb = *pskb;
5524 u32 mac_len, act = XDP_DROP;
5525
5526 /* Reinjected packets coming from act_mirred or similar should
5527 * not get XDP generic processing.
5528 */
5529 if (skb_is_redirected(skb))
5530 return XDP_PASS;
5531
5532 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5533 * bytes. This is the guarantee that also native XDP provides,
5534 * thus we need to do it here as well.
5535 */
5536 mac_len = skb->data - skb_mac_header(skb);
5537 __skb_push(skb, mac_len);
5538
5539 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5540 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5541 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5542 goto do_drop;
5543 }
5544
5545 __skb_pull(*pskb, mac_len);
5546
5547 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5548 switch (act) {
5549 case XDP_REDIRECT:
5550 case XDP_TX:
5551 case XDP_PASS:
5552 break;
5553 default:
5554 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5555 fallthrough;
5556 case XDP_ABORTED:
5557 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5558 fallthrough;
5559 case XDP_DROP:
5560 do_drop:
5561 kfree_skb(*pskb);
5562 break;
5563 }
5564
5565 return act;
5566 }
5567
5568 /* When doing generic XDP we have to bypass the qdisc layer and the
5569 * network taps in order to match in-driver-XDP behavior. This also means
5570 * that XDP packets are able to starve other packets going through a qdisc,
5571 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5572 * queues, so they do not have this starvation issue.
5573 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5574 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5575 {
5576 struct net_device *dev = skb->dev;
5577 struct netdev_queue *txq;
5578 bool free_skb = true;
5579 int cpu, rc;
5580
5581 txq = netdev_core_pick_tx(dev, skb, NULL);
5582 cpu = smp_processor_id();
5583 HARD_TX_LOCK(dev, txq, cpu);
5584 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5585 rc = netdev_start_xmit(skb, dev, txq, 0);
5586 if (dev_xmit_complete(rc))
5587 free_skb = false;
5588 }
5589 HARD_TX_UNLOCK(dev, txq);
5590 if (free_skb) {
5591 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5592 dev_core_stats_tx_dropped_inc(dev);
5593 kfree_skb(skb);
5594 }
5595 }
5596
5597 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5598
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5599 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5600 {
5601 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5602
5603 if (xdp_prog) {
5604 struct xdp_buff xdp;
5605 u32 act;
5606 int err;
5607
5608 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5609 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5610 if (act != XDP_PASS) {
5611 switch (act) {
5612 case XDP_REDIRECT:
5613 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5614 &xdp, xdp_prog);
5615 if (err)
5616 goto out_redir;
5617 break;
5618 case XDP_TX:
5619 generic_xdp_tx(*pskb, xdp_prog);
5620 break;
5621 }
5622 bpf_net_ctx_clear(bpf_net_ctx);
5623 return XDP_DROP;
5624 }
5625 bpf_net_ctx_clear(bpf_net_ctx);
5626 }
5627 return XDP_PASS;
5628 out_redir:
5629 bpf_net_ctx_clear(bpf_net_ctx);
5630 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5631 return XDP_DROP;
5632 }
5633 EXPORT_SYMBOL_GPL(do_xdp_generic);
5634
netif_rx_internal(struct sk_buff * skb)5635 static int netif_rx_internal(struct sk_buff *skb)
5636 {
5637 int ret;
5638
5639 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5640
5641 trace_netif_rx(skb);
5642
5643 #ifdef CONFIG_RPS
5644 if (static_branch_unlikely(&rps_needed)) {
5645 struct rps_dev_flow voidflow, *rflow = &voidflow;
5646 int cpu;
5647
5648 rcu_read_lock();
5649
5650 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5651 if (cpu < 0)
5652 cpu = smp_processor_id();
5653
5654 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5655
5656 rcu_read_unlock();
5657 } else
5658 #endif
5659 {
5660 unsigned int qtail;
5661
5662 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5663 }
5664 return ret;
5665 }
5666
5667 /**
5668 * __netif_rx - Slightly optimized version of netif_rx
5669 * @skb: buffer to post
5670 *
5671 * This behaves as netif_rx except that it does not disable bottom halves.
5672 * As a result this function may only be invoked from the interrupt context
5673 * (either hard or soft interrupt).
5674 */
__netif_rx(struct sk_buff * skb)5675 int __netif_rx(struct sk_buff *skb)
5676 {
5677 int ret;
5678
5679 lockdep_assert_once(hardirq_count() | softirq_count());
5680
5681 trace_netif_rx_entry(skb);
5682 ret = netif_rx_internal(skb);
5683 trace_netif_rx_exit(ret);
5684 return ret;
5685 }
5686 EXPORT_SYMBOL(__netif_rx);
5687
5688 /**
5689 * netif_rx - post buffer to the network code
5690 * @skb: buffer to post
5691 *
5692 * This function receives a packet from a device driver and queues it for
5693 * the upper (protocol) levels to process via the backlog NAPI device. It
5694 * always succeeds. The buffer may be dropped during processing for
5695 * congestion control or by the protocol layers.
5696 * The network buffer is passed via the backlog NAPI device. Modern NIC
5697 * driver should use NAPI and GRO.
5698 * This function can used from interrupt and from process context. The
5699 * caller from process context must not disable interrupts before invoking
5700 * this function.
5701 *
5702 * return values:
5703 * NET_RX_SUCCESS (no congestion)
5704 * NET_RX_DROP (packet was dropped)
5705 *
5706 */
netif_rx(struct sk_buff * skb)5707 int netif_rx(struct sk_buff *skb)
5708 {
5709 bool need_bh_off = !(hardirq_count() | softirq_count());
5710 int ret;
5711
5712 if (need_bh_off)
5713 local_bh_disable();
5714 trace_netif_rx_entry(skb);
5715 ret = netif_rx_internal(skb);
5716 trace_netif_rx_exit(ret);
5717 if (need_bh_off)
5718 local_bh_enable();
5719 return ret;
5720 }
5721 EXPORT_SYMBOL(netif_rx);
5722
net_tx_action(void)5723 static __latent_entropy void net_tx_action(void)
5724 {
5725 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5726
5727 if (sd->completion_queue) {
5728 struct sk_buff *clist;
5729
5730 local_irq_disable();
5731 clist = sd->completion_queue;
5732 sd->completion_queue = NULL;
5733 local_irq_enable();
5734
5735 while (clist) {
5736 struct sk_buff *skb = clist;
5737
5738 clist = clist->next;
5739
5740 WARN_ON(refcount_read(&skb->users));
5741 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5742 trace_consume_skb(skb, net_tx_action);
5743 else
5744 trace_kfree_skb(skb, net_tx_action,
5745 get_kfree_skb_cb(skb)->reason, NULL);
5746
5747 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5748 __kfree_skb(skb);
5749 else
5750 __napi_kfree_skb(skb,
5751 get_kfree_skb_cb(skb)->reason);
5752 }
5753 }
5754
5755 if (sd->output_queue) {
5756 struct Qdisc *head;
5757
5758 local_irq_disable();
5759 head = sd->output_queue;
5760 sd->output_queue = NULL;
5761 sd->output_queue_tailp = &sd->output_queue;
5762 local_irq_enable();
5763
5764 rcu_read_lock();
5765
5766 while (head) {
5767 spinlock_t *root_lock = NULL;
5768 struct sk_buff *to_free;
5769 struct Qdisc *q = head;
5770
5771 head = head->next_sched;
5772
5773 /* We need to make sure head->next_sched is read
5774 * before clearing __QDISC_STATE_SCHED
5775 */
5776 smp_mb__before_atomic();
5777
5778 if (!(q->flags & TCQ_F_NOLOCK)) {
5779 root_lock = qdisc_lock(q);
5780 spin_lock(root_lock);
5781 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5782 &q->state))) {
5783 /* There is a synchronize_net() between
5784 * STATE_DEACTIVATED flag being set and
5785 * qdisc_reset()/some_qdisc_is_busy() in
5786 * dev_deactivate(), so we can safely bail out
5787 * early here to avoid data race between
5788 * qdisc_deactivate() and some_qdisc_is_busy()
5789 * for lockless qdisc.
5790 */
5791 clear_bit(__QDISC_STATE_SCHED, &q->state);
5792 continue;
5793 }
5794
5795 clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 to_free = qdisc_run(q);
5797 if (root_lock)
5798 spin_unlock(root_lock);
5799 tcf_kfree_skb_list(to_free);
5800 }
5801
5802 rcu_read_unlock();
5803 }
5804
5805 xfrm_dev_backlog(sd);
5806 }
5807
5808 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5809 /* This hook is defined here for ATM LANE */
5810 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5811 unsigned char *addr) __read_mostly;
5812 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5813 #endif
5814
5815 /**
5816 * netdev_is_rx_handler_busy - check if receive handler is registered
5817 * @dev: device to check
5818 *
5819 * Check if a receive handler is already registered for a given device.
5820 * Return true if there one.
5821 *
5822 * The caller must hold the rtnl_mutex.
5823 */
netdev_is_rx_handler_busy(struct net_device * dev)5824 bool netdev_is_rx_handler_busy(struct net_device *dev)
5825 {
5826 ASSERT_RTNL();
5827 return dev && rtnl_dereference(dev->rx_handler);
5828 }
5829 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5830
5831 /**
5832 * netdev_rx_handler_register - register receive handler
5833 * @dev: device to register a handler for
5834 * @rx_handler: receive handler to register
5835 * @rx_handler_data: data pointer that is used by rx handler
5836 *
5837 * Register a receive handler for a device. This handler will then be
5838 * called from __netif_receive_skb. A negative errno code is returned
5839 * on a failure.
5840 *
5841 * The caller must hold the rtnl_mutex.
5842 *
5843 * For a general description of rx_handler, see enum rx_handler_result.
5844 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5845 int netdev_rx_handler_register(struct net_device *dev,
5846 rx_handler_func_t *rx_handler,
5847 void *rx_handler_data)
5848 {
5849 if (netdev_is_rx_handler_busy(dev))
5850 return -EBUSY;
5851
5852 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5853 return -EINVAL;
5854
5855 /* Note: rx_handler_data must be set before rx_handler */
5856 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5857 rcu_assign_pointer(dev->rx_handler, rx_handler);
5858
5859 return 0;
5860 }
5861 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5862
5863 /**
5864 * netdev_rx_handler_unregister - unregister receive handler
5865 * @dev: device to unregister a handler from
5866 *
5867 * Unregister a receive handler from a device.
5868 *
5869 * The caller must hold the rtnl_mutex.
5870 */
netdev_rx_handler_unregister(struct net_device * dev)5871 void netdev_rx_handler_unregister(struct net_device *dev)
5872 {
5873
5874 ASSERT_RTNL();
5875 RCU_INIT_POINTER(dev->rx_handler, NULL);
5876 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5877 * section has a guarantee to see a non NULL rx_handler_data
5878 * as well.
5879 */
5880 synchronize_net();
5881 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5882 }
5883 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5884
5885 /*
5886 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5887 * the special handling of PFMEMALLOC skbs.
5888 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5889 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5890 {
5891 switch (skb->protocol) {
5892 case htons(ETH_P_ARP):
5893 case htons(ETH_P_IP):
5894 case htons(ETH_P_IPV6):
5895 case htons(ETH_P_8021Q):
5896 case htons(ETH_P_8021AD):
5897 return true;
5898 default:
5899 return false;
5900 }
5901 }
5902
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5903 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5904 int *ret, struct net_device *orig_dev)
5905 {
5906 if (nf_hook_ingress_active(skb)) {
5907 int ingress_retval;
5908
5909 if (unlikely(*pt_prev)) {
5910 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5911 *pt_prev = NULL;
5912 }
5913
5914 rcu_read_lock();
5915 ingress_retval = nf_hook_ingress(skb);
5916 rcu_read_unlock();
5917 return ingress_retval;
5918 }
5919 return 0;
5920 }
5921
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5922 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5923 struct packet_type **ppt_prev)
5924 {
5925 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5926 struct packet_type *ptype, *pt_prev;
5927 rx_handler_func_t *rx_handler;
5928 struct sk_buff *skb = *pskb;
5929 struct net_device *orig_dev;
5930 bool deliver_exact = false;
5931 int ret = NET_RX_DROP;
5932 __be16 type;
5933
5934 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5935
5936 trace_netif_receive_skb(skb);
5937
5938 orig_dev = skb->dev;
5939
5940 skb_reset_network_header(skb);
5941 #if !defined(CONFIG_DEBUG_NET)
5942 /* We plan to no longer reset the transport header here.
5943 * Give some time to fuzzers and dev build to catch bugs
5944 * in network stacks.
5945 */
5946 if (!skb_transport_header_was_set(skb))
5947 skb_reset_transport_header(skb);
5948 #endif
5949 skb_reset_mac_len(skb);
5950
5951 pt_prev = NULL;
5952
5953 another_round:
5954 skb->skb_iif = skb->dev->ifindex;
5955
5956 __this_cpu_inc(softnet_data.processed);
5957
5958 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5959 int ret2;
5960
5961 migrate_disable();
5962 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5963 &skb);
5964 migrate_enable();
5965
5966 if (ret2 != XDP_PASS) {
5967 ret = NET_RX_DROP;
5968 goto out;
5969 }
5970 }
5971
5972 if (eth_type_vlan(skb->protocol)) {
5973 skb = skb_vlan_untag(skb);
5974 if (unlikely(!skb))
5975 goto out;
5976 }
5977
5978 if (skb_skip_tc_classify(skb))
5979 goto skip_classify;
5980
5981 if (pfmemalloc)
5982 goto skip_taps;
5983
5984 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5985 list) {
5986 if (unlikely(pt_prev))
5987 ret = deliver_skb(skb, pt_prev, orig_dev);
5988 pt_prev = ptype;
5989 }
5990
5991 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5992 if (unlikely(pt_prev))
5993 ret = deliver_skb(skb, pt_prev, orig_dev);
5994 pt_prev = ptype;
5995 }
5996
5997 skip_taps:
5998 #ifdef CONFIG_NET_INGRESS
5999 if (static_branch_unlikely(&ingress_needed_key)) {
6000 bool another = false;
6001
6002 nf_skip_egress(skb, true);
6003 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6004 &another);
6005 if (another)
6006 goto another_round;
6007 if (!skb)
6008 goto out;
6009
6010 nf_skip_egress(skb, false);
6011 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6012 goto out;
6013 }
6014 #endif
6015 skb_reset_redirect(skb);
6016 skip_classify:
6017 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6018 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6019 goto drop;
6020 }
6021
6022 if (skb_vlan_tag_present(skb)) {
6023 if (unlikely(pt_prev)) {
6024 ret = deliver_skb(skb, pt_prev, orig_dev);
6025 pt_prev = NULL;
6026 }
6027 if (vlan_do_receive(&skb))
6028 goto another_round;
6029 else if (unlikely(!skb))
6030 goto out;
6031 }
6032
6033 rx_handler = rcu_dereference(skb->dev->rx_handler);
6034 if (rx_handler) {
6035 if (unlikely(pt_prev)) {
6036 ret = deliver_skb(skb, pt_prev, orig_dev);
6037 pt_prev = NULL;
6038 }
6039 switch (rx_handler(&skb)) {
6040 case RX_HANDLER_CONSUMED:
6041 ret = NET_RX_SUCCESS;
6042 goto out;
6043 case RX_HANDLER_ANOTHER:
6044 goto another_round;
6045 case RX_HANDLER_EXACT:
6046 deliver_exact = true;
6047 break;
6048 case RX_HANDLER_PASS:
6049 break;
6050 default:
6051 BUG();
6052 }
6053 }
6054
6055 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6056 check_vlan_id:
6057 if (skb_vlan_tag_get_id(skb)) {
6058 /* Vlan id is non 0 and vlan_do_receive() above couldn't
6059 * find vlan device.
6060 */
6061 skb->pkt_type = PACKET_OTHERHOST;
6062 } else if (eth_type_vlan(skb->protocol)) {
6063 /* Outer header is 802.1P with vlan 0, inner header is
6064 * 802.1Q or 802.1AD and vlan_do_receive() above could
6065 * not find vlan dev for vlan id 0.
6066 */
6067 __vlan_hwaccel_clear_tag(skb);
6068 skb = skb_vlan_untag(skb);
6069 if (unlikely(!skb))
6070 goto out;
6071 if (vlan_do_receive(&skb))
6072 /* After stripping off 802.1P header with vlan 0
6073 * vlan dev is found for inner header.
6074 */
6075 goto another_round;
6076 else if (unlikely(!skb))
6077 goto out;
6078 else
6079 /* We have stripped outer 802.1P vlan 0 header.
6080 * But could not find vlan dev.
6081 * check again for vlan id to set OTHERHOST.
6082 */
6083 goto check_vlan_id;
6084 }
6085 /* Note: we might in the future use prio bits
6086 * and set skb->priority like in vlan_do_receive()
6087 * For the time being, just ignore Priority Code Point
6088 */
6089 __vlan_hwaccel_clear_tag(skb);
6090 }
6091
6092 type = skb->protocol;
6093
6094 /* deliver only exact match when indicated */
6095 if (likely(!deliver_exact)) {
6096 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6097 &ptype_base[ntohs(type) &
6098 PTYPE_HASH_MASK]);
6099
6100 /* orig_dev and skb->dev could belong to different netns;
6101 * Even in such case we need to traverse only the list
6102 * coming from skb->dev, as the ptype owner (packet socket)
6103 * will use dev_net(skb->dev) to do namespace filtering.
6104 */
6105 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6106 &dev_net_rcu(skb->dev)->ptype_specific);
6107 }
6108
6109 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 &orig_dev->ptype_specific);
6111
6112 if (unlikely(skb->dev != orig_dev)) {
6113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 &skb->dev->ptype_specific);
6115 }
6116
6117 if (pt_prev) {
6118 *ppt_prev = pt_prev;
6119 } else {
6120 drop:
6121 if (!deliver_exact)
6122 dev_core_stats_rx_dropped_inc(skb->dev);
6123 else
6124 dev_core_stats_rx_nohandler_inc(skb->dev);
6125
6126 kfree_skb_reason(skb, drop_reason);
6127 /* Jamal, now you will not able to escape explaining
6128 * me how you were going to use this. :-)
6129 */
6130 ret = NET_RX_DROP;
6131 }
6132
6133 out:
6134 /* The invariant here is that if *ppt_prev is not NULL
6135 * then skb should also be non-NULL.
6136 *
6137 * Apparently *ppt_prev assignment above holds this invariant due to
6138 * skb dereferencing near it.
6139 */
6140 *pskb = skb;
6141 return ret;
6142 }
6143
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6144 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6145 {
6146 struct net_device *orig_dev = skb->dev;
6147 struct packet_type *pt_prev = NULL;
6148 int ret;
6149
6150 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6151 if (pt_prev)
6152 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6153 skb->dev, pt_prev, orig_dev);
6154 return ret;
6155 }
6156
6157 /**
6158 * netif_receive_skb_core - special purpose version of netif_receive_skb
6159 * @skb: buffer to process
6160 *
6161 * More direct receive version of netif_receive_skb(). It should
6162 * only be used by callers that have a need to skip RPS and Generic XDP.
6163 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6164 *
6165 * This function may only be called from softirq context and interrupts
6166 * should be enabled.
6167 *
6168 * Return values (usually ignored):
6169 * NET_RX_SUCCESS: no congestion
6170 * NET_RX_DROP: packet was dropped
6171 */
netif_receive_skb_core(struct sk_buff * skb)6172 int netif_receive_skb_core(struct sk_buff *skb)
6173 {
6174 int ret;
6175
6176 rcu_read_lock();
6177 ret = __netif_receive_skb_one_core(skb, false);
6178 rcu_read_unlock();
6179
6180 return ret;
6181 }
6182 EXPORT_SYMBOL(netif_receive_skb_core);
6183
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6184 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6185 struct packet_type *pt_prev,
6186 struct net_device *orig_dev)
6187 {
6188 struct sk_buff *skb, *next;
6189
6190 if (!pt_prev)
6191 return;
6192 if (list_empty(head))
6193 return;
6194 if (pt_prev->list_func != NULL)
6195 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6196 ip_list_rcv, head, pt_prev, orig_dev);
6197 else
6198 list_for_each_entry_safe(skb, next, head, list) {
6199 skb_list_del_init(skb);
6200 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6201 }
6202 }
6203
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6204 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6205 {
6206 /* Fast-path assumptions:
6207 * - There is no RX handler.
6208 * - Only one packet_type matches.
6209 * If either of these fails, we will end up doing some per-packet
6210 * processing in-line, then handling the 'last ptype' for the whole
6211 * sublist. This can't cause out-of-order delivery to any single ptype,
6212 * because the 'last ptype' must be constant across the sublist, and all
6213 * other ptypes are handled per-packet.
6214 */
6215 /* Current (common) ptype of sublist */
6216 struct packet_type *pt_curr = NULL;
6217 /* Current (common) orig_dev of sublist */
6218 struct net_device *od_curr = NULL;
6219 struct sk_buff *skb, *next;
6220 LIST_HEAD(sublist);
6221
6222 list_for_each_entry_safe(skb, next, head, list) {
6223 struct net_device *orig_dev = skb->dev;
6224 struct packet_type *pt_prev = NULL;
6225
6226 skb_list_del_init(skb);
6227 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6228 if (!pt_prev)
6229 continue;
6230 if (pt_curr != pt_prev || od_curr != orig_dev) {
6231 /* dispatch old sublist */
6232 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6233 /* start new sublist */
6234 INIT_LIST_HEAD(&sublist);
6235 pt_curr = pt_prev;
6236 od_curr = orig_dev;
6237 }
6238 list_add_tail(&skb->list, &sublist);
6239 }
6240
6241 /* dispatch final sublist */
6242 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6243 }
6244
__netif_receive_skb(struct sk_buff * skb)6245 static int __netif_receive_skb(struct sk_buff *skb)
6246 {
6247 int ret;
6248
6249 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6250 unsigned int noreclaim_flag;
6251
6252 /*
6253 * PFMEMALLOC skbs are special, they should
6254 * - be delivered to SOCK_MEMALLOC sockets only
6255 * - stay away from userspace
6256 * - have bounded memory usage
6257 *
6258 * Use PF_MEMALLOC as this saves us from propagating the allocation
6259 * context down to all allocation sites.
6260 */
6261 noreclaim_flag = memalloc_noreclaim_save();
6262 ret = __netif_receive_skb_one_core(skb, true);
6263 memalloc_noreclaim_restore(noreclaim_flag);
6264 } else
6265 ret = __netif_receive_skb_one_core(skb, false);
6266
6267 return ret;
6268 }
6269
__netif_receive_skb_list(struct list_head * head)6270 static void __netif_receive_skb_list(struct list_head *head)
6271 {
6272 unsigned long noreclaim_flag = 0;
6273 struct sk_buff *skb, *next;
6274 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6275
6276 list_for_each_entry_safe(skb, next, head, list) {
6277 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6278 struct list_head sublist;
6279
6280 /* Handle the previous sublist */
6281 list_cut_before(&sublist, head, &skb->list);
6282 if (!list_empty(&sublist))
6283 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6284 pfmemalloc = !pfmemalloc;
6285 /* See comments in __netif_receive_skb */
6286 if (pfmemalloc)
6287 noreclaim_flag = memalloc_noreclaim_save();
6288 else
6289 memalloc_noreclaim_restore(noreclaim_flag);
6290 }
6291 }
6292 /* Handle the remaining sublist */
6293 if (!list_empty(head))
6294 __netif_receive_skb_list_core(head, pfmemalloc);
6295 /* Restore pflags */
6296 if (pfmemalloc)
6297 memalloc_noreclaim_restore(noreclaim_flag);
6298 }
6299
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6300 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6301 {
6302 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6303 struct bpf_prog *new = xdp->prog;
6304 int ret = 0;
6305
6306 switch (xdp->command) {
6307 case XDP_SETUP_PROG:
6308 rcu_assign_pointer(dev->xdp_prog, new);
6309 if (old)
6310 bpf_prog_put(old);
6311
6312 if (old && !new) {
6313 static_branch_dec(&generic_xdp_needed_key);
6314 } else if (new && !old) {
6315 static_branch_inc(&generic_xdp_needed_key);
6316 netif_disable_lro(dev);
6317 dev_disable_gro_hw(dev);
6318 }
6319 break;
6320
6321 default:
6322 ret = -EINVAL;
6323 break;
6324 }
6325
6326 return ret;
6327 }
6328
netif_receive_skb_internal(struct sk_buff * skb)6329 static int netif_receive_skb_internal(struct sk_buff *skb)
6330 {
6331 int ret;
6332
6333 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6334
6335 if (skb_defer_rx_timestamp(skb))
6336 return NET_RX_SUCCESS;
6337
6338 rcu_read_lock();
6339 #ifdef CONFIG_RPS
6340 if (static_branch_unlikely(&rps_needed)) {
6341 struct rps_dev_flow voidflow, *rflow = &voidflow;
6342 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6343
6344 if (cpu >= 0) {
6345 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6346 rcu_read_unlock();
6347 return ret;
6348 }
6349 }
6350 #endif
6351 ret = __netif_receive_skb(skb);
6352 rcu_read_unlock();
6353 return ret;
6354 }
6355
netif_receive_skb_list_internal(struct list_head * head)6356 void netif_receive_skb_list_internal(struct list_head *head)
6357 {
6358 struct sk_buff *skb, *next;
6359 LIST_HEAD(sublist);
6360
6361 list_for_each_entry_safe(skb, next, head, list) {
6362 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6363 skb);
6364 skb_list_del_init(skb);
6365 if (!skb_defer_rx_timestamp(skb))
6366 list_add_tail(&skb->list, &sublist);
6367 }
6368 list_splice_init(&sublist, head);
6369
6370 rcu_read_lock();
6371 #ifdef CONFIG_RPS
6372 if (static_branch_unlikely(&rps_needed)) {
6373 list_for_each_entry_safe(skb, next, head, list) {
6374 struct rps_dev_flow voidflow, *rflow = &voidflow;
6375 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6376
6377 if (cpu >= 0) {
6378 /* Will be handled, remove from list */
6379 skb_list_del_init(skb);
6380 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6381 }
6382 }
6383 }
6384 #endif
6385 __netif_receive_skb_list(head);
6386 rcu_read_unlock();
6387 }
6388
6389 /**
6390 * netif_receive_skb - process receive buffer from network
6391 * @skb: buffer to process
6392 *
6393 * netif_receive_skb() is the main receive data processing function.
6394 * It always succeeds. The buffer may be dropped during processing
6395 * for congestion control or by the protocol layers.
6396 *
6397 * This function may only be called from softirq context and interrupts
6398 * should be enabled.
6399 *
6400 * Return values (usually ignored):
6401 * NET_RX_SUCCESS: no congestion
6402 * NET_RX_DROP: packet was dropped
6403 */
netif_receive_skb(struct sk_buff * skb)6404 int netif_receive_skb(struct sk_buff *skb)
6405 {
6406 int ret;
6407
6408 trace_netif_receive_skb_entry(skb);
6409
6410 ret = netif_receive_skb_internal(skb);
6411 trace_netif_receive_skb_exit(ret);
6412
6413 return ret;
6414 }
6415 EXPORT_SYMBOL(netif_receive_skb);
6416
6417 /**
6418 * netif_receive_skb_list - process many receive buffers from network
6419 * @head: list of skbs to process.
6420 *
6421 * Since return value of netif_receive_skb() is normally ignored, and
6422 * wouldn't be meaningful for a list, this function returns void.
6423 *
6424 * This function may only be called from softirq context and interrupts
6425 * should be enabled.
6426 */
netif_receive_skb_list(struct list_head * head)6427 void netif_receive_skb_list(struct list_head *head)
6428 {
6429 struct sk_buff *skb;
6430
6431 if (list_empty(head))
6432 return;
6433 if (trace_netif_receive_skb_list_entry_enabled()) {
6434 list_for_each_entry(skb, head, list)
6435 trace_netif_receive_skb_list_entry(skb);
6436 }
6437 netif_receive_skb_list_internal(head);
6438 trace_netif_receive_skb_list_exit(0);
6439 }
6440 EXPORT_SYMBOL(netif_receive_skb_list);
6441
6442 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6443 static void flush_backlog(struct work_struct *work)
6444 {
6445 struct sk_buff *skb, *tmp;
6446 struct sk_buff_head list;
6447 struct softnet_data *sd;
6448
6449 __skb_queue_head_init(&list);
6450 local_bh_disable();
6451 sd = this_cpu_ptr(&softnet_data);
6452
6453 backlog_lock_irq_disable(sd);
6454 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6455 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6456 __skb_unlink(skb, &sd->input_pkt_queue);
6457 __skb_queue_tail(&list, skb);
6458 rps_input_queue_head_incr(sd);
6459 }
6460 }
6461 backlog_unlock_irq_enable(sd);
6462
6463 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6464 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6465 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6466 __skb_unlink(skb, &sd->process_queue);
6467 __skb_queue_tail(&list, skb);
6468 rps_input_queue_head_incr(sd);
6469 }
6470 }
6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6472 local_bh_enable();
6473
6474 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6475 }
6476
flush_required(int cpu)6477 static bool flush_required(int cpu)
6478 {
6479 #if IS_ENABLED(CONFIG_RPS)
6480 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6481 bool do_flush;
6482
6483 backlog_lock_irq_disable(sd);
6484
6485 /* as insertion into process_queue happens with the rps lock held,
6486 * process_queue access may race only with dequeue
6487 */
6488 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6489 !skb_queue_empty_lockless(&sd->process_queue);
6490 backlog_unlock_irq_enable(sd);
6491
6492 return do_flush;
6493 #endif
6494 /* without RPS we can't safely check input_pkt_queue: during a
6495 * concurrent remote skb_queue_splice() we can detect as empty both
6496 * input_pkt_queue and process_queue even if the latter could end-up
6497 * containing a lot of packets.
6498 */
6499 return true;
6500 }
6501
6502 struct flush_backlogs {
6503 cpumask_t flush_cpus;
6504 struct work_struct w[];
6505 };
6506
flush_backlogs_alloc(void)6507 static struct flush_backlogs *flush_backlogs_alloc(void)
6508 {
6509 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6510 GFP_KERNEL);
6511 }
6512
6513 static struct flush_backlogs *flush_backlogs_fallback;
6514 static DEFINE_MUTEX(flush_backlogs_mutex);
6515
flush_all_backlogs(void)6516 static void flush_all_backlogs(void)
6517 {
6518 struct flush_backlogs *ptr = flush_backlogs_alloc();
6519 unsigned int cpu;
6520
6521 if (!ptr) {
6522 mutex_lock(&flush_backlogs_mutex);
6523 ptr = flush_backlogs_fallback;
6524 }
6525 cpumask_clear(&ptr->flush_cpus);
6526
6527 cpus_read_lock();
6528
6529 for_each_online_cpu(cpu) {
6530 if (flush_required(cpu)) {
6531 INIT_WORK(&ptr->w[cpu], flush_backlog);
6532 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6533 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6534 }
6535 }
6536
6537 /* we can have in flight packet[s] on the cpus we are not flushing,
6538 * synchronize_net() in unregister_netdevice_many() will take care of
6539 * them.
6540 */
6541 for_each_cpu(cpu, &ptr->flush_cpus)
6542 flush_work(&ptr->w[cpu]);
6543
6544 cpus_read_unlock();
6545
6546 if (ptr != flush_backlogs_fallback)
6547 kfree(ptr);
6548 else
6549 mutex_unlock(&flush_backlogs_mutex);
6550 }
6551
net_rps_send_ipi(struct softnet_data * remsd)6552 static void net_rps_send_ipi(struct softnet_data *remsd)
6553 {
6554 #ifdef CONFIG_RPS
6555 while (remsd) {
6556 struct softnet_data *next = remsd->rps_ipi_next;
6557
6558 if (cpu_online(remsd->cpu))
6559 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6560 remsd = next;
6561 }
6562 #endif
6563 }
6564
6565 /*
6566 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6567 * Note: called with local irq disabled, but exits with local irq enabled.
6568 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6569 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6570 {
6571 #ifdef CONFIG_RPS
6572 struct softnet_data *remsd = sd->rps_ipi_list;
6573
6574 if (!use_backlog_threads() && remsd) {
6575 sd->rps_ipi_list = NULL;
6576
6577 local_irq_enable();
6578
6579 /* Send pending IPI's to kick RPS processing on remote cpus. */
6580 net_rps_send_ipi(remsd);
6581 } else
6582 #endif
6583 local_irq_enable();
6584 }
6585
sd_has_rps_ipi_waiting(struct softnet_data * sd)6586 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6587 {
6588 #ifdef CONFIG_RPS
6589 return !use_backlog_threads() && sd->rps_ipi_list;
6590 #else
6591 return false;
6592 #endif
6593 }
6594
process_backlog(struct napi_struct * napi,int quota)6595 static int process_backlog(struct napi_struct *napi, int quota)
6596 {
6597 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6598 bool again = true;
6599 int work = 0;
6600
6601 /* Check if we have pending ipi, its better to send them now,
6602 * not waiting net_rx_action() end.
6603 */
6604 if (sd_has_rps_ipi_waiting(sd)) {
6605 local_irq_disable();
6606 net_rps_action_and_irq_enable(sd);
6607 }
6608
6609 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6610 while (again) {
6611 struct sk_buff *skb;
6612
6613 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6614 while ((skb = __skb_dequeue(&sd->process_queue))) {
6615 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6616 rcu_read_lock();
6617 __netif_receive_skb(skb);
6618 rcu_read_unlock();
6619 if (++work >= quota) {
6620 rps_input_queue_head_add(sd, work);
6621 return work;
6622 }
6623
6624 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6625 }
6626 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6627
6628 backlog_lock_irq_disable(sd);
6629 if (skb_queue_empty(&sd->input_pkt_queue)) {
6630 /*
6631 * Inline a custom version of __napi_complete().
6632 * only current cpu owns and manipulates this napi,
6633 * and NAPI_STATE_SCHED is the only possible flag set
6634 * on backlog.
6635 * We can use a plain write instead of clear_bit(),
6636 * and we dont need an smp_mb() memory barrier.
6637 */
6638 napi->state &= NAPIF_STATE_THREADED;
6639 again = false;
6640 } else {
6641 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6642 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6643 &sd->process_queue);
6644 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6645 }
6646 backlog_unlock_irq_enable(sd);
6647 }
6648
6649 if (work)
6650 rps_input_queue_head_add(sd, work);
6651 return work;
6652 }
6653
6654 /**
6655 * __napi_schedule - schedule for receive
6656 * @n: entry to schedule
6657 *
6658 * The entry's receive function will be scheduled to run.
6659 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6660 */
__napi_schedule(struct napi_struct * n)6661 void __napi_schedule(struct napi_struct *n)
6662 {
6663 unsigned long flags;
6664
6665 local_irq_save(flags);
6666 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6667 local_irq_restore(flags);
6668 }
6669 EXPORT_SYMBOL(__napi_schedule);
6670
6671 /**
6672 * napi_schedule_prep - check if napi can be scheduled
6673 * @n: napi context
6674 *
6675 * Test if NAPI routine is already running, and if not mark
6676 * it as running. This is used as a condition variable to
6677 * insure only one NAPI poll instance runs. We also make
6678 * sure there is no pending NAPI disable.
6679 */
napi_schedule_prep(struct napi_struct * n)6680 bool napi_schedule_prep(struct napi_struct *n)
6681 {
6682 unsigned long new, val = READ_ONCE(n->state);
6683
6684 do {
6685 if (unlikely(val & NAPIF_STATE_DISABLE))
6686 return false;
6687 new = val | NAPIF_STATE_SCHED;
6688
6689 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6690 * This was suggested by Alexander Duyck, as compiler
6691 * emits better code than :
6692 * if (val & NAPIF_STATE_SCHED)
6693 * new |= NAPIF_STATE_MISSED;
6694 */
6695 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6696 NAPIF_STATE_MISSED;
6697 } while (!try_cmpxchg(&n->state, &val, new));
6698
6699 return !(val & NAPIF_STATE_SCHED);
6700 }
6701 EXPORT_SYMBOL(napi_schedule_prep);
6702
6703 /**
6704 * __napi_schedule_irqoff - schedule for receive
6705 * @n: entry to schedule
6706 *
6707 * Variant of __napi_schedule() assuming hard irqs are masked.
6708 *
6709 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6710 * because the interrupt disabled assumption might not be true
6711 * due to force-threaded interrupts and spinlock substitution.
6712 */
__napi_schedule_irqoff(struct napi_struct * n)6713 void __napi_schedule_irqoff(struct napi_struct *n)
6714 {
6715 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6716 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6717 else
6718 __napi_schedule(n);
6719 }
6720 EXPORT_SYMBOL(__napi_schedule_irqoff);
6721
napi_complete_done(struct napi_struct * n,int work_done)6722 bool napi_complete_done(struct napi_struct *n, int work_done)
6723 {
6724 unsigned long flags, val, new, timeout = 0;
6725 bool ret = true;
6726
6727 /*
6728 * 1) Don't let napi dequeue from the cpu poll list
6729 * just in case its running on a different cpu.
6730 * 2) If we are busy polling, do nothing here, we have
6731 * the guarantee we will be called later.
6732 */
6733 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6734 NAPIF_STATE_IN_BUSY_POLL)))
6735 return false;
6736
6737 if (work_done) {
6738 if (n->gro.bitmask)
6739 timeout = napi_get_gro_flush_timeout(n);
6740 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6741 }
6742 if (n->defer_hard_irqs_count > 0) {
6743 n->defer_hard_irqs_count--;
6744 timeout = napi_get_gro_flush_timeout(n);
6745 if (timeout)
6746 ret = false;
6747 }
6748
6749 /*
6750 * When the NAPI instance uses a timeout and keeps postponing
6751 * it, we need to bound somehow the time packets are kept in
6752 * the GRO layer.
6753 */
6754 gro_flush_normal(&n->gro, !!timeout);
6755
6756 if (unlikely(!list_empty(&n->poll_list))) {
6757 /* If n->poll_list is not empty, we need to mask irqs */
6758 local_irq_save(flags);
6759 list_del_init(&n->poll_list);
6760 local_irq_restore(flags);
6761 }
6762 WRITE_ONCE(n->list_owner, -1);
6763
6764 val = READ_ONCE(n->state);
6765 do {
6766 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6767
6768 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6769 NAPIF_STATE_SCHED_THREADED |
6770 NAPIF_STATE_PREFER_BUSY_POLL);
6771
6772 /* If STATE_MISSED was set, leave STATE_SCHED set,
6773 * because we will call napi->poll() one more time.
6774 * This C code was suggested by Alexander Duyck to help gcc.
6775 */
6776 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6777 NAPIF_STATE_SCHED;
6778 } while (!try_cmpxchg(&n->state, &val, new));
6779
6780 if (unlikely(val & NAPIF_STATE_MISSED)) {
6781 __napi_schedule(n);
6782 return false;
6783 }
6784
6785 if (timeout)
6786 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6787 HRTIMER_MODE_REL_PINNED);
6788 return ret;
6789 }
6790 EXPORT_SYMBOL(napi_complete_done);
6791
skb_defer_free_flush(void)6792 static void skb_defer_free_flush(void)
6793 {
6794 struct llist_node *free_list;
6795 struct sk_buff *skb, *next;
6796 struct skb_defer_node *sdn;
6797 int node;
6798
6799 for_each_node(node) {
6800 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6801
6802 if (llist_empty(&sdn->defer_list))
6803 continue;
6804 atomic_long_set(&sdn->defer_count, 0);
6805 free_list = llist_del_all(&sdn->defer_list);
6806
6807 llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6808 prefetch(next);
6809 napi_consume_skb(skb, 1);
6810 }
6811 }
6812 }
6813
6814 #if defined(CONFIG_NET_RX_BUSY_POLL)
6815
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6816 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6817 {
6818 if (!skip_schedule) {
6819 gro_normal_list(&napi->gro);
6820 __napi_schedule(napi);
6821 return;
6822 }
6823
6824 /* Flush too old packets. If HZ < 1000, flush all packets */
6825 gro_flush_normal(&napi->gro, HZ >= 1000);
6826
6827 clear_bit(NAPI_STATE_SCHED, &napi->state);
6828 }
6829
6830 enum {
6831 NAPI_F_PREFER_BUSY_POLL = 1,
6832 NAPI_F_END_ON_RESCHED = 2,
6833 };
6834
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6835 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6836 unsigned flags, u16 budget)
6837 {
6838 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6839 bool skip_schedule = false;
6840 unsigned long timeout;
6841 int rc;
6842
6843 /* Busy polling means there is a high chance device driver hard irq
6844 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6845 * set in napi_schedule_prep().
6846 * Since we are about to call napi->poll() once more, we can safely
6847 * clear NAPI_STATE_MISSED.
6848 *
6849 * Note: x86 could use a single "lock and ..." instruction
6850 * to perform these two clear_bit()
6851 */
6852 clear_bit(NAPI_STATE_MISSED, &napi->state);
6853 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6854
6855 local_bh_disable();
6856 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6857
6858 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6859 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6860 timeout = napi_get_gro_flush_timeout(napi);
6861 if (napi->defer_hard_irqs_count && timeout) {
6862 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6863 skip_schedule = true;
6864 }
6865 }
6866
6867 /* All we really want here is to re-enable device interrupts.
6868 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6869 */
6870 rc = napi->poll(napi, budget);
6871 /* We can't gro_normal_list() here, because napi->poll() might have
6872 * rearmed the napi (napi_complete_done()) in which case it could
6873 * already be running on another CPU.
6874 */
6875 trace_napi_poll(napi, rc, budget);
6876 netpoll_poll_unlock(have_poll_lock);
6877 if (rc == budget)
6878 __busy_poll_stop(napi, skip_schedule);
6879 bpf_net_ctx_clear(bpf_net_ctx);
6880 local_bh_enable();
6881 }
6882
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6883 static void __napi_busy_loop(unsigned int napi_id,
6884 bool (*loop_end)(void *, unsigned long),
6885 void *loop_end_arg, unsigned flags, u16 budget)
6886 {
6887 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6888 int (*napi_poll)(struct napi_struct *napi, int budget);
6889 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6890 void *have_poll_lock = NULL;
6891 struct napi_struct *napi;
6892
6893 WARN_ON_ONCE(!rcu_read_lock_held());
6894
6895 restart:
6896 napi_poll = NULL;
6897
6898 napi = napi_by_id(napi_id);
6899 if (!napi)
6900 return;
6901
6902 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6903 preempt_disable();
6904 for (;;) {
6905 int work = 0;
6906
6907 local_bh_disable();
6908 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6909 if (!napi_poll) {
6910 unsigned long val = READ_ONCE(napi->state);
6911
6912 /* If multiple threads are competing for this napi,
6913 * we avoid dirtying napi->state as much as we can.
6914 */
6915 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6916 NAPIF_STATE_IN_BUSY_POLL)) {
6917 if (flags & NAPI_F_PREFER_BUSY_POLL)
6918 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6919 goto count;
6920 }
6921 if (cmpxchg(&napi->state, val,
6922 val | NAPIF_STATE_IN_BUSY_POLL |
6923 NAPIF_STATE_SCHED) != val) {
6924 if (flags & NAPI_F_PREFER_BUSY_POLL)
6925 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6926 goto count;
6927 }
6928 have_poll_lock = netpoll_poll_lock(napi);
6929 napi_poll = napi->poll;
6930 }
6931 work = napi_poll(napi, budget);
6932 trace_napi_poll(napi, work, budget);
6933 gro_normal_list(&napi->gro);
6934 count:
6935 if (work > 0)
6936 __NET_ADD_STATS(dev_net(napi->dev),
6937 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6938 skb_defer_free_flush();
6939 bpf_net_ctx_clear(bpf_net_ctx);
6940 local_bh_enable();
6941
6942 if (!loop_end || loop_end(loop_end_arg, start_time))
6943 break;
6944
6945 if (unlikely(need_resched())) {
6946 if (flags & NAPI_F_END_ON_RESCHED)
6947 break;
6948 if (napi_poll)
6949 busy_poll_stop(napi, have_poll_lock, flags, budget);
6950 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6951 preempt_enable();
6952 rcu_read_unlock();
6953 cond_resched();
6954 rcu_read_lock();
6955 if (loop_end(loop_end_arg, start_time))
6956 return;
6957 goto restart;
6958 }
6959 cpu_relax();
6960 }
6961 if (napi_poll)
6962 busy_poll_stop(napi, have_poll_lock, flags, budget);
6963 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6964 preempt_enable();
6965 }
6966
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6967 void napi_busy_loop_rcu(unsigned int napi_id,
6968 bool (*loop_end)(void *, unsigned long),
6969 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6970 {
6971 unsigned flags = NAPI_F_END_ON_RESCHED;
6972
6973 if (prefer_busy_poll)
6974 flags |= NAPI_F_PREFER_BUSY_POLL;
6975
6976 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6977 }
6978
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6979 void napi_busy_loop(unsigned int napi_id,
6980 bool (*loop_end)(void *, unsigned long),
6981 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6982 {
6983 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6984
6985 rcu_read_lock();
6986 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6987 rcu_read_unlock();
6988 }
6989 EXPORT_SYMBOL(napi_busy_loop);
6990
napi_suspend_irqs(unsigned int napi_id)6991 void napi_suspend_irqs(unsigned int napi_id)
6992 {
6993 struct napi_struct *napi;
6994
6995 rcu_read_lock();
6996 napi = napi_by_id(napi_id);
6997 if (napi) {
6998 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6999
7000 if (timeout)
7001 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7002 HRTIMER_MODE_REL_PINNED);
7003 }
7004 rcu_read_unlock();
7005 }
7006
napi_resume_irqs(unsigned int napi_id)7007 void napi_resume_irqs(unsigned int napi_id)
7008 {
7009 struct napi_struct *napi;
7010
7011 rcu_read_lock();
7012 napi = napi_by_id(napi_id);
7013 if (napi) {
7014 /* If irq_suspend_timeout is set to 0 between the call to
7015 * napi_suspend_irqs and now, the original value still
7016 * determines the safety timeout as intended and napi_watchdog
7017 * will resume irq processing.
7018 */
7019 if (napi_get_irq_suspend_timeout(napi)) {
7020 local_bh_disable();
7021 napi_schedule(napi);
7022 local_bh_enable();
7023 }
7024 }
7025 rcu_read_unlock();
7026 }
7027
7028 #endif /* CONFIG_NET_RX_BUSY_POLL */
7029
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7030 static void __napi_hash_add_with_id(struct napi_struct *napi,
7031 unsigned int napi_id)
7032 {
7033 napi->gro.cached_napi_id = napi_id;
7034
7035 WRITE_ONCE(napi->napi_id, napi_id);
7036 hlist_add_head_rcu(&napi->napi_hash_node,
7037 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7038 }
7039
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7040 static void napi_hash_add_with_id(struct napi_struct *napi,
7041 unsigned int napi_id)
7042 {
7043 unsigned long flags;
7044
7045 spin_lock_irqsave(&napi_hash_lock, flags);
7046 WARN_ON_ONCE(napi_by_id(napi_id));
7047 __napi_hash_add_with_id(napi, napi_id);
7048 spin_unlock_irqrestore(&napi_hash_lock, flags);
7049 }
7050
napi_hash_add(struct napi_struct * napi)7051 static void napi_hash_add(struct napi_struct *napi)
7052 {
7053 unsigned long flags;
7054
7055 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7056 return;
7057
7058 spin_lock_irqsave(&napi_hash_lock, flags);
7059
7060 /* 0..NR_CPUS range is reserved for sender_cpu use */
7061 do {
7062 if (unlikely(!napi_id_valid(++napi_gen_id)))
7063 napi_gen_id = MIN_NAPI_ID;
7064 } while (napi_by_id(napi_gen_id));
7065
7066 __napi_hash_add_with_id(napi, napi_gen_id);
7067
7068 spin_unlock_irqrestore(&napi_hash_lock, flags);
7069 }
7070
7071 /* Warning : caller is responsible to make sure rcu grace period
7072 * is respected before freeing memory containing @napi
7073 */
napi_hash_del(struct napi_struct * napi)7074 static void napi_hash_del(struct napi_struct *napi)
7075 {
7076 unsigned long flags;
7077
7078 spin_lock_irqsave(&napi_hash_lock, flags);
7079
7080 hlist_del_init_rcu(&napi->napi_hash_node);
7081
7082 spin_unlock_irqrestore(&napi_hash_lock, flags);
7083 }
7084
napi_watchdog(struct hrtimer * timer)7085 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7086 {
7087 struct napi_struct *napi;
7088
7089 napi = container_of(timer, struct napi_struct, timer);
7090
7091 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
7092 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7093 */
7094 if (!napi_disable_pending(napi) &&
7095 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7096 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7097 __napi_schedule_irqoff(napi);
7098 }
7099
7100 return HRTIMER_NORESTART;
7101 }
7102
napi_stop_kthread(struct napi_struct * napi)7103 static void napi_stop_kthread(struct napi_struct *napi)
7104 {
7105 unsigned long val, new;
7106
7107 /* Wait until the napi STATE_THREADED is unset. */
7108 while (true) {
7109 val = READ_ONCE(napi->state);
7110
7111 /* If napi kthread own this napi or the napi is idle,
7112 * STATE_THREADED can be unset here.
7113 */
7114 if ((val & NAPIF_STATE_SCHED_THREADED) ||
7115 !(val & NAPIF_STATE_SCHED)) {
7116 new = val & (~(NAPIF_STATE_THREADED |
7117 NAPIF_STATE_THREADED_BUSY_POLL));
7118 } else {
7119 msleep(20);
7120 continue;
7121 }
7122
7123 if (try_cmpxchg(&napi->state, &val, new))
7124 break;
7125 }
7126
7127 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7128 * the kthread.
7129 */
7130 while (true) {
7131 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7132 break;
7133
7134 msleep(20);
7135 }
7136
7137 kthread_stop(napi->thread);
7138 napi->thread = NULL;
7139 }
7140
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7141 static void napi_set_threaded_state(struct napi_struct *napi,
7142 enum netdev_napi_threaded threaded_mode)
7143 {
7144 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7145 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7146
7147 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7148 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7149 }
7150
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7151 int napi_set_threaded(struct napi_struct *napi,
7152 enum netdev_napi_threaded threaded)
7153 {
7154 if (threaded) {
7155 if (!napi->thread) {
7156 int err = napi_kthread_create(napi);
7157
7158 if (err)
7159 return err;
7160 }
7161 }
7162
7163 if (napi->config)
7164 napi->config->threaded = threaded;
7165
7166 /* Setting/unsetting threaded mode on a napi might not immediately
7167 * take effect, if the current napi instance is actively being
7168 * polled. In this case, the switch between threaded mode and
7169 * softirq mode will happen in the next round of napi_schedule().
7170 * This should not cause hiccups/stalls to the live traffic.
7171 */
7172 if (!threaded && napi->thread) {
7173 napi_stop_kthread(napi);
7174 } else {
7175 /* Make sure kthread is created before THREADED bit is set. */
7176 smp_mb__before_atomic();
7177 napi_set_threaded_state(napi, threaded);
7178 }
7179
7180 return 0;
7181 }
7182
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7183 int netif_set_threaded(struct net_device *dev,
7184 enum netdev_napi_threaded threaded)
7185 {
7186 struct napi_struct *napi;
7187 int i, err = 0;
7188
7189 netdev_assert_locked_or_invisible(dev);
7190
7191 if (threaded) {
7192 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7193 if (!napi->thread) {
7194 err = napi_kthread_create(napi);
7195 if (err) {
7196 threaded = NETDEV_NAPI_THREADED_DISABLED;
7197 break;
7198 }
7199 }
7200 }
7201 }
7202
7203 WRITE_ONCE(dev->threaded, threaded);
7204
7205 /* The error should not occur as the kthreads are already created. */
7206 list_for_each_entry(napi, &dev->napi_list, dev_list)
7207 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7208
7209 /* Override the config for all NAPIs even if currently not listed */
7210 for (i = 0; i < dev->num_napi_configs; i++)
7211 dev->napi_config[i].threaded = threaded;
7212
7213 return err;
7214 }
7215
7216 /**
7217 * netif_threaded_enable() - enable threaded NAPIs
7218 * @dev: net_device instance
7219 *
7220 * Enable threaded mode for the NAPI instances of the device. This may be useful
7221 * for devices where multiple NAPI instances get scheduled by a single
7222 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7223 * than the core where IRQ is mapped.
7224 *
7225 * This function should be called before @dev is registered.
7226 */
netif_threaded_enable(struct net_device * dev)7227 void netif_threaded_enable(struct net_device *dev)
7228 {
7229 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7230 }
7231 EXPORT_SYMBOL(netif_threaded_enable);
7232
7233 /**
7234 * netif_queue_set_napi - Associate queue with the napi
7235 * @dev: device to which NAPI and queue belong
7236 * @queue_index: Index of queue
7237 * @type: queue type as RX or TX
7238 * @napi: NAPI context, pass NULL to clear previously set NAPI
7239 *
7240 * Set queue with its corresponding napi context. This should be done after
7241 * registering the NAPI handler for the queue-vector and the queues have been
7242 * mapped to the corresponding interrupt vector.
7243 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7244 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7245 enum netdev_queue_type type, struct napi_struct *napi)
7246 {
7247 struct netdev_rx_queue *rxq;
7248 struct netdev_queue *txq;
7249
7250 if (WARN_ON_ONCE(napi && !napi->dev))
7251 return;
7252 netdev_ops_assert_locked_or_invisible(dev);
7253
7254 switch (type) {
7255 case NETDEV_QUEUE_TYPE_RX:
7256 rxq = __netif_get_rx_queue(dev, queue_index);
7257 rxq->napi = napi;
7258 return;
7259 case NETDEV_QUEUE_TYPE_TX:
7260 txq = netdev_get_tx_queue(dev, queue_index);
7261 txq->napi = napi;
7262 return;
7263 default:
7264 return;
7265 }
7266 }
7267 EXPORT_SYMBOL(netif_queue_set_napi);
7268
7269 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7270 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7271 const cpumask_t *mask)
7272 {
7273 struct napi_struct *napi =
7274 container_of(notify, struct napi_struct, notify);
7275 #ifdef CONFIG_RFS_ACCEL
7276 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7277 int err;
7278 #endif
7279
7280 if (napi->config && napi->dev->irq_affinity_auto)
7281 cpumask_copy(&napi->config->affinity_mask, mask);
7282
7283 #ifdef CONFIG_RFS_ACCEL
7284 if (napi->dev->rx_cpu_rmap_auto) {
7285 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7286 if (err)
7287 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7288 err);
7289 }
7290 #endif
7291 }
7292
7293 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7294 static void netif_napi_affinity_release(struct kref *ref)
7295 {
7296 struct napi_struct *napi =
7297 container_of(ref, struct napi_struct, notify.kref);
7298 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7299
7300 netdev_assert_locked(napi->dev);
7301 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7302 &napi->state));
7303
7304 if (!napi->dev->rx_cpu_rmap_auto)
7305 return;
7306 rmap->obj[napi->napi_rmap_idx] = NULL;
7307 napi->napi_rmap_idx = -1;
7308 cpu_rmap_put(rmap);
7309 }
7310
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7311 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7312 {
7313 if (dev->rx_cpu_rmap_auto)
7314 return 0;
7315
7316 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7317 if (!dev->rx_cpu_rmap)
7318 return -ENOMEM;
7319
7320 dev->rx_cpu_rmap_auto = true;
7321 return 0;
7322 }
7323 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7324
netif_del_cpu_rmap(struct net_device * dev)7325 static void netif_del_cpu_rmap(struct net_device *dev)
7326 {
7327 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7328
7329 if (!dev->rx_cpu_rmap_auto)
7330 return;
7331
7332 /* Free the rmap */
7333 cpu_rmap_put(rmap);
7334 dev->rx_cpu_rmap = NULL;
7335 dev->rx_cpu_rmap_auto = false;
7336 }
7337
7338 #else
netif_napi_affinity_release(struct kref * ref)7339 static void netif_napi_affinity_release(struct kref *ref)
7340 {
7341 }
7342
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7343 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7344 {
7345 return 0;
7346 }
7347 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7348
netif_del_cpu_rmap(struct net_device * dev)7349 static void netif_del_cpu_rmap(struct net_device *dev)
7350 {
7351 }
7352 #endif
7353
netif_set_affinity_auto(struct net_device * dev)7354 void netif_set_affinity_auto(struct net_device *dev)
7355 {
7356 unsigned int i, maxqs, numa;
7357
7358 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7359 numa = dev_to_node(&dev->dev);
7360
7361 for (i = 0; i < maxqs; i++)
7362 cpumask_set_cpu(cpumask_local_spread(i, numa),
7363 &dev->napi_config[i].affinity_mask);
7364
7365 dev->irq_affinity_auto = true;
7366 }
7367 EXPORT_SYMBOL(netif_set_affinity_auto);
7368
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7369 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7370 {
7371 int rc;
7372
7373 netdev_assert_locked_or_invisible(napi->dev);
7374
7375 if (napi->irq == irq)
7376 return;
7377
7378 /* Remove existing resources */
7379 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7380 irq_set_affinity_notifier(napi->irq, NULL);
7381
7382 napi->irq = irq;
7383 if (irq < 0 ||
7384 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7385 return;
7386
7387 /* Abort for buggy drivers */
7388 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7389 return;
7390
7391 #ifdef CONFIG_RFS_ACCEL
7392 if (napi->dev->rx_cpu_rmap_auto) {
7393 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7394 if (rc < 0)
7395 return;
7396
7397 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7398 napi->napi_rmap_idx = rc;
7399 }
7400 #endif
7401
7402 /* Use core IRQ notifier */
7403 napi->notify.notify = netif_napi_irq_notify;
7404 napi->notify.release = netif_napi_affinity_release;
7405 rc = irq_set_affinity_notifier(irq, &napi->notify);
7406 if (rc) {
7407 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7408 rc);
7409 goto put_rmap;
7410 }
7411
7412 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7413 return;
7414
7415 put_rmap:
7416 #ifdef CONFIG_RFS_ACCEL
7417 if (napi->dev->rx_cpu_rmap_auto) {
7418 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7419 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7420 napi->napi_rmap_idx = -1;
7421 }
7422 #endif
7423 napi->notify.notify = NULL;
7424 napi->notify.release = NULL;
7425 }
7426 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7427
napi_restore_config(struct napi_struct * n)7428 static void napi_restore_config(struct napi_struct *n)
7429 {
7430 n->defer_hard_irqs = n->config->defer_hard_irqs;
7431 n->gro_flush_timeout = n->config->gro_flush_timeout;
7432 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7433
7434 if (n->dev->irq_affinity_auto &&
7435 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7436 irq_set_affinity(n->irq, &n->config->affinity_mask);
7437
7438 /* a NAPI ID might be stored in the config, if so use it. if not, use
7439 * napi_hash_add to generate one for us.
7440 */
7441 if (n->config->napi_id) {
7442 napi_hash_add_with_id(n, n->config->napi_id);
7443 } else {
7444 napi_hash_add(n);
7445 n->config->napi_id = n->napi_id;
7446 }
7447
7448 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7449 }
7450
napi_save_config(struct napi_struct * n)7451 static void napi_save_config(struct napi_struct *n)
7452 {
7453 n->config->defer_hard_irqs = n->defer_hard_irqs;
7454 n->config->gro_flush_timeout = n->gro_flush_timeout;
7455 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7456 napi_hash_del(n);
7457 }
7458
7459 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7460 * inherit an existing ID try to insert it at the right position.
7461 */
7462 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7463 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7464 {
7465 unsigned int new_id, pos_id;
7466 struct list_head *higher;
7467 struct napi_struct *pos;
7468
7469 new_id = UINT_MAX;
7470 if (napi->config && napi->config->napi_id)
7471 new_id = napi->config->napi_id;
7472
7473 higher = &dev->napi_list;
7474 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7475 if (napi_id_valid(pos->napi_id))
7476 pos_id = pos->napi_id;
7477 else if (pos->config)
7478 pos_id = pos->config->napi_id;
7479 else
7480 pos_id = UINT_MAX;
7481
7482 if (pos_id <= new_id)
7483 break;
7484 higher = &pos->dev_list;
7485 }
7486 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7487 }
7488
7489 /* Double check that napi_get_frags() allocates skbs with
7490 * skb->head being backed by slab, not a page fragment.
7491 * This is to make sure bug fixed in 3226b158e67c
7492 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7493 * does not accidentally come back.
7494 */
napi_get_frags_check(struct napi_struct * napi)7495 static void napi_get_frags_check(struct napi_struct *napi)
7496 {
7497 struct sk_buff *skb;
7498
7499 local_bh_disable();
7500 skb = napi_get_frags(napi);
7501 WARN_ON_ONCE(skb && skb->head_frag);
7502 napi_free_frags(napi);
7503 local_bh_enable();
7504 }
7505
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7506 void netif_napi_add_weight_locked(struct net_device *dev,
7507 struct napi_struct *napi,
7508 int (*poll)(struct napi_struct *, int),
7509 int weight)
7510 {
7511 netdev_assert_locked(dev);
7512 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7513 return;
7514
7515 INIT_LIST_HEAD(&napi->poll_list);
7516 INIT_HLIST_NODE(&napi->napi_hash_node);
7517 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7518 gro_init(&napi->gro);
7519 napi->skb = NULL;
7520 napi->poll = poll;
7521 if (weight > NAPI_POLL_WEIGHT)
7522 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7523 weight);
7524 napi->weight = weight;
7525 napi->dev = dev;
7526 #ifdef CONFIG_NETPOLL
7527 napi->poll_owner = -1;
7528 #endif
7529 napi->list_owner = -1;
7530 set_bit(NAPI_STATE_SCHED, &napi->state);
7531 set_bit(NAPI_STATE_NPSVC, &napi->state);
7532 netif_napi_dev_list_add(dev, napi);
7533
7534 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7535 * configuration will be loaded in napi_enable
7536 */
7537 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7538 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7539
7540 napi_get_frags_check(napi);
7541 /* Create kthread for this napi if dev->threaded is set.
7542 * Clear dev->threaded if kthread creation failed so that
7543 * threaded mode will not be enabled in napi_enable().
7544 */
7545 if (napi_get_threaded_config(dev, napi))
7546 if (napi_kthread_create(napi))
7547 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7548 netif_napi_set_irq_locked(napi, -1);
7549 }
7550 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7551
napi_disable_locked(struct napi_struct * n)7552 void napi_disable_locked(struct napi_struct *n)
7553 {
7554 unsigned long val, new;
7555
7556 might_sleep();
7557 netdev_assert_locked(n->dev);
7558
7559 set_bit(NAPI_STATE_DISABLE, &n->state);
7560
7561 val = READ_ONCE(n->state);
7562 do {
7563 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7564 usleep_range(20, 200);
7565 val = READ_ONCE(n->state);
7566 }
7567
7568 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7569 new &= ~(NAPIF_STATE_THREADED |
7570 NAPIF_STATE_THREADED_BUSY_POLL |
7571 NAPIF_STATE_PREFER_BUSY_POLL);
7572 } while (!try_cmpxchg(&n->state, &val, new));
7573
7574 hrtimer_cancel(&n->timer);
7575
7576 if (n->config)
7577 napi_save_config(n);
7578 else
7579 napi_hash_del(n);
7580
7581 clear_bit(NAPI_STATE_DISABLE, &n->state);
7582 }
7583 EXPORT_SYMBOL(napi_disable_locked);
7584
7585 /**
7586 * napi_disable() - prevent NAPI from scheduling
7587 * @n: NAPI context
7588 *
7589 * Stop NAPI from being scheduled on this context.
7590 * Waits till any outstanding processing completes.
7591 * Takes netdev_lock() for associated net_device.
7592 */
napi_disable(struct napi_struct * n)7593 void napi_disable(struct napi_struct *n)
7594 {
7595 netdev_lock(n->dev);
7596 napi_disable_locked(n);
7597 netdev_unlock(n->dev);
7598 }
7599 EXPORT_SYMBOL(napi_disable);
7600
napi_enable_locked(struct napi_struct * n)7601 void napi_enable_locked(struct napi_struct *n)
7602 {
7603 unsigned long new, val = READ_ONCE(n->state);
7604
7605 if (n->config)
7606 napi_restore_config(n);
7607 else
7608 napi_hash_add(n);
7609
7610 do {
7611 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7612
7613 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7614 if (n->dev->threaded && n->thread)
7615 new |= NAPIF_STATE_THREADED;
7616 } while (!try_cmpxchg(&n->state, &val, new));
7617 }
7618 EXPORT_SYMBOL(napi_enable_locked);
7619
7620 /**
7621 * napi_enable() - enable NAPI scheduling
7622 * @n: NAPI context
7623 *
7624 * Enable scheduling of a NAPI instance.
7625 * Must be paired with napi_disable().
7626 * Takes netdev_lock() for associated net_device.
7627 */
napi_enable(struct napi_struct * n)7628 void napi_enable(struct napi_struct *n)
7629 {
7630 netdev_lock(n->dev);
7631 napi_enable_locked(n);
7632 netdev_unlock(n->dev);
7633 }
7634 EXPORT_SYMBOL(napi_enable);
7635
7636 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7637 void __netif_napi_del_locked(struct napi_struct *napi)
7638 {
7639 netdev_assert_locked(napi->dev);
7640
7641 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7642 return;
7643
7644 /* Make sure NAPI is disabled (or was never enabled). */
7645 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7646
7647 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7648 irq_set_affinity_notifier(napi->irq, NULL);
7649
7650 if (napi->config) {
7651 napi->index = -1;
7652 napi->config = NULL;
7653 }
7654
7655 list_del_rcu(&napi->dev_list);
7656 napi_free_frags(napi);
7657
7658 gro_cleanup(&napi->gro);
7659
7660 if (napi->thread) {
7661 kthread_stop(napi->thread);
7662 napi->thread = NULL;
7663 }
7664 }
7665 EXPORT_SYMBOL(__netif_napi_del_locked);
7666
__napi_poll(struct napi_struct * n,bool * repoll)7667 static int __napi_poll(struct napi_struct *n, bool *repoll)
7668 {
7669 int work, weight;
7670
7671 weight = n->weight;
7672
7673 /* This NAPI_STATE_SCHED test is for avoiding a race
7674 * with netpoll's poll_napi(). Only the entity which
7675 * obtains the lock and sees NAPI_STATE_SCHED set will
7676 * actually make the ->poll() call. Therefore we avoid
7677 * accidentally calling ->poll() when NAPI is not scheduled.
7678 */
7679 work = 0;
7680 if (napi_is_scheduled(n)) {
7681 work = n->poll(n, weight);
7682 trace_napi_poll(n, work, weight);
7683
7684 xdp_do_check_flushed(n);
7685 }
7686
7687 if (unlikely(work > weight))
7688 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7689 n->poll, work, weight);
7690
7691 if (likely(work < weight))
7692 return work;
7693
7694 /* Drivers must not modify the NAPI state if they
7695 * consume the entire weight. In such cases this code
7696 * still "owns" the NAPI instance and therefore can
7697 * move the instance around on the list at-will.
7698 */
7699 if (unlikely(napi_disable_pending(n))) {
7700 napi_complete(n);
7701 return work;
7702 }
7703
7704 /* The NAPI context has more processing work, but busy-polling
7705 * is preferred. Exit early.
7706 */
7707 if (napi_prefer_busy_poll(n)) {
7708 if (napi_complete_done(n, work)) {
7709 /* If timeout is not set, we need to make sure
7710 * that the NAPI is re-scheduled.
7711 */
7712 napi_schedule(n);
7713 }
7714 return work;
7715 }
7716
7717 /* Flush too old packets. If HZ < 1000, flush all packets */
7718 gro_flush_normal(&n->gro, HZ >= 1000);
7719
7720 /* Some drivers may have called napi_schedule
7721 * prior to exhausting their budget.
7722 */
7723 if (unlikely(!list_empty(&n->poll_list))) {
7724 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7725 n->dev ? n->dev->name : "backlog");
7726 return work;
7727 }
7728
7729 *repoll = true;
7730
7731 return work;
7732 }
7733
napi_poll(struct napi_struct * n,struct list_head * repoll)7734 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7735 {
7736 bool do_repoll = false;
7737 void *have;
7738 int work;
7739
7740 list_del_init(&n->poll_list);
7741
7742 have = netpoll_poll_lock(n);
7743
7744 work = __napi_poll(n, &do_repoll);
7745
7746 if (do_repoll) {
7747 #if defined(CONFIG_DEBUG_NET)
7748 if (unlikely(!napi_is_scheduled(n)))
7749 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7750 n->dev->name, n->poll);
7751 #endif
7752 list_add_tail(&n->poll_list, repoll);
7753 }
7754 netpoll_poll_unlock(have);
7755
7756 return work;
7757 }
7758
napi_thread_wait(struct napi_struct * napi)7759 static int napi_thread_wait(struct napi_struct *napi)
7760 {
7761 set_current_state(TASK_INTERRUPTIBLE);
7762
7763 while (!kthread_should_stop()) {
7764 /* Testing SCHED_THREADED bit here to make sure the current
7765 * kthread owns this napi and could poll on this napi.
7766 * Testing SCHED bit is not enough because SCHED bit might be
7767 * set by some other busy poll thread or by napi_disable().
7768 */
7769 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7770 WARN_ON(!list_empty(&napi->poll_list));
7771 __set_current_state(TASK_RUNNING);
7772 return 0;
7773 }
7774
7775 schedule();
7776 set_current_state(TASK_INTERRUPTIBLE);
7777 }
7778 __set_current_state(TASK_RUNNING);
7779
7780 return -1;
7781 }
7782
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7783 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7784 {
7785 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7786 struct softnet_data *sd;
7787 unsigned long last_qs = jiffies;
7788
7789 for (;;) {
7790 bool repoll = false;
7791 void *have;
7792
7793 local_bh_disable();
7794 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7795
7796 sd = this_cpu_ptr(&softnet_data);
7797 sd->in_napi_threaded_poll = true;
7798
7799 have = netpoll_poll_lock(napi);
7800 __napi_poll(napi, &repoll);
7801 netpoll_poll_unlock(have);
7802
7803 sd->in_napi_threaded_poll = false;
7804 barrier();
7805
7806 if (sd_has_rps_ipi_waiting(sd)) {
7807 local_irq_disable();
7808 net_rps_action_and_irq_enable(sd);
7809 }
7810 skb_defer_free_flush();
7811 bpf_net_ctx_clear(bpf_net_ctx);
7812
7813 /* When busy poll is enabled, the old packets are not flushed in
7814 * napi_complete_done. So flush them here.
7815 */
7816 if (busy_poll)
7817 gro_flush_normal(&napi->gro, HZ >= 1000);
7818 local_bh_enable();
7819
7820 /* Call cond_resched here to avoid watchdog warnings. */
7821 if (repoll || busy_poll) {
7822 rcu_softirq_qs_periodic(last_qs);
7823 cond_resched();
7824 }
7825
7826 if (!repoll)
7827 break;
7828 }
7829 }
7830
napi_threaded_poll(void * data)7831 static int napi_threaded_poll(void *data)
7832 {
7833 struct napi_struct *napi = data;
7834 bool want_busy_poll;
7835 bool in_busy_poll;
7836 unsigned long val;
7837
7838 while (!napi_thread_wait(napi)) {
7839 val = READ_ONCE(napi->state);
7840
7841 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7842 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7843
7844 if (unlikely(val & NAPIF_STATE_DISABLE))
7845 want_busy_poll = false;
7846
7847 if (want_busy_poll != in_busy_poll)
7848 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7849 want_busy_poll);
7850
7851 napi_threaded_poll_loop(napi, want_busy_poll);
7852 }
7853
7854 return 0;
7855 }
7856
net_rx_action(void)7857 static __latent_entropy void net_rx_action(void)
7858 {
7859 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7860 unsigned long time_limit = jiffies +
7861 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7862 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7863 int budget = READ_ONCE(net_hotdata.netdev_budget);
7864 LIST_HEAD(list);
7865 LIST_HEAD(repoll);
7866
7867 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7868 start:
7869 sd->in_net_rx_action = true;
7870 local_irq_disable();
7871 list_splice_init(&sd->poll_list, &list);
7872 local_irq_enable();
7873
7874 for (;;) {
7875 struct napi_struct *n;
7876
7877 skb_defer_free_flush();
7878
7879 if (list_empty(&list)) {
7880 if (list_empty(&repoll)) {
7881 sd->in_net_rx_action = false;
7882 barrier();
7883 /* We need to check if ____napi_schedule()
7884 * had refilled poll_list while
7885 * sd->in_net_rx_action was true.
7886 */
7887 if (!list_empty(&sd->poll_list))
7888 goto start;
7889 if (!sd_has_rps_ipi_waiting(sd))
7890 goto end;
7891 }
7892 break;
7893 }
7894
7895 n = list_first_entry(&list, struct napi_struct, poll_list);
7896 budget -= napi_poll(n, &repoll);
7897
7898 /* If softirq window is exhausted then punt.
7899 * Allow this to run for 2 jiffies since which will allow
7900 * an average latency of 1.5/HZ.
7901 */
7902 if (unlikely(budget <= 0 ||
7903 time_after_eq(jiffies, time_limit))) {
7904 /* Pairs with READ_ONCE() in softnet_seq_show() */
7905 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7906 break;
7907 }
7908 }
7909
7910 local_irq_disable();
7911
7912 list_splice_tail_init(&sd->poll_list, &list);
7913 list_splice_tail(&repoll, &list);
7914 list_splice(&list, &sd->poll_list);
7915 if (!list_empty(&sd->poll_list))
7916 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7917 else
7918 sd->in_net_rx_action = false;
7919
7920 net_rps_action_and_irq_enable(sd);
7921 end:
7922 bpf_net_ctx_clear(bpf_net_ctx);
7923 }
7924
7925 struct netdev_adjacent {
7926 struct net_device *dev;
7927 netdevice_tracker dev_tracker;
7928
7929 /* upper master flag, there can only be one master device per list */
7930 bool master;
7931
7932 /* lookup ignore flag */
7933 bool ignore;
7934
7935 /* counter for the number of times this device was added to us */
7936 u16 ref_nr;
7937
7938 /* private field for the users */
7939 void *private;
7940
7941 struct list_head list;
7942 struct rcu_head rcu;
7943 };
7944
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7945 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7946 struct list_head *adj_list)
7947 {
7948 struct netdev_adjacent *adj;
7949
7950 list_for_each_entry(adj, adj_list, list) {
7951 if (adj->dev == adj_dev)
7952 return adj;
7953 }
7954 return NULL;
7955 }
7956
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7957 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7958 struct netdev_nested_priv *priv)
7959 {
7960 struct net_device *dev = (struct net_device *)priv->data;
7961
7962 return upper_dev == dev;
7963 }
7964
7965 /**
7966 * netdev_has_upper_dev - Check if device is linked to an upper device
7967 * @dev: device
7968 * @upper_dev: upper device to check
7969 *
7970 * Find out if a device is linked to specified upper device and return true
7971 * in case it is. Note that this checks only immediate upper device,
7972 * not through a complete stack of devices. The caller must hold the RTNL lock.
7973 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7974 bool netdev_has_upper_dev(struct net_device *dev,
7975 struct net_device *upper_dev)
7976 {
7977 struct netdev_nested_priv priv = {
7978 .data = (void *)upper_dev,
7979 };
7980
7981 ASSERT_RTNL();
7982
7983 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7984 &priv);
7985 }
7986 EXPORT_SYMBOL(netdev_has_upper_dev);
7987
7988 /**
7989 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7990 * @dev: device
7991 * @upper_dev: upper device to check
7992 *
7993 * Find out if a device is linked to specified upper device and return true
7994 * in case it is. Note that this checks the entire upper device chain.
7995 * The caller must hold rcu lock.
7996 */
7997
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7998 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7999 struct net_device *upper_dev)
8000 {
8001 struct netdev_nested_priv priv = {
8002 .data = (void *)upper_dev,
8003 };
8004
8005 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8006 &priv);
8007 }
8008 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8009
8010 /**
8011 * netdev_has_any_upper_dev - Check if device is linked to some device
8012 * @dev: device
8013 *
8014 * Find out if a device is linked to an upper device and return true in case
8015 * it is. The caller must hold the RTNL lock.
8016 */
netdev_has_any_upper_dev(struct net_device * dev)8017 bool netdev_has_any_upper_dev(struct net_device *dev)
8018 {
8019 ASSERT_RTNL();
8020
8021 return !list_empty(&dev->adj_list.upper);
8022 }
8023 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8024
8025 /**
8026 * netdev_master_upper_dev_get - Get master upper device
8027 * @dev: device
8028 *
8029 * Find a master upper device and return pointer to it or NULL in case
8030 * it's not there. The caller must hold the RTNL lock.
8031 */
netdev_master_upper_dev_get(struct net_device * dev)8032 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8033 {
8034 struct netdev_adjacent *upper;
8035
8036 ASSERT_RTNL();
8037
8038 if (list_empty(&dev->adj_list.upper))
8039 return NULL;
8040
8041 upper = list_first_entry(&dev->adj_list.upper,
8042 struct netdev_adjacent, list);
8043 if (likely(upper->master))
8044 return upper->dev;
8045 return NULL;
8046 }
8047 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8048
__netdev_master_upper_dev_get(struct net_device * dev)8049 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8050 {
8051 struct netdev_adjacent *upper;
8052
8053 ASSERT_RTNL();
8054
8055 if (list_empty(&dev->adj_list.upper))
8056 return NULL;
8057
8058 upper = list_first_entry(&dev->adj_list.upper,
8059 struct netdev_adjacent, list);
8060 if (likely(upper->master) && !upper->ignore)
8061 return upper->dev;
8062 return NULL;
8063 }
8064
8065 /**
8066 * netdev_has_any_lower_dev - Check if device is linked to some device
8067 * @dev: device
8068 *
8069 * Find out if a device is linked to a lower device and return true in case
8070 * it is. The caller must hold the RTNL lock.
8071 */
netdev_has_any_lower_dev(struct net_device * dev)8072 static bool netdev_has_any_lower_dev(struct net_device *dev)
8073 {
8074 ASSERT_RTNL();
8075
8076 return !list_empty(&dev->adj_list.lower);
8077 }
8078
netdev_adjacent_get_private(struct list_head * adj_list)8079 void *netdev_adjacent_get_private(struct list_head *adj_list)
8080 {
8081 struct netdev_adjacent *adj;
8082
8083 adj = list_entry(adj_list, struct netdev_adjacent, list);
8084
8085 return adj->private;
8086 }
8087 EXPORT_SYMBOL(netdev_adjacent_get_private);
8088
8089 /**
8090 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8091 * @dev: device
8092 * @iter: list_head ** of the current position
8093 *
8094 * Gets the next device from the dev's upper list, starting from iter
8095 * position. The caller must hold RCU read lock.
8096 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8097 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8098 struct list_head **iter)
8099 {
8100 struct netdev_adjacent *upper;
8101
8102 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8103
8104 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8105
8106 if (&upper->list == &dev->adj_list.upper)
8107 return NULL;
8108
8109 *iter = &upper->list;
8110
8111 return upper->dev;
8112 }
8113 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8114
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8115 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8116 struct list_head **iter,
8117 bool *ignore)
8118 {
8119 struct netdev_adjacent *upper;
8120
8121 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8122
8123 if (&upper->list == &dev->adj_list.upper)
8124 return NULL;
8125
8126 *iter = &upper->list;
8127 *ignore = upper->ignore;
8128
8129 return upper->dev;
8130 }
8131
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8132 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8133 struct list_head **iter)
8134 {
8135 struct netdev_adjacent *upper;
8136
8137 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8138
8139 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8140
8141 if (&upper->list == &dev->adj_list.upper)
8142 return NULL;
8143
8144 *iter = &upper->list;
8145
8146 return upper->dev;
8147 }
8148
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8149 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8150 int (*fn)(struct net_device *dev,
8151 struct netdev_nested_priv *priv),
8152 struct netdev_nested_priv *priv)
8153 {
8154 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8155 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8156 int ret, cur = 0;
8157 bool ignore;
8158
8159 now = dev;
8160 iter = &dev->adj_list.upper;
8161
8162 while (1) {
8163 if (now != dev) {
8164 ret = fn(now, priv);
8165 if (ret)
8166 return ret;
8167 }
8168
8169 next = NULL;
8170 while (1) {
8171 udev = __netdev_next_upper_dev(now, &iter, &ignore);
8172 if (!udev)
8173 break;
8174 if (ignore)
8175 continue;
8176
8177 next = udev;
8178 niter = &udev->adj_list.upper;
8179 dev_stack[cur] = now;
8180 iter_stack[cur++] = iter;
8181 break;
8182 }
8183
8184 if (!next) {
8185 if (!cur)
8186 return 0;
8187 next = dev_stack[--cur];
8188 niter = iter_stack[cur];
8189 }
8190
8191 now = next;
8192 iter = niter;
8193 }
8194
8195 return 0;
8196 }
8197
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8198 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8199 int (*fn)(struct net_device *dev,
8200 struct netdev_nested_priv *priv),
8201 struct netdev_nested_priv *priv)
8202 {
8203 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8204 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8205 int ret, cur = 0;
8206
8207 now = dev;
8208 iter = &dev->adj_list.upper;
8209
8210 while (1) {
8211 if (now != dev) {
8212 ret = fn(now, priv);
8213 if (ret)
8214 return ret;
8215 }
8216
8217 next = NULL;
8218 while (1) {
8219 udev = netdev_next_upper_dev_rcu(now, &iter);
8220 if (!udev)
8221 break;
8222
8223 next = udev;
8224 niter = &udev->adj_list.upper;
8225 dev_stack[cur] = now;
8226 iter_stack[cur++] = iter;
8227 break;
8228 }
8229
8230 if (!next) {
8231 if (!cur)
8232 return 0;
8233 next = dev_stack[--cur];
8234 niter = iter_stack[cur];
8235 }
8236
8237 now = next;
8238 iter = niter;
8239 }
8240
8241 return 0;
8242 }
8243 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8244
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8245 static bool __netdev_has_upper_dev(struct net_device *dev,
8246 struct net_device *upper_dev)
8247 {
8248 struct netdev_nested_priv priv = {
8249 .flags = 0,
8250 .data = (void *)upper_dev,
8251 };
8252
8253 ASSERT_RTNL();
8254
8255 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8256 &priv);
8257 }
8258
8259 /**
8260 * netdev_lower_get_next_private - Get the next ->private from the
8261 * lower neighbour list
8262 * @dev: device
8263 * @iter: list_head ** of the current position
8264 *
8265 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8266 * list, starting from iter position. The caller must hold either hold the
8267 * RTNL lock or its own locking that guarantees that the neighbour lower
8268 * list will remain unchanged.
8269 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8270 void *netdev_lower_get_next_private(struct net_device *dev,
8271 struct list_head **iter)
8272 {
8273 struct netdev_adjacent *lower;
8274
8275 lower = list_entry(*iter, struct netdev_adjacent, list);
8276
8277 if (&lower->list == &dev->adj_list.lower)
8278 return NULL;
8279
8280 *iter = lower->list.next;
8281
8282 return lower->private;
8283 }
8284 EXPORT_SYMBOL(netdev_lower_get_next_private);
8285
8286 /**
8287 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8288 * lower neighbour list, RCU
8289 * variant
8290 * @dev: device
8291 * @iter: list_head ** of the current position
8292 *
8293 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8294 * list, starting from iter position. The caller must hold RCU read lock.
8295 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8296 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8297 struct list_head **iter)
8298 {
8299 struct netdev_adjacent *lower;
8300
8301 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8302
8303 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8304
8305 if (&lower->list == &dev->adj_list.lower)
8306 return NULL;
8307
8308 *iter = &lower->list;
8309
8310 return lower->private;
8311 }
8312 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8313
8314 /**
8315 * netdev_lower_get_next - Get the next device from the lower neighbour
8316 * list
8317 * @dev: device
8318 * @iter: list_head ** of the current position
8319 *
8320 * Gets the next netdev_adjacent from the dev's lower neighbour
8321 * list, starting from iter position. The caller must hold RTNL lock or
8322 * its own locking that guarantees that the neighbour lower
8323 * list will remain unchanged.
8324 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8325 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8326 {
8327 struct netdev_adjacent *lower;
8328
8329 lower = list_entry(*iter, struct netdev_adjacent, list);
8330
8331 if (&lower->list == &dev->adj_list.lower)
8332 return NULL;
8333
8334 *iter = lower->list.next;
8335
8336 return lower->dev;
8337 }
8338 EXPORT_SYMBOL(netdev_lower_get_next);
8339
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8340 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8341 struct list_head **iter)
8342 {
8343 struct netdev_adjacent *lower;
8344
8345 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8346
8347 if (&lower->list == &dev->adj_list.lower)
8348 return NULL;
8349
8350 *iter = &lower->list;
8351
8352 return lower->dev;
8353 }
8354
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8355 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8356 struct list_head **iter,
8357 bool *ignore)
8358 {
8359 struct netdev_adjacent *lower;
8360
8361 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8362
8363 if (&lower->list == &dev->adj_list.lower)
8364 return NULL;
8365
8366 *iter = &lower->list;
8367 *ignore = lower->ignore;
8368
8369 return lower->dev;
8370 }
8371
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8372 int netdev_walk_all_lower_dev(struct net_device *dev,
8373 int (*fn)(struct net_device *dev,
8374 struct netdev_nested_priv *priv),
8375 struct netdev_nested_priv *priv)
8376 {
8377 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8378 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8379 int ret, cur = 0;
8380
8381 now = dev;
8382 iter = &dev->adj_list.lower;
8383
8384 while (1) {
8385 if (now != dev) {
8386 ret = fn(now, priv);
8387 if (ret)
8388 return ret;
8389 }
8390
8391 next = NULL;
8392 while (1) {
8393 ldev = netdev_next_lower_dev(now, &iter);
8394 if (!ldev)
8395 break;
8396
8397 next = ldev;
8398 niter = &ldev->adj_list.lower;
8399 dev_stack[cur] = now;
8400 iter_stack[cur++] = iter;
8401 break;
8402 }
8403
8404 if (!next) {
8405 if (!cur)
8406 return 0;
8407 next = dev_stack[--cur];
8408 niter = iter_stack[cur];
8409 }
8410
8411 now = next;
8412 iter = niter;
8413 }
8414
8415 return 0;
8416 }
8417 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8418
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8419 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8420 int (*fn)(struct net_device *dev,
8421 struct netdev_nested_priv *priv),
8422 struct netdev_nested_priv *priv)
8423 {
8424 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8425 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8426 int ret, cur = 0;
8427 bool ignore;
8428
8429 now = dev;
8430 iter = &dev->adj_list.lower;
8431
8432 while (1) {
8433 if (now != dev) {
8434 ret = fn(now, priv);
8435 if (ret)
8436 return ret;
8437 }
8438
8439 next = NULL;
8440 while (1) {
8441 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8442 if (!ldev)
8443 break;
8444 if (ignore)
8445 continue;
8446
8447 next = ldev;
8448 niter = &ldev->adj_list.lower;
8449 dev_stack[cur] = now;
8450 iter_stack[cur++] = iter;
8451 break;
8452 }
8453
8454 if (!next) {
8455 if (!cur)
8456 return 0;
8457 next = dev_stack[--cur];
8458 niter = iter_stack[cur];
8459 }
8460
8461 now = next;
8462 iter = niter;
8463 }
8464
8465 return 0;
8466 }
8467
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8468 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8469 struct list_head **iter)
8470 {
8471 struct netdev_adjacent *lower;
8472
8473 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8474 if (&lower->list == &dev->adj_list.lower)
8475 return NULL;
8476
8477 *iter = &lower->list;
8478
8479 return lower->dev;
8480 }
8481 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8482
__netdev_upper_depth(struct net_device * dev)8483 static u8 __netdev_upper_depth(struct net_device *dev)
8484 {
8485 struct net_device *udev;
8486 struct list_head *iter;
8487 u8 max_depth = 0;
8488 bool ignore;
8489
8490 for (iter = &dev->adj_list.upper,
8491 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8492 udev;
8493 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8494 if (ignore)
8495 continue;
8496 if (max_depth < udev->upper_level)
8497 max_depth = udev->upper_level;
8498 }
8499
8500 return max_depth;
8501 }
8502
__netdev_lower_depth(struct net_device * dev)8503 static u8 __netdev_lower_depth(struct net_device *dev)
8504 {
8505 struct net_device *ldev;
8506 struct list_head *iter;
8507 u8 max_depth = 0;
8508 bool ignore;
8509
8510 for (iter = &dev->adj_list.lower,
8511 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8512 ldev;
8513 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8514 if (ignore)
8515 continue;
8516 if (max_depth < ldev->lower_level)
8517 max_depth = ldev->lower_level;
8518 }
8519
8520 return max_depth;
8521 }
8522
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8523 static int __netdev_update_upper_level(struct net_device *dev,
8524 struct netdev_nested_priv *__unused)
8525 {
8526 dev->upper_level = __netdev_upper_depth(dev) + 1;
8527 return 0;
8528 }
8529
8530 #ifdef CONFIG_LOCKDEP
8531 static LIST_HEAD(net_unlink_list);
8532
net_unlink_todo(struct net_device * dev)8533 static void net_unlink_todo(struct net_device *dev)
8534 {
8535 if (list_empty(&dev->unlink_list))
8536 list_add_tail(&dev->unlink_list, &net_unlink_list);
8537 }
8538 #endif
8539
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8540 static int __netdev_update_lower_level(struct net_device *dev,
8541 struct netdev_nested_priv *priv)
8542 {
8543 dev->lower_level = __netdev_lower_depth(dev) + 1;
8544
8545 #ifdef CONFIG_LOCKDEP
8546 if (!priv)
8547 return 0;
8548
8549 if (priv->flags & NESTED_SYNC_IMM)
8550 dev->nested_level = dev->lower_level - 1;
8551 if (priv->flags & NESTED_SYNC_TODO)
8552 net_unlink_todo(dev);
8553 #endif
8554 return 0;
8555 }
8556
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8557 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8558 int (*fn)(struct net_device *dev,
8559 struct netdev_nested_priv *priv),
8560 struct netdev_nested_priv *priv)
8561 {
8562 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8563 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8564 int ret, cur = 0;
8565
8566 now = dev;
8567 iter = &dev->adj_list.lower;
8568
8569 while (1) {
8570 if (now != dev) {
8571 ret = fn(now, priv);
8572 if (ret)
8573 return ret;
8574 }
8575
8576 next = NULL;
8577 while (1) {
8578 ldev = netdev_next_lower_dev_rcu(now, &iter);
8579 if (!ldev)
8580 break;
8581
8582 next = ldev;
8583 niter = &ldev->adj_list.lower;
8584 dev_stack[cur] = now;
8585 iter_stack[cur++] = iter;
8586 break;
8587 }
8588
8589 if (!next) {
8590 if (!cur)
8591 return 0;
8592 next = dev_stack[--cur];
8593 niter = iter_stack[cur];
8594 }
8595
8596 now = next;
8597 iter = niter;
8598 }
8599
8600 return 0;
8601 }
8602 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8603
8604 /**
8605 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8606 * lower neighbour list, RCU
8607 * variant
8608 * @dev: device
8609 *
8610 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8611 * list. The caller must hold RCU read lock.
8612 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8613 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8614 {
8615 struct netdev_adjacent *lower;
8616
8617 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8618 struct netdev_adjacent, list);
8619 if (lower)
8620 return lower->private;
8621 return NULL;
8622 }
8623 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8624
8625 /**
8626 * netdev_master_upper_dev_get_rcu - Get master upper device
8627 * @dev: device
8628 *
8629 * Find a master upper device and return pointer to it or NULL in case
8630 * it's not there. The caller must hold the RCU read lock.
8631 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8632 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8633 {
8634 struct netdev_adjacent *upper;
8635
8636 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8637 struct netdev_adjacent, list);
8638 if (upper && likely(upper->master))
8639 return upper->dev;
8640 return NULL;
8641 }
8642 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8643
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8644 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8645 struct net_device *adj_dev,
8646 struct list_head *dev_list)
8647 {
8648 char linkname[IFNAMSIZ+7];
8649
8650 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8651 "upper_%s" : "lower_%s", adj_dev->name);
8652 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8653 linkname);
8654 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8655 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8656 char *name,
8657 struct list_head *dev_list)
8658 {
8659 char linkname[IFNAMSIZ+7];
8660
8661 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8662 "upper_%s" : "lower_%s", name);
8663 sysfs_remove_link(&(dev->dev.kobj), linkname);
8664 }
8665
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8666 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8667 struct net_device *adj_dev,
8668 struct list_head *dev_list)
8669 {
8670 return (dev_list == &dev->adj_list.upper ||
8671 dev_list == &dev->adj_list.lower) &&
8672 net_eq(dev_net(dev), dev_net(adj_dev));
8673 }
8674
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8675 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8676 struct net_device *adj_dev,
8677 struct list_head *dev_list,
8678 void *private, bool master)
8679 {
8680 struct netdev_adjacent *adj;
8681 int ret;
8682
8683 adj = __netdev_find_adj(adj_dev, dev_list);
8684
8685 if (adj) {
8686 adj->ref_nr += 1;
8687 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8688 dev->name, adj_dev->name, adj->ref_nr);
8689
8690 return 0;
8691 }
8692
8693 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8694 if (!adj)
8695 return -ENOMEM;
8696
8697 adj->dev = adj_dev;
8698 adj->master = master;
8699 adj->ref_nr = 1;
8700 adj->private = private;
8701 adj->ignore = false;
8702 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8703
8704 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8705 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8706
8707 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8708 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8709 if (ret)
8710 goto free_adj;
8711 }
8712
8713 /* Ensure that master link is always the first item in list. */
8714 if (master) {
8715 ret = sysfs_create_link(&(dev->dev.kobj),
8716 &(adj_dev->dev.kobj), "master");
8717 if (ret)
8718 goto remove_symlinks;
8719
8720 list_add_rcu(&adj->list, dev_list);
8721 } else {
8722 list_add_tail_rcu(&adj->list, dev_list);
8723 }
8724
8725 return 0;
8726
8727 remove_symlinks:
8728 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8729 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8730 free_adj:
8731 netdev_put(adj_dev, &adj->dev_tracker);
8732 kfree(adj);
8733
8734 return ret;
8735 }
8736
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8737 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8738 struct net_device *adj_dev,
8739 u16 ref_nr,
8740 struct list_head *dev_list)
8741 {
8742 struct netdev_adjacent *adj;
8743
8744 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8745 dev->name, adj_dev->name, ref_nr);
8746
8747 adj = __netdev_find_adj(adj_dev, dev_list);
8748
8749 if (!adj) {
8750 pr_err("Adjacency does not exist for device %s from %s\n",
8751 dev->name, adj_dev->name);
8752 WARN_ON(1);
8753 return;
8754 }
8755
8756 if (adj->ref_nr > ref_nr) {
8757 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8758 dev->name, adj_dev->name, ref_nr,
8759 adj->ref_nr - ref_nr);
8760 adj->ref_nr -= ref_nr;
8761 return;
8762 }
8763
8764 if (adj->master)
8765 sysfs_remove_link(&(dev->dev.kobj), "master");
8766
8767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8768 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8769
8770 list_del_rcu(&adj->list);
8771 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8772 adj_dev->name, dev->name, adj_dev->name);
8773 netdev_put(adj_dev, &adj->dev_tracker);
8774 kfree_rcu(adj, rcu);
8775 }
8776
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8777 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8778 struct net_device *upper_dev,
8779 struct list_head *up_list,
8780 struct list_head *down_list,
8781 void *private, bool master)
8782 {
8783 int ret;
8784
8785 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8786 private, master);
8787 if (ret)
8788 return ret;
8789
8790 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8791 private, false);
8792 if (ret) {
8793 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8794 return ret;
8795 }
8796
8797 return 0;
8798 }
8799
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8800 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8801 struct net_device *upper_dev,
8802 u16 ref_nr,
8803 struct list_head *up_list,
8804 struct list_head *down_list)
8805 {
8806 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8807 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8808 }
8809
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8810 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8811 struct net_device *upper_dev,
8812 void *private, bool master)
8813 {
8814 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8815 &dev->adj_list.upper,
8816 &upper_dev->adj_list.lower,
8817 private, master);
8818 }
8819
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8820 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8821 struct net_device *upper_dev)
8822 {
8823 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8824 &dev->adj_list.upper,
8825 &upper_dev->adj_list.lower);
8826 }
8827
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8828 static int __netdev_upper_dev_link(struct net_device *dev,
8829 struct net_device *upper_dev, bool master,
8830 void *upper_priv, void *upper_info,
8831 struct netdev_nested_priv *priv,
8832 struct netlink_ext_ack *extack)
8833 {
8834 struct netdev_notifier_changeupper_info changeupper_info = {
8835 .info = {
8836 .dev = dev,
8837 .extack = extack,
8838 },
8839 .upper_dev = upper_dev,
8840 .master = master,
8841 .linking = true,
8842 .upper_info = upper_info,
8843 };
8844 struct net_device *master_dev;
8845 int ret = 0;
8846
8847 ASSERT_RTNL();
8848
8849 if (dev == upper_dev)
8850 return -EBUSY;
8851
8852 /* To prevent loops, check if dev is not upper device to upper_dev. */
8853 if (__netdev_has_upper_dev(upper_dev, dev))
8854 return -EBUSY;
8855
8856 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8857 return -EMLINK;
8858
8859 if (!master) {
8860 if (__netdev_has_upper_dev(dev, upper_dev))
8861 return -EEXIST;
8862 } else {
8863 master_dev = __netdev_master_upper_dev_get(dev);
8864 if (master_dev)
8865 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8866 }
8867
8868 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8869 &changeupper_info.info);
8870 ret = notifier_to_errno(ret);
8871 if (ret)
8872 return ret;
8873
8874 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8875 master);
8876 if (ret)
8877 return ret;
8878
8879 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8880 &changeupper_info.info);
8881 ret = notifier_to_errno(ret);
8882 if (ret)
8883 goto rollback;
8884
8885 __netdev_update_upper_level(dev, NULL);
8886 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8887
8888 __netdev_update_lower_level(upper_dev, priv);
8889 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8890 priv);
8891
8892 return 0;
8893
8894 rollback:
8895 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8896
8897 return ret;
8898 }
8899
8900 /**
8901 * netdev_upper_dev_link - Add a link to the upper device
8902 * @dev: device
8903 * @upper_dev: new upper device
8904 * @extack: netlink extended ack
8905 *
8906 * Adds a link to device which is upper to this one. The caller must hold
8907 * the RTNL lock. On a failure a negative errno code is returned.
8908 * On success the reference counts are adjusted and the function
8909 * returns zero.
8910 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8911 int netdev_upper_dev_link(struct net_device *dev,
8912 struct net_device *upper_dev,
8913 struct netlink_ext_ack *extack)
8914 {
8915 struct netdev_nested_priv priv = {
8916 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8917 .data = NULL,
8918 };
8919
8920 return __netdev_upper_dev_link(dev, upper_dev, false,
8921 NULL, NULL, &priv, extack);
8922 }
8923 EXPORT_SYMBOL(netdev_upper_dev_link);
8924
8925 /**
8926 * netdev_master_upper_dev_link - Add a master link to the upper device
8927 * @dev: device
8928 * @upper_dev: new upper device
8929 * @upper_priv: upper device private
8930 * @upper_info: upper info to be passed down via notifier
8931 * @extack: netlink extended ack
8932 *
8933 * Adds a link to device which is upper to this one. In this case, only
8934 * one master upper device can be linked, although other non-master devices
8935 * might be linked as well. The caller must hold the RTNL lock.
8936 * On a failure a negative errno code is returned. On success the reference
8937 * counts are adjusted and the function returns zero.
8938 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8939 int netdev_master_upper_dev_link(struct net_device *dev,
8940 struct net_device *upper_dev,
8941 void *upper_priv, void *upper_info,
8942 struct netlink_ext_ack *extack)
8943 {
8944 struct netdev_nested_priv priv = {
8945 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8946 .data = NULL,
8947 };
8948
8949 return __netdev_upper_dev_link(dev, upper_dev, true,
8950 upper_priv, upper_info, &priv, extack);
8951 }
8952 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8953
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8954 static void __netdev_upper_dev_unlink(struct net_device *dev,
8955 struct net_device *upper_dev,
8956 struct netdev_nested_priv *priv)
8957 {
8958 struct netdev_notifier_changeupper_info changeupper_info = {
8959 .info = {
8960 .dev = dev,
8961 },
8962 .upper_dev = upper_dev,
8963 .linking = false,
8964 };
8965
8966 ASSERT_RTNL();
8967
8968 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8969
8970 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8971 &changeupper_info.info);
8972
8973 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8974
8975 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8976 &changeupper_info.info);
8977
8978 __netdev_update_upper_level(dev, NULL);
8979 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8980
8981 __netdev_update_lower_level(upper_dev, priv);
8982 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8983 priv);
8984 }
8985
8986 /**
8987 * netdev_upper_dev_unlink - Removes a link to upper device
8988 * @dev: device
8989 * @upper_dev: new upper device
8990 *
8991 * Removes a link to device which is upper to this one. The caller must hold
8992 * the RTNL lock.
8993 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8994 void netdev_upper_dev_unlink(struct net_device *dev,
8995 struct net_device *upper_dev)
8996 {
8997 struct netdev_nested_priv priv = {
8998 .flags = NESTED_SYNC_TODO,
8999 .data = NULL,
9000 };
9001
9002 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9003 }
9004 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9005
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9006 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9007 struct net_device *lower_dev,
9008 bool val)
9009 {
9010 struct netdev_adjacent *adj;
9011
9012 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9013 if (adj)
9014 adj->ignore = val;
9015
9016 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9017 if (adj)
9018 adj->ignore = val;
9019 }
9020
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9021 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9022 struct net_device *lower_dev)
9023 {
9024 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9025 }
9026
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9027 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9028 struct net_device *lower_dev)
9029 {
9030 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9031 }
9032
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9033 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9034 struct net_device *new_dev,
9035 struct net_device *dev,
9036 struct netlink_ext_ack *extack)
9037 {
9038 struct netdev_nested_priv priv = {
9039 .flags = 0,
9040 .data = NULL,
9041 };
9042 int err;
9043
9044 if (!new_dev)
9045 return 0;
9046
9047 if (old_dev && new_dev != old_dev)
9048 netdev_adjacent_dev_disable(dev, old_dev);
9049 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9050 extack);
9051 if (err) {
9052 if (old_dev && new_dev != old_dev)
9053 netdev_adjacent_dev_enable(dev, old_dev);
9054 return err;
9055 }
9056
9057 return 0;
9058 }
9059 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9060
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9061 void netdev_adjacent_change_commit(struct net_device *old_dev,
9062 struct net_device *new_dev,
9063 struct net_device *dev)
9064 {
9065 struct netdev_nested_priv priv = {
9066 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9067 .data = NULL,
9068 };
9069
9070 if (!new_dev || !old_dev)
9071 return;
9072
9073 if (new_dev == old_dev)
9074 return;
9075
9076 netdev_adjacent_dev_enable(dev, old_dev);
9077 __netdev_upper_dev_unlink(old_dev, dev, &priv);
9078 }
9079 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9080
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9081 void netdev_adjacent_change_abort(struct net_device *old_dev,
9082 struct net_device *new_dev,
9083 struct net_device *dev)
9084 {
9085 struct netdev_nested_priv priv = {
9086 .flags = 0,
9087 .data = NULL,
9088 };
9089
9090 if (!new_dev)
9091 return;
9092
9093 if (old_dev && new_dev != old_dev)
9094 netdev_adjacent_dev_enable(dev, old_dev);
9095
9096 __netdev_upper_dev_unlink(new_dev, dev, &priv);
9097 }
9098 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9099
9100 /**
9101 * netdev_bonding_info_change - Dispatch event about slave change
9102 * @dev: device
9103 * @bonding_info: info to dispatch
9104 *
9105 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9106 * The caller must hold the RTNL lock.
9107 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9108 void netdev_bonding_info_change(struct net_device *dev,
9109 struct netdev_bonding_info *bonding_info)
9110 {
9111 struct netdev_notifier_bonding_info info = {
9112 .info.dev = dev,
9113 };
9114
9115 memcpy(&info.bonding_info, bonding_info,
9116 sizeof(struct netdev_bonding_info));
9117 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9118 &info.info);
9119 }
9120 EXPORT_SYMBOL(netdev_bonding_info_change);
9121
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9122 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9123 struct netlink_ext_ack *extack)
9124 {
9125 struct netdev_notifier_offload_xstats_info info = {
9126 .info.dev = dev,
9127 .info.extack = extack,
9128 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9129 };
9130 int err;
9131 int rc;
9132
9133 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9134 GFP_KERNEL);
9135 if (!dev->offload_xstats_l3)
9136 return -ENOMEM;
9137
9138 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9139 NETDEV_OFFLOAD_XSTATS_DISABLE,
9140 &info.info);
9141 err = notifier_to_errno(rc);
9142 if (err)
9143 goto free_stats;
9144
9145 return 0;
9146
9147 free_stats:
9148 kfree(dev->offload_xstats_l3);
9149 dev->offload_xstats_l3 = NULL;
9150 return err;
9151 }
9152
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9153 int netdev_offload_xstats_enable(struct net_device *dev,
9154 enum netdev_offload_xstats_type type,
9155 struct netlink_ext_ack *extack)
9156 {
9157 ASSERT_RTNL();
9158
9159 if (netdev_offload_xstats_enabled(dev, type))
9160 return -EALREADY;
9161
9162 switch (type) {
9163 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9164 return netdev_offload_xstats_enable_l3(dev, extack);
9165 }
9166
9167 WARN_ON(1);
9168 return -EINVAL;
9169 }
9170 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9171
netdev_offload_xstats_disable_l3(struct net_device * dev)9172 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9173 {
9174 struct netdev_notifier_offload_xstats_info info = {
9175 .info.dev = dev,
9176 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9177 };
9178
9179 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9180 &info.info);
9181 kfree(dev->offload_xstats_l3);
9182 dev->offload_xstats_l3 = NULL;
9183 }
9184
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9185 int netdev_offload_xstats_disable(struct net_device *dev,
9186 enum netdev_offload_xstats_type type)
9187 {
9188 ASSERT_RTNL();
9189
9190 if (!netdev_offload_xstats_enabled(dev, type))
9191 return -EALREADY;
9192
9193 switch (type) {
9194 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9195 netdev_offload_xstats_disable_l3(dev);
9196 return 0;
9197 }
9198
9199 WARN_ON(1);
9200 return -EINVAL;
9201 }
9202 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9203
netdev_offload_xstats_disable_all(struct net_device * dev)9204 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9205 {
9206 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9207 }
9208
9209 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9210 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9211 enum netdev_offload_xstats_type type)
9212 {
9213 switch (type) {
9214 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9215 return dev->offload_xstats_l3;
9216 }
9217
9218 WARN_ON(1);
9219 return NULL;
9220 }
9221
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9222 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9223 enum netdev_offload_xstats_type type)
9224 {
9225 ASSERT_RTNL();
9226
9227 return netdev_offload_xstats_get_ptr(dev, type);
9228 }
9229 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9230
9231 struct netdev_notifier_offload_xstats_ru {
9232 bool used;
9233 };
9234
9235 struct netdev_notifier_offload_xstats_rd {
9236 struct rtnl_hw_stats64 stats;
9237 bool used;
9238 };
9239
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9240 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9241 const struct rtnl_hw_stats64 *src)
9242 {
9243 dest->rx_packets += src->rx_packets;
9244 dest->tx_packets += src->tx_packets;
9245 dest->rx_bytes += src->rx_bytes;
9246 dest->tx_bytes += src->tx_bytes;
9247 dest->rx_errors += src->rx_errors;
9248 dest->tx_errors += src->tx_errors;
9249 dest->rx_dropped += src->rx_dropped;
9250 dest->tx_dropped += src->tx_dropped;
9251 dest->multicast += src->multicast;
9252 }
9253
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9254 static int netdev_offload_xstats_get_used(struct net_device *dev,
9255 enum netdev_offload_xstats_type type,
9256 bool *p_used,
9257 struct netlink_ext_ack *extack)
9258 {
9259 struct netdev_notifier_offload_xstats_ru report_used = {};
9260 struct netdev_notifier_offload_xstats_info info = {
9261 .info.dev = dev,
9262 .info.extack = extack,
9263 .type = type,
9264 .report_used = &report_used,
9265 };
9266 int rc;
9267
9268 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9269 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9270 &info.info);
9271 *p_used = report_used.used;
9272 return notifier_to_errno(rc);
9273 }
9274
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9275 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9276 enum netdev_offload_xstats_type type,
9277 struct rtnl_hw_stats64 *p_stats,
9278 bool *p_used,
9279 struct netlink_ext_ack *extack)
9280 {
9281 struct netdev_notifier_offload_xstats_rd report_delta = {};
9282 struct netdev_notifier_offload_xstats_info info = {
9283 .info.dev = dev,
9284 .info.extack = extack,
9285 .type = type,
9286 .report_delta = &report_delta,
9287 };
9288 struct rtnl_hw_stats64 *stats;
9289 int rc;
9290
9291 stats = netdev_offload_xstats_get_ptr(dev, type);
9292 if (WARN_ON(!stats))
9293 return -EINVAL;
9294
9295 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9296 &info.info);
9297
9298 /* Cache whatever we got, even if there was an error, otherwise the
9299 * successful stats retrievals would get lost.
9300 */
9301 netdev_hw_stats64_add(stats, &report_delta.stats);
9302
9303 if (p_stats)
9304 *p_stats = *stats;
9305 *p_used = report_delta.used;
9306
9307 return notifier_to_errno(rc);
9308 }
9309
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9310 int netdev_offload_xstats_get(struct net_device *dev,
9311 enum netdev_offload_xstats_type type,
9312 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9313 struct netlink_ext_ack *extack)
9314 {
9315 ASSERT_RTNL();
9316
9317 if (p_stats)
9318 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9319 p_used, extack);
9320 else
9321 return netdev_offload_xstats_get_used(dev, type, p_used,
9322 extack);
9323 }
9324 EXPORT_SYMBOL(netdev_offload_xstats_get);
9325
9326 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9327 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9328 const struct rtnl_hw_stats64 *stats)
9329 {
9330 report_delta->used = true;
9331 netdev_hw_stats64_add(&report_delta->stats, stats);
9332 }
9333 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9334
9335 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9336 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9337 {
9338 report_used->used = true;
9339 }
9340 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9341
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9342 void netdev_offload_xstats_push_delta(struct net_device *dev,
9343 enum netdev_offload_xstats_type type,
9344 const struct rtnl_hw_stats64 *p_stats)
9345 {
9346 struct rtnl_hw_stats64 *stats;
9347
9348 ASSERT_RTNL();
9349
9350 stats = netdev_offload_xstats_get_ptr(dev, type);
9351 if (WARN_ON(!stats))
9352 return;
9353
9354 netdev_hw_stats64_add(stats, p_stats);
9355 }
9356 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9357
9358 /**
9359 * netdev_get_xmit_slave - Get the xmit slave of master device
9360 * @dev: device
9361 * @skb: The packet
9362 * @all_slaves: assume all the slaves are active
9363 *
9364 * The reference counters are not incremented so the caller must be
9365 * careful with locks. The caller must hold RCU lock.
9366 * %NULL is returned if no slave is found.
9367 */
9368
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9369 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9370 struct sk_buff *skb,
9371 bool all_slaves)
9372 {
9373 const struct net_device_ops *ops = dev->netdev_ops;
9374
9375 if (!ops->ndo_get_xmit_slave)
9376 return NULL;
9377 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9378 }
9379 EXPORT_SYMBOL(netdev_get_xmit_slave);
9380
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9381 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9382 struct sock *sk)
9383 {
9384 const struct net_device_ops *ops = dev->netdev_ops;
9385
9386 if (!ops->ndo_sk_get_lower_dev)
9387 return NULL;
9388 return ops->ndo_sk_get_lower_dev(dev, sk);
9389 }
9390
9391 /**
9392 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9393 * @dev: device
9394 * @sk: the socket
9395 *
9396 * %NULL is returned if no lower device is found.
9397 */
9398
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9399 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9400 struct sock *sk)
9401 {
9402 struct net_device *lower;
9403
9404 lower = netdev_sk_get_lower_dev(dev, sk);
9405 while (lower) {
9406 dev = lower;
9407 lower = netdev_sk_get_lower_dev(dev, sk);
9408 }
9409
9410 return dev;
9411 }
9412 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9413
netdev_adjacent_add_links(struct net_device * dev)9414 static void netdev_adjacent_add_links(struct net_device *dev)
9415 {
9416 struct netdev_adjacent *iter;
9417
9418 struct net *net = dev_net(dev);
9419
9420 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9421 if (!net_eq(net, dev_net(iter->dev)))
9422 continue;
9423 netdev_adjacent_sysfs_add(iter->dev, dev,
9424 &iter->dev->adj_list.lower);
9425 netdev_adjacent_sysfs_add(dev, iter->dev,
9426 &dev->adj_list.upper);
9427 }
9428
9429 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9430 if (!net_eq(net, dev_net(iter->dev)))
9431 continue;
9432 netdev_adjacent_sysfs_add(iter->dev, dev,
9433 &iter->dev->adj_list.upper);
9434 netdev_adjacent_sysfs_add(dev, iter->dev,
9435 &dev->adj_list.lower);
9436 }
9437 }
9438
netdev_adjacent_del_links(struct net_device * dev)9439 static void netdev_adjacent_del_links(struct net_device *dev)
9440 {
9441 struct netdev_adjacent *iter;
9442
9443 struct net *net = dev_net(dev);
9444
9445 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9446 if (!net_eq(net, dev_net(iter->dev)))
9447 continue;
9448 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9449 &iter->dev->adj_list.lower);
9450 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9451 &dev->adj_list.upper);
9452 }
9453
9454 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9455 if (!net_eq(net, dev_net(iter->dev)))
9456 continue;
9457 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9458 &iter->dev->adj_list.upper);
9459 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9460 &dev->adj_list.lower);
9461 }
9462 }
9463
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9464 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9465 {
9466 struct netdev_adjacent *iter;
9467
9468 struct net *net = dev_net(dev);
9469
9470 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9471 if (!net_eq(net, dev_net(iter->dev)))
9472 continue;
9473 netdev_adjacent_sysfs_del(iter->dev, oldname,
9474 &iter->dev->adj_list.lower);
9475 netdev_adjacent_sysfs_add(iter->dev, dev,
9476 &iter->dev->adj_list.lower);
9477 }
9478
9479 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9480 if (!net_eq(net, dev_net(iter->dev)))
9481 continue;
9482 netdev_adjacent_sysfs_del(iter->dev, oldname,
9483 &iter->dev->adj_list.upper);
9484 netdev_adjacent_sysfs_add(iter->dev, dev,
9485 &iter->dev->adj_list.upper);
9486 }
9487 }
9488
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9489 void *netdev_lower_dev_get_private(struct net_device *dev,
9490 struct net_device *lower_dev)
9491 {
9492 struct netdev_adjacent *lower;
9493
9494 if (!lower_dev)
9495 return NULL;
9496 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9497 if (!lower)
9498 return NULL;
9499
9500 return lower->private;
9501 }
9502 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9503
9504
9505 /**
9506 * netdev_lower_state_changed - Dispatch event about lower device state change
9507 * @lower_dev: device
9508 * @lower_state_info: state to dispatch
9509 *
9510 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9511 * The caller must hold the RTNL lock.
9512 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9513 void netdev_lower_state_changed(struct net_device *lower_dev,
9514 void *lower_state_info)
9515 {
9516 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9517 .info.dev = lower_dev,
9518 };
9519
9520 ASSERT_RTNL();
9521 changelowerstate_info.lower_state_info = lower_state_info;
9522 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9523 &changelowerstate_info.info);
9524 }
9525 EXPORT_SYMBOL(netdev_lower_state_changed);
9526
dev_change_rx_flags(struct net_device * dev,int flags)9527 static void dev_change_rx_flags(struct net_device *dev, int flags)
9528 {
9529 const struct net_device_ops *ops = dev->netdev_ops;
9530
9531 if (ops->ndo_change_rx_flags)
9532 ops->ndo_change_rx_flags(dev, flags);
9533 }
9534
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9535 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9536 {
9537 unsigned int old_flags = dev->flags;
9538 unsigned int promiscuity, flags;
9539 kuid_t uid;
9540 kgid_t gid;
9541
9542 ASSERT_RTNL();
9543
9544 promiscuity = dev->promiscuity + inc;
9545 if (promiscuity == 0) {
9546 /*
9547 * Avoid overflow.
9548 * If inc causes overflow, untouch promisc and return error.
9549 */
9550 if (unlikely(inc > 0)) {
9551 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9552 return -EOVERFLOW;
9553 }
9554 flags = old_flags & ~IFF_PROMISC;
9555 } else {
9556 flags = old_flags | IFF_PROMISC;
9557 }
9558 WRITE_ONCE(dev->promiscuity, promiscuity);
9559 if (flags != old_flags) {
9560 WRITE_ONCE(dev->flags, flags);
9561 netdev_info(dev, "%s promiscuous mode\n",
9562 dev->flags & IFF_PROMISC ? "entered" : "left");
9563 if (audit_enabled) {
9564 current_uid_gid(&uid, &gid);
9565 audit_log(audit_context(), GFP_ATOMIC,
9566 AUDIT_ANOM_PROMISCUOUS,
9567 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9568 dev->name, (dev->flags & IFF_PROMISC),
9569 (old_flags & IFF_PROMISC),
9570 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9571 from_kuid(&init_user_ns, uid),
9572 from_kgid(&init_user_ns, gid),
9573 audit_get_sessionid(current));
9574 }
9575
9576 dev_change_rx_flags(dev, IFF_PROMISC);
9577 }
9578 if (notify) {
9579 /* The ops lock is only required to ensure consistent locking
9580 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9581 * called without the lock, even for devices that are ops
9582 * locked, such as in `dev_uc_sync_multiple` when using
9583 * bonding or teaming.
9584 */
9585 netdev_ops_assert_locked(dev);
9586 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9587 }
9588 return 0;
9589 }
9590
netif_set_promiscuity(struct net_device * dev,int inc)9591 int netif_set_promiscuity(struct net_device *dev, int inc)
9592 {
9593 unsigned int old_flags = dev->flags;
9594 int err;
9595
9596 err = __dev_set_promiscuity(dev, inc, true);
9597 if (err < 0)
9598 return err;
9599 if (dev->flags != old_flags)
9600 dev_set_rx_mode(dev);
9601 return err;
9602 }
9603
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9604 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9605 {
9606 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9607 unsigned int allmulti, flags;
9608
9609 ASSERT_RTNL();
9610
9611 allmulti = dev->allmulti + inc;
9612 if (allmulti == 0) {
9613 /*
9614 * Avoid overflow.
9615 * If inc causes overflow, untouch allmulti and return error.
9616 */
9617 if (unlikely(inc > 0)) {
9618 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9619 return -EOVERFLOW;
9620 }
9621 flags = old_flags & ~IFF_ALLMULTI;
9622 } else {
9623 flags = old_flags | IFF_ALLMULTI;
9624 }
9625 WRITE_ONCE(dev->allmulti, allmulti);
9626 if (flags != old_flags) {
9627 WRITE_ONCE(dev->flags, flags);
9628 netdev_info(dev, "%s allmulticast mode\n",
9629 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9630 dev_change_rx_flags(dev, IFF_ALLMULTI);
9631 dev_set_rx_mode(dev);
9632 if (notify)
9633 __dev_notify_flags(dev, old_flags,
9634 dev->gflags ^ old_gflags, 0, NULL);
9635 }
9636 return 0;
9637 }
9638
9639 /*
9640 * Upload unicast and multicast address lists to device and
9641 * configure RX filtering. When the device doesn't support unicast
9642 * filtering it is put in promiscuous mode while unicast addresses
9643 * are present.
9644 */
__dev_set_rx_mode(struct net_device * dev)9645 void __dev_set_rx_mode(struct net_device *dev)
9646 {
9647 const struct net_device_ops *ops = dev->netdev_ops;
9648
9649 /* dev_open will call this function so the list will stay sane. */
9650 if (!(dev->flags&IFF_UP))
9651 return;
9652
9653 if (!netif_device_present(dev))
9654 return;
9655
9656 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9657 /* Unicast addresses changes may only happen under the rtnl,
9658 * therefore calling __dev_set_promiscuity here is safe.
9659 */
9660 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9661 __dev_set_promiscuity(dev, 1, false);
9662 dev->uc_promisc = true;
9663 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9664 __dev_set_promiscuity(dev, -1, false);
9665 dev->uc_promisc = false;
9666 }
9667 }
9668
9669 if (ops->ndo_set_rx_mode)
9670 ops->ndo_set_rx_mode(dev);
9671 }
9672
dev_set_rx_mode(struct net_device * dev)9673 void dev_set_rx_mode(struct net_device *dev)
9674 {
9675 netif_addr_lock_bh(dev);
9676 __dev_set_rx_mode(dev);
9677 netif_addr_unlock_bh(dev);
9678 }
9679
9680 /**
9681 * netif_get_flags() - get flags reported to userspace
9682 * @dev: device
9683 *
9684 * Get the combination of flag bits exported through APIs to userspace.
9685 */
netif_get_flags(const struct net_device * dev)9686 unsigned int netif_get_flags(const struct net_device *dev)
9687 {
9688 unsigned int flags;
9689
9690 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9691 IFF_ALLMULTI |
9692 IFF_RUNNING |
9693 IFF_LOWER_UP |
9694 IFF_DORMANT)) |
9695 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9696 IFF_ALLMULTI));
9697
9698 if (netif_running(dev)) {
9699 if (netif_oper_up(dev))
9700 flags |= IFF_RUNNING;
9701 if (netif_carrier_ok(dev))
9702 flags |= IFF_LOWER_UP;
9703 if (netif_dormant(dev))
9704 flags |= IFF_DORMANT;
9705 }
9706
9707 return flags;
9708 }
9709 EXPORT_SYMBOL(netif_get_flags);
9710
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9711 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9712 struct netlink_ext_ack *extack)
9713 {
9714 unsigned int old_flags = dev->flags;
9715 int ret;
9716
9717 ASSERT_RTNL();
9718
9719 /*
9720 * Set the flags on our device.
9721 */
9722
9723 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9724 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9725 IFF_AUTOMEDIA)) |
9726 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9727 IFF_ALLMULTI));
9728
9729 /*
9730 * Load in the correct multicast list now the flags have changed.
9731 */
9732
9733 if ((old_flags ^ flags) & IFF_MULTICAST)
9734 dev_change_rx_flags(dev, IFF_MULTICAST);
9735
9736 dev_set_rx_mode(dev);
9737
9738 /*
9739 * Have we downed the interface. We handle IFF_UP ourselves
9740 * according to user attempts to set it, rather than blindly
9741 * setting it.
9742 */
9743
9744 ret = 0;
9745 if ((old_flags ^ flags) & IFF_UP) {
9746 if (old_flags & IFF_UP)
9747 __dev_close(dev);
9748 else
9749 ret = __dev_open(dev, extack);
9750 }
9751
9752 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9753 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9754 old_flags = dev->flags;
9755
9756 dev->gflags ^= IFF_PROMISC;
9757
9758 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9759 if (dev->flags != old_flags)
9760 dev_set_rx_mode(dev);
9761 }
9762
9763 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9764 * is important. Some (broken) drivers set IFF_PROMISC, when
9765 * IFF_ALLMULTI is requested not asking us and not reporting.
9766 */
9767 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9768 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9769
9770 dev->gflags ^= IFF_ALLMULTI;
9771 netif_set_allmulti(dev, inc, false);
9772 }
9773
9774 return ret;
9775 }
9776
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9777 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9778 unsigned int gchanges, u32 portid,
9779 const struct nlmsghdr *nlh)
9780 {
9781 unsigned int changes = dev->flags ^ old_flags;
9782
9783 if (gchanges)
9784 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9785
9786 if (changes & IFF_UP) {
9787 if (dev->flags & IFF_UP)
9788 call_netdevice_notifiers(NETDEV_UP, dev);
9789 else
9790 call_netdevice_notifiers(NETDEV_DOWN, dev);
9791 }
9792
9793 if (dev->flags & IFF_UP &&
9794 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9795 struct netdev_notifier_change_info change_info = {
9796 .info = {
9797 .dev = dev,
9798 },
9799 .flags_changed = changes,
9800 };
9801
9802 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9803 }
9804 }
9805
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9806 int netif_change_flags(struct net_device *dev, unsigned int flags,
9807 struct netlink_ext_ack *extack)
9808 {
9809 int ret;
9810 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9811
9812 ret = __dev_change_flags(dev, flags, extack);
9813 if (ret < 0)
9814 return ret;
9815
9816 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9817 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9818 return ret;
9819 }
9820
__netif_set_mtu(struct net_device * dev,int new_mtu)9821 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9822 {
9823 const struct net_device_ops *ops = dev->netdev_ops;
9824
9825 if (ops->ndo_change_mtu)
9826 return ops->ndo_change_mtu(dev, new_mtu);
9827
9828 /* Pairs with all the lockless reads of dev->mtu in the stack */
9829 WRITE_ONCE(dev->mtu, new_mtu);
9830 return 0;
9831 }
9832 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9833
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9834 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9835 struct netlink_ext_ack *extack)
9836 {
9837 /* MTU must be positive, and in range */
9838 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9839 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9840 return -EINVAL;
9841 }
9842
9843 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9844 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9845 return -EINVAL;
9846 }
9847 return 0;
9848 }
9849
9850 /**
9851 * netif_set_mtu_ext() - Change maximum transfer unit
9852 * @dev: device
9853 * @new_mtu: new transfer unit
9854 * @extack: netlink extended ack
9855 *
9856 * Change the maximum transfer size of the network device.
9857 *
9858 * Return: 0 on success, -errno on failure.
9859 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9860 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9861 struct netlink_ext_ack *extack)
9862 {
9863 int err, orig_mtu;
9864
9865 netdev_ops_assert_locked(dev);
9866
9867 if (new_mtu == dev->mtu)
9868 return 0;
9869
9870 err = dev_validate_mtu(dev, new_mtu, extack);
9871 if (err)
9872 return err;
9873
9874 if (!netif_device_present(dev))
9875 return -ENODEV;
9876
9877 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9878 err = notifier_to_errno(err);
9879 if (err)
9880 return err;
9881
9882 orig_mtu = dev->mtu;
9883 err = __netif_set_mtu(dev, new_mtu);
9884
9885 if (!err) {
9886 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9887 orig_mtu);
9888 err = notifier_to_errno(err);
9889 if (err) {
9890 /* setting mtu back and notifying everyone again,
9891 * so that they have a chance to revert changes.
9892 */
9893 __netif_set_mtu(dev, orig_mtu);
9894 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9895 new_mtu);
9896 }
9897 }
9898 return err;
9899 }
9900
netif_set_mtu(struct net_device * dev,int new_mtu)9901 int netif_set_mtu(struct net_device *dev, int new_mtu)
9902 {
9903 struct netlink_ext_ack extack;
9904 int err;
9905
9906 memset(&extack, 0, sizeof(extack));
9907 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9908 if (err && extack._msg)
9909 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9910 return err;
9911 }
9912 EXPORT_SYMBOL(netif_set_mtu);
9913
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9914 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9915 {
9916 unsigned int orig_len = dev->tx_queue_len;
9917 int res;
9918
9919 if (new_len != (unsigned int)new_len)
9920 return -ERANGE;
9921
9922 if (new_len != orig_len) {
9923 WRITE_ONCE(dev->tx_queue_len, new_len);
9924 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9925 res = notifier_to_errno(res);
9926 if (res)
9927 goto err_rollback;
9928 res = dev_qdisc_change_tx_queue_len(dev);
9929 if (res)
9930 goto err_rollback;
9931 }
9932
9933 return 0;
9934
9935 err_rollback:
9936 netdev_err(dev, "refused to change device tx_queue_len\n");
9937 WRITE_ONCE(dev->tx_queue_len, orig_len);
9938 return res;
9939 }
9940
netif_set_group(struct net_device * dev,int new_group)9941 void netif_set_group(struct net_device *dev, int new_group)
9942 {
9943 dev->group = new_group;
9944 }
9945
9946 /**
9947 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9948 * @dev: device
9949 * @addr: new address
9950 * @extack: netlink extended ack
9951 *
9952 * Return: 0 on success, -errno on failure.
9953 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9954 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9955 struct netlink_ext_ack *extack)
9956 {
9957 struct netdev_notifier_pre_changeaddr_info info = {
9958 .info.dev = dev,
9959 .info.extack = extack,
9960 .dev_addr = addr,
9961 };
9962 int rc;
9963
9964 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9965 return notifier_to_errno(rc);
9966 }
9967 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9968
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9969 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9970 struct netlink_ext_ack *extack)
9971 {
9972 const struct net_device_ops *ops = dev->netdev_ops;
9973 int err;
9974
9975 if (!ops->ndo_set_mac_address)
9976 return -EOPNOTSUPP;
9977 if (ss->ss_family != dev->type)
9978 return -EINVAL;
9979 if (!netif_device_present(dev))
9980 return -ENODEV;
9981 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9982 if (err)
9983 return err;
9984 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9985 err = ops->ndo_set_mac_address(dev, ss);
9986 if (err)
9987 return err;
9988 }
9989 dev->addr_assign_type = NET_ADDR_SET;
9990 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9991 add_device_randomness(dev->dev_addr, dev->addr_len);
9992 return 0;
9993 }
9994
9995 DECLARE_RWSEM(dev_addr_sem);
9996
9997 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9998 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9999 {
10000 size_t size = sizeof(sa->sa_data);
10001 struct net_device *dev;
10002 int ret = 0;
10003
10004 down_read(&dev_addr_sem);
10005 rcu_read_lock();
10006
10007 dev = dev_get_by_name_rcu(net, dev_name);
10008 if (!dev) {
10009 ret = -ENODEV;
10010 goto unlock;
10011 }
10012 if (!dev->addr_len)
10013 memset(sa->sa_data, 0, size);
10014 else
10015 memcpy(sa->sa_data, dev->dev_addr,
10016 min_t(size_t, size, dev->addr_len));
10017 sa->sa_family = dev->type;
10018
10019 unlock:
10020 rcu_read_unlock();
10021 up_read(&dev_addr_sem);
10022 return ret;
10023 }
10024 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10025
netif_change_carrier(struct net_device * dev,bool new_carrier)10026 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10027 {
10028 const struct net_device_ops *ops = dev->netdev_ops;
10029
10030 if (!ops->ndo_change_carrier)
10031 return -EOPNOTSUPP;
10032 if (!netif_device_present(dev))
10033 return -ENODEV;
10034 return ops->ndo_change_carrier(dev, new_carrier);
10035 }
10036
10037 /**
10038 * dev_get_phys_port_id - Get device physical port ID
10039 * @dev: device
10040 * @ppid: port ID
10041 *
10042 * Get device physical port ID
10043 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10044 int dev_get_phys_port_id(struct net_device *dev,
10045 struct netdev_phys_item_id *ppid)
10046 {
10047 const struct net_device_ops *ops = dev->netdev_ops;
10048
10049 if (!ops->ndo_get_phys_port_id)
10050 return -EOPNOTSUPP;
10051 return ops->ndo_get_phys_port_id(dev, ppid);
10052 }
10053
10054 /**
10055 * dev_get_phys_port_name - Get device physical port name
10056 * @dev: device
10057 * @name: port name
10058 * @len: limit of bytes to copy to name
10059 *
10060 * Get device physical port name
10061 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10062 int dev_get_phys_port_name(struct net_device *dev,
10063 char *name, size_t len)
10064 {
10065 const struct net_device_ops *ops = dev->netdev_ops;
10066 int err;
10067
10068 if (ops->ndo_get_phys_port_name) {
10069 err = ops->ndo_get_phys_port_name(dev, name, len);
10070 if (err != -EOPNOTSUPP)
10071 return err;
10072 }
10073 return devlink_compat_phys_port_name_get(dev, name, len);
10074 }
10075
10076 /**
10077 * netif_get_port_parent_id() - Get the device's port parent identifier
10078 * @dev: network device
10079 * @ppid: pointer to a storage for the port's parent identifier
10080 * @recurse: allow/disallow recursion to lower devices
10081 *
10082 * Get the devices's port parent identifier.
10083 *
10084 * Return: 0 on success, -errno on failure.
10085 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10086 int netif_get_port_parent_id(struct net_device *dev,
10087 struct netdev_phys_item_id *ppid, bool recurse)
10088 {
10089 const struct net_device_ops *ops = dev->netdev_ops;
10090 struct netdev_phys_item_id first = { };
10091 struct net_device *lower_dev;
10092 struct list_head *iter;
10093 int err;
10094
10095 if (ops->ndo_get_port_parent_id) {
10096 err = ops->ndo_get_port_parent_id(dev, ppid);
10097 if (err != -EOPNOTSUPP)
10098 return err;
10099 }
10100
10101 err = devlink_compat_switch_id_get(dev, ppid);
10102 if (!recurse || err != -EOPNOTSUPP)
10103 return err;
10104
10105 netdev_for_each_lower_dev(dev, lower_dev, iter) {
10106 err = netif_get_port_parent_id(lower_dev, ppid, true);
10107 if (err)
10108 break;
10109 if (!first.id_len)
10110 first = *ppid;
10111 else if (memcmp(&first, ppid, sizeof(*ppid)))
10112 return -EOPNOTSUPP;
10113 }
10114
10115 return err;
10116 }
10117 EXPORT_SYMBOL(netif_get_port_parent_id);
10118
10119 /**
10120 * netdev_port_same_parent_id - Indicate if two network devices have
10121 * the same port parent identifier
10122 * @a: first network device
10123 * @b: second network device
10124 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10125 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10126 {
10127 struct netdev_phys_item_id a_id = { };
10128 struct netdev_phys_item_id b_id = { };
10129
10130 if (netif_get_port_parent_id(a, &a_id, true) ||
10131 netif_get_port_parent_id(b, &b_id, true))
10132 return false;
10133
10134 return netdev_phys_item_id_same(&a_id, &b_id);
10135 }
10136 EXPORT_SYMBOL(netdev_port_same_parent_id);
10137
netif_change_proto_down(struct net_device * dev,bool proto_down)10138 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10139 {
10140 if (!dev->change_proto_down)
10141 return -EOPNOTSUPP;
10142 if (!netif_device_present(dev))
10143 return -ENODEV;
10144 if (proto_down)
10145 netif_carrier_off(dev);
10146 else
10147 netif_carrier_on(dev);
10148 WRITE_ONCE(dev->proto_down, proto_down);
10149 return 0;
10150 }
10151
10152 /**
10153 * netdev_change_proto_down_reason_locked - proto down reason
10154 *
10155 * @dev: device
10156 * @mask: proto down mask
10157 * @value: proto down value
10158 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10159 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10160 unsigned long mask, u32 value)
10161 {
10162 u32 proto_down_reason;
10163 int b;
10164
10165 if (!mask) {
10166 proto_down_reason = value;
10167 } else {
10168 proto_down_reason = dev->proto_down_reason;
10169 for_each_set_bit(b, &mask, 32) {
10170 if (value & (1 << b))
10171 proto_down_reason |= BIT(b);
10172 else
10173 proto_down_reason &= ~BIT(b);
10174 }
10175 }
10176 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10177 }
10178
10179 struct bpf_xdp_link {
10180 struct bpf_link link;
10181 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10182 int flags;
10183 };
10184
dev_xdp_mode(struct net_device * dev,u32 flags)10185 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10186 {
10187 if (flags & XDP_FLAGS_HW_MODE)
10188 return XDP_MODE_HW;
10189 if (flags & XDP_FLAGS_DRV_MODE)
10190 return XDP_MODE_DRV;
10191 if (flags & XDP_FLAGS_SKB_MODE)
10192 return XDP_MODE_SKB;
10193 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10194 }
10195
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10196 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10197 {
10198 switch (mode) {
10199 case XDP_MODE_SKB:
10200 return generic_xdp_install;
10201 case XDP_MODE_DRV:
10202 case XDP_MODE_HW:
10203 return dev->netdev_ops->ndo_bpf;
10204 default:
10205 return NULL;
10206 }
10207 }
10208
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10209 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10210 enum bpf_xdp_mode mode)
10211 {
10212 return dev->xdp_state[mode].link;
10213 }
10214
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10215 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10216 enum bpf_xdp_mode mode)
10217 {
10218 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10219
10220 if (link)
10221 return link->link.prog;
10222 return dev->xdp_state[mode].prog;
10223 }
10224
dev_xdp_prog_count(struct net_device * dev)10225 u8 dev_xdp_prog_count(struct net_device *dev)
10226 {
10227 u8 count = 0;
10228 int i;
10229
10230 for (i = 0; i < __MAX_XDP_MODE; i++)
10231 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10232 count++;
10233 return count;
10234 }
10235 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10236
dev_xdp_sb_prog_count(struct net_device * dev)10237 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10238 {
10239 u8 count = 0;
10240 int i;
10241
10242 for (i = 0; i < __MAX_XDP_MODE; i++)
10243 if (dev->xdp_state[i].prog &&
10244 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10245 count++;
10246 return count;
10247 }
10248
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10249 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10250 {
10251 if (!dev->netdev_ops->ndo_bpf)
10252 return -EOPNOTSUPP;
10253
10254 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10255 bpf->command == XDP_SETUP_PROG &&
10256 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10257 NL_SET_ERR_MSG(bpf->extack,
10258 "unable to propagate XDP to device using tcp-data-split");
10259 return -EBUSY;
10260 }
10261
10262 if (dev_get_min_mp_channel_count(dev)) {
10263 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10264 return -EBUSY;
10265 }
10266
10267 return dev->netdev_ops->ndo_bpf(dev, bpf);
10268 }
10269 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10270
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10271 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10272 {
10273 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10274
10275 return prog ? prog->aux->id : 0;
10276 }
10277
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10278 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10279 struct bpf_xdp_link *link)
10280 {
10281 dev->xdp_state[mode].link = link;
10282 dev->xdp_state[mode].prog = NULL;
10283 }
10284
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10285 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10286 struct bpf_prog *prog)
10287 {
10288 dev->xdp_state[mode].link = NULL;
10289 dev->xdp_state[mode].prog = prog;
10290 }
10291
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10292 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10293 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10294 u32 flags, struct bpf_prog *prog)
10295 {
10296 struct netdev_bpf xdp;
10297 int err;
10298
10299 netdev_ops_assert_locked(dev);
10300
10301 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10302 prog && !prog->aux->xdp_has_frags) {
10303 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10304 return -EBUSY;
10305 }
10306
10307 if (dev_get_min_mp_channel_count(dev)) {
10308 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10309 return -EBUSY;
10310 }
10311
10312 memset(&xdp, 0, sizeof(xdp));
10313 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10314 xdp.extack = extack;
10315 xdp.flags = flags;
10316 xdp.prog = prog;
10317
10318 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10319 * "moved" into driver), so they don't increment it on their own, but
10320 * they do decrement refcnt when program is detached or replaced.
10321 * Given net_device also owns link/prog, we need to bump refcnt here
10322 * to prevent drivers from underflowing it.
10323 */
10324 if (prog)
10325 bpf_prog_inc(prog);
10326 err = bpf_op(dev, &xdp);
10327 if (err) {
10328 if (prog)
10329 bpf_prog_put(prog);
10330 return err;
10331 }
10332
10333 if (mode != XDP_MODE_HW)
10334 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10335
10336 return 0;
10337 }
10338
dev_xdp_uninstall(struct net_device * dev)10339 static void dev_xdp_uninstall(struct net_device *dev)
10340 {
10341 struct bpf_xdp_link *link;
10342 struct bpf_prog *prog;
10343 enum bpf_xdp_mode mode;
10344 bpf_op_t bpf_op;
10345
10346 ASSERT_RTNL();
10347
10348 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10349 prog = dev_xdp_prog(dev, mode);
10350 if (!prog)
10351 continue;
10352
10353 bpf_op = dev_xdp_bpf_op(dev, mode);
10354 if (!bpf_op)
10355 continue;
10356
10357 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10358
10359 /* auto-detach link from net device */
10360 link = dev_xdp_link(dev, mode);
10361 if (link)
10362 link->dev = NULL;
10363 else
10364 bpf_prog_put(prog);
10365
10366 dev_xdp_set_link(dev, mode, NULL);
10367 }
10368 }
10369
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10370 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10371 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10372 struct bpf_prog *old_prog, u32 flags)
10373 {
10374 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10375 struct bpf_prog *cur_prog;
10376 struct net_device *upper;
10377 struct list_head *iter;
10378 enum bpf_xdp_mode mode;
10379 bpf_op_t bpf_op;
10380 int err;
10381
10382 ASSERT_RTNL();
10383
10384 /* either link or prog attachment, never both */
10385 if (link && (new_prog || old_prog))
10386 return -EINVAL;
10387 /* link supports only XDP mode flags */
10388 if (link && (flags & ~XDP_FLAGS_MODES)) {
10389 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10390 return -EINVAL;
10391 }
10392 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10393 if (num_modes > 1) {
10394 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10395 return -EINVAL;
10396 }
10397 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10398 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10399 NL_SET_ERR_MSG(extack,
10400 "More than one program loaded, unset mode is ambiguous");
10401 return -EINVAL;
10402 }
10403 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10404 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10405 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10406 return -EINVAL;
10407 }
10408
10409 mode = dev_xdp_mode(dev, flags);
10410 /* can't replace attached link */
10411 if (dev_xdp_link(dev, mode)) {
10412 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10413 return -EBUSY;
10414 }
10415
10416 /* don't allow if an upper device already has a program */
10417 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10418 if (dev_xdp_prog_count(upper) > 0) {
10419 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10420 return -EEXIST;
10421 }
10422 }
10423
10424 cur_prog = dev_xdp_prog(dev, mode);
10425 /* can't replace attached prog with link */
10426 if (link && cur_prog) {
10427 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10428 return -EBUSY;
10429 }
10430 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10431 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10432 return -EEXIST;
10433 }
10434
10435 /* put effective new program into new_prog */
10436 if (link)
10437 new_prog = link->link.prog;
10438
10439 if (new_prog) {
10440 bool offload = mode == XDP_MODE_HW;
10441 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10442 ? XDP_MODE_DRV : XDP_MODE_SKB;
10443
10444 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10445 NL_SET_ERR_MSG(extack, "XDP program already attached");
10446 return -EBUSY;
10447 }
10448 if (!offload && dev_xdp_prog(dev, other_mode)) {
10449 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10450 return -EEXIST;
10451 }
10452 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10453 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10454 return -EINVAL;
10455 }
10456 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10457 NL_SET_ERR_MSG(extack, "Program bound to different device");
10458 return -EINVAL;
10459 }
10460 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10461 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10462 return -EINVAL;
10463 }
10464 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10465 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10466 return -EINVAL;
10467 }
10468 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10469 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10470 return -EINVAL;
10471 }
10472 }
10473
10474 /* don't call drivers if the effective program didn't change */
10475 if (new_prog != cur_prog) {
10476 bpf_op = dev_xdp_bpf_op(dev, mode);
10477 if (!bpf_op) {
10478 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10479 return -EOPNOTSUPP;
10480 }
10481
10482 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10483 if (err)
10484 return err;
10485 }
10486
10487 if (link)
10488 dev_xdp_set_link(dev, mode, link);
10489 else
10490 dev_xdp_set_prog(dev, mode, new_prog);
10491 if (cur_prog)
10492 bpf_prog_put(cur_prog);
10493
10494 return 0;
10495 }
10496
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10497 static int dev_xdp_attach_link(struct net_device *dev,
10498 struct netlink_ext_ack *extack,
10499 struct bpf_xdp_link *link)
10500 {
10501 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10502 }
10503
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10504 static int dev_xdp_detach_link(struct net_device *dev,
10505 struct netlink_ext_ack *extack,
10506 struct bpf_xdp_link *link)
10507 {
10508 enum bpf_xdp_mode mode;
10509 bpf_op_t bpf_op;
10510
10511 ASSERT_RTNL();
10512
10513 mode = dev_xdp_mode(dev, link->flags);
10514 if (dev_xdp_link(dev, mode) != link)
10515 return -EINVAL;
10516
10517 bpf_op = dev_xdp_bpf_op(dev, mode);
10518 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10519 dev_xdp_set_link(dev, mode, NULL);
10520 return 0;
10521 }
10522
bpf_xdp_link_release(struct bpf_link * link)10523 static void bpf_xdp_link_release(struct bpf_link *link)
10524 {
10525 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10526
10527 rtnl_lock();
10528
10529 /* if racing with net_device's tear down, xdp_link->dev might be
10530 * already NULL, in which case link was already auto-detached
10531 */
10532 if (xdp_link->dev) {
10533 netdev_lock_ops(xdp_link->dev);
10534 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10535 netdev_unlock_ops(xdp_link->dev);
10536 xdp_link->dev = NULL;
10537 }
10538
10539 rtnl_unlock();
10540 }
10541
bpf_xdp_link_detach(struct bpf_link * link)10542 static int bpf_xdp_link_detach(struct bpf_link *link)
10543 {
10544 bpf_xdp_link_release(link);
10545 return 0;
10546 }
10547
bpf_xdp_link_dealloc(struct bpf_link * link)10548 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10549 {
10550 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10551
10552 kfree(xdp_link);
10553 }
10554
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10555 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10556 struct seq_file *seq)
10557 {
10558 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10559 u32 ifindex = 0;
10560
10561 rtnl_lock();
10562 if (xdp_link->dev)
10563 ifindex = xdp_link->dev->ifindex;
10564 rtnl_unlock();
10565
10566 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10567 }
10568
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10569 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10570 struct bpf_link_info *info)
10571 {
10572 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10573 u32 ifindex = 0;
10574
10575 rtnl_lock();
10576 if (xdp_link->dev)
10577 ifindex = xdp_link->dev->ifindex;
10578 rtnl_unlock();
10579
10580 info->xdp.ifindex = ifindex;
10581 return 0;
10582 }
10583
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10584 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10585 struct bpf_prog *old_prog)
10586 {
10587 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10588 enum bpf_xdp_mode mode;
10589 bpf_op_t bpf_op;
10590 int err = 0;
10591
10592 rtnl_lock();
10593
10594 /* link might have been auto-released already, so fail */
10595 if (!xdp_link->dev) {
10596 err = -ENOLINK;
10597 goto out_unlock;
10598 }
10599
10600 if (old_prog && link->prog != old_prog) {
10601 err = -EPERM;
10602 goto out_unlock;
10603 }
10604 old_prog = link->prog;
10605 if (old_prog->type != new_prog->type ||
10606 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10607 err = -EINVAL;
10608 goto out_unlock;
10609 }
10610
10611 if (old_prog == new_prog) {
10612 /* no-op, don't disturb drivers */
10613 bpf_prog_put(new_prog);
10614 goto out_unlock;
10615 }
10616
10617 netdev_lock_ops(xdp_link->dev);
10618 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10619 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10620 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10621 xdp_link->flags, new_prog);
10622 netdev_unlock_ops(xdp_link->dev);
10623 if (err)
10624 goto out_unlock;
10625
10626 old_prog = xchg(&link->prog, new_prog);
10627 bpf_prog_put(old_prog);
10628
10629 out_unlock:
10630 rtnl_unlock();
10631 return err;
10632 }
10633
10634 static const struct bpf_link_ops bpf_xdp_link_lops = {
10635 .release = bpf_xdp_link_release,
10636 .dealloc = bpf_xdp_link_dealloc,
10637 .detach = bpf_xdp_link_detach,
10638 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10639 .fill_link_info = bpf_xdp_link_fill_link_info,
10640 .update_prog = bpf_xdp_link_update,
10641 };
10642
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10643 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10644 {
10645 struct net *net = current->nsproxy->net_ns;
10646 struct bpf_link_primer link_primer;
10647 struct netlink_ext_ack extack = {};
10648 struct bpf_xdp_link *link;
10649 struct net_device *dev;
10650 int err, fd;
10651
10652 rtnl_lock();
10653 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10654 if (!dev) {
10655 rtnl_unlock();
10656 return -EINVAL;
10657 }
10658
10659 link = kzalloc(sizeof(*link), GFP_USER);
10660 if (!link) {
10661 err = -ENOMEM;
10662 goto unlock;
10663 }
10664
10665 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10666 attr->link_create.attach_type);
10667 link->dev = dev;
10668 link->flags = attr->link_create.flags;
10669
10670 err = bpf_link_prime(&link->link, &link_primer);
10671 if (err) {
10672 kfree(link);
10673 goto unlock;
10674 }
10675
10676 netdev_lock_ops(dev);
10677 err = dev_xdp_attach_link(dev, &extack, link);
10678 netdev_unlock_ops(dev);
10679 rtnl_unlock();
10680
10681 if (err) {
10682 link->dev = NULL;
10683 bpf_link_cleanup(&link_primer);
10684 trace_bpf_xdp_link_attach_failed(extack._msg);
10685 goto out_put_dev;
10686 }
10687
10688 fd = bpf_link_settle(&link_primer);
10689 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10690 dev_put(dev);
10691 return fd;
10692
10693 unlock:
10694 rtnl_unlock();
10695
10696 out_put_dev:
10697 dev_put(dev);
10698 return err;
10699 }
10700
10701 /**
10702 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10703 * @dev: device
10704 * @extack: netlink extended ack
10705 * @fd: new program fd or negative value to clear
10706 * @expected_fd: old program fd that userspace expects to replace or clear
10707 * @flags: xdp-related flags
10708 *
10709 * Set or clear a bpf program for a device
10710 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10711 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10712 int fd, int expected_fd, u32 flags)
10713 {
10714 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10715 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10716 int err;
10717
10718 ASSERT_RTNL();
10719
10720 if (fd >= 0) {
10721 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10722 mode != XDP_MODE_SKB);
10723 if (IS_ERR(new_prog))
10724 return PTR_ERR(new_prog);
10725 }
10726
10727 if (expected_fd >= 0) {
10728 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10729 mode != XDP_MODE_SKB);
10730 if (IS_ERR(old_prog)) {
10731 err = PTR_ERR(old_prog);
10732 old_prog = NULL;
10733 goto err_out;
10734 }
10735 }
10736
10737 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10738
10739 err_out:
10740 if (err && new_prog)
10741 bpf_prog_put(new_prog);
10742 if (old_prog)
10743 bpf_prog_put(old_prog);
10744 return err;
10745 }
10746
dev_get_min_mp_channel_count(const struct net_device * dev)10747 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10748 {
10749 int i;
10750
10751 netdev_ops_assert_locked(dev);
10752
10753 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10754 if (dev->_rx[i].mp_params.mp_priv)
10755 /* The channel count is the idx plus 1. */
10756 return i + 1;
10757
10758 return 0;
10759 }
10760
10761 /**
10762 * dev_index_reserve() - allocate an ifindex in a namespace
10763 * @net: the applicable net namespace
10764 * @ifindex: requested ifindex, pass %0 to get one allocated
10765 *
10766 * Allocate a ifindex for a new device. Caller must either use the ifindex
10767 * to store the device (via list_netdevice()) or call dev_index_release()
10768 * to give the index up.
10769 *
10770 * Return: a suitable unique value for a new device interface number or -errno.
10771 */
dev_index_reserve(struct net * net,u32 ifindex)10772 static int dev_index_reserve(struct net *net, u32 ifindex)
10773 {
10774 int err;
10775
10776 if (ifindex > INT_MAX) {
10777 DEBUG_NET_WARN_ON_ONCE(1);
10778 return -EINVAL;
10779 }
10780
10781 if (!ifindex)
10782 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10783 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10784 else
10785 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10786 if (err < 0)
10787 return err;
10788
10789 return ifindex;
10790 }
10791
dev_index_release(struct net * net,int ifindex)10792 static void dev_index_release(struct net *net, int ifindex)
10793 {
10794 /* Expect only unused indexes, unlist_netdevice() removes the used */
10795 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10796 }
10797
from_cleanup_net(void)10798 static bool from_cleanup_net(void)
10799 {
10800 #ifdef CONFIG_NET_NS
10801 return current == READ_ONCE(cleanup_net_task);
10802 #else
10803 return false;
10804 #endif
10805 }
10806
10807 /* Delayed registration/unregisteration */
10808 LIST_HEAD(net_todo_list);
10809 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10810 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10811
net_set_todo(struct net_device * dev)10812 static void net_set_todo(struct net_device *dev)
10813 {
10814 list_add_tail(&dev->todo_list, &net_todo_list);
10815 }
10816
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10817 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10818 struct net_device *upper, netdev_features_t features)
10819 {
10820 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10821 netdev_features_t feature;
10822 int feature_bit;
10823
10824 for_each_netdev_feature(upper_disables, feature_bit) {
10825 feature = __NETIF_F_BIT(feature_bit);
10826 if (!(upper->wanted_features & feature)
10827 && (features & feature)) {
10828 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10829 &feature, upper->name);
10830 features &= ~feature;
10831 }
10832 }
10833
10834 return features;
10835 }
10836
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10837 static void netdev_sync_lower_features(struct net_device *upper,
10838 struct net_device *lower, netdev_features_t features)
10839 {
10840 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10841 netdev_features_t feature;
10842 int feature_bit;
10843
10844 for_each_netdev_feature(upper_disables, feature_bit) {
10845 feature = __NETIF_F_BIT(feature_bit);
10846 if (!(features & feature) && (lower->features & feature)) {
10847 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10848 &feature, lower->name);
10849 netdev_lock_ops(lower);
10850 lower->wanted_features &= ~feature;
10851 __netdev_update_features(lower);
10852
10853 if (unlikely(lower->features & feature))
10854 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10855 &feature, lower->name);
10856 else
10857 netdev_features_change(lower);
10858 netdev_unlock_ops(lower);
10859 }
10860 }
10861 }
10862
netdev_has_ip_or_hw_csum(netdev_features_t features)10863 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10864 {
10865 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10866 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10867 bool hw_csum = features & NETIF_F_HW_CSUM;
10868
10869 return ip_csum || hw_csum;
10870 }
10871
netdev_fix_features(struct net_device * dev,netdev_features_t features)10872 static netdev_features_t netdev_fix_features(struct net_device *dev,
10873 netdev_features_t features)
10874 {
10875 /* Fix illegal checksum combinations */
10876 if ((features & NETIF_F_HW_CSUM) &&
10877 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10878 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10879 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10880 }
10881
10882 /* TSO requires that SG is present as well. */
10883 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10884 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10885 features &= ~NETIF_F_ALL_TSO;
10886 }
10887
10888 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10889 !(features & NETIF_F_IP_CSUM)) {
10890 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10891 features &= ~NETIF_F_TSO;
10892 features &= ~NETIF_F_TSO_ECN;
10893 }
10894
10895 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10896 !(features & NETIF_F_IPV6_CSUM)) {
10897 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10898 features &= ~NETIF_F_TSO6;
10899 }
10900
10901 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10902 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10903 features &= ~NETIF_F_TSO_MANGLEID;
10904
10905 /* TSO ECN requires that TSO is present as well. */
10906 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10907 features &= ~NETIF_F_TSO_ECN;
10908
10909 /* Software GSO depends on SG. */
10910 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10911 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10912 features &= ~NETIF_F_GSO;
10913 }
10914
10915 /* GSO partial features require GSO partial be set */
10916 if ((features & dev->gso_partial_features) &&
10917 !(features & NETIF_F_GSO_PARTIAL)) {
10918 netdev_dbg(dev,
10919 "Dropping partially supported GSO features since no GSO partial.\n");
10920 features &= ~dev->gso_partial_features;
10921 }
10922
10923 if (!(features & NETIF_F_RXCSUM)) {
10924 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10925 * successfully merged by hardware must also have the
10926 * checksum verified by hardware. If the user does not
10927 * want to enable RXCSUM, logically, we should disable GRO_HW.
10928 */
10929 if (features & NETIF_F_GRO_HW) {
10930 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10931 features &= ~NETIF_F_GRO_HW;
10932 }
10933 }
10934
10935 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10936 if (features & NETIF_F_RXFCS) {
10937 if (features & NETIF_F_LRO) {
10938 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10939 features &= ~NETIF_F_LRO;
10940 }
10941
10942 if (features & NETIF_F_GRO_HW) {
10943 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10944 features &= ~NETIF_F_GRO_HW;
10945 }
10946 }
10947
10948 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10949 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10950 features &= ~NETIF_F_LRO;
10951 }
10952
10953 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10954 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10955 features &= ~NETIF_F_HW_TLS_TX;
10956 }
10957
10958 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10959 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10960 features &= ~NETIF_F_HW_TLS_RX;
10961 }
10962
10963 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10964 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10965 features &= ~NETIF_F_GSO_UDP_L4;
10966 }
10967
10968 return features;
10969 }
10970
__netdev_update_features(struct net_device * dev)10971 int __netdev_update_features(struct net_device *dev)
10972 {
10973 struct net_device *upper, *lower;
10974 netdev_features_t features;
10975 struct list_head *iter;
10976 int err = -1;
10977
10978 ASSERT_RTNL();
10979 netdev_ops_assert_locked(dev);
10980
10981 features = netdev_get_wanted_features(dev);
10982
10983 if (dev->netdev_ops->ndo_fix_features)
10984 features = dev->netdev_ops->ndo_fix_features(dev, features);
10985
10986 /* driver might be less strict about feature dependencies */
10987 features = netdev_fix_features(dev, features);
10988
10989 /* some features can't be enabled if they're off on an upper device */
10990 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10991 features = netdev_sync_upper_features(dev, upper, features);
10992
10993 if (dev->features == features)
10994 goto sync_lower;
10995
10996 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10997 &dev->features, &features);
10998
10999 if (dev->netdev_ops->ndo_set_features)
11000 err = dev->netdev_ops->ndo_set_features(dev, features);
11001 else
11002 err = 0;
11003
11004 if (unlikely(err < 0)) {
11005 netdev_err(dev,
11006 "set_features() failed (%d); wanted %pNF, left %pNF\n",
11007 err, &features, &dev->features);
11008 /* return non-0 since some features might have changed and
11009 * it's better to fire a spurious notification than miss it
11010 */
11011 return -1;
11012 }
11013
11014 sync_lower:
11015 /* some features must be disabled on lower devices when disabled
11016 * on an upper device (think: bonding master or bridge)
11017 */
11018 netdev_for_each_lower_dev(dev, lower, iter)
11019 netdev_sync_lower_features(dev, lower, features);
11020
11021 if (!err) {
11022 netdev_features_t diff = features ^ dev->features;
11023
11024 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11025 /* udp_tunnel_{get,drop}_rx_info both need
11026 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11027 * device, or they won't do anything.
11028 * Thus we need to update dev->features
11029 * *before* calling udp_tunnel_get_rx_info,
11030 * but *after* calling udp_tunnel_drop_rx_info.
11031 */
11032 udp_tunnel_nic_lock(dev);
11033 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11034 dev->features = features;
11035 udp_tunnel_get_rx_info(dev);
11036 } else {
11037 udp_tunnel_drop_rx_info(dev);
11038 }
11039 udp_tunnel_nic_unlock(dev);
11040 }
11041
11042 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11043 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11044 dev->features = features;
11045 err |= vlan_get_rx_ctag_filter_info(dev);
11046 } else {
11047 vlan_drop_rx_ctag_filter_info(dev);
11048 }
11049 }
11050
11051 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11052 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11053 dev->features = features;
11054 err |= vlan_get_rx_stag_filter_info(dev);
11055 } else {
11056 vlan_drop_rx_stag_filter_info(dev);
11057 }
11058 }
11059
11060 dev->features = features;
11061 }
11062
11063 return err < 0 ? 0 : 1;
11064 }
11065
11066 /**
11067 * netdev_update_features - recalculate device features
11068 * @dev: the device to check
11069 *
11070 * Recalculate dev->features set and send notifications if it
11071 * has changed. Should be called after driver or hardware dependent
11072 * conditions might have changed that influence the features.
11073 */
netdev_update_features(struct net_device * dev)11074 void netdev_update_features(struct net_device *dev)
11075 {
11076 if (__netdev_update_features(dev))
11077 netdev_features_change(dev);
11078 }
11079 EXPORT_SYMBOL(netdev_update_features);
11080
11081 /**
11082 * netdev_change_features - recalculate device features
11083 * @dev: the device to check
11084 *
11085 * Recalculate dev->features set and send notifications even
11086 * if they have not changed. Should be called instead of
11087 * netdev_update_features() if also dev->vlan_features might
11088 * have changed to allow the changes to be propagated to stacked
11089 * VLAN devices.
11090 */
netdev_change_features(struct net_device * dev)11091 void netdev_change_features(struct net_device *dev)
11092 {
11093 __netdev_update_features(dev);
11094 netdev_features_change(dev);
11095 }
11096 EXPORT_SYMBOL(netdev_change_features);
11097
11098 /**
11099 * netif_stacked_transfer_operstate - transfer operstate
11100 * @rootdev: the root or lower level device to transfer state from
11101 * @dev: the device to transfer operstate to
11102 *
11103 * Transfer operational state from root to device. This is normally
11104 * called when a stacking relationship exists between the root
11105 * device and the device(a leaf device).
11106 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11107 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11108 struct net_device *dev)
11109 {
11110 if (rootdev->operstate == IF_OPER_DORMANT)
11111 netif_dormant_on(dev);
11112 else
11113 netif_dormant_off(dev);
11114
11115 if (rootdev->operstate == IF_OPER_TESTING)
11116 netif_testing_on(dev);
11117 else
11118 netif_testing_off(dev);
11119
11120 if (netif_carrier_ok(rootdev))
11121 netif_carrier_on(dev);
11122 else
11123 netif_carrier_off(dev);
11124 }
11125 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11126
netif_alloc_rx_queues(struct net_device * dev)11127 static int netif_alloc_rx_queues(struct net_device *dev)
11128 {
11129 unsigned int i, count = dev->num_rx_queues;
11130 struct netdev_rx_queue *rx;
11131 size_t sz = count * sizeof(*rx);
11132 int err = 0;
11133
11134 BUG_ON(count < 1);
11135
11136 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11137 if (!rx)
11138 return -ENOMEM;
11139
11140 dev->_rx = rx;
11141
11142 for (i = 0; i < count; i++) {
11143 rx[i].dev = dev;
11144
11145 /* XDP RX-queue setup */
11146 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11147 if (err < 0)
11148 goto err_rxq_info;
11149 }
11150 return 0;
11151
11152 err_rxq_info:
11153 /* Rollback successful reg's and free other resources */
11154 while (i--)
11155 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11156 kvfree(dev->_rx);
11157 dev->_rx = NULL;
11158 return err;
11159 }
11160
netif_free_rx_queues(struct net_device * dev)11161 static void netif_free_rx_queues(struct net_device *dev)
11162 {
11163 unsigned int i, count = dev->num_rx_queues;
11164
11165 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11166 if (!dev->_rx)
11167 return;
11168
11169 for (i = 0; i < count; i++)
11170 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11171
11172 kvfree(dev->_rx);
11173 }
11174
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11175 static void netdev_init_one_queue(struct net_device *dev,
11176 struct netdev_queue *queue, void *_unused)
11177 {
11178 /* Initialize queue lock */
11179 spin_lock_init(&queue->_xmit_lock);
11180 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11181 queue->xmit_lock_owner = -1;
11182 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11183 queue->dev = dev;
11184 #ifdef CONFIG_BQL
11185 dql_init(&queue->dql, HZ);
11186 #endif
11187 }
11188
netif_free_tx_queues(struct net_device * dev)11189 static void netif_free_tx_queues(struct net_device *dev)
11190 {
11191 kvfree(dev->_tx);
11192 }
11193
netif_alloc_netdev_queues(struct net_device * dev)11194 static int netif_alloc_netdev_queues(struct net_device *dev)
11195 {
11196 unsigned int count = dev->num_tx_queues;
11197 struct netdev_queue *tx;
11198 size_t sz = count * sizeof(*tx);
11199
11200 if (count < 1 || count > 0xffff)
11201 return -EINVAL;
11202
11203 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11204 if (!tx)
11205 return -ENOMEM;
11206
11207 dev->_tx = tx;
11208
11209 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11210 spin_lock_init(&dev->tx_global_lock);
11211
11212 return 0;
11213 }
11214
netif_tx_stop_all_queues(struct net_device * dev)11215 void netif_tx_stop_all_queues(struct net_device *dev)
11216 {
11217 unsigned int i;
11218
11219 for (i = 0; i < dev->num_tx_queues; i++) {
11220 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11221
11222 netif_tx_stop_queue(txq);
11223 }
11224 }
11225 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11226
netdev_do_alloc_pcpu_stats(struct net_device * dev)11227 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11228 {
11229 void __percpu *v;
11230
11231 /* Drivers implementing ndo_get_peer_dev must support tstat
11232 * accounting, so that skb_do_redirect() can bump the dev's
11233 * RX stats upon network namespace switch.
11234 */
11235 if (dev->netdev_ops->ndo_get_peer_dev &&
11236 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11237 return -EOPNOTSUPP;
11238
11239 switch (dev->pcpu_stat_type) {
11240 case NETDEV_PCPU_STAT_NONE:
11241 return 0;
11242 case NETDEV_PCPU_STAT_LSTATS:
11243 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11244 break;
11245 case NETDEV_PCPU_STAT_TSTATS:
11246 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11247 break;
11248 case NETDEV_PCPU_STAT_DSTATS:
11249 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11250 break;
11251 default:
11252 return -EINVAL;
11253 }
11254
11255 return v ? 0 : -ENOMEM;
11256 }
11257
netdev_do_free_pcpu_stats(struct net_device * dev)11258 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11259 {
11260 switch (dev->pcpu_stat_type) {
11261 case NETDEV_PCPU_STAT_NONE:
11262 return;
11263 case NETDEV_PCPU_STAT_LSTATS:
11264 free_percpu(dev->lstats);
11265 break;
11266 case NETDEV_PCPU_STAT_TSTATS:
11267 free_percpu(dev->tstats);
11268 break;
11269 case NETDEV_PCPU_STAT_DSTATS:
11270 free_percpu(dev->dstats);
11271 break;
11272 }
11273 }
11274
netdev_free_phy_link_topology(struct net_device * dev)11275 static void netdev_free_phy_link_topology(struct net_device *dev)
11276 {
11277 struct phy_link_topology *topo = dev->link_topo;
11278
11279 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11280 xa_destroy(&topo->phys);
11281 kfree(topo);
11282 dev->link_topo = NULL;
11283 }
11284 }
11285
11286 /**
11287 * register_netdevice() - register a network device
11288 * @dev: device to register
11289 *
11290 * Take a prepared network device structure and make it externally accessible.
11291 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11292 * Callers must hold the rtnl lock - you may want register_netdev()
11293 * instead of this.
11294 */
register_netdevice(struct net_device * dev)11295 int register_netdevice(struct net_device *dev)
11296 {
11297 int ret;
11298 struct net *net = dev_net(dev);
11299
11300 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11301 NETDEV_FEATURE_COUNT);
11302 BUG_ON(dev_boot_phase);
11303 ASSERT_RTNL();
11304
11305 might_sleep();
11306
11307 /* When net_device's are persistent, this will be fatal. */
11308 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11309 BUG_ON(!net);
11310
11311 ret = ethtool_check_ops(dev->ethtool_ops);
11312 if (ret)
11313 return ret;
11314
11315 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11316 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11317 mutex_init(&dev->ethtool->rss_lock);
11318
11319 spin_lock_init(&dev->addr_list_lock);
11320 netdev_set_addr_lockdep_class(dev);
11321
11322 ret = dev_get_valid_name(net, dev, dev->name);
11323 if (ret < 0)
11324 goto out;
11325
11326 ret = -ENOMEM;
11327 dev->name_node = netdev_name_node_head_alloc(dev);
11328 if (!dev->name_node)
11329 goto out;
11330
11331 /* Init, if this function is available */
11332 if (dev->netdev_ops->ndo_init) {
11333 ret = dev->netdev_ops->ndo_init(dev);
11334 if (ret) {
11335 if (ret > 0)
11336 ret = -EIO;
11337 goto err_free_name;
11338 }
11339 }
11340
11341 if (((dev->hw_features | dev->features) &
11342 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11343 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11344 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11345 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11346 ret = -EINVAL;
11347 goto err_uninit;
11348 }
11349
11350 ret = netdev_do_alloc_pcpu_stats(dev);
11351 if (ret)
11352 goto err_uninit;
11353
11354 ret = dev_index_reserve(net, dev->ifindex);
11355 if (ret < 0)
11356 goto err_free_pcpu;
11357 dev->ifindex = ret;
11358
11359 /* Transfer changeable features to wanted_features and enable
11360 * software offloads (GSO and GRO).
11361 */
11362 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11363 dev->features |= NETIF_F_SOFT_FEATURES;
11364
11365 if (dev->udp_tunnel_nic_info) {
11366 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11367 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11368 }
11369
11370 dev->wanted_features = dev->features & dev->hw_features;
11371
11372 if (!(dev->flags & IFF_LOOPBACK))
11373 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11374
11375 /* If IPv4 TCP segmentation offload is supported we should also
11376 * allow the device to enable segmenting the frame with the option
11377 * of ignoring a static IP ID value. This doesn't enable the
11378 * feature itself but allows the user to enable it later.
11379 */
11380 if (dev->hw_features & NETIF_F_TSO)
11381 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11382 if (dev->vlan_features & NETIF_F_TSO)
11383 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11384 if (dev->mpls_features & NETIF_F_TSO)
11385 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11386 if (dev->hw_enc_features & NETIF_F_TSO)
11387 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11388
11389 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11390 */
11391 dev->vlan_features |= NETIF_F_HIGHDMA;
11392
11393 /* Make NETIF_F_SG inheritable to tunnel devices.
11394 */
11395 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11396
11397 /* Make NETIF_F_SG inheritable to MPLS.
11398 */
11399 dev->mpls_features |= NETIF_F_SG;
11400
11401 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11402 ret = notifier_to_errno(ret);
11403 if (ret)
11404 goto err_ifindex_release;
11405
11406 ret = netdev_register_kobject(dev);
11407
11408 netdev_lock(dev);
11409 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11410 netdev_unlock(dev);
11411
11412 if (ret)
11413 goto err_uninit_notify;
11414
11415 netdev_lock_ops(dev);
11416 __netdev_update_features(dev);
11417 netdev_unlock_ops(dev);
11418
11419 /*
11420 * Default initial state at registry is that the
11421 * device is present.
11422 */
11423
11424 set_bit(__LINK_STATE_PRESENT, &dev->state);
11425
11426 linkwatch_init_dev(dev);
11427
11428 dev_init_scheduler(dev);
11429
11430 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11431 list_netdevice(dev);
11432
11433 add_device_randomness(dev->dev_addr, dev->addr_len);
11434
11435 /* If the device has permanent device address, driver should
11436 * set dev_addr and also addr_assign_type should be set to
11437 * NET_ADDR_PERM (default value).
11438 */
11439 if (dev->addr_assign_type == NET_ADDR_PERM)
11440 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11441
11442 /* Notify protocols, that a new device appeared. */
11443 netdev_lock_ops(dev);
11444 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11445 netdev_unlock_ops(dev);
11446 ret = notifier_to_errno(ret);
11447 if (ret) {
11448 /* Expect explicit free_netdev() on failure */
11449 dev->needs_free_netdev = false;
11450 unregister_netdevice_queue(dev, NULL);
11451 goto out;
11452 }
11453 /*
11454 * Prevent userspace races by waiting until the network
11455 * device is fully setup before sending notifications.
11456 */
11457 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11458 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11459
11460 out:
11461 return ret;
11462
11463 err_uninit_notify:
11464 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11465 err_ifindex_release:
11466 dev_index_release(net, dev->ifindex);
11467 err_free_pcpu:
11468 netdev_do_free_pcpu_stats(dev);
11469 err_uninit:
11470 if (dev->netdev_ops->ndo_uninit)
11471 dev->netdev_ops->ndo_uninit(dev);
11472 if (dev->priv_destructor)
11473 dev->priv_destructor(dev);
11474 err_free_name:
11475 netdev_name_node_free(dev->name_node);
11476 goto out;
11477 }
11478 EXPORT_SYMBOL(register_netdevice);
11479
11480 /* Initialize the core of a dummy net device.
11481 * The setup steps dummy netdevs need which normal netdevs get by going
11482 * through register_netdevice().
11483 */
init_dummy_netdev(struct net_device * dev)11484 static void init_dummy_netdev(struct net_device *dev)
11485 {
11486 /* make sure we BUG if trying to hit standard
11487 * register/unregister code path
11488 */
11489 dev->reg_state = NETREG_DUMMY;
11490
11491 /* a dummy interface is started by default */
11492 set_bit(__LINK_STATE_PRESENT, &dev->state);
11493 set_bit(__LINK_STATE_START, &dev->state);
11494
11495 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11496 * because users of this 'device' dont need to change
11497 * its refcount.
11498 */
11499 }
11500
11501 /**
11502 * register_netdev - register a network device
11503 * @dev: device to register
11504 *
11505 * Take a completed network device structure and add it to the kernel
11506 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11507 * chain. 0 is returned on success. A negative errno code is returned
11508 * on a failure to set up the device, or if the name is a duplicate.
11509 *
11510 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11511 * and expands the device name if you passed a format string to
11512 * alloc_netdev.
11513 */
register_netdev(struct net_device * dev)11514 int register_netdev(struct net_device *dev)
11515 {
11516 struct net *net = dev_net(dev);
11517 int err;
11518
11519 if (rtnl_net_lock_killable(net))
11520 return -EINTR;
11521
11522 err = register_netdevice(dev);
11523
11524 rtnl_net_unlock(net);
11525
11526 return err;
11527 }
11528 EXPORT_SYMBOL(register_netdev);
11529
netdev_refcnt_read(const struct net_device * dev)11530 int netdev_refcnt_read(const struct net_device *dev)
11531 {
11532 #ifdef CONFIG_PCPU_DEV_REFCNT
11533 int i, refcnt = 0;
11534
11535 for_each_possible_cpu(i)
11536 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11537 return refcnt;
11538 #else
11539 return refcount_read(&dev->dev_refcnt);
11540 #endif
11541 }
11542 EXPORT_SYMBOL(netdev_refcnt_read);
11543
11544 int netdev_unregister_timeout_secs __read_mostly = 10;
11545
11546 #define WAIT_REFS_MIN_MSECS 1
11547 #define WAIT_REFS_MAX_MSECS 250
11548 /**
11549 * netdev_wait_allrefs_any - wait until all references are gone.
11550 * @list: list of net_devices to wait on
11551 *
11552 * This is called when unregistering network devices.
11553 *
11554 * Any protocol or device that holds a reference should register
11555 * for netdevice notification, and cleanup and put back the
11556 * reference if they receive an UNREGISTER event.
11557 * We can get stuck here if buggy protocols don't correctly
11558 * call dev_put.
11559 */
netdev_wait_allrefs_any(struct list_head * list)11560 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11561 {
11562 unsigned long rebroadcast_time, warning_time;
11563 struct net_device *dev;
11564 int wait = 0;
11565
11566 rebroadcast_time = warning_time = jiffies;
11567
11568 list_for_each_entry(dev, list, todo_list)
11569 if (netdev_refcnt_read(dev) == 1)
11570 return dev;
11571
11572 while (true) {
11573 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11574 rtnl_lock();
11575
11576 /* Rebroadcast unregister notification */
11577 list_for_each_entry(dev, list, todo_list)
11578 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11579
11580 __rtnl_unlock();
11581 rcu_barrier();
11582 rtnl_lock();
11583
11584 list_for_each_entry(dev, list, todo_list)
11585 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11586 &dev->state)) {
11587 /* We must not have linkwatch events
11588 * pending on unregister. If this
11589 * happens, we simply run the queue
11590 * unscheduled, resulting in a noop
11591 * for this device.
11592 */
11593 linkwatch_run_queue();
11594 break;
11595 }
11596
11597 __rtnl_unlock();
11598
11599 rebroadcast_time = jiffies;
11600 }
11601
11602 rcu_barrier();
11603
11604 if (!wait) {
11605 wait = WAIT_REFS_MIN_MSECS;
11606 } else {
11607 msleep(wait);
11608 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11609 }
11610
11611 list_for_each_entry(dev, list, todo_list)
11612 if (netdev_refcnt_read(dev) == 1)
11613 return dev;
11614
11615 if (time_after(jiffies, warning_time +
11616 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11617 list_for_each_entry(dev, list, todo_list) {
11618 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11619 dev->name, netdev_refcnt_read(dev));
11620 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11621 }
11622
11623 warning_time = jiffies;
11624 }
11625 }
11626 }
11627
11628 /* The sequence is:
11629 *
11630 * rtnl_lock();
11631 * ...
11632 * register_netdevice(x1);
11633 * register_netdevice(x2);
11634 * ...
11635 * unregister_netdevice(y1);
11636 * unregister_netdevice(y2);
11637 * ...
11638 * rtnl_unlock();
11639 * free_netdev(y1);
11640 * free_netdev(y2);
11641 *
11642 * We are invoked by rtnl_unlock().
11643 * This allows us to deal with problems:
11644 * 1) We can delete sysfs objects which invoke hotplug
11645 * without deadlocking with linkwatch via keventd.
11646 * 2) Since we run with the RTNL semaphore not held, we can sleep
11647 * safely in order to wait for the netdev refcnt to drop to zero.
11648 *
11649 * We must not return until all unregister events added during
11650 * the interval the lock was held have been completed.
11651 */
netdev_run_todo(void)11652 void netdev_run_todo(void)
11653 {
11654 struct net_device *dev, *tmp;
11655 struct list_head list;
11656 int cnt;
11657 #ifdef CONFIG_LOCKDEP
11658 struct list_head unlink_list;
11659
11660 list_replace_init(&net_unlink_list, &unlink_list);
11661
11662 while (!list_empty(&unlink_list)) {
11663 dev = list_first_entry(&unlink_list, struct net_device,
11664 unlink_list);
11665 list_del_init(&dev->unlink_list);
11666 dev->nested_level = dev->lower_level - 1;
11667 }
11668 #endif
11669
11670 /* Snapshot list, allow later requests */
11671 list_replace_init(&net_todo_list, &list);
11672
11673 __rtnl_unlock();
11674
11675 /* Wait for rcu callbacks to finish before next phase */
11676 if (!list_empty(&list))
11677 rcu_barrier();
11678
11679 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11680 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11681 netdev_WARN(dev, "run_todo but not unregistering\n");
11682 list_del(&dev->todo_list);
11683 continue;
11684 }
11685
11686 netdev_lock(dev);
11687 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11688 netdev_unlock(dev);
11689 linkwatch_sync_dev(dev);
11690 }
11691
11692 cnt = 0;
11693 while (!list_empty(&list)) {
11694 dev = netdev_wait_allrefs_any(&list);
11695 list_del(&dev->todo_list);
11696
11697 /* paranoia */
11698 BUG_ON(netdev_refcnt_read(dev) != 1);
11699 BUG_ON(!list_empty(&dev->ptype_all));
11700 BUG_ON(!list_empty(&dev->ptype_specific));
11701 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11702 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11703
11704 netdev_do_free_pcpu_stats(dev);
11705 if (dev->priv_destructor)
11706 dev->priv_destructor(dev);
11707 if (dev->needs_free_netdev)
11708 free_netdev(dev);
11709
11710 cnt++;
11711
11712 /* Free network device */
11713 kobject_put(&dev->dev.kobj);
11714 }
11715 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11716 wake_up(&netdev_unregistering_wq);
11717 }
11718
11719 /* Collate per-cpu network dstats statistics
11720 *
11721 * Read per-cpu network statistics from dev->dstats and populate the related
11722 * fields in @s.
11723 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11724 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11725 const struct pcpu_dstats __percpu *dstats)
11726 {
11727 int cpu;
11728
11729 for_each_possible_cpu(cpu) {
11730 u64 rx_packets, rx_bytes, rx_drops;
11731 u64 tx_packets, tx_bytes, tx_drops;
11732 const struct pcpu_dstats *stats;
11733 unsigned int start;
11734
11735 stats = per_cpu_ptr(dstats, cpu);
11736 do {
11737 start = u64_stats_fetch_begin(&stats->syncp);
11738 rx_packets = u64_stats_read(&stats->rx_packets);
11739 rx_bytes = u64_stats_read(&stats->rx_bytes);
11740 rx_drops = u64_stats_read(&stats->rx_drops);
11741 tx_packets = u64_stats_read(&stats->tx_packets);
11742 tx_bytes = u64_stats_read(&stats->tx_bytes);
11743 tx_drops = u64_stats_read(&stats->tx_drops);
11744 } while (u64_stats_fetch_retry(&stats->syncp, start));
11745
11746 s->rx_packets += rx_packets;
11747 s->rx_bytes += rx_bytes;
11748 s->rx_dropped += rx_drops;
11749 s->tx_packets += tx_packets;
11750 s->tx_bytes += tx_bytes;
11751 s->tx_dropped += tx_drops;
11752 }
11753 }
11754
11755 /* ndo_get_stats64 implementation for dtstats-based accounting.
11756 *
11757 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11758 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11759 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11760 static void dev_get_dstats64(const struct net_device *dev,
11761 struct rtnl_link_stats64 *s)
11762 {
11763 netdev_stats_to_stats64(s, &dev->stats);
11764 dev_fetch_dstats(s, dev->dstats);
11765 }
11766
11767 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11768 * all the same fields in the same order as net_device_stats, with only
11769 * the type differing, but rtnl_link_stats64 may have additional fields
11770 * at the end for newer counters.
11771 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11772 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11773 const struct net_device_stats *netdev_stats)
11774 {
11775 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11776 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11777 u64 *dst = (u64 *)stats64;
11778
11779 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11780 for (i = 0; i < n; i++)
11781 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11782 /* zero out counters that only exist in rtnl_link_stats64 */
11783 memset((char *)stats64 + n * sizeof(u64), 0,
11784 sizeof(*stats64) - n * sizeof(u64));
11785 }
11786 EXPORT_SYMBOL(netdev_stats_to_stats64);
11787
netdev_core_stats_alloc(struct net_device * dev)11788 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11789 struct net_device *dev)
11790 {
11791 struct net_device_core_stats __percpu *p;
11792
11793 p = alloc_percpu_gfp(struct net_device_core_stats,
11794 GFP_ATOMIC | __GFP_NOWARN);
11795
11796 if (p && cmpxchg(&dev->core_stats, NULL, p))
11797 free_percpu(p);
11798
11799 /* This READ_ONCE() pairs with the cmpxchg() above */
11800 return READ_ONCE(dev->core_stats);
11801 }
11802
netdev_core_stats_inc(struct net_device * dev,u32 offset)11803 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11804 {
11805 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11806 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11807 unsigned long __percpu *field;
11808
11809 if (unlikely(!p)) {
11810 p = netdev_core_stats_alloc(dev);
11811 if (!p)
11812 return;
11813 }
11814
11815 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11816 this_cpu_inc(*field);
11817 }
11818 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11819
11820 /**
11821 * dev_get_stats - get network device statistics
11822 * @dev: device to get statistics from
11823 * @storage: place to store stats
11824 *
11825 * Get network statistics from device. Return @storage.
11826 * The device driver may provide its own method by setting
11827 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11828 * otherwise the internal statistics structure is used.
11829 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11830 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11831 struct rtnl_link_stats64 *storage)
11832 {
11833 const struct net_device_ops *ops = dev->netdev_ops;
11834 const struct net_device_core_stats __percpu *p;
11835
11836 /*
11837 * IPv{4,6} and udp tunnels share common stat helpers and use
11838 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11839 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11840 */
11841 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11842 offsetof(struct pcpu_dstats, rx_bytes));
11843 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11844 offsetof(struct pcpu_dstats, rx_packets));
11845 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11846 offsetof(struct pcpu_dstats, tx_bytes));
11847 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11848 offsetof(struct pcpu_dstats, tx_packets));
11849
11850 if (ops->ndo_get_stats64) {
11851 memset(storage, 0, sizeof(*storage));
11852 ops->ndo_get_stats64(dev, storage);
11853 } else if (ops->ndo_get_stats) {
11854 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11855 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11856 dev_get_tstats64(dev, storage);
11857 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11858 dev_get_dstats64(dev, storage);
11859 } else {
11860 netdev_stats_to_stats64(storage, &dev->stats);
11861 }
11862
11863 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11864 p = READ_ONCE(dev->core_stats);
11865 if (p) {
11866 const struct net_device_core_stats *core_stats;
11867 int i;
11868
11869 for_each_possible_cpu(i) {
11870 core_stats = per_cpu_ptr(p, i);
11871 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11872 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11873 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11874 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11875 }
11876 }
11877 return storage;
11878 }
11879 EXPORT_SYMBOL(dev_get_stats);
11880
11881 /**
11882 * dev_fetch_sw_netstats - get per-cpu network device statistics
11883 * @s: place to store stats
11884 * @netstats: per-cpu network stats to read from
11885 *
11886 * Read per-cpu network statistics and populate the related fields in @s.
11887 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11888 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11889 const struct pcpu_sw_netstats __percpu *netstats)
11890 {
11891 int cpu;
11892
11893 for_each_possible_cpu(cpu) {
11894 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11895 const struct pcpu_sw_netstats *stats;
11896 unsigned int start;
11897
11898 stats = per_cpu_ptr(netstats, cpu);
11899 do {
11900 start = u64_stats_fetch_begin(&stats->syncp);
11901 rx_packets = u64_stats_read(&stats->rx_packets);
11902 rx_bytes = u64_stats_read(&stats->rx_bytes);
11903 tx_packets = u64_stats_read(&stats->tx_packets);
11904 tx_bytes = u64_stats_read(&stats->tx_bytes);
11905 } while (u64_stats_fetch_retry(&stats->syncp, start));
11906
11907 s->rx_packets += rx_packets;
11908 s->rx_bytes += rx_bytes;
11909 s->tx_packets += tx_packets;
11910 s->tx_bytes += tx_bytes;
11911 }
11912 }
11913 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11914
11915 /**
11916 * dev_get_tstats64 - ndo_get_stats64 implementation
11917 * @dev: device to get statistics from
11918 * @s: place to store stats
11919 *
11920 * Populate @s from dev->stats and dev->tstats. Can be used as
11921 * ndo_get_stats64() callback.
11922 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11923 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11924 {
11925 netdev_stats_to_stats64(s, &dev->stats);
11926 dev_fetch_sw_netstats(s, dev->tstats);
11927 }
11928 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11929
dev_ingress_queue_create(struct net_device * dev)11930 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11931 {
11932 struct netdev_queue *queue = dev_ingress_queue(dev);
11933
11934 #ifdef CONFIG_NET_CLS_ACT
11935 if (queue)
11936 return queue;
11937 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11938 if (!queue)
11939 return NULL;
11940 netdev_init_one_queue(dev, queue, NULL);
11941 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11942 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11943 rcu_assign_pointer(dev->ingress_queue, queue);
11944 #endif
11945 return queue;
11946 }
11947
11948 static const struct ethtool_ops default_ethtool_ops;
11949
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11950 void netdev_set_default_ethtool_ops(struct net_device *dev,
11951 const struct ethtool_ops *ops)
11952 {
11953 if (dev->ethtool_ops == &default_ethtool_ops)
11954 dev->ethtool_ops = ops;
11955 }
11956 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11957
11958 /**
11959 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11960 * @dev: netdev to enable the IRQ coalescing on
11961 *
11962 * Sets a conservative default for SW IRQ coalescing. Users can use
11963 * sysfs attributes to override the default values.
11964 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11965 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11966 {
11967 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11968
11969 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11970 netdev_set_gro_flush_timeout(dev, 20000);
11971 netdev_set_defer_hard_irqs(dev, 1);
11972 }
11973 }
11974 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11975
11976 /**
11977 * alloc_netdev_mqs - allocate network device
11978 * @sizeof_priv: size of private data to allocate space for
11979 * @name: device name format string
11980 * @name_assign_type: origin of device name
11981 * @setup: callback to initialize device
11982 * @txqs: the number of TX subqueues to allocate
11983 * @rxqs: the number of RX subqueues to allocate
11984 *
11985 * Allocates a struct net_device with private data area for driver use
11986 * and performs basic initialization. Also allocates subqueue structs
11987 * for each queue on the device.
11988 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11990 unsigned char name_assign_type,
11991 void (*setup)(struct net_device *),
11992 unsigned int txqs, unsigned int rxqs)
11993 {
11994 struct net_device *dev;
11995 size_t napi_config_sz;
11996 unsigned int maxqs;
11997
11998 BUG_ON(strlen(name) >= sizeof(dev->name));
11999
12000 if (txqs < 1) {
12001 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12002 return NULL;
12003 }
12004
12005 if (rxqs < 1) {
12006 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12007 return NULL;
12008 }
12009
12010 maxqs = max(txqs, rxqs);
12011
12012 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
12013 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12014 if (!dev)
12015 return NULL;
12016
12017 dev->priv_len = sizeof_priv;
12018
12019 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12020 #ifdef CONFIG_PCPU_DEV_REFCNT
12021 dev->pcpu_refcnt = alloc_percpu(int);
12022 if (!dev->pcpu_refcnt)
12023 goto free_dev;
12024 __dev_hold(dev);
12025 #else
12026 refcount_set(&dev->dev_refcnt, 1);
12027 #endif
12028
12029 if (dev_addr_init(dev))
12030 goto free_pcpu;
12031
12032 dev_mc_init(dev);
12033 dev_uc_init(dev);
12034
12035 dev_net_set(dev, &init_net);
12036
12037 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12038 dev->xdp_zc_max_segs = 1;
12039 dev->gso_max_segs = GSO_MAX_SEGS;
12040 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12041 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12042 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12043 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12044 dev->tso_max_segs = TSO_MAX_SEGS;
12045 dev->upper_level = 1;
12046 dev->lower_level = 1;
12047 #ifdef CONFIG_LOCKDEP
12048 dev->nested_level = 0;
12049 INIT_LIST_HEAD(&dev->unlink_list);
12050 #endif
12051
12052 INIT_LIST_HEAD(&dev->napi_list);
12053 INIT_LIST_HEAD(&dev->unreg_list);
12054 INIT_LIST_HEAD(&dev->close_list);
12055 INIT_LIST_HEAD(&dev->link_watch_list);
12056 INIT_LIST_HEAD(&dev->adj_list.upper);
12057 INIT_LIST_HEAD(&dev->adj_list.lower);
12058 INIT_LIST_HEAD(&dev->ptype_all);
12059 INIT_LIST_HEAD(&dev->ptype_specific);
12060 INIT_LIST_HEAD(&dev->net_notifier_list);
12061 #ifdef CONFIG_NET_SCHED
12062 hash_init(dev->qdisc_hash);
12063 #endif
12064
12065 mutex_init(&dev->lock);
12066
12067 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12068 setup(dev);
12069
12070 if (!dev->tx_queue_len) {
12071 dev->priv_flags |= IFF_NO_QUEUE;
12072 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12073 }
12074
12075 dev->num_tx_queues = txqs;
12076 dev->real_num_tx_queues = txqs;
12077 if (netif_alloc_netdev_queues(dev))
12078 goto free_all;
12079
12080 dev->num_rx_queues = rxqs;
12081 dev->real_num_rx_queues = rxqs;
12082 if (netif_alloc_rx_queues(dev))
12083 goto free_all;
12084 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12085 if (!dev->ethtool)
12086 goto free_all;
12087
12088 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12089 if (!dev->cfg)
12090 goto free_all;
12091 dev->cfg_pending = dev->cfg;
12092
12093 dev->num_napi_configs = maxqs;
12094 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12095 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12096 if (!dev->napi_config)
12097 goto free_all;
12098
12099 strscpy(dev->name, name);
12100 dev->name_assign_type = name_assign_type;
12101 dev->group = INIT_NETDEV_GROUP;
12102 if (!dev->ethtool_ops)
12103 dev->ethtool_ops = &default_ethtool_ops;
12104
12105 nf_hook_netdev_init(dev);
12106
12107 return dev;
12108
12109 free_all:
12110 free_netdev(dev);
12111 return NULL;
12112
12113 free_pcpu:
12114 #ifdef CONFIG_PCPU_DEV_REFCNT
12115 free_percpu(dev->pcpu_refcnt);
12116 free_dev:
12117 #endif
12118 kvfree(dev);
12119 return NULL;
12120 }
12121 EXPORT_SYMBOL(alloc_netdev_mqs);
12122
netdev_napi_exit(struct net_device * dev)12123 static void netdev_napi_exit(struct net_device *dev)
12124 {
12125 if (!list_empty(&dev->napi_list)) {
12126 struct napi_struct *p, *n;
12127
12128 netdev_lock(dev);
12129 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12130 __netif_napi_del_locked(p);
12131 netdev_unlock(dev);
12132
12133 synchronize_net();
12134 }
12135
12136 kvfree(dev->napi_config);
12137 }
12138
12139 /**
12140 * free_netdev - free network device
12141 * @dev: device
12142 *
12143 * This function does the last stage of destroying an allocated device
12144 * interface. The reference to the device object is released. If this
12145 * is the last reference then it will be freed.Must be called in process
12146 * context.
12147 */
free_netdev(struct net_device * dev)12148 void free_netdev(struct net_device *dev)
12149 {
12150 might_sleep();
12151
12152 /* When called immediately after register_netdevice() failed the unwind
12153 * handling may still be dismantling the device. Handle that case by
12154 * deferring the free.
12155 */
12156 if (dev->reg_state == NETREG_UNREGISTERING) {
12157 ASSERT_RTNL();
12158 dev->needs_free_netdev = true;
12159 return;
12160 }
12161
12162 WARN_ON(dev->cfg != dev->cfg_pending);
12163 kfree(dev->cfg);
12164 kfree(dev->ethtool);
12165 netif_free_tx_queues(dev);
12166 netif_free_rx_queues(dev);
12167
12168 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12169
12170 /* Flush device addresses */
12171 dev_addr_flush(dev);
12172
12173 netdev_napi_exit(dev);
12174
12175 netif_del_cpu_rmap(dev);
12176
12177 ref_tracker_dir_exit(&dev->refcnt_tracker);
12178 #ifdef CONFIG_PCPU_DEV_REFCNT
12179 free_percpu(dev->pcpu_refcnt);
12180 dev->pcpu_refcnt = NULL;
12181 #endif
12182 free_percpu(dev->core_stats);
12183 dev->core_stats = NULL;
12184 free_percpu(dev->xdp_bulkq);
12185 dev->xdp_bulkq = NULL;
12186
12187 netdev_free_phy_link_topology(dev);
12188
12189 mutex_destroy(&dev->lock);
12190
12191 /* Compatibility with error handling in drivers */
12192 if (dev->reg_state == NETREG_UNINITIALIZED ||
12193 dev->reg_state == NETREG_DUMMY) {
12194 kvfree(dev);
12195 return;
12196 }
12197
12198 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12199 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12200
12201 /* will free via device release */
12202 put_device(&dev->dev);
12203 }
12204 EXPORT_SYMBOL(free_netdev);
12205
12206 /**
12207 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12208 * @sizeof_priv: size of private data to allocate space for
12209 *
12210 * Return: the allocated net_device on success, NULL otherwise
12211 */
alloc_netdev_dummy(int sizeof_priv)12212 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12213 {
12214 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12215 init_dummy_netdev);
12216 }
12217 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12218
12219 /**
12220 * synchronize_net - Synchronize with packet receive processing
12221 *
12222 * Wait for packets currently being received to be done.
12223 * Does not block later packets from starting.
12224 */
synchronize_net(void)12225 void synchronize_net(void)
12226 {
12227 might_sleep();
12228 if (from_cleanup_net() || rtnl_is_locked())
12229 synchronize_rcu_expedited();
12230 else
12231 synchronize_rcu();
12232 }
12233 EXPORT_SYMBOL(synchronize_net);
12234
netdev_rss_contexts_free(struct net_device * dev)12235 static void netdev_rss_contexts_free(struct net_device *dev)
12236 {
12237 struct ethtool_rxfh_context *ctx;
12238 unsigned long context;
12239
12240 mutex_lock(&dev->ethtool->rss_lock);
12241 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12242 xa_erase(&dev->ethtool->rss_ctx, context);
12243 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12244 kfree(ctx);
12245 }
12246 xa_destroy(&dev->ethtool->rss_ctx);
12247 mutex_unlock(&dev->ethtool->rss_lock);
12248 }
12249
12250 /**
12251 * unregister_netdevice_queue - remove device from the kernel
12252 * @dev: device
12253 * @head: list
12254 *
12255 * This function shuts down a device interface and removes it
12256 * from the kernel tables.
12257 * If head not NULL, device is queued to be unregistered later.
12258 *
12259 * Callers must hold the rtnl semaphore. You may want
12260 * unregister_netdev() instead of this.
12261 */
12262
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12263 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12264 {
12265 ASSERT_RTNL();
12266
12267 if (head) {
12268 list_move_tail(&dev->unreg_list, head);
12269 } else {
12270 LIST_HEAD(single);
12271
12272 list_add(&dev->unreg_list, &single);
12273 unregister_netdevice_many(&single);
12274 }
12275 }
12276 EXPORT_SYMBOL(unregister_netdevice_queue);
12277
dev_memory_provider_uninstall(struct net_device * dev)12278 static void dev_memory_provider_uninstall(struct net_device *dev)
12279 {
12280 unsigned int i;
12281
12282 for (i = 0; i < dev->real_num_rx_queues; i++) {
12283 struct netdev_rx_queue *rxq = &dev->_rx[i];
12284 struct pp_memory_provider_params *p = &rxq->mp_params;
12285
12286 if (p->mp_ops && p->mp_ops->uninstall)
12287 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12288 }
12289 }
12290
12291 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12292 static void netif_close_many_and_unlock(struct list_head *close_head)
12293 {
12294 struct net_device *dev, *tmp;
12295
12296 netif_close_many(close_head, false);
12297
12298 /* ... now unlock them */
12299 list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12300 netdev_unlock(dev);
12301 list_del_init(&dev->close_list);
12302 }
12303 }
12304
netif_close_many_and_unlock_cond(struct list_head * close_head)12305 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12306 {
12307 #ifdef CONFIG_LOCKDEP
12308 /* We can only track up to MAX_LOCK_DEPTH locks per task.
12309 *
12310 * Reserve half the available slots for additional locks possibly
12311 * taken by notifiers and (soft)irqs.
12312 */
12313 unsigned int limit = MAX_LOCK_DEPTH / 2;
12314
12315 if (lockdep_depth(current) > limit)
12316 netif_close_many_and_unlock(close_head);
12317 #endif
12318 }
12319
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12320 void unregister_netdevice_many_notify(struct list_head *head,
12321 u32 portid, const struct nlmsghdr *nlh)
12322 {
12323 struct net_device *dev, *tmp;
12324 LIST_HEAD(close_head);
12325 int cnt = 0;
12326
12327 BUG_ON(dev_boot_phase);
12328 ASSERT_RTNL();
12329
12330 if (list_empty(head))
12331 return;
12332
12333 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12334 /* Some devices call without registering
12335 * for initialization unwind. Remove those
12336 * devices and proceed with the remaining.
12337 */
12338 if (dev->reg_state == NETREG_UNINITIALIZED) {
12339 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12340 dev->name, dev);
12341
12342 WARN_ON(1);
12343 list_del(&dev->unreg_list);
12344 continue;
12345 }
12346 dev->dismantle = true;
12347 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12348 }
12349
12350 /* If device is running, close it first. Start with ops locked... */
12351 list_for_each_entry(dev, head, unreg_list) {
12352 if (!(dev->flags & IFF_UP))
12353 continue;
12354 if (netdev_need_ops_lock(dev)) {
12355 list_add_tail(&dev->close_list, &close_head);
12356 netdev_lock(dev);
12357 }
12358 netif_close_many_and_unlock_cond(&close_head);
12359 }
12360 netif_close_many_and_unlock(&close_head);
12361 /* ... now go over the rest. */
12362 list_for_each_entry(dev, head, unreg_list) {
12363 if (!netdev_need_ops_lock(dev))
12364 list_add_tail(&dev->close_list, &close_head);
12365 }
12366 netif_close_many(&close_head, true);
12367
12368 list_for_each_entry(dev, head, unreg_list) {
12369 /* And unlink it from device chain. */
12370 unlist_netdevice(dev);
12371 netdev_lock(dev);
12372 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12373 netdev_unlock(dev);
12374 }
12375 flush_all_backlogs();
12376
12377 synchronize_net();
12378
12379 list_for_each_entry(dev, head, unreg_list) {
12380 struct sk_buff *skb = NULL;
12381
12382 /* Shutdown queueing discipline. */
12383 netdev_lock_ops(dev);
12384 dev_shutdown(dev);
12385 dev_tcx_uninstall(dev);
12386 dev_xdp_uninstall(dev);
12387 dev_memory_provider_uninstall(dev);
12388 netdev_unlock_ops(dev);
12389 bpf_dev_bound_netdev_unregister(dev);
12390
12391 netdev_offload_xstats_disable_all(dev);
12392
12393 /* Notify protocols, that we are about to destroy
12394 * this device. They should clean all the things.
12395 */
12396 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12397
12398 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12399 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12400 GFP_KERNEL, NULL, 0,
12401 portid, nlh);
12402
12403 /*
12404 * Flush the unicast and multicast chains
12405 */
12406 dev_uc_flush(dev);
12407 dev_mc_flush(dev);
12408
12409 netdev_name_node_alt_flush(dev);
12410 netdev_name_node_free(dev->name_node);
12411
12412 netdev_rss_contexts_free(dev);
12413
12414 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12415
12416 if (dev->netdev_ops->ndo_uninit)
12417 dev->netdev_ops->ndo_uninit(dev);
12418
12419 mutex_destroy(&dev->ethtool->rss_lock);
12420
12421 net_shaper_flush_netdev(dev);
12422
12423 if (skb)
12424 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12425
12426 /* Notifier chain MUST detach us all upper devices. */
12427 WARN_ON(netdev_has_any_upper_dev(dev));
12428 WARN_ON(netdev_has_any_lower_dev(dev));
12429
12430 /* Remove entries from kobject tree */
12431 netdev_unregister_kobject(dev);
12432 #ifdef CONFIG_XPS
12433 /* Remove XPS queueing entries */
12434 netif_reset_xps_queues_gt(dev, 0);
12435 #endif
12436 }
12437
12438 synchronize_net();
12439
12440 list_for_each_entry(dev, head, unreg_list) {
12441 netdev_put(dev, &dev->dev_registered_tracker);
12442 net_set_todo(dev);
12443 cnt++;
12444 }
12445 atomic_add(cnt, &dev_unreg_count);
12446
12447 list_del(head);
12448 }
12449
12450 /**
12451 * unregister_netdevice_many - unregister many devices
12452 * @head: list of devices
12453 *
12454 * Note: As most callers use a stack allocated list_head,
12455 * we force a list_del() to make sure stack won't be corrupted later.
12456 */
unregister_netdevice_many(struct list_head * head)12457 void unregister_netdevice_many(struct list_head *head)
12458 {
12459 unregister_netdevice_many_notify(head, 0, NULL);
12460 }
12461 EXPORT_SYMBOL(unregister_netdevice_many);
12462
12463 /**
12464 * unregister_netdev - remove device from the kernel
12465 * @dev: device
12466 *
12467 * This function shuts down a device interface and removes it
12468 * from the kernel tables.
12469 *
12470 * This is just a wrapper for unregister_netdevice that takes
12471 * the rtnl semaphore. In general you want to use this and not
12472 * unregister_netdevice.
12473 */
unregister_netdev(struct net_device * dev)12474 void unregister_netdev(struct net_device *dev)
12475 {
12476 rtnl_net_dev_lock(dev);
12477 unregister_netdevice(dev);
12478 rtnl_net_dev_unlock(dev);
12479 }
12480 EXPORT_SYMBOL(unregister_netdev);
12481
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12482 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12483 const char *pat, int new_ifindex,
12484 struct netlink_ext_ack *extack)
12485 {
12486 struct netdev_name_node *name_node;
12487 struct net *net_old = dev_net(dev);
12488 char new_name[IFNAMSIZ] = {};
12489 int err, new_nsid;
12490
12491 ASSERT_RTNL();
12492
12493 /* Don't allow namespace local devices to be moved. */
12494 err = -EINVAL;
12495 if (dev->netns_immutable) {
12496 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12497 goto out;
12498 }
12499
12500 /* Ensure the device has been registered */
12501 if (dev->reg_state != NETREG_REGISTERED) {
12502 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12503 goto out;
12504 }
12505
12506 /* Get out if there is nothing todo */
12507 err = 0;
12508 if (net_eq(net_old, net))
12509 goto out;
12510
12511 /* Pick the destination device name, and ensure
12512 * we can use it in the destination network namespace.
12513 */
12514 err = -EEXIST;
12515 if (netdev_name_in_use(net, dev->name)) {
12516 /* We get here if we can't use the current device name */
12517 if (!pat) {
12518 NL_SET_ERR_MSG(extack,
12519 "An interface with the same name exists in the target netns");
12520 goto out;
12521 }
12522 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12523 if (err < 0) {
12524 NL_SET_ERR_MSG_FMT(extack,
12525 "Unable to use '%s' for the new interface name in the target netns",
12526 pat);
12527 goto out;
12528 }
12529 }
12530 /* Check that none of the altnames conflicts. */
12531 err = -EEXIST;
12532 netdev_for_each_altname(dev, name_node) {
12533 if (netdev_name_in_use(net, name_node->name)) {
12534 NL_SET_ERR_MSG_FMT(extack,
12535 "An interface with the altname %s exists in the target netns",
12536 name_node->name);
12537 goto out;
12538 }
12539 }
12540
12541 /* Check that new_ifindex isn't used yet. */
12542 if (new_ifindex) {
12543 err = dev_index_reserve(net, new_ifindex);
12544 if (err < 0) {
12545 NL_SET_ERR_MSG_FMT(extack,
12546 "The ifindex %d is not available in the target netns",
12547 new_ifindex);
12548 goto out;
12549 }
12550 } else {
12551 /* If there is an ifindex conflict assign a new one */
12552 err = dev_index_reserve(net, dev->ifindex);
12553 if (err == -EBUSY)
12554 err = dev_index_reserve(net, 0);
12555 if (err < 0) {
12556 NL_SET_ERR_MSG(extack,
12557 "Unable to allocate a new ifindex in the target netns");
12558 goto out;
12559 }
12560 new_ifindex = err;
12561 }
12562
12563 /*
12564 * And now a mini version of register_netdevice unregister_netdevice.
12565 */
12566
12567 netdev_lock_ops(dev);
12568 /* If device is running close it first. */
12569 netif_close(dev);
12570 /* And unlink it from device chain */
12571 unlist_netdevice(dev);
12572
12573 if (!netdev_need_ops_lock(dev))
12574 netdev_lock(dev);
12575 dev->moving_ns = true;
12576 netdev_unlock(dev);
12577
12578 synchronize_net();
12579
12580 /* Shutdown queueing discipline. */
12581 netdev_lock_ops(dev);
12582 dev_shutdown(dev);
12583 netdev_unlock_ops(dev);
12584
12585 /* Notify protocols, that we are about to destroy
12586 * this device. They should clean all the things.
12587 *
12588 * Note that dev->reg_state stays at NETREG_REGISTERED.
12589 * This is wanted because this way 8021q and macvlan know
12590 * the device is just moving and can keep their slaves up.
12591 */
12592 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12593 rcu_barrier();
12594
12595 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12596
12597 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12598 new_ifindex);
12599
12600 /*
12601 * Flush the unicast and multicast chains
12602 */
12603 dev_uc_flush(dev);
12604 dev_mc_flush(dev);
12605
12606 /* Send a netdev-removed uevent to the old namespace */
12607 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12608 netdev_adjacent_del_links(dev);
12609
12610 /* Move per-net netdevice notifiers that are following the netdevice */
12611 move_netdevice_notifiers_dev_net(dev, net);
12612
12613 /* Actually switch the network namespace */
12614 netdev_lock(dev);
12615 dev_net_set(dev, net);
12616 netdev_unlock(dev);
12617 dev->ifindex = new_ifindex;
12618
12619 if (new_name[0]) {
12620 /* Rename the netdev to prepared name */
12621 write_seqlock_bh(&netdev_rename_lock);
12622 strscpy(dev->name, new_name, IFNAMSIZ);
12623 write_sequnlock_bh(&netdev_rename_lock);
12624 }
12625
12626 /* Fixup kobjects */
12627 dev_set_uevent_suppress(&dev->dev, 1);
12628 err = device_rename(&dev->dev, dev->name);
12629 dev_set_uevent_suppress(&dev->dev, 0);
12630 WARN_ON(err);
12631
12632 /* Send a netdev-add uevent to the new namespace */
12633 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12634 netdev_adjacent_add_links(dev);
12635
12636 /* Adapt owner in case owning user namespace of target network
12637 * namespace is different from the original one.
12638 */
12639 err = netdev_change_owner(dev, net_old, net);
12640 WARN_ON(err);
12641
12642 netdev_lock(dev);
12643 dev->moving_ns = false;
12644 if (!netdev_need_ops_lock(dev))
12645 netdev_unlock(dev);
12646
12647 /* Add the device back in the hashes */
12648 list_netdevice(dev);
12649 /* Notify protocols, that a new device appeared. */
12650 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12651 netdev_unlock_ops(dev);
12652
12653 /*
12654 * Prevent userspace races by waiting until the network
12655 * device is fully setup before sending notifications.
12656 */
12657 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12658
12659 synchronize_net();
12660 err = 0;
12661 out:
12662 return err;
12663 }
12664
dev_cpu_dead(unsigned int oldcpu)12665 static int dev_cpu_dead(unsigned int oldcpu)
12666 {
12667 struct sk_buff **list_skb;
12668 struct sk_buff *skb;
12669 unsigned int cpu;
12670 struct softnet_data *sd, *oldsd, *remsd = NULL;
12671
12672 local_irq_disable();
12673 cpu = smp_processor_id();
12674 sd = &per_cpu(softnet_data, cpu);
12675 oldsd = &per_cpu(softnet_data, oldcpu);
12676
12677 /* Find end of our completion_queue. */
12678 list_skb = &sd->completion_queue;
12679 while (*list_skb)
12680 list_skb = &(*list_skb)->next;
12681 /* Append completion queue from offline CPU. */
12682 *list_skb = oldsd->completion_queue;
12683 oldsd->completion_queue = NULL;
12684
12685 /* Append output queue from offline CPU. */
12686 if (oldsd->output_queue) {
12687 *sd->output_queue_tailp = oldsd->output_queue;
12688 sd->output_queue_tailp = oldsd->output_queue_tailp;
12689 oldsd->output_queue = NULL;
12690 oldsd->output_queue_tailp = &oldsd->output_queue;
12691 }
12692 /* Append NAPI poll list from offline CPU, with one exception :
12693 * process_backlog() must be called by cpu owning percpu backlog.
12694 * We properly handle process_queue & input_pkt_queue later.
12695 */
12696 while (!list_empty(&oldsd->poll_list)) {
12697 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12698 struct napi_struct,
12699 poll_list);
12700
12701 list_del_init(&napi->poll_list);
12702 if (napi->poll == process_backlog)
12703 napi->state &= NAPIF_STATE_THREADED;
12704 else
12705 ____napi_schedule(sd, napi);
12706 }
12707
12708 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12709 local_irq_enable();
12710
12711 if (!use_backlog_threads()) {
12712 #ifdef CONFIG_RPS
12713 remsd = oldsd->rps_ipi_list;
12714 oldsd->rps_ipi_list = NULL;
12715 #endif
12716 /* send out pending IPI's on offline CPU */
12717 net_rps_send_ipi(remsd);
12718 }
12719
12720 /* Process offline CPU's input_pkt_queue */
12721 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12722 netif_rx(skb);
12723 rps_input_queue_head_incr(oldsd);
12724 }
12725 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12726 netif_rx(skb);
12727 rps_input_queue_head_incr(oldsd);
12728 }
12729
12730 return 0;
12731 }
12732
12733 /**
12734 * netdev_increment_features - increment feature set by one
12735 * @all: current feature set
12736 * @one: new feature set
12737 * @mask: mask feature set
12738 *
12739 * Computes a new feature set after adding a device with feature set
12740 * @one to the master device with current feature set @all. Will not
12741 * enable anything that is off in @mask. Returns the new feature set.
12742 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12743 netdev_features_t netdev_increment_features(netdev_features_t all,
12744 netdev_features_t one, netdev_features_t mask)
12745 {
12746 if (mask & NETIF_F_HW_CSUM)
12747 mask |= NETIF_F_CSUM_MASK;
12748 mask |= NETIF_F_VLAN_CHALLENGED;
12749
12750 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12751 all &= one | ~NETIF_F_ALL_FOR_ALL;
12752
12753 /* If one device supports hw checksumming, set for all. */
12754 if (all & NETIF_F_HW_CSUM)
12755 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12756
12757 return all;
12758 }
12759 EXPORT_SYMBOL(netdev_increment_features);
12760
12761 /**
12762 * netdev_compute_master_upper_features - compute feature from lowers
12763 * @dev: the upper device
12764 * @update_header: whether to update upper device's header_len/headroom/tailroom
12765 *
12766 * Recompute the upper device's feature based on all lower devices.
12767 */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12768 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12769 {
12770 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12771 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12772 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12773 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12774 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12775 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12776 unsigned short max_header_len = ETH_HLEN;
12777 unsigned int tso_max_size = TSO_MAX_SIZE;
12778 unsigned short max_headroom = 0;
12779 unsigned short max_tailroom = 0;
12780 u16 tso_max_segs = TSO_MAX_SEGS;
12781 struct net_device *lower_dev;
12782 struct list_head *iter;
12783
12784 mpls_features = netdev_base_features(mpls_features);
12785 vlan_features = netdev_base_features(vlan_features);
12786 enc_features = netdev_base_features(enc_features);
12787
12788 netdev_for_each_lower_dev(dev, lower_dev, iter) {
12789 gso_partial_features = netdev_increment_features(gso_partial_features,
12790 lower_dev->gso_partial_features,
12791 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12792
12793 vlan_features = netdev_increment_features(vlan_features,
12794 lower_dev->vlan_features,
12795 MASTER_UPPER_DEV_VLAN_FEATURES);
12796
12797 enc_features = netdev_increment_features(enc_features,
12798 lower_dev->hw_enc_features,
12799 MASTER_UPPER_DEV_ENC_FEATURES);
12800
12801 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12802 xfrm_features = netdev_increment_features(xfrm_features,
12803 lower_dev->hw_enc_features,
12804 MASTER_UPPER_DEV_XFRM_FEATURES);
12805
12806 mpls_features = netdev_increment_features(mpls_features,
12807 lower_dev->mpls_features,
12808 MASTER_UPPER_DEV_MPLS_FEATURES);
12809
12810 dst_release_flag &= lower_dev->priv_flags;
12811
12812 if (update_header) {
12813 max_header_len = max(max_header_len, lower_dev->hard_header_len);
12814 max_headroom = max(max_headroom, lower_dev->needed_headroom);
12815 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12816 }
12817
12818 tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12819 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12820 }
12821
12822 dev->gso_partial_features = gso_partial_features;
12823 dev->vlan_features = vlan_features;
12824 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12825 NETIF_F_HW_VLAN_CTAG_TX |
12826 NETIF_F_HW_VLAN_STAG_TX;
12827 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12828 dev->hw_enc_features |= xfrm_features;
12829 dev->mpls_features = mpls_features;
12830
12831 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12832 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12833 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12834 dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12835
12836 if (update_header) {
12837 dev->hard_header_len = max_header_len;
12838 dev->needed_headroom = max_headroom;
12839 dev->needed_tailroom = max_tailroom;
12840 }
12841
12842 netif_set_tso_max_segs(dev, tso_max_segs);
12843 netif_set_tso_max_size(dev, tso_max_size);
12844
12845 netdev_change_features(dev);
12846 }
12847 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12848
netdev_create_hash(void)12849 static struct hlist_head * __net_init netdev_create_hash(void)
12850 {
12851 int i;
12852 struct hlist_head *hash;
12853
12854 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12855 if (hash != NULL)
12856 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12857 INIT_HLIST_HEAD(&hash[i]);
12858
12859 return hash;
12860 }
12861
12862 /* Initialize per network namespace state */
netdev_init(struct net * net)12863 static int __net_init netdev_init(struct net *net)
12864 {
12865 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12866 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12867
12868 INIT_LIST_HEAD(&net->dev_base_head);
12869
12870 net->dev_name_head = netdev_create_hash();
12871 if (net->dev_name_head == NULL)
12872 goto err_name;
12873
12874 net->dev_index_head = netdev_create_hash();
12875 if (net->dev_index_head == NULL)
12876 goto err_idx;
12877
12878 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12879
12880 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12881
12882 return 0;
12883
12884 err_idx:
12885 kfree(net->dev_name_head);
12886 err_name:
12887 return -ENOMEM;
12888 }
12889
12890 /**
12891 * netdev_drivername - network driver for the device
12892 * @dev: network device
12893 *
12894 * Determine network driver for device.
12895 */
netdev_drivername(const struct net_device * dev)12896 const char *netdev_drivername(const struct net_device *dev)
12897 {
12898 const struct device_driver *driver;
12899 const struct device *parent;
12900 const char *empty = "";
12901
12902 parent = dev->dev.parent;
12903 if (!parent)
12904 return empty;
12905
12906 driver = parent->driver;
12907 if (driver && driver->name)
12908 return driver->name;
12909 return empty;
12910 }
12911
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12912 static void __netdev_printk(const char *level, const struct net_device *dev,
12913 struct va_format *vaf)
12914 {
12915 if (dev && dev->dev.parent) {
12916 dev_printk_emit(level[1] - '0',
12917 dev->dev.parent,
12918 "%s %s %s%s: %pV",
12919 dev_driver_string(dev->dev.parent),
12920 dev_name(dev->dev.parent),
12921 netdev_name(dev), netdev_reg_state(dev),
12922 vaf);
12923 } else if (dev) {
12924 printk("%s%s%s: %pV",
12925 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12926 } else {
12927 printk("%s(NULL net_device): %pV", level, vaf);
12928 }
12929 }
12930
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12931 void netdev_printk(const char *level, const struct net_device *dev,
12932 const char *format, ...)
12933 {
12934 struct va_format vaf;
12935 va_list args;
12936
12937 va_start(args, format);
12938
12939 vaf.fmt = format;
12940 vaf.va = &args;
12941
12942 __netdev_printk(level, dev, &vaf);
12943
12944 va_end(args);
12945 }
12946 EXPORT_SYMBOL(netdev_printk);
12947
12948 #define define_netdev_printk_level(func, level) \
12949 void func(const struct net_device *dev, const char *fmt, ...) \
12950 { \
12951 struct va_format vaf; \
12952 va_list args; \
12953 \
12954 va_start(args, fmt); \
12955 \
12956 vaf.fmt = fmt; \
12957 vaf.va = &args; \
12958 \
12959 __netdev_printk(level, dev, &vaf); \
12960 \
12961 va_end(args); \
12962 } \
12963 EXPORT_SYMBOL(func);
12964
12965 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12966 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12967 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12968 define_netdev_printk_level(netdev_err, KERN_ERR);
12969 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12970 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12971 define_netdev_printk_level(netdev_info, KERN_INFO);
12972
netdev_exit(struct net * net)12973 static void __net_exit netdev_exit(struct net *net)
12974 {
12975 kfree(net->dev_name_head);
12976 kfree(net->dev_index_head);
12977 xa_destroy(&net->dev_by_index);
12978 if (net != &init_net)
12979 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12980 }
12981
12982 static struct pernet_operations __net_initdata netdev_net_ops = {
12983 .init = netdev_init,
12984 .exit = netdev_exit,
12985 };
12986
default_device_exit_net(struct net * net)12987 static void __net_exit default_device_exit_net(struct net *net)
12988 {
12989 struct netdev_name_node *name_node, *tmp;
12990 struct net_device *dev, *aux;
12991 /*
12992 * Push all migratable network devices back to the
12993 * initial network namespace
12994 */
12995 ASSERT_RTNL();
12996 for_each_netdev_safe(net, dev, aux) {
12997 int err;
12998 char fb_name[IFNAMSIZ];
12999
13000 /* Ignore unmoveable devices (i.e. loopback) */
13001 if (dev->netns_immutable)
13002 continue;
13003
13004 /* Leave virtual devices for the generic cleanup */
13005 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13006 continue;
13007
13008 /* Push remaining network devices to init_net */
13009 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13010 if (netdev_name_in_use(&init_net, fb_name))
13011 snprintf(fb_name, IFNAMSIZ, "dev%%d");
13012
13013 netdev_for_each_altname_safe(dev, name_node, tmp)
13014 if (netdev_name_in_use(&init_net, name_node->name))
13015 __netdev_name_node_alt_destroy(name_node);
13016
13017 err = dev_change_net_namespace(dev, &init_net, fb_name);
13018 if (err) {
13019 pr_emerg("%s: failed to move %s to init_net: %d\n",
13020 __func__, dev->name, err);
13021 BUG();
13022 }
13023 }
13024 }
13025
default_device_exit_batch(struct list_head * net_list)13026 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13027 {
13028 /* At exit all network devices most be removed from a network
13029 * namespace. Do this in the reverse order of registration.
13030 * Do this across as many network namespaces as possible to
13031 * improve batching efficiency.
13032 */
13033 struct net_device *dev;
13034 struct net *net;
13035 LIST_HEAD(dev_kill_list);
13036
13037 rtnl_lock();
13038 list_for_each_entry(net, net_list, exit_list) {
13039 default_device_exit_net(net);
13040 cond_resched();
13041 }
13042
13043 list_for_each_entry(net, net_list, exit_list) {
13044 for_each_netdev_reverse(net, dev) {
13045 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13046 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13047 else
13048 unregister_netdevice_queue(dev, &dev_kill_list);
13049 }
13050 }
13051 unregister_netdevice_many(&dev_kill_list);
13052 rtnl_unlock();
13053 }
13054
13055 static struct pernet_operations __net_initdata default_device_ops = {
13056 .exit_batch = default_device_exit_batch,
13057 };
13058
net_dev_struct_check(void)13059 static void __init net_dev_struct_check(void)
13060 {
13061 /* TX read-mostly hotpath */
13062 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13063 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13064 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13065 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13066 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13067 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13068 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13069 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13070 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13071 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13072 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13073 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13075 #ifdef CONFIG_XPS
13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13077 #endif
13078 #ifdef CONFIG_NETFILTER_EGRESS
13079 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13080 #endif
13081 #ifdef CONFIG_NET_XGRESS
13082 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13083 #endif
13084 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13085
13086 /* TXRX read-mostly hotpath */
13087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13092 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13093 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13094
13095 /* RX read-mostly hotpath */
13096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13099 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13100 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13101 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13102 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13105 #ifdef CONFIG_NETPOLL
13106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13107 #endif
13108 #ifdef CONFIG_NET_XGRESS
13109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13110 #endif
13111 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13112 }
13113
13114 /*
13115 * Initialize the DEV module. At boot time this walks the device list and
13116 * unhooks any devices that fail to initialise (normally hardware not
13117 * present) and leaves us with a valid list of present and active devices.
13118 *
13119 */
13120
13121 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13122 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
13123
net_page_pool_create(int cpuid)13124 static int net_page_pool_create(int cpuid)
13125 {
13126 #if IS_ENABLED(CONFIG_PAGE_POOL)
13127 struct page_pool_params page_pool_params = {
13128 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13129 .flags = PP_FLAG_SYSTEM_POOL,
13130 .nid = cpu_to_mem(cpuid),
13131 };
13132 struct page_pool *pp_ptr;
13133 int err;
13134
13135 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13136 if (IS_ERR(pp_ptr))
13137 return -ENOMEM;
13138
13139 err = xdp_reg_page_pool(pp_ptr);
13140 if (err) {
13141 page_pool_destroy(pp_ptr);
13142 return err;
13143 }
13144
13145 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13146 #endif
13147 return 0;
13148 }
13149
backlog_napi_should_run(unsigned int cpu)13150 static int backlog_napi_should_run(unsigned int cpu)
13151 {
13152 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13153 struct napi_struct *napi = &sd->backlog;
13154
13155 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13156 }
13157
run_backlog_napi(unsigned int cpu)13158 static void run_backlog_napi(unsigned int cpu)
13159 {
13160 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13161
13162 napi_threaded_poll_loop(&sd->backlog, false);
13163 }
13164
backlog_napi_setup(unsigned int cpu)13165 static void backlog_napi_setup(unsigned int cpu)
13166 {
13167 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13168 struct napi_struct *napi = &sd->backlog;
13169
13170 napi->thread = this_cpu_read(backlog_napi);
13171 set_bit(NAPI_STATE_THREADED, &napi->state);
13172 }
13173
13174 static struct smp_hotplug_thread backlog_threads = {
13175 .store = &backlog_napi,
13176 .thread_should_run = backlog_napi_should_run,
13177 .thread_fn = run_backlog_napi,
13178 .thread_comm = "backlog_napi/%u",
13179 .setup = backlog_napi_setup,
13180 };
13181
13182 /*
13183 * This is called single threaded during boot, so no need
13184 * to take the rtnl semaphore.
13185 */
net_dev_init(void)13186 static int __init net_dev_init(void)
13187 {
13188 int i, rc = -ENOMEM;
13189
13190 BUG_ON(!dev_boot_phase);
13191
13192 net_dev_struct_check();
13193
13194 if (dev_proc_init())
13195 goto out;
13196
13197 if (netdev_kobject_init())
13198 goto out;
13199
13200 for (i = 0; i < PTYPE_HASH_SIZE; i++)
13201 INIT_LIST_HEAD(&ptype_base[i]);
13202
13203 if (register_pernet_subsys(&netdev_net_ops))
13204 goto out;
13205
13206 /*
13207 * Initialise the packet receive queues.
13208 */
13209
13210 flush_backlogs_fallback = flush_backlogs_alloc();
13211 if (!flush_backlogs_fallback)
13212 goto out;
13213
13214 for_each_possible_cpu(i) {
13215 struct softnet_data *sd = &per_cpu(softnet_data, i);
13216
13217 skb_queue_head_init(&sd->input_pkt_queue);
13218 skb_queue_head_init(&sd->process_queue);
13219 #ifdef CONFIG_XFRM_OFFLOAD
13220 skb_queue_head_init(&sd->xfrm_backlog);
13221 #endif
13222 INIT_LIST_HEAD(&sd->poll_list);
13223 sd->output_queue_tailp = &sd->output_queue;
13224 #ifdef CONFIG_RPS
13225 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13226 sd->cpu = i;
13227 #endif
13228 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13229
13230 gro_init(&sd->backlog.gro);
13231 sd->backlog.poll = process_backlog;
13232 sd->backlog.weight = weight_p;
13233 INIT_LIST_HEAD(&sd->backlog.poll_list);
13234
13235 if (net_page_pool_create(i))
13236 goto out;
13237 }
13238 net_hotdata.skb_defer_nodes =
13239 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13240 __alignof__(struct skb_defer_node));
13241 if (!net_hotdata.skb_defer_nodes)
13242 goto out;
13243 if (use_backlog_threads())
13244 smpboot_register_percpu_thread(&backlog_threads);
13245
13246 dev_boot_phase = 0;
13247
13248 /* The loopback device is special if any other network devices
13249 * is present in a network namespace the loopback device must
13250 * be present. Since we now dynamically allocate and free the
13251 * loopback device ensure this invariant is maintained by
13252 * keeping the loopback device as the first device on the
13253 * list of network devices. Ensuring the loopback devices
13254 * is the first device that appears and the last network device
13255 * that disappears.
13256 */
13257 if (register_pernet_device(&loopback_net_ops))
13258 goto out;
13259
13260 if (register_pernet_device(&default_device_ops))
13261 goto out;
13262
13263 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13264 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13265
13266 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13267 NULL, dev_cpu_dead);
13268 WARN_ON(rc < 0);
13269 rc = 0;
13270
13271 /* avoid static key IPIs to isolated CPUs */
13272 if (housekeeping_enabled(HK_TYPE_MISC))
13273 net_enable_timestamp();
13274 out:
13275 if (rc < 0) {
13276 for_each_possible_cpu(i) {
13277 struct page_pool *pp_ptr;
13278
13279 pp_ptr = per_cpu(system_page_pool.pool, i);
13280 if (!pp_ptr)
13281 continue;
13282
13283 xdp_unreg_page_pool(pp_ptr);
13284 page_pool_destroy(pp_ptr);
13285 per_cpu(system_page_pool.pool, i) = NULL;
13286 }
13287 }
13288
13289 return rc;
13290 }
13291
13292 subsys_initcall(net_dev_init);
13293