1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
ice_free_vf_entries(struct ice_pf * pf)24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_deinitialize_vf_entry(vf);
40 ice_put_vf(vf);
41 }
42 }
43
44 /**
45 * ice_free_vf_res - Free a VF's resources
46 * @vf: pointer to the VF info
47 */
ice_free_vf_res(struct ice_vf * vf)48 static void ice_free_vf_res(struct ice_vf *vf)
49 {
50 struct ice_pf *pf = vf->pf;
51 int i, last_vector_idx;
52
53 /* First, disable VF's configuration API to prevent OS from
54 * accessing the VF's VSI after it's freed or invalidated.
55 */
56 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 ice_vf_fdir_exit(vf);
58 /* free VF control VSI */
59 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60 ice_vf_ctrl_vsi_release(vf);
61
62 /* free VSI and disconnect it from the parent uplink */
63 if (vf->lan_vsi_idx != ICE_NO_VSI) {
64 ice_vf_vsi_release(vf);
65 vf->num_mac = 0;
66 vf->num_mac_lldp = 0;
67 }
68
69 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
70
71 /* clear VF MDD event information */
72 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
73 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
74
75 /* Disable interrupts so that VF starts in a known state */
76 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
77 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
78 ice_flush(&pf->hw);
79 }
80 /* reset some of the state variables keeping track of the resources */
81 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
82 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
83 }
84
85 /**
86 * ice_dis_vf_mappings
87 * @vf: pointer to the VF structure
88 */
ice_dis_vf_mappings(struct ice_vf * vf)89 static void ice_dis_vf_mappings(struct ice_vf *vf)
90 {
91 struct ice_pf *pf = vf->pf;
92 struct ice_vsi *vsi;
93 struct device *dev;
94 int first, last, v;
95 struct ice_hw *hw;
96
97 hw = &pf->hw;
98 vsi = ice_get_vf_vsi(vf);
99 if (WARN_ON(!vsi))
100 return;
101
102 dev = ice_pf_to_dev(pf);
103 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
104 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
105
106 first = vf->first_vector_idx;
107 last = first + vf->num_msix - 1;
108 for (v = first; v <= last; v++) {
109 u32 reg;
110
111 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
112 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
113 wr32(hw, GLINT_VECT2FUNC(v), reg);
114 }
115
116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 else
119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120
121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 else
124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126
127 /**
128 * ice_free_vfs - Free all VFs
129 * @pf: pointer to the PF structure
130 */
ice_free_vfs(struct ice_pf * pf)131 void ice_free_vfs(struct ice_pf *pf)
132 {
133 struct device *dev = ice_pf_to_dev(pf);
134 struct ice_vfs *vfs = &pf->vfs;
135 struct ice_hw *hw = &pf->hw;
136 struct ice_vf *vf;
137 unsigned int bkt;
138
139 if (!ice_has_vfs(pf))
140 return;
141
142 while (test_and_set_bit(ICE_VF_DIS, pf->state))
143 usleep_range(1000, 2000);
144
145 /* Disable IOV before freeing resources. This lets any VF drivers
146 * running in the host get themselves cleaned up before we yank
147 * the carpet out from underneath their feet.
148 */
149 if (!pci_vfs_assigned(pf->pdev))
150 pci_disable_sriov(pf->pdev);
151 else
152 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
153
154 mutex_lock(&vfs->table_lock);
155
156 ice_for_each_vf(pf, bkt, vf) {
157 mutex_lock(&vf->cfg_lock);
158
159 ice_eswitch_detach_vf(pf, vf);
160 ice_dis_vf_qs(vf);
161 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
162
163 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
164 /* disable VF qp mappings and set VF disable state */
165 ice_dis_vf_mappings(vf);
166 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
167 ice_free_vf_res(vf);
168 }
169
170 if (!pci_vfs_assigned(pf->pdev)) {
171 u32 reg_idx, bit_idx;
172
173 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
174 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
175 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
176 }
177
178 mutex_unlock(&vf->cfg_lock);
179 }
180
181 vfs->num_qps_per = 0;
182 ice_free_vf_entries(pf);
183
184 mutex_unlock(&vfs->table_lock);
185
186 clear_bit(ICE_VF_DIS, pf->state);
187 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
188 }
189
190 /**
191 * ice_vf_vsi_setup - Set up a VF VSI
192 * @vf: VF to setup VSI for
193 *
194 * Returns pointer to the successfully allocated VSI struct on success,
195 * otherwise returns NULL on failure.
196 */
ice_vf_vsi_setup(struct ice_vf * vf)197 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
198 {
199 struct ice_vsi_cfg_params params = {};
200 struct ice_pf *pf = vf->pf;
201 struct ice_vsi *vsi;
202
203 params.type = ICE_VSI_VF;
204 params.port_info = ice_vf_get_port_info(vf);
205 params.vf = vf;
206 params.flags = ICE_VSI_FLAG_INIT;
207
208 vsi = ice_vsi_setup(pf, ¶ms);
209
210 if (!vsi) {
211 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
212 ice_vf_invalidate_vsi(vf);
213 return NULL;
214 }
215
216 vf->lan_vsi_idx = vsi->idx;
217
218 return vsi;
219 }
220
221
222 /**
223 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
224 * @vf: VF to enable MSIX mappings for
225 *
226 * Some of the registers need to be indexed/configured using hardware global
227 * device values and other registers need 0-based values, which represent PF
228 * based values.
229 */
ice_ena_vf_msix_mappings(struct ice_vf * vf)230 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
231 {
232 int device_based_first_msix, device_based_last_msix;
233 int pf_based_first_msix, pf_based_last_msix, v;
234 struct ice_pf *pf = vf->pf;
235 int device_based_vf_id;
236 struct ice_hw *hw;
237 u32 reg;
238
239 hw = &pf->hw;
240 pf_based_first_msix = vf->first_vector_idx;
241 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
242
243 device_based_first_msix = pf_based_first_msix +
244 pf->hw.func_caps.common_cap.msix_vector_first_id;
245 device_based_last_msix =
246 (device_based_first_msix + vf->num_msix) - 1;
247 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
248
249 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
250 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
251 VPINT_ALLOC_VALID_M;
252 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
253
254 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
255 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
256 VPINT_ALLOC_PCI_VALID_M;
257 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
258
259 /* map the interrupts to its functions */
260 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
261 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
262 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
263 wr32(hw, GLINT_VECT2FUNC(v), reg);
264 }
265
266 /* Map mailbox interrupt to VF MSI-X vector 0 */
267 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
268 }
269
270 /**
271 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
272 * @vf: VF to enable the mappings for
273 * @max_txq: max Tx queues allowed on the VF's VSI
274 * @max_rxq: max Rx queues allowed on the VF's VSI
275 */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)276 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
277 {
278 struct device *dev = ice_pf_to_dev(vf->pf);
279 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
280 struct ice_hw *hw = &vf->pf->hw;
281 u32 reg;
282
283 if (WARN_ON(!vsi))
284 return;
285
286 /* set regardless of mapping mode */
287 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
288
289 /* VF Tx queues allocation */
290 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
291 /* set the VF PF Tx queue range
292 * VFNUMQ value should be set to (number of queues - 1). A value
293 * of 0 means 1 queue and a value of 255 means 256 queues
294 */
295 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
296 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
297 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
298 } else {
299 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
300 }
301
302 /* set regardless of mapping mode */
303 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
304
305 /* VF Rx queues allocation */
306 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
307 /* set the VF PF Rx queue range
308 * VFNUMQ value should be set to (number of queues - 1). A value
309 * of 0 means 1 queue and a value of 255 means 256 queues
310 */
311 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
312 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
313 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
314 } else {
315 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
316 }
317 }
318
319 /**
320 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
321 * @vf: pointer to the VF structure
322 */
ice_ena_vf_mappings(struct ice_vf * vf)323 static void ice_ena_vf_mappings(struct ice_vf *vf)
324 {
325 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
326
327 if (WARN_ON(!vsi))
328 return;
329
330 ice_ena_vf_msix_mappings(vf);
331 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
332 }
333
334 /**
335 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
336 * @vf: VF to calculate the register index for
337 * @q_vector: a q_vector associated to the VF
338 */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)339 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
340 {
341 if (!vf || !q_vector)
342 return;
343
344 /* always add one to account for the OICR being the first MSIX */
345 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
346 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
347 }
348
349 /**
350 * ice_set_per_vf_res - check if vectors and queues are available
351 * @pf: pointer to the PF structure
352 * @num_vfs: the number of SR-IOV VFs being configured
353 *
354 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
355 * get more vectors and can enable more queues per VF. Note that this does not
356 * grab any vectors from the SW pool already allocated. Also note, that all
357 * vector counts include one for each VF's miscellaneous interrupt vector
358 * (i.e. OICR).
359 *
360 * Minimum VFs - 2 vectors, 1 queue pair
361 * Small VFs - 5 vectors, 4 queue pairs
362 * Medium VFs - 17 vectors, 16 queue pairs
363 *
364 * Second, determine number of queue pairs per VF by starting with a pre-defined
365 * maximum each VF supports. If this is not possible, then we adjust based on
366 * queue pairs available on the device.
367 *
368 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
369 * by each VF during VF initialization and reset.
370 */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)371 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
372 {
373 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
374 int msix_avail_per_vf, msix_avail_for_sriov;
375 struct device *dev = ice_pf_to_dev(pf);
376
377 lockdep_assert_held(&pf->vfs.table_lock);
378
379 if (!num_vfs)
380 return -EINVAL;
381
382 /* determine MSI-X resources per VF */
383 msix_avail_for_sriov = pf->virt_irq_tracker.num_entries;
384 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
385 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
386 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
387 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
388 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
389 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
390 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
391 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
392 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
393 } else {
394 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
395 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
396 num_vfs);
397 return -ENOSPC;
398 }
399
400 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
401 ICE_MAX_RSS_QS_PER_VF);
402 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
403 if (!avail_qs)
404 num_txq = 0;
405 else if (num_txq > avail_qs)
406 num_txq = rounddown_pow_of_two(avail_qs);
407
408 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
409 ICE_MAX_RSS_QS_PER_VF);
410 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
411 if (!avail_qs)
412 num_rxq = 0;
413 else if (num_rxq > avail_qs)
414 num_rxq = rounddown_pow_of_two(avail_qs);
415
416 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
417 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
418 ICE_MIN_QS_PER_VF, num_vfs);
419 return -ENOSPC;
420 }
421
422 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
423 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
424 pf->vfs.num_msix_per = num_msix_per_vf;
425 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
426 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
427
428 return 0;
429 }
430
431 /**
432 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
433 * @vf: VF to initialize/setup the VSI for
434 *
435 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
436 * VF VSI's broadcast filter and is only used during initial VF creation.
437 */
ice_init_vf_vsi_res(struct ice_vf * vf)438 static int ice_init_vf_vsi_res(struct ice_vf *vf)
439 {
440 struct ice_pf *pf = vf->pf;
441 struct ice_vsi *vsi;
442 int err;
443
444 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
445 if (vf->first_vector_idx < 0)
446 return -ENOMEM;
447
448 vsi = ice_vf_vsi_setup(vf);
449 if (!vsi)
450 return -ENOMEM;
451
452 err = ice_vf_init_host_cfg(vf, vsi);
453 if (err)
454 goto release_vsi;
455
456 return 0;
457
458 release_vsi:
459 ice_vf_vsi_release(vf);
460 return err;
461 }
462
463 /**
464 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
465 * @pf: PF the VFs are associated with
466 */
ice_start_vfs(struct ice_pf * pf)467 static int ice_start_vfs(struct ice_pf *pf)
468 {
469 struct ice_hw *hw = &pf->hw;
470 unsigned int bkt, it_cnt;
471 struct ice_vf *vf;
472 int retval;
473
474 lockdep_assert_held(&pf->vfs.table_lock);
475
476 it_cnt = 0;
477 ice_for_each_vf(pf, bkt, vf) {
478 vf->vf_ops->clear_reset_trigger(vf);
479
480 retval = ice_init_vf_vsi_res(vf);
481 if (retval) {
482 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
483 vf->vf_id, retval);
484 goto teardown;
485 }
486
487 retval = ice_eswitch_attach_vf(pf, vf);
488 if (retval) {
489 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
490 vf->vf_id, retval);
491 ice_vf_vsi_release(vf);
492 goto teardown;
493 }
494
495 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
496 ice_ena_vf_mappings(vf);
497 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
498 it_cnt++;
499 }
500
501 ice_flush(hw);
502 return 0;
503
504 teardown:
505 ice_for_each_vf(pf, bkt, vf) {
506 if (it_cnt == 0)
507 break;
508
509 ice_dis_vf_mappings(vf);
510 ice_vf_vsi_release(vf);
511 it_cnt--;
512 }
513
514 return retval;
515 }
516
517 /**
518 * ice_sriov_free_vf - Free VF memory after all references are dropped
519 * @vf: pointer to VF to free
520 *
521 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
522 * structure has been dropped.
523 */
ice_sriov_free_vf(struct ice_vf * vf)524 static void ice_sriov_free_vf(struct ice_vf *vf)
525 {
526 mutex_destroy(&vf->cfg_lock);
527
528 kfree_rcu(vf, rcu);
529 }
530
531 /**
532 * ice_sriov_clear_reset_state - clears VF Reset status register
533 * @vf: the vf to configure
534 */
ice_sriov_clear_reset_state(struct ice_vf * vf)535 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
536 {
537 struct ice_hw *hw = &vf->pf->hw;
538
539 /* Clear the reset status register so that VF immediately sees that
540 * the device is resetting, even if hardware hasn't yet gotten around
541 * to clearing VFGEN_RSTAT for us.
542 */
543 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
544 }
545
546 /**
547 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
548 * @vf: the vf to configure
549 */
ice_sriov_clear_mbx_register(struct ice_vf * vf)550 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
551 {
552 struct ice_pf *pf = vf->pf;
553
554 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
555 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
556 }
557
558 /**
559 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
560 * @vf: pointer to VF structure
561 * @is_vflr: true if reset occurred due to VFLR
562 *
563 * Trigger and cleanup after a VF reset for a SR-IOV VF.
564 */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)565 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
566 {
567 struct ice_pf *pf = vf->pf;
568 u32 reg, reg_idx, bit_idx;
569 unsigned int vf_abs_id, i;
570 struct device *dev;
571 struct ice_hw *hw;
572
573 dev = ice_pf_to_dev(pf);
574 hw = &pf->hw;
575 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
576
577 /* In the case of a VFLR, HW has already reset the VF and we just need
578 * to clean up. Otherwise we must first trigger the reset using the
579 * VFRTRIG register.
580 */
581 if (!is_vflr) {
582 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
583 reg |= VPGEN_VFRTRIG_VFSWR_M;
584 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
585 }
586
587 /* clear the VFLR bit in GLGEN_VFLRSTAT */
588 reg_idx = (vf_abs_id) / 32;
589 bit_idx = (vf_abs_id) % 32;
590 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
591 ice_flush(hw);
592
593 wr32(hw, PF_PCI_CIAA,
594 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
595 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
596 reg = rd32(hw, PF_PCI_CIAD);
597 /* no transactions pending so stop polling */
598 if ((reg & VF_TRANS_PENDING_M) == 0)
599 break;
600
601 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
602 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
603 }
604 }
605
606 /**
607 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
608 * @vf: pointer to VF structure
609 *
610 * Returns true when reset is successful, else returns false
611 */
ice_sriov_poll_reset_status(struct ice_vf * vf)612 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
613 {
614 struct ice_pf *pf = vf->pf;
615 unsigned int i;
616 u32 reg;
617
618 for (i = 0; i < 10; i++) {
619 /* VF reset requires driver to first reset the VF and then
620 * poll the status register to make sure that the reset
621 * completed successfully.
622 */
623 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
624 if (reg & VPGEN_VFRSTAT_VFRD_M)
625 return true;
626
627 /* only sleep if the reset is not done */
628 usleep_range(10, 20);
629 }
630 return false;
631 }
632
633 /**
634 * ice_sriov_clear_reset_trigger - enable VF to access hardware
635 * @vf: VF to enabled hardware access for
636 */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)637 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
638 {
639 struct ice_hw *hw = &vf->pf->hw;
640 u32 reg;
641
642 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
643 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
644 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
645 ice_flush(hw);
646 }
647
648 /**
649 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
650 * @vf: VF to perform tasks on
651 */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)652 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
653 {
654 ice_ena_vf_mappings(vf);
655 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
656 }
657
658 static const struct ice_vf_ops ice_sriov_vf_ops = {
659 .reset_type = ICE_VF_RESET,
660 .free = ice_sriov_free_vf,
661 .clear_reset_state = ice_sriov_clear_reset_state,
662 .clear_mbx_register = ice_sriov_clear_mbx_register,
663 .trigger_reset_register = ice_sriov_trigger_reset_register,
664 .poll_reset_status = ice_sriov_poll_reset_status,
665 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
666 .irq_close = NULL,
667 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
668 };
669
670 /**
671 * ice_create_vf_entries - Allocate and insert VF entries
672 * @pf: pointer to the PF structure
673 * @num_vfs: the number of VFs to allocate
674 *
675 * Allocate new VF entries and insert them into the hash table. Set some
676 * basic default fields for initializing the new VFs.
677 *
678 * After this function exits, the hash table will have num_vfs entries
679 * inserted.
680 *
681 * Returns 0 on success or an integer error code on failure.
682 */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)683 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
684 {
685 struct pci_dev *pdev = pf->pdev;
686 struct ice_vfs *vfs = &pf->vfs;
687 struct pci_dev *vfdev = NULL;
688 struct ice_vf *vf;
689 u16 vf_pdev_id;
690 int err, pos;
691
692 lockdep_assert_held(&vfs->table_lock);
693
694 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
695 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
696
697 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
698 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
699 if (!vf) {
700 err = -ENOMEM;
701 goto err_free_entries;
702 }
703 kref_init(&vf->refcnt);
704
705 vf->pf = pf;
706 vf->vf_id = vf_id;
707
708 /* set sriov vf ops for VFs created during SRIOV flow */
709 vf->vf_ops = &ice_sriov_vf_ops;
710
711 ice_initialize_vf_entry(vf);
712
713 do {
714 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
715 } while (vfdev && vfdev->physfn != pdev);
716 vf->vfdev = vfdev;
717 vf->vf_sw_id = pf->first_sw;
718
719 pci_dev_get(vfdev);
720
721 hash_add_rcu(vfs->table, &vf->entry, vf_id);
722 }
723
724 /* Decrement of refcount done by pci_get_device() inside the loop does
725 * not touch the last iteration's vfdev, so it has to be done manually
726 * to balance pci_dev_get() added within the loop.
727 */
728 pci_dev_put(vfdev);
729
730 return 0;
731
732 err_free_entries:
733 ice_free_vf_entries(pf);
734 return err;
735 }
736
737 /**
738 * ice_ena_vfs - enable VFs so they are ready to be used
739 * @pf: pointer to the PF structure
740 * @num_vfs: number of VFs to enable
741 */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)742 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
743 {
744 struct device *dev = ice_pf_to_dev(pf);
745 struct ice_hw *hw = &pf->hw;
746 int ret;
747
748 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
749 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
750 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
751 set_bit(ICE_OICR_INTR_DIS, pf->state);
752 ice_flush(hw);
753
754 ret = pci_enable_sriov(pf->pdev, num_vfs);
755 if (ret)
756 goto err_unroll_intr;
757
758 mutex_lock(&pf->vfs.table_lock);
759
760 ret = ice_set_per_vf_res(pf, num_vfs);
761 if (ret) {
762 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
763 num_vfs, ret);
764 goto err_unroll_sriov;
765 }
766
767 ret = ice_create_vf_entries(pf, num_vfs);
768 if (ret) {
769 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
770 num_vfs);
771 goto err_unroll_sriov;
772 }
773
774 ret = ice_start_vfs(pf);
775 if (ret) {
776 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
777 ret = -EAGAIN;
778 goto err_unroll_vf_entries;
779 }
780
781 clear_bit(ICE_VF_DIS, pf->state);
782
783 /* rearm global interrupts */
784 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
785 ice_irq_dynamic_ena(hw, NULL, NULL);
786
787 mutex_unlock(&pf->vfs.table_lock);
788
789 return 0;
790
791 err_unroll_vf_entries:
792 ice_free_vf_entries(pf);
793 err_unroll_sriov:
794 mutex_unlock(&pf->vfs.table_lock);
795 pci_disable_sriov(pf->pdev);
796 err_unroll_intr:
797 /* rearm interrupts here */
798 ice_irq_dynamic_ena(hw, NULL, NULL);
799 clear_bit(ICE_OICR_INTR_DIS, pf->state);
800 return ret;
801 }
802
803 /**
804 * ice_pci_sriov_ena - Enable or change number of VFs
805 * @pf: pointer to the PF structure
806 * @num_vfs: number of VFs to allocate
807 *
808 * Returns 0 on success and negative on failure
809 */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)810 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
811 {
812 struct device *dev = ice_pf_to_dev(pf);
813 int err;
814
815 if (!num_vfs) {
816 ice_free_vfs(pf);
817 return 0;
818 }
819
820 if (num_vfs > pf->vfs.num_supported) {
821 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
822 num_vfs, pf->vfs.num_supported);
823 return -EOPNOTSUPP;
824 }
825
826 dev_info(dev, "Enabling %d VFs\n", num_vfs);
827 err = ice_ena_vfs(pf, num_vfs);
828 if (err) {
829 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
830 return err;
831 }
832
833 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
834 return 0;
835 }
836
837 /**
838 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
839 * @pf: PF to enabled SR-IOV on
840 */
ice_check_sriov_allowed(struct ice_pf * pf)841 static int ice_check_sriov_allowed(struct ice_pf *pf)
842 {
843 struct device *dev = ice_pf_to_dev(pf);
844
845 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
846 dev_err(dev, "This device is not capable of SR-IOV\n");
847 return -EOPNOTSUPP;
848 }
849
850 if (ice_is_safe_mode(pf)) {
851 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
852 return -EOPNOTSUPP;
853 }
854
855 if (!ice_pf_state_is_nominal(pf)) {
856 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
857 return -EBUSY;
858 }
859
860 return 0;
861 }
862
863 /**
864 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
865 * @pdev: pointer to pci_dev struct
866 *
867 * The function is called via sysfs ops
868 */
ice_sriov_get_vf_total_msix(struct pci_dev * pdev)869 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
870 {
871 struct ice_pf *pf = pci_get_drvdata(pdev);
872
873 return pf->virt_irq_tracker.num_entries;
874 }
875
ice_sriov_remap_vectors(struct ice_pf * pf,u16 restricted_id)876 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
877 {
878 u16 vf_ids[ICE_MAX_SRIOV_VFS];
879 struct ice_vf *tmp_vf;
880 int to_remap = 0, bkt;
881
882 /* For better irqs usage try to remap irqs of VFs
883 * that aren't running yet
884 */
885 ice_for_each_vf(pf, bkt, tmp_vf) {
886 /* skip VF which is changing the number of MSI-X */
887 if (restricted_id == tmp_vf->vf_id ||
888 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
889 continue;
890
891 ice_dis_vf_mappings(tmp_vf);
892 ice_virt_free_irqs(pf, tmp_vf->first_vector_idx,
893 tmp_vf->num_msix);
894
895 vf_ids[to_remap] = tmp_vf->vf_id;
896 to_remap += 1;
897 }
898
899 for (int i = 0; i < to_remap; i++) {
900 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
901 if (!tmp_vf)
902 continue;
903
904 tmp_vf->first_vector_idx =
905 ice_virt_get_irqs(pf, tmp_vf->num_msix);
906 /* there is no need to rebuild VSI as we are only changing the
907 * vector indexes not amount of MSI-X or queues
908 */
909 ice_ena_vf_mappings(tmp_vf);
910 ice_put_vf(tmp_vf);
911 }
912 }
913
914 /**
915 * ice_sriov_set_msix_vec_count
916 * @vf_dev: pointer to pci_dev struct of VF device
917 * @msix_vec_count: new value for MSI-X amount on this VF
918 *
919 * Set requested MSI-X, queues and registers for @vf_dev.
920 *
921 * First do some sanity checks like if there are any VFs, if the new value
922 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
923 * MSI-X and queues, rebuild VSI and enable new mapping.
924 *
925 * If it is possible (driver not binded to VF) try to remap also other VFs to
926 * linearize irqs register usage.
927 */
ice_sriov_set_msix_vec_count(struct pci_dev * vf_dev,int msix_vec_count)928 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
929 {
930 struct pci_dev *pdev = pci_physfn(vf_dev);
931 struct ice_pf *pf = pci_get_drvdata(pdev);
932 u16 prev_msix, prev_queues, queues;
933 bool needs_rebuild = false;
934 struct ice_vsi *vsi;
935 struct ice_vf *vf;
936
937 if (!ice_get_num_vfs(pf))
938 return -ENOENT;
939
940 if (!msix_vec_count)
941 return 0;
942
943 queues = msix_vec_count;
944 /* add 1 MSI-X for OICR */
945 msix_vec_count += 1;
946
947 if (queues > min(ice_get_avail_txq_count(pf),
948 ice_get_avail_rxq_count(pf)))
949 return -EINVAL;
950
951 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
952 return -EINVAL;
953
954 vf = ice_get_vf_by_dev(pf, vf_dev);
955 if (!vf)
956 return -ENOENT;
957
958 vsi = ice_get_vf_vsi(vf);
959 if (!vsi) {
960 ice_put_vf(vf);
961 return -ENOENT;
962 }
963
964 /* No need to rebuild if we're setting to the same value */
965 if (msix_vec_count == vf->num_msix) {
966 ice_put_vf(vf);
967 return 0;
968 }
969
970 prev_msix = vf->num_msix;
971 prev_queues = vf->num_vf_qs;
972
973 ice_dis_vf_mappings(vf);
974 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
975
976 /* Remap all VFs beside the one is now configured */
977 ice_sriov_remap_vectors(pf, vf->vf_id);
978
979 vf->num_msix = msix_vec_count;
980 vf->num_vf_qs = queues;
981 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
982 if (vf->first_vector_idx < 0)
983 goto unroll;
984
985 vsi->req_txq = queues;
986 vsi->req_rxq = queues;
987
988 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
989 /* Try to rebuild with previous values */
990 needs_rebuild = true;
991 goto unroll;
992 }
993
994 dev_info(ice_pf_to_dev(pf),
995 "Changing VF %d resources to %d vectors and %d queues\n",
996 vf->vf_id, vf->num_msix, vf->num_vf_qs);
997
998 ice_ena_vf_mappings(vf);
999 ice_put_vf(vf);
1000
1001 return 0;
1002
1003 unroll:
1004 dev_info(ice_pf_to_dev(pf),
1005 "Can't set %d vectors on VF %d, falling back to %d\n",
1006 vf->num_msix, vf->vf_id, prev_msix);
1007
1008 vf->num_msix = prev_msix;
1009 vf->num_vf_qs = prev_queues;
1010
1011 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
1012 if (vf->first_vector_idx < 0) {
1013 ice_put_vf(vf);
1014 return -EINVAL;
1015 }
1016
1017 if (needs_rebuild) {
1018 vsi->req_txq = prev_queues;
1019 vsi->req_rxq = prev_queues;
1020
1021 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1022 }
1023
1024 ice_ena_vf_mappings(vf);
1025 ice_put_vf(vf);
1026
1027 return -EINVAL;
1028 }
1029
1030 /**
1031 * ice_sriov_configure - Enable or change number of VFs via sysfs
1032 * @pdev: pointer to a pci_dev structure
1033 * @num_vfs: number of VFs to allocate or 0 to free VFs
1034 *
1035 * This function is called when the user updates the number of VFs in sysfs. On
1036 * success return whatever num_vfs was set to by the caller. Return negative on
1037 * failure.
1038 */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)1039 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1040 {
1041 struct ice_pf *pf = pci_get_drvdata(pdev);
1042 struct device *dev = ice_pf_to_dev(pf);
1043 int err;
1044
1045 err = ice_check_sriov_allowed(pf);
1046 if (err)
1047 return err;
1048
1049 if (!num_vfs) {
1050 if (!pci_vfs_assigned(pdev)) {
1051 ice_free_vfs(pf);
1052 return 0;
1053 }
1054
1055 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1056 return -EBUSY;
1057 }
1058
1059 err = ice_pci_sriov_ena(pf, num_vfs);
1060 if (err)
1061 return err;
1062
1063 return num_vfs;
1064 }
1065
1066 /**
1067 * ice_process_vflr_event - Free VF resources via IRQ calls
1068 * @pf: pointer to the PF structure
1069 *
1070 * called from the VFLR IRQ handler to
1071 * free up VF resources and state variables
1072 */
ice_process_vflr_event(struct ice_pf * pf)1073 void ice_process_vflr_event(struct ice_pf *pf)
1074 {
1075 struct ice_hw *hw = &pf->hw;
1076 struct ice_vf *vf;
1077 unsigned int bkt;
1078 u32 reg;
1079
1080 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1081 !ice_has_vfs(pf))
1082 return;
1083
1084 mutex_lock(&pf->vfs.table_lock);
1085 ice_for_each_vf(pf, bkt, vf) {
1086 u32 reg_idx, bit_idx;
1087
1088 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1089 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1090 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1091 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1092 if (reg & BIT(bit_idx))
1093 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1094 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1095 }
1096 mutex_unlock(&pf->vfs.table_lock);
1097 }
1098
1099 /**
1100 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1101 * @pf: PF used to index all VFs
1102 * @pfq: queue index relative to the PF's function space
1103 *
1104 * If no VF is found who owns the pfq then return NULL, otherwise return a
1105 * pointer to the VF who owns the pfq
1106 *
1107 * If this function returns non-NULL, it acquires a reference count of the VF
1108 * structure. The caller is responsible for calling ice_put_vf() to drop this
1109 * reference.
1110 */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1111 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1112 {
1113 struct ice_vf *vf;
1114 unsigned int bkt;
1115
1116 rcu_read_lock();
1117 ice_for_each_vf_rcu(pf, bkt, vf) {
1118 struct ice_vsi *vsi;
1119 u16 rxq_idx;
1120
1121 vsi = ice_get_vf_vsi(vf);
1122 if (!vsi)
1123 continue;
1124
1125 ice_for_each_rxq(vsi, rxq_idx)
1126 if (vsi->rxq_map[rxq_idx] == pfq) {
1127 struct ice_vf *found;
1128
1129 if (kref_get_unless_zero(&vf->refcnt))
1130 found = vf;
1131 else
1132 found = NULL;
1133 rcu_read_unlock();
1134 return found;
1135 }
1136 }
1137 rcu_read_unlock();
1138
1139 return NULL;
1140 }
1141
1142 /**
1143 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1144 * @pf: PF used for conversion
1145 * @globalq: global queue index used to convert to PF space queue index
1146 */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1147 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1148 {
1149 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1150 }
1151
1152 /**
1153 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1154 * @pf: PF that the LAN overflow event happened on
1155 * @event: structure holding the event information for the LAN overflow event
1156 *
1157 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1158 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1159 * reset on the offending VF.
1160 */
1161 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1162 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1163 {
1164 struct ice_aqc_event_lan_overflow *cmd;
1165 u32 gldcb_rtctq, queue;
1166 struct ice_vf *vf;
1167
1168 cmd = libie_aq_raw(&event->desc);
1169 gldcb_rtctq = le32_to_cpu(cmd->prtdcb_ruptq);
1170 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1171
1172 /* event returns device global Rx queue number */
1173 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1174
1175 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1176 if (!vf)
1177 return;
1178
1179 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1180 ice_put_vf(vf);
1181 }
1182
1183 /**
1184 * ice_set_vf_spoofchk
1185 * @netdev: network interface device structure
1186 * @vf_id: VF identifier
1187 * @ena: flag to enable or disable feature
1188 *
1189 * Enable or disable VF spoof checking
1190 */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1191 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1192 {
1193 struct ice_netdev_priv *np = netdev_priv(netdev);
1194 struct ice_pf *pf = np->vsi->back;
1195 struct ice_vsi *vf_vsi;
1196 struct device *dev;
1197 struct ice_vf *vf;
1198 int ret;
1199
1200 dev = ice_pf_to_dev(pf);
1201
1202 vf = ice_get_vf_by_id(pf, vf_id);
1203 if (!vf)
1204 return -EINVAL;
1205
1206 ret = ice_check_vf_ready_for_cfg(vf);
1207 if (ret)
1208 goto out_put_vf;
1209
1210 vf_vsi = ice_get_vf_vsi(vf);
1211 if (!vf_vsi) {
1212 netdev_err(netdev, "VSI %d for VF %d is null\n",
1213 vf->lan_vsi_idx, vf->vf_id);
1214 ret = -EINVAL;
1215 goto out_put_vf;
1216 }
1217
1218 if (vf_vsi->type != ICE_VSI_VF) {
1219 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1220 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1221 ret = -ENODEV;
1222 goto out_put_vf;
1223 }
1224
1225 if (ena == vf->spoofchk) {
1226 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1227 ret = 0;
1228 goto out_put_vf;
1229 }
1230
1231 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1232 if (ret)
1233 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1234 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1235 else
1236 vf->spoofchk = ena;
1237
1238 out_put_vf:
1239 ice_put_vf(vf);
1240 return ret;
1241 }
1242
1243 /**
1244 * ice_get_vf_cfg
1245 * @netdev: network interface device structure
1246 * @vf_id: VF identifier
1247 * @ivi: VF configuration structure
1248 *
1249 * return VF configuration
1250 */
1251 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1252 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1253 {
1254 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1255 struct ice_vf *vf;
1256 int ret;
1257
1258 vf = ice_get_vf_by_id(pf, vf_id);
1259 if (!vf)
1260 return -EINVAL;
1261
1262 ret = ice_check_vf_ready_for_cfg(vf);
1263 if (ret)
1264 goto out_put_vf;
1265
1266 ivi->vf = vf_id;
1267 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1268
1269 /* VF configuration for VLAN and applicable QoS */
1270 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1271 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1272 if (ice_vf_is_port_vlan_ena(vf))
1273 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1274
1275 ivi->trusted = vf->trusted;
1276 ivi->spoofchk = vf->spoofchk;
1277 if (!vf->link_forced)
1278 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1279 else if (vf->link_up)
1280 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1281 else
1282 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1283 ivi->max_tx_rate = vf->max_tx_rate;
1284 ivi->min_tx_rate = vf->min_tx_rate;
1285
1286 out_put_vf:
1287 ice_put_vf(vf);
1288 return ret;
1289 }
1290
1291 /**
1292 * __ice_set_vf_mac - program VF MAC address
1293 * @pf: PF to be configure
1294 * @vf_id: VF identifier
1295 * @mac: MAC address
1296 *
1297 * program VF MAC address
1298 * Return: zero on success or an error code on failure
1299 */
__ice_set_vf_mac(struct ice_pf * pf,u16 vf_id,const u8 * mac)1300 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1301 {
1302 struct device *dev;
1303 struct ice_vf *vf;
1304 int ret;
1305
1306 dev = ice_pf_to_dev(pf);
1307 if (is_multicast_ether_addr(mac)) {
1308 dev_err(dev, "%pM not a valid unicast address\n", mac);
1309 return -EINVAL;
1310 }
1311
1312 vf = ice_get_vf_by_id(pf, vf_id);
1313 if (!vf)
1314 return -EINVAL;
1315
1316 /* nothing left to do, unicast MAC already set */
1317 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1318 ether_addr_equal(vf->hw_lan_addr, mac)) {
1319 ret = 0;
1320 goto out_put_vf;
1321 }
1322
1323 ret = ice_check_vf_ready_for_cfg(vf);
1324 if (ret)
1325 goto out_put_vf;
1326
1327 mutex_lock(&vf->cfg_lock);
1328
1329 /* VF is notified of its new MAC via the PF's response to the
1330 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1331 */
1332 ether_addr_copy(vf->dev_lan_addr, mac);
1333 ether_addr_copy(vf->hw_lan_addr, mac);
1334 if (is_zero_ether_addr(mac)) {
1335 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1336 vf->pf_set_mac = false;
1337 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1338 vf->vf_id);
1339 } else {
1340 /* PF will add MAC rule for the VF */
1341 vf->pf_set_mac = true;
1342 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1343 mac, vf_id);
1344 }
1345
1346 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1347 mutex_unlock(&vf->cfg_lock);
1348
1349 out_put_vf:
1350 ice_put_vf(vf);
1351 return ret;
1352 }
1353
1354 /**
1355 * ice_set_vf_mac - .ndo_set_vf_mac handler
1356 * @netdev: network interface device structure
1357 * @vf_id: VF identifier
1358 * @mac: MAC address
1359 *
1360 * program VF MAC address
1361 * Return: zero on success or an error code on failure
1362 */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1363 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1364 {
1365 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1366 }
1367
1368 /**
1369 * ice_set_vf_trust
1370 * @netdev: network interface device structure
1371 * @vf_id: VF identifier
1372 * @trusted: Boolean value to enable/disable trusted VF
1373 *
1374 * Enable or disable a given VF as trusted
1375 */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1376 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1377 {
1378 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1379 struct ice_vf *vf;
1380 int ret;
1381
1382 vf = ice_get_vf_by_id(pf, vf_id);
1383 if (!vf)
1384 return -EINVAL;
1385
1386 if (ice_is_eswitch_mode_switchdev(pf)) {
1387 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1388 return -EOPNOTSUPP;
1389 }
1390
1391 ret = ice_check_vf_ready_for_cfg(vf);
1392 if (ret)
1393 goto out_put_vf;
1394
1395 /* Check if already trusted */
1396 if (trusted == vf->trusted) {
1397 ret = 0;
1398 goto out_put_vf;
1399 }
1400
1401 mutex_lock(&vf->cfg_lock);
1402
1403 while (!trusted && vf->num_mac_lldp)
1404 ice_vf_update_mac_lldp_num(vf, ice_get_vf_vsi(vf), false);
1405
1406 vf->trusted = trusted;
1407 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1408 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1409 vf_id, trusted ? "" : "un");
1410
1411 mutex_unlock(&vf->cfg_lock);
1412
1413 out_put_vf:
1414 ice_put_vf(vf);
1415 return ret;
1416 }
1417
1418 /**
1419 * ice_set_vf_link_state
1420 * @netdev: network interface device structure
1421 * @vf_id: VF identifier
1422 * @link_state: required link state
1423 *
1424 * Set VF's link state, irrespective of physical link state status
1425 */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1426 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1427 {
1428 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1429 struct ice_vf *vf;
1430 int ret;
1431
1432 vf = ice_get_vf_by_id(pf, vf_id);
1433 if (!vf)
1434 return -EINVAL;
1435
1436 ret = ice_check_vf_ready_for_cfg(vf);
1437 if (ret)
1438 goto out_put_vf;
1439
1440 switch (link_state) {
1441 case IFLA_VF_LINK_STATE_AUTO:
1442 vf->link_forced = false;
1443 break;
1444 case IFLA_VF_LINK_STATE_ENABLE:
1445 vf->link_forced = true;
1446 vf->link_up = true;
1447 break;
1448 case IFLA_VF_LINK_STATE_DISABLE:
1449 vf->link_forced = true;
1450 vf->link_up = false;
1451 break;
1452 default:
1453 ret = -EINVAL;
1454 goto out_put_vf;
1455 }
1456
1457 ice_vc_notify_vf_link_state(vf);
1458
1459 out_put_vf:
1460 ice_put_vf(vf);
1461 return ret;
1462 }
1463
1464 /**
1465 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1466 * @pf: PF associated with VFs
1467 */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1468 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1469 {
1470 struct ice_vf *vf;
1471 unsigned int bkt;
1472 int rate = 0;
1473
1474 rcu_read_lock();
1475 ice_for_each_vf_rcu(pf, bkt, vf)
1476 rate += vf->min_tx_rate;
1477 rcu_read_unlock();
1478
1479 return rate;
1480 }
1481
1482 /**
1483 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1484 * @vf: VF trying to configure min_tx_rate
1485 * @min_tx_rate: min Tx rate in Mbps
1486 *
1487 * Check if the min_tx_rate being passed in will cause oversubscription of total
1488 * min_tx_rate based on the current link speed and all other VFs configured
1489 * min_tx_rate
1490 *
1491 * Return true if the passed min_tx_rate would cause oversubscription, else
1492 * return false
1493 */
1494 static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1495 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1496 {
1497 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1498 int all_vfs_min_tx_rate;
1499 int link_speed_mbps;
1500
1501 if (WARN_ON(!vsi))
1502 return false;
1503
1504 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1505 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1506
1507 /* this VF's previous rate is being overwritten */
1508 all_vfs_min_tx_rate -= vf->min_tx_rate;
1509
1510 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1511 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1512 min_tx_rate, vf->vf_id,
1513 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1514 link_speed_mbps);
1515 return true;
1516 }
1517
1518 return false;
1519 }
1520
1521 /**
1522 * ice_set_vf_bw - set min/max VF bandwidth
1523 * @netdev: network interface device structure
1524 * @vf_id: VF identifier
1525 * @min_tx_rate: Minimum Tx rate in Mbps
1526 * @max_tx_rate: Maximum Tx rate in Mbps
1527 */
1528 int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1529 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1530 int max_tx_rate)
1531 {
1532 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1533 struct ice_vsi *vsi;
1534 struct device *dev;
1535 struct ice_vf *vf;
1536 int ret;
1537
1538 dev = ice_pf_to_dev(pf);
1539
1540 vf = ice_get_vf_by_id(pf, vf_id);
1541 if (!vf)
1542 return -EINVAL;
1543
1544 ret = ice_check_vf_ready_for_cfg(vf);
1545 if (ret)
1546 goto out_put_vf;
1547
1548 vsi = ice_get_vf_vsi(vf);
1549 if (!vsi) {
1550 ret = -EINVAL;
1551 goto out_put_vf;
1552 }
1553
1554 if (min_tx_rate && ice_is_dcb_active(pf)) {
1555 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1556 ret = -EOPNOTSUPP;
1557 goto out_put_vf;
1558 }
1559
1560 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1561 ret = -EINVAL;
1562 goto out_put_vf;
1563 }
1564
1565 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1566 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1567 if (ret) {
1568 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1569 vf->vf_id);
1570 goto out_put_vf;
1571 }
1572
1573 vf->min_tx_rate = min_tx_rate;
1574 }
1575
1576 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1577 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1578 if (ret) {
1579 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1580 vf->vf_id);
1581 goto out_put_vf;
1582 }
1583
1584 vf->max_tx_rate = max_tx_rate;
1585 }
1586
1587 out_put_vf:
1588 ice_put_vf(vf);
1589 return ret;
1590 }
1591
1592 /**
1593 * ice_get_vf_stats - populate some stats for the VF
1594 * @netdev: the netdev of the PF
1595 * @vf_id: the host OS identifier (0-255)
1596 * @vf_stats: pointer to the OS memory to be initialized
1597 */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1598 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1599 struct ifla_vf_stats *vf_stats)
1600 {
1601 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1602 struct ice_eth_stats *stats;
1603 struct ice_vsi *vsi;
1604 struct ice_vf *vf;
1605 int ret;
1606
1607 vf = ice_get_vf_by_id(pf, vf_id);
1608 if (!vf)
1609 return -EINVAL;
1610
1611 ret = ice_check_vf_ready_for_cfg(vf);
1612 if (ret)
1613 goto out_put_vf;
1614
1615 vsi = ice_get_vf_vsi(vf);
1616 if (!vsi) {
1617 ret = -EINVAL;
1618 goto out_put_vf;
1619 }
1620
1621 ice_update_eth_stats(vsi);
1622 stats = &vsi->eth_stats;
1623
1624 memset(vf_stats, 0, sizeof(*vf_stats));
1625
1626 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1627 stats->rx_multicast;
1628 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1629 stats->tx_multicast;
1630 vf_stats->rx_bytes = stats->rx_bytes;
1631 vf_stats->tx_bytes = stats->tx_bytes;
1632 vf_stats->broadcast = stats->rx_broadcast;
1633 vf_stats->multicast = stats->rx_multicast;
1634 vf_stats->rx_dropped = stats->rx_discards;
1635 vf_stats->tx_dropped = stats->tx_discards;
1636
1637 out_put_vf:
1638 ice_put_vf(vf);
1639 return ret;
1640 }
1641
1642 /**
1643 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1644 * @hw: hardware structure used to check the VLAN mode
1645 * @vlan_proto: VLAN TPID being checked
1646 *
1647 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1648 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1649 * Mode (SVM), then only ETH_P_8021Q is supported.
1650 */
1651 static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1652 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1653 {
1654 bool is_supported = false;
1655
1656 switch (vlan_proto) {
1657 case ETH_P_8021Q:
1658 is_supported = true;
1659 break;
1660 case ETH_P_8021AD:
1661 if (ice_is_dvm_ena(hw))
1662 is_supported = true;
1663 break;
1664 }
1665
1666 return is_supported;
1667 }
1668
1669 /**
1670 * ice_set_vf_port_vlan
1671 * @netdev: network interface device structure
1672 * @vf_id: VF identifier
1673 * @vlan_id: VLAN ID being set
1674 * @qos: priority setting
1675 * @vlan_proto: VLAN protocol
1676 *
1677 * program VF Port VLAN ID and/or QoS
1678 */
1679 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1680 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1681 __be16 vlan_proto)
1682 {
1683 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1684 u16 local_vlan_proto = ntohs(vlan_proto);
1685 struct device *dev;
1686 struct ice_vf *vf;
1687 int ret;
1688
1689 dev = ice_pf_to_dev(pf);
1690
1691 if (vlan_id >= VLAN_N_VID || qos > 7) {
1692 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1693 vf_id, vlan_id, qos);
1694 return -EINVAL;
1695 }
1696
1697 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1698 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1699 local_vlan_proto);
1700 return -EPROTONOSUPPORT;
1701 }
1702
1703 vf = ice_get_vf_by_id(pf, vf_id);
1704 if (!vf)
1705 return -EINVAL;
1706
1707 ret = ice_check_vf_ready_for_cfg(vf);
1708 if (ret)
1709 goto out_put_vf;
1710
1711 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1712 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1713 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1714 /* duplicate request, so just return success */
1715 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1716 vlan_id, qos, local_vlan_proto);
1717 ret = 0;
1718 goto out_put_vf;
1719 }
1720
1721 mutex_lock(&vf->cfg_lock);
1722
1723 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1724 if (ice_vf_is_port_vlan_ena(vf))
1725 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1726 vlan_id, qos, local_vlan_proto, vf_id);
1727 else
1728 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1729
1730 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1731 mutex_unlock(&vf->cfg_lock);
1732
1733 out_put_vf:
1734 ice_put_vf(vf);
1735 return ret;
1736 }
1737
1738 /**
1739 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1740 * @vf: pointer to the VF structure
1741 */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1742 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1743 {
1744 struct ice_pf *pf = vf->pf;
1745 struct device *dev;
1746
1747 dev = ice_pf_to_dev(pf);
1748
1749 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1750 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1751 vf->dev_lan_addr,
1752 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1753 ? "on" : "off");
1754 }
1755
1756 /**
1757 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1758 * @vf: pointer to the VF structure
1759 */
ice_print_vf_tx_mdd_event(struct ice_vf * vf)1760 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1761 {
1762 struct ice_pf *pf = vf->pf;
1763 struct device *dev;
1764
1765 dev = ice_pf_to_dev(pf);
1766
1767 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1768 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1769 vf->dev_lan_addr,
1770 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1771 ? "on" : "off");
1772 }
1773
1774 /**
1775 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1776 * @pf: pointer to the PF structure
1777 *
1778 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1779 */
ice_print_vfs_mdd_events(struct ice_pf * pf)1780 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1781 {
1782 struct ice_vf *vf;
1783 unsigned int bkt;
1784
1785 /* check that there are pending MDD events to print */
1786 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1787 return;
1788
1789 /* VF MDD event logs are rate limited to one second intervals */
1790 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1791 return;
1792
1793 pf->vfs.last_printed_mdd_jiffies = jiffies;
1794
1795 mutex_lock(&pf->vfs.table_lock);
1796 ice_for_each_vf(pf, bkt, vf) {
1797 /* only print Rx MDD event message if there are new events */
1798 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1799 vf->mdd_rx_events.last_printed =
1800 vf->mdd_rx_events.count;
1801 ice_print_vf_rx_mdd_event(vf);
1802 }
1803
1804 /* only print Tx MDD event message if there are new events */
1805 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1806 vf->mdd_tx_events.last_printed =
1807 vf->mdd_tx_events.count;
1808 ice_print_vf_tx_mdd_event(vf);
1809 }
1810 }
1811 mutex_unlock(&pf->vfs.table_lock);
1812 }
1813
1814 /**
1815 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1816 * @pf: pointer to the PF structure
1817 *
1818 * Called when recovering from a PF FLR to restore interrupt capability to
1819 * the VFs.
1820 */
ice_restore_all_vfs_msi_state(struct ice_pf * pf)1821 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1822 {
1823 struct ice_vf *vf;
1824 u32 bkt;
1825
1826 ice_for_each_vf(pf, bkt, vf)
1827 pci_restore_msi_state(vf->vfdev);
1828 }
1829