xref: /linux/net/core/dev.c (revision 9e995c573b63453a904f3157813dc8cde4a6aba4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_CAN, ARPHRD_MCTP,
482 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
483 	 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
484 	 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
485 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
486 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
487 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
488 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
489 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
490 	 ARPHRD_IEEE80211_RADIOTAP,
491 	 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
492 	 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
493 	 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
494 	 ARPHRD_VSOCKMON,
495 	 ARPHRD_VOID, ARPHRD_NONE};
496 
497 static const char *const netdev_lock_name[] = {
498 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
499 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
500 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
501 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
502 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
503 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
504 	"_xmit_CAN", "_xmit_MCTP",
505 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
506 	"_xmit_RAWHDLC", "_xmit_RAWIP",
507 	"_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
508 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
509 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
510 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
511 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
512 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
513 	"_xmit_IEEE80211_RADIOTAP",
514 	"_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
515 	"_xmit_PHONET", "_xmit_PHONET_PIPE",
516 	"_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
517 	"_xmit_VSOCKMON",
518 	"_xmit_VOID", "_xmit_NONE"};
519 
520 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
521 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
522 
netdev_lock_pos(unsigned short dev_type)523 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
524 {
525 	int i;
526 
527 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
528 		if (netdev_lock_type[i] == dev_type)
529 			return i;
530 	/* the last key is used by default */
531 	WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
532 	return ARRAY_SIZE(netdev_lock_type) - 1;
533 }
534 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)535 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
536 						 unsigned short dev_type)
537 {
538 	int i;
539 
540 	i = netdev_lock_pos(dev_type);
541 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
542 				   netdev_lock_name[i]);
543 }
544 
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 	int i;
548 
549 	i = netdev_lock_pos(dev->type);
550 	lockdep_set_class_and_name(&dev->addr_list_lock,
551 				   &netdev_addr_lock_key[i],
552 				   netdev_lock_name[i]);
553 }
554 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)555 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
556 						 unsigned short dev_type)
557 {
558 }
559 
netdev_set_addr_lockdep_class(struct net_device * dev)560 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
561 {
562 }
563 #endif
564 
565 /*******************************************************************************
566  *
567  *		Protocol management and registration routines
568  *
569  *******************************************************************************/
570 
571 
572 /*
573  *	Add a protocol ID to the list. Now that the input handler is
574  *	smarter we can dispense with all the messy stuff that used to be
575  *	here.
576  *
577  *	BEWARE!!! Protocol handlers, mangling input packets,
578  *	MUST BE last in hash buckets and checking protocol handlers
579  *	MUST start from promiscuous ptype_all chain in net_bh.
580  *	It is true now, do not change it.
581  *	Explanation follows: if protocol handler, mangling packet, will
582  *	be the first on list, it is not able to sense, that packet
583  *	is cloned and should be copied-on-write, so that it will
584  *	change it and subsequent readers will get broken packet.
585  *							--ANK (980803)
586  */
587 
ptype_head(const struct packet_type * pt)588 static inline struct list_head *ptype_head(const struct packet_type *pt)
589 {
590 	if (pt->type == htons(ETH_P_ALL)) {
591 		if (!pt->af_packet_net && !pt->dev)
592 			return NULL;
593 
594 		return pt->dev ? &pt->dev->ptype_all :
595 				 &pt->af_packet_net->ptype_all;
596 	}
597 
598 	if (pt->dev)
599 		return &pt->dev->ptype_specific;
600 
601 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
602 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
603 }
604 
605 /**
606  *	dev_add_pack - add packet handler
607  *	@pt: packet type declaration
608  *
609  *	Add a protocol handler to the networking stack. The passed &packet_type
610  *	is linked into kernel lists and may not be freed until it has been
611  *	removed from the kernel lists.
612  *
613  *	This call does not sleep therefore it can not
614  *	guarantee all CPU's that are in middle of receiving packets
615  *	will see the new packet type (until the next received packet).
616  */
617 
dev_add_pack(struct packet_type * pt)618 void dev_add_pack(struct packet_type *pt)
619 {
620 	struct list_head *head = ptype_head(pt);
621 
622 	if (WARN_ON_ONCE(!head))
623 		return;
624 
625 	spin_lock(&ptype_lock);
626 	list_add_rcu(&pt->list, head);
627 	spin_unlock(&ptype_lock);
628 }
629 EXPORT_SYMBOL(dev_add_pack);
630 
631 /**
632  *	__dev_remove_pack	 - remove packet handler
633  *	@pt: packet type declaration
634  *
635  *	Remove a protocol handler that was previously added to the kernel
636  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
637  *	from the kernel lists and can be freed or reused once this function
638  *	returns.
639  *
640  *      The packet type might still be in use by receivers
641  *	and must not be freed until after all the CPU's have gone
642  *	through a quiescent state.
643  */
__dev_remove_pack(struct packet_type * pt)644 void __dev_remove_pack(struct packet_type *pt)
645 {
646 	struct list_head *head = ptype_head(pt);
647 	struct packet_type *pt1;
648 
649 	if (!head)
650 		return;
651 
652 	spin_lock(&ptype_lock);
653 
654 	list_for_each_entry(pt1, head, list) {
655 		if (pt == pt1) {
656 			list_del_rcu(&pt->list);
657 			goto out;
658 		}
659 	}
660 
661 	pr_warn("dev_remove_pack: %p not found\n", pt);
662 out:
663 	spin_unlock(&ptype_lock);
664 }
665 EXPORT_SYMBOL(__dev_remove_pack);
666 
667 /**
668  *	dev_remove_pack	 - remove packet handler
669  *	@pt: packet type declaration
670  *
671  *	Remove a protocol handler that was previously added to the kernel
672  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
673  *	from the kernel lists and can be freed or reused once this function
674  *	returns.
675  *
676  *	This call sleeps to guarantee that no CPU is looking at the packet
677  *	type after return.
678  */
dev_remove_pack(struct packet_type * pt)679 void dev_remove_pack(struct packet_type *pt)
680 {
681 	__dev_remove_pack(pt);
682 
683 	synchronize_net();
684 }
685 EXPORT_SYMBOL(dev_remove_pack);
686 
687 
688 /*******************************************************************************
689  *
690  *			    Device Interface Subroutines
691  *
692  *******************************************************************************/
693 
694 /**
695  *	dev_get_iflink	- get 'iflink' value of a interface
696  *	@dev: targeted interface
697  *
698  *	Indicates the ifindex the interface is linked to.
699  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
700  */
701 
dev_get_iflink(const struct net_device * dev)702 int dev_get_iflink(const struct net_device *dev)
703 {
704 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
705 		return dev->netdev_ops->ndo_get_iflink(dev);
706 
707 	return READ_ONCE(dev->ifindex);
708 }
709 EXPORT_SYMBOL(dev_get_iflink);
710 
711 /**
712  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
713  *	@dev: targeted interface
714  *	@skb: The packet.
715  *
716  *	For better visibility of tunnel traffic OVS needs to retrieve
717  *	egress tunnel information for a packet. Following API allows
718  *	user to get this info.
719  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)720 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
721 {
722 	struct ip_tunnel_info *info;
723 
724 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
725 		return -EINVAL;
726 
727 	info = skb_tunnel_info_unclone(skb);
728 	if (!info)
729 		return -ENOMEM;
730 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
731 		return -EINVAL;
732 
733 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
736 
dev_fwd_path(struct net_device_path_stack * stack)737 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
738 {
739 	int k = stack->num_paths++;
740 
741 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
742 		return NULL;
743 
744 	return &stack->path[k];
745 }
746 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)747 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
748 			  struct net_device_path_stack *stack)
749 {
750 	const struct net_device *last_dev;
751 	struct net_device_path_ctx ctx = {
752 		.dev	= dev,
753 	};
754 	struct net_device_path *path;
755 	int ret = 0;
756 
757 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
758 	stack->num_paths = 0;
759 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
760 		last_dev = ctx.dev;
761 		path = dev_fwd_path(stack);
762 		if (!path)
763 			return -1;
764 
765 		memset(path, 0, sizeof(struct net_device_path));
766 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
767 		if (ret < 0)
768 			return -1;
769 
770 		if (WARN_ON_ONCE(last_dev == ctx.dev))
771 			return -1;
772 	}
773 
774 	if (!ctx.dev)
775 		return ret;
776 
777 	path = dev_fwd_path(stack);
778 	if (!path)
779 		return -1;
780 	path->type = DEV_PATH_ETHERNET;
781 	path->dev = ctx.dev;
782 
783 	return ret;
784 }
785 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)788 static struct napi_struct *napi_by_id(unsigned int napi_id)
789 {
790 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
791 	struct napi_struct *napi;
792 
793 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
794 		if (napi->napi_id == napi_id)
795 			return napi;
796 
797 	return NULL;
798 }
799 
800 /* must be called under rcu_read_lock(), as we dont take a reference */
801 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)802 netdev_napi_by_id(struct net *net, unsigned int napi_id)
803 {
804 	struct napi_struct *napi;
805 
806 	napi = napi_by_id(napi_id);
807 	if (!napi)
808 		return NULL;
809 
810 	if (WARN_ON_ONCE(!napi->dev))
811 		return NULL;
812 	if (!net_eq(net, dev_net(napi->dev)))
813 		return NULL;
814 
815 	return napi;
816 }
817 
818 /**
819  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
820  *	@net: the applicable net namespace
821  *	@napi_id: ID of a NAPI of a target device
822  *
823  *	Find a NAPI instance with @napi_id. Lock its device.
824  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
825  *	netdev_unlock() must be called to release it.
826  *
827  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
828  */
829 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)830 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
831 {
832 	struct napi_struct *napi;
833 	struct net_device *dev;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
838 		rcu_read_unlock();
839 		return NULL;
840 	}
841 
842 	dev = napi->dev;
843 	dev_hold(dev);
844 	rcu_read_unlock();
845 
846 	dev = __netdev_put_lock(dev, net);
847 	if (!dev)
848 		return NULL;
849 
850 	rcu_read_lock();
851 	napi = netdev_napi_by_id(net, napi_id);
852 	if (napi && napi->dev != dev)
853 		napi = NULL;
854 	rcu_read_unlock();
855 
856 	if (!napi)
857 		netdev_unlock(dev);
858 	return napi;
859 }
860 
861 /**
862  *	__dev_get_by_name	- find a device by its name
863  *	@net: the applicable net namespace
864  *	@name: name to find
865  *
866  *	Find an interface by name. Must be called under RTNL semaphore.
867  *	If the name is found a pointer to the device is returned.
868  *	If the name is not found then %NULL is returned. The
869  *	reference counters are not incremented so the caller must be
870  *	careful with locks.
871  */
872 
__dev_get_by_name(struct net * net,const char * name)873 struct net_device *__dev_get_by_name(struct net *net, const char *name)
874 {
875 	struct netdev_name_node *node_name;
876 
877 	node_name = netdev_name_node_lookup(net, name);
878 	return node_name ? node_name->dev : NULL;
879 }
880 EXPORT_SYMBOL(__dev_get_by_name);
881 
882 /**
883  * dev_get_by_name_rcu	- find a device by its name
884  * @net: the applicable net namespace
885  * @name: name to find
886  *
887  * Find an interface by name.
888  * If the name is found a pointer to the device is returned.
889  * If the name is not found then %NULL is returned.
890  * The reference counters are not incremented so the caller must be
891  * careful with locks. The caller must hold RCU lock.
892  */
893 
dev_get_by_name_rcu(struct net * net,const char * name)894 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
895 {
896 	struct netdev_name_node *node_name;
897 
898 	node_name = netdev_name_node_lookup_rcu(net, name);
899 	return node_name ? node_name->dev : NULL;
900 }
901 EXPORT_SYMBOL(dev_get_by_name_rcu);
902 
903 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)904 struct net_device *dev_get_by_name(struct net *net, const char *name)
905 {
906 	struct net_device *dev;
907 
908 	rcu_read_lock();
909 	dev = dev_get_by_name_rcu(net, name);
910 	dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	netdev_get_by_name() - find a device by its name
918  *	@net: the applicable net namespace
919  *	@name: name to find
920  *	@tracker: tracking object for the acquired reference
921  *	@gfp: allocation flags for the tracker
922  *
923  *	Find an interface by name. This can be called from any
924  *	context and does its own locking. The returned handle has
925  *	the usage count incremented and the caller must use netdev_put() to
926  *	release it when it is no longer needed. %NULL is returned if no
927  *	matching device is found.
928  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)929 struct net_device *netdev_get_by_name(struct net *net, const char *name,
930 				      netdevice_tracker *tracker, gfp_t gfp)
931 {
932 	struct net_device *dev;
933 
934 	dev = dev_get_by_name(net, name);
935 	if (dev)
936 		netdev_tracker_alloc(dev, tracker, gfp);
937 	return dev;
938 }
939 EXPORT_SYMBOL(netdev_get_by_name);
940 
941 /**
942  *	__dev_get_by_index - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold the RTNL semaphore.
950  */
951 
__dev_get_by_index(struct net * net,int ifindex)952 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(__dev_get_by_index);
964 
965 /**
966  *	dev_get_by_index_rcu - find a device by its ifindex
967  *	@net: the applicable net namespace
968  *	@ifindex: index of device
969  *
970  *	Search for an interface by index. Returns %NULL if the device
971  *	is not found or a pointer to the device. The device has not
972  *	had its reference counter increased so the caller must be careful
973  *	about locking. The caller must hold RCU lock.
974  */
975 
dev_get_by_index_rcu(struct net * net,int ifindex)976 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 	struct hlist_head *head = dev_index_hash(net, ifindex);
980 
981 	hlist_for_each_entry_rcu(dev, head, index_hlist)
982 		if (dev->ifindex == ifindex)
983 			return dev;
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(dev_get_by_index_rcu);
988 
989 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)990 struct net_device *dev_get_by_index(struct net *net, int ifindex)
991 {
992 	struct net_device *dev;
993 
994 	rcu_read_lock();
995 	dev = dev_get_by_index_rcu(net, ifindex);
996 	dev_hold(dev);
997 	rcu_read_unlock();
998 	return dev;
999 }
1000 EXPORT_SYMBOL(dev_get_by_index);
1001 
1002 /**
1003  *	netdev_get_by_index() - find a device by its ifindex
1004  *	@net: the applicable net namespace
1005  *	@ifindex: index of device
1006  *	@tracker: tracking object for the acquired reference
1007  *	@gfp: allocation flags for the tracker
1008  *
1009  *	Search for an interface by index. Returns NULL if the device
1010  *	is not found or a pointer to the device. The device returned has
1011  *	had a reference added and the pointer is safe until the user calls
1012  *	netdev_put() to indicate they have finished with it.
1013  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1014 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1015 				       netdevice_tracker *tracker, gfp_t gfp)
1016 {
1017 	struct net_device *dev;
1018 
1019 	dev = dev_get_by_index(net, ifindex);
1020 	if (dev)
1021 		netdev_tracker_alloc(dev, tracker, gfp);
1022 	return dev;
1023 }
1024 EXPORT_SYMBOL(netdev_get_by_index);
1025 
1026 /**
1027  *	dev_get_by_napi_id - find a device by napi_id
1028  *	@napi_id: ID of the NAPI struct
1029  *
1030  *	Search for an interface by NAPI ID. Returns %NULL if the device
1031  *	is not found or a pointer to the device. The device has not had
1032  *	its reference counter increased so the caller must be careful
1033  *	about locking. The caller must hold RCU lock.
1034  */
dev_get_by_napi_id(unsigned int napi_id)1035 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1036 {
1037 	struct napi_struct *napi;
1038 
1039 	WARN_ON_ONCE(!rcu_read_lock_held());
1040 
1041 	if (!napi_id_valid(napi_id))
1042 		return NULL;
1043 
1044 	napi = napi_by_id(napi_id);
1045 
1046 	return napi ? napi->dev : NULL;
1047 }
1048 
1049 /* Release the held reference on the net_device, and if the net_device
1050  * is still registered try to lock the instance lock. If device is being
1051  * unregistered NULL will be returned (but the reference has been released,
1052  * either way!)
1053  *
1054  * This helper is intended for locking net_device after it has been looked up
1055  * using a lockless lookup helper. Lock prevents the instance from going away.
1056  */
__netdev_put_lock(struct net_device * dev,struct net * net)1057 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1058 {
1059 	netdev_lock(dev);
1060 	if (dev->reg_state > NETREG_REGISTERED ||
1061 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1062 		netdev_unlock(dev);
1063 		dev_put(dev);
1064 		return NULL;
1065 	}
1066 	dev_put(dev);
1067 	return dev;
1068 }
1069 
1070 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1071 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1072 {
1073 	netdev_lock_ops_compat(dev);
1074 	if (dev->reg_state > NETREG_REGISTERED ||
1075 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1076 		netdev_unlock_ops_compat(dev);
1077 		dev_put(dev);
1078 		return NULL;
1079 	}
1080 	dev_put(dev);
1081 	return dev;
1082 }
1083 
1084 /**
1085  *	netdev_get_by_index_lock() - find a device by its ifindex
1086  *	@net: the applicable net namespace
1087  *	@ifindex: index of device
1088  *
1089  *	Search for an interface by index. If a valid device
1090  *	with @ifindex is found it will be returned with netdev->lock held.
1091  *	netdev_unlock() must be called to release it.
1092  *
1093  *	Return: pointer to a device with lock held, NULL if not found.
1094  */
netdev_get_by_index_lock(struct net * net,int ifindex)1095 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1096 {
1097 	struct net_device *dev;
1098 
1099 	dev = dev_get_by_index(net, ifindex);
1100 	if (!dev)
1101 		return NULL;
1102 
1103 	return __netdev_put_lock(dev, net);
1104 }
1105 
1106 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1107 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1108 {
1109 	struct net_device *dev;
1110 
1111 	dev = dev_get_by_index(net, ifindex);
1112 	if (!dev)
1113 		return NULL;
1114 
1115 	return __netdev_put_lock_ops_compat(dev, net);
1116 }
1117 
1118 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1119 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1120 		    unsigned long *index)
1121 {
1122 	if (dev)
1123 		netdev_unlock(dev);
1124 
1125 	do {
1126 		rcu_read_lock();
1127 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1128 		if (!dev) {
1129 			rcu_read_unlock();
1130 			return NULL;
1131 		}
1132 		dev_hold(dev);
1133 		rcu_read_unlock();
1134 
1135 		dev = __netdev_put_lock(dev, net);
1136 		if (dev)
1137 			return dev;
1138 
1139 		(*index)++;
1140 	} while (true);
1141 }
1142 
1143 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1144 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1145 			       unsigned long *index)
1146 {
1147 	if (dev)
1148 		netdev_unlock_ops_compat(dev);
1149 
1150 	do {
1151 		rcu_read_lock();
1152 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1153 		if (!dev) {
1154 			rcu_read_unlock();
1155 			return NULL;
1156 		}
1157 		dev_hold(dev);
1158 		rcu_read_unlock();
1159 
1160 		dev = __netdev_put_lock_ops_compat(dev, net);
1161 		if (dev)
1162 			return dev;
1163 
1164 		(*index)++;
1165 	} while (true);
1166 }
1167 
1168 static DEFINE_SEQLOCK(netdev_rename_lock);
1169 
netdev_copy_name(struct net_device * dev,char * name)1170 void netdev_copy_name(struct net_device *dev, char *name)
1171 {
1172 	unsigned int seq;
1173 
1174 	do {
1175 		seq = read_seqbegin(&netdev_rename_lock);
1176 		strscpy(name, dev->name, IFNAMSIZ);
1177 	} while (read_seqretry(&netdev_rename_lock, seq));
1178 }
1179 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1180 
1181 /**
1182  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1183  *	@net: network namespace
1184  *	@name: a pointer to the buffer where the name will be stored.
1185  *	@ifindex: the ifindex of the interface to get the name from.
1186  */
netdev_get_name(struct net * net,char * name,int ifindex)1187 int netdev_get_name(struct net *net, char *name, int ifindex)
1188 {
1189 	struct net_device *dev;
1190 	int ret;
1191 
1192 	rcu_read_lock();
1193 
1194 	dev = dev_get_by_index_rcu(net, ifindex);
1195 	if (!dev) {
1196 		ret = -ENODEV;
1197 		goto out;
1198 	}
1199 
1200 	netdev_copy_name(dev, name);
1201 
1202 	ret = 0;
1203 out:
1204 	rcu_read_unlock();
1205 	return ret;
1206 }
1207 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1208 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1209 			 const char *ha)
1210 {
1211 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1212 }
1213 
1214 /**
1215  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1216  *	@net: the applicable net namespace
1217  *	@type: media type of device
1218  *	@ha: hardware address
1219  *
1220  *	Search for an interface by MAC address. Returns NULL if the device
1221  *	is not found or a pointer to the device.
1222  *	The caller must hold RCU.
1223  *	The returned device has not had its ref count increased
1224  *	and the caller must therefore be careful about locking
1225  *
1226  */
1227 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1228 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1229 				       const char *ha)
1230 {
1231 	struct net_device *dev;
1232 
1233 	for_each_netdev_rcu(net, dev)
1234 		if (dev_addr_cmp(dev, type, ha))
1235 			return dev;
1236 
1237 	return NULL;
1238 }
1239 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1240 
1241 /**
1242  * dev_getbyhwaddr() - find a device by its hardware address
1243  * @net: the applicable net namespace
1244  * @type: media type of device
1245  * @ha: hardware address
1246  *
1247  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1248  * rtnl_lock.
1249  *
1250  * Context: rtnl_lock() must be held.
1251  * Return: pointer to the net_device, or NULL if not found
1252  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1253 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1254 				   const char *ha)
1255 {
1256 	struct net_device *dev;
1257 
1258 	ASSERT_RTNL();
1259 	for_each_netdev(net, dev)
1260 		if (dev_addr_cmp(dev, type, ha))
1261 			return dev;
1262 
1263 	return NULL;
1264 }
1265 EXPORT_SYMBOL(dev_getbyhwaddr);
1266 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1267 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1268 {
1269 	struct net_device *dev, *ret = NULL;
1270 
1271 	rcu_read_lock();
1272 	for_each_netdev_rcu(net, dev)
1273 		if (dev->type == type) {
1274 			dev_hold(dev);
1275 			ret = dev;
1276 			break;
1277 		}
1278 	rcu_read_unlock();
1279 	return ret;
1280 }
1281 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1282 
1283 /**
1284  * netdev_get_by_flags_rcu - find any device with given flags
1285  * @net: the applicable net namespace
1286  * @tracker: tracking object for the acquired reference
1287  * @if_flags: IFF_* values
1288  * @mask: bitmask of bits in if_flags to check
1289  *
1290  * Search for any interface with the given flags.
1291  *
1292  * Context: rcu_read_lock() must be held.
1293  * Returns: NULL if a device is not found or a pointer to the device.
1294  */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1295 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1296 					   unsigned short if_flags, unsigned short mask)
1297 {
1298 	struct net_device *dev;
1299 
1300 	for_each_netdev_rcu(net, dev) {
1301 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1302 			netdev_hold(dev, tracker, GFP_ATOMIC);
1303 			return dev;
1304 		}
1305 	}
1306 
1307 	return NULL;
1308 }
1309 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1310 
1311 /**
1312  *	dev_valid_name - check if name is okay for network device
1313  *	@name: name string
1314  *
1315  *	Network device names need to be valid file names to
1316  *	allow sysfs to work.  We also disallow any kind of
1317  *	whitespace.
1318  */
dev_valid_name(const char * name)1319 bool dev_valid_name(const char *name)
1320 {
1321 	if (*name == '\0')
1322 		return false;
1323 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1324 		return false;
1325 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1326 		return false;
1327 
1328 	while (*name) {
1329 		if (*name == '/' || *name == ':' || isspace(*name))
1330 			return false;
1331 		name++;
1332 	}
1333 	return true;
1334 }
1335 EXPORT_SYMBOL(dev_valid_name);
1336 
1337 /**
1338  *	__dev_alloc_name - allocate a name for a device
1339  *	@net: network namespace to allocate the device name in
1340  *	@name: name format string
1341  *	@res: result name string
1342  *
1343  *	Passed a format string - eg "lt%d" it will try and find a suitable
1344  *	id. It scans list of devices to build up a free map, then chooses
1345  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1346  *	while allocating the name and adding the device in order to avoid
1347  *	duplicates.
1348  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1349  *	Returns the number of the unit assigned or a negative errno code.
1350  */
1351 
__dev_alloc_name(struct net * net,const char * name,char * res)1352 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1353 {
1354 	int i = 0;
1355 	const char *p;
1356 	const int max_netdevices = 8*PAGE_SIZE;
1357 	unsigned long *inuse;
1358 	struct net_device *d;
1359 	char buf[IFNAMSIZ];
1360 
1361 	/* Verify the string as this thing may have come from the user.
1362 	 * There must be one "%d" and no other "%" characters.
1363 	 */
1364 	p = strchr(name, '%');
1365 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1366 		return -EINVAL;
1367 
1368 	/* Use one page as a bit array of possible slots */
1369 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1370 	if (!inuse)
1371 		return -ENOMEM;
1372 
1373 	for_each_netdev(net, d) {
1374 		struct netdev_name_node *name_node;
1375 
1376 		netdev_for_each_altname(d, name_node) {
1377 			if (!sscanf(name_node->name, name, &i))
1378 				continue;
1379 			if (i < 0 || i >= max_netdevices)
1380 				continue;
1381 
1382 			/* avoid cases where sscanf is not exact inverse of printf */
1383 			snprintf(buf, IFNAMSIZ, name, i);
1384 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1385 				__set_bit(i, inuse);
1386 		}
1387 		if (!sscanf(d->name, name, &i))
1388 			continue;
1389 		if (i < 0 || i >= max_netdevices)
1390 			continue;
1391 
1392 		/* avoid cases where sscanf is not exact inverse of printf */
1393 		snprintf(buf, IFNAMSIZ, name, i);
1394 		if (!strncmp(buf, d->name, IFNAMSIZ))
1395 			__set_bit(i, inuse);
1396 	}
1397 
1398 	i = find_first_zero_bit(inuse, max_netdevices);
1399 	bitmap_free(inuse);
1400 	if (i == max_netdevices)
1401 		return -ENFILE;
1402 
1403 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1404 	strscpy(buf, name, IFNAMSIZ);
1405 	snprintf(res, IFNAMSIZ, buf, i);
1406 	return i;
1407 }
1408 
1409 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1410 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1411 			       const char *want_name, char *out_name,
1412 			       int dup_errno)
1413 {
1414 	if (!dev_valid_name(want_name))
1415 		return -EINVAL;
1416 
1417 	if (strchr(want_name, '%'))
1418 		return __dev_alloc_name(net, want_name, out_name);
1419 
1420 	if (netdev_name_in_use(net, want_name))
1421 		return -dup_errno;
1422 	if (out_name != want_name)
1423 		strscpy(out_name, want_name, IFNAMSIZ);
1424 	return 0;
1425 }
1426 
1427 /**
1428  *	dev_alloc_name - allocate a name for a device
1429  *	@dev: device
1430  *	@name: name format string
1431  *
1432  *	Passed a format string - eg "lt%d" it will try and find a suitable
1433  *	id. It scans list of devices to build up a free map, then chooses
1434  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1435  *	while allocating the name and adding the device in order to avoid
1436  *	duplicates.
1437  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1438  *	Returns the number of the unit assigned or a negative errno code.
1439  */
1440 
dev_alloc_name(struct net_device * dev,const char * name)1441 int dev_alloc_name(struct net_device *dev, const char *name)
1442 {
1443 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1444 }
1445 EXPORT_SYMBOL(dev_alloc_name);
1446 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1447 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1448 			      const char *name)
1449 {
1450 	int ret;
1451 
1452 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1453 	return ret < 0 ? ret : 0;
1454 }
1455 
netif_change_name(struct net_device * dev,const char * newname)1456 int netif_change_name(struct net_device *dev, const char *newname)
1457 {
1458 	struct net *net = dev_net(dev);
1459 	unsigned char old_assign_type;
1460 	char oldname[IFNAMSIZ];
1461 	int err = 0;
1462 	int ret;
1463 
1464 	ASSERT_RTNL_NET(net);
1465 
1466 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1467 		return 0;
1468 
1469 	memcpy(oldname, dev->name, IFNAMSIZ);
1470 
1471 	write_seqlock_bh(&netdev_rename_lock);
1472 	err = dev_get_valid_name(net, dev, newname);
1473 	write_sequnlock_bh(&netdev_rename_lock);
1474 
1475 	if (err < 0)
1476 		return err;
1477 
1478 	if (oldname[0] && !strchr(oldname, '%'))
1479 		netdev_info(dev, "renamed from %s%s\n", oldname,
1480 			    dev->flags & IFF_UP ? " (while UP)" : "");
1481 
1482 	old_assign_type = dev->name_assign_type;
1483 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1484 
1485 rollback:
1486 	ret = device_rename(&dev->dev, dev->name);
1487 	if (ret) {
1488 		write_seqlock_bh(&netdev_rename_lock);
1489 		memcpy(dev->name, oldname, IFNAMSIZ);
1490 		write_sequnlock_bh(&netdev_rename_lock);
1491 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1492 		return ret;
1493 	}
1494 
1495 	netdev_adjacent_rename_links(dev, oldname);
1496 
1497 	netdev_name_node_del(dev->name_node);
1498 
1499 	synchronize_net();
1500 
1501 	netdev_name_node_add(net, dev->name_node);
1502 
1503 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1504 	ret = notifier_to_errno(ret);
1505 
1506 	if (ret) {
1507 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1508 		if (err >= 0) {
1509 			err = ret;
1510 			write_seqlock_bh(&netdev_rename_lock);
1511 			memcpy(dev->name, oldname, IFNAMSIZ);
1512 			write_sequnlock_bh(&netdev_rename_lock);
1513 			memcpy(oldname, newname, IFNAMSIZ);
1514 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1515 			old_assign_type = NET_NAME_RENAMED;
1516 			goto rollback;
1517 		} else {
1518 			netdev_err(dev, "name change rollback failed: %d\n",
1519 				   ret);
1520 		}
1521 	}
1522 
1523 	return err;
1524 }
1525 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1526 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1527 {
1528 	struct dev_ifalias *new_alias = NULL;
1529 
1530 	if (len >= IFALIASZ)
1531 		return -EINVAL;
1532 
1533 	if (len) {
1534 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1535 		if (!new_alias)
1536 			return -ENOMEM;
1537 
1538 		memcpy(new_alias->ifalias, alias, len);
1539 		new_alias->ifalias[len] = 0;
1540 	}
1541 
1542 	mutex_lock(&ifalias_mutex);
1543 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1544 					mutex_is_locked(&ifalias_mutex));
1545 	mutex_unlock(&ifalias_mutex);
1546 
1547 	if (new_alias)
1548 		kfree_rcu(new_alias, rcuhead);
1549 
1550 	return len;
1551 }
1552 
1553 /**
1554  *	dev_get_alias - get ifalias of a device
1555  *	@dev: device
1556  *	@name: buffer to store name of ifalias
1557  *	@len: size of buffer
1558  *
1559  *	get ifalias for a device.  Caller must make sure dev cannot go
1560  *	away,  e.g. rcu read lock or own a reference count to device.
1561  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1562 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1563 {
1564 	const struct dev_ifalias *alias;
1565 	int ret = 0;
1566 
1567 	rcu_read_lock();
1568 	alias = rcu_dereference(dev->ifalias);
1569 	if (alias)
1570 		ret = snprintf(name, len, "%s", alias->ifalias);
1571 	rcu_read_unlock();
1572 
1573 	return ret;
1574 }
1575 
1576 /**
1577  *	netdev_features_change - device changes features
1578  *	@dev: device to cause notification
1579  *
1580  *	Called to indicate a device has changed features.
1581  */
netdev_features_change(struct net_device * dev)1582 void netdev_features_change(struct net_device *dev)
1583 {
1584 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1585 }
1586 EXPORT_SYMBOL(netdev_features_change);
1587 
netif_state_change(struct net_device * dev)1588 void netif_state_change(struct net_device *dev)
1589 {
1590 	netdev_ops_assert_locked_or_invisible(dev);
1591 
1592 	if (dev->flags & IFF_UP) {
1593 		struct netdev_notifier_change_info change_info = {
1594 			.info.dev = dev,
1595 		};
1596 
1597 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1598 					      &change_info.info);
1599 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1600 	}
1601 }
1602 
1603 /**
1604  * __netdev_notify_peers - notify network peers about existence of @dev,
1605  * to be called when rtnl lock is already held.
1606  * @dev: network device
1607  *
1608  * Generate traffic such that interested network peers are aware of
1609  * @dev, such as by generating a gratuitous ARP. This may be used when
1610  * a device wants to inform the rest of the network about some sort of
1611  * reconfiguration such as a failover event or virtual machine
1612  * migration.
1613  */
__netdev_notify_peers(struct net_device * dev)1614 void __netdev_notify_peers(struct net_device *dev)
1615 {
1616 	ASSERT_RTNL();
1617 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1618 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1619 }
1620 EXPORT_SYMBOL(__netdev_notify_peers);
1621 
1622 /**
1623  * netdev_notify_peers - notify network peers about existence of @dev
1624  * @dev: network device
1625  *
1626  * Generate traffic such that interested network peers are aware of
1627  * @dev, such as by generating a gratuitous ARP. This may be used when
1628  * a device wants to inform the rest of the network about some sort of
1629  * reconfiguration such as a failover event or virtual machine
1630  * migration.
1631  */
netdev_notify_peers(struct net_device * dev)1632 void netdev_notify_peers(struct net_device *dev)
1633 {
1634 	rtnl_lock();
1635 	__netdev_notify_peers(dev);
1636 	rtnl_unlock();
1637 }
1638 EXPORT_SYMBOL(netdev_notify_peers);
1639 
1640 static int napi_threaded_poll(void *data);
1641 
napi_kthread_create(struct napi_struct * n)1642 static int napi_kthread_create(struct napi_struct *n)
1643 {
1644 	int err = 0;
1645 
1646 	/* Create and wake up the kthread once to put it in
1647 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1648 	 * warning and work with loadavg.
1649 	 */
1650 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1651 				n->dev->name, n->napi_id);
1652 	if (IS_ERR(n->thread)) {
1653 		err = PTR_ERR(n->thread);
1654 		pr_err("kthread_run failed with err %d\n", err);
1655 		n->thread = NULL;
1656 	}
1657 
1658 	return err;
1659 }
1660 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1661 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1662 {
1663 	const struct net_device_ops *ops = dev->netdev_ops;
1664 	int ret;
1665 
1666 	ASSERT_RTNL();
1667 	dev_addr_check(dev);
1668 
1669 	if (!netif_device_present(dev)) {
1670 		/* may be detached because parent is runtime-suspended */
1671 		if (dev->dev.parent)
1672 			pm_runtime_resume(dev->dev.parent);
1673 		if (!netif_device_present(dev))
1674 			return -ENODEV;
1675 	}
1676 
1677 	/* Block netpoll from trying to do any rx path servicing.
1678 	 * If we don't do this there is a chance ndo_poll_controller
1679 	 * or ndo_poll may be running while we open the device
1680 	 */
1681 	netpoll_poll_disable(dev);
1682 
1683 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1684 	ret = notifier_to_errno(ret);
1685 	if (ret)
1686 		return ret;
1687 
1688 	set_bit(__LINK_STATE_START, &dev->state);
1689 
1690 	netdev_ops_assert_locked(dev);
1691 
1692 	if (ops->ndo_validate_addr)
1693 		ret = ops->ndo_validate_addr(dev);
1694 
1695 	if (!ret && ops->ndo_open)
1696 		ret = ops->ndo_open(dev);
1697 
1698 	netpoll_poll_enable(dev);
1699 
1700 	if (ret)
1701 		clear_bit(__LINK_STATE_START, &dev->state);
1702 	else {
1703 		netif_set_up(dev, true);
1704 		dev_set_rx_mode(dev);
1705 		dev_activate(dev);
1706 		add_device_randomness(dev->dev_addr, dev->addr_len);
1707 	}
1708 
1709 	return ret;
1710 }
1711 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1712 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1713 {
1714 	int ret;
1715 
1716 	if (dev->flags & IFF_UP)
1717 		return 0;
1718 
1719 	ret = __dev_open(dev, extack);
1720 	if (ret < 0)
1721 		return ret;
1722 
1723 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1724 	call_netdevice_notifiers(NETDEV_UP, dev);
1725 
1726 	return ret;
1727 }
1728 
__dev_close_many(struct list_head * head)1729 static void __dev_close_many(struct list_head *head)
1730 {
1731 	struct net_device *dev;
1732 
1733 	ASSERT_RTNL();
1734 	might_sleep();
1735 
1736 	list_for_each_entry(dev, head, close_list) {
1737 		/* Temporarily disable netpoll until the interface is down */
1738 		netpoll_poll_disable(dev);
1739 
1740 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1741 
1742 		clear_bit(__LINK_STATE_START, &dev->state);
1743 
1744 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1745 		 * can be even on different cpu. So just clear netif_running().
1746 		 *
1747 		 * dev->stop() will invoke napi_disable() on all of it's
1748 		 * napi_struct instances on this device.
1749 		 */
1750 		smp_mb__after_atomic(); /* Commit netif_running(). */
1751 	}
1752 
1753 	dev_deactivate_many(head);
1754 
1755 	list_for_each_entry(dev, head, close_list) {
1756 		const struct net_device_ops *ops = dev->netdev_ops;
1757 
1758 		/*
1759 		 *	Call the device specific close. This cannot fail.
1760 		 *	Only if device is UP
1761 		 *
1762 		 *	We allow it to be called even after a DETACH hot-plug
1763 		 *	event.
1764 		 */
1765 
1766 		netdev_ops_assert_locked(dev);
1767 
1768 		if (ops->ndo_stop)
1769 			ops->ndo_stop(dev);
1770 
1771 		netif_set_up(dev, false);
1772 		netpoll_poll_enable(dev);
1773 	}
1774 }
1775 
__dev_close(struct net_device * dev)1776 static void __dev_close(struct net_device *dev)
1777 {
1778 	LIST_HEAD(single);
1779 
1780 	list_add(&dev->close_list, &single);
1781 	__dev_close_many(&single);
1782 	list_del(&single);
1783 }
1784 
netif_close_many(struct list_head * head,bool unlink)1785 void netif_close_many(struct list_head *head, bool unlink)
1786 {
1787 	struct net_device *dev, *tmp;
1788 
1789 	/* Remove the devices that don't need to be closed */
1790 	list_for_each_entry_safe(dev, tmp, head, close_list)
1791 		if (!(dev->flags & IFF_UP))
1792 			list_del_init(&dev->close_list);
1793 
1794 	__dev_close_many(head);
1795 
1796 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1797 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1798 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1799 		if (unlink)
1800 			list_del_init(&dev->close_list);
1801 	}
1802 }
1803 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1804 
netif_close(struct net_device * dev)1805 void netif_close(struct net_device *dev)
1806 {
1807 	if (dev->flags & IFF_UP) {
1808 		LIST_HEAD(single);
1809 
1810 		list_add(&dev->close_list, &single);
1811 		netif_close_many(&single, true);
1812 		list_del(&single);
1813 	}
1814 }
1815 EXPORT_SYMBOL(netif_close);
1816 
netif_disable_lro(struct net_device * dev)1817 void netif_disable_lro(struct net_device *dev)
1818 {
1819 	struct net_device *lower_dev;
1820 	struct list_head *iter;
1821 
1822 	dev->wanted_features &= ~NETIF_F_LRO;
1823 	netdev_update_features(dev);
1824 
1825 	if (unlikely(dev->features & NETIF_F_LRO))
1826 		netdev_WARN(dev, "failed to disable LRO!\n");
1827 
1828 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1829 		netdev_lock_ops(lower_dev);
1830 		netif_disable_lro(lower_dev);
1831 		netdev_unlock_ops(lower_dev);
1832 	}
1833 }
1834 EXPORT_IPV6_MOD(netif_disable_lro);
1835 
1836 /**
1837  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1838  *	@dev: device
1839  *
1840  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1841  *	called under RTNL.  This is needed if Generic XDP is installed on
1842  *	the device.
1843  */
dev_disable_gro_hw(struct net_device * dev)1844 static void dev_disable_gro_hw(struct net_device *dev)
1845 {
1846 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1847 	netdev_update_features(dev);
1848 
1849 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1850 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1851 }
1852 
netdev_cmd_to_name(enum netdev_cmd cmd)1853 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1854 {
1855 #define N(val) 						\
1856 	case NETDEV_##val:				\
1857 		return "NETDEV_" __stringify(val);
1858 	switch (cmd) {
1859 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1860 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1861 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1862 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1863 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1864 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1865 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1866 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1867 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1868 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1869 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1870 	N(XDP_FEAT_CHANGE)
1871 	}
1872 #undef N
1873 	return "UNKNOWN_NETDEV_EVENT";
1874 }
1875 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1876 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1877 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1878 				   struct net_device *dev)
1879 {
1880 	struct netdev_notifier_info info = {
1881 		.dev = dev,
1882 	};
1883 
1884 	return nb->notifier_call(nb, val, &info);
1885 }
1886 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1887 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1888 					     struct net_device *dev)
1889 {
1890 	int err;
1891 
1892 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1893 	err = notifier_to_errno(err);
1894 	if (err)
1895 		return err;
1896 
1897 	if (!(dev->flags & IFF_UP))
1898 		return 0;
1899 
1900 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1901 	return 0;
1902 }
1903 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1904 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1905 						struct net_device *dev)
1906 {
1907 	if (dev->flags & IFF_UP) {
1908 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1909 					dev);
1910 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1911 	}
1912 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1913 }
1914 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1915 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1916 						 struct net *net)
1917 {
1918 	struct net_device *dev;
1919 	int err;
1920 
1921 	for_each_netdev(net, dev) {
1922 		netdev_lock_ops(dev);
1923 		err = call_netdevice_register_notifiers(nb, dev);
1924 		netdev_unlock_ops(dev);
1925 		if (err)
1926 			goto rollback;
1927 	}
1928 	return 0;
1929 
1930 rollback:
1931 	for_each_netdev_continue_reverse(net, dev)
1932 		call_netdevice_unregister_notifiers(nb, dev);
1933 	return err;
1934 }
1935 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1936 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1937 						    struct net *net)
1938 {
1939 	struct net_device *dev;
1940 
1941 	for_each_netdev(net, dev)
1942 		call_netdevice_unregister_notifiers(nb, dev);
1943 }
1944 
1945 static int dev_boot_phase = 1;
1946 
1947 /**
1948  * register_netdevice_notifier - register a network notifier block
1949  * @nb: notifier
1950  *
1951  * Register a notifier to be called when network device events occur.
1952  * The notifier passed is linked into the kernel structures and must
1953  * not be reused until it has been unregistered. A negative errno code
1954  * is returned on a failure.
1955  *
1956  * When registered all registration and up events are replayed
1957  * to the new notifier to allow device to have a race free
1958  * view of the network device list.
1959  */
1960 
register_netdevice_notifier(struct notifier_block * nb)1961 int register_netdevice_notifier(struct notifier_block *nb)
1962 {
1963 	struct net *net;
1964 	int err;
1965 
1966 	/* Close race with setup_net() and cleanup_net() */
1967 	down_write(&pernet_ops_rwsem);
1968 
1969 	/* When RTNL is removed, we need protection for netdev_chain. */
1970 	rtnl_lock();
1971 
1972 	err = raw_notifier_chain_register(&netdev_chain, nb);
1973 	if (err)
1974 		goto unlock;
1975 	if (dev_boot_phase)
1976 		goto unlock;
1977 	for_each_net(net) {
1978 		__rtnl_net_lock(net);
1979 		err = call_netdevice_register_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 		if (err)
1982 			goto rollback;
1983 	}
1984 
1985 unlock:
1986 	rtnl_unlock();
1987 	up_write(&pernet_ops_rwsem);
1988 	return err;
1989 
1990 rollback:
1991 	for_each_net_continue_reverse(net) {
1992 		__rtnl_net_lock(net);
1993 		call_netdevice_unregister_net_notifiers(nb, net);
1994 		__rtnl_net_unlock(net);
1995 	}
1996 
1997 	raw_notifier_chain_unregister(&netdev_chain, nb);
1998 	goto unlock;
1999 }
2000 EXPORT_SYMBOL(register_netdevice_notifier);
2001 
2002 /**
2003  * unregister_netdevice_notifier - unregister a network notifier block
2004  * @nb: notifier
2005  *
2006  * Unregister a notifier previously registered by
2007  * register_netdevice_notifier(). The notifier is unlinked into the
2008  * kernel structures and may then be reused. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * After unregistering unregister and down device events are synthesized
2012  * for all devices on the device list to the removed notifier to remove
2013  * the need for special case cleanup code.
2014  */
2015 
unregister_netdevice_notifier(struct notifier_block * nb)2016 int unregister_netdevice_notifier(struct notifier_block *nb)
2017 {
2018 	struct net *net;
2019 	int err;
2020 
2021 	/* Close race with setup_net() and cleanup_net() */
2022 	down_write(&pernet_ops_rwsem);
2023 	rtnl_lock();
2024 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2025 	if (err)
2026 		goto unlock;
2027 
2028 	for_each_net(net) {
2029 		__rtnl_net_lock(net);
2030 		call_netdevice_unregister_net_notifiers(nb, net);
2031 		__rtnl_net_unlock(net);
2032 	}
2033 
2034 unlock:
2035 	rtnl_unlock();
2036 	up_write(&pernet_ops_rwsem);
2037 	return err;
2038 }
2039 EXPORT_SYMBOL(unregister_netdevice_notifier);
2040 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2041 static int __register_netdevice_notifier_net(struct net *net,
2042 					     struct notifier_block *nb,
2043 					     bool ignore_call_fail)
2044 {
2045 	int err;
2046 
2047 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2048 	if (err)
2049 		return err;
2050 	if (dev_boot_phase)
2051 		return 0;
2052 
2053 	err = call_netdevice_register_net_notifiers(nb, net);
2054 	if (err && !ignore_call_fail)
2055 		goto chain_unregister;
2056 
2057 	return 0;
2058 
2059 chain_unregister:
2060 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2061 	return err;
2062 }
2063 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2064 static int __unregister_netdevice_notifier_net(struct net *net,
2065 					       struct notifier_block *nb)
2066 {
2067 	int err;
2068 
2069 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2070 	if (err)
2071 		return err;
2072 
2073 	call_netdevice_unregister_net_notifiers(nb, net);
2074 	return 0;
2075 }
2076 
2077 /**
2078  * register_netdevice_notifier_net - register a per-netns network notifier block
2079  * @net: network namespace
2080  * @nb: notifier
2081  *
2082  * Register a notifier to be called when network device events occur.
2083  * The notifier passed is linked into the kernel structures and must
2084  * not be reused until it has been unregistered. A negative errno code
2085  * is returned on a failure.
2086  *
2087  * When registered all registration and up events are replayed
2088  * to the new notifier to allow device to have a race free
2089  * view of the network device list.
2090  */
2091 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2092 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2093 {
2094 	int err;
2095 
2096 	rtnl_net_lock(net);
2097 	err = __register_netdevice_notifier_net(net, nb, false);
2098 	rtnl_net_unlock(net);
2099 
2100 	return err;
2101 }
2102 EXPORT_SYMBOL(register_netdevice_notifier_net);
2103 
2104 /**
2105  * unregister_netdevice_notifier_net - unregister a per-netns
2106  *                                     network notifier block
2107  * @net: network namespace
2108  * @nb: notifier
2109  *
2110  * Unregister a notifier previously registered by
2111  * register_netdevice_notifier_net(). The notifier is unlinked from the
2112  * kernel structures and may then be reused. A negative errno code
2113  * is returned on a failure.
2114  *
2115  * After unregistering unregister and down device events are synthesized
2116  * for all devices on the device list to the removed notifier to remove
2117  * the need for special case cleanup code.
2118  */
2119 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2120 int unregister_netdevice_notifier_net(struct net *net,
2121 				      struct notifier_block *nb)
2122 {
2123 	int err;
2124 
2125 	rtnl_net_lock(net);
2126 	err = __unregister_netdevice_notifier_net(net, nb);
2127 	rtnl_net_unlock(net);
2128 
2129 	return err;
2130 }
2131 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2132 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2133 static void __move_netdevice_notifier_net(struct net *src_net,
2134 					  struct net *dst_net,
2135 					  struct notifier_block *nb)
2136 {
2137 	__unregister_netdevice_notifier_net(src_net, nb);
2138 	__register_netdevice_notifier_net(dst_net, nb, true);
2139 }
2140 
rtnl_net_dev_lock(struct net_device * dev)2141 static void rtnl_net_dev_lock(struct net_device *dev)
2142 {
2143 	bool again;
2144 
2145 	do {
2146 		struct net *net;
2147 
2148 		again = false;
2149 
2150 		/* netns might be being dismantled. */
2151 		rcu_read_lock();
2152 		net = dev_net_rcu(dev);
2153 		net_passive_inc(net);
2154 		rcu_read_unlock();
2155 
2156 		rtnl_net_lock(net);
2157 
2158 #ifdef CONFIG_NET_NS
2159 		/* dev might have been moved to another netns. */
2160 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2161 			rtnl_net_unlock(net);
2162 			net_passive_dec(net);
2163 			again = true;
2164 		}
2165 #endif
2166 	} while (again);
2167 }
2168 
rtnl_net_dev_unlock(struct net_device * dev)2169 static void rtnl_net_dev_unlock(struct net_device *dev)
2170 {
2171 	struct net *net = dev_net(dev);
2172 
2173 	rtnl_net_unlock(net);
2174 	net_passive_dec(net);
2175 }
2176 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2177 int register_netdevice_notifier_dev_net(struct net_device *dev,
2178 					struct notifier_block *nb,
2179 					struct netdev_net_notifier *nn)
2180 {
2181 	int err;
2182 
2183 	rtnl_net_dev_lock(dev);
2184 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2185 	if (!err) {
2186 		nn->nb = nb;
2187 		list_add(&nn->list, &dev->net_notifier_list);
2188 	}
2189 	rtnl_net_dev_unlock(dev);
2190 
2191 	return err;
2192 }
2193 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2194 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2195 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2196 					  struct notifier_block *nb,
2197 					  struct netdev_net_notifier *nn)
2198 {
2199 	int err;
2200 
2201 	rtnl_net_dev_lock(dev);
2202 	list_del(&nn->list);
2203 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2204 	rtnl_net_dev_unlock(dev);
2205 
2206 	return err;
2207 }
2208 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2209 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2210 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2211 					     struct net *net)
2212 {
2213 	struct netdev_net_notifier *nn;
2214 
2215 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2216 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2217 }
2218 
2219 /**
2220  *	call_netdevice_notifiers_info - call all network notifier blocks
2221  *	@val: value passed unmodified to notifier function
2222  *	@info: notifier information data
2223  *
2224  *	Call all network notifier blocks.  Parameters and return value
2225  *	are as for raw_notifier_call_chain().
2226  */
2227 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2228 int call_netdevice_notifiers_info(unsigned long val,
2229 				  struct netdev_notifier_info *info)
2230 {
2231 	struct net *net = dev_net(info->dev);
2232 	int ret;
2233 
2234 	ASSERT_RTNL();
2235 
2236 	/* Run per-netns notifier block chain first, then run the global one.
2237 	 * Hopefully, one day, the global one is going to be removed after
2238 	 * all notifier block registrators get converted to be per-netns.
2239 	 */
2240 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2241 	if (ret & NOTIFY_STOP_MASK)
2242 		return ret;
2243 	return raw_notifier_call_chain(&netdev_chain, val, info);
2244 }
2245 
2246 /**
2247  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2248  *	                                       for and rollback on error
2249  *	@val_up: value passed unmodified to notifier function
2250  *	@val_down: value passed unmodified to the notifier function when
2251  *	           recovering from an error on @val_up
2252  *	@info: notifier information data
2253  *
2254  *	Call all per-netns network notifier blocks, but not notifier blocks on
2255  *	the global notifier chain. Parameters and return value are as for
2256  *	raw_notifier_call_chain_robust().
2257  */
2258 
2259 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2260 call_netdevice_notifiers_info_robust(unsigned long val_up,
2261 				     unsigned long val_down,
2262 				     struct netdev_notifier_info *info)
2263 {
2264 	struct net *net = dev_net(info->dev);
2265 
2266 	ASSERT_RTNL();
2267 
2268 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2269 					      val_up, val_down, info);
2270 }
2271 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2272 static int call_netdevice_notifiers_extack(unsigned long val,
2273 					   struct net_device *dev,
2274 					   struct netlink_ext_ack *extack)
2275 {
2276 	struct netdev_notifier_info info = {
2277 		.dev = dev,
2278 		.extack = extack,
2279 	};
2280 
2281 	return call_netdevice_notifiers_info(val, &info);
2282 }
2283 
2284 /**
2285  *	call_netdevice_notifiers - call all network notifier blocks
2286  *      @val: value passed unmodified to notifier function
2287  *      @dev: net_device pointer passed unmodified to notifier function
2288  *
2289  *	Call all network notifier blocks.  Parameters and return value
2290  *	are as for raw_notifier_call_chain().
2291  */
2292 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2293 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2294 {
2295 	return call_netdevice_notifiers_extack(val, dev, NULL);
2296 }
2297 EXPORT_SYMBOL(call_netdevice_notifiers);
2298 
2299 /**
2300  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2301  *	@val: value passed unmodified to notifier function
2302  *	@dev: net_device pointer passed unmodified to notifier function
2303  *	@arg: additional u32 argument passed to the notifier function
2304  *
2305  *	Call all network notifier blocks.  Parameters and return value
2306  *	are as for raw_notifier_call_chain().
2307  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2308 static int call_netdevice_notifiers_mtu(unsigned long val,
2309 					struct net_device *dev, u32 arg)
2310 {
2311 	struct netdev_notifier_info_ext info = {
2312 		.info.dev = dev,
2313 		.ext.mtu = arg,
2314 	};
2315 
2316 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2317 
2318 	return call_netdevice_notifiers_info(val, &info.info);
2319 }
2320 
2321 #ifdef CONFIG_NET_INGRESS
2322 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2323 
net_inc_ingress_queue(void)2324 void net_inc_ingress_queue(void)
2325 {
2326 	static_branch_inc(&ingress_needed_key);
2327 }
2328 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2329 
net_dec_ingress_queue(void)2330 void net_dec_ingress_queue(void)
2331 {
2332 	static_branch_dec(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2335 #endif
2336 
2337 #ifdef CONFIG_NET_EGRESS
2338 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2339 
net_inc_egress_queue(void)2340 void net_inc_egress_queue(void)
2341 {
2342 	static_branch_inc(&egress_needed_key);
2343 }
2344 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2345 
net_dec_egress_queue(void)2346 void net_dec_egress_queue(void)
2347 {
2348 	static_branch_dec(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2351 #endif
2352 
2353 #ifdef CONFIG_NET_CLS_ACT
2354 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2355 EXPORT_SYMBOL(tcf_sw_enabled_key);
2356 #endif
2357 
2358 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2359 EXPORT_SYMBOL(netstamp_needed_key);
2360 #ifdef CONFIG_JUMP_LABEL
2361 static atomic_t netstamp_needed_deferred;
2362 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2363 static void netstamp_clear(struct work_struct *work)
2364 {
2365 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2366 	int wanted;
2367 
2368 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2369 	if (wanted > 0)
2370 		static_branch_enable(&netstamp_needed_key);
2371 	else
2372 		static_branch_disable(&netstamp_needed_key);
2373 }
2374 static DECLARE_WORK(netstamp_work, netstamp_clear);
2375 #endif
2376 
net_enable_timestamp(void)2377 void net_enable_timestamp(void)
2378 {
2379 #ifdef CONFIG_JUMP_LABEL
2380 	int wanted = atomic_read(&netstamp_wanted);
2381 
2382 	while (wanted > 0) {
2383 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2384 			return;
2385 	}
2386 	atomic_inc(&netstamp_needed_deferred);
2387 	schedule_work(&netstamp_work);
2388 #else
2389 	static_branch_inc(&netstamp_needed_key);
2390 #endif
2391 }
2392 EXPORT_SYMBOL(net_enable_timestamp);
2393 
net_disable_timestamp(void)2394 void net_disable_timestamp(void)
2395 {
2396 #ifdef CONFIG_JUMP_LABEL
2397 	int wanted = atomic_read(&netstamp_wanted);
2398 
2399 	while (wanted > 1) {
2400 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2401 			return;
2402 	}
2403 	atomic_dec(&netstamp_needed_deferred);
2404 	schedule_work(&netstamp_work);
2405 #else
2406 	static_branch_dec(&netstamp_needed_key);
2407 #endif
2408 }
2409 EXPORT_SYMBOL(net_disable_timestamp);
2410 
net_timestamp_set(struct sk_buff * skb)2411 static inline void net_timestamp_set(struct sk_buff *skb)
2412 {
2413 	skb->tstamp = 0;
2414 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2415 	if (static_branch_unlikely(&netstamp_needed_key))
2416 		skb->tstamp = ktime_get_real();
2417 }
2418 
2419 #define net_timestamp_check(COND, SKB)				\
2420 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2421 		if ((COND) && !(SKB)->tstamp)			\
2422 			(SKB)->tstamp = ktime_get_real();	\
2423 	}							\
2424 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2425 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2426 {
2427 	return __is_skb_forwardable(dev, skb, true);
2428 }
2429 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2430 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2431 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2432 			      bool check_mtu)
2433 {
2434 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2435 
2436 	if (likely(!ret)) {
2437 		skb->protocol = eth_type_trans(skb, dev);
2438 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2439 	}
2440 
2441 	return ret;
2442 }
2443 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2444 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2445 {
2446 	return __dev_forward_skb2(dev, skb, true);
2447 }
2448 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2449 
2450 /**
2451  * dev_forward_skb - loopback an skb to another netif
2452  *
2453  * @dev: destination network device
2454  * @skb: buffer to forward
2455  *
2456  * return values:
2457  *	NET_RX_SUCCESS	(no congestion)
2458  *	NET_RX_DROP     (packet was dropped, but freed)
2459  *
2460  * dev_forward_skb can be used for injecting an skb from the
2461  * start_xmit function of one device into the receive queue
2462  * of another device.
2463  *
2464  * The receiving device may be in another namespace, so
2465  * we have to clear all information in the skb that could
2466  * impact namespace isolation.
2467  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2468 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2469 {
2470 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2471 }
2472 EXPORT_SYMBOL_GPL(dev_forward_skb);
2473 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2477 }
2478 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2479 static int deliver_skb(struct sk_buff *skb,
2480 		       struct packet_type *pt_prev,
2481 		       struct net_device *orig_dev)
2482 {
2483 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2484 		return -ENOMEM;
2485 	refcount_inc(&skb->users);
2486 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2487 }
2488 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2489 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2490 					  struct packet_type **pt,
2491 					  struct net_device *orig_dev,
2492 					  __be16 type,
2493 					  struct list_head *ptype_list)
2494 {
2495 	struct packet_type *ptype, *pt_prev = *pt;
2496 
2497 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2498 		if (ptype->type != type)
2499 			continue;
2500 		if (unlikely(pt_prev))
2501 			deliver_skb(skb, pt_prev, orig_dev);
2502 		pt_prev = ptype;
2503 	}
2504 	*pt = pt_prev;
2505 }
2506 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2507 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2508 {
2509 	if (!ptype->af_packet_priv || !skb->sk)
2510 		return false;
2511 
2512 	if (ptype->id_match)
2513 		return ptype->id_match(ptype, skb->sk);
2514 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2515 		return true;
2516 
2517 	return false;
2518 }
2519 
2520 /**
2521  * dev_nit_active_rcu - return true if any network interface taps are in use
2522  *
2523  * The caller must hold the RCU lock
2524  *
2525  * @dev: network device to check for the presence of taps
2526  */
dev_nit_active_rcu(const struct net_device * dev)2527 bool dev_nit_active_rcu(const struct net_device *dev)
2528 {
2529 	/* Callers may hold either RCU or RCU BH lock */
2530 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2531 
2532 	return !list_empty(&dev_net(dev)->ptype_all) ||
2533 	       !list_empty(&dev->ptype_all);
2534 }
2535 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2536 
2537 /*
2538  *	Support routine. Sends outgoing frames to any network
2539  *	taps currently in use.
2540  */
2541 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2542 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2543 {
2544 	struct packet_type *ptype, *pt_prev = NULL;
2545 	struct list_head *ptype_list;
2546 	struct sk_buff *skb2 = NULL;
2547 
2548 	rcu_read_lock();
2549 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2550 again:
2551 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2552 		if (READ_ONCE(ptype->ignore_outgoing))
2553 			continue;
2554 
2555 		/* Never send packets back to the socket
2556 		 * they originated from - MvS (miquels@drinkel.ow.org)
2557 		 */
2558 		if (skb_loop_sk(ptype, skb))
2559 			continue;
2560 
2561 		if (unlikely(pt_prev)) {
2562 			deliver_skb(skb2, pt_prev, skb->dev);
2563 			pt_prev = ptype;
2564 			continue;
2565 		}
2566 
2567 		/* need to clone skb, done only once */
2568 		skb2 = skb_clone(skb, GFP_ATOMIC);
2569 		if (!skb2)
2570 			goto out_unlock;
2571 
2572 		net_timestamp_set(skb2);
2573 
2574 		/* skb->nh should be correctly
2575 		 * set by sender, so that the second statement is
2576 		 * just protection against buggy protocols.
2577 		 */
2578 		skb_reset_mac_header(skb2);
2579 
2580 		if (skb_network_header(skb2) < skb2->data ||
2581 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2582 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2583 					     ntohs(skb2->protocol),
2584 					     dev->name);
2585 			skb_reset_network_header(skb2);
2586 		}
2587 
2588 		skb2->transport_header = skb2->network_header;
2589 		skb2->pkt_type = PACKET_OUTGOING;
2590 		pt_prev = ptype;
2591 	}
2592 
2593 	if (ptype_list != &dev->ptype_all) {
2594 		ptype_list = &dev->ptype_all;
2595 		goto again;
2596 	}
2597 out_unlock:
2598 	if (pt_prev) {
2599 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2600 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2601 		else
2602 			kfree_skb(skb2);
2603 	}
2604 	rcu_read_unlock();
2605 }
2606 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2607 
2608 /**
2609  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2610  * @dev: Network device
2611  * @txq: number of queues available
2612  *
2613  * If real_num_tx_queues is changed the tc mappings may no longer be
2614  * valid. To resolve this verify the tc mapping remains valid and if
2615  * not NULL the mapping. With no priorities mapping to this
2616  * offset/count pair it will no longer be used. In the worst case TC0
2617  * is invalid nothing can be done so disable priority mappings. If is
2618  * expected that drivers will fix this mapping if they can before
2619  * calling netif_set_real_num_tx_queues.
2620  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2621 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2622 {
2623 	int i;
2624 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2625 
2626 	/* If TC0 is invalidated disable TC mapping */
2627 	if (tc->offset + tc->count > txq) {
2628 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2629 		dev->num_tc = 0;
2630 		return;
2631 	}
2632 
2633 	/* Invalidated prio to tc mappings set to TC0 */
2634 	for (i = 1; i < TC_BITMASK + 1; i++) {
2635 		int q = netdev_get_prio_tc_map(dev, i);
2636 
2637 		tc = &dev->tc_to_txq[q];
2638 		if (tc->offset + tc->count > txq) {
2639 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2640 				    i, q);
2641 			netdev_set_prio_tc_map(dev, i, 0);
2642 		}
2643 	}
2644 }
2645 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2646 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2647 {
2648 	if (dev->num_tc) {
2649 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2650 		int i;
2651 
2652 		/* walk through the TCs and see if it falls into any of them */
2653 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2654 			if ((txq - tc->offset) < tc->count)
2655 				return i;
2656 		}
2657 
2658 		/* didn't find it, just return -1 to indicate no match */
2659 		return -1;
2660 	}
2661 
2662 	return 0;
2663 }
2664 EXPORT_SYMBOL(netdev_txq_to_tc);
2665 
2666 #ifdef CONFIG_XPS
2667 static struct static_key xps_needed __read_mostly;
2668 static struct static_key xps_rxqs_needed __read_mostly;
2669 static DEFINE_MUTEX(xps_map_mutex);
2670 #define xmap_dereference(P)		\
2671 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2672 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2673 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2674 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2675 {
2676 	struct xps_map *map = NULL;
2677 	int pos;
2678 
2679 	map = xmap_dereference(dev_maps->attr_map[tci]);
2680 	if (!map)
2681 		return false;
2682 
2683 	for (pos = map->len; pos--;) {
2684 		if (map->queues[pos] != index)
2685 			continue;
2686 
2687 		if (map->len > 1) {
2688 			map->queues[pos] = map->queues[--map->len];
2689 			break;
2690 		}
2691 
2692 		if (old_maps)
2693 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2694 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2695 		kfree_rcu(map, rcu);
2696 		return false;
2697 	}
2698 
2699 	return true;
2700 }
2701 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2702 static bool remove_xps_queue_cpu(struct net_device *dev,
2703 				 struct xps_dev_maps *dev_maps,
2704 				 int cpu, u16 offset, u16 count)
2705 {
2706 	int num_tc = dev_maps->num_tc;
2707 	bool active = false;
2708 	int tci;
2709 
2710 	for (tci = cpu * num_tc; num_tc--; tci++) {
2711 		int i, j;
2712 
2713 		for (i = count, j = offset; i--; j++) {
2714 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2715 				break;
2716 		}
2717 
2718 		active |= i < 0;
2719 	}
2720 
2721 	return active;
2722 }
2723 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2724 static void reset_xps_maps(struct net_device *dev,
2725 			   struct xps_dev_maps *dev_maps,
2726 			   enum xps_map_type type)
2727 {
2728 	static_key_slow_dec_cpuslocked(&xps_needed);
2729 	if (type == XPS_RXQS)
2730 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2731 
2732 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2733 
2734 	kfree_rcu(dev_maps, rcu);
2735 }
2736 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2737 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2738 			   u16 offset, u16 count)
2739 {
2740 	struct xps_dev_maps *dev_maps;
2741 	bool active = false;
2742 	int i, j;
2743 
2744 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2745 	if (!dev_maps)
2746 		return;
2747 
2748 	for (j = 0; j < dev_maps->nr_ids; j++)
2749 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2750 	if (!active)
2751 		reset_xps_maps(dev, dev_maps, type);
2752 
2753 	if (type == XPS_CPUS) {
2754 		for (i = offset + (count - 1); count--; i--)
2755 			netdev_queue_numa_node_write(
2756 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2757 	}
2758 }
2759 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2760 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2761 				   u16 count)
2762 {
2763 	if (!static_key_false(&xps_needed))
2764 		return;
2765 
2766 	cpus_read_lock();
2767 	mutex_lock(&xps_map_mutex);
2768 
2769 	if (static_key_false(&xps_rxqs_needed))
2770 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2771 
2772 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2773 
2774 	mutex_unlock(&xps_map_mutex);
2775 	cpus_read_unlock();
2776 }
2777 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2778 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2779 {
2780 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2781 }
2782 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2783 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2784 				      u16 index, bool is_rxqs_map)
2785 {
2786 	struct xps_map *new_map;
2787 	int alloc_len = XPS_MIN_MAP_ALLOC;
2788 	int i, pos;
2789 
2790 	for (pos = 0; map && pos < map->len; pos++) {
2791 		if (map->queues[pos] != index)
2792 			continue;
2793 		return map;
2794 	}
2795 
2796 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2797 	if (map) {
2798 		if (pos < map->alloc_len)
2799 			return map;
2800 
2801 		alloc_len = map->alloc_len * 2;
2802 	}
2803 
2804 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2805 	 *  map
2806 	 */
2807 	if (is_rxqs_map)
2808 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2809 	else
2810 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2811 				       cpu_to_node(attr_index));
2812 	if (!new_map)
2813 		return NULL;
2814 
2815 	for (i = 0; i < pos; i++)
2816 		new_map->queues[i] = map->queues[i];
2817 	new_map->alloc_len = alloc_len;
2818 	new_map->len = pos;
2819 
2820 	return new_map;
2821 }
2822 
2823 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2824 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2825 			      struct xps_dev_maps *new_dev_maps, int index,
2826 			      int tc, bool skip_tc)
2827 {
2828 	int i, tci = index * dev_maps->num_tc;
2829 	struct xps_map *map;
2830 
2831 	/* copy maps belonging to foreign traffic classes */
2832 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2833 		if (i == tc && skip_tc)
2834 			continue;
2835 
2836 		/* fill in the new device map from the old device map */
2837 		map = xmap_dereference(dev_maps->attr_map[tci]);
2838 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2839 	}
2840 }
2841 
2842 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2843 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2844 			  u16 index, enum xps_map_type type)
2845 {
2846 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2847 	const unsigned long *online_mask = NULL;
2848 	bool active = false, copy = false;
2849 	int i, j, tci, numa_node_id = -2;
2850 	int maps_sz, num_tc = 1, tc = 0;
2851 	struct xps_map *map, *new_map;
2852 	unsigned int nr_ids;
2853 
2854 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2855 
2856 	if (dev->num_tc) {
2857 		/* Do not allow XPS on subordinate device directly */
2858 		num_tc = dev->num_tc;
2859 		if (num_tc < 0)
2860 			return -EINVAL;
2861 
2862 		/* If queue belongs to subordinate dev use its map */
2863 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2864 
2865 		tc = netdev_txq_to_tc(dev, index);
2866 		if (tc < 0)
2867 			return -EINVAL;
2868 	}
2869 
2870 	mutex_lock(&xps_map_mutex);
2871 
2872 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2873 	if (type == XPS_RXQS) {
2874 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2875 		nr_ids = dev->num_rx_queues;
2876 	} else {
2877 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2878 		if (num_possible_cpus() > 1)
2879 			online_mask = cpumask_bits(cpu_online_mask);
2880 		nr_ids = nr_cpu_ids;
2881 	}
2882 
2883 	if (maps_sz < L1_CACHE_BYTES)
2884 		maps_sz = L1_CACHE_BYTES;
2885 
2886 	/* The old dev_maps could be larger or smaller than the one we're
2887 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2888 	 * between. We could try to be smart, but let's be safe instead and only
2889 	 * copy foreign traffic classes if the two map sizes match.
2890 	 */
2891 	if (dev_maps &&
2892 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2893 		copy = true;
2894 
2895 	/* allocate memory for queue storage */
2896 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2897 	     j < nr_ids;) {
2898 		if (!new_dev_maps) {
2899 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2900 			if (!new_dev_maps) {
2901 				mutex_unlock(&xps_map_mutex);
2902 				return -ENOMEM;
2903 			}
2904 
2905 			new_dev_maps->nr_ids = nr_ids;
2906 			new_dev_maps->num_tc = num_tc;
2907 		}
2908 
2909 		tci = j * num_tc + tc;
2910 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2911 
2912 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2913 		if (!map)
2914 			goto error;
2915 
2916 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2917 	}
2918 
2919 	if (!new_dev_maps)
2920 		goto out_no_new_maps;
2921 
2922 	if (!dev_maps) {
2923 		/* Increment static keys at most once per type */
2924 		static_key_slow_inc_cpuslocked(&xps_needed);
2925 		if (type == XPS_RXQS)
2926 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2927 	}
2928 
2929 	for (j = 0; j < nr_ids; j++) {
2930 		bool skip_tc = false;
2931 
2932 		tci = j * num_tc + tc;
2933 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2934 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2935 			/* add tx-queue to CPU/rx-queue maps */
2936 			int pos = 0;
2937 
2938 			skip_tc = true;
2939 
2940 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2941 			while ((pos < map->len) && (map->queues[pos] != index))
2942 				pos++;
2943 
2944 			if (pos == map->len)
2945 				map->queues[map->len++] = index;
2946 #ifdef CONFIG_NUMA
2947 			if (type == XPS_CPUS) {
2948 				if (numa_node_id == -2)
2949 					numa_node_id = cpu_to_node(j);
2950 				else if (numa_node_id != cpu_to_node(j))
2951 					numa_node_id = -1;
2952 			}
2953 #endif
2954 		}
2955 
2956 		if (copy)
2957 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2958 					  skip_tc);
2959 	}
2960 
2961 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2962 
2963 	/* Cleanup old maps */
2964 	if (!dev_maps)
2965 		goto out_no_old_maps;
2966 
2967 	for (j = 0; j < dev_maps->nr_ids; j++) {
2968 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2969 			map = xmap_dereference(dev_maps->attr_map[tci]);
2970 			if (!map)
2971 				continue;
2972 
2973 			if (copy) {
2974 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2975 				if (map == new_map)
2976 					continue;
2977 			}
2978 
2979 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2980 			kfree_rcu(map, rcu);
2981 		}
2982 	}
2983 
2984 	old_dev_maps = dev_maps;
2985 
2986 out_no_old_maps:
2987 	dev_maps = new_dev_maps;
2988 	active = true;
2989 
2990 out_no_new_maps:
2991 	if (type == XPS_CPUS)
2992 		/* update Tx queue numa node */
2993 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2994 					     (numa_node_id >= 0) ?
2995 					     numa_node_id : NUMA_NO_NODE);
2996 
2997 	if (!dev_maps)
2998 		goto out_no_maps;
2999 
3000 	/* removes tx-queue from unused CPUs/rx-queues */
3001 	for (j = 0; j < dev_maps->nr_ids; j++) {
3002 		tci = j * dev_maps->num_tc;
3003 
3004 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3005 			if (i == tc &&
3006 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3007 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3008 				continue;
3009 
3010 			active |= remove_xps_queue(dev_maps,
3011 						   copy ? old_dev_maps : NULL,
3012 						   tci, index);
3013 		}
3014 	}
3015 
3016 	if (old_dev_maps)
3017 		kfree_rcu(old_dev_maps, rcu);
3018 
3019 	/* free map if not active */
3020 	if (!active)
3021 		reset_xps_maps(dev, dev_maps, type);
3022 
3023 out_no_maps:
3024 	mutex_unlock(&xps_map_mutex);
3025 
3026 	return 0;
3027 error:
3028 	/* remove any maps that we added */
3029 	for (j = 0; j < nr_ids; j++) {
3030 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3031 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3032 			map = copy ?
3033 			      xmap_dereference(dev_maps->attr_map[tci]) :
3034 			      NULL;
3035 			if (new_map && new_map != map)
3036 				kfree(new_map);
3037 		}
3038 	}
3039 
3040 	mutex_unlock(&xps_map_mutex);
3041 
3042 	kfree(new_dev_maps);
3043 	return -ENOMEM;
3044 }
3045 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3046 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3047 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3048 			u16 index)
3049 {
3050 	int ret;
3051 
3052 	cpus_read_lock();
3053 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3054 	cpus_read_unlock();
3055 
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL(netif_set_xps_queue);
3059 
3060 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3061 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3062 {
3063 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3064 
3065 	/* Unbind any subordinate channels */
3066 	while (txq-- != &dev->_tx[0]) {
3067 		if (txq->sb_dev)
3068 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3069 	}
3070 }
3071 
netdev_reset_tc(struct net_device * dev)3072 void netdev_reset_tc(struct net_device *dev)
3073 {
3074 #ifdef CONFIG_XPS
3075 	netif_reset_xps_queues_gt(dev, 0);
3076 #endif
3077 	netdev_unbind_all_sb_channels(dev);
3078 
3079 	/* Reset TC configuration of device */
3080 	dev->num_tc = 0;
3081 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3082 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3083 }
3084 EXPORT_SYMBOL(netdev_reset_tc);
3085 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3086 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3087 {
3088 	if (tc >= dev->num_tc)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues(dev, offset, count);
3093 #endif
3094 	dev->tc_to_txq[tc].count = count;
3095 	dev->tc_to_txq[tc].offset = offset;
3096 	return 0;
3097 }
3098 EXPORT_SYMBOL(netdev_set_tc_queue);
3099 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3100 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3101 {
3102 	if (num_tc > TC_MAX_QUEUE)
3103 		return -EINVAL;
3104 
3105 #ifdef CONFIG_XPS
3106 	netif_reset_xps_queues_gt(dev, 0);
3107 #endif
3108 	netdev_unbind_all_sb_channels(dev);
3109 
3110 	dev->num_tc = num_tc;
3111 	return 0;
3112 }
3113 EXPORT_SYMBOL(netdev_set_num_tc);
3114 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3115 void netdev_unbind_sb_channel(struct net_device *dev,
3116 			      struct net_device *sb_dev)
3117 {
3118 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3119 
3120 #ifdef CONFIG_XPS
3121 	netif_reset_xps_queues_gt(sb_dev, 0);
3122 #endif
3123 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3124 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3125 
3126 	while (txq-- != &dev->_tx[0]) {
3127 		if (txq->sb_dev == sb_dev)
3128 			txq->sb_dev = NULL;
3129 	}
3130 }
3131 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3132 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3133 int netdev_bind_sb_channel_queue(struct net_device *dev,
3134 				 struct net_device *sb_dev,
3135 				 u8 tc, u16 count, u16 offset)
3136 {
3137 	/* Make certain the sb_dev and dev are already configured */
3138 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3139 		return -EINVAL;
3140 
3141 	/* We cannot hand out queues we don't have */
3142 	if ((offset + count) > dev->real_num_tx_queues)
3143 		return -EINVAL;
3144 
3145 	/* Record the mapping */
3146 	sb_dev->tc_to_txq[tc].count = count;
3147 	sb_dev->tc_to_txq[tc].offset = offset;
3148 
3149 	/* Provide a way for Tx queue to find the tc_to_txq map or
3150 	 * XPS map for itself.
3151 	 */
3152 	while (count--)
3153 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3154 
3155 	return 0;
3156 }
3157 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3158 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3159 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3160 {
3161 	/* Do not use a multiqueue device to represent a subordinate channel */
3162 	if (netif_is_multiqueue(dev))
3163 		return -ENODEV;
3164 
3165 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3166 	 * Channel 0 is meant to be "native" mode and used only to represent
3167 	 * the main root device. We allow writing 0 to reset the device back
3168 	 * to normal mode after being used as a subordinate channel.
3169 	 */
3170 	if (channel > S16_MAX)
3171 		return -EINVAL;
3172 
3173 	dev->num_tc = -channel;
3174 
3175 	return 0;
3176 }
3177 EXPORT_SYMBOL(netdev_set_sb_channel);
3178 
3179 /*
3180  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3181  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3182  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3183 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3184 {
3185 	bool disabling;
3186 	int rc;
3187 
3188 	disabling = txq < dev->real_num_tx_queues;
3189 
3190 	if (txq < 1 || txq > dev->num_tx_queues)
3191 		return -EINVAL;
3192 
3193 	if (dev->reg_state == NETREG_REGISTERED ||
3194 	    dev->reg_state == NETREG_UNREGISTERING) {
3195 		netdev_ops_assert_locked(dev);
3196 
3197 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3198 						  txq);
3199 		if (rc)
3200 			return rc;
3201 
3202 		if (dev->num_tc)
3203 			netif_setup_tc(dev, txq);
3204 
3205 		net_shaper_set_real_num_tx_queues(dev, txq);
3206 
3207 		dev_qdisc_change_real_num_tx(dev, txq);
3208 
3209 		dev->real_num_tx_queues = txq;
3210 
3211 		if (disabling) {
3212 			synchronize_net();
3213 			qdisc_reset_all_tx_gt(dev, txq);
3214 #ifdef CONFIG_XPS
3215 			netif_reset_xps_queues_gt(dev, txq);
3216 #endif
3217 		}
3218 	} else {
3219 		dev->real_num_tx_queues = txq;
3220 	}
3221 
3222 	return 0;
3223 }
3224 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3225 
3226 /**
3227  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3228  *	@dev: Network device
3229  *	@rxq: Actual number of RX queues
3230  *
3231  *	This must be called either with the rtnl_lock held or before
3232  *	registration of the net device.  Returns 0 on success, or a
3233  *	negative error code.  If called before registration, it always
3234  *	succeeds.
3235  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3236 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3237 {
3238 	int rc;
3239 
3240 	if (rxq < 1 || rxq > dev->num_rx_queues)
3241 		return -EINVAL;
3242 
3243 	if (dev->reg_state == NETREG_REGISTERED) {
3244 		netdev_ops_assert_locked(dev);
3245 
3246 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3247 						  rxq);
3248 		if (rc)
3249 			return rc;
3250 	}
3251 
3252 	dev->real_num_rx_queues = rxq;
3253 	return 0;
3254 }
3255 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3256 
3257 /**
3258  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3259  *	@dev: Network device
3260  *	@txq: Actual number of TX queues
3261  *	@rxq: Actual number of RX queues
3262  *
3263  *	Set the real number of both TX and RX queues.
3264  *	Does nothing if the number of queues is already correct.
3265  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3266 int netif_set_real_num_queues(struct net_device *dev,
3267 			      unsigned int txq, unsigned int rxq)
3268 {
3269 	unsigned int old_rxq = dev->real_num_rx_queues;
3270 	int err;
3271 
3272 	if (txq < 1 || txq > dev->num_tx_queues ||
3273 	    rxq < 1 || rxq > dev->num_rx_queues)
3274 		return -EINVAL;
3275 
3276 	/* Start from increases, so the error path only does decreases -
3277 	 * decreases can't fail.
3278 	 */
3279 	if (rxq > dev->real_num_rx_queues) {
3280 		err = netif_set_real_num_rx_queues(dev, rxq);
3281 		if (err)
3282 			return err;
3283 	}
3284 	if (txq > dev->real_num_tx_queues) {
3285 		err = netif_set_real_num_tx_queues(dev, txq);
3286 		if (err)
3287 			goto undo_rx;
3288 	}
3289 	if (rxq < dev->real_num_rx_queues)
3290 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3291 	if (txq < dev->real_num_tx_queues)
3292 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3293 
3294 	return 0;
3295 undo_rx:
3296 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3297 	return err;
3298 }
3299 EXPORT_SYMBOL(netif_set_real_num_queues);
3300 
3301 /**
3302  * netif_set_tso_max_size() - set the max size of TSO frames supported
3303  * @dev:	netdev to update
3304  * @size:	max skb->len of a TSO frame
3305  *
3306  * Set the limit on the size of TSO super-frames the device can handle.
3307  * Unless explicitly set the stack will assume the value of
3308  * %GSO_LEGACY_MAX_SIZE.
3309  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3310 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3311 {
3312 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3313 	if (size < READ_ONCE(dev->gso_max_size))
3314 		netif_set_gso_max_size(dev, size);
3315 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3316 		netif_set_gso_ipv4_max_size(dev, size);
3317 }
3318 EXPORT_SYMBOL(netif_set_tso_max_size);
3319 
3320 /**
3321  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3322  * @dev:	netdev to update
3323  * @segs:	max number of TCP segments
3324  *
3325  * Set the limit on the number of TCP segments the device can generate from
3326  * a single TSO super-frame.
3327  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3328  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3329 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3330 {
3331 	dev->tso_max_segs = segs;
3332 	if (segs < READ_ONCE(dev->gso_max_segs))
3333 		netif_set_gso_max_segs(dev, segs);
3334 }
3335 EXPORT_SYMBOL(netif_set_tso_max_segs);
3336 
3337 /**
3338  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3339  * @to:		netdev to update
3340  * @from:	netdev from which to copy the limits
3341  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3342 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3343 {
3344 	netif_set_tso_max_size(to, from->tso_max_size);
3345 	netif_set_tso_max_segs(to, from->tso_max_segs);
3346 }
3347 EXPORT_SYMBOL(netif_inherit_tso_max);
3348 
3349 /**
3350  * netif_get_num_default_rss_queues - default number of RSS queues
3351  *
3352  * Default value is the number of physical cores if there are only 1 or 2, or
3353  * divided by 2 if there are more.
3354  */
netif_get_num_default_rss_queues(void)3355 int netif_get_num_default_rss_queues(void)
3356 {
3357 	cpumask_var_t cpus;
3358 	int cpu, count = 0;
3359 
3360 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3361 		return 1;
3362 
3363 	cpumask_copy(cpus, cpu_online_mask);
3364 	for_each_cpu(cpu, cpus) {
3365 		++count;
3366 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3367 	}
3368 	free_cpumask_var(cpus);
3369 
3370 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3371 }
3372 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3373 
__netif_reschedule(struct Qdisc * q)3374 static void __netif_reschedule(struct Qdisc *q)
3375 {
3376 	struct softnet_data *sd;
3377 	unsigned long flags;
3378 
3379 	local_irq_save(flags);
3380 	sd = this_cpu_ptr(&softnet_data);
3381 	q->next_sched = NULL;
3382 	*sd->output_queue_tailp = q;
3383 	sd->output_queue_tailp = &q->next_sched;
3384 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3385 	local_irq_restore(flags);
3386 }
3387 
__netif_schedule(struct Qdisc * q)3388 void __netif_schedule(struct Qdisc *q)
3389 {
3390 	/* If q->defer_list is not empty, at least one thread is
3391 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3392 	 * This thread will attempt to run the queue.
3393 	 */
3394 	if (!llist_empty(&q->defer_list))
3395 		return;
3396 
3397 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3398 		__netif_reschedule(q);
3399 }
3400 EXPORT_SYMBOL(__netif_schedule);
3401 
3402 struct dev_kfree_skb_cb {
3403 	enum skb_drop_reason reason;
3404 };
3405 
get_kfree_skb_cb(const struct sk_buff * skb)3406 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3407 {
3408 	return (struct dev_kfree_skb_cb *)skb->cb;
3409 }
3410 
netif_schedule_queue(struct netdev_queue * txq)3411 void netif_schedule_queue(struct netdev_queue *txq)
3412 {
3413 	rcu_read_lock();
3414 	if (!netif_xmit_stopped(txq)) {
3415 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3416 
3417 		__netif_schedule(q);
3418 	}
3419 	rcu_read_unlock();
3420 }
3421 EXPORT_SYMBOL(netif_schedule_queue);
3422 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3423 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3424 {
3425 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3426 		struct Qdisc *q;
3427 
3428 		rcu_read_lock();
3429 		q = rcu_dereference(dev_queue->qdisc);
3430 		__netif_schedule(q);
3431 		rcu_read_unlock();
3432 	}
3433 }
3434 EXPORT_SYMBOL(netif_tx_wake_queue);
3435 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3436 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3437 {
3438 	unsigned long flags;
3439 
3440 	if (unlikely(!skb))
3441 		return;
3442 
3443 	if (likely(refcount_read(&skb->users) == 1)) {
3444 		smp_rmb();
3445 		refcount_set(&skb->users, 0);
3446 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3447 		return;
3448 	}
3449 	get_kfree_skb_cb(skb)->reason = reason;
3450 	local_irq_save(flags);
3451 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3452 	__this_cpu_write(softnet_data.completion_queue, skb);
3453 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3454 	local_irq_restore(flags);
3455 }
3456 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3457 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3458 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3459 {
3460 	if (in_hardirq() || irqs_disabled())
3461 		dev_kfree_skb_irq_reason(skb, reason);
3462 	else
3463 		kfree_skb_reason(skb, reason);
3464 }
3465 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3466 
3467 
3468 /**
3469  * netif_device_detach - mark device as removed
3470  * @dev: network device
3471  *
3472  * Mark device as removed from system and therefore no longer available.
3473  */
netif_device_detach(struct net_device * dev)3474 void netif_device_detach(struct net_device *dev)
3475 {
3476 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3477 	    netif_running(dev)) {
3478 		netif_tx_stop_all_queues(dev);
3479 	}
3480 }
3481 EXPORT_SYMBOL(netif_device_detach);
3482 
3483 /**
3484  * netif_device_attach - mark device as attached
3485  * @dev: network device
3486  *
3487  * Mark device as attached from system and restart if needed.
3488  */
netif_device_attach(struct net_device * dev)3489 void netif_device_attach(struct net_device *dev)
3490 {
3491 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3492 	    netif_running(dev)) {
3493 		netif_tx_wake_all_queues(dev);
3494 		netdev_watchdog_up(dev);
3495 	}
3496 }
3497 EXPORT_SYMBOL(netif_device_attach);
3498 
3499 /*
3500  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3501  * to be used as a distribution range.
3502  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3503 static u16 skb_tx_hash(const struct net_device *dev,
3504 		       const struct net_device *sb_dev,
3505 		       struct sk_buff *skb)
3506 {
3507 	u32 hash;
3508 	u16 qoffset = 0;
3509 	u16 qcount = dev->real_num_tx_queues;
3510 
3511 	if (dev->num_tc) {
3512 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3513 
3514 		qoffset = sb_dev->tc_to_txq[tc].offset;
3515 		qcount = sb_dev->tc_to_txq[tc].count;
3516 		if (unlikely(!qcount)) {
3517 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3518 					     sb_dev->name, qoffset, tc);
3519 			qoffset = 0;
3520 			qcount = dev->real_num_tx_queues;
3521 		}
3522 	}
3523 
3524 	if (skb_rx_queue_recorded(skb)) {
3525 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3526 		hash = skb_get_rx_queue(skb);
3527 		if (hash >= qoffset)
3528 			hash -= qoffset;
3529 		while (unlikely(hash >= qcount))
3530 			hash -= qcount;
3531 		return hash + qoffset;
3532 	}
3533 
3534 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3535 }
3536 
skb_warn_bad_offload(const struct sk_buff * skb)3537 void skb_warn_bad_offload(const struct sk_buff *skb)
3538 {
3539 	static const netdev_features_t null_features;
3540 	struct net_device *dev = skb->dev;
3541 	const char *name = "";
3542 
3543 	if (!net_ratelimit())
3544 		return;
3545 
3546 	if (dev) {
3547 		if (dev->dev.parent)
3548 			name = dev_driver_string(dev->dev.parent);
3549 		else
3550 			name = netdev_name(dev);
3551 	}
3552 	skb_dump(KERN_WARNING, skb, false);
3553 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3554 	     name, dev ? &dev->features : &null_features,
3555 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3556 }
3557 
3558 /*
3559  * Invalidate hardware checksum when packet is to be mangled, and
3560  * complete checksum manually on outgoing path.
3561  */
skb_checksum_help(struct sk_buff * skb)3562 int skb_checksum_help(struct sk_buff *skb)
3563 {
3564 	__wsum csum;
3565 	int ret = 0, offset;
3566 
3567 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3568 		goto out_set_summed;
3569 
3570 	if (unlikely(skb_is_gso(skb))) {
3571 		skb_warn_bad_offload(skb);
3572 		return -EINVAL;
3573 	}
3574 
3575 	if (!skb_frags_readable(skb)) {
3576 		return -EFAULT;
3577 	}
3578 
3579 	/* Before computing a checksum, we should make sure no frag could
3580 	 * be modified by an external entity : checksum could be wrong.
3581 	 */
3582 	if (skb_has_shared_frag(skb)) {
3583 		ret = __skb_linearize(skb);
3584 		if (ret)
3585 			goto out;
3586 	}
3587 
3588 	offset = skb_checksum_start_offset(skb);
3589 	ret = -EINVAL;
3590 	if (unlikely(offset >= skb_headlen(skb))) {
3591 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3592 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3593 			  offset, skb_headlen(skb));
3594 		goto out;
3595 	}
3596 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3597 
3598 	offset += skb->csum_offset;
3599 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3600 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3601 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3602 			  offset + sizeof(__sum16), skb_headlen(skb));
3603 		goto out;
3604 	}
3605 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3606 	if (ret)
3607 		goto out;
3608 
3609 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3610 out_set_summed:
3611 	skb->ip_summed = CHECKSUM_NONE;
3612 out:
3613 	return ret;
3614 }
3615 EXPORT_SYMBOL(skb_checksum_help);
3616 
3617 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3618 int skb_crc32c_csum_help(struct sk_buff *skb)
3619 {
3620 	u32 crc;
3621 	int ret = 0, offset, start;
3622 
3623 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3624 		goto out;
3625 
3626 	if (unlikely(skb_is_gso(skb)))
3627 		goto out;
3628 
3629 	/* Before computing a checksum, we should make sure no frag could
3630 	 * be modified by an external entity : checksum could be wrong.
3631 	 */
3632 	if (unlikely(skb_has_shared_frag(skb))) {
3633 		ret = __skb_linearize(skb);
3634 		if (ret)
3635 			goto out;
3636 	}
3637 	start = skb_checksum_start_offset(skb);
3638 	offset = start + offsetof(struct sctphdr, checksum);
3639 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3640 		ret = -EINVAL;
3641 		goto out;
3642 	}
3643 
3644 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3645 	if (ret)
3646 		goto out;
3647 
3648 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3649 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3650 	skb_reset_csum_not_inet(skb);
3651 out:
3652 	return ret;
3653 }
3654 EXPORT_SYMBOL(skb_crc32c_csum_help);
3655 #endif /* CONFIG_NET_CRC32C */
3656 
skb_network_protocol(struct sk_buff * skb,int * depth)3657 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3658 {
3659 	__be16 type = skb->protocol;
3660 
3661 	/* Tunnel gso handlers can set protocol to ethernet. */
3662 	if (type == htons(ETH_P_TEB)) {
3663 		struct ethhdr *eth;
3664 
3665 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3666 			return 0;
3667 
3668 		eth = (struct ethhdr *)skb->data;
3669 		type = eth->h_proto;
3670 	}
3671 
3672 	return vlan_get_protocol_and_depth(skb, type, depth);
3673 }
3674 
3675 
3676 /* Take action when hardware reception checksum errors are detected. */
3677 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3678 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3679 {
3680 	netdev_err(dev, "hw csum failure\n");
3681 	skb_dump(KERN_ERR, skb, true);
3682 	dump_stack();
3683 }
3684 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3685 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3686 {
3687 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3688 }
3689 EXPORT_SYMBOL(netdev_rx_csum_fault);
3690 #endif
3691 
3692 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3693 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3694 {
3695 #ifdef CONFIG_HIGHMEM
3696 	int i;
3697 
3698 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3699 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3700 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3701 			struct page *page = skb_frag_page(frag);
3702 
3703 			if (page && PageHighMem(page))
3704 				return 1;
3705 		}
3706 	}
3707 #endif
3708 	return 0;
3709 }
3710 
3711 /* If MPLS offload request, verify we are testing hardware MPLS features
3712  * instead of standard features for the netdev.
3713  */
3714 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3715 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3716 					   netdev_features_t features,
3717 					   __be16 type)
3718 {
3719 	if (eth_p_mpls(type))
3720 		features &= skb->dev->mpls_features;
3721 
3722 	return features;
3723 }
3724 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3725 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3726 					   netdev_features_t features,
3727 					   __be16 type)
3728 {
3729 	return features;
3730 }
3731 #endif
3732 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3733 static netdev_features_t harmonize_features(struct sk_buff *skb,
3734 	netdev_features_t features)
3735 {
3736 	__be16 type;
3737 
3738 	type = skb_network_protocol(skb, NULL);
3739 	features = net_mpls_features(skb, features, type);
3740 
3741 	if (skb->ip_summed != CHECKSUM_NONE &&
3742 	    !can_checksum_protocol(features, type)) {
3743 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3744 	}
3745 	if (illegal_highdma(skb->dev, skb))
3746 		features &= ~NETIF_F_SG;
3747 
3748 	return features;
3749 }
3750 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3751 netdev_features_t passthru_features_check(struct sk_buff *skb,
3752 					  struct net_device *dev,
3753 					  netdev_features_t features)
3754 {
3755 	return features;
3756 }
3757 EXPORT_SYMBOL(passthru_features_check);
3758 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3759 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3760 					     struct net_device *dev,
3761 					     netdev_features_t features)
3762 {
3763 	return vlan_features_check(skb, features);
3764 }
3765 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3766 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3767 					    struct net_device *dev,
3768 					    netdev_features_t features)
3769 {
3770 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3771 
3772 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3773 		return features & ~NETIF_F_GSO_MASK;
3774 
3775 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3776 		return features & ~NETIF_F_GSO_MASK;
3777 
3778 	if (!skb_shinfo(skb)->gso_type) {
3779 		skb_warn_bad_offload(skb);
3780 		return features & ~NETIF_F_GSO_MASK;
3781 	}
3782 
3783 	/* Support for GSO partial features requires software
3784 	 * intervention before we can actually process the packets
3785 	 * so we need to strip support for any partial features now
3786 	 * and we can pull them back in after we have partially
3787 	 * segmented the frame.
3788 	 */
3789 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3790 		features &= ~dev->gso_partial_features;
3791 
3792 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3793 	 * has the potential to be fragmented so that TSO does not generate
3794 	 * segments with the same ID. For encapsulated packets, the ID mangling
3795 	 * feature is guaranteed not to use the same ID for the outer IPv4
3796 	 * headers of the generated segments if the headers have the potential
3797 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3798 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3799 	 * segmentation-offloads.rst).
3800 	 */
3801 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3802 		struct iphdr *iph = skb->encapsulation ?
3803 				    inner_ip_hdr(skb) : ip_hdr(skb);
3804 
3805 		if (!(iph->frag_off & htons(IP_DF)))
3806 			features &= ~NETIF_F_TSO_MANGLEID;
3807 	}
3808 
3809 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3810 	 * so neither does TSO that depends on it.
3811 	 */
3812 	if (features & NETIF_F_IPV6_CSUM &&
3813 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3814 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3815 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3816 	    skb_transport_header_was_set(skb) &&
3817 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3818 	    !ipv6_has_hopopt_jumbo(skb))
3819 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3820 
3821 	return features;
3822 }
3823 
netif_skb_features(struct sk_buff * skb)3824 netdev_features_t netif_skb_features(struct sk_buff *skb)
3825 {
3826 	struct net_device *dev = skb->dev;
3827 	netdev_features_t features = dev->features;
3828 
3829 	if (skb_is_gso(skb))
3830 		features = gso_features_check(skb, dev, features);
3831 
3832 	/* If encapsulation offload request, verify we are testing
3833 	 * hardware encapsulation features instead of standard
3834 	 * features for the netdev
3835 	 */
3836 	if (skb->encapsulation)
3837 		features &= dev->hw_enc_features;
3838 
3839 	if (skb_vlan_tagged(skb))
3840 		features = netdev_intersect_features(features,
3841 						     dev->vlan_features |
3842 						     NETIF_F_HW_VLAN_CTAG_TX |
3843 						     NETIF_F_HW_VLAN_STAG_TX);
3844 
3845 	if (dev->netdev_ops->ndo_features_check)
3846 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3847 								features);
3848 	else
3849 		features &= dflt_features_check(skb, dev, features);
3850 
3851 	return harmonize_features(skb, features);
3852 }
3853 EXPORT_SYMBOL(netif_skb_features);
3854 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3855 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3856 		    struct netdev_queue *txq, bool more)
3857 {
3858 	unsigned int len;
3859 	int rc;
3860 
3861 	if (dev_nit_active_rcu(dev))
3862 		dev_queue_xmit_nit(skb, dev);
3863 
3864 	len = skb->len;
3865 	trace_net_dev_start_xmit(skb, dev);
3866 	rc = netdev_start_xmit(skb, dev, txq, more);
3867 	trace_net_dev_xmit(skb, rc, dev, len);
3868 
3869 	return rc;
3870 }
3871 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3872 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3873 				    struct netdev_queue *txq, int *ret)
3874 {
3875 	struct sk_buff *skb = first;
3876 	int rc = NETDEV_TX_OK;
3877 
3878 	while (skb) {
3879 		struct sk_buff *next = skb->next;
3880 
3881 		skb_mark_not_on_list(skb);
3882 		rc = xmit_one(skb, dev, txq, next != NULL);
3883 		if (unlikely(!dev_xmit_complete(rc))) {
3884 			skb->next = next;
3885 			goto out;
3886 		}
3887 
3888 		skb = next;
3889 		if (netif_tx_queue_stopped(txq) && skb) {
3890 			rc = NETDEV_TX_BUSY;
3891 			break;
3892 		}
3893 	}
3894 
3895 out:
3896 	*ret = rc;
3897 	return skb;
3898 }
3899 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3900 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3901 					  netdev_features_t features)
3902 {
3903 	if (skb_vlan_tag_present(skb) &&
3904 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3905 		skb = __vlan_hwaccel_push_inside(skb);
3906 	return skb;
3907 }
3908 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3909 int skb_csum_hwoffload_help(struct sk_buff *skb,
3910 			    const netdev_features_t features)
3911 {
3912 	if (unlikely(skb_csum_is_sctp(skb)))
3913 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3914 			skb_crc32c_csum_help(skb);
3915 
3916 	if (features & NETIF_F_HW_CSUM)
3917 		return 0;
3918 
3919 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3920 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3921 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3922 		    !ipv6_has_hopopt_jumbo(skb))
3923 			goto sw_checksum;
3924 
3925 		switch (skb->csum_offset) {
3926 		case offsetof(struct tcphdr, check):
3927 		case offsetof(struct udphdr, check):
3928 			return 0;
3929 		}
3930 	}
3931 
3932 sw_checksum:
3933 	return skb_checksum_help(skb);
3934 }
3935 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3936 
3937 /* Checks if this SKB belongs to an HW offloaded socket
3938  * and whether any SW fallbacks are required based on dev.
3939  * Check decrypted mark in case skb_orphan() cleared socket.
3940  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3941 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3942 					    struct net_device *dev)
3943 {
3944 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3945 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3946 				       struct sk_buff *skb);
3947 	struct sock *sk = skb->sk;
3948 
3949 	sk_validate = NULL;
3950 	if (sk) {
3951 		if (sk_fullsock(sk))
3952 			sk_validate = sk->sk_validate_xmit_skb;
3953 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3954 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3955 	}
3956 
3957 	if (sk_validate) {
3958 		skb = sk_validate(sk, dev, skb);
3959 	} else if (unlikely(skb_is_decrypted(skb))) {
3960 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3961 		kfree_skb(skb);
3962 		skb = NULL;
3963 	}
3964 #endif
3965 
3966 	return skb;
3967 }
3968 
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3969 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3970 						    struct net_device *dev)
3971 {
3972 	struct skb_shared_info *shinfo;
3973 	struct net_iov *niov;
3974 
3975 	if (likely(skb_frags_readable(skb)))
3976 		goto out;
3977 
3978 	if (!dev->netmem_tx)
3979 		goto out_free;
3980 
3981 	shinfo = skb_shinfo(skb);
3982 
3983 	if (shinfo->nr_frags > 0) {
3984 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3985 		if (net_is_devmem_iov(niov) &&
3986 		    net_devmem_iov_binding(niov)->dev != dev)
3987 			goto out_free;
3988 	}
3989 
3990 out:
3991 	return skb;
3992 
3993 out_free:
3994 	kfree_skb(skb);
3995 	return NULL;
3996 }
3997 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3998 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3999 {
4000 	netdev_features_t features;
4001 
4002 	skb = validate_xmit_unreadable_skb(skb, dev);
4003 	if (unlikely(!skb))
4004 		goto out_null;
4005 
4006 	features = netif_skb_features(skb);
4007 	skb = validate_xmit_vlan(skb, features);
4008 	if (unlikely(!skb))
4009 		goto out_null;
4010 
4011 	skb = sk_validate_xmit_skb(skb, dev);
4012 	if (unlikely(!skb))
4013 		goto out_null;
4014 
4015 	if (netif_needs_gso(skb, features)) {
4016 		struct sk_buff *segs;
4017 
4018 		segs = skb_gso_segment(skb, features);
4019 		if (IS_ERR(segs)) {
4020 			goto out_kfree_skb;
4021 		} else if (segs) {
4022 			consume_skb(skb);
4023 			skb = segs;
4024 		}
4025 	} else {
4026 		if (skb_needs_linearize(skb, features) &&
4027 		    __skb_linearize(skb))
4028 			goto out_kfree_skb;
4029 
4030 		/* If packet is not checksummed and device does not
4031 		 * support checksumming for this protocol, complete
4032 		 * checksumming here.
4033 		 */
4034 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4035 			if (skb->encapsulation)
4036 				skb_set_inner_transport_header(skb,
4037 							       skb_checksum_start_offset(skb));
4038 			else
4039 				skb_set_transport_header(skb,
4040 							 skb_checksum_start_offset(skb));
4041 			if (skb_csum_hwoffload_help(skb, features))
4042 				goto out_kfree_skb;
4043 		}
4044 	}
4045 
4046 	skb = validate_xmit_xfrm(skb, features, again);
4047 
4048 	return skb;
4049 
4050 out_kfree_skb:
4051 	kfree_skb(skb);
4052 out_null:
4053 	dev_core_stats_tx_dropped_inc(dev);
4054 	return NULL;
4055 }
4056 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4057 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4058 {
4059 	struct sk_buff *next, *head = NULL, *tail;
4060 
4061 	for (; skb != NULL; skb = next) {
4062 		next = skb->next;
4063 		skb_mark_not_on_list(skb);
4064 
4065 		/* in case skb won't be segmented, point to itself */
4066 		skb->prev = skb;
4067 
4068 		skb = validate_xmit_skb(skb, dev, again);
4069 		if (!skb)
4070 			continue;
4071 
4072 		if (!head)
4073 			head = skb;
4074 		else
4075 			tail->next = skb;
4076 		/* If skb was segmented, skb->prev points to
4077 		 * the last segment. If not, it still contains skb.
4078 		 */
4079 		tail = skb->prev;
4080 	}
4081 	return head;
4082 }
4083 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4084 
qdisc_pkt_len_segs_init(struct sk_buff * skb)4085 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4086 {
4087 	struct skb_shared_info *shinfo = skb_shinfo(skb);
4088 	u16 gso_segs;
4089 
4090 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4091 	if (!shinfo->gso_size) {
4092 		qdisc_skb_cb(skb)->pkt_segs = 1;
4093 		return;
4094 	}
4095 
4096 	qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4097 
4098 	/* To get more precise estimation of bytes sent on wire,
4099 	 * we add to pkt_len the headers size of all segments
4100 	 */
4101 	if (skb_transport_header_was_set(skb)) {
4102 		unsigned int hdr_len;
4103 
4104 		/* mac layer + network layer */
4105 		if (!skb->encapsulation)
4106 			hdr_len = skb_transport_offset(skb);
4107 		else
4108 			hdr_len = skb_inner_transport_offset(skb);
4109 
4110 		/* + transport layer */
4111 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4112 			const struct tcphdr *th;
4113 			struct tcphdr _tcphdr;
4114 
4115 			th = skb_header_pointer(skb, hdr_len,
4116 						sizeof(_tcphdr), &_tcphdr);
4117 			if (likely(th))
4118 				hdr_len += __tcp_hdrlen(th);
4119 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4120 			struct udphdr _udphdr;
4121 
4122 			if (skb_header_pointer(skb, hdr_len,
4123 					       sizeof(_udphdr), &_udphdr))
4124 				hdr_len += sizeof(struct udphdr);
4125 		}
4126 
4127 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4128 			int payload = skb->len - hdr_len;
4129 
4130 			/* Malicious packet. */
4131 			if (payload <= 0)
4132 				return;
4133 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4134 			shinfo->gso_segs = gso_segs;
4135 			qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4136 		}
4137 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4138 	}
4139 }
4140 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4141 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4142 			     struct sk_buff **to_free,
4143 			     struct netdev_queue *txq)
4144 {
4145 	int rc;
4146 
4147 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4148 	if (rc == NET_XMIT_SUCCESS)
4149 		trace_qdisc_enqueue(q, txq, skb);
4150 	return rc;
4151 }
4152 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4153 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4154 				 struct net_device *dev,
4155 				 struct netdev_queue *txq)
4156 {
4157 	struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4158 	spinlock_t *root_lock = qdisc_lock(q);
4159 	struct llist_node *ll_list, *first_n;
4160 	unsigned long defer_count = 0;
4161 	int rc;
4162 
4163 	qdisc_calculate_pkt_len(skb, q);
4164 
4165 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4166 
4167 	if (q->flags & TCQ_F_NOLOCK) {
4168 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4169 		    qdisc_run_begin(q)) {
4170 			/* Retest nolock_qdisc_is_empty() within the protection
4171 			 * of q->seqlock to protect from racing with requeuing.
4172 			 */
4173 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4174 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4175 				__qdisc_run(q);
4176 				to_free2 = qdisc_run_end(q);
4177 
4178 				goto free_skbs;
4179 			}
4180 
4181 			qdisc_bstats_cpu_update(q, skb);
4182 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4183 			    !nolock_qdisc_is_empty(q))
4184 				__qdisc_run(q);
4185 
4186 			to_free2 = qdisc_run_end(q);
4187 			rc = NET_XMIT_SUCCESS;
4188 			goto free_skbs;
4189 		}
4190 
4191 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4192 		to_free2 = qdisc_run(q);
4193 		goto free_skbs;
4194 	}
4195 
4196 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4197 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4198 	 * at most once to limit the number of skbs in defer_list.
4199 	 * We perform the defer_count increment only if the list is not empty,
4200 	 * because some arches have slow atomic_long_inc_return().
4201 	 */
4202 	first_n = READ_ONCE(q->defer_list.first);
4203 	do {
4204 		if (first_n && !defer_count) {
4205 			defer_count = atomic_long_inc_return(&q->defer_count);
4206 			if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4207 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4208 				return NET_XMIT_DROP;
4209 			}
4210 		}
4211 		skb->ll_node.next = first_n;
4212 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4213 
4214 	/* If defer_list was not empty, we know the cpu which queued
4215 	 * the first skb will process the whole list for us.
4216 	 */
4217 	if (first_n)
4218 		return NET_XMIT_SUCCESS;
4219 
4220 	spin_lock(root_lock);
4221 
4222 	ll_list = llist_del_all(&q->defer_list);
4223 	/* There is a small race because we clear defer_count not atomically
4224 	 * with the prior llist_del_all(). This means defer_list could grow
4225 	 * over qdisc_max_burst.
4226 	 */
4227 	atomic_long_set(&q->defer_count, 0);
4228 
4229 	ll_list = llist_reverse_order(ll_list);
4230 
4231 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4232 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4233 			__qdisc_drop(skb, &to_free);
4234 		rc = NET_XMIT_DROP;
4235 		goto unlock;
4236 	}
4237 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4238 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4239 		/*
4240 		 * This is a work-conserving queue; there are no old skbs
4241 		 * waiting to be sent out; and the qdisc is not running -
4242 		 * xmit the skb directly.
4243 		 */
4244 
4245 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4246 							  struct sk_buff,
4247 							  ll_node));
4248 		qdisc_bstats_update(q, skb);
4249 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4250 			__qdisc_run(q);
4251 		to_free2 = qdisc_run_end(q);
4252 		rc = NET_XMIT_SUCCESS;
4253 	} else {
4254 		int count = 0;
4255 
4256 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4257 			if (next) {
4258 				prefetch(next);
4259 				prefetch(&next->priority);
4260 				skb_mark_not_on_list(skb);
4261 			}
4262 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4263 			count++;
4264 		}
4265 		to_free2 = qdisc_run(q);
4266 		if (count != 1)
4267 			rc = NET_XMIT_SUCCESS;
4268 	}
4269 unlock:
4270 	spin_unlock(root_lock);
4271 
4272 free_skbs:
4273 	tcf_kfree_skb_list(to_free);
4274 	tcf_kfree_skb_list(to_free2);
4275 	return rc;
4276 }
4277 
4278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4279 static void skb_update_prio(struct sk_buff *skb)
4280 {
4281 	const struct netprio_map *map;
4282 	const struct sock *sk;
4283 	unsigned int prioidx;
4284 
4285 	if (skb->priority)
4286 		return;
4287 	map = rcu_dereference_bh(skb->dev->priomap);
4288 	if (!map)
4289 		return;
4290 	sk = skb_to_full_sk(skb);
4291 	if (!sk)
4292 		return;
4293 
4294 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4295 
4296 	if (prioidx < map->priomap_len)
4297 		skb->priority = map->priomap[prioidx];
4298 }
4299 #else
4300 #define skb_update_prio(skb)
4301 #endif
4302 
4303 /**
4304  *	dev_loopback_xmit - loop back @skb
4305  *	@net: network namespace this loopback is happening in
4306  *	@sk:  sk needed to be a netfilter okfn
4307  *	@skb: buffer to transmit
4308  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4309 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4310 {
4311 	skb_reset_mac_header(skb);
4312 	__skb_pull(skb, skb_network_offset(skb));
4313 	skb->pkt_type = PACKET_LOOPBACK;
4314 	if (skb->ip_summed == CHECKSUM_NONE)
4315 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4316 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4317 	skb_dst_force(skb);
4318 	netif_rx(skb);
4319 	return 0;
4320 }
4321 EXPORT_SYMBOL(dev_loopback_xmit);
4322 
4323 #ifdef CONFIG_NET_EGRESS
4324 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4325 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4326 {
4327 	int qm = skb_get_queue_mapping(skb);
4328 
4329 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4330 }
4331 
4332 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4333 static bool netdev_xmit_txqueue_skipped(void)
4334 {
4335 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4336 }
4337 
netdev_xmit_skip_txqueue(bool skip)4338 void netdev_xmit_skip_txqueue(bool skip)
4339 {
4340 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4341 }
4342 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4343 
4344 #else
netdev_xmit_txqueue_skipped(void)4345 static bool netdev_xmit_txqueue_skipped(void)
4346 {
4347 	return current->net_xmit.skip_txqueue;
4348 }
4349 
netdev_xmit_skip_txqueue(bool skip)4350 void netdev_xmit_skip_txqueue(bool skip)
4351 {
4352 	current->net_xmit.skip_txqueue = skip;
4353 }
4354 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4355 #endif
4356 #endif /* CONFIG_NET_EGRESS */
4357 
4358 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4359 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4360 		  enum skb_drop_reason *drop_reason)
4361 {
4362 	int ret = TC_ACT_UNSPEC;
4363 #ifdef CONFIG_NET_CLS_ACT
4364 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4365 	struct tcf_result res;
4366 
4367 	if (!miniq)
4368 		return ret;
4369 
4370 	/* Global bypass */
4371 	if (!static_branch_likely(&tcf_sw_enabled_key))
4372 		return ret;
4373 
4374 	/* Block-wise bypass */
4375 	if (tcf_block_bypass_sw(miniq->block))
4376 		return ret;
4377 
4378 	tc_skb_cb(skb)->mru = 0;
4379 	qdisc_skb_cb(skb)->post_ct = false;
4380 	tcf_set_drop_reason(skb, *drop_reason);
4381 
4382 	mini_qdisc_bstats_cpu_update(miniq, skb);
4383 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4384 	/* Only tcf related quirks below. */
4385 	switch (ret) {
4386 	case TC_ACT_SHOT:
4387 		*drop_reason = tcf_get_drop_reason(skb);
4388 		mini_qdisc_qstats_cpu_drop(miniq);
4389 		break;
4390 	case TC_ACT_OK:
4391 	case TC_ACT_RECLASSIFY:
4392 		skb->tc_index = TC_H_MIN(res.classid);
4393 		break;
4394 	}
4395 #endif /* CONFIG_NET_CLS_ACT */
4396 	return ret;
4397 }
4398 
4399 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4400 
tcx_inc(void)4401 void tcx_inc(void)
4402 {
4403 	static_branch_inc(&tcx_needed_key);
4404 }
4405 
tcx_dec(void)4406 void tcx_dec(void)
4407 {
4408 	static_branch_dec(&tcx_needed_key);
4409 }
4410 
4411 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4412 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4413 	const bool needs_mac)
4414 {
4415 	const struct bpf_mprog_fp *fp;
4416 	const struct bpf_prog *prog;
4417 	int ret = TCX_NEXT;
4418 
4419 	if (needs_mac)
4420 		__skb_push(skb, skb->mac_len);
4421 	bpf_mprog_foreach_prog(entry, fp, prog) {
4422 		bpf_compute_data_pointers(skb);
4423 		ret = bpf_prog_run(prog, skb);
4424 		if (ret != TCX_NEXT)
4425 			break;
4426 	}
4427 	if (needs_mac)
4428 		__skb_pull(skb, skb->mac_len);
4429 	return tcx_action_code(skb, ret);
4430 }
4431 
4432 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4433 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4434 		   struct net_device *orig_dev, bool *another)
4435 {
4436 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4437 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4438 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4439 	int sch_ret;
4440 
4441 	if (!entry)
4442 		return skb;
4443 
4444 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4445 	if (unlikely(*pt_prev)) {
4446 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4447 		*pt_prev = NULL;
4448 	}
4449 
4450 	qdisc_pkt_len_segs_init(skb);
4451 	tcx_set_ingress(skb, true);
4452 
4453 	if (static_branch_unlikely(&tcx_needed_key)) {
4454 		sch_ret = tcx_run(entry, skb, true);
4455 		if (sch_ret != TC_ACT_UNSPEC)
4456 			goto ingress_verdict;
4457 	}
4458 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4459 ingress_verdict:
4460 	switch (sch_ret) {
4461 	case TC_ACT_REDIRECT:
4462 		/* skb_mac_header check was done by BPF, so we can safely
4463 		 * push the L2 header back before redirecting to another
4464 		 * netdev.
4465 		 */
4466 		__skb_push(skb, skb->mac_len);
4467 		if (skb_do_redirect(skb) == -EAGAIN) {
4468 			__skb_pull(skb, skb->mac_len);
4469 			*another = true;
4470 			break;
4471 		}
4472 		*ret = NET_RX_SUCCESS;
4473 		bpf_net_ctx_clear(bpf_net_ctx);
4474 		return NULL;
4475 	case TC_ACT_SHOT:
4476 		kfree_skb_reason(skb, drop_reason);
4477 		*ret = NET_RX_DROP;
4478 		bpf_net_ctx_clear(bpf_net_ctx);
4479 		return NULL;
4480 	/* used by tc_run */
4481 	case TC_ACT_STOLEN:
4482 	case TC_ACT_QUEUED:
4483 	case TC_ACT_TRAP:
4484 		consume_skb(skb);
4485 		fallthrough;
4486 	case TC_ACT_CONSUMED:
4487 		*ret = NET_RX_SUCCESS;
4488 		bpf_net_ctx_clear(bpf_net_ctx);
4489 		return NULL;
4490 	}
4491 	bpf_net_ctx_clear(bpf_net_ctx);
4492 
4493 	return skb;
4494 }
4495 
4496 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4497 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4498 {
4499 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4500 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4501 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4502 	int sch_ret;
4503 
4504 	if (!entry)
4505 		return skb;
4506 
4507 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4508 
4509 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4510 	 * already set by the caller.
4511 	 */
4512 	if (static_branch_unlikely(&tcx_needed_key)) {
4513 		sch_ret = tcx_run(entry, skb, false);
4514 		if (sch_ret != TC_ACT_UNSPEC)
4515 			goto egress_verdict;
4516 	}
4517 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4518 egress_verdict:
4519 	switch (sch_ret) {
4520 	case TC_ACT_REDIRECT:
4521 		/* No need to push/pop skb's mac_header here on egress! */
4522 		skb_do_redirect(skb);
4523 		*ret = NET_XMIT_SUCCESS;
4524 		bpf_net_ctx_clear(bpf_net_ctx);
4525 		return NULL;
4526 	case TC_ACT_SHOT:
4527 		kfree_skb_reason(skb, drop_reason);
4528 		*ret = NET_XMIT_DROP;
4529 		bpf_net_ctx_clear(bpf_net_ctx);
4530 		return NULL;
4531 	/* used by tc_run */
4532 	case TC_ACT_STOLEN:
4533 	case TC_ACT_QUEUED:
4534 	case TC_ACT_TRAP:
4535 		consume_skb(skb);
4536 		fallthrough;
4537 	case TC_ACT_CONSUMED:
4538 		*ret = NET_XMIT_SUCCESS;
4539 		bpf_net_ctx_clear(bpf_net_ctx);
4540 		return NULL;
4541 	}
4542 	bpf_net_ctx_clear(bpf_net_ctx);
4543 
4544 	return skb;
4545 }
4546 #else
4547 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4548 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4549 		   struct net_device *orig_dev, bool *another)
4550 {
4551 	return skb;
4552 }
4553 
4554 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4555 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4556 {
4557 	return skb;
4558 }
4559 #endif /* CONFIG_NET_XGRESS */
4560 
4561 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4563 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4564 {
4565 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4566 	struct xps_map *map;
4567 	int queue_index = -1;
4568 
4569 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4570 		return queue_index;
4571 
4572 	tci *= dev_maps->num_tc;
4573 	tci += tc;
4574 
4575 	map = rcu_dereference(dev_maps->attr_map[tci]);
4576 	if (map) {
4577 		if (map->len == 1)
4578 			queue_index = map->queues[0];
4579 		else
4580 			queue_index = map->queues[reciprocal_scale(
4581 						skb_get_hash(skb), map->len)];
4582 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4583 			queue_index = -1;
4584 	}
4585 	return queue_index;
4586 }
4587 #endif
4588 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4589 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4590 			 struct sk_buff *skb)
4591 {
4592 #ifdef CONFIG_XPS
4593 	struct xps_dev_maps *dev_maps;
4594 	struct sock *sk = skb->sk;
4595 	int queue_index = -1;
4596 
4597 	if (!static_key_false(&xps_needed))
4598 		return -1;
4599 
4600 	rcu_read_lock();
4601 	if (!static_key_false(&xps_rxqs_needed))
4602 		goto get_cpus_map;
4603 
4604 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4605 	if (dev_maps) {
4606 		int tci = sk_rx_queue_get(sk);
4607 
4608 		if (tci >= 0)
4609 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4610 							  tci);
4611 	}
4612 
4613 get_cpus_map:
4614 	if (queue_index < 0) {
4615 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4616 		if (dev_maps) {
4617 			unsigned int tci = skb->sender_cpu - 1;
4618 
4619 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4620 							  tci);
4621 		}
4622 	}
4623 	rcu_read_unlock();
4624 
4625 	return queue_index;
4626 #else
4627 	return -1;
4628 #endif
4629 }
4630 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4631 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4632 		     struct net_device *sb_dev)
4633 {
4634 	return 0;
4635 }
4636 EXPORT_SYMBOL(dev_pick_tx_zero);
4637 
sk_tx_queue_get(const struct sock * sk)4638 int sk_tx_queue_get(const struct sock *sk)
4639 {
4640 	int resel, val;
4641 
4642 	if (!sk)
4643 		return -1;
4644 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4645 	 * and sk_tx_queue_set().
4646 	 */
4647 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4648 
4649 	if (val == NO_QUEUE_MAPPING)
4650 		return -1;
4651 
4652 	if (!sk_fullsock(sk))
4653 		return val;
4654 
4655 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4656 	if (resel && time_is_before_jiffies(
4657 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4658 		return -1;
4659 
4660 	return val;
4661 }
4662 EXPORT_SYMBOL(sk_tx_queue_get);
4663 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4664 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4665 		     struct net_device *sb_dev)
4666 {
4667 	struct sock *sk = skb->sk;
4668 	int queue_index = sk_tx_queue_get(sk);
4669 
4670 	sb_dev = sb_dev ? : dev;
4671 
4672 	if (queue_index < 0 || skb->ooo_okay ||
4673 	    queue_index >= dev->real_num_tx_queues) {
4674 		int new_index = get_xps_queue(dev, sb_dev, skb);
4675 
4676 		if (new_index < 0)
4677 			new_index = skb_tx_hash(dev, sb_dev, skb);
4678 
4679 		if (sk && sk_fullsock(sk) &&
4680 		    rcu_access_pointer(sk->sk_dst_cache))
4681 			sk_tx_queue_set(sk, new_index);
4682 
4683 		queue_index = new_index;
4684 	}
4685 
4686 	return queue_index;
4687 }
4688 EXPORT_SYMBOL(netdev_pick_tx);
4689 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4690 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4691 					 struct sk_buff *skb,
4692 					 struct net_device *sb_dev)
4693 {
4694 	int queue_index = 0;
4695 
4696 #ifdef CONFIG_XPS
4697 	u32 sender_cpu = skb->sender_cpu - 1;
4698 
4699 	if (sender_cpu >= (u32)NR_CPUS)
4700 		skb->sender_cpu = raw_smp_processor_id() + 1;
4701 #endif
4702 
4703 	if (dev->real_num_tx_queues != 1) {
4704 		const struct net_device_ops *ops = dev->netdev_ops;
4705 
4706 		if (ops->ndo_select_queue)
4707 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4708 		else
4709 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4710 
4711 		queue_index = netdev_cap_txqueue(dev, queue_index);
4712 	}
4713 
4714 	skb_set_queue_mapping(skb, queue_index);
4715 	return netdev_get_tx_queue(dev, queue_index);
4716 }
4717 
4718 /**
4719  * __dev_queue_xmit() - transmit a buffer
4720  * @skb:	buffer to transmit
4721  * @sb_dev:	suboordinate device used for L2 forwarding offload
4722  *
4723  * Queue a buffer for transmission to a network device. The caller must
4724  * have set the device and priority and built the buffer before calling
4725  * this function. The function can be called from an interrupt.
4726  *
4727  * When calling this method, interrupts MUST be enabled. This is because
4728  * the BH enable code must have IRQs enabled so that it will not deadlock.
4729  *
4730  * Regardless of the return value, the skb is consumed, so it is currently
4731  * difficult to retry a send to this method. (You can bump the ref count
4732  * before sending to hold a reference for retry if you are careful.)
4733  *
4734  * Return:
4735  * * 0				- buffer successfully transmitted
4736  * * positive qdisc return code	- NET_XMIT_DROP etc.
4737  * * negative errno		- other errors
4738  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4739 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4740 {
4741 	struct net_device *dev = skb->dev;
4742 	struct netdev_queue *txq = NULL;
4743 	struct Qdisc *q;
4744 	int rc = -ENOMEM;
4745 	bool again = false;
4746 
4747 	skb_reset_mac_header(skb);
4748 	skb_assert_len(skb);
4749 
4750 	if (unlikely(skb_shinfo(skb)->tx_flags &
4751 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4752 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4753 
4754 	/* Disable soft irqs for various locks below. Also
4755 	 * stops preemption for RCU.
4756 	 */
4757 	rcu_read_lock_bh();
4758 
4759 	skb_update_prio(skb);
4760 
4761 	qdisc_pkt_len_segs_init(skb);
4762 	tcx_set_ingress(skb, false);
4763 #ifdef CONFIG_NET_EGRESS
4764 	if (static_branch_unlikely(&egress_needed_key)) {
4765 		if (nf_hook_egress_active()) {
4766 			skb = nf_hook_egress(skb, &rc, dev);
4767 			if (!skb)
4768 				goto out;
4769 		}
4770 
4771 		netdev_xmit_skip_txqueue(false);
4772 
4773 		nf_skip_egress(skb, true);
4774 		skb = sch_handle_egress(skb, &rc, dev);
4775 		if (!skb)
4776 			goto out;
4777 		nf_skip_egress(skb, false);
4778 
4779 		if (netdev_xmit_txqueue_skipped())
4780 			txq = netdev_tx_queue_mapping(dev, skb);
4781 	}
4782 #endif
4783 	/* If device/qdisc don't need skb->dst, release it right now while
4784 	 * its hot in this cpu cache.
4785 	 */
4786 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4787 		skb_dst_drop(skb);
4788 	else
4789 		skb_dst_force(skb);
4790 
4791 	if (!txq)
4792 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4793 
4794 	q = rcu_dereference_bh(txq->qdisc);
4795 
4796 	trace_net_dev_queue(skb);
4797 	if (q->enqueue) {
4798 		rc = __dev_xmit_skb(skb, q, dev, txq);
4799 		goto out;
4800 	}
4801 
4802 	/* The device has no queue. Common case for software devices:
4803 	 * loopback, all the sorts of tunnels...
4804 
4805 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4806 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4807 	 * counters.)
4808 	 * However, it is possible, that they rely on protection
4809 	 * made by us here.
4810 
4811 	 * Check this and shot the lock. It is not prone from deadlocks.
4812 	 *Either shot noqueue qdisc, it is even simpler 8)
4813 	 */
4814 	if (dev->flags & IFF_UP) {
4815 		int cpu = smp_processor_id(); /* ok because BHs are off */
4816 
4817 		/* Other cpus might concurrently change txq->xmit_lock_owner
4818 		 * to -1 or to their cpu id, but not to our id.
4819 		 */
4820 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4821 			if (dev_xmit_recursion())
4822 				goto recursion_alert;
4823 
4824 			skb = validate_xmit_skb(skb, dev, &again);
4825 			if (!skb)
4826 				goto out;
4827 
4828 			HARD_TX_LOCK(dev, txq, cpu);
4829 
4830 			if (!netif_xmit_stopped(txq)) {
4831 				dev_xmit_recursion_inc();
4832 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4833 				dev_xmit_recursion_dec();
4834 				if (dev_xmit_complete(rc)) {
4835 					HARD_TX_UNLOCK(dev, txq);
4836 					goto out;
4837 				}
4838 			}
4839 			HARD_TX_UNLOCK(dev, txq);
4840 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4841 					     dev->name);
4842 		} else {
4843 			/* Recursion is detected! It is possible,
4844 			 * unfortunately
4845 			 */
4846 recursion_alert:
4847 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4848 					     dev->name);
4849 		}
4850 	}
4851 
4852 	rc = -ENETDOWN;
4853 	rcu_read_unlock_bh();
4854 
4855 	dev_core_stats_tx_dropped_inc(dev);
4856 	kfree_skb_list(skb);
4857 	return rc;
4858 out:
4859 	rcu_read_unlock_bh();
4860 	return rc;
4861 }
4862 EXPORT_SYMBOL(__dev_queue_xmit);
4863 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4864 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4865 {
4866 	struct net_device *dev = skb->dev;
4867 	struct sk_buff *orig_skb = skb;
4868 	struct netdev_queue *txq;
4869 	int ret = NETDEV_TX_BUSY;
4870 	bool again = false;
4871 
4872 	if (unlikely(!netif_running(dev) ||
4873 		     !netif_carrier_ok(dev)))
4874 		goto drop;
4875 
4876 	skb = validate_xmit_skb_list(skb, dev, &again);
4877 	if (skb != orig_skb)
4878 		goto drop;
4879 
4880 	skb_set_queue_mapping(skb, queue_id);
4881 	txq = skb_get_tx_queue(dev, skb);
4882 
4883 	local_bh_disable();
4884 
4885 	dev_xmit_recursion_inc();
4886 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4887 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4888 		ret = netdev_start_xmit(skb, dev, txq, false);
4889 	HARD_TX_UNLOCK(dev, txq);
4890 	dev_xmit_recursion_dec();
4891 
4892 	local_bh_enable();
4893 	return ret;
4894 drop:
4895 	dev_core_stats_tx_dropped_inc(dev);
4896 	kfree_skb_list(skb);
4897 	return NET_XMIT_DROP;
4898 }
4899 EXPORT_SYMBOL(__dev_direct_xmit);
4900 
4901 /*************************************************************************
4902  *			Receiver routines
4903  *************************************************************************/
4904 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4905 
4906 int weight_p __read_mostly = 64;           /* old backlog weight */
4907 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4908 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4909 
4910 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4911 static inline void ____napi_schedule(struct softnet_data *sd,
4912 				     struct napi_struct *napi)
4913 {
4914 	struct task_struct *thread;
4915 
4916 	lockdep_assert_irqs_disabled();
4917 
4918 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4919 		/* Paired with smp_mb__before_atomic() in
4920 		 * napi_enable()/netif_set_threaded().
4921 		 * Use READ_ONCE() to guarantee a complete
4922 		 * read on napi->thread. Only call
4923 		 * wake_up_process() when it's not NULL.
4924 		 */
4925 		thread = READ_ONCE(napi->thread);
4926 		if (thread) {
4927 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4928 				goto use_local_napi;
4929 
4930 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4931 			wake_up_process(thread);
4932 			return;
4933 		}
4934 	}
4935 
4936 use_local_napi:
4937 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4938 	list_add_tail(&napi->poll_list, &sd->poll_list);
4939 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4940 	/* If not called from net_rx_action()
4941 	 * we have to raise NET_RX_SOFTIRQ.
4942 	 */
4943 	if (!sd->in_net_rx_action)
4944 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4945 }
4946 
4947 #ifdef CONFIG_RPS
4948 
4949 struct static_key_false rps_needed __read_mostly;
4950 EXPORT_SYMBOL(rps_needed);
4951 struct static_key_false rfs_needed __read_mostly;
4952 EXPORT_SYMBOL(rfs_needed);
4953 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4954 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4955 {
4956 	return hash_32(hash, flow_table->log);
4957 }
4958 
4959 #ifdef CONFIG_RFS_ACCEL
4960 /**
4961  * rps_flow_is_active - check whether the flow is recently active.
4962  * @rflow: Specific flow to check activity.
4963  * @flow_table: per-queue flowtable that @rflow belongs to.
4964  * @cpu: CPU saved in @rflow.
4965  *
4966  * If the CPU has processed many packets since the flow's last activity
4967  * (beyond 10 times the table size), the flow is considered stale.
4968  *
4969  * Return: true if flow was recently active.
4970  */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4971 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4972 			       struct rps_dev_flow_table *flow_table,
4973 			       unsigned int cpu)
4974 {
4975 	unsigned int flow_last_active;
4976 	unsigned int sd_input_head;
4977 
4978 	if (cpu >= nr_cpu_ids)
4979 		return false;
4980 
4981 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4982 	flow_last_active = READ_ONCE(rflow->last_qtail);
4983 
4984 	return (int)(sd_input_head - flow_last_active) <
4985 		(int)(10 << flow_table->log);
4986 }
4987 #endif
4988 
4989 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4990 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4991 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4992 	    u32 flow_id)
4993 {
4994 	if (next_cpu < nr_cpu_ids) {
4995 		u32 head;
4996 #ifdef CONFIG_RFS_ACCEL
4997 		struct netdev_rx_queue *rxqueue;
4998 		struct rps_dev_flow_table *flow_table;
4999 		struct rps_dev_flow *old_rflow;
5000 		struct rps_dev_flow *tmp_rflow;
5001 		unsigned int tmp_cpu;
5002 		u16 rxq_index;
5003 		int rc;
5004 
5005 		/* Should we steer this flow to a different hardware queue? */
5006 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5007 		    !(dev->features & NETIF_F_NTUPLE))
5008 			goto out;
5009 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5010 		if (rxq_index == skb_get_rx_queue(skb))
5011 			goto out;
5012 
5013 		rxqueue = dev->_rx + rxq_index;
5014 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
5015 		if (!flow_table)
5016 			goto out;
5017 
5018 		tmp_rflow = &flow_table->flows[flow_id];
5019 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5020 
5021 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5022 			if (rps_flow_is_active(tmp_rflow, flow_table,
5023 					       tmp_cpu)) {
5024 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5025 				    next_cpu == tmp_cpu)
5026 					goto out;
5027 			}
5028 		}
5029 
5030 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5031 							rxq_index, flow_id);
5032 		if (rc < 0)
5033 			goto out;
5034 
5035 		old_rflow = rflow;
5036 		rflow = tmp_rflow;
5037 		WRITE_ONCE(rflow->filter, rc);
5038 		WRITE_ONCE(rflow->hash, hash);
5039 
5040 		if (old_rflow->filter == rc)
5041 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5042 	out:
5043 #endif
5044 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5045 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5046 	}
5047 
5048 	WRITE_ONCE(rflow->cpu, next_cpu);
5049 	return rflow;
5050 }
5051 
5052 /*
5053  * get_rps_cpu is called from netif_receive_skb and returns the target
5054  * CPU from the RPS map of the receiving queue for a given skb.
5055  * rcu_read_lock must be held on entry.
5056  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5057 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5058 		       struct rps_dev_flow **rflowp)
5059 {
5060 	const struct rps_sock_flow_table *sock_flow_table;
5061 	struct netdev_rx_queue *rxqueue = dev->_rx;
5062 	struct rps_dev_flow_table *flow_table;
5063 	struct rps_map *map;
5064 	int cpu = -1;
5065 	u32 flow_id;
5066 	u32 tcpu;
5067 	u32 hash;
5068 
5069 	if (skb_rx_queue_recorded(skb)) {
5070 		u16 index = skb_get_rx_queue(skb);
5071 
5072 		if (unlikely(index >= dev->real_num_rx_queues)) {
5073 			WARN_ONCE(dev->real_num_rx_queues > 1,
5074 				  "%s received packet on queue %u, but number "
5075 				  "of RX queues is %u\n",
5076 				  dev->name, index, dev->real_num_rx_queues);
5077 			goto done;
5078 		}
5079 		rxqueue += index;
5080 	}
5081 
5082 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5083 
5084 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5085 	map = rcu_dereference(rxqueue->rps_map);
5086 	if (!flow_table && !map)
5087 		goto done;
5088 
5089 	skb_reset_network_header(skb);
5090 	hash = skb_get_hash(skb);
5091 	if (!hash)
5092 		goto done;
5093 
5094 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5095 	if (flow_table && sock_flow_table) {
5096 		struct rps_dev_flow *rflow;
5097 		u32 next_cpu;
5098 		u32 ident;
5099 
5100 		/* First check into global flow table if there is a match.
5101 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5102 		 */
5103 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5104 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5105 			goto try_rps;
5106 
5107 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5108 
5109 		/* OK, now we know there is a match,
5110 		 * we can look at the local (per receive queue) flow table
5111 		 */
5112 		flow_id = rfs_slot(hash, flow_table);
5113 		rflow = &flow_table->flows[flow_id];
5114 		tcpu = rflow->cpu;
5115 
5116 		/*
5117 		 * If the desired CPU (where last recvmsg was done) is
5118 		 * different from current CPU (one in the rx-queue flow
5119 		 * table entry), switch if one of the following holds:
5120 		 *   - Current CPU is unset (>= nr_cpu_ids).
5121 		 *   - Current CPU is offline.
5122 		 *   - The current CPU's queue tail has advanced beyond the
5123 		 *     last packet that was enqueued using this table entry.
5124 		 *     This guarantees that all previous packets for the flow
5125 		 *     have been dequeued, thus preserving in order delivery.
5126 		 */
5127 		if (unlikely(tcpu != next_cpu) &&
5128 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5129 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5130 		      rflow->last_qtail)) >= 0)) {
5131 			tcpu = next_cpu;
5132 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5133 					    flow_id);
5134 		}
5135 
5136 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5137 			*rflowp = rflow;
5138 			cpu = tcpu;
5139 			goto done;
5140 		}
5141 	}
5142 
5143 try_rps:
5144 
5145 	if (map) {
5146 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5147 		if (cpu_online(tcpu)) {
5148 			cpu = tcpu;
5149 			goto done;
5150 		}
5151 	}
5152 
5153 done:
5154 	return cpu;
5155 }
5156 
5157 #ifdef CONFIG_RFS_ACCEL
5158 
5159 /**
5160  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5161  * @dev: Device on which the filter was set
5162  * @rxq_index: RX queue index
5163  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5164  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5165  *
5166  * Drivers that implement ndo_rx_flow_steer() should periodically call
5167  * this function for each installed filter and remove the filters for
5168  * which it returns %true.
5169  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5170 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5171 			 u32 flow_id, u16 filter_id)
5172 {
5173 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5174 	struct rps_dev_flow_table *flow_table;
5175 	struct rps_dev_flow *rflow;
5176 	bool expire = true;
5177 
5178 	rcu_read_lock();
5179 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5180 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5181 		unsigned int cpu;
5182 
5183 		rflow = &flow_table->flows[flow_id];
5184 		cpu = READ_ONCE(rflow->cpu);
5185 		if (READ_ONCE(rflow->filter) == filter_id &&
5186 		    rps_flow_is_active(rflow, flow_table, cpu))
5187 			expire = false;
5188 	}
5189 	rcu_read_unlock();
5190 	return expire;
5191 }
5192 EXPORT_SYMBOL(rps_may_expire_flow);
5193 
5194 #endif /* CONFIG_RFS_ACCEL */
5195 
5196 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5197 static void rps_trigger_softirq(void *data)
5198 {
5199 	struct softnet_data *sd = data;
5200 
5201 	____napi_schedule(sd, &sd->backlog);
5202 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5203 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5204 }
5205 
5206 #endif /* CONFIG_RPS */
5207 
5208 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5209 static void trigger_rx_softirq(void *data)
5210 {
5211 	struct softnet_data *sd = data;
5212 
5213 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5214 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5215 }
5216 
5217 /*
5218  * After we queued a packet into sd->input_pkt_queue,
5219  * we need to make sure this queue is serviced soon.
5220  *
5221  * - If this is another cpu queue, link it to our rps_ipi_list,
5222  *   and make sure we will process rps_ipi_list from net_rx_action().
5223  *
5224  * - If this is our own queue, NAPI schedule our backlog.
5225  *   Note that this also raises NET_RX_SOFTIRQ.
5226  */
napi_schedule_rps(struct softnet_data * sd)5227 static void napi_schedule_rps(struct softnet_data *sd)
5228 {
5229 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5230 
5231 #ifdef CONFIG_RPS
5232 	if (sd != mysd) {
5233 		if (use_backlog_threads()) {
5234 			__napi_schedule_irqoff(&sd->backlog);
5235 			return;
5236 		}
5237 
5238 		sd->rps_ipi_next = mysd->rps_ipi_list;
5239 		mysd->rps_ipi_list = sd;
5240 
5241 		/* If not called from net_rx_action() or napi_threaded_poll()
5242 		 * we have to raise NET_RX_SOFTIRQ.
5243 		 */
5244 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5245 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246 		return;
5247 	}
5248 #endif /* CONFIG_RPS */
5249 	__napi_schedule_irqoff(&mysd->backlog);
5250 }
5251 
kick_defer_list_purge(unsigned int cpu)5252 void kick_defer_list_purge(unsigned int cpu)
5253 {
5254 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5255 	unsigned long flags;
5256 
5257 	if (use_backlog_threads()) {
5258 		backlog_lock_irq_save(sd, &flags);
5259 
5260 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5261 			__napi_schedule_irqoff(&sd->backlog);
5262 
5263 		backlog_unlock_irq_restore(sd, &flags);
5264 
5265 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5266 		smp_call_function_single_async(cpu, &sd->defer_csd);
5267 	}
5268 }
5269 
5270 #ifdef CONFIG_NET_FLOW_LIMIT
5271 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5272 #endif
5273 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5274 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5275 			   int max_backlog)
5276 {
5277 #ifdef CONFIG_NET_FLOW_LIMIT
5278 	unsigned int old_flow, new_flow;
5279 	const struct softnet_data *sd;
5280 	struct sd_flow_limit *fl;
5281 
5282 	if (likely(qlen < (max_backlog >> 1)))
5283 		return false;
5284 
5285 	sd = this_cpu_ptr(&softnet_data);
5286 
5287 	rcu_read_lock();
5288 	fl = rcu_dereference(sd->flow_limit);
5289 	if (fl) {
5290 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5291 		old_flow = fl->history[fl->history_head];
5292 		fl->history[fl->history_head] = new_flow;
5293 
5294 		fl->history_head++;
5295 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5296 
5297 		if (likely(fl->buckets[old_flow]))
5298 			fl->buckets[old_flow]--;
5299 
5300 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5301 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5302 			WRITE_ONCE(fl->count, fl->count + 1);
5303 			rcu_read_unlock();
5304 			return true;
5305 		}
5306 	}
5307 	rcu_read_unlock();
5308 #endif
5309 	return false;
5310 }
5311 
5312 /*
5313  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5314  * queue (may be a remote CPU queue).
5315  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5316 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5317 			      unsigned int *qtail)
5318 {
5319 	enum skb_drop_reason reason;
5320 	struct softnet_data *sd;
5321 	unsigned long flags;
5322 	unsigned int qlen;
5323 	int max_backlog;
5324 	u32 tail;
5325 
5326 	reason = SKB_DROP_REASON_DEV_READY;
5327 	if (unlikely(!netif_running(skb->dev)))
5328 		goto bad_dev;
5329 
5330 	sd = &per_cpu(softnet_data, cpu);
5331 
5332 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5333 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5334 	if (unlikely(qlen > max_backlog) ||
5335 	    skb_flow_limit(skb, qlen, max_backlog))
5336 		goto cpu_backlog_drop;
5337 	backlog_lock_irq_save(sd, &flags);
5338 	qlen = skb_queue_len(&sd->input_pkt_queue);
5339 	if (likely(qlen <= max_backlog)) {
5340 		if (!qlen) {
5341 			/* Schedule NAPI for backlog device. We can use
5342 			 * non atomic operation as we own the queue lock.
5343 			 */
5344 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5345 						&sd->backlog.state))
5346 				napi_schedule_rps(sd);
5347 		}
5348 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5349 		tail = rps_input_queue_tail_incr(sd);
5350 		backlog_unlock_irq_restore(sd, &flags);
5351 
5352 		/* save the tail outside of the critical section */
5353 		rps_input_queue_tail_save(qtail, tail);
5354 		return NET_RX_SUCCESS;
5355 	}
5356 
5357 	backlog_unlock_irq_restore(sd, &flags);
5358 
5359 cpu_backlog_drop:
5360 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5361 	numa_drop_add(&sd->drop_counters, 1);
5362 bad_dev:
5363 	dev_core_stats_rx_dropped_inc(skb->dev);
5364 	kfree_skb_reason(skb, reason);
5365 	return NET_RX_DROP;
5366 }
5367 
netif_get_rxqueue(struct sk_buff * skb)5368 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5369 {
5370 	struct net_device *dev = skb->dev;
5371 	struct netdev_rx_queue *rxqueue;
5372 
5373 	rxqueue = dev->_rx;
5374 
5375 	if (skb_rx_queue_recorded(skb)) {
5376 		u16 index = skb_get_rx_queue(skb);
5377 
5378 		if (unlikely(index >= dev->real_num_rx_queues)) {
5379 			WARN_ONCE(dev->real_num_rx_queues > 1,
5380 				  "%s received packet on queue %u, but number "
5381 				  "of RX queues is %u\n",
5382 				  dev->name, index, dev->real_num_rx_queues);
5383 
5384 			return rxqueue; /* Return first rxqueue */
5385 		}
5386 		rxqueue += index;
5387 	}
5388 	return rxqueue;
5389 }
5390 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5391 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5392 			     const struct bpf_prog *xdp_prog)
5393 {
5394 	void *orig_data, *orig_data_end, *hard_start;
5395 	struct netdev_rx_queue *rxqueue;
5396 	bool orig_bcast, orig_host;
5397 	u32 mac_len, frame_sz;
5398 	__be16 orig_eth_type;
5399 	struct ethhdr *eth;
5400 	u32 metalen, act;
5401 	int off;
5402 
5403 	/* The XDP program wants to see the packet starting at the MAC
5404 	 * header.
5405 	 */
5406 	mac_len = skb->data - skb_mac_header(skb);
5407 	hard_start = skb->data - skb_headroom(skb);
5408 
5409 	/* SKB "head" area always have tailroom for skb_shared_info */
5410 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5411 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5412 
5413 	rxqueue = netif_get_rxqueue(skb);
5414 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5415 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5416 			 skb_headlen(skb) + mac_len, true);
5417 	if (skb_is_nonlinear(skb)) {
5418 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5419 		xdp_buff_set_frags_flag(xdp);
5420 	} else {
5421 		xdp_buff_clear_frags_flag(xdp);
5422 	}
5423 
5424 	orig_data_end = xdp->data_end;
5425 	orig_data = xdp->data;
5426 	eth = (struct ethhdr *)xdp->data;
5427 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5428 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5429 	orig_eth_type = eth->h_proto;
5430 
5431 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5432 
5433 	/* check if bpf_xdp_adjust_head was used */
5434 	off = xdp->data - orig_data;
5435 	if (off) {
5436 		if (off > 0)
5437 			__skb_pull(skb, off);
5438 		else if (off < 0)
5439 			__skb_push(skb, -off);
5440 
5441 		skb->mac_header += off;
5442 		skb_reset_network_header(skb);
5443 	}
5444 
5445 	/* check if bpf_xdp_adjust_tail was used */
5446 	off = xdp->data_end - orig_data_end;
5447 	if (off != 0) {
5448 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5449 		skb->len += off; /* positive on grow, negative on shrink */
5450 	}
5451 
5452 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5453 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5454 	 */
5455 	if (xdp_buff_has_frags(xdp))
5456 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5457 	else
5458 		skb->data_len = 0;
5459 
5460 	/* check if XDP changed eth hdr such SKB needs update */
5461 	eth = (struct ethhdr *)xdp->data;
5462 	if ((orig_eth_type != eth->h_proto) ||
5463 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5464 						  skb->dev->dev_addr)) ||
5465 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5466 		__skb_push(skb, ETH_HLEN);
5467 		skb->pkt_type = PACKET_HOST;
5468 		skb->protocol = eth_type_trans(skb, skb->dev);
5469 	}
5470 
5471 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5472 	 * before calling us again on redirect path. We do not call do_redirect
5473 	 * as we leave that up to the caller.
5474 	 *
5475 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5476 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5477 	 */
5478 	switch (act) {
5479 	case XDP_REDIRECT:
5480 	case XDP_TX:
5481 		__skb_push(skb, mac_len);
5482 		break;
5483 	case XDP_PASS:
5484 		metalen = xdp->data - xdp->data_meta;
5485 		if (metalen)
5486 			skb_metadata_set(skb, metalen);
5487 		break;
5488 	}
5489 
5490 	return act;
5491 }
5492 
5493 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5494 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5495 {
5496 	struct sk_buff *skb = *pskb;
5497 	int err, hroom, troom;
5498 
5499 	local_lock_nested_bh(&system_page_pool.bh_lock);
5500 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5501 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5502 	if (!err)
5503 		return 0;
5504 
5505 	/* In case we have to go down the path and also linearize,
5506 	 * then lets do the pskb_expand_head() work just once here.
5507 	 */
5508 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5509 	troom = skb->tail + skb->data_len - skb->end;
5510 	err = pskb_expand_head(skb,
5511 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5512 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5513 	if (err)
5514 		return err;
5515 
5516 	return skb_linearize(skb);
5517 }
5518 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5519 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5520 				     struct xdp_buff *xdp,
5521 				     const struct bpf_prog *xdp_prog)
5522 {
5523 	struct sk_buff *skb = *pskb;
5524 	u32 mac_len, act = XDP_DROP;
5525 
5526 	/* Reinjected packets coming from act_mirred or similar should
5527 	 * not get XDP generic processing.
5528 	 */
5529 	if (skb_is_redirected(skb))
5530 		return XDP_PASS;
5531 
5532 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5533 	 * bytes. This is the guarantee that also native XDP provides,
5534 	 * thus we need to do it here as well.
5535 	 */
5536 	mac_len = skb->data - skb_mac_header(skb);
5537 	__skb_push(skb, mac_len);
5538 
5539 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5540 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5541 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5542 			goto do_drop;
5543 	}
5544 
5545 	__skb_pull(*pskb, mac_len);
5546 
5547 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5548 	switch (act) {
5549 	case XDP_REDIRECT:
5550 	case XDP_TX:
5551 	case XDP_PASS:
5552 		break;
5553 	default:
5554 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5555 		fallthrough;
5556 	case XDP_ABORTED:
5557 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5558 		fallthrough;
5559 	case XDP_DROP:
5560 	do_drop:
5561 		kfree_skb(*pskb);
5562 		break;
5563 	}
5564 
5565 	return act;
5566 }
5567 
5568 /* When doing generic XDP we have to bypass the qdisc layer and the
5569  * network taps in order to match in-driver-XDP behavior. This also means
5570  * that XDP packets are able to starve other packets going through a qdisc,
5571  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5572  * queues, so they do not have this starvation issue.
5573  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5574 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5575 {
5576 	struct net_device *dev = skb->dev;
5577 	struct netdev_queue *txq;
5578 	bool free_skb = true;
5579 	int cpu, rc;
5580 
5581 	txq = netdev_core_pick_tx(dev, skb, NULL);
5582 	cpu = smp_processor_id();
5583 	HARD_TX_LOCK(dev, txq, cpu);
5584 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5585 		rc = netdev_start_xmit(skb, dev, txq, 0);
5586 		if (dev_xmit_complete(rc))
5587 			free_skb = false;
5588 	}
5589 	HARD_TX_UNLOCK(dev, txq);
5590 	if (free_skb) {
5591 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5592 		dev_core_stats_tx_dropped_inc(dev);
5593 		kfree_skb(skb);
5594 	}
5595 }
5596 
5597 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5598 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5599 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5600 {
5601 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5602 
5603 	if (xdp_prog) {
5604 		struct xdp_buff xdp;
5605 		u32 act;
5606 		int err;
5607 
5608 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5609 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5610 		if (act != XDP_PASS) {
5611 			switch (act) {
5612 			case XDP_REDIRECT:
5613 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5614 							      &xdp, xdp_prog);
5615 				if (err)
5616 					goto out_redir;
5617 				break;
5618 			case XDP_TX:
5619 				generic_xdp_tx(*pskb, xdp_prog);
5620 				break;
5621 			}
5622 			bpf_net_ctx_clear(bpf_net_ctx);
5623 			return XDP_DROP;
5624 		}
5625 		bpf_net_ctx_clear(bpf_net_ctx);
5626 	}
5627 	return XDP_PASS;
5628 out_redir:
5629 	bpf_net_ctx_clear(bpf_net_ctx);
5630 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5631 	return XDP_DROP;
5632 }
5633 EXPORT_SYMBOL_GPL(do_xdp_generic);
5634 
netif_rx_internal(struct sk_buff * skb)5635 static int netif_rx_internal(struct sk_buff *skb)
5636 {
5637 	int ret;
5638 
5639 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5640 
5641 	trace_netif_rx(skb);
5642 
5643 #ifdef CONFIG_RPS
5644 	if (static_branch_unlikely(&rps_needed)) {
5645 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5646 		int cpu;
5647 
5648 		rcu_read_lock();
5649 
5650 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5651 		if (cpu < 0)
5652 			cpu = smp_processor_id();
5653 
5654 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5655 
5656 		rcu_read_unlock();
5657 	} else
5658 #endif
5659 	{
5660 		unsigned int qtail;
5661 
5662 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5663 	}
5664 	return ret;
5665 }
5666 
5667 /**
5668  *	__netif_rx	-	Slightly optimized version of netif_rx
5669  *	@skb: buffer to post
5670  *
5671  *	This behaves as netif_rx except that it does not disable bottom halves.
5672  *	As a result this function may only be invoked from the interrupt context
5673  *	(either hard or soft interrupt).
5674  */
__netif_rx(struct sk_buff * skb)5675 int __netif_rx(struct sk_buff *skb)
5676 {
5677 	int ret;
5678 
5679 	lockdep_assert_once(hardirq_count() | softirq_count());
5680 
5681 	trace_netif_rx_entry(skb);
5682 	ret = netif_rx_internal(skb);
5683 	trace_netif_rx_exit(ret);
5684 	return ret;
5685 }
5686 EXPORT_SYMBOL(__netif_rx);
5687 
5688 /**
5689  *	netif_rx	-	post buffer to the network code
5690  *	@skb: buffer to post
5691  *
5692  *	This function receives a packet from a device driver and queues it for
5693  *	the upper (protocol) levels to process via the backlog NAPI device. It
5694  *	always succeeds. The buffer may be dropped during processing for
5695  *	congestion control or by the protocol layers.
5696  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5697  *	driver should use NAPI and GRO.
5698  *	This function can used from interrupt and from process context. The
5699  *	caller from process context must not disable interrupts before invoking
5700  *	this function.
5701  *
5702  *	return values:
5703  *	NET_RX_SUCCESS	(no congestion)
5704  *	NET_RX_DROP     (packet was dropped)
5705  *
5706  */
netif_rx(struct sk_buff * skb)5707 int netif_rx(struct sk_buff *skb)
5708 {
5709 	bool need_bh_off = !(hardirq_count() | softirq_count());
5710 	int ret;
5711 
5712 	if (need_bh_off)
5713 		local_bh_disable();
5714 	trace_netif_rx_entry(skb);
5715 	ret = netif_rx_internal(skb);
5716 	trace_netif_rx_exit(ret);
5717 	if (need_bh_off)
5718 		local_bh_enable();
5719 	return ret;
5720 }
5721 EXPORT_SYMBOL(netif_rx);
5722 
net_tx_action(void)5723 static __latent_entropy void net_tx_action(void)
5724 {
5725 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5726 
5727 	if (sd->completion_queue) {
5728 		struct sk_buff *clist;
5729 
5730 		local_irq_disable();
5731 		clist = sd->completion_queue;
5732 		sd->completion_queue = NULL;
5733 		local_irq_enable();
5734 
5735 		while (clist) {
5736 			struct sk_buff *skb = clist;
5737 
5738 			clist = clist->next;
5739 
5740 			WARN_ON(refcount_read(&skb->users));
5741 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5742 				trace_consume_skb(skb, net_tx_action);
5743 			else
5744 				trace_kfree_skb(skb, net_tx_action,
5745 						get_kfree_skb_cb(skb)->reason, NULL);
5746 
5747 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5748 				__kfree_skb(skb);
5749 			else
5750 				__napi_kfree_skb(skb,
5751 						 get_kfree_skb_cb(skb)->reason);
5752 		}
5753 	}
5754 
5755 	if (sd->output_queue) {
5756 		struct Qdisc *head;
5757 
5758 		local_irq_disable();
5759 		head = sd->output_queue;
5760 		sd->output_queue = NULL;
5761 		sd->output_queue_tailp = &sd->output_queue;
5762 		local_irq_enable();
5763 
5764 		rcu_read_lock();
5765 
5766 		while (head) {
5767 			spinlock_t *root_lock = NULL;
5768 			struct sk_buff *to_free;
5769 			struct Qdisc *q = head;
5770 
5771 			head = head->next_sched;
5772 
5773 			/* We need to make sure head->next_sched is read
5774 			 * before clearing __QDISC_STATE_SCHED
5775 			 */
5776 			smp_mb__before_atomic();
5777 
5778 			if (!(q->flags & TCQ_F_NOLOCK)) {
5779 				root_lock = qdisc_lock(q);
5780 				spin_lock(root_lock);
5781 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5782 						     &q->state))) {
5783 				/* There is a synchronize_net() between
5784 				 * STATE_DEACTIVATED flag being set and
5785 				 * qdisc_reset()/some_qdisc_is_busy() in
5786 				 * dev_deactivate(), so we can safely bail out
5787 				 * early here to avoid data race between
5788 				 * qdisc_deactivate() and some_qdisc_is_busy()
5789 				 * for lockless qdisc.
5790 				 */
5791 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5792 				continue;
5793 			}
5794 
5795 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 			to_free = qdisc_run(q);
5797 			if (root_lock)
5798 				spin_unlock(root_lock);
5799 			tcf_kfree_skb_list(to_free);
5800 		}
5801 
5802 		rcu_read_unlock();
5803 	}
5804 
5805 	xfrm_dev_backlog(sd);
5806 }
5807 
5808 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5809 /* This hook is defined here for ATM LANE */
5810 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5811 			     unsigned char *addr) __read_mostly;
5812 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5813 #endif
5814 
5815 /**
5816  *	netdev_is_rx_handler_busy - check if receive handler is registered
5817  *	@dev: device to check
5818  *
5819  *	Check if a receive handler is already registered for a given device.
5820  *	Return true if there one.
5821  *
5822  *	The caller must hold the rtnl_mutex.
5823  */
netdev_is_rx_handler_busy(struct net_device * dev)5824 bool netdev_is_rx_handler_busy(struct net_device *dev)
5825 {
5826 	ASSERT_RTNL();
5827 	return dev && rtnl_dereference(dev->rx_handler);
5828 }
5829 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5830 
5831 /**
5832  *	netdev_rx_handler_register - register receive handler
5833  *	@dev: device to register a handler for
5834  *	@rx_handler: receive handler to register
5835  *	@rx_handler_data: data pointer that is used by rx handler
5836  *
5837  *	Register a receive handler for a device. This handler will then be
5838  *	called from __netif_receive_skb. A negative errno code is returned
5839  *	on a failure.
5840  *
5841  *	The caller must hold the rtnl_mutex.
5842  *
5843  *	For a general description of rx_handler, see enum rx_handler_result.
5844  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5845 int netdev_rx_handler_register(struct net_device *dev,
5846 			       rx_handler_func_t *rx_handler,
5847 			       void *rx_handler_data)
5848 {
5849 	if (netdev_is_rx_handler_busy(dev))
5850 		return -EBUSY;
5851 
5852 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5853 		return -EINVAL;
5854 
5855 	/* Note: rx_handler_data must be set before rx_handler */
5856 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5857 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5858 
5859 	return 0;
5860 }
5861 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5862 
5863 /**
5864  *	netdev_rx_handler_unregister - unregister receive handler
5865  *	@dev: device to unregister a handler from
5866  *
5867  *	Unregister a receive handler from a device.
5868  *
5869  *	The caller must hold the rtnl_mutex.
5870  */
netdev_rx_handler_unregister(struct net_device * dev)5871 void netdev_rx_handler_unregister(struct net_device *dev)
5872 {
5873 
5874 	ASSERT_RTNL();
5875 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5876 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5877 	 * section has a guarantee to see a non NULL rx_handler_data
5878 	 * as well.
5879 	 */
5880 	synchronize_net();
5881 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5882 }
5883 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5884 
5885 /*
5886  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5887  * the special handling of PFMEMALLOC skbs.
5888  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5889 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5890 {
5891 	switch (skb->protocol) {
5892 	case htons(ETH_P_ARP):
5893 	case htons(ETH_P_IP):
5894 	case htons(ETH_P_IPV6):
5895 	case htons(ETH_P_8021Q):
5896 	case htons(ETH_P_8021AD):
5897 		return true;
5898 	default:
5899 		return false;
5900 	}
5901 }
5902 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5903 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5904 			     int *ret, struct net_device *orig_dev)
5905 {
5906 	if (nf_hook_ingress_active(skb)) {
5907 		int ingress_retval;
5908 
5909 		if (unlikely(*pt_prev)) {
5910 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5911 			*pt_prev = NULL;
5912 		}
5913 
5914 		rcu_read_lock();
5915 		ingress_retval = nf_hook_ingress(skb);
5916 		rcu_read_unlock();
5917 		return ingress_retval;
5918 	}
5919 	return 0;
5920 }
5921 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5922 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5923 				    struct packet_type **ppt_prev)
5924 {
5925 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5926 	struct packet_type *ptype, *pt_prev;
5927 	rx_handler_func_t *rx_handler;
5928 	struct sk_buff *skb = *pskb;
5929 	struct net_device *orig_dev;
5930 	bool deliver_exact = false;
5931 	int ret = NET_RX_DROP;
5932 	__be16 type;
5933 
5934 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5935 
5936 	trace_netif_receive_skb(skb);
5937 
5938 	orig_dev = skb->dev;
5939 
5940 	skb_reset_network_header(skb);
5941 #if !defined(CONFIG_DEBUG_NET)
5942 	/* We plan to no longer reset the transport header here.
5943 	 * Give some time to fuzzers and dev build to catch bugs
5944 	 * in network stacks.
5945 	 */
5946 	if (!skb_transport_header_was_set(skb))
5947 		skb_reset_transport_header(skb);
5948 #endif
5949 	skb_reset_mac_len(skb);
5950 
5951 	pt_prev = NULL;
5952 
5953 another_round:
5954 	skb->skb_iif = skb->dev->ifindex;
5955 
5956 	__this_cpu_inc(softnet_data.processed);
5957 
5958 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5959 		int ret2;
5960 
5961 		migrate_disable();
5962 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5963 				      &skb);
5964 		migrate_enable();
5965 
5966 		if (ret2 != XDP_PASS) {
5967 			ret = NET_RX_DROP;
5968 			goto out;
5969 		}
5970 	}
5971 
5972 	if (eth_type_vlan(skb->protocol)) {
5973 		skb = skb_vlan_untag(skb);
5974 		if (unlikely(!skb))
5975 			goto out;
5976 	}
5977 
5978 	if (skb_skip_tc_classify(skb))
5979 		goto skip_classify;
5980 
5981 	if (pfmemalloc)
5982 		goto skip_taps;
5983 
5984 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5985 				list) {
5986 		if (unlikely(pt_prev))
5987 			ret = deliver_skb(skb, pt_prev, orig_dev);
5988 		pt_prev = ptype;
5989 	}
5990 
5991 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5992 		if (unlikely(pt_prev))
5993 			ret = deliver_skb(skb, pt_prev, orig_dev);
5994 		pt_prev = ptype;
5995 	}
5996 
5997 skip_taps:
5998 #ifdef CONFIG_NET_INGRESS
5999 	if (static_branch_unlikely(&ingress_needed_key)) {
6000 		bool another = false;
6001 
6002 		nf_skip_egress(skb, true);
6003 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6004 					 &another);
6005 		if (another)
6006 			goto another_round;
6007 		if (!skb)
6008 			goto out;
6009 
6010 		nf_skip_egress(skb, false);
6011 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6012 			goto out;
6013 	}
6014 #endif
6015 	skb_reset_redirect(skb);
6016 skip_classify:
6017 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6018 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6019 		goto drop;
6020 	}
6021 
6022 	if (skb_vlan_tag_present(skb)) {
6023 		if (unlikely(pt_prev)) {
6024 			ret = deliver_skb(skb, pt_prev, orig_dev);
6025 			pt_prev = NULL;
6026 		}
6027 		if (vlan_do_receive(&skb))
6028 			goto another_round;
6029 		else if (unlikely(!skb))
6030 			goto out;
6031 	}
6032 
6033 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6034 	if (rx_handler) {
6035 		if (unlikely(pt_prev)) {
6036 			ret = deliver_skb(skb, pt_prev, orig_dev);
6037 			pt_prev = NULL;
6038 		}
6039 		switch (rx_handler(&skb)) {
6040 		case RX_HANDLER_CONSUMED:
6041 			ret = NET_RX_SUCCESS;
6042 			goto out;
6043 		case RX_HANDLER_ANOTHER:
6044 			goto another_round;
6045 		case RX_HANDLER_EXACT:
6046 			deliver_exact = true;
6047 			break;
6048 		case RX_HANDLER_PASS:
6049 			break;
6050 		default:
6051 			BUG();
6052 		}
6053 	}
6054 
6055 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6056 check_vlan_id:
6057 		if (skb_vlan_tag_get_id(skb)) {
6058 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6059 			 * find vlan device.
6060 			 */
6061 			skb->pkt_type = PACKET_OTHERHOST;
6062 		} else if (eth_type_vlan(skb->protocol)) {
6063 			/* Outer header is 802.1P with vlan 0, inner header is
6064 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6065 			 * not find vlan dev for vlan id 0.
6066 			 */
6067 			__vlan_hwaccel_clear_tag(skb);
6068 			skb = skb_vlan_untag(skb);
6069 			if (unlikely(!skb))
6070 				goto out;
6071 			if (vlan_do_receive(&skb))
6072 				/* After stripping off 802.1P header with vlan 0
6073 				 * vlan dev is found for inner header.
6074 				 */
6075 				goto another_round;
6076 			else if (unlikely(!skb))
6077 				goto out;
6078 			else
6079 				/* We have stripped outer 802.1P vlan 0 header.
6080 				 * But could not find vlan dev.
6081 				 * check again for vlan id to set OTHERHOST.
6082 				 */
6083 				goto check_vlan_id;
6084 		}
6085 		/* Note: we might in the future use prio bits
6086 		 * and set skb->priority like in vlan_do_receive()
6087 		 * For the time being, just ignore Priority Code Point
6088 		 */
6089 		__vlan_hwaccel_clear_tag(skb);
6090 	}
6091 
6092 	type = skb->protocol;
6093 
6094 	/* deliver only exact match when indicated */
6095 	if (likely(!deliver_exact)) {
6096 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6097 				       &ptype_base[ntohs(type) &
6098 						   PTYPE_HASH_MASK]);
6099 
6100 		/* orig_dev and skb->dev could belong to different netns;
6101 		 * Even in such case we need to traverse only the list
6102 		 * coming from skb->dev, as the ptype owner (packet socket)
6103 		 * will use dev_net(skb->dev) to do namespace filtering.
6104 		 */
6105 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6106 				       &dev_net_rcu(skb->dev)->ptype_specific);
6107 	}
6108 
6109 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 			       &orig_dev->ptype_specific);
6111 
6112 	if (unlikely(skb->dev != orig_dev)) {
6113 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 				       &skb->dev->ptype_specific);
6115 	}
6116 
6117 	if (pt_prev) {
6118 		*ppt_prev = pt_prev;
6119 	} else {
6120 drop:
6121 		if (!deliver_exact)
6122 			dev_core_stats_rx_dropped_inc(skb->dev);
6123 		else
6124 			dev_core_stats_rx_nohandler_inc(skb->dev);
6125 
6126 		kfree_skb_reason(skb, drop_reason);
6127 		/* Jamal, now you will not able to escape explaining
6128 		 * me how you were going to use this. :-)
6129 		 */
6130 		ret = NET_RX_DROP;
6131 	}
6132 
6133 out:
6134 	/* The invariant here is that if *ppt_prev is not NULL
6135 	 * then skb should also be non-NULL.
6136 	 *
6137 	 * Apparently *ppt_prev assignment above holds this invariant due to
6138 	 * skb dereferencing near it.
6139 	 */
6140 	*pskb = skb;
6141 	return ret;
6142 }
6143 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6144 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6145 {
6146 	struct net_device *orig_dev = skb->dev;
6147 	struct packet_type *pt_prev = NULL;
6148 	int ret;
6149 
6150 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6151 	if (pt_prev)
6152 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6153 					 skb->dev, pt_prev, orig_dev);
6154 	return ret;
6155 }
6156 
6157 /**
6158  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6159  *	@skb: buffer to process
6160  *
6161  *	More direct receive version of netif_receive_skb().  It should
6162  *	only be used by callers that have a need to skip RPS and Generic XDP.
6163  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6164  *
6165  *	This function may only be called from softirq context and interrupts
6166  *	should be enabled.
6167  *
6168  *	Return values (usually ignored):
6169  *	NET_RX_SUCCESS: no congestion
6170  *	NET_RX_DROP: packet was dropped
6171  */
netif_receive_skb_core(struct sk_buff * skb)6172 int netif_receive_skb_core(struct sk_buff *skb)
6173 {
6174 	int ret;
6175 
6176 	rcu_read_lock();
6177 	ret = __netif_receive_skb_one_core(skb, false);
6178 	rcu_read_unlock();
6179 
6180 	return ret;
6181 }
6182 EXPORT_SYMBOL(netif_receive_skb_core);
6183 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6184 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6185 						  struct packet_type *pt_prev,
6186 						  struct net_device *orig_dev)
6187 {
6188 	struct sk_buff *skb, *next;
6189 
6190 	if (!pt_prev)
6191 		return;
6192 	if (list_empty(head))
6193 		return;
6194 	if (pt_prev->list_func != NULL)
6195 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6196 				   ip_list_rcv, head, pt_prev, orig_dev);
6197 	else
6198 		list_for_each_entry_safe(skb, next, head, list) {
6199 			skb_list_del_init(skb);
6200 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6201 		}
6202 }
6203 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6204 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6205 {
6206 	/* Fast-path assumptions:
6207 	 * - There is no RX handler.
6208 	 * - Only one packet_type matches.
6209 	 * If either of these fails, we will end up doing some per-packet
6210 	 * processing in-line, then handling the 'last ptype' for the whole
6211 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6212 	 * because the 'last ptype' must be constant across the sublist, and all
6213 	 * other ptypes are handled per-packet.
6214 	 */
6215 	/* Current (common) ptype of sublist */
6216 	struct packet_type *pt_curr = NULL;
6217 	/* Current (common) orig_dev of sublist */
6218 	struct net_device *od_curr = NULL;
6219 	struct sk_buff *skb, *next;
6220 	LIST_HEAD(sublist);
6221 
6222 	list_for_each_entry_safe(skb, next, head, list) {
6223 		struct net_device *orig_dev = skb->dev;
6224 		struct packet_type *pt_prev = NULL;
6225 
6226 		skb_list_del_init(skb);
6227 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6228 		if (!pt_prev)
6229 			continue;
6230 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6231 			/* dispatch old sublist */
6232 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6233 			/* start new sublist */
6234 			INIT_LIST_HEAD(&sublist);
6235 			pt_curr = pt_prev;
6236 			od_curr = orig_dev;
6237 		}
6238 		list_add_tail(&skb->list, &sublist);
6239 	}
6240 
6241 	/* dispatch final sublist */
6242 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6243 }
6244 
__netif_receive_skb(struct sk_buff * skb)6245 static int __netif_receive_skb(struct sk_buff *skb)
6246 {
6247 	int ret;
6248 
6249 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6250 		unsigned int noreclaim_flag;
6251 
6252 		/*
6253 		 * PFMEMALLOC skbs are special, they should
6254 		 * - be delivered to SOCK_MEMALLOC sockets only
6255 		 * - stay away from userspace
6256 		 * - have bounded memory usage
6257 		 *
6258 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6259 		 * context down to all allocation sites.
6260 		 */
6261 		noreclaim_flag = memalloc_noreclaim_save();
6262 		ret = __netif_receive_skb_one_core(skb, true);
6263 		memalloc_noreclaim_restore(noreclaim_flag);
6264 	} else
6265 		ret = __netif_receive_skb_one_core(skb, false);
6266 
6267 	return ret;
6268 }
6269 
__netif_receive_skb_list(struct list_head * head)6270 static void __netif_receive_skb_list(struct list_head *head)
6271 {
6272 	unsigned long noreclaim_flag = 0;
6273 	struct sk_buff *skb, *next;
6274 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6275 
6276 	list_for_each_entry_safe(skb, next, head, list) {
6277 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6278 			struct list_head sublist;
6279 
6280 			/* Handle the previous sublist */
6281 			list_cut_before(&sublist, head, &skb->list);
6282 			if (!list_empty(&sublist))
6283 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6284 			pfmemalloc = !pfmemalloc;
6285 			/* See comments in __netif_receive_skb */
6286 			if (pfmemalloc)
6287 				noreclaim_flag = memalloc_noreclaim_save();
6288 			else
6289 				memalloc_noreclaim_restore(noreclaim_flag);
6290 		}
6291 	}
6292 	/* Handle the remaining sublist */
6293 	if (!list_empty(head))
6294 		__netif_receive_skb_list_core(head, pfmemalloc);
6295 	/* Restore pflags */
6296 	if (pfmemalloc)
6297 		memalloc_noreclaim_restore(noreclaim_flag);
6298 }
6299 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6300 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6301 {
6302 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6303 	struct bpf_prog *new = xdp->prog;
6304 	int ret = 0;
6305 
6306 	switch (xdp->command) {
6307 	case XDP_SETUP_PROG:
6308 		rcu_assign_pointer(dev->xdp_prog, new);
6309 		if (old)
6310 			bpf_prog_put(old);
6311 
6312 		if (old && !new) {
6313 			static_branch_dec(&generic_xdp_needed_key);
6314 		} else if (new && !old) {
6315 			static_branch_inc(&generic_xdp_needed_key);
6316 			netif_disable_lro(dev);
6317 			dev_disable_gro_hw(dev);
6318 		}
6319 		break;
6320 
6321 	default:
6322 		ret = -EINVAL;
6323 		break;
6324 	}
6325 
6326 	return ret;
6327 }
6328 
netif_receive_skb_internal(struct sk_buff * skb)6329 static int netif_receive_skb_internal(struct sk_buff *skb)
6330 {
6331 	int ret;
6332 
6333 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6334 
6335 	if (skb_defer_rx_timestamp(skb))
6336 		return NET_RX_SUCCESS;
6337 
6338 	rcu_read_lock();
6339 #ifdef CONFIG_RPS
6340 	if (static_branch_unlikely(&rps_needed)) {
6341 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6342 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6343 
6344 		if (cpu >= 0) {
6345 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6346 			rcu_read_unlock();
6347 			return ret;
6348 		}
6349 	}
6350 #endif
6351 	ret = __netif_receive_skb(skb);
6352 	rcu_read_unlock();
6353 	return ret;
6354 }
6355 
netif_receive_skb_list_internal(struct list_head * head)6356 void netif_receive_skb_list_internal(struct list_head *head)
6357 {
6358 	struct sk_buff *skb, *next;
6359 	LIST_HEAD(sublist);
6360 
6361 	list_for_each_entry_safe(skb, next, head, list) {
6362 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6363 				    skb);
6364 		skb_list_del_init(skb);
6365 		if (!skb_defer_rx_timestamp(skb))
6366 			list_add_tail(&skb->list, &sublist);
6367 	}
6368 	list_splice_init(&sublist, head);
6369 
6370 	rcu_read_lock();
6371 #ifdef CONFIG_RPS
6372 	if (static_branch_unlikely(&rps_needed)) {
6373 		list_for_each_entry_safe(skb, next, head, list) {
6374 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6375 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6376 
6377 			if (cpu >= 0) {
6378 				/* Will be handled, remove from list */
6379 				skb_list_del_init(skb);
6380 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6381 			}
6382 		}
6383 	}
6384 #endif
6385 	__netif_receive_skb_list(head);
6386 	rcu_read_unlock();
6387 }
6388 
6389 /**
6390  *	netif_receive_skb - process receive buffer from network
6391  *	@skb: buffer to process
6392  *
6393  *	netif_receive_skb() is the main receive data processing function.
6394  *	It always succeeds. The buffer may be dropped during processing
6395  *	for congestion control or by the protocol layers.
6396  *
6397  *	This function may only be called from softirq context and interrupts
6398  *	should be enabled.
6399  *
6400  *	Return values (usually ignored):
6401  *	NET_RX_SUCCESS: no congestion
6402  *	NET_RX_DROP: packet was dropped
6403  */
netif_receive_skb(struct sk_buff * skb)6404 int netif_receive_skb(struct sk_buff *skb)
6405 {
6406 	int ret;
6407 
6408 	trace_netif_receive_skb_entry(skb);
6409 
6410 	ret = netif_receive_skb_internal(skb);
6411 	trace_netif_receive_skb_exit(ret);
6412 
6413 	return ret;
6414 }
6415 EXPORT_SYMBOL(netif_receive_skb);
6416 
6417 /**
6418  *	netif_receive_skb_list - process many receive buffers from network
6419  *	@head: list of skbs to process.
6420  *
6421  *	Since return value of netif_receive_skb() is normally ignored, and
6422  *	wouldn't be meaningful for a list, this function returns void.
6423  *
6424  *	This function may only be called from softirq context and interrupts
6425  *	should be enabled.
6426  */
netif_receive_skb_list(struct list_head * head)6427 void netif_receive_skb_list(struct list_head *head)
6428 {
6429 	struct sk_buff *skb;
6430 
6431 	if (list_empty(head))
6432 		return;
6433 	if (trace_netif_receive_skb_list_entry_enabled()) {
6434 		list_for_each_entry(skb, head, list)
6435 			trace_netif_receive_skb_list_entry(skb);
6436 	}
6437 	netif_receive_skb_list_internal(head);
6438 	trace_netif_receive_skb_list_exit(0);
6439 }
6440 EXPORT_SYMBOL(netif_receive_skb_list);
6441 
6442 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6443 static void flush_backlog(struct work_struct *work)
6444 {
6445 	struct sk_buff *skb, *tmp;
6446 	struct sk_buff_head list;
6447 	struct softnet_data *sd;
6448 
6449 	__skb_queue_head_init(&list);
6450 	local_bh_disable();
6451 	sd = this_cpu_ptr(&softnet_data);
6452 
6453 	backlog_lock_irq_disable(sd);
6454 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6455 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6456 			__skb_unlink(skb, &sd->input_pkt_queue);
6457 			__skb_queue_tail(&list, skb);
6458 			rps_input_queue_head_incr(sd);
6459 		}
6460 	}
6461 	backlog_unlock_irq_enable(sd);
6462 
6463 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6464 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6465 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6466 			__skb_unlink(skb, &sd->process_queue);
6467 			__skb_queue_tail(&list, skb);
6468 			rps_input_queue_head_incr(sd);
6469 		}
6470 	}
6471 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6472 	local_bh_enable();
6473 
6474 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6475 }
6476 
flush_required(int cpu)6477 static bool flush_required(int cpu)
6478 {
6479 #if IS_ENABLED(CONFIG_RPS)
6480 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6481 	bool do_flush;
6482 
6483 	backlog_lock_irq_disable(sd);
6484 
6485 	/* as insertion into process_queue happens with the rps lock held,
6486 	 * process_queue access may race only with dequeue
6487 	 */
6488 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6489 		   !skb_queue_empty_lockless(&sd->process_queue);
6490 	backlog_unlock_irq_enable(sd);
6491 
6492 	return do_flush;
6493 #endif
6494 	/* without RPS we can't safely check input_pkt_queue: during a
6495 	 * concurrent remote skb_queue_splice() we can detect as empty both
6496 	 * input_pkt_queue and process_queue even if the latter could end-up
6497 	 * containing a lot of packets.
6498 	 */
6499 	return true;
6500 }
6501 
6502 struct flush_backlogs {
6503 	cpumask_t		flush_cpus;
6504 	struct work_struct	w[];
6505 };
6506 
flush_backlogs_alloc(void)6507 static struct flush_backlogs *flush_backlogs_alloc(void)
6508 {
6509 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6510 		       GFP_KERNEL);
6511 }
6512 
6513 static struct flush_backlogs *flush_backlogs_fallback;
6514 static DEFINE_MUTEX(flush_backlogs_mutex);
6515 
flush_all_backlogs(void)6516 static void flush_all_backlogs(void)
6517 {
6518 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6519 	unsigned int cpu;
6520 
6521 	if (!ptr) {
6522 		mutex_lock(&flush_backlogs_mutex);
6523 		ptr = flush_backlogs_fallback;
6524 	}
6525 	cpumask_clear(&ptr->flush_cpus);
6526 
6527 	cpus_read_lock();
6528 
6529 	for_each_online_cpu(cpu) {
6530 		if (flush_required(cpu)) {
6531 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6532 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6533 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6534 		}
6535 	}
6536 
6537 	/* we can have in flight packet[s] on the cpus we are not flushing,
6538 	 * synchronize_net() in unregister_netdevice_many() will take care of
6539 	 * them.
6540 	 */
6541 	for_each_cpu(cpu, &ptr->flush_cpus)
6542 		flush_work(&ptr->w[cpu]);
6543 
6544 	cpus_read_unlock();
6545 
6546 	if (ptr != flush_backlogs_fallback)
6547 		kfree(ptr);
6548 	else
6549 		mutex_unlock(&flush_backlogs_mutex);
6550 }
6551 
net_rps_send_ipi(struct softnet_data * remsd)6552 static void net_rps_send_ipi(struct softnet_data *remsd)
6553 {
6554 #ifdef CONFIG_RPS
6555 	while (remsd) {
6556 		struct softnet_data *next = remsd->rps_ipi_next;
6557 
6558 		if (cpu_online(remsd->cpu))
6559 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6560 		remsd = next;
6561 	}
6562 #endif
6563 }
6564 
6565 /*
6566  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6567  * Note: called with local irq disabled, but exits with local irq enabled.
6568  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6569 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6570 {
6571 #ifdef CONFIG_RPS
6572 	struct softnet_data *remsd = sd->rps_ipi_list;
6573 
6574 	if (!use_backlog_threads() && remsd) {
6575 		sd->rps_ipi_list = NULL;
6576 
6577 		local_irq_enable();
6578 
6579 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6580 		net_rps_send_ipi(remsd);
6581 	} else
6582 #endif
6583 		local_irq_enable();
6584 }
6585 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6586 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6587 {
6588 #ifdef CONFIG_RPS
6589 	return !use_backlog_threads() && sd->rps_ipi_list;
6590 #else
6591 	return false;
6592 #endif
6593 }
6594 
process_backlog(struct napi_struct * napi,int quota)6595 static int process_backlog(struct napi_struct *napi, int quota)
6596 {
6597 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6598 	bool again = true;
6599 	int work = 0;
6600 
6601 	/* Check if we have pending ipi, its better to send them now,
6602 	 * not waiting net_rx_action() end.
6603 	 */
6604 	if (sd_has_rps_ipi_waiting(sd)) {
6605 		local_irq_disable();
6606 		net_rps_action_and_irq_enable(sd);
6607 	}
6608 
6609 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6610 	while (again) {
6611 		struct sk_buff *skb;
6612 
6613 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6614 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6615 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6616 			rcu_read_lock();
6617 			__netif_receive_skb(skb);
6618 			rcu_read_unlock();
6619 			if (++work >= quota) {
6620 				rps_input_queue_head_add(sd, work);
6621 				return work;
6622 			}
6623 
6624 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6625 		}
6626 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6627 
6628 		backlog_lock_irq_disable(sd);
6629 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6630 			/*
6631 			 * Inline a custom version of __napi_complete().
6632 			 * only current cpu owns and manipulates this napi,
6633 			 * and NAPI_STATE_SCHED is the only possible flag set
6634 			 * on backlog.
6635 			 * We can use a plain write instead of clear_bit(),
6636 			 * and we dont need an smp_mb() memory barrier.
6637 			 */
6638 			napi->state &= NAPIF_STATE_THREADED;
6639 			again = false;
6640 		} else {
6641 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6642 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6643 						   &sd->process_queue);
6644 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6645 		}
6646 		backlog_unlock_irq_enable(sd);
6647 	}
6648 
6649 	if (work)
6650 		rps_input_queue_head_add(sd, work);
6651 	return work;
6652 }
6653 
6654 /**
6655  * __napi_schedule - schedule for receive
6656  * @n: entry to schedule
6657  *
6658  * The entry's receive function will be scheduled to run.
6659  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6660  */
__napi_schedule(struct napi_struct * n)6661 void __napi_schedule(struct napi_struct *n)
6662 {
6663 	unsigned long flags;
6664 
6665 	local_irq_save(flags);
6666 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6667 	local_irq_restore(flags);
6668 }
6669 EXPORT_SYMBOL(__napi_schedule);
6670 
6671 /**
6672  *	napi_schedule_prep - check if napi can be scheduled
6673  *	@n: napi context
6674  *
6675  * Test if NAPI routine is already running, and if not mark
6676  * it as running.  This is used as a condition variable to
6677  * insure only one NAPI poll instance runs.  We also make
6678  * sure there is no pending NAPI disable.
6679  */
napi_schedule_prep(struct napi_struct * n)6680 bool napi_schedule_prep(struct napi_struct *n)
6681 {
6682 	unsigned long new, val = READ_ONCE(n->state);
6683 
6684 	do {
6685 		if (unlikely(val & NAPIF_STATE_DISABLE))
6686 			return false;
6687 		new = val | NAPIF_STATE_SCHED;
6688 
6689 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6690 		 * This was suggested by Alexander Duyck, as compiler
6691 		 * emits better code than :
6692 		 * if (val & NAPIF_STATE_SCHED)
6693 		 *     new |= NAPIF_STATE_MISSED;
6694 		 */
6695 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6696 						   NAPIF_STATE_MISSED;
6697 	} while (!try_cmpxchg(&n->state, &val, new));
6698 
6699 	return !(val & NAPIF_STATE_SCHED);
6700 }
6701 EXPORT_SYMBOL(napi_schedule_prep);
6702 
6703 /**
6704  * __napi_schedule_irqoff - schedule for receive
6705  * @n: entry to schedule
6706  *
6707  * Variant of __napi_schedule() assuming hard irqs are masked.
6708  *
6709  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6710  * because the interrupt disabled assumption might not be true
6711  * due to force-threaded interrupts and spinlock substitution.
6712  */
__napi_schedule_irqoff(struct napi_struct * n)6713 void __napi_schedule_irqoff(struct napi_struct *n)
6714 {
6715 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6716 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6717 	else
6718 		__napi_schedule(n);
6719 }
6720 EXPORT_SYMBOL(__napi_schedule_irqoff);
6721 
napi_complete_done(struct napi_struct * n,int work_done)6722 bool napi_complete_done(struct napi_struct *n, int work_done)
6723 {
6724 	unsigned long flags, val, new, timeout = 0;
6725 	bool ret = true;
6726 
6727 	/*
6728 	 * 1) Don't let napi dequeue from the cpu poll list
6729 	 *    just in case its running on a different cpu.
6730 	 * 2) If we are busy polling, do nothing here, we have
6731 	 *    the guarantee we will be called later.
6732 	 */
6733 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6734 				 NAPIF_STATE_IN_BUSY_POLL)))
6735 		return false;
6736 
6737 	if (work_done) {
6738 		if (n->gro.bitmask)
6739 			timeout = napi_get_gro_flush_timeout(n);
6740 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6741 	}
6742 	if (n->defer_hard_irqs_count > 0) {
6743 		n->defer_hard_irqs_count--;
6744 		timeout = napi_get_gro_flush_timeout(n);
6745 		if (timeout)
6746 			ret = false;
6747 	}
6748 
6749 	/*
6750 	 * When the NAPI instance uses a timeout and keeps postponing
6751 	 * it, we need to bound somehow the time packets are kept in
6752 	 * the GRO layer.
6753 	 */
6754 	gro_flush_normal(&n->gro, !!timeout);
6755 
6756 	if (unlikely(!list_empty(&n->poll_list))) {
6757 		/* If n->poll_list is not empty, we need to mask irqs */
6758 		local_irq_save(flags);
6759 		list_del_init(&n->poll_list);
6760 		local_irq_restore(flags);
6761 	}
6762 	WRITE_ONCE(n->list_owner, -1);
6763 
6764 	val = READ_ONCE(n->state);
6765 	do {
6766 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6767 
6768 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6769 			      NAPIF_STATE_SCHED_THREADED |
6770 			      NAPIF_STATE_PREFER_BUSY_POLL);
6771 
6772 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6773 		 * because we will call napi->poll() one more time.
6774 		 * This C code was suggested by Alexander Duyck to help gcc.
6775 		 */
6776 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6777 						    NAPIF_STATE_SCHED;
6778 	} while (!try_cmpxchg(&n->state, &val, new));
6779 
6780 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6781 		__napi_schedule(n);
6782 		return false;
6783 	}
6784 
6785 	if (timeout)
6786 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6787 			      HRTIMER_MODE_REL_PINNED);
6788 	return ret;
6789 }
6790 EXPORT_SYMBOL(napi_complete_done);
6791 
skb_defer_free_flush(void)6792 static void skb_defer_free_flush(void)
6793 {
6794 	struct llist_node *free_list;
6795 	struct sk_buff *skb, *next;
6796 	struct skb_defer_node *sdn;
6797 	int node;
6798 
6799 	for_each_node(node) {
6800 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6801 
6802 		if (llist_empty(&sdn->defer_list))
6803 			continue;
6804 		atomic_long_set(&sdn->defer_count, 0);
6805 		free_list = llist_del_all(&sdn->defer_list);
6806 
6807 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6808 			prefetch(next);
6809 			napi_consume_skb(skb, 1);
6810 		}
6811 	}
6812 }
6813 
6814 #if defined(CONFIG_NET_RX_BUSY_POLL)
6815 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6816 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6817 {
6818 	if (!skip_schedule) {
6819 		gro_normal_list(&napi->gro);
6820 		__napi_schedule(napi);
6821 		return;
6822 	}
6823 
6824 	/* Flush too old packets. If HZ < 1000, flush all packets */
6825 	gro_flush_normal(&napi->gro, HZ >= 1000);
6826 
6827 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6828 }
6829 
6830 enum {
6831 	NAPI_F_PREFER_BUSY_POLL	= 1,
6832 	NAPI_F_END_ON_RESCHED	= 2,
6833 };
6834 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6835 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6836 			   unsigned flags, u16 budget)
6837 {
6838 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6839 	bool skip_schedule = false;
6840 	unsigned long timeout;
6841 	int rc;
6842 
6843 	/* Busy polling means there is a high chance device driver hard irq
6844 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6845 	 * set in napi_schedule_prep().
6846 	 * Since we are about to call napi->poll() once more, we can safely
6847 	 * clear NAPI_STATE_MISSED.
6848 	 *
6849 	 * Note: x86 could use a single "lock and ..." instruction
6850 	 * to perform these two clear_bit()
6851 	 */
6852 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6853 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6854 
6855 	local_bh_disable();
6856 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6857 
6858 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6859 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6860 		timeout = napi_get_gro_flush_timeout(napi);
6861 		if (napi->defer_hard_irqs_count && timeout) {
6862 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6863 			skip_schedule = true;
6864 		}
6865 	}
6866 
6867 	/* All we really want here is to re-enable device interrupts.
6868 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6869 	 */
6870 	rc = napi->poll(napi, budget);
6871 	/* We can't gro_normal_list() here, because napi->poll() might have
6872 	 * rearmed the napi (napi_complete_done()) in which case it could
6873 	 * already be running on another CPU.
6874 	 */
6875 	trace_napi_poll(napi, rc, budget);
6876 	netpoll_poll_unlock(have_poll_lock);
6877 	if (rc == budget)
6878 		__busy_poll_stop(napi, skip_schedule);
6879 	bpf_net_ctx_clear(bpf_net_ctx);
6880 	local_bh_enable();
6881 }
6882 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6883 static void __napi_busy_loop(unsigned int napi_id,
6884 		      bool (*loop_end)(void *, unsigned long),
6885 		      void *loop_end_arg, unsigned flags, u16 budget)
6886 {
6887 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6888 	int (*napi_poll)(struct napi_struct *napi, int budget);
6889 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6890 	void *have_poll_lock = NULL;
6891 	struct napi_struct *napi;
6892 
6893 	WARN_ON_ONCE(!rcu_read_lock_held());
6894 
6895 restart:
6896 	napi_poll = NULL;
6897 
6898 	napi = napi_by_id(napi_id);
6899 	if (!napi)
6900 		return;
6901 
6902 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6903 		preempt_disable();
6904 	for (;;) {
6905 		int work = 0;
6906 
6907 		local_bh_disable();
6908 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6909 		if (!napi_poll) {
6910 			unsigned long val = READ_ONCE(napi->state);
6911 
6912 			/* If multiple threads are competing for this napi,
6913 			 * we avoid dirtying napi->state as much as we can.
6914 			 */
6915 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6916 				   NAPIF_STATE_IN_BUSY_POLL)) {
6917 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6918 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6919 				goto count;
6920 			}
6921 			if (cmpxchg(&napi->state, val,
6922 				    val | NAPIF_STATE_IN_BUSY_POLL |
6923 					  NAPIF_STATE_SCHED) != val) {
6924 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6925 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6926 				goto count;
6927 			}
6928 			have_poll_lock = netpoll_poll_lock(napi);
6929 			napi_poll = napi->poll;
6930 		}
6931 		work = napi_poll(napi, budget);
6932 		trace_napi_poll(napi, work, budget);
6933 		gro_normal_list(&napi->gro);
6934 count:
6935 		if (work > 0)
6936 			__NET_ADD_STATS(dev_net(napi->dev),
6937 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6938 		skb_defer_free_flush();
6939 		bpf_net_ctx_clear(bpf_net_ctx);
6940 		local_bh_enable();
6941 
6942 		if (!loop_end || loop_end(loop_end_arg, start_time))
6943 			break;
6944 
6945 		if (unlikely(need_resched())) {
6946 			if (flags & NAPI_F_END_ON_RESCHED)
6947 				break;
6948 			if (napi_poll)
6949 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6950 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6951 				preempt_enable();
6952 			rcu_read_unlock();
6953 			cond_resched();
6954 			rcu_read_lock();
6955 			if (loop_end(loop_end_arg, start_time))
6956 				return;
6957 			goto restart;
6958 		}
6959 		cpu_relax();
6960 	}
6961 	if (napi_poll)
6962 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6963 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6964 		preempt_enable();
6965 }
6966 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6967 void napi_busy_loop_rcu(unsigned int napi_id,
6968 			bool (*loop_end)(void *, unsigned long),
6969 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6970 {
6971 	unsigned flags = NAPI_F_END_ON_RESCHED;
6972 
6973 	if (prefer_busy_poll)
6974 		flags |= NAPI_F_PREFER_BUSY_POLL;
6975 
6976 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6977 }
6978 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6979 void napi_busy_loop(unsigned int napi_id,
6980 		    bool (*loop_end)(void *, unsigned long),
6981 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6982 {
6983 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6984 
6985 	rcu_read_lock();
6986 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6987 	rcu_read_unlock();
6988 }
6989 EXPORT_SYMBOL(napi_busy_loop);
6990 
napi_suspend_irqs(unsigned int napi_id)6991 void napi_suspend_irqs(unsigned int napi_id)
6992 {
6993 	struct napi_struct *napi;
6994 
6995 	rcu_read_lock();
6996 	napi = napi_by_id(napi_id);
6997 	if (napi) {
6998 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6999 
7000 		if (timeout)
7001 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7002 				      HRTIMER_MODE_REL_PINNED);
7003 	}
7004 	rcu_read_unlock();
7005 }
7006 
napi_resume_irqs(unsigned int napi_id)7007 void napi_resume_irqs(unsigned int napi_id)
7008 {
7009 	struct napi_struct *napi;
7010 
7011 	rcu_read_lock();
7012 	napi = napi_by_id(napi_id);
7013 	if (napi) {
7014 		/* If irq_suspend_timeout is set to 0 between the call to
7015 		 * napi_suspend_irqs and now, the original value still
7016 		 * determines the safety timeout as intended and napi_watchdog
7017 		 * will resume irq processing.
7018 		 */
7019 		if (napi_get_irq_suspend_timeout(napi)) {
7020 			local_bh_disable();
7021 			napi_schedule(napi);
7022 			local_bh_enable();
7023 		}
7024 	}
7025 	rcu_read_unlock();
7026 }
7027 
7028 #endif /* CONFIG_NET_RX_BUSY_POLL */
7029 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7030 static void __napi_hash_add_with_id(struct napi_struct *napi,
7031 				    unsigned int napi_id)
7032 {
7033 	napi->gro.cached_napi_id = napi_id;
7034 
7035 	WRITE_ONCE(napi->napi_id, napi_id);
7036 	hlist_add_head_rcu(&napi->napi_hash_node,
7037 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7038 }
7039 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7040 static void napi_hash_add_with_id(struct napi_struct *napi,
7041 				  unsigned int napi_id)
7042 {
7043 	unsigned long flags;
7044 
7045 	spin_lock_irqsave(&napi_hash_lock, flags);
7046 	WARN_ON_ONCE(napi_by_id(napi_id));
7047 	__napi_hash_add_with_id(napi, napi_id);
7048 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7049 }
7050 
napi_hash_add(struct napi_struct * napi)7051 static void napi_hash_add(struct napi_struct *napi)
7052 {
7053 	unsigned long flags;
7054 
7055 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7056 		return;
7057 
7058 	spin_lock_irqsave(&napi_hash_lock, flags);
7059 
7060 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7061 	do {
7062 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7063 			napi_gen_id = MIN_NAPI_ID;
7064 	} while (napi_by_id(napi_gen_id));
7065 
7066 	__napi_hash_add_with_id(napi, napi_gen_id);
7067 
7068 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7069 }
7070 
7071 /* Warning : caller is responsible to make sure rcu grace period
7072  * is respected before freeing memory containing @napi
7073  */
napi_hash_del(struct napi_struct * napi)7074 static void napi_hash_del(struct napi_struct *napi)
7075 {
7076 	unsigned long flags;
7077 
7078 	spin_lock_irqsave(&napi_hash_lock, flags);
7079 
7080 	hlist_del_init_rcu(&napi->napi_hash_node);
7081 
7082 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7083 }
7084 
napi_watchdog(struct hrtimer * timer)7085 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7086 {
7087 	struct napi_struct *napi;
7088 
7089 	napi = container_of(timer, struct napi_struct, timer);
7090 
7091 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7092 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7093 	 */
7094 	if (!napi_disable_pending(napi) &&
7095 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7096 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7097 		__napi_schedule_irqoff(napi);
7098 	}
7099 
7100 	return HRTIMER_NORESTART;
7101 }
7102 
napi_stop_kthread(struct napi_struct * napi)7103 static void napi_stop_kthread(struct napi_struct *napi)
7104 {
7105 	unsigned long val, new;
7106 
7107 	/* Wait until the napi STATE_THREADED is unset. */
7108 	while (true) {
7109 		val = READ_ONCE(napi->state);
7110 
7111 		/* If napi kthread own this napi or the napi is idle,
7112 		 * STATE_THREADED can be unset here.
7113 		 */
7114 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7115 		    !(val & NAPIF_STATE_SCHED)) {
7116 			new = val & (~(NAPIF_STATE_THREADED |
7117 				       NAPIF_STATE_THREADED_BUSY_POLL));
7118 		} else {
7119 			msleep(20);
7120 			continue;
7121 		}
7122 
7123 		if (try_cmpxchg(&napi->state, &val, new))
7124 			break;
7125 	}
7126 
7127 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7128 	 * the kthread.
7129 	 */
7130 	while (true) {
7131 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7132 			break;
7133 
7134 		msleep(20);
7135 	}
7136 
7137 	kthread_stop(napi->thread);
7138 	napi->thread = NULL;
7139 }
7140 
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7141 static void napi_set_threaded_state(struct napi_struct *napi,
7142 				    enum netdev_napi_threaded threaded_mode)
7143 {
7144 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7145 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7146 
7147 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7148 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7149 }
7150 
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7151 int napi_set_threaded(struct napi_struct *napi,
7152 		      enum netdev_napi_threaded threaded)
7153 {
7154 	if (threaded) {
7155 		if (!napi->thread) {
7156 			int err = napi_kthread_create(napi);
7157 
7158 			if (err)
7159 				return err;
7160 		}
7161 	}
7162 
7163 	if (napi->config)
7164 		napi->config->threaded = threaded;
7165 
7166 	/* Setting/unsetting threaded mode on a napi might not immediately
7167 	 * take effect, if the current napi instance is actively being
7168 	 * polled. In this case, the switch between threaded mode and
7169 	 * softirq mode will happen in the next round of napi_schedule().
7170 	 * This should not cause hiccups/stalls to the live traffic.
7171 	 */
7172 	if (!threaded && napi->thread) {
7173 		napi_stop_kthread(napi);
7174 	} else {
7175 		/* Make sure kthread is created before THREADED bit is set. */
7176 		smp_mb__before_atomic();
7177 		napi_set_threaded_state(napi, threaded);
7178 	}
7179 
7180 	return 0;
7181 }
7182 
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7183 int netif_set_threaded(struct net_device *dev,
7184 		       enum netdev_napi_threaded threaded)
7185 {
7186 	struct napi_struct *napi;
7187 	int i, err = 0;
7188 
7189 	netdev_assert_locked_or_invisible(dev);
7190 
7191 	if (threaded) {
7192 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7193 			if (!napi->thread) {
7194 				err = napi_kthread_create(napi);
7195 				if (err) {
7196 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7197 					break;
7198 				}
7199 			}
7200 		}
7201 	}
7202 
7203 	WRITE_ONCE(dev->threaded, threaded);
7204 
7205 	/* The error should not occur as the kthreads are already created. */
7206 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7207 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7208 
7209 	/* Override the config for all NAPIs even if currently not listed */
7210 	for (i = 0; i < dev->num_napi_configs; i++)
7211 		dev->napi_config[i].threaded = threaded;
7212 
7213 	return err;
7214 }
7215 
7216 /**
7217  * netif_threaded_enable() - enable threaded NAPIs
7218  * @dev: net_device instance
7219  *
7220  * Enable threaded mode for the NAPI instances of the device. This may be useful
7221  * for devices where multiple NAPI instances get scheduled by a single
7222  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7223  * than the core where IRQ is mapped.
7224  *
7225  * This function should be called before @dev is registered.
7226  */
netif_threaded_enable(struct net_device * dev)7227 void netif_threaded_enable(struct net_device *dev)
7228 {
7229 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7230 }
7231 EXPORT_SYMBOL(netif_threaded_enable);
7232 
7233 /**
7234  * netif_queue_set_napi - Associate queue with the napi
7235  * @dev: device to which NAPI and queue belong
7236  * @queue_index: Index of queue
7237  * @type: queue type as RX or TX
7238  * @napi: NAPI context, pass NULL to clear previously set NAPI
7239  *
7240  * Set queue with its corresponding napi context. This should be done after
7241  * registering the NAPI handler for the queue-vector and the queues have been
7242  * mapped to the corresponding interrupt vector.
7243  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7244 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7245 			  enum netdev_queue_type type, struct napi_struct *napi)
7246 {
7247 	struct netdev_rx_queue *rxq;
7248 	struct netdev_queue *txq;
7249 
7250 	if (WARN_ON_ONCE(napi && !napi->dev))
7251 		return;
7252 	netdev_ops_assert_locked_or_invisible(dev);
7253 
7254 	switch (type) {
7255 	case NETDEV_QUEUE_TYPE_RX:
7256 		rxq = __netif_get_rx_queue(dev, queue_index);
7257 		rxq->napi = napi;
7258 		return;
7259 	case NETDEV_QUEUE_TYPE_TX:
7260 		txq = netdev_get_tx_queue(dev, queue_index);
7261 		txq->napi = napi;
7262 		return;
7263 	default:
7264 		return;
7265 	}
7266 }
7267 EXPORT_SYMBOL(netif_queue_set_napi);
7268 
7269 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7270 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7271 		      const cpumask_t *mask)
7272 {
7273 	struct napi_struct *napi =
7274 		container_of(notify, struct napi_struct, notify);
7275 #ifdef CONFIG_RFS_ACCEL
7276 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7277 	int err;
7278 #endif
7279 
7280 	if (napi->config && napi->dev->irq_affinity_auto)
7281 		cpumask_copy(&napi->config->affinity_mask, mask);
7282 
7283 #ifdef CONFIG_RFS_ACCEL
7284 	if (napi->dev->rx_cpu_rmap_auto) {
7285 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7286 		if (err)
7287 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7288 				    err);
7289 	}
7290 #endif
7291 }
7292 
7293 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7294 static void netif_napi_affinity_release(struct kref *ref)
7295 {
7296 	struct napi_struct *napi =
7297 		container_of(ref, struct napi_struct, notify.kref);
7298 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7299 
7300 	netdev_assert_locked(napi->dev);
7301 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7302 				   &napi->state));
7303 
7304 	if (!napi->dev->rx_cpu_rmap_auto)
7305 		return;
7306 	rmap->obj[napi->napi_rmap_idx] = NULL;
7307 	napi->napi_rmap_idx = -1;
7308 	cpu_rmap_put(rmap);
7309 }
7310 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7311 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7312 {
7313 	if (dev->rx_cpu_rmap_auto)
7314 		return 0;
7315 
7316 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7317 	if (!dev->rx_cpu_rmap)
7318 		return -ENOMEM;
7319 
7320 	dev->rx_cpu_rmap_auto = true;
7321 	return 0;
7322 }
7323 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7324 
netif_del_cpu_rmap(struct net_device * dev)7325 static void netif_del_cpu_rmap(struct net_device *dev)
7326 {
7327 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7328 
7329 	if (!dev->rx_cpu_rmap_auto)
7330 		return;
7331 
7332 	/* Free the rmap */
7333 	cpu_rmap_put(rmap);
7334 	dev->rx_cpu_rmap = NULL;
7335 	dev->rx_cpu_rmap_auto = false;
7336 }
7337 
7338 #else
netif_napi_affinity_release(struct kref * ref)7339 static void netif_napi_affinity_release(struct kref *ref)
7340 {
7341 }
7342 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7343 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7344 {
7345 	return 0;
7346 }
7347 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7348 
netif_del_cpu_rmap(struct net_device * dev)7349 static void netif_del_cpu_rmap(struct net_device *dev)
7350 {
7351 }
7352 #endif
7353 
netif_set_affinity_auto(struct net_device * dev)7354 void netif_set_affinity_auto(struct net_device *dev)
7355 {
7356 	unsigned int i, maxqs, numa;
7357 
7358 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7359 	numa = dev_to_node(&dev->dev);
7360 
7361 	for (i = 0; i < maxqs; i++)
7362 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7363 				&dev->napi_config[i].affinity_mask);
7364 
7365 	dev->irq_affinity_auto = true;
7366 }
7367 EXPORT_SYMBOL(netif_set_affinity_auto);
7368 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7369 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7370 {
7371 	int rc;
7372 
7373 	netdev_assert_locked_or_invisible(napi->dev);
7374 
7375 	if (napi->irq == irq)
7376 		return;
7377 
7378 	/* Remove existing resources */
7379 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7380 		irq_set_affinity_notifier(napi->irq, NULL);
7381 
7382 	napi->irq = irq;
7383 	if (irq < 0 ||
7384 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7385 		return;
7386 
7387 	/* Abort for buggy drivers */
7388 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7389 		return;
7390 
7391 #ifdef CONFIG_RFS_ACCEL
7392 	if (napi->dev->rx_cpu_rmap_auto) {
7393 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7394 		if (rc < 0)
7395 			return;
7396 
7397 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7398 		napi->napi_rmap_idx = rc;
7399 	}
7400 #endif
7401 
7402 	/* Use core IRQ notifier */
7403 	napi->notify.notify = netif_napi_irq_notify;
7404 	napi->notify.release = netif_napi_affinity_release;
7405 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7406 	if (rc) {
7407 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7408 			    rc);
7409 		goto put_rmap;
7410 	}
7411 
7412 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7413 	return;
7414 
7415 put_rmap:
7416 #ifdef CONFIG_RFS_ACCEL
7417 	if (napi->dev->rx_cpu_rmap_auto) {
7418 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7419 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7420 		napi->napi_rmap_idx = -1;
7421 	}
7422 #endif
7423 	napi->notify.notify = NULL;
7424 	napi->notify.release = NULL;
7425 }
7426 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7427 
napi_restore_config(struct napi_struct * n)7428 static void napi_restore_config(struct napi_struct *n)
7429 {
7430 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7431 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7432 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7433 
7434 	if (n->dev->irq_affinity_auto &&
7435 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7436 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7437 
7438 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7439 	 * napi_hash_add to generate one for us.
7440 	 */
7441 	if (n->config->napi_id) {
7442 		napi_hash_add_with_id(n, n->config->napi_id);
7443 	} else {
7444 		napi_hash_add(n);
7445 		n->config->napi_id = n->napi_id;
7446 	}
7447 
7448 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7449 }
7450 
napi_save_config(struct napi_struct * n)7451 static void napi_save_config(struct napi_struct *n)
7452 {
7453 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7454 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7455 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7456 	napi_hash_del(n);
7457 }
7458 
7459 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7460  * inherit an existing ID try to insert it at the right position.
7461  */
7462 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7463 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7464 {
7465 	unsigned int new_id, pos_id;
7466 	struct list_head *higher;
7467 	struct napi_struct *pos;
7468 
7469 	new_id = UINT_MAX;
7470 	if (napi->config && napi->config->napi_id)
7471 		new_id = napi->config->napi_id;
7472 
7473 	higher = &dev->napi_list;
7474 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7475 		if (napi_id_valid(pos->napi_id))
7476 			pos_id = pos->napi_id;
7477 		else if (pos->config)
7478 			pos_id = pos->config->napi_id;
7479 		else
7480 			pos_id = UINT_MAX;
7481 
7482 		if (pos_id <= new_id)
7483 			break;
7484 		higher = &pos->dev_list;
7485 	}
7486 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7487 }
7488 
7489 /* Double check that napi_get_frags() allocates skbs with
7490  * skb->head being backed by slab, not a page fragment.
7491  * This is to make sure bug fixed in 3226b158e67c
7492  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7493  * does not accidentally come back.
7494  */
napi_get_frags_check(struct napi_struct * napi)7495 static void napi_get_frags_check(struct napi_struct *napi)
7496 {
7497 	struct sk_buff *skb;
7498 
7499 	local_bh_disable();
7500 	skb = napi_get_frags(napi);
7501 	WARN_ON_ONCE(skb && skb->head_frag);
7502 	napi_free_frags(napi);
7503 	local_bh_enable();
7504 }
7505 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7506 void netif_napi_add_weight_locked(struct net_device *dev,
7507 				  struct napi_struct *napi,
7508 				  int (*poll)(struct napi_struct *, int),
7509 				  int weight)
7510 {
7511 	netdev_assert_locked(dev);
7512 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7513 		return;
7514 
7515 	INIT_LIST_HEAD(&napi->poll_list);
7516 	INIT_HLIST_NODE(&napi->napi_hash_node);
7517 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7518 	gro_init(&napi->gro);
7519 	napi->skb = NULL;
7520 	napi->poll = poll;
7521 	if (weight > NAPI_POLL_WEIGHT)
7522 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7523 				weight);
7524 	napi->weight = weight;
7525 	napi->dev = dev;
7526 #ifdef CONFIG_NETPOLL
7527 	napi->poll_owner = -1;
7528 #endif
7529 	napi->list_owner = -1;
7530 	set_bit(NAPI_STATE_SCHED, &napi->state);
7531 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7532 	netif_napi_dev_list_add(dev, napi);
7533 
7534 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7535 	 * configuration will be loaded in napi_enable
7536 	 */
7537 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7538 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7539 
7540 	napi_get_frags_check(napi);
7541 	/* Create kthread for this napi if dev->threaded is set.
7542 	 * Clear dev->threaded if kthread creation failed so that
7543 	 * threaded mode will not be enabled in napi_enable().
7544 	 */
7545 	if (napi_get_threaded_config(dev, napi))
7546 		if (napi_kthread_create(napi))
7547 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7548 	netif_napi_set_irq_locked(napi, -1);
7549 }
7550 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7551 
napi_disable_locked(struct napi_struct * n)7552 void napi_disable_locked(struct napi_struct *n)
7553 {
7554 	unsigned long val, new;
7555 
7556 	might_sleep();
7557 	netdev_assert_locked(n->dev);
7558 
7559 	set_bit(NAPI_STATE_DISABLE, &n->state);
7560 
7561 	val = READ_ONCE(n->state);
7562 	do {
7563 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7564 			usleep_range(20, 200);
7565 			val = READ_ONCE(n->state);
7566 		}
7567 
7568 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7569 		new &= ~(NAPIF_STATE_THREADED |
7570 			 NAPIF_STATE_THREADED_BUSY_POLL |
7571 			 NAPIF_STATE_PREFER_BUSY_POLL);
7572 	} while (!try_cmpxchg(&n->state, &val, new));
7573 
7574 	hrtimer_cancel(&n->timer);
7575 
7576 	if (n->config)
7577 		napi_save_config(n);
7578 	else
7579 		napi_hash_del(n);
7580 
7581 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7582 }
7583 EXPORT_SYMBOL(napi_disable_locked);
7584 
7585 /**
7586  * napi_disable() - prevent NAPI from scheduling
7587  * @n: NAPI context
7588  *
7589  * Stop NAPI from being scheduled on this context.
7590  * Waits till any outstanding processing completes.
7591  * Takes netdev_lock() for associated net_device.
7592  */
napi_disable(struct napi_struct * n)7593 void napi_disable(struct napi_struct *n)
7594 {
7595 	netdev_lock(n->dev);
7596 	napi_disable_locked(n);
7597 	netdev_unlock(n->dev);
7598 }
7599 EXPORT_SYMBOL(napi_disable);
7600 
napi_enable_locked(struct napi_struct * n)7601 void napi_enable_locked(struct napi_struct *n)
7602 {
7603 	unsigned long new, val = READ_ONCE(n->state);
7604 
7605 	if (n->config)
7606 		napi_restore_config(n);
7607 	else
7608 		napi_hash_add(n);
7609 
7610 	do {
7611 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7612 
7613 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7614 		if (n->dev->threaded && n->thread)
7615 			new |= NAPIF_STATE_THREADED;
7616 	} while (!try_cmpxchg(&n->state, &val, new));
7617 }
7618 EXPORT_SYMBOL(napi_enable_locked);
7619 
7620 /**
7621  * napi_enable() - enable NAPI scheduling
7622  * @n: NAPI context
7623  *
7624  * Enable scheduling of a NAPI instance.
7625  * Must be paired with napi_disable().
7626  * Takes netdev_lock() for associated net_device.
7627  */
napi_enable(struct napi_struct * n)7628 void napi_enable(struct napi_struct *n)
7629 {
7630 	netdev_lock(n->dev);
7631 	napi_enable_locked(n);
7632 	netdev_unlock(n->dev);
7633 }
7634 EXPORT_SYMBOL(napi_enable);
7635 
7636 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7637 void __netif_napi_del_locked(struct napi_struct *napi)
7638 {
7639 	netdev_assert_locked(napi->dev);
7640 
7641 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7642 		return;
7643 
7644 	/* Make sure NAPI is disabled (or was never enabled). */
7645 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7646 
7647 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7648 		irq_set_affinity_notifier(napi->irq, NULL);
7649 
7650 	if (napi->config) {
7651 		napi->index = -1;
7652 		napi->config = NULL;
7653 	}
7654 
7655 	list_del_rcu(&napi->dev_list);
7656 	napi_free_frags(napi);
7657 
7658 	gro_cleanup(&napi->gro);
7659 
7660 	if (napi->thread) {
7661 		kthread_stop(napi->thread);
7662 		napi->thread = NULL;
7663 	}
7664 }
7665 EXPORT_SYMBOL(__netif_napi_del_locked);
7666 
__napi_poll(struct napi_struct * n,bool * repoll)7667 static int __napi_poll(struct napi_struct *n, bool *repoll)
7668 {
7669 	int work, weight;
7670 
7671 	weight = n->weight;
7672 
7673 	/* This NAPI_STATE_SCHED test is for avoiding a race
7674 	 * with netpoll's poll_napi().  Only the entity which
7675 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7676 	 * actually make the ->poll() call.  Therefore we avoid
7677 	 * accidentally calling ->poll() when NAPI is not scheduled.
7678 	 */
7679 	work = 0;
7680 	if (napi_is_scheduled(n)) {
7681 		work = n->poll(n, weight);
7682 		trace_napi_poll(n, work, weight);
7683 
7684 		xdp_do_check_flushed(n);
7685 	}
7686 
7687 	if (unlikely(work > weight))
7688 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7689 				n->poll, work, weight);
7690 
7691 	if (likely(work < weight))
7692 		return work;
7693 
7694 	/* Drivers must not modify the NAPI state if they
7695 	 * consume the entire weight.  In such cases this code
7696 	 * still "owns" the NAPI instance and therefore can
7697 	 * move the instance around on the list at-will.
7698 	 */
7699 	if (unlikely(napi_disable_pending(n))) {
7700 		napi_complete(n);
7701 		return work;
7702 	}
7703 
7704 	/* The NAPI context has more processing work, but busy-polling
7705 	 * is preferred. Exit early.
7706 	 */
7707 	if (napi_prefer_busy_poll(n)) {
7708 		if (napi_complete_done(n, work)) {
7709 			/* If timeout is not set, we need to make sure
7710 			 * that the NAPI is re-scheduled.
7711 			 */
7712 			napi_schedule(n);
7713 		}
7714 		return work;
7715 	}
7716 
7717 	/* Flush too old packets. If HZ < 1000, flush all packets */
7718 	gro_flush_normal(&n->gro, HZ >= 1000);
7719 
7720 	/* Some drivers may have called napi_schedule
7721 	 * prior to exhausting their budget.
7722 	 */
7723 	if (unlikely(!list_empty(&n->poll_list))) {
7724 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7725 			     n->dev ? n->dev->name : "backlog");
7726 		return work;
7727 	}
7728 
7729 	*repoll = true;
7730 
7731 	return work;
7732 }
7733 
napi_poll(struct napi_struct * n,struct list_head * repoll)7734 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7735 {
7736 	bool do_repoll = false;
7737 	void *have;
7738 	int work;
7739 
7740 	list_del_init(&n->poll_list);
7741 
7742 	have = netpoll_poll_lock(n);
7743 
7744 	work = __napi_poll(n, &do_repoll);
7745 
7746 	if (do_repoll) {
7747 #if defined(CONFIG_DEBUG_NET)
7748 		if (unlikely(!napi_is_scheduled(n)))
7749 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7750 				n->dev->name, n->poll);
7751 #endif
7752 		list_add_tail(&n->poll_list, repoll);
7753 	}
7754 	netpoll_poll_unlock(have);
7755 
7756 	return work;
7757 }
7758 
napi_thread_wait(struct napi_struct * napi)7759 static int napi_thread_wait(struct napi_struct *napi)
7760 {
7761 	set_current_state(TASK_INTERRUPTIBLE);
7762 
7763 	while (!kthread_should_stop()) {
7764 		/* Testing SCHED_THREADED bit here to make sure the current
7765 		 * kthread owns this napi and could poll on this napi.
7766 		 * Testing SCHED bit is not enough because SCHED bit might be
7767 		 * set by some other busy poll thread or by napi_disable().
7768 		 */
7769 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7770 			WARN_ON(!list_empty(&napi->poll_list));
7771 			__set_current_state(TASK_RUNNING);
7772 			return 0;
7773 		}
7774 
7775 		schedule();
7776 		set_current_state(TASK_INTERRUPTIBLE);
7777 	}
7778 	__set_current_state(TASK_RUNNING);
7779 
7780 	return -1;
7781 }
7782 
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7783 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7784 {
7785 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7786 	struct softnet_data *sd;
7787 	unsigned long last_qs = jiffies;
7788 
7789 	for (;;) {
7790 		bool repoll = false;
7791 		void *have;
7792 
7793 		local_bh_disable();
7794 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7795 
7796 		sd = this_cpu_ptr(&softnet_data);
7797 		sd->in_napi_threaded_poll = true;
7798 
7799 		have = netpoll_poll_lock(napi);
7800 		__napi_poll(napi, &repoll);
7801 		netpoll_poll_unlock(have);
7802 
7803 		sd->in_napi_threaded_poll = false;
7804 		barrier();
7805 
7806 		if (sd_has_rps_ipi_waiting(sd)) {
7807 			local_irq_disable();
7808 			net_rps_action_and_irq_enable(sd);
7809 		}
7810 		skb_defer_free_flush();
7811 		bpf_net_ctx_clear(bpf_net_ctx);
7812 
7813 		/* When busy poll is enabled, the old packets are not flushed in
7814 		 * napi_complete_done. So flush them here.
7815 		 */
7816 		if (busy_poll)
7817 			gro_flush_normal(&napi->gro, HZ >= 1000);
7818 		local_bh_enable();
7819 
7820 		/* Call cond_resched here to avoid watchdog warnings. */
7821 		if (repoll || busy_poll) {
7822 			rcu_softirq_qs_periodic(last_qs);
7823 			cond_resched();
7824 		}
7825 
7826 		if (!repoll)
7827 			break;
7828 	}
7829 }
7830 
napi_threaded_poll(void * data)7831 static int napi_threaded_poll(void *data)
7832 {
7833 	struct napi_struct *napi = data;
7834 	bool want_busy_poll;
7835 	bool in_busy_poll;
7836 	unsigned long val;
7837 
7838 	while (!napi_thread_wait(napi)) {
7839 		val = READ_ONCE(napi->state);
7840 
7841 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7842 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7843 
7844 		if (unlikely(val & NAPIF_STATE_DISABLE))
7845 			want_busy_poll = false;
7846 
7847 		if (want_busy_poll != in_busy_poll)
7848 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7849 				   want_busy_poll);
7850 
7851 		napi_threaded_poll_loop(napi, want_busy_poll);
7852 	}
7853 
7854 	return 0;
7855 }
7856 
net_rx_action(void)7857 static __latent_entropy void net_rx_action(void)
7858 {
7859 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7860 	unsigned long time_limit = jiffies +
7861 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7862 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7863 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7864 	LIST_HEAD(list);
7865 	LIST_HEAD(repoll);
7866 
7867 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7868 start:
7869 	sd->in_net_rx_action = true;
7870 	local_irq_disable();
7871 	list_splice_init(&sd->poll_list, &list);
7872 	local_irq_enable();
7873 
7874 	for (;;) {
7875 		struct napi_struct *n;
7876 
7877 		skb_defer_free_flush();
7878 
7879 		if (list_empty(&list)) {
7880 			if (list_empty(&repoll)) {
7881 				sd->in_net_rx_action = false;
7882 				barrier();
7883 				/* We need to check if ____napi_schedule()
7884 				 * had refilled poll_list while
7885 				 * sd->in_net_rx_action was true.
7886 				 */
7887 				if (!list_empty(&sd->poll_list))
7888 					goto start;
7889 				if (!sd_has_rps_ipi_waiting(sd))
7890 					goto end;
7891 			}
7892 			break;
7893 		}
7894 
7895 		n = list_first_entry(&list, struct napi_struct, poll_list);
7896 		budget -= napi_poll(n, &repoll);
7897 
7898 		/* If softirq window is exhausted then punt.
7899 		 * Allow this to run for 2 jiffies since which will allow
7900 		 * an average latency of 1.5/HZ.
7901 		 */
7902 		if (unlikely(budget <= 0 ||
7903 			     time_after_eq(jiffies, time_limit))) {
7904 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7905 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7906 			break;
7907 		}
7908 	}
7909 
7910 	local_irq_disable();
7911 
7912 	list_splice_tail_init(&sd->poll_list, &list);
7913 	list_splice_tail(&repoll, &list);
7914 	list_splice(&list, &sd->poll_list);
7915 	if (!list_empty(&sd->poll_list))
7916 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7917 	else
7918 		sd->in_net_rx_action = false;
7919 
7920 	net_rps_action_and_irq_enable(sd);
7921 end:
7922 	bpf_net_ctx_clear(bpf_net_ctx);
7923 }
7924 
7925 struct netdev_adjacent {
7926 	struct net_device *dev;
7927 	netdevice_tracker dev_tracker;
7928 
7929 	/* upper master flag, there can only be one master device per list */
7930 	bool master;
7931 
7932 	/* lookup ignore flag */
7933 	bool ignore;
7934 
7935 	/* counter for the number of times this device was added to us */
7936 	u16 ref_nr;
7937 
7938 	/* private field for the users */
7939 	void *private;
7940 
7941 	struct list_head list;
7942 	struct rcu_head rcu;
7943 };
7944 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7945 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7946 						 struct list_head *adj_list)
7947 {
7948 	struct netdev_adjacent *adj;
7949 
7950 	list_for_each_entry(adj, adj_list, list) {
7951 		if (adj->dev == adj_dev)
7952 			return adj;
7953 	}
7954 	return NULL;
7955 }
7956 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7957 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7958 				    struct netdev_nested_priv *priv)
7959 {
7960 	struct net_device *dev = (struct net_device *)priv->data;
7961 
7962 	return upper_dev == dev;
7963 }
7964 
7965 /**
7966  * netdev_has_upper_dev - Check if device is linked to an upper device
7967  * @dev: device
7968  * @upper_dev: upper device to check
7969  *
7970  * Find out if a device is linked to specified upper device and return true
7971  * in case it is. Note that this checks only immediate upper device,
7972  * not through a complete stack of devices. The caller must hold the RTNL lock.
7973  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7974 bool netdev_has_upper_dev(struct net_device *dev,
7975 			  struct net_device *upper_dev)
7976 {
7977 	struct netdev_nested_priv priv = {
7978 		.data = (void *)upper_dev,
7979 	};
7980 
7981 	ASSERT_RTNL();
7982 
7983 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7984 					     &priv);
7985 }
7986 EXPORT_SYMBOL(netdev_has_upper_dev);
7987 
7988 /**
7989  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7990  * @dev: device
7991  * @upper_dev: upper device to check
7992  *
7993  * Find out if a device is linked to specified upper device and return true
7994  * in case it is. Note that this checks the entire upper device chain.
7995  * The caller must hold rcu lock.
7996  */
7997 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7998 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7999 				  struct net_device *upper_dev)
8000 {
8001 	struct netdev_nested_priv priv = {
8002 		.data = (void *)upper_dev,
8003 	};
8004 
8005 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8006 					       &priv);
8007 }
8008 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8009 
8010 /**
8011  * netdev_has_any_upper_dev - Check if device is linked to some device
8012  * @dev: device
8013  *
8014  * Find out if a device is linked to an upper device and return true in case
8015  * it is. The caller must hold the RTNL lock.
8016  */
netdev_has_any_upper_dev(struct net_device * dev)8017 bool netdev_has_any_upper_dev(struct net_device *dev)
8018 {
8019 	ASSERT_RTNL();
8020 
8021 	return !list_empty(&dev->adj_list.upper);
8022 }
8023 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8024 
8025 /**
8026  * netdev_master_upper_dev_get - Get master upper device
8027  * @dev: device
8028  *
8029  * Find a master upper device and return pointer to it or NULL in case
8030  * it's not there. The caller must hold the RTNL lock.
8031  */
netdev_master_upper_dev_get(struct net_device * dev)8032 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8033 {
8034 	struct netdev_adjacent *upper;
8035 
8036 	ASSERT_RTNL();
8037 
8038 	if (list_empty(&dev->adj_list.upper))
8039 		return NULL;
8040 
8041 	upper = list_first_entry(&dev->adj_list.upper,
8042 				 struct netdev_adjacent, list);
8043 	if (likely(upper->master))
8044 		return upper->dev;
8045 	return NULL;
8046 }
8047 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8048 
__netdev_master_upper_dev_get(struct net_device * dev)8049 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8050 {
8051 	struct netdev_adjacent *upper;
8052 
8053 	ASSERT_RTNL();
8054 
8055 	if (list_empty(&dev->adj_list.upper))
8056 		return NULL;
8057 
8058 	upper = list_first_entry(&dev->adj_list.upper,
8059 				 struct netdev_adjacent, list);
8060 	if (likely(upper->master) && !upper->ignore)
8061 		return upper->dev;
8062 	return NULL;
8063 }
8064 
8065 /**
8066  * netdev_has_any_lower_dev - Check if device is linked to some device
8067  * @dev: device
8068  *
8069  * Find out if a device is linked to a lower device and return true in case
8070  * it is. The caller must hold the RTNL lock.
8071  */
netdev_has_any_lower_dev(struct net_device * dev)8072 static bool netdev_has_any_lower_dev(struct net_device *dev)
8073 {
8074 	ASSERT_RTNL();
8075 
8076 	return !list_empty(&dev->adj_list.lower);
8077 }
8078 
netdev_adjacent_get_private(struct list_head * adj_list)8079 void *netdev_adjacent_get_private(struct list_head *adj_list)
8080 {
8081 	struct netdev_adjacent *adj;
8082 
8083 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8084 
8085 	return adj->private;
8086 }
8087 EXPORT_SYMBOL(netdev_adjacent_get_private);
8088 
8089 /**
8090  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8091  * @dev: device
8092  * @iter: list_head ** of the current position
8093  *
8094  * Gets the next device from the dev's upper list, starting from iter
8095  * position. The caller must hold RCU read lock.
8096  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8097 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8098 						 struct list_head **iter)
8099 {
8100 	struct netdev_adjacent *upper;
8101 
8102 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8103 
8104 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8105 
8106 	if (&upper->list == &dev->adj_list.upper)
8107 		return NULL;
8108 
8109 	*iter = &upper->list;
8110 
8111 	return upper->dev;
8112 }
8113 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8114 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8115 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8116 						  struct list_head **iter,
8117 						  bool *ignore)
8118 {
8119 	struct netdev_adjacent *upper;
8120 
8121 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8122 
8123 	if (&upper->list == &dev->adj_list.upper)
8124 		return NULL;
8125 
8126 	*iter = &upper->list;
8127 	*ignore = upper->ignore;
8128 
8129 	return upper->dev;
8130 }
8131 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8132 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8133 						    struct list_head **iter)
8134 {
8135 	struct netdev_adjacent *upper;
8136 
8137 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8138 
8139 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8140 
8141 	if (&upper->list == &dev->adj_list.upper)
8142 		return NULL;
8143 
8144 	*iter = &upper->list;
8145 
8146 	return upper->dev;
8147 }
8148 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8149 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8150 				       int (*fn)(struct net_device *dev,
8151 					 struct netdev_nested_priv *priv),
8152 				       struct netdev_nested_priv *priv)
8153 {
8154 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8155 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8156 	int ret, cur = 0;
8157 	bool ignore;
8158 
8159 	now = dev;
8160 	iter = &dev->adj_list.upper;
8161 
8162 	while (1) {
8163 		if (now != dev) {
8164 			ret = fn(now, priv);
8165 			if (ret)
8166 				return ret;
8167 		}
8168 
8169 		next = NULL;
8170 		while (1) {
8171 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8172 			if (!udev)
8173 				break;
8174 			if (ignore)
8175 				continue;
8176 
8177 			next = udev;
8178 			niter = &udev->adj_list.upper;
8179 			dev_stack[cur] = now;
8180 			iter_stack[cur++] = iter;
8181 			break;
8182 		}
8183 
8184 		if (!next) {
8185 			if (!cur)
8186 				return 0;
8187 			next = dev_stack[--cur];
8188 			niter = iter_stack[cur];
8189 		}
8190 
8191 		now = next;
8192 		iter = niter;
8193 	}
8194 
8195 	return 0;
8196 }
8197 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8198 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8199 				  int (*fn)(struct net_device *dev,
8200 					    struct netdev_nested_priv *priv),
8201 				  struct netdev_nested_priv *priv)
8202 {
8203 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8204 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8205 	int ret, cur = 0;
8206 
8207 	now = dev;
8208 	iter = &dev->adj_list.upper;
8209 
8210 	while (1) {
8211 		if (now != dev) {
8212 			ret = fn(now, priv);
8213 			if (ret)
8214 				return ret;
8215 		}
8216 
8217 		next = NULL;
8218 		while (1) {
8219 			udev = netdev_next_upper_dev_rcu(now, &iter);
8220 			if (!udev)
8221 				break;
8222 
8223 			next = udev;
8224 			niter = &udev->adj_list.upper;
8225 			dev_stack[cur] = now;
8226 			iter_stack[cur++] = iter;
8227 			break;
8228 		}
8229 
8230 		if (!next) {
8231 			if (!cur)
8232 				return 0;
8233 			next = dev_stack[--cur];
8234 			niter = iter_stack[cur];
8235 		}
8236 
8237 		now = next;
8238 		iter = niter;
8239 	}
8240 
8241 	return 0;
8242 }
8243 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8244 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8245 static bool __netdev_has_upper_dev(struct net_device *dev,
8246 				   struct net_device *upper_dev)
8247 {
8248 	struct netdev_nested_priv priv = {
8249 		.flags = 0,
8250 		.data = (void *)upper_dev,
8251 	};
8252 
8253 	ASSERT_RTNL();
8254 
8255 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8256 					   &priv);
8257 }
8258 
8259 /**
8260  * netdev_lower_get_next_private - Get the next ->private from the
8261  *				   lower neighbour list
8262  * @dev: device
8263  * @iter: list_head ** of the current position
8264  *
8265  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8266  * list, starting from iter position. The caller must hold either hold the
8267  * RTNL lock or its own locking that guarantees that the neighbour lower
8268  * list will remain unchanged.
8269  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8270 void *netdev_lower_get_next_private(struct net_device *dev,
8271 				    struct list_head **iter)
8272 {
8273 	struct netdev_adjacent *lower;
8274 
8275 	lower = list_entry(*iter, struct netdev_adjacent, list);
8276 
8277 	if (&lower->list == &dev->adj_list.lower)
8278 		return NULL;
8279 
8280 	*iter = lower->list.next;
8281 
8282 	return lower->private;
8283 }
8284 EXPORT_SYMBOL(netdev_lower_get_next_private);
8285 
8286 /**
8287  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8288  *				       lower neighbour list, RCU
8289  *				       variant
8290  * @dev: device
8291  * @iter: list_head ** of the current position
8292  *
8293  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8294  * list, starting from iter position. The caller must hold RCU read lock.
8295  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8296 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8297 					struct list_head **iter)
8298 {
8299 	struct netdev_adjacent *lower;
8300 
8301 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8302 
8303 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8304 
8305 	if (&lower->list == &dev->adj_list.lower)
8306 		return NULL;
8307 
8308 	*iter = &lower->list;
8309 
8310 	return lower->private;
8311 }
8312 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8313 
8314 /**
8315  * netdev_lower_get_next - Get the next device from the lower neighbour
8316  *                         list
8317  * @dev: device
8318  * @iter: list_head ** of the current position
8319  *
8320  * Gets the next netdev_adjacent from the dev's lower neighbour
8321  * list, starting from iter position. The caller must hold RTNL lock or
8322  * its own locking that guarantees that the neighbour lower
8323  * list will remain unchanged.
8324  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8325 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8326 {
8327 	struct netdev_adjacent *lower;
8328 
8329 	lower = list_entry(*iter, struct netdev_adjacent, list);
8330 
8331 	if (&lower->list == &dev->adj_list.lower)
8332 		return NULL;
8333 
8334 	*iter = lower->list.next;
8335 
8336 	return lower->dev;
8337 }
8338 EXPORT_SYMBOL(netdev_lower_get_next);
8339 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8340 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8341 						struct list_head **iter)
8342 {
8343 	struct netdev_adjacent *lower;
8344 
8345 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8346 
8347 	if (&lower->list == &dev->adj_list.lower)
8348 		return NULL;
8349 
8350 	*iter = &lower->list;
8351 
8352 	return lower->dev;
8353 }
8354 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8355 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8356 						  struct list_head **iter,
8357 						  bool *ignore)
8358 {
8359 	struct netdev_adjacent *lower;
8360 
8361 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8362 
8363 	if (&lower->list == &dev->adj_list.lower)
8364 		return NULL;
8365 
8366 	*iter = &lower->list;
8367 	*ignore = lower->ignore;
8368 
8369 	return lower->dev;
8370 }
8371 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8372 int netdev_walk_all_lower_dev(struct net_device *dev,
8373 			      int (*fn)(struct net_device *dev,
8374 					struct netdev_nested_priv *priv),
8375 			      struct netdev_nested_priv *priv)
8376 {
8377 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8378 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8379 	int ret, cur = 0;
8380 
8381 	now = dev;
8382 	iter = &dev->adj_list.lower;
8383 
8384 	while (1) {
8385 		if (now != dev) {
8386 			ret = fn(now, priv);
8387 			if (ret)
8388 				return ret;
8389 		}
8390 
8391 		next = NULL;
8392 		while (1) {
8393 			ldev = netdev_next_lower_dev(now, &iter);
8394 			if (!ldev)
8395 				break;
8396 
8397 			next = ldev;
8398 			niter = &ldev->adj_list.lower;
8399 			dev_stack[cur] = now;
8400 			iter_stack[cur++] = iter;
8401 			break;
8402 		}
8403 
8404 		if (!next) {
8405 			if (!cur)
8406 				return 0;
8407 			next = dev_stack[--cur];
8408 			niter = iter_stack[cur];
8409 		}
8410 
8411 		now = next;
8412 		iter = niter;
8413 	}
8414 
8415 	return 0;
8416 }
8417 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8418 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8419 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8420 				       int (*fn)(struct net_device *dev,
8421 					 struct netdev_nested_priv *priv),
8422 				       struct netdev_nested_priv *priv)
8423 {
8424 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8425 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8426 	int ret, cur = 0;
8427 	bool ignore;
8428 
8429 	now = dev;
8430 	iter = &dev->adj_list.lower;
8431 
8432 	while (1) {
8433 		if (now != dev) {
8434 			ret = fn(now, priv);
8435 			if (ret)
8436 				return ret;
8437 		}
8438 
8439 		next = NULL;
8440 		while (1) {
8441 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8442 			if (!ldev)
8443 				break;
8444 			if (ignore)
8445 				continue;
8446 
8447 			next = ldev;
8448 			niter = &ldev->adj_list.lower;
8449 			dev_stack[cur] = now;
8450 			iter_stack[cur++] = iter;
8451 			break;
8452 		}
8453 
8454 		if (!next) {
8455 			if (!cur)
8456 				return 0;
8457 			next = dev_stack[--cur];
8458 			niter = iter_stack[cur];
8459 		}
8460 
8461 		now = next;
8462 		iter = niter;
8463 	}
8464 
8465 	return 0;
8466 }
8467 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8468 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8469 					     struct list_head **iter)
8470 {
8471 	struct netdev_adjacent *lower;
8472 
8473 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8474 	if (&lower->list == &dev->adj_list.lower)
8475 		return NULL;
8476 
8477 	*iter = &lower->list;
8478 
8479 	return lower->dev;
8480 }
8481 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8482 
__netdev_upper_depth(struct net_device * dev)8483 static u8 __netdev_upper_depth(struct net_device *dev)
8484 {
8485 	struct net_device *udev;
8486 	struct list_head *iter;
8487 	u8 max_depth = 0;
8488 	bool ignore;
8489 
8490 	for (iter = &dev->adj_list.upper,
8491 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8492 	     udev;
8493 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8494 		if (ignore)
8495 			continue;
8496 		if (max_depth < udev->upper_level)
8497 			max_depth = udev->upper_level;
8498 	}
8499 
8500 	return max_depth;
8501 }
8502 
__netdev_lower_depth(struct net_device * dev)8503 static u8 __netdev_lower_depth(struct net_device *dev)
8504 {
8505 	struct net_device *ldev;
8506 	struct list_head *iter;
8507 	u8 max_depth = 0;
8508 	bool ignore;
8509 
8510 	for (iter = &dev->adj_list.lower,
8511 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8512 	     ldev;
8513 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8514 		if (ignore)
8515 			continue;
8516 		if (max_depth < ldev->lower_level)
8517 			max_depth = ldev->lower_level;
8518 	}
8519 
8520 	return max_depth;
8521 }
8522 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8523 static int __netdev_update_upper_level(struct net_device *dev,
8524 				       struct netdev_nested_priv *__unused)
8525 {
8526 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8527 	return 0;
8528 }
8529 
8530 #ifdef CONFIG_LOCKDEP
8531 static LIST_HEAD(net_unlink_list);
8532 
net_unlink_todo(struct net_device * dev)8533 static void net_unlink_todo(struct net_device *dev)
8534 {
8535 	if (list_empty(&dev->unlink_list))
8536 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8537 }
8538 #endif
8539 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8540 static int __netdev_update_lower_level(struct net_device *dev,
8541 				       struct netdev_nested_priv *priv)
8542 {
8543 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8544 
8545 #ifdef CONFIG_LOCKDEP
8546 	if (!priv)
8547 		return 0;
8548 
8549 	if (priv->flags & NESTED_SYNC_IMM)
8550 		dev->nested_level = dev->lower_level - 1;
8551 	if (priv->flags & NESTED_SYNC_TODO)
8552 		net_unlink_todo(dev);
8553 #endif
8554 	return 0;
8555 }
8556 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8557 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8558 				  int (*fn)(struct net_device *dev,
8559 					    struct netdev_nested_priv *priv),
8560 				  struct netdev_nested_priv *priv)
8561 {
8562 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8563 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8564 	int ret, cur = 0;
8565 
8566 	now = dev;
8567 	iter = &dev->adj_list.lower;
8568 
8569 	while (1) {
8570 		if (now != dev) {
8571 			ret = fn(now, priv);
8572 			if (ret)
8573 				return ret;
8574 		}
8575 
8576 		next = NULL;
8577 		while (1) {
8578 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8579 			if (!ldev)
8580 				break;
8581 
8582 			next = ldev;
8583 			niter = &ldev->adj_list.lower;
8584 			dev_stack[cur] = now;
8585 			iter_stack[cur++] = iter;
8586 			break;
8587 		}
8588 
8589 		if (!next) {
8590 			if (!cur)
8591 				return 0;
8592 			next = dev_stack[--cur];
8593 			niter = iter_stack[cur];
8594 		}
8595 
8596 		now = next;
8597 		iter = niter;
8598 	}
8599 
8600 	return 0;
8601 }
8602 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8603 
8604 /**
8605  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8606  *				       lower neighbour list, RCU
8607  *				       variant
8608  * @dev: device
8609  *
8610  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8611  * list. The caller must hold RCU read lock.
8612  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8613 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8614 {
8615 	struct netdev_adjacent *lower;
8616 
8617 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8618 			struct netdev_adjacent, list);
8619 	if (lower)
8620 		return lower->private;
8621 	return NULL;
8622 }
8623 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8624 
8625 /**
8626  * netdev_master_upper_dev_get_rcu - Get master upper device
8627  * @dev: device
8628  *
8629  * Find a master upper device and return pointer to it or NULL in case
8630  * it's not there. The caller must hold the RCU read lock.
8631  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8632 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8633 {
8634 	struct netdev_adjacent *upper;
8635 
8636 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8637 				       struct netdev_adjacent, list);
8638 	if (upper && likely(upper->master))
8639 		return upper->dev;
8640 	return NULL;
8641 }
8642 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8643 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8644 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8645 			      struct net_device *adj_dev,
8646 			      struct list_head *dev_list)
8647 {
8648 	char linkname[IFNAMSIZ+7];
8649 
8650 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8651 		"upper_%s" : "lower_%s", adj_dev->name);
8652 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8653 				 linkname);
8654 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8655 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8656 			       char *name,
8657 			       struct list_head *dev_list)
8658 {
8659 	char linkname[IFNAMSIZ+7];
8660 
8661 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8662 		"upper_%s" : "lower_%s", name);
8663 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8664 }
8665 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8666 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8667 						 struct net_device *adj_dev,
8668 						 struct list_head *dev_list)
8669 {
8670 	return (dev_list == &dev->adj_list.upper ||
8671 		dev_list == &dev->adj_list.lower) &&
8672 		net_eq(dev_net(dev), dev_net(adj_dev));
8673 }
8674 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8675 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8676 					struct net_device *adj_dev,
8677 					struct list_head *dev_list,
8678 					void *private, bool master)
8679 {
8680 	struct netdev_adjacent *adj;
8681 	int ret;
8682 
8683 	adj = __netdev_find_adj(adj_dev, dev_list);
8684 
8685 	if (adj) {
8686 		adj->ref_nr += 1;
8687 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8688 			 dev->name, adj_dev->name, adj->ref_nr);
8689 
8690 		return 0;
8691 	}
8692 
8693 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8694 	if (!adj)
8695 		return -ENOMEM;
8696 
8697 	adj->dev = adj_dev;
8698 	adj->master = master;
8699 	adj->ref_nr = 1;
8700 	adj->private = private;
8701 	adj->ignore = false;
8702 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8703 
8704 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8705 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8706 
8707 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8708 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8709 		if (ret)
8710 			goto free_adj;
8711 	}
8712 
8713 	/* Ensure that master link is always the first item in list. */
8714 	if (master) {
8715 		ret = sysfs_create_link(&(dev->dev.kobj),
8716 					&(adj_dev->dev.kobj), "master");
8717 		if (ret)
8718 			goto remove_symlinks;
8719 
8720 		list_add_rcu(&adj->list, dev_list);
8721 	} else {
8722 		list_add_tail_rcu(&adj->list, dev_list);
8723 	}
8724 
8725 	return 0;
8726 
8727 remove_symlinks:
8728 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8729 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8730 free_adj:
8731 	netdev_put(adj_dev, &adj->dev_tracker);
8732 	kfree(adj);
8733 
8734 	return ret;
8735 }
8736 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8737 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8738 					 struct net_device *adj_dev,
8739 					 u16 ref_nr,
8740 					 struct list_head *dev_list)
8741 {
8742 	struct netdev_adjacent *adj;
8743 
8744 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8745 		 dev->name, adj_dev->name, ref_nr);
8746 
8747 	adj = __netdev_find_adj(adj_dev, dev_list);
8748 
8749 	if (!adj) {
8750 		pr_err("Adjacency does not exist for device %s from %s\n",
8751 		       dev->name, adj_dev->name);
8752 		WARN_ON(1);
8753 		return;
8754 	}
8755 
8756 	if (adj->ref_nr > ref_nr) {
8757 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8758 			 dev->name, adj_dev->name, ref_nr,
8759 			 adj->ref_nr - ref_nr);
8760 		adj->ref_nr -= ref_nr;
8761 		return;
8762 	}
8763 
8764 	if (adj->master)
8765 		sysfs_remove_link(&(dev->dev.kobj), "master");
8766 
8767 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8768 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8769 
8770 	list_del_rcu(&adj->list);
8771 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8772 		 adj_dev->name, dev->name, adj_dev->name);
8773 	netdev_put(adj_dev, &adj->dev_tracker);
8774 	kfree_rcu(adj, rcu);
8775 }
8776 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8777 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8778 					    struct net_device *upper_dev,
8779 					    struct list_head *up_list,
8780 					    struct list_head *down_list,
8781 					    void *private, bool master)
8782 {
8783 	int ret;
8784 
8785 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8786 					   private, master);
8787 	if (ret)
8788 		return ret;
8789 
8790 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8791 					   private, false);
8792 	if (ret) {
8793 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8794 		return ret;
8795 	}
8796 
8797 	return 0;
8798 }
8799 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8800 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8801 					       struct net_device *upper_dev,
8802 					       u16 ref_nr,
8803 					       struct list_head *up_list,
8804 					       struct list_head *down_list)
8805 {
8806 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8807 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8808 }
8809 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8810 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8811 						struct net_device *upper_dev,
8812 						void *private, bool master)
8813 {
8814 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8815 						&dev->adj_list.upper,
8816 						&upper_dev->adj_list.lower,
8817 						private, master);
8818 }
8819 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8820 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8821 						   struct net_device *upper_dev)
8822 {
8823 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8824 					   &dev->adj_list.upper,
8825 					   &upper_dev->adj_list.lower);
8826 }
8827 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8828 static int __netdev_upper_dev_link(struct net_device *dev,
8829 				   struct net_device *upper_dev, bool master,
8830 				   void *upper_priv, void *upper_info,
8831 				   struct netdev_nested_priv *priv,
8832 				   struct netlink_ext_ack *extack)
8833 {
8834 	struct netdev_notifier_changeupper_info changeupper_info = {
8835 		.info = {
8836 			.dev = dev,
8837 			.extack = extack,
8838 		},
8839 		.upper_dev = upper_dev,
8840 		.master = master,
8841 		.linking = true,
8842 		.upper_info = upper_info,
8843 	};
8844 	struct net_device *master_dev;
8845 	int ret = 0;
8846 
8847 	ASSERT_RTNL();
8848 
8849 	if (dev == upper_dev)
8850 		return -EBUSY;
8851 
8852 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8853 	if (__netdev_has_upper_dev(upper_dev, dev))
8854 		return -EBUSY;
8855 
8856 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8857 		return -EMLINK;
8858 
8859 	if (!master) {
8860 		if (__netdev_has_upper_dev(dev, upper_dev))
8861 			return -EEXIST;
8862 	} else {
8863 		master_dev = __netdev_master_upper_dev_get(dev);
8864 		if (master_dev)
8865 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8866 	}
8867 
8868 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8869 					    &changeupper_info.info);
8870 	ret = notifier_to_errno(ret);
8871 	if (ret)
8872 		return ret;
8873 
8874 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8875 						   master);
8876 	if (ret)
8877 		return ret;
8878 
8879 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8880 					    &changeupper_info.info);
8881 	ret = notifier_to_errno(ret);
8882 	if (ret)
8883 		goto rollback;
8884 
8885 	__netdev_update_upper_level(dev, NULL);
8886 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8887 
8888 	__netdev_update_lower_level(upper_dev, priv);
8889 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8890 				    priv);
8891 
8892 	return 0;
8893 
8894 rollback:
8895 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8896 
8897 	return ret;
8898 }
8899 
8900 /**
8901  * netdev_upper_dev_link - Add a link to the upper device
8902  * @dev: device
8903  * @upper_dev: new upper device
8904  * @extack: netlink extended ack
8905  *
8906  * Adds a link to device which is upper to this one. The caller must hold
8907  * the RTNL lock. On a failure a negative errno code is returned.
8908  * On success the reference counts are adjusted and the function
8909  * returns zero.
8910  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8911 int netdev_upper_dev_link(struct net_device *dev,
8912 			  struct net_device *upper_dev,
8913 			  struct netlink_ext_ack *extack)
8914 {
8915 	struct netdev_nested_priv priv = {
8916 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8917 		.data = NULL,
8918 	};
8919 
8920 	return __netdev_upper_dev_link(dev, upper_dev, false,
8921 				       NULL, NULL, &priv, extack);
8922 }
8923 EXPORT_SYMBOL(netdev_upper_dev_link);
8924 
8925 /**
8926  * netdev_master_upper_dev_link - Add a master link to the upper device
8927  * @dev: device
8928  * @upper_dev: new upper device
8929  * @upper_priv: upper device private
8930  * @upper_info: upper info to be passed down via notifier
8931  * @extack: netlink extended ack
8932  *
8933  * Adds a link to device which is upper to this one. In this case, only
8934  * one master upper device can be linked, although other non-master devices
8935  * might be linked as well. The caller must hold the RTNL lock.
8936  * On a failure a negative errno code is returned. On success the reference
8937  * counts are adjusted and the function returns zero.
8938  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8939 int netdev_master_upper_dev_link(struct net_device *dev,
8940 				 struct net_device *upper_dev,
8941 				 void *upper_priv, void *upper_info,
8942 				 struct netlink_ext_ack *extack)
8943 {
8944 	struct netdev_nested_priv priv = {
8945 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8946 		.data = NULL,
8947 	};
8948 
8949 	return __netdev_upper_dev_link(dev, upper_dev, true,
8950 				       upper_priv, upper_info, &priv, extack);
8951 }
8952 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8953 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8954 static void __netdev_upper_dev_unlink(struct net_device *dev,
8955 				      struct net_device *upper_dev,
8956 				      struct netdev_nested_priv *priv)
8957 {
8958 	struct netdev_notifier_changeupper_info changeupper_info = {
8959 		.info = {
8960 			.dev = dev,
8961 		},
8962 		.upper_dev = upper_dev,
8963 		.linking = false,
8964 	};
8965 
8966 	ASSERT_RTNL();
8967 
8968 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8969 
8970 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8971 				      &changeupper_info.info);
8972 
8973 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8974 
8975 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8976 				      &changeupper_info.info);
8977 
8978 	__netdev_update_upper_level(dev, NULL);
8979 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8980 
8981 	__netdev_update_lower_level(upper_dev, priv);
8982 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8983 				    priv);
8984 }
8985 
8986 /**
8987  * netdev_upper_dev_unlink - Removes a link to upper device
8988  * @dev: device
8989  * @upper_dev: new upper device
8990  *
8991  * Removes a link to device which is upper to this one. The caller must hold
8992  * the RTNL lock.
8993  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8994 void netdev_upper_dev_unlink(struct net_device *dev,
8995 			     struct net_device *upper_dev)
8996 {
8997 	struct netdev_nested_priv priv = {
8998 		.flags = NESTED_SYNC_TODO,
8999 		.data = NULL,
9000 	};
9001 
9002 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
9003 }
9004 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9005 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9006 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9007 				      struct net_device *lower_dev,
9008 				      bool val)
9009 {
9010 	struct netdev_adjacent *adj;
9011 
9012 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9013 	if (adj)
9014 		adj->ignore = val;
9015 
9016 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9017 	if (adj)
9018 		adj->ignore = val;
9019 }
9020 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9021 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9022 					struct net_device *lower_dev)
9023 {
9024 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9025 }
9026 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9027 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9028 				       struct net_device *lower_dev)
9029 {
9030 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9031 }
9032 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9033 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9034 				   struct net_device *new_dev,
9035 				   struct net_device *dev,
9036 				   struct netlink_ext_ack *extack)
9037 {
9038 	struct netdev_nested_priv priv = {
9039 		.flags = 0,
9040 		.data = NULL,
9041 	};
9042 	int err;
9043 
9044 	if (!new_dev)
9045 		return 0;
9046 
9047 	if (old_dev && new_dev != old_dev)
9048 		netdev_adjacent_dev_disable(dev, old_dev);
9049 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9050 				      extack);
9051 	if (err) {
9052 		if (old_dev && new_dev != old_dev)
9053 			netdev_adjacent_dev_enable(dev, old_dev);
9054 		return err;
9055 	}
9056 
9057 	return 0;
9058 }
9059 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9060 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9061 void netdev_adjacent_change_commit(struct net_device *old_dev,
9062 				   struct net_device *new_dev,
9063 				   struct net_device *dev)
9064 {
9065 	struct netdev_nested_priv priv = {
9066 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9067 		.data = NULL,
9068 	};
9069 
9070 	if (!new_dev || !old_dev)
9071 		return;
9072 
9073 	if (new_dev == old_dev)
9074 		return;
9075 
9076 	netdev_adjacent_dev_enable(dev, old_dev);
9077 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9078 }
9079 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9080 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9081 void netdev_adjacent_change_abort(struct net_device *old_dev,
9082 				  struct net_device *new_dev,
9083 				  struct net_device *dev)
9084 {
9085 	struct netdev_nested_priv priv = {
9086 		.flags = 0,
9087 		.data = NULL,
9088 	};
9089 
9090 	if (!new_dev)
9091 		return;
9092 
9093 	if (old_dev && new_dev != old_dev)
9094 		netdev_adjacent_dev_enable(dev, old_dev);
9095 
9096 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9097 }
9098 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9099 
9100 /**
9101  * netdev_bonding_info_change - Dispatch event about slave change
9102  * @dev: device
9103  * @bonding_info: info to dispatch
9104  *
9105  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9106  * The caller must hold the RTNL lock.
9107  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9108 void netdev_bonding_info_change(struct net_device *dev,
9109 				struct netdev_bonding_info *bonding_info)
9110 {
9111 	struct netdev_notifier_bonding_info info = {
9112 		.info.dev = dev,
9113 	};
9114 
9115 	memcpy(&info.bonding_info, bonding_info,
9116 	       sizeof(struct netdev_bonding_info));
9117 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9118 				      &info.info);
9119 }
9120 EXPORT_SYMBOL(netdev_bonding_info_change);
9121 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9122 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9123 					   struct netlink_ext_ack *extack)
9124 {
9125 	struct netdev_notifier_offload_xstats_info info = {
9126 		.info.dev = dev,
9127 		.info.extack = extack,
9128 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9129 	};
9130 	int err;
9131 	int rc;
9132 
9133 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9134 					 GFP_KERNEL);
9135 	if (!dev->offload_xstats_l3)
9136 		return -ENOMEM;
9137 
9138 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9139 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9140 						  &info.info);
9141 	err = notifier_to_errno(rc);
9142 	if (err)
9143 		goto free_stats;
9144 
9145 	return 0;
9146 
9147 free_stats:
9148 	kfree(dev->offload_xstats_l3);
9149 	dev->offload_xstats_l3 = NULL;
9150 	return err;
9151 }
9152 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9153 int netdev_offload_xstats_enable(struct net_device *dev,
9154 				 enum netdev_offload_xstats_type type,
9155 				 struct netlink_ext_ack *extack)
9156 {
9157 	ASSERT_RTNL();
9158 
9159 	if (netdev_offload_xstats_enabled(dev, type))
9160 		return -EALREADY;
9161 
9162 	switch (type) {
9163 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9164 		return netdev_offload_xstats_enable_l3(dev, extack);
9165 	}
9166 
9167 	WARN_ON(1);
9168 	return -EINVAL;
9169 }
9170 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9171 
netdev_offload_xstats_disable_l3(struct net_device * dev)9172 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9173 {
9174 	struct netdev_notifier_offload_xstats_info info = {
9175 		.info.dev = dev,
9176 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9177 	};
9178 
9179 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9180 				      &info.info);
9181 	kfree(dev->offload_xstats_l3);
9182 	dev->offload_xstats_l3 = NULL;
9183 }
9184 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9185 int netdev_offload_xstats_disable(struct net_device *dev,
9186 				  enum netdev_offload_xstats_type type)
9187 {
9188 	ASSERT_RTNL();
9189 
9190 	if (!netdev_offload_xstats_enabled(dev, type))
9191 		return -EALREADY;
9192 
9193 	switch (type) {
9194 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9195 		netdev_offload_xstats_disable_l3(dev);
9196 		return 0;
9197 	}
9198 
9199 	WARN_ON(1);
9200 	return -EINVAL;
9201 }
9202 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9203 
netdev_offload_xstats_disable_all(struct net_device * dev)9204 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9205 {
9206 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9207 }
9208 
9209 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9210 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9211 			      enum netdev_offload_xstats_type type)
9212 {
9213 	switch (type) {
9214 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9215 		return dev->offload_xstats_l3;
9216 	}
9217 
9218 	WARN_ON(1);
9219 	return NULL;
9220 }
9221 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9222 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9223 				   enum netdev_offload_xstats_type type)
9224 {
9225 	ASSERT_RTNL();
9226 
9227 	return netdev_offload_xstats_get_ptr(dev, type);
9228 }
9229 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9230 
9231 struct netdev_notifier_offload_xstats_ru {
9232 	bool used;
9233 };
9234 
9235 struct netdev_notifier_offload_xstats_rd {
9236 	struct rtnl_hw_stats64 stats;
9237 	bool used;
9238 };
9239 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9240 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9241 				  const struct rtnl_hw_stats64 *src)
9242 {
9243 	dest->rx_packets	  += src->rx_packets;
9244 	dest->tx_packets	  += src->tx_packets;
9245 	dest->rx_bytes		  += src->rx_bytes;
9246 	dest->tx_bytes		  += src->tx_bytes;
9247 	dest->rx_errors		  += src->rx_errors;
9248 	dest->tx_errors		  += src->tx_errors;
9249 	dest->rx_dropped	  += src->rx_dropped;
9250 	dest->tx_dropped	  += src->tx_dropped;
9251 	dest->multicast		  += src->multicast;
9252 }
9253 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9254 static int netdev_offload_xstats_get_used(struct net_device *dev,
9255 					  enum netdev_offload_xstats_type type,
9256 					  bool *p_used,
9257 					  struct netlink_ext_ack *extack)
9258 {
9259 	struct netdev_notifier_offload_xstats_ru report_used = {};
9260 	struct netdev_notifier_offload_xstats_info info = {
9261 		.info.dev = dev,
9262 		.info.extack = extack,
9263 		.type = type,
9264 		.report_used = &report_used,
9265 	};
9266 	int rc;
9267 
9268 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9269 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9270 					   &info.info);
9271 	*p_used = report_used.used;
9272 	return notifier_to_errno(rc);
9273 }
9274 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9275 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9276 					   enum netdev_offload_xstats_type type,
9277 					   struct rtnl_hw_stats64 *p_stats,
9278 					   bool *p_used,
9279 					   struct netlink_ext_ack *extack)
9280 {
9281 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9282 	struct netdev_notifier_offload_xstats_info info = {
9283 		.info.dev = dev,
9284 		.info.extack = extack,
9285 		.type = type,
9286 		.report_delta = &report_delta,
9287 	};
9288 	struct rtnl_hw_stats64 *stats;
9289 	int rc;
9290 
9291 	stats = netdev_offload_xstats_get_ptr(dev, type);
9292 	if (WARN_ON(!stats))
9293 		return -EINVAL;
9294 
9295 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9296 					   &info.info);
9297 
9298 	/* Cache whatever we got, even if there was an error, otherwise the
9299 	 * successful stats retrievals would get lost.
9300 	 */
9301 	netdev_hw_stats64_add(stats, &report_delta.stats);
9302 
9303 	if (p_stats)
9304 		*p_stats = *stats;
9305 	*p_used = report_delta.used;
9306 
9307 	return notifier_to_errno(rc);
9308 }
9309 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9310 int netdev_offload_xstats_get(struct net_device *dev,
9311 			      enum netdev_offload_xstats_type type,
9312 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9313 			      struct netlink_ext_ack *extack)
9314 {
9315 	ASSERT_RTNL();
9316 
9317 	if (p_stats)
9318 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9319 						       p_used, extack);
9320 	else
9321 		return netdev_offload_xstats_get_used(dev, type, p_used,
9322 						      extack);
9323 }
9324 EXPORT_SYMBOL(netdev_offload_xstats_get);
9325 
9326 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9327 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9328 				   const struct rtnl_hw_stats64 *stats)
9329 {
9330 	report_delta->used = true;
9331 	netdev_hw_stats64_add(&report_delta->stats, stats);
9332 }
9333 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9334 
9335 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9336 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9337 {
9338 	report_used->used = true;
9339 }
9340 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9341 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9342 void netdev_offload_xstats_push_delta(struct net_device *dev,
9343 				      enum netdev_offload_xstats_type type,
9344 				      const struct rtnl_hw_stats64 *p_stats)
9345 {
9346 	struct rtnl_hw_stats64 *stats;
9347 
9348 	ASSERT_RTNL();
9349 
9350 	stats = netdev_offload_xstats_get_ptr(dev, type);
9351 	if (WARN_ON(!stats))
9352 		return;
9353 
9354 	netdev_hw_stats64_add(stats, p_stats);
9355 }
9356 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9357 
9358 /**
9359  * netdev_get_xmit_slave - Get the xmit slave of master device
9360  * @dev: device
9361  * @skb: The packet
9362  * @all_slaves: assume all the slaves are active
9363  *
9364  * The reference counters are not incremented so the caller must be
9365  * careful with locks. The caller must hold RCU lock.
9366  * %NULL is returned if no slave is found.
9367  */
9368 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9369 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9370 					 struct sk_buff *skb,
9371 					 bool all_slaves)
9372 {
9373 	const struct net_device_ops *ops = dev->netdev_ops;
9374 
9375 	if (!ops->ndo_get_xmit_slave)
9376 		return NULL;
9377 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9378 }
9379 EXPORT_SYMBOL(netdev_get_xmit_slave);
9380 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9381 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9382 						  struct sock *sk)
9383 {
9384 	const struct net_device_ops *ops = dev->netdev_ops;
9385 
9386 	if (!ops->ndo_sk_get_lower_dev)
9387 		return NULL;
9388 	return ops->ndo_sk_get_lower_dev(dev, sk);
9389 }
9390 
9391 /**
9392  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9393  * @dev: device
9394  * @sk: the socket
9395  *
9396  * %NULL is returned if no lower device is found.
9397  */
9398 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9399 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9400 					    struct sock *sk)
9401 {
9402 	struct net_device *lower;
9403 
9404 	lower = netdev_sk_get_lower_dev(dev, sk);
9405 	while (lower) {
9406 		dev = lower;
9407 		lower = netdev_sk_get_lower_dev(dev, sk);
9408 	}
9409 
9410 	return dev;
9411 }
9412 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9413 
netdev_adjacent_add_links(struct net_device * dev)9414 static void netdev_adjacent_add_links(struct net_device *dev)
9415 {
9416 	struct netdev_adjacent *iter;
9417 
9418 	struct net *net = dev_net(dev);
9419 
9420 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9421 		if (!net_eq(net, dev_net(iter->dev)))
9422 			continue;
9423 		netdev_adjacent_sysfs_add(iter->dev, dev,
9424 					  &iter->dev->adj_list.lower);
9425 		netdev_adjacent_sysfs_add(dev, iter->dev,
9426 					  &dev->adj_list.upper);
9427 	}
9428 
9429 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9430 		if (!net_eq(net, dev_net(iter->dev)))
9431 			continue;
9432 		netdev_adjacent_sysfs_add(iter->dev, dev,
9433 					  &iter->dev->adj_list.upper);
9434 		netdev_adjacent_sysfs_add(dev, iter->dev,
9435 					  &dev->adj_list.lower);
9436 	}
9437 }
9438 
netdev_adjacent_del_links(struct net_device * dev)9439 static void netdev_adjacent_del_links(struct net_device *dev)
9440 {
9441 	struct netdev_adjacent *iter;
9442 
9443 	struct net *net = dev_net(dev);
9444 
9445 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9446 		if (!net_eq(net, dev_net(iter->dev)))
9447 			continue;
9448 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9449 					  &iter->dev->adj_list.lower);
9450 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9451 					  &dev->adj_list.upper);
9452 	}
9453 
9454 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9455 		if (!net_eq(net, dev_net(iter->dev)))
9456 			continue;
9457 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9458 					  &iter->dev->adj_list.upper);
9459 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9460 					  &dev->adj_list.lower);
9461 	}
9462 }
9463 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9464 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9465 {
9466 	struct netdev_adjacent *iter;
9467 
9468 	struct net *net = dev_net(dev);
9469 
9470 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9471 		if (!net_eq(net, dev_net(iter->dev)))
9472 			continue;
9473 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9474 					  &iter->dev->adj_list.lower);
9475 		netdev_adjacent_sysfs_add(iter->dev, dev,
9476 					  &iter->dev->adj_list.lower);
9477 	}
9478 
9479 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9480 		if (!net_eq(net, dev_net(iter->dev)))
9481 			continue;
9482 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9483 					  &iter->dev->adj_list.upper);
9484 		netdev_adjacent_sysfs_add(iter->dev, dev,
9485 					  &iter->dev->adj_list.upper);
9486 	}
9487 }
9488 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9489 void *netdev_lower_dev_get_private(struct net_device *dev,
9490 				   struct net_device *lower_dev)
9491 {
9492 	struct netdev_adjacent *lower;
9493 
9494 	if (!lower_dev)
9495 		return NULL;
9496 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9497 	if (!lower)
9498 		return NULL;
9499 
9500 	return lower->private;
9501 }
9502 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9503 
9504 
9505 /**
9506  * netdev_lower_state_changed - Dispatch event about lower device state change
9507  * @lower_dev: device
9508  * @lower_state_info: state to dispatch
9509  *
9510  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9511  * The caller must hold the RTNL lock.
9512  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9513 void netdev_lower_state_changed(struct net_device *lower_dev,
9514 				void *lower_state_info)
9515 {
9516 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9517 		.info.dev = lower_dev,
9518 	};
9519 
9520 	ASSERT_RTNL();
9521 	changelowerstate_info.lower_state_info = lower_state_info;
9522 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9523 				      &changelowerstate_info.info);
9524 }
9525 EXPORT_SYMBOL(netdev_lower_state_changed);
9526 
dev_change_rx_flags(struct net_device * dev,int flags)9527 static void dev_change_rx_flags(struct net_device *dev, int flags)
9528 {
9529 	const struct net_device_ops *ops = dev->netdev_ops;
9530 
9531 	if (ops->ndo_change_rx_flags)
9532 		ops->ndo_change_rx_flags(dev, flags);
9533 }
9534 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9535 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9536 {
9537 	unsigned int old_flags = dev->flags;
9538 	unsigned int promiscuity, flags;
9539 	kuid_t uid;
9540 	kgid_t gid;
9541 
9542 	ASSERT_RTNL();
9543 
9544 	promiscuity = dev->promiscuity + inc;
9545 	if (promiscuity == 0) {
9546 		/*
9547 		 * Avoid overflow.
9548 		 * If inc causes overflow, untouch promisc and return error.
9549 		 */
9550 		if (unlikely(inc > 0)) {
9551 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9552 			return -EOVERFLOW;
9553 		}
9554 		flags = old_flags & ~IFF_PROMISC;
9555 	} else {
9556 		flags = old_flags | IFF_PROMISC;
9557 	}
9558 	WRITE_ONCE(dev->promiscuity, promiscuity);
9559 	if (flags != old_flags) {
9560 		WRITE_ONCE(dev->flags, flags);
9561 		netdev_info(dev, "%s promiscuous mode\n",
9562 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9563 		if (audit_enabled) {
9564 			current_uid_gid(&uid, &gid);
9565 			audit_log(audit_context(), GFP_ATOMIC,
9566 				  AUDIT_ANOM_PROMISCUOUS,
9567 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9568 				  dev->name, (dev->flags & IFF_PROMISC),
9569 				  (old_flags & IFF_PROMISC),
9570 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9571 				  from_kuid(&init_user_ns, uid),
9572 				  from_kgid(&init_user_ns, gid),
9573 				  audit_get_sessionid(current));
9574 		}
9575 
9576 		dev_change_rx_flags(dev, IFF_PROMISC);
9577 	}
9578 	if (notify) {
9579 		/* The ops lock is only required to ensure consistent locking
9580 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9581 		 * called without the lock, even for devices that are ops
9582 		 * locked, such as in `dev_uc_sync_multiple` when using
9583 		 * bonding or teaming.
9584 		 */
9585 		netdev_ops_assert_locked(dev);
9586 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9587 	}
9588 	return 0;
9589 }
9590 
netif_set_promiscuity(struct net_device * dev,int inc)9591 int netif_set_promiscuity(struct net_device *dev, int inc)
9592 {
9593 	unsigned int old_flags = dev->flags;
9594 	int err;
9595 
9596 	err = __dev_set_promiscuity(dev, inc, true);
9597 	if (err < 0)
9598 		return err;
9599 	if (dev->flags != old_flags)
9600 		dev_set_rx_mode(dev);
9601 	return err;
9602 }
9603 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9604 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9605 {
9606 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9607 	unsigned int allmulti, flags;
9608 
9609 	ASSERT_RTNL();
9610 
9611 	allmulti = dev->allmulti + inc;
9612 	if (allmulti == 0) {
9613 		/*
9614 		 * Avoid overflow.
9615 		 * If inc causes overflow, untouch allmulti and return error.
9616 		 */
9617 		if (unlikely(inc > 0)) {
9618 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9619 			return -EOVERFLOW;
9620 		}
9621 		flags = old_flags & ~IFF_ALLMULTI;
9622 	} else {
9623 		flags = old_flags | IFF_ALLMULTI;
9624 	}
9625 	WRITE_ONCE(dev->allmulti, allmulti);
9626 	if (flags != old_flags) {
9627 		WRITE_ONCE(dev->flags, flags);
9628 		netdev_info(dev, "%s allmulticast mode\n",
9629 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9630 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9631 		dev_set_rx_mode(dev);
9632 		if (notify)
9633 			__dev_notify_flags(dev, old_flags,
9634 					   dev->gflags ^ old_gflags, 0, NULL);
9635 	}
9636 	return 0;
9637 }
9638 
9639 /*
9640  *	Upload unicast and multicast address lists to device and
9641  *	configure RX filtering. When the device doesn't support unicast
9642  *	filtering it is put in promiscuous mode while unicast addresses
9643  *	are present.
9644  */
__dev_set_rx_mode(struct net_device * dev)9645 void __dev_set_rx_mode(struct net_device *dev)
9646 {
9647 	const struct net_device_ops *ops = dev->netdev_ops;
9648 
9649 	/* dev_open will call this function so the list will stay sane. */
9650 	if (!(dev->flags&IFF_UP))
9651 		return;
9652 
9653 	if (!netif_device_present(dev))
9654 		return;
9655 
9656 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9657 		/* Unicast addresses changes may only happen under the rtnl,
9658 		 * therefore calling __dev_set_promiscuity here is safe.
9659 		 */
9660 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9661 			__dev_set_promiscuity(dev, 1, false);
9662 			dev->uc_promisc = true;
9663 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9664 			__dev_set_promiscuity(dev, -1, false);
9665 			dev->uc_promisc = false;
9666 		}
9667 	}
9668 
9669 	if (ops->ndo_set_rx_mode)
9670 		ops->ndo_set_rx_mode(dev);
9671 }
9672 
dev_set_rx_mode(struct net_device * dev)9673 void dev_set_rx_mode(struct net_device *dev)
9674 {
9675 	netif_addr_lock_bh(dev);
9676 	__dev_set_rx_mode(dev);
9677 	netif_addr_unlock_bh(dev);
9678 }
9679 
9680 /**
9681  * netif_get_flags() - get flags reported to userspace
9682  * @dev: device
9683  *
9684  * Get the combination of flag bits exported through APIs to userspace.
9685  */
netif_get_flags(const struct net_device * dev)9686 unsigned int netif_get_flags(const struct net_device *dev)
9687 {
9688 	unsigned int flags;
9689 
9690 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9691 				IFF_ALLMULTI |
9692 				IFF_RUNNING |
9693 				IFF_LOWER_UP |
9694 				IFF_DORMANT)) |
9695 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9696 				IFF_ALLMULTI));
9697 
9698 	if (netif_running(dev)) {
9699 		if (netif_oper_up(dev))
9700 			flags |= IFF_RUNNING;
9701 		if (netif_carrier_ok(dev))
9702 			flags |= IFF_LOWER_UP;
9703 		if (netif_dormant(dev))
9704 			flags |= IFF_DORMANT;
9705 	}
9706 
9707 	return flags;
9708 }
9709 EXPORT_SYMBOL(netif_get_flags);
9710 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9711 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9712 		       struct netlink_ext_ack *extack)
9713 {
9714 	unsigned int old_flags = dev->flags;
9715 	int ret;
9716 
9717 	ASSERT_RTNL();
9718 
9719 	/*
9720 	 *	Set the flags on our device.
9721 	 */
9722 
9723 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9724 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9725 			       IFF_AUTOMEDIA)) |
9726 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9727 				    IFF_ALLMULTI));
9728 
9729 	/*
9730 	 *	Load in the correct multicast list now the flags have changed.
9731 	 */
9732 
9733 	if ((old_flags ^ flags) & IFF_MULTICAST)
9734 		dev_change_rx_flags(dev, IFF_MULTICAST);
9735 
9736 	dev_set_rx_mode(dev);
9737 
9738 	/*
9739 	 *	Have we downed the interface. We handle IFF_UP ourselves
9740 	 *	according to user attempts to set it, rather than blindly
9741 	 *	setting it.
9742 	 */
9743 
9744 	ret = 0;
9745 	if ((old_flags ^ flags) & IFF_UP) {
9746 		if (old_flags & IFF_UP)
9747 			__dev_close(dev);
9748 		else
9749 			ret = __dev_open(dev, extack);
9750 	}
9751 
9752 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9753 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9754 		old_flags = dev->flags;
9755 
9756 		dev->gflags ^= IFF_PROMISC;
9757 
9758 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9759 			if (dev->flags != old_flags)
9760 				dev_set_rx_mode(dev);
9761 	}
9762 
9763 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9764 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9765 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9766 	 */
9767 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9768 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9769 
9770 		dev->gflags ^= IFF_ALLMULTI;
9771 		netif_set_allmulti(dev, inc, false);
9772 	}
9773 
9774 	return ret;
9775 }
9776 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9777 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9778 			unsigned int gchanges, u32 portid,
9779 			const struct nlmsghdr *nlh)
9780 {
9781 	unsigned int changes = dev->flags ^ old_flags;
9782 
9783 	if (gchanges)
9784 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9785 
9786 	if (changes & IFF_UP) {
9787 		if (dev->flags & IFF_UP)
9788 			call_netdevice_notifiers(NETDEV_UP, dev);
9789 		else
9790 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9791 	}
9792 
9793 	if (dev->flags & IFF_UP &&
9794 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9795 		struct netdev_notifier_change_info change_info = {
9796 			.info = {
9797 				.dev = dev,
9798 			},
9799 			.flags_changed = changes,
9800 		};
9801 
9802 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9803 	}
9804 }
9805 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9806 int netif_change_flags(struct net_device *dev, unsigned int flags,
9807 		       struct netlink_ext_ack *extack)
9808 {
9809 	int ret;
9810 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9811 
9812 	ret = __dev_change_flags(dev, flags, extack);
9813 	if (ret < 0)
9814 		return ret;
9815 
9816 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9817 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9818 	return ret;
9819 }
9820 
__netif_set_mtu(struct net_device * dev,int new_mtu)9821 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9822 {
9823 	const struct net_device_ops *ops = dev->netdev_ops;
9824 
9825 	if (ops->ndo_change_mtu)
9826 		return ops->ndo_change_mtu(dev, new_mtu);
9827 
9828 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9829 	WRITE_ONCE(dev->mtu, new_mtu);
9830 	return 0;
9831 }
9832 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9833 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9834 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9835 		     struct netlink_ext_ack *extack)
9836 {
9837 	/* MTU must be positive, and in range */
9838 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9839 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9840 		return -EINVAL;
9841 	}
9842 
9843 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9844 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9845 		return -EINVAL;
9846 	}
9847 	return 0;
9848 }
9849 
9850 /**
9851  * netif_set_mtu_ext() - Change maximum transfer unit
9852  * @dev: device
9853  * @new_mtu: new transfer unit
9854  * @extack: netlink extended ack
9855  *
9856  * Change the maximum transfer size of the network device.
9857  *
9858  * Return: 0 on success, -errno on failure.
9859  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9860 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9861 		      struct netlink_ext_ack *extack)
9862 {
9863 	int err, orig_mtu;
9864 
9865 	netdev_ops_assert_locked(dev);
9866 
9867 	if (new_mtu == dev->mtu)
9868 		return 0;
9869 
9870 	err = dev_validate_mtu(dev, new_mtu, extack);
9871 	if (err)
9872 		return err;
9873 
9874 	if (!netif_device_present(dev))
9875 		return -ENODEV;
9876 
9877 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9878 	err = notifier_to_errno(err);
9879 	if (err)
9880 		return err;
9881 
9882 	orig_mtu = dev->mtu;
9883 	err = __netif_set_mtu(dev, new_mtu);
9884 
9885 	if (!err) {
9886 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9887 						   orig_mtu);
9888 		err = notifier_to_errno(err);
9889 		if (err) {
9890 			/* setting mtu back and notifying everyone again,
9891 			 * so that they have a chance to revert changes.
9892 			 */
9893 			__netif_set_mtu(dev, orig_mtu);
9894 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9895 						     new_mtu);
9896 		}
9897 	}
9898 	return err;
9899 }
9900 
netif_set_mtu(struct net_device * dev,int new_mtu)9901 int netif_set_mtu(struct net_device *dev, int new_mtu)
9902 {
9903 	struct netlink_ext_ack extack;
9904 	int err;
9905 
9906 	memset(&extack, 0, sizeof(extack));
9907 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9908 	if (err && extack._msg)
9909 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9910 	return err;
9911 }
9912 EXPORT_SYMBOL(netif_set_mtu);
9913 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9914 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9915 {
9916 	unsigned int orig_len = dev->tx_queue_len;
9917 	int res;
9918 
9919 	if (new_len != (unsigned int)new_len)
9920 		return -ERANGE;
9921 
9922 	if (new_len != orig_len) {
9923 		WRITE_ONCE(dev->tx_queue_len, new_len);
9924 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9925 		res = notifier_to_errno(res);
9926 		if (res)
9927 			goto err_rollback;
9928 		res = dev_qdisc_change_tx_queue_len(dev);
9929 		if (res)
9930 			goto err_rollback;
9931 	}
9932 
9933 	return 0;
9934 
9935 err_rollback:
9936 	netdev_err(dev, "refused to change device tx_queue_len\n");
9937 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9938 	return res;
9939 }
9940 
netif_set_group(struct net_device * dev,int new_group)9941 void netif_set_group(struct net_device *dev, int new_group)
9942 {
9943 	dev->group = new_group;
9944 }
9945 
9946 /**
9947  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9948  * @dev: device
9949  * @addr: new address
9950  * @extack: netlink extended ack
9951  *
9952  * Return: 0 on success, -errno on failure.
9953  */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9954 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9955 				struct netlink_ext_ack *extack)
9956 {
9957 	struct netdev_notifier_pre_changeaddr_info info = {
9958 		.info.dev = dev,
9959 		.info.extack = extack,
9960 		.dev_addr = addr,
9961 	};
9962 	int rc;
9963 
9964 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9965 	return notifier_to_errno(rc);
9966 }
9967 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9968 
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9969 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9970 			  struct netlink_ext_ack *extack)
9971 {
9972 	const struct net_device_ops *ops = dev->netdev_ops;
9973 	int err;
9974 
9975 	if (!ops->ndo_set_mac_address)
9976 		return -EOPNOTSUPP;
9977 	if (ss->ss_family != dev->type)
9978 		return -EINVAL;
9979 	if (!netif_device_present(dev))
9980 		return -ENODEV;
9981 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9982 	if (err)
9983 		return err;
9984 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9985 		err = ops->ndo_set_mac_address(dev, ss);
9986 		if (err)
9987 			return err;
9988 	}
9989 	dev->addr_assign_type = NET_ADDR_SET;
9990 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9991 	add_device_randomness(dev->dev_addr, dev->addr_len);
9992 	return 0;
9993 }
9994 
9995 DECLARE_RWSEM(dev_addr_sem);
9996 
9997 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9998 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9999 {
10000 	size_t size = sizeof(sa->sa_data);
10001 	struct net_device *dev;
10002 	int ret = 0;
10003 
10004 	down_read(&dev_addr_sem);
10005 	rcu_read_lock();
10006 
10007 	dev = dev_get_by_name_rcu(net, dev_name);
10008 	if (!dev) {
10009 		ret = -ENODEV;
10010 		goto unlock;
10011 	}
10012 	if (!dev->addr_len)
10013 		memset(sa->sa_data, 0, size);
10014 	else
10015 		memcpy(sa->sa_data, dev->dev_addr,
10016 		       min_t(size_t, size, dev->addr_len));
10017 	sa->sa_family = dev->type;
10018 
10019 unlock:
10020 	rcu_read_unlock();
10021 	up_read(&dev_addr_sem);
10022 	return ret;
10023 }
10024 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10025 
netif_change_carrier(struct net_device * dev,bool new_carrier)10026 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10027 {
10028 	const struct net_device_ops *ops = dev->netdev_ops;
10029 
10030 	if (!ops->ndo_change_carrier)
10031 		return -EOPNOTSUPP;
10032 	if (!netif_device_present(dev))
10033 		return -ENODEV;
10034 	return ops->ndo_change_carrier(dev, new_carrier);
10035 }
10036 
10037 /**
10038  *	dev_get_phys_port_id - Get device physical port ID
10039  *	@dev: device
10040  *	@ppid: port ID
10041  *
10042  *	Get device physical port ID
10043  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10044 int dev_get_phys_port_id(struct net_device *dev,
10045 			 struct netdev_phys_item_id *ppid)
10046 {
10047 	const struct net_device_ops *ops = dev->netdev_ops;
10048 
10049 	if (!ops->ndo_get_phys_port_id)
10050 		return -EOPNOTSUPP;
10051 	return ops->ndo_get_phys_port_id(dev, ppid);
10052 }
10053 
10054 /**
10055  *	dev_get_phys_port_name - Get device physical port name
10056  *	@dev: device
10057  *	@name: port name
10058  *	@len: limit of bytes to copy to name
10059  *
10060  *	Get device physical port name
10061  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10062 int dev_get_phys_port_name(struct net_device *dev,
10063 			   char *name, size_t len)
10064 {
10065 	const struct net_device_ops *ops = dev->netdev_ops;
10066 	int err;
10067 
10068 	if (ops->ndo_get_phys_port_name) {
10069 		err = ops->ndo_get_phys_port_name(dev, name, len);
10070 		if (err != -EOPNOTSUPP)
10071 			return err;
10072 	}
10073 	return devlink_compat_phys_port_name_get(dev, name, len);
10074 }
10075 
10076 /**
10077  * netif_get_port_parent_id() - Get the device's port parent identifier
10078  * @dev: network device
10079  * @ppid: pointer to a storage for the port's parent identifier
10080  * @recurse: allow/disallow recursion to lower devices
10081  *
10082  * Get the devices's port parent identifier.
10083  *
10084  * Return: 0 on success, -errno on failure.
10085  */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10086 int netif_get_port_parent_id(struct net_device *dev,
10087 			     struct netdev_phys_item_id *ppid, bool recurse)
10088 {
10089 	const struct net_device_ops *ops = dev->netdev_ops;
10090 	struct netdev_phys_item_id first = { };
10091 	struct net_device *lower_dev;
10092 	struct list_head *iter;
10093 	int err;
10094 
10095 	if (ops->ndo_get_port_parent_id) {
10096 		err = ops->ndo_get_port_parent_id(dev, ppid);
10097 		if (err != -EOPNOTSUPP)
10098 			return err;
10099 	}
10100 
10101 	err = devlink_compat_switch_id_get(dev, ppid);
10102 	if (!recurse || err != -EOPNOTSUPP)
10103 		return err;
10104 
10105 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10106 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10107 		if (err)
10108 			break;
10109 		if (!first.id_len)
10110 			first = *ppid;
10111 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10112 			return -EOPNOTSUPP;
10113 	}
10114 
10115 	return err;
10116 }
10117 EXPORT_SYMBOL(netif_get_port_parent_id);
10118 
10119 /**
10120  *	netdev_port_same_parent_id - Indicate if two network devices have
10121  *	the same port parent identifier
10122  *	@a: first network device
10123  *	@b: second network device
10124  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10125 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10126 {
10127 	struct netdev_phys_item_id a_id = { };
10128 	struct netdev_phys_item_id b_id = { };
10129 
10130 	if (netif_get_port_parent_id(a, &a_id, true) ||
10131 	    netif_get_port_parent_id(b, &b_id, true))
10132 		return false;
10133 
10134 	return netdev_phys_item_id_same(&a_id, &b_id);
10135 }
10136 EXPORT_SYMBOL(netdev_port_same_parent_id);
10137 
netif_change_proto_down(struct net_device * dev,bool proto_down)10138 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10139 {
10140 	if (!dev->change_proto_down)
10141 		return -EOPNOTSUPP;
10142 	if (!netif_device_present(dev))
10143 		return -ENODEV;
10144 	if (proto_down)
10145 		netif_carrier_off(dev);
10146 	else
10147 		netif_carrier_on(dev);
10148 	WRITE_ONCE(dev->proto_down, proto_down);
10149 	return 0;
10150 }
10151 
10152 /**
10153  *	netdev_change_proto_down_reason_locked - proto down reason
10154  *
10155  *	@dev: device
10156  *	@mask: proto down mask
10157  *	@value: proto down value
10158  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10159 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10160 					    unsigned long mask, u32 value)
10161 {
10162 	u32 proto_down_reason;
10163 	int b;
10164 
10165 	if (!mask) {
10166 		proto_down_reason = value;
10167 	} else {
10168 		proto_down_reason = dev->proto_down_reason;
10169 		for_each_set_bit(b, &mask, 32) {
10170 			if (value & (1 << b))
10171 				proto_down_reason |= BIT(b);
10172 			else
10173 				proto_down_reason &= ~BIT(b);
10174 		}
10175 	}
10176 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10177 }
10178 
10179 struct bpf_xdp_link {
10180 	struct bpf_link link;
10181 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10182 	int flags;
10183 };
10184 
dev_xdp_mode(struct net_device * dev,u32 flags)10185 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10186 {
10187 	if (flags & XDP_FLAGS_HW_MODE)
10188 		return XDP_MODE_HW;
10189 	if (flags & XDP_FLAGS_DRV_MODE)
10190 		return XDP_MODE_DRV;
10191 	if (flags & XDP_FLAGS_SKB_MODE)
10192 		return XDP_MODE_SKB;
10193 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10194 }
10195 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10196 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10197 {
10198 	switch (mode) {
10199 	case XDP_MODE_SKB:
10200 		return generic_xdp_install;
10201 	case XDP_MODE_DRV:
10202 	case XDP_MODE_HW:
10203 		return dev->netdev_ops->ndo_bpf;
10204 	default:
10205 		return NULL;
10206 	}
10207 }
10208 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10209 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10210 					 enum bpf_xdp_mode mode)
10211 {
10212 	return dev->xdp_state[mode].link;
10213 }
10214 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10215 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10216 				     enum bpf_xdp_mode mode)
10217 {
10218 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10219 
10220 	if (link)
10221 		return link->link.prog;
10222 	return dev->xdp_state[mode].prog;
10223 }
10224 
dev_xdp_prog_count(struct net_device * dev)10225 u8 dev_xdp_prog_count(struct net_device *dev)
10226 {
10227 	u8 count = 0;
10228 	int i;
10229 
10230 	for (i = 0; i < __MAX_XDP_MODE; i++)
10231 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10232 			count++;
10233 	return count;
10234 }
10235 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10236 
dev_xdp_sb_prog_count(struct net_device * dev)10237 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10238 {
10239 	u8 count = 0;
10240 	int i;
10241 
10242 	for (i = 0; i < __MAX_XDP_MODE; i++)
10243 		if (dev->xdp_state[i].prog &&
10244 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10245 			count++;
10246 	return count;
10247 }
10248 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10249 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10250 {
10251 	if (!dev->netdev_ops->ndo_bpf)
10252 		return -EOPNOTSUPP;
10253 
10254 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10255 	    bpf->command == XDP_SETUP_PROG &&
10256 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10257 		NL_SET_ERR_MSG(bpf->extack,
10258 			       "unable to propagate XDP to device using tcp-data-split");
10259 		return -EBUSY;
10260 	}
10261 
10262 	if (dev_get_min_mp_channel_count(dev)) {
10263 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10264 		return -EBUSY;
10265 	}
10266 
10267 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10268 }
10269 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10270 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10271 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10272 {
10273 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10274 
10275 	return prog ? prog->aux->id : 0;
10276 }
10277 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10278 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10279 			     struct bpf_xdp_link *link)
10280 {
10281 	dev->xdp_state[mode].link = link;
10282 	dev->xdp_state[mode].prog = NULL;
10283 }
10284 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10285 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10286 			     struct bpf_prog *prog)
10287 {
10288 	dev->xdp_state[mode].link = NULL;
10289 	dev->xdp_state[mode].prog = prog;
10290 }
10291 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10292 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10293 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10294 			   u32 flags, struct bpf_prog *prog)
10295 {
10296 	struct netdev_bpf xdp;
10297 	int err;
10298 
10299 	netdev_ops_assert_locked(dev);
10300 
10301 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10302 	    prog && !prog->aux->xdp_has_frags) {
10303 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10304 		return -EBUSY;
10305 	}
10306 
10307 	if (dev_get_min_mp_channel_count(dev)) {
10308 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10309 		return -EBUSY;
10310 	}
10311 
10312 	memset(&xdp, 0, sizeof(xdp));
10313 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10314 	xdp.extack = extack;
10315 	xdp.flags = flags;
10316 	xdp.prog = prog;
10317 
10318 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10319 	 * "moved" into driver), so they don't increment it on their own, but
10320 	 * they do decrement refcnt when program is detached or replaced.
10321 	 * Given net_device also owns link/prog, we need to bump refcnt here
10322 	 * to prevent drivers from underflowing it.
10323 	 */
10324 	if (prog)
10325 		bpf_prog_inc(prog);
10326 	err = bpf_op(dev, &xdp);
10327 	if (err) {
10328 		if (prog)
10329 			bpf_prog_put(prog);
10330 		return err;
10331 	}
10332 
10333 	if (mode != XDP_MODE_HW)
10334 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10335 
10336 	return 0;
10337 }
10338 
dev_xdp_uninstall(struct net_device * dev)10339 static void dev_xdp_uninstall(struct net_device *dev)
10340 {
10341 	struct bpf_xdp_link *link;
10342 	struct bpf_prog *prog;
10343 	enum bpf_xdp_mode mode;
10344 	bpf_op_t bpf_op;
10345 
10346 	ASSERT_RTNL();
10347 
10348 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10349 		prog = dev_xdp_prog(dev, mode);
10350 		if (!prog)
10351 			continue;
10352 
10353 		bpf_op = dev_xdp_bpf_op(dev, mode);
10354 		if (!bpf_op)
10355 			continue;
10356 
10357 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10358 
10359 		/* auto-detach link from net device */
10360 		link = dev_xdp_link(dev, mode);
10361 		if (link)
10362 			link->dev = NULL;
10363 		else
10364 			bpf_prog_put(prog);
10365 
10366 		dev_xdp_set_link(dev, mode, NULL);
10367 	}
10368 }
10369 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10370 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10371 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10372 			  struct bpf_prog *old_prog, u32 flags)
10373 {
10374 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10375 	struct bpf_prog *cur_prog;
10376 	struct net_device *upper;
10377 	struct list_head *iter;
10378 	enum bpf_xdp_mode mode;
10379 	bpf_op_t bpf_op;
10380 	int err;
10381 
10382 	ASSERT_RTNL();
10383 
10384 	/* either link or prog attachment, never both */
10385 	if (link && (new_prog || old_prog))
10386 		return -EINVAL;
10387 	/* link supports only XDP mode flags */
10388 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10389 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10390 		return -EINVAL;
10391 	}
10392 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10393 	if (num_modes > 1) {
10394 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10395 		return -EINVAL;
10396 	}
10397 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10398 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10399 		NL_SET_ERR_MSG(extack,
10400 			       "More than one program loaded, unset mode is ambiguous");
10401 		return -EINVAL;
10402 	}
10403 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10404 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10405 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10406 		return -EINVAL;
10407 	}
10408 
10409 	mode = dev_xdp_mode(dev, flags);
10410 	/* can't replace attached link */
10411 	if (dev_xdp_link(dev, mode)) {
10412 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10413 		return -EBUSY;
10414 	}
10415 
10416 	/* don't allow if an upper device already has a program */
10417 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10418 		if (dev_xdp_prog_count(upper) > 0) {
10419 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10420 			return -EEXIST;
10421 		}
10422 	}
10423 
10424 	cur_prog = dev_xdp_prog(dev, mode);
10425 	/* can't replace attached prog with link */
10426 	if (link && cur_prog) {
10427 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10428 		return -EBUSY;
10429 	}
10430 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10431 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10432 		return -EEXIST;
10433 	}
10434 
10435 	/* put effective new program into new_prog */
10436 	if (link)
10437 		new_prog = link->link.prog;
10438 
10439 	if (new_prog) {
10440 		bool offload = mode == XDP_MODE_HW;
10441 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10442 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10443 
10444 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10445 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10446 			return -EBUSY;
10447 		}
10448 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10449 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10450 			return -EEXIST;
10451 		}
10452 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10453 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10454 			return -EINVAL;
10455 		}
10456 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10457 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10458 			return -EINVAL;
10459 		}
10460 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10461 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10462 			return -EINVAL;
10463 		}
10464 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10465 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10466 			return -EINVAL;
10467 		}
10468 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10469 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10470 			return -EINVAL;
10471 		}
10472 	}
10473 
10474 	/* don't call drivers if the effective program didn't change */
10475 	if (new_prog != cur_prog) {
10476 		bpf_op = dev_xdp_bpf_op(dev, mode);
10477 		if (!bpf_op) {
10478 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10479 			return -EOPNOTSUPP;
10480 		}
10481 
10482 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10483 		if (err)
10484 			return err;
10485 	}
10486 
10487 	if (link)
10488 		dev_xdp_set_link(dev, mode, link);
10489 	else
10490 		dev_xdp_set_prog(dev, mode, new_prog);
10491 	if (cur_prog)
10492 		bpf_prog_put(cur_prog);
10493 
10494 	return 0;
10495 }
10496 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10497 static int dev_xdp_attach_link(struct net_device *dev,
10498 			       struct netlink_ext_ack *extack,
10499 			       struct bpf_xdp_link *link)
10500 {
10501 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10502 }
10503 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10504 static int dev_xdp_detach_link(struct net_device *dev,
10505 			       struct netlink_ext_ack *extack,
10506 			       struct bpf_xdp_link *link)
10507 {
10508 	enum bpf_xdp_mode mode;
10509 	bpf_op_t bpf_op;
10510 
10511 	ASSERT_RTNL();
10512 
10513 	mode = dev_xdp_mode(dev, link->flags);
10514 	if (dev_xdp_link(dev, mode) != link)
10515 		return -EINVAL;
10516 
10517 	bpf_op = dev_xdp_bpf_op(dev, mode);
10518 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10519 	dev_xdp_set_link(dev, mode, NULL);
10520 	return 0;
10521 }
10522 
bpf_xdp_link_release(struct bpf_link * link)10523 static void bpf_xdp_link_release(struct bpf_link *link)
10524 {
10525 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10526 
10527 	rtnl_lock();
10528 
10529 	/* if racing with net_device's tear down, xdp_link->dev might be
10530 	 * already NULL, in which case link was already auto-detached
10531 	 */
10532 	if (xdp_link->dev) {
10533 		netdev_lock_ops(xdp_link->dev);
10534 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10535 		netdev_unlock_ops(xdp_link->dev);
10536 		xdp_link->dev = NULL;
10537 	}
10538 
10539 	rtnl_unlock();
10540 }
10541 
bpf_xdp_link_detach(struct bpf_link * link)10542 static int bpf_xdp_link_detach(struct bpf_link *link)
10543 {
10544 	bpf_xdp_link_release(link);
10545 	return 0;
10546 }
10547 
bpf_xdp_link_dealloc(struct bpf_link * link)10548 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10549 {
10550 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10551 
10552 	kfree(xdp_link);
10553 }
10554 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10555 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10556 				     struct seq_file *seq)
10557 {
10558 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10559 	u32 ifindex = 0;
10560 
10561 	rtnl_lock();
10562 	if (xdp_link->dev)
10563 		ifindex = xdp_link->dev->ifindex;
10564 	rtnl_unlock();
10565 
10566 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10567 }
10568 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10569 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10570 				       struct bpf_link_info *info)
10571 {
10572 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10573 	u32 ifindex = 0;
10574 
10575 	rtnl_lock();
10576 	if (xdp_link->dev)
10577 		ifindex = xdp_link->dev->ifindex;
10578 	rtnl_unlock();
10579 
10580 	info->xdp.ifindex = ifindex;
10581 	return 0;
10582 }
10583 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10584 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10585 			       struct bpf_prog *old_prog)
10586 {
10587 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10588 	enum bpf_xdp_mode mode;
10589 	bpf_op_t bpf_op;
10590 	int err = 0;
10591 
10592 	rtnl_lock();
10593 
10594 	/* link might have been auto-released already, so fail */
10595 	if (!xdp_link->dev) {
10596 		err = -ENOLINK;
10597 		goto out_unlock;
10598 	}
10599 
10600 	if (old_prog && link->prog != old_prog) {
10601 		err = -EPERM;
10602 		goto out_unlock;
10603 	}
10604 	old_prog = link->prog;
10605 	if (old_prog->type != new_prog->type ||
10606 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10607 		err = -EINVAL;
10608 		goto out_unlock;
10609 	}
10610 
10611 	if (old_prog == new_prog) {
10612 		/* no-op, don't disturb drivers */
10613 		bpf_prog_put(new_prog);
10614 		goto out_unlock;
10615 	}
10616 
10617 	netdev_lock_ops(xdp_link->dev);
10618 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10619 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10620 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10621 			      xdp_link->flags, new_prog);
10622 	netdev_unlock_ops(xdp_link->dev);
10623 	if (err)
10624 		goto out_unlock;
10625 
10626 	old_prog = xchg(&link->prog, new_prog);
10627 	bpf_prog_put(old_prog);
10628 
10629 out_unlock:
10630 	rtnl_unlock();
10631 	return err;
10632 }
10633 
10634 static const struct bpf_link_ops bpf_xdp_link_lops = {
10635 	.release = bpf_xdp_link_release,
10636 	.dealloc = bpf_xdp_link_dealloc,
10637 	.detach = bpf_xdp_link_detach,
10638 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10639 	.fill_link_info = bpf_xdp_link_fill_link_info,
10640 	.update_prog = bpf_xdp_link_update,
10641 };
10642 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10643 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10644 {
10645 	struct net *net = current->nsproxy->net_ns;
10646 	struct bpf_link_primer link_primer;
10647 	struct netlink_ext_ack extack = {};
10648 	struct bpf_xdp_link *link;
10649 	struct net_device *dev;
10650 	int err, fd;
10651 
10652 	rtnl_lock();
10653 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10654 	if (!dev) {
10655 		rtnl_unlock();
10656 		return -EINVAL;
10657 	}
10658 
10659 	link = kzalloc(sizeof(*link), GFP_USER);
10660 	if (!link) {
10661 		err = -ENOMEM;
10662 		goto unlock;
10663 	}
10664 
10665 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10666 		      attr->link_create.attach_type);
10667 	link->dev = dev;
10668 	link->flags = attr->link_create.flags;
10669 
10670 	err = bpf_link_prime(&link->link, &link_primer);
10671 	if (err) {
10672 		kfree(link);
10673 		goto unlock;
10674 	}
10675 
10676 	netdev_lock_ops(dev);
10677 	err = dev_xdp_attach_link(dev, &extack, link);
10678 	netdev_unlock_ops(dev);
10679 	rtnl_unlock();
10680 
10681 	if (err) {
10682 		link->dev = NULL;
10683 		bpf_link_cleanup(&link_primer);
10684 		trace_bpf_xdp_link_attach_failed(extack._msg);
10685 		goto out_put_dev;
10686 	}
10687 
10688 	fd = bpf_link_settle(&link_primer);
10689 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10690 	dev_put(dev);
10691 	return fd;
10692 
10693 unlock:
10694 	rtnl_unlock();
10695 
10696 out_put_dev:
10697 	dev_put(dev);
10698 	return err;
10699 }
10700 
10701 /**
10702  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10703  *	@dev: device
10704  *	@extack: netlink extended ack
10705  *	@fd: new program fd or negative value to clear
10706  *	@expected_fd: old program fd that userspace expects to replace or clear
10707  *	@flags: xdp-related flags
10708  *
10709  *	Set or clear a bpf program for a device
10710  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10711 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10712 		      int fd, int expected_fd, u32 flags)
10713 {
10714 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10715 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10716 	int err;
10717 
10718 	ASSERT_RTNL();
10719 
10720 	if (fd >= 0) {
10721 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10722 						 mode != XDP_MODE_SKB);
10723 		if (IS_ERR(new_prog))
10724 			return PTR_ERR(new_prog);
10725 	}
10726 
10727 	if (expected_fd >= 0) {
10728 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10729 						 mode != XDP_MODE_SKB);
10730 		if (IS_ERR(old_prog)) {
10731 			err = PTR_ERR(old_prog);
10732 			old_prog = NULL;
10733 			goto err_out;
10734 		}
10735 	}
10736 
10737 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10738 
10739 err_out:
10740 	if (err && new_prog)
10741 		bpf_prog_put(new_prog);
10742 	if (old_prog)
10743 		bpf_prog_put(old_prog);
10744 	return err;
10745 }
10746 
dev_get_min_mp_channel_count(const struct net_device * dev)10747 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10748 {
10749 	int i;
10750 
10751 	netdev_ops_assert_locked(dev);
10752 
10753 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10754 		if (dev->_rx[i].mp_params.mp_priv)
10755 			/* The channel count is the idx plus 1. */
10756 			return i + 1;
10757 
10758 	return 0;
10759 }
10760 
10761 /**
10762  * dev_index_reserve() - allocate an ifindex in a namespace
10763  * @net: the applicable net namespace
10764  * @ifindex: requested ifindex, pass %0 to get one allocated
10765  *
10766  * Allocate a ifindex for a new device. Caller must either use the ifindex
10767  * to store the device (via list_netdevice()) or call dev_index_release()
10768  * to give the index up.
10769  *
10770  * Return: a suitable unique value for a new device interface number or -errno.
10771  */
dev_index_reserve(struct net * net,u32 ifindex)10772 static int dev_index_reserve(struct net *net, u32 ifindex)
10773 {
10774 	int err;
10775 
10776 	if (ifindex > INT_MAX) {
10777 		DEBUG_NET_WARN_ON_ONCE(1);
10778 		return -EINVAL;
10779 	}
10780 
10781 	if (!ifindex)
10782 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10783 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10784 	else
10785 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10786 	if (err < 0)
10787 		return err;
10788 
10789 	return ifindex;
10790 }
10791 
dev_index_release(struct net * net,int ifindex)10792 static void dev_index_release(struct net *net, int ifindex)
10793 {
10794 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10795 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10796 }
10797 
from_cleanup_net(void)10798 static bool from_cleanup_net(void)
10799 {
10800 #ifdef CONFIG_NET_NS
10801 	return current == READ_ONCE(cleanup_net_task);
10802 #else
10803 	return false;
10804 #endif
10805 }
10806 
10807 /* Delayed registration/unregisteration */
10808 LIST_HEAD(net_todo_list);
10809 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10810 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10811 
net_set_todo(struct net_device * dev)10812 static void net_set_todo(struct net_device *dev)
10813 {
10814 	list_add_tail(&dev->todo_list, &net_todo_list);
10815 }
10816 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10817 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10818 	struct net_device *upper, netdev_features_t features)
10819 {
10820 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10821 	netdev_features_t feature;
10822 	int feature_bit;
10823 
10824 	for_each_netdev_feature(upper_disables, feature_bit) {
10825 		feature = __NETIF_F_BIT(feature_bit);
10826 		if (!(upper->wanted_features & feature)
10827 		    && (features & feature)) {
10828 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10829 				   &feature, upper->name);
10830 			features &= ~feature;
10831 		}
10832 	}
10833 
10834 	return features;
10835 }
10836 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10837 static void netdev_sync_lower_features(struct net_device *upper,
10838 	struct net_device *lower, netdev_features_t features)
10839 {
10840 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10841 	netdev_features_t feature;
10842 	int feature_bit;
10843 
10844 	for_each_netdev_feature(upper_disables, feature_bit) {
10845 		feature = __NETIF_F_BIT(feature_bit);
10846 		if (!(features & feature) && (lower->features & feature)) {
10847 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10848 				   &feature, lower->name);
10849 			netdev_lock_ops(lower);
10850 			lower->wanted_features &= ~feature;
10851 			__netdev_update_features(lower);
10852 
10853 			if (unlikely(lower->features & feature))
10854 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10855 					    &feature, lower->name);
10856 			else
10857 				netdev_features_change(lower);
10858 			netdev_unlock_ops(lower);
10859 		}
10860 	}
10861 }
10862 
netdev_has_ip_or_hw_csum(netdev_features_t features)10863 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10864 {
10865 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10866 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10867 	bool hw_csum = features & NETIF_F_HW_CSUM;
10868 
10869 	return ip_csum || hw_csum;
10870 }
10871 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10872 static netdev_features_t netdev_fix_features(struct net_device *dev,
10873 	netdev_features_t features)
10874 {
10875 	/* Fix illegal checksum combinations */
10876 	if ((features & NETIF_F_HW_CSUM) &&
10877 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10878 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10879 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10880 	}
10881 
10882 	/* TSO requires that SG is present as well. */
10883 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10884 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10885 		features &= ~NETIF_F_ALL_TSO;
10886 	}
10887 
10888 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10889 					!(features & NETIF_F_IP_CSUM)) {
10890 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10891 		features &= ~NETIF_F_TSO;
10892 		features &= ~NETIF_F_TSO_ECN;
10893 	}
10894 
10895 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10896 					 !(features & NETIF_F_IPV6_CSUM)) {
10897 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10898 		features &= ~NETIF_F_TSO6;
10899 	}
10900 
10901 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10902 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10903 		features &= ~NETIF_F_TSO_MANGLEID;
10904 
10905 	/* TSO ECN requires that TSO is present as well. */
10906 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10907 		features &= ~NETIF_F_TSO_ECN;
10908 
10909 	/* Software GSO depends on SG. */
10910 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10911 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10912 		features &= ~NETIF_F_GSO;
10913 	}
10914 
10915 	/* GSO partial features require GSO partial be set */
10916 	if ((features & dev->gso_partial_features) &&
10917 	    !(features & NETIF_F_GSO_PARTIAL)) {
10918 		netdev_dbg(dev,
10919 			   "Dropping partially supported GSO features since no GSO partial.\n");
10920 		features &= ~dev->gso_partial_features;
10921 	}
10922 
10923 	if (!(features & NETIF_F_RXCSUM)) {
10924 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10925 		 * successfully merged by hardware must also have the
10926 		 * checksum verified by hardware.  If the user does not
10927 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10928 		 */
10929 		if (features & NETIF_F_GRO_HW) {
10930 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10931 			features &= ~NETIF_F_GRO_HW;
10932 		}
10933 	}
10934 
10935 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10936 	if (features & NETIF_F_RXFCS) {
10937 		if (features & NETIF_F_LRO) {
10938 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10939 			features &= ~NETIF_F_LRO;
10940 		}
10941 
10942 		if (features & NETIF_F_GRO_HW) {
10943 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10944 			features &= ~NETIF_F_GRO_HW;
10945 		}
10946 	}
10947 
10948 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10949 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10950 		features &= ~NETIF_F_LRO;
10951 	}
10952 
10953 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10954 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10955 		features &= ~NETIF_F_HW_TLS_TX;
10956 	}
10957 
10958 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10959 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10960 		features &= ~NETIF_F_HW_TLS_RX;
10961 	}
10962 
10963 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10964 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10965 		features &= ~NETIF_F_GSO_UDP_L4;
10966 	}
10967 
10968 	return features;
10969 }
10970 
__netdev_update_features(struct net_device * dev)10971 int __netdev_update_features(struct net_device *dev)
10972 {
10973 	struct net_device *upper, *lower;
10974 	netdev_features_t features;
10975 	struct list_head *iter;
10976 	int err = -1;
10977 
10978 	ASSERT_RTNL();
10979 	netdev_ops_assert_locked(dev);
10980 
10981 	features = netdev_get_wanted_features(dev);
10982 
10983 	if (dev->netdev_ops->ndo_fix_features)
10984 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10985 
10986 	/* driver might be less strict about feature dependencies */
10987 	features = netdev_fix_features(dev, features);
10988 
10989 	/* some features can't be enabled if they're off on an upper device */
10990 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10991 		features = netdev_sync_upper_features(dev, upper, features);
10992 
10993 	if (dev->features == features)
10994 		goto sync_lower;
10995 
10996 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10997 		&dev->features, &features);
10998 
10999 	if (dev->netdev_ops->ndo_set_features)
11000 		err = dev->netdev_ops->ndo_set_features(dev, features);
11001 	else
11002 		err = 0;
11003 
11004 	if (unlikely(err < 0)) {
11005 		netdev_err(dev,
11006 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
11007 			err, &features, &dev->features);
11008 		/* return non-0 since some features might have changed and
11009 		 * it's better to fire a spurious notification than miss it
11010 		 */
11011 		return -1;
11012 	}
11013 
11014 sync_lower:
11015 	/* some features must be disabled on lower devices when disabled
11016 	 * on an upper device (think: bonding master or bridge)
11017 	 */
11018 	netdev_for_each_lower_dev(dev, lower, iter)
11019 		netdev_sync_lower_features(dev, lower, features);
11020 
11021 	if (!err) {
11022 		netdev_features_t diff = features ^ dev->features;
11023 
11024 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11025 			/* udp_tunnel_{get,drop}_rx_info both need
11026 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11027 			 * device, or they won't do anything.
11028 			 * Thus we need to update dev->features
11029 			 * *before* calling udp_tunnel_get_rx_info,
11030 			 * but *after* calling udp_tunnel_drop_rx_info.
11031 			 */
11032 			udp_tunnel_nic_lock(dev);
11033 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11034 				dev->features = features;
11035 				udp_tunnel_get_rx_info(dev);
11036 			} else {
11037 				udp_tunnel_drop_rx_info(dev);
11038 			}
11039 			udp_tunnel_nic_unlock(dev);
11040 		}
11041 
11042 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11043 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11044 				dev->features = features;
11045 				err |= vlan_get_rx_ctag_filter_info(dev);
11046 			} else {
11047 				vlan_drop_rx_ctag_filter_info(dev);
11048 			}
11049 		}
11050 
11051 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11052 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11053 				dev->features = features;
11054 				err |= vlan_get_rx_stag_filter_info(dev);
11055 			} else {
11056 				vlan_drop_rx_stag_filter_info(dev);
11057 			}
11058 		}
11059 
11060 		dev->features = features;
11061 	}
11062 
11063 	return err < 0 ? 0 : 1;
11064 }
11065 
11066 /**
11067  *	netdev_update_features - recalculate device features
11068  *	@dev: the device to check
11069  *
11070  *	Recalculate dev->features set and send notifications if it
11071  *	has changed. Should be called after driver or hardware dependent
11072  *	conditions might have changed that influence the features.
11073  */
netdev_update_features(struct net_device * dev)11074 void netdev_update_features(struct net_device *dev)
11075 {
11076 	if (__netdev_update_features(dev))
11077 		netdev_features_change(dev);
11078 }
11079 EXPORT_SYMBOL(netdev_update_features);
11080 
11081 /**
11082  *	netdev_change_features - recalculate device features
11083  *	@dev: the device to check
11084  *
11085  *	Recalculate dev->features set and send notifications even
11086  *	if they have not changed. Should be called instead of
11087  *	netdev_update_features() if also dev->vlan_features might
11088  *	have changed to allow the changes to be propagated to stacked
11089  *	VLAN devices.
11090  */
netdev_change_features(struct net_device * dev)11091 void netdev_change_features(struct net_device *dev)
11092 {
11093 	__netdev_update_features(dev);
11094 	netdev_features_change(dev);
11095 }
11096 EXPORT_SYMBOL(netdev_change_features);
11097 
11098 /**
11099  *	netif_stacked_transfer_operstate -	transfer operstate
11100  *	@rootdev: the root or lower level device to transfer state from
11101  *	@dev: the device to transfer operstate to
11102  *
11103  *	Transfer operational state from root to device. This is normally
11104  *	called when a stacking relationship exists between the root
11105  *	device and the device(a leaf device).
11106  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11107 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11108 					struct net_device *dev)
11109 {
11110 	if (rootdev->operstate == IF_OPER_DORMANT)
11111 		netif_dormant_on(dev);
11112 	else
11113 		netif_dormant_off(dev);
11114 
11115 	if (rootdev->operstate == IF_OPER_TESTING)
11116 		netif_testing_on(dev);
11117 	else
11118 		netif_testing_off(dev);
11119 
11120 	if (netif_carrier_ok(rootdev))
11121 		netif_carrier_on(dev);
11122 	else
11123 		netif_carrier_off(dev);
11124 }
11125 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11126 
netif_alloc_rx_queues(struct net_device * dev)11127 static int netif_alloc_rx_queues(struct net_device *dev)
11128 {
11129 	unsigned int i, count = dev->num_rx_queues;
11130 	struct netdev_rx_queue *rx;
11131 	size_t sz = count * sizeof(*rx);
11132 	int err = 0;
11133 
11134 	BUG_ON(count < 1);
11135 
11136 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11137 	if (!rx)
11138 		return -ENOMEM;
11139 
11140 	dev->_rx = rx;
11141 
11142 	for (i = 0; i < count; i++) {
11143 		rx[i].dev = dev;
11144 
11145 		/* XDP RX-queue setup */
11146 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11147 		if (err < 0)
11148 			goto err_rxq_info;
11149 	}
11150 	return 0;
11151 
11152 err_rxq_info:
11153 	/* Rollback successful reg's and free other resources */
11154 	while (i--)
11155 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11156 	kvfree(dev->_rx);
11157 	dev->_rx = NULL;
11158 	return err;
11159 }
11160 
netif_free_rx_queues(struct net_device * dev)11161 static void netif_free_rx_queues(struct net_device *dev)
11162 {
11163 	unsigned int i, count = dev->num_rx_queues;
11164 
11165 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11166 	if (!dev->_rx)
11167 		return;
11168 
11169 	for (i = 0; i < count; i++)
11170 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11171 
11172 	kvfree(dev->_rx);
11173 }
11174 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11175 static void netdev_init_one_queue(struct net_device *dev,
11176 				  struct netdev_queue *queue, void *_unused)
11177 {
11178 	/* Initialize queue lock */
11179 	spin_lock_init(&queue->_xmit_lock);
11180 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11181 	queue->xmit_lock_owner = -1;
11182 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11183 	queue->dev = dev;
11184 #ifdef CONFIG_BQL
11185 	dql_init(&queue->dql, HZ);
11186 #endif
11187 }
11188 
netif_free_tx_queues(struct net_device * dev)11189 static void netif_free_tx_queues(struct net_device *dev)
11190 {
11191 	kvfree(dev->_tx);
11192 }
11193 
netif_alloc_netdev_queues(struct net_device * dev)11194 static int netif_alloc_netdev_queues(struct net_device *dev)
11195 {
11196 	unsigned int count = dev->num_tx_queues;
11197 	struct netdev_queue *tx;
11198 	size_t sz = count * sizeof(*tx);
11199 
11200 	if (count < 1 || count > 0xffff)
11201 		return -EINVAL;
11202 
11203 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11204 	if (!tx)
11205 		return -ENOMEM;
11206 
11207 	dev->_tx = tx;
11208 
11209 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11210 	spin_lock_init(&dev->tx_global_lock);
11211 
11212 	return 0;
11213 }
11214 
netif_tx_stop_all_queues(struct net_device * dev)11215 void netif_tx_stop_all_queues(struct net_device *dev)
11216 {
11217 	unsigned int i;
11218 
11219 	for (i = 0; i < dev->num_tx_queues; i++) {
11220 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11221 
11222 		netif_tx_stop_queue(txq);
11223 	}
11224 }
11225 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11226 
netdev_do_alloc_pcpu_stats(struct net_device * dev)11227 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11228 {
11229 	void __percpu *v;
11230 
11231 	/* Drivers implementing ndo_get_peer_dev must support tstat
11232 	 * accounting, so that skb_do_redirect() can bump the dev's
11233 	 * RX stats upon network namespace switch.
11234 	 */
11235 	if (dev->netdev_ops->ndo_get_peer_dev &&
11236 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11237 		return -EOPNOTSUPP;
11238 
11239 	switch (dev->pcpu_stat_type) {
11240 	case NETDEV_PCPU_STAT_NONE:
11241 		return 0;
11242 	case NETDEV_PCPU_STAT_LSTATS:
11243 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11244 		break;
11245 	case NETDEV_PCPU_STAT_TSTATS:
11246 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11247 		break;
11248 	case NETDEV_PCPU_STAT_DSTATS:
11249 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11250 		break;
11251 	default:
11252 		return -EINVAL;
11253 	}
11254 
11255 	return v ? 0 : -ENOMEM;
11256 }
11257 
netdev_do_free_pcpu_stats(struct net_device * dev)11258 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11259 {
11260 	switch (dev->pcpu_stat_type) {
11261 	case NETDEV_PCPU_STAT_NONE:
11262 		return;
11263 	case NETDEV_PCPU_STAT_LSTATS:
11264 		free_percpu(dev->lstats);
11265 		break;
11266 	case NETDEV_PCPU_STAT_TSTATS:
11267 		free_percpu(dev->tstats);
11268 		break;
11269 	case NETDEV_PCPU_STAT_DSTATS:
11270 		free_percpu(dev->dstats);
11271 		break;
11272 	}
11273 }
11274 
netdev_free_phy_link_topology(struct net_device * dev)11275 static void netdev_free_phy_link_topology(struct net_device *dev)
11276 {
11277 	struct phy_link_topology *topo = dev->link_topo;
11278 
11279 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11280 		xa_destroy(&topo->phys);
11281 		kfree(topo);
11282 		dev->link_topo = NULL;
11283 	}
11284 }
11285 
11286 /**
11287  * register_netdevice() - register a network device
11288  * @dev: device to register
11289  *
11290  * Take a prepared network device structure and make it externally accessible.
11291  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11292  * Callers must hold the rtnl lock - you may want register_netdev()
11293  * instead of this.
11294  */
register_netdevice(struct net_device * dev)11295 int register_netdevice(struct net_device *dev)
11296 {
11297 	int ret;
11298 	struct net *net = dev_net(dev);
11299 
11300 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11301 		     NETDEV_FEATURE_COUNT);
11302 	BUG_ON(dev_boot_phase);
11303 	ASSERT_RTNL();
11304 
11305 	might_sleep();
11306 
11307 	/* When net_device's are persistent, this will be fatal. */
11308 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11309 	BUG_ON(!net);
11310 
11311 	ret = ethtool_check_ops(dev->ethtool_ops);
11312 	if (ret)
11313 		return ret;
11314 
11315 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11316 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11317 	mutex_init(&dev->ethtool->rss_lock);
11318 
11319 	spin_lock_init(&dev->addr_list_lock);
11320 	netdev_set_addr_lockdep_class(dev);
11321 
11322 	ret = dev_get_valid_name(net, dev, dev->name);
11323 	if (ret < 0)
11324 		goto out;
11325 
11326 	ret = -ENOMEM;
11327 	dev->name_node = netdev_name_node_head_alloc(dev);
11328 	if (!dev->name_node)
11329 		goto out;
11330 
11331 	/* Init, if this function is available */
11332 	if (dev->netdev_ops->ndo_init) {
11333 		ret = dev->netdev_ops->ndo_init(dev);
11334 		if (ret) {
11335 			if (ret > 0)
11336 				ret = -EIO;
11337 			goto err_free_name;
11338 		}
11339 	}
11340 
11341 	if (((dev->hw_features | dev->features) &
11342 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11343 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11344 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11345 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11346 		ret = -EINVAL;
11347 		goto err_uninit;
11348 	}
11349 
11350 	ret = netdev_do_alloc_pcpu_stats(dev);
11351 	if (ret)
11352 		goto err_uninit;
11353 
11354 	ret = dev_index_reserve(net, dev->ifindex);
11355 	if (ret < 0)
11356 		goto err_free_pcpu;
11357 	dev->ifindex = ret;
11358 
11359 	/* Transfer changeable features to wanted_features and enable
11360 	 * software offloads (GSO and GRO).
11361 	 */
11362 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11363 	dev->features |= NETIF_F_SOFT_FEATURES;
11364 
11365 	if (dev->udp_tunnel_nic_info) {
11366 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11367 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11368 	}
11369 
11370 	dev->wanted_features = dev->features & dev->hw_features;
11371 
11372 	if (!(dev->flags & IFF_LOOPBACK))
11373 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11374 
11375 	/* If IPv4 TCP segmentation offload is supported we should also
11376 	 * allow the device to enable segmenting the frame with the option
11377 	 * of ignoring a static IP ID value.  This doesn't enable the
11378 	 * feature itself but allows the user to enable it later.
11379 	 */
11380 	if (dev->hw_features & NETIF_F_TSO)
11381 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11382 	if (dev->vlan_features & NETIF_F_TSO)
11383 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11384 	if (dev->mpls_features & NETIF_F_TSO)
11385 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11386 	if (dev->hw_enc_features & NETIF_F_TSO)
11387 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11388 
11389 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11390 	 */
11391 	dev->vlan_features |= NETIF_F_HIGHDMA;
11392 
11393 	/* Make NETIF_F_SG inheritable to tunnel devices.
11394 	 */
11395 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11396 
11397 	/* Make NETIF_F_SG inheritable to MPLS.
11398 	 */
11399 	dev->mpls_features |= NETIF_F_SG;
11400 
11401 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11402 	ret = notifier_to_errno(ret);
11403 	if (ret)
11404 		goto err_ifindex_release;
11405 
11406 	ret = netdev_register_kobject(dev);
11407 
11408 	netdev_lock(dev);
11409 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11410 	netdev_unlock(dev);
11411 
11412 	if (ret)
11413 		goto err_uninit_notify;
11414 
11415 	netdev_lock_ops(dev);
11416 	__netdev_update_features(dev);
11417 	netdev_unlock_ops(dev);
11418 
11419 	/*
11420 	 *	Default initial state at registry is that the
11421 	 *	device is present.
11422 	 */
11423 
11424 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11425 
11426 	linkwatch_init_dev(dev);
11427 
11428 	dev_init_scheduler(dev);
11429 
11430 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11431 	list_netdevice(dev);
11432 
11433 	add_device_randomness(dev->dev_addr, dev->addr_len);
11434 
11435 	/* If the device has permanent device address, driver should
11436 	 * set dev_addr and also addr_assign_type should be set to
11437 	 * NET_ADDR_PERM (default value).
11438 	 */
11439 	if (dev->addr_assign_type == NET_ADDR_PERM)
11440 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11441 
11442 	/* Notify protocols, that a new device appeared. */
11443 	netdev_lock_ops(dev);
11444 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11445 	netdev_unlock_ops(dev);
11446 	ret = notifier_to_errno(ret);
11447 	if (ret) {
11448 		/* Expect explicit free_netdev() on failure */
11449 		dev->needs_free_netdev = false;
11450 		unregister_netdevice_queue(dev, NULL);
11451 		goto out;
11452 	}
11453 	/*
11454 	 *	Prevent userspace races by waiting until the network
11455 	 *	device is fully setup before sending notifications.
11456 	 */
11457 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11458 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11459 
11460 out:
11461 	return ret;
11462 
11463 err_uninit_notify:
11464 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11465 err_ifindex_release:
11466 	dev_index_release(net, dev->ifindex);
11467 err_free_pcpu:
11468 	netdev_do_free_pcpu_stats(dev);
11469 err_uninit:
11470 	if (dev->netdev_ops->ndo_uninit)
11471 		dev->netdev_ops->ndo_uninit(dev);
11472 	if (dev->priv_destructor)
11473 		dev->priv_destructor(dev);
11474 err_free_name:
11475 	netdev_name_node_free(dev->name_node);
11476 	goto out;
11477 }
11478 EXPORT_SYMBOL(register_netdevice);
11479 
11480 /* Initialize the core of a dummy net device.
11481  * The setup steps dummy netdevs need which normal netdevs get by going
11482  * through register_netdevice().
11483  */
init_dummy_netdev(struct net_device * dev)11484 static void init_dummy_netdev(struct net_device *dev)
11485 {
11486 	/* make sure we BUG if trying to hit standard
11487 	 * register/unregister code path
11488 	 */
11489 	dev->reg_state = NETREG_DUMMY;
11490 
11491 	/* a dummy interface is started by default */
11492 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11493 	set_bit(__LINK_STATE_START, &dev->state);
11494 
11495 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11496 	 * because users of this 'device' dont need to change
11497 	 * its refcount.
11498 	 */
11499 }
11500 
11501 /**
11502  *	register_netdev	- register a network device
11503  *	@dev: device to register
11504  *
11505  *	Take a completed network device structure and add it to the kernel
11506  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11507  *	chain. 0 is returned on success. A negative errno code is returned
11508  *	on a failure to set up the device, or if the name is a duplicate.
11509  *
11510  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11511  *	and expands the device name if you passed a format string to
11512  *	alloc_netdev.
11513  */
register_netdev(struct net_device * dev)11514 int register_netdev(struct net_device *dev)
11515 {
11516 	struct net *net = dev_net(dev);
11517 	int err;
11518 
11519 	if (rtnl_net_lock_killable(net))
11520 		return -EINTR;
11521 
11522 	err = register_netdevice(dev);
11523 
11524 	rtnl_net_unlock(net);
11525 
11526 	return err;
11527 }
11528 EXPORT_SYMBOL(register_netdev);
11529 
netdev_refcnt_read(const struct net_device * dev)11530 int netdev_refcnt_read(const struct net_device *dev)
11531 {
11532 #ifdef CONFIG_PCPU_DEV_REFCNT
11533 	int i, refcnt = 0;
11534 
11535 	for_each_possible_cpu(i)
11536 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11537 	return refcnt;
11538 #else
11539 	return refcount_read(&dev->dev_refcnt);
11540 #endif
11541 }
11542 EXPORT_SYMBOL(netdev_refcnt_read);
11543 
11544 int netdev_unregister_timeout_secs __read_mostly = 10;
11545 
11546 #define WAIT_REFS_MIN_MSECS 1
11547 #define WAIT_REFS_MAX_MSECS 250
11548 /**
11549  * netdev_wait_allrefs_any - wait until all references are gone.
11550  * @list: list of net_devices to wait on
11551  *
11552  * This is called when unregistering network devices.
11553  *
11554  * Any protocol or device that holds a reference should register
11555  * for netdevice notification, and cleanup and put back the
11556  * reference if they receive an UNREGISTER event.
11557  * We can get stuck here if buggy protocols don't correctly
11558  * call dev_put.
11559  */
netdev_wait_allrefs_any(struct list_head * list)11560 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11561 {
11562 	unsigned long rebroadcast_time, warning_time;
11563 	struct net_device *dev;
11564 	int wait = 0;
11565 
11566 	rebroadcast_time = warning_time = jiffies;
11567 
11568 	list_for_each_entry(dev, list, todo_list)
11569 		if (netdev_refcnt_read(dev) == 1)
11570 			return dev;
11571 
11572 	while (true) {
11573 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11574 			rtnl_lock();
11575 
11576 			/* Rebroadcast unregister notification */
11577 			list_for_each_entry(dev, list, todo_list)
11578 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11579 
11580 			__rtnl_unlock();
11581 			rcu_barrier();
11582 			rtnl_lock();
11583 
11584 			list_for_each_entry(dev, list, todo_list)
11585 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11586 					     &dev->state)) {
11587 					/* We must not have linkwatch events
11588 					 * pending on unregister. If this
11589 					 * happens, we simply run the queue
11590 					 * unscheduled, resulting in a noop
11591 					 * for this device.
11592 					 */
11593 					linkwatch_run_queue();
11594 					break;
11595 				}
11596 
11597 			__rtnl_unlock();
11598 
11599 			rebroadcast_time = jiffies;
11600 		}
11601 
11602 		rcu_barrier();
11603 
11604 		if (!wait) {
11605 			wait = WAIT_REFS_MIN_MSECS;
11606 		} else {
11607 			msleep(wait);
11608 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11609 		}
11610 
11611 		list_for_each_entry(dev, list, todo_list)
11612 			if (netdev_refcnt_read(dev) == 1)
11613 				return dev;
11614 
11615 		if (time_after(jiffies, warning_time +
11616 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11617 			list_for_each_entry(dev, list, todo_list) {
11618 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11619 					 dev->name, netdev_refcnt_read(dev));
11620 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11621 			}
11622 
11623 			warning_time = jiffies;
11624 		}
11625 	}
11626 }
11627 
11628 /* The sequence is:
11629  *
11630  *	rtnl_lock();
11631  *	...
11632  *	register_netdevice(x1);
11633  *	register_netdevice(x2);
11634  *	...
11635  *	unregister_netdevice(y1);
11636  *	unregister_netdevice(y2);
11637  *      ...
11638  *	rtnl_unlock();
11639  *	free_netdev(y1);
11640  *	free_netdev(y2);
11641  *
11642  * We are invoked by rtnl_unlock().
11643  * This allows us to deal with problems:
11644  * 1) We can delete sysfs objects which invoke hotplug
11645  *    without deadlocking with linkwatch via keventd.
11646  * 2) Since we run with the RTNL semaphore not held, we can sleep
11647  *    safely in order to wait for the netdev refcnt to drop to zero.
11648  *
11649  * We must not return until all unregister events added during
11650  * the interval the lock was held have been completed.
11651  */
netdev_run_todo(void)11652 void netdev_run_todo(void)
11653 {
11654 	struct net_device *dev, *tmp;
11655 	struct list_head list;
11656 	int cnt;
11657 #ifdef CONFIG_LOCKDEP
11658 	struct list_head unlink_list;
11659 
11660 	list_replace_init(&net_unlink_list, &unlink_list);
11661 
11662 	while (!list_empty(&unlink_list)) {
11663 		dev = list_first_entry(&unlink_list, struct net_device,
11664 				       unlink_list);
11665 		list_del_init(&dev->unlink_list);
11666 		dev->nested_level = dev->lower_level - 1;
11667 	}
11668 #endif
11669 
11670 	/* Snapshot list, allow later requests */
11671 	list_replace_init(&net_todo_list, &list);
11672 
11673 	__rtnl_unlock();
11674 
11675 	/* Wait for rcu callbacks to finish before next phase */
11676 	if (!list_empty(&list))
11677 		rcu_barrier();
11678 
11679 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11680 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11681 			netdev_WARN(dev, "run_todo but not unregistering\n");
11682 			list_del(&dev->todo_list);
11683 			continue;
11684 		}
11685 
11686 		netdev_lock(dev);
11687 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11688 		netdev_unlock(dev);
11689 		linkwatch_sync_dev(dev);
11690 	}
11691 
11692 	cnt = 0;
11693 	while (!list_empty(&list)) {
11694 		dev = netdev_wait_allrefs_any(&list);
11695 		list_del(&dev->todo_list);
11696 
11697 		/* paranoia */
11698 		BUG_ON(netdev_refcnt_read(dev) != 1);
11699 		BUG_ON(!list_empty(&dev->ptype_all));
11700 		BUG_ON(!list_empty(&dev->ptype_specific));
11701 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11702 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11703 
11704 		netdev_do_free_pcpu_stats(dev);
11705 		if (dev->priv_destructor)
11706 			dev->priv_destructor(dev);
11707 		if (dev->needs_free_netdev)
11708 			free_netdev(dev);
11709 
11710 		cnt++;
11711 
11712 		/* Free network device */
11713 		kobject_put(&dev->dev.kobj);
11714 	}
11715 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11716 		wake_up(&netdev_unregistering_wq);
11717 }
11718 
11719 /* Collate per-cpu network dstats statistics
11720  *
11721  * Read per-cpu network statistics from dev->dstats and populate the related
11722  * fields in @s.
11723  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11724 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11725 			     const struct pcpu_dstats __percpu *dstats)
11726 {
11727 	int cpu;
11728 
11729 	for_each_possible_cpu(cpu) {
11730 		u64 rx_packets, rx_bytes, rx_drops;
11731 		u64 tx_packets, tx_bytes, tx_drops;
11732 		const struct pcpu_dstats *stats;
11733 		unsigned int start;
11734 
11735 		stats = per_cpu_ptr(dstats, cpu);
11736 		do {
11737 			start = u64_stats_fetch_begin(&stats->syncp);
11738 			rx_packets = u64_stats_read(&stats->rx_packets);
11739 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11740 			rx_drops   = u64_stats_read(&stats->rx_drops);
11741 			tx_packets = u64_stats_read(&stats->tx_packets);
11742 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11743 			tx_drops   = u64_stats_read(&stats->tx_drops);
11744 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11745 
11746 		s->rx_packets += rx_packets;
11747 		s->rx_bytes   += rx_bytes;
11748 		s->rx_dropped += rx_drops;
11749 		s->tx_packets += tx_packets;
11750 		s->tx_bytes   += tx_bytes;
11751 		s->tx_dropped += tx_drops;
11752 	}
11753 }
11754 
11755 /* ndo_get_stats64 implementation for dtstats-based accounting.
11756  *
11757  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11758  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11759  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11760 static void dev_get_dstats64(const struct net_device *dev,
11761 			     struct rtnl_link_stats64 *s)
11762 {
11763 	netdev_stats_to_stats64(s, &dev->stats);
11764 	dev_fetch_dstats(s, dev->dstats);
11765 }
11766 
11767 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11768  * all the same fields in the same order as net_device_stats, with only
11769  * the type differing, but rtnl_link_stats64 may have additional fields
11770  * at the end for newer counters.
11771  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11772 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11773 			     const struct net_device_stats *netdev_stats)
11774 {
11775 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11776 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11777 	u64 *dst = (u64 *)stats64;
11778 
11779 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11780 	for (i = 0; i < n; i++)
11781 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11782 	/* zero out counters that only exist in rtnl_link_stats64 */
11783 	memset((char *)stats64 + n * sizeof(u64), 0,
11784 	       sizeof(*stats64) - n * sizeof(u64));
11785 }
11786 EXPORT_SYMBOL(netdev_stats_to_stats64);
11787 
netdev_core_stats_alloc(struct net_device * dev)11788 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11789 		struct net_device *dev)
11790 {
11791 	struct net_device_core_stats __percpu *p;
11792 
11793 	p = alloc_percpu_gfp(struct net_device_core_stats,
11794 			     GFP_ATOMIC | __GFP_NOWARN);
11795 
11796 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11797 		free_percpu(p);
11798 
11799 	/* This READ_ONCE() pairs with the cmpxchg() above */
11800 	return READ_ONCE(dev->core_stats);
11801 }
11802 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11803 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11804 {
11805 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11806 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11807 	unsigned long __percpu *field;
11808 
11809 	if (unlikely(!p)) {
11810 		p = netdev_core_stats_alloc(dev);
11811 		if (!p)
11812 			return;
11813 	}
11814 
11815 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11816 	this_cpu_inc(*field);
11817 }
11818 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11819 
11820 /**
11821  *	dev_get_stats	- get network device statistics
11822  *	@dev: device to get statistics from
11823  *	@storage: place to store stats
11824  *
11825  *	Get network statistics from device. Return @storage.
11826  *	The device driver may provide its own method by setting
11827  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11828  *	otherwise the internal statistics structure is used.
11829  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11830 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11831 					struct rtnl_link_stats64 *storage)
11832 {
11833 	const struct net_device_ops *ops = dev->netdev_ops;
11834 	const struct net_device_core_stats __percpu *p;
11835 
11836 	/*
11837 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11838 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11839 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11840 	 */
11841 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11842 		     offsetof(struct pcpu_dstats, rx_bytes));
11843 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11844 		     offsetof(struct pcpu_dstats, rx_packets));
11845 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11846 		     offsetof(struct pcpu_dstats, tx_bytes));
11847 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11848 		     offsetof(struct pcpu_dstats, tx_packets));
11849 
11850 	if (ops->ndo_get_stats64) {
11851 		memset(storage, 0, sizeof(*storage));
11852 		ops->ndo_get_stats64(dev, storage);
11853 	} else if (ops->ndo_get_stats) {
11854 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11855 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11856 		dev_get_tstats64(dev, storage);
11857 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11858 		dev_get_dstats64(dev, storage);
11859 	} else {
11860 		netdev_stats_to_stats64(storage, &dev->stats);
11861 	}
11862 
11863 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11864 	p = READ_ONCE(dev->core_stats);
11865 	if (p) {
11866 		const struct net_device_core_stats *core_stats;
11867 		int i;
11868 
11869 		for_each_possible_cpu(i) {
11870 			core_stats = per_cpu_ptr(p, i);
11871 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11872 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11873 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11874 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11875 		}
11876 	}
11877 	return storage;
11878 }
11879 EXPORT_SYMBOL(dev_get_stats);
11880 
11881 /**
11882  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11883  *	@s: place to store stats
11884  *	@netstats: per-cpu network stats to read from
11885  *
11886  *	Read per-cpu network statistics and populate the related fields in @s.
11887  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11888 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11889 			   const struct pcpu_sw_netstats __percpu *netstats)
11890 {
11891 	int cpu;
11892 
11893 	for_each_possible_cpu(cpu) {
11894 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11895 		const struct pcpu_sw_netstats *stats;
11896 		unsigned int start;
11897 
11898 		stats = per_cpu_ptr(netstats, cpu);
11899 		do {
11900 			start = u64_stats_fetch_begin(&stats->syncp);
11901 			rx_packets = u64_stats_read(&stats->rx_packets);
11902 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11903 			tx_packets = u64_stats_read(&stats->tx_packets);
11904 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11905 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11906 
11907 		s->rx_packets += rx_packets;
11908 		s->rx_bytes   += rx_bytes;
11909 		s->tx_packets += tx_packets;
11910 		s->tx_bytes   += tx_bytes;
11911 	}
11912 }
11913 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11914 
11915 /**
11916  *	dev_get_tstats64 - ndo_get_stats64 implementation
11917  *	@dev: device to get statistics from
11918  *	@s: place to store stats
11919  *
11920  *	Populate @s from dev->stats and dev->tstats. Can be used as
11921  *	ndo_get_stats64() callback.
11922  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11923 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11924 {
11925 	netdev_stats_to_stats64(s, &dev->stats);
11926 	dev_fetch_sw_netstats(s, dev->tstats);
11927 }
11928 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11929 
dev_ingress_queue_create(struct net_device * dev)11930 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11931 {
11932 	struct netdev_queue *queue = dev_ingress_queue(dev);
11933 
11934 #ifdef CONFIG_NET_CLS_ACT
11935 	if (queue)
11936 		return queue;
11937 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11938 	if (!queue)
11939 		return NULL;
11940 	netdev_init_one_queue(dev, queue, NULL);
11941 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11942 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11943 	rcu_assign_pointer(dev->ingress_queue, queue);
11944 #endif
11945 	return queue;
11946 }
11947 
11948 static const struct ethtool_ops default_ethtool_ops;
11949 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11950 void netdev_set_default_ethtool_ops(struct net_device *dev,
11951 				    const struct ethtool_ops *ops)
11952 {
11953 	if (dev->ethtool_ops == &default_ethtool_ops)
11954 		dev->ethtool_ops = ops;
11955 }
11956 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11957 
11958 /**
11959  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11960  * @dev: netdev to enable the IRQ coalescing on
11961  *
11962  * Sets a conservative default for SW IRQ coalescing. Users can use
11963  * sysfs attributes to override the default values.
11964  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11965 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11966 {
11967 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11968 
11969 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11970 		netdev_set_gro_flush_timeout(dev, 20000);
11971 		netdev_set_defer_hard_irqs(dev, 1);
11972 	}
11973 }
11974 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11975 
11976 /**
11977  * alloc_netdev_mqs - allocate network device
11978  * @sizeof_priv: size of private data to allocate space for
11979  * @name: device name format string
11980  * @name_assign_type: origin of device name
11981  * @setup: callback to initialize device
11982  * @txqs: the number of TX subqueues to allocate
11983  * @rxqs: the number of RX subqueues to allocate
11984  *
11985  * Allocates a struct net_device with private data area for driver use
11986  * and performs basic initialization.  Also allocates subqueue structs
11987  * for each queue on the device.
11988  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11990 		unsigned char name_assign_type,
11991 		void (*setup)(struct net_device *),
11992 		unsigned int txqs, unsigned int rxqs)
11993 {
11994 	struct net_device *dev;
11995 	size_t napi_config_sz;
11996 	unsigned int maxqs;
11997 
11998 	BUG_ON(strlen(name) >= sizeof(dev->name));
11999 
12000 	if (txqs < 1) {
12001 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12002 		return NULL;
12003 	}
12004 
12005 	if (rxqs < 1) {
12006 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12007 		return NULL;
12008 	}
12009 
12010 	maxqs = max(txqs, rxqs);
12011 
12012 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
12013 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12014 	if (!dev)
12015 		return NULL;
12016 
12017 	dev->priv_len = sizeof_priv;
12018 
12019 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12020 #ifdef CONFIG_PCPU_DEV_REFCNT
12021 	dev->pcpu_refcnt = alloc_percpu(int);
12022 	if (!dev->pcpu_refcnt)
12023 		goto free_dev;
12024 	__dev_hold(dev);
12025 #else
12026 	refcount_set(&dev->dev_refcnt, 1);
12027 #endif
12028 
12029 	if (dev_addr_init(dev))
12030 		goto free_pcpu;
12031 
12032 	dev_mc_init(dev);
12033 	dev_uc_init(dev);
12034 
12035 	dev_net_set(dev, &init_net);
12036 
12037 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12038 	dev->xdp_zc_max_segs = 1;
12039 	dev->gso_max_segs = GSO_MAX_SEGS;
12040 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12041 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12042 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12043 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12044 	dev->tso_max_segs = TSO_MAX_SEGS;
12045 	dev->upper_level = 1;
12046 	dev->lower_level = 1;
12047 #ifdef CONFIG_LOCKDEP
12048 	dev->nested_level = 0;
12049 	INIT_LIST_HEAD(&dev->unlink_list);
12050 #endif
12051 
12052 	INIT_LIST_HEAD(&dev->napi_list);
12053 	INIT_LIST_HEAD(&dev->unreg_list);
12054 	INIT_LIST_HEAD(&dev->close_list);
12055 	INIT_LIST_HEAD(&dev->link_watch_list);
12056 	INIT_LIST_HEAD(&dev->adj_list.upper);
12057 	INIT_LIST_HEAD(&dev->adj_list.lower);
12058 	INIT_LIST_HEAD(&dev->ptype_all);
12059 	INIT_LIST_HEAD(&dev->ptype_specific);
12060 	INIT_LIST_HEAD(&dev->net_notifier_list);
12061 #ifdef CONFIG_NET_SCHED
12062 	hash_init(dev->qdisc_hash);
12063 #endif
12064 
12065 	mutex_init(&dev->lock);
12066 
12067 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12068 	setup(dev);
12069 
12070 	if (!dev->tx_queue_len) {
12071 		dev->priv_flags |= IFF_NO_QUEUE;
12072 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12073 	}
12074 
12075 	dev->num_tx_queues = txqs;
12076 	dev->real_num_tx_queues = txqs;
12077 	if (netif_alloc_netdev_queues(dev))
12078 		goto free_all;
12079 
12080 	dev->num_rx_queues = rxqs;
12081 	dev->real_num_rx_queues = rxqs;
12082 	if (netif_alloc_rx_queues(dev))
12083 		goto free_all;
12084 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12085 	if (!dev->ethtool)
12086 		goto free_all;
12087 
12088 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12089 	if (!dev->cfg)
12090 		goto free_all;
12091 	dev->cfg_pending = dev->cfg;
12092 
12093 	dev->num_napi_configs = maxqs;
12094 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12095 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12096 	if (!dev->napi_config)
12097 		goto free_all;
12098 
12099 	strscpy(dev->name, name);
12100 	dev->name_assign_type = name_assign_type;
12101 	dev->group = INIT_NETDEV_GROUP;
12102 	if (!dev->ethtool_ops)
12103 		dev->ethtool_ops = &default_ethtool_ops;
12104 
12105 	nf_hook_netdev_init(dev);
12106 
12107 	return dev;
12108 
12109 free_all:
12110 	free_netdev(dev);
12111 	return NULL;
12112 
12113 free_pcpu:
12114 #ifdef CONFIG_PCPU_DEV_REFCNT
12115 	free_percpu(dev->pcpu_refcnt);
12116 free_dev:
12117 #endif
12118 	kvfree(dev);
12119 	return NULL;
12120 }
12121 EXPORT_SYMBOL(alloc_netdev_mqs);
12122 
netdev_napi_exit(struct net_device * dev)12123 static void netdev_napi_exit(struct net_device *dev)
12124 {
12125 	if (!list_empty(&dev->napi_list)) {
12126 		struct napi_struct *p, *n;
12127 
12128 		netdev_lock(dev);
12129 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12130 			__netif_napi_del_locked(p);
12131 		netdev_unlock(dev);
12132 
12133 		synchronize_net();
12134 	}
12135 
12136 	kvfree(dev->napi_config);
12137 }
12138 
12139 /**
12140  * free_netdev - free network device
12141  * @dev: device
12142  *
12143  * This function does the last stage of destroying an allocated device
12144  * interface. The reference to the device object is released. If this
12145  * is the last reference then it will be freed.Must be called in process
12146  * context.
12147  */
free_netdev(struct net_device * dev)12148 void free_netdev(struct net_device *dev)
12149 {
12150 	might_sleep();
12151 
12152 	/* When called immediately after register_netdevice() failed the unwind
12153 	 * handling may still be dismantling the device. Handle that case by
12154 	 * deferring the free.
12155 	 */
12156 	if (dev->reg_state == NETREG_UNREGISTERING) {
12157 		ASSERT_RTNL();
12158 		dev->needs_free_netdev = true;
12159 		return;
12160 	}
12161 
12162 	WARN_ON(dev->cfg != dev->cfg_pending);
12163 	kfree(dev->cfg);
12164 	kfree(dev->ethtool);
12165 	netif_free_tx_queues(dev);
12166 	netif_free_rx_queues(dev);
12167 
12168 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12169 
12170 	/* Flush device addresses */
12171 	dev_addr_flush(dev);
12172 
12173 	netdev_napi_exit(dev);
12174 
12175 	netif_del_cpu_rmap(dev);
12176 
12177 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12178 #ifdef CONFIG_PCPU_DEV_REFCNT
12179 	free_percpu(dev->pcpu_refcnt);
12180 	dev->pcpu_refcnt = NULL;
12181 #endif
12182 	free_percpu(dev->core_stats);
12183 	dev->core_stats = NULL;
12184 	free_percpu(dev->xdp_bulkq);
12185 	dev->xdp_bulkq = NULL;
12186 
12187 	netdev_free_phy_link_topology(dev);
12188 
12189 	mutex_destroy(&dev->lock);
12190 
12191 	/*  Compatibility with error handling in drivers */
12192 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12193 	    dev->reg_state == NETREG_DUMMY) {
12194 		kvfree(dev);
12195 		return;
12196 	}
12197 
12198 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12199 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12200 
12201 	/* will free via device release */
12202 	put_device(&dev->dev);
12203 }
12204 EXPORT_SYMBOL(free_netdev);
12205 
12206 /**
12207  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12208  * @sizeof_priv: size of private data to allocate space for
12209  *
12210  * Return: the allocated net_device on success, NULL otherwise
12211  */
alloc_netdev_dummy(int sizeof_priv)12212 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12213 {
12214 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12215 			    init_dummy_netdev);
12216 }
12217 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12218 
12219 /**
12220  *	synchronize_net -  Synchronize with packet receive processing
12221  *
12222  *	Wait for packets currently being received to be done.
12223  *	Does not block later packets from starting.
12224  */
synchronize_net(void)12225 void synchronize_net(void)
12226 {
12227 	might_sleep();
12228 	if (from_cleanup_net() || rtnl_is_locked())
12229 		synchronize_rcu_expedited();
12230 	else
12231 		synchronize_rcu();
12232 }
12233 EXPORT_SYMBOL(synchronize_net);
12234 
netdev_rss_contexts_free(struct net_device * dev)12235 static void netdev_rss_contexts_free(struct net_device *dev)
12236 {
12237 	struct ethtool_rxfh_context *ctx;
12238 	unsigned long context;
12239 
12240 	mutex_lock(&dev->ethtool->rss_lock);
12241 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12242 		xa_erase(&dev->ethtool->rss_ctx, context);
12243 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12244 		kfree(ctx);
12245 	}
12246 	xa_destroy(&dev->ethtool->rss_ctx);
12247 	mutex_unlock(&dev->ethtool->rss_lock);
12248 }
12249 
12250 /**
12251  *	unregister_netdevice_queue - remove device from the kernel
12252  *	@dev: device
12253  *	@head: list
12254  *
12255  *	This function shuts down a device interface and removes it
12256  *	from the kernel tables.
12257  *	If head not NULL, device is queued to be unregistered later.
12258  *
12259  *	Callers must hold the rtnl semaphore.  You may want
12260  *	unregister_netdev() instead of this.
12261  */
12262 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12263 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12264 {
12265 	ASSERT_RTNL();
12266 
12267 	if (head) {
12268 		list_move_tail(&dev->unreg_list, head);
12269 	} else {
12270 		LIST_HEAD(single);
12271 
12272 		list_add(&dev->unreg_list, &single);
12273 		unregister_netdevice_many(&single);
12274 	}
12275 }
12276 EXPORT_SYMBOL(unregister_netdevice_queue);
12277 
dev_memory_provider_uninstall(struct net_device * dev)12278 static void dev_memory_provider_uninstall(struct net_device *dev)
12279 {
12280 	unsigned int i;
12281 
12282 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12283 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12284 		struct pp_memory_provider_params *p = &rxq->mp_params;
12285 
12286 		if (p->mp_ops && p->mp_ops->uninstall)
12287 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12288 	}
12289 }
12290 
12291 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12292 static void netif_close_many_and_unlock(struct list_head *close_head)
12293 {
12294 	struct net_device *dev, *tmp;
12295 
12296 	netif_close_many(close_head, false);
12297 
12298 	/* ... now unlock them */
12299 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12300 		netdev_unlock(dev);
12301 		list_del_init(&dev->close_list);
12302 	}
12303 }
12304 
netif_close_many_and_unlock_cond(struct list_head * close_head)12305 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12306 {
12307 #ifdef CONFIG_LOCKDEP
12308 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12309 	 *
12310 	 * Reserve half the available slots for additional locks possibly
12311 	 * taken by notifiers and (soft)irqs.
12312 	 */
12313 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12314 
12315 	if (lockdep_depth(current) > limit)
12316 		netif_close_many_and_unlock(close_head);
12317 #endif
12318 }
12319 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12320 void unregister_netdevice_many_notify(struct list_head *head,
12321 				      u32 portid, const struct nlmsghdr *nlh)
12322 {
12323 	struct net_device *dev, *tmp;
12324 	LIST_HEAD(close_head);
12325 	int cnt = 0;
12326 
12327 	BUG_ON(dev_boot_phase);
12328 	ASSERT_RTNL();
12329 
12330 	if (list_empty(head))
12331 		return;
12332 
12333 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12334 		/* Some devices call without registering
12335 		 * for initialization unwind. Remove those
12336 		 * devices and proceed with the remaining.
12337 		 */
12338 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12339 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12340 				 dev->name, dev);
12341 
12342 			WARN_ON(1);
12343 			list_del(&dev->unreg_list);
12344 			continue;
12345 		}
12346 		dev->dismantle = true;
12347 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12348 	}
12349 
12350 	/* If device is running, close it first. Start with ops locked... */
12351 	list_for_each_entry(dev, head, unreg_list) {
12352 		if (!(dev->flags & IFF_UP))
12353 			continue;
12354 		if (netdev_need_ops_lock(dev)) {
12355 			list_add_tail(&dev->close_list, &close_head);
12356 			netdev_lock(dev);
12357 		}
12358 		netif_close_many_and_unlock_cond(&close_head);
12359 	}
12360 	netif_close_many_and_unlock(&close_head);
12361 	/* ... now go over the rest. */
12362 	list_for_each_entry(dev, head, unreg_list) {
12363 		if (!netdev_need_ops_lock(dev))
12364 			list_add_tail(&dev->close_list, &close_head);
12365 	}
12366 	netif_close_many(&close_head, true);
12367 
12368 	list_for_each_entry(dev, head, unreg_list) {
12369 		/* And unlink it from device chain. */
12370 		unlist_netdevice(dev);
12371 		netdev_lock(dev);
12372 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12373 		netdev_unlock(dev);
12374 	}
12375 	flush_all_backlogs();
12376 
12377 	synchronize_net();
12378 
12379 	list_for_each_entry(dev, head, unreg_list) {
12380 		struct sk_buff *skb = NULL;
12381 
12382 		/* Shutdown queueing discipline. */
12383 		netdev_lock_ops(dev);
12384 		dev_shutdown(dev);
12385 		dev_tcx_uninstall(dev);
12386 		dev_xdp_uninstall(dev);
12387 		dev_memory_provider_uninstall(dev);
12388 		netdev_unlock_ops(dev);
12389 		bpf_dev_bound_netdev_unregister(dev);
12390 
12391 		netdev_offload_xstats_disable_all(dev);
12392 
12393 		/* Notify protocols, that we are about to destroy
12394 		 * this device. They should clean all the things.
12395 		 */
12396 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12397 
12398 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12399 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12400 						     GFP_KERNEL, NULL, 0,
12401 						     portid, nlh);
12402 
12403 		/*
12404 		 *	Flush the unicast and multicast chains
12405 		 */
12406 		dev_uc_flush(dev);
12407 		dev_mc_flush(dev);
12408 
12409 		netdev_name_node_alt_flush(dev);
12410 		netdev_name_node_free(dev->name_node);
12411 
12412 		netdev_rss_contexts_free(dev);
12413 
12414 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12415 
12416 		if (dev->netdev_ops->ndo_uninit)
12417 			dev->netdev_ops->ndo_uninit(dev);
12418 
12419 		mutex_destroy(&dev->ethtool->rss_lock);
12420 
12421 		net_shaper_flush_netdev(dev);
12422 
12423 		if (skb)
12424 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12425 
12426 		/* Notifier chain MUST detach us all upper devices. */
12427 		WARN_ON(netdev_has_any_upper_dev(dev));
12428 		WARN_ON(netdev_has_any_lower_dev(dev));
12429 
12430 		/* Remove entries from kobject tree */
12431 		netdev_unregister_kobject(dev);
12432 #ifdef CONFIG_XPS
12433 		/* Remove XPS queueing entries */
12434 		netif_reset_xps_queues_gt(dev, 0);
12435 #endif
12436 	}
12437 
12438 	synchronize_net();
12439 
12440 	list_for_each_entry(dev, head, unreg_list) {
12441 		netdev_put(dev, &dev->dev_registered_tracker);
12442 		net_set_todo(dev);
12443 		cnt++;
12444 	}
12445 	atomic_add(cnt, &dev_unreg_count);
12446 
12447 	list_del(head);
12448 }
12449 
12450 /**
12451  *	unregister_netdevice_many - unregister many devices
12452  *	@head: list of devices
12453  *
12454  *  Note: As most callers use a stack allocated list_head,
12455  *  we force a list_del() to make sure stack won't be corrupted later.
12456  */
unregister_netdevice_many(struct list_head * head)12457 void unregister_netdevice_many(struct list_head *head)
12458 {
12459 	unregister_netdevice_many_notify(head, 0, NULL);
12460 }
12461 EXPORT_SYMBOL(unregister_netdevice_many);
12462 
12463 /**
12464  *	unregister_netdev - remove device from the kernel
12465  *	@dev: device
12466  *
12467  *	This function shuts down a device interface and removes it
12468  *	from the kernel tables.
12469  *
12470  *	This is just a wrapper for unregister_netdevice that takes
12471  *	the rtnl semaphore.  In general you want to use this and not
12472  *	unregister_netdevice.
12473  */
unregister_netdev(struct net_device * dev)12474 void unregister_netdev(struct net_device *dev)
12475 {
12476 	rtnl_net_dev_lock(dev);
12477 	unregister_netdevice(dev);
12478 	rtnl_net_dev_unlock(dev);
12479 }
12480 EXPORT_SYMBOL(unregister_netdev);
12481 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12482 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12483 			       const char *pat, int new_ifindex,
12484 			       struct netlink_ext_ack *extack)
12485 {
12486 	struct netdev_name_node *name_node;
12487 	struct net *net_old = dev_net(dev);
12488 	char new_name[IFNAMSIZ] = {};
12489 	int err, new_nsid;
12490 
12491 	ASSERT_RTNL();
12492 
12493 	/* Don't allow namespace local devices to be moved. */
12494 	err = -EINVAL;
12495 	if (dev->netns_immutable) {
12496 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12497 		goto out;
12498 	}
12499 
12500 	/* Ensure the device has been registered */
12501 	if (dev->reg_state != NETREG_REGISTERED) {
12502 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12503 		goto out;
12504 	}
12505 
12506 	/* Get out if there is nothing todo */
12507 	err = 0;
12508 	if (net_eq(net_old, net))
12509 		goto out;
12510 
12511 	/* Pick the destination device name, and ensure
12512 	 * we can use it in the destination network namespace.
12513 	 */
12514 	err = -EEXIST;
12515 	if (netdev_name_in_use(net, dev->name)) {
12516 		/* We get here if we can't use the current device name */
12517 		if (!pat) {
12518 			NL_SET_ERR_MSG(extack,
12519 				       "An interface with the same name exists in the target netns");
12520 			goto out;
12521 		}
12522 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12523 		if (err < 0) {
12524 			NL_SET_ERR_MSG_FMT(extack,
12525 					   "Unable to use '%s' for the new interface name in the target netns",
12526 					   pat);
12527 			goto out;
12528 		}
12529 	}
12530 	/* Check that none of the altnames conflicts. */
12531 	err = -EEXIST;
12532 	netdev_for_each_altname(dev, name_node) {
12533 		if (netdev_name_in_use(net, name_node->name)) {
12534 			NL_SET_ERR_MSG_FMT(extack,
12535 					   "An interface with the altname %s exists in the target netns",
12536 					   name_node->name);
12537 			goto out;
12538 		}
12539 	}
12540 
12541 	/* Check that new_ifindex isn't used yet. */
12542 	if (new_ifindex) {
12543 		err = dev_index_reserve(net, new_ifindex);
12544 		if (err < 0) {
12545 			NL_SET_ERR_MSG_FMT(extack,
12546 					   "The ifindex %d is not available in the target netns",
12547 					   new_ifindex);
12548 			goto out;
12549 		}
12550 	} else {
12551 		/* If there is an ifindex conflict assign a new one */
12552 		err = dev_index_reserve(net, dev->ifindex);
12553 		if (err == -EBUSY)
12554 			err = dev_index_reserve(net, 0);
12555 		if (err < 0) {
12556 			NL_SET_ERR_MSG(extack,
12557 				       "Unable to allocate a new ifindex in the target netns");
12558 			goto out;
12559 		}
12560 		new_ifindex = err;
12561 	}
12562 
12563 	/*
12564 	 * And now a mini version of register_netdevice unregister_netdevice.
12565 	 */
12566 
12567 	netdev_lock_ops(dev);
12568 	/* If device is running close it first. */
12569 	netif_close(dev);
12570 	/* And unlink it from device chain */
12571 	unlist_netdevice(dev);
12572 
12573 	if (!netdev_need_ops_lock(dev))
12574 		netdev_lock(dev);
12575 	dev->moving_ns = true;
12576 	netdev_unlock(dev);
12577 
12578 	synchronize_net();
12579 
12580 	/* Shutdown queueing discipline. */
12581 	netdev_lock_ops(dev);
12582 	dev_shutdown(dev);
12583 	netdev_unlock_ops(dev);
12584 
12585 	/* Notify protocols, that we are about to destroy
12586 	 * this device. They should clean all the things.
12587 	 *
12588 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12589 	 * This is wanted because this way 8021q and macvlan know
12590 	 * the device is just moving and can keep their slaves up.
12591 	 */
12592 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12593 	rcu_barrier();
12594 
12595 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12596 
12597 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12598 			    new_ifindex);
12599 
12600 	/*
12601 	 *	Flush the unicast and multicast chains
12602 	 */
12603 	dev_uc_flush(dev);
12604 	dev_mc_flush(dev);
12605 
12606 	/* Send a netdev-removed uevent to the old namespace */
12607 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12608 	netdev_adjacent_del_links(dev);
12609 
12610 	/* Move per-net netdevice notifiers that are following the netdevice */
12611 	move_netdevice_notifiers_dev_net(dev, net);
12612 
12613 	/* Actually switch the network namespace */
12614 	netdev_lock(dev);
12615 	dev_net_set(dev, net);
12616 	netdev_unlock(dev);
12617 	dev->ifindex = new_ifindex;
12618 
12619 	if (new_name[0]) {
12620 		/* Rename the netdev to prepared name */
12621 		write_seqlock_bh(&netdev_rename_lock);
12622 		strscpy(dev->name, new_name, IFNAMSIZ);
12623 		write_sequnlock_bh(&netdev_rename_lock);
12624 	}
12625 
12626 	/* Fixup kobjects */
12627 	dev_set_uevent_suppress(&dev->dev, 1);
12628 	err = device_rename(&dev->dev, dev->name);
12629 	dev_set_uevent_suppress(&dev->dev, 0);
12630 	WARN_ON(err);
12631 
12632 	/* Send a netdev-add uevent to the new namespace */
12633 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12634 	netdev_adjacent_add_links(dev);
12635 
12636 	/* Adapt owner in case owning user namespace of target network
12637 	 * namespace is different from the original one.
12638 	 */
12639 	err = netdev_change_owner(dev, net_old, net);
12640 	WARN_ON(err);
12641 
12642 	netdev_lock(dev);
12643 	dev->moving_ns = false;
12644 	if (!netdev_need_ops_lock(dev))
12645 		netdev_unlock(dev);
12646 
12647 	/* Add the device back in the hashes */
12648 	list_netdevice(dev);
12649 	/* Notify protocols, that a new device appeared. */
12650 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12651 	netdev_unlock_ops(dev);
12652 
12653 	/*
12654 	 *	Prevent userspace races by waiting until the network
12655 	 *	device is fully setup before sending notifications.
12656 	 */
12657 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12658 
12659 	synchronize_net();
12660 	err = 0;
12661 out:
12662 	return err;
12663 }
12664 
dev_cpu_dead(unsigned int oldcpu)12665 static int dev_cpu_dead(unsigned int oldcpu)
12666 {
12667 	struct sk_buff **list_skb;
12668 	struct sk_buff *skb;
12669 	unsigned int cpu;
12670 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12671 
12672 	local_irq_disable();
12673 	cpu = smp_processor_id();
12674 	sd = &per_cpu(softnet_data, cpu);
12675 	oldsd = &per_cpu(softnet_data, oldcpu);
12676 
12677 	/* Find end of our completion_queue. */
12678 	list_skb = &sd->completion_queue;
12679 	while (*list_skb)
12680 		list_skb = &(*list_skb)->next;
12681 	/* Append completion queue from offline CPU. */
12682 	*list_skb = oldsd->completion_queue;
12683 	oldsd->completion_queue = NULL;
12684 
12685 	/* Append output queue from offline CPU. */
12686 	if (oldsd->output_queue) {
12687 		*sd->output_queue_tailp = oldsd->output_queue;
12688 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12689 		oldsd->output_queue = NULL;
12690 		oldsd->output_queue_tailp = &oldsd->output_queue;
12691 	}
12692 	/* Append NAPI poll list from offline CPU, with one exception :
12693 	 * process_backlog() must be called by cpu owning percpu backlog.
12694 	 * We properly handle process_queue & input_pkt_queue later.
12695 	 */
12696 	while (!list_empty(&oldsd->poll_list)) {
12697 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12698 							    struct napi_struct,
12699 							    poll_list);
12700 
12701 		list_del_init(&napi->poll_list);
12702 		if (napi->poll == process_backlog)
12703 			napi->state &= NAPIF_STATE_THREADED;
12704 		else
12705 			____napi_schedule(sd, napi);
12706 	}
12707 
12708 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12709 	local_irq_enable();
12710 
12711 	if (!use_backlog_threads()) {
12712 #ifdef CONFIG_RPS
12713 		remsd = oldsd->rps_ipi_list;
12714 		oldsd->rps_ipi_list = NULL;
12715 #endif
12716 		/* send out pending IPI's on offline CPU */
12717 		net_rps_send_ipi(remsd);
12718 	}
12719 
12720 	/* Process offline CPU's input_pkt_queue */
12721 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12722 		netif_rx(skb);
12723 		rps_input_queue_head_incr(oldsd);
12724 	}
12725 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12726 		netif_rx(skb);
12727 		rps_input_queue_head_incr(oldsd);
12728 	}
12729 
12730 	return 0;
12731 }
12732 
12733 /**
12734  *	netdev_increment_features - increment feature set by one
12735  *	@all: current feature set
12736  *	@one: new feature set
12737  *	@mask: mask feature set
12738  *
12739  *	Computes a new feature set after adding a device with feature set
12740  *	@one to the master device with current feature set @all.  Will not
12741  *	enable anything that is off in @mask. Returns the new feature set.
12742  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12743 netdev_features_t netdev_increment_features(netdev_features_t all,
12744 	netdev_features_t one, netdev_features_t mask)
12745 {
12746 	if (mask & NETIF_F_HW_CSUM)
12747 		mask |= NETIF_F_CSUM_MASK;
12748 	mask |= NETIF_F_VLAN_CHALLENGED;
12749 
12750 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12751 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12752 
12753 	/* If one device supports hw checksumming, set for all. */
12754 	if (all & NETIF_F_HW_CSUM)
12755 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12756 
12757 	return all;
12758 }
12759 EXPORT_SYMBOL(netdev_increment_features);
12760 
12761 /**
12762  *	netdev_compute_master_upper_features - compute feature from lowers
12763  *	@dev: the upper device
12764  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12765  *
12766  *	Recompute the upper device's feature based on all lower devices.
12767  */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12768 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12769 {
12770 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12771 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12772 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12773 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12774 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12775 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12776 	unsigned short max_header_len = ETH_HLEN;
12777 	unsigned int tso_max_size = TSO_MAX_SIZE;
12778 	unsigned short max_headroom = 0;
12779 	unsigned short max_tailroom = 0;
12780 	u16 tso_max_segs = TSO_MAX_SEGS;
12781 	struct net_device *lower_dev;
12782 	struct list_head *iter;
12783 
12784 	mpls_features = netdev_base_features(mpls_features);
12785 	vlan_features = netdev_base_features(vlan_features);
12786 	enc_features = netdev_base_features(enc_features);
12787 
12788 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12789 		gso_partial_features = netdev_increment_features(gso_partial_features,
12790 								 lower_dev->gso_partial_features,
12791 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12792 
12793 		vlan_features = netdev_increment_features(vlan_features,
12794 							  lower_dev->vlan_features,
12795 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12796 
12797 		enc_features = netdev_increment_features(enc_features,
12798 							 lower_dev->hw_enc_features,
12799 							 MASTER_UPPER_DEV_ENC_FEATURES);
12800 
12801 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12802 			xfrm_features = netdev_increment_features(xfrm_features,
12803 								  lower_dev->hw_enc_features,
12804 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12805 
12806 		mpls_features = netdev_increment_features(mpls_features,
12807 							  lower_dev->mpls_features,
12808 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12809 
12810 		dst_release_flag &= lower_dev->priv_flags;
12811 
12812 		if (update_header) {
12813 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12814 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12815 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12816 		}
12817 
12818 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12819 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12820 	}
12821 
12822 	dev->gso_partial_features = gso_partial_features;
12823 	dev->vlan_features = vlan_features;
12824 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12825 			       NETIF_F_HW_VLAN_CTAG_TX |
12826 			       NETIF_F_HW_VLAN_STAG_TX;
12827 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12828 		dev->hw_enc_features |= xfrm_features;
12829 	dev->mpls_features = mpls_features;
12830 
12831 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12832 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12833 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12834 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12835 
12836 	if (update_header) {
12837 		dev->hard_header_len = max_header_len;
12838 		dev->needed_headroom = max_headroom;
12839 		dev->needed_tailroom = max_tailroom;
12840 	}
12841 
12842 	netif_set_tso_max_segs(dev, tso_max_segs);
12843 	netif_set_tso_max_size(dev, tso_max_size);
12844 
12845 	netdev_change_features(dev);
12846 }
12847 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12848 
netdev_create_hash(void)12849 static struct hlist_head * __net_init netdev_create_hash(void)
12850 {
12851 	int i;
12852 	struct hlist_head *hash;
12853 
12854 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12855 	if (hash != NULL)
12856 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12857 			INIT_HLIST_HEAD(&hash[i]);
12858 
12859 	return hash;
12860 }
12861 
12862 /* Initialize per network namespace state */
netdev_init(struct net * net)12863 static int __net_init netdev_init(struct net *net)
12864 {
12865 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12866 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12867 
12868 	INIT_LIST_HEAD(&net->dev_base_head);
12869 
12870 	net->dev_name_head = netdev_create_hash();
12871 	if (net->dev_name_head == NULL)
12872 		goto err_name;
12873 
12874 	net->dev_index_head = netdev_create_hash();
12875 	if (net->dev_index_head == NULL)
12876 		goto err_idx;
12877 
12878 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12879 
12880 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12881 
12882 	return 0;
12883 
12884 err_idx:
12885 	kfree(net->dev_name_head);
12886 err_name:
12887 	return -ENOMEM;
12888 }
12889 
12890 /**
12891  *	netdev_drivername - network driver for the device
12892  *	@dev: network device
12893  *
12894  *	Determine network driver for device.
12895  */
netdev_drivername(const struct net_device * dev)12896 const char *netdev_drivername(const struct net_device *dev)
12897 {
12898 	const struct device_driver *driver;
12899 	const struct device *parent;
12900 	const char *empty = "";
12901 
12902 	parent = dev->dev.parent;
12903 	if (!parent)
12904 		return empty;
12905 
12906 	driver = parent->driver;
12907 	if (driver && driver->name)
12908 		return driver->name;
12909 	return empty;
12910 }
12911 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12912 static void __netdev_printk(const char *level, const struct net_device *dev,
12913 			    struct va_format *vaf)
12914 {
12915 	if (dev && dev->dev.parent) {
12916 		dev_printk_emit(level[1] - '0',
12917 				dev->dev.parent,
12918 				"%s %s %s%s: %pV",
12919 				dev_driver_string(dev->dev.parent),
12920 				dev_name(dev->dev.parent),
12921 				netdev_name(dev), netdev_reg_state(dev),
12922 				vaf);
12923 	} else if (dev) {
12924 		printk("%s%s%s: %pV",
12925 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12926 	} else {
12927 		printk("%s(NULL net_device): %pV", level, vaf);
12928 	}
12929 }
12930 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12931 void netdev_printk(const char *level, const struct net_device *dev,
12932 		   const char *format, ...)
12933 {
12934 	struct va_format vaf;
12935 	va_list args;
12936 
12937 	va_start(args, format);
12938 
12939 	vaf.fmt = format;
12940 	vaf.va = &args;
12941 
12942 	__netdev_printk(level, dev, &vaf);
12943 
12944 	va_end(args);
12945 }
12946 EXPORT_SYMBOL(netdev_printk);
12947 
12948 #define define_netdev_printk_level(func, level)			\
12949 void func(const struct net_device *dev, const char *fmt, ...)	\
12950 {								\
12951 	struct va_format vaf;					\
12952 	va_list args;						\
12953 								\
12954 	va_start(args, fmt);					\
12955 								\
12956 	vaf.fmt = fmt;						\
12957 	vaf.va = &args;						\
12958 								\
12959 	__netdev_printk(level, dev, &vaf);			\
12960 								\
12961 	va_end(args);						\
12962 }								\
12963 EXPORT_SYMBOL(func);
12964 
12965 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12966 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12967 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12968 define_netdev_printk_level(netdev_err, KERN_ERR);
12969 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12970 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12971 define_netdev_printk_level(netdev_info, KERN_INFO);
12972 
netdev_exit(struct net * net)12973 static void __net_exit netdev_exit(struct net *net)
12974 {
12975 	kfree(net->dev_name_head);
12976 	kfree(net->dev_index_head);
12977 	xa_destroy(&net->dev_by_index);
12978 	if (net != &init_net)
12979 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12980 }
12981 
12982 static struct pernet_operations __net_initdata netdev_net_ops = {
12983 	.init = netdev_init,
12984 	.exit = netdev_exit,
12985 };
12986 
default_device_exit_net(struct net * net)12987 static void __net_exit default_device_exit_net(struct net *net)
12988 {
12989 	struct netdev_name_node *name_node, *tmp;
12990 	struct net_device *dev, *aux;
12991 	/*
12992 	 * Push all migratable network devices back to the
12993 	 * initial network namespace
12994 	 */
12995 	ASSERT_RTNL();
12996 	for_each_netdev_safe(net, dev, aux) {
12997 		int err;
12998 		char fb_name[IFNAMSIZ];
12999 
13000 		/* Ignore unmoveable devices (i.e. loopback) */
13001 		if (dev->netns_immutable)
13002 			continue;
13003 
13004 		/* Leave virtual devices for the generic cleanup */
13005 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13006 			continue;
13007 
13008 		/* Push remaining network devices to init_net */
13009 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13010 		if (netdev_name_in_use(&init_net, fb_name))
13011 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
13012 
13013 		netdev_for_each_altname_safe(dev, name_node, tmp)
13014 			if (netdev_name_in_use(&init_net, name_node->name))
13015 				__netdev_name_node_alt_destroy(name_node);
13016 
13017 		err = dev_change_net_namespace(dev, &init_net, fb_name);
13018 		if (err) {
13019 			pr_emerg("%s: failed to move %s to init_net: %d\n",
13020 				 __func__, dev->name, err);
13021 			BUG();
13022 		}
13023 	}
13024 }
13025 
default_device_exit_batch(struct list_head * net_list)13026 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13027 {
13028 	/* At exit all network devices most be removed from a network
13029 	 * namespace.  Do this in the reverse order of registration.
13030 	 * Do this across as many network namespaces as possible to
13031 	 * improve batching efficiency.
13032 	 */
13033 	struct net_device *dev;
13034 	struct net *net;
13035 	LIST_HEAD(dev_kill_list);
13036 
13037 	rtnl_lock();
13038 	list_for_each_entry(net, net_list, exit_list) {
13039 		default_device_exit_net(net);
13040 		cond_resched();
13041 	}
13042 
13043 	list_for_each_entry(net, net_list, exit_list) {
13044 		for_each_netdev_reverse(net, dev) {
13045 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13046 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13047 			else
13048 				unregister_netdevice_queue(dev, &dev_kill_list);
13049 		}
13050 	}
13051 	unregister_netdevice_many(&dev_kill_list);
13052 	rtnl_unlock();
13053 }
13054 
13055 static struct pernet_operations __net_initdata default_device_ops = {
13056 	.exit_batch = default_device_exit_batch,
13057 };
13058 
net_dev_struct_check(void)13059 static void __init net_dev_struct_check(void)
13060 {
13061 	/* TX read-mostly hotpath */
13062 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13063 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13064 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13065 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13066 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13067 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13068 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13070 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13071 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13072 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13073 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13075 #ifdef CONFIG_XPS
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13077 #endif
13078 #ifdef CONFIG_NETFILTER_EGRESS
13079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13080 #endif
13081 #ifdef CONFIG_NET_XGRESS
13082 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13083 #endif
13084 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13085 
13086 	/* TXRX read-mostly hotpath */
13087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13090 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13091 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13092 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13093 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13094 
13095 	/* RX read-mostly hotpath */
13096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13097 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13099 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13100 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13101 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13102 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13104 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13105 #ifdef CONFIG_NETPOLL
13106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13107 #endif
13108 #ifdef CONFIG_NET_XGRESS
13109 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13110 #endif
13111 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13112 }
13113 
13114 /*
13115  *	Initialize the DEV module. At boot time this walks the device list and
13116  *	unhooks any devices that fail to initialise (normally hardware not
13117  *	present) and leaves us with a valid list of present and active devices.
13118  *
13119  */
13120 
13121 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13122 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13123 
net_page_pool_create(int cpuid)13124 static int net_page_pool_create(int cpuid)
13125 {
13126 #if IS_ENABLED(CONFIG_PAGE_POOL)
13127 	struct page_pool_params page_pool_params = {
13128 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13129 		.flags = PP_FLAG_SYSTEM_POOL,
13130 		.nid = cpu_to_mem(cpuid),
13131 	};
13132 	struct page_pool *pp_ptr;
13133 	int err;
13134 
13135 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13136 	if (IS_ERR(pp_ptr))
13137 		return -ENOMEM;
13138 
13139 	err = xdp_reg_page_pool(pp_ptr);
13140 	if (err) {
13141 		page_pool_destroy(pp_ptr);
13142 		return err;
13143 	}
13144 
13145 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13146 #endif
13147 	return 0;
13148 }
13149 
backlog_napi_should_run(unsigned int cpu)13150 static int backlog_napi_should_run(unsigned int cpu)
13151 {
13152 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13153 	struct napi_struct *napi = &sd->backlog;
13154 
13155 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13156 }
13157 
run_backlog_napi(unsigned int cpu)13158 static void run_backlog_napi(unsigned int cpu)
13159 {
13160 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13161 
13162 	napi_threaded_poll_loop(&sd->backlog, false);
13163 }
13164 
backlog_napi_setup(unsigned int cpu)13165 static void backlog_napi_setup(unsigned int cpu)
13166 {
13167 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13168 	struct napi_struct *napi = &sd->backlog;
13169 
13170 	napi->thread = this_cpu_read(backlog_napi);
13171 	set_bit(NAPI_STATE_THREADED, &napi->state);
13172 }
13173 
13174 static struct smp_hotplug_thread backlog_threads = {
13175 	.store			= &backlog_napi,
13176 	.thread_should_run	= backlog_napi_should_run,
13177 	.thread_fn		= run_backlog_napi,
13178 	.thread_comm		= "backlog_napi/%u",
13179 	.setup			= backlog_napi_setup,
13180 };
13181 
13182 /*
13183  *       This is called single threaded during boot, so no need
13184  *       to take the rtnl semaphore.
13185  */
net_dev_init(void)13186 static int __init net_dev_init(void)
13187 {
13188 	int i, rc = -ENOMEM;
13189 
13190 	BUG_ON(!dev_boot_phase);
13191 
13192 	net_dev_struct_check();
13193 
13194 	if (dev_proc_init())
13195 		goto out;
13196 
13197 	if (netdev_kobject_init())
13198 		goto out;
13199 
13200 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13201 		INIT_LIST_HEAD(&ptype_base[i]);
13202 
13203 	if (register_pernet_subsys(&netdev_net_ops))
13204 		goto out;
13205 
13206 	/*
13207 	 *	Initialise the packet receive queues.
13208 	 */
13209 
13210 	flush_backlogs_fallback = flush_backlogs_alloc();
13211 	if (!flush_backlogs_fallback)
13212 		goto out;
13213 
13214 	for_each_possible_cpu(i) {
13215 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13216 
13217 		skb_queue_head_init(&sd->input_pkt_queue);
13218 		skb_queue_head_init(&sd->process_queue);
13219 #ifdef CONFIG_XFRM_OFFLOAD
13220 		skb_queue_head_init(&sd->xfrm_backlog);
13221 #endif
13222 		INIT_LIST_HEAD(&sd->poll_list);
13223 		sd->output_queue_tailp = &sd->output_queue;
13224 #ifdef CONFIG_RPS
13225 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13226 		sd->cpu = i;
13227 #endif
13228 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13229 
13230 		gro_init(&sd->backlog.gro);
13231 		sd->backlog.poll = process_backlog;
13232 		sd->backlog.weight = weight_p;
13233 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13234 
13235 		if (net_page_pool_create(i))
13236 			goto out;
13237 	}
13238 	net_hotdata.skb_defer_nodes =
13239 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13240 				__alignof__(struct skb_defer_node));
13241 	if (!net_hotdata.skb_defer_nodes)
13242 		goto out;
13243 	if (use_backlog_threads())
13244 		smpboot_register_percpu_thread(&backlog_threads);
13245 
13246 	dev_boot_phase = 0;
13247 
13248 	/* The loopback device is special if any other network devices
13249 	 * is present in a network namespace the loopback device must
13250 	 * be present. Since we now dynamically allocate and free the
13251 	 * loopback device ensure this invariant is maintained by
13252 	 * keeping the loopback device as the first device on the
13253 	 * list of network devices.  Ensuring the loopback devices
13254 	 * is the first device that appears and the last network device
13255 	 * that disappears.
13256 	 */
13257 	if (register_pernet_device(&loopback_net_ops))
13258 		goto out;
13259 
13260 	if (register_pernet_device(&default_device_ops))
13261 		goto out;
13262 
13263 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13264 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13265 
13266 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13267 				       NULL, dev_cpu_dead);
13268 	WARN_ON(rc < 0);
13269 	rc = 0;
13270 
13271 	/* avoid static key IPIs to isolated CPUs */
13272 	if (housekeeping_enabled(HK_TYPE_MISC))
13273 		net_enable_timestamp();
13274 out:
13275 	if (rc < 0) {
13276 		for_each_possible_cpu(i) {
13277 			struct page_pool *pp_ptr;
13278 
13279 			pp_ptr = per_cpu(system_page_pool.pool, i);
13280 			if (!pp_ptr)
13281 				continue;
13282 
13283 			xdp_unreg_page_pool(pp_ptr);
13284 			page_pool_destroy(pp_ptr);
13285 			per_cpu(system_page_pool.pool, i) = NULL;
13286 		}
13287 	}
13288 
13289 	return rc;
13290 }
13291 
13292 subsys_initcall(net_dev_init);
13293