xref: /linux/arch/x86/kernel/cpu/common.c (revision 56d5e32929ee8e772922242f37cc234c437c89c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 #include <linux/efi.h>
30 
31 #include <asm/alternative.h>
32 #include <asm/cmdline.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/perf_event.h>
35 #include <asm/mmu_context.h>
36 #include <asm/doublefault.h>
37 #include <asm/archrandom.h>
38 #include <asm/hypervisor.h>
39 #include <asm/processor.h>
40 #include <asm/tlbflush.h>
41 #include <asm/debugreg.h>
42 #include <asm/sections.h>
43 #include <asm/vsyscall.h>
44 #include <linux/topology.h>
45 #include <linux/cpumask.h>
46 #include <linux/atomic.h>
47 #include <asm/proto.h>
48 #include <asm/setup.h>
49 #include <asm/apic.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/hwcap2.h>
54 #include <linux/numa.h>
55 #include <asm/numa.h>
56 #include <asm/asm.h>
57 #include <asm/bugs.h>
58 #include <asm/cpu.h>
59 #include <asm/mce.h>
60 #include <asm/msr.h>
61 #include <asm/cacheinfo.h>
62 #include <asm/memtype.h>
63 #include <asm/microcode.h>
64 #include <asm/intel-family.h>
65 #include <asm/cpu_device_id.h>
66 #include <asm/fred.h>
67 #include <asm/uv/uv.h>
68 #include <asm/ia32.h>
69 #include <asm/set_memory.h>
70 #include <asm/traps.h>
71 #include <asm/sev.h>
72 #include <asm/tdx.h>
73 #include <asm/posted_intr.h>
74 #include <asm/runtime-const.h>
75 
76 #include "cpu.h"
77 
78 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
79 EXPORT_PER_CPU_SYMBOL(cpu_info);
80 
81 u32 elf_hwcap2 __read_mostly;
82 
83 /* Number of siblings per CPU package */
84 unsigned int __max_threads_per_core __ro_after_init = 1;
85 EXPORT_SYMBOL(__max_threads_per_core);
86 
87 unsigned int __max_dies_per_package __ro_after_init = 1;
88 EXPORT_SYMBOL(__max_dies_per_package);
89 
90 unsigned int __max_logical_packages __ro_after_init = 1;
91 EXPORT_SYMBOL(__max_logical_packages);
92 
93 unsigned int __num_cores_per_package __ro_after_init = 1;
94 EXPORT_SYMBOL(__num_cores_per_package);
95 
96 unsigned int __num_threads_per_package __ro_after_init = 1;
97 EXPORT_SYMBOL(__num_threads_per_package);
98 
99 static struct ppin_info {
100 	int	feature;
101 	int	msr_ppin_ctl;
102 	int	msr_ppin;
103 } ppin_info[] = {
104 	[X86_VENDOR_INTEL] = {
105 		.feature = X86_FEATURE_INTEL_PPIN,
106 		.msr_ppin_ctl = MSR_PPIN_CTL,
107 		.msr_ppin = MSR_PPIN
108 	},
109 	[X86_VENDOR_AMD] = {
110 		.feature = X86_FEATURE_AMD_PPIN,
111 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
112 		.msr_ppin = MSR_AMD_PPIN
113 	},
114 };
115 
116 static const struct x86_cpu_id ppin_cpuids[] = {
117 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
118 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
119 
120 	/* Legacy models without CPUID enumeration */
121 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
124 	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
125 	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
126 	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
127 	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
128 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
129 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
130 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
131 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
132 
133 	{}
134 };
135 
ppin_init(struct cpuinfo_x86 * c)136 static void ppin_init(struct cpuinfo_x86 *c)
137 {
138 	const struct x86_cpu_id *id;
139 	unsigned long long val;
140 	struct ppin_info *info;
141 
142 	id = x86_match_cpu(ppin_cpuids);
143 	if (!id)
144 		return;
145 
146 	/*
147 	 * Testing the presence of the MSR is not enough. Need to check
148 	 * that the PPIN_CTL allows reading of the PPIN.
149 	 */
150 	info = (struct ppin_info *)id->driver_data;
151 
152 	if (rdmsrq_safe(info->msr_ppin_ctl, &val))
153 		goto clear_ppin;
154 
155 	if ((val & 3UL) == 1UL) {
156 		/* PPIN locked in disabled mode */
157 		goto clear_ppin;
158 	}
159 
160 	/* If PPIN is disabled, try to enable */
161 	if (!(val & 2UL)) {
162 		wrmsrq_safe(info->msr_ppin_ctl,  val | 2UL);
163 		rdmsrq_safe(info->msr_ppin_ctl, &val);
164 	}
165 
166 	/* Is the enable bit set? */
167 	if (val & 2UL) {
168 		c->ppin = native_rdmsrq(info->msr_ppin);
169 		set_cpu_cap(c, info->feature);
170 		return;
171 	}
172 
173 clear_ppin:
174 	setup_clear_cpu_cap(info->feature);
175 }
176 
default_init(struct cpuinfo_x86 * c)177 static void default_init(struct cpuinfo_x86 *c)
178 {
179 #ifdef CONFIG_X86_64
180 	cpu_detect_cache_sizes(c);
181 #else
182 	/* Not much we can do here... */
183 	/* Check if at least it has cpuid */
184 	if (c->cpuid_level == -1) {
185 		/* No cpuid. It must be an ancient CPU */
186 		if (c->x86 == 4)
187 			strcpy(c->x86_model_id, "486");
188 		else if (c->x86 == 3)
189 			strcpy(c->x86_model_id, "386");
190 	}
191 #endif
192 }
193 
194 static const struct cpu_dev default_cpu = {
195 	.c_init		= default_init,
196 	.c_vendor	= "Unknown",
197 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
198 };
199 
200 static const struct cpu_dev *this_cpu = &default_cpu;
201 
202 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
203 #ifdef CONFIG_X86_64
204 	/*
205 	 * We need valid kernel segments for data and code in long mode too
206 	 * IRET will check the segment types  kkeil 2000/10/28
207 	 * Also sysret mandates a special GDT layout
208 	 *
209 	 * TLS descriptors are currently at a different place compared to i386.
210 	 * Hopefully nobody expects them at a fixed place (Wine?)
211 	 */
212 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
213 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
214 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
215 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
216 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
217 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
218 #else
219 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
220 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
221 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
222 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
223 	/*
224 	 * Segments used for calling PnP BIOS have byte granularity.
225 	 * They code segments and data segments have fixed 64k limits,
226 	 * the transfer segment sizes are set at run time.
227 	 */
228 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
229 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
230 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
231 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
232 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
233 	/*
234 	 * The APM segments have byte granularity and their bases
235 	 * are set at run time.  All have 64k limits.
236 	 */
237 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
238 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
239 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
240 
241 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
242 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
243 #endif
244 } };
245 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
246 SYM_PIC_ALIAS(gdt_page);
247 
248 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)249 static int __init x86_nopcid_setup(char *s)
250 {
251 	/* nopcid doesn't accept parameters */
252 	if (s)
253 		return -EINVAL;
254 
255 	/* do not emit a message if the feature is not present */
256 	if (!boot_cpu_has(X86_FEATURE_PCID))
257 		return 0;
258 
259 	setup_clear_cpu_cap(X86_FEATURE_PCID);
260 	pr_info("nopcid: PCID feature disabled\n");
261 	return 0;
262 }
263 early_param("nopcid", x86_nopcid_setup);
264 #endif
265 
x86_noinvpcid_setup(char * s)266 static int __init x86_noinvpcid_setup(char *s)
267 {
268 	/* noinvpcid doesn't accept parameters */
269 	if (s)
270 		return -EINVAL;
271 
272 	/* do not emit a message if the feature is not present */
273 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
274 		return 0;
275 
276 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
277 	pr_info("noinvpcid: INVPCID feature disabled\n");
278 	return 0;
279 }
280 early_param("noinvpcid", x86_noinvpcid_setup);
281 
282 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)283 static inline bool flag_is_changeable_p(unsigned long flag)
284 {
285 	unsigned long f1, f2;
286 
287 	if (!IS_ENABLED(CONFIG_X86_32))
288 		return true;
289 
290 	/*
291 	 * Cyrix and IDT cpus allow disabling of CPUID
292 	 * so the code below may return different results
293 	 * when it is executed before and after enabling
294 	 * the CPUID. Add "volatile" to not allow gcc to
295 	 * optimize the subsequent calls to this function.
296 	 */
297 	asm volatile ("pushfl		\n\t"
298 		      "pushfl		\n\t"
299 		      "popl %0		\n\t"
300 		      "movl %0, %1	\n\t"
301 		      "xorl %2, %0	\n\t"
302 		      "pushl %0		\n\t"
303 		      "popfl		\n\t"
304 		      "pushfl		\n\t"
305 		      "popl %0		\n\t"
306 		      "popfl		\n\t"
307 
308 		      : "=&r" (f1), "=&r" (f2)
309 		      : "ir" (flag));
310 
311 	return (f1 ^ f2) & flag;
312 }
313 
314 #ifdef CONFIG_X86_32
315 static int cachesize_override = -1;
316 static int disable_x86_serial_nr = 1;
317 
cachesize_setup(char * str)318 static int __init cachesize_setup(char *str)
319 {
320 	get_option(&str, &cachesize_override);
321 	return 1;
322 }
323 __setup("cachesize=", cachesize_setup);
324 
325 /* Probe for the CPUID instruction */
cpuid_feature(void)326 bool cpuid_feature(void)
327 {
328 	return flag_is_changeable_p(X86_EFLAGS_ID);
329 }
330 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)331 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
332 {
333 	unsigned long lo, hi;
334 
335 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
336 		return;
337 
338 	/* Disable processor serial number: */
339 
340 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
341 	lo |= 0x200000;
342 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
343 
344 	pr_notice("CPU serial number disabled.\n");
345 	clear_cpu_cap(c, X86_FEATURE_PN);
346 
347 	/* Disabling the serial number may affect the cpuid level */
348 	c->cpuid_level = cpuid_eax(0);
349 }
350 
x86_serial_nr_setup(char * s)351 static int __init x86_serial_nr_setup(char *s)
352 {
353 	disable_x86_serial_nr = 0;
354 	return 1;
355 }
356 __setup("serialnumber", x86_serial_nr_setup);
357 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)358 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
359 {
360 }
361 #endif
362 
setup_smep(struct cpuinfo_x86 * c)363 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
364 {
365 	if (cpu_has(c, X86_FEATURE_SMEP))
366 		cr4_set_bits(X86_CR4_SMEP);
367 }
368 
setup_smap(struct cpuinfo_x86 * c)369 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
370 {
371 	unsigned long eflags = native_save_fl();
372 
373 	/* This should have been cleared long ago */
374 	BUG_ON(eflags & X86_EFLAGS_AC);
375 
376 	if (cpu_has(c, X86_FEATURE_SMAP))
377 		cr4_set_bits(X86_CR4_SMAP);
378 }
379 
setup_umip(struct cpuinfo_x86 * c)380 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
381 {
382 	/* Check the boot processor, plus build option for UMIP. */
383 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
384 		goto out;
385 
386 	/* Check the current processor's cpuid bits. */
387 	if (!cpu_has(c, X86_FEATURE_UMIP))
388 		goto out;
389 
390 	cr4_set_bits(X86_CR4_UMIP);
391 
392 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
393 
394 	return;
395 
396 out:
397 	/*
398 	 * Make sure UMIP is disabled in case it was enabled in a
399 	 * previous boot (e.g., via kexec).
400 	 */
401 	cr4_clear_bits(X86_CR4_UMIP);
402 }
403 
404 /* These bits should not change their value after CPU init is finished. */
405 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
406 					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
407 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
408 static unsigned long cr4_pinned_bits __ro_after_init;
409 
native_write_cr0(unsigned long val)410 void native_write_cr0(unsigned long val)
411 {
412 	unsigned long bits_missing = 0;
413 
414 set_register:
415 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
416 
417 	if (static_branch_likely(&cr_pinning)) {
418 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
419 			bits_missing = X86_CR0_WP;
420 			val |= bits_missing;
421 			goto set_register;
422 		}
423 		/* Warn after we've set the missing bits. */
424 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
425 	}
426 }
427 EXPORT_SYMBOL(native_write_cr0);
428 
native_write_cr4(unsigned long val)429 void __no_profile native_write_cr4(unsigned long val)
430 {
431 	unsigned long bits_changed = 0;
432 
433 set_register:
434 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
435 
436 	if (static_branch_likely(&cr_pinning)) {
437 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
438 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
439 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
440 			goto set_register;
441 		}
442 		/* Warn after we've corrected the changed bits. */
443 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
444 			  bits_changed);
445 	}
446 }
447 #if IS_MODULE(CONFIG_LKDTM)
448 EXPORT_SYMBOL_GPL(native_write_cr4);
449 #endif
450 
cr4_update_irqsoff(unsigned long set,unsigned long clear)451 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
452 {
453 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
454 
455 	lockdep_assert_irqs_disabled();
456 
457 	newval = (cr4 & ~clear) | set;
458 	if (newval != cr4) {
459 		this_cpu_write(cpu_tlbstate.cr4, newval);
460 		__write_cr4(newval);
461 	}
462 }
463 EXPORT_SYMBOL(cr4_update_irqsoff);
464 
465 /* Read the CR4 shadow. */
cr4_read_shadow(void)466 unsigned long cr4_read_shadow(void)
467 {
468 	return this_cpu_read(cpu_tlbstate.cr4);
469 }
470 EXPORT_SYMBOL_GPL(cr4_read_shadow);
471 
cr4_init(void)472 void cr4_init(void)
473 {
474 	unsigned long cr4 = __read_cr4();
475 
476 	if (boot_cpu_has(X86_FEATURE_PCID))
477 		cr4 |= X86_CR4_PCIDE;
478 	if (static_branch_likely(&cr_pinning))
479 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
480 
481 	__write_cr4(cr4);
482 
483 	/* Initialize cr4 shadow for this CPU. */
484 	this_cpu_write(cpu_tlbstate.cr4, cr4);
485 }
486 
487 /*
488  * Once CPU feature detection is finished (and boot params have been
489  * parsed), record any of the sensitive CR bits that are set, and
490  * enable CR pinning.
491  */
setup_cr_pinning(void)492 static void __init setup_cr_pinning(void)
493 {
494 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
495 	static_key_enable(&cr_pinning.key);
496 }
497 
x86_nofsgsbase_setup(char * arg)498 static __init int x86_nofsgsbase_setup(char *arg)
499 {
500 	/* Require an exact match without trailing characters. */
501 	if (strlen(arg))
502 		return 0;
503 
504 	/* Do not emit a message if the feature is not present. */
505 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
506 		return 1;
507 
508 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
509 	pr_info("FSGSBASE disabled via kernel command line\n");
510 	return 1;
511 }
512 __setup("nofsgsbase", x86_nofsgsbase_setup);
513 
514 /*
515  * Protection Keys are not available in 32-bit mode.
516  */
517 static bool pku_disabled;
518 
setup_pku(struct cpuinfo_x86 * c)519 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
520 {
521 	if (c == &boot_cpu_data) {
522 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
523 			return;
524 		/*
525 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
526 		 * bit to be set.  Enforce it.
527 		 */
528 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
529 
530 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
531 		return;
532 	}
533 
534 	cr4_set_bits(X86_CR4_PKE);
535 	/* Load the default PKRU value */
536 	pkru_write_default();
537 }
538 
539 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)540 static __init int setup_disable_pku(char *arg)
541 {
542 	/*
543 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
544 	 * runtime checks are against OSPKE so clearing the
545 	 * bit does nothing.
546 	 *
547 	 * This way, we will see "pku" in cpuinfo, but not
548 	 * "ospke", which is exactly what we want.  It shows
549 	 * that the CPU has PKU, but the OS has not enabled it.
550 	 * This happens to be exactly how a system would look
551 	 * if we disabled the config option.
552 	 */
553 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
554 	pku_disabled = true;
555 	return 1;
556 }
557 __setup("nopku", setup_disable_pku);
558 #endif
559 
560 #ifdef CONFIG_X86_KERNEL_IBT
561 
ibt_save(bool disable)562 __noendbr u64 ibt_save(bool disable)
563 {
564 	u64 msr = 0;
565 
566 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
567 		rdmsrq(MSR_IA32_S_CET, msr);
568 		if (disable)
569 			wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
570 	}
571 
572 	return msr;
573 }
574 
ibt_restore(u64 save)575 __noendbr void ibt_restore(u64 save)
576 {
577 	u64 msr;
578 
579 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
580 		rdmsrq(MSR_IA32_S_CET, msr);
581 		msr &= ~CET_ENDBR_EN;
582 		msr |= (save & CET_ENDBR_EN);
583 		wrmsrq(MSR_IA32_S_CET, msr);
584 	}
585 }
586 
587 #endif
588 
setup_cet(struct cpuinfo_x86 * c)589 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
590 {
591 	bool user_shstk, kernel_ibt;
592 
593 	if (!IS_ENABLED(CONFIG_X86_CET))
594 		return;
595 
596 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
597 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
598 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
599 
600 	if (!kernel_ibt && !user_shstk)
601 		return;
602 
603 	if (user_shstk)
604 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
605 
606 	if (kernel_ibt)
607 		wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
608 	else
609 		wrmsrq(MSR_IA32_S_CET, 0);
610 
611 	cr4_set_bits(X86_CR4_CET);
612 
613 	if (kernel_ibt && ibt_selftest()) {
614 		pr_err("IBT selftest: Failed!\n");
615 		wrmsrq(MSR_IA32_S_CET, 0);
616 		setup_clear_cpu_cap(X86_FEATURE_IBT);
617 	}
618 }
619 
cet_disable(void)620 __noendbr void cet_disable(void)
621 {
622 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
623 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
624 		return;
625 
626 	wrmsrq(MSR_IA32_S_CET, 0);
627 	wrmsrq(MSR_IA32_U_CET, 0);
628 }
629 
630 /*
631  * Some CPU features depend on higher CPUID levels, which may not always
632  * be available due to CPUID level capping or broken virtualization
633  * software.  Add those features to this table to auto-disable them.
634  */
635 struct cpuid_dependent_feature {
636 	u32 feature;
637 	u32 level;
638 };
639 
640 static const struct cpuid_dependent_feature
641 cpuid_dependent_features[] = {
642 	{ X86_FEATURE_MWAIT,		CPUID_LEAF_MWAIT },
643 	{ X86_FEATURE_DCA,		CPUID_LEAF_DCA },
644 	{ X86_FEATURE_XSAVE,		CPUID_LEAF_XSTATE },
645 	{ 0, 0 }
646 };
647 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)648 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
649 {
650 	const struct cpuid_dependent_feature *df;
651 
652 	for (df = cpuid_dependent_features; df->feature; df++) {
653 
654 		if (!cpu_has(c, df->feature))
655 			continue;
656 		/*
657 		 * Note: cpuid_level is set to -1 if unavailable, but
658 		 * extended_extended_level is set to 0 if unavailable
659 		 * and the legitimate extended levels are all negative
660 		 * when signed; hence the weird messing around with
661 		 * signs here...
662 		 */
663 		if (!((s32)df->level < 0 ?
664 		     (u32)df->level > (u32)c->extended_cpuid_level :
665 		     (s32)df->level > (s32)c->cpuid_level))
666 			continue;
667 
668 		clear_cpu_cap(c, df->feature);
669 		if (!warn)
670 			continue;
671 
672 		pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
673 			x86_cap_flags[df->feature], df->level);
674 	}
675 }
676 
677 /*
678  * Naming convention should be: <Name> [(<Codename>)]
679  * This table only is used unless init_<vendor>() below doesn't set it;
680  * in particular, if CPUID levels 0x80000002..4 are supported, this
681  * isn't used
682  */
683 
684 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)685 static const char *table_lookup_model(struct cpuinfo_x86 *c)
686 {
687 #ifdef CONFIG_X86_32
688 	const struct legacy_cpu_model_info *info;
689 
690 	if (c->x86_model >= 16)
691 		return NULL;	/* Range check */
692 
693 	if (!this_cpu)
694 		return NULL;
695 
696 	info = this_cpu->legacy_models;
697 
698 	while (info->family) {
699 		if (info->family == c->x86)
700 			return info->model_names[c->x86_model];
701 		info++;
702 	}
703 #endif
704 	return NULL;		/* Not found */
705 }
706 
707 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
708 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
710 
711 #ifdef CONFIG_X86_32
712 /* The 32-bit entry code needs to find cpu_entry_area. */
713 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
714 #endif
715 
716 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)717 void load_direct_gdt(int cpu)
718 {
719 	struct desc_ptr gdt_descr;
720 
721 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
722 	gdt_descr.size = GDT_SIZE - 1;
723 	load_gdt(&gdt_descr);
724 }
725 EXPORT_SYMBOL_GPL(load_direct_gdt);
726 
727 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)728 void load_fixmap_gdt(int cpu)
729 {
730 	struct desc_ptr gdt_descr;
731 
732 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
733 	gdt_descr.size = GDT_SIZE - 1;
734 	load_gdt(&gdt_descr);
735 }
736 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
737 
738 /**
739  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
740  * @cpu:	The CPU number for which this is invoked
741  *
742  * Invoked during early boot to switch from early GDT and early per CPU to
743  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
744  * switch is implicit by loading the direct GDT. On 64bit this requires
745  * to update GSBASE.
746  */
switch_gdt_and_percpu_base(int cpu)747 void __init switch_gdt_and_percpu_base(int cpu)
748 {
749 	load_direct_gdt(cpu);
750 
751 #ifdef CONFIG_X86_64
752 	/*
753 	 * No need to load %gs. It is already correct.
754 	 *
755 	 * Writing %gs on 64bit would zero GSBASE which would make any per
756 	 * CPU operation up to the point of the wrmsrq() fault.
757 	 *
758 	 * Set GSBASE to the new offset. Until the wrmsrq() happens the
759 	 * early mapping is still valid. That means the GSBASE update will
760 	 * lose any prior per CPU data which was not copied over in
761 	 * setup_per_cpu_areas().
762 	 *
763 	 * This works even with stackprotector enabled because the
764 	 * per CPU stack canary is 0 in both per CPU areas.
765 	 */
766 	wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
767 #else
768 	/*
769 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
770 	 * it is required to load FS again so that the 'hidden' part is
771 	 * updated from the new GDT. Up to this point the early per CPU
772 	 * translation is active. Any content of the early per CPU data
773 	 * which was not copied over in setup_per_cpu_areas() is lost.
774 	 */
775 	loadsegment(fs, __KERNEL_PERCPU);
776 #endif
777 }
778 
779 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
780 
get_model_name(struct cpuinfo_x86 * c)781 static void get_model_name(struct cpuinfo_x86 *c)
782 {
783 	unsigned int *v;
784 	char *p, *q, *s;
785 
786 	if (c->extended_cpuid_level < 0x80000004)
787 		return;
788 
789 	v = (unsigned int *)c->x86_model_id;
790 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
791 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
792 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
793 	c->x86_model_id[48] = 0;
794 
795 	/* Trim whitespace */
796 	p = q = s = &c->x86_model_id[0];
797 
798 	while (*p == ' ')
799 		p++;
800 
801 	while (*p) {
802 		/* Note the last non-whitespace index */
803 		if (!isspace(*p))
804 			s = q;
805 
806 		*q++ = *p++;
807 	}
808 
809 	*(s + 1) = '\0';
810 }
811 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)812 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
813 {
814 	unsigned int n, dummy, ebx, ecx, edx, l2size;
815 
816 	n = c->extended_cpuid_level;
817 
818 	if (n >= 0x80000005) {
819 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
820 		c->x86_cache_size = (ecx>>24) + (edx>>24);
821 #ifdef CONFIG_X86_64
822 		/* On K8 L1 TLB is inclusive, so don't count it */
823 		c->x86_tlbsize = 0;
824 #endif
825 	}
826 
827 	if (n < 0x80000006)	/* Some chips just has a large L1. */
828 		return;
829 
830 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
831 	l2size = ecx >> 16;
832 
833 #ifdef CONFIG_X86_64
834 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
835 #else
836 	/* do processor-specific cache resizing */
837 	if (this_cpu->legacy_cache_size)
838 		l2size = this_cpu->legacy_cache_size(c, l2size);
839 
840 	/* Allow user to override all this if necessary. */
841 	if (cachesize_override != -1)
842 		l2size = cachesize_override;
843 
844 	if (l2size == 0)
845 		return;		/* Again, no L2 cache is possible */
846 #endif
847 
848 	c->x86_cache_size = l2size;
849 }
850 
851 u16 __read_mostly tlb_lli_4k;
852 u16 __read_mostly tlb_lli_2m;
853 u16 __read_mostly tlb_lli_4m;
854 u16 __read_mostly tlb_lld_4k;
855 u16 __read_mostly tlb_lld_2m;
856 u16 __read_mostly tlb_lld_4m;
857 u16 __read_mostly tlb_lld_1g;
858 
cpu_detect_tlb(struct cpuinfo_x86 * c)859 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
860 {
861 	if (this_cpu->c_detect_tlb)
862 		this_cpu->c_detect_tlb(c);
863 
864 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
865 		tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
866 
867 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
868 		tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
869 }
870 
get_cpu_vendor(struct cpuinfo_x86 * c)871 void get_cpu_vendor(struct cpuinfo_x86 *c)
872 {
873 	char *v = c->x86_vendor_id;
874 	int i;
875 
876 	for (i = 0; i < X86_VENDOR_NUM; i++) {
877 		if (!cpu_devs[i])
878 			break;
879 
880 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
881 		    (cpu_devs[i]->c_ident[1] &&
882 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
883 
884 			this_cpu = cpu_devs[i];
885 			c->x86_vendor = this_cpu->c_x86_vendor;
886 			return;
887 		}
888 	}
889 
890 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
891 		    "CPU: Your system may be unstable.\n", v);
892 
893 	c->x86_vendor = X86_VENDOR_UNKNOWN;
894 	this_cpu = &default_cpu;
895 }
896 
cpu_detect(struct cpuinfo_x86 * c)897 void cpu_detect(struct cpuinfo_x86 *c)
898 {
899 	/* Get vendor name */
900 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
901 	      (unsigned int *)&c->x86_vendor_id[0],
902 	      (unsigned int *)&c->x86_vendor_id[8],
903 	      (unsigned int *)&c->x86_vendor_id[4]);
904 
905 	c->x86 = 4;
906 	/* Intel-defined flags: level 0x00000001 */
907 	if (c->cpuid_level >= 0x00000001) {
908 		u32 junk, tfms, cap0, misc;
909 
910 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
911 		c->x86		= x86_family(tfms);
912 		c->x86_model	= x86_model(tfms);
913 		c->x86_stepping	= x86_stepping(tfms);
914 
915 		if (cap0 & (1<<19)) {
916 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
917 			c->x86_cache_alignment = c->x86_clflush_size;
918 		}
919 	}
920 }
921 
apply_forced_caps(struct cpuinfo_x86 * c)922 static void apply_forced_caps(struct cpuinfo_x86 *c)
923 {
924 	int i;
925 
926 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
927 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
928 		c->x86_capability[i] |= cpu_caps_set[i];
929 	}
930 }
931 
init_speculation_control(struct cpuinfo_x86 * c)932 static void init_speculation_control(struct cpuinfo_x86 *c)
933 {
934 	/*
935 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
936 	 * and they also have a different bit for STIBP support. Also,
937 	 * a hypervisor might have set the individual AMD bits even on
938 	 * Intel CPUs, for finer-grained selection of what's available.
939 	 */
940 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
941 		set_cpu_cap(c, X86_FEATURE_IBRS);
942 		set_cpu_cap(c, X86_FEATURE_IBPB);
943 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
944 	}
945 
946 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
947 		set_cpu_cap(c, X86_FEATURE_STIBP);
948 
949 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
950 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
951 		set_cpu_cap(c, X86_FEATURE_SSBD);
952 
953 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
954 		set_cpu_cap(c, X86_FEATURE_IBRS);
955 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
956 	}
957 
958 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
959 		set_cpu_cap(c, X86_FEATURE_IBPB);
960 
961 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
962 		set_cpu_cap(c, X86_FEATURE_STIBP);
963 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
964 	}
965 
966 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
967 		set_cpu_cap(c, X86_FEATURE_SSBD);
968 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
969 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
970 	}
971 }
972 
get_cpu_cap(struct cpuinfo_x86 * c)973 void get_cpu_cap(struct cpuinfo_x86 *c)
974 {
975 	u32 eax, ebx, ecx, edx;
976 
977 	/* Intel-defined flags: level 0x00000001 */
978 	if (c->cpuid_level >= 0x00000001) {
979 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
980 
981 		c->x86_capability[CPUID_1_ECX] = ecx;
982 		c->x86_capability[CPUID_1_EDX] = edx;
983 	}
984 
985 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
986 	if (c->cpuid_level >= 0x00000006)
987 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
988 
989 	/* Additional Intel-defined flags: level 0x00000007 */
990 	if (c->cpuid_level >= 0x00000007) {
991 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
992 		c->x86_capability[CPUID_7_0_EBX] = ebx;
993 		c->x86_capability[CPUID_7_ECX] = ecx;
994 		c->x86_capability[CPUID_7_EDX] = edx;
995 
996 		/* Check valid sub-leaf index before accessing it */
997 		if (eax >= 1) {
998 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
999 			c->x86_capability[CPUID_7_1_EAX] = eax;
1000 		}
1001 	}
1002 
1003 	/* Extended state features: level 0x0000000d */
1004 	if (c->cpuid_level >= 0x0000000d) {
1005 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1006 
1007 		c->x86_capability[CPUID_D_1_EAX] = eax;
1008 	}
1009 
1010 	/*
1011 	 * Check if extended CPUID leaves are implemented: Max extended
1012 	 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
1013 	 */
1014 	eax = cpuid_eax(0x80000000);
1015 	c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
1016 
1017 	if (c->extended_cpuid_level >= 0x80000001) {
1018 		cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1019 
1020 		c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1021 		c->x86_capability[CPUID_8000_0001_EDX] = edx;
1022 	}
1023 
1024 	if (c->extended_cpuid_level >= 0x80000007) {
1025 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1026 
1027 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1028 		c->x86_power = edx;
1029 	}
1030 
1031 	if (c->extended_cpuid_level >= 0x80000008) {
1032 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1033 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1034 	}
1035 
1036 	if (c->extended_cpuid_level >= 0x8000000a)
1037 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1038 
1039 	if (c->extended_cpuid_level >= 0x8000001f)
1040 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1041 
1042 	if (c->extended_cpuid_level >= 0x80000021)
1043 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1044 
1045 	init_scattered_cpuid_features(c);
1046 	init_speculation_control(c);
1047 
1048 	/*
1049 	 * Clear/Set all flags overridden by options, after probe.
1050 	 * This needs to happen each time we re-probe, which may happen
1051 	 * several times during CPU initialization.
1052 	 */
1053 	apply_forced_caps(c);
1054 }
1055 
get_cpu_address_sizes(struct cpuinfo_x86 * c)1056 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1057 {
1058 	u32 eax, ebx, ecx, edx;
1059 
1060 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1061 	    (c->extended_cpuid_level < 0x80000008)) {
1062 		if (IS_ENABLED(CONFIG_X86_64)) {
1063 			c->x86_clflush_size = 64;
1064 			c->x86_phys_bits = 36;
1065 			c->x86_virt_bits = 48;
1066 		} else {
1067 			c->x86_clflush_size = 32;
1068 			c->x86_virt_bits = 32;
1069 			c->x86_phys_bits = 32;
1070 
1071 			if (cpu_has(c, X86_FEATURE_PAE) ||
1072 			    cpu_has(c, X86_FEATURE_PSE36))
1073 				c->x86_phys_bits = 36;
1074 		}
1075 	} else {
1076 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1077 
1078 		c->x86_virt_bits = (eax >> 8) & 0xff;
1079 		c->x86_phys_bits = eax & 0xff;
1080 
1081 		/* Provide a sane default if not enumerated: */
1082 		if (!c->x86_clflush_size)
1083 			c->x86_clflush_size = 32;
1084 	}
1085 
1086 	c->x86_cache_bits = c->x86_phys_bits;
1087 	c->x86_cache_alignment = c->x86_clflush_size;
1088 }
1089 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1090 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1091 {
1092 	int i;
1093 
1094 	/*
1095 	 * First of all, decide if this is a 486 or higher
1096 	 * It's a 486 if we can modify the AC flag
1097 	 */
1098 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1099 		c->x86 = 4;
1100 	else
1101 		c->x86 = 3;
1102 
1103 	for (i = 0; i < X86_VENDOR_NUM; i++)
1104 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1105 			c->x86_vendor_id[0] = 0;
1106 			cpu_devs[i]->c_identify(c);
1107 			if (c->x86_vendor_id[0]) {
1108 				get_cpu_vendor(c);
1109 				break;
1110 			}
1111 		}
1112 }
1113 
1114 #define NO_SPECULATION		BIT(0)
1115 #define NO_MELTDOWN		BIT(1)
1116 #define NO_SSB			BIT(2)
1117 #define NO_L1TF			BIT(3)
1118 #define NO_MDS			BIT(4)
1119 #define MSBDS_ONLY		BIT(5)
1120 #define NO_SWAPGS		BIT(6)
1121 #define NO_ITLB_MULTIHIT	BIT(7)
1122 #define NO_SPECTRE_V2		BIT(8)
1123 #define NO_MMIO			BIT(9)
1124 #define NO_EIBRS_PBRSB		BIT(10)
1125 #define NO_BHI			BIT(11)
1126 
1127 #define VULNWL(vendor, family, model, whitelist)	\
1128 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1129 
1130 #define VULNWL_INTEL(vfm, whitelist)		\
1131 	X86_MATCH_VFM(vfm, whitelist)
1132 
1133 #define VULNWL_AMD(family, whitelist)		\
1134 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1135 
1136 #define VULNWL_HYGON(family, whitelist)		\
1137 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1138 
1139 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1140 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1141 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1142 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1143 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1144 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1145 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1146 
1147 	/* Intel Family 6 */
1148 	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
1149 	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
1150 	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
1151 	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
1152 
1153 	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1156 	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1157 	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1158 
1159 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163 	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164 	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165 
1166 	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
1167 
1168 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1169 	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1170 
1171 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1173 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1174 
1175 	/*
1176 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1177 	 * being documented as such in the APM).  But according to AMD, %gs is
1178 	 * updated non-speculatively, and the issuing of %gs-relative memory
1179 	 * operands will be blocked until the %gs update completes, which is
1180 	 * good enough for our purposes.
1181 	 */
1182 
1183 	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
1184 	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
1185 	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1186 
1187 	/* AMD Family 0xf - 0x12 */
1188 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1192 
1193 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1194 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1196 
1197 	/* Zhaoxin Family 7 */
1198 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1200 	{}
1201 };
1202 
1203 #define VULNBL(vendor, family, model, blacklist)	\
1204 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1205 
1206 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues)		   \
1207 	X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1208 
1209 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues)	\
1210 	X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1211 
1212 #define VULNBL_AMD(family, blacklist)		\
1213 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1214 
1215 #define VULNBL_HYGON(family, blacklist)		\
1216 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1217 
1218 #define SRBDS		BIT(0)
1219 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1220 #define MMIO		BIT(1)
1221 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1222 #define MMIO_SBDS	BIT(2)
1223 /* CPU is affected by RETbleed, speculating where you would not expect it */
1224 #define RETBLEED	BIT(3)
1225 /* CPU is affected by SMT (cross-thread) return predictions */
1226 #define SMT_RSB		BIT(4)
1227 /* CPU is affected by SRSO */
1228 #define SRSO		BIT(5)
1229 /* CPU is affected by GDS */
1230 #define GDS		BIT(6)
1231 /* CPU is affected by Register File Data Sampling */
1232 #define RFDS		BIT(7)
1233 /* CPU is affected by Indirect Target Selection */
1234 #define ITS		BIT(8)
1235 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1236 #define ITS_NATIVE_ONLY	BIT(9)
1237 /* CPU is affected by Transient Scheduler Attacks */
1238 #define TSA		BIT(10)
1239 
1240 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1241 	VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE,	     X86_STEP_MAX,	SRBDS),
1242 	VULNBL_INTEL_STEPS(INTEL_HASWELL,	     X86_STEP_MAX,	SRBDS),
1243 	VULNBL_INTEL_STEPS(INTEL_HASWELL_L,	     X86_STEP_MAX,	SRBDS),
1244 	VULNBL_INTEL_STEPS(INTEL_HASWELL_G,	     X86_STEP_MAX,	SRBDS),
1245 	VULNBL_INTEL_STEPS(INTEL_HASWELL_X,	     X86_STEP_MAX,	MMIO),
1246 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_D,	     X86_STEP_MAX,	MMIO),
1247 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_G,	     X86_STEP_MAX,	SRBDS),
1248 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_X,	     X86_STEP_MAX,	MMIO),
1249 	VULNBL_INTEL_STEPS(INTEL_BROADWELL,	     X86_STEP_MAX,	SRBDS),
1250 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,		      0x5,	MMIO | RETBLEED | GDS),
1251 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS),
1252 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
1253 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
1254 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,		      0xb,	MMIO | RETBLEED | GDS | SRBDS),
1255 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
1256 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,		      0xc,	MMIO | RETBLEED | GDS | SRBDS),
1257 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
1258 	VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L,	     X86_STEP_MAX,	RETBLEED),
1259 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1260 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_D,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1261 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_X,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1262 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1263 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,		      0x0,	MMIO | RETBLEED | ITS),
1264 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1265 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1266 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1267 	VULNBL_INTEL_STEPS(INTEL_LAKEFIELD,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED),
1268 	VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1269 	VULNBL_INTEL_TYPE(INTEL_ALDERLAKE,		     ATOM,	RFDS),
1270 	VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L,	     X86_STEP_MAX,	RFDS),
1271 	VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE,		     ATOM,	RFDS),
1272 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P,	     X86_STEP_MAX,	RFDS),
1273 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S,	     X86_STEP_MAX,	RFDS),
1274 	VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT,     X86_STEP_MAX,	RFDS),
1275 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1276 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D,     X86_STEP_MAX,	MMIO | RFDS),
1277 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L,     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1278 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT,      X86_STEP_MAX,	RFDS),
1279 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D,    X86_STEP_MAX,	RFDS),
1280 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX,	RFDS),
1281 
1282 	VULNBL_AMD(0x15, RETBLEED),
1283 	VULNBL_AMD(0x16, RETBLEED),
1284 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1285 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1286 	VULNBL_AMD(0x19, SRSO | TSA),
1287 	VULNBL_AMD(0x1a, SRSO),
1288 	{}
1289 };
1290 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1291 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1292 {
1293 	const struct x86_cpu_id *m = x86_match_cpu(table);
1294 
1295 	return m && !!(m->driver_data & which);
1296 }
1297 
x86_read_arch_cap_msr(void)1298 u64 x86_read_arch_cap_msr(void)
1299 {
1300 	u64 x86_arch_cap_msr = 0;
1301 
1302 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1303 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1304 
1305 	return x86_arch_cap_msr;
1306 }
1307 
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1308 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1309 {
1310 	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1311 		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1312 		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1313 }
1314 
vulnerable_to_rfds(u64 x86_arch_cap_msr)1315 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1316 {
1317 	/* The "immunity" bit trumps everything else: */
1318 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1319 		return false;
1320 
1321 	/*
1322 	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1323 	 * indicate that mitigation is needed because guest is running on a
1324 	 * vulnerable hardware or may migrate to such hardware:
1325 	 */
1326 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1327 		return true;
1328 
1329 	/* Only consult the blacklist when there is no enumeration: */
1330 	return cpu_matches(cpu_vuln_blacklist, RFDS);
1331 }
1332 
vulnerable_to_its(u64 x86_arch_cap_msr)1333 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1334 {
1335 	/* The "immunity" bit trumps everything else: */
1336 	if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1337 		return false;
1338 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1339 		return false;
1340 
1341 	/* None of the affected CPUs have BHI_CTRL */
1342 	if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1343 		return false;
1344 
1345 	/*
1346 	 * If a VMM did not expose ITS_NO, assume that a guest could
1347 	 * be running on a vulnerable hardware or may migrate to such
1348 	 * hardware.
1349 	 */
1350 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1351 		return true;
1352 
1353 	if (cpu_matches(cpu_vuln_blacklist, ITS))
1354 		return true;
1355 
1356 	return false;
1357 }
1358 
1359 static struct x86_cpu_id cpu_latest_microcode[] = {
1360 #include "microcode/intel-ucode-defs.h"
1361 	{}
1362 };
1363 
cpu_has_old_microcode(void)1364 static bool __init cpu_has_old_microcode(void)
1365 {
1366 	const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
1367 
1368 	/* Give unknown CPUs a pass: */
1369 	if (!m) {
1370 		/* Intel CPUs should be in the list. Warn if not: */
1371 		if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1372 			pr_info("x86/CPU: Model not found in latest microcode list\n");
1373 		return false;
1374 	}
1375 
1376 	/*
1377 	 * Hosts usually lie to guests with a super high microcode
1378 	 * version. Just ignore what hosts tell guests:
1379 	 */
1380 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1381 		return false;
1382 
1383 	/* Consider all debug microcode to be old: */
1384 	if (boot_cpu_data.microcode & BIT(31))
1385 		return true;
1386 
1387 	/* Give new microcode a pass: */
1388 	if (boot_cpu_data.microcode >= m->driver_data)
1389 		return false;
1390 
1391 	/* Uh oh, too old: */
1392 	return true;
1393 }
1394 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1395 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1396 {
1397 	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1398 
1399 	if (cpu_has_old_microcode()) {
1400 		pr_warn("x86/CPU: Running old microcode\n");
1401 		setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
1402 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1403 	}
1404 
1405 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1406 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1407 	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1408 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1409 
1410 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1411 		return;
1412 
1413 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1414 
1415 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1416 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1417 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1418 	}
1419 
1420 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1421 	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1422 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1423 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1424 
1425 	/*
1426 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1427 	 * flag and protect from vendor-specific bugs via the whitelist.
1428 	 *
1429 	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1430 	 * userspace indirect branch performance.
1431 	 */
1432 	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1433 	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1434 	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1435 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1436 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1437 		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1438 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1439 	}
1440 
1441 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1442 	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1443 		setup_force_cpu_bug(X86_BUG_MDS);
1444 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1445 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1446 	}
1447 
1448 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1449 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1450 
1451 	/*
1452 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1453 	 *	- TSX is supported or
1454 	 *	- TSX_CTRL is present
1455 	 *
1456 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1457 	 * the kernel boot e.g. kexec.
1458 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1459 	 * update is not present or running as guest that don't get TSX_CTRL.
1460 	 */
1461 	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1462 	    (cpu_has(c, X86_FEATURE_RTM) ||
1463 	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1464 		setup_force_cpu_bug(X86_BUG_TAA);
1465 
1466 	/*
1467 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1468 	 * in the vulnerability blacklist.
1469 	 *
1470 	 * Some of the implications and mitigation of Shared Buffers Data
1471 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1472 	 * SRBDS.
1473 	 */
1474 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1475 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1476 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1477 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1478 
1479 	/*
1480 	 * Processor MMIO Stale Data bug enumeration
1481 	 *
1482 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1483 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1484 	 * not want the guest to enumerate the bug.
1485 	 */
1486 	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1487 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1488 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1489 	}
1490 
1491 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1492 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1493 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1494 	}
1495 
1496 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1497 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1498 
1499 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1500 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1501 			setup_force_cpu_bug(X86_BUG_SRSO);
1502 	}
1503 
1504 	/*
1505 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1506 	 * an affected processor, the VMM may have disabled the use of GATHER by
1507 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1508 	 * which means that AVX will be disabled.
1509 	 */
1510 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1511 	    boot_cpu_has(X86_FEATURE_AVX))
1512 		setup_force_cpu_bug(X86_BUG_GDS);
1513 
1514 	if (vulnerable_to_rfds(x86_arch_cap_msr))
1515 		setup_force_cpu_bug(X86_BUG_RFDS);
1516 
1517 	/*
1518 	 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1519 	 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1520 	 * attacks.  When virtualized, eIBRS could be hidden, assume vulnerable.
1521 	 */
1522 	if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1523 	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1524 	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1525 		setup_force_cpu_bug(X86_BUG_BHI);
1526 
1527 	if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1528 		setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1529 
1530 	if (vulnerable_to_its(x86_arch_cap_msr)) {
1531 		setup_force_cpu_bug(X86_BUG_ITS);
1532 		if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1533 			setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1534 	}
1535 
1536 	if (c->x86_vendor == X86_VENDOR_AMD) {
1537 		if (!cpu_has(c, X86_FEATURE_TSA_SQ_NO) ||
1538 		    !cpu_has(c, X86_FEATURE_TSA_L1_NO)) {
1539 			if (cpu_matches(cpu_vuln_blacklist, TSA) ||
1540 			    /* Enable bug on Zen guests to allow for live migration. */
1541 			    (cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_ZEN)))
1542 				setup_force_cpu_bug(X86_BUG_TSA);
1543 		}
1544 	}
1545 
1546 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1547 		return;
1548 
1549 	/* Rogue Data Cache Load? No! */
1550 	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1551 		return;
1552 
1553 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1554 
1555 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1556 		return;
1557 
1558 	setup_force_cpu_bug(X86_BUG_L1TF);
1559 }
1560 
1561 /*
1562  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1563  * unfortunately, that's not true in practice because of early VIA
1564  * chips and (more importantly) broken virtualizers that are not easy
1565  * to detect. In the latter case it doesn't even *fail* reliably, so
1566  * probing for it doesn't even work. Disable it completely on 32-bit
1567  * unless we can find a reliable way to detect all the broken cases.
1568  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1569  */
detect_nopl(void)1570 static void detect_nopl(void)
1571 {
1572 #ifdef CONFIG_X86_32
1573 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1574 #else
1575 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1576 #endif
1577 }
1578 
parse_set_clear_cpuid(char * arg,bool set)1579 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1580 {
1581 	char *opt;
1582 	int taint = 0;
1583 
1584 	while (arg) {
1585 		bool found __maybe_unused = false;
1586 		unsigned int bit;
1587 
1588 		opt = strsep(&arg, ",");
1589 
1590 		/*
1591 		 * Handle naked numbers first for feature flags which don't
1592 		 * have names. It doesn't make sense for a bug not to have a
1593 		 * name so don't handle bug flags here.
1594 		 */
1595 		if (!kstrtouint(opt, 10, &bit)) {
1596 			if (bit < NCAPINTS * 32) {
1597 
1598 				if (set) {
1599 					pr_warn("setcpuid: force-enabling CPU feature flag:");
1600 					setup_force_cpu_cap(bit);
1601 				} else {
1602 					pr_warn("clearcpuid: force-disabling CPU feature flag:");
1603 					setup_clear_cpu_cap(bit);
1604 				}
1605 				/* empty-string, i.e., ""-defined feature flags */
1606 				if (!x86_cap_flags[bit])
1607 					pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1608 				else
1609 					pr_cont(" %s\n", x86_cap_flags[bit]);
1610 
1611 				taint++;
1612 			}
1613 			/*
1614 			 * The assumption is that there are no feature names with only
1615 			 * numbers in the name thus go to the next argument.
1616 			 */
1617 			continue;
1618 		}
1619 
1620 		for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1621 			const char *flag;
1622 			const char *kind;
1623 
1624 			if (bit < 32 * NCAPINTS) {
1625 				flag = x86_cap_flags[bit];
1626 				kind = "feature";
1627 			} else {
1628 				kind = "bug";
1629 				flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1630 			}
1631 
1632 			if (!flag)
1633 				continue;
1634 
1635 			if (strcmp(flag, opt))
1636 				continue;
1637 
1638 			if (set) {
1639 				pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1640 					kind, flag);
1641 				setup_force_cpu_cap(bit);
1642 			} else {
1643 				pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1644 					kind, flag);
1645 				setup_clear_cpu_cap(bit);
1646 			}
1647 			taint++;
1648 			found = true;
1649 			break;
1650 		}
1651 
1652 		if (!found)
1653 			pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1654 	}
1655 
1656 	return taint;
1657 }
1658 
1659 
1660 /*
1661  * We parse cpu parameters early because fpu__init_system() is executed
1662  * before parse_early_param().
1663  */
cpu_parse_early_param(void)1664 static void __init cpu_parse_early_param(void)
1665 {
1666 	bool cpuid_taint = false;
1667 	char arg[128];
1668 	int arglen;
1669 
1670 #ifdef CONFIG_X86_32
1671 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1672 #ifdef CONFIG_MATH_EMULATION
1673 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1674 #else
1675 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1676 #endif
1677 
1678 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1679 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1680 #endif
1681 
1682 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1683 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1684 
1685 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1686 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1687 
1688 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1689 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1690 
1691 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1692 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1693 
1694 	/* Minimize the gap between FRED is available and available but disabled. */
1695 	arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1696 	if (arglen != 2 || strncmp(arg, "on", 2))
1697 		setup_clear_cpu_cap(X86_FEATURE_FRED);
1698 
1699 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1700 	if (arglen > 0)
1701 		cpuid_taint |= parse_set_clear_cpuid(arg, false);
1702 
1703 	arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1704 	if (arglen > 0)
1705 		cpuid_taint |= parse_set_clear_cpuid(arg, true);
1706 
1707 	if (cpuid_taint) {
1708 		pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1709 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1710 	}
1711 }
1712 
1713 /*
1714  * Do minimum CPU detection early.
1715  * Fields really needed: vendor, cpuid_level, family, model, mask,
1716  * cache alignment.
1717  * The others are not touched to avoid unwanted side effects.
1718  *
1719  * WARNING: this function is only called on the boot CPU.  Don't add code
1720  * here that is supposed to run on all CPUs.
1721  */
early_identify_cpu(struct cpuinfo_x86 * c)1722 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1723 {
1724 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1725 	c->extended_cpuid_level = 0;
1726 
1727 	if (!cpuid_feature())
1728 		identify_cpu_without_cpuid(c);
1729 
1730 	/* cyrix could have cpuid enabled via c_identify()*/
1731 	if (cpuid_feature()) {
1732 		cpu_detect(c);
1733 		get_cpu_vendor(c);
1734 		intel_unlock_cpuid_leafs(c);
1735 		get_cpu_cap(c);
1736 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1737 		get_cpu_address_sizes(c);
1738 		cpu_parse_early_param();
1739 
1740 		cpu_init_topology(c);
1741 
1742 		if (this_cpu->c_early_init)
1743 			this_cpu->c_early_init(c);
1744 
1745 		c->cpu_index = 0;
1746 		filter_cpuid_features(c, false);
1747 		check_cpufeature_deps(c);
1748 
1749 		if (this_cpu->c_bsp_init)
1750 			this_cpu->c_bsp_init(c);
1751 	} else {
1752 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1753 		get_cpu_address_sizes(c);
1754 		cpu_init_topology(c);
1755 	}
1756 
1757 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1758 
1759 	cpu_set_bug_bits(c);
1760 
1761 	sld_setup(c);
1762 
1763 #ifdef CONFIG_X86_32
1764 	/*
1765 	 * Regardless of whether PCID is enumerated, the SDM says
1766 	 * that it can't be enabled in 32-bit mode.
1767 	 */
1768 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1769 #endif
1770 
1771 	/*
1772 	 * Later in the boot process pgtable_l5_enabled() relies on
1773 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1774 	 * enabled by this point we need to clear the feature bit to avoid
1775 	 * false-positives at the later stage.
1776 	 *
1777 	 * pgtable_l5_enabled() can be false here for several reasons:
1778 	 *  - 5-level paging is disabled compile-time;
1779 	 *  - it's 32-bit kernel;
1780 	 *  - machine doesn't support 5-level paging;
1781 	 *  - user specified 'no5lvl' in kernel command line.
1782 	 */
1783 	if (!pgtable_l5_enabled())
1784 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1785 
1786 	detect_nopl();
1787 }
1788 
init_cpu_devs(void)1789 void __init init_cpu_devs(void)
1790 {
1791 	const struct cpu_dev *const *cdev;
1792 	int count = 0;
1793 
1794 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1795 		const struct cpu_dev *cpudev = *cdev;
1796 
1797 		if (count >= X86_VENDOR_NUM)
1798 			break;
1799 		cpu_devs[count] = cpudev;
1800 		count++;
1801 	}
1802 }
1803 
early_cpu_init(void)1804 void __init early_cpu_init(void)
1805 {
1806 #ifdef CONFIG_PROCESSOR_SELECT
1807 	unsigned int i, j;
1808 
1809 	pr_info("KERNEL supported cpus:\n");
1810 #endif
1811 
1812 	init_cpu_devs();
1813 
1814 #ifdef CONFIG_PROCESSOR_SELECT
1815 	for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1816 		for (j = 0; j < 2; j++) {
1817 			if (!cpu_devs[i]->c_ident[j])
1818 				continue;
1819 			pr_info("  %s %s\n", cpu_devs[i]->c_vendor,
1820 				cpu_devs[i]->c_ident[j]);
1821 		}
1822 	}
1823 #endif
1824 
1825 	early_identify_cpu(&boot_cpu_data);
1826 }
1827 
detect_null_seg_behavior(void)1828 static bool detect_null_seg_behavior(void)
1829 {
1830 	/*
1831 	 * Empirically, writing zero to a segment selector on AMD does
1832 	 * not clear the base, whereas writing zero to a segment
1833 	 * selector on Intel does clear the base.  Intel's behavior
1834 	 * allows slightly faster context switches in the common case
1835 	 * where GS is unused by the prev and next threads.
1836 	 *
1837 	 * Since neither vendor documents this anywhere that I can see,
1838 	 * detect it directly instead of hard-coding the choice by
1839 	 * vendor.
1840 	 *
1841 	 * I've designated AMD's behavior as the "bug" because it's
1842 	 * counterintuitive and less friendly.
1843 	 */
1844 
1845 	unsigned long old_base, tmp;
1846 	rdmsrq(MSR_FS_BASE, old_base);
1847 	wrmsrq(MSR_FS_BASE, 1);
1848 	loadsegment(fs, 0);
1849 	rdmsrq(MSR_FS_BASE, tmp);
1850 	wrmsrq(MSR_FS_BASE, old_base);
1851 	return tmp == 0;
1852 }
1853 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1854 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1855 {
1856 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1857 	if (!IS_ENABLED(CONFIG_X86_64))
1858 		return;
1859 
1860 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1861 		return;
1862 
1863 	/*
1864 	 * CPUID bit above wasn't set. If this kernel is still running
1865 	 * as a HV guest, then the HV has decided not to advertize
1866 	 * that CPUID bit for whatever reason.	For example, one
1867 	 * member of the migration pool might be vulnerable.  Which
1868 	 * means, the bug is present: set the BUG flag and return.
1869 	 */
1870 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1871 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1872 		return;
1873 	}
1874 
1875 	/*
1876 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1877 	 * 0x18 is the respective family for Hygon.
1878 	 */
1879 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1880 	    detect_null_seg_behavior())
1881 		return;
1882 
1883 	/* All the remaining ones are affected */
1884 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1885 }
1886 
generic_identify(struct cpuinfo_x86 * c)1887 static void generic_identify(struct cpuinfo_x86 *c)
1888 {
1889 	c->extended_cpuid_level = 0;
1890 
1891 	if (!cpuid_feature())
1892 		identify_cpu_without_cpuid(c);
1893 
1894 	/* cyrix could have cpuid enabled via c_identify()*/
1895 	if (!cpuid_feature())
1896 		return;
1897 
1898 	cpu_detect(c);
1899 
1900 	get_cpu_vendor(c);
1901 	intel_unlock_cpuid_leafs(c);
1902 	get_cpu_cap(c);
1903 
1904 	get_cpu_address_sizes(c);
1905 
1906 	get_model_name(c); /* Default name */
1907 
1908 	/*
1909 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1910 	 * systems that run Linux at CPL > 0 may or may not have the
1911 	 * issue, but, even if they have the issue, there's absolutely
1912 	 * nothing we can do about it because we can't use the real IRET
1913 	 * instruction.
1914 	 *
1915 	 * NB: For the time being, only 32-bit kernels support
1916 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1917 	 * whether to apply espfix using paravirt hooks.  If any
1918 	 * non-paravirt system ever shows up that does *not* have the
1919 	 * ESPFIX issue, we can change this.
1920 	 */
1921 #ifdef CONFIG_X86_32
1922 	set_cpu_bug(c, X86_BUG_ESPFIX);
1923 #endif
1924 }
1925 
1926 /*
1927  * This does the hard work of actually picking apart the CPU stuff...
1928  */
identify_cpu(struct cpuinfo_x86 * c)1929 static void identify_cpu(struct cpuinfo_x86 *c)
1930 {
1931 	int i;
1932 
1933 	c->loops_per_jiffy = loops_per_jiffy;
1934 	c->x86_cache_size = 0;
1935 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1936 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1937 	c->x86_vendor_id[0] = '\0'; /* Unset */
1938 	c->x86_model_id[0] = '\0';  /* Unset */
1939 #ifdef CONFIG_X86_64
1940 	c->x86_clflush_size = 64;
1941 	c->x86_phys_bits = 36;
1942 	c->x86_virt_bits = 48;
1943 #else
1944 	c->cpuid_level = -1;	/* CPUID not detected */
1945 	c->x86_clflush_size = 32;
1946 	c->x86_phys_bits = 32;
1947 	c->x86_virt_bits = 32;
1948 #endif
1949 	c->x86_cache_alignment = c->x86_clflush_size;
1950 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1951 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1952 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1953 #endif
1954 
1955 	generic_identify(c);
1956 
1957 	cpu_parse_topology(c);
1958 
1959 	if (this_cpu->c_identify)
1960 		this_cpu->c_identify(c);
1961 
1962 	/* Clear/Set all flags overridden by options, after probe */
1963 	apply_forced_caps(c);
1964 
1965 	/*
1966 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1967 	 * Hygon will clear it in ->c_init() below.
1968 	 */
1969 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1970 
1971 	/*
1972 	 * Vendor-specific initialization.  In this section we
1973 	 * canonicalize the feature flags, meaning if there are
1974 	 * features a certain CPU supports which CPUID doesn't
1975 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1976 	 * we handle them here.
1977 	 *
1978 	 * At the end of this section, c->x86_capability better
1979 	 * indicate the features this CPU genuinely supports!
1980 	 */
1981 	if (this_cpu->c_init)
1982 		this_cpu->c_init(c);
1983 
1984 	bus_lock_init();
1985 
1986 	/* Disable the PN if appropriate */
1987 	squash_the_stupid_serial_number(c);
1988 
1989 	/* Set up SMEP/SMAP/UMIP */
1990 	setup_smep(c);
1991 	setup_smap(c);
1992 	setup_umip(c);
1993 
1994 	/* Enable FSGSBASE instructions if available. */
1995 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1996 		cr4_set_bits(X86_CR4_FSGSBASE);
1997 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1998 	}
1999 
2000 	/*
2001 	 * The vendor-specific functions might have changed features.
2002 	 * Now we do "generic changes."
2003 	 */
2004 
2005 	/* Filter out anything that depends on CPUID levels we don't have */
2006 	filter_cpuid_features(c, true);
2007 
2008 	/* Check for unmet dependencies based on the CPUID dependency table */
2009 	check_cpufeature_deps(c);
2010 
2011 	/* If the model name is still unset, do table lookup. */
2012 	if (!c->x86_model_id[0]) {
2013 		const char *p;
2014 		p = table_lookup_model(c);
2015 		if (p)
2016 			strcpy(c->x86_model_id, p);
2017 		else
2018 			/* Last resort... */
2019 			sprintf(c->x86_model_id, "%02x/%02x",
2020 				c->x86, c->x86_model);
2021 	}
2022 
2023 	x86_init_rdrand(c);
2024 	setup_pku(c);
2025 	setup_cet(c);
2026 
2027 	/*
2028 	 * Clear/Set all flags overridden by options, need do it
2029 	 * before following smp all cpus cap AND.
2030 	 */
2031 	apply_forced_caps(c);
2032 
2033 	/*
2034 	 * On SMP, boot_cpu_data holds the common feature set between
2035 	 * all CPUs; so make sure that we indicate which features are
2036 	 * common between the CPUs.  The first time this routine gets
2037 	 * executed, c == &boot_cpu_data.
2038 	 */
2039 	if (c != &boot_cpu_data) {
2040 		/* AND the already accumulated flags with these */
2041 		for (i = 0; i < NCAPINTS; i++)
2042 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
2043 
2044 		/* OR, i.e. replicate the bug flags */
2045 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
2046 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
2047 	}
2048 
2049 	ppin_init(c);
2050 
2051 	/* Init Machine Check Exception if available. */
2052 	mcheck_cpu_init(c);
2053 
2054 	numa_add_cpu(smp_processor_id());
2055 }
2056 
2057 /*
2058  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2059  * on 32-bit kernels:
2060  */
2061 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2062 void enable_sep_cpu(void)
2063 {
2064 	struct tss_struct *tss;
2065 	int cpu;
2066 
2067 	if (!boot_cpu_has(X86_FEATURE_SEP))
2068 		return;
2069 
2070 	cpu = get_cpu();
2071 	tss = &per_cpu(cpu_tss_rw, cpu);
2072 
2073 	/*
2074 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2075 	 * see the big comment in struct x86_hw_tss's definition.
2076 	 */
2077 
2078 	tss->x86_tss.ss1 = __KERNEL_CS;
2079 	wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
2080 	wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
2081 	wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
2082 
2083 	put_cpu();
2084 }
2085 #endif
2086 
identify_boot_cpu(void)2087 static __init void identify_boot_cpu(void)
2088 {
2089 	identify_cpu(&boot_cpu_data);
2090 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2091 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
2092 #ifdef CONFIG_X86_32
2093 	enable_sep_cpu();
2094 #endif
2095 	cpu_detect_tlb(&boot_cpu_data);
2096 	setup_cr_pinning();
2097 
2098 	tsx_init();
2099 	tdx_init();
2100 	lkgs_init();
2101 }
2102 
identify_secondary_cpu(unsigned int cpu)2103 void identify_secondary_cpu(unsigned int cpu)
2104 {
2105 	struct cpuinfo_x86 *c = &cpu_data(cpu);
2106 
2107 	/* Copy boot_cpu_data only on the first bringup */
2108 	if (!c->initialized)
2109 		*c = boot_cpu_data;
2110 	c->cpu_index = cpu;
2111 
2112 	identify_cpu(c);
2113 #ifdef CONFIG_X86_32
2114 	enable_sep_cpu();
2115 #endif
2116 	x86_spec_ctrl_setup_ap();
2117 	update_srbds_msr();
2118 	if (boot_cpu_has_bug(X86_BUG_GDS))
2119 		update_gds_msr();
2120 
2121 	tsx_ap_init();
2122 	c->initialized = true;
2123 }
2124 
print_cpu_info(struct cpuinfo_x86 * c)2125 void print_cpu_info(struct cpuinfo_x86 *c)
2126 {
2127 	const char *vendor = NULL;
2128 
2129 	if (c->x86_vendor < X86_VENDOR_NUM) {
2130 		vendor = this_cpu->c_vendor;
2131 	} else {
2132 		if (c->cpuid_level >= 0)
2133 			vendor = c->x86_vendor_id;
2134 	}
2135 
2136 	if (vendor && !strstr(c->x86_model_id, vendor))
2137 		pr_cont("%s ", vendor);
2138 
2139 	if (c->x86_model_id[0])
2140 		pr_cont("%s", c->x86_model_id);
2141 	else
2142 		pr_cont("%d86", c->x86);
2143 
2144 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2145 
2146 	if (c->x86_stepping || c->cpuid_level >= 0)
2147 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2148 	else
2149 		pr_cont(")\n");
2150 }
2151 
2152 /*
2153  * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2154  * These dummy functions prevent them from becoming an environment variable for
2155  * init.
2156  */
2157 
setup_clearcpuid(char * arg)2158 static __init int setup_clearcpuid(char *arg)
2159 {
2160 	return 1;
2161 }
2162 __setup("clearcpuid=", setup_clearcpuid);
2163 
setup_setcpuid(char * arg)2164 static __init int setup_setcpuid(char *arg)
2165 {
2166 	return 1;
2167 }
2168 __setup("setcpuid=", setup_setcpuid);
2169 
2170 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2171 EXPORT_PER_CPU_SYMBOL(current_task);
2172 EXPORT_PER_CPU_SYMBOL(const_current_task);
2173 
2174 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2175 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2176 
2177 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2178 
2179 #ifdef CONFIG_X86_64
2180 /*
2181  * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2182  * so that this space is reserved in the hot cache section even when the
2183  * mitigation is disabled.
2184  */
2185 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2186 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2187 
wrmsrq_cstar(unsigned long val)2188 static void wrmsrq_cstar(unsigned long val)
2189 {
2190 	/*
2191 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2192 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2193 	 * guest. Avoid the pointless write on all Intel CPUs.
2194 	 */
2195 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2196 		wrmsrq(MSR_CSTAR, val);
2197 }
2198 
idt_syscall_init(void)2199 static inline void idt_syscall_init(void)
2200 {
2201 	wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2202 
2203 	if (ia32_enabled()) {
2204 		wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
2205 		/*
2206 		 * This only works on Intel CPUs.
2207 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2208 		 * This does not cause SYSENTER to jump to the wrong location, because
2209 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2210 		 */
2211 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2212 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
2213 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2214 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2215 	} else {
2216 		wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
2217 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2218 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2219 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2220 	}
2221 
2222 	/*
2223 	 * Flags to clear on syscall; clear as much as possible
2224 	 * to minimize user space-kernel interference.
2225 	 */
2226 	wrmsrq(MSR_SYSCALL_MASK,
2227 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2228 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2229 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2230 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2231 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2232 }
2233 
2234 /* May not be marked __init: used by software suspend */
syscall_init(void)2235 void syscall_init(void)
2236 {
2237 	/* The default user and kernel segments */
2238 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2239 
2240 	/*
2241 	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2242 	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2243 	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2244 	 * instruction to return to ring 3 (both sysexit and sysret cause
2245 	 * #UD when FRED is enabled).
2246 	 */
2247 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2248 		idt_syscall_init();
2249 }
2250 #endif /* CONFIG_X86_64 */
2251 
2252 #ifdef CONFIG_STACKPROTECTOR
2253 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2254 #ifndef CONFIG_SMP
2255 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2256 #endif
2257 #endif
2258 
initialize_debug_regs(void)2259 static void initialize_debug_regs(void)
2260 {
2261 	/* Control register first -- to make sure everything is disabled. */
2262 	set_debugreg(DR7_FIXED_1, 7);
2263 	set_debugreg(DR6_RESERVED, 6);
2264 	/* dr5 and dr4 don't exist */
2265 	set_debugreg(0, 3);
2266 	set_debugreg(0, 2);
2267 	set_debugreg(0, 1);
2268 	set_debugreg(0, 0);
2269 }
2270 
2271 #ifdef CONFIG_KGDB
2272 /*
2273  * Restore debug regs if using kgdbwait and you have a kernel debugger
2274  * connection established.
2275  */
dbg_restore_debug_regs(void)2276 static void dbg_restore_debug_regs(void)
2277 {
2278 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2279 		arch_kgdb_ops.correct_hw_break();
2280 }
2281 #else /* ! CONFIG_KGDB */
2282 #define dbg_restore_debug_regs()
2283 #endif /* ! CONFIG_KGDB */
2284 
setup_getcpu(int cpu)2285 static inline void setup_getcpu(int cpu)
2286 {
2287 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2288 	struct desc_struct d = { };
2289 
2290 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2291 		wrmsrq(MSR_TSC_AUX, cpudata);
2292 
2293 	/* Store CPU and node number in limit. */
2294 	d.limit0 = cpudata;
2295 	d.limit1 = cpudata >> 16;
2296 
2297 	d.type = 5;		/* RO data, expand down, accessed */
2298 	d.dpl = 3;		/* Visible to user code */
2299 	d.s = 1;		/* Not a system segment */
2300 	d.p = 1;		/* Present */
2301 	d.d = 1;		/* 32-bit */
2302 
2303 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2304 }
2305 
2306 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2307 static inline void tss_setup_ist(struct tss_struct *tss)
2308 {
2309 	/* Set up the per-CPU TSS IST stacks */
2310 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2311 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2312 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2313 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2314 	/* Only mapped when SEV-ES is active */
2315 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2316 }
2317 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2318 static inline void tss_setup_ist(struct tss_struct *tss) { }
2319 #endif /* !CONFIG_X86_64 */
2320 
tss_setup_io_bitmap(struct tss_struct * tss)2321 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2322 {
2323 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2324 
2325 #ifdef CONFIG_X86_IOPL_IOPERM
2326 	tss->io_bitmap.prev_max = 0;
2327 	tss->io_bitmap.prev_sequence = 0;
2328 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2329 	/*
2330 	 * Invalidate the extra array entry past the end of the all
2331 	 * permission bitmap as required by the hardware.
2332 	 */
2333 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2334 #endif
2335 }
2336 
2337 /*
2338  * Setup everything needed to handle exceptions from the IDT, including the IST
2339  * exceptions which use paranoid_entry().
2340  */
cpu_init_exception_handling(bool boot_cpu)2341 void cpu_init_exception_handling(bool boot_cpu)
2342 {
2343 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2344 	int cpu = raw_smp_processor_id();
2345 
2346 	/* paranoid_entry() gets the CPU number from the GDT */
2347 	setup_getcpu(cpu);
2348 
2349 	/* For IDT mode, IST vectors need to be set in TSS. */
2350 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2351 		tss_setup_ist(tss);
2352 	tss_setup_io_bitmap(tss);
2353 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2354 
2355 	load_TR_desc();
2356 
2357 	/* GHCB needs to be setup to handle #VC. */
2358 	setup_ghcb();
2359 
2360 	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2361 		/* The boot CPU has enabled FRED during early boot */
2362 		if (!boot_cpu)
2363 			cpu_init_fred_exceptions();
2364 
2365 		cpu_init_fred_rsps();
2366 	} else {
2367 		load_current_idt();
2368 	}
2369 }
2370 
cpu_init_replace_early_idt(void)2371 void __init cpu_init_replace_early_idt(void)
2372 {
2373 	if (cpu_feature_enabled(X86_FEATURE_FRED))
2374 		cpu_init_fred_exceptions();
2375 	else
2376 		idt_setup_early_pf();
2377 }
2378 
2379 /*
2380  * cpu_init() initializes state that is per-CPU. Some data is already
2381  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2382  * reload it nevertheless, this function acts as a 'CPU state barrier',
2383  * nothing should get across.
2384  */
cpu_init(void)2385 void cpu_init(void)
2386 {
2387 	struct task_struct *cur = current;
2388 	int cpu = raw_smp_processor_id();
2389 
2390 #ifdef CONFIG_NUMA
2391 	if (this_cpu_read(numa_node) == 0 &&
2392 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2393 		set_numa_node(early_cpu_to_node(cpu));
2394 #endif
2395 	pr_debug("Initializing CPU#%d\n", cpu);
2396 
2397 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2398 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2399 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2400 
2401 	if (IS_ENABLED(CONFIG_X86_64)) {
2402 		loadsegment(fs, 0);
2403 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2404 		syscall_init();
2405 
2406 		wrmsrq(MSR_FS_BASE, 0);
2407 		wrmsrq(MSR_KERNEL_GS_BASE, 0);
2408 		barrier();
2409 
2410 		x2apic_setup();
2411 
2412 		intel_posted_msi_init();
2413 	}
2414 
2415 	mmgrab(&init_mm);
2416 	cur->active_mm = &init_mm;
2417 	BUG_ON(cur->mm);
2418 	initialize_tlbstate_and_flush();
2419 	enter_lazy_tlb(&init_mm, cur);
2420 
2421 	/*
2422 	 * sp0 points to the entry trampoline stack regardless of what task
2423 	 * is running.
2424 	 */
2425 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2426 
2427 	load_mm_ldt(&init_mm);
2428 
2429 	initialize_debug_regs();
2430 	dbg_restore_debug_regs();
2431 
2432 	doublefault_init_cpu_tss();
2433 
2434 	if (is_uv_system())
2435 		uv_cpu_init();
2436 
2437 	load_fixmap_gdt(cpu);
2438 }
2439 
2440 #ifdef CONFIG_MICROCODE_LATE_LOADING
2441 /**
2442  * store_cpu_caps() - Store a snapshot of CPU capabilities
2443  * @curr_info: Pointer where to store it
2444  *
2445  * Returns: None
2446  */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2447 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2448 {
2449 	/* Reload CPUID max function as it might've changed. */
2450 	curr_info->cpuid_level = cpuid_eax(0);
2451 
2452 	/* Copy all capability leafs and pick up the synthetic ones. */
2453 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2454 	       sizeof(curr_info->x86_capability));
2455 
2456 	/* Get the hardware CPUID leafs */
2457 	get_cpu_cap(curr_info);
2458 }
2459 
2460 /**
2461  * microcode_check() - Check if any CPU capabilities changed after an update.
2462  * @prev_info:	CPU capabilities stored before an update.
2463  *
2464  * The microcode loader calls this upon late microcode load to recheck features,
2465  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2466  *
2467  * Return: None
2468  */
microcode_check(struct cpuinfo_x86 * prev_info)2469 void microcode_check(struct cpuinfo_x86 *prev_info)
2470 {
2471 	struct cpuinfo_x86 curr_info;
2472 
2473 	perf_check_microcode();
2474 
2475 	amd_check_microcode();
2476 
2477 	store_cpu_caps(&curr_info);
2478 
2479 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2480 		    sizeof(prev_info->x86_capability)))
2481 		return;
2482 
2483 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2484 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2485 }
2486 #endif
2487 
2488 /*
2489  * Invoked from core CPU hotplug code after hotplug operations
2490  */
arch_smt_update(void)2491 void arch_smt_update(void)
2492 {
2493 	/* Handle the speculative execution misfeatures */
2494 	cpu_bugs_smt_update();
2495 	/* Check whether IPI broadcasting can be enabled */
2496 	apic_smt_update();
2497 }
2498 
arch_cpu_finalize_init(void)2499 void __init arch_cpu_finalize_init(void)
2500 {
2501 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2502 
2503 	identify_boot_cpu();
2504 
2505 	select_idle_routine();
2506 
2507 	/*
2508 	 * identify_boot_cpu() initialized SMT support information, let the
2509 	 * core code know.
2510 	 */
2511 	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2512 
2513 	if (!IS_ENABLED(CONFIG_SMP)) {
2514 		pr_info("CPU: ");
2515 		print_cpu_info(&boot_cpu_data);
2516 	}
2517 
2518 	cpu_select_mitigations();
2519 
2520 	arch_smt_update();
2521 
2522 	if (IS_ENABLED(CONFIG_X86_32)) {
2523 		/*
2524 		 * Check whether this is a real i386 which is not longer
2525 		 * supported and fixup the utsname.
2526 		 */
2527 		if (boot_cpu_data.x86 < 4)
2528 			panic("Kernel requires i486+ for 'invlpg' and other features");
2529 
2530 		init_utsname()->machine[1] =
2531 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2532 	}
2533 
2534 	/*
2535 	 * Must be before alternatives because it might set or clear
2536 	 * feature bits.
2537 	 */
2538 	fpu__init_system();
2539 	fpu__init_cpu();
2540 
2541 	/*
2542 	 * This needs to follow the FPU initializtion, since EFI depends on it.
2543 	 */
2544 	if (efi_enabled(EFI_RUNTIME_SERVICES))
2545 		efi_enter_virtual_mode();
2546 
2547 	/*
2548 	 * Ensure that access to the per CPU representation has the initial
2549 	 * boot CPU configuration.
2550 	 */
2551 	*c = boot_cpu_data;
2552 	c->initialized = true;
2553 
2554 	alternative_instructions();
2555 
2556 	if (IS_ENABLED(CONFIG_X86_64)) {
2557 		unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2558 
2559 		/*
2560 		 * Enable this when LAM is gated on LASS support
2561 		if (cpu_feature_enabled(X86_FEATURE_LAM))
2562 			USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2563 		 */
2564 		runtime_const_init(ptr, USER_PTR_MAX);
2565 
2566 		/*
2567 		 * Make sure the first 2MB area is not mapped by huge pages
2568 		 * There are typically fixed size MTRRs in there and overlapping
2569 		 * MTRRs into large pages causes slow downs.
2570 		 *
2571 		 * Right now we don't do that with gbpages because there seems
2572 		 * very little benefit for that case.
2573 		 */
2574 		if (!direct_gbpages)
2575 			set_memory_4k((unsigned long)__va(0), 1);
2576 	} else {
2577 		fpu__init_check_bugs();
2578 	}
2579 
2580 	/*
2581 	 * This needs to be called before any devices perform DMA
2582 	 * operations that might use the SWIOTLB bounce buffers. It will
2583 	 * mark the bounce buffers as decrypted so that their usage will
2584 	 * not cause "plain-text" data to be decrypted when accessed. It
2585 	 * must be called after late_time_init() so that Hyper-V x86/x64
2586 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2587 	 */
2588 	mem_encrypt_init();
2589 }
2590