1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/iopoll.h> 7 #include <linux/string_helpers.h> 8 9 #include <drm/drm_print.h> 10 11 #include "soc/intel_dram.h" 12 13 #include "i915_drv.h" 14 #include "i915_irq.h" 15 #include "i915_reg.h" 16 #include "intel_backlight_regs.h" 17 #include "intel_cdclk.h" 18 #include "intel_clock_gating.h" 19 #include "intel_combo_phy.h" 20 #include "intel_de.h" 21 #include "intel_display_power.h" 22 #include "intel_display_power_map.h" 23 #include "intel_display_power_well.h" 24 #include "intel_display_regs.h" 25 #include "intel_display_rpm.h" 26 #include "intel_display_types.h" 27 #include "intel_display_utils.h" 28 #include "intel_dmc.h" 29 #include "intel_mchbar_regs.h" 30 #include "intel_pch_refclk.h" 31 #include "intel_pcode.h" 32 #include "intel_pmdemand.h" 33 #include "intel_pps_regs.h" 34 #include "intel_snps_phy.h" 35 #include "skl_watermark.h" 36 #include "skl_watermark_regs.h" 37 #include "vlv_sideband.h" 38 39 #define for_each_power_domain_well(__display, __power_well, __domain) \ 40 for_each_power_well((__display), __power_well) \ 41 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 42 43 #define for_each_power_domain_well_reverse(__display, __power_well, __domain) \ 44 for_each_power_well_reverse((__display), __power_well) \ 45 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 46 47 static const char * 48 intel_display_power_domain_str(enum intel_display_power_domain domain) 49 { 50 switch (domain) { 51 case POWER_DOMAIN_DISPLAY_CORE: 52 return "DISPLAY_CORE"; 53 case POWER_DOMAIN_PIPE_A: 54 return "PIPE_A"; 55 case POWER_DOMAIN_PIPE_B: 56 return "PIPE_B"; 57 case POWER_DOMAIN_PIPE_C: 58 return "PIPE_C"; 59 case POWER_DOMAIN_PIPE_D: 60 return "PIPE_D"; 61 case POWER_DOMAIN_PIPE_PANEL_FITTER_A: 62 return "PIPE_PANEL_FITTER_A"; 63 case POWER_DOMAIN_PIPE_PANEL_FITTER_B: 64 return "PIPE_PANEL_FITTER_B"; 65 case POWER_DOMAIN_PIPE_PANEL_FITTER_C: 66 return "PIPE_PANEL_FITTER_C"; 67 case POWER_DOMAIN_PIPE_PANEL_FITTER_D: 68 return "PIPE_PANEL_FITTER_D"; 69 case POWER_DOMAIN_TRANSCODER_A: 70 return "TRANSCODER_A"; 71 case POWER_DOMAIN_TRANSCODER_B: 72 return "TRANSCODER_B"; 73 case POWER_DOMAIN_TRANSCODER_C: 74 return "TRANSCODER_C"; 75 case POWER_DOMAIN_TRANSCODER_D: 76 return "TRANSCODER_D"; 77 case POWER_DOMAIN_TRANSCODER_EDP: 78 return "TRANSCODER_EDP"; 79 case POWER_DOMAIN_TRANSCODER_DSI_A: 80 return "TRANSCODER_DSI_A"; 81 case POWER_DOMAIN_TRANSCODER_DSI_C: 82 return "TRANSCODER_DSI_C"; 83 case POWER_DOMAIN_TRANSCODER_VDSC_PW2: 84 return "TRANSCODER_VDSC_PW2"; 85 case POWER_DOMAIN_PORT_DDI_LANES_A: 86 return "PORT_DDI_LANES_A"; 87 case POWER_DOMAIN_PORT_DDI_LANES_B: 88 return "PORT_DDI_LANES_B"; 89 case POWER_DOMAIN_PORT_DDI_LANES_C: 90 return "PORT_DDI_LANES_C"; 91 case POWER_DOMAIN_PORT_DDI_LANES_D: 92 return "PORT_DDI_LANES_D"; 93 case POWER_DOMAIN_PORT_DDI_LANES_E: 94 return "PORT_DDI_LANES_E"; 95 case POWER_DOMAIN_PORT_DDI_LANES_F: 96 return "PORT_DDI_LANES_F"; 97 case POWER_DOMAIN_PORT_DDI_LANES_TC1: 98 return "PORT_DDI_LANES_TC1"; 99 case POWER_DOMAIN_PORT_DDI_LANES_TC2: 100 return "PORT_DDI_LANES_TC2"; 101 case POWER_DOMAIN_PORT_DDI_LANES_TC3: 102 return "PORT_DDI_LANES_TC3"; 103 case POWER_DOMAIN_PORT_DDI_LANES_TC4: 104 return "PORT_DDI_LANES_TC4"; 105 case POWER_DOMAIN_PORT_DDI_LANES_TC5: 106 return "PORT_DDI_LANES_TC5"; 107 case POWER_DOMAIN_PORT_DDI_LANES_TC6: 108 return "PORT_DDI_LANES_TC6"; 109 case POWER_DOMAIN_PORT_DDI_IO_A: 110 return "PORT_DDI_IO_A"; 111 case POWER_DOMAIN_PORT_DDI_IO_B: 112 return "PORT_DDI_IO_B"; 113 case POWER_DOMAIN_PORT_DDI_IO_C: 114 return "PORT_DDI_IO_C"; 115 case POWER_DOMAIN_PORT_DDI_IO_D: 116 return "PORT_DDI_IO_D"; 117 case POWER_DOMAIN_PORT_DDI_IO_E: 118 return "PORT_DDI_IO_E"; 119 case POWER_DOMAIN_PORT_DDI_IO_F: 120 return "PORT_DDI_IO_F"; 121 case POWER_DOMAIN_PORT_DDI_IO_TC1: 122 return "PORT_DDI_IO_TC1"; 123 case POWER_DOMAIN_PORT_DDI_IO_TC2: 124 return "PORT_DDI_IO_TC2"; 125 case POWER_DOMAIN_PORT_DDI_IO_TC3: 126 return "PORT_DDI_IO_TC3"; 127 case POWER_DOMAIN_PORT_DDI_IO_TC4: 128 return "PORT_DDI_IO_TC4"; 129 case POWER_DOMAIN_PORT_DDI_IO_TC5: 130 return "PORT_DDI_IO_TC5"; 131 case POWER_DOMAIN_PORT_DDI_IO_TC6: 132 return "PORT_DDI_IO_TC6"; 133 case POWER_DOMAIN_PORT_DSI: 134 return "PORT_DSI"; 135 case POWER_DOMAIN_PORT_CRT: 136 return "PORT_CRT"; 137 case POWER_DOMAIN_PORT_OTHER: 138 return "PORT_OTHER"; 139 case POWER_DOMAIN_VGA: 140 return "VGA"; 141 case POWER_DOMAIN_AUDIO_MMIO: 142 return "AUDIO_MMIO"; 143 case POWER_DOMAIN_AUDIO_PLAYBACK: 144 return "AUDIO_PLAYBACK"; 145 case POWER_DOMAIN_AUX_IO_A: 146 return "AUX_IO_A"; 147 case POWER_DOMAIN_AUX_IO_B: 148 return "AUX_IO_B"; 149 case POWER_DOMAIN_AUX_IO_C: 150 return "AUX_IO_C"; 151 case POWER_DOMAIN_AUX_IO_D: 152 return "AUX_IO_D"; 153 case POWER_DOMAIN_AUX_IO_E: 154 return "AUX_IO_E"; 155 case POWER_DOMAIN_AUX_IO_F: 156 return "AUX_IO_F"; 157 case POWER_DOMAIN_AUX_A: 158 return "AUX_A"; 159 case POWER_DOMAIN_AUX_B: 160 return "AUX_B"; 161 case POWER_DOMAIN_AUX_C: 162 return "AUX_C"; 163 case POWER_DOMAIN_AUX_D: 164 return "AUX_D"; 165 case POWER_DOMAIN_AUX_E: 166 return "AUX_E"; 167 case POWER_DOMAIN_AUX_F: 168 return "AUX_F"; 169 case POWER_DOMAIN_AUX_USBC1: 170 return "AUX_USBC1"; 171 case POWER_DOMAIN_AUX_USBC2: 172 return "AUX_USBC2"; 173 case POWER_DOMAIN_AUX_USBC3: 174 return "AUX_USBC3"; 175 case POWER_DOMAIN_AUX_USBC4: 176 return "AUX_USBC4"; 177 case POWER_DOMAIN_AUX_USBC5: 178 return "AUX_USBC5"; 179 case POWER_DOMAIN_AUX_USBC6: 180 return "AUX_USBC6"; 181 case POWER_DOMAIN_AUX_TBT1: 182 return "AUX_TBT1"; 183 case POWER_DOMAIN_AUX_TBT2: 184 return "AUX_TBT2"; 185 case POWER_DOMAIN_AUX_TBT3: 186 return "AUX_TBT3"; 187 case POWER_DOMAIN_AUX_TBT4: 188 return "AUX_TBT4"; 189 case POWER_DOMAIN_AUX_TBT5: 190 return "AUX_TBT5"; 191 case POWER_DOMAIN_AUX_TBT6: 192 return "AUX_TBT6"; 193 case POWER_DOMAIN_GMBUS: 194 return "GMBUS"; 195 case POWER_DOMAIN_INIT: 196 return "INIT"; 197 case POWER_DOMAIN_GT_IRQ: 198 return "GT_IRQ"; 199 case POWER_DOMAIN_DC_OFF: 200 return "DC_OFF"; 201 case POWER_DOMAIN_TC_COLD_OFF: 202 return "TC_COLD_OFF"; 203 default: 204 MISSING_CASE(domain); 205 return "?"; 206 } 207 } 208 209 static bool __intel_display_power_is_enabled(struct intel_display *display, 210 enum intel_display_power_domain domain) 211 { 212 struct i915_power_well *power_well; 213 bool is_enabled; 214 215 if (intel_display_rpm_suspended(display)) 216 return false; 217 218 is_enabled = true; 219 220 for_each_power_domain_well_reverse(display, power_well, domain) { 221 if (intel_power_well_is_always_on(power_well)) 222 continue; 223 224 if (!intel_power_well_is_enabled_cached(power_well)) { 225 is_enabled = false; 226 break; 227 } 228 } 229 230 return is_enabled; 231 } 232 233 /** 234 * intel_display_power_is_enabled - check for a power domain 235 * @display: display device instance 236 * @domain: power domain to check 237 * 238 * This function can be used to check the hw power domain state. It is mostly 239 * used in hardware state readout functions. Everywhere else code should rely 240 * upon explicit power domain reference counting to ensure that the hardware 241 * block is powered up before accessing it. 242 * 243 * Callers must hold the relevant modesetting locks to ensure that concurrent 244 * threads can't disable the power well while the caller tries to read a few 245 * registers. 246 * 247 * Returns: 248 * True when the power domain is enabled, false otherwise. 249 */ 250 bool intel_display_power_is_enabled(struct intel_display *display, 251 enum intel_display_power_domain domain) 252 { 253 struct i915_power_domains *power_domains = &display->power.domains; 254 bool ret; 255 256 mutex_lock(&power_domains->lock); 257 ret = __intel_display_power_is_enabled(display, domain); 258 mutex_unlock(&power_domains->lock); 259 260 return ret; 261 } 262 263 static u32 264 sanitize_target_dc_state(struct intel_display *display, 265 u32 target_dc_state) 266 { 267 struct i915_power_domains *power_domains = &display->power.domains; 268 static const u32 states[] = { 269 DC_STATE_EN_UPTO_DC6, 270 DC_STATE_EN_UPTO_DC5, 271 DC_STATE_EN_DC3CO, 272 DC_STATE_DISABLE, 273 }; 274 int i; 275 276 for (i = 0; i < ARRAY_SIZE(states) - 1; i++) { 277 if (target_dc_state != states[i]) 278 continue; 279 280 if (power_domains->allowed_dc_mask & target_dc_state) 281 break; 282 283 target_dc_state = states[i + 1]; 284 } 285 286 return target_dc_state; 287 } 288 289 /** 290 * intel_display_power_set_target_dc_state - Set target dc state. 291 * @display: display device 292 * @state: state which needs to be set as target_dc_state. 293 * 294 * This function set the "DC off" power well target_dc_state, 295 * based upon this target_dc_stste, "DC off" power well will 296 * enable desired DC state. 297 */ 298 void intel_display_power_set_target_dc_state(struct intel_display *display, 299 u32 state) 300 { 301 struct i915_power_well *power_well; 302 bool dc_off_enabled; 303 struct i915_power_domains *power_domains = &display->power.domains; 304 305 mutex_lock(&power_domains->lock); 306 power_well = lookup_power_well(display, SKL_DISP_DC_OFF); 307 308 if (drm_WARN_ON(display->drm, !power_well)) 309 goto unlock; 310 311 state = sanitize_target_dc_state(display, state); 312 313 if (state == power_domains->target_dc_state) 314 goto unlock; 315 316 dc_off_enabled = intel_power_well_is_enabled(display, power_well); 317 /* 318 * If DC off power well is disabled, need to enable and disable the 319 * DC off power well to effect target DC state. 320 */ 321 if (!dc_off_enabled) 322 intel_power_well_enable(display, power_well); 323 324 power_domains->target_dc_state = state; 325 326 if (!dc_off_enabled) 327 intel_power_well_disable(display, power_well); 328 329 unlock: 330 mutex_unlock(&power_domains->lock); 331 } 332 333 /** 334 * intel_display_power_get_current_dc_state - Set target dc state. 335 * @display: display device 336 * 337 * This function set the "DC off" power well target_dc_state, 338 * based upon this target_dc_stste, "DC off" power well will 339 * enable desired DC state. 340 */ 341 u32 intel_display_power_get_current_dc_state(struct intel_display *display) 342 { 343 struct i915_power_well *power_well; 344 struct i915_power_domains *power_domains = &display->power.domains; 345 u32 current_dc_state = DC_STATE_DISABLE; 346 347 mutex_lock(&power_domains->lock); 348 power_well = lookup_power_well(display, SKL_DISP_DC_OFF); 349 350 if (drm_WARN_ON(display->drm, !power_well)) 351 goto unlock; 352 353 current_dc_state = intel_power_well_is_enabled(display, power_well) ? 354 DC_STATE_DISABLE : power_domains->target_dc_state; 355 356 unlock: 357 mutex_unlock(&power_domains->lock); 358 359 return current_dc_state; 360 } 361 362 static void __async_put_domains_mask(struct i915_power_domains *power_domains, 363 struct intel_power_domain_mask *mask) 364 { 365 bitmap_or(mask->bits, 366 power_domains->async_put_domains[0].bits, 367 power_domains->async_put_domains[1].bits, 368 POWER_DOMAIN_NUM); 369 } 370 371 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 372 373 static bool 374 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 375 { 376 struct intel_display *display = container_of(power_domains, 377 struct intel_display, 378 power.domains); 379 380 return !drm_WARN_ON(display->drm, 381 bitmap_intersects(power_domains->async_put_domains[0].bits, 382 power_domains->async_put_domains[1].bits, 383 POWER_DOMAIN_NUM)); 384 } 385 386 static bool 387 __async_put_domains_state_ok(struct i915_power_domains *power_domains) 388 { 389 struct intel_display *display = container_of(power_domains, 390 struct intel_display, 391 power.domains); 392 struct intel_power_domain_mask async_put_mask; 393 enum intel_display_power_domain domain; 394 bool err = false; 395 396 err |= !assert_async_put_domain_masks_disjoint(power_domains); 397 __async_put_domains_mask(power_domains, &async_put_mask); 398 err |= drm_WARN_ON(display->drm, 399 !!power_domains->async_put_wakeref != 400 !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)); 401 402 for_each_power_domain(domain, &async_put_mask) 403 err |= drm_WARN_ON(display->drm, 404 power_domains->domain_use_count[domain] != 1); 405 406 return !err; 407 } 408 409 static void print_power_domains(struct i915_power_domains *power_domains, 410 const char *prefix, struct intel_power_domain_mask *mask) 411 { 412 struct intel_display *display = container_of(power_domains, 413 struct intel_display, 414 power.domains); 415 enum intel_display_power_domain domain; 416 417 drm_dbg_kms(display->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM)); 418 for_each_power_domain(domain, mask) 419 drm_dbg_kms(display->drm, "%s use_count %d\n", 420 intel_display_power_domain_str(domain), 421 power_domains->domain_use_count[domain]); 422 } 423 424 static void 425 print_async_put_domains_state(struct i915_power_domains *power_domains) 426 { 427 struct intel_display *display = container_of(power_domains, 428 struct intel_display, 429 power.domains); 430 431 drm_dbg_kms(display->drm, "async_put_wakeref: %s\n", 432 str_yes_no(power_domains->async_put_wakeref)); 433 434 print_power_domains(power_domains, "async_put_domains[0]", 435 &power_domains->async_put_domains[0]); 436 print_power_domains(power_domains, "async_put_domains[1]", 437 &power_domains->async_put_domains[1]); 438 } 439 440 static void 441 verify_async_put_domains_state(struct i915_power_domains *power_domains) 442 { 443 if (!__async_put_domains_state_ok(power_domains)) 444 print_async_put_domains_state(power_domains); 445 } 446 447 #else 448 449 static void 450 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 451 { 452 } 453 454 static void 455 verify_async_put_domains_state(struct i915_power_domains *power_domains) 456 { 457 } 458 459 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */ 460 461 static void async_put_domains_mask(struct i915_power_domains *power_domains, 462 struct intel_power_domain_mask *mask) 463 464 { 465 assert_async_put_domain_masks_disjoint(power_domains); 466 467 __async_put_domains_mask(power_domains, mask); 468 } 469 470 static void 471 async_put_domains_clear_domain(struct i915_power_domains *power_domains, 472 enum intel_display_power_domain domain) 473 { 474 assert_async_put_domain_masks_disjoint(power_domains); 475 476 clear_bit(domain, power_domains->async_put_domains[0].bits); 477 clear_bit(domain, power_domains->async_put_domains[1].bits); 478 } 479 480 static void 481 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync) 482 { 483 if (sync) 484 cancel_delayed_work_sync(&power_domains->async_put_work); 485 else 486 cancel_delayed_work(&power_domains->async_put_work); 487 488 power_domains->async_put_next_delay = 0; 489 } 490 491 static bool 492 intel_display_power_grab_async_put_ref(struct intel_display *display, 493 enum intel_display_power_domain domain) 494 { 495 struct i915_power_domains *power_domains = &display->power.domains; 496 struct intel_power_domain_mask async_put_mask; 497 bool ret = false; 498 499 async_put_domains_mask(power_domains, &async_put_mask); 500 if (!test_bit(domain, async_put_mask.bits)) 501 goto out_verify; 502 503 async_put_domains_clear_domain(power_domains, domain); 504 505 ret = true; 506 507 async_put_domains_mask(power_domains, &async_put_mask); 508 if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)) 509 goto out_verify; 510 511 cancel_async_put_work(power_domains, false); 512 intel_display_rpm_put_raw(display, 513 fetch_and_zero(&power_domains->async_put_wakeref)); 514 out_verify: 515 verify_async_put_domains_state(power_domains); 516 517 return ret; 518 } 519 520 static void 521 __intel_display_power_get_domain(struct intel_display *display, 522 enum intel_display_power_domain domain) 523 { 524 struct i915_power_domains *power_domains = &display->power.domains; 525 struct i915_power_well *power_well; 526 527 if (intel_display_power_grab_async_put_ref(display, domain)) 528 return; 529 530 for_each_power_domain_well(display, power_well, domain) 531 intel_power_well_get(display, power_well); 532 533 power_domains->domain_use_count[domain]++; 534 } 535 536 /** 537 * intel_display_power_get - grab a power domain reference 538 * @display: display device instance 539 * @domain: power domain to reference 540 * 541 * This function grabs a power domain reference for @domain and ensures that the 542 * power domain and all its parents are powered up. Therefore users should only 543 * grab a reference to the innermost power domain they need. 544 * 545 * Any power domain reference obtained by this function must have a symmetric 546 * call to intel_display_power_put() to release the reference again. 547 */ 548 intel_wakeref_t intel_display_power_get(struct intel_display *display, 549 enum intel_display_power_domain domain) 550 { 551 struct i915_power_domains *power_domains = &display->power.domains; 552 struct ref_tracker *wakeref; 553 554 wakeref = intel_display_rpm_get(display); 555 556 mutex_lock(&power_domains->lock); 557 __intel_display_power_get_domain(display, domain); 558 mutex_unlock(&power_domains->lock); 559 560 return wakeref; 561 } 562 563 /** 564 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain 565 * @display: display device instance 566 * @domain: power domain to reference 567 * 568 * This function grabs a power domain reference for @domain and ensures that the 569 * power domain and all its parents are powered up. Therefore users should only 570 * grab a reference to the innermost power domain they need. 571 * 572 * Any power domain reference obtained by this function must have a symmetric 573 * call to intel_display_power_put() to release the reference again. 574 */ 575 intel_wakeref_t 576 intel_display_power_get_if_enabled(struct intel_display *display, 577 enum intel_display_power_domain domain) 578 { 579 struct i915_power_domains *power_domains = &display->power.domains; 580 struct ref_tracker *wakeref; 581 bool is_enabled; 582 583 wakeref = intel_display_rpm_get_if_in_use(display); 584 if (!wakeref) 585 return NULL; 586 587 mutex_lock(&power_domains->lock); 588 589 if (__intel_display_power_is_enabled(display, domain)) { 590 __intel_display_power_get_domain(display, domain); 591 is_enabled = true; 592 } else { 593 is_enabled = false; 594 } 595 596 mutex_unlock(&power_domains->lock); 597 598 if (!is_enabled) { 599 intel_display_rpm_put(display, wakeref); 600 wakeref = NULL; 601 } 602 603 return wakeref; 604 } 605 606 static void 607 __intel_display_power_put_domain(struct intel_display *display, 608 enum intel_display_power_domain domain) 609 { 610 struct i915_power_domains *power_domains = &display->power.domains; 611 struct i915_power_well *power_well; 612 const char *name = intel_display_power_domain_str(domain); 613 struct intel_power_domain_mask async_put_mask; 614 615 drm_WARN(display->drm, !power_domains->domain_use_count[domain], 616 "Use count on domain %s is already zero\n", 617 name); 618 async_put_domains_mask(power_domains, &async_put_mask); 619 drm_WARN(display->drm, 620 test_bit(domain, async_put_mask.bits), 621 "Async disabling of domain %s is pending\n", 622 name); 623 624 power_domains->domain_use_count[domain]--; 625 626 for_each_power_domain_well_reverse(display, power_well, domain) 627 intel_power_well_put(display, power_well); 628 } 629 630 static void __intel_display_power_put(struct intel_display *display, 631 enum intel_display_power_domain domain) 632 { 633 struct i915_power_domains *power_domains = &display->power.domains; 634 635 mutex_lock(&power_domains->lock); 636 __intel_display_power_put_domain(display, domain); 637 mutex_unlock(&power_domains->lock); 638 } 639 640 static void 641 queue_async_put_domains_work(struct i915_power_domains *power_domains, 642 intel_wakeref_t wakeref, 643 int delay_ms) 644 { 645 struct intel_display *display = container_of(power_domains, 646 struct intel_display, 647 power.domains); 648 drm_WARN_ON(display->drm, power_domains->async_put_wakeref); 649 power_domains->async_put_wakeref = wakeref; 650 drm_WARN_ON(display->drm, !queue_delayed_work(system_unbound_wq, 651 &power_domains->async_put_work, 652 msecs_to_jiffies(delay_ms))); 653 } 654 655 static void 656 release_async_put_domains(struct i915_power_domains *power_domains, 657 struct intel_power_domain_mask *mask) 658 { 659 struct intel_display *display = container_of(power_domains, 660 struct intel_display, 661 power.domains); 662 enum intel_display_power_domain domain; 663 struct ref_tracker *wakeref; 664 665 wakeref = intel_display_rpm_get_noresume(display); 666 667 for_each_power_domain(domain, mask) { 668 /* Clear before put, so put's sanity check is happy. */ 669 async_put_domains_clear_domain(power_domains, domain); 670 __intel_display_power_put_domain(display, domain); 671 } 672 673 intel_display_rpm_put(display, wakeref); 674 } 675 676 static void 677 intel_display_power_put_async_work(struct work_struct *work) 678 { 679 struct intel_display *display = container_of(work, struct intel_display, 680 power.domains.async_put_work.work); 681 struct i915_power_domains *power_domains = &display->power.domains; 682 struct ref_tracker *new_work_wakeref, *old_work_wakeref = NULL; 683 684 new_work_wakeref = intel_display_rpm_get_raw(display); 685 686 mutex_lock(&power_domains->lock); 687 688 /* 689 * Bail out if all the domain refs pending to be released were grabbed 690 * by subsequent gets or a flush_work. 691 */ 692 old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 693 if (!old_work_wakeref) 694 goto out_verify; 695 696 release_async_put_domains(power_domains, 697 &power_domains->async_put_domains[0]); 698 699 /* 700 * Cancel the work that got queued after this one got dequeued, 701 * since here we released the corresponding async-put reference. 702 */ 703 cancel_async_put_work(power_domains, false); 704 705 /* Requeue the work if more domains were async put meanwhile. */ 706 if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) { 707 bitmap_copy(power_domains->async_put_domains[0].bits, 708 power_domains->async_put_domains[1].bits, 709 POWER_DOMAIN_NUM); 710 bitmap_zero(power_domains->async_put_domains[1].bits, 711 POWER_DOMAIN_NUM); 712 queue_async_put_domains_work(power_domains, 713 fetch_and_zero(&new_work_wakeref), 714 power_domains->async_put_next_delay); 715 power_domains->async_put_next_delay = 0; 716 } 717 718 out_verify: 719 verify_async_put_domains_state(power_domains); 720 721 mutex_unlock(&power_domains->lock); 722 723 if (old_work_wakeref) 724 intel_display_rpm_put_raw(display, old_work_wakeref); 725 if (new_work_wakeref) 726 intel_display_rpm_put_raw(display, new_work_wakeref); 727 } 728 729 /** 730 * __intel_display_power_put_async - release a power domain reference asynchronously 731 * @display: display device instance 732 * @domain: power domain to reference 733 * @wakeref: wakeref acquired for the reference that is being released 734 * @delay_ms: delay of powering down the power domain 735 * 736 * This function drops the power domain reference obtained by 737 * intel_display_power_get*() and schedules a work to power down the 738 * corresponding hardware block if this is the last reference. 739 * The power down is delayed by @delay_ms if this is >= 0, or by a default 740 * 100 ms otherwise. 741 */ 742 void __intel_display_power_put_async(struct intel_display *display, 743 enum intel_display_power_domain domain, 744 intel_wakeref_t wakeref, 745 int delay_ms) 746 { 747 struct i915_power_domains *power_domains = &display->power.domains; 748 struct ref_tracker *work_wakeref; 749 750 work_wakeref = intel_display_rpm_get_raw(display); 751 752 delay_ms = delay_ms >= 0 ? delay_ms : 100; 753 754 mutex_lock(&power_domains->lock); 755 756 if (power_domains->domain_use_count[domain] > 1) { 757 __intel_display_power_put_domain(display, domain); 758 759 goto out_verify; 760 } 761 762 drm_WARN_ON(display->drm, power_domains->domain_use_count[domain] != 1); 763 764 /* Let a pending work requeue itself or queue a new one. */ 765 if (power_domains->async_put_wakeref) { 766 set_bit(domain, power_domains->async_put_domains[1].bits); 767 power_domains->async_put_next_delay = max(power_domains->async_put_next_delay, 768 delay_ms); 769 } else { 770 set_bit(domain, power_domains->async_put_domains[0].bits); 771 queue_async_put_domains_work(power_domains, 772 fetch_and_zero(&work_wakeref), 773 delay_ms); 774 } 775 776 out_verify: 777 verify_async_put_domains_state(power_domains); 778 779 mutex_unlock(&power_domains->lock); 780 781 if (work_wakeref) 782 intel_display_rpm_put_raw(display, work_wakeref); 783 784 intel_display_rpm_put(display, wakeref); 785 } 786 787 /** 788 * intel_display_power_flush_work - flushes the async display power disabling work 789 * @display: display device instance 790 * 791 * Flushes any pending work that was scheduled by a preceding 792 * intel_display_power_put_async() call, completing the disabling of the 793 * corresponding power domains. 794 * 795 * Note that the work handler function may still be running after this 796 * function returns; to ensure that the work handler isn't running use 797 * intel_display_power_flush_work_sync() instead. 798 */ 799 void intel_display_power_flush_work(struct intel_display *display) 800 { 801 struct i915_power_domains *power_domains = &display->power.domains; 802 struct intel_power_domain_mask async_put_mask; 803 intel_wakeref_t work_wakeref; 804 805 mutex_lock(&power_domains->lock); 806 807 work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 808 if (!work_wakeref) 809 goto out_verify; 810 811 async_put_domains_mask(power_domains, &async_put_mask); 812 release_async_put_domains(power_domains, &async_put_mask); 813 cancel_async_put_work(power_domains, false); 814 815 out_verify: 816 verify_async_put_domains_state(power_domains); 817 818 mutex_unlock(&power_domains->lock); 819 820 if (work_wakeref) 821 intel_display_rpm_put_raw(display, work_wakeref); 822 } 823 824 /** 825 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work 826 * @display: display device instance 827 * 828 * Like intel_display_power_flush_work(), but also ensure that the work 829 * handler function is not running any more when this function returns. 830 */ 831 static void 832 intel_display_power_flush_work_sync(struct intel_display *display) 833 { 834 struct i915_power_domains *power_domains = &display->power.domains; 835 836 intel_display_power_flush_work(display); 837 cancel_async_put_work(power_domains, true); 838 839 verify_async_put_domains_state(power_domains); 840 841 drm_WARN_ON(display->drm, power_domains->async_put_wakeref); 842 } 843 844 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 845 /** 846 * intel_display_power_put - release a power domain reference 847 * @display: display device instance 848 * @domain: power domain to reference 849 * @wakeref: wakeref acquired for the reference that is being released 850 * 851 * This function drops the power domain reference obtained by 852 * intel_display_power_get() and might power down the corresponding hardware 853 * block right away if this is the last reference. 854 */ 855 void intel_display_power_put(struct intel_display *display, 856 enum intel_display_power_domain domain, 857 intel_wakeref_t wakeref) 858 { 859 __intel_display_power_put(display, domain); 860 intel_display_rpm_put(display, wakeref); 861 } 862 #else 863 /** 864 * intel_display_power_put_unchecked - release an unchecked power domain reference 865 * @display: display device instance 866 * @domain: power domain to reference 867 * 868 * This function drops the power domain reference obtained by 869 * intel_display_power_get() and might power down the corresponding hardware 870 * block right away if this is the last reference. 871 * 872 * This function is only for the power domain code's internal use to suppress wakeref 873 * tracking when the corresponding debug kconfig option is disabled, should not 874 * be used otherwise. 875 */ 876 void intel_display_power_put_unchecked(struct intel_display *display, 877 enum intel_display_power_domain domain) 878 { 879 __intel_display_power_put(display, domain); 880 intel_display_rpm_put_unchecked(display); 881 } 882 #endif 883 884 void 885 intel_display_power_get_in_set(struct intel_display *display, 886 struct intel_display_power_domain_set *power_domain_set, 887 enum intel_display_power_domain domain) 888 { 889 intel_wakeref_t __maybe_unused wf; 890 891 drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits)); 892 893 wf = intel_display_power_get(display, domain); 894 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 895 power_domain_set->wakerefs[domain] = wf; 896 #endif 897 set_bit(domain, power_domain_set->mask.bits); 898 } 899 900 bool 901 intel_display_power_get_in_set_if_enabled(struct intel_display *display, 902 struct intel_display_power_domain_set *power_domain_set, 903 enum intel_display_power_domain domain) 904 { 905 intel_wakeref_t wf; 906 907 drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits)); 908 909 wf = intel_display_power_get_if_enabled(display, domain); 910 if (!wf) 911 return false; 912 913 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 914 power_domain_set->wakerefs[domain] = wf; 915 #endif 916 set_bit(domain, power_domain_set->mask.bits); 917 918 return true; 919 } 920 921 void 922 intel_display_power_put_mask_in_set(struct intel_display *display, 923 struct intel_display_power_domain_set *power_domain_set, 924 struct intel_power_domain_mask *mask) 925 { 926 enum intel_display_power_domain domain; 927 928 drm_WARN_ON(display->drm, 929 !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM)); 930 931 for_each_power_domain(domain, mask) { 932 intel_wakeref_t __maybe_unused wf = INTEL_WAKEREF_DEF; 933 934 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 935 wf = fetch_and_zero(&power_domain_set->wakerefs[domain]); 936 #endif 937 intel_display_power_put(display, domain, wf); 938 clear_bit(domain, power_domain_set->mask.bits); 939 } 940 } 941 942 static int 943 sanitize_disable_power_well_option(int disable_power_well) 944 { 945 if (disable_power_well >= 0) 946 return !!disable_power_well; 947 948 return 1; 949 } 950 951 static u32 get_allowed_dc_mask(struct intel_display *display, int enable_dc) 952 { 953 u32 mask; 954 int requested_dc; 955 int max_dc; 956 957 if (!HAS_DISPLAY(display)) 958 return 0; 959 960 if (DISPLAY_VER(display) >= 20) 961 max_dc = 2; 962 else if (display->platform.dg2) 963 max_dc = 1; 964 else if (display->platform.dg1) 965 max_dc = 3; 966 else if (DISPLAY_VER(display) >= 12) 967 max_dc = 4; 968 else if (display->platform.geminilake || display->platform.broxton) 969 max_dc = 1; 970 else if (DISPLAY_VER(display) >= 9) 971 max_dc = 2; 972 else 973 max_dc = 0; 974 975 /* 976 * DC9 has a separate HW flow from the rest of the DC states, 977 * not depending on the DMC firmware. It's needed by system 978 * suspend/resume, so allow it unconditionally. 979 */ 980 mask = display->platform.geminilake || display->platform.broxton || 981 DISPLAY_VER(display) >= 11 ? DC_STATE_EN_DC9 : 0; 982 983 if (!display->params.disable_power_well) 984 max_dc = 0; 985 986 if (enable_dc >= 0 && enable_dc <= max_dc) { 987 requested_dc = enable_dc; 988 } else if (enable_dc == -1) { 989 requested_dc = max_dc; 990 } else if (enable_dc > max_dc && enable_dc <= 4) { 991 drm_dbg_kms(display->drm, 992 "Adjusting requested max DC state (%d->%d)\n", 993 enable_dc, max_dc); 994 requested_dc = max_dc; 995 } else { 996 drm_err(display->drm, 997 "Unexpected value for enable_dc (%d)\n", enable_dc); 998 requested_dc = max_dc; 999 } 1000 1001 switch (requested_dc) { 1002 case 4: 1003 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6; 1004 break; 1005 case 3: 1006 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5; 1007 break; 1008 case 2: 1009 mask |= DC_STATE_EN_UPTO_DC6; 1010 break; 1011 case 1: 1012 mask |= DC_STATE_EN_UPTO_DC5; 1013 break; 1014 } 1015 1016 drm_dbg_kms(display->drm, "Allowed DC state mask %02x\n", mask); 1017 1018 return mask; 1019 } 1020 1021 /** 1022 * intel_power_domains_init - initializes the power domain structures 1023 * @display: display device instance 1024 * 1025 * Initializes the power domain structures for @display depending upon the 1026 * supported platform. 1027 */ 1028 int intel_power_domains_init(struct intel_display *display) 1029 { 1030 struct i915_power_domains *power_domains = &display->power.domains; 1031 1032 display->params.disable_power_well = 1033 sanitize_disable_power_well_option(display->params.disable_power_well); 1034 power_domains->allowed_dc_mask = 1035 get_allowed_dc_mask(display, display->params.enable_dc); 1036 1037 power_domains->target_dc_state = 1038 sanitize_target_dc_state(display, DC_STATE_EN_UPTO_DC6); 1039 1040 mutex_init(&power_domains->lock); 1041 1042 INIT_DELAYED_WORK(&power_domains->async_put_work, 1043 intel_display_power_put_async_work); 1044 1045 return intel_display_power_map_init(power_domains); 1046 } 1047 1048 /** 1049 * intel_power_domains_cleanup - clean up power domains resources 1050 * @display: display device instance 1051 * 1052 * Release any resources acquired by intel_power_domains_init() 1053 */ 1054 void intel_power_domains_cleanup(struct intel_display *display) 1055 { 1056 intel_display_power_map_cleanup(&display->power.domains); 1057 } 1058 1059 static void intel_power_domains_sync_hw(struct intel_display *display) 1060 { 1061 struct i915_power_domains *power_domains = &display->power.domains; 1062 struct i915_power_well *power_well; 1063 1064 mutex_lock(&power_domains->lock); 1065 for_each_power_well(display, power_well) 1066 intel_power_well_sync_hw(display, power_well); 1067 mutex_unlock(&power_domains->lock); 1068 } 1069 1070 static void gen9_dbuf_slice_set(struct intel_display *display, 1071 enum dbuf_slice slice, bool enable) 1072 { 1073 i915_reg_t reg = DBUF_CTL_S(slice); 1074 bool state; 1075 1076 intel_de_rmw(display, reg, DBUF_POWER_REQUEST, 1077 enable ? DBUF_POWER_REQUEST : 0); 1078 intel_de_posting_read(display, reg); 1079 udelay(10); 1080 1081 state = intel_de_read(display, reg) & DBUF_POWER_STATE; 1082 drm_WARN(display->drm, enable != state, 1083 "DBuf slice %d power %s timeout!\n", 1084 slice, str_enable_disable(enable)); 1085 } 1086 1087 void gen9_dbuf_slices_update(struct intel_display *display, 1088 u8 req_slices) 1089 { 1090 struct i915_power_domains *power_domains = &display->power.domains; 1091 u8 slice_mask = DISPLAY_INFO(display)->dbuf.slice_mask; 1092 enum dbuf_slice slice; 1093 1094 drm_WARN(display->drm, req_slices & ~slice_mask, 1095 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n", 1096 req_slices, slice_mask); 1097 1098 drm_dbg_kms(display->drm, "Updating dbuf slices to 0x%x\n", 1099 req_slices); 1100 1101 /* 1102 * Might be running this in parallel to gen9_dc_off_power_well_enable 1103 * being called from intel_dp_detect for instance, 1104 * which causes assertion triggered by race condition, 1105 * as gen9_assert_dbuf_enabled might preempt this when registers 1106 * were already updated, while dev_priv was not. 1107 */ 1108 mutex_lock(&power_domains->lock); 1109 1110 for_each_dbuf_slice(display, slice) 1111 gen9_dbuf_slice_set(display, slice, req_slices & BIT(slice)); 1112 1113 display->dbuf.enabled_slices = req_slices; 1114 1115 mutex_unlock(&power_domains->lock); 1116 } 1117 1118 static void gen9_dbuf_enable(struct intel_display *display) 1119 { 1120 u8 slices_mask; 1121 1122 display->dbuf.enabled_slices = intel_enabled_dbuf_slices_mask(display); 1123 1124 slices_mask = BIT(DBUF_S1) | display->dbuf.enabled_slices; 1125 1126 if (DISPLAY_VER(display) >= 14) 1127 intel_pmdemand_program_dbuf(display, slices_mask); 1128 1129 /* 1130 * Just power up at least 1 slice, we will 1131 * figure out later which slices we have and what we need. 1132 */ 1133 gen9_dbuf_slices_update(display, slices_mask); 1134 } 1135 1136 static void gen9_dbuf_disable(struct intel_display *display) 1137 { 1138 gen9_dbuf_slices_update(display, 0); 1139 1140 if (DISPLAY_VER(display) >= 14) 1141 intel_pmdemand_program_dbuf(display, 0); 1142 } 1143 1144 static void gen12_dbuf_slices_config(struct intel_display *display) 1145 { 1146 enum dbuf_slice slice; 1147 1148 for_each_dbuf_slice(display, slice) 1149 intel_de_rmw(display, DBUF_CTL_S(slice), 1150 DBUF_TRACKER_STATE_SERVICE_MASK, 1151 DBUF_TRACKER_STATE_SERVICE(8)); 1152 } 1153 1154 static void icl_mbus_init(struct intel_display *display) 1155 { 1156 unsigned long abox_regs = DISPLAY_INFO(display)->abox_mask; 1157 u32 mask, val, i; 1158 1159 if (display->platform.alderlake_p || DISPLAY_VER(display) >= 14) 1160 return; 1161 1162 mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK | 1163 MBUS_ABOX_BT_CREDIT_POOL2_MASK | 1164 MBUS_ABOX_B_CREDIT_MASK | 1165 MBUS_ABOX_BW_CREDIT_MASK; 1166 val = MBUS_ABOX_BT_CREDIT_POOL1(16) | 1167 MBUS_ABOX_BT_CREDIT_POOL2(16) | 1168 MBUS_ABOX_B_CREDIT(1) | 1169 MBUS_ABOX_BW_CREDIT(1); 1170 1171 /* 1172 * gen12 platforms that use abox1 and abox2 for pixel data reads still 1173 * expect us to program the abox_ctl0 register as well, even though 1174 * we don't have to program other instance-0 registers like BW_BUDDY. 1175 */ 1176 if (DISPLAY_VER(display) == 12) 1177 abox_regs |= BIT(0); 1178 1179 for_each_set_bit(i, &abox_regs, BITS_PER_TYPE(abox_regs)) 1180 intel_de_rmw(display, MBUS_ABOX_CTL(i), mask, val); 1181 } 1182 1183 static void hsw_assert_cdclk(struct intel_display *display) 1184 { 1185 u32 val = intel_de_read(display, LCPLL_CTL); 1186 1187 /* 1188 * The LCPLL register should be turned on by the BIOS. For now 1189 * let's just check its state and print errors in case 1190 * something is wrong. Don't even try to turn it on. 1191 */ 1192 1193 if (val & LCPLL_CD_SOURCE_FCLK) 1194 drm_err(display->drm, "CDCLK source is not LCPLL\n"); 1195 1196 if (val & LCPLL_PLL_DISABLE) 1197 drm_err(display->drm, "LCPLL is disabled\n"); 1198 1199 if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC) 1200 drm_err(display->drm, "LCPLL not using non-SSC reference\n"); 1201 } 1202 1203 static void assert_can_disable_lcpll(struct intel_display *display) 1204 { 1205 struct drm_i915_private *dev_priv = to_i915(display->drm); 1206 struct intel_crtc *crtc; 1207 1208 for_each_intel_crtc(display->drm, crtc) 1209 INTEL_DISPLAY_STATE_WARN(display, crtc->active, 1210 "CRTC for pipe %c enabled\n", 1211 pipe_name(crtc->pipe)); 1212 1213 INTEL_DISPLAY_STATE_WARN(display, intel_de_read(display, HSW_PWR_WELL_CTL2), 1214 "Display power well on\n"); 1215 INTEL_DISPLAY_STATE_WARN(display, 1216 intel_de_read(display, SPLL_CTL) & SPLL_PLL_ENABLE, 1217 "SPLL enabled\n"); 1218 INTEL_DISPLAY_STATE_WARN(display, 1219 intel_de_read(display, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, 1220 "WRPLL1 enabled\n"); 1221 INTEL_DISPLAY_STATE_WARN(display, 1222 intel_de_read(display, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, 1223 "WRPLL2 enabled\n"); 1224 INTEL_DISPLAY_STATE_WARN(display, 1225 intel_de_read(display, PP_STATUS(display, 0)) & PP_ON, 1226 "Panel power on\n"); 1227 INTEL_DISPLAY_STATE_WARN(display, 1228 intel_de_read(display, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, 1229 "CPU PWM1 enabled\n"); 1230 if (display->platform.haswell) 1231 INTEL_DISPLAY_STATE_WARN(display, 1232 intel_de_read(display, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, 1233 "CPU PWM2 enabled\n"); 1234 INTEL_DISPLAY_STATE_WARN(display, 1235 intel_de_read(display, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, 1236 "PCH PWM1 enabled\n"); 1237 INTEL_DISPLAY_STATE_WARN(display, 1238 (intel_de_read(display, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM), 1239 "Utility pin enabled in PWM mode\n"); 1240 INTEL_DISPLAY_STATE_WARN(display, 1241 intel_de_read(display, PCH_GTC_CTL) & PCH_GTC_ENABLE, 1242 "PCH GTC enabled\n"); 1243 1244 /* 1245 * In theory we can still leave IRQs enabled, as long as only the HPD 1246 * interrupts remain enabled. We used to check for that, but since it's 1247 * gen-specific and since we only disable LCPLL after we fully disable 1248 * the interrupts, the check below should be enough. 1249 */ 1250 INTEL_DISPLAY_STATE_WARN(display, intel_irqs_enabled(dev_priv), 1251 "IRQs enabled\n"); 1252 } 1253 1254 static u32 hsw_read_dcomp(struct intel_display *display) 1255 { 1256 if (display->platform.haswell) 1257 return intel_de_read(display, D_COMP_HSW); 1258 else 1259 return intel_de_read(display, D_COMP_BDW); 1260 } 1261 1262 static void hsw_write_dcomp(struct intel_display *display, u32 val) 1263 { 1264 if (display->platform.haswell) { 1265 if (intel_pcode_write(display->drm, GEN6_PCODE_WRITE_D_COMP, val)) 1266 drm_dbg_kms(display->drm, "Failed to write to D_COMP\n"); 1267 } else { 1268 intel_de_write(display, D_COMP_BDW, val); 1269 intel_de_posting_read(display, D_COMP_BDW); 1270 } 1271 } 1272 1273 /* 1274 * This function implements pieces of two sequences from BSpec: 1275 * - Sequence for display software to disable LCPLL 1276 * - Sequence for display software to allow package C8+ 1277 * The steps implemented here are just the steps that actually touch the LCPLL 1278 * register. Callers should take care of disabling all the display engine 1279 * functions, doing the mode unset, fixing interrupts, etc. 1280 */ 1281 static void hsw_disable_lcpll(struct intel_display *display, 1282 bool switch_to_fclk, bool allow_power_down) 1283 { 1284 u32 val; 1285 int ret; 1286 1287 assert_can_disable_lcpll(display); 1288 1289 val = intel_de_read(display, LCPLL_CTL); 1290 1291 if (switch_to_fclk) { 1292 val |= LCPLL_CD_SOURCE_FCLK; 1293 intel_de_write(display, LCPLL_CTL, val); 1294 1295 ret = intel_de_wait_for_set_us(display, LCPLL_CTL, 1296 LCPLL_CD_SOURCE_FCLK_DONE, 1); 1297 if (ret) 1298 drm_err(display->drm, "Switching to FCLK failed\n"); 1299 1300 val = intel_de_read(display, LCPLL_CTL); 1301 } 1302 1303 val |= LCPLL_PLL_DISABLE; 1304 intel_de_write(display, LCPLL_CTL, val); 1305 intel_de_posting_read(display, LCPLL_CTL); 1306 1307 if (intel_de_wait_for_clear_ms(display, LCPLL_CTL, LCPLL_PLL_LOCK, 1)) 1308 drm_err(display->drm, "LCPLL still locked\n"); 1309 1310 val = hsw_read_dcomp(display); 1311 val |= D_COMP_COMP_DISABLE; 1312 hsw_write_dcomp(display, val); 1313 ndelay(100); 1314 1315 ret = poll_timeout_us(val = hsw_read_dcomp(display), 1316 (val & D_COMP_RCOMP_IN_PROGRESS) == 0, 1317 100, 1000, false); 1318 if (ret) 1319 drm_err(display->drm, "D_COMP RCOMP still in progress\n"); 1320 1321 if (allow_power_down) { 1322 intel_de_rmw(display, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW); 1323 intel_de_posting_read(display, LCPLL_CTL); 1324 } 1325 } 1326 1327 /* 1328 * Fully restores LCPLL, disallowing power down and switching back to LCPLL 1329 * source. 1330 */ 1331 static void hsw_restore_lcpll(struct intel_display *display) 1332 { 1333 struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm); 1334 u32 val; 1335 int ret; 1336 1337 val = intel_de_read(display, LCPLL_CTL); 1338 1339 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | 1340 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) 1341 return; 1342 1343 /* 1344 * Make sure we're not on PC8 state before disabling PC8, otherwise 1345 * we'll hang the machine. To prevent PC8 state, just enable force_wake. 1346 */ 1347 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); 1348 1349 if (val & LCPLL_POWER_DOWN_ALLOW) { 1350 val &= ~LCPLL_POWER_DOWN_ALLOW; 1351 intel_de_write(display, LCPLL_CTL, val); 1352 intel_de_posting_read(display, LCPLL_CTL); 1353 } 1354 1355 val = hsw_read_dcomp(display); 1356 val |= D_COMP_COMP_FORCE; 1357 val &= ~D_COMP_COMP_DISABLE; 1358 hsw_write_dcomp(display, val); 1359 1360 val = intel_de_read(display, LCPLL_CTL); 1361 val &= ~LCPLL_PLL_DISABLE; 1362 intel_de_write(display, LCPLL_CTL, val); 1363 1364 if (intel_de_wait_for_set_ms(display, LCPLL_CTL, LCPLL_PLL_LOCK, 5)) 1365 drm_err(display->drm, "LCPLL not locked yet\n"); 1366 1367 if (val & LCPLL_CD_SOURCE_FCLK) { 1368 intel_de_rmw(display, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0); 1369 1370 ret = intel_de_wait_for_clear_us(display, LCPLL_CTL, 1371 LCPLL_CD_SOURCE_FCLK_DONE, 1); 1372 if (ret) 1373 drm_err(display->drm, 1374 "Switching back to LCPLL failed\n"); 1375 } 1376 1377 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 1378 1379 intel_update_cdclk(display); 1380 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 1381 } 1382 1383 /* 1384 * Package states C8 and deeper are really deep PC states that can only be 1385 * reached when all the devices on the system allow it, so even if the graphics 1386 * device allows PC8+, it doesn't mean the system will actually get to these 1387 * states. Our driver only allows PC8+ when going into runtime PM. 1388 * 1389 * The requirements for PC8+ are that all the outputs are disabled, the power 1390 * well is disabled and most interrupts are disabled, and these are also 1391 * requirements for runtime PM. When these conditions are met, we manually do 1392 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk 1393 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard 1394 * hang the machine. 1395 * 1396 * When we really reach PC8 or deeper states (not just when we allow it) we lose 1397 * the state of some registers, so when we come back from PC8+ we need to 1398 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't 1399 * need to take care of the registers kept by RC6. Notice that this happens even 1400 * if we don't put the device in PCI D3 state (which is what currently happens 1401 * because of the runtime PM support). 1402 * 1403 * For more, read "Display Sequences for Package C8" on the hardware 1404 * documentation. 1405 */ 1406 static void hsw_enable_pc8(struct intel_display *display) 1407 { 1408 drm_dbg_kms(display->drm, "Enabling package C8+\n"); 1409 1410 if (HAS_PCH_LPT_LP(display)) 1411 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1412 PCH_LP_PARTITION_LEVEL_DISABLE, 0); 1413 1414 lpt_disable_clkout_dp(display); 1415 hsw_disable_lcpll(display, true, true); 1416 } 1417 1418 static void hsw_disable_pc8(struct intel_display *display) 1419 { 1420 struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm); 1421 1422 drm_dbg_kms(display->drm, "Disabling package C8+\n"); 1423 1424 hsw_restore_lcpll(display); 1425 intel_init_pch_refclk(display); 1426 1427 /* Many display registers don't survive PC8+ */ 1428 #ifdef I915 /* FIXME */ 1429 intel_clock_gating_init(dev_priv); 1430 #endif 1431 } 1432 1433 static void intel_pch_reset_handshake(struct intel_display *display, 1434 bool enable) 1435 { 1436 i915_reg_t reg; 1437 u32 reset_bits; 1438 1439 if (DISPLAY_VER(display) >= 35) 1440 return; 1441 1442 if (display->platform.ivybridge) { 1443 reg = GEN7_MSG_CTL; 1444 reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK; 1445 } else { 1446 reg = HSW_NDE_RSTWRN_OPT; 1447 reset_bits = RESET_PCH_HANDSHAKE_ENABLE; 1448 } 1449 1450 if (DISPLAY_VER(display) >= 14) 1451 reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN; 1452 1453 intel_de_rmw(display, reg, reset_bits, enable ? reset_bits : 0); 1454 } 1455 1456 static void skl_display_core_init(struct intel_display *display, 1457 bool resume) 1458 { 1459 struct i915_power_domains *power_domains = &display->power.domains; 1460 struct i915_power_well *well; 1461 1462 gen9_set_dc_state(display, DC_STATE_DISABLE); 1463 1464 /* enable PCH reset handshake */ 1465 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1466 1467 if (!HAS_DISPLAY(display)) 1468 return; 1469 1470 /* enable PG1 and Misc I/O */ 1471 mutex_lock(&power_domains->lock); 1472 1473 well = lookup_power_well(display, SKL_DISP_PW_1); 1474 intel_power_well_enable(display, well); 1475 1476 well = lookup_power_well(display, SKL_DISP_PW_MISC_IO); 1477 intel_power_well_enable(display, well); 1478 1479 mutex_unlock(&power_domains->lock); 1480 1481 intel_cdclk_init_hw(display); 1482 1483 gen9_dbuf_enable(display); 1484 1485 if (resume) 1486 intel_dmc_load_program(display); 1487 } 1488 1489 static void skl_display_core_uninit(struct intel_display *display) 1490 { 1491 struct i915_power_domains *power_domains = &display->power.domains; 1492 struct i915_power_well *well; 1493 1494 if (!HAS_DISPLAY(display)) 1495 return; 1496 1497 gen9_disable_dc_states(display); 1498 /* TODO: disable DMC program */ 1499 1500 gen9_dbuf_disable(display); 1501 1502 intel_cdclk_uninit_hw(display); 1503 1504 /* The spec doesn't call for removing the reset handshake flag */ 1505 /* disable PG1 and Misc I/O */ 1506 1507 mutex_lock(&power_domains->lock); 1508 1509 /* 1510 * BSpec says to keep the MISC IO power well enabled here, only 1511 * remove our request for power well 1. 1512 * Note that even though the driver's request is removed power well 1 1513 * may stay enabled after this due to DMC's own request on it. 1514 */ 1515 well = lookup_power_well(display, SKL_DISP_PW_1); 1516 intel_power_well_disable(display, well); 1517 1518 mutex_unlock(&power_domains->lock); 1519 1520 usleep_range(10, 30); /* 10 us delay per Bspec */ 1521 } 1522 1523 static void bxt_display_core_init(struct intel_display *display, bool resume) 1524 { 1525 struct i915_power_domains *power_domains = &display->power.domains; 1526 struct i915_power_well *well; 1527 1528 gen9_set_dc_state(display, DC_STATE_DISABLE); 1529 1530 /* 1531 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT 1532 * or else the reset will hang because there is no PCH to respond. 1533 * Move the handshake programming to initialization sequence. 1534 * Previously was left up to BIOS. 1535 */ 1536 intel_pch_reset_handshake(display, false); 1537 1538 if (!HAS_DISPLAY(display)) 1539 return; 1540 1541 /* Enable PG1 */ 1542 mutex_lock(&power_domains->lock); 1543 1544 well = lookup_power_well(display, SKL_DISP_PW_1); 1545 intel_power_well_enable(display, well); 1546 1547 mutex_unlock(&power_domains->lock); 1548 1549 intel_cdclk_init_hw(display); 1550 1551 gen9_dbuf_enable(display); 1552 1553 if (resume) 1554 intel_dmc_load_program(display); 1555 } 1556 1557 static void bxt_display_core_uninit(struct intel_display *display) 1558 { 1559 struct i915_power_domains *power_domains = &display->power.domains; 1560 struct i915_power_well *well; 1561 1562 if (!HAS_DISPLAY(display)) 1563 return; 1564 1565 gen9_disable_dc_states(display); 1566 /* TODO: disable DMC program */ 1567 1568 gen9_dbuf_disable(display); 1569 1570 intel_cdclk_uninit_hw(display); 1571 1572 /* The spec doesn't call for removing the reset handshake flag */ 1573 1574 /* 1575 * Disable PW1 (PG1). 1576 * Note that even though the driver's request is removed power well 1 1577 * may stay enabled after this due to DMC's own request on it. 1578 */ 1579 mutex_lock(&power_domains->lock); 1580 1581 well = lookup_power_well(display, SKL_DISP_PW_1); 1582 intel_power_well_disable(display, well); 1583 1584 mutex_unlock(&power_domains->lock); 1585 1586 usleep_range(10, 30); /* 10 us delay per Bspec */ 1587 } 1588 1589 struct buddy_page_mask { 1590 u32 page_mask; 1591 u8 type; 1592 u8 num_channels; 1593 }; 1594 1595 static const struct buddy_page_mask tgl_buddy_page_masks[] = { 1596 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF }, 1597 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF }, 1598 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C }, 1599 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C }, 1600 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F }, 1601 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E }, 1602 { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 }, 1603 { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 }, 1604 {} 1605 }; 1606 1607 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = { 1608 { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 }, 1609 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 }, 1610 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 }, 1611 { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 }, 1612 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 }, 1613 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 }, 1614 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 }, 1615 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 }, 1616 {} 1617 }; 1618 1619 static void tgl_bw_buddy_init(struct intel_display *display) 1620 { 1621 const struct dram_info *dram_info = intel_dram_info(display->drm); 1622 const struct buddy_page_mask *table; 1623 unsigned long abox_mask = DISPLAY_INFO(display)->abox_mask; 1624 int config, i; 1625 1626 /* BW_BUDDY registers are not used on dgpu's beyond DG1 */ 1627 if (display->platform.dgfx && !display->platform.dg1) 1628 return; 1629 1630 if (display->platform.alderlake_s || 1631 (display->platform.rocketlake && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0))) 1632 /* Wa_1409767108 */ 1633 table = wa_1409767108_buddy_page_masks; 1634 else 1635 table = tgl_buddy_page_masks; 1636 1637 for (config = 0; table[config].page_mask != 0; config++) 1638 if (table[config].num_channels == dram_info->num_channels && 1639 table[config].type == dram_info->type) 1640 break; 1641 1642 if (table[config].page_mask == 0) { 1643 drm_dbg_kms(display->drm, 1644 "Unknown memory configuration; disabling address buddy logic.\n"); 1645 for_each_set_bit(i, &abox_mask, BITS_PER_TYPE(abox_mask)) 1646 intel_de_write(display, BW_BUDDY_CTL(i), 1647 BW_BUDDY_DISABLE); 1648 } else { 1649 for_each_set_bit(i, &abox_mask, BITS_PER_TYPE(abox_mask)) { 1650 intel_de_write(display, BW_BUDDY_PAGE_MASK(i), 1651 table[config].page_mask); 1652 1653 /* Wa_22010178259:tgl,dg1,rkl,adl-s */ 1654 if (DISPLAY_VER(display) == 12) 1655 intel_de_rmw(display, BW_BUDDY_CTL(i), 1656 BW_BUDDY_TLB_REQ_TIMER_MASK, 1657 BW_BUDDY_TLB_REQ_TIMER(0x8)); 1658 } 1659 } 1660 } 1661 1662 static void icl_display_core_init(struct intel_display *display, 1663 bool resume) 1664 { 1665 struct i915_power_domains *power_domains = &display->power.domains; 1666 struct i915_power_well *well; 1667 1668 gen9_set_dc_state(display, DC_STATE_DISABLE); 1669 1670 /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */ 1671 if (INTEL_PCH_TYPE(display) >= PCH_TGP && 1672 INTEL_PCH_TYPE(display) < PCH_DG1) 1673 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 0, 1674 PCH_DPMGUNIT_CLOCK_GATE_DISABLE); 1675 1676 /* 1. Enable PCH reset handshake. */ 1677 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1678 1679 if (!HAS_DISPLAY(display)) 1680 return; 1681 1682 /* 2. Initialize all combo phys */ 1683 intel_combo_phy_init(display); 1684 1685 /* 1686 * 3. Enable Power Well 1 (PG1). 1687 * The AUX IO power wells will be enabled on demand. 1688 */ 1689 mutex_lock(&power_domains->lock); 1690 well = lookup_power_well(display, SKL_DISP_PW_1); 1691 intel_power_well_enable(display, well); 1692 mutex_unlock(&power_domains->lock); 1693 1694 if (DISPLAY_VER(display) == 14) 1695 intel_de_rmw(display, DC_STATE_EN, 1696 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0); 1697 1698 /* 4. Enable CDCLK. */ 1699 intel_cdclk_init_hw(display); 1700 1701 if (DISPLAY_VER(display) == 12 || display->platform.dg2) 1702 gen12_dbuf_slices_config(display); 1703 1704 /* 5. Enable DBUF. */ 1705 gen9_dbuf_enable(display); 1706 1707 /* 6. Setup MBUS. */ 1708 icl_mbus_init(display); 1709 1710 /* 7. Program arbiter BW_BUDDY registers */ 1711 if (DISPLAY_VER(display) >= 12) 1712 tgl_bw_buddy_init(display); 1713 1714 /* 8. Ensure PHYs have completed calibration and adaptation */ 1715 if (display->platform.dg2) 1716 intel_snps_phy_wait_for_calibration(display); 1717 1718 /* 9. XE2_HPD: Program CHICKEN_MISC_2 before any cursor or planes are enabled */ 1719 if (DISPLAY_VERx100(display) == 1401) 1720 intel_de_rmw(display, CHICKEN_MISC_2, BMG_DARB_HALF_BLK_END_BURST, 1); 1721 1722 if (resume) 1723 intel_dmc_load_program(display); 1724 1725 /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */ 1726 if (IS_DISPLAY_VERx100(display, 1200, 1300)) 1727 intel_de_rmw(display, GEN11_CHICKEN_DCPR_2, 0, 1728 DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM | 1729 DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR); 1730 1731 /* Wa_14011503030:xelpd */ 1732 if (DISPLAY_VER(display) == 13) 1733 intel_de_write(display, XELPD_DISPLAY_ERR_FATAL_MASK, ~0); 1734 1735 /* Wa_15013987218 */ 1736 if (DISPLAY_VER(display) == 20) { 1737 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1738 0, PCH_GMBUSUNIT_CLOCK_GATE_DISABLE); 1739 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1740 PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 0); 1741 } 1742 } 1743 1744 static void icl_display_core_uninit(struct intel_display *display) 1745 { 1746 struct i915_power_domains *power_domains = &display->power.domains; 1747 struct i915_power_well *well; 1748 1749 if (!HAS_DISPLAY(display)) 1750 return; 1751 1752 gen9_disable_dc_states(display); 1753 intel_dmc_disable_program(display); 1754 1755 /* 1. Disable all display engine functions -> already done */ 1756 1757 /* 2. Disable DBUF */ 1758 gen9_dbuf_disable(display); 1759 1760 /* 3. Disable CD clock */ 1761 intel_cdclk_uninit_hw(display); 1762 1763 if (DISPLAY_VER(display) == 14) 1764 intel_de_rmw(display, DC_STATE_EN, 0, 1765 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH); 1766 1767 /* 1768 * 4. Disable Power Well 1 (PG1). 1769 * The AUX IO power wells are toggled on demand, so they are already 1770 * disabled at this point. 1771 */ 1772 mutex_lock(&power_domains->lock); 1773 well = lookup_power_well(display, SKL_DISP_PW_1); 1774 intel_power_well_disable(display, well); 1775 mutex_unlock(&power_domains->lock); 1776 1777 /* 5. */ 1778 intel_combo_phy_uninit(display); 1779 } 1780 1781 static void chv_phy_control_init(struct intel_display *display) 1782 { 1783 struct i915_power_well *cmn_bc = 1784 lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC); 1785 struct i915_power_well *cmn_d = 1786 lookup_power_well(display, CHV_DISP_PW_DPIO_CMN_D); 1787 1788 /* 1789 * DISPLAY_PHY_CONTROL can get corrupted if read. As a 1790 * workaround never ever read DISPLAY_PHY_CONTROL, and 1791 * instead maintain a shadow copy ourselves. Use the actual 1792 * power well state and lane status to reconstruct the 1793 * expected initial value. 1794 */ 1795 display->power.chv_phy_control = 1796 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | 1797 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | 1798 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) | 1799 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) | 1800 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0); 1801 1802 /* 1803 * If all lanes are disabled we leave the override disabled 1804 * with all power down bits cleared to match the state we 1805 * would use after disabling the port. Otherwise enable the 1806 * override and set the lane powerdown bits accding to the 1807 * current lane status. 1808 */ 1809 if (intel_power_well_is_enabled(display, cmn_bc)) { 1810 u32 status = intel_de_read(display, DPLL(display, PIPE_A)); 1811 unsigned int mask; 1812 1813 mask = status & DPLL_PORTB_READY_MASK; 1814 if (mask == 0xf) 1815 mask = 0x0; 1816 else 1817 display->power.chv_phy_control |= 1818 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0); 1819 1820 display->power.chv_phy_control |= 1821 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0); 1822 1823 mask = (status & DPLL_PORTC_READY_MASK) >> 4; 1824 if (mask == 0xf) 1825 mask = 0x0; 1826 else 1827 display->power.chv_phy_control |= 1828 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1); 1829 1830 display->power.chv_phy_control |= 1831 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1); 1832 1833 display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); 1834 1835 display->power.chv_phy_assert[DPIO_PHY0] = false; 1836 } else { 1837 display->power.chv_phy_assert[DPIO_PHY0] = true; 1838 } 1839 1840 if (intel_power_well_is_enabled(display, cmn_d)) { 1841 u32 status = intel_de_read(display, DPIO_PHY_STATUS); 1842 unsigned int mask; 1843 1844 mask = status & DPLL_PORTD_READY_MASK; 1845 1846 if (mask == 0xf) 1847 mask = 0x0; 1848 else 1849 display->power.chv_phy_control |= 1850 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0); 1851 1852 display->power.chv_phy_control |= 1853 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0); 1854 1855 display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); 1856 1857 display->power.chv_phy_assert[DPIO_PHY1] = false; 1858 } else { 1859 display->power.chv_phy_assert[DPIO_PHY1] = true; 1860 } 1861 1862 drm_dbg_kms(display->drm, "Initial PHY_CONTROL=0x%08x\n", 1863 display->power.chv_phy_control); 1864 1865 /* Defer application of initial phy_control to enabling the powerwell */ 1866 } 1867 1868 static void vlv_cmnlane_wa(struct intel_display *display) 1869 { 1870 struct i915_power_well *cmn = 1871 lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC); 1872 struct i915_power_well *disp2d = 1873 lookup_power_well(display, VLV_DISP_PW_DISP2D); 1874 1875 /* If the display might be already active skip this */ 1876 if (intel_power_well_is_enabled(display, cmn) && 1877 intel_power_well_is_enabled(display, disp2d) && 1878 intel_de_read(display, DPIO_CTL) & DPIO_CMNRST) 1879 return; 1880 1881 drm_dbg_kms(display->drm, "toggling display PHY side reset\n"); 1882 1883 /* cmnlane needs DPLL registers */ 1884 intel_power_well_enable(display, disp2d); 1885 1886 /* 1887 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: 1888 * Need to assert and de-assert PHY SB reset by gating the 1889 * common lane power, then un-gating it. 1890 * Simply ungating isn't enough to reset the PHY enough to get 1891 * ports and lanes running. 1892 */ 1893 intel_power_well_disable(display, cmn); 1894 } 1895 1896 static bool vlv_punit_is_power_gated(struct intel_display *display, u32 reg0) 1897 { 1898 bool ret; 1899 1900 vlv_punit_get(display->drm); 1901 ret = (vlv_punit_read(display->drm, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE; 1902 vlv_punit_put(display->drm); 1903 1904 return ret; 1905 } 1906 1907 static void assert_ved_power_gated(struct intel_display *display) 1908 { 1909 drm_WARN(display->drm, 1910 !vlv_punit_is_power_gated(display, PUNIT_REG_VEDSSPM0), 1911 "VED not power gated\n"); 1912 } 1913 1914 static void assert_isp_power_gated(struct intel_display *display) 1915 { 1916 static const struct pci_device_id isp_ids[] = { 1917 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)}, 1918 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)}, 1919 {} 1920 }; 1921 1922 drm_WARN(display->drm, !pci_dev_present(isp_ids) && 1923 !vlv_punit_is_power_gated(display, PUNIT_REG_ISPSSPM0), 1924 "ISP not power gated\n"); 1925 } 1926 1927 static void intel_power_domains_verify_state(struct intel_display *display); 1928 1929 /** 1930 * intel_power_domains_init_hw - initialize hardware power domain state 1931 * @display: display device instance 1932 * @resume: Called from resume code paths or not 1933 * 1934 * This function initializes the hardware power domain state and enables all 1935 * power wells belonging to the INIT power domain. Power wells in other 1936 * domains (and not in the INIT domain) are referenced or disabled by 1937 * intel_modeset_readout_hw_state(). After that the reference count of each 1938 * power well must match its HW enabled state, see 1939 * intel_power_domains_verify_state(). 1940 * 1941 * It will return with power domains disabled (to be enabled later by 1942 * intel_power_domains_enable()) and must be paired with 1943 * intel_power_domains_driver_remove(). 1944 */ 1945 void intel_power_domains_init_hw(struct intel_display *display, bool resume) 1946 { 1947 struct i915_power_domains *power_domains = &display->power.domains; 1948 1949 power_domains->initializing = true; 1950 1951 if (DISPLAY_VER(display) >= 11) { 1952 icl_display_core_init(display, resume); 1953 } else if (display->platform.geminilake || display->platform.broxton) { 1954 bxt_display_core_init(display, resume); 1955 } else if (DISPLAY_VER(display) == 9) { 1956 skl_display_core_init(display, resume); 1957 } else if (display->platform.cherryview) { 1958 mutex_lock(&power_domains->lock); 1959 chv_phy_control_init(display); 1960 mutex_unlock(&power_domains->lock); 1961 assert_isp_power_gated(display); 1962 } else if (display->platform.valleyview) { 1963 mutex_lock(&power_domains->lock); 1964 vlv_cmnlane_wa(display); 1965 mutex_unlock(&power_domains->lock); 1966 assert_ved_power_gated(display); 1967 assert_isp_power_gated(display); 1968 } else if (display->platform.broadwell || display->platform.haswell) { 1969 hsw_assert_cdclk(display); 1970 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1971 } else if (display->platform.ivybridge) { 1972 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1973 } 1974 1975 /* 1976 * Keep all power wells enabled for any dependent HW access during 1977 * initialization and to make sure we keep BIOS enabled display HW 1978 * resources powered until display HW readout is complete. We drop 1979 * this reference in intel_power_domains_enable(). 1980 */ 1981 drm_WARN_ON(display->drm, power_domains->init_wakeref); 1982 power_domains->init_wakeref = 1983 intel_display_power_get(display, POWER_DOMAIN_INIT); 1984 1985 /* Disable power support if the user asked so. */ 1986 if (!display->params.disable_power_well) { 1987 drm_WARN_ON(display->drm, power_domains->disable_wakeref); 1988 display->power.domains.disable_wakeref = intel_display_power_get(display, 1989 POWER_DOMAIN_INIT); 1990 } 1991 intel_power_domains_sync_hw(display); 1992 1993 power_domains->initializing = false; 1994 } 1995 1996 /** 1997 * intel_power_domains_driver_remove - deinitialize hw power domain state 1998 * @display: display device instance 1999 * 2000 * De-initializes the display power domain HW state. It also ensures that the 2001 * device stays powered up so that the driver can be reloaded. 2002 * 2003 * It must be called with power domains already disabled (after a call to 2004 * intel_power_domains_disable()) and must be paired with 2005 * intel_power_domains_init_hw(). 2006 */ 2007 void intel_power_domains_driver_remove(struct intel_display *display) 2008 { 2009 intel_wakeref_t wakeref __maybe_unused = 2010 fetch_and_zero(&display->power.domains.init_wakeref); 2011 2012 /* Remove the refcount we took to keep power well support disabled. */ 2013 if (!display->params.disable_power_well) 2014 intel_display_power_put(display, POWER_DOMAIN_INIT, 2015 fetch_and_zero(&display->power.domains.disable_wakeref)); 2016 2017 intel_display_power_flush_work_sync(display); 2018 2019 intel_power_domains_verify_state(display); 2020 2021 /* Keep the power well enabled, but cancel its rpm wakeref. */ 2022 intel_display_rpm_put(display, wakeref); 2023 } 2024 2025 /** 2026 * intel_power_domains_sanitize_state - sanitize power domains state 2027 * @display: display device instance 2028 * 2029 * Sanitize the power domains state during driver loading and system resume. 2030 * The function will disable all display power wells that BIOS has enabled 2031 * without a user for it (any user for a power well has taken a reference 2032 * on it by the time this function is called, after the state of all the 2033 * pipe, encoder, etc. HW resources have been sanitized). 2034 */ 2035 void intel_power_domains_sanitize_state(struct intel_display *display) 2036 { 2037 struct i915_power_domains *power_domains = &display->power.domains; 2038 struct i915_power_well *power_well; 2039 2040 mutex_lock(&power_domains->lock); 2041 2042 for_each_power_well_reverse(display, power_well) { 2043 if (power_well->desc->always_on || power_well->count || 2044 !intel_power_well_is_enabled(display, power_well)) 2045 continue; 2046 2047 drm_dbg_kms(display->drm, 2048 "BIOS left unused %s power well enabled, disabling it\n", 2049 intel_power_well_name(power_well)); 2050 intel_power_well_disable(display, power_well); 2051 } 2052 2053 mutex_unlock(&power_domains->lock); 2054 } 2055 2056 /** 2057 * intel_power_domains_enable - enable toggling of display power wells 2058 * @display: display device instance 2059 * 2060 * Enable the ondemand enabling/disabling of the display power wells. Note that 2061 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled 2062 * only at specific points of the display modeset sequence, thus they are not 2063 * affected by the intel_power_domains_enable()/disable() calls. The purpose 2064 * of these function is to keep the rest of power wells enabled until the end 2065 * of display HW readout (which will acquire the power references reflecting 2066 * the current HW state). 2067 */ 2068 void intel_power_domains_enable(struct intel_display *display) 2069 { 2070 intel_wakeref_t wakeref __maybe_unused = 2071 fetch_and_zero(&display->power.domains.init_wakeref); 2072 2073 intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref); 2074 intel_power_domains_verify_state(display); 2075 } 2076 2077 /** 2078 * intel_power_domains_disable - disable toggling of display power wells 2079 * @display: display device instance 2080 * 2081 * Disable the ondemand enabling/disabling of the display power wells. See 2082 * intel_power_domains_enable() for which power wells this call controls. 2083 */ 2084 void intel_power_domains_disable(struct intel_display *display) 2085 { 2086 struct i915_power_domains *power_domains = &display->power.domains; 2087 2088 drm_WARN_ON(display->drm, power_domains->init_wakeref); 2089 power_domains->init_wakeref = 2090 intel_display_power_get(display, POWER_DOMAIN_INIT); 2091 2092 intel_power_domains_verify_state(display); 2093 } 2094 2095 /** 2096 * intel_power_domains_suspend - suspend power domain state 2097 * @display: display device instance 2098 * @s2idle: specifies whether we go to idle, or deeper sleep 2099 * 2100 * This function prepares the hardware power domain state before entering 2101 * system suspend. 2102 * 2103 * It must be called with power domains already disabled (after a call to 2104 * intel_power_domains_disable()) and paired with intel_power_domains_resume(). 2105 */ 2106 void intel_power_domains_suspend(struct intel_display *display, bool s2idle) 2107 { 2108 struct i915_power_domains *power_domains = &display->power.domains; 2109 intel_wakeref_t wakeref __maybe_unused = 2110 fetch_and_zero(&power_domains->init_wakeref); 2111 2112 intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref); 2113 2114 /* 2115 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9 2116 * support don't manually deinit the power domains. This also means the 2117 * DMC firmware will stay active, it will power down any HW 2118 * resources as required and also enable deeper system power states 2119 * that would be blocked if the firmware was inactive. 2120 */ 2121 if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle && 2122 intel_dmc_has_payload(display)) { 2123 intel_display_power_flush_work(display); 2124 intel_power_domains_verify_state(display); 2125 return; 2126 } 2127 2128 /* 2129 * Even if power well support was disabled we still want to disable 2130 * power wells if power domains must be deinitialized for suspend. 2131 */ 2132 if (!display->params.disable_power_well) 2133 intel_display_power_put(display, POWER_DOMAIN_INIT, 2134 fetch_and_zero(&display->power.domains.disable_wakeref)); 2135 2136 intel_display_power_flush_work(display); 2137 intel_power_domains_verify_state(display); 2138 2139 if (DISPLAY_VER(display) >= 11) 2140 icl_display_core_uninit(display); 2141 else if (display->platform.geminilake || display->platform.broxton) 2142 bxt_display_core_uninit(display); 2143 else if (DISPLAY_VER(display) == 9) 2144 skl_display_core_uninit(display); 2145 2146 power_domains->display_core_suspended = true; 2147 } 2148 2149 /** 2150 * intel_power_domains_resume - resume power domain state 2151 * @display: display device instance 2152 * 2153 * This function resume the hardware power domain state during system resume. 2154 * 2155 * It will return with power domain support disabled (to be enabled later by 2156 * intel_power_domains_enable()) and must be paired with 2157 * intel_power_domains_suspend(). 2158 */ 2159 void intel_power_domains_resume(struct intel_display *display) 2160 { 2161 struct i915_power_domains *power_domains = &display->power.domains; 2162 2163 if (power_domains->display_core_suspended) { 2164 intel_power_domains_init_hw(display, true); 2165 power_domains->display_core_suspended = false; 2166 } else { 2167 drm_WARN_ON(display->drm, power_domains->init_wakeref); 2168 power_domains->init_wakeref = 2169 intel_display_power_get(display, POWER_DOMAIN_INIT); 2170 } 2171 } 2172 2173 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 2174 2175 static void intel_power_domains_dump_info(struct intel_display *display) 2176 { 2177 struct i915_power_domains *power_domains = &display->power.domains; 2178 struct i915_power_well *power_well; 2179 2180 for_each_power_well(display, power_well) { 2181 enum intel_display_power_domain domain; 2182 2183 drm_dbg_kms(display->drm, "%-25s %d\n", 2184 intel_power_well_name(power_well), intel_power_well_refcount(power_well)); 2185 2186 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2187 drm_dbg_kms(display->drm, " %-23s %d\n", 2188 intel_display_power_domain_str(domain), 2189 power_domains->domain_use_count[domain]); 2190 } 2191 } 2192 2193 /** 2194 * intel_power_domains_verify_state - verify the HW/SW state for all power wells 2195 * @display: display device instance 2196 * 2197 * Verify if the reference count of each power well matches its HW enabled 2198 * state and the total refcount of the domains it belongs to. This must be 2199 * called after modeset HW state sanitization, which is responsible for 2200 * acquiring reference counts for any power wells in use and disabling the 2201 * ones left on by BIOS but not required by any active output. 2202 */ 2203 static void intel_power_domains_verify_state(struct intel_display *display) 2204 { 2205 struct i915_power_domains *power_domains = &display->power.domains; 2206 struct i915_power_well *power_well; 2207 bool dump_domain_info; 2208 2209 mutex_lock(&power_domains->lock); 2210 2211 verify_async_put_domains_state(power_domains); 2212 2213 dump_domain_info = false; 2214 for_each_power_well(display, power_well) { 2215 enum intel_display_power_domain domain; 2216 int domains_count; 2217 bool enabled; 2218 2219 enabled = intel_power_well_is_enabled(display, power_well); 2220 if ((intel_power_well_refcount(power_well) || 2221 intel_power_well_is_always_on(power_well)) != 2222 enabled) 2223 drm_err(display->drm, 2224 "power well %s state mismatch (refcount %d/enabled %d)", 2225 intel_power_well_name(power_well), 2226 intel_power_well_refcount(power_well), enabled); 2227 2228 domains_count = 0; 2229 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2230 domains_count += power_domains->domain_use_count[domain]; 2231 2232 if (intel_power_well_refcount(power_well) != domains_count) { 2233 drm_err(display->drm, 2234 "power well %s refcount/domain refcount mismatch " 2235 "(refcount %d/domains refcount %d)\n", 2236 intel_power_well_name(power_well), 2237 intel_power_well_refcount(power_well), 2238 domains_count); 2239 dump_domain_info = true; 2240 } 2241 } 2242 2243 if (dump_domain_info) { 2244 static bool dumped; 2245 2246 if (!dumped) { 2247 intel_power_domains_dump_info(display); 2248 dumped = true; 2249 } 2250 } 2251 2252 mutex_unlock(&power_domains->lock); 2253 } 2254 2255 #else 2256 2257 static void intel_power_domains_verify_state(struct intel_display *display) 2258 { 2259 } 2260 2261 #endif 2262 2263 void intel_display_power_suspend_late(struct intel_display *display, bool s2idle) 2264 { 2265 intel_power_domains_suspend(display, s2idle); 2266 2267 if (DISPLAY_VER(display) >= 11 || display->platform.geminilake || 2268 display->platform.broxton) { 2269 bxt_enable_dc9(display); 2270 } else if (display->platform.haswell || display->platform.broadwell) { 2271 hsw_enable_pc8(display); 2272 } 2273 2274 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2275 if (INTEL_PCH_TYPE(display) >= PCH_CNP && INTEL_PCH_TYPE(display) < PCH_DG1) 2276 intel_de_rmw(display, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); 2277 } 2278 2279 void intel_display_power_resume_early(struct intel_display *display) 2280 { 2281 if (DISPLAY_VER(display) >= 11 || display->platform.geminilake || 2282 display->platform.broxton) { 2283 gen9_sanitize_dc_state(display); 2284 bxt_disable_dc9(display); 2285 } else if (display->platform.haswell || display->platform.broadwell) { 2286 hsw_disable_pc8(display); 2287 } 2288 2289 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2290 if (INTEL_PCH_TYPE(display) >= PCH_CNP && INTEL_PCH_TYPE(display) < PCH_DG1) 2291 intel_de_rmw(display, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0); 2292 2293 intel_power_domains_resume(display); 2294 } 2295 2296 void intel_display_power_suspend(struct intel_display *display) 2297 { 2298 if (DISPLAY_VER(display) >= 11) { 2299 icl_display_core_uninit(display); 2300 bxt_enable_dc9(display); 2301 } else if (display->platform.geminilake || display->platform.broxton) { 2302 bxt_display_core_uninit(display); 2303 bxt_enable_dc9(display); 2304 } else if (display->platform.haswell || display->platform.broadwell) { 2305 hsw_enable_pc8(display); 2306 } 2307 } 2308 2309 void intel_display_power_resume(struct intel_display *display) 2310 { 2311 struct i915_power_domains *power_domains = &display->power.domains; 2312 2313 if (DISPLAY_VER(display) >= 11) { 2314 bxt_disable_dc9(display); 2315 icl_display_core_init(display, true); 2316 if (intel_dmc_has_payload(display)) { 2317 if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6) 2318 skl_enable_dc6(display); 2319 else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5) 2320 gen9_enable_dc5(display); 2321 } 2322 } else if (display->platform.geminilake || display->platform.broxton) { 2323 bxt_disable_dc9(display); 2324 bxt_display_core_init(display, true); 2325 if (intel_dmc_has_payload(display) && 2326 (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)) 2327 gen9_enable_dc5(display); 2328 } else if (display->platform.haswell || display->platform.broadwell) { 2329 hsw_disable_pc8(display); 2330 } 2331 } 2332 2333 void intel_display_power_debug(struct intel_display *display, struct seq_file *m) 2334 { 2335 struct i915_power_domains *power_domains = &display->power.domains; 2336 int i; 2337 2338 mutex_lock(&power_domains->lock); 2339 2340 seq_printf(m, "Runtime power status: %s\n", 2341 str_enabled_disabled(!power_domains->init_wakeref)); 2342 2343 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); 2344 for (i = 0; i < power_domains->power_well_count; i++) { 2345 struct i915_power_well *power_well; 2346 enum intel_display_power_domain power_domain; 2347 2348 power_well = &power_domains->power_wells[i]; 2349 seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well), 2350 intel_power_well_refcount(power_well)); 2351 2352 for_each_power_domain(power_domain, intel_power_well_domains(power_well)) 2353 seq_printf(m, " %-23s %d\n", 2354 intel_display_power_domain_str(power_domain), 2355 power_domains->domain_use_count[power_domain]); 2356 } 2357 2358 mutex_unlock(&power_domains->lock); 2359 } 2360 2361 struct intel_ddi_port_domains { 2362 enum port port_start; 2363 enum port port_end; 2364 enum aux_ch aux_ch_start; 2365 enum aux_ch aux_ch_end; 2366 2367 enum intel_display_power_domain ddi_lanes; 2368 enum intel_display_power_domain ddi_io; 2369 enum intel_display_power_domain aux_io; 2370 enum intel_display_power_domain aux_legacy_usbc; 2371 enum intel_display_power_domain aux_tbt; 2372 }; 2373 2374 static const struct intel_ddi_port_domains 2375 i9xx_port_domains[] = { 2376 { 2377 .port_start = PORT_A, 2378 .port_end = PORT_F, 2379 .aux_ch_start = AUX_CH_A, 2380 .aux_ch_end = AUX_CH_F, 2381 2382 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2383 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2384 .aux_io = POWER_DOMAIN_AUX_IO_A, 2385 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2386 .aux_tbt = POWER_DOMAIN_INVALID, 2387 }, 2388 }; 2389 2390 static const struct intel_ddi_port_domains 2391 d11_port_domains[] = { 2392 { 2393 .port_start = PORT_A, 2394 .port_end = PORT_B, 2395 .aux_ch_start = AUX_CH_A, 2396 .aux_ch_end = AUX_CH_B, 2397 2398 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2399 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2400 .aux_io = POWER_DOMAIN_AUX_IO_A, 2401 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2402 .aux_tbt = POWER_DOMAIN_INVALID, 2403 }, { 2404 .port_start = PORT_C, 2405 .port_end = PORT_F, 2406 .aux_ch_start = AUX_CH_C, 2407 .aux_ch_end = AUX_CH_F, 2408 2409 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C, 2410 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C, 2411 .aux_io = POWER_DOMAIN_AUX_IO_C, 2412 .aux_legacy_usbc = POWER_DOMAIN_AUX_C, 2413 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2414 }, 2415 }; 2416 2417 static const struct intel_ddi_port_domains 2418 d12_port_domains[] = { 2419 { 2420 .port_start = PORT_A, 2421 .port_end = PORT_C, 2422 .aux_ch_start = AUX_CH_A, 2423 .aux_ch_end = AUX_CH_C, 2424 2425 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2426 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2427 .aux_io = POWER_DOMAIN_AUX_IO_A, 2428 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2429 .aux_tbt = POWER_DOMAIN_INVALID, 2430 }, { 2431 .port_start = PORT_TC1, 2432 .port_end = PORT_TC6, 2433 .aux_ch_start = AUX_CH_USBC1, 2434 .aux_ch_end = AUX_CH_USBC6, 2435 2436 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2437 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2438 .aux_io = POWER_DOMAIN_INVALID, 2439 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2440 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2441 }, 2442 }; 2443 2444 static const struct intel_ddi_port_domains 2445 d13_port_domains[] = { 2446 { 2447 .port_start = PORT_A, 2448 .port_end = PORT_C, 2449 .aux_ch_start = AUX_CH_A, 2450 .aux_ch_end = AUX_CH_C, 2451 2452 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2453 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2454 .aux_io = POWER_DOMAIN_AUX_IO_A, 2455 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2456 .aux_tbt = POWER_DOMAIN_INVALID, 2457 }, { 2458 .port_start = PORT_TC1, 2459 .port_end = PORT_TC4, 2460 .aux_ch_start = AUX_CH_USBC1, 2461 .aux_ch_end = AUX_CH_USBC4, 2462 2463 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2464 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2465 .aux_io = POWER_DOMAIN_INVALID, 2466 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2467 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2468 }, { 2469 .port_start = PORT_D_XELPD, 2470 .port_end = PORT_E_XELPD, 2471 .aux_ch_start = AUX_CH_D_XELPD, 2472 .aux_ch_end = AUX_CH_E_XELPD, 2473 2474 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D, 2475 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D, 2476 .aux_io = POWER_DOMAIN_AUX_IO_D, 2477 .aux_legacy_usbc = POWER_DOMAIN_AUX_D, 2478 .aux_tbt = POWER_DOMAIN_INVALID, 2479 }, 2480 }; 2481 2482 static void 2483 intel_port_domains_for_platform(struct intel_display *display, 2484 const struct intel_ddi_port_domains **domains, 2485 int *domains_size) 2486 { 2487 if (DISPLAY_VER(display) >= 13) { 2488 *domains = d13_port_domains; 2489 *domains_size = ARRAY_SIZE(d13_port_domains); 2490 } else if (DISPLAY_VER(display) >= 12) { 2491 *domains = d12_port_domains; 2492 *domains_size = ARRAY_SIZE(d12_port_domains); 2493 } else if (DISPLAY_VER(display) >= 11) { 2494 *domains = d11_port_domains; 2495 *domains_size = ARRAY_SIZE(d11_port_domains); 2496 } else { 2497 *domains = i9xx_port_domains; 2498 *domains_size = ARRAY_SIZE(i9xx_port_domains); 2499 } 2500 } 2501 2502 static const struct intel_ddi_port_domains * 2503 intel_port_domains_for_port(struct intel_display *display, enum port port) 2504 { 2505 const struct intel_ddi_port_domains *domains; 2506 int domains_size; 2507 int i; 2508 2509 intel_port_domains_for_platform(display, &domains, &domains_size); 2510 for (i = 0; i < domains_size; i++) 2511 if (port >= domains[i].port_start && port <= domains[i].port_end) 2512 return &domains[i]; 2513 2514 return NULL; 2515 } 2516 2517 enum intel_display_power_domain 2518 intel_display_power_ddi_io_domain(struct intel_display *display, enum port port) 2519 { 2520 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port); 2521 2522 if (drm_WARN_ON(display->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID)) 2523 return POWER_DOMAIN_PORT_DDI_IO_A; 2524 2525 return domains->ddi_io + (int)(port - domains->port_start); 2526 } 2527 2528 enum intel_display_power_domain 2529 intel_display_power_ddi_lanes_domain(struct intel_display *display, enum port port) 2530 { 2531 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port); 2532 2533 if (drm_WARN_ON(display->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID)) 2534 return POWER_DOMAIN_PORT_DDI_LANES_A; 2535 2536 return domains->ddi_lanes + (int)(port - domains->port_start); 2537 } 2538 2539 static const struct intel_ddi_port_domains * 2540 intel_port_domains_for_aux_ch(struct intel_display *display, enum aux_ch aux_ch) 2541 { 2542 const struct intel_ddi_port_domains *domains; 2543 int domains_size; 2544 int i; 2545 2546 intel_port_domains_for_platform(display, &domains, &domains_size); 2547 for (i = 0; i < domains_size; i++) 2548 if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end) 2549 return &domains[i]; 2550 2551 return NULL; 2552 } 2553 2554 enum intel_display_power_domain 2555 intel_display_power_aux_io_domain(struct intel_display *display, enum aux_ch aux_ch) 2556 { 2557 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2558 2559 if (drm_WARN_ON(display->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID)) 2560 return POWER_DOMAIN_AUX_IO_A; 2561 2562 return domains->aux_io + (int)(aux_ch - domains->aux_ch_start); 2563 } 2564 2565 enum intel_display_power_domain 2566 intel_display_power_legacy_aux_domain(struct intel_display *display, enum aux_ch aux_ch) 2567 { 2568 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2569 2570 if (drm_WARN_ON(display->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)) 2571 return POWER_DOMAIN_AUX_A; 2572 2573 return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start); 2574 } 2575 2576 enum intel_display_power_domain 2577 intel_display_power_tbt_aux_domain(struct intel_display *display, enum aux_ch aux_ch) 2578 { 2579 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2580 2581 if (drm_WARN_ON(display->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID)) 2582 return POWER_DOMAIN_AUX_TBT1; 2583 2584 return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start); 2585 } 2586