1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210 {
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223 }
224
225 /**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248 }
249
250 /**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315 }
316
317 /**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360 }
361
362 /**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374 {
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408 }
409
410 /**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
500
501 vfres->num_vsis = 1;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508
509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 vf->hw_lan_addr);
514
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
517
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
520
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522
523 err:
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 (u8 *)vfres, len);
527
528 kfree(vfres);
529 return ret;
530 }
531
532 /**
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
535 *
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
539 */
ice_vc_reset_vf_msg(struct ice_vf * vf)540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 ice_reset_vf(vf, 0);
544 }
545
546 /**
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
550 *
551 * check for the valid VSI ID
552 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 return vsi_id == ICE_VF_VSI_ID;
556 }
557
558 /**
559 * ice_vc_isvalid_q_id
560 * @vsi: VSI to check queue ID against
561 * @qid: VSI relative queue ID
562 *
563 * check for the valid queue ID
564 */
ice_vc_isvalid_q_id(struct ice_vsi * vsi,u8 qid)565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
566 {
567 /* allocated Tx and Rx queues should be always equal for VF VSI */
568 return qid < vsi->alloc_txq;
569 }
570
571 /**
572 * ice_vc_isvalid_ring_len
573 * @ring_len: length of ring
574 *
575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
576 * or zero
577 */
ice_vc_isvalid_ring_len(u16 ring_len)578 static bool ice_vc_isvalid_ring_len(u16 ring_len)
579 {
580 return ring_len == 0 ||
581 (ring_len >= ICE_MIN_NUM_DESC &&
582 ring_len <= ICE_MAX_NUM_DESC &&
583 !(ring_len % ICE_REQ_DESC_MULTIPLE));
584 }
585
586 /**
587 * ice_vc_validate_pattern
588 * @vf: pointer to the VF info
589 * @proto: virtchnl protocol headers
590 *
591 * validate the pattern is supported or not.
592 *
593 * Return: true on success, false on error.
594 */
595 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
597 {
598 bool is_ipv4 = false;
599 bool is_ipv6 = false;
600 bool is_udp = false;
601 u16 ptype = -1;
602 int i = 0;
603
604 while (i < proto->count &&
605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 switch (proto->proto_hdr[i].type) {
607 case VIRTCHNL_PROTO_HDR_ETH:
608 ptype = ICE_PTYPE_MAC_PAY;
609 break;
610 case VIRTCHNL_PROTO_HDR_IPV4:
611 ptype = ICE_PTYPE_IPV4_PAY;
612 is_ipv4 = true;
613 break;
614 case VIRTCHNL_PROTO_HDR_IPV6:
615 ptype = ICE_PTYPE_IPV6_PAY;
616 is_ipv6 = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_UDP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_UDP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_UDP_PAY;
623 is_udp = true;
624 break;
625 case VIRTCHNL_PROTO_HDR_TCP:
626 if (is_ipv4)
627 ptype = ICE_PTYPE_IPV4_TCP_PAY;
628 else if (is_ipv6)
629 ptype = ICE_PTYPE_IPV6_TCP_PAY;
630 break;
631 case VIRTCHNL_PROTO_HDR_SCTP:
632 if (is_ipv4)
633 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
634 else if (is_ipv6)
635 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
636 break;
637 case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 case VIRTCHNL_PROTO_HDR_GTPU_EH:
639 if (is_ipv4)
640 ptype = ICE_MAC_IPV4_GTPU;
641 else if (is_ipv6)
642 ptype = ICE_MAC_IPV6_GTPU;
643 goto out;
644 case VIRTCHNL_PROTO_HDR_L2TPV3:
645 if (is_ipv4)
646 ptype = ICE_MAC_IPV4_L2TPV3;
647 else if (is_ipv6)
648 ptype = ICE_MAC_IPV6_L2TPV3;
649 goto out;
650 case VIRTCHNL_PROTO_HDR_ESP:
651 if (is_ipv4)
652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
653 ICE_MAC_IPV4_ESP;
654 else if (is_ipv6)
655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
656 ICE_MAC_IPV6_ESP;
657 goto out;
658 case VIRTCHNL_PROTO_HDR_AH:
659 if (is_ipv4)
660 ptype = ICE_MAC_IPV4_AH;
661 else if (is_ipv6)
662 ptype = ICE_MAC_IPV6_AH;
663 goto out;
664 case VIRTCHNL_PROTO_HDR_PFCP:
665 if (is_ipv4)
666 ptype = ICE_MAC_IPV4_PFCP_SESSION;
667 else if (is_ipv6)
668 ptype = ICE_MAC_IPV6_PFCP_SESSION;
669 goto out;
670 default:
671 break;
672 }
673 i++;
674 }
675
676 out:
677 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
678 }
679
680 /**
681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
682 * a specific virtchnl RSS cfg
683 * @hw: pointer to the hardware
684 * @rss_cfg: pointer to the virtchnl RSS cfg
685 * @hash_cfg: pointer to the HW hash configuration
686 *
687 * Return true if all the protocol header and hash fields in the RSS cfg could
688 * be parsed, else return false
689 *
690 * This function parses the virtchnl RSS cfg to be the intended
691 * hash fields and the intended header for RSS configuration
692 */
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,struct ice_rss_hash_cfg * hash_cfg)693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 struct virtchnl_rss_cfg *rss_cfg,
695 struct ice_rss_hash_cfg *hash_cfg)
696 {
697 const struct ice_vc_hash_field_match_type *hf_list;
698 const struct ice_vc_hdr_match_type *hdr_list;
699 int i, hf_list_len, hdr_list_len;
700 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 u64 *hash_flds = &hash_cfg->hash_flds;
702
703 /* set outer layer RSS as default */
704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
705
706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 hash_cfg->symm = true;
708 else
709 hash_cfg->symm = false;
710
711 hf_list = ice_vc_hash_field_list;
712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 hdr_list = ice_vc_hdr_list;
714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715
716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 struct virtchnl_proto_hdr *proto_hdr =
718 &rss_cfg->proto_hdrs.proto_hdr[i];
719 bool hdr_found = false;
720 int j;
721
722 /* Find matched ice headers according to virtchnl headers. */
723 for (j = 0; j < hdr_list_len; j++) {
724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725
726 if (proto_hdr->type == hdr_map.vc_hdr) {
727 *addl_hdrs |= hdr_map.ice_hdr;
728 hdr_found = true;
729 }
730 }
731
732 if (!hdr_found)
733 return false;
734
735 /* Find matched ice hash fields according to
736 * virtchnl hash fields.
737 */
738 for (j = 0; j < hf_list_len; j++) {
739 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740
741 if (proto_hdr->type == hf_map.vc_hdr &&
742 proto_hdr->field_selector == hf_map.vc_hash_field) {
743 *hash_flds |= hf_map.ice_hash_field;
744 break;
745 }
746 }
747 }
748
749 return true;
750 }
751
752 /**
753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754 * RSS offloads
755 * @caps: VF driver negotiated capabilities
756 *
757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
758 * else return false
759 */
ice_vf_adv_rss_offload_ena(u32 caps)760 static bool ice_vf_adv_rss_offload_ena(u32 caps)
761 {
762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
763 }
764
765 /**
766 * ice_vc_handle_rss_cfg
767 * @vf: pointer to the VF info
768 * @msg: pointer to the message buffer
769 * @add: add a RSS config if true, otherwise delete a RSS config
770 *
771 * This function adds/deletes a RSS config
772 */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774 {
775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 struct device *dev = ice_pf_to_dev(vf->pf);
779 struct ice_hw *hw = &vf->pf->hw;
780 struct ice_vsi *vsi;
781
782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
786 goto error_param;
787 }
788
789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 vf->vf_id);
792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
793 goto error_param;
794 }
795
796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 goto error_param;
799 }
800
801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 vf->vf_id);
806 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 goto error_param;
808 }
809
810 vsi = ice_get_vf_vsi(vf);
811 if (!vsi) {
812 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
813 goto error_param;
814 }
815
816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
818 goto error_param;
819 }
820
821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 struct ice_vsi_ctx *ctx;
823 u8 lut_type, hash_type;
824 int status;
825
826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
829
830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 if (!ctx) {
832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
833 goto error_param;
834 }
835
836 ctx->info.q_opt_rss =
837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
839
840 /* Preserve existing queueing option setting */
841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
845
846 ctx->info.valid_sections =
847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
848
849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
850 if (status) {
851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 status, ice_aq_str(hw->adminq.sq_last_status));
853 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
854 } else {
855 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
856 }
857
858 kfree(ctx);
859 } else {
860 struct ice_rss_hash_cfg cfg;
861
862 /* Only check for none raw pattern case */
863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
865 goto error_param;
866 }
867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 cfg.hash_flds = ICE_HASH_INVALID;
869 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
870
871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
873 goto error_param;
874 }
875
876 if (add) {
877 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 vsi->vsi_num, v_ret);
881 }
882 } else {
883 int status;
884
885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 /* We just ignore -ENOENT, because if two configurations
887 * share the same profile remove one of them actually
888 * removes both, since the profile is deleted.
889 */
890 if (status && status != -ENOENT) {
891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
893 vf->vf_id, status);
894 }
895 }
896 }
897
898 error_param:
899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
900 }
901
902 /**
903 * ice_vc_config_rss_key
904 * @vf: pointer to the VF info
905 * @msg: pointer to the msg buffer
906 *
907 * Configure the VF's RSS key
908 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
910 {
911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 struct virtchnl_rss_key *vrk =
913 (struct virtchnl_rss_key *)msg;
914 struct ice_vsi *vsi;
915
916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 goto error_param;
919 }
920
921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 goto error_param;
924 }
925
926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 goto error_param;
929 }
930
931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 goto error_param;
934 }
935
936 vsi = ice_get_vf_vsi(vf);
937 if (!vsi) {
938 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
939 goto error_param;
940 }
941
942 if (ice_set_rss_key(vsi, vrk->key))
943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
944 error_param:
945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 NULL, 0);
947 }
948
949 /**
950 * ice_vc_config_rss_lut
951 * @vf: pointer to the VF info
952 * @msg: pointer to the msg buffer
953 *
954 * Configure the VF's RSS LUT
955 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
957 {
958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
960 struct ice_vsi *vsi;
961
962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 goto error_param;
965 }
966
967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 goto error_param;
970 }
971
972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 goto error_param;
975 }
976
977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 goto error_param;
980 }
981
982 vsi = ice_get_vf_vsi(vf);
983 if (!vsi) {
984 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
985 goto error_param;
986 }
987
988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
990 error_param:
991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 NULL, 0);
993 }
994
995 /**
996 * ice_vc_config_rss_hfunc
997 * @vf: pointer to the VF info
998 * @msg: pointer to the msg buffer
999 *
1000 * Configure the VF's RSS Hash function
1001 */
ice_vc_config_rss_hfunc(struct ice_vf * vf,u8 * msg)1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003 {
1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 struct ice_vsi *vsi;
1008
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 goto error_param;
1012 }
1013
1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 goto error_param;
1017 }
1018
1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 goto error_param;
1022 }
1023
1024 vsi = ice_get_vf_vsi(vf);
1025 if (!vsi) {
1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027 goto error_param;
1028 }
1029
1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033 if (ice_set_rss_hfunc(vsi, hfunc))
1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035 error_param:
1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037 NULL, 0);
1038 }
1039
1040 /**
1041 * ice_vc_get_qos_caps - Get current QoS caps from PF
1042 * @vf: pointer to the VF info
1043 *
1044 * Get VF's QoS capabilities, such as TC number, arbiter and
1045 * bandwidth from PF.
1046 *
1047 * Return: 0 on success or negative error value.
1048 */
ice_vc_get_qos_caps(struct ice_vf * vf)1049 static int ice_vc_get_qos_caps(struct ice_vf *vf)
1050 {
1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052 struct virtchnl_qos_cap_list *cap_list = NULL;
1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054 struct virtchnl_qos_cap_elem *cfg = NULL;
1055 struct ice_vsi_ctx *vsi_ctx;
1056 struct ice_pf *pf = vf->pf;
1057 struct ice_port_info *pi;
1058 struct ice_vsi *vsi;
1059 u8 numtc, tc;
1060 u16 len = 0;
1061 int ret, i;
1062
1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 goto err;
1066 }
1067
1068 vsi = ice_get_vf_vsi(vf);
1069 if (!vsi) {
1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 goto err;
1072 }
1073
1074 pi = pf->hw.port_info;
1075 numtc = vsi->tc_cfg.numtc;
1076
1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1078 if (!vsi_ctx) {
1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1080 goto err;
1081 }
1082
1083 len = struct_size(cap_list, cap, numtc);
1084 cap_list = kzalloc(len, GFP_KERNEL);
1085 if (!cap_list) {
1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1087 len = 0;
1088 goto err;
1089 }
1090
1091 cap_list->vsi_id = vsi->vsi_num;
1092 cap_list->num_elem = numtc;
1093
1094 /* Store the UP2TC configuration from DCB to a user priority bitmap
1095 * of each TC. Each element of prio_of_tc represents one TC. Each
1096 * bitmap indicates the user priorities belong to this TC.
1097 */
1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100 tc_prio[tc] |= BIT(i);
1101 }
1102
1103 for (i = 0; i < numtc; i++) {
1104 cfg = &cap_list->cap[i];
1105 cfg->tc_num = i;
1106 cfg->tc_prio = tc_prio[i];
1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109 cfg->type = VIRTCHNL_BW_SHAPER;
1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1112 }
1113
1114 err:
1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116 (u8 *)cap_list, len);
1117 kfree(cap_list);
1118 return ret;
1119 }
1120
1121 /**
1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123 * @vf: pointer to the VF info
1124 * @num_queues: number of queues to be configured
1125 *
1126 * Configure per queue bandwidth.
1127 *
1128 * Return: 0 on success or negative error value.
1129 */
ice_vf_cfg_qs_bw(struct ice_vf * vf,u16 num_queues)1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1131 {
1132 struct ice_hw *hw = &vf->pf->hw;
1133 struct ice_vsi *vsi;
1134 int ret;
1135 u16 i;
1136
1137 vsi = ice_get_vf_vsi(vf);
1138 if (!vsi)
1139 return -EINVAL;
1140
1141 for (i = 0; i < num_queues; i++) {
1142 u32 p_rate, min_rate;
1143 u8 tc;
1144
1145 p_rate = vf->qs_bw[i].peak;
1146 min_rate = vf->qs_bw[i].committed;
1147 tc = vf->qs_bw[i].tc;
1148 if (p_rate)
1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150 vf->qs_bw[i].queue_id,
1151 ICE_MAX_BW, p_rate);
1152 else
1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154 vf->qs_bw[i].queue_id,
1155 ICE_MAX_BW);
1156 if (ret)
1157 return ret;
1158
1159 if (min_rate)
1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161 vf->qs_bw[i].queue_id,
1162 ICE_MIN_BW, min_rate);
1163 else
1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165 vf->qs_bw[i].queue_id,
1166 ICE_MIN_BW);
1167
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177 * @vf: pointer to the VF info
1178 * @quanta_prof_idx: pointer to the quanta profile index
1179 * @quanta_size: quanta size to be set
1180 *
1181 * This function chooses available quanta profile and configures the register.
1182 * The quanta profile is evenly divided by the number of device ports, and then
1183 * available to the specific PF and VFs. The first profile for each PF is a
1184 * reserved default profile. Only quanta size of the rest unused profile can be
1185 * modified.
1186 *
1187 * Return: 0 on success or negative error value.
1188 */
ice_vf_cfg_q_quanta_profile(struct ice_vf * vf,u16 quanta_size,u16 * quanta_prof_idx)1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190 u16 *quanta_prof_idx)
1191 {
1192 const u16 n_desc = calc_quanta_desc(quanta_size);
1193 struct ice_hw *hw = &vf->pf->hw;
1194 const u16 n_cmd = 2 * n_desc;
1195 struct ice_pf *pf = vf->pf;
1196 u16 per_pf, begin_id;
1197 u8 n_used;
1198 u32 reg;
1199
1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1201 hw->logical_pf_id;
1202
1203 if (quanta_size == ICE_DFLT_QUANTA) {
1204 *quanta_prof_idx = begin_id;
1205 } else {
1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207 hw->dev_caps.num_funcs;
1208 n_used = pf->num_quanta_prof_used;
1209 if (n_used < per_pf) {
1210 *quanta_prof_idx = begin_id + 1 + n_used;
1211 pf->num_quanta_prof_used++;
1212 } else {
1213 return -EINVAL;
1214 }
1215 }
1216
1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * ice_vc_cfg_promiscuous_mode_msg
1227 * @vf: pointer to the VF info
1228 * @msg: pointer to the msg buffer
1229 *
1230 * called from the VF to configure VF VSIs promiscuous mode
1231 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1233 {
1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235 bool rm_promisc, alluni = false, allmulti = false;
1236 struct virtchnl_promisc_info *info =
1237 (struct virtchnl_promisc_info *)msg;
1238 struct ice_vsi_vlan_ops *vlan_ops;
1239 int mcast_err = 0, ucast_err = 0;
1240 struct ice_pf *pf = vf->pf;
1241 struct ice_vsi *vsi;
1242 u8 mcast_m, ucast_m;
1243 struct device *dev;
1244 int ret = 0;
1245
1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1248 goto error_param;
1249 }
1250
1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1253 goto error_param;
1254 }
1255
1256 vsi = ice_get_vf_vsi(vf);
1257 if (!vsi) {
1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 goto error_param;
1260 }
1261
1262 dev = ice_pf_to_dev(pf);
1263 if (!ice_is_vf_trusted(vf)) {
1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1265 vf->vf_id);
1266 /* Leave v_ret alone, lie to the VF on purpose. */
1267 goto error_param;
1268 }
1269
1270 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1271 alluni = true;
1272
1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1274 allmulti = true;
1275
1276 rm_promisc = !allmulti && !alluni;
1277
1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1279 if (rm_promisc)
1280 ret = vlan_ops->ena_rx_filtering(vsi);
1281 else
1282 ret = vlan_ops->dis_rx_filtering(vsi);
1283 if (ret) {
1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1286 goto error_param;
1287 }
1288
1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1290
1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1292 if (alluni) {
1293 /* in this case we're turning on promiscuous mode */
1294 ret = ice_set_dflt_vsi(vsi);
1295 } else {
1296 /* in this case we're turning off promiscuous mode */
1297 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298 ret = ice_clear_dflt_vsi(vsi);
1299 }
1300
1301 /* in this case we're turning on/off only
1302 * allmulticast
1303 */
1304 if (allmulti)
1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1306 else
1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1308
1309 if (ret) {
1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1311 vf->vf_id, ret);
1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1313 goto error_param;
1314 }
1315 } else {
1316 if (alluni)
1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1318 else
1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1320
1321 if (allmulti)
1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1323 else
1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1325
1326 if (ucast_err || mcast_err)
1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328 }
1329
1330 if (!mcast_err) {
1331 if (allmulti &&
1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1334 vf->vf_id);
1335 else if (!allmulti &&
1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1337 vf->vf_states))
1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1339 vf->vf_id);
1340 } else {
1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342 vf->vf_id, mcast_err);
1343 }
1344
1345 if (!ucast_err) {
1346 if (alluni &&
1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1349 vf->vf_id);
1350 else if (!alluni &&
1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1352 vf->vf_states))
1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1354 vf->vf_id);
1355 } else {
1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357 vf->vf_id, ucast_err);
1358 }
1359
1360 error_param:
1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1362 v_ret, NULL, 0);
1363 }
1364
1365 /**
1366 * ice_vc_get_stats_msg
1367 * @vf: pointer to the VF info
1368 * @msg: pointer to the msg buffer
1369 *
1370 * called from the VF to get VSI stats
1371 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1373 {
1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375 struct virtchnl_queue_select *vqs =
1376 (struct virtchnl_queue_select *)msg;
1377 struct ice_eth_stats stats = { 0 };
1378 struct ice_vsi *vsi;
1379
1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1382 goto error_param;
1383 }
1384
1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1387 goto error_param;
1388 }
1389
1390 vsi = ice_get_vf_vsi(vf);
1391 if (!vsi) {
1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1393 goto error_param;
1394 }
1395
1396 ice_update_eth_stats(vsi);
1397
1398 stats = vsi->eth_stats;
1399
1400 error_param:
1401 /* send the response to the VF */
1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403 (u8 *)&stats, sizeof(stats));
1404 }
1405
1406 /**
1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1409 *
1410 * Return true on successful validation, else false
1411 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1413 {
1414 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1417 return false;
1418
1419 return true;
1420 }
1421
1422 /**
1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424 * @vsi: VSI of the VF to configure
1425 * @q_idx: VF queue index used to determine the queue in the PF's space
1426 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1428 {
1429 struct ice_hw *hw = &vsi->back->hw;
1430 u32 pfq = vsi->txq_map[q_idx];
1431 u32 reg;
1432
1433 reg = rd32(hw, QINT_TQCTL(pfq));
1434
1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1436 * this is most likely a poll mode VF driver, so don't enable an
1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1438 */
1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1440 return;
1441
1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1443 }
1444
1445 /**
1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447 * @vsi: VSI of the VF to configure
1448 * @q_idx: VF queue index used to determine the queue in the PF's space
1449 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1451 {
1452 struct ice_hw *hw = &vsi->back->hw;
1453 u32 pfq = vsi->rxq_map[q_idx];
1454 u32 reg;
1455
1456 reg = rd32(hw, QINT_RQCTL(pfq));
1457
1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1459 * this is most likely a poll mode VF driver, so don't enable an
1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1461 */
1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1463 return;
1464
1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1466 }
1467
1468 /**
1469 * ice_vc_ena_qs_msg
1470 * @vf: pointer to the VF info
1471 * @msg: pointer to the msg buffer
1472 *
1473 * called from the VF to enable all or specific queue(s)
1474 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1476 {
1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478 struct virtchnl_queue_select *vqs =
1479 (struct virtchnl_queue_select *)msg;
1480 struct ice_vsi *vsi;
1481 unsigned long q_map;
1482 u16 vf_q_id;
1483
1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 goto error_param;
1487 }
1488
1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491 goto error_param;
1492 }
1493
1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1496 goto error_param;
1497 }
1498
1499 vsi = ice_get_vf_vsi(vf);
1500 if (!vsi) {
1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1502 goto error_param;
1503 }
1504
1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1506 * Tx queue group list was configured and the context bits were
1507 * programmed using ice_vsi_cfg_txqs
1508 */
1509 q_map = vqs->rx_queues;
1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1513 goto error_param;
1514 }
1515
1516 /* Skip queue if enabled */
1517 if (test_bit(vf_q_id, vf->rxq_ena))
1518 continue;
1519
1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522 vf_q_id, vsi->vsi_num);
1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1524 goto error_param;
1525 }
1526
1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528 set_bit(vf_q_id, vf->rxq_ena);
1529 }
1530
1531 q_map = vqs->tx_queues;
1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 goto error_param;
1536 }
1537
1538 /* Skip queue if enabled */
1539 if (test_bit(vf_q_id, vf->txq_ena))
1540 continue;
1541
1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543 set_bit(vf_q_id, vf->txq_ena);
1544 }
1545
1546 /* Set flag to indicate that queues are enabled */
1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1549
1550 error_param:
1551 /* send the response to the VF */
1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1553 NULL, 0);
1554 }
1555
1556 /**
1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558 * @vf: VF to disable queue for
1559 * @vsi: VSI for the VF
1560 * @q_id: VF relative (0-based) queue ID
1561 *
1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563 * disabled then clear q_id bit in the enabled queues bitmap and return
1564 * success. Otherwise return error.
1565 */
1566 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1568 {
1569 struct ice_txq_meta txq_meta = { 0 };
1570 struct ice_tx_ring *ring;
1571 int err;
1572
1573 if (!test_bit(q_id, vf->txq_ena))
1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575 q_id, vsi->vsi_num);
1576
1577 ring = vsi->tx_rings[q_id];
1578 if (!ring)
1579 return -EINVAL;
1580
1581 ice_fill_txq_meta(vsi, ring, &txq_meta);
1582
1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1584 if (err) {
1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586 q_id, vsi->vsi_num);
1587 return err;
1588 }
1589
1590 /* Clear enabled queues flag */
1591 clear_bit(q_id, vf->txq_ena);
1592
1593 return 0;
1594 }
1595
1596 /**
1597 * ice_vc_dis_qs_msg
1598 * @vf: pointer to the VF info
1599 * @msg: pointer to the msg buffer
1600 *
1601 * called from the VF to disable all or specific queue(s)
1602 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1604 {
1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606 struct virtchnl_queue_select *vqs =
1607 (struct virtchnl_queue_select *)msg;
1608 struct ice_vsi *vsi;
1609 unsigned long q_map;
1610 u16 vf_q_id;
1611
1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1615 goto error_param;
1616 }
1617
1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1620 goto error_param;
1621 }
1622
1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625 goto error_param;
1626 }
1627
1628 vsi = ice_get_vf_vsi(vf);
1629 if (!vsi) {
1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1631 goto error_param;
1632 }
1633
1634 if (vqs->tx_queues) {
1635 q_map = vqs->tx_queues;
1636
1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1640 goto error_param;
1641 }
1642
1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1645 goto error_param;
1646 }
1647 }
1648 }
1649
1650 q_map = vqs->rx_queues;
1651 /* speed up Rx queue disable by batching them if possible */
1652 if (q_map &&
1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654 if (ice_vsi_stop_all_rx_rings(vsi)) {
1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1656 vsi->vsi_num);
1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1658 goto error_param;
1659 }
1660
1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1662 } else if (q_map) {
1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1666 goto error_param;
1667 }
1668
1669 /* Skip queue if not enabled */
1670 if (!test_bit(vf_q_id, vf->rxq_ena))
1671 continue;
1672
1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1674 true)) {
1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676 vf_q_id, vsi->vsi_num);
1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1678 goto error_param;
1679 }
1680
1681 /* Clear enabled queues flag */
1682 clear_bit(vf_q_id, vf->rxq_ena);
1683 }
1684 }
1685
1686 /* Clear enabled queues flag */
1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1689
1690 error_param:
1691 /* send the response to the VF */
1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1693 NULL, 0);
1694 }
1695
1696 /**
1697 * ice_cfg_interrupt
1698 * @vf: pointer to the VF info
1699 * @vsi: the VSI being configured
1700 * @map: vector map for mapping vectors to queues
1701 * @q_vector: structure for interrupt vector
1702 * configure the IRQ to queue map
1703 */
1704 static enum virtchnl_status_code
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706 struct virtchnl_vector_map *map,
1707 struct ice_q_vector *q_vector)
1708 {
1709 u16 vsi_q_id, vsi_q_id_idx;
1710 unsigned long qmap;
1711
1712 q_vector->num_ring_rx = 0;
1713 q_vector->num_ring_tx = 0;
1714
1715 qmap = map->rxq_map;
1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717 vsi_q_id = vsi_q_id_idx;
1718
1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720 return VIRTCHNL_STATUS_ERR_PARAM;
1721
1722 q_vector->num_ring_rx++;
1723 q_vector->rx.itr_idx = map->rxitr_idx;
1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726 q_vector->vf_reg_idx,
1727 q_vector->rx.itr_idx);
1728 }
1729
1730 qmap = map->txq_map;
1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732 vsi_q_id = vsi_q_id_idx;
1733
1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735 return VIRTCHNL_STATUS_ERR_PARAM;
1736
1737 q_vector->num_ring_tx++;
1738 q_vector->tx.itr_idx = map->txitr_idx;
1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741 q_vector->vf_reg_idx,
1742 q_vector->tx.itr_idx);
1743 }
1744
1745 return VIRTCHNL_STATUS_SUCCESS;
1746 }
1747
1748 /**
1749 * ice_vc_cfg_irq_map_msg
1750 * @vf: pointer to the VF info
1751 * @msg: pointer to the msg buffer
1752 *
1753 * called from the VF to configure the IRQ to queue map
1754 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1756 {
1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758 u16 num_q_vectors_mapped, vsi_id, vector_id;
1759 struct virtchnl_irq_map_info *irqmap_info;
1760 struct virtchnl_vector_map *map;
1761 struct ice_vsi *vsi;
1762 int i;
1763
1764 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765 num_q_vectors_mapped = irqmap_info->num_vectors;
1766
1767 /* Check to make sure number of VF vectors mapped is not greater than
1768 * number of VF vectors originally allocated, and check that
1769 * there is actually at least a single VF queue vector mapped
1770 */
1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772 vf->num_msix < num_q_vectors_mapped ||
1773 !num_q_vectors_mapped) {
1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775 goto error_param;
1776 }
1777
1778 vsi = ice_get_vf_vsi(vf);
1779 if (!vsi) {
1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1781 goto error_param;
1782 }
1783
1784 for (i = 0; i < num_q_vectors_mapped; i++) {
1785 struct ice_q_vector *q_vector;
1786
1787 map = &irqmap_info->vecmap[i];
1788
1789 vector_id = map->vector_id;
1790 vsi_id = map->vsi_id;
1791 /* vector_id is always 0-based for each VF, and can never be
1792 * larger than or equal to the max allowed interrupts per VF
1793 */
1794 if (!(vector_id < vf->num_msix) ||
1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796 (!vector_id && (map->rxq_map || map->txq_map))) {
1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1798 goto error_param;
1799 }
1800
1801 /* No need to map VF miscellaneous or rogue vector */
1802 if (!vector_id)
1803 continue;
1804
1805 /* Subtract non queue vector from vector_id passed by VF
1806 * to get actual number of VSI queue vector array index
1807 */
1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1809 if (!q_vector) {
1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811 goto error_param;
1812 }
1813
1814 /* lookout for the invalid queue index */
1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1816 if (v_ret)
1817 goto error_param;
1818 }
1819
1820 error_param:
1821 /* send the response to the VF */
1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1823 NULL, 0);
1824 }
1825
1826 /**
1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828 * @vf: pointer to the VF info
1829 * @msg: pointer to the msg buffer which holds the command descriptor
1830 *
1831 * Configure VF queues bandwidth.
1832 *
1833 * Return: 0 on success or negative error value.
1834 */
ice_vc_cfg_q_bw(struct ice_vf * vf,u8 * msg)1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1836 {
1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838 struct virtchnl_queues_bw_cfg *qbw =
1839 (struct virtchnl_queues_bw_cfg *)msg;
1840 struct ice_vsi *vsi;
1841 u16 i;
1842
1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1846 goto err;
1847 }
1848
1849 vsi = ice_get_vf_vsi(vf);
1850 if (!vsi) {
1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1852 goto err;
1853 }
1854
1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1860 goto err;
1861 }
1862
1863 for (i = 0; i < qbw->num_queues; i++) {
1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate)
1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867 qbw->cfg[i].queue_id, vf->vf_id,
1868 vf->max_tx_rate);
1869 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1870 qbw->cfg[i].shaper.committed < vf->min_tx_rate)
1871 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1872 qbw->cfg[i].queue_id, vf->vf_id,
1873 vf->max_tx_rate);
1874 }
1875
1876 for (i = 0; i < qbw->num_queues; i++) {
1877 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1878 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1879 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1880 vf->qs_bw[i].tc = qbw->cfg[i].tc;
1881 }
1882
1883 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1885
1886 err:
1887 /* send the response to the VF */
1888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1889 v_ret, NULL, 0);
1890 }
1891
1892 /**
1893 * ice_vc_cfg_q_quanta - Configure per queue quanta
1894 * @vf: pointer to the VF info
1895 * @msg: pointer to the msg buffer which holds the command descriptor
1896 *
1897 * Configure VF queues quanta.
1898 *
1899 * Return: 0 on success or negative error value.
1900 */
ice_vc_cfg_q_quanta(struct ice_vf * vf,u8 * msg)1901 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1902 {
1903 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1904 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i;
1905 struct virtchnl_quanta_cfg *qquanta =
1906 (struct virtchnl_quanta_cfg *)msg;
1907 struct ice_vsi *vsi;
1908 int ret;
1909
1910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1911 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1912 goto err;
1913 }
1914
1915 vsi = ice_get_vf_vsi(vf);
1916 if (!vsi) {
1917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1918 goto err;
1919 }
1920
1921 end_qid = qquanta->queue_select.start_queue_id +
1922 qquanta->queue_select.num_queues;
1923 if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1924 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1925 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1926 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1928 goto err;
1929 }
1930
1931 quanta_size = qquanta->quanta_size;
1932 if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1933 quanta_size < ICE_MIN_QUANTA_SIZE) {
1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1935 goto err;
1936 }
1937
1938 if (quanta_size % 64) {
1939 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1941 goto err;
1942 }
1943
1944 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1945 &quanta_prof_id);
1946 if (ret) {
1947 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1948 goto err;
1949 }
1950
1951 start_qid = qquanta->queue_select.start_queue_id;
1952 for (i = start_qid; i < end_qid; i++)
1953 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1954
1955 err:
1956 /* send the response to the VF */
1957 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1958 v_ret, NULL, 0);
1959 }
1960
1961 /**
1962 * ice_vc_cfg_qs_msg
1963 * @vf: pointer to the VF info
1964 * @msg: pointer to the msg buffer
1965 *
1966 * called from the VF to configure the Rx/Tx queues
1967 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1968 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1969 {
1970 struct virtchnl_vsi_queue_config_info *qci =
1971 (struct virtchnl_vsi_queue_config_info *)msg;
1972 struct virtchnl_queue_pair_info *qpi;
1973 struct ice_pf *pf = vf->pf;
1974 struct ice_lag *lag;
1975 struct ice_vsi *vsi;
1976 u8 act_prt, pri_prt;
1977 int i = -1, q_idx;
1978
1979 lag = pf->lag;
1980 mutex_lock(&pf->lag_mutex);
1981 act_prt = ICE_LAG_INVALID_PORT;
1982 pri_prt = pf->hw.port_info->lport;
1983 if (lag && lag->bonded && lag->primary) {
1984 act_prt = lag->active_port;
1985 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1986 lag->upper_netdev)
1987 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1988 else
1989 act_prt = ICE_LAG_INVALID_PORT;
1990 }
1991
1992 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1993 goto error_param;
1994
1995 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1996 goto error_param;
1997
1998 vsi = ice_get_vf_vsi(vf);
1999 if (!vsi)
2000 goto error_param;
2001
2002 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2003 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2004 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2005 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2006 goto error_param;
2007 }
2008
2009 for (i = 0; i < qci->num_queue_pairs; i++) {
2010 if (!qci->qpair[i].rxq.crc_disable)
2011 continue;
2012
2013 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2014 vf->vlan_strip_ena)
2015 goto error_param;
2016 }
2017
2018 for (i = 0; i < qci->num_queue_pairs; i++) {
2019 qpi = &qci->qpair[i];
2020 if (qpi->txq.vsi_id != qci->vsi_id ||
2021 qpi->rxq.vsi_id != qci->vsi_id ||
2022 qpi->rxq.queue_id != qpi->txq.queue_id ||
2023 qpi->txq.headwb_enabled ||
2024 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2025 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2026 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2027 goto error_param;
2028 }
2029
2030 q_idx = qpi->rxq.queue_id;
2031
2032 /* make sure selected "q_idx" is in valid range of queues
2033 * for selected "vsi"
2034 */
2035 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2036 goto error_param;
2037 }
2038
2039 /* copy Tx queue info from VF into VSI */
2040 if (qpi->txq.ring_len > 0) {
2041 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2042 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2043
2044 /* Disable any existing queue first */
2045 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2046 goto error_param;
2047
2048 /* Configure a queue with the requested settings */
2049 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2050 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2051 vf->vf_id, q_idx);
2052 goto error_param;
2053 }
2054 }
2055
2056 /* copy Rx queue info from VF into VSI */
2057 if (qpi->rxq.ring_len > 0) {
2058 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2059 struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2060 u32 rxdid;
2061
2062 ring->dma = qpi->rxq.dma_ring_addr;
2063 ring->count = qpi->rxq.ring_len;
2064
2065 if (qpi->rxq.crc_disable)
2066 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2067 else
2068 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2069
2070 if (qpi->rxq.databuffer_size != 0 &&
2071 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2072 qpi->rxq.databuffer_size < 1024))
2073 goto error_param;
2074 ring->rx_buf_len = qpi->rxq.databuffer_size;
2075 if (qpi->rxq.max_pkt_size > max_frame_size ||
2076 qpi->rxq.max_pkt_size < 64)
2077 goto error_param;
2078
2079 ring->max_frame = qpi->rxq.max_pkt_size;
2080 /* add space for the port VLAN since the VF driver is
2081 * not expected to account for it in the MTU
2082 * calculation
2083 */
2084 if (ice_vf_is_port_vlan_ena(vf))
2085 ring->max_frame += VLAN_HLEN;
2086
2087 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2088 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2089 vf->vf_id, q_idx);
2090 goto error_param;
2091 }
2092
2093 /* If Rx flex desc is supported, select RXDID for Rx
2094 * queues. Otherwise, use legacy 32byte descriptor
2095 * format. Legacy 16byte descriptor is not supported.
2096 * If this RXDID is selected, return error.
2097 */
2098 if (vf->driver_caps &
2099 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2100 rxdid = qpi->rxq.rxdid;
2101 if (!(BIT(rxdid) & pf->supported_rxdids))
2102 goto error_param;
2103 } else {
2104 rxdid = ICE_RXDID_LEGACY_1;
2105 }
2106
2107 ice_write_qrxflxp_cntxt(&vsi->back->hw,
2108 vsi->rxq_map[q_idx],
2109 rxdid, 0x03, false);
2110 }
2111 }
2112
2113 if (lag && lag->bonded && lag->primary &&
2114 act_prt != ICE_LAG_INVALID_PORT)
2115 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2116 mutex_unlock(&pf->lag_mutex);
2117
2118 /* send the response to the VF */
2119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2120 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2121 error_param:
2122 /* disable whatever we can */
2123 for (; i >= 0; i--) {
2124 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2125 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2126 vf->vf_id, i);
2127 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2128 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2129 vf->vf_id, i);
2130 }
2131
2132 if (lag && lag->bonded && lag->primary &&
2133 act_prt != ICE_LAG_INVALID_PORT)
2134 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2135 mutex_unlock(&pf->lag_mutex);
2136
2137 ice_lag_move_new_vf_nodes(vf);
2138
2139 /* send the response to the VF */
2140 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2141 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2142 }
2143
2144 /**
2145 * ice_can_vf_change_mac
2146 * @vf: pointer to the VF info
2147 *
2148 * Return true if the VF is allowed to change its MAC filters, false otherwise
2149 */
ice_can_vf_change_mac(struct ice_vf * vf)2150 static bool ice_can_vf_change_mac(struct ice_vf *vf)
2151 {
2152 /* If the VF MAC address has been set administratively (via the
2153 * ndo_set_vf_mac command), then deny permission to the VF to
2154 * add/delete unicast MAC addresses, unless the VF is trusted
2155 */
2156 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2157 return false;
2158
2159 return true;
2160 }
2161
2162 /**
2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2164 * @vc_ether_addr: used to extract the type
2165 */
2166 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)2167 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2168 {
2169 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2170 }
2171
2172 /**
2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2175 */
2176 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)2177 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2178 {
2179 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2180
2181 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2182 }
2183
2184 /**
2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2187 *
2188 * This function should only be called when the MAC address in
2189 * virtchnl_ether_addr is a valid unicast MAC
2190 */
2191 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)2192 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2193 {
2194 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2195
2196 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2197 }
2198
2199 /**
2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2201 * @vf: VF to update
2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2203 */
2204 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2205 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2206 {
2207 u8 *mac_addr = vc_ether_addr->addr;
2208
2209 if (!is_valid_ether_addr(mac_addr))
2210 return;
2211
2212 /* only allow legacy VF drivers to set the device and hardware MAC if it
2213 * is zero and allow new VF drivers to set the hardware MAC if the type
2214 * was correctly specified over VIRTCHNL
2215 */
2216 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2217 is_zero_ether_addr(vf->hw_lan_addr)) ||
2218 ice_is_vc_addr_primary(vc_ether_addr)) {
2219 ether_addr_copy(vf->dev_lan_addr, mac_addr);
2220 ether_addr_copy(vf->hw_lan_addr, mac_addr);
2221 }
2222
2223 /* hardware and device MACs are already set, but its possible that the
2224 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2225 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2226 * away for the legacy VF driver case as it will be updated in the
2227 * delete flow for this case
2228 */
2229 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2230 ether_addr_copy(vf->legacy_last_added_umac.addr,
2231 mac_addr);
2232 vf->legacy_last_added_umac.time_modified = jiffies;
2233 }
2234 }
2235
2236 /**
2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2238 * @vf: pointer to the VF info
2239 * @vsi: pointer to the VF's VSI
2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2241 */
2242 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2243 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2244 struct virtchnl_ether_addr *vc_ether_addr)
2245 {
2246 struct device *dev = ice_pf_to_dev(vf->pf);
2247 u8 *mac_addr = vc_ether_addr->addr;
2248 int ret;
2249
2250 /* device MAC already added */
2251 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2252 return 0;
2253
2254 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2255 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2256 return -EPERM;
2257 }
2258
2259 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2260 if (ret == -EEXIST) {
2261 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2262 vf->vf_id);
2263 /* don't return since we might need to update
2264 * the primary MAC in ice_vfhw_mac_add() below
2265 */
2266 } else if (ret) {
2267 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2268 mac_addr, vf->vf_id, ret);
2269 return ret;
2270 } else {
2271 vf->num_mac++;
2272 }
2273
2274 ice_vfhw_mac_add(vf, vc_ether_addr);
2275
2276 return ret;
2277 }
2278
2279 /**
2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2281 * @last_added_umac: structure used to check expiration
2282 */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)2283 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2284 {
2285 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
2286 return time_is_before_jiffies(last_added_umac->time_modified +
2287 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2288 }
2289
2290 /**
2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2292 * @vf: VF to update
2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2294 *
2295 * only update cached hardware MAC for legacy VF drivers on delete
2296 * because we cannot guarantee order/type of MAC from the VF driver
2297 */
2298 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2299 ice_update_legacy_cached_mac(struct ice_vf *vf,
2300 struct virtchnl_ether_addr *vc_ether_addr)
2301 {
2302 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2303 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2304 return;
2305
2306 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2307 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2308 }
2309
2310 /**
2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2312 * @vf: VF to update
2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2314 */
2315 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2316 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2317 {
2318 u8 *mac_addr = vc_ether_addr->addr;
2319
2320 if (!is_valid_ether_addr(mac_addr) ||
2321 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2322 return;
2323
2324 /* allow the device MAC to be repopulated in the add flow and don't
2325 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2326 * to be persistent on VM reboot and across driver unload/load, which
2327 * won't work if we clear the hardware MAC here
2328 */
2329 eth_zero_addr(vf->dev_lan_addr);
2330
2331 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2332 }
2333
2334 /**
2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2336 * @vf: pointer to the VF info
2337 * @vsi: pointer to the VF's VSI
2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2339 */
2340 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2341 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2342 struct virtchnl_ether_addr *vc_ether_addr)
2343 {
2344 struct device *dev = ice_pf_to_dev(vf->pf);
2345 u8 *mac_addr = vc_ether_addr->addr;
2346 int status;
2347
2348 if (!ice_can_vf_change_mac(vf) &&
2349 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2350 return 0;
2351
2352 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2353 if (status == -ENOENT) {
2354 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2355 vf->vf_id);
2356 return -ENOENT;
2357 } else if (status) {
2358 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2359 mac_addr, vf->vf_id, status);
2360 return -EIO;
2361 }
2362
2363 ice_vfhw_mac_del(vf, vc_ether_addr);
2364
2365 vf->num_mac--;
2366
2367 return 0;
2368 }
2369
2370 /**
2371 * ice_vc_handle_mac_addr_msg
2372 * @vf: pointer to the VF info
2373 * @msg: pointer to the msg buffer
2374 * @set: true if MAC filters are being set, false otherwise
2375 *
2376 * add guest MAC address filter
2377 */
2378 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)2379 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2380 {
2381 int (*ice_vc_cfg_mac)
2382 (struct ice_vf *vf, struct ice_vsi *vsi,
2383 struct virtchnl_ether_addr *virtchnl_ether_addr);
2384 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2385 struct virtchnl_ether_addr_list *al =
2386 (struct virtchnl_ether_addr_list *)msg;
2387 struct ice_pf *pf = vf->pf;
2388 enum virtchnl_ops vc_op;
2389 struct ice_vsi *vsi;
2390 int i;
2391
2392 if (set) {
2393 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2394 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2395 } else {
2396 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2397 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2398 }
2399
2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2401 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403 goto handle_mac_exit;
2404 }
2405
2406 /* If this VF is not privileged, then we can't add more than a
2407 * limited number of addresses. Check to make sure that the
2408 * additions do not push us over the limit.
2409 */
2410 if (set && !ice_is_vf_trusted(vf) &&
2411 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2412 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2413 vf->vf_id);
2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415 goto handle_mac_exit;
2416 }
2417
2418 vsi = ice_get_vf_vsi(vf);
2419 if (!vsi) {
2420 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 goto handle_mac_exit;
2422 }
2423
2424 for (i = 0; i < al->num_elements; i++) {
2425 u8 *mac_addr = al->list[i].addr;
2426 int result;
2427
2428 if (is_broadcast_ether_addr(mac_addr) ||
2429 is_zero_ether_addr(mac_addr))
2430 continue;
2431
2432 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2433 if (result == -EEXIST || result == -ENOENT) {
2434 continue;
2435 } else if (result) {
2436 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2437 goto handle_mac_exit;
2438 }
2439 }
2440
2441 handle_mac_exit:
2442 /* send the response to the VF */
2443 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2444 }
2445
2446 /**
2447 * ice_vc_add_mac_addr_msg
2448 * @vf: pointer to the VF info
2449 * @msg: pointer to the msg buffer
2450 *
2451 * add guest MAC address filter
2452 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2453 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2454 {
2455 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2456 }
2457
2458 /**
2459 * ice_vc_del_mac_addr_msg
2460 * @vf: pointer to the VF info
2461 * @msg: pointer to the msg buffer
2462 *
2463 * remove guest MAC address filter
2464 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2465 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2466 {
2467 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2468 }
2469
2470 /**
2471 * ice_vc_request_qs_msg
2472 * @vf: pointer to the VF info
2473 * @msg: pointer to the msg buffer
2474 *
2475 * VFs get a default number of queues but can use this message to request a
2476 * different number. If the request is successful, PF will reset the VF and
2477 * return 0. If unsuccessful, PF will send message informing VF of number of
2478 * available queue pairs via virtchnl message response to VF.
2479 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2480 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2481 {
2482 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2483 struct virtchnl_vf_res_request *vfres =
2484 (struct virtchnl_vf_res_request *)msg;
2485 u16 req_queues = vfres->num_queue_pairs;
2486 struct ice_pf *pf = vf->pf;
2487 u16 max_allowed_vf_queues;
2488 u16 tx_rx_queue_left;
2489 struct device *dev;
2490 u16 cur_queues;
2491
2492 dev = ice_pf_to_dev(pf);
2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 goto error_param;
2496 }
2497
2498 cur_queues = vf->num_vf_qs;
2499 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2500 ice_get_avail_rxq_count(pf));
2501 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2502 if (!req_queues) {
2503 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2504 vf->vf_id);
2505 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2506 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2507 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2508 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2509 } else if (req_queues > cur_queues &&
2510 req_queues - cur_queues > tx_rx_queue_left) {
2511 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2512 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2513 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2514 ICE_MAX_RSS_QS_PER_VF);
2515 } else {
2516 /* request is successful, then reset VF */
2517 vf->num_req_qs = req_queues;
2518 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2519 dev_info(dev, "VF %d granted request of %u queues.\n",
2520 vf->vf_id, req_queues);
2521 return 0;
2522 }
2523
2524 error_param:
2525 /* send the response to the VF */
2526 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2527 v_ret, (u8 *)vfres, sizeof(*vfres));
2528 }
2529
2530 /**
2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2532 * @caps: VF driver negotiated capabilities
2533 *
2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2535 */
ice_vf_vlan_offload_ena(u32 caps)2536 static bool ice_vf_vlan_offload_ena(u32 caps)
2537 {
2538 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2539 }
2540
2541 /**
2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2543 * @vf: VF used to determine if VLAN promiscuous config is allowed
2544 */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2545 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2546 {
2547 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2548 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2549 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2550 return true;
2551
2552 return false;
2553 }
2554
2555 /**
2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2557 * @vf: VF to enable VLAN promisc on
2558 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2559 * @vlan: VLAN used to enable VLAN promiscuous
2560 *
2561 * This function should only be called if VLAN promiscuous mode is allowed,
2562 * which can be determined via ice_is_vlan_promisc_allowed().
2563 */
ice_vf_ena_vlan_promisc(struct ice_vf * vf,struct ice_vsi * vsi,struct ice_vlan * vlan)2564 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2565 struct ice_vlan *vlan)
2566 {
2567 u8 promisc_m = 0;
2568 int status;
2569
2570 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2571 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2572 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2573 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2574
2575 if (!promisc_m)
2576 return 0;
2577
2578 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2579 vlan->vid);
2580 if (status && status != -EEXIST)
2581 return status;
2582
2583 return 0;
2584 }
2585
2586 /**
2587 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2588 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2589 * @vlan: VLAN used to disable VLAN promiscuous
2590 *
2591 * This function should only be called if VLAN promiscuous mode is allowed,
2592 * which can be determined via ice_is_vlan_promisc_allowed().
2593 */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2594 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2595 {
2596 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2597 int status;
2598
2599 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2600 vlan->vid);
2601 if (status && status != -ENOENT)
2602 return status;
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2609 * @vf: VF to check against
2610 * @vsi: VF's VSI
2611 *
2612 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2613 * wants to, so return false.
2614 *
2615 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2616 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2617 */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2618 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2619 {
2620 if (ice_is_vf_trusted(vf))
2621 return false;
2622
2623 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2624 return ((ice_vsi_num_non_zero_vlans(vsi) +
2625 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2626 }
2627
2628 /**
2629 * ice_vc_process_vlan_msg
2630 * @vf: pointer to the VF info
2631 * @msg: pointer to the msg buffer
2632 * @add_v: Add VLAN if true, otherwise delete VLAN
2633 *
2634 * Process virtchnl op to add or remove programmed guest VLAN ID
2635 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2636 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2637 {
2638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2639 struct virtchnl_vlan_filter_list *vfl =
2640 (struct virtchnl_vlan_filter_list *)msg;
2641 struct ice_pf *pf = vf->pf;
2642 bool vlan_promisc = false;
2643 struct ice_vsi *vsi;
2644 struct device *dev;
2645 int status = 0;
2646 int i;
2647
2648 dev = ice_pf_to_dev(pf);
2649 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2650 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2651 goto error_param;
2652 }
2653
2654 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656 goto error_param;
2657 }
2658
2659 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2660 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2661 goto error_param;
2662 }
2663
2664 for (i = 0; i < vfl->num_elements; i++) {
2665 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2666 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2667 dev_err(dev, "invalid VF VLAN id %d\n",
2668 vfl->vlan_id[i]);
2669 goto error_param;
2670 }
2671 }
2672
2673 vsi = ice_get_vf_vsi(vf);
2674 if (!vsi) {
2675 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2676 goto error_param;
2677 }
2678
2679 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2680 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2681 vf->vf_id);
2682 /* There is no need to let VF know about being not trusted,
2683 * so we can just return success message here
2684 */
2685 goto error_param;
2686 }
2687
2688 /* in DVM a VF can add/delete inner VLAN filters when
2689 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2690 */
2691 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2693 goto error_param;
2694 }
2695
2696 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2697 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2698 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2699 */
2700 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2701 !ice_is_dvm_ena(&pf->hw) &&
2702 !ice_vf_is_port_vlan_ena(vf);
2703
2704 if (add_v) {
2705 for (i = 0; i < vfl->num_elements; i++) {
2706 u16 vid = vfl->vlan_id[i];
2707 struct ice_vlan vlan;
2708
2709 if (ice_vf_has_max_vlans(vf, vsi)) {
2710 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2711 vf->vf_id);
2712 /* There is no need to let VF know about being
2713 * not trusted, so we can just return success
2714 * message here as well.
2715 */
2716 goto error_param;
2717 }
2718
2719 /* we add VLAN 0 by default for each VF so we can enable
2720 * Tx VLAN anti-spoof without triggering MDD events so
2721 * we don't need to add it again here
2722 */
2723 if (!vid)
2724 continue;
2725
2726 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2727 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2728 if (status) {
2729 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2730 goto error_param;
2731 }
2732
2733 /* Enable VLAN filtering on first non-zero VLAN */
2734 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2735 if (vf->spoofchk) {
2736 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2737 if (status) {
2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2739 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2740 vid, status);
2741 goto error_param;
2742 }
2743 }
2744 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2745 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2746 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2747 vid, status);
2748 goto error_param;
2749 }
2750 } else if (vlan_promisc) {
2751 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2752 if (status) {
2753 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2754 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2755 vid, status);
2756 }
2757 }
2758 }
2759 } else {
2760 /* In case of non_trusted VF, number of VLAN elements passed
2761 * to PF for removal might be greater than number of VLANs
2762 * filter programmed for that VF - So, use actual number of
2763 * VLANS added earlier with add VLAN opcode. In order to avoid
2764 * removing VLAN that doesn't exist, which result to sending
2765 * erroneous failed message back to the VF
2766 */
2767 int num_vf_vlan;
2768
2769 num_vf_vlan = vsi->num_vlan;
2770 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2771 u16 vid = vfl->vlan_id[i];
2772 struct ice_vlan vlan;
2773
2774 /* we add VLAN 0 by default for each VF so we can enable
2775 * Tx VLAN anti-spoof without triggering MDD events so
2776 * we don't want a VIRTCHNL request to remove it
2777 */
2778 if (!vid)
2779 continue;
2780
2781 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2782 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2783 if (status) {
2784 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2785 goto error_param;
2786 }
2787
2788 /* Disable VLAN filtering when only VLAN 0 is left */
2789 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2790 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2791 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2792 }
2793
2794 if (vlan_promisc)
2795 ice_vf_dis_vlan_promisc(vsi, &vlan);
2796 }
2797 }
2798
2799 error_param:
2800 /* send the response to the VF */
2801 if (add_v)
2802 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2803 NULL, 0);
2804 else
2805 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2806 NULL, 0);
2807 }
2808
2809 /**
2810 * ice_vc_add_vlan_msg
2811 * @vf: pointer to the VF info
2812 * @msg: pointer to the msg buffer
2813 *
2814 * Add and program guest VLAN ID
2815 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2816 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2817 {
2818 return ice_vc_process_vlan_msg(vf, msg, true);
2819 }
2820
2821 /**
2822 * ice_vc_remove_vlan_msg
2823 * @vf: pointer to the VF info
2824 * @msg: pointer to the msg buffer
2825 *
2826 * remove programmed guest VLAN ID
2827 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2828 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2829 {
2830 return ice_vc_process_vlan_msg(vf, msg, false);
2831 }
2832
2833 /**
2834 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2835 * @vsi: pointer to the VF VSI info
2836 */
ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi * vsi)2837 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2838 {
2839 unsigned int i;
2840
2841 ice_for_each_alloc_rxq(vsi, i)
2842 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2843 return true;
2844
2845 return false;
2846 }
2847
2848 /**
2849 * ice_vc_ena_vlan_stripping
2850 * @vf: pointer to the VF info
2851 *
2852 * Enable VLAN header stripping for a given VF
2853 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2854 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2855 {
2856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2857 struct ice_vsi *vsi;
2858
2859 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2860 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2861 goto error_param;
2862 }
2863
2864 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2866 goto error_param;
2867 }
2868
2869 vsi = ice_get_vf_vsi(vf);
2870 if (!vsi) {
2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2872 goto error_param;
2873 }
2874
2875 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2876 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2877 else
2878 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2879
2880 error_param:
2881 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2882 v_ret, NULL, 0);
2883 }
2884
2885 /**
2886 * ice_vc_dis_vlan_stripping
2887 * @vf: pointer to the VF info
2888 *
2889 * Disable VLAN header stripping for a given VF
2890 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2891 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2892 {
2893 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2894 struct ice_vsi *vsi;
2895
2896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2897 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2898 goto error_param;
2899 }
2900
2901 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2902 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2903 goto error_param;
2904 }
2905
2906 vsi = ice_get_vf_vsi(vf);
2907 if (!vsi) {
2908 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2909 goto error_param;
2910 }
2911
2912 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2913 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2914 else
2915 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2916
2917 error_param:
2918 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2919 v_ret, NULL, 0);
2920 }
2921
2922 /**
2923 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2924 * @vf: pointer to the VF info
2925 */
ice_vc_get_rss_hena(struct ice_vf * vf)2926 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2927 {
2928 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2929 struct virtchnl_rss_hena *vrh = NULL;
2930 int len = 0, ret;
2931
2932 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2933 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2934 goto err;
2935 }
2936
2937 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2938 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2939 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2940 goto err;
2941 }
2942
2943 len = sizeof(struct virtchnl_rss_hena);
2944 vrh = kzalloc(len, GFP_KERNEL);
2945 if (!vrh) {
2946 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2947 len = 0;
2948 goto err;
2949 }
2950
2951 vrh->hena = ICE_DEFAULT_RSS_HENA;
2952 err:
2953 /* send the response back to the VF */
2954 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2955 (u8 *)vrh, len);
2956 kfree(vrh);
2957 return ret;
2958 }
2959
2960 /**
2961 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2962 * @vf: pointer to the VF info
2963 * @msg: pointer to the msg buffer
2964 */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2965 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2966 {
2967 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2968 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2969 struct ice_pf *pf = vf->pf;
2970 struct ice_vsi *vsi;
2971 struct device *dev;
2972 int status;
2973
2974 dev = ice_pf_to_dev(pf);
2975
2976 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978 goto err;
2979 }
2980
2981 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2982 dev_err(dev, "RSS not supported by PF\n");
2983 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2984 goto err;
2985 }
2986
2987 vsi = ice_get_vf_vsi(vf);
2988 if (!vsi) {
2989 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2990 goto err;
2991 }
2992
2993 /* clear all previously programmed RSS configuration to allow VF drivers
2994 * the ability to customize the RSS configuration and/or completely
2995 * disable RSS
2996 */
2997 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2998 if (status && !vrh->hena) {
2999 /* only report failure to clear the current RSS configuration if
3000 * that was clearly the VF's intention (i.e. vrh->hena = 0)
3001 */
3002 v_ret = ice_err_to_virt_err(status);
3003 goto err;
3004 } else if (status) {
3005 /* allow the VF to update the RSS configuration even on failure
3006 * to clear the current RSS confguration in an attempt to keep
3007 * RSS in a working state
3008 */
3009 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3010 vf->vf_id);
3011 }
3012
3013 if (vrh->hena) {
3014 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3015 v_ret = ice_err_to_virt_err(status);
3016 }
3017
3018 /* send the response to the VF */
3019 err:
3020 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3021 NULL, 0);
3022 }
3023
3024 /**
3025 * ice_vc_query_rxdid - query RXDID supported by DDP package
3026 * @vf: pointer to VF info
3027 *
3028 * Called from VF to query a bitmap of supported flexible
3029 * descriptor RXDIDs of a DDP package.
3030 */
ice_vc_query_rxdid(struct ice_vf * vf)3031 static int ice_vc_query_rxdid(struct ice_vf *vf)
3032 {
3033 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3034 struct virtchnl_supported_rxdids rxdid = {};
3035 struct ice_pf *pf = vf->pf;
3036
3037 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3038 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3039 goto err;
3040 }
3041
3042 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3043 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3044 goto err;
3045 }
3046
3047 rxdid.supported_rxdids = pf->supported_rxdids;
3048
3049 err:
3050 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3051 v_ret, (u8 *)&rxdid, sizeof(rxdid));
3052 }
3053
3054 /**
3055 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3056 * @vf: VF to enable/disable VLAN stripping for on initialization
3057 *
3058 * Set the default for VLAN stripping based on whether a port VLAN is configured
3059 * and the current VLAN mode of the device.
3060 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)3061 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3062 {
3063 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3064
3065 vf->vlan_strip_ena = 0;
3066
3067 if (!vsi)
3068 return -EINVAL;
3069
3070 /* don't modify stripping if port VLAN is configured in SVM since the
3071 * port VLAN is based on the inner/single VLAN in SVM
3072 */
3073 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3074 return 0;
3075
3076 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3077 int err;
3078
3079 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3080 if (!err)
3081 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3082 return err;
3083 }
3084
3085 return vsi->inner_vlan_ops.dis_stripping(vsi);
3086 }
3087
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)3088 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3089 {
3090 if (vf->trusted)
3091 return VLAN_N_VID;
3092 else
3093 return ICE_MAX_VLAN_PER_VF;
3094 }
3095
3096 /**
3097 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3098 * @vf: VF that being checked for
3099 *
3100 * When the device is in double VLAN mode, check whether or not the outer VLAN
3101 * is allowed.
3102 */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)3103 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3104 {
3105 if (ice_vf_is_port_vlan_ena(vf))
3106 return true;
3107
3108 return false;
3109 }
3110
3111 /**
3112 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3113 * @vf: VF that capabilities are being set for
3114 * @caps: VLAN capabilities to populate
3115 *
3116 * Determine VLAN capabilities support based on whether a port VLAN is
3117 * configured. If a port VLAN is configured then the VF should use the inner
3118 * filtering/offload capabilities since the port VLAN is using the outer VLAN
3119 * capabilies.
3120 */
3121 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)3122 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3123 {
3124 struct virtchnl_vlan_supported_caps *supported_caps;
3125
3126 if (ice_vf_outer_vlan_not_allowed(vf)) {
3127 /* until support for inner VLAN filtering is added when a port
3128 * VLAN is configured, only support software offloaded inner
3129 * VLANs when a port VLAN is confgured in DVM
3130 */
3131 supported_caps = &caps->filtering.filtering_support;
3132 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3133
3134 supported_caps = &caps->offloads.stripping_support;
3135 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3136 VIRTCHNL_VLAN_TOGGLE |
3137 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3138 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3139
3140 supported_caps = &caps->offloads.insertion_support;
3141 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3142 VIRTCHNL_VLAN_TOGGLE |
3143 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3144 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3145
3146 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3147 caps->offloads.ethertype_match =
3148 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3149 } else {
3150 supported_caps = &caps->filtering.filtering_support;
3151 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3152 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3153 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3154 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3155 VIRTCHNL_VLAN_ETHERTYPE_AND;
3156 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3157 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3158 VIRTCHNL_VLAN_ETHERTYPE_9100;
3159
3160 supported_caps = &caps->offloads.stripping_support;
3161 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3162 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3163 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3164 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3165 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3166 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3167 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3168 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3169 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3170
3171 supported_caps = &caps->offloads.insertion_support;
3172 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3173 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3174 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3175 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3176 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3177 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3178 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3179 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3180 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3181
3182 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3183
3184 caps->offloads.ethertype_match =
3185 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3186 }
3187
3188 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3189 }
3190
3191 /**
3192 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3193 * @vf: VF that capabilities are being set for
3194 * @caps: VLAN capabilities to populate
3195 *
3196 * Determine VLAN capabilities support based on whether a port VLAN is
3197 * configured. If a port VLAN is configured then the VF does not have any VLAN
3198 * filtering or offload capabilities since the port VLAN is using the inner VLAN
3199 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3200 * VLAN fitlering and offload capabilities.
3201 */
3202 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)3203 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3204 {
3205 struct virtchnl_vlan_supported_caps *supported_caps;
3206
3207 if (ice_vf_is_port_vlan_ena(vf)) {
3208 supported_caps = &caps->filtering.filtering_support;
3209 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3210 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3211
3212 supported_caps = &caps->offloads.stripping_support;
3213 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3214 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3215
3216 supported_caps = &caps->offloads.insertion_support;
3217 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3218 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3219
3220 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3221 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3222 caps->filtering.max_filters = 0;
3223 } else {
3224 supported_caps = &caps->filtering.filtering_support;
3225 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3226 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3227 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3228
3229 supported_caps = &caps->offloads.stripping_support;
3230 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3231 VIRTCHNL_VLAN_TOGGLE |
3232 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3233 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3234
3235 supported_caps = &caps->offloads.insertion_support;
3236 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3237 VIRTCHNL_VLAN_TOGGLE |
3238 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3239 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3240
3241 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3242 caps->offloads.ethertype_match =
3243 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3244 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3245 }
3246 }
3247
3248 /**
3249 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3250 * @vf: VF to determine VLAN capabilities for
3251 *
3252 * This will only be called if the VF and PF successfully negotiated
3253 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3254 *
3255 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3256 * is configured or not.
3257 */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)3258 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3259 {
3260 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3261 struct virtchnl_vlan_caps *caps = NULL;
3262 int err, len = 0;
3263
3264 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3266 goto out;
3267 }
3268
3269 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3270 if (!caps) {
3271 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3272 goto out;
3273 }
3274 len = sizeof(*caps);
3275
3276 if (ice_is_dvm_ena(&vf->pf->hw))
3277 ice_vc_set_dvm_caps(vf, caps);
3278 else
3279 ice_vc_set_svm_caps(vf, caps);
3280
3281 /* store negotiated caps to prevent invalid VF messages */
3282 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3283
3284 out:
3285 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3286 v_ret, (u8 *)caps, len);
3287 kfree(caps);
3288 return err;
3289 }
3290
3291 /**
3292 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3293 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3294 * @tpid: VLAN TPID used for validation
3295 *
3296 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3297 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3298 */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)3299 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3300 {
3301 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3302
3303 switch (tpid) {
3304 case ETH_P_8021Q:
3305 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3306 break;
3307 case ETH_P_8021AD:
3308 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3309 break;
3310 case ETH_P_QINQ1:
3311 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3312 break;
3313 }
3314
3315 if (!(filtering_caps & vlan_ethertype))
3316 return false;
3317
3318 return true;
3319 }
3320
3321 /**
3322 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3323 * @vc_vlan: virtchnl_vlan to validate
3324 *
3325 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3326 * false. Otherwise return true.
3327 */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)3328 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3329 {
3330 if (!vc_vlan->tci || !vc_vlan->tpid)
3331 return false;
3332
3333 return true;
3334 }
3335
3336 /**
3337 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3338 * @vfc: negotiated/supported VLAN filtering capabilities
3339 * @vfl: VLAN filter list from VF to validate
3340 *
3341 * Validate all of the filters in the VLAN filter list from the VF. If any of
3342 * the checks fail then return false. Otherwise return true.
3343 */
3344 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3345 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3346 struct virtchnl_vlan_filter_list_v2 *vfl)
3347 {
3348 u16 i;
3349
3350 if (!vfl->num_elements)
3351 return false;
3352
3353 for (i = 0; i < vfl->num_elements; i++) {
3354 struct virtchnl_vlan_supported_caps *filtering_support =
3355 &vfc->filtering_support;
3356 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3357 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3358 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3359
3360 if ((ice_vc_is_valid_vlan(outer) &&
3361 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3362 (ice_vc_is_valid_vlan(inner) &&
3363 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3364 return false;
3365
3366 if ((outer->tci_mask &&
3367 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3368 (inner->tci_mask &&
3369 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3370 return false;
3371
3372 if (((outer->tci & VLAN_PRIO_MASK) &&
3373 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3374 ((inner->tci & VLAN_PRIO_MASK) &&
3375 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3376 return false;
3377
3378 if ((ice_vc_is_valid_vlan(outer) &&
3379 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3380 outer->tpid)) ||
3381 (ice_vc_is_valid_vlan(inner) &&
3382 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3383 inner->tpid)))
3384 return false;
3385 }
3386
3387 return true;
3388 }
3389
3390 /**
3391 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3392 * @vc_vlan: struct virtchnl_vlan to transform
3393 */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)3394 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3395 {
3396 struct ice_vlan vlan = { 0 };
3397
3398 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3399 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3400 vlan.tpid = vc_vlan->tpid;
3401
3402 return vlan;
3403 }
3404
3405 /**
3406 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3407 * @vsi: VF's VSI used to perform the action
3408 * @vlan_action: function to perform the action with (i.e. add/del)
3409 * @vlan: VLAN filter to perform the action with
3410 */
3411 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)3412 ice_vc_vlan_action(struct ice_vsi *vsi,
3413 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3414 struct ice_vlan *vlan)
3415 {
3416 int err;
3417
3418 err = vlan_action(vsi, vlan);
3419 if (err)
3420 return err;
3421
3422 return 0;
3423 }
3424
3425 /**
3426 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3427 * @vf: VF used to delete the VLAN(s)
3428 * @vsi: VF's VSI used to delete the VLAN(s)
3429 * @vfl: virthchnl filter list used to delete the filters
3430 */
3431 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3432 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3433 struct virtchnl_vlan_filter_list_v2 *vfl)
3434 {
3435 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3436 int err;
3437 u16 i;
3438
3439 for (i = 0; i < vfl->num_elements; i++) {
3440 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3441 struct virtchnl_vlan *vc_vlan;
3442
3443 vc_vlan = &vlan_fltr->outer;
3444 if (ice_vc_is_valid_vlan(vc_vlan)) {
3445 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3446
3447 err = ice_vc_vlan_action(vsi,
3448 vsi->outer_vlan_ops.del_vlan,
3449 &vlan);
3450 if (err)
3451 return err;
3452
3453 if (vlan_promisc)
3454 ice_vf_dis_vlan_promisc(vsi, &vlan);
3455
3456 /* Disable VLAN filtering when only VLAN 0 is left */
3457 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3458 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3459 if (err)
3460 return err;
3461 }
3462 }
3463
3464 vc_vlan = &vlan_fltr->inner;
3465 if (ice_vc_is_valid_vlan(vc_vlan)) {
3466 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3467
3468 err = ice_vc_vlan_action(vsi,
3469 vsi->inner_vlan_ops.del_vlan,
3470 &vlan);
3471 if (err)
3472 return err;
3473
3474 /* no support for VLAN promiscuous on inner VLAN unless
3475 * we are in Single VLAN Mode (SVM)
3476 */
3477 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3478 if (vlan_promisc)
3479 ice_vf_dis_vlan_promisc(vsi, &vlan);
3480
3481 /* Disable VLAN filtering when only VLAN 0 is left */
3482 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3483 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3484 if (err)
3485 return err;
3486 }
3487 }
3488 }
3489 }
3490
3491 return 0;
3492 }
3493
3494 /**
3495 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3496 * @vf: VF the message was received from
3497 * @msg: message received from the VF
3498 */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3499 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3500 {
3501 struct virtchnl_vlan_filter_list_v2 *vfl =
3502 (struct virtchnl_vlan_filter_list_v2 *)msg;
3503 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3504 struct ice_vsi *vsi;
3505
3506 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3507 vfl)) {
3508 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3509 goto out;
3510 }
3511
3512 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3514 goto out;
3515 }
3516
3517 vsi = ice_get_vf_vsi(vf);
3518 if (!vsi) {
3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3520 goto out;
3521 }
3522
3523 if (ice_vc_del_vlans(vf, vsi, vfl))
3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3525
3526 out:
3527 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3528 0);
3529 }
3530
3531 /**
3532 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3533 * @vf: VF used to add the VLAN(s)
3534 * @vsi: VF's VSI used to add the VLAN(s)
3535 * @vfl: virthchnl filter list used to add the filters
3536 */
3537 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3538 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3539 struct virtchnl_vlan_filter_list_v2 *vfl)
3540 {
3541 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3542 int err;
3543 u16 i;
3544
3545 for (i = 0; i < vfl->num_elements; i++) {
3546 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3547 struct virtchnl_vlan *vc_vlan;
3548
3549 vc_vlan = &vlan_fltr->outer;
3550 if (ice_vc_is_valid_vlan(vc_vlan)) {
3551 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3552
3553 err = ice_vc_vlan_action(vsi,
3554 vsi->outer_vlan_ops.add_vlan,
3555 &vlan);
3556 if (err)
3557 return err;
3558
3559 if (vlan_promisc) {
3560 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3561 if (err)
3562 return err;
3563 }
3564
3565 /* Enable VLAN filtering on first non-zero VLAN */
3566 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3567 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3568 if (err)
3569 return err;
3570 }
3571 }
3572
3573 vc_vlan = &vlan_fltr->inner;
3574 if (ice_vc_is_valid_vlan(vc_vlan)) {
3575 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3576
3577 err = ice_vc_vlan_action(vsi,
3578 vsi->inner_vlan_ops.add_vlan,
3579 &vlan);
3580 if (err)
3581 return err;
3582
3583 /* no support for VLAN promiscuous on inner VLAN unless
3584 * we are in Single VLAN Mode (SVM)
3585 */
3586 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3587 if (vlan_promisc) {
3588 err = ice_vf_ena_vlan_promisc(vf, vsi,
3589 &vlan);
3590 if (err)
3591 return err;
3592 }
3593
3594 /* Enable VLAN filtering on first non-zero VLAN */
3595 if (vf->spoofchk && vlan.vid) {
3596 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3597 if (err)
3598 return err;
3599 }
3600 }
3601 }
3602 }
3603
3604 return 0;
3605 }
3606
3607 /**
3608 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3609 * @vsi: VF VSI used to get number of existing VLAN filters
3610 * @vfc: negotiated/supported VLAN filtering capabilities
3611 * @vfl: VLAN filter list from VF to validate
3612 *
3613 * Validate all of the filters in the VLAN filter list from the VF during the
3614 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3615 * Otherwise return true.
3616 */
3617 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3618 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3619 struct virtchnl_vlan_filtering_caps *vfc,
3620 struct virtchnl_vlan_filter_list_v2 *vfl)
3621 {
3622 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3623 vfl->num_elements;
3624
3625 if (num_requested_filters > vfc->max_filters)
3626 return false;
3627
3628 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3629 }
3630
3631 /**
3632 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3633 * @vf: VF the message was received from
3634 * @msg: message received from the VF
3635 */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3636 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3637 {
3638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3639 struct virtchnl_vlan_filter_list_v2 *vfl =
3640 (struct virtchnl_vlan_filter_list_v2 *)msg;
3641 struct ice_vsi *vsi;
3642
3643 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3645 goto out;
3646 }
3647
3648 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 goto out;
3651 }
3652
3653 vsi = ice_get_vf_vsi(vf);
3654 if (!vsi) {
3655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3656 goto out;
3657 }
3658
3659 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3660 &vf->vlan_v2_caps.filtering,
3661 vfl)) {
3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3663 goto out;
3664 }
3665
3666 if (ice_vc_add_vlans(vf, vsi, vfl))
3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3668
3669 out:
3670 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3671 0);
3672 }
3673
3674 /**
3675 * ice_vc_valid_vlan_setting - validate VLAN setting
3676 * @negotiated_settings: negotiated VLAN settings during VF init
3677 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3678 */
3679 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3680 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3681 {
3682 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3683 return false;
3684
3685 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3686 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3687 */
3688 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3689 hweight32(ethertype_setting) > 1)
3690 return false;
3691
3692 /* ability to modify the VLAN setting was not negotiated */
3693 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3694 return false;
3695
3696 return true;
3697 }
3698
3699 /**
3700 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3701 * @caps: negotiated VLAN settings during VF init
3702 * @msg: message to validate
3703 *
3704 * Used to validate any VLAN virtchnl message sent as a
3705 * virtchnl_vlan_setting structure. Validates the message against the
3706 * negotiated/supported caps during VF driver init.
3707 */
3708 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3709 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3710 struct virtchnl_vlan_setting *msg)
3711 {
3712 if ((!msg->outer_ethertype_setting &&
3713 !msg->inner_ethertype_setting) ||
3714 (!caps->outer && !caps->inner))
3715 return false;
3716
3717 if (msg->outer_ethertype_setting &&
3718 !ice_vc_valid_vlan_setting(caps->outer,
3719 msg->outer_ethertype_setting))
3720 return false;
3721
3722 if (msg->inner_ethertype_setting &&
3723 !ice_vc_valid_vlan_setting(caps->inner,
3724 msg->inner_ethertype_setting))
3725 return false;
3726
3727 return true;
3728 }
3729
3730 /**
3731 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3732 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3733 * @tpid: VLAN TPID to populate
3734 */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3735 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3736 {
3737 switch (ethertype_setting) {
3738 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3739 *tpid = ETH_P_8021Q;
3740 break;
3741 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3742 *tpid = ETH_P_8021AD;
3743 break;
3744 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3745 *tpid = ETH_P_QINQ1;
3746 break;
3747 default:
3748 *tpid = 0;
3749 return -EINVAL;
3750 }
3751
3752 return 0;
3753 }
3754
3755 /**
3756 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3757 * @vsi: VF's VSI used to enable the VLAN offload
3758 * @ena_offload: function used to enable the VLAN offload
3759 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3760 */
3761 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3762 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3763 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3764 u32 ethertype_setting)
3765 {
3766 u16 tpid;
3767 int err;
3768
3769 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3770 if (err)
3771 return err;
3772
3773 err = ena_offload(vsi, tpid);
3774 if (err)
3775 return err;
3776
3777 return 0;
3778 }
3779
3780 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3781 #define ICE_L2TSEL_BIT_OFFSET 23
3782 enum ice_l2tsel {
3783 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3784 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3785 };
3786
3787 /**
3788 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3789 * @vsi: VSI used to update l2tsel on
3790 * @l2tsel: l2tsel setting requested
3791 *
3792 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3793 * This will modify which descriptor field the first offloaded VLAN will be
3794 * stripped into.
3795 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3796 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3797 {
3798 struct ice_hw *hw = &vsi->back->hw;
3799 u32 l2tsel_bit;
3800 int i;
3801
3802 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3803 l2tsel_bit = 0;
3804 else
3805 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3806
3807 for (i = 0; i < vsi->alloc_rxq; i++) {
3808 u16 pfq = vsi->rxq_map[i];
3809 u32 qrx_context_offset;
3810 u32 regval;
3811
3812 qrx_context_offset =
3813 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3814
3815 regval = rd32(hw, qrx_context_offset);
3816 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3817 regval |= l2tsel_bit;
3818 wr32(hw, qrx_context_offset, regval);
3819 }
3820 }
3821
3822 /**
3823 * ice_vc_ena_vlan_stripping_v2_msg
3824 * @vf: VF the message was received from
3825 * @msg: message received from the VF
3826 *
3827 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3828 */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3829 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3830 {
3831 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3832 struct virtchnl_vlan_supported_caps *stripping_support;
3833 struct virtchnl_vlan_setting *strip_msg =
3834 (struct virtchnl_vlan_setting *)msg;
3835 u32 ethertype_setting;
3836 struct ice_vsi *vsi;
3837
3838 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3839 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3840 goto out;
3841 }
3842
3843 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3844 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3845 goto out;
3846 }
3847
3848 vsi = ice_get_vf_vsi(vf);
3849 if (!vsi) {
3850 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3851 goto out;
3852 }
3853
3854 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3855 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3856 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3857 goto out;
3858 }
3859
3860 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3861 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3862 goto out;
3863 }
3864
3865 ethertype_setting = strip_msg->outer_ethertype_setting;
3866 if (ethertype_setting) {
3867 if (ice_vc_ena_vlan_offload(vsi,
3868 vsi->outer_vlan_ops.ena_stripping,
3869 ethertype_setting)) {
3870 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3871 goto out;
3872 } else {
3873 enum ice_l2tsel l2tsel =
3874 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3875
3876 /* PF tells the VF that the outer VLAN tag is always
3877 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3878 * inner is always extracted to
3879 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3880 * support outer stripping so the first tag always ends
3881 * up in L2TAG2_2ND and the second/inner tag, if
3882 * enabled, is extracted in L2TAG1.
3883 */
3884 ice_vsi_update_l2tsel(vsi, l2tsel);
3885
3886 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3887 }
3888 }
3889
3890 ethertype_setting = strip_msg->inner_ethertype_setting;
3891 if (ethertype_setting &&
3892 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3893 ethertype_setting)) {
3894 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3895 goto out;
3896 }
3897
3898 if (ethertype_setting)
3899 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3900
3901 out:
3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3903 v_ret, NULL, 0);
3904 }
3905
3906 /**
3907 * ice_vc_dis_vlan_stripping_v2_msg
3908 * @vf: VF the message was received from
3909 * @msg: message received from the VF
3910 *
3911 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3912 */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3913 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3914 {
3915 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3916 struct virtchnl_vlan_supported_caps *stripping_support;
3917 struct virtchnl_vlan_setting *strip_msg =
3918 (struct virtchnl_vlan_setting *)msg;
3919 u32 ethertype_setting;
3920 struct ice_vsi *vsi;
3921
3922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3923 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3924 goto out;
3925 }
3926
3927 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3928 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3929 goto out;
3930 }
3931
3932 vsi = ice_get_vf_vsi(vf);
3933 if (!vsi) {
3934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3935 goto out;
3936 }
3937
3938 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3939 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3941 goto out;
3942 }
3943
3944 ethertype_setting = strip_msg->outer_ethertype_setting;
3945 if (ethertype_setting) {
3946 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3947 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3948 goto out;
3949 } else {
3950 enum ice_l2tsel l2tsel =
3951 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3952
3953 /* PF tells the VF that the outer VLAN tag is always
3954 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3955 * inner is always extracted to
3956 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3957 * support inner stripping while outer stripping is
3958 * disabled so that the first and only tag is extracted
3959 * in L2TAG1.
3960 */
3961 ice_vsi_update_l2tsel(vsi, l2tsel);
3962
3963 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3964 }
3965 }
3966
3967 ethertype_setting = strip_msg->inner_ethertype_setting;
3968 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3970 goto out;
3971 }
3972
3973 if (ethertype_setting)
3974 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3975
3976 out:
3977 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3978 v_ret, NULL, 0);
3979 }
3980
3981 /**
3982 * ice_vc_ena_vlan_insertion_v2_msg
3983 * @vf: VF the message was received from
3984 * @msg: message received from the VF
3985 *
3986 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3987 */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3988 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3989 {
3990 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3991 struct virtchnl_vlan_supported_caps *insertion_support;
3992 struct virtchnl_vlan_setting *insertion_msg =
3993 (struct virtchnl_vlan_setting *)msg;
3994 u32 ethertype_setting;
3995 struct ice_vsi *vsi;
3996
3997 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3998 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3999 goto out;
4000 }
4001
4002 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4003 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4004 goto out;
4005 }
4006
4007 vsi = ice_get_vf_vsi(vf);
4008 if (!vsi) {
4009 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4010 goto out;
4011 }
4012
4013 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4014 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4016 goto out;
4017 }
4018
4019 ethertype_setting = insertion_msg->outer_ethertype_setting;
4020 if (ethertype_setting &&
4021 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4022 ethertype_setting)) {
4023 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4024 goto out;
4025 }
4026
4027 ethertype_setting = insertion_msg->inner_ethertype_setting;
4028 if (ethertype_setting &&
4029 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4030 ethertype_setting)) {
4031 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4032 goto out;
4033 }
4034
4035 out:
4036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4037 v_ret, NULL, 0);
4038 }
4039
4040 /**
4041 * ice_vc_dis_vlan_insertion_v2_msg
4042 * @vf: VF the message was received from
4043 * @msg: message received from the VF
4044 *
4045 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4046 */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)4047 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4048 {
4049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4050 struct virtchnl_vlan_supported_caps *insertion_support;
4051 struct virtchnl_vlan_setting *insertion_msg =
4052 (struct virtchnl_vlan_setting *)msg;
4053 u32 ethertype_setting;
4054 struct ice_vsi *vsi;
4055
4056 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4057 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4058 goto out;
4059 }
4060
4061 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4062 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4063 goto out;
4064 }
4065
4066 vsi = ice_get_vf_vsi(vf);
4067 if (!vsi) {
4068 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4069 goto out;
4070 }
4071
4072 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4073 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4074 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4075 goto out;
4076 }
4077
4078 ethertype_setting = insertion_msg->outer_ethertype_setting;
4079 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4080 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4081 goto out;
4082 }
4083
4084 ethertype_setting = insertion_msg->inner_ethertype_setting;
4085 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4086 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4087 goto out;
4088 }
4089
4090 out:
4091 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4092 v_ret, NULL, 0);
4093 }
4094
4095 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4096 .get_ver_msg = ice_vc_get_ver_msg,
4097 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4098 .reset_vf = ice_vc_reset_vf_msg,
4099 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4100 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4101 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4102 .ena_qs_msg = ice_vc_ena_qs_msg,
4103 .dis_qs_msg = ice_vc_dis_qs_msg,
4104 .request_qs_msg = ice_vc_request_qs_msg,
4105 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4106 .config_rss_key = ice_vc_config_rss_key,
4107 .config_rss_lut = ice_vc_config_rss_lut,
4108 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4109 .get_stats_msg = ice_vc_get_stats_msg,
4110 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4111 .add_vlan_msg = ice_vc_add_vlan_msg,
4112 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4113 .query_rxdid = ice_vc_query_rxdid,
4114 .get_rss_hena = ice_vc_get_rss_hena,
4115 .set_rss_hena_msg = ice_vc_set_rss_hena,
4116 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4117 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4118 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4119 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4120 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4121 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4122 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4123 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4124 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4125 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4126 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4127 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4128 .get_qos_caps = ice_vc_get_qos_caps,
4129 .cfg_q_bw = ice_vc_cfg_q_bw,
4130 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4131 /* If you add a new op here please make sure to add it to
4132 * ice_virtchnl_repr_ops as well.
4133 */
4134 };
4135
4136 /**
4137 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4138 * @vf: the VF to switch ops
4139 */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)4140 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4141 {
4142 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4143 }
4144
4145 /**
4146 * ice_vc_repr_add_mac
4147 * @vf: pointer to VF
4148 * @msg: virtchannel message
4149 *
4150 * When port representors are created, we do not add MAC rule
4151 * to firmware, we store it so that PF could report same
4152 * MAC as VF.
4153 */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)4154 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4155 {
4156 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4157 struct virtchnl_ether_addr_list *al =
4158 (struct virtchnl_ether_addr_list *)msg;
4159 struct ice_vsi *vsi;
4160 struct ice_pf *pf;
4161 int i;
4162
4163 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4164 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4165 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4166 goto handle_mac_exit;
4167 }
4168
4169 pf = vf->pf;
4170
4171 vsi = ice_get_vf_vsi(vf);
4172 if (!vsi) {
4173 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4174 goto handle_mac_exit;
4175 }
4176
4177 for (i = 0; i < al->num_elements; i++) {
4178 u8 *mac_addr = al->list[i].addr;
4179
4180 if (!is_unicast_ether_addr(mac_addr) ||
4181 ether_addr_equal(mac_addr, vf->hw_lan_addr))
4182 continue;
4183
4184 if (vf->pf_set_mac) {
4185 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4186 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4187 goto handle_mac_exit;
4188 }
4189
4190 ice_vfhw_mac_add(vf, &al->list[i]);
4191 vf->num_mac++;
4192 break;
4193 }
4194
4195 handle_mac_exit:
4196 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4197 v_ret, NULL, 0);
4198 }
4199
4200 /**
4201 * ice_vc_repr_del_mac - response with success for deleting MAC
4202 * @vf: pointer to VF
4203 * @msg: virtchannel message
4204 *
4205 * Respond with success to not break normal VF flow.
4206 * For legacy VF driver try to update cached MAC address.
4207 */
4208 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)4209 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4210 {
4211 struct virtchnl_ether_addr_list *al =
4212 (struct virtchnl_ether_addr_list *)msg;
4213
4214 ice_update_legacy_cached_mac(vf, &al->list[0]);
4215
4216 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4217 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4218 }
4219
4220 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)4221 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4222 {
4223 dev_dbg(ice_pf_to_dev(vf->pf),
4224 "Can't config promiscuous mode in switchdev mode for VF %d\n",
4225 vf->vf_id);
4226 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4227 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4228 NULL, 0);
4229 }
4230
4231 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4232 .get_ver_msg = ice_vc_get_ver_msg,
4233 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4234 .reset_vf = ice_vc_reset_vf_msg,
4235 .add_mac_addr_msg = ice_vc_repr_add_mac,
4236 .del_mac_addr_msg = ice_vc_repr_del_mac,
4237 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4238 .ena_qs_msg = ice_vc_ena_qs_msg,
4239 .dis_qs_msg = ice_vc_dis_qs_msg,
4240 .request_qs_msg = ice_vc_request_qs_msg,
4241 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4242 .config_rss_key = ice_vc_config_rss_key,
4243 .config_rss_lut = ice_vc_config_rss_lut,
4244 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4245 .get_stats_msg = ice_vc_get_stats_msg,
4246 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4247 .add_vlan_msg = ice_vc_add_vlan_msg,
4248 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4249 .query_rxdid = ice_vc_query_rxdid,
4250 .get_rss_hena = ice_vc_get_rss_hena,
4251 .set_rss_hena_msg = ice_vc_set_rss_hena,
4252 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4253 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4254 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4255 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4256 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4257 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4258 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4259 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4260 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4261 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4262 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4263 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4264 .get_qos_caps = ice_vc_get_qos_caps,
4265 .cfg_q_bw = ice_vc_cfg_q_bw,
4266 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4267 };
4268
4269 /**
4270 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4271 * @vf: the VF to switch ops
4272 */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)4273 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4274 {
4275 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4276 }
4277
4278 /**
4279 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4280 * @vf: the VF to check
4281 * @mbxdata: data about the state of the mailbox
4282 *
4283 * Detect if a given VF might be malicious and attempting to overflow the PF
4284 * mailbox. If so, log a warning message and ignore this event.
4285 */
4286 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)4287 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4288 {
4289 bool report_malvf = false;
4290 struct device *dev;
4291 struct ice_pf *pf;
4292 int status;
4293
4294 pf = vf->pf;
4295 dev = ice_pf_to_dev(pf);
4296
4297 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4298 return vf->mbx_info.malicious;
4299
4300 /* check to see if we have a newly malicious VF */
4301 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4302 &report_malvf);
4303 if (status)
4304 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4305 vf->vf_id, vf->dev_lan_addr, status);
4306
4307 if (report_malvf) {
4308 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4309 u8 zero_addr[ETH_ALEN] = {};
4310
4311 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4312 vf->dev_lan_addr,
4313 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4314 }
4315
4316 return vf->mbx_info.malicious;
4317 }
4318
4319 /**
4320 * ice_vc_process_vf_msg - Process request from VF
4321 * @pf: pointer to the PF structure
4322 * @event: pointer to the AQ event
4323 * @mbxdata: information used to detect VF attempting mailbox overflow
4324 *
4325 * Called from the common asq/arq handler to process request from VF. When this
4326 * flow is used for devices with hardware VF to PF message queue overflow
4327 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4328 * check is skipped.
4329 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)4330 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4331 struct ice_mbx_data *mbxdata)
4332 {
4333 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4334 s16 vf_id = le16_to_cpu(event->desc.retval);
4335 const struct ice_virtchnl_ops *ops;
4336 u16 msglen = event->msg_len;
4337 u8 *msg = event->msg_buf;
4338 struct ice_vf *vf = NULL;
4339 struct device *dev;
4340 int err = 0;
4341
4342 dev = ice_pf_to_dev(pf);
4343
4344 vf = ice_get_vf_by_id(pf, vf_id);
4345 if (!vf) {
4346 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4347 vf_id, v_opcode, msglen);
4348 return;
4349 }
4350
4351 mutex_lock(&vf->cfg_lock);
4352
4353 /* Check if the VF is trying to overflow the mailbox */
4354 if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4355 goto finish;
4356
4357 /* Check if VF is disabled. */
4358 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4359 err = -EPERM;
4360 goto error_handler;
4361 }
4362
4363 ops = vf->virtchnl_ops;
4364
4365 /* Perform basic checks on the msg */
4366 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4367 if (err) {
4368 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4369 err = -EPERM;
4370 else
4371 err = -EINVAL;
4372 }
4373
4374 error_handler:
4375 if (err) {
4376 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4377 NULL, 0);
4378 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4379 vf_id, v_opcode, msglen, err);
4380 goto finish;
4381 }
4382
4383 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4384 ice_vc_send_msg_to_vf(vf, v_opcode,
4385 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4386 0);
4387 goto finish;
4388 }
4389
4390 switch (v_opcode) {
4391 case VIRTCHNL_OP_VERSION:
4392 err = ops->get_ver_msg(vf, msg);
4393 break;
4394 case VIRTCHNL_OP_GET_VF_RESOURCES:
4395 err = ops->get_vf_res_msg(vf, msg);
4396 if (ice_vf_init_vlan_stripping(vf))
4397 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4398 vf->vf_id);
4399 ice_vc_notify_vf_link_state(vf);
4400 break;
4401 case VIRTCHNL_OP_RESET_VF:
4402 ops->reset_vf(vf);
4403 break;
4404 case VIRTCHNL_OP_ADD_ETH_ADDR:
4405 err = ops->add_mac_addr_msg(vf, msg);
4406 break;
4407 case VIRTCHNL_OP_DEL_ETH_ADDR:
4408 err = ops->del_mac_addr_msg(vf, msg);
4409 break;
4410 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4411 err = ops->cfg_qs_msg(vf, msg);
4412 break;
4413 case VIRTCHNL_OP_ENABLE_QUEUES:
4414 err = ops->ena_qs_msg(vf, msg);
4415 ice_vc_notify_vf_link_state(vf);
4416 break;
4417 case VIRTCHNL_OP_DISABLE_QUEUES:
4418 err = ops->dis_qs_msg(vf, msg);
4419 break;
4420 case VIRTCHNL_OP_REQUEST_QUEUES:
4421 err = ops->request_qs_msg(vf, msg);
4422 break;
4423 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4424 err = ops->cfg_irq_map_msg(vf, msg);
4425 break;
4426 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4427 err = ops->config_rss_key(vf, msg);
4428 break;
4429 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4430 err = ops->config_rss_lut(vf, msg);
4431 break;
4432 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4433 err = ops->config_rss_hfunc(vf, msg);
4434 break;
4435 case VIRTCHNL_OP_GET_STATS:
4436 err = ops->get_stats_msg(vf, msg);
4437 break;
4438 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4439 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4440 break;
4441 case VIRTCHNL_OP_ADD_VLAN:
4442 err = ops->add_vlan_msg(vf, msg);
4443 break;
4444 case VIRTCHNL_OP_DEL_VLAN:
4445 err = ops->remove_vlan_msg(vf, msg);
4446 break;
4447 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4448 err = ops->query_rxdid(vf);
4449 break;
4450 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4451 err = ops->get_rss_hena(vf);
4452 break;
4453 case VIRTCHNL_OP_SET_RSS_HENA:
4454 err = ops->set_rss_hena_msg(vf, msg);
4455 break;
4456 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4457 err = ops->ena_vlan_stripping(vf);
4458 break;
4459 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4460 err = ops->dis_vlan_stripping(vf);
4461 break;
4462 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4463 err = ops->add_fdir_fltr_msg(vf, msg);
4464 break;
4465 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4466 err = ops->del_fdir_fltr_msg(vf, msg);
4467 break;
4468 case VIRTCHNL_OP_ADD_RSS_CFG:
4469 err = ops->handle_rss_cfg_msg(vf, msg, true);
4470 break;
4471 case VIRTCHNL_OP_DEL_RSS_CFG:
4472 err = ops->handle_rss_cfg_msg(vf, msg, false);
4473 break;
4474 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4475 err = ops->get_offload_vlan_v2_caps(vf);
4476 break;
4477 case VIRTCHNL_OP_ADD_VLAN_V2:
4478 err = ops->add_vlan_v2_msg(vf, msg);
4479 break;
4480 case VIRTCHNL_OP_DEL_VLAN_V2:
4481 err = ops->remove_vlan_v2_msg(vf, msg);
4482 break;
4483 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4484 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4485 break;
4486 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4487 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4488 break;
4489 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4490 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4491 break;
4492 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4493 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4494 break;
4495 case VIRTCHNL_OP_GET_QOS_CAPS:
4496 err = ops->get_qos_caps(vf);
4497 break;
4498 case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4499 err = ops->cfg_q_bw(vf, msg);
4500 break;
4501 case VIRTCHNL_OP_CONFIG_QUANTA:
4502 err = ops->cfg_q_quanta(vf, msg);
4503 break;
4504 case VIRTCHNL_OP_UNKNOWN:
4505 default:
4506 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4507 vf_id);
4508 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4509 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4510 NULL, 0);
4511 break;
4512 }
4513 if (err) {
4514 /* Helper function cares less about error return values here
4515 * as it is busy with pending work.
4516 */
4517 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4518 vf_id, v_opcode, err);
4519 }
4520
4521 finish:
4522 mutex_unlock(&vf->cfg_lock);
4523 ice_put_vf(vf);
4524 }
4525