1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_choices.h>
29 #include <linux/string_helpers.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/jhash.h>
33 #include <linux/numa.h>
34 #include <linux/llist.h>
35 #include <linux/cma.h>
36 #include <linux/migrate.h>
37 #include <linux/nospec.h>
38 #include <linux/delayacct.h>
39 #include <linux/memory.h>
40 #include <linux/mm_inline.h>
41 #include <linux/padata.h>
42
43 #include <asm/page.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlb.h>
46 #include <asm/setup.h>
47
48 #include <linux/io.h>
49 #include <linux/hugetlb.h>
50 #include <linux/hugetlb_cgroup.h>
51 #include <linux/node.h>
52 #include <linux/page_owner.h>
53 #include "internal.h"
54 #include "hugetlb_vmemmap.h"
55 #include "hugetlb_cma.h"
56 #include <linux/page-isolation.h>
57
58 int hugetlb_max_hstate __read_mostly;
59 unsigned int default_hstate_idx;
60 struct hstate hstates[HUGE_MAX_HSTATE];
61
62 __initdata nodemask_t hugetlb_bootmem_nodes;
63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
64 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
65
66 /*
67 * Due to ordering constraints across the init code for various
68 * architectures, hugetlb hstate cmdline parameters can't simply
69 * be early_param. early_param might call the setup function
70 * before valid hugetlb page sizes are determined, leading to
71 * incorrect rejection of valid hugepagesz= options.
72 *
73 * So, record the parameters early and consume them whenever the
74 * init code is ready for them, by calling hugetlb_parse_params().
75 */
76
77 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
78 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
79 struct hugetlb_cmdline {
80 char *val;
81 int (*setup)(char *val);
82 };
83
84 /* for command line parsing */
85 static struct hstate * __initdata parsed_hstate;
86 static unsigned long __initdata default_hstate_max_huge_pages;
87 static bool __initdata parsed_valid_hugepagesz = true;
88 static bool __initdata parsed_default_hugepagesz;
89 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
90 static unsigned long hugepage_allocation_threads __initdata;
91
92 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
93 static int hstate_cmdline_index __initdata;
94 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
95 static int hugetlb_param_index __initdata;
96 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
97 static __init void hugetlb_parse_params(void);
98
99 #define hugetlb_early_param(str, func) \
100 static __init int func##args(char *s) \
101 { \
102 return hugetlb_add_param(s, func); \
103 } \
104 early_param(str, func##args)
105
106 /*
107 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
108 * free_huge_pages, and surplus_huge_pages.
109 */
110 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
111
112 /*
113 * Serializes faults on the same logical page. This is used to
114 * prevent spurious OOMs when the hugepage pool is fully utilized.
115 */
116 static int num_fault_mutexes __ro_after_init;
117 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
118
119 /* Forward declaration */
120 static int hugetlb_acct_memory(struct hstate *h, long delta);
121 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
122 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
123 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
124 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
125 unsigned long start, unsigned long end, bool take_locks);
126 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
127
hugetlb_free_folio(struct folio * folio)128 static void hugetlb_free_folio(struct folio *folio)
129 {
130 if (folio_test_hugetlb_cma(folio)) {
131 hugetlb_cma_free_folio(folio);
132 return;
133 }
134
135 folio_put(folio);
136 }
137
subpool_is_free(struct hugepage_subpool * spool)138 static inline bool subpool_is_free(struct hugepage_subpool *spool)
139 {
140 if (spool->count)
141 return false;
142 if (spool->max_hpages != -1)
143 return spool->used_hpages == 0;
144 if (spool->min_hpages != -1)
145 return spool->rsv_hpages == spool->min_hpages;
146
147 return true;
148 }
149
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)150 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
151 unsigned long irq_flags)
152 {
153 spin_unlock_irqrestore(&spool->lock, irq_flags);
154
155 /* If no pages are used, and no other handles to the subpool
156 * remain, give up any reservations based on minimum size and
157 * free the subpool */
158 if (subpool_is_free(spool)) {
159 if (spool->min_hpages != -1)
160 hugetlb_acct_memory(spool->hstate,
161 -spool->min_hpages);
162 kfree(spool);
163 }
164 }
165
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)166 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
167 long min_hpages)
168 {
169 struct hugepage_subpool *spool;
170
171 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
172 if (!spool)
173 return NULL;
174
175 spin_lock_init(&spool->lock);
176 spool->count = 1;
177 spool->max_hpages = max_hpages;
178 spool->hstate = h;
179 spool->min_hpages = min_hpages;
180
181 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
182 kfree(spool);
183 return NULL;
184 }
185 spool->rsv_hpages = min_hpages;
186
187 return spool;
188 }
189
hugepage_put_subpool(struct hugepage_subpool * spool)190 void hugepage_put_subpool(struct hugepage_subpool *spool)
191 {
192 unsigned long flags;
193
194 spin_lock_irqsave(&spool->lock, flags);
195 BUG_ON(!spool->count);
196 spool->count--;
197 unlock_or_release_subpool(spool, flags);
198 }
199
200 /*
201 * Subpool accounting for allocating and reserving pages.
202 * Return -ENOMEM if there are not enough resources to satisfy the
203 * request. Otherwise, return the number of pages by which the
204 * global pools must be adjusted (upward). The returned value may
205 * only be different than the passed value (delta) in the case where
206 * a subpool minimum size must be maintained.
207 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)208 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
209 long delta)
210 {
211 long ret = delta;
212
213 if (!spool)
214 return ret;
215
216 spin_lock_irq(&spool->lock);
217
218 if (spool->max_hpages != -1) { /* maximum size accounting */
219 if ((spool->used_hpages + delta) <= spool->max_hpages)
220 spool->used_hpages += delta;
221 else {
222 ret = -ENOMEM;
223 goto unlock_ret;
224 }
225 }
226
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->rsv_hpages) {
229 if (delta > spool->rsv_hpages) {
230 /*
231 * Asking for more reserves than those already taken on
232 * behalf of subpool. Return difference.
233 */
234 ret = delta - spool->rsv_hpages;
235 spool->rsv_hpages = 0;
236 } else {
237 ret = 0; /* reserves already accounted for */
238 spool->rsv_hpages -= delta;
239 }
240 }
241
242 unlock_ret:
243 spin_unlock_irq(&spool->lock);
244 return ret;
245 }
246
247 /*
248 * Subpool accounting for freeing and unreserving pages.
249 * Return the number of global page reservations that must be dropped.
250 * The return value may only be different than the passed value (delta)
251 * in the case where a subpool minimum size must be maintained.
252 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)253 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
254 long delta)
255 {
256 long ret = delta;
257 unsigned long flags;
258
259 if (!spool)
260 return delta;
261
262 spin_lock_irqsave(&spool->lock, flags);
263
264 if (spool->max_hpages != -1) /* maximum size accounting */
265 spool->used_hpages -= delta;
266
267 /* minimum size accounting */
268 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
269 if (spool->rsv_hpages + delta <= spool->min_hpages)
270 ret = 0;
271 else
272 ret = spool->rsv_hpages + delta - spool->min_hpages;
273
274 spool->rsv_hpages += delta;
275 if (spool->rsv_hpages > spool->min_hpages)
276 spool->rsv_hpages = spool->min_hpages;
277 }
278
279 /*
280 * If hugetlbfs_put_super couldn't free spool due to an outstanding
281 * quota reference, free it now.
282 */
283 unlock_or_release_subpool(spool, flags);
284
285 return ret;
286 }
287
subpool_vma(struct vm_area_struct * vma)288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
289 {
290 return subpool_inode(file_inode(vma->vm_file));
291 }
292
293 /*
294 * hugetlb vma_lock helper routines
295 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)296 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
297 {
298 if (__vma_shareable_lock(vma)) {
299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301 down_read(&vma_lock->rw_sema);
302 } else if (__vma_private_lock(vma)) {
303 struct resv_map *resv_map = vma_resv_map(vma);
304
305 down_read(&resv_map->rw_sema);
306 }
307 }
308
hugetlb_vma_unlock_read(struct vm_area_struct * vma)309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
310 {
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 up_read(&vma_lock->rw_sema);
315 } else if (__vma_private_lock(vma)) {
316 struct resv_map *resv_map = vma_resv_map(vma);
317
318 up_read(&resv_map->rw_sema);
319 }
320 }
321
hugetlb_vma_lock_write(struct vm_area_struct * vma)322 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
323 {
324 if (__vma_shareable_lock(vma)) {
325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
326
327 down_write(&vma_lock->rw_sema);
328 } else if (__vma_private_lock(vma)) {
329 struct resv_map *resv_map = vma_resv_map(vma);
330
331 down_write(&resv_map->rw_sema);
332 }
333 }
334
hugetlb_vma_unlock_write(struct vm_area_struct * vma)335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
336 {
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 up_write(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 up_write(&resv_map->rw_sema);
345 }
346 }
347
hugetlb_vma_trylock_write(struct vm_area_struct * vma)348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
349 {
350
351 if (__vma_shareable_lock(vma)) {
352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
353
354 return down_write_trylock(&vma_lock->rw_sema);
355 } else if (__vma_private_lock(vma)) {
356 struct resv_map *resv_map = vma_resv_map(vma);
357
358 return down_write_trylock(&resv_map->rw_sema);
359 }
360
361 return 1;
362 }
363
hugetlb_vma_assert_locked(struct vm_area_struct * vma)364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
365 {
366 if (__vma_shareable_lock(vma)) {
367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
368
369 lockdep_assert_held(&vma_lock->rw_sema);
370 } else if (__vma_private_lock(vma)) {
371 struct resv_map *resv_map = vma_resv_map(vma);
372
373 lockdep_assert_held(&resv_map->rw_sema);
374 }
375 }
376
hugetlb_vma_lock_release(struct kref * kref)377 void hugetlb_vma_lock_release(struct kref *kref)
378 {
379 struct hugetlb_vma_lock *vma_lock = container_of(kref,
380 struct hugetlb_vma_lock, refs);
381
382 kfree(vma_lock);
383 }
384
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
386 {
387 struct vm_area_struct *vma = vma_lock->vma;
388
389 /*
390 * vma_lock structure may or not be released as a result of put,
391 * it certainly will no longer be attached to vma so clear pointer.
392 * Semaphore synchronizes access to vma_lock->vma field.
393 */
394 vma_lock->vma = NULL;
395 vma->vm_private_data = NULL;
396 up_write(&vma_lock->rw_sema);
397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
398 }
399
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
401 {
402 if (__vma_shareable_lock(vma)) {
403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
404
405 __hugetlb_vma_unlock_write_put(vma_lock);
406 } else if (__vma_private_lock(vma)) {
407 struct resv_map *resv_map = vma_resv_map(vma);
408
409 /* no free for anon vmas, but still need to unlock */
410 up_write(&resv_map->rw_sema);
411 }
412 }
413
hugetlb_vma_lock_free(struct vm_area_struct * vma)414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
415 {
416 /*
417 * Only present in sharable vmas.
418 */
419 if (!vma || !__vma_shareable_lock(vma))
420 return;
421
422 if (vma->vm_private_data) {
423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
424
425 down_write(&vma_lock->rw_sema);
426 __hugetlb_vma_unlock_write_put(vma_lock);
427 }
428 }
429
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
431 {
432 struct hugetlb_vma_lock *vma_lock;
433
434 /* Only establish in (flags) sharable vmas */
435 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
436 return;
437
438 /* Should never get here with non-NULL vm_private_data */
439 if (vma->vm_private_data)
440 return;
441
442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
443 if (!vma_lock) {
444 /*
445 * If we can not allocate structure, then vma can not
446 * participate in pmd sharing. This is only a possible
447 * performance enhancement and memory saving issue.
448 * However, the lock is also used to synchronize page
449 * faults with truncation. If the lock is not present,
450 * unlikely races could leave pages in a file past i_size
451 * until the file is removed. Warn in the unlikely case of
452 * allocation failure.
453 */
454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
455 return;
456 }
457
458 kref_init(&vma_lock->refs);
459 init_rwsem(&vma_lock->rw_sema);
460 vma_lock->vma = vma;
461 vma->vm_private_data = vma_lock;
462 }
463
464 /* Helper that removes a struct file_region from the resv_map cache and returns
465 * it for use.
466 */
467 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
469 {
470 struct file_region *nrg;
471
472 VM_BUG_ON(resv->region_cache_count <= 0);
473
474 resv->region_cache_count--;
475 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
476 list_del(&nrg->link);
477
478 nrg->from = from;
479 nrg->to = to;
480
481 return nrg;
482 }
483
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
485 struct file_region *rg)
486 {
487 #ifdef CONFIG_CGROUP_HUGETLB
488 nrg->reservation_counter = rg->reservation_counter;
489 nrg->css = rg->css;
490 if (rg->css)
491 css_get(rg->css);
492 #endif
493 }
494
495 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
497 struct hstate *h,
498 struct resv_map *resv,
499 struct file_region *nrg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (h_cg) {
503 nrg->reservation_counter =
504 &h_cg->rsvd_hugepage[hstate_index(h)];
505 nrg->css = &h_cg->css;
506 /*
507 * The caller will hold exactly one h_cg->css reference for the
508 * whole contiguous reservation region. But this area might be
509 * scattered when there are already some file_regions reside in
510 * it. As a result, many file_regions may share only one css
511 * reference. In order to ensure that one file_region must hold
512 * exactly one h_cg->css reference, we should do css_get for
513 * each file_region and leave the reference held by caller
514 * untouched.
515 */
516 css_get(&h_cg->css);
517 if (!resv->pages_per_hpage)
518 resv->pages_per_hpage = pages_per_huge_page(h);
519 /* pages_per_hpage should be the same for all entries in
520 * a resv_map.
521 */
522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
523 } else {
524 nrg->reservation_counter = NULL;
525 nrg->css = NULL;
526 }
527 #endif
528 }
529
put_uncharge_info(struct file_region * rg)530 static void put_uncharge_info(struct file_region *rg)
531 {
532 #ifdef CONFIG_CGROUP_HUGETLB
533 if (rg->css)
534 css_put(rg->css);
535 #endif
536 }
537
has_same_uncharge_info(struct file_region * rg,struct file_region * org)538 static bool has_same_uncharge_info(struct file_region *rg,
539 struct file_region *org)
540 {
541 #ifdef CONFIG_CGROUP_HUGETLB
542 return rg->reservation_counter == org->reservation_counter &&
543 rg->css == org->css;
544
545 #else
546 return true;
547 #endif
548 }
549
coalesce_file_region(struct resv_map * resv,struct file_region * rg)550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
551 {
552 struct file_region *nrg, *prg;
553
554 prg = list_prev_entry(rg, link);
555 if (&prg->link != &resv->regions && prg->to == rg->from &&
556 has_same_uncharge_info(prg, rg)) {
557 prg->to = rg->to;
558
559 list_del(&rg->link);
560 put_uncharge_info(rg);
561 kfree(rg);
562
563 rg = prg;
564 }
565
566 nrg = list_next_entry(rg, link);
567 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
568 has_same_uncharge_info(nrg, rg)) {
569 nrg->from = rg->from;
570
571 list_del(&rg->link);
572 put_uncharge_info(rg);
573 kfree(rg);
574 }
575 }
576
577 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
579 long to, struct hstate *h, struct hugetlb_cgroup *cg,
580 long *regions_needed)
581 {
582 struct file_region *nrg;
583
584 if (!regions_needed) {
585 nrg = get_file_region_entry_from_cache(map, from, to);
586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
587 list_add(&nrg->link, rg);
588 coalesce_file_region(map, nrg);
589 } else
590 *regions_needed += 1;
591
592 return to - from;
593 }
594
595 /*
596 * Must be called with resv->lock held.
597 *
598 * Calling this with regions_needed != NULL will count the number of pages
599 * to be added but will not modify the linked list. And regions_needed will
600 * indicate the number of file_regions needed in the cache to carry out to add
601 * the regions for this range.
602 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)603 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
604 struct hugetlb_cgroup *h_cg,
605 struct hstate *h, long *regions_needed)
606 {
607 long add = 0;
608 struct list_head *head = &resv->regions;
609 long last_accounted_offset = f;
610 struct file_region *iter, *trg = NULL;
611 struct list_head *rg = NULL;
612
613 if (regions_needed)
614 *regions_needed = 0;
615
616 /* In this loop, we essentially handle an entry for the range
617 * [last_accounted_offset, iter->from), at every iteration, with some
618 * bounds checking.
619 */
620 list_for_each_entry_safe(iter, trg, head, link) {
621 /* Skip irrelevant regions that start before our range. */
622 if (iter->from < f) {
623 /* If this region ends after the last accounted offset,
624 * then we need to update last_accounted_offset.
625 */
626 if (iter->to > last_accounted_offset)
627 last_accounted_offset = iter->to;
628 continue;
629 }
630
631 /* When we find a region that starts beyond our range, we've
632 * finished.
633 */
634 if (iter->from >= t) {
635 rg = iter->link.prev;
636 break;
637 }
638
639 /* Add an entry for last_accounted_offset -> iter->from, and
640 * update last_accounted_offset.
641 */
642 if (iter->from > last_accounted_offset)
643 add += hugetlb_resv_map_add(resv, iter->link.prev,
644 last_accounted_offset,
645 iter->from, h, h_cg,
646 regions_needed);
647
648 last_accounted_offset = iter->to;
649 }
650
651 /* Handle the case where our range extends beyond
652 * last_accounted_offset.
653 */
654 if (!rg)
655 rg = head->prev;
656 if (last_accounted_offset < t)
657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
658 t, h, h_cg, regions_needed);
659
660 return add;
661 }
662
663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
664 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)665 static int allocate_file_region_entries(struct resv_map *resv,
666 int regions_needed)
667 __must_hold(&resv->lock)
668 {
669 LIST_HEAD(allocated_regions);
670 int to_allocate = 0, i = 0;
671 struct file_region *trg = NULL, *rg = NULL;
672
673 VM_BUG_ON(regions_needed < 0);
674
675 /*
676 * Check for sufficient descriptors in the cache to accommodate
677 * the number of in progress add operations plus regions_needed.
678 *
679 * This is a while loop because when we drop the lock, some other call
680 * to region_add or region_del may have consumed some region_entries,
681 * so we keep looping here until we finally have enough entries for
682 * (adds_in_progress + regions_needed).
683 */
684 while (resv->region_cache_count <
685 (resv->adds_in_progress + regions_needed)) {
686 to_allocate = resv->adds_in_progress + regions_needed -
687 resv->region_cache_count;
688
689 /* At this point, we should have enough entries in the cache
690 * for all the existing adds_in_progress. We should only be
691 * needing to allocate for regions_needed.
692 */
693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
694
695 spin_unlock(&resv->lock);
696 for (i = 0; i < to_allocate; i++) {
697 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
698 if (!trg)
699 goto out_of_memory;
700 list_add(&trg->link, &allocated_regions);
701 }
702
703 spin_lock(&resv->lock);
704
705 list_splice(&allocated_regions, &resv->region_cache);
706 resv->region_cache_count += to_allocate;
707 }
708
709 return 0;
710
711 out_of_memory:
712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
713 list_del(&rg->link);
714 kfree(rg);
715 }
716 return -ENOMEM;
717 }
718
719 /*
720 * Add the huge page range represented by [f, t) to the reserve
721 * map. Regions will be taken from the cache to fill in this range.
722 * Sufficient regions should exist in the cache due to the previous
723 * call to region_chg with the same range, but in some cases the cache will not
724 * have sufficient entries due to races with other code doing region_add or
725 * region_del. The extra needed entries will be allocated.
726 *
727 * regions_needed is the out value provided by a previous call to region_chg.
728 *
729 * Return the number of new huge pages added to the map. This number is greater
730 * than or equal to zero. If file_region entries needed to be allocated for
731 * this operation and we were not able to allocate, it returns -ENOMEM.
732 * region_add of regions of length 1 never allocate file_regions and cannot
733 * fail; region_chg will always allocate at least 1 entry and a region_add for
734 * 1 page will only require at most 1 entry.
735 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)736 static long region_add(struct resv_map *resv, long f, long t,
737 long in_regions_needed, struct hstate *h,
738 struct hugetlb_cgroup *h_cg)
739 {
740 long add = 0, actual_regions_needed = 0;
741
742 spin_lock(&resv->lock);
743 retry:
744
745 /* Count how many regions are actually needed to execute this add. */
746 add_reservation_in_range(resv, f, t, NULL, NULL,
747 &actual_regions_needed);
748
749 /*
750 * Check for sufficient descriptors in the cache to accommodate
751 * this add operation. Note that actual_regions_needed may be greater
752 * than in_regions_needed, as the resv_map may have been modified since
753 * the region_chg call. In this case, we need to make sure that we
754 * allocate extra entries, such that we have enough for all the
755 * existing adds_in_progress, plus the excess needed for this
756 * operation.
757 */
758 if (actual_regions_needed > in_regions_needed &&
759 resv->region_cache_count <
760 resv->adds_in_progress +
761 (actual_regions_needed - in_regions_needed)) {
762 /* region_add operation of range 1 should never need to
763 * allocate file_region entries.
764 */
765 VM_BUG_ON(t - f <= 1);
766
767 if (allocate_file_region_entries(
768 resv, actual_regions_needed - in_regions_needed)) {
769 return -ENOMEM;
770 }
771
772 goto retry;
773 }
774
775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
776
777 resv->adds_in_progress -= in_regions_needed;
778
779 spin_unlock(&resv->lock);
780 return add;
781 }
782
783 /*
784 * Examine the existing reserve map and determine how many
785 * huge pages in the specified range [f, t) are NOT currently
786 * represented. This routine is called before a subsequent
787 * call to region_add that will actually modify the reserve
788 * map to add the specified range [f, t). region_chg does
789 * not change the number of huge pages represented by the
790 * map. A number of new file_region structures is added to the cache as a
791 * placeholder, for the subsequent region_add call to use. At least 1
792 * file_region structure is added.
793 *
794 * out_regions_needed is the number of regions added to the
795 * resv->adds_in_progress. This value needs to be provided to a follow up call
796 * to region_add or region_abort for proper accounting.
797 *
798 * Returns the number of huge pages that need to be added to the existing
799 * reservation map for the range [f, t). This number is greater or equal to
800 * zero. -ENOMEM is returned if a new file_region structure or cache entry
801 * is needed and can not be allocated.
802 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)803 static long region_chg(struct resv_map *resv, long f, long t,
804 long *out_regions_needed)
805 {
806 long chg = 0;
807
808 spin_lock(&resv->lock);
809
810 /* Count how many hugepages in this range are NOT represented. */
811 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
812 out_regions_needed);
813
814 if (*out_regions_needed == 0)
815 *out_regions_needed = 1;
816
817 if (allocate_file_region_entries(resv, *out_regions_needed))
818 return -ENOMEM;
819
820 resv->adds_in_progress += *out_regions_needed;
821
822 spin_unlock(&resv->lock);
823 return chg;
824 }
825
826 /*
827 * Abort the in progress add operation. The adds_in_progress field
828 * of the resv_map keeps track of the operations in progress between
829 * calls to region_chg and region_add. Operations are sometimes
830 * aborted after the call to region_chg. In such cases, region_abort
831 * is called to decrement the adds_in_progress counter. regions_needed
832 * is the value returned by the region_chg call, it is used to decrement
833 * the adds_in_progress counter.
834 *
835 * NOTE: The range arguments [f, t) are not needed or used in this
836 * routine. They are kept to make reading the calling code easier as
837 * arguments will match the associated region_chg call.
838 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)839 static void region_abort(struct resv_map *resv, long f, long t,
840 long regions_needed)
841 {
842 spin_lock(&resv->lock);
843 VM_BUG_ON(!resv->region_cache_count);
844 resv->adds_in_progress -= regions_needed;
845 spin_unlock(&resv->lock);
846 }
847
848 /*
849 * Delete the specified range [f, t) from the reserve map. If the
850 * t parameter is LONG_MAX, this indicates that ALL regions after f
851 * should be deleted. Locate the regions which intersect [f, t)
852 * and either trim, delete or split the existing regions.
853 *
854 * Returns the number of huge pages deleted from the reserve map.
855 * In the normal case, the return value is zero or more. In the
856 * case where a region must be split, a new region descriptor must
857 * be allocated. If the allocation fails, -ENOMEM will be returned.
858 * NOTE: If the parameter t == LONG_MAX, then we will never split
859 * a region and possibly return -ENOMEM. Callers specifying
860 * t == LONG_MAX do not need to check for -ENOMEM error.
861 */
region_del(struct resv_map * resv,long f,long t)862 static long region_del(struct resv_map *resv, long f, long t)
863 {
864 struct list_head *head = &resv->regions;
865 struct file_region *rg, *trg;
866 struct file_region *nrg = NULL;
867 long del = 0;
868
869 retry:
870 spin_lock(&resv->lock);
871 list_for_each_entry_safe(rg, trg, head, link) {
872 /*
873 * Skip regions before the range to be deleted. file_region
874 * ranges are normally of the form [from, to). However, there
875 * may be a "placeholder" entry in the map which is of the form
876 * (from, to) with from == to. Check for placeholder entries
877 * at the beginning of the range to be deleted.
878 */
879 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
880 continue;
881
882 if (rg->from >= t)
883 break;
884
885 if (f > rg->from && t < rg->to) { /* Must split region */
886 /*
887 * Check for an entry in the cache before dropping
888 * lock and attempting allocation.
889 */
890 if (!nrg &&
891 resv->region_cache_count > resv->adds_in_progress) {
892 nrg = list_first_entry(&resv->region_cache,
893 struct file_region,
894 link);
895 list_del(&nrg->link);
896 resv->region_cache_count--;
897 }
898
899 if (!nrg) {
900 spin_unlock(&resv->lock);
901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
902 if (!nrg)
903 return -ENOMEM;
904 goto retry;
905 }
906
907 del += t - f;
908 hugetlb_cgroup_uncharge_file_region(
909 resv, rg, t - f, false);
910
911 /* New entry for end of split region */
912 nrg->from = t;
913 nrg->to = rg->to;
914
915 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
916
917 INIT_LIST_HEAD(&nrg->link);
918
919 /* Original entry is trimmed */
920 rg->to = f;
921
922 list_add(&nrg->link, &rg->link);
923 nrg = NULL;
924 break;
925 }
926
927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
928 del += rg->to - rg->from;
929 hugetlb_cgroup_uncharge_file_region(resv, rg,
930 rg->to - rg->from, true);
931 list_del(&rg->link);
932 kfree(rg);
933 continue;
934 }
935
936 if (f <= rg->from) { /* Trim beginning of region */
937 hugetlb_cgroup_uncharge_file_region(resv, rg,
938 t - rg->from, false);
939
940 del += t - rg->from;
941 rg->from = t;
942 } else { /* Trim end of region */
943 hugetlb_cgroup_uncharge_file_region(resv, rg,
944 rg->to - f, false);
945
946 del += rg->to - f;
947 rg->to = f;
948 }
949 }
950
951 spin_unlock(&resv->lock);
952 kfree(nrg);
953 return del;
954 }
955
956 /*
957 * A rare out of memory error was encountered which prevented removal of
958 * the reserve map region for a page. The huge page itself was free'ed
959 * and removed from the page cache. This routine will adjust the subpool
960 * usage count, and the global reserve count if needed. By incrementing
961 * these counts, the reserve map entry which could not be deleted will
962 * appear as a "reserved" entry instead of simply dangling with incorrect
963 * counts.
964 */
hugetlb_fix_reserve_counts(struct inode * inode)965 void hugetlb_fix_reserve_counts(struct inode *inode)
966 {
967 struct hugepage_subpool *spool = subpool_inode(inode);
968 long rsv_adjust;
969 bool reserved = false;
970
971 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
972 if (rsv_adjust > 0) {
973 struct hstate *h = hstate_inode(inode);
974
975 if (!hugetlb_acct_memory(h, 1))
976 reserved = true;
977 } else if (!rsv_adjust) {
978 reserved = true;
979 }
980
981 if (!reserved)
982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
983 }
984
985 /*
986 * Count and return the number of huge pages in the reserve map
987 * that intersect with the range [f, t).
988 */
region_count(struct resv_map * resv,long f,long t)989 static long region_count(struct resv_map *resv, long f, long t)
990 {
991 struct list_head *head = &resv->regions;
992 struct file_region *rg;
993 long chg = 0;
994
995 spin_lock(&resv->lock);
996 /* Locate each segment we overlap with, and count that overlap. */
997 list_for_each_entry(rg, head, link) {
998 long seg_from;
999 long seg_to;
1000
1001 if (rg->to <= f)
1002 continue;
1003 if (rg->from >= t)
1004 break;
1005
1006 seg_from = max(rg->from, f);
1007 seg_to = min(rg->to, t);
1008
1009 chg += seg_to - seg_from;
1010 }
1011 spin_unlock(&resv->lock);
1012
1013 return chg;
1014 }
1015
1016 /*
1017 * Convert the address within this vma to the page offset within
1018 * the mapping, huge page units here.
1019 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1020 static pgoff_t vma_hugecache_offset(struct hstate *h,
1021 struct vm_area_struct *vma, unsigned long address)
1022 {
1023 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1024 (vma->vm_pgoff >> huge_page_order(h));
1025 }
1026
1027 /**
1028 * vma_kernel_pagesize - Page size granularity for this VMA.
1029 * @vma: The user mapping.
1030 *
1031 * Folios in this VMA will be aligned to, and at least the size of the
1032 * number of bytes returned by this function.
1033 *
1034 * Return: The default size of the folios allocated when backing a VMA.
1035 */
vma_kernel_pagesize(struct vm_area_struct * vma)1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1037 {
1038 if (vma->vm_ops && vma->vm_ops->pagesize)
1039 return vma->vm_ops->pagesize(vma);
1040 return PAGE_SIZE;
1041 }
1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1043
1044 /*
1045 * Return the page size being used by the MMU to back a VMA. In the majority
1046 * of cases, the page size used by the kernel matches the MMU size. On
1047 * architectures where it differs, an architecture-specific 'strong'
1048 * version of this symbol is required.
1049 */
vma_mmu_pagesize(struct vm_area_struct * vma)1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1051 {
1052 return vma_kernel_pagesize(vma);
1053 }
1054
1055 /*
1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1057 * bits of the reservation map pointer, which are always clear due to
1058 * alignment.
1059 */
1060 #define HPAGE_RESV_OWNER (1UL << 0)
1061 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1063
1064 /*
1065 * These helpers are used to track how many pages are reserved for
1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1067 * is guaranteed to have their future faults succeed.
1068 *
1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1070 * the reserve counters are updated with the hugetlb_lock held. It is safe
1071 * to reset the VMA at fork() time as it is not in use yet and there is no
1072 * chance of the global counters getting corrupted as a result of the values.
1073 *
1074 * The private mapping reservation is represented in a subtly different
1075 * manner to a shared mapping. A shared mapping has a region map associated
1076 * with the underlying file, this region map represents the backing file
1077 * pages which have ever had a reservation assigned which this persists even
1078 * after the page is instantiated. A private mapping has a region map
1079 * associated with the original mmap which is attached to all VMAs which
1080 * reference it, this region map represents those offsets which have consumed
1081 * reservation ie. where pages have been instantiated.
1082 */
get_vma_private_data(struct vm_area_struct * vma)1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1084 {
1085 return (unsigned long)vma->vm_private_data;
1086 }
1087
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1088 static void set_vma_private_data(struct vm_area_struct *vma,
1089 unsigned long value)
1090 {
1091 vma->vm_private_data = (void *)value;
1092 }
1093
1094 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1096 struct hugetlb_cgroup *h_cg,
1097 struct hstate *h)
1098 {
1099 #ifdef CONFIG_CGROUP_HUGETLB
1100 if (!h_cg || !h) {
1101 resv_map->reservation_counter = NULL;
1102 resv_map->pages_per_hpage = 0;
1103 resv_map->css = NULL;
1104 } else {
1105 resv_map->reservation_counter =
1106 &h_cg->rsvd_hugepage[hstate_index(h)];
1107 resv_map->pages_per_hpage = pages_per_huge_page(h);
1108 resv_map->css = &h_cg->css;
1109 }
1110 #endif
1111 }
1112
resv_map_alloc(void)1113 struct resv_map *resv_map_alloc(void)
1114 {
1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1117
1118 if (!resv_map || !rg) {
1119 kfree(resv_map);
1120 kfree(rg);
1121 return NULL;
1122 }
1123
1124 kref_init(&resv_map->refs);
1125 spin_lock_init(&resv_map->lock);
1126 INIT_LIST_HEAD(&resv_map->regions);
1127 init_rwsem(&resv_map->rw_sema);
1128
1129 resv_map->adds_in_progress = 0;
1130 /*
1131 * Initialize these to 0. On shared mappings, 0's here indicate these
1132 * fields don't do cgroup accounting. On private mappings, these will be
1133 * re-initialized to the proper values, to indicate that hugetlb cgroup
1134 * reservations are to be un-charged from here.
1135 */
1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1137
1138 INIT_LIST_HEAD(&resv_map->region_cache);
1139 list_add(&rg->link, &resv_map->region_cache);
1140 resv_map->region_cache_count = 1;
1141
1142 return resv_map;
1143 }
1144
resv_map_release(struct kref * ref)1145 void resv_map_release(struct kref *ref)
1146 {
1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1148 struct list_head *head = &resv_map->region_cache;
1149 struct file_region *rg, *trg;
1150
1151 /* Clear out any active regions before we release the map. */
1152 region_del(resv_map, 0, LONG_MAX);
1153
1154 /* ... and any entries left in the cache */
1155 list_for_each_entry_safe(rg, trg, head, link) {
1156 list_del(&rg->link);
1157 kfree(rg);
1158 }
1159
1160 VM_BUG_ON(resv_map->adds_in_progress);
1161
1162 kfree(resv_map);
1163 }
1164
inode_resv_map(struct inode * inode)1165 static inline struct resv_map *inode_resv_map(struct inode *inode)
1166 {
1167 /*
1168 * At inode evict time, i_mapping may not point to the original
1169 * address space within the inode. This original address space
1170 * contains the pointer to the resv_map. So, always use the
1171 * address space embedded within the inode.
1172 * The VERY common case is inode->mapping == &inode->i_data but,
1173 * this may not be true for device special inodes.
1174 */
1175 return (struct resv_map *)(&inode->i_data)->i_private_data;
1176 }
1177
vma_resv_map(struct vm_area_struct * vma)1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1179 {
1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181 if (vma->vm_flags & VM_MAYSHARE) {
1182 struct address_space *mapping = vma->vm_file->f_mapping;
1183 struct inode *inode = mapping->host;
1184
1185 return inode_resv_map(inode);
1186
1187 } else {
1188 return (struct resv_map *)(get_vma_private_data(vma) &
1189 ~HPAGE_RESV_MASK);
1190 }
1191 }
1192
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1194 {
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1197
1198 set_vma_private_data(vma, (unsigned long)map);
1199 }
1200
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1202 {
1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1205
1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1207 }
1208
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1210 {
1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1212
1213 return (get_vma_private_data(vma) & flag) != 0;
1214 }
1215
__vma_private_lock(struct vm_area_struct * vma)1216 bool __vma_private_lock(struct vm_area_struct *vma)
1217 {
1218 return !(vma->vm_flags & VM_MAYSHARE) &&
1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1221 }
1222
hugetlb_dup_vma_private(struct vm_area_struct * vma)1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1224 {
1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1226 /*
1227 * Clear vm_private_data
1228 * - For shared mappings this is a per-vma semaphore that may be
1229 * allocated in a subsequent call to hugetlb_vm_op_open.
1230 * Before clearing, make sure pointer is not associated with vma
1231 * as this will leak the structure. This is the case when called
1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1233 * been called to allocate a new structure.
1234 * - For MAP_PRIVATE mappings, this is the reserve map which does
1235 * not apply to children. Faults generated by the children are
1236 * not guaranteed to succeed, even if read-only.
1237 */
1238 if (vma->vm_flags & VM_MAYSHARE) {
1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1240
1241 if (vma_lock && vma_lock->vma != vma)
1242 vma->vm_private_data = NULL;
1243 } else
1244 vma->vm_private_data = NULL;
1245 }
1246
1247 /*
1248 * Reset and decrement one ref on hugepage private reservation.
1249 * Called with mm->mmap_lock writer semaphore held.
1250 * This function should be only used by mremap and operate on
1251 * same sized vma. It should never come here with last ref on the
1252 * reservation.
1253 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1255 {
1256 /*
1257 * Clear the old hugetlb private page reservation.
1258 * It has already been transferred to new_vma.
1259 *
1260 * During a mremap() operation of a hugetlb vma we call move_vma()
1261 * which copies vma into new_vma and unmaps vma. After the copy
1262 * operation both new_vma and vma share a reference to the resv_map
1263 * struct, and at that point vma is about to be unmapped. We don't
1264 * want to return the reservation to the pool at unmap of vma because
1265 * the reservation still lives on in new_vma, so simply decrement the
1266 * ref here and remove the resv_map reference from this vma.
1267 */
1268 struct resv_map *reservations = vma_resv_map(vma);
1269
1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1272 kref_put(&reservations->refs, resv_map_release);
1273 }
1274
1275 hugetlb_dup_vma_private(vma);
1276 }
1277
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279 {
1280 int nid = folio_nid(folio);
1281
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1289 }
1290
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1292 int nid)
1293 {
1294 struct folio *folio;
1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1296
1297 lockdep_assert_held(&hugetlb_lock);
1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1299 if (pin && !folio_is_longterm_pinnable(folio))
1300 continue;
1301
1302 if (folio_test_hwpoison(folio))
1303 continue;
1304
1305 if (is_migrate_isolate_page(&folio->page))
1306 continue;
1307
1308 list_move(&folio->lru, &h->hugepage_activelist);
1309 folio_ref_unfreeze(folio, 1);
1310 folio_clear_hugetlb_freed(folio);
1311 h->free_huge_pages--;
1312 h->free_huge_pages_node[nid]--;
1313 return folio;
1314 }
1315
1316 return NULL;
1317 }
1318
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1320 int nid, nodemask_t *nmask)
1321 {
1322 unsigned int cpuset_mems_cookie;
1323 struct zonelist *zonelist;
1324 struct zone *zone;
1325 struct zoneref *z;
1326 int node = NUMA_NO_NODE;
1327
1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1329 if (nid == NUMA_NO_NODE)
1330 nid = numa_node_id();
1331
1332 zonelist = node_zonelist(nid, gfp_mask);
1333
1334 retry_cpuset:
1335 cpuset_mems_cookie = read_mems_allowed_begin();
1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1337 struct folio *folio;
1338
1339 if (!cpuset_zone_allowed(zone, gfp_mask))
1340 continue;
1341 /*
1342 * no need to ask again on the same node. Pool is node rather than
1343 * zone aware
1344 */
1345 if (zone_to_nid(zone) == node)
1346 continue;
1347 node = zone_to_nid(zone);
1348
1349 folio = dequeue_hugetlb_folio_node_exact(h, node);
1350 if (folio)
1351 return folio;
1352 }
1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1354 goto retry_cpuset;
1355
1356 return NULL;
1357 }
1358
available_huge_pages(struct hstate * h)1359 static unsigned long available_huge_pages(struct hstate *h)
1360 {
1361 return h->free_huge_pages - h->resv_huge_pages;
1362 }
1363
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1365 struct vm_area_struct *vma,
1366 unsigned long address, long gbl_chg)
1367 {
1368 struct folio *folio = NULL;
1369 struct mempolicy *mpol;
1370 gfp_t gfp_mask;
1371 nodemask_t *nodemask;
1372 int nid;
1373
1374 /*
1375 * gbl_chg==1 means the allocation requires a new page that was not
1376 * reserved before. Making sure there's at least one free page.
1377 */
1378 if (gbl_chg && !available_huge_pages(h))
1379 goto err;
1380
1381 gfp_mask = htlb_alloc_mask(h);
1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1383
1384 if (mpol_is_preferred_many(mpol)) {
1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1386 nid, nodemask);
1387
1388 /* Fallback to all nodes if page==NULL */
1389 nodemask = NULL;
1390 }
1391
1392 if (!folio)
1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1394 nid, nodemask);
1395
1396 mpol_cond_put(mpol);
1397 return folio;
1398
1399 err:
1400 return NULL;
1401 }
1402
1403 /*
1404 * common helper functions for hstate_next_node_to_{alloc|free}.
1405 * We may have allocated or freed a huge page based on a different
1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1407 * be outside of *nodes_allowed. Ensure that we use an allowed
1408 * node for alloc or free.
1409 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1411 {
1412 nid = next_node_in(nid, *nodes_allowed);
1413 VM_BUG_ON(nid >= MAX_NUMNODES);
1414
1415 return nid;
1416 }
1417
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1419 {
1420 if (!node_isset(nid, *nodes_allowed))
1421 nid = next_node_allowed(nid, nodes_allowed);
1422 return nid;
1423 }
1424
1425 /*
1426 * returns the previously saved node ["this node"] from which to
1427 * allocate a persistent huge page for the pool and advance the
1428 * next node from which to allocate, handling wrap at end of node
1429 * mask.
1430 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1431 static int hstate_next_node_to_alloc(int *next_node,
1432 nodemask_t *nodes_allowed)
1433 {
1434 int nid;
1435
1436 VM_BUG_ON(!nodes_allowed);
1437
1438 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1439 *next_node = next_node_allowed(nid, nodes_allowed);
1440
1441 return nid;
1442 }
1443
1444 /*
1445 * helper for remove_pool_hugetlb_folio() - return the previously saved
1446 * node ["this node"] from which to free a huge page. Advance the
1447 * next node id whether or not we find a free huge page to free so
1448 * that the next attempt to free addresses the next node.
1449 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1451 {
1452 int nid;
1453
1454 VM_BUG_ON(!nodes_allowed);
1455
1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1458
1459 return nid;
1460 }
1461
1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1463 for (nr_nodes = nodes_weight(*mask); \
1464 nr_nodes > 0 && \
1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1466 nr_nodes--)
1467
1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1469 for (nr_nodes = nodes_weight(*mask); \
1470 nr_nodes > 0 && \
1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 nr_nodes--)
1473
1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1475 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1476 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask,
1477 int nid, nodemask_t *nodemask)
1478 {
1479 struct folio *folio;
1480 bool retried = false;
1481
1482 retry:
1483 folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask);
1484 if (!folio) {
1485 if (hugetlb_cma_exclusive_alloc())
1486 return NULL;
1487
1488 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1489 if (!folio)
1490 return NULL;
1491 }
1492
1493 if (folio_ref_freeze(folio, 1))
1494 return folio;
1495
1496 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1497 hugetlb_free_folio(folio);
1498 if (!retried) {
1499 retried = true;
1500 goto retry;
1501 }
1502 return NULL;
1503 }
1504
1505 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1506 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
1507 nodemask_t *nodemask)
1508 {
1509 return NULL;
1510 }
1511 #endif /* CONFIG_CONTIG_ALLOC */
1512
1513 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1514 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
1515 nodemask_t *nodemask)
1516 {
1517 return NULL;
1518 }
1519 #endif
1520
1521 /*
1522 * Remove hugetlb folio from lists.
1523 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1524 * folio appears as just a compound page. Otherwise, wait until after
1525 * allocating vmemmap to clear the flag.
1526 *
1527 * Must be called with hugetlb lock held.
1528 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1529 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1530 bool adjust_surplus)
1531 {
1532 int nid = folio_nid(folio);
1533
1534 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1535 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1536
1537 lockdep_assert_held(&hugetlb_lock);
1538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1539 return;
1540
1541 list_del(&folio->lru);
1542
1543 if (folio_test_hugetlb_freed(folio)) {
1544 folio_clear_hugetlb_freed(folio);
1545 h->free_huge_pages--;
1546 h->free_huge_pages_node[nid]--;
1547 }
1548 if (adjust_surplus) {
1549 h->surplus_huge_pages--;
1550 h->surplus_huge_pages_node[nid]--;
1551 }
1552
1553 /*
1554 * We can only clear the hugetlb flag after allocating vmemmap
1555 * pages. Otherwise, someone (memory error handling) may try to write
1556 * to tail struct pages.
1557 */
1558 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1559 __folio_clear_hugetlb(folio);
1560
1561 h->nr_huge_pages--;
1562 h->nr_huge_pages_node[nid]--;
1563 }
1564
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1565 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1566 bool adjust_surplus)
1567 {
1568 int nid = folio_nid(folio);
1569
1570 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1571
1572 lockdep_assert_held(&hugetlb_lock);
1573
1574 INIT_LIST_HEAD(&folio->lru);
1575 h->nr_huge_pages++;
1576 h->nr_huge_pages_node[nid]++;
1577
1578 if (adjust_surplus) {
1579 h->surplus_huge_pages++;
1580 h->surplus_huge_pages_node[nid]++;
1581 }
1582
1583 __folio_set_hugetlb(folio);
1584 folio_change_private(folio, NULL);
1585 /*
1586 * We have to set hugetlb_vmemmap_optimized again as above
1587 * folio_change_private(folio, NULL) cleared it.
1588 */
1589 folio_set_hugetlb_vmemmap_optimized(folio);
1590
1591 arch_clear_hugetlb_flags(folio);
1592 enqueue_hugetlb_folio(h, folio);
1593 }
1594
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1595 static void __update_and_free_hugetlb_folio(struct hstate *h,
1596 struct folio *folio)
1597 {
1598 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1599
1600 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1601 return;
1602
1603 /*
1604 * If we don't know which subpages are hwpoisoned, we can't free
1605 * the hugepage, so it's leaked intentionally.
1606 */
1607 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1608 return;
1609
1610 /*
1611 * If folio is not vmemmap optimized (!clear_flag), then the folio
1612 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1613 * can only be passed hugetlb pages and will BUG otherwise.
1614 */
1615 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1616 spin_lock_irq(&hugetlb_lock);
1617 /*
1618 * If we cannot allocate vmemmap pages, just refuse to free the
1619 * page and put the page back on the hugetlb free list and treat
1620 * as a surplus page.
1621 */
1622 add_hugetlb_folio(h, folio, true);
1623 spin_unlock_irq(&hugetlb_lock);
1624 return;
1625 }
1626
1627 /*
1628 * If vmemmap pages were allocated above, then we need to clear the
1629 * hugetlb flag under the hugetlb lock.
1630 */
1631 if (folio_test_hugetlb(folio)) {
1632 spin_lock_irq(&hugetlb_lock);
1633 __folio_clear_hugetlb(folio);
1634 spin_unlock_irq(&hugetlb_lock);
1635 }
1636
1637 /*
1638 * Move PageHWPoison flag from head page to the raw error pages,
1639 * which makes any healthy subpages reusable.
1640 */
1641 if (unlikely(folio_test_hwpoison(folio)))
1642 folio_clear_hugetlb_hwpoison(folio);
1643
1644 folio_ref_unfreeze(folio, 1);
1645
1646 hugetlb_free_folio(folio);
1647 }
1648
1649 /*
1650 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1651 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1652 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1653 * the vmemmap pages.
1654 *
1655 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1656 * freed and frees them one-by-one. As the page->mapping pointer is going
1657 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1658 * structure of a lockless linked list of huge pages to be freed.
1659 */
1660 static LLIST_HEAD(hpage_freelist);
1661
free_hpage_workfn(struct work_struct * work)1662 static void free_hpage_workfn(struct work_struct *work)
1663 {
1664 struct llist_node *node;
1665
1666 node = llist_del_all(&hpage_freelist);
1667
1668 while (node) {
1669 struct folio *folio;
1670 struct hstate *h;
1671
1672 folio = container_of((struct address_space **)node,
1673 struct folio, mapping);
1674 node = node->next;
1675 folio->mapping = NULL;
1676 /*
1677 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1678 * folio_hstate() is going to trigger because a previous call to
1679 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1680 * not use folio_hstate() directly.
1681 */
1682 h = size_to_hstate(folio_size(folio));
1683
1684 __update_and_free_hugetlb_folio(h, folio);
1685
1686 cond_resched();
1687 }
1688 }
1689 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1690
flush_free_hpage_work(struct hstate * h)1691 static inline void flush_free_hpage_work(struct hstate *h)
1692 {
1693 if (hugetlb_vmemmap_optimizable(h))
1694 flush_work(&free_hpage_work);
1695 }
1696
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1697 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1698 bool atomic)
1699 {
1700 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1701 __update_and_free_hugetlb_folio(h, folio);
1702 return;
1703 }
1704
1705 /*
1706 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1707 *
1708 * Only call schedule_work() if hpage_freelist is previously
1709 * empty. Otherwise, schedule_work() had been called but the workfn
1710 * hasn't retrieved the list yet.
1711 */
1712 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1713 schedule_work(&free_hpage_work);
1714 }
1715
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1716 static void bulk_vmemmap_restore_error(struct hstate *h,
1717 struct list_head *folio_list,
1718 struct list_head *non_hvo_folios)
1719 {
1720 struct folio *folio, *t_folio;
1721
1722 if (!list_empty(non_hvo_folios)) {
1723 /*
1724 * Free any restored hugetlb pages so that restore of the
1725 * entire list can be retried.
1726 * The idea is that in the common case of ENOMEM errors freeing
1727 * hugetlb pages with vmemmap we will free up memory so that we
1728 * can allocate vmemmap for more hugetlb pages.
1729 */
1730 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1731 list_del(&folio->lru);
1732 spin_lock_irq(&hugetlb_lock);
1733 __folio_clear_hugetlb(folio);
1734 spin_unlock_irq(&hugetlb_lock);
1735 update_and_free_hugetlb_folio(h, folio, false);
1736 cond_resched();
1737 }
1738 } else {
1739 /*
1740 * In the case where there are no folios which can be
1741 * immediately freed, we loop through the list trying to restore
1742 * vmemmap individually in the hope that someone elsewhere may
1743 * have done something to cause success (such as freeing some
1744 * memory). If unable to restore a hugetlb page, the hugetlb
1745 * page is made a surplus page and removed from the list.
1746 * If are able to restore vmemmap and free one hugetlb page, we
1747 * quit processing the list to retry the bulk operation.
1748 */
1749 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1750 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1751 list_del(&folio->lru);
1752 spin_lock_irq(&hugetlb_lock);
1753 add_hugetlb_folio(h, folio, true);
1754 spin_unlock_irq(&hugetlb_lock);
1755 } else {
1756 list_del(&folio->lru);
1757 spin_lock_irq(&hugetlb_lock);
1758 __folio_clear_hugetlb(folio);
1759 spin_unlock_irq(&hugetlb_lock);
1760 update_and_free_hugetlb_folio(h, folio, false);
1761 cond_resched();
1762 break;
1763 }
1764 }
1765 }
1766
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1767 static void update_and_free_pages_bulk(struct hstate *h,
1768 struct list_head *folio_list)
1769 {
1770 long ret;
1771 struct folio *folio, *t_folio;
1772 LIST_HEAD(non_hvo_folios);
1773
1774 /*
1775 * First allocate required vmemmmap (if necessary) for all folios.
1776 * Carefully handle errors and free up any available hugetlb pages
1777 * in an effort to make forward progress.
1778 */
1779 retry:
1780 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1781 if (ret < 0) {
1782 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1783 goto retry;
1784 }
1785
1786 /*
1787 * At this point, list should be empty, ret should be >= 0 and there
1788 * should only be pages on the non_hvo_folios list.
1789 * Do note that the non_hvo_folios list could be empty.
1790 * Without HVO enabled, ret will be 0 and there is no need to call
1791 * __folio_clear_hugetlb as this was done previously.
1792 */
1793 VM_WARN_ON(!list_empty(folio_list));
1794 VM_WARN_ON(ret < 0);
1795 if (!list_empty(&non_hvo_folios) && ret) {
1796 spin_lock_irq(&hugetlb_lock);
1797 list_for_each_entry(folio, &non_hvo_folios, lru)
1798 __folio_clear_hugetlb(folio);
1799 spin_unlock_irq(&hugetlb_lock);
1800 }
1801
1802 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1803 update_and_free_hugetlb_folio(h, folio, false);
1804 cond_resched();
1805 }
1806 }
1807
size_to_hstate(unsigned long size)1808 struct hstate *size_to_hstate(unsigned long size)
1809 {
1810 struct hstate *h;
1811
1812 for_each_hstate(h) {
1813 if (huge_page_size(h) == size)
1814 return h;
1815 }
1816 return NULL;
1817 }
1818
free_huge_folio(struct folio * folio)1819 void free_huge_folio(struct folio *folio)
1820 {
1821 /*
1822 * Can't pass hstate in here because it is called from the
1823 * generic mm code.
1824 */
1825 struct hstate *h = folio_hstate(folio);
1826 int nid = folio_nid(folio);
1827 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1828 bool restore_reserve;
1829 unsigned long flags;
1830
1831 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1832 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1833
1834 hugetlb_set_folio_subpool(folio, NULL);
1835 if (folio_test_anon(folio))
1836 __ClearPageAnonExclusive(&folio->page);
1837 folio->mapping = NULL;
1838 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1839 folio_clear_hugetlb_restore_reserve(folio);
1840
1841 /*
1842 * If HPageRestoreReserve was set on page, page allocation consumed a
1843 * reservation. If the page was associated with a subpool, there
1844 * would have been a page reserved in the subpool before allocation
1845 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1846 * reservation, do not call hugepage_subpool_put_pages() as this will
1847 * remove the reserved page from the subpool.
1848 */
1849 if (!restore_reserve) {
1850 /*
1851 * A return code of zero implies that the subpool will be
1852 * under its minimum size if the reservation is not restored
1853 * after page is free. Therefore, force restore_reserve
1854 * operation.
1855 */
1856 if (hugepage_subpool_put_pages(spool, 1) == 0)
1857 restore_reserve = true;
1858 }
1859
1860 spin_lock_irqsave(&hugetlb_lock, flags);
1861 folio_clear_hugetlb_migratable(folio);
1862 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1863 pages_per_huge_page(h), folio);
1864 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1865 pages_per_huge_page(h), folio);
1866 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1867 mem_cgroup_uncharge(folio);
1868 if (restore_reserve)
1869 h->resv_huge_pages++;
1870
1871 if (folio_test_hugetlb_temporary(folio)) {
1872 remove_hugetlb_folio(h, folio, false);
1873 spin_unlock_irqrestore(&hugetlb_lock, flags);
1874 update_and_free_hugetlb_folio(h, folio, true);
1875 } else if (h->surplus_huge_pages_node[nid]) {
1876 /* remove the page from active list */
1877 remove_hugetlb_folio(h, folio, true);
1878 spin_unlock_irqrestore(&hugetlb_lock, flags);
1879 update_and_free_hugetlb_folio(h, folio, true);
1880 } else {
1881 arch_clear_hugetlb_flags(folio);
1882 enqueue_hugetlb_folio(h, folio);
1883 spin_unlock_irqrestore(&hugetlb_lock, flags);
1884 }
1885 }
1886
1887 /*
1888 * Must be called with the hugetlb lock held
1889 */
account_new_hugetlb_folio(struct hstate * h,struct folio * folio)1890 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1891 {
1892 lockdep_assert_held(&hugetlb_lock);
1893 h->nr_huge_pages++;
1894 h->nr_huge_pages_node[folio_nid(folio)]++;
1895 }
1896
init_new_hugetlb_folio(struct folio * folio)1897 static void init_new_hugetlb_folio(struct folio *folio)
1898 {
1899 __folio_set_hugetlb(folio);
1900 INIT_LIST_HEAD(&folio->lru);
1901 hugetlb_set_folio_subpool(folio, NULL);
1902 set_hugetlb_cgroup(folio, NULL);
1903 set_hugetlb_cgroup_rsvd(folio, NULL);
1904 }
1905
1906 /*
1907 * Find and lock address space (mapping) in write mode.
1908 *
1909 * Upon entry, the folio is locked which means that folio_mapping() is
1910 * stable. Due to locking order, we can only trylock_write. If we can
1911 * not get the lock, simply return NULL to caller.
1912 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1913 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1914 {
1915 struct address_space *mapping = folio_mapping(folio);
1916
1917 if (!mapping)
1918 return mapping;
1919
1920 if (i_mmap_trylock_write(mapping))
1921 return mapping;
1922
1923 return NULL;
1924 }
1925
alloc_buddy_hugetlb_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1926 static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask,
1927 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry)
1928 {
1929 struct folio *folio;
1930 bool alloc_try_hard = true;
1931
1932 /*
1933 * By default we always try hard to allocate the folio with
1934 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1935 * a loop (to adjust global huge page counts) and previous allocation
1936 * failed, do not continue to try hard on the same node. Use the
1937 * node_alloc_noretry bitmap to manage this state information.
1938 */
1939 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1940 alloc_try_hard = false;
1941 if (alloc_try_hard)
1942 gfp_mask |= __GFP_RETRY_MAYFAIL;
1943
1944 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1945
1946 /*
1947 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1948 * folio this indicates an overall state change. Clear bit so
1949 * that we resume normal 'try hard' allocations.
1950 */
1951 if (node_alloc_noretry && folio && !alloc_try_hard)
1952 node_clear(nid, *node_alloc_noretry);
1953
1954 /*
1955 * If we tried hard to get a folio but failed, set bit so that
1956 * subsequent attempts will not try as hard until there is an
1957 * overall state change.
1958 */
1959 if (node_alloc_noretry && !folio && alloc_try_hard)
1960 node_set(nid, *node_alloc_noretry);
1961
1962 if (!folio) {
1963 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1964 return NULL;
1965 }
1966
1967 __count_vm_event(HTLB_BUDDY_PGALLOC);
1968 return folio;
1969 }
1970
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1971 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1972 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1973 nodemask_t *node_alloc_noretry)
1974 {
1975 struct folio *folio;
1976 int order = huge_page_order(h);
1977
1978 if (nid == NUMA_NO_NODE)
1979 nid = numa_mem_id();
1980
1981 if (order_is_gigantic(order))
1982 folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask);
1983 else
1984 folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask,
1985 node_alloc_noretry);
1986 if (folio)
1987 init_new_hugetlb_folio(folio);
1988 return folio;
1989 }
1990
1991 /*
1992 * Common helper to allocate a fresh hugetlb folio. All specific allocators
1993 * should use this function to get new hugetlb folio
1994 *
1995 * Note that returned folio is 'frozen': ref count of head page and all tail
1996 * pages is zero, and the accounting must be done in the caller.
1997 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1998 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
1999 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2000 {
2001 struct folio *folio;
2002
2003 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2004 if (folio)
2005 hugetlb_vmemmap_optimize_folio(h, folio);
2006 return folio;
2007 }
2008
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2009 static void prep_and_add_allocated_folios(struct hstate *h,
2010 struct list_head *folio_list)
2011 {
2012 unsigned long flags;
2013 struct folio *folio, *tmp_f;
2014
2015 /* Send list for bulk vmemmap optimization processing */
2016 hugetlb_vmemmap_optimize_folios(h, folio_list);
2017
2018 /* Add all new pool pages to free lists in one lock cycle */
2019 spin_lock_irqsave(&hugetlb_lock, flags);
2020 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2021 account_new_hugetlb_folio(h, folio);
2022 enqueue_hugetlb_folio(h, folio);
2023 }
2024 spin_unlock_irqrestore(&hugetlb_lock, flags);
2025 }
2026
2027 /*
2028 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2029 * will later be added to the appropriate hugetlb pool.
2030 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2031 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2032 nodemask_t *nodes_allowed,
2033 nodemask_t *node_alloc_noretry,
2034 int *next_node)
2035 {
2036 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2037 int nr_nodes, node;
2038
2039 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2040 struct folio *folio;
2041
2042 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2043 nodes_allowed, node_alloc_noretry);
2044 if (folio)
2045 return folio;
2046 }
2047
2048 return NULL;
2049 }
2050
2051 /*
2052 * Remove huge page from pool from next node to free. Attempt to keep
2053 * persistent huge pages more or less balanced over allowed nodes.
2054 * This routine only 'removes' the hugetlb page. The caller must make
2055 * an additional call to free the page to low level allocators.
2056 * Called with hugetlb_lock locked.
2057 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2058 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2059 nodemask_t *nodes_allowed, bool acct_surplus)
2060 {
2061 int nr_nodes, node;
2062 struct folio *folio = NULL;
2063
2064 lockdep_assert_held(&hugetlb_lock);
2065 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2066 /*
2067 * If we're returning unused surplus pages, only examine
2068 * nodes with surplus pages.
2069 */
2070 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2071 !list_empty(&h->hugepage_freelists[node])) {
2072 folio = list_entry(h->hugepage_freelists[node].next,
2073 struct folio, lru);
2074 remove_hugetlb_folio(h, folio, acct_surplus);
2075 break;
2076 }
2077 }
2078
2079 return folio;
2080 }
2081
2082 /*
2083 * Dissolve a given free hugetlb folio into free buddy pages. This function
2084 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2085 * This function returns values like below:
2086 *
2087 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2088 * when the system is under memory pressure and the feature of
2089 * freeing unused vmemmap pages associated with each hugetlb page
2090 * is enabled.
2091 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2092 * (allocated or reserved.)
2093 * 0: successfully dissolved free hugepages or the page is not a
2094 * hugepage (considered as already dissolved)
2095 */
dissolve_free_hugetlb_folio(struct folio * folio)2096 int dissolve_free_hugetlb_folio(struct folio *folio)
2097 {
2098 int rc = -EBUSY;
2099
2100 retry:
2101 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2102 if (!folio_test_hugetlb(folio))
2103 return 0;
2104
2105 spin_lock_irq(&hugetlb_lock);
2106 if (!folio_test_hugetlb(folio)) {
2107 rc = 0;
2108 goto out;
2109 }
2110
2111 if (!folio_ref_count(folio)) {
2112 struct hstate *h = folio_hstate(folio);
2113 bool adjust_surplus = false;
2114
2115 if (!available_huge_pages(h))
2116 goto out;
2117
2118 /*
2119 * We should make sure that the page is already on the free list
2120 * when it is dissolved.
2121 */
2122 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2123 spin_unlock_irq(&hugetlb_lock);
2124 cond_resched();
2125
2126 /*
2127 * Theoretically, we should return -EBUSY when we
2128 * encounter this race. In fact, we have a chance
2129 * to successfully dissolve the page if we do a
2130 * retry. Because the race window is quite small.
2131 * If we seize this opportunity, it is an optimization
2132 * for increasing the success rate of dissolving page.
2133 */
2134 goto retry;
2135 }
2136
2137 if (h->surplus_huge_pages_node[folio_nid(folio)])
2138 adjust_surplus = true;
2139 remove_hugetlb_folio(h, folio, adjust_surplus);
2140 h->max_huge_pages--;
2141 spin_unlock_irq(&hugetlb_lock);
2142
2143 /*
2144 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2145 * before freeing the page. update_and_free_hugtlb_folio will fail to
2146 * free the page if it can not allocate required vmemmap. We
2147 * need to adjust max_huge_pages if the page is not freed.
2148 * Attempt to allocate vmemmmap here so that we can take
2149 * appropriate action on failure.
2150 *
2151 * The folio_test_hugetlb check here is because
2152 * remove_hugetlb_folio will clear hugetlb folio flag for
2153 * non-vmemmap optimized hugetlb folios.
2154 */
2155 if (folio_test_hugetlb(folio)) {
2156 rc = hugetlb_vmemmap_restore_folio(h, folio);
2157 if (rc) {
2158 spin_lock_irq(&hugetlb_lock);
2159 add_hugetlb_folio(h, folio, adjust_surplus);
2160 h->max_huge_pages++;
2161 goto out;
2162 }
2163 } else
2164 rc = 0;
2165
2166 update_and_free_hugetlb_folio(h, folio, false);
2167 return rc;
2168 }
2169 out:
2170 spin_unlock_irq(&hugetlb_lock);
2171 return rc;
2172 }
2173
2174 /*
2175 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2176 * make specified memory blocks removable from the system.
2177 * Note that this will dissolve a free gigantic hugepage completely, if any
2178 * part of it lies within the given range.
2179 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2180 * free hugetlb folios that were dissolved before that error are lost.
2181 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2182 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2183 {
2184 unsigned long pfn;
2185 struct folio *folio;
2186 int rc = 0;
2187 unsigned int order;
2188 struct hstate *h;
2189
2190 if (!hugepages_supported())
2191 return rc;
2192
2193 order = huge_page_order(&default_hstate);
2194 for_each_hstate(h)
2195 order = min(order, huge_page_order(h));
2196
2197 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2198 folio = pfn_folio(pfn);
2199 rc = dissolve_free_hugetlb_folio(folio);
2200 if (rc)
2201 break;
2202 }
2203
2204 return rc;
2205 }
2206
2207 /*
2208 * Allocates a fresh surplus page from the page allocator.
2209 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2210 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2211 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2212 {
2213 struct folio *folio = NULL;
2214
2215 if (hstate_is_gigantic(h))
2216 return NULL;
2217
2218 spin_lock_irq(&hugetlb_lock);
2219 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2220 goto out_unlock;
2221 spin_unlock_irq(&hugetlb_lock);
2222
2223 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2224 if (!folio)
2225 return NULL;
2226
2227 spin_lock_irq(&hugetlb_lock);
2228 /*
2229 * nr_huge_pages needs to be adjusted within the same lock cycle
2230 * as surplus_pages, otherwise it might confuse
2231 * persistent_huge_pages() momentarily.
2232 */
2233 account_new_hugetlb_folio(h, folio);
2234
2235 /*
2236 * We could have raced with the pool size change.
2237 * Double check that and simply deallocate the new page
2238 * if we would end up overcommiting the surpluses. Abuse
2239 * temporary page to workaround the nasty free_huge_folio
2240 * codeflow
2241 */
2242 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2243 folio_set_hugetlb_temporary(folio);
2244 spin_unlock_irq(&hugetlb_lock);
2245 free_huge_folio(folio);
2246 return NULL;
2247 }
2248
2249 h->surplus_huge_pages++;
2250 h->surplus_huge_pages_node[folio_nid(folio)]++;
2251
2252 out_unlock:
2253 spin_unlock_irq(&hugetlb_lock);
2254
2255 return folio;
2256 }
2257
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2258 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2259 int nid, nodemask_t *nmask)
2260 {
2261 struct folio *folio;
2262
2263 if (hstate_is_gigantic(h))
2264 return NULL;
2265
2266 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2267 if (!folio)
2268 return NULL;
2269
2270 spin_lock_irq(&hugetlb_lock);
2271 account_new_hugetlb_folio(h, folio);
2272 spin_unlock_irq(&hugetlb_lock);
2273
2274 /* fresh huge pages are frozen */
2275 folio_ref_unfreeze(folio, 1);
2276 /*
2277 * We do not account these pages as surplus because they are only
2278 * temporary and will be released properly on the last reference
2279 */
2280 folio_set_hugetlb_temporary(folio);
2281
2282 return folio;
2283 }
2284
2285 /*
2286 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2287 */
2288 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2289 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2290 struct vm_area_struct *vma, unsigned long addr)
2291 {
2292 struct folio *folio = NULL;
2293 struct mempolicy *mpol;
2294 gfp_t gfp_mask = htlb_alloc_mask(h);
2295 int nid;
2296 nodemask_t *nodemask;
2297
2298 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2299 if (mpol_is_preferred_many(mpol)) {
2300 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2301
2302 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2303
2304 /* Fallback to all nodes if page==NULL */
2305 nodemask = NULL;
2306 }
2307
2308 if (!folio)
2309 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2310 mpol_cond_put(mpol);
2311 return folio;
2312 }
2313
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2314 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2315 nodemask_t *nmask, gfp_t gfp_mask)
2316 {
2317 struct folio *folio;
2318
2319 spin_lock_irq(&hugetlb_lock);
2320 if (!h->resv_huge_pages) {
2321 spin_unlock_irq(&hugetlb_lock);
2322 return NULL;
2323 }
2324
2325 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2326 nmask);
2327 if (folio)
2328 h->resv_huge_pages--;
2329
2330 spin_unlock_irq(&hugetlb_lock);
2331 return folio;
2332 }
2333
2334 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2335 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2336 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2337 {
2338 spin_lock_irq(&hugetlb_lock);
2339 if (available_huge_pages(h)) {
2340 struct folio *folio;
2341
2342 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2343 preferred_nid, nmask);
2344 if (folio) {
2345 spin_unlock_irq(&hugetlb_lock);
2346 return folio;
2347 }
2348 }
2349 spin_unlock_irq(&hugetlb_lock);
2350
2351 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2352 if (!allow_alloc_fallback)
2353 gfp_mask |= __GFP_THISNODE;
2354
2355 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2356 }
2357
policy_mbind_nodemask(gfp_t gfp)2358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2359 {
2360 #ifdef CONFIG_NUMA
2361 struct mempolicy *mpol = get_task_policy(current);
2362
2363 /*
2364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2365 * (from policy_nodemask) specifically for hugetlb case
2366 */
2367 if (mpol->mode == MPOL_BIND &&
2368 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2370 return &mpol->nodes;
2371 #endif
2372 return NULL;
2373 }
2374
2375 /*
2376 * Increase the hugetlb pool such that it can accommodate a reservation
2377 * of size 'delta'.
2378 */
gather_surplus_pages(struct hstate * h,long delta)2379 static int gather_surplus_pages(struct hstate *h, long delta)
2380 __must_hold(&hugetlb_lock)
2381 {
2382 LIST_HEAD(surplus_list);
2383 struct folio *folio, *tmp;
2384 int ret;
2385 long i;
2386 long needed, allocated;
2387 bool alloc_ok = true;
2388 nodemask_t *mbind_nodemask, alloc_nodemask;
2389
2390 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2391 if (mbind_nodemask)
2392 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2393 else
2394 alloc_nodemask = cpuset_current_mems_allowed;
2395
2396 lockdep_assert_held(&hugetlb_lock);
2397 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2398 if (needed <= 0) {
2399 h->resv_huge_pages += delta;
2400 return 0;
2401 }
2402
2403 allocated = 0;
2404
2405 ret = -ENOMEM;
2406 retry:
2407 spin_unlock_irq(&hugetlb_lock);
2408 for (i = 0; i < needed; i++) {
2409 folio = NULL;
2410
2411 /*
2412 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2413 * down the road to pick the current node if that is the case.
2414 */
2415 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2416 NUMA_NO_NODE, &alloc_nodemask);
2417 if (!folio) {
2418 alloc_ok = false;
2419 break;
2420 }
2421 list_add(&folio->lru, &surplus_list);
2422 cond_resched();
2423 }
2424 allocated += i;
2425
2426 /*
2427 * After retaking hugetlb_lock, we need to recalculate 'needed'
2428 * because either resv_huge_pages or free_huge_pages may have changed.
2429 */
2430 spin_lock_irq(&hugetlb_lock);
2431 needed = (h->resv_huge_pages + delta) -
2432 (h->free_huge_pages + allocated);
2433 if (needed > 0) {
2434 if (alloc_ok)
2435 goto retry;
2436 /*
2437 * We were not able to allocate enough pages to
2438 * satisfy the entire reservation so we free what
2439 * we've allocated so far.
2440 */
2441 goto free;
2442 }
2443 /*
2444 * The surplus_list now contains _at_least_ the number of extra pages
2445 * needed to accommodate the reservation. Add the appropriate number
2446 * of pages to the hugetlb pool and free the extras back to the buddy
2447 * allocator. Commit the entire reservation here to prevent another
2448 * process from stealing the pages as they are added to the pool but
2449 * before they are reserved.
2450 */
2451 needed += allocated;
2452 h->resv_huge_pages += delta;
2453 ret = 0;
2454
2455 /* Free the needed pages to the hugetlb pool */
2456 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2457 if ((--needed) < 0)
2458 break;
2459 /* Add the page to the hugetlb allocator */
2460 enqueue_hugetlb_folio(h, folio);
2461 }
2462 free:
2463 spin_unlock_irq(&hugetlb_lock);
2464
2465 /*
2466 * Free unnecessary surplus pages to the buddy allocator.
2467 * Pages have no ref count, call free_huge_folio directly.
2468 */
2469 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2470 free_huge_folio(folio);
2471 spin_lock_irq(&hugetlb_lock);
2472
2473 return ret;
2474 }
2475
2476 /*
2477 * This routine has two main purposes:
2478 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2479 * in unused_resv_pages. This corresponds to the prior adjustments made
2480 * to the associated reservation map.
2481 * 2) Free any unused surplus pages that may have been allocated to satisfy
2482 * the reservation. As many as unused_resv_pages may be freed.
2483 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2484 static void return_unused_surplus_pages(struct hstate *h,
2485 unsigned long unused_resv_pages)
2486 {
2487 unsigned long nr_pages;
2488 LIST_HEAD(page_list);
2489
2490 lockdep_assert_held(&hugetlb_lock);
2491 /* Uncommit the reservation */
2492 h->resv_huge_pages -= unused_resv_pages;
2493
2494 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2495 goto out;
2496
2497 /*
2498 * Part (or even all) of the reservation could have been backed
2499 * by pre-allocated pages. Only free surplus pages.
2500 */
2501 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2502
2503 /*
2504 * We want to release as many surplus pages as possible, spread
2505 * evenly across all nodes with memory. Iterate across these nodes
2506 * until we can no longer free unreserved surplus pages. This occurs
2507 * when the nodes with surplus pages have no free pages.
2508 * remove_pool_hugetlb_folio() will balance the freed pages across the
2509 * on-line nodes with memory and will handle the hstate accounting.
2510 */
2511 while (nr_pages--) {
2512 struct folio *folio;
2513
2514 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2515 if (!folio)
2516 goto out;
2517
2518 list_add(&folio->lru, &page_list);
2519 }
2520
2521 out:
2522 spin_unlock_irq(&hugetlb_lock);
2523 update_and_free_pages_bulk(h, &page_list);
2524 spin_lock_irq(&hugetlb_lock);
2525 }
2526
2527
2528 /*
2529 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2530 * are used by the huge page allocation routines to manage reservations.
2531 *
2532 * vma_needs_reservation is called to determine if the huge page at addr
2533 * within the vma has an associated reservation. If a reservation is
2534 * needed, the value 1 is returned. The caller is then responsible for
2535 * managing the global reservation and subpool usage counts. After
2536 * the huge page has been allocated, vma_commit_reservation is called
2537 * to add the page to the reservation map. If the page allocation fails,
2538 * the reservation must be ended instead of committed. vma_end_reservation
2539 * is called in such cases.
2540 *
2541 * In the normal case, vma_commit_reservation returns the same value
2542 * as the preceding vma_needs_reservation call. The only time this
2543 * is not the case is if a reserve map was changed between calls. It
2544 * is the responsibility of the caller to notice the difference and
2545 * take appropriate action.
2546 *
2547 * vma_add_reservation is used in error paths where a reservation must
2548 * be restored when a newly allocated huge page must be freed. It is
2549 * to be called after calling vma_needs_reservation to determine if a
2550 * reservation exists.
2551 *
2552 * vma_del_reservation is used in error paths where an entry in the reserve
2553 * map was created during huge page allocation and must be removed. It is to
2554 * be called after calling vma_needs_reservation to determine if a reservation
2555 * exists.
2556 */
2557 enum vma_resv_mode {
2558 VMA_NEEDS_RESV,
2559 VMA_COMMIT_RESV,
2560 VMA_END_RESV,
2561 VMA_ADD_RESV,
2562 VMA_DEL_RESV,
2563 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2564 static long __vma_reservation_common(struct hstate *h,
2565 struct vm_area_struct *vma, unsigned long addr,
2566 enum vma_resv_mode mode)
2567 {
2568 struct resv_map *resv;
2569 pgoff_t idx;
2570 long ret;
2571 long dummy_out_regions_needed;
2572
2573 resv = vma_resv_map(vma);
2574 if (!resv)
2575 return 1;
2576
2577 idx = vma_hugecache_offset(h, vma, addr);
2578 switch (mode) {
2579 case VMA_NEEDS_RESV:
2580 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2581 /* We assume that vma_reservation_* routines always operate on
2582 * 1 page, and that adding to resv map a 1 page entry can only
2583 * ever require 1 region.
2584 */
2585 VM_BUG_ON(dummy_out_regions_needed != 1);
2586 break;
2587 case VMA_COMMIT_RESV:
2588 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2589 /* region_add calls of range 1 should never fail. */
2590 VM_BUG_ON(ret < 0);
2591 break;
2592 case VMA_END_RESV:
2593 region_abort(resv, idx, idx + 1, 1);
2594 ret = 0;
2595 break;
2596 case VMA_ADD_RESV:
2597 if (vma->vm_flags & VM_MAYSHARE) {
2598 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2599 /* region_add calls of range 1 should never fail. */
2600 VM_BUG_ON(ret < 0);
2601 } else {
2602 region_abort(resv, idx, idx + 1, 1);
2603 ret = region_del(resv, idx, idx + 1);
2604 }
2605 break;
2606 case VMA_DEL_RESV:
2607 if (vma->vm_flags & VM_MAYSHARE) {
2608 region_abort(resv, idx, idx + 1, 1);
2609 ret = region_del(resv, idx, idx + 1);
2610 } else {
2611 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2612 /* region_add calls of range 1 should never fail. */
2613 VM_BUG_ON(ret < 0);
2614 }
2615 break;
2616 default:
2617 BUG();
2618 }
2619
2620 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2621 return ret;
2622 /*
2623 * We know private mapping must have HPAGE_RESV_OWNER set.
2624 *
2625 * In most cases, reserves always exist for private mappings.
2626 * However, a file associated with mapping could have been
2627 * hole punched or truncated after reserves were consumed.
2628 * As subsequent fault on such a range will not use reserves.
2629 * Subtle - The reserve map for private mappings has the
2630 * opposite meaning than that of shared mappings. If NO
2631 * entry is in the reserve map, it means a reservation exists.
2632 * If an entry exists in the reserve map, it means the
2633 * reservation has already been consumed. As a result, the
2634 * return value of this routine is the opposite of the
2635 * value returned from reserve map manipulation routines above.
2636 */
2637 if (ret > 0)
2638 return 0;
2639 if (ret == 0)
2640 return 1;
2641 return ret;
2642 }
2643
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2644 static long vma_needs_reservation(struct hstate *h,
2645 struct vm_area_struct *vma, unsigned long addr)
2646 {
2647 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2648 }
2649
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2650 static long vma_commit_reservation(struct hstate *h,
2651 struct vm_area_struct *vma, unsigned long addr)
2652 {
2653 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2654 }
2655
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2656 static void vma_end_reservation(struct hstate *h,
2657 struct vm_area_struct *vma, unsigned long addr)
2658 {
2659 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2660 }
2661
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2662 static long vma_add_reservation(struct hstate *h,
2663 struct vm_area_struct *vma, unsigned long addr)
2664 {
2665 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2666 }
2667
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2668 static long vma_del_reservation(struct hstate *h,
2669 struct vm_area_struct *vma, unsigned long addr)
2670 {
2671 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2672 }
2673
2674 /*
2675 * This routine is called to restore reservation information on error paths.
2676 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2677 * and the hugetlb mutex should remain held when calling this routine.
2678 *
2679 * It handles two specific cases:
2680 * 1) A reservation was in place and the folio consumed the reservation.
2681 * hugetlb_restore_reserve is set in the folio.
2682 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2683 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2684 *
2685 * In case 1, free_huge_folio later in the error path will increment the
2686 * global reserve count. But, free_huge_folio does not have enough context
2687 * to adjust the reservation map. This case deals primarily with private
2688 * mappings. Adjust the reserve map here to be consistent with global
2689 * reserve count adjustments to be made by free_huge_folio. Make sure the
2690 * reserve map indicates there is a reservation present.
2691 *
2692 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2693 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2694 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2695 unsigned long address, struct folio *folio)
2696 {
2697 long rc = vma_needs_reservation(h, vma, address);
2698
2699 if (folio_test_hugetlb_restore_reserve(folio)) {
2700 if (unlikely(rc < 0))
2701 /*
2702 * Rare out of memory condition in reserve map
2703 * manipulation. Clear hugetlb_restore_reserve so
2704 * that global reserve count will not be incremented
2705 * by free_huge_folio. This will make it appear
2706 * as though the reservation for this folio was
2707 * consumed. This may prevent the task from
2708 * faulting in the folio at a later time. This
2709 * is better than inconsistent global huge page
2710 * accounting of reserve counts.
2711 */
2712 folio_clear_hugetlb_restore_reserve(folio);
2713 else if (rc)
2714 (void)vma_add_reservation(h, vma, address);
2715 else
2716 vma_end_reservation(h, vma, address);
2717 } else {
2718 if (!rc) {
2719 /*
2720 * This indicates there is an entry in the reserve map
2721 * not added by alloc_hugetlb_folio. We know it was added
2722 * before the alloc_hugetlb_folio call, otherwise
2723 * hugetlb_restore_reserve would be set on the folio.
2724 * Remove the entry so that a subsequent allocation
2725 * does not consume a reservation.
2726 */
2727 rc = vma_del_reservation(h, vma, address);
2728 if (rc < 0)
2729 /*
2730 * VERY rare out of memory condition. Since
2731 * we can not delete the entry, set
2732 * hugetlb_restore_reserve so that the reserve
2733 * count will be incremented when the folio
2734 * is freed. This reserve will be consumed
2735 * on a subsequent allocation.
2736 */
2737 folio_set_hugetlb_restore_reserve(folio);
2738 } else if (rc < 0) {
2739 /*
2740 * Rare out of memory condition from
2741 * vma_needs_reservation call. Memory allocation is
2742 * only attempted if a new entry is needed. Therefore,
2743 * this implies there is not an entry in the
2744 * reserve map.
2745 *
2746 * For shared mappings, no entry in the map indicates
2747 * no reservation. We are done.
2748 */
2749 if (!(vma->vm_flags & VM_MAYSHARE))
2750 /*
2751 * For private mappings, no entry indicates
2752 * a reservation is present. Since we can
2753 * not add an entry, set hugetlb_restore_reserve
2754 * on the folio so reserve count will be
2755 * incremented when freed. This reserve will
2756 * be consumed on a subsequent allocation.
2757 */
2758 folio_set_hugetlb_restore_reserve(folio);
2759 } else
2760 /*
2761 * No reservation present, do nothing
2762 */
2763 vma_end_reservation(h, vma, address);
2764 }
2765 }
2766
2767 /*
2768 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2769 * the old one
2770 * @old_folio: Old folio to dissolve
2771 * @list: List to isolate the page in case we need to
2772 * Returns 0 on success, otherwise negated error.
2773 */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2774 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2775 struct list_head *list)
2776 {
2777 gfp_t gfp_mask;
2778 struct hstate *h;
2779 int nid = folio_nid(old_folio);
2780 struct folio *new_folio = NULL;
2781 int ret = 0;
2782
2783 retry:
2784 /*
2785 * The old_folio might have been dissolved from under our feet, so make sure
2786 * to carefully check the state under the lock.
2787 */
2788 spin_lock_irq(&hugetlb_lock);
2789 if (!folio_test_hugetlb(old_folio)) {
2790 /*
2791 * Freed from under us. Drop new_folio too.
2792 */
2793 goto free_new;
2794 } else if (folio_ref_count(old_folio)) {
2795 bool isolated;
2796
2797 /*
2798 * Someone has grabbed the folio, try to isolate it here.
2799 * Fail with -EBUSY if not possible.
2800 */
2801 spin_unlock_irq(&hugetlb_lock);
2802 isolated = folio_isolate_hugetlb(old_folio, list);
2803 ret = isolated ? 0 : -EBUSY;
2804 spin_lock_irq(&hugetlb_lock);
2805 goto free_new;
2806 } else if (!folio_test_hugetlb_freed(old_folio)) {
2807 /*
2808 * Folio's refcount is 0 but it has not been enqueued in the
2809 * freelist yet. Race window is small, so we can succeed here if
2810 * we retry.
2811 */
2812 spin_unlock_irq(&hugetlb_lock);
2813 cond_resched();
2814 goto retry;
2815 } else {
2816 h = folio_hstate(old_folio);
2817 if (!new_folio) {
2818 spin_unlock_irq(&hugetlb_lock);
2819 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2820 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask,
2821 nid, NULL);
2822 if (!new_folio)
2823 return -ENOMEM;
2824 goto retry;
2825 }
2826
2827 /*
2828 * Ok, old_folio is still a genuine free hugepage. Remove it from
2829 * the freelist and decrease the counters. These will be
2830 * incremented again when calling account_new_hugetlb_folio()
2831 * and enqueue_hugetlb_folio() for new_folio. The counters will
2832 * remain stable since this happens under the lock.
2833 */
2834 remove_hugetlb_folio(h, old_folio, false);
2835
2836 /*
2837 * Ref count on new_folio is already zero as it was dropped
2838 * earlier. It can be directly added to the pool free list.
2839 */
2840 account_new_hugetlb_folio(h, new_folio);
2841 enqueue_hugetlb_folio(h, new_folio);
2842
2843 /*
2844 * Folio has been replaced, we can safely free the old one.
2845 */
2846 spin_unlock_irq(&hugetlb_lock);
2847 update_and_free_hugetlb_folio(h, old_folio, false);
2848 }
2849
2850 return ret;
2851
2852 free_new:
2853 spin_unlock_irq(&hugetlb_lock);
2854 if (new_folio)
2855 update_and_free_hugetlb_folio(h, new_folio, false);
2856
2857 return ret;
2858 }
2859
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2860 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2861 {
2862 int ret = -EBUSY;
2863
2864 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2865 if (!folio_test_hugetlb(folio))
2866 return 0;
2867
2868 /*
2869 * Fence off gigantic pages as there is a cyclic dependency between
2870 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2871 * of bailing out right away without further retrying.
2872 */
2873 if (order_is_gigantic(folio_order(folio)))
2874 return -ENOMEM;
2875
2876 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2877 ret = 0;
2878 else if (!folio_ref_count(folio))
2879 ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2880
2881 return ret;
2882 }
2883
2884 /*
2885 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2886 * range with new folios.
2887 * @start_pfn: start pfn of the given pfn range
2888 * @end_pfn: end pfn of the given pfn range
2889 * Returns 0 on success, otherwise negated error.
2890 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2891 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2892 {
2893 struct folio *folio;
2894 int ret = 0;
2895
2896 LIST_HEAD(isolate_list);
2897
2898 while (start_pfn < end_pfn) {
2899 folio = pfn_folio(start_pfn);
2900
2901 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2902 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2903 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2904 if (ret)
2905 break;
2906
2907 putback_movable_pages(&isolate_list);
2908 }
2909 start_pfn++;
2910 }
2911
2912 return ret;
2913 }
2914
wait_for_freed_hugetlb_folios(void)2915 void wait_for_freed_hugetlb_folios(void)
2916 {
2917 if (llist_empty(&hpage_freelist))
2918 return;
2919
2920 flush_work(&free_hpage_work);
2921 }
2922
2923 typedef enum {
2924 /*
2925 * For either 0/1: we checked the per-vma resv map, and one resv
2926 * count either can be reused (0), or an extra needed (1).
2927 */
2928 MAP_CHG_REUSE = 0,
2929 MAP_CHG_NEEDED = 1,
2930 /*
2931 * Cannot use per-vma resv count can be used, hence a new resv
2932 * count is enforced.
2933 *
2934 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2935 * that currently vma_needs_reservation() has an unwanted side
2936 * effect to either use end() or commit() to complete the
2937 * transaction. Hence it needs to differenciate from NEEDED.
2938 */
2939 MAP_CHG_ENFORCED = 2,
2940 } map_chg_state;
2941
2942 /*
2943 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2944 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2945 * which case even if there's a private vma resv map it won't cover such
2946 * allocation). New call sites should (probably) never set it to true!!
2947 * When it's set, the allocation will bypass all vma level reservations.
2948 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2949 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2950 unsigned long addr, bool cow_from_owner)
2951 {
2952 struct hugepage_subpool *spool = subpool_vma(vma);
2953 struct hstate *h = hstate_vma(vma);
2954 struct folio *folio;
2955 long retval, gbl_chg, gbl_reserve;
2956 map_chg_state map_chg;
2957 int ret, idx;
2958 struct hugetlb_cgroup *h_cg = NULL;
2959 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2960
2961 idx = hstate_index(h);
2962
2963 /* Whether we need a separate per-vma reservation? */
2964 if (cow_from_owner) {
2965 /*
2966 * Special case! Since it's a CoW on top of a reserved
2967 * page, the private resv map doesn't count. So it cannot
2968 * consume the per-vma resv map even if it's reserved.
2969 */
2970 map_chg = MAP_CHG_ENFORCED;
2971 } else {
2972 /*
2973 * Examine the region/reserve map to determine if the process
2974 * has a reservation for the page to be allocated. A return
2975 * code of zero indicates a reservation exists (no change).
2976 */
2977 retval = vma_needs_reservation(h, vma, addr);
2978 if (retval < 0)
2979 return ERR_PTR(-ENOMEM);
2980 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
2981 }
2982
2983 /*
2984 * Whether we need a separate global reservation?
2985 *
2986 * Processes that did not create the mapping will have no
2987 * reserves as indicated by the region/reserve map. Check
2988 * that the allocation will not exceed the subpool limit.
2989 * Or if it can get one from the pool reservation directly.
2990 */
2991 if (map_chg) {
2992 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2993 if (gbl_chg < 0)
2994 goto out_end_reservation;
2995 } else {
2996 /*
2997 * If we have the vma reservation ready, no need for extra
2998 * global reservation.
2999 */
3000 gbl_chg = 0;
3001 }
3002
3003 /*
3004 * If this allocation is not consuming a per-vma reservation,
3005 * charge the hugetlb cgroup now.
3006 */
3007 if (map_chg) {
3008 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3009 idx, pages_per_huge_page(h), &h_cg);
3010 if (ret)
3011 goto out_subpool_put;
3012 }
3013
3014 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3015 if (ret)
3016 goto out_uncharge_cgroup_reservation;
3017
3018 spin_lock_irq(&hugetlb_lock);
3019 /*
3020 * glb_chg is passed to indicate whether or not a page must be taken
3021 * from the global free pool (global change). gbl_chg == 0 indicates
3022 * a reservation exists for the allocation.
3023 */
3024 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3025 if (!folio) {
3026 spin_unlock_irq(&hugetlb_lock);
3027 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3028 if (!folio)
3029 goto out_uncharge_cgroup;
3030 spin_lock_irq(&hugetlb_lock);
3031 list_add(&folio->lru, &h->hugepage_activelist);
3032 folio_ref_unfreeze(folio, 1);
3033 /* Fall through */
3034 }
3035
3036 /*
3037 * Either dequeued or buddy-allocated folio needs to add special
3038 * mark to the folio when it consumes a global reservation.
3039 */
3040 if (!gbl_chg) {
3041 folio_set_hugetlb_restore_reserve(folio);
3042 h->resv_huge_pages--;
3043 }
3044
3045 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3046 /* If allocation is not consuming a reservation, also store the
3047 * hugetlb_cgroup pointer on the page.
3048 */
3049 if (map_chg) {
3050 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3051 h_cg, folio);
3052 }
3053
3054 spin_unlock_irq(&hugetlb_lock);
3055
3056 hugetlb_set_folio_subpool(folio, spool);
3057
3058 if (map_chg != MAP_CHG_ENFORCED) {
3059 /* commit() is only needed if the map_chg is not enforced */
3060 retval = vma_commit_reservation(h, vma, addr);
3061 /*
3062 * Check for possible race conditions. When it happens..
3063 * The page was added to the reservation map between
3064 * vma_needs_reservation and vma_commit_reservation.
3065 * This indicates a race with hugetlb_reserve_pages.
3066 * Adjust for the subpool count incremented above AND
3067 * in hugetlb_reserve_pages for the same page. Also,
3068 * the reservation count added in hugetlb_reserve_pages
3069 * no longer applies.
3070 */
3071 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3072 long rsv_adjust;
3073
3074 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3075 hugetlb_acct_memory(h, -rsv_adjust);
3076 if (map_chg) {
3077 spin_lock_irq(&hugetlb_lock);
3078 hugetlb_cgroup_uncharge_folio_rsvd(
3079 hstate_index(h), pages_per_huge_page(h),
3080 folio);
3081 spin_unlock_irq(&hugetlb_lock);
3082 }
3083 }
3084 }
3085
3086 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3087 /*
3088 * Unconditionally increment NR_HUGETLB here. If it turns out that
3089 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3090 * decrement NR_HUGETLB.
3091 */
3092 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3093
3094 if (ret == -ENOMEM) {
3095 free_huge_folio(folio);
3096 return ERR_PTR(-ENOMEM);
3097 }
3098
3099 return folio;
3100
3101 out_uncharge_cgroup:
3102 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3103 out_uncharge_cgroup_reservation:
3104 if (map_chg)
3105 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3106 h_cg);
3107 out_subpool_put:
3108 /*
3109 * put page to subpool iff the quota of subpool's rsv_hpages is used
3110 * during hugepage_subpool_get_pages.
3111 */
3112 if (map_chg && !gbl_chg) {
3113 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3114 hugetlb_acct_memory(h, -gbl_reserve);
3115 }
3116
3117
3118 out_end_reservation:
3119 if (map_chg != MAP_CHG_ENFORCED)
3120 vma_end_reservation(h, vma, addr);
3121 return ERR_PTR(-ENOSPC);
3122 }
3123
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3124 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3125 {
3126 struct huge_bootmem_page *m;
3127 int listnode = nid;
3128
3129 if (hugetlb_early_cma(h))
3130 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3131 else {
3132 if (node_exact)
3133 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3134 huge_page_size(h), 0,
3135 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3136 else {
3137 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3138 huge_page_size(h), 0,
3139 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3140 /*
3141 * For pre-HVO to work correctly, pages need to be on
3142 * the list for the node they were actually allocated
3143 * from. That node may be different in the case of
3144 * fallback by memblock_alloc_try_nid_raw. So,
3145 * extract the actual node first.
3146 */
3147 if (m)
3148 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3149 }
3150
3151 if (m) {
3152 m->flags = 0;
3153 m->cma = NULL;
3154 }
3155 }
3156
3157 if (m) {
3158 /*
3159 * Use the beginning of the huge page to store the
3160 * huge_bootmem_page struct (until gather_bootmem
3161 * puts them into the mem_map).
3162 *
3163 * Put them into a private list first because mem_map
3164 * is not up yet.
3165 */
3166 INIT_LIST_HEAD(&m->list);
3167 list_add(&m->list, &huge_boot_pages[listnode]);
3168 m->hstate = h;
3169 }
3170
3171 return m;
3172 }
3173
3174 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3175 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3176 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3177 {
3178 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3179 int nr_nodes, node = nid;
3180
3181 /* do node specific alloc */
3182 if (nid != NUMA_NO_NODE) {
3183 m = alloc_bootmem(h, node, true);
3184 if (!m)
3185 return 0;
3186 goto found;
3187 }
3188
3189 /* allocate from next node when distributing huge pages */
3190 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3191 &hugetlb_bootmem_nodes) {
3192 m = alloc_bootmem(h, node, false);
3193 if (!m)
3194 return 0;
3195 goto found;
3196 }
3197
3198 found:
3199
3200 /*
3201 * Only initialize the head struct page in memmap_init_reserved_pages,
3202 * rest of the struct pages will be initialized by the HugeTLB
3203 * subsystem itself.
3204 * The head struct page is used to get folio information by the HugeTLB
3205 * subsystem like zone id and node id.
3206 */
3207 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3208 huge_page_size(h) - PAGE_SIZE);
3209
3210 return 1;
3211 }
3212
3213 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3214 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3215 unsigned long start_page_number,
3216 unsigned long end_page_number)
3217 {
3218 enum zone_type zone = zone_idx(folio_zone(folio));
3219 int nid = folio_nid(folio);
3220 struct page *page = folio_page(folio, start_page_number);
3221 unsigned long head_pfn = folio_pfn(folio);
3222 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3223
3224 /*
3225 * As we marked all tail pages with memblock_reserved_mark_noinit(),
3226 * we must initialize them ourselves here.
3227 */
3228 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) {
3229 __init_single_page(page, pfn, zone, nid);
3230 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3231 set_page_count(page, 0);
3232 }
3233 }
3234
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3235 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3236 struct hstate *h,
3237 unsigned long nr_pages)
3238 {
3239 int ret;
3240
3241 /*
3242 * This is an open-coded prep_compound_page() whereby we avoid
3243 * walking pages twice by initializing/preparing+freezing them in the
3244 * same go.
3245 */
3246 __folio_clear_reserved(folio);
3247 __folio_set_head(folio);
3248 ret = folio_ref_freeze(folio, 1);
3249 VM_BUG_ON(!ret);
3250 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3251 prep_compound_head((struct page *)folio, huge_page_order(h));
3252 }
3253
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3254 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3255 {
3256 return m->flags & HUGE_BOOTMEM_HVO;
3257 }
3258
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3259 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3260 {
3261 return m->flags & HUGE_BOOTMEM_CMA;
3262 }
3263
3264 /*
3265 * memblock-allocated pageblocks might not have the migrate type set
3266 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3267 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3268 * reservation.
3269 *
3270 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3271 * read-only, but that's ok - for sparse vmemmap this does not write to
3272 * the page structure.
3273 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3274 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3275 struct hstate *h)
3276 {
3277 unsigned long nr_pages = pages_per_huge_page(h), i;
3278
3279 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3280
3281 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3282 if (folio_test_hugetlb_cma(folio))
3283 init_cma_pageblock(folio_page(folio, i));
3284 else
3285 init_pageblock_migratetype(folio_page(folio, i),
3286 MIGRATE_MOVABLE, false);
3287 }
3288 }
3289
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3290 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3291 struct list_head *folio_list)
3292 {
3293 unsigned long flags;
3294 struct folio *folio, *tmp_f;
3295
3296 /* Send list for bulk vmemmap optimization processing */
3297 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3298
3299 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3300 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3301 /*
3302 * If HVO fails, initialize all tail struct pages
3303 * We do not worry about potential long lock hold
3304 * time as this is early in boot and there should
3305 * be no contention.
3306 */
3307 hugetlb_folio_init_tail_vmemmap(folio,
3308 HUGETLB_VMEMMAP_RESERVE_PAGES,
3309 pages_per_huge_page(h));
3310 }
3311 hugetlb_bootmem_init_migratetype(folio, h);
3312 /* Subdivide locks to achieve better parallel performance */
3313 spin_lock_irqsave(&hugetlb_lock, flags);
3314 account_new_hugetlb_folio(h, folio);
3315 enqueue_hugetlb_folio(h, folio);
3316 spin_unlock_irqrestore(&hugetlb_lock, flags);
3317 }
3318 }
3319
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3320 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3321 struct huge_bootmem_page *m)
3322 {
3323 unsigned long start_pfn;
3324 bool valid;
3325
3326 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3327 /*
3328 * Already validated, skip check.
3329 */
3330 return true;
3331 }
3332
3333 if (hugetlb_bootmem_page_earlycma(m)) {
3334 valid = cma_validate_zones(m->cma);
3335 goto out;
3336 }
3337
3338 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3339
3340 valid = !pfn_range_intersects_zones(nid, start_pfn,
3341 pages_per_huge_page(m->hstate));
3342 out:
3343 if (!valid)
3344 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3345
3346 return valid;
3347 }
3348
3349 /*
3350 * Free a bootmem page that was found to be invalid (intersecting with
3351 * multiple zones).
3352 *
3353 * Since it intersects with multiple zones, we can't just do a free
3354 * operation on all pages at once, but instead have to walk all
3355 * pages, freeing them one by one.
3356 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3357 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3358 struct hstate *h)
3359 {
3360 unsigned long npages = pages_per_huge_page(h);
3361 unsigned long pfn;
3362
3363 while (npages--) {
3364 pfn = page_to_pfn(page);
3365 __init_page_from_nid(pfn, nid);
3366 free_reserved_page(page);
3367 page++;
3368 }
3369 }
3370
3371 /*
3372 * Put bootmem huge pages into the standard lists after mem_map is up.
3373 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3374 */
gather_bootmem_prealloc_node(unsigned long nid)3375 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3376 {
3377 LIST_HEAD(folio_list);
3378 struct huge_bootmem_page *m, *tm;
3379 struct hstate *h = NULL, *prev_h = NULL;
3380
3381 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3382 struct page *page = virt_to_page(m);
3383 struct folio *folio = (void *)page;
3384
3385 h = m->hstate;
3386 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3387 /*
3388 * Can't use this page. Initialize the
3389 * page structures if that hasn't already
3390 * been done, and give them to the page
3391 * allocator.
3392 */
3393 hugetlb_bootmem_free_invalid_page(nid, page, h);
3394 continue;
3395 }
3396
3397 /*
3398 * It is possible to have multiple huge page sizes (hstates)
3399 * in this list. If so, process each size separately.
3400 */
3401 if (h != prev_h && prev_h != NULL)
3402 prep_and_add_bootmem_folios(prev_h, &folio_list);
3403 prev_h = h;
3404
3405 VM_BUG_ON(!hstate_is_gigantic(h));
3406 WARN_ON(folio_ref_count(folio) != 1);
3407
3408 hugetlb_folio_init_vmemmap(folio, h,
3409 HUGETLB_VMEMMAP_RESERVE_PAGES);
3410 init_new_hugetlb_folio(folio);
3411
3412 if (hugetlb_bootmem_page_prehvo(m))
3413 /*
3414 * If pre-HVO was done, just set the
3415 * flag, the HVO code will then skip
3416 * this folio.
3417 */
3418 folio_set_hugetlb_vmemmap_optimized(folio);
3419
3420 if (hugetlb_bootmem_page_earlycma(m))
3421 folio_set_hugetlb_cma(folio);
3422
3423 list_add(&folio->lru, &folio_list);
3424
3425 /*
3426 * We need to restore the 'stolen' pages to totalram_pages
3427 * in order to fix confusing memory reports from free(1) and
3428 * other side-effects, like CommitLimit going negative.
3429 *
3430 * For CMA pages, this is done in init_cma_pageblock
3431 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3432 */
3433 if (!folio_test_hugetlb_cma(folio))
3434 adjust_managed_page_count(page, pages_per_huge_page(h));
3435 cond_resched();
3436 }
3437
3438 prep_and_add_bootmem_folios(h, &folio_list);
3439 }
3440
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3441 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3442 unsigned long end, void *arg)
3443 {
3444 int nid;
3445
3446 for (nid = start; nid < end; nid++)
3447 gather_bootmem_prealloc_node(nid);
3448 }
3449
gather_bootmem_prealloc(void)3450 static void __init gather_bootmem_prealloc(void)
3451 {
3452 struct padata_mt_job job = {
3453 .thread_fn = gather_bootmem_prealloc_parallel,
3454 .fn_arg = NULL,
3455 .start = 0,
3456 .size = nr_node_ids,
3457 .align = 1,
3458 .min_chunk = 1,
3459 .max_threads = num_node_state(N_MEMORY),
3460 .numa_aware = true,
3461 };
3462
3463 padata_do_multithreaded(&job);
3464 }
3465
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3466 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3467 {
3468 unsigned long i;
3469 char buf[32];
3470 LIST_HEAD(folio_list);
3471
3472 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3473 if (hstate_is_gigantic(h)) {
3474 if (!alloc_bootmem_huge_page(h, nid))
3475 break;
3476 } else {
3477 struct folio *folio;
3478 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3479
3480 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3481 &node_states[N_MEMORY], NULL);
3482 if (!folio)
3483 break;
3484 list_add(&folio->lru, &folio_list);
3485 }
3486 cond_resched();
3487 }
3488
3489 if (!list_empty(&folio_list))
3490 prep_and_add_allocated_folios(h, &folio_list);
3491
3492 if (i == h->max_huge_pages_node[nid])
3493 return;
3494
3495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3496 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3497 h->max_huge_pages_node[nid], buf, nid, i);
3498 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3499 h->max_huge_pages_node[nid] = i;
3500 }
3501
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3502 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3503 {
3504 int i;
3505 bool node_specific_alloc = false;
3506
3507 for_each_online_node(i) {
3508 if (h->max_huge_pages_node[i] > 0) {
3509 hugetlb_hstate_alloc_pages_onenode(h, i);
3510 node_specific_alloc = true;
3511 }
3512 }
3513
3514 return node_specific_alloc;
3515 }
3516
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3517 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3518 {
3519 if (allocated < h->max_huge_pages) {
3520 char buf[32];
3521
3522 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3523 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3524 h->max_huge_pages, buf, allocated);
3525 h->max_huge_pages = allocated;
3526 }
3527 }
3528
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3529 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3530 {
3531 struct hstate *h = (struct hstate *)arg;
3532 int i, num = end - start;
3533 nodemask_t node_alloc_noretry;
3534 LIST_HEAD(folio_list);
3535 int next_node = first_online_node;
3536
3537 /* Bit mask controlling how hard we retry per-node allocations.*/
3538 nodes_clear(node_alloc_noretry);
3539
3540 for (i = 0; i < num; ++i) {
3541 struct folio *folio;
3542
3543 if (hugetlb_vmemmap_optimizable_size(h) &&
3544 (si_mem_available() == 0) && !list_empty(&folio_list)) {
3545 prep_and_add_allocated_folios(h, &folio_list);
3546 INIT_LIST_HEAD(&folio_list);
3547 }
3548 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3549 &node_alloc_noretry, &next_node);
3550 if (!folio)
3551 break;
3552
3553 list_move(&folio->lru, &folio_list);
3554 cond_resched();
3555 }
3556
3557 prep_and_add_allocated_folios(h, &folio_list);
3558 }
3559
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3560 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3561 {
3562 unsigned long i;
3563
3564 for (i = 0; i < h->max_huge_pages; ++i) {
3565 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3566 break;
3567 cond_resched();
3568 }
3569
3570 return i;
3571 }
3572
hugetlb_pages_alloc_boot(struct hstate * h)3573 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3574 {
3575 struct padata_mt_job job = {
3576 .fn_arg = h,
3577 .align = 1,
3578 .numa_aware = true
3579 };
3580
3581 unsigned long jiffies_start;
3582 unsigned long jiffies_end;
3583 unsigned long remaining;
3584
3585 job.thread_fn = hugetlb_pages_alloc_boot_node;
3586
3587 /*
3588 * job.max_threads is 25% of the available cpu threads by default.
3589 *
3590 * On large servers with terabytes of memory, huge page allocation
3591 * can consume a considerably amount of time.
3592 *
3593 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3594 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3595 *
3596 * +-----------------------+-------+-------+-------+-------+-------+
3597 * | threads | 8 | 16 | 32 | 64 | 128 |
3598 * +-----------------------+-------+-------+-------+-------+-------+
3599 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3600 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3601 * +-----------------------+-------+-------+-------+-------+-------+
3602 */
3603 if (hugepage_allocation_threads == 0) {
3604 hugepage_allocation_threads = num_online_cpus() / 4;
3605 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3606 }
3607
3608 job.max_threads = hugepage_allocation_threads;
3609
3610 jiffies_start = jiffies;
3611 do {
3612 remaining = h->max_huge_pages - h->nr_huge_pages;
3613
3614 job.start = h->nr_huge_pages;
3615 job.size = remaining;
3616 job.min_chunk = remaining / hugepage_allocation_threads;
3617 padata_do_multithreaded(&job);
3618
3619 if (h->nr_huge_pages == h->max_huge_pages)
3620 break;
3621
3622 /*
3623 * Retry only if the vmemmap optimization might have been able to free
3624 * some memory back to the system.
3625 */
3626 if (!hugetlb_vmemmap_optimizable(h))
3627 break;
3628
3629 /* Continue if progress was made in last iteration */
3630 } while (remaining != (h->max_huge_pages - h->nr_huge_pages));
3631
3632 jiffies_end = jiffies;
3633
3634 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3635 jiffies_to_msecs(jiffies_end - jiffies_start),
3636 hugepage_allocation_threads);
3637
3638 return h->nr_huge_pages;
3639 }
3640
3641 /*
3642 * NOTE: this routine is called in different contexts for gigantic and
3643 * non-gigantic pages.
3644 * - For gigantic pages, this is called early in the boot process and
3645 * pages are allocated from memblock allocated or something similar.
3646 * Gigantic pages are actually added to pools later with the routine
3647 * gather_bootmem_prealloc.
3648 * - For non-gigantic pages, this is called later in the boot process after
3649 * all of mm is up and functional. Pages are allocated from buddy and
3650 * then added to hugetlb pools.
3651 */
hugetlb_hstate_alloc_pages(struct hstate * h)3652 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3653 {
3654 unsigned long allocated;
3655
3656 /*
3657 * Skip gigantic hugepages allocation if early CMA
3658 * reservations are not available.
3659 */
3660 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3661 !hugetlb_early_cma(h)) {
3662 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3663 return;
3664 }
3665
3666 if (!h->max_huge_pages)
3667 return;
3668
3669 /* do node specific alloc */
3670 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3671 return;
3672
3673 /* below will do all node balanced alloc */
3674 if (hstate_is_gigantic(h))
3675 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3676 else
3677 allocated = hugetlb_pages_alloc_boot(h);
3678
3679 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3680 }
3681
hugetlb_init_hstates(void)3682 static void __init hugetlb_init_hstates(void)
3683 {
3684 struct hstate *h, *h2;
3685
3686 for_each_hstate(h) {
3687 /*
3688 * Always reset to first_memory_node here, even if
3689 * next_nid_to_alloc was set before - we can't
3690 * reference hugetlb_bootmem_nodes after init, and
3691 * first_memory_node is right for all further allocations.
3692 */
3693 h->next_nid_to_alloc = first_memory_node;
3694 h->next_nid_to_free = first_memory_node;
3695
3696 /* oversize hugepages were init'ed in early boot */
3697 if (!hstate_is_gigantic(h))
3698 hugetlb_hstate_alloc_pages(h);
3699
3700 /*
3701 * Set demote order for each hstate. Note that
3702 * h->demote_order is initially 0.
3703 * - We can not demote gigantic pages if runtime freeing
3704 * is not supported, so skip this.
3705 * - If CMA allocation is possible, we can not demote
3706 * HUGETLB_PAGE_ORDER or smaller size pages.
3707 */
3708 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3709 continue;
3710 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3711 continue;
3712 for_each_hstate(h2) {
3713 if (h2 == h)
3714 continue;
3715 if (h2->order < h->order &&
3716 h2->order > h->demote_order)
3717 h->demote_order = h2->order;
3718 }
3719 }
3720 }
3721
report_hugepages(void)3722 static void __init report_hugepages(void)
3723 {
3724 struct hstate *h;
3725 unsigned long nrinvalid;
3726
3727 for_each_hstate(h) {
3728 char buf[32];
3729
3730 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3731 h->max_huge_pages -= nrinvalid;
3732
3733 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3734 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3735 buf, h->nr_huge_pages);
3736 if (nrinvalid)
3737 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3738 buf, nrinvalid, str_plural(nrinvalid));
3739 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3740 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3741 }
3742 }
3743
3744 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3745 static void try_to_free_low(struct hstate *h, unsigned long count,
3746 nodemask_t *nodes_allowed)
3747 {
3748 int i;
3749 LIST_HEAD(page_list);
3750
3751 lockdep_assert_held(&hugetlb_lock);
3752 if (hstate_is_gigantic(h))
3753 return;
3754
3755 /*
3756 * Collect pages to be freed on a list, and free after dropping lock
3757 */
3758 for_each_node_mask(i, *nodes_allowed) {
3759 struct folio *folio, *next;
3760 struct list_head *freel = &h->hugepage_freelists[i];
3761 list_for_each_entry_safe(folio, next, freel, lru) {
3762 if (count >= h->nr_huge_pages)
3763 goto out;
3764 if (folio_test_highmem(folio))
3765 continue;
3766 remove_hugetlb_folio(h, folio, false);
3767 list_add(&folio->lru, &page_list);
3768 }
3769 }
3770
3771 out:
3772 spin_unlock_irq(&hugetlb_lock);
3773 update_and_free_pages_bulk(h, &page_list);
3774 spin_lock_irq(&hugetlb_lock);
3775 }
3776 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3777 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3778 nodemask_t *nodes_allowed)
3779 {
3780 }
3781 #endif
3782
3783 /*
3784 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3785 * balanced by operating on them in a round-robin fashion.
3786 * Returns 1 if an adjustment was made.
3787 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3788 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3789 int delta)
3790 {
3791 int nr_nodes, node;
3792
3793 lockdep_assert_held(&hugetlb_lock);
3794 VM_BUG_ON(delta != -1 && delta != 1);
3795
3796 if (delta < 0) {
3797 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3798 if (h->surplus_huge_pages_node[node])
3799 goto found;
3800 }
3801 } else {
3802 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3803 if (h->surplus_huge_pages_node[node] <
3804 h->nr_huge_pages_node[node])
3805 goto found;
3806 }
3807 }
3808 return 0;
3809
3810 found:
3811 h->surplus_huge_pages += delta;
3812 h->surplus_huge_pages_node[node] += delta;
3813 return 1;
3814 }
3815
3816 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3817 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3818 nodemask_t *nodes_allowed)
3819 {
3820 unsigned long persistent_free_count;
3821 unsigned long min_count;
3822 unsigned long allocated;
3823 struct folio *folio;
3824 LIST_HEAD(page_list);
3825 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3826
3827 /*
3828 * Bit mask controlling how hard we retry per-node allocations.
3829 * If we can not allocate the bit mask, do not attempt to allocate
3830 * the requested huge pages.
3831 */
3832 if (node_alloc_noretry)
3833 nodes_clear(*node_alloc_noretry);
3834 else
3835 return -ENOMEM;
3836
3837 /*
3838 * resize_lock mutex prevents concurrent adjustments to number of
3839 * pages in hstate via the proc/sysfs interfaces.
3840 */
3841 mutex_lock(&h->resize_lock);
3842 flush_free_hpage_work(h);
3843 spin_lock_irq(&hugetlb_lock);
3844
3845 /*
3846 * Check for a node specific request.
3847 * Changing node specific huge page count may require a corresponding
3848 * change to the global count. In any case, the passed node mask
3849 * (nodes_allowed) will restrict alloc/free to the specified node.
3850 */
3851 if (nid != NUMA_NO_NODE) {
3852 unsigned long old_count = count;
3853
3854 count += persistent_huge_pages(h) -
3855 (h->nr_huge_pages_node[nid] -
3856 h->surplus_huge_pages_node[nid]);
3857 /*
3858 * User may have specified a large count value which caused the
3859 * above calculation to overflow. In this case, they wanted
3860 * to allocate as many huge pages as possible. Set count to
3861 * largest possible value to align with their intention.
3862 */
3863 if (count < old_count)
3864 count = ULONG_MAX;
3865 }
3866
3867 /*
3868 * Gigantic pages runtime allocation depend on the capability for large
3869 * page range allocation.
3870 * If the system does not provide this feature, return an error when
3871 * the user tries to allocate gigantic pages but let the user free the
3872 * boottime allocated gigantic pages.
3873 */
3874 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3875 if (count > persistent_huge_pages(h)) {
3876 spin_unlock_irq(&hugetlb_lock);
3877 mutex_unlock(&h->resize_lock);
3878 NODEMASK_FREE(node_alloc_noretry);
3879 return -EINVAL;
3880 }
3881 /* Fall through to decrease pool */
3882 }
3883
3884 /*
3885 * Increase the pool size
3886 * First take pages out of surplus state. Then make up the
3887 * remaining difference by allocating fresh huge pages.
3888 *
3889 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3890 * to convert a surplus huge page to a normal huge page. That is
3891 * not critical, though, it just means the overall size of the
3892 * pool might be one hugepage larger than it needs to be, but
3893 * within all the constraints specified by the sysctls.
3894 */
3895 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3896 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3897 break;
3898 }
3899
3900 allocated = 0;
3901 while (count > (persistent_huge_pages(h) + allocated)) {
3902 /*
3903 * If this allocation races such that we no longer need the
3904 * page, free_huge_folio will handle it by freeing the page
3905 * and reducing the surplus.
3906 */
3907 spin_unlock_irq(&hugetlb_lock);
3908
3909 /* yield cpu to avoid soft lockup */
3910 cond_resched();
3911
3912 folio = alloc_pool_huge_folio(h, nodes_allowed,
3913 node_alloc_noretry,
3914 &h->next_nid_to_alloc);
3915 if (!folio) {
3916 prep_and_add_allocated_folios(h, &page_list);
3917 spin_lock_irq(&hugetlb_lock);
3918 goto out;
3919 }
3920
3921 list_add(&folio->lru, &page_list);
3922 allocated++;
3923
3924 /* Bail for signals. Probably ctrl-c from user */
3925 if (signal_pending(current)) {
3926 prep_and_add_allocated_folios(h, &page_list);
3927 spin_lock_irq(&hugetlb_lock);
3928 goto out;
3929 }
3930
3931 spin_lock_irq(&hugetlb_lock);
3932 }
3933
3934 /* Add allocated pages to the pool */
3935 if (!list_empty(&page_list)) {
3936 spin_unlock_irq(&hugetlb_lock);
3937 prep_and_add_allocated_folios(h, &page_list);
3938 spin_lock_irq(&hugetlb_lock);
3939 }
3940
3941 /*
3942 * Decrease the pool size
3943 * First return free pages to the buddy allocator (being careful
3944 * to keep enough around to satisfy reservations). Then place
3945 * pages into surplus state as needed so the pool will shrink
3946 * to the desired size as pages become free.
3947 *
3948 * By placing pages into the surplus state independent of the
3949 * overcommit value, we are allowing the surplus pool size to
3950 * exceed overcommit. There are few sane options here. Since
3951 * alloc_surplus_hugetlb_folio() is checking the global counter,
3952 * though, we'll note that we're not allowed to exceed surplus
3953 * and won't grow the pool anywhere else. Not until one of the
3954 * sysctls are changed, or the surplus pages go out of use.
3955 *
3956 * min_count is the expected number of persistent pages, we
3957 * shouldn't calculate min_count by using
3958 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3959 * because there may exist free surplus huge pages, and this will
3960 * lead to subtracting twice. Free surplus huge pages come from HVO
3961 * failing to restore vmemmap, see comments in the callers of
3962 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3963 * persistent free count first.
3964 */
3965 persistent_free_count = h->free_huge_pages;
3966 if (h->free_huge_pages > persistent_huge_pages(h)) {
3967 if (h->free_huge_pages > h->surplus_huge_pages)
3968 persistent_free_count -= h->surplus_huge_pages;
3969 else
3970 persistent_free_count = 0;
3971 }
3972 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3973 min_count = max(count, min_count);
3974 try_to_free_low(h, min_count, nodes_allowed);
3975
3976 /*
3977 * Collect pages to be removed on list without dropping lock
3978 */
3979 while (min_count < persistent_huge_pages(h)) {
3980 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3981 if (!folio)
3982 break;
3983
3984 list_add(&folio->lru, &page_list);
3985 }
3986 /* free the pages after dropping lock */
3987 spin_unlock_irq(&hugetlb_lock);
3988 update_and_free_pages_bulk(h, &page_list);
3989 flush_free_hpage_work(h);
3990 spin_lock_irq(&hugetlb_lock);
3991
3992 while (count < persistent_huge_pages(h)) {
3993 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3994 break;
3995 }
3996 out:
3997 h->max_huge_pages = persistent_huge_pages(h);
3998 spin_unlock_irq(&hugetlb_lock);
3999 mutex_unlock(&h->resize_lock);
4000
4001 NODEMASK_FREE(node_alloc_noretry);
4002
4003 return 0;
4004 }
4005
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)4006 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
4007 struct list_head *src_list)
4008 {
4009 long rc;
4010 struct folio *folio, *next;
4011 LIST_HEAD(dst_list);
4012 LIST_HEAD(ret_list);
4013
4014 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4015 list_splice_init(&ret_list, src_list);
4016
4017 /*
4018 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4019 * Without the mutex, pages added to target hstate could be marked
4020 * as surplus.
4021 *
4022 * Note that we already hold src->resize_lock. To prevent deadlock,
4023 * use the convention of always taking larger size hstate mutex first.
4024 */
4025 mutex_lock(&dst->resize_lock);
4026
4027 list_for_each_entry_safe(folio, next, src_list, lru) {
4028 int i;
4029 bool cma;
4030
4031 if (folio_test_hugetlb_vmemmap_optimized(folio))
4032 continue;
4033
4034 cma = folio_test_hugetlb_cma(folio);
4035
4036 list_del(&folio->lru);
4037
4038 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4039 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4040
4041 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4042 struct page *page = folio_page(folio, i);
4043 /* Careful: see __split_huge_page_tail() */
4044 struct folio *new_folio = (struct folio *)page;
4045
4046 clear_compound_head(page);
4047 prep_compound_page(page, dst->order);
4048
4049 new_folio->mapping = NULL;
4050 init_new_hugetlb_folio(new_folio);
4051 /* Copy the CMA flag so that it is freed correctly */
4052 if (cma)
4053 folio_set_hugetlb_cma(new_folio);
4054 list_add(&new_folio->lru, &dst_list);
4055 }
4056 }
4057
4058 prep_and_add_allocated_folios(dst, &dst_list);
4059
4060 mutex_unlock(&dst->resize_lock);
4061
4062 return rc;
4063 }
4064
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4065 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4066 unsigned long nr_to_demote)
4067 __must_hold(&hugetlb_lock)
4068 {
4069 int nr_nodes, node;
4070 struct hstate *dst;
4071 long rc = 0;
4072 long nr_demoted = 0;
4073
4074 lockdep_assert_held(&hugetlb_lock);
4075
4076 /* We should never get here if no demote order */
4077 if (!src->demote_order) {
4078 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4079 return -EINVAL; /* internal error */
4080 }
4081 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4082
4083 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4084 LIST_HEAD(list);
4085 struct folio *folio, *next;
4086
4087 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4088 if (folio_test_hwpoison(folio))
4089 continue;
4090
4091 remove_hugetlb_folio(src, folio, false);
4092 list_add(&folio->lru, &list);
4093
4094 if (++nr_demoted == nr_to_demote)
4095 break;
4096 }
4097
4098 spin_unlock_irq(&hugetlb_lock);
4099
4100 rc = demote_free_hugetlb_folios(src, dst, &list);
4101
4102 spin_lock_irq(&hugetlb_lock);
4103
4104 list_for_each_entry_safe(folio, next, &list, lru) {
4105 list_del(&folio->lru);
4106 add_hugetlb_folio(src, folio, false);
4107
4108 nr_demoted--;
4109 }
4110
4111 if (rc < 0 || nr_demoted == nr_to_demote)
4112 break;
4113 }
4114
4115 /*
4116 * Not absolutely necessary, but for consistency update max_huge_pages
4117 * based on pool changes for the demoted page.
4118 */
4119 src->max_huge_pages -= nr_demoted;
4120 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4121
4122 if (rc < 0)
4123 return rc;
4124
4125 if (nr_demoted)
4126 return nr_demoted;
4127 /*
4128 * Only way to get here is if all pages on free lists are poisoned.
4129 * Return -EBUSY so that caller will not retry.
4130 */
4131 return -EBUSY;
4132 }
4133
4134 #define HSTATE_ATTR_RO(_name) \
4135 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4136
4137 #define HSTATE_ATTR_WO(_name) \
4138 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4139
4140 #define HSTATE_ATTR(_name) \
4141 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4142
4143 static struct kobject *hugepages_kobj;
4144 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4145
4146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4147
kobj_to_hstate(struct kobject * kobj,int * nidp)4148 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4149 {
4150 int i;
4151
4152 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4153 if (hstate_kobjs[i] == kobj) {
4154 if (nidp)
4155 *nidp = NUMA_NO_NODE;
4156 return &hstates[i];
4157 }
4158
4159 return kobj_to_node_hstate(kobj, nidp);
4160 }
4161
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4162 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4163 struct kobj_attribute *attr, char *buf)
4164 {
4165 struct hstate *h;
4166 unsigned long nr_huge_pages;
4167 int nid;
4168
4169 h = kobj_to_hstate(kobj, &nid);
4170 if (nid == NUMA_NO_NODE)
4171 nr_huge_pages = h->nr_huge_pages;
4172 else
4173 nr_huge_pages = h->nr_huge_pages_node[nid];
4174
4175 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4176 }
4177
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4178 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4179 struct hstate *h, int nid,
4180 unsigned long count, size_t len)
4181 {
4182 int err;
4183 nodemask_t nodes_allowed, *n_mask;
4184
4185 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4186 return -EINVAL;
4187
4188 if (nid == NUMA_NO_NODE) {
4189 /*
4190 * global hstate attribute
4191 */
4192 if (!(obey_mempolicy &&
4193 init_nodemask_of_mempolicy(&nodes_allowed)))
4194 n_mask = &node_states[N_MEMORY];
4195 else
4196 n_mask = &nodes_allowed;
4197 } else {
4198 /*
4199 * Node specific request. count adjustment happens in
4200 * set_max_huge_pages() after acquiring hugetlb_lock.
4201 */
4202 init_nodemask_of_node(&nodes_allowed, nid);
4203 n_mask = &nodes_allowed;
4204 }
4205
4206 err = set_max_huge_pages(h, count, nid, n_mask);
4207
4208 return err ? err : len;
4209 }
4210
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4211 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4212 struct kobject *kobj, const char *buf,
4213 size_t len)
4214 {
4215 struct hstate *h;
4216 unsigned long count;
4217 int nid;
4218 int err;
4219
4220 err = kstrtoul(buf, 10, &count);
4221 if (err)
4222 return err;
4223
4224 h = kobj_to_hstate(kobj, &nid);
4225 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4226 }
4227
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4228 static ssize_t nr_hugepages_show(struct kobject *kobj,
4229 struct kobj_attribute *attr, char *buf)
4230 {
4231 return nr_hugepages_show_common(kobj, attr, buf);
4232 }
4233
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4234 static ssize_t nr_hugepages_store(struct kobject *kobj,
4235 struct kobj_attribute *attr, const char *buf, size_t len)
4236 {
4237 return nr_hugepages_store_common(false, kobj, buf, len);
4238 }
4239 HSTATE_ATTR(nr_hugepages);
4240
4241 #ifdef CONFIG_NUMA
4242
4243 /*
4244 * hstate attribute for optionally mempolicy-based constraint on persistent
4245 * huge page alloc/free.
4246 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4247 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4248 struct kobj_attribute *attr,
4249 char *buf)
4250 {
4251 return nr_hugepages_show_common(kobj, attr, buf);
4252 }
4253
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4254 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4255 struct kobj_attribute *attr, const char *buf, size_t len)
4256 {
4257 return nr_hugepages_store_common(true, kobj, buf, len);
4258 }
4259 HSTATE_ATTR(nr_hugepages_mempolicy);
4260 #endif
4261
4262
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4263 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4264 struct kobj_attribute *attr, char *buf)
4265 {
4266 struct hstate *h = kobj_to_hstate(kobj, NULL);
4267 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4268 }
4269
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4270 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4271 struct kobj_attribute *attr, const char *buf, size_t count)
4272 {
4273 int err;
4274 unsigned long input;
4275 struct hstate *h = kobj_to_hstate(kobj, NULL);
4276
4277 if (hstate_is_gigantic(h))
4278 return -EINVAL;
4279
4280 err = kstrtoul(buf, 10, &input);
4281 if (err)
4282 return err;
4283
4284 spin_lock_irq(&hugetlb_lock);
4285 h->nr_overcommit_huge_pages = input;
4286 spin_unlock_irq(&hugetlb_lock);
4287
4288 return count;
4289 }
4290 HSTATE_ATTR(nr_overcommit_hugepages);
4291
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4292 static ssize_t free_hugepages_show(struct kobject *kobj,
4293 struct kobj_attribute *attr, char *buf)
4294 {
4295 struct hstate *h;
4296 unsigned long free_huge_pages;
4297 int nid;
4298
4299 h = kobj_to_hstate(kobj, &nid);
4300 if (nid == NUMA_NO_NODE)
4301 free_huge_pages = h->free_huge_pages;
4302 else
4303 free_huge_pages = h->free_huge_pages_node[nid];
4304
4305 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4306 }
4307 HSTATE_ATTR_RO(free_hugepages);
4308
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4309 static ssize_t resv_hugepages_show(struct kobject *kobj,
4310 struct kobj_attribute *attr, char *buf)
4311 {
4312 struct hstate *h = kobj_to_hstate(kobj, NULL);
4313 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4314 }
4315 HSTATE_ATTR_RO(resv_hugepages);
4316
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4317 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4318 struct kobj_attribute *attr, char *buf)
4319 {
4320 struct hstate *h;
4321 unsigned long surplus_huge_pages;
4322 int nid;
4323
4324 h = kobj_to_hstate(kobj, &nid);
4325 if (nid == NUMA_NO_NODE)
4326 surplus_huge_pages = h->surplus_huge_pages;
4327 else
4328 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4329
4330 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4331 }
4332 HSTATE_ATTR_RO(surplus_hugepages);
4333
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4334 static ssize_t demote_store(struct kobject *kobj,
4335 struct kobj_attribute *attr, const char *buf, size_t len)
4336 {
4337 unsigned long nr_demote;
4338 unsigned long nr_available;
4339 nodemask_t nodes_allowed, *n_mask;
4340 struct hstate *h;
4341 int err;
4342 int nid;
4343
4344 err = kstrtoul(buf, 10, &nr_demote);
4345 if (err)
4346 return err;
4347 h = kobj_to_hstate(kobj, &nid);
4348
4349 if (nid != NUMA_NO_NODE) {
4350 init_nodemask_of_node(&nodes_allowed, nid);
4351 n_mask = &nodes_allowed;
4352 } else {
4353 n_mask = &node_states[N_MEMORY];
4354 }
4355
4356 /* Synchronize with other sysfs operations modifying huge pages */
4357 mutex_lock(&h->resize_lock);
4358 spin_lock_irq(&hugetlb_lock);
4359
4360 while (nr_demote) {
4361 long rc;
4362
4363 /*
4364 * Check for available pages to demote each time thorough the
4365 * loop as demote_pool_huge_page will drop hugetlb_lock.
4366 */
4367 if (nid != NUMA_NO_NODE)
4368 nr_available = h->free_huge_pages_node[nid];
4369 else
4370 nr_available = h->free_huge_pages;
4371 nr_available -= h->resv_huge_pages;
4372 if (!nr_available)
4373 break;
4374
4375 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4376 if (rc < 0) {
4377 err = rc;
4378 break;
4379 }
4380
4381 nr_demote -= rc;
4382 }
4383
4384 spin_unlock_irq(&hugetlb_lock);
4385 mutex_unlock(&h->resize_lock);
4386
4387 if (err)
4388 return err;
4389 return len;
4390 }
4391 HSTATE_ATTR_WO(demote);
4392
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4393 static ssize_t demote_size_show(struct kobject *kobj,
4394 struct kobj_attribute *attr, char *buf)
4395 {
4396 struct hstate *h = kobj_to_hstate(kobj, NULL);
4397 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4398
4399 return sysfs_emit(buf, "%lukB\n", demote_size);
4400 }
4401
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4402 static ssize_t demote_size_store(struct kobject *kobj,
4403 struct kobj_attribute *attr,
4404 const char *buf, size_t count)
4405 {
4406 struct hstate *h, *demote_hstate;
4407 unsigned long demote_size;
4408 unsigned int demote_order;
4409
4410 demote_size = (unsigned long)memparse(buf, NULL);
4411
4412 demote_hstate = size_to_hstate(demote_size);
4413 if (!demote_hstate)
4414 return -EINVAL;
4415 demote_order = demote_hstate->order;
4416 if (demote_order < HUGETLB_PAGE_ORDER)
4417 return -EINVAL;
4418
4419 /* demote order must be smaller than hstate order */
4420 h = kobj_to_hstate(kobj, NULL);
4421 if (demote_order >= h->order)
4422 return -EINVAL;
4423
4424 /* resize_lock synchronizes access to demote size and writes */
4425 mutex_lock(&h->resize_lock);
4426 h->demote_order = demote_order;
4427 mutex_unlock(&h->resize_lock);
4428
4429 return count;
4430 }
4431 HSTATE_ATTR(demote_size);
4432
4433 static struct attribute *hstate_attrs[] = {
4434 &nr_hugepages_attr.attr,
4435 &nr_overcommit_hugepages_attr.attr,
4436 &free_hugepages_attr.attr,
4437 &resv_hugepages_attr.attr,
4438 &surplus_hugepages_attr.attr,
4439 #ifdef CONFIG_NUMA
4440 &nr_hugepages_mempolicy_attr.attr,
4441 #endif
4442 NULL,
4443 };
4444
4445 static const struct attribute_group hstate_attr_group = {
4446 .attrs = hstate_attrs,
4447 };
4448
4449 static struct attribute *hstate_demote_attrs[] = {
4450 &demote_size_attr.attr,
4451 &demote_attr.attr,
4452 NULL,
4453 };
4454
4455 static const struct attribute_group hstate_demote_attr_group = {
4456 .attrs = hstate_demote_attrs,
4457 };
4458
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4459 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4460 struct kobject **hstate_kobjs,
4461 const struct attribute_group *hstate_attr_group)
4462 {
4463 int retval;
4464 int hi = hstate_index(h);
4465
4466 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4467 if (!hstate_kobjs[hi])
4468 return -ENOMEM;
4469
4470 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4471 if (retval) {
4472 kobject_put(hstate_kobjs[hi]);
4473 hstate_kobjs[hi] = NULL;
4474 return retval;
4475 }
4476
4477 if (h->demote_order) {
4478 retval = sysfs_create_group(hstate_kobjs[hi],
4479 &hstate_demote_attr_group);
4480 if (retval) {
4481 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4482 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4483 kobject_put(hstate_kobjs[hi]);
4484 hstate_kobjs[hi] = NULL;
4485 return retval;
4486 }
4487 }
4488
4489 return 0;
4490 }
4491
4492 #ifdef CONFIG_NUMA
4493 static bool hugetlb_sysfs_initialized __ro_after_init;
4494
4495 /*
4496 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4497 * with node devices in node_devices[] using a parallel array. The array
4498 * index of a node device or _hstate == node id.
4499 * This is here to avoid any static dependency of the node device driver, in
4500 * the base kernel, on the hugetlb module.
4501 */
4502 struct node_hstate {
4503 struct kobject *hugepages_kobj;
4504 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4505 };
4506 static struct node_hstate node_hstates[MAX_NUMNODES];
4507
4508 /*
4509 * A subset of global hstate attributes for node devices
4510 */
4511 static struct attribute *per_node_hstate_attrs[] = {
4512 &nr_hugepages_attr.attr,
4513 &free_hugepages_attr.attr,
4514 &surplus_hugepages_attr.attr,
4515 NULL,
4516 };
4517
4518 static const struct attribute_group per_node_hstate_attr_group = {
4519 .attrs = per_node_hstate_attrs,
4520 };
4521
4522 /*
4523 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4524 * Returns node id via non-NULL nidp.
4525 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4526 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4527 {
4528 int nid;
4529
4530 for (nid = 0; nid < nr_node_ids; nid++) {
4531 struct node_hstate *nhs = &node_hstates[nid];
4532 int i;
4533 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4534 if (nhs->hstate_kobjs[i] == kobj) {
4535 if (nidp)
4536 *nidp = nid;
4537 return &hstates[i];
4538 }
4539 }
4540
4541 BUG();
4542 return NULL;
4543 }
4544
4545 /*
4546 * Unregister hstate attributes from a single node device.
4547 * No-op if no hstate attributes attached.
4548 */
hugetlb_unregister_node(struct node * node)4549 void hugetlb_unregister_node(struct node *node)
4550 {
4551 struct hstate *h;
4552 struct node_hstate *nhs = &node_hstates[node->dev.id];
4553
4554 if (!nhs->hugepages_kobj)
4555 return; /* no hstate attributes */
4556
4557 for_each_hstate(h) {
4558 int idx = hstate_index(h);
4559 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4560
4561 if (!hstate_kobj)
4562 continue;
4563 if (h->demote_order)
4564 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4565 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4566 kobject_put(hstate_kobj);
4567 nhs->hstate_kobjs[idx] = NULL;
4568 }
4569
4570 kobject_put(nhs->hugepages_kobj);
4571 nhs->hugepages_kobj = NULL;
4572 }
4573
4574
4575 /*
4576 * Register hstate attributes for a single node device.
4577 * No-op if attributes already registered.
4578 */
hugetlb_register_node(struct node * node)4579 void hugetlb_register_node(struct node *node)
4580 {
4581 struct hstate *h;
4582 struct node_hstate *nhs = &node_hstates[node->dev.id];
4583 int err;
4584
4585 if (!hugetlb_sysfs_initialized)
4586 return;
4587
4588 if (nhs->hugepages_kobj)
4589 return; /* already allocated */
4590
4591 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4592 &node->dev.kobj);
4593 if (!nhs->hugepages_kobj)
4594 return;
4595
4596 for_each_hstate(h) {
4597 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4598 nhs->hstate_kobjs,
4599 &per_node_hstate_attr_group);
4600 if (err) {
4601 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4602 h->name, node->dev.id);
4603 hugetlb_unregister_node(node);
4604 break;
4605 }
4606 }
4607 }
4608
4609 /*
4610 * hugetlb init time: register hstate attributes for all registered node
4611 * devices of nodes that have memory. All on-line nodes should have
4612 * registered their associated device by this time.
4613 */
hugetlb_register_all_nodes(void)4614 static void __init hugetlb_register_all_nodes(void)
4615 {
4616 int nid;
4617
4618 for_each_online_node(nid)
4619 hugetlb_register_node(node_devices[nid]);
4620 }
4621 #else /* !CONFIG_NUMA */
4622
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4624 {
4625 BUG();
4626 if (nidp)
4627 *nidp = -1;
4628 return NULL;
4629 }
4630
hugetlb_register_all_nodes(void)4631 static void hugetlb_register_all_nodes(void) { }
4632
4633 #endif
4634
hugetlb_sysfs_init(void)4635 static void __init hugetlb_sysfs_init(void)
4636 {
4637 struct hstate *h;
4638 int err;
4639
4640 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4641 if (!hugepages_kobj)
4642 return;
4643
4644 for_each_hstate(h) {
4645 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4646 hstate_kobjs, &hstate_attr_group);
4647 if (err)
4648 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4649 }
4650
4651 #ifdef CONFIG_NUMA
4652 hugetlb_sysfs_initialized = true;
4653 #endif
4654 hugetlb_register_all_nodes();
4655 }
4656
4657 #ifdef CONFIG_SYSCTL
4658 static void hugetlb_sysctl_init(void);
4659 #else
hugetlb_sysctl_init(void)4660 static inline void hugetlb_sysctl_init(void) { }
4661 #endif
4662
hugetlb_init(void)4663 static int __init hugetlb_init(void)
4664 {
4665 int i;
4666
4667 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4668 __NR_HPAGEFLAGS);
4669 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER);
4670
4671 if (!hugepages_supported()) {
4672 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4673 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4674 return 0;
4675 }
4676
4677 /*
4678 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4679 * architectures depend on setup being done here.
4680 */
4681 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4682 if (!parsed_default_hugepagesz) {
4683 /*
4684 * If we did not parse a default huge page size, set
4685 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4686 * number of huge pages for this default size was implicitly
4687 * specified, set that here as well.
4688 * Note that the implicit setting will overwrite an explicit
4689 * setting. A warning will be printed in this case.
4690 */
4691 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4692 if (default_hstate_max_huge_pages) {
4693 if (default_hstate.max_huge_pages) {
4694 char buf[32];
4695
4696 string_get_size(huge_page_size(&default_hstate),
4697 1, STRING_UNITS_2, buf, 32);
4698 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4699 default_hstate.max_huge_pages, buf);
4700 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4701 default_hstate_max_huge_pages);
4702 }
4703 default_hstate.max_huge_pages =
4704 default_hstate_max_huge_pages;
4705
4706 for_each_online_node(i)
4707 default_hstate.max_huge_pages_node[i] =
4708 default_hugepages_in_node[i];
4709 }
4710 }
4711
4712 hugetlb_cma_check();
4713 hugetlb_init_hstates();
4714 gather_bootmem_prealloc();
4715 report_hugepages();
4716
4717 hugetlb_sysfs_init();
4718 hugetlb_cgroup_file_init();
4719 hugetlb_sysctl_init();
4720
4721 #ifdef CONFIG_SMP
4722 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4723 #else
4724 num_fault_mutexes = 1;
4725 #endif
4726 hugetlb_fault_mutex_table =
4727 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4728 GFP_KERNEL);
4729 BUG_ON(!hugetlb_fault_mutex_table);
4730
4731 for (i = 0; i < num_fault_mutexes; i++)
4732 mutex_init(&hugetlb_fault_mutex_table[i]);
4733 return 0;
4734 }
4735 subsys_initcall(hugetlb_init);
4736
4737 /* Overwritten by architectures with more huge page sizes */
__init(weak)4738 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4739 {
4740 return size == HPAGE_SIZE;
4741 }
4742
hugetlb_add_hstate(unsigned int order)4743 void __init hugetlb_add_hstate(unsigned int order)
4744 {
4745 struct hstate *h;
4746 unsigned long i;
4747
4748 if (size_to_hstate(PAGE_SIZE << order)) {
4749 return;
4750 }
4751 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4752 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4753 WARN_ON(order > MAX_FOLIO_ORDER);
4754 h = &hstates[hugetlb_max_hstate++];
4755 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4756 h->order = order;
4757 h->mask = ~(huge_page_size(h) - 1);
4758 for (i = 0; i < MAX_NUMNODES; ++i)
4759 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4760 INIT_LIST_HEAD(&h->hugepage_activelist);
4761 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4762 huge_page_size(h)/SZ_1K);
4763
4764 parsed_hstate = h;
4765 }
4766
hugetlb_node_alloc_supported(void)4767 bool __init __weak hugetlb_node_alloc_supported(void)
4768 {
4769 return true;
4770 }
4771
hugepages_clear_pages_in_node(void)4772 static void __init hugepages_clear_pages_in_node(void)
4773 {
4774 if (!hugetlb_max_hstate) {
4775 default_hstate_max_huge_pages = 0;
4776 memset(default_hugepages_in_node, 0,
4777 sizeof(default_hugepages_in_node));
4778 } else {
4779 parsed_hstate->max_huge_pages = 0;
4780 memset(parsed_hstate->max_huge_pages_node, 0,
4781 sizeof(parsed_hstate->max_huge_pages_node));
4782 }
4783 }
4784
hugetlb_add_param(char * s,int (* setup)(char *))4785 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4786 {
4787 size_t len;
4788 char *p;
4789
4790 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4791 return -EINVAL;
4792
4793 len = strlen(s) + 1;
4794 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4795 return -EINVAL;
4796
4797 p = &hstate_cmdline_buf[hstate_cmdline_index];
4798 memcpy(p, s, len);
4799 hstate_cmdline_index += len;
4800
4801 hugetlb_params[hugetlb_param_index].val = p;
4802 hugetlb_params[hugetlb_param_index].setup = setup;
4803
4804 hugetlb_param_index++;
4805
4806 return 0;
4807 }
4808
hugetlb_parse_params(void)4809 static __init void hugetlb_parse_params(void)
4810 {
4811 int i;
4812 struct hugetlb_cmdline *hcp;
4813
4814 for (i = 0; i < hugetlb_param_index; i++) {
4815 hcp = &hugetlb_params[i];
4816
4817 hcp->setup(hcp->val);
4818 }
4819
4820 hugetlb_cma_validate_params();
4821 }
4822
4823 /*
4824 * hugepages command line processing
4825 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4826 * specification. If not, ignore the hugepages value. hugepages can also
4827 * be the first huge page command line option in which case it implicitly
4828 * specifies the number of huge pages for the default size.
4829 */
hugepages_setup(char * s)4830 static int __init hugepages_setup(char *s)
4831 {
4832 unsigned long *mhp;
4833 static unsigned long *last_mhp;
4834 int node = NUMA_NO_NODE;
4835 int count;
4836 unsigned long tmp;
4837 char *p = s;
4838
4839 if (!parsed_valid_hugepagesz) {
4840 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4841 parsed_valid_hugepagesz = true;
4842 return -EINVAL;
4843 }
4844
4845 /*
4846 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4847 * yet, so this hugepages= parameter goes to the "default hstate".
4848 * Otherwise, it goes with the previously parsed hugepagesz or
4849 * default_hugepagesz.
4850 */
4851 else if (!hugetlb_max_hstate)
4852 mhp = &default_hstate_max_huge_pages;
4853 else
4854 mhp = &parsed_hstate->max_huge_pages;
4855
4856 if (mhp == last_mhp) {
4857 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4858 return 1;
4859 }
4860
4861 while (*p) {
4862 count = 0;
4863 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4864 goto invalid;
4865 /* Parameter is node format */
4866 if (p[count] == ':') {
4867 if (!hugetlb_node_alloc_supported()) {
4868 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4869 return 1;
4870 }
4871 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4872 goto invalid;
4873 node = array_index_nospec(tmp, MAX_NUMNODES);
4874 p += count + 1;
4875 /* Parse hugepages */
4876 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4877 goto invalid;
4878 if (!hugetlb_max_hstate)
4879 default_hugepages_in_node[node] = tmp;
4880 else
4881 parsed_hstate->max_huge_pages_node[node] = tmp;
4882 *mhp += tmp;
4883 /* Go to parse next node*/
4884 if (p[count] == ',')
4885 p += count + 1;
4886 else
4887 break;
4888 } else {
4889 if (p != s)
4890 goto invalid;
4891 *mhp = tmp;
4892 break;
4893 }
4894 }
4895
4896 last_mhp = mhp;
4897
4898 return 0;
4899
4900 invalid:
4901 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4902 hugepages_clear_pages_in_node();
4903 return -EINVAL;
4904 }
4905 hugetlb_early_param("hugepages", hugepages_setup);
4906
4907 /*
4908 * hugepagesz command line processing
4909 * A specific huge page size can only be specified once with hugepagesz.
4910 * hugepagesz is followed by hugepages on the command line. The global
4911 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4912 * hugepagesz argument was valid.
4913 */
hugepagesz_setup(char * s)4914 static int __init hugepagesz_setup(char *s)
4915 {
4916 unsigned long size;
4917 struct hstate *h;
4918
4919 parsed_valid_hugepagesz = false;
4920 size = (unsigned long)memparse(s, NULL);
4921
4922 if (!arch_hugetlb_valid_size(size)) {
4923 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4924 return -EINVAL;
4925 }
4926
4927 h = size_to_hstate(size);
4928 if (h) {
4929 /*
4930 * hstate for this size already exists. This is normally
4931 * an error, but is allowed if the existing hstate is the
4932 * default hstate. More specifically, it is only allowed if
4933 * the number of huge pages for the default hstate was not
4934 * previously specified.
4935 */
4936 if (!parsed_default_hugepagesz || h != &default_hstate ||
4937 default_hstate.max_huge_pages) {
4938 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4939 return -EINVAL;
4940 }
4941
4942 /*
4943 * No need to call hugetlb_add_hstate() as hstate already
4944 * exists. But, do set parsed_hstate so that a following
4945 * hugepages= parameter will be applied to this hstate.
4946 */
4947 parsed_hstate = h;
4948 parsed_valid_hugepagesz = true;
4949 return 0;
4950 }
4951
4952 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4953 parsed_valid_hugepagesz = true;
4954 return 0;
4955 }
4956 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4957
4958 /*
4959 * default_hugepagesz command line input
4960 * Only one instance of default_hugepagesz allowed on command line.
4961 */
default_hugepagesz_setup(char * s)4962 static int __init default_hugepagesz_setup(char *s)
4963 {
4964 unsigned long size;
4965 int i;
4966
4967 parsed_valid_hugepagesz = false;
4968 if (parsed_default_hugepagesz) {
4969 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4970 return -EINVAL;
4971 }
4972
4973 size = (unsigned long)memparse(s, NULL);
4974
4975 if (!arch_hugetlb_valid_size(size)) {
4976 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4977 return -EINVAL;
4978 }
4979
4980 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4981 parsed_valid_hugepagesz = true;
4982 parsed_default_hugepagesz = true;
4983 default_hstate_idx = hstate_index(size_to_hstate(size));
4984
4985 /*
4986 * The number of default huge pages (for this size) could have been
4987 * specified as the first hugetlb parameter: hugepages=X. If so,
4988 * then default_hstate_max_huge_pages is set. If the default huge
4989 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4990 * allocated here from bootmem allocator.
4991 */
4992 if (default_hstate_max_huge_pages) {
4993 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4994 /*
4995 * Since this is an early parameter, we can't check
4996 * NUMA node state yet, so loop through MAX_NUMNODES.
4997 */
4998 for (i = 0; i < MAX_NUMNODES; i++) {
4999 if (default_hugepages_in_node[i] != 0)
5000 default_hstate.max_huge_pages_node[i] =
5001 default_hugepages_in_node[i];
5002 }
5003 default_hstate_max_huge_pages = 0;
5004 }
5005
5006 return 0;
5007 }
5008 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
5009
hugetlb_bootmem_set_nodes(void)5010 void __init hugetlb_bootmem_set_nodes(void)
5011 {
5012 int i, nid;
5013 unsigned long start_pfn, end_pfn;
5014
5015 if (!nodes_empty(hugetlb_bootmem_nodes))
5016 return;
5017
5018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5019 if (end_pfn > start_pfn)
5020 node_set(nid, hugetlb_bootmem_nodes);
5021 }
5022 }
5023
5024 static bool __hugetlb_bootmem_allocated __initdata;
5025
hugetlb_bootmem_allocated(void)5026 bool __init hugetlb_bootmem_allocated(void)
5027 {
5028 return __hugetlb_bootmem_allocated;
5029 }
5030
hugetlb_bootmem_alloc(void)5031 void __init hugetlb_bootmem_alloc(void)
5032 {
5033 struct hstate *h;
5034 int i;
5035
5036 if (__hugetlb_bootmem_allocated)
5037 return;
5038
5039 hugetlb_bootmem_set_nodes();
5040
5041 for (i = 0; i < MAX_NUMNODES; i++)
5042 INIT_LIST_HEAD(&huge_boot_pages[i]);
5043
5044 hugetlb_parse_params();
5045
5046 for_each_hstate(h) {
5047 h->next_nid_to_alloc = first_online_node;
5048
5049 if (hstate_is_gigantic(h))
5050 hugetlb_hstate_alloc_pages(h);
5051 }
5052
5053 __hugetlb_bootmem_allocated = true;
5054 }
5055
5056 /*
5057 * hugepage_alloc_threads command line parsing.
5058 *
5059 * When set, use this specific number of threads for the boot
5060 * allocation of hugepages.
5061 */
hugepage_alloc_threads_setup(char * s)5062 static int __init hugepage_alloc_threads_setup(char *s)
5063 {
5064 unsigned long allocation_threads;
5065
5066 if (kstrtoul(s, 0, &allocation_threads) != 0)
5067 return 1;
5068
5069 if (allocation_threads == 0)
5070 return 1;
5071
5072 hugepage_allocation_threads = allocation_threads;
5073
5074 return 1;
5075 }
5076 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5077
allowed_mems_nr(struct hstate * h)5078 static unsigned int allowed_mems_nr(struct hstate *h)
5079 {
5080 int node;
5081 unsigned int nr = 0;
5082 nodemask_t *mbind_nodemask;
5083 unsigned int *array = h->free_huge_pages_node;
5084 gfp_t gfp_mask = htlb_alloc_mask(h);
5085
5086 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5087 for_each_node_mask(node, cpuset_current_mems_allowed) {
5088 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5089 nr += array[node];
5090 }
5091
5092 return nr;
5093 }
5094
5095 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5096 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5097 void *buffer, size_t *length,
5098 loff_t *ppos, unsigned long *out)
5099 {
5100 struct ctl_table dup_table;
5101
5102 /*
5103 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5104 * can duplicate the @table and alter the duplicate of it.
5105 */
5106 dup_table = *table;
5107 dup_table.data = out;
5108
5109 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5110 }
5111
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5112 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5113 const struct ctl_table *table, int write,
5114 void *buffer, size_t *length, loff_t *ppos)
5115 {
5116 struct hstate *h = &default_hstate;
5117 unsigned long tmp = h->max_huge_pages;
5118 int ret;
5119
5120 if (!hugepages_supported())
5121 return -EOPNOTSUPP;
5122
5123 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5124 &tmp);
5125 if (ret)
5126 goto out;
5127
5128 if (write)
5129 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5130 NUMA_NO_NODE, tmp, *length);
5131 out:
5132 return ret;
5133 }
5134
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5135 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5136 void *buffer, size_t *length, loff_t *ppos)
5137 {
5138
5139 return hugetlb_sysctl_handler_common(false, table, write,
5140 buffer, length, ppos);
5141 }
5142
5143 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5144 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5145 void *buffer, size_t *length, loff_t *ppos)
5146 {
5147 return hugetlb_sysctl_handler_common(true, table, write,
5148 buffer, length, ppos);
5149 }
5150 #endif /* CONFIG_NUMA */
5151
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5152 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5153 void *buffer, size_t *length, loff_t *ppos)
5154 {
5155 struct hstate *h = &default_hstate;
5156 unsigned long tmp;
5157 int ret;
5158
5159 if (!hugepages_supported())
5160 return -EOPNOTSUPP;
5161
5162 tmp = h->nr_overcommit_huge_pages;
5163
5164 if (write && hstate_is_gigantic(h))
5165 return -EINVAL;
5166
5167 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5168 &tmp);
5169 if (ret)
5170 goto out;
5171
5172 if (write) {
5173 spin_lock_irq(&hugetlb_lock);
5174 h->nr_overcommit_huge_pages = tmp;
5175 spin_unlock_irq(&hugetlb_lock);
5176 }
5177 out:
5178 return ret;
5179 }
5180
5181 static const struct ctl_table hugetlb_table[] = {
5182 {
5183 .procname = "nr_hugepages",
5184 .data = NULL,
5185 .maxlen = sizeof(unsigned long),
5186 .mode = 0644,
5187 .proc_handler = hugetlb_sysctl_handler,
5188 },
5189 #ifdef CONFIG_NUMA
5190 {
5191 .procname = "nr_hugepages_mempolicy",
5192 .data = NULL,
5193 .maxlen = sizeof(unsigned long),
5194 .mode = 0644,
5195 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5196 },
5197 #endif
5198 {
5199 .procname = "hugetlb_shm_group",
5200 .data = &sysctl_hugetlb_shm_group,
5201 .maxlen = sizeof(gid_t),
5202 .mode = 0644,
5203 .proc_handler = proc_dointvec,
5204 },
5205 {
5206 .procname = "nr_overcommit_hugepages",
5207 .data = NULL,
5208 .maxlen = sizeof(unsigned long),
5209 .mode = 0644,
5210 .proc_handler = hugetlb_overcommit_handler,
5211 },
5212 };
5213
hugetlb_sysctl_init(void)5214 static void __init hugetlb_sysctl_init(void)
5215 {
5216 register_sysctl_init("vm", hugetlb_table);
5217 }
5218 #endif /* CONFIG_SYSCTL */
5219
hugetlb_report_meminfo(struct seq_file * m)5220 void hugetlb_report_meminfo(struct seq_file *m)
5221 {
5222 struct hstate *h;
5223 unsigned long total = 0;
5224
5225 if (!hugepages_supported())
5226 return;
5227
5228 for_each_hstate(h) {
5229 unsigned long count = h->nr_huge_pages;
5230
5231 total += huge_page_size(h) * count;
5232
5233 if (h == &default_hstate)
5234 seq_printf(m,
5235 "HugePages_Total: %5lu\n"
5236 "HugePages_Free: %5lu\n"
5237 "HugePages_Rsvd: %5lu\n"
5238 "HugePages_Surp: %5lu\n"
5239 "Hugepagesize: %8lu kB\n",
5240 count,
5241 h->free_huge_pages,
5242 h->resv_huge_pages,
5243 h->surplus_huge_pages,
5244 huge_page_size(h) / SZ_1K);
5245 }
5246
5247 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5248 }
5249
hugetlb_report_node_meminfo(char * buf,int len,int nid)5250 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5251 {
5252 struct hstate *h = &default_hstate;
5253
5254 if (!hugepages_supported())
5255 return 0;
5256
5257 return sysfs_emit_at(buf, len,
5258 "Node %d HugePages_Total: %5u\n"
5259 "Node %d HugePages_Free: %5u\n"
5260 "Node %d HugePages_Surp: %5u\n",
5261 nid, h->nr_huge_pages_node[nid],
5262 nid, h->free_huge_pages_node[nid],
5263 nid, h->surplus_huge_pages_node[nid]);
5264 }
5265
hugetlb_show_meminfo_node(int nid)5266 void hugetlb_show_meminfo_node(int nid)
5267 {
5268 struct hstate *h;
5269
5270 if (!hugepages_supported())
5271 return;
5272
5273 for_each_hstate(h)
5274 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5275 nid,
5276 h->nr_huge_pages_node[nid],
5277 h->free_huge_pages_node[nid],
5278 h->surplus_huge_pages_node[nid],
5279 huge_page_size(h) / SZ_1K);
5280 }
5281
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5282 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5283 {
5284 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5285 K(atomic_long_read(&mm->hugetlb_usage)));
5286 }
5287
5288 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5289 unsigned long hugetlb_total_pages(void)
5290 {
5291 struct hstate *h;
5292 unsigned long nr_total_pages = 0;
5293
5294 for_each_hstate(h)
5295 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5296 return nr_total_pages;
5297 }
5298
hugetlb_acct_memory(struct hstate * h,long delta)5299 static int hugetlb_acct_memory(struct hstate *h, long delta)
5300 {
5301 int ret = -ENOMEM;
5302
5303 if (!delta)
5304 return 0;
5305
5306 spin_lock_irq(&hugetlb_lock);
5307 /*
5308 * When cpuset is configured, it breaks the strict hugetlb page
5309 * reservation as the accounting is done on a global variable. Such
5310 * reservation is completely rubbish in the presence of cpuset because
5311 * the reservation is not checked against page availability for the
5312 * current cpuset. Application can still potentially OOM'ed by kernel
5313 * with lack of free htlb page in cpuset that the task is in.
5314 * Attempt to enforce strict accounting with cpuset is almost
5315 * impossible (or too ugly) because cpuset is too fluid that
5316 * task or memory node can be dynamically moved between cpusets.
5317 *
5318 * The change of semantics for shared hugetlb mapping with cpuset is
5319 * undesirable. However, in order to preserve some of the semantics,
5320 * we fall back to check against current free page availability as
5321 * a best attempt and hopefully to minimize the impact of changing
5322 * semantics that cpuset has.
5323 *
5324 * Apart from cpuset, we also have memory policy mechanism that
5325 * also determines from which node the kernel will allocate memory
5326 * in a NUMA system. So similar to cpuset, we also should consider
5327 * the memory policy of the current task. Similar to the description
5328 * above.
5329 */
5330 if (delta > 0) {
5331 if (gather_surplus_pages(h, delta) < 0)
5332 goto out;
5333
5334 if (delta > allowed_mems_nr(h)) {
5335 return_unused_surplus_pages(h, delta);
5336 goto out;
5337 }
5338 }
5339
5340 ret = 0;
5341 if (delta < 0)
5342 return_unused_surplus_pages(h, (unsigned long) -delta);
5343
5344 out:
5345 spin_unlock_irq(&hugetlb_lock);
5346 return ret;
5347 }
5348
hugetlb_vm_op_open(struct vm_area_struct * vma)5349 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5350 {
5351 struct resv_map *resv = vma_resv_map(vma);
5352
5353 /*
5354 * HPAGE_RESV_OWNER indicates a private mapping.
5355 * This new VMA should share its siblings reservation map if present.
5356 * The VMA will only ever have a valid reservation map pointer where
5357 * it is being copied for another still existing VMA. As that VMA
5358 * has a reference to the reservation map it cannot disappear until
5359 * after this open call completes. It is therefore safe to take a
5360 * new reference here without additional locking.
5361 */
5362 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5363 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5364 kref_get(&resv->refs);
5365 }
5366
5367 /*
5368 * vma_lock structure for sharable mappings is vma specific.
5369 * Clear old pointer (if copied via vm_area_dup) and allocate
5370 * new structure. Before clearing, make sure vma_lock is not
5371 * for this vma.
5372 */
5373 if (vma->vm_flags & VM_MAYSHARE) {
5374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5375
5376 if (vma_lock) {
5377 if (vma_lock->vma != vma) {
5378 vma->vm_private_data = NULL;
5379 hugetlb_vma_lock_alloc(vma);
5380 } else
5381 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5382 } else
5383 hugetlb_vma_lock_alloc(vma);
5384 }
5385 }
5386
hugetlb_vm_op_close(struct vm_area_struct * vma)5387 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5388 {
5389 struct hstate *h = hstate_vma(vma);
5390 struct resv_map *resv;
5391 struct hugepage_subpool *spool = subpool_vma(vma);
5392 unsigned long reserve, start, end;
5393 long gbl_reserve;
5394
5395 hugetlb_vma_lock_free(vma);
5396
5397 resv = vma_resv_map(vma);
5398 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5399 return;
5400
5401 start = vma_hugecache_offset(h, vma, vma->vm_start);
5402 end = vma_hugecache_offset(h, vma, vma->vm_end);
5403
5404 reserve = (end - start) - region_count(resv, start, end);
5405 hugetlb_cgroup_uncharge_counter(resv, start, end);
5406 if (reserve) {
5407 /*
5408 * Decrement reserve counts. The global reserve count may be
5409 * adjusted if the subpool has a minimum size.
5410 */
5411 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5412 hugetlb_acct_memory(h, -gbl_reserve);
5413 }
5414
5415 kref_put(&resv->refs, resv_map_release);
5416 }
5417
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5418 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5419 {
5420 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5421 return -EINVAL;
5422 return 0;
5423 }
5424
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5425 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5426 {
5427 /*
5428 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5429 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5430 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5431 * This function is called in the middle of a VMA split operation, with
5432 * MM, VMA and rmap all write-locked to prevent concurrent page table
5433 * walks (except hardware and gup_fast()).
5434 */
5435 vma_assert_write_locked(vma);
5436 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5437
5438 if (addr & ~PUD_MASK) {
5439 unsigned long floor = addr & PUD_MASK;
5440 unsigned long ceil = floor + PUD_SIZE;
5441
5442 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5443 /*
5444 * Locking:
5445 * Use take_locks=false here.
5446 * The file rmap lock is already held.
5447 * The hugetlb VMA lock can't be taken when we already
5448 * hold the file rmap lock, and we don't need it because
5449 * its purpose is to synchronize against concurrent page
5450 * table walks, which are not possible thanks to the
5451 * locks held by our caller.
5452 */
5453 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5454 }
5455 }
5456 }
5457
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5458 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5459 {
5460 return huge_page_size(hstate_vma(vma));
5461 }
5462
5463 /*
5464 * We cannot handle pagefaults against hugetlb pages at all. They cause
5465 * handle_mm_fault() to try to instantiate regular-sized pages in the
5466 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5467 * this far.
5468 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5469 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5470 {
5471 BUG();
5472 return 0;
5473 }
5474
5475 /*
5476 * When a new function is introduced to vm_operations_struct and added
5477 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5478 * This is because under System V memory model, mappings created via
5479 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5480 * their original vm_ops are overwritten with shm_vm_ops.
5481 */
5482 const struct vm_operations_struct hugetlb_vm_ops = {
5483 .fault = hugetlb_vm_op_fault,
5484 .open = hugetlb_vm_op_open,
5485 .close = hugetlb_vm_op_close,
5486 .may_split = hugetlb_vm_op_split,
5487 .pagesize = hugetlb_vm_op_pagesize,
5488 };
5489
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5490 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5491 bool try_mkwrite)
5492 {
5493 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5494 unsigned int shift = huge_page_shift(hstate_vma(vma));
5495
5496 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5497 entry = pte_mkwrite_novma(pte_mkdirty(entry));
5498 } else {
5499 entry = pte_wrprotect(entry);
5500 }
5501 entry = pte_mkyoung(entry);
5502 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5503
5504 return entry;
5505 }
5506
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5507 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5508 unsigned long address, pte_t *ptep)
5509 {
5510 pte_t entry;
5511
5512 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5513 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5514 update_mmu_cache(vma, address, ptep);
5515 }
5516
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5517 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5518 unsigned long address, pte_t *ptep)
5519 {
5520 if (vma->vm_flags & VM_WRITE)
5521 set_huge_ptep_writable(vma, address, ptep);
5522 }
5523
is_hugetlb_entry_migration(pte_t pte)5524 bool is_hugetlb_entry_migration(pte_t pte)
5525 {
5526 swp_entry_t swp;
5527
5528 if (huge_pte_none(pte) || pte_present(pte))
5529 return false;
5530 swp = pte_to_swp_entry(pte);
5531 if (is_migration_entry(swp))
5532 return true;
5533 else
5534 return false;
5535 }
5536
is_hugetlb_entry_hwpoisoned(pte_t pte)5537 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5538 {
5539 swp_entry_t swp;
5540
5541 if (huge_pte_none(pte) || pte_present(pte))
5542 return false;
5543 swp = pte_to_swp_entry(pte);
5544 if (is_hwpoison_entry(swp))
5545 return true;
5546 else
5547 return false;
5548 }
5549
5550 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5551 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5552 struct folio *new_folio, pte_t old, unsigned long sz)
5553 {
5554 pte_t newpte = make_huge_pte(vma, new_folio, true);
5555
5556 __folio_mark_uptodate(new_folio);
5557 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5558 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5559 newpte = huge_pte_mkuffd_wp(newpte);
5560 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5561 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5562 folio_set_hugetlb_migratable(new_folio);
5563 }
5564
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5565 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5566 struct vm_area_struct *dst_vma,
5567 struct vm_area_struct *src_vma)
5568 {
5569 pte_t *src_pte, *dst_pte, entry;
5570 struct folio *pte_folio;
5571 unsigned long addr;
5572 bool cow = is_cow_mapping(src_vma->vm_flags);
5573 struct hstate *h = hstate_vma(src_vma);
5574 unsigned long sz = huge_page_size(h);
5575 unsigned long npages = pages_per_huge_page(h);
5576 struct mmu_notifier_range range;
5577 unsigned long last_addr_mask;
5578 int ret = 0;
5579
5580 if (cow) {
5581 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5582 src_vma->vm_start,
5583 src_vma->vm_end);
5584 mmu_notifier_invalidate_range_start(&range);
5585 vma_assert_write_locked(src_vma);
5586 raw_write_seqcount_begin(&src->write_protect_seq);
5587 } else {
5588 /*
5589 * For shared mappings the vma lock must be held before
5590 * calling hugetlb_walk() in the src vma. Otherwise, the
5591 * returned ptep could go away if part of a shared pmd and
5592 * another thread calls huge_pmd_unshare.
5593 */
5594 hugetlb_vma_lock_read(src_vma);
5595 }
5596
5597 last_addr_mask = hugetlb_mask_last_page(h);
5598 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5599 spinlock_t *src_ptl, *dst_ptl;
5600 src_pte = hugetlb_walk(src_vma, addr, sz);
5601 if (!src_pte) {
5602 addr |= last_addr_mask;
5603 continue;
5604 }
5605 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5606 if (!dst_pte) {
5607 ret = -ENOMEM;
5608 break;
5609 }
5610
5611 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
5612 /* If the pagetables are shared, there is nothing to do */
5613 if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) {
5614 addr |= last_addr_mask;
5615 continue;
5616 }
5617 #endif
5618
5619 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5620 src_ptl = huge_pte_lockptr(h, src, src_pte);
5621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5622 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5623 again:
5624 if (huge_pte_none(entry)) {
5625 /*
5626 * Skip if src entry none.
5627 */
5628 ;
5629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5630 if (!userfaultfd_wp(dst_vma))
5631 entry = huge_pte_clear_uffd_wp(entry);
5632 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5633 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5634 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5635 bool uffd_wp = pte_swp_uffd_wp(entry);
5636
5637 if (!is_readable_migration_entry(swp_entry) && cow) {
5638 /*
5639 * COW mappings require pages in both
5640 * parent and child to be set to read.
5641 */
5642 swp_entry = make_readable_migration_entry(
5643 swp_offset(swp_entry));
5644 entry = swp_entry_to_pte(swp_entry);
5645 if (userfaultfd_wp(src_vma) && uffd_wp)
5646 entry = pte_swp_mkuffd_wp(entry);
5647 set_huge_pte_at(src, addr, src_pte, entry, sz);
5648 }
5649 if (!userfaultfd_wp(dst_vma))
5650 entry = huge_pte_clear_uffd_wp(entry);
5651 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5652 } else if (unlikely(is_pte_marker(entry))) {
5653 pte_marker marker = copy_pte_marker(
5654 pte_to_swp_entry(entry), dst_vma);
5655
5656 if (marker)
5657 set_huge_pte_at(dst, addr, dst_pte,
5658 make_pte_marker(marker), sz);
5659 } else {
5660 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5661 pte_folio = page_folio(pte_page(entry));
5662 folio_get(pte_folio);
5663
5664 /*
5665 * Failing to duplicate the anon rmap is a rare case
5666 * where we see pinned hugetlb pages while they're
5667 * prone to COW. We need to do the COW earlier during
5668 * fork.
5669 *
5670 * When pre-allocating the page or copying data, we
5671 * need to be without the pgtable locks since we could
5672 * sleep during the process.
5673 */
5674 if (!folio_test_anon(pte_folio)) {
5675 hugetlb_add_file_rmap(pte_folio);
5676 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5677 pte_t src_pte_old = entry;
5678 struct folio *new_folio;
5679
5680 spin_unlock(src_ptl);
5681 spin_unlock(dst_ptl);
5682 /* Do not use reserve as it's private owned */
5683 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5684 if (IS_ERR(new_folio)) {
5685 folio_put(pte_folio);
5686 ret = PTR_ERR(new_folio);
5687 break;
5688 }
5689 ret = copy_user_large_folio(new_folio, pte_folio,
5690 addr, dst_vma);
5691 folio_put(pte_folio);
5692 if (ret) {
5693 folio_put(new_folio);
5694 break;
5695 }
5696
5697 /* Install the new hugetlb folio if src pte stable */
5698 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5699 src_ptl = huge_pte_lockptr(h, src, src_pte);
5700 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5701 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5702 if (!pte_same(src_pte_old, entry)) {
5703 restore_reserve_on_error(h, dst_vma, addr,
5704 new_folio);
5705 folio_put(new_folio);
5706 /* huge_ptep of dst_pte won't change as in child */
5707 goto again;
5708 }
5709 hugetlb_install_folio(dst_vma, dst_pte, addr,
5710 new_folio, src_pte_old, sz);
5711 spin_unlock(src_ptl);
5712 spin_unlock(dst_ptl);
5713 continue;
5714 }
5715
5716 if (cow) {
5717 /*
5718 * No need to notify as we are downgrading page
5719 * table protection not changing it to point
5720 * to a new page.
5721 *
5722 * See Documentation/mm/mmu_notifier.rst
5723 */
5724 huge_ptep_set_wrprotect(src, addr, src_pte);
5725 entry = huge_pte_wrprotect(entry);
5726 }
5727
5728 if (!userfaultfd_wp(dst_vma))
5729 entry = huge_pte_clear_uffd_wp(entry);
5730
5731 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5732 hugetlb_count_add(npages, dst);
5733 }
5734 spin_unlock(src_ptl);
5735 spin_unlock(dst_ptl);
5736 }
5737
5738 if (cow) {
5739 raw_write_seqcount_end(&src->write_protect_seq);
5740 mmu_notifier_invalidate_range_end(&range);
5741 } else {
5742 hugetlb_vma_unlock_read(src_vma);
5743 }
5744
5745 return ret;
5746 }
5747
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5748 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5749 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5750 unsigned long sz)
5751 {
5752 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5753 struct hstate *h = hstate_vma(vma);
5754 struct mm_struct *mm = vma->vm_mm;
5755 spinlock_t *src_ptl, *dst_ptl;
5756 pte_t pte;
5757
5758 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5759 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5760
5761 /*
5762 * We don't have to worry about the ordering of src and dst ptlocks
5763 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5764 */
5765 if (src_ptl != dst_ptl)
5766 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5767
5768 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5769
5770 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5771 huge_pte_clear(mm, new_addr, dst_pte, sz);
5772 else {
5773 if (need_clear_uffd_wp) {
5774 if (pte_present(pte))
5775 pte = huge_pte_clear_uffd_wp(pte);
5776 else if (is_swap_pte(pte))
5777 pte = pte_swp_clear_uffd_wp(pte);
5778 }
5779 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5780 }
5781
5782 if (src_ptl != dst_ptl)
5783 spin_unlock(src_ptl);
5784 spin_unlock(dst_ptl);
5785 }
5786
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5787 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5788 struct vm_area_struct *new_vma,
5789 unsigned long old_addr, unsigned long new_addr,
5790 unsigned long len)
5791 {
5792 struct hstate *h = hstate_vma(vma);
5793 struct address_space *mapping = vma->vm_file->f_mapping;
5794 unsigned long sz = huge_page_size(h);
5795 struct mm_struct *mm = vma->vm_mm;
5796 unsigned long old_end = old_addr + len;
5797 unsigned long last_addr_mask;
5798 pte_t *src_pte, *dst_pte;
5799 struct mmu_notifier_range range;
5800 bool shared_pmd = false;
5801
5802 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5803 old_end);
5804 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5805 /*
5806 * In case of shared PMDs, we should cover the maximum possible
5807 * range.
5808 */
5809 flush_cache_range(vma, range.start, range.end);
5810
5811 mmu_notifier_invalidate_range_start(&range);
5812 last_addr_mask = hugetlb_mask_last_page(h);
5813 /* Prevent race with file truncation */
5814 hugetlb_vma_lock_write(vma);
5815 i_mmap_lock_write(mapping);
5816 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5817 src_pte = hugetlb_walk(vma, old_addr, sz);
5818 if (!src_pte) {
5819 old_addr |= last_addr_mask;
5820 new_addr |= last_addr_mask;
5821 continue;
5822 }
5823 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5824 continue;
5825
5826 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5827 shared_pmd = true;
5828 old_addr |= last_addr_mask;
5829 new_addr |= last_addr_mask;
5830 continue;
5831 }
5832
5833 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5834 if (!dst_pte)
5835 break;
5836
5837 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5838 }
5839
5840 if (shared_pmd)
5841 flush_hugetlb_tlb_range(vma, range.start, range.end);
5842 else
5843 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5844 mmu_notifier_invalidate_range_end(&range);
5845 i_mmap_unlock_write(mapping);
5846 hugetlb_vma_unlock_write(vma);
5847
5848 return len + old_addr - old_end;
5849 }
5850
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5851 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5852 unsigned long start, unsigned long end,
5853 struct folio *folio, zap_flags_t zap_flags)
5854 {
5855 struct mm_struct *mm = vma->vm_mm;
5856 const bool folio_provided = !!folio;
5857 unsigned long address;
5858 pte_t *ptep;
5859 pte_t pte;
5860 spinlock_t *ptl;
5861 struct hstate *h = hstate_vma(vma);
5862 unsigned long sz = huge_page_size(h);
5863 bool adjust_reservation;
5864 unsigned long last_addr_mask;
5865 bool force_flush = false;
5866
5867 WARN_ON(!is_vm_hugetlb_page(vma));
5868 BUG_ON(start & ~huge_page_mask(h));
5869 BUG_ON(end & ~huge_page_mask(h));
5870
5871 /*
5872 * This is a hugetlb vma, all the pte entries should point
5873 * to huge page.
5874 */
5875 tlb_change_page_size(tlb, sz);
5876 tlb_start_vma(tlb, vma);
5877
5878 last_addr_mask = hugetlb_mask_last_page(h);
5879 address = start;
5880 for (; address < end; address += sz) {
5881 ptep = hugetlb_walk(vma, address, sz);
5882 if (!ptep) {
5883 address |= last_addr_mask;
5884 continue;
5885 }
5886
5887 ptl = huge_pte_lock(h, mm, ptep);
5888 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5889 spin_unlock(ptl);
5890 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5891 force_flush = true;
5892 address |= last_addr_mask;
5893 continue;
5894 }
5895
5896 pte = huge_ptep_get(mm, address, ptep);
5897 if (huge_pte_none(pte)) {
5898 spin_unlock(ptl);
5899 continue;
5900 }
5901
5902 /*
5903 * Migrating hugepage or HWPoisoned hugepage is already
5904 * unmapped and its refcount is dropped, so just clear pte here.
5905 */
5906 if (unlikely(!pte_present(pte))) {
5907 /*
5908 * If the pte was wr-protected by uffd-wp in any of the
5909 * swap forms, meanwhile the caller does not want to
5910 * drop the uffd-wp bit in this zap, then replace the
5911 * pte with a marker.
5912 */
5913 if (pte_swp_uffd_wp_any(pte) &&
5914 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5915 set_huge_pte_at(mm, address, ptep,
5916 make_pte_marker(PTE_MARKER_UFFD_WP),
5917 sz);
5918 else
5919 huge_pte_clear(mm, address, ptep, sz);
5920 spin_unlock(ptl);
5921 continue;
5922 }
5923
5924 /*
5925 * If a folio is supplied, it is because a specific
5926 * folio is being unmapped, not a range. Ensure the folio we
5927 * are about to unmap is the actual folio of interest.
5928 */
5929 if (folio_provided) {
5930 if (folio != page_folio(pte_page(pte))) {
5931 spin_unlock(ptl);
5932 continue;
5933 }
5934 /*
5935 * Mark the VMA as having unmapped its page so that
5936 * future faults in this VMA will fail rather than
5937 * looking like data was lost
5938 */
5939 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5940 } else {
5941 folio = page_folio(pte_page(pte));
5942 }
5943
5944 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5945 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5946 if (huge_pte_dirty(pte))
5947 folio_mark_dirty(folio);
5948 /* Leave a uffd-wp pte marker if needed */
5949 if (huge_pte_uffd_wp(pte) &&
5950 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5951 set_huge_pte_at(mm, address, ptep,
5952 make_pte_marker(PTE_MARKER_UFFD_WP),
5953 sz);
5954 hugetlb_count_sub(pages_per_huge_page(h), mm);
5955 hugetlb_remove_rmap(folio);
5956 spin_unlock(ptl);
5957
5958 /*
5959 * Restore the reservation for anonymous page, otherwise the
5960 * backing page could be stolen by someone.
5961 * If there we are freeing a surplus, do not set the restore
5962 * reservation bit.
5963 */
5964 adjust_reservation = false;
5965
5966 spin_lock_irq(&hugetlb_lock);
5967 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5968 folio_test_anon(folio)) {
5969 folio_set_hugetlb_restore_reserve(folio);
5970 /* Reservation to be adjusted after the spin lock */
5971 adjust_reservation = true;
5972 }
5973 spin_unlock_irq(&hugetlb_lock);
5974
5975 /*
5976 * Adjust the reservation for the region that will have the
5977 * reserve restored. Keep in mind that vma_needs_reservation() changes
5978 * resv->adds_in_progress if it succeeds. If this is not done,
5979 * do_exit() will not see it, and will keep the reservation
5980 * forever.
5981 */
5982 if (adjust_reservation) {
5983 int rc = vma_needs_reservation(h, vma, address);
5984
5985 if (rc < 0)
5986 /* Pressumably allocate_file_region_entries failed
5987 * to allocate a file_region struct. Clear
5988 * hugetlb_restore_reserve so that global reserve
5989 * count will not be incremented by free_huge_folio.
5990 * Act as if we consumed the reservation.
5991 */
5992 folio_clear_hugetlb_restore_reserve(folio);
5993 else if (rc)
5994 vma_add_reservation(h, vma, address);
5995 }
5996
5997 tlb_remove_page_size(tlb, folio_page(folio, 0),
5998 folio_size(folio));
5999 /*
6000 * If we were instructed to unmap a specific folio, we're done.
6001 */
6002 if (folio_provided)
6003 break;
6004 }
6005 tlb_end_vma(tlb, vma);
6006
6007 /*
6008 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
6009 * could defer the flush until now, since by holding i_mmap_rwsem we
6010 * guaranteed that the last refernece would not be dropped. But we must
6011 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6012 * dropped and the last reference to the shared PMDs page might be
6013 * dropped as well.
6014 *
6015 * In theory we could defer the freeing of the PMD pages as well, but
6016 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6017 * detect sharing, so we cannot defer the release of the page either.
6018 * Instead, do flush now.
6019 */
6020 if (force_flush)
6021 tlb_flush_mmu_tlbonly(tlb);
6022 }
6023
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6024 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6025 unsigned long *start, unsigned long *end)
6026 {
6027 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6028 return;
6029
6030 adjust_range_if_pmd_sharing_possible(vma, start, end);
6031 hugetlb_vma_lock_write(vma);
6032 if (vma->vm_file)
6033 i_mmap_lock_write(vma->vm_file->f_mapping);
6034 }
6035
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6036 void __hugetlb_zap_end(struct vm_area_struct *vma,
6037 struct zap_details *details)
6038 {
6039 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6040
6041 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6042 return;
6043
6044 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6045 /*
6046 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6047 * When the vma_lock is freed, this makes the vma ineligible
6048 * for pmd sharing. And, i_mmap_rwsem is required to set up
6049 * pmd sharing. This is important as page tables for this
6050 * unmapped range will be asynchrously deleted. If the page
6051 * tables are shared, there will be issues when accessed by
6052 * someone else.
6053 */
6054 __hugetlb_vma_unlock_write_free(vma);
6055 } else {
6056 hugetlb_vma_unlock_write(vma);
6057 }
6058
6059 if (vma->vm_file)
6060 i_mmap_unlock_write(vma->vm_file->f_mapping);
6061 }
6062
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6063 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6064 unsigned long end, struct folio *folio,
6065 zap_flags_t zap_flags)
6066 {
6067 struct mmu_notifier_range range;
6068 struct mmu_gather tlb;
6069
6070 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6071 start, end);
6072 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6073 mmu_notifier_invalidate_range_start(&range);
6074 tlb_gather_mmu(&tlb, vma->vm_mm);
6075
6076 __unmap_hugepage_range(&tlb, vma, start, end,
6077 folio, zap_flags);
6078
6079 mmu_notifier_invalidate_range_end(&range);
6080 tlb_finish_mmu(&tlb);
6081 }
6082
6083 /*
6084 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6085 * mapping it owns the reserve page for. The intention is to unmap the page
6086 * from other VMAs and let the children be SIGKILLed if they are faulting the
6087 * same region.
6088 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6089 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6090 struct folio *folio, unsigned long address)
6091 {
6092 struct hstate *h = hstate_vma(vma);
6093 struct vm_area_struct *iter_vma;
6094 struct address_space *mapping;
6095 pgoff_t pgoff;
6096
6097 /*
6098 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6099 * from page cache lookup which is in HPAGE_SIZE units.
6100 */
6101 address = address & huge_page_mask(h);
6102 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6103 vma->vm_pgoff;
6104 mapping = vma->vm_file->f_mapping;
6105
6106 /*
6107 * Take the mapping lock for the duration of the table walk. As
6108 * this mapping should be shared between all the VMAs,
6109 * __unmap_hugepage_range() is called as the lock is already held
6110 */
6111 i_mmap_lock_write(mapping);
6112 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6113 /* Do not unmap the current VMA */
6114 if (iter_vma == vma)
6115 continue;
6116
6117 /*
6118 * Shared VMAs have their own reserves and do not affect
6119 * MAP_PRIVATE accounting but it is possible that a shared
6120 * VMA is using the same page so check and skip such VMAs.
6121 */
6122 if (iter_vma->vm_flags & VM_MAYSHARE)
6123 continue;
6124
6125 /*
6126 * Unmap the page from other VMAs without their own reserves.
6127 * They get marked to be SIGKILLed if they fault in these
6128 * areas. This is because a future no-page fault on this VMA
6129 * could insert a zeroed page instead of the data existing
6130 * from the time of fork. This would look like data corruption
6131 */
6132 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6133 unmap_hugepage_range(iter_vma, address,
6134 address + huge_page_size(h),
6135 folio, 0);
6136 }
6137 i_mmap_unlock_write(mapping);
6138 }
6139
6140 /*
6141 * hugetlb_wp() should be called with page lock of the original hugepage held.
6142 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6143 * cannot race with other handlers or page migration.
6144 * Keep the pte_same checks anyway to make transition from the mutex easier.
6145 */
hugetlb_wp(struct vm_fault * vmf)6146 static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
6147 {
6148 struct vm_area_struct *vma = vmf->vma;
6149 struct mm_struct *mm = vma->vm_mm;
6150 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6151 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6152 struct hstate *h = hstate_vma(vma);
6153 struct folio *old_folio;
6154 struct folio *new_folio;
6155 bool cow_from_owner = 0;
6156 vm_fault_t ret = 0;
6157 struct mmu_notifier_range range;
6158
6159 /*
6160 * Never handle CoW for uffd-wp protected pages. It should be only
6161 * handled when the uffd-wp protection is removed.
6162 *
6163 * Note that only the CoW optimization path (in hugetlb_no_page())
6164 * can trigger this, because hugetlb_fault() will always resolve
6165 * uffd-wp bit first.
6166 */
6167 if (!unshare && huge_pte_uffd_wp(pte))
6168 return 0;
6169
6170 /* Let's take out MAP_SHARED mappings first. */
6171 if (vma->vm_flags & VM_MAYSHARE) {
6172 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6173 return 0;
6174 }
6175
6176 old_folio = page_folio(pte_page(pte));
6177
6178 delayacct_wpcopy_start();
6179
6180 retry_avoidcopy:
6181 /*
6182 * If no-one else is actually using this page, we're the exclusive
6183 * owner and can reuse this page.
6184 *
6185 * Note that we don't rely on the (safer) folio refcount here, because
6186 * copying the hugetlb folio when there are unexpected (temporary)
6187 * folio references could harm simple fork()+exit() users when
6188 * we run out of free hugetlb folios: we would have to kill processes
6189 * in scenarios that used to work. As a side effect, there can still
6190 * be leaks between processes, for example, with FOLL_GET users.
6191 */
6192 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6193 if (!PageAnonExclusive(&old_folio->page)) {
6194 folio_move_anon_rmap(old_folio, vma);
6195 SetPageAnonExclusive(&old_folio->page);
6196 }
6197 if (likely(!unshare))
6198 set_huge_ptep_maybe_writable(vma, vmf->address,
6199 vmf->pte);
6200
6201 delayacct_wpcopy_end();
6202 return 0;
6203 }
6204 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6205 PageAnonExclusive(&old_folio->page), &old_folio->page);
6206
6207 /*
6208 * If the process that created a MAP_PRIVATE mapping is about to perform
6209 * a COW due to a shared page count, attempt to satisfy the allocation
6210 * without using the existing reserves.
6211 * In order to determine where this is a COW on a MAP_PRIVATE mapping it
6212 * is enough to check whether the old_folio is anonymous. This means that
6213 * the reserve for this address was consumed. If reserves were used, a
6214 * partial faulted mapping at the fime of fork() could consume its reserves
6215 * on COW instead of the full address range.
6216 */
6217 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6218 folio_test_anon(old_folio))
6219 cow_from_owner = true;
6220
6221 folio_get(old_folio);
6222
6223 /*
6224 * Drop page table lock as buddy allocator may be called. It will
6225 * be acquired again before returning to the caller, as expected.
6226 */
6227 spin_unlock(vmf->ptl);
6228 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6229
6230 if (IS_ERR(new_folio)) {
6231 /*
6232 * If a process owning a MAP_PRIVATE mapping fails to COW,
6233 * it is due to references held by a child and an insufficient
6234 * huge page pool. To guarantee the original mappers
6235 * reliability, unmap the page from child processes. The child
6236 * may get SIGKILLed if it later faults.
6237 */
6238 if (cow_from_owner) {
6239 struct address_space *mapping = vma->vm_file->f_mapping;
6240 pgoff_t idx;
6241 u32 hash;
6242
6243 folio_put(old_folio);
6244 /*
6245 * Drop hugetlb_fault_mutex and vma_lock before
6246 * unmapping. unmapping needs to hold vma_lock
6247 * in write mode. Dropping vma_lock in read mode
6248 * here is OK as COW mappings do not interact with
6249 * PMD sharing.
6250 *
6251 * Reacquire both after unmap operation.
6252 */
6253 idx = vma_hugecache_offset(h, vma, vmf->address);
6254 hash = hugetlb_fault_mutex_hash(mapping, idx);
6255 hugetlb_vma_unlock_read(vma);
6256 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6257
6258 unmap_ref_private(mm, vma, old_folio, vmf->address);
6259
6260 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6261 hugetlb_vma_lock_read(vma);
6262 spin_lock(vmf->ptl);
6263 vmf->pte = hugetlb_walk(vma, vmf->address,
6264 huge_page_size(h));
6265 if (likely(vmf->pte &&
6266 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6267 goto retry_avoidcopy;
6268 /*
6269 * race occurs while re-acquiring page table
6270 * lock, and our job is done.
6271 */
6272 delayacct_wpcopy_end();
6273 return 0;
6274 }
6275
6276 ret = vmf_error(PTR_ERR(new_folio));
6277 goto out_release_old;
6278 }
6279
6280 /*
6281 * When the original hugepage is shared one, it does not have
6282 * anon_vma prepared.
6283 */
6284 ret = __vmf_anon_prepare(vmf);
6285 if (unlikely(ret))
6286 goto out_release_all;
6287
6288 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6289 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6290 goto out_release_all;
6291 }
6292 __folio_mark_uptodate(new_folio);
6293
6294 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6295 vmf->address + huge_page_size(h));
6296 mmu_notifier_invalidate_range_start(&range);
6297
6298 /*
6299 * Retake the page table lock to check for racing updates
6300 * before the page tables are altered
6301 */
6302 spin_lock(vmf->ptl);
6303 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6304 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6305 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6306
6307 /* Break COW or unshare */
6308 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6309 hugetlb_remove_rmap(old_folio);
6310 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6311 if (huge_pte_uffd_wp(pte))
6312 newpte = huge_pte_mkuffd_wp(newpte);
6313 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6314 huge_page_size(h));
6315 folio_set_hugetlb_migratable(new_folio);
6316 /* Make the old page be freed below */
6317 new_folio = old_folio;
6318 }
6319 spin_unlock(vmf->ptl);
6320 mmu_notifier_invalidate_range_end(&range);
6321 out_release_all:
6322 /*
6323 * No restore in case of successful pagetable update (Break COW or
6324 * unshare)
6325 */
6326 if (new_folio != old_folio)
6327 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6328 folio_put(new_folio);
6329 out_release_old:
6330 folio_put(old_folio);
6331
6332 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6333
6334 delayacct_wpcopy_end();
6335 return ret;
6336 }
6337
6338 /*
6339 * Return whether there is a pagecache page to back given address within VMA.
6340 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6341 bool hugetlbfs_pagecache_present(struct hstate *h,
6342 struct vm_area_struct *vma, unsigned long address)
6343 {
6344 struct address_space *mapping = vma->vm_file->f_mapping;
6345 pgoff_t idx = linear_page_index(vma, address);
6346 struct folio *folio;
6347
6348 folio = filemap_get_folio(mapping, idx);
6349 if (IS_ERR(folio))
6350 return false;
6351 folio_put(folio);
6352 return true;
6353 }
6354
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6355 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6356 pgoff_t idx)
6357 {
6358 struct inode *inode = mapping->host;
6359 struct hstate *h = hstate_inode(inode);
6360 int err;
6361
6362 idx <<= huge_page_order(h);
6363 __folio_set_locked(folio);
6364 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6365
6366 if (unlikely(err)) {
6367 __folio_clear_locked(folio);
6368 return err;
6369 }
6370 folio_clear_hugetlb_restore_reserve(folio);
6371
6372 /*
6373 * mark folio dirty so that it will not be removed from cache/file
6374 * by non-hugetlbfs specific code paths.
6375 */
6376 folio_mark_dirty(folio);
6377
6378 spin_lock(&inode->i_lock);
6379 inode->i_blocks += blocks_per_huge_page(h);
6380 spin_unlock(&inode->i_lock);
6381 return 0;
6382 }
6383
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6384 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6385 struct address_space *mapping,
6386 unsigned long reason)
6387 {
6388 u32 hash;
6389
6390 /*
6391 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6392 * userfault. Also mmap_lock could be dropped due to handling
6393 * userfault, any vma operation should be careful from here.
6394 */
6395 hugetlb_vma_unlock_read(vmf->vma);
6396 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6397 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6398 return handle_userfault(vmf, reason);
6399 }
6400
6401 /*
6402 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6403 * false if pte changed or is changing.
6404 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6405 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6406 pte_t *ptep, pte_t old_pte)
6407 {
6408 spinlock_t *ptl;
6409 bool same;
6410
6411 ptl = huge_pte_lock(h, mm, ptep);
6412 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6413 spin_unlock(ptl);
6414
6415 return same;
6416 }
6417
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6418 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6419 struct vm_fault *vmf)
6420 {
6421 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6422 bool new_folio, new_anon_folio = false;
6423 struct vm_area_struct *vma = vmf->vma;
6424 struct mm_struct *mm = vma->vm_mm;
6425 struct hstate *h = hstate_vma(vma);
6426 vm_fault_t ret = VM_FAULT_SIGBUS;
6427 bool folio_locked = true;
6428 struct folio *folio;
6429 unsigned long size;
6430 pte_t new_pte;
6431
6432 /*
6433 * Currently, we are forced to kill the process in the event the
6434 * original mapper has unmapped pages from the child due to a failed
6435 * COW/unsharing. Warn that such a situation has occurred as it may not
6436 * be obvious.
6437 */
6438 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6439 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6440 current->pid);
6441 goto out;
6442 }
6443
6444 /*
6445 * Use page lock to guard against racing truncation
6446 * before we get page_table_lock.
6447 */
6448 new_folio = false;
6449 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6450 if (IS_ERR(folio)) {
6451 size = i_size_read(mapping->host) >> huge_page_shift(h);
6452 if (vmf->pgoff >= size)
6453 goto out;
6454 /* Check for page in userfault range */
6455 if (userfaultfd_missing(vma)) {
6456 /*
6457 * Since hugetlb_no_page() was examining pte
6458 * without pgtable lock, we need to re-test under
6459 * lock because the pte may not be stable and could
6460 * have changed from under us. Try to detect
6461 * either changed or during-changing ptes and retry
6462 * properly when needed.
6463 *
6464 * Note that userfaultfd is actually fine with
6465 * false positives (e.g. caused by pte changed),
6466 * but not wrong logical events (e.g. caused by
6467 * reading a pte during changing). The latter can
6468 * confuse the userspace, so the strictness is very
6469 * much preferred. E.g., MISSING event should
6470 * never happen on the page after UFFDIO_COPY has
6471 * correctly installed the page and returned.
6472 */
6473 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6474 ret = 0;
6475 goto out;
6476 }
6477
6478 return hugetlb_handle_userfault(vmf, mapping,
6479 VM_UFFD_MISSING);
6480 }
6481
6482 if (!(vma->vm_flags & VM_MAYSHARE)) {
6483 ret = __vmf_anon_prepare(vmf);
6484 if (unlikely(ret))
6485 goto out;
6486 }
6487
6488 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6489 if (IS_ERR(folio)) {
6490 /*
6491 * Returning error will result in faulting task being
6492 * sent SIGBUS. The hugetlb fault mutex prevents two
6493 * tasks from racing to fault in the same page which
6494 * could result in false unable to allocate errors.
6495 * Page migration does not take the fault mutex, but
6496 * does a clear then write of pte's under page table
6497 * lock. Page fault code could race with migration,
6498 * notice the clear pte and try to allocate a page
6499 * here. Before returning error, get ptl and make
6500 * sure there really is no pte entry.
6501 */
6502 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6503 ret = vmf_error(PTR_ERR(folio));
6504 else
6505 ret = 0;
6506 goto out;
6507 }
6508 folio_zero_user(folio, vmf->real_address);
6509 __folio_mark_uptodate(folio);
6510 new_folio = true;
6511
6512 if (vma->vm_flags & VM_MAYSHARE) {
6513 int err = hugetlb_add_to_page_cache(folio, mapping,
6514 vmf->pgoff);
6515 if (err) {
6516 /*
6517 * err can't be -EEXIST which implies someone
6518 * else consumed the reservation since hugetlb
6519 * fault mutex is held when add a hugetlb page
6520 * to the page cache. So it's safe to call
6521 * restore_reserve_on_error() here.
6522 */
6523 restore_reserve_on_error(h, vma, vmf->address,
6524 folio);
6525 folio_put(folio);
6526 ret = VM_FAULT_SIGBUS;
6527 goto out;
6528 }
6529 } else {
6530 new_anon_folio = true;
6531 folio_lock(folio);
6532 }
6533 } else {
6534 /*
6535 * If memory error occurs between mmap() and fault, some process
6536 * don't have hwpoisoned swap entry for errored virtual address.
6537 * So we need to block hugepage fault by PG_hwpoison bit check.
6538 */
6539 if (unlikely(folio_test_hwpoison(folio))) {
6540 ret = VM_FAULT_HWPOISON_LARGE |
6541 VM_FAULT_SET_HINDEX(hstate_index(h));
6542 goto backout_unlocked;
6543 }
6544
6545 /* Check for page in userfault range. */
6546 if (userfaultfd_minor(vma)) {
6547 folio_unlock(folio);
6548 folio_put(folio);
6549 /* See comment in userfaultfd_missing() block above */
6550 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6551 ret = 0;
6552 goto out;
6553 }
6554 return hugetlb_handle_userfault(vmf, mapping,
6555 VM_UFFD_MINOR);
6556 }
6557 }
6558
6559 /*
6560 * If we are going to COW a private mapping later, we examine the
6561 * pending reservations for this page now. This will ensure that
6562 * any allocations necessary to record that reservation occur outside
6563 * the spinlock.
6564 */
6565 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6566 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6567 ret = VM_FAULT_OOM;
6568 goto backout_unlocked;
6569 }
6570 /* Just decrements count, does not deallocate */
6571 vma_end_reservation(h, vma, vmf->address);
6572 }
6573
6574 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6575 ret = 0;
6576 /* If pte changed from under us, retry */
6577 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6578 goto backout;
6579
6580 if (new_anon_folio)
6581 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6582 else
6583 hugetlb_add_file_rmap(folio);
6584 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6585 /*
6586 * If this pte was previously wr-protected, keep it wr-protected even
6587 * if populated.
6588 */
6589 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6590 new_pte = huge_pte_mkuffd_wp(new_pte);
6591 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6592
6593 hugetlb_count_add(pages_per_huge_page(h), mm);
6594 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6595 /*
6596 * No need to keep file folios locked. See comment in
6597 * hugetlb_fault().
6598 */
6599 if (!new_anon_folio) {
6600 folio_locked = false;
6601 folio_unlock(folio);
6602 }
6603 /* Optimization, do the COW without a second fault */
6604 ret = hugetlb_wp(vmf);
6605 }
6606
6607 spin_unlock(vmf->ptl);
6608
6609 /*
6610 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6611 * found in the pagecache may not have hugetlb_migratable if they have
6612 * been isolated for migration.
6613 */
6614 if (new_folio)
6615 folio_set_hugetlb_migratable(folio);
6616
6617 if (folio_locked)
6618 folio_unlock(folio);
6619 out:
6620 hugetlb_vma_unlock_read(vma);
6621
6622 /*
6623 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6624 * the only way ret can be set to VM_FAULT_RETRY.
6625 */
6626 if (unlikely(ret & VM_FAULT_RETRY))
6627 vma_end_read(vma);
6628
6629 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6630 return ret;
6631
6632 backout:
6633 spin_unlock(vmf->ptl);
6634 backout_unlocked:
6635 /* We only need to restore reservations for private mappings */
6636 if (new_anon_folio)
6637 restore_reserve_on_error(h, vma, vmf->address, folio);
6638
6639 folio_unlock(folio);
6640 folio_put(folio);
6641 goto out;
6642 }
6643
6644 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6646 {
6647 unsigned long key[2];
6648 u32 hash;
6649
6650 key[0] = (unsigned long) mapping;
6651 key[1] = idx;
6652
6653 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6654
6655 return hash & (num_fault_mutexes - 1);
6656 }
6657 #else
6658 /*
6659 * For uniprocessor systems we always use a single mutex, so just
6660 * return 0 and avoid the hashing overhead.
6661 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6662 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6663 {
6664 return 0;
6665 }
6666 #endif
6667
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6668 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6669 unsigned long address, unsigned int flags)
6670 {
6671 vm_fault_t ret;
6672 u32 hash;
6673 struct folio *folio = NULL;
6674 struct hstate *h = hstate_vma(vma);
6675 struct address_space *mapping;
6676 bool need_wait_lock = false;
6677 struct vm_fault vmf = {
6678 .vma = vma,
6679 .address = address & huge_page_mask(h),
6680 .real_address = address,
6681 .flags = flags,
6682 .pgoff = vma_hugecache_offset(h, vma,
6683 address & huge_page_mask(h)),
6684 /* TODO: Track hugetlb faults using vm_fault */
6685
6686 /*
6687 * Some fields may not be initialized, be careful as it may
6688 * be hard to debug if called functions make assumptions
6689 */
6690 };
6691
6692 /*
6693 * Serialize hugepage allocation and instantiation, so that we don't
6694 * get spurious allocation failures if two CPUs race to instantiate
6695 * the same page in the page cache.
6696 */
6697 mapping = vma->vm_file->f_mapping;
6698 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6699 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6700
6701 /*
6702 * Acquire vma lock before calling huge_pte_alloc and hold
6703 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6704 * being called elsewhere and making the vmf.pte no longer valid.
6705 */
6706 hugetlb_vma_lock_read(vma);
6707 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6708 if (!vmf.pte) {
6709 hugetlb_vma_unlock_read(vma);
6710 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6711 return VM_FAULT_OOM;
6712 }
6713
6714 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6715 if (huge_pte_none_mostly(vmf.orig_pte)) {
6716 if (is_pte_marker(vmf.orig_pte)) {
6717 pte_marker marker =
6718 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6719
6720 if (marker & PTE_MARKER_POISONED) {
6721 ret = VM_FAULT_HWPOISON_LARGE |
6722 VM_FAULT_SET_HINDEX(hstate_index(h));
6723 goto out_mutex;
6724 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6725 /* This isn't supported in hugetlb. */
6726 ret = VM_FAULT_SIGSEGV;
6727 goto out_mutex;
6728 }
6729 }
6730
6731 /*
6732 * Other PTE markers should be handled the same way as none PTE.
6733 *
6734 * hugetlb_no_page will drop vma lock and hugetlb fault
6735 * mutex internally, which make us return immediately.
6736 */
6737 return hugetlb_no_page(mapping, &vmf);
6738 }
6739
6740 ret = 0;
6741
6742 /* Not present, either a migration or a hwpoisoned entry */
6743 if (!pte_present(vmf.orig_pte)) {
6744 if (is_hugetlb_entry_migration(vmf.orig_pte)) {
6745 /*
6746 * Release the hugetlb fault lock now, but retain
6747 * the vma lock, because it is needed to guard the
6748 * huge_pte_lockptr() later in
6749 * migration_entry_wait_huge(). The vma lock will
6750 * be released there.
6751 */
6752 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6753 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6754 return 0;
6755 } else if (is_hugetlb_entry_hwpoisoned(vmf.orig_pte))
6756 ret = VM_FAULT_HWPOISON_LARGE |
6757 VM_FAULT_SET_HINDEX(hstate_index(h));
6758 goto out_mutex;
6759 }
6760
6761 /*
6762 * If we are going to COW/unshare the mapping later, we examine the
6763 * pending reservations for this page now. This will ensure that any
6764 * allocations necessary to record that reservation occur outside the
6765 * spinlock.
6766 */
6767 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6768 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6769 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6770 ret = VM_FAULT_OOM;
6771 goto out_mutex;
6772 }
6773 /* Just decrements count, does not deallocate */
6774 vma_end_reservation(h, vma, vmf.address);
6775 }
6776
6777 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6778
6779 /* Check for a racing update before calling hugetlb_wp() */
6780 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6781 goto out_ptl;
6782
6783 /* Handle userfault-wp first, before trying to lock more pages */
6784 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6785 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6786 if (!userfaultfd_wp_async(vma)) {
6787 spin_unlock(vmf.ptl);
6788 hugetlb_vma_unlock_read(vma);
6789 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6790 return handle_userfault(&vmf, VM_UFFD_WP);
6791 }
6792
6793 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6794 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6795 huge_page_size(hstate_vma(vma)));
6796 /* Fallthrough to CoW */
6797 }
6798
6799 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6800 if (!huge_pte_write(vmf.orig_pte)) {
6801 /*
6802 * Anonymous folios need to be lock since hugetlb_wp()
6803 * checks whether we can re-use the folio exclusively
6804 * for us in case we are the only user of it.
6805 */
6806 folio = page_folio(pte_page(vmf.orig_pte));
6807 if (folio_test_anon(folio) && !folio_trylock(folio)) {
6808 need_wait_lock = true;
6809 goto out_ptl;
6810 }
6811 folio_get(folio);
6812 ret = hugetlb_wp(&vmf);
6813 if (folio_test_anon(folio))
6814 folio_unlock(folio);
6815 folio_put(folio);
6816 goto out_ptl;
6817 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6818 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6819 }
6820 }
6821 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6822 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6823 flags & FAULT_FLAG_WRITE))
6824 update_mmu_cache(vma, vmf.address, vmf.pte);
6825 out_ptl:
6826 spin_unlock(vmf.ptl);
6827 out_mutex:
6828 hugetlb_vma_unlock_read(vma);
6829
6830 /*
6831 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6832 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6833 */
6834 if (unlikely(ret & VM_FAULT_RETRY))
6835 vma_end_read(vma);
6836
6837 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6838 /*
6839 * hugetlb_wp drops all the locks, but the folio lock, before trying to
6840 * unmap the folio from other processes. During that window, if another
6841 * process mapping that folio faults in, it will take the mutex and then
6842 * it will wait on folio_lock, causing an ABBA deadlock.
6843 * Use trylock instead and bail out if we fail.
6844 *
6845 * Ideally, we should hold a refcount on the folio we wait for, but we do
6846 * not want to use the folio after it becomes unlocked, but rather just
6847 * wait for it to become unlocked, so hopefully next fault successes on
6848 * the trylock.
6849 */
6850 if (need_wait_lock)
6851 folio_wait_locked(folio);
6852 return ret;
6853 }
6854
6855 #ifdef CONFIG_USERFAULTFD
6856 /*
6857 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6858 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6859 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6860 struct vm_area_struct *vma, unsigned long address)
6861 {
6862 struct mempolicy *mpol;
6863 nodemask_t *nodemask;
6864 struct folio *folio;
6865 gfp_t gfp_mask;
6866 int node;
6867
6868 gfp_mask = htlb_alloc_mask(h);
6869 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6870 /*
6871 * This is used to allocate a temporary hugetlb to hold the copied
6872 * content, which will then be copied again to the final hugetlb
6873 * consuming a reservation. Set the alloc_fallback to false to indicate
6874 * that breaking the per-node hugetlb pool is not allowed in this case.
6875 */
6876 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6877 mpol_cond_put(mpol);
6878
6879 return folio;
6880 }
6881
6882 /*
6883 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6884 * with modifications for hugetlb pages.
6885 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6886 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6887 struct vm_area_struct *dst_vma,
6888 unsigned long dst_addr,
6889 unsigned long src_addr,
6890 uffd_flags_t flags,
6891 struct folio **foliop)
6892 {
6893 struct mm_struct *dst_mm = dst_vma->vm_mm;
6894 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6895 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6896 struct hstate *h = hstate_vma(dst_vma);
6897 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6898 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6899 unsigned long size = huge_page_size(h);
6900 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6901 pte_t _dst_pte;
6902 spinlock_t *ptl;
6903 int ret = -ENOMEM;
6904 struct folio *folio;
6905 bool folio_in_pagecache = false;
6906
6907 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6908 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6909
6910 /* Don't overwrite any existing PTEs (even markers) */
6911 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6912 spin_unlock(ptl);
6913 return -EEXIST;
6914 }
6915
6916 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6917 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6918
6919 /* No need to invalidate - it was non-present before */
6920 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6921
6922 spin_unlock(ptl);
6923 return 0;
6924 }
6925
6926 if (is_continue) {
6927 ret = -EFAULT;
6928 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6929 if (IS_ERR(folio))
6930 goto out;
6931 folio_in_pagecache = true;
6932 } else if (!*foliop) {
6933 /* If a folio already exists, then it's UFFDIO_COPY for
6934 * a non-missing case. Return -EEXIST.
6935 */
6936 if (vm_shared &&
6937 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6938 ret = -EEXIST;
6939 goto out;
6940 }
6941
6942 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6943 if (IS_ERR(folio)) {
6944 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE);
6945 if (actual_pte) {
6946 ret = -EEXIST;
6947 goto out;
6948 }
6949 ret = -ENOMEM;
6950 goto out;
6951 }
6952
6953 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6954 false);
6955
6956 /* fallback to copy_from_user outside mmap_lock */
6957 if (unlikely(ret)) {
6958 ret = -ENOENT;
6959 /* Free the allocated folio which may have
6960 * consumed a reservation.
6961 */
6962 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6963 folio_put(folio);
6964
6965 /* Allocate a temporary folio to hold the copied
6966 * contents.
6967 */
6968 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6969 if (!folio) {
6970 ret = -ENOMEM;
6971 goto out;
6972 }
6973 *foliop = folio;
6974 /* Set the outparam foliop and return to the caller to
6975 * copy the contents outside the lock. Don't free the
6976 * folio.
6977 */
6978 goto out;
6979 }
6980 } else {
6981 if (vm_shared &&
6982 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6983 folio_put(*foliop);
6984 ret = -EEXIST;
6985 *foliop = NULL;
6986 goto out;
6987 }
6988
6989 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6990 if (IS_ERR(folio)) {
6991 folio_put(*foliop);
6992 ret = -ENOMEM;
6993 *foliop = NULL;
6994 goto out;
6995 }
6996 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6997 folio_put(*foliop);
6998 *foliop = NULL;
6999 if (ret) {
7000 folio_put(folio);
7001 goto out;
7002 }
7003 }
7004
7005 /*
7006 * If we just allocated a new page, we need a memory barrier to ensure
7007 * that preceding stores to the page become visible before the
7008 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7009 * is what we need.
7010 *
7011 * In the case where we have not allocated a new page (is_continue),
7012 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7013 * an earlier smp_wmb() to ensure that prior stores will be visible
7014 * before the set_pte_at() write.
7015 */
7016 if (!is_continue)
7017 __folio_mark_uptodate(folio);
7018 else
7019 WARN_ON_ONCE(!folio_test_uptodate(folio));
7020
7021 /* Add shared, newly allocated pages to the page cache. */
7022 if (vm_shared && !is_continue) {
7023 ret = -EFAULT;
7024 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7025 goto out_release_nounlock;
7026
7027 /*
7028 * Serialization between remove_inode_hugepages() and
7029 * hugetlb_add_to_page_cache() below happens through the
7030 * hugetlb_fault_mutex_table that here must be hold by
7031 * the caller.
7032 */
7033 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7034 if (ret)
7035 goto out_release_nounlock;
7036 folio_in_pagecache = true;
7037 }
7038
7039 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7040
7041 ret = -EIO;
7042 if (folio_test_hwpoison(folio))
7043 goto out_release_unlock;
7044
7045 /*
7046 * We allow to overwrite a pte marker: consider when both MISSING|WP
7047 * registered, we firstly wr-protect a none pte which has no page cache
7048 * page backing it, then access the page.
7049 */
7050 ret = -EEXIST;
7051 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7052 goto out_release_unlock;
7053
7054 if (folio_in_pagecache)
7055 hugetlb_add_file_rmap(folio);
7056 else
7057 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7058
7059 /*
7060 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7061 * with wp flag set, don't set pte write bit.
7062 */
7063 _dst_pte = make_huge_pte(dst_vma, folio,
7064 !wp_enabled && !(is_continue && !vm_shared));
7065 /*
7066 * Always mark UFFDIO_COPY page dirty; note that this may not be
7067 * extremely important for hugetlbfs for now since swapping is not
7068 * supported, but we should still be clear in that this page cannot be
7069 * thrown away at will, even if write bit not set.
7070 */
7071 _dst_pte = huge_pte_mkdirty(_dst_pte);
7072 _dst_pte = pte_mkyoung(_dst_pte);
7073
7074 if (wp_enabled)
7075 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7076
7077 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7078
7079 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7080
7081 /* No need to invalidate - it was non-present before */
7082 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7083
7084 spin_unlock(ptl);
7085 if (!is_continue)
7086 folio_set_hugetlb_migratable(folio);
7087 if (vm_shared || is_continue)
7088 folio_unlock(folio);
7089 ret = 0;
7090 out:
7091 return ret;
7092 out_release_unlock:
7093 spin_unlock(ptl);
7094 if (vm_shared || is_continue)
7095 folio_unlock(folio);
7096 out_release_nounlock:
7097 if (!folio_in_pagecache)
7098 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7099 folio_put(folio);
7100 goto out;
7101 }
7102 #endif /* CONFIG_USERFAULTFD */
7103
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7104 long hugetlb_change_protection(struct vm_area_struct *vma,
7105 unsigned long address, unsigned long end,
7106 pgprot_t newprot, unsigned long cp_flags)
7107 {
7108 struct mm_struct *mm = vma->vm_mm;
7109 unsigned long start = address;
7110 pte_t *ptep;
7111 pte_t pte;
7112 struct hstate *h = hstate_vma(vma);
7113 long pages = 0, psize = huge_page_size(h);
7114 bool shared_pmd = false;
7115 struct mmu_notifier_range range;
7116 unsigned long last_addr_mask;
7117 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7118 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7119
7120 /*
7121 * In the case of shared PMDs, the area to flush could be beyond
7122 * start/end. Set range.start/range.end to cover the maximum possible
7123 * range if PMD sharing is possible.
7124 */
7125 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7126 0, mm, start, end);
7127 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7128
7129 BUG_ON(address >= end);
7130 flush_cache_range(vma, range.start, range.end);
7131
7132 mmu_notifier_invalidate_range_start(&range);
7133 hugetlb_vma_lock_write(vma);
7134 i_mmap_lock_write(vma->vm_file->f_mapping);
7135 last_addr_mask = hugetlb_mask_last_page(h);
7136 for (; address < end; address += psize) {
7137 spinlock_t *ptl;
7138 ptep = hugetlb_walk(vma, address, psize);
7139 if (!ptep) {
7140 if (!uffd_wp) {
7141 address |= last_addr_mask;
7142 continue;
7143 }
7144 /*
7145 * Userfaultfd wr-protect requires pgtable
7146 * pre-allocations to install pte markers.
7147 */
7148 ptep = huge_pte_alloc(mm, vma, address, psize);
7149 if (!ptep) {
7150 pages = -ENOMEM;
7151 break;
7152 }
7153 }
7154 ptl = huge_pte_lock(h, mm, ptep);
7155 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7156 /*
7157 * When uffd-wp is enabled on the vma, unshare
7158 * shouldn't happen at all. Warn about it if it
7159 * happened due to some reason.
7160 */
7161 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7162 pages++;
7163 spin_unlock(ptl);
7164 shared_pmd = true;
7165 address |= last_addr_mask;
7166 continue;
7167 }
7168 pte = huge_ptep_get(mm, address, ptep);
7169 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7170 /* Nothing to do. */
7171 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7172 swp_entry_t entry = pte_to_swp_entry(pte);
7173 struct folio *folio = pfn_swap_entry_folio(entry);
7174 pte_t newpte = pte;
7175
7176 if (is_writable_migration_entry(entry)) {
7177 if (folio_test_anon(folio))
7178 entry = make_readable_exclusive_migration_entry(
7179 swp_offset(entry));
7180 else
7181 entry = make_readable_migration_entry(
7182 swp_offset(entry));
7183 newpte = swp_entry_to_pte(entry);
7184 pages++;
7185 }
7186
7187 if (uffd_wp)
7188 newpte = pte_swp_mkuffd_wp(newpte);
7189 else if (uffd_wp_resolve)
7190 newpte = pte_swp_clear_uffd_wp(newpte);
7191 if (!pte_same(pte, newpte))
7192 set_huge_pte_at(mm, address, ptep, newpte, psize);
7193 } else if (unlikely(is_pte_marker(pte))) {
7194 /*
7195 * Do nothing on a poison marker; page is
7196 * corrupted, permissons do not apply. Here
7197 * pte_marker_uffd_wp()==true implies !poison
7198 * because they're mutual exclusive.
7199 */
7200 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7201 /* Safe to modify directly (non-present->none). */
7202 huge_pte_clear(mm, address, ptep, psize);
7203 } else if (!huge_pte_none(pte)) {
7204 pte_t old_pte;
7205 unsigned int shift = huge_page_shift(hstate_vma(vma));
7206
7207 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7208 pte = huge_pte_modify(old_pte, newprot);
7209 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7210 if (uffd_wp)
7211 pte = huge_pte_mkuffd_wp(pte);
7212 else if (uffd_wp_resolve)
7213 pte = huge_pte_clear_uffd_wp(pte);
7214 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7215 pages++;
7216 } else {
7217 /* None pte */
7218 if (unlikely(uffd_wp))
7219 /* Safe to modify directly (none->non-present). */
7220 set_huge_pte_at(mm, address, ptep,
7221 make_pte_marker(PTE_MARKER_UFFD_WP),
7222 psize);
7223 }
7224 spin_unlock(ptl);
7225 }
7226 /*
7227 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7228 * may have cleared our pud entry and done put_page on the page table:
7229 * once we release i_mmap_rwsem, another task can do the final put_page
7230 * and that page table be reused and filled with junk. If we actually
7231 * did unshare a page of pmds, flush the range corresponding to the pud.
7232 */
7233 if (shared_pmd)
7234 flush_hugetlb_tlb_range(vma, range.start, range.end);
7235 else
7236 flush_hugetlb_tlb_range(vma, start, end);
7237 /*
7238 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7239 * downgrading page table protection not changing it to point to a new
7240 * page.
7241 *
7242 * See Documentation/mm/mmu_notifier.rst
7243 */
7244 i_mmap_unlock_write(vma->vm_file->f_mapping);
7245 hugetlb_vma_unlock_write(vma);
7246 mmu_notifier_invalidate_range_end(&range);
7247
7248 return pages > 0 ? (pages << h->order) : pages;
7249 }
7250
7251 /*
7252 * Update the reservation map for the range [from, to].
7253 *
7254 * Returns the number of entries that would be added to the reservation map
7255 * associated with the range [from, to]. This number is greater or equal to
7256 * zero. -EINVAL or -ENOMEM is returned in case of any errors.
7257 */
7258
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7259 long hugetlb_reserve_pages(struct inode *inode,
7260 long from, long to,
7261 struct vm_area_struct *vma,
7262 vm_flags_t vm_flags)
7263 {
7264 long chg = -1, add = -1, spool_resv, gbl_resv;
7265 struct hstate *h = hstate_inode(inode);
7266 struct hugepage_subpool *spool = subpool_inode(inode);
7267 struct resv_map *resv_map;
7268 struct hugetlb_cgroup *h_cg = NULL;
7269 long gbl_reserve, regions_needed = 0;
7270
7271 /* This should never happen */
7272 if (from > to) {
7273 VM_WARN(1, "%s called with a negative range\n", __func__);
7274 return -EINVAL;
7275 }
7276
7277 /*
7278 * vma specific semaphore used for pmd sharing and fault/truncation
7279 * synchronization
7280 */
7281 hugetlb_vma_lock_alloc(vma);
7282
7283 /*
7284 * Only apply hugepage reservation if asked. At fault time, an
7285 * attempt will be made for VM_NORESERVE to allocate a page
7286 * without using reserves
7287 */
7288 if (vm_flags & VM_NORESERVE)
7289 return 0;
7290
7291 /*
7292 * Shared mappings base their reservation on the number of pages that
7293 * are already allocated on behalf of the file. Private mappings need
7294 * to reserve the full area even if read-only as mprotect() may be
7295 * called to make the mapping read-write. Assume !vma is a shm mapping
7296 */
7297 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7298 /*
7299 * resv_map can not be NULL as hugetlb_reserve_pages is only
7300 * called for inodes for which resv_maps were created (see
7301 * hugetlbfs_get_inode).
7302 */
7303 resv_map = inode_resv_map(inode);
7304
7305 chg = region_chg(resv_map, from, to, ®ions_needed);
7306 } else {
7307 /* Private mapping. */
7308 resv_map = resv_map_alloc();
7309 if (!resv_map)
7310 goto out_err;
7311
7312 chg = to - from;
7313
7314 set_vma_resv_map(vma, resv_map);
7315 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7316 }
7317
7318 if (chg < 0)
7319 goto out_err;
7320
7321 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7322 chg * pages_per_huge_page(h), &h_cg) < 0)
7323 goto out_err;
7324
7325 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7326 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7327 * of the resv_map.
7328 */
7329 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7330 }
7331
7332 /*
7333 * There must be enough pages in the subpool for the mapping. If
7334 * the subpool has a minimum size, there may be some global
7335 * reservations already in place (gbl_reserve).
7336 */
7337 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7338 if (gbl_reserve < 0)
7339 goto out_uncharge_cgroup;
7340
7341 /*
7342 * Check enough hugepages are available for the reservation.
7343 * Hand the pages back to the subpool if there are not
7344 */
7345 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7346 goto out_put_pages;
7347
7348 /*
7349 * Account for the reservations made. Shared mappings record regions
7350 * that have reservations as they are shared by multiple VMAs.
7351 * When the last VMA disappears, the region map says how much
7352 * the reservation was and the page cache tells how much of
7353 * the reservation was consumed. Private mappings are per-VMA and
7354 * only the consumed reservations are tracked. When the VMA
7355 * disappears, the original reservation is the VMA size and the
7356 * consumed reservations are stored in the map. Hence, nothing
7357 * else has to be done for private mappings here
7358 */
7359 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7360 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7361
7362 if (unlikely(add < 0)) {
7363 hugetlb_acct_memory(h, -gbl_reserve);
7364 goto out_put_pages;
7365 } else if (unlikely(chg > add)) {
7366 /*
7367 * pages in this range were added to the reserve
7368 * map between region_chg and region_add. This
7369 * indicates a race with alloc_hugetlb_folio. Adjust
7370 * the subpool and reserve counts modified above
7371 * based on the difference.
7372 */
7373 long rsv_adjust;
7374
7375 /*
7376 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7377 * reference to h_cg->css. See comment below for detail.
7378 */
7379 hugetlb_cgroup_uncharge_cgroup_rsvd(
7380 hstate_index(h),
7381 (chg - add) * pages_per_huge_page(h), h_cg);
7382
7383 rsv_adjust = hugepage_subpool_put_pages(spool,
7384 chg - add);
7385 hugetlb_acct_memory(h, -rsv_adjust);
7386 } else if (h_cg) {
7387 /*
7388 * The file_regions will hold their own reference to
7389 * h_cg->css. So we should release the reference held
7390 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7391 * done.
7392 */
7393 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7394 }
7395 }
7396 return chg;
7397
7398 out_put_pages:
7399 spool_resv = chg - gbl_reserve;
7400 if (spool_resv) {
7401 /* put sub pool's reservation back, chg - gbl_reserve */
7402 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7403 /*
7404 * subpool's reserved pages can not be put back due to race,
7405 * return to hstate.
7406 */
7407 hugetlb_acct_memory(h, -gbl_resv);
7408 }
7409 out_uncharge_cgroup:
7410 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7411 chg * pages_per_huge_page(h), h_cg);
7412 out_err:
7413 hugetlb_vma_lock_free(vma);
7414 if (!vma || vma->vm_flags & VM_MAYSHARE)
7415 /* Only call region_abort if the region_chg succeeded but the
7416 * region_add failed or didn't run.
7417 */
7418 if (chg >= 0 && add < 0)
7419 region_abort(resv_map, from, to, regions_needed);
7420 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7421 kref_put(&resv_map->refs, resv_map_release);
7422 set_vma_resv_map(vma, NULL);
7423 }
7424 return chg < 0 ? chg : add < 0 ? add : -EINVAL;
7425 }
7426
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7427 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7428 long freed)
7429 {
7430 struct hstate *h = hstate_inode(inode);
7431 struct resv_map *resv_map = inode_resv_map(inode);
7432 long chg = 0;
7433 struct hugepage_subpool *spool = subpool_inode(inode);
7434 long gbl_reserve;
7435
7436 /*
7437 * Since this routine can be called in the evict inode path for all
7438 * hugetlbfs inodes, resv_map could be NULL.
7439 */
7440 if (resv_map) {
7441 chg = region_del(resv_map, start, end);
7442 /*
7443 * region_del() can fail in the rare case where a region
7444 * must be split and another region descriptor can not be
7445 * allocated. If end == LONG_MAX, it will not fail.
7446 */
7447 if (chg < 0)
7448 return chg;
7449 }
7450
7451 spin_lock(&inode->i_lock);
7452 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7453 spin_unlock(&inode->i_lock);
7454
7455 /*
7456 * If the subpool has a minimum size, the number of global
7457 * reservations to be released may be adjusted.
7458 *
7459 * Note that !resv_map implies freed == 0. So (chg - freed)
7460 * won't go negative.
7461 */
7462 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7463 hugetlb_acct_memory(h, -gbl_reserve);
7464
7465 return 0;
7466 }
7467
7468 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7469 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7470 struct vm_area_struct *vma,
7471 unsigned long addr, pgoff_t idx)
7472 {
7473 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7474 svma->vm_start;
7475 unsigned long sbase = saddr & PUD_MASK;
7476 unsigned long s_end = sbase + PUD_SIZE;
7477
7478 /* Allow segments to share if only one is marked locked */
7479 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7480 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7481
7482 /*
7483 * match the virtual addresses, permission and the alignment of the
7484 * page table page.
7485 *
7486 * Also, vma_lock (vm_private_data) is required for sharing.
7487 */
7488 if (pmd_index(addr) != pmd_index(saddr) ||
7489 vm_flags != svm_flags ||
7490 !range_in_vma(svma, sbase, s_end) ||
7491 !svma->vm_private_data)
7492 return 0;
7493
7494 return saddr;
7495 }
7496
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7497 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7498 {
7499 unsigned long start = addr & PUD_MASK;
7500 unsigned long end = start + PUD_SIZE;
7501
7502 #ifdef CONFIG_USERFAULTFD
7503 if (uffd_disable_huge_pmd_share(vma))
7504 return false;
7505 #endif
7506 /*
7507 * check on proper vm_flags and page table alignment
7508 */
7509 if (!(vma->vm_flags & VM_MAYSHARE))
7510 return false;
7511 if (!vma->vm_private_data) /* vma lock required for sharing */
7512 return false;
7513 if (!range_in_vma(vma, start, end))
7514 return false;
7515 return true;
7516 }
7517
7518 /*
7519 * Determine if start,end range within vma could be mapped by shared pmd.
7520 * If yes, adjust start and end to cover range associated with possible
7521 * shared pmd mappings.
7522 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7523 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7524 unsigned long *start, unsigned long *end)
7525 {
7526 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7527 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7528
7529 /*
7530 * vma needs to span at least one aligned PUD size, and the range
7531 * must be at least partially within in.
7532 */
7533 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7534 (*end <= v_start) || (*start >= v_end))
7535 return;
7536
7537 /* Extend the range to be PUD aligned for a worst case scenario */
7538 if (*start > v_start)
7539 *start = ALIGN_DOWN(*start, PUD_SIZE);
7540
7541 if (*end < v_end)
7542 *end = ALIGN(*end, PUD_SIZE);
7543 }
7544
7545 /*
7546 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7547 * and returns the corresponding pte. While this is not necessary for the
7548 * !shared pmd case because we can allocate the pmd later as well, it makes the
7549 * code much cleaner. pmd allocation is essential for the shared case because
7550 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7551 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7552 * bad pmd for sharing.
7553 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7554 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7555 unsigned long addr, pud_t *pud)
7556 {
7557 struct address_space *mapping = vma->vm_file->f_mapping;
7558 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7559 vma->vm_pgoff;
7560 struct vm_area_struct *svma;
7561 unsigned long saddr;
7562 pte_t *spte = NULL;
7563 pte_t *pte;
7564
7565 i_mmap_lock_read(mapping);
7566 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7567 if (svma == vma)
7568 continue;
7569
7570 saddr = page_table_shareable(svma, vma, addr, idx);
7571 if (saddr) {
7572 spte = hugetlb_walk(svma, saddr,
7573 vma_mmu_pagesize(svma));
7574 if (spte) {
7575 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7576 break;
7577 }
7578 }
7579 }
7580
7581 if (!spte)
7582 goto out;
7583
7584 spin_lock(&mm->page_table_lock);
7585 if (pud_none(*pud)) {
7586 pud_populate(mm, pud,
7587 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7588 mm_inc_nr_pmds(mm);
7589 } else {
7590 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7591 }
7592 spin_unlock(&mm->page_table_lock);
7593 out:
7594 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7595 i_mmap_unlock_read(mapping);
7596 return pte;
7597 }
7598
7599 /*
7600 * unmap huge page backed by shared pte.
7601 *
7602 * Called with page table lock held.
7603 *
7604 * returns: 1 successfully unmapped a shared pte page
7605 * 0 the underlying pte page is not shared, or it is the last user
7606 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7607 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7608 unsigned long addr, pte_t *ptep)
7609 {
7610 unsigned long sz = huge_page_size(hstate_vma(vma));
7611 pgd_t *pgd = pgd_offset(mm, addr);
7612 p4d_t *p4d = p4d_offset(pgd, addr);
7613 pud_t *pud = pud_offset(p4d, addr);
7614
7615 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7616 hugetlb_vma_assert_locked(vma);
7617 if (sz != PMD_SIZE)
7618 return 0;
7619 if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep)))
7620 return 0;
7621
7622 pud_clear(pud);
7623 /*
7624 * Once our caller drops the rmap lock, some other process might be
7625 * using this page table as a normal, non-hugetlb page table.
7626 * Wait for pending gup_fast() in other threads to finish before letting
7627 * that happen.
7628 */
7629 tlb_remove_table_sync_one();
7630 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7631 mm_dec_nr_pmds(mm);
7632 return 1;
7633 }
7634
7635 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7636
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7637 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7638 unsigned long addr, pud_t *pud)
7639 {
7640 return NULL;
7641 }
7642
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7643 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7644 unsigned long addr, pte_t *ptep)
7645 {
7646 return 0;
7647 }
7648
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7649 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7650 unsigned long *start, unsigned long *end)
7651 {
7652 }
7653
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7654 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7655 {
7656 return false;
7657 }
7658 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7659
7660 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7661 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7662 unsigned long addr, unsigned long sz)
7663 {
7664 pgd_t *pgd;
7665 p4d_t *p4d;
7666 pud_t *pud;
7667 pte_t *pte = NULL;
7668
7669 pgd = pgd_offset(mm, addr);
7670 p4d = p4d_alloc(mm, pgd, addr);
7671 if (!p4d)
7672 return NULL;
7673 pud = pud_alloc(mm, p4d, addr);
7674 if (pud) {
7675 if (sz == PUD_SIZE) {
7676 pte = (pte_t *)pud;
7677 } else {
7678 BUG_ON(sz != PMD_SIZE);
7679 if (want_pmd_share(vma, addr) && pud_none(*pud))
7680 pte = huge_pmd_share(mm, vma, addr, pud);
7681 else
7682 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7683 }
7684 }
7685
7686 if (pte) {
7687 pte_t pteval = ptep_get_lockless(pte);
7688
7689 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7690 }
7691
7692 return pte;
7693 }
7694
7695 /*
7696 * huge_pte_offset() - Walk the page table to resolve the hugepage
7697 * entry at address @addr
7698 *
7699 * Return: Pointer to page table entry (PUD or PMD) for
7700 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7701 * size @sz doesn't match the hugepage size at this level of the page
7702 * table.
7703 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7704 pte_t *huge_pte_offset(struct mm_struct *mm,
7705 unsigned long addr, unsigned long sz)
7706 {
7707 pgd_t *pgd;
7708 p4d_t *p4d;
7709 pud_t *pud;
7710 pmd_t *pmd;
7711
7712 pgd = pgd_offset(mm, addr);
7713 if (!pgd_present(*pgd))
7714 return NULL;
7715 p4d = p4d_offset(pgd, addr);
7716 if (!p4d_present(*p4d))
7717 return NULL;
7718
7719 pud = pud_offset(p4d, addr);
7720 if (sz == PUD_SIZE)
7721 /* must be pud huge, non-present or none */
7722 return (pte_t *)pud;
7723 if (!pud_present(*pud))
7724 return NULL;
7725 /* must have a valid entry and size to go further */
7726
7727 pmd = pmd_offset(pud, addr);
7728 /* must be pmd huge, non-present or none */
7729 return (pte_t *)pmd;
7730 }
7731
7732 /*
7733 * Return a mask that can be used to update an address to the last huge
7734 * page in a page table page mapping size. Used to skip non-present
7735 * page table entries when linearly scanning address ranges. Architectures
7736 * with unique huge page to page table relationships can define their own
7737 * version of this routine.
7738 */
hugetlb_mask_last_page(struct hstate * h)7739 unsigned long hugetlb_mask_last_page(struct hstate *h)
7740 {
7741 unsigned long hp_size = huge_page_size(h);
7742
7743 if (hp_size == PUD_SIZE)
7744 return P4D_SIZE - PUD_SIZE;
7745 else if (hp_size == PMD_SIZE)
7746 return PUD_SIZE - PMD_SIZE;
7747 else
7748 return 0UL;
7749 }
7750
7751 #else
7752
7753 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7754 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7755 {
7756 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7757 if (huge_page_size(h) == PMD_SIZE)
7758 return PUD_SIZE - PMD_SIZE;
7759 #endif
7760 return 0UL;
7761 }
7762
7763 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7764
7765 /**
7766 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7767 * @folio: the folio to isolate
7768 * @list: the list to add the folio to on success
7769 *
7770 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7771 * isolated/non-migratable, and moving it from the active list to the
7772 * given list.
7773 *
7774 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7775 * it is already isolated/non-migratable.
7776 *
7777 * On success, an additional folio reference is taken that must be dropped
7778 * using folio_putback_hugetlb() to undo the isolation.
7779 *
7780 * Return: True if isolation worked, otherwise False.
7781 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7782 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7783 {
7784 bool ret = true;
7785
7786 spin_lock_irq(&hugetlb_lock);
7787 if (!folio_test_hugetlb(folio) ||
7788 !folio_test_hugetlb_migratable(folio) ||
7789 !folio_try_get(folio)) {
7790 ret = false;
7791 goto unlock;
7792 }
7793 folio_clear_hugetlb_migratable(folio);
7794 list_move_tail(&folio->lru, list);
7795 unlock:
7796 spin_unlock_irq(&hugetlb_lock);
7797 return ret;
7798 }
7799
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7800 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7801 {
7802 int ret = 0;
7803
7804 *hugetlb = false;
7805 spin_lock_irq(&hugetlb_lock);
7806 if (folio_test_hugetlb(folio)) {
7807 *hugetlb = true;
7808 if (folio_test_hugetlb_freed(folio))
7809 ret = 0;
7810 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7811 ret = folio_try_get(folio);
7812 else
7813 ret = -EBUSY;
7814 }
7815 spin_unlock_irq(&hugetlb_lock);
7816 return ret;
7817 }
7818
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7819 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7820 bool *migratable_cleared)
7821 {
7822 int ret;
7823
7824 spin_lock_irq(&hugetlb_lock);
7825 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7826 spin_unlock_irq(&hugetlb_lock);
7827 return ret;
7828 }
7829
7830 /**
7831 * folio_putback_hugetlb - unisolate a hugetlb folio
7832 * @folio: the isolated hugetlb folio
7833 *
7834 * Putback/un-isolate the hugetlb folio that was previous isolated using
7835 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7836 * back onto the active list.
7837 *
7838 * Will drop the additional folio reference obtained through
7839 * folio_isolate_hugetlb().
7840 */
folio_putback_hugetlb(struct folio * folio)7841 void folio_putback_hugetlb(struct folio *folio)
7842 {
7843 spin_lock_irq(&hugetlb_lock);
7844 folio_set_hugetlb_migratable(folio);
7845 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7846 spin_unlock_irq(&hugetlb_lock);
7847 folio_put(folio);
7848 }
7849
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7850 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7851 {
7852 struct hstate *h = folio_hstate(old_folio);
7853
7854 hugetlb_cgroup_migrate(old_folio, new_folio);
7855 folio_set_owner_migrate_reason(new_folio, reason);
7856
7857 /*
7858 * transfer temporary state of the new hugetlb folio. This is
7859 * reverse to other transitions because the newpage is going to
7860 * be final while the old one will be freed so it takes over
7861 * the temporary status.
7862 *
7863 * Also note that we have to transfer the per-node surplus state
7864 * here as well otherwise the global surplus count will not match
7865 * the per-node's.
7866 */
7867 if (folio_test_hugetlb_temporary(new_folio)) {
7868 int old_nid = folio_nid(old_folio);
7869 int new_nid = folio_nid(new_folio);
7870
7871 folio_set_hugetlb_temporary(old_folio);
7872 folio_clear_hugetlb_temporary(new_folio);
7873
7874
7875 /*
7876 * There is no need to transfer the per-node surplus state
7877 * when we do not cross the node.
7878 */
7879 if (new_nid == old_nid)
7880 return;
7881 spin_lock_irq(&hugetlb_lock);
7882 if (h->surplus_huge_pages_node[old_nid]) {
7883 h->surplus_huge_pages_node[old_nid]--;
7884 h->surplus_huge_pages_node[new_nid]++;
7885 }
7886 spin_unlock_irq(&hugetlb_lock);
7887 }
7888
7889 /*
7890 * Our old folio is isolated and has "migratable" cleared until it
7891 * is putback. As migration succeeded, set the new folio "migratable"
7892 * and add it to the active list.
7893 */
7894 spin_lock_irq(&hugetlb_lock);
7895 folio_set_hugetlb_migratable(new_folio);
7896 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7897 spin_unlock_irq(&hugetlb_lock);
7898 }
7899
7900 /*
7901 * If @take_locks is false, the caller must ensure that no concurrent page table
7902 * access can happen (except for gup_fast() and hardware page walks).
7903 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7904 * concurrent page fault handling) and the file rmap lock.
7905 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7906 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7907 unsigned long start,
7908 unsigned long end,
7909 bool take_locks)
7910 {
7911 struct hstate *h = hstate_vma(vma);
7912 unsigned long sz = huge_page_size(h);
7913 struct mm_struct *mm = vma->vm_mm;
7914 struct mmu_notifier_range range;
7915 unsigned long address;
7916 spinlock_t *ptl;
7917 pte_t *ptep;
7918
7919 if (!(vma->vm_flags & VM_MAYSHARE))
7920 return;
7921
7922 if (start >= end)
7923 return;
7924
7925 flush_cache_range(vma, start, end);
7926 /*
7927 * No need to call adjust_range_if_pmd_sharing_possible(), because
7928 * we have already done the PUD_SIZE alignment.
7929 */
7930 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7931 start, end);
7932 mmu_notifier_invalidate_range_start(&range);
7933 if (take_locks) {
7934 hugetlb_vma_lock_write(vma);
7935 i_mmap_lock_write(vma->vm_file->f_mapping);
7936 } else {
7937 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7938 }
7939 for (address = start; address < end; address += PUD_SIZE) {
7940 ptep = hugetlb_walk(vma, address, sz);
7941 if (!ptep)
7942 continue;
7943 ptl = huge_pte_lock(h, mm, ptep);
7944 huge_pmd_unshare(mm, vma, address, ptep);
7945 spin_unlock(ptl);
7946 }
7947 flush_hugetlb_tlb_range(vma, start, end);
7948 if (take_locks) {
7949 i_mmap_unlock_write(vma->vm_file->f_mapping);
7950 hugetlb_vma_unlock_write(vma);
7951 }
7952 /*
7953 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7954 * Documentation/mm/mmu_notifier.rst.
7955 */
7956 mmu_notifier_invalidate_range_end(&range);
7957 }
7958
7959 /*
7960 * This function will unconditionally remove all the shared pmd pgtable entries
7961 * within the specific vma for a hugetlbfs memory range.
7962 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7963 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7964 {
7965 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7966 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7967 /* take_locks = */ true);
7968 }
7969
7970 /*
7971 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7972 * performed, we permit both the old and new VMAs to reference the same
7973 * reservation.
7974 *
7975 * We fix this up after the operation succeeds, or if a newly allocated VMA
7976 * is closed as a result of a failure to allocate memory.
7977 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7978 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7979 {
7980 if (is_vm_hugetlb_page(vma))
7981 clear_vma_resv_huge_pages(vma);
7982 }
7983