1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491 static const char *const netdev_lock_name[] = {
492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 int i;
514
515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 if (netdev_lock_type[i] == dev_type)
517 return i;
518 /* the last key is used by default */
519 return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 unsigned short dev_type)
524 {
525 int i;
526
527 i = netdev_lock_pos(dev_type);
528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 netdev_lock_name[i]);
530 }
531
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 int i;
535
536 i = netdev_lock_pos(dev->type);
537 lockdep_set_class_and_name(&dev->addr_list_lock,
538 &netdev_addr_lock_key[i],
539 netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 unsigned short dev_type)
544 {
545 }
546
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551
552 /*******************************************************************************
553 *
554 * Protocol management and registration routines
555 *
556 *******************************************************************************/
557
558
559 /*
560 * Add a protocol ID to the list. Now that the input handler is
561 * smarter we can dispense with all the messy stuff that used to be
562 * here.
563 *
564 * BEWARE!!! Protocol handlers, mangling input packets,
565 * MUST BE last in hash buckets and checking protocol handlers
566 * MUST start from promiscuous ptype_all chain in net_bh.
567 * It is true now, do not change it.
568 * Explanation follows: if protocol handler, mangling packet, will
569 * be the first on list, it is not able to sense, that packet
570 * is cloned and should be copied-on-write, so that it will
571 * change it and subsequent readers will get broken packet.
572 * --ANK (980803)
573 */
574
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 if (pt->type == htons(ETH_P_ALL)) {
578 if (!pt->af_packet_net && !pt->dev)
579 return NULL;
580
581 return pt->dev ? &pt->dev->ptype_all :
582 &pt->af_packet_net->ptype_all;
583 }
584
585 if (pt->dev)
586 return &pt->dev->ptype_specific;
587
588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591
592 /**
593 * dev_add_pack - add packet handler
594 * @pt: packet type declaration
595 *
596 * Add a protocol handler to the networking stack. The passed &packet_type
597 * is linked into kernel lists and may not be freed until it has been
598 * removed from the kernel lists.
599 *
600 * This call does not sleep therefore it can not
601 * guarantee all CPU's that are in middle of receiving packets
602 * will see the new packet type (until the next received packet).
603 */
604
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 struct list_head *head = ptype_head(pt);
608
609 if (WARN_ON_ONCE(!head))
610 return;
611
612 spin_lock(&ptype_lock);
613 list_add_rcu(&pt->list, head);
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617
618 /**
619 * __dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * The packet type might still be in use by receivers
628 * and must not be freed until after all the CPU's have gone
629 * through a quiescent state.
630 */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 struct list_head *head = ptype_head(pt);
634 struct packet_type *pt1;
635
636 if (!head)
637 return;
638
639 spin_lock(&ptype_lock);
640
641 list_for_each_entry(pt1, head, list) {
642 if (pt == pt1) {
643 list_del_rcu(&pt->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653
654 /**
655 * dev_remove_pack - remove packet handler
656 * @pt: packet type declaration
657 *
658 * Remove a protocol handler that was previously added to the kernel
659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
660 * from the kernel lists and can be freed or reused once this function
661 * returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 __dev_remove_pack(pt);
669
670 synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 int k = stack->num_paths++;
727
728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 return NULL;
730
731 return &stack->path[k];
732 }
733
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 struct net_device_path_stack *stack)
736 {
737 const struct net_device *last_dev;
738 struct net_device_path_ctx ctx = {
739 .dev = dev,
740 };
741 struct net_device_path *path;
742 int ret = 0;
743
744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 stack->num_paths = 0;
746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 last_dev = ctx.dev;
748 path = dev_fwd_path(stack);
749 if (!path)
750 return -1;
751
752 memset(path, 0, sizeof(struct net_device_path));
753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 if (ret < 0)
755 return -1;
756
757 if (WARN_ON_ONCE(last_dev == ctx.dev))
758 return -1;
759 }
760
761 if (!ctx.dev)
762 return ret;
763
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 struct napi_struct *napi;
779
780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 if (napi->napi_id == napi_id)
782 return napi;
783
784 return NULL;
785 }
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 struct napi_struct *napi;
792
793 napi = napi_by_id(napi_id);
794 if (!napi)
795 return NULL;
796
797 if (WARN_ON_ONCE(!napi->dev))
798 return NULL;
799 if (!net_eq(net, dev_net(napi->dev)))
800 return NULL;
801
802 return napi;
803 }
804
805 /**
806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807 * @net: the applicable net namespace
808 * @napi_id: ID of a NAPI of a target device
809 *
810 * Find a NAPI instance with @napi_id. Lock its device.
811 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
812 * netdev_unlock() must be called to release it.
813 *
814 * Return: pointer to NAPI, its device with lock held, NULL if not found.
815 */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 struct napi_struct *napi;
820 struct net_device *dev;
821
822 rcu_read_lock();
823 napi = netdev_napi_by_id(net, napi_id);
824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 rcu_read_unlock();
826 return NULL;
827 }
828
829 dev = napi->dev;
830 dev_hold(dev);
831 rcu_read_unlock();
832
833 dev = __netdev_put_lock(dev, net);
834 if (!dev)
835 return NULL;
836
837 rcu_read_lock();
838 napi = netdev_napi_by_id(net, napi_id);
839 if (napi && napi->dev != dev)
840 napi = NULL;
841 rcu_read_unlock();
842
843 if (!napi)
844 netdev_unlock(dev);
845 return napi;
846 }
847
848 /**
849 * __dev_get_by_name - find a device by its name
850 * @net: the applicable net namespace
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore.
854 * If the name is found a pointer to the device is returned.
855 * If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 struct netdev_name_node *node_name;
863
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
879 */
880
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 struct netdev_name_node *node_name;
884
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 struct net_device *dev;
894
895 rcu_read_lock();
896 dev = dev_get_by_name_rcu(net, name);
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902
903 /**
904 * netdev_get_by_name() - find a device by its name
905 * @net: the applicable net namespace
906 * @name: name to find
907 * @tracker: tracking object for the acquired reference
908 * @gfp: allocation flags for the tracker
909 *
910 * Find an interface by name. This can be called from any
911 * context and does its own locking. The returned handle has
912 * the usage count incremented and the caller must use netdev_put() to
913 * release it when it is no longer needed. %NULL is returned if no
914 * matching device is found.
915 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 netdevice_tracker *tracker, gfp_t gfp)
918 {
919 struct net_device *dev;
920
921 dev = dev_get_by_name(net, name);
922 if (dev)
923 netdev_tracker_alloc(dev, tracker, gfp);
924 return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927
928 /**
929 * __dev_get_by_index - find a device by its ifindex
930 * @net: the applicable net namespace
931 * @ifindex: index of device
932 *
933 * Search for an interface by index. Returns %NULL if the device
934 * is not found or a pointer to the device. The device has not
935 * had its reference counter increased so the caller must be careful
936 * about locking. The caller must hold the RTNL semaphore.
937 */
938
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 struct net_device *dev;
942 struct hlist_head *head = dev_index_hash(net, ifindex);
943
944 hlist_for_each_entry(dev, head, index_hlist)
945 if (dev->ifindex == ifindex)
946 return dev;
947
948 return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951
952 /**
953 * dev_get_by_index_rcu - find a device by its ifindex
954 * @net: the applicable net namespace
955 * @ifindex: index of device
956 *
957 * Search for an interface by index. Returns %NULL if the device
958 * is not found or a pointer to the device. The device has not
959 * had its reference counter increased so the caller must be careful
960 * about locking. The caller must hold RCU lock.
961 */
962
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 struct net_device *dev;
966 struct hlist_head *head = dev_index_hash(net, ifindex);
967
968 hlist_for_each_entry_rcu(dev, head, index_hlist)
969 if (dev->ifindex == ifindex)
970 return dev;
971
972 return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 dev_hold(dev);
984 rcu_read_unlock();
985 return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990 * netdev_get_by_index() - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 * @tracker: tracking object for the acquired reference
994 * @gfp: allocation flags for the tracker
995 *
996 * Search for an interface by index. Returns NULL if the device
997 * is not found or a pointer to the device. The device returned has
998 * had a reference added and the pointer is safe until the user calls
999 * netdev_put() to indicate they have finished with it.
1000 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 struct net_device *dev;
1005
1006 dev = dev_get_by_index(net, ifindex);
1007 if (dev)
1008 netdev_tracker_alloc(dev, tracker, gfp);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012
1013 /**
1014 * dev_get_by_napi_id - find a device by napi_id
1015 * @napi_id: ID of the NAPI struct
1016 *
1017 * Search for an interface by NAPI ID. Returns %NULL if the device
1018 * is not found or a pointer to the device. The device has not had
1019 * its reference counter increased so the caller must be careful
1020 * about locking. The caller must hold RCU lock.
1021 */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 struct napi_struct *napi;
1025
1026 WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028 if (!napi_id_valid(napi_id))
1029 return NULL;
1030
1031 napi = napi_by_id(napi_id);
1032
1033 return napi ? napi->dev : NULL;
1034 }
1035
1036 /* Release the held reference on the net_device, and if the net_device
1037 * is still registered try to lock the instance lock. If device is being
1038 * unregistered NULL will be returned (but the reference has been released,
1039 * either way!)
1040 *
1041 * This helper is intended for locking net_device after it has been looked up
1042 * using a lockless lookup helper. Lock prevents the instance from going away.
1043 */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 netdev_lock(dev);
1047 if (dev->reg_state > NETREG_REGISTERED ||
1048 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 netdev_unlock(dev);
1050 dev_put(dev);
1051 return NULL;
1052 }
1053 dev_put(dev);
1054 return dev;
1055 }
1056
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 netdev_lock_ops_compat(dev);
1061 if (dev->reg_state > NETREG_REGISTERED ||
1062 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 netdev_unlock_ops_compat(dev);
1064 dev_put(dev);
1065 return NULL;
1066 }
1067 dev_put(dev);
1068 return dev;
1069 }
1070
1071 /**
1072 * netdev_get_by_index_lock() - find a device by its ifindex
1073 * @net: the applicable net namespace
1074 * @ifindex: index of device
1075 *
1076 * Search for an interface by index. If a valid device
1077 * with @ifindex is found it will be returned with netdev->lock held.
1078 * netdev_unlock() must be called to release it.
1079 *
1080 * Return: pointer to a device with lock held, NULL if not found.
1081 */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 struct net_device *dev;
1085
1086 dev = dev_get_by_index(net, ifindex);
1087 if (!dev)
1088 return NULL;
1089
1090 return __netdev_put_lock(dev, net);
1091 }
1092
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 struct net_device *dev;
1097
1098 dev = dev_get_by_index(net, ifindex);
1099 if (!dev)
1100 return NULL;
1101
1102 return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 unsigned long *index)
1108 {
1109 if (dev)
1110 netdev_unlock(dev);
1111
1112 do {
1113 rcu_read_lock();
1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 if (!dev) {
1116 rcu_read_unlock();
1117 return NULL;
1118 }
1119 dev_hold(dev);
1120 rcu_read_unlock();
1121
1122 dev = __netdev_put_lock(dev, net);
1123 if (dev)
1124 return dev;
1125
1126 (*index)++;
1127 } while (true);
1128 }
1129
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 unsigned long *index)
1133 {
1134 if (dev)
1135 netdev_unlock_ops_compat(dev);
1136
1137 do {
1138 rcu_read_lock();
1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 if (!dev) {
1141 rcu_read_unlock();
1142 return NULL;
1143 }
1144 dev_hold(dev);
1145 rcu_read_unlock();
1146
1147 dev = __netdev_put_lock_ops_compat(dev, net);
1148 if (dev)
1149 return dev;
1150
1151 (*index)++;
1152 } while (true);
1153 }
1154
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 unsigned int seq;
1160
1161 do {
1162 seq = read_seqbegin(&netdev_rename_lock);
1163 strscpy(name, dev->name, IFNAMSIZ);
1164 } while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166
1167 /**
1168 * netdev_get_name - get a netdevice name, knowing its ifindex.
1169 * @net: network namespace
1170 * @name: a pointer to the buffer where the name will be stored.
1171 * @ifindex: the ifindex of the interface to get the name from.
1172 */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 struct net_device *dev;
1176 int ret;
1177
1178 rcu_read_lock();
1179
1180 dev = dev_get_by_index_rcu(net, ifindex);
1181 if (!dev) {
1182 ret = -ENODEV;
1183 goto out;
1184 }
1185
1186 netdev_copy_name(dev, name);
1187
1188 ret = 0;
1189 out:
1190 rcu_read_unlock();
1191 return ret;
1192 }
1193
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 const char *ha)
1196 {
1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199
1200 /**
1201 * dev_getbyhwaddr_rcu - find a device by its hardware address
1202 * @net: the applicable net namespace
1203 * @type: media type of device
1204 * @ha: hardware address
1205 *
1206 * Search for an interface by MAC address. Returns NULL if the device
1207 * is not found or a pointer to the device.
1208 * The caller must hold RCU.
1209 * The returned device has not had its ref count increased
1210 * and the caller must therefore be careful about locking
1211 *
1212 */
1213
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 const char *ha)
1216 {
1217 struct net_device *dev;
1218
1219 for_each_netdev_rcu(net, dev)
1220 if (dev_addr_cmp(dev, type, ha))
1221 return dev;
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227 /**
1228 * dev_getbyhwaddr() - find a device by its hardware address
1229 * @net: the applicable net namespace
1230 * @type: media type of device
1231 * @ha: hardware address
1232 *
1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234 * rtnl_lock.
1235 *
1236 * Context: rtnl_lock() must be held.
1237 * Return: pointer to the net_device, or NULL if not found
1238 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 const char *ha)
1241 {
1242 struct net_device *dev;
1243
1244 ASSERT_RTNL();
1245 for_each_netdev(net, dev)
1246 if (dev_addr_cmp(dev, type, ha))
1247 return dev;
1248
1249 return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 struct net_device *dev, *ret = NULL;
1256
1257 rcu_read_lock();
1258 for_each_netdev_rcu(net, dev)
1259 if (dev->type == type) {
1260 dev_hold(dev);
1261 ret = dev;
1262 break;
1263 }
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269 /**
1270 * netdev_get_by_flags_rcu - find any device with given flags
1271 * @net: the applicable net namespace
1272 * @tracker: tracking object for the acquired reference
1273 * @if_flags: IFF_* values
1274 * @mask: bitmask of bits in if_flags to check
1275 *
1276 * Search for any interface with the given flags.
1277 *
1278 * Context: rcu_read_lock() must be held.
1279 * Returns: NULL if a device is not found or a pointer to the device.
1280 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 unsigned short if_flags, unsigned short mask)
1283 {
1284 struct net_device *dev;
1285
1286 for_each_netdev_rcu(net, dev) {
1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 netdev_hold(dev, tracker, GFP_ATOMIC);
1289 return dev;
1290 }
1291 }
1292
1293 return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297 /**
1298 * dev_valid_name - check if name is okay for network device
1299 * @name: name string
1300 *
1301 * Network device names need to be valid file names to
1302 * allow sysfs to work. We also disallow any kind of
1303 * whitespace.
1304 */
dev_valid_name(const char * name)1305 bool dev_valid_name(const char *name)
1306 {
1307 if (*name == '\0')
1308 return false;
1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 return false;
1311 if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 return false;
1313
1314 while (*name) {
1315 if (*name == '/' || *name == ':' || isspace(*name))
1316 return false;
1317 name++;
1318 }
1319 return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322
1323 /**
1324 * __dev_alloc_name - allocate a name for a device
1325 * @net: network namespace to allocate the device name in
1326 * @name: name format string
1327 * @res: result name string
1328 *
1329 * Passed a format string - eg "lt%d" it will try and find a suitable
1330 * id. It scans list of devices to build up a free map, then chooses
1331 * the first empty slot. The caller must hold the dev_base or rtnl lock
1332 * while allocating the name and adding the device in order to avoid
1333 * duplicates.
1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335 * Returns the number of the unit assigned or a negative errno code.
1336 */
1337
__dev_alloc_name(struct net * net,const char * name,char * res)1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 int i = 0;
1341 const char *p;
1342 const int max_netdevices = 8*PAGE_SIZE;
1343 unsigned long *inuse;
1344 struct net_device *d;
1345 char buf[IFNAMSIZ];
1346
1347 /* Verify the string as this thing may have come from the user.
1348 * There must be one "%d" and no other "%" characters.
1349 */
1350 p = strchr(name, '%');
1351 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 return -EINVAL;
1353
1354 /* Use one page as a bit array of possible slots */
1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 if (!inuse)
1357 return -ENOMEM;
1358
1359 for_each_netdev(net, d) {
1360 struct netdev_name_node *name_node;
1361
1362 netdev_for_each_altname(d, name_node) {
1363 if (!sscanf(name_node->name, name, &i))
1364 continue;
1365 if (i < 0 || i >= max_netdevices)
1366 continue;
1367
1368 /* avoid cases where sscanf is not exact inverse of printf */
1369 snprintf(buf, IFNAMSIZ, name, i);
1370 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 __set_bit(i, inuse);
1372 }
1373 if (!sscanf(d->name, name, &i))
1374 continue;
1375 if (i < 0 || i >= max_netdevices)
1376 continue;
1377
1378 /* avoid cases where sscanf is not exact inverse of printf */
1379 snprintf(buf, IFNAMSIZ, name, i);
1380 if (!strncmp(buf, d->name, IFNAMSIZ))
1381 __set_bit(i, inuse);
1382 }
1383
1384 i = find_first_zero_bit(inuse, max_netdevices);
1385 bitmap_free(inuse);
1386 if (i == max_netdevices)
1387 return -ENFILE;
1388
1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 strscpy(buf, name, IFNAMSIZ);
1391 snprintf(res, IFNAMSIZ, buf, i);
1392 return i;
1393 }
1394
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 const char *want_name, char *out_name,
1398 int dup_errno)
1399 {
1400 if (!dev_valid_name(want_name))
1401 return -EINVAL;
1402
1403 if (strchr(want_name, '%'))
1404 return __dev_alloc_name(net, want_name, out_name);
1405
1406 if (netdev_name_in_use(net, want_name))
1407 return -dup_errno;
1408 if (out_name != want_name)
1409 strscpy(out_name, want_name, IFNAMSIZ);
1410 return 0;
1411 }
1412
1413 /**
1414 * dev_alloc_name - allocate a name for a device
1415 * @dev: device
1416 * @name: name format string
1417 *
1418 * Passed a format string - eg "lt%d" it will try and find a suitable
1419 * id. It scans list of devices to build up a free map, then chooses
1420 * the first empty slot. The caller must hold the dev_base or rtnl lock
1421 * while allocating the name and adding the device in order to avoid
1422 * duplicates.
1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424 * Returns the number of the unit assigned or a negative errno code.
1425 */
1426
dev_alloc_name(struct net_device * dev,const char * name)1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 const char *name)
1435 {
1436 int ret;
1437
1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 return ret < 0 ? ret : 0;
1440 }
1441
netif_change_name(struct net_device * dev,const char * newname)1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 struct net *net = dev_net(dev);
1445 unsigned char old_assign_type;
1446 char oldname[IFNAMSIZ];
1447 int err = 0;
1448 int ret;
1449
1450 ASSERT_RTNL_NET(net);
1451
1452 if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 return 0;
1454
1455 memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457 write_seqlock_bh(&netdev_rename_lock);
1458 err = dev_get_valid_name(net, dev, newname);
1459 write_sequnlock_bh(&netdev_rename_lock);
1460
1461 if (err < 0)
1462 return err;
1463
1464 if (oldname[0] && !strchr(oldname, '%'))
1465 netdev_info(dev, "renamed from %s%s\n", oldname,
1466 dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468 old_assign_type = dev->name_assign_type;
1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471 rollback:
1472 ret = device_rename(&dev->dev, dev->name);
1473 if (ret) {
1474 write_seqlock_bh(&netdev_rename_lock);
1475 memcpy(dev->name, oldname, IFNAMSIZ);
1476 write_sequnlock_bh(&netdev_rename_lock);
1477 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 return ret;
1479 }
1480
1481 netdev_adjacent_rename_links(dev, oldname);
1482
1483 netdev_name_node_del(dev->name_node);
1484
1485 synchronize_net();
1486
1487 netdev_name_node_add(net, dev->name_node);
1488
1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 ret = notifier_to_errno(ret);
1491
1492 if (ret) {
1493 /* err >= 0 after dev_alloc_name() or stores the first errno */
1494 if (err >= 0) {
1495 err = ret;
1496 write_seqlock_bh(&netdev_rename_lock);
1497 memcpy(dev->name, oldname, IFNAMSIZ);
1498 write_sequnlock_bh(&netdev_rename_lock);
1499 memcpy(oldname, newname, IFNAMSIZ);
1500 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 old_assign_type = NET_NAME_RENAMED;
1502 goto rollback;
1503 } else {
1504 netdev_err(dev, "name change rollback failed: %d\n",
1505 ret);
1506 }
1507 }
1508
1509 return err;
1510 }
1511
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 struct dev_ifalias *new_alias = NULL;
1515
1516 if (len >= IFALIASZ)
1517 return -EINVAL;
1518
1519 if (len) {
1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 if (!new_alias)
1522 return -ENOMEM;
1523
1524 memcpy(new_alias->ifalias, alias, len);
1525 new_alias->ifalias[len] = 0;
1526 }
1527
1528 mutex_lock(&ifalias_mutex);
1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 mutex_is_locked(&ifalias_mutex));
1531 mutex_unlock(&ifalias_mutex);
1532
1533 if (new_alias)
1534 kfree_rcu(new_alias, rcuhead);
1535
1536 return len;
1537 }
1538
1539 /**
1540 * dev_get_alias - get ifalias of a device
1541 * @dev: device
1542 * @name: buffer to store name of ifalias
1543 * @len: size of buffer
1544 *
1545 * get ifalias for a device. Caller must make sure dev cannot go
1546 * away, e.g. rcu read lock or own a reference count to device.
1547 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 const struct dev_ifalias *alias;
1551 int ret = 0;
1552
1553 rcu_read_lock();
1554 alias = rcu_dereference(dev->ifalias);
1555 if (alias)
1556 ret = snprintf(name, len, "%s", alias->ifalias);
1557 rcu_read_unlock();
1558
1559 return ret;
1560 }
1561
1562 /**
1563 * netdev_features_change - device changes features
1564 * @dev: device to cause notification
1565 *
1566 * Called to indicate a device has changed features.
1567 */
netdev_features_change(struct net_device * dev)1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573
netif_state_change(struct net_device * dev)1574 void netif_state_change(struct net_device *dev)
1575 {
1576 netdev_ops_assert_locked_or_invisible(dev);
1577
1578 if (dev->flags & IFF_UP) {
1579 struct netdev_notifier_change_info change_info = {
1580 .info.dev = dev,
1581 };
1582
1583 call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 &change_info.info);
1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 }
1587 }
1588
1589 /**
1590 * __netdev_notify_peers - notify network peers about existence of @dev,
1591 * to be called when rtnl lock is already held.
1592 * @dev: network device
1593 *
1594 * Generate traffic such that interested network peers are aware of
1595 * @dev, such as by generating a gratuitous ARP. This may be used when
1596 * a device wants to inform the rest of the network about some sort of
1597 * reconfiguration such as a failover event or virtual machine
1598 * migration.
1599 */
__netdev_notify_peers(struct net_device * dev)1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 ASSERT_RTNL();
1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608 /**
1609 * netdev_notify_peers - notify network peers about existence of @dev
1610 * @dev: network device
1611 *
1612 * Generate traffic such that interested network peers are aware of
1613 * @dev, such as by generating a gratuitous ARP. This may be used when
1614 * a device wants to inform the rest of the network about some sort of
1615 * reconfiguration such as a failover event or virtual machine
1616 * migration.
1617 */
netdev_notify_peers(struct net_device * dev)1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 rtnl_lock();
1621 __netdev_notify_peers(dev);
1622 rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625
1626 static int napi_threaded_poll(void *data);
1627
napi_kthread_create(struct napi_struct * n)1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 int err = 0;
1631
1632 /* Create and wake up the kthread once to put it in
1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 * warning and work with loadavg.
1635 */
1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 n->dev->name, n->napi_id);
1638 if (IS_ERR(n->thread)) {
1639 err = PTR_ERR(n->thread);
1640 pr_err("kthread_run failed with err %d\n", err);
1641 n->thread = NULL;
1642 }
1643
1644 return err;
1645 }
1646
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 const struct net_device_ops *ops = dev->netdev_ops;
1650 int ret;
1651
1652 ASSERT_RTNL();
1653 dev_addr_check(dev);
1654
1655 if (!netif_device_present(dev)) {
1656 /* may be detached because parent is runtime-suspended */
1657 if (dev->dev.parent)
1658 pm_runtime_resume(dev->dev.parent);
1659 if (!netif_device_present(dev))
1660 return -ENODEV;
1661 }
1662
1663 /* Block netpoll from trying to do any rx path servicing.
1664 * If we don't do this there is a chance ndo_poll_controller
1665 * or ndo_poll may be running while we open the device
1666 */
1667 netpoll_poll_disable(dev);
1668
1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 ret = notifier_to_errno(ret);
1671 if (ret)
1672 return ret;
1673
1674 set_bit(__LINK_STATE_START, &dev->state);
1675
1676 netdev_ops_assert_locked(dev);
1677
1678 if (ops->ndo_validate_addr)
1679 ret = ops->ndo_validate_addr(dev);
1680
1681 if (!ret && ops->ndo_open)
1682 ret = ops->ndo_open(dev);
1683
1684 netpoll_poll_enable(dev);
1685
1686 if (ret)
1687 clear_bit(__LINK_STATE_START, &dev->state);
1688 else {
1689 netif_set_up(dev, true);
1690 dev_set_rx_mode(dev);
1691 dev_activate(dev);
1692 add_device_randomness(dev->dev_addr, dev->addr_len);
1693 }
1694
1695 return ret;
1696 }
1697
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 int ret;
1701
1702 if (dev->flags & IFF_UP)
1703 return 0;
1704
1705 ret = __dev_open(dev, extack);
1706 if (ret < 0)
1707 return ret;
1708
1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712 return ret;
1713 }
1714
__dev_close_many(struct list_head * head)1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 struct net_device *dev;
1718
1719 ASSERT_RTNL();
1720 might_sleep();
1721
1722 list_for_each_entry(dev, head, close_list) {
1723 /* Temporarily disable netpoll until the interface is down */
1724 netpoll_poll_disable(dev);
1725
1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728 clear_bit(__LINK_STATE_START, &dev->state);
1729
1730 /* Synchronize to scheduled poll. We cannot touch poll list, it
1731 * can be even on different cpu. So just clear netif_running().
1732 *
1733 * dev->stop() will invoke napi_disable() on all of it's
1734 * napi_struct instances on this device.
1735 */
1736 smp_mb__after_atomic(); /* Commit netif_running(). */
1737 }
1738
1739 dev_deactivate_many(head);
1740
1741 list_for_each_entry(dev, head, close_list) {
1742 const struct net_device_ops *ops = dev->netdev_ops;
1743
1744 /*
1745 * Call the device specific close. This cannot fail.
1746 * Only if device is UP
1747 *
1748 * We allow it to be called even after a DETACH hot-plug
1749 * event.
1750 */
1751
1752 netdev_ops_assert_locked(dev);
1753
1754 if (ops->ndo_stop)
1755 ops->ndo_stop(dev);
1756
1757 netif_set_up(dev, false);
1758 netpoll_poll_enable(dev);
1759 }
1760 }
1761
__dev_close(struct net_device * dev)1762 static void __dev_close(struct net_device *dev)
1763 {
1764 LIST_HEAD(single);
1765
1766 list_add(&dev->close_list, &single);
1767 __dev_close_many(&single);
1768 list_del(&single);
1769 }
1770
netif_close_many(struct list_head * head,bool unlink)1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 struct net_device *dev, *tmp;
1774
1775 /* Remove the devices that don't need to be closed */
1776 list_for_each_entry_safe(dev, tmp, head, close_list)
1777 if (!(dev->flags & IFF_UP))
1778 list_del_init(&dev->close_list);
1779
1780 __dev_close_many(head);
1781
1782 list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 if (unlink)
1786 list_del_init(&dev->close_list);
1787 }
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
netif_close(struct net_device * dev)1791 void netif_close(struct net_device *dev)
1792 {
1793 if (dev->flags & IFF_UP) {
1794 LIST_HEAD(single);
1795
1796 list_add(&dev->close_list, &single);
1797 netif_close_many(&single, true);
1798 list_del(&single);
1799 }
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802
netif_disable_lro(struct net_device * dev)1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 struct net_device *lower_dev;
1806 struct list_head *iter;
1807
1808 dev->wanted_features &= ~NETIF_F_LRO;
1809 netdev_update_features(dev);
1810
1811 if (unlikely(dev->features & NETIF_F_LRO))
1812 netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 netdev_lock_ops(lower_dev);
1816 netif_disable_lro(lower_dev);
1817 netdev_unlock_ops(lower_dev);
1818 }
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822 /**
1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824 * @dev: device
1825 *
1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827 * called under RTNL. This is needed if Generic XDP is installed on
1828 * the device.
1829 */
dev_disable_gro_hw(struct net_device * dev)1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 netdev_update_features(dev);
1834
1835 if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838
netdev_cmd_to_name(enum netdev_cmd cmd)1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) \
1842 case NETDEV_##val: \
1843 return "NETDEV_" __stringify(val);
1844 switch (cmd) {
1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 N(XDP_FEAT_CHANGE)
1857 }
1858 #undef N
1859 return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 struct net_device *dev)
1865 {
1866 struct netdev_notifier_info info = {
1867 .dev = dev,
1868 };
1869
1870 return nb->notifier_call(nb, val, &info);
1871 }
1872
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 struct net_device *dev)
1875 {
1876 int err;
1877
1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 err = notifier_to_errno(err);
1880 if (err)
1881 return err;
1882
1883 if (!(dev->flags & IFF_UP))
1884 return 0;
1885
1886 call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 return 0;
1888 }
1889
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 struct net_device *dev)
1892 {
1893 if (dev->flags & IFF_UP) {
1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 dev);
1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 }
1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 struct net *net)
1903 {
1904 struct net_device *dev;
1905 int err;
1906
1907 for_each_netdev(net, dev) {
1908 netdev_lock_ops(dev);
1909 err = call_netdevice_register_notifiers(nb, dev);
1910 netdev_unlock_ops(dev);
1911 if (err)
1912 goto rollback;
1913 }
1914 return 0;
1915
1916 rollback:
1917 for_each_netdev_continue_reverse(net, dev)
1918 call_netdevice_unregister_notifiers(nb, dev);
1919 return err;
1920 }
1921
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 struct net *net)
1924 {
1925 struct net_device *dev;
1926
1927 for_each_netdev(net, dev)
1928 call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930
1931 static int dev_boot_phase = 1;
1932
1933 /**
1934 * register_netdevice_notifier - register a network notifier block
1935 * @nb: notifier
1936 *
1937 * Register a notifier to be called when network device events occur.
1938 * The notifier passed is linked into the kernel structures and must
1939 * not be reused until it has been unregistered. A negative errno code
1940 * is returned on a failure.
1941 *
1942 * When registered all registration and up events are replayed
1943 * to the new notifier to allow device to have a race free
1944 * view of the network device list.
1945 */
1946
register_netdevice_notifier(struct notifier_block * nb)1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 struct net *net;
1950 int err;
1951
1952 /* Close race with setup_net() and cleanup_net() */
1953 down_write(&pernet_ops_rwsem);
1954
1955 /* When RTNL is removed, we need protection for netdev_chain. */
1956 rtnl_lock();
1957
1958 err = raw_notifier_chain_register(&netdev_chain, nb);
1959 if (err)
1960 goto unlock;
1961 if (dev_boot_phase)
1962 goto unlock;
1963 for_each_net(net) {
1964 __rtnl_net_lock(net);
1965 err = call_netdevice_register_net_notifiers(nb, net);
1966 __rtnl_net_unlock(net);
1967 if (err)
1968 goto rollback;
1969 }
1970
1971 unlock:
1972 rtnl_unlock();
1973 up_write(&pernet_ops_rwsem);
1974 return err;
1975
1976 rollback:
1977 for_each_net_continue_reverse(net) {
1978 __rtnl_net_lock(net);
1979 call_netdevice_unregister_net_notifiers(nb, net);
1980 __rtnl_net_unlock(net);
1981 }
1982
1983 raw_notifier_chain_unregister(&netdev_chain, nb);
1984 goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988 /**
1989 * unregister_netdevice_notifier - unregister a network notifier block
1990 * @nb: notifier
1991 *
1992 * Unregister a notifier previously registered by
1993 * register_netdevice_notifier(). The notifier is unlinked into the
1994 * kernel structures and may then be reused. A negative errno code
1995 * is returned on a failure.
1996 *
1997 * After unregistering unregister and down device events are synthesized
1998 * for all devices on the device list to the removed notifier to remove
1999 * the need for special case cleanup code.
2000 */
2001
unregister_netdevice_notifier(struct notifier_block * nb)2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 struct net *net;
2005 int err;
2006
2007 /* Close race with setup_net() and cleanup_net() */
2008 down_write(&pernet_ops_rwsem);
2009 rtnl_lock();
2010 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 if (err)
2012 goto unlock;
2013
2014 for_each_net(net) {
2015 __rtnl_net_lock(net);
2016 call_netdevice_unregister_net_notifiers(nb, net);
2017 __rtnl_net_unlock(net);
2018 }
2019
2020 unlock:
2021 rtnl_unlock();
2022 up_write(&pernet_ops_rwsem);
2023 return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2027 static int __register_netdevice_notifier_net(struct net *net,
2028 struct notifier_block *nb,
2029 bool ignore_call_fail)
2030 {
2031 int err;
2032
2033 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 if (err)
2035 return err;
2036 if (dev_boot_phase)
2037 return 0;
2038
2039 err = call_netdevice_register_net_notifiers(nb, net);
2040 if (err && !ignore_call_fail)
2041 goto chain_unregister;
2042
2043 return 0;
2044
2045 chain_unregister:
2046 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 return err;
2048 }
2049
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 struct notifier_block *nb)
2052 {
2053 int err;
2054
2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 if (err)
2057 return err;
2058
2059 call_netdevice_unregister_net_notifiers(nb, net);
2060 return 0;
2061 }
2062
2063 /**
2064 * register_netdevice_notifier_net - register a per-netns network notifier block
2065 * @net: network namespace
2066 * @nb: notifier
2067 *
2068 * Register a notifier to be called when network device events occur.
2069 * The notifier passed is linked into the kernel structures and must
2070 * not be reused until it has been unregistered. A negative errno code
2071 * is returned on a failure.
2072 *
2073 * When registered all registration and up events are replayed
2074 * to the new notifier to allow device to have a race free
2075 * view of the network device list.
2076 */
2077
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 int err;
2081
2082 rtnl_net_lock(net);
2083 err = __register_netdevice_notifier_net(net, nb, false);
2084 rtnl_net_unlock(net);
2085
2086 return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090 /**
2091 * unregister_netdevice_notifier_net - unregister a per-netns
2092 * network notifier block
2093 * @net: network namespace
2094 * @nb: notifier
2095 *
2096 * Unregister a notifier previously registered by
2097 * register_netdevice_notifier_net(). The notifier is unlinked from the
2098 * kernel structures and may then be reused. A negative errno code
2099 * is returned on a failure.
2100 *
2101 * After unregistering unregister and down device events are synthesized
2102 * for all devices on the device list to the removed notifier to remove
2103 * the need for special case cleanup code.
2104 */
2105
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2106 int unregister_netdevice_notifier_net(struct net *net,
2107 struct notifier_block *nb)
2108 {
2109 int err;
2110
2111 rtnl_net_lock(net);
2112 err = __unregister_netdevice_notifier_net(net, nb);
2113 rtnl_net_unlock(net);
2114
2115 return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 struct net *dst_net,
2121 struct notifier_block *nb)
2122 {
2123 __unregister_netdevice_notifier_net(src_net, nb);
2124 __register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126
rtnl_net_dev_lock(struct net_device * dev)2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 bool again;
2130
2131 do {
2132 struct net *net;
2133
2134 again = false;
2135
2136 /* netns might be being dismantled. */
2137 rcu_read_lock();
2138 net = dev_net_rcu(dev);
2139 net_passive_inc(net);
2140 rcu_read_unlock();
2141
2142 rtnl_net_lock(net);
2143
2144 #ifdef CONFIG_NET_NS
2145 /* dev might have been moved to another netns. */
2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 rtnl_net_unlock(net);
2148 net_passive_dec(net);
2149 again = true;
2150 }
2151 #endif
2152 } while (again);
2153 }
2154
rtnl_net_dev_unlock(struct net_device * dev)2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 struct net *net = dev_net(dev);
2158
2159 rtnl_net_unlock(net);
2160 net_passive_dec(net);
2161 }
2162
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 struct notifier_block *nb,
2165 struct netdev_net_notifier *nn)
2166 {
2167 int err;
2168
2169 rtnl_net_dev_lock(dev);
2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 if (!err) {
2172 nn->nb = nb;
2173 list_add(&nn->list, &dev->net_notifier_list);
2174 }
2175 rtnl_net_dev_unlock(dev);
2176
2177 return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 struct notifier_block *nb,
2183 struct netdev_net_notifier *nn)
2184 {
2185 int err;
2186
2187 rtnl_net_dev_lock(dev);
2188 list_del(&nn->list);
2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 rtnl_net_dev_unlock(dev);
2191
2192 return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 struct net *net)
2198 {
2199 struct netdev_net_notifier *nn;
2200
2201 list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204
2205 /**
2206 * call_netdevice_notifiers_info - call all network notifier blocks
2207 * @val: value passed unmodified to notifier function
2208 * @info: notifier information data
2209 *
2210 * Call all network notifier blocks. Parameters and return value
2211 * are as for raw_notifier_call_chain().
2212 */
2213
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2214 int call_netdevice_notifiers_info(unsigned long val,
2215 struct netdev_notifier_info *info)
2216 {
2217 struct net *net = dev_net(info->dev);
2218 int ret;
2219
2220 ASSERT_RTNL();
2221
2222 /* Run per-netns notifier block chain first, then run the global one.
2223 * Hopefully, one day, the global one is going to be removed after
2224 * all notifier block registrators get converted to be per-netns.
2225 */
2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 if (ret & NOTIFY_STOP_MASK)
2228 return ret;
2229 return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231
2232 /**
2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234 * for and rollback on error
2235 * @val_up: value passed unmodified to notifier function
2236 * @val_down: value passed unmodified to the notifier function when
2237 * recovering from an error on @val_up
2238 * @info: notifier information data
2239 *
2240 * Call all per-netns network notifier blocks, but not notifier blocks on
2241 * the global notifier chain. Parameters and return value are as for
2242 * raw_notifier_call_chain_robust().
2243 */
2244
2245 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 unsigned long val_down,
2248 struct netdev_notifier_info *info)
2249 {
2250 struct net *net = dev_net(info->dev);
2251
2252 ASSERT_RTNL();
2253
2254 return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 val_up, val_down, info);
2256 }
2257
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 struct net_device *dev,
2260 struct netlink_ext_ack *extack)
2261 {
2262 struct netdev_notifier_info info = {
2263 .dev = dev,
2264 .extack = extack,
2265 };
2266
2267 return call_netdevice_notifiers_info(val, &info);
2268 }
2269
2270 /**
2271 * call_netdevice_notifiers - call all network notifier blocks
2272 * @val: value passed unmodified to notifier function
2273 * @dev: net_device pointer passed unmodified to notifier function
2274 *
2275 * Call all network notifier blocks. Parameters and return value
2276 * are as for raw_notifier_call_chain().
2277 */
2278
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285 /**
2286 * call_netdevice_notifiers_mtu - call all network notifier blocks
2287 * @val: value passed unmodified to notifier function
2288 * @dev: net_device pointer passed unmodified to notifier function
2289 * @arg: additional u32 argument passed to the notifier function
2290 *
2291 * Call all network notifier blocks. Parameters and return value
2292 * are as for raw_notifier_call_chain().
2293 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 struct net_device *dev, u32 arg)
2296 {
2297 struct netdev_notifier_info_ext info = {
2298 .info.dev = dev,
2299 .ext.mtu = arg,
2300 };
2301
2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304 return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
net_inc_ingress_queue(void)2310 void net_inc_ingress_queue(void)
2311 {
2312 static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
net_dec_ingress_queue(void)2316 void net_dec_ingress_queue(void)
2317 {
2318 static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
net_inc_egress_queue(void)2326 void net_inc_egress_queue(void)
2327 {
2328 static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
net_dec_egress_queue(void)2332 void net_dec_egress_queue(void)
2333 {
2334 static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 int wanted;
2353
2354 wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 if (wanted > 0)
2356 static_branch_enable(&netstamp_needed_key);
2357 else
2358 static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362
net_enable_timestamp(void)2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 int wanted = atomic_read(&netstamp_wanted);
2367
2368 while (wanted > 0) {
2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 return;
2371 }
2372 atomic_inc(&netstamp_needed_deferred);
2373 schedule_work(&netstamp_work);
2374 #else
2375 static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379
net_disable_timestamp(void)2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 int wanted = atomic_read(&netstamp_wanted);
2384
2385 while (wanted > 1) {
2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 return;
2388 }
2389 atomic_dec(&netstamp_needed_deferred);
2390 schedule_work(&netstamp_work);
2391 #else
2392 static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396
net_timestamp_set(struct sk_buff * skb)2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 skb->tstamp = 0;
2400 skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 if (static_branch_unlikely(&netstamp_needed_key))
2402 skb->tstamp = ktime_get_real();
2403 }
2404
2405 #define net_timestamp_check(COND, SKB) \
2406 if (static_branch_unlikely(&netstamp_needed_key)) { \
2407 if ((COND) && !(SKB)->tstamp) \
2408 (SKB)->tstamp = ktime_get_real(); \
2409 } \
2410
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 bool check_mtu)
2419 {
2420 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422 if (likely(!ret)) {
2423 skb->protocol = eth_type_trans(skb, dev);
2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 }
2426
2427 return ret;
2428 }
2429
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436 /**
2437 * dev_forward_skb - loopback an skb to another netif
2438 *
2439 * @dev: destination network device
2440 * @skb: buffer to forward
2441 *
2442 * return values:
2443 * NET_RX_SUCCESS (no congestion)
2444 * NET_RX_DROP (packet was dropped, but freed)
2445 *
2446 * dev_forward_skb can be used for injecting an skb from the
2447 * start_xmit function of one device into the receive queue
2448 * of another device.
2449 *
2450 * The receiving device may be in another namespace, so
2451 * we have to clear all information in the skb that could
2452 * impact namespace isolation.
2453 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2465 static inline int deliver_skb(struct sk_buff *skb,
2466 struct packet_type *pt_prev,
2467 struct net_device *orig_dev)
2468 {
2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 return -ENOMEM;
2471 refcount_inc(&skb->users);
2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 struct packet_type **pt,
2477 struct net_device *orig_dev,
2478 __be16 type,
2479 struct list_head *ptype_list)
2480 {
2481 struct packet_type *ptype, *pt_prev = *pt;
2482
2483 list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 if (ptype->type != type)
2485 continue;
2486 if (pt_prev)
2487 deliver_skb(skb, pt_prev, orig_dev);
2488 pt_prev = ptype;
2489 }
2490 *pt = pt_prev;
2491 }
2492
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 if (!ptype->af_packet_priv || !skb->sk)
2496 return false;
2497
2498 if (ptype->id_match)
2499 return ptype->id_match(ptype, skb->sk);
2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 return true;
2502
2503 return false;
2504 }
2505
2506 /**
2507 * dev_nit_active_rcu - return true if any network interface taps are in use
2508 *
2509 * The caller must hold the RCU lock
2510 *
2511 * @dev: network device to check for the presence of taps
2512 */
dev_nit_active_rcu(const struct net_device * dev)2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 /* Callers may hold either RCU or RCU BH lock */
2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518 return !list_empty(&dev_net(dev)->ptype_all) ||
2519 !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523 /*
2524 * Support routine. Sends outgoing frames to any network
2525 * taps currently in use.
2526 */
2527
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 struct packet_type *ptype, *pt_prev = NULL;
2531 struct list_head *ptype_list;
2532 struct sk_buff *skb2 = NULL;
2533
2534 rcu_read_lock();
2535 ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 if (READ_ONCE(ptype->ignore_outgoing))
2539 continue;
2540
2541 /* Never send packets back to the socket
2542 * they originated from - MvS (miquels@drinkel.ow.org)
2543 */
2544 if (skb_loop_sk(ptype, skb))
2545 continue;
2546
2547 if (pt_prev) {
2548 deliver_skb(skb2, pt_prev, skb->dev);
2549 pt_prev = ptype;
2550 continue;
2551 }
2552
2553 /* need to clone skb, done only once */
2554 skb2 = skb_clone(skb, GFP_ATOMIC);
2555 if (!skb2)
2556 goto out_unlock;
2557
2558 net_timestamp_set(skb2);
2559
2560 /* skb->nh should be correctly
2561 * set by sender, so that the second statement is
2562 * just protection against buggy protocols.
2563 */
2564 skb_reset_mac_header(skb2);
2565
2566 if (skb_network_header(skb2) < skb2->data ||
2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 ntohs(skb2->protocol),
2570 dev->name);
2571 skb_reset_network_header(skb2);
2572 }
2573
2574 skb2->transport_header = skb2->network_header;
2575 skb2->pkt_type = PACKET_OUTGOING;
2576 pt_prev = ptype;
2577 }
2578
2579 if (ptype_list != &dev->ptype_all) {
2580 ptype_list = &dev->ptype_all;
2581 goto again;
2582 }
2583 out_unlock:
2584 if (pt_prev) {
2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 else
2588 kfree_skb(skb2);
2589 }
2590 rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594 /**
2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596 * @dev: Network device
2597 * @txq: number of queues available
2598 *
2599 * If real_num_tx_queues is changed the tc mappings may no longer be
2600 * valid. To resolve this verify the tc mapping remains valid and if
2601 * not NULL the mapping. With no priorities mapping to this
2602 * offset/count pair it will no longer be used. In the worst case TC0
2603 * is invalid nothing can be done so disable priority mappings. If is
2604 * expected that drivers will fix this mapping if they can before
2605 * calling netif_set_real_num_tx_queues.
2606 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 int i;
2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612 /* If TC0 is invalidated disable TC mapping */
2613 if (tc->offset + tc->count > txq) {
2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 dev->num_tc = 0;
2616 return;
2617 }
2618
2619 /* Invalidated prio to tc mappings set to TC0 */
2620 for (i = 1; i < TC_BITMASK + 1; i++) {
2621 int q = netdev_get_prio_tc_map(dev, i);
2622
2623 tc = &dev->tc_to_txq[q];
2624 if (tc->offset + tc->count > txq) {
2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 i, q);
2627 netdev_set_prio_tc_map(dev, i, 0);
2628 }
2629 }
2630 }
2631
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 if (dev->num_tc) {
2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 int i;
2637
2638 /* walk through the TCs and see if it falls into any of them */
2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 if ((txq - tc->offset) < tc->count)
2641 return i;
2642 }
2643
2644 /* didn't find it, just return -1 to indicate no match */
2645 return -1;
2646 }
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P) \
2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 struct xps_map *map = NULL;
2663 int pos;
2664
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 return false;
2668
2669 for (pos = map->len; pos--;) {
2670 if (map->queues[pos] != index)
2671 continue;
2672
2673 if (map->len > 1) {
2674 map->queues[pos] = map->queues[--map->len];
2675 break;
2676 }
2677
2678 if (old_maps)
2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 kfree_rcu(map, rcu);
2682 return false;
2683 }
2684
2685 return true;
2686 }
2687
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 struct xps_dev_maps *dev_maps,
2690 int cpu, u16 offset, u16 count)
2691 {
2692 int num_tc = dev_maps->num_tc;
2693 bool active = false;
2694 int tci;
2695
2696 for (tci = cpu * num_tc; num_tc--; tci++) {
2697 int i, j;
2698
2699 for (i = count, j = offset; i--; j++) {
2700 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 break;
2702 }
2703
2704 active |= i < 0;
2705 }
2706
2707 return active;
2708 }
2709
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2710 static void reset_xps_maps(struct net_device *dev,
2711 struct xps_dev_maps *dev_maps,
2712 enum xps_map_type type)
2713 {
2714 static_key_slow_dec_cpuslocked(&xps_needed);
2715 if (type == XPS_RXQS)
2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720 kfree_rcu(dev_maps, rcu);
2721 }
2722
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 u16 offset, u16 count)
2725 {
2726 struct xps_dev_maps *dev_maps;
2727 bool active = false;
2728 int i, j;
2729
2730 dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 if (!dev_maps)
2732 return;
2733
2734 for (j = 0; j < dev_maps->nr_ids; j++)
2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739 if (type == XPS_CPUS) {
2740 for (i = offset + (count - 1); count--; i--)
2741 netdev_queue_numa_node_write(
2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 }
2744 }
2745
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 u16 count)
2748 {
2749 if (!static_key_false(&xps_needed))
2750 return;
2751
2752 cpus_read_lock();
2753 mutex_lock(&xps_map_mutex);
2754
2755 if (static_key_false(&xps_rxqs_needed))
2756 clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758 clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760 mutex_unlock(&xps_map_mutex);
2761 cpus_read_unlock();
2762 }
2763
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 u16 index, bool is_rxqs_map)
2771 {
2772 struct xps_map *new_map;
2773 int alloc_len = XPS_MIN_MAP_ALLOC;
2774 int i, pos;
2775
2776 for (pos = 0; map && pos < map->len; pos++) {
2777 if (map->queues[pos] != index)
2778 continue;
2779 return map;
2780 }
2781
2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 if (map) {
2784 if (pos < map->alloc_len)
2785 return map;
2786
2787 alloc_len = map->alloc_len * 2;
2788 }
2789
2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 * map
2792 */
2793 if (is_rxqs_map)
2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 else
2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 cpu_to_node(attr_index));
2798 if (!new_map)
2799 return NULL;
2800
2801 for (i = 0; i < pos; i++)
2802 new_map->queues[i] = map->queues[i];
2803 new_map->alloc_len = alloc_len;
2804 new_map->len = pos;
2805
2806 return new_map;
2807 }
2808
2809 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 struct xps_dev_maps *new_dev_maps, int index,
2812 int tc, bool skip_tc)
2813 {
2814 int i, tci = index * dev_maps->num_tc;
2815 struct xps_map *map;
2816
2817 /* copy maps belonging to foreign traffic classes */
2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 if (i == tc && skip_tc)
2820 continue;
2821
2822 /* fill in the new device map from the old device map */
2823 map = xmap_dereference(dev_maps->attr_map[tci]);
2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 }
2826 }
2827
2828 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 u16 index, enum xps_map_type type)
2831 {
2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 const unsigned long *online_mask = NULL;
2834 bool active = false, copy = false;
2835 int i, j, tci, numa_node_id = -2;
2836 int maps_sz, num_tc = 1, tc = 0;
2837 struct xps_map *map, *new_map;
2838 unsigned int nr_ids;
2839
2840 WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842 if (dev->num_tc) {
2843 /* Do not allow XPS on subordinate device directly */
2844 num_tc = dev->num_tc;
2845 if (num_tc < 0)
2846 return -EINVAL;
2847
2848 /* If queue belongs to subordinate dev use its map */
2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851 tc = netdev_txq_to_tc(dev, index);
2852 if (tc < 0)
2853 return -EINVAL;
2854 }
2855
2856 mutex_lock(&xps_map_mutex);
2857
2858 dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 if (type == XPS_RXQS) {
2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 nr_ids = dev->num_rx_queues;
2862 } else {
2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 if (num_possible_cpus() > 1)
2865 online_mask = cpumask_bits(cpu_online_mask);
2866 nr_ids = nr_cpu_ids;
2867 }
2868
2869 if (maps_sz < L1_CACHE_BYTES)
2870 maps_sz = L1_CACHE_BYTES;
2871
2872 /* The old dev_maps could be larger or smaller than the one we're
2873 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 * between. We could try to be smart, but let's be safe instead and only
2875 * copy foreign traffic classes if the two map sizes match.
2876 */
2877 if (dev_maps &&
2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 copy = true;
2880
2881 /* allocate memory for queue storage */
2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 j < nr_ids;) {
2884 if (!new_dev_maps) {
2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 if (!new_dev_maps) {
2887 mutex_unlock(&xps_map_mutex);
2888 return -ENOMEM;
2889 }
2890
2891 new_dev_maps->nr_ids = nr_ids;
2892 new_dev_maps->num_tc = num_tc;
2893 }
2894
2895 tci = j * num_tc + tc;
2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 if (!map)
2900 goto error;
2901
2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 }
2904
2905 if (!new_dev_maps)
2906 goto out_no_new_maps;
2907
2908 if (!dev_maps) {
2909 /* Increment static keys at most once per type */
2910 static_key_slow_inc_cpuslocked(&xps_needed);
2911 if (type == XPS_RXQS)
2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 }
2914
2915 for (j = 0; j < nr_ids; j++) {
2916 bool skip_tc = false;
2917
2918 tci = j * num_tc + tc;
2919 if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 netif_attr_test_online(j, online_mask, nr_ids)) {
2921 /* add tx-queue to CPU/rx-queue maps */
2922 int pos = 0;
2923
2924 skip_tc = true;
2925
2926 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 while ((pos < map->len) && (map->queues[pos] != index))
2928 pos++;
2929
2930 if (pos == map->len)
2931 map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 if (type == XPS_CPUS) {
2934 if (numa_node_id == -2)
2935 numa_node_id = cpu_to_node(j);
2936 else if (numa_node_id != cpu_to_node(j))
2937 numa_node_id = -1;
2938 }
2939 #endif
2940 }
2941
2942 if (copy)
2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 skip_tc);
2945 }
2946
2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949 /* Cleanup old maps */
2950 if (!dev_maps)
2951 goto out_no_old_maps;
2952
2953 for (j = 0; j < dev_maps->nr_ids; j++) {
2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 map = xmap_dereference(dev_maps->attr_map[tci]);
2956 if (!map)
2957 continue;
2958
2959 if (copy) {
2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 if (map == new_map)
2962 continue;
2963 }
2964
2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 kfree_rcu(map, rcu);
2967 }
2968 }
2969
2970 old_dev_maps = dev_maps;
2971
2972 out_no_old_maps:
2973 dev_maps = new_dev_maps;
2974 active = true;
2975
2976 out_no_new_maps:
2977 if (type == XPS_CPUS)
2978 /* update Tx queue numa node */
2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 (numa_node_id >= 0) ?
2981 numa_node_id : NUMA_NO_NODE);
2982
2983 if (!dev_maps)
2984 goto out_no_maps;
2985
2986 /* removes tx-queue from unused CPUs/rx-queues */
2987 for (j = 0; j < dev_maps->nr_ids; j++) {
2988 tci = j * dev_maps->num_tc;
2989
2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 if (i == tc &&
2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 continue;
2995
2996 active |= remove_xps_queue(dev_maps,
2997 copy ? old_dev_maps : NULL,
2998 tci, index);
2999 }
3000 }
3001
3002 if (old_dev_maps)
3003 kfree_rcu(old_dev_maps, rcu);
3004
3005 /* free map if not active */
3006 if (!active)
3007 reset_xps_maps(dev, dev_maps, type);
3008
3009 out_no_maps:
3010 mutex_unlock(&xps_map_mutex);
3011
3012 return 0;
3013 error:
3014 /* remove any maps that we added */
3015 for (j = 0; j < nr_ids; j++) {
3016 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 map = copy ?
3019 xmap_dereference(dev_maps->attr_map[tci]) :
3020 NULL;
3021 if (new_map && new_map != map)
3022 kfree(new_map);
3023 }
3024 }
3025
3026 mutex_unlock(&xps_map_mutex);
3027
3028 kfree(new_dev_maps);
3029 return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 u16 index)
3035 {
3036 int ret;
3037
3038 cpus_read_lock();
3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 cpus_read_unlock();
3041
3042 return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051 /* Unbind any subordinate channels */
3052 while (txq-- != &dev->_tx[0]) {
3053 if (txq->sb_dev)
3054 netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 }
3056 }
3057
netdev_reset_tc(struct net_device * dev)3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 netdev_unbind_all_sb_channels(dev);
3064
3065 /* Reset TC configuration of device */
3066 dev->num_tc = 0;
3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 if (tc >= dev->num_tc)
3075 return -EINVAL;
3076
3077 #ifdef CONFIG_XPS
3078 netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 dev->tc_to_txq[tc].count = count;
3081 dev->tc_to_txq[tc].offset = offset;
3082 return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 if (num_tc > TC_MAX_QUEUE)
3089 return -EINVAL;
3090
3091 #ifdef CONFIG_XPS
3092 netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 netdev_unbind_all_sb_channels(dev);
3095
3096 dev->num_tc = num_tc;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 struct net_device *sb_dev)
3103 {
3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106 #ifdef CONFIG_XPS
3107 netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112 while (txq-- != &dev->_tx[0]) {
3113 if (txq->sb_dev == sb_dev)
3114 txq->sb_dev = NULL;
3115 }
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 struct net_device *sb_dev,
3121 u8 tc, u16 count, u16 offset)
3122 {
3123 /* Make certain the sb_dev and dev are already configured */
3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 return -EINVAL;
3126
3127 /* We cannot hand out queues we don't have */
3128 if ((offset + count) > dev->real_num_tx_queues)
3129 return -EINVAL;
3130
3131 /* Record the mapping */
3132 sb_dev->tc_to_txq[tc].count = count;
3133 sb_dev->tc_to_txq[tc].offset = offset;
3134
3135 /* Provide a way for Tx queue to find the tc_to_txq map or
3136 * XPS map for itself.
3137 */
3138 while (count--)
3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
netdev_set_sb_channel(struct net_device * dev,u16 channel)3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 /* Do not use a multiqueue device to represent a subordinate channel */
3148 if (netif_is_multiqueue(dev))
3149 return -ENODEV;
3150
3151 /* We allow channels 1 - 32767 to be used for subordinate channels.
3152 * Channel 0 is meant to be "native" mode and used only to represent
3153 * the main root device. We allow writing 0 to reset the device back
3154 * to normal mode after being used as a subordinate channel.
3155 */
3156 if (channel > S16_MAX)
3157 return -EINVAL;
3158
3159 dev->num_tc = -channel;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165 /*
3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 bool disabling;
3172 int rc;
3173
3174 disabling = txq < dev->real_num_tx_queues;
3175
3176 if (txq < 1 || txq > dev->num_tx_queues)
3177 return -EINVAL;
3178
3179 if (dev->reg_state == NETREG_REGISTERED ||
3180 dev->reg_state == NETREG_UNREGISTERING) {
3181 netdev_ops_assert_locked(dev);
3182
3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 txq);
3185 if (rc)
3186 return rc;
3187
3188 if (dev->num_tc)
3189 netif_setup_tc(dev, txq);
3190
3191 net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193 dev_qdisc_change_real_num_tx(dev, txq);
3194
3195 dev->real_num_tx_queues = txq;
3196
3197 if (disabling) {
3198 synchronize_net();
3199 qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 }
3204 } else {
3205 dev->real_num_tx_queues = txq;
3206 }
3207
3208 return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212 /**
3213 * netif_set_real_num_rx_queues - set actual number of RX queues used
3214 * @dev: Network device
3215 * @rxq: Actual number of RX queues
3216 *
3217 * This must be called either with the rtnl_lock held or before
3218 * registration of the net device. Returns 0 on success, or a
3219 * negative error code. If called before registration, it always
3220 * succeeds.
3221 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 int rc;
3225
3226 if (rxq < 1 || rxq > dev->num_rx_queues)
3227 return -EINVAL;
3228
3229 if (dev->reg_state == NETREG_REGISTERED) {
3230 netdev_ops_assert_locked(dev);
3231
3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 rxq);
3234 if (rc)
3235 return rc;
3236 }
3237
3238 dev->real_num_rx_queues = rxq;
3239 return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243 /**
3244 * netif_set_real_num_queues - set actual number of RX and TX queues used
3245 * @dev: Network device
3246 * @txq: Actual number of TX queues
3247 * @rxq: Actual number of RX queues
3248 *
3249 * Set the real number of both TX and RX queues.
3250 * Does nothing if the number of queues is already correct.
3251 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3252 int netif_set_real_num_queues(struct net_device *dev,
3253 unsigned int txq, unsigned int rxq)
3254 {
3255 unsigned int old_rxq = dev->real_num_rx_queues;
3256 int err;
3257
3258 if (txq < 1 || txq > dev->num_tx_queues ||
3259 rxq < 1 || rxq > dev->num_rx_queues)
3260 return -EINVAL;
3261
3262 /* Start from increases, so the error path only does decreases -
3263 * decreases can't fail.
3264 */
3265 if (rxq > dev->real_num_rx_queues) {
3266 err = netif_set_real_num_rx_queues(dev, rxq);
3267 if (err)
3268 return err;
3269 }
3270 if (txq > dev->real_num_tx_queues) {
3271 err = netif_set_real_num_tx_queues(dev, txq);
3272 if (err)
3273 goto undo_rx;
3274 }
3275 if (rxq < dev->real_num_rx_queues)
3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 if (txq < dev->real_num_tx_queues)
3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280 return 0;
3281 undo_rx:
3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287 /**
3288 * netif_set_tso_max_size() - set the max size of TSO frames supported
3289 * @dev: netdev to update
3290 * @size: max skb->len of a TSO frame
3291 *
3292 * Set the limit on the size of TSO super-frames the device can handle.
3293 * Unless explicitly set the stack will assume the value of
3294 * %GSO_LEGACY_MAX_SIZE.
3295 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 if (size < READ_ONCE(dev->gso_max_size))
3300 netif_set_gso_max_size(dev, size);
3301 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306 /**
3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308 * @dev: netdev to update
3309 * @segs: max number of TCP segments
3310 *
3311 * Set the limit on the number of TCP segments the device can generate from
3312 * a single TSO super-frame.
3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 dev->tso_max_segs = segs;
3318 if (segs < READ_ONCE(dev->gso_max_segs))
3319 netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323 /**
3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325 * @to: netdev to update
3326 * @from: netdev from which to copy the limits
3327 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 netif_set_tso_max_size(to, from->tso_max_size);
3331 netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335 /**
3336 * netif_get_num_default_rss_queues - default number of RSS queues
3337 *
3338 * Default value is the number of physical cores if there are only 1 or 2, or
3339 * divided by 2 if there are more.
3340 */
netif_get_num_default_rss_queues(void)3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 cpumask_var_t cpus;
3344 int cpu, count = 0;
3345
3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 return 1;
3348
3349 cpumask_copy(cpus, cpu_online_mask);
3350 for_each_cpu(cpu, cpus) {
3351 ++count;
3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 }
3354 free_cpumask_var(cpus);
3355
3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
__netif_reschedule(struct Qdisc * q)3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 struct softnet_data *sd;
3363 unsigned long flags;
3364
3365 local_irq_save(flags);
3366 sd = this_cpu_ptr(&softnet_data);
3367 q->next_sched = NULL;
3368 *sd->output_queue_tailp = q;
3369 sd->output_queue_tailp = &q->next_sched;
3370 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 local_irq_restore(flags);
3372 }
3373
__netif_schedule(struct Qdisc * q)3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 __netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380
3381 struct dev_kfree_skb_cb {
3382 enum skb_drop_reason reason;
3383 };
3384
get_kfree_skb_cb(const struct sk_buff * skb)3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389
netif_schedule_queue(struct netdev_queue * txq)3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 rcu_read_lock();
3393 if (!netif_xmit_stopped(txq)) {
3394 struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396 __netif_schedule(q);
3397 }
3398 rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401
netif_tx_wake_queue(struct netdev_queue * dev_queue)3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 struct Qdisc *q;
3406
3407 rcu_read_lock();
3408 q = rcu_dereference(dev_queue->qdisc);
3409 __netif_schedule(q);
3410 rcu_read_unlock();
3411 }
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 unsigned long flags;
3418
3419 if (unlikely(!skb))
3420 return;
3421
3422 if (likely(refcount_read(&skb->users) == 1)) {
3423 smp_rmb();
3424 refcount_set(&skb->users, 0);
3425 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 return;
3427 }
3428 get_kfree_skb_cb(skb)->reason = reason;
3429 local_irq_save(flags);
3430 skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 __this_cpu_write(softnet_data.completion_queue, skb);
3432 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 if (in_hardirq() || irqs_disabled())
3440 dev_kfree_skb_irq_reason(skb, reason);
3441 else
3442 kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447 /**
3448 * netif_device_detach - mark device as removed
3449 * @dev: network device
3450 *
3451 * Mark device as removed from system and therefore no longer available.
3452 */
netif_device_detach(struct net_device * dev)3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 netif_running(dev)) {
3457 netif_tx_stop_all_queues(dev);
3458 }
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461
3462 /**
3463 * netif_device_attach - mark device as attached
3464 * @dev: network device
3465 *
3466 * Mark device as attached from system and restart if needed.
3467 */
netif_device_attach(struct net_device * dev)3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 netif_running(dev)) {
3472 netif_tx_wake_all_queues(dev);
3473 netdev_watchdog_up(dev);
3474 }
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477
3478 /*
3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480 * to be used as a distribution range.
3481 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 const struct net_device *sb_dev,
3484 struct sk_buff *skb)
3485 {
3486 u32 hash;
3487 u16 qoffset = 0;
3488 u16 qcount = dev->real_num_tx_queues;
3489
3490 if (dev->num_tc) {
3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493 qoffset = sb_dev->tc_to_txq[tc].offset;
3494 qcount = sb_dev->tc_to_txq[tc].count;
3495 if (unlikely(!qcount)) {
3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 sb_dev->name, qoffset, tc);
3498 qoffset = 0;
3499 qcount = dev->real_num_tx_queues;
3500 }
3501 }
3502
3503 if (skb_rx_queue_recorded(skb)) {
3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 hash = skb_get_rx_queue(skb);
3506 if (hash >= qoffset)
3507 hash -= qoffset;
3508 while (unlikely(hash >= qcount))
3509 hash -= qcount;
3510 return hash + qoffset;
3511 }
3512
3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515
skb_warn_bad_offload(const struct sk_buff * skb)3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 static const netdev_features_t null_features;
3519 struct net_device *dev = skb->dev;
3520 const char *name = "";
3521
3522 if (!net_ratelimit())
3523 return;
3524
3525 if (dev) {
3526 if (dev->dev.parent)
3527 name = dev_driver_string(dev->dev.parent);
3528 else
3529 name = netdev_name(dev);
3530 }
3531 skb_dump(KERN_WARNING, skb, false);
3532 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 name, dev ? &dev->features : &null_features,
3534 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536
3537 /*
3538 * Invalidate hardware checksum when packet is to be mangled, and
3539 * complete checksum manually on outgoing path.
3540 */
skb_checksum_help(struct sk_buff * skb)3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 __wsum csum;
3544 int ret = 0, offset;
3545
3546 if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 goto out_set_summed;
3548
3549 if (unlikely(skb_is_gso(skb))) {
3550 skb_warn_bad_offload(skb);
3551 return -EINVAL;
3552 }
3553
3554 if (!skb_frags_readable(skb)) {
3555 return -EFAULT;
3556 }
3557
3558 /* Before computing a checksum, we should make sure no frag could
3559 * be modified by an external entity : checksum could be wrong.
3560 */
3561 if (skb_has_shared_frag(skb)) {
3562 ret = __skb_linearize(skb);
3563 if (ret)
3564 goto out;
3565 }
3566
3567 offset = skb_checksum_start_offset(skb);
3568 ret = -EINVAL;
3569 if (unlikely(offset >= skb_headlen(skb))) {
3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 offset, skb_headlen(skb));
3573 goto out;
3574 }
3575 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577 offset += skb->csum_offset;
3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 offset + sizeof(__sum16), skb_headlen(skb));
3582 goto out;
3583 }
3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 if (ret)
3586 goto out;
3587
3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595
3596 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 u32 crc;
3600 int ret = 0, offset, start;
3601
3602 if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 goto out;
3604
3605 if (unlikely(skb_is_gso(skb)))
3606 goto out;
3607
3608 /* Before computing a checksum, we should make sure no frag could
3609 * be modified by an external entity : checksum could be wrong.
3610 */
3611 if (unlikely(skb_has_shared_frag(skb))) {
3612 ret = __skb_linearize(skb);
3613 if (ret)
3614 goto out;
3615 }
3616 start = skb_checksum_start_offset(skb);
3617 offset = start + offsetof(struct sctphdr, checksum);
3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 ret = -EINVAL;
3620 goto out;
3621 }
3622
3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 if (ret)
3625 goto out;
3626
3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 skb_reset_csum_not_inet(skb);
3630 out:
3631 return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635
skb_network_protocol(struct sk_buff * skb,int * depth)3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 __be16 type = skb->protocol;
3639
3640 /* Tunnel gso handlers can set protocol to ethernet. */
3641 if (type == htons(ETH_P_TEB)) {
3642 struct ethhdr *eth;
3643
3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 return 0;
3646
3647 eth = (struct ethhdr *)skb->data;
3648 type = eth->h_proto;
3649 }
3650
3651 return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653
3654
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 netdev_err(dev, "hw csum failure\n");
3660 skb_dump(KERN_ERR, skb, true);
3661 dump_stack();
3662 }
3663
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670
3671 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 int i;
3676
3677 if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 struct page *page = skb_frag_page(frag);
3681
3682 if (page && PageHighMem(page))
3683 return 1;
3684 }
3685 }
3686 #endif
3687 return 0;
3688 }
3689
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691 * instead of standard features for the netdev.
3692 */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 netdev_features_t features,
3696 __be16 type)
3697 {
3698 if (eth_p_mpls(type))
3699 features &= skb->dev->mpls_features;
3700
3701 return features;
3702 }
3703 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 netdev_features_t features,
3706 __be16 type)
3707 {
3708 return features;
3709 }
3710 #endif
3711
harmonize_features(struct sk_buff * skb,netdev_features_t features)3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 netdev_features_t features)
3714 {
3715 __be16 type;
3716
3717 type = skb_network_protocol(skb, NULL);
3718 features = net_mpls_features(skb, features, type);
3719
3720 if (skb->ip_summed != CHECKSUM_NONE &&
3721 !can_checksum_protocol(features, type)) {
3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 }
3724 if (illegal_highdma(skb->dev, skb))
3725 features &= ~NETIF_F_SG;
3726
3727 return features;
3728 }
3729
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 struct net_device *dev,
3732 netdev_features_t features)
3733 {
3734 return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 struct net_device *dev,
3740 netdev_features_t features)
3741 {
3742 return vlan_features_check(skb, features);
3743 }
3744
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 struct net_device *dev,
3747 netdev_features_t features)
3748 {
3749 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 return features & ~NETIF_F_GSO_MASK;
3753
3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 return features & ~NETIF_F_GSO_MASK;
3756
3757 if (!skb_shinfo(skb)->gso_type) {
3758 skb_warn_bad_offload(skb);
3759 return features & ~NETIF_F_GSO_MASK;
3760 }
3761
3762 /* Support for GSO partial features requires software
3763 * intervention before we can actually process the packets
3764 * so we need to strip support for any partial features now
3765 * and we can pull them back in after we have partially
3766 * segmented the frame.
3767 */
3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 features &= ~dev->gso_partial_features;
3770
3771 /* Make sure to clear the IPv4 ID mangling feature if the
3772 * IPv4 header has the potential to be fragmented.
3773 */
3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 struct iphdr *iph = skb->encapsulation ?
3776 inner_ip_hdr(skb) : ip_hdr(skb);
3777
3778 if (!(iph->frag_off & htons(IP_DF)))
3779 features &= ~NETIF_F_TSO_MANGLEID;
3780 }
3781
3782 return features;
3783 }
3784
netif_skb_features(struct sk_buff * skb)3785 netdev_features_t netif_skb_features(struct sk_buff *skb)
3786 {
3787 struct net_device *dev = skb->dev;
3788 netdev_features_t features = dev->features;
3789
3790 if (skb_is_gso(skb))
3791 features = gso_features_check(skb, dev, features);
3792
3793 /* If encapsulation offload request, verify we are testing
3794 * hardware encapsulation features instead of standard
3795 * features for the netdev
3796 */
3797 if (skb->encapsulation)
3798 features &= dev->hw_enc_features;
3799
3800 if (skb_vlan_tagged(skb))
3801 features = netdev_intersect_features(features,
3802 dev->vlan_features |
3803 NETIF_F_HW_VLAN_CTAG_TX |
3804 NETIF_F_HW_VLAN_STAG_TX);
3805
3806 if (dev->netdev_ops->ndo_features_check)
3807 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3808 features);
3809 else
3810 features &= dflt_features_check(skb, dev, features);
3811
3812 return harmonize_features(skb, features);
3813 }
3814 EXPORT_SYMBOL(netif_skb_features);
3815
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3816 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3817 struct netdev_queue *txq, bool more)
3818 {
3819 unsigned int len;
3820 int rc;
3821
3822 if (dev_nit_active_rcu(dev))
3823 dev_queue_xmit_nit(skb, dev);
3824
3825 len = skb->len;
3826 trace_net_dev_start_xmit(skb, dev);
3827 rc = netdev_start_xmit(skb, dev, txq, more);
3828 trace_net_dev_xmit(skb, rc, dev, len);
3829
3830 return rc;
3831 }
3832
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3833 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3834 struct netdev_queue *txq, int *ret)
3835 {
3836 struct sk_buff *skb = first;
3837 int rc = NETDEV_TX_OK;
3838
3839 while (skb) {
3840 struct sk_buff *next = skb->next;
3841
3842 skb_mark_not_on_list(skb);
3843 rc = xmit_one(skb, dev, txq, next != NULL);
3844 if (unlikely(!dev_xmit_complete(rc))) {
3845 skb->next = next;
3846 goto out;
3847 }
3848
3849 skb = next;
3850 if (netif_tx_queue_stopped(txq) && skb) {
3851 rc = NETDEV_TX_BUSY;
3852 break;
3853 }
3854 }
3855
3856 out:
3857 *ret = rc;
3858 return skb;
3859 }
3860
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3861 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3862 netdev_features_t features)
3863 {
3864 if (skb_vlan_tag_present(skb) &&
3865 !vlan_hw_offload_capable(features, skb->vlan_proto))
3866 skb = __vlan_hwaccel_push_inside(skb);
3867 return skb;
3868 }
3869
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3870 int skb_csum_hwoffload_help(struct sk_buff *skb,
3871 const netdev_features_t features)
3872 {
3873 if (unlikely(skb_csum_is_sctp(skb)))
3874 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3875 skb_crc32c_csum_help(skb);
3876
3877 if (features & NETIF_F_HW_CSUM)
3878 return 0;
3879
3880 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3881 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3882 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3883 !ipv6_has_hopopt_jumbo(skb))
3884 goto sw_checksum;
3885
3886 switch (skb->csum_offset) {
3887 case offsetof(struct tcphdr, check):
3888 case offsetof(struct udphdr, check):
3889 return 0;
3890 }
3891 }
3892
3893 sw_checksum:
3894 return skb_checksum_help(skb);
3895 }
3896 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3897
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3898 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3899 struct net_device *dev)
3900 {
3901 struct skb_shared_info *shinfo;
3902 struct net_iov *niov;
3903
3904 if (likely(skb_frags_readable(skb)))
3905 goto out;
3906
3907 if (!dev->netmem_tx)
3908 goto out_free;
3909
3910 shinfo = skb_shinfo(skb);
3911
3912 if (shinfo->nr_frags > 0) {
3913 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3914 if (net_is_devmem_iov(niov) &&
3915 net_devmem_iov_binding(niov)->dev != dev)
3916 goto out_free;
3917 }
3918
3919 out:
3920 return skb;
3921
3922 out_free:
3923 kfree_skb(skb);
3924 return NULL;
3925 }
3926
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3927 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3928 {
3929 netdev_features_t features;
3930
3931 skb = validate_xmit_unreadable_skb(skb, dev);
3932 if (unlikely(!skb))
3933 goto out_null;
3934
3935 features = netif_skb_features(skb);
3936 skb = validate_xmit_vlan(skb, features);
3937 if (unlikely(!skb))
3938 goto out_null;
3939
3940 skb = sk_validate_xmit_skb(skb, dev);
3941 if (unlikely(!skb))
3942 goto out_null;
3943
3944 if (netif_needs_gso(skb, features)) {
3945 struct sk_buff *segs;
3946
3947 segs = skb_gso_segment(skb, features);
3948 if (IS_ERR(segs)) {
3949 goto out_kfree_skb;
3950 } else if (segs) {
3951 consume_skb(skb);
3952 skb = segs;
3953 }
3954 } else {
3955 if (skb_needs_linearize(skb, features) &&
3956 __skb_linearize(skb))
3957 goto out_kfree_skb;
3958
3959 /* If packet is not checksummed and device does not
3960 * support checksumming for this protocol, complete
3961 * checksumming here.
3962 */
3963 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3964 if (skb->encapsulation)
3965 skb_set_inner_transport_header(skb,
3966 skb_checksum_start_offset(skb));
3967 else
3968 skb_set_transport_header(skb,
3969 skb_checksum_start_offset(skb));
3970 if (skb_csum_hwoffload_help(skb, features))
3971 goto out_kfree_skb;
3972 }
3973 }
3974
3975 skb = validate_xmit_xfrm(skb, features, again);
3976
3977 return skb;
3978
3979 out_kfree_skb:
3980 kfree_skb(skb);
3981 out_null:
3982 dev_core_stats_tx_dropped_inc(dev);
3983 return NULL;
3984 }
3985
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3986 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3987 {
3988 struct sk_buff *next, *head = NULL, *tail;
3989
3990 for (; skb != NULL; skb = next) {
3991 next = skb->next;
3992 skb_mark_not_on_list(skb);
3993
3994 /* in case skb won't be segmented, point to itself */
3995 skb->prev = skb;
3996
3997 skb = validate_xmit_skb(skb, dev, again);
3998 if (!skb)
3999 continue;
4000
4001 if (!head)
4002 head = skb;
4003 else
4004 tail->next = skb;
4005 /* If skb was segmented, skb->prev points to
4006 * the last segment. If not, it still contains skb.
4007 */
4008 tail = skb->prev;
4009 }
4010 return head;
4011 }
4012 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4013
qdisc_pkt_len_init(struct sk_buff * skb)4014 static void qdisc_pkt_len_init(struct sk_buff *skb)
4015 {
4016 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4017
4018 qdisc_skb_cb(skb)->pkt_len = skb->len;
4019
4020 /* To get more precise estimation of bytes sent on wire,
4021 * we add to pkt_len the headers size of all segments
4022 */
4023 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4024 u16 gso_segs = shinfo->gso_segs;
4025 unsigned int hdr_len;
4026
4027 /* mac layer + network layer */
4028 if (!skb->encapsulation)
4029 hdr_len = skb_transport_offset(skb);
4030 else
4031 hdr_len = skb_inner_transport_offset(skb);
4032
4033 /* + transport layer */
4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4035 const struct tcphdr *th;
4036 struct tcphdr _tcphdr;
4037
4038 th = skb_header_pointer(skb, hdr_len,
4039 sizeof(_tcphdr), &_tcphdr);
4040 if (likely(th))
4041 hdr_len += __tcp_hdrlen(th);
4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4043 struct udphdr _udphdr;
4044
4045 if (skb_header_pointer(skb, hdr_len,
4046 sizeof(_udphdr), &_udphdr))
4047 hdr_len += sizeof(struct udphdr);
4048 }
4049
4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4051 int payload = skb->len - hdr_len;
4052
4053 /* Malicious packet. */
4054 if (payload <= 0)
4055 return;
4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4057 }
4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4059 }
4060 }
4061
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4063 struct sk_buff **to_free,
4064 struct netdev_queue *txq)
4065 {
4066 int rc;
4067
4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4069 if (rc == NET_XMIT_SUCCESS)
4070 trace_qdisc_enqueue(q, txq, skb);
4071 return rc;
4072 }
4073
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4075 struct net_device *dev,
4076 struct netdev_queue *txq)
4077 {
4078 spinlock_t *root_lock = qdisc_lock(q);
4079 struct sk_buff *to_free = NULL;
4080 bool contended;
4081 int rc;
4082
4083 qdisc_calculate_pkt_len(skb, q);
4084
4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4086
4087 if (q->flags & TCQ_F_NOLOCK) {
4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4089 qdisc_run_begin(q)) {
4090 /* Retest nolock_qdisc_is_empty() within the protection
4091 * of q->seqlock to protect from racing with requeuing.
4092 */
4093 if (unlikely(!nolock_qdisc_is_empty(q))) {
4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4095 __qdisc_run(q);
4096 qdisc_run_end(q);
4097
4098 goto no_lock_out;
4099 }
4100
4101 qdisc_bstats_cpu_update(q, skb);
4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4103 !nolock_qdisc_is_empty(q))
4104 __qdisc_run(q);
4105
4106 qdisc_run_end(q);
4107 return NET_XMIT_SUCCESS;
4108 }
4109
4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4111 qdisc_run(q);
4112
4113 no_lock_out:
4114 if (unlikely(to_free))
4115 kfree_skb_list_reason(to_free,
4116 tcf_get_drop_reason(to_free));
4117 return rc;
4118 }
4119
4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4122 return NET_XMIT_DROP;
4123 }
4124 /*
4125 * Heuristic to force contended enqueues to serialize on a
4126 * separate lock before trying to get qdisc main lock.
4127 * This permits qdisc->running owner to get the lock more
4128 * often and dequeue packets faster.
4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4130 * and then other tasks will only enqueue packets. The packets will be
4131 * sent after the qdisc owner is scheduled again. To prevent this
4132 * scenario the task always serialize on the lock.
4133 */
4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4135 if (unlikely(contended))
4136 spin_lock(&q->busylock);
4137
4138 spin_lock(root_lock);
4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4140 __qdisc_drop(skb, &to_free);
4141 rc = NET_XMIT_DROP;
4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4143 qdisc_run_begin(q)) {
4144 /*
4145 * This is a work-conserving queue; there are no old skbs
4146 * waiting to be sent out; and the qdisc is not running -
4147 * xmit the skb directly.
4148 */
4149
4150 qdisc_bstats_update(q, skb);
4151
4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4153 if (unlikely(contended)) {
4154 spin_unlock(&q->busylock);
4155 contended = false;
4156 }
4157 __qdisc_run(q);
4158 }
4159
4160 qdisc_run_end(q);
4161 rc = NET_XMIT_SUCCESS;
4162 } else {
4163 WRITE_ONCE(q->owner, smp_processor_id());
4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4165 WRITE_ONCE(q->owner, -1);
4166 if (qdisc_run_begin(q)) {
4167 if (unlikely(contended)) {
4168 spin_unlock(&q->busylock);
4169 contended = false;
4170 }
4171 __qdisc_run(q);
4172 qdisc_run_end(q);
4173 }
4174 }
4175 spin_unlock(root_lock);
4176 if (unlikely(to_free))
4177 kfree_skb_list_reason(to_free,
4178 tcf_get_drop_reason(to_free));
4179 if (unlikely(contended))
4180 spin_unlock(&q->busylock);
4181 return rc;
4182 }
4183
4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4185 static void skb_update_prio(struct sk_buff *skb)
4186 {
4187 const struct netprio_map *map;
4188 const struct sock *sk;
4189 unsigned int prioidx;
4190
4191 if (skb->priority)
4192 return;
4193 map = rcu_dereference_bh(skb->dev->priomap);
4194 if (!map)
4195 return;
4196 sk = skb_to_full_sk(skb);
4197 if (!sk)
4198 return;
4199
4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4201
4202 if (prioidx < map->priomap_len)
4203 skb->priority = map->priomap[prioidx];
4204 }
4205 #else
4206 #define skb_update_prio(skb)
4207 #endif
4208
4209 /**
4210 * dev_loopback_xmit - loop back @skb
4211 * @net: network namespace this loopback is happening in
4212 * @sk: sk needed to be a netfilter okfn
4213 * @skb: buffer to transmit
4214 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4216 {
4217 skb_reset_mac_header(skb);
4218 __skb_pull(skb, skb_network_offset(skb));
4219 skb->pkt_type = PACKET_LOOPBACK;
4220 if (skb->ip_summed == CHECKSUM_NONE)
4221 skb->ip_summed = CHECKSUM_UNNECESSARY;
4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4223 skb_dst_force(skb);
4224 netif_rx(skb);
4225 return 0;
4226 }
4227 EXPORT_SYMBOL(dev_loopback_xmit);
4228
4229 #ifdef CONFIG_NET_EGRESS
4230 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4232 {
4233 int qm = skb_get_queue_mapping(skb);
4234
4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4236 }
4237
4238 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4239 static bool netdev_xmit_txqueue_skipped(void)
4240 {
4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4242 }
4243
netdev_xmit_skip_txqueue(bool skip)4244 void netdev_xmit_skip_txqueue(bool skip)
4245 {
4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4247 }
4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4249
4250 #else
netdev_xmit_txqueue_skipped(void)4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 return current->net_xmit.skip_txqueue;
4254 }
4255
netdev_xmit_skip_txqueue(bool skip)4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 current->net_xmit.skip_txqueue = skip;
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 #endif
4262 #endif /* CONFIG_NET_EGRESS */
4263
4264 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4266 enum skb_drop_reason *drop_reason)
4267 {
4268 int ret = TC_ACT_UNSPEC;
4269 #ifdef CONFIG_NET_CLS_ACT
4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4271 struct tcf_result res;
4272
4273 if (!miniq)
4274 return ret;
4275
4276 /* Global bypass */
4277 if (!static_branch_likely(&tcf_sw_enabled_key))
4278 return ret;
4279
4280 /* Block-wise bypass */
4281 if (tcf_block_bypass_sw(miniq->block))
4282 return ret;
4283
4284 tc_skb_cb(skb)->mru = 0;
4285 tc_skb_cb(skb)->post_ct = false;
4286 tcf_set_drop_reason(skb, *drop_reason);
4287
4288 mini_qdisc_bstats_cpu_update(miniq, skb);
4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4290 /* Only tcf related quirks below. */
4291 switch (ret) {
4292 case TC_ACT_SHOT:
4293 *drop_reason = tcf_get_drop_reason(skb);
4294 mini_qdisc_qstats_cpu_drop(miniq);
4295 break;
4296 case TC_ACT_OK:
4297 case TC_ACT_RECLASSIFY:
4298 skb->tc_index = TC_H_MIN(res.classid);
4299 break;
4300 }
4301 #endif /* CONFIG_NET_CLS_ACT */
4302 return ret;
4303 }
4304
4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4306
tcx_inc(void)4307 void tcx_inc(void)
4308 {
4309 static_branch_inc(&tcx_needed_key);
4310 }
4311
tcx_dec(void)4312 void tcx_dec(void)
4313 {
4314 static_branch_dec(&tcx_needed_key);
4315 }
4316
4317 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4319 const bool needs_mac)
4320 {
4321 const struct bpf_mprog_fp *fp;
4322 const struct bpf_prog *prog;
4323 int ret = TCX_NEXT;
4324
4325 if (needs_mac)
4326 __skb_push(skb, skb->mac_len);
4327 bpf_mprog_foreach_prog(entry, fp, prog) {
4328 bpf_compute_data_pointers(skb);
4329 ret = bpf_prog_run(prog, skb);
4330 if (ret != TCX_NEXT)
4331 break;
4332 }
4333 if (needs_mac)
4334 __skb_pull(skb, skb->mac_len);
4335 return tcx_action_code(skb, ret);
4336 }
4337
4338 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4340 struct net_device *orig_dev, bool *another)
4341 {
4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 int sch_ret;
4346
4347 if (!entry)
4348 return skb;
4349
4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 if (*pt_prev) {
4352 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 *pt_prev = NULL;
4354 }
4355
4356 qdisc_skb_cb(skb)->pkt_len = skb->len;
4357 tcx_set_ingress(skb, true);
4358
4359 if (static_branch_unlikely(&tcx_needed_key)) {
4360 sch_ret = tcx_run(entry, skb, true);
4361 if (sch_ret != TC_ACT_UNSPEC)
4362 goto ingress_verdict;
4363 }
4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4365 ingress_verdict:
4366 switch (sch_ret) {
4367 case TC_ACT_REDIRECT:
4368 /* skb_mac_header check was done by BPF, so we can safely
4369 * push the L2 header back before redirecting to another
4370 * netdev.
4371 */
4372 __skb_push(skb, skb->mac_len);
4373 if (skb_do_redirect(skb) == -EAGAIN) {
4374 __skb_pull(skb, skb->mac_len);
4375 *another = true;
4376 break;
4377 }
4378 *ret = NET_RX_SUCCESS;
4379 bpf_net_ctx_clear(bpf_net_ctx);
4380 return NULL;
4381 case TC_ACT_SHOT:
4382 kfree_skb_reason(skb, drop_reason);
4383 *ret = NET_RX_DROP;
4384 bpf_net_ctx_clear(bpf_net_ctx);
4385 return NULL;
4386 /* used by tc_run */
4387 case TC_ACT_STOLEN:
4388 case TC_ACT_QUEUED:
4389 case TC_ACT_TRAP:
4390 consume_skb(skb);
4391 fallthrough;
4392 case TC_ACT_CONSUMED:
4393 *ret = NET_RX_SUCCESS;
4394 bpf_net_ctx_clear(bpf_net_ctx);
4395 return NULL;
4396 }
4397 bpf_net_ctx_clear(bpf_net_ctx);
4398
4399 return skb;
4400 }
4401
4402 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4404 {
4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4408 int sch_ret;
4409
4410 if (!entry)
4411 return skb;
4412
4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4414
4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4416 * already set by the caller.
4417 */
4418 if (static_branch_unlikely(&tcx_needed_key)) {
4419 sch_ret = tcx_run(entry, skb, false);
4420 if (sch_ret != TC_ACT_UNSPEC)
4421 goto egress_verdict;
4422 }
4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4424 egress_verdict:
4425 switch (sch_ret) {
4426 case TC_ACT_REDIRECT:
4427 /* No need to push/pop skb's mac_header here on egress! */
4428 skb_do_redirect(skb);
4429 *ret = NET_XMIT_SUCCESS;
4430 bpf_net_ctx_clear(bpf_net_ctx);
4431 return NULL;
4432 case TC_ACT_SHOT:
4433 kfree_skb_reason(skb, drop_reason);
4434 *ret = NET_XMIT_DROP;
4435 bpf_net_ctx_clear(bpf_net_ctx);
4436 return NULL;
4437 /* used by tc_run */
4438 case TC_ACT_STOLEN:
4439 case TC_ACT_QUEUED:
4440 case TC_ACT_TRAP:
4441 consume_skb(skb);
4442 fallthrough;
4443 case TC_ACT_CONSUMED:
4444 *ret = NET_XMIT_SUCCESS;
4445 bpf_net_ctx_clear(bpf_net_ctx);
4446 return NULL;
4447 }
4448 bpf_net_ctx_clear(bpf_net_ctx);
4449
4450 return skb;
4451 }
4452 #else
4453 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4455 struct net_device *orig_dev, bool *another)
4456 {
4457 return skb;
4458 }
4459
4460 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4462 {
4463 return skb;
4464 }
4465 #endif /* CONFIG_NET_XGRESS */
4466
4467 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4469 struct xps_dev_maps *dev_maps, unsigned int tci)
4470 {
4471 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4472 struct xps_map *map;
4473 int queue_index = -1;
4474
4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4476 return queue_index;
4477
4478 tci *= dev_maps->num_tc;
4479 tci += tc;
4480
4481 map = rcu_dereference(dev_maps->attr_map[tci]);
4482 if (map) {
4483 if (map->len == 1)
4484 queue_index = map->queues[0];
4485 else
4486 queue_index = map->queues[reciprocal_scale(
4487 skb_get_hash(skb), map->len)];
4488 if (unlikely(queue_index >= dev->real_num_tx_queues))
4489 queue_index = -1;
4490 }
4491 return queue_index;
4492 }
4493 #endif
4494
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4496 struct sk_buff *skb)
4497 {
4498 #ifdef CONFIG_XPS
4499 struct xps_dev_maps *dev_maps;
4500 struct sock *sk = skb->sk;
4501 int queue_index = -1;
4502
4503 if (!static_key_false(&xps_needed))
4504 return -1;
4505
4506 rcu_read_lock();
4507 if (!static_key_false(&xps_rxqs_needed))
4508 goto get_cpus_map;
4509
4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4511 if (dev_maps) {
4512 int tci = sk_rx_queue_get(sk);
4513
4514 if (tci >= 0)
4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4516 tci);
4517 }
4518
4519 get_cpus_map:
4520 if (queue_index < 0) {
4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4522 if (dev_maps) {
4523 unsigned int tci = skb->sender_cpu - 1;
4524
4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4526 tci);
4527 }
4528 }
4529 rcu_read_unlock();
4530
4531 return queue_index;
4532 #else
4533 return -1;
4534 #endif
4535 }
4536
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4538 struct net_device *sb_dev)
4539 {
4540 return 0;
4541 }
4542 EXPORT_SYMBOL(dev_pick_tx_zero);
4543
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4545 struct net_device *sb_dev)
4546 {
4547 struct sock *sk = skb->sk;
4548 int queue_index = sk_tx_queue_get(sk);
4549
4550 sb_dev = sb_dev ? : dev;
4551
4552 if (queue_index < 0 || skb->ooo_okay ||
4553 queue_index >= dev->real_num_tx_queues) {
4554 int new_index = get_xps_queue(dev, sb_dev, skb);
4555
4556 if (new_index < 0)
4557 new_index = skb_tx_hash(dev, sb_dev, skb);
4558
4559 if (queue_index != new_index && sk &&
4560 sk_fullsock(sk) &&
4561 rcu_access_pointer(sk->sk_dst_cache))
4562 sk_tx_queue_set(sk, new_index);
4563
4564 queue_index = new_index;
4565 }
4566
4567 return queue_index;
4568 }
4569 EXPORT_SYMBOL(netdev_pick_tx);
4570
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4572 struct sk_buff *skb,
4573 struct net_device *sb_dev)
4574 {
4575 int queue_index = 0;
4576
4577 #ifdef CONFIG_XPS
4578 u32 sender_cpu = skb->sender_cpu - 1;
4579
4580 if (sender_cpu >= (u32)NR_CPUS)
4581 skb->sender_cpu = raw_smp_processor_id() + 1;
4582 #endif
4583
4584 if (dev->real_num_tx_queues != 1) {
4585 const struct net_device_ops *ops = dev->netdev_ops;
4586
4587 if (ops->ndo_select_queue)
4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4589 else
4590 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4591
4592 queue_index = netdev_cap_txqueue(dev, queue_index);
4593 }
4594
4595 skb_set_queue_mapping(skb, queue_index);
4596 return netdev_get_tx_queue(dev, queue_index);
4597 }
4598
4599 /**
4600 * __dev_queue_xmit() - transmit a buffer
4601 * @skb: buffer to transmit
4602 * @sb_dev: suboordinate device used for L2 forwarding offload
4603 *
4604 * Queue a buffer for transmission to a network device. The caller must
4605 * have set the device and priority and built the buffer before calling
4606 * this function. The function can be called from an interrupt.
4607 *
4608 * When calling this method, interrupts MUST be enabled. This is because
4609 * the BH enable code must have IRQs enabled so that it will not deadlock.
4610 *
4611 * Regardless of the return value, the skb is consumed, so it is currently
4612 * difficult to retry a send to this method. (You can bump the ref count
4613 * before sending to hold a reference for retry if you are careful.)
4614 *
4615 * Return:
4616 * * 0 - buffer successfully transmitted
4617 * * positive qdisc return code - NET_XMIT_DROP etc.
4618 * * negative errno - other errors
4619 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4621 {
4622 struct net_device *dev = skb->dev;
4623 struct netdev_queue *txq = NULL;
4624 struct Qdisc *q;
4625 int rc = -ENOMEM;
4626 bool again = false;
4627
4628 skb_reset_mac_header(skb);
4629 skb_assert_len(skb);
4630
4631 if (unlikely(skb_shinfo(skb)->tx_flags &
4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4634
4635 /* Disable soft irqs for various locks below. Also
4636 * stops preemption for RCU.
4637 */
4638 rcu_read_lock_bh();
4639
4640 skb_update_prio(skb);
4641
4642 qdisc_pkt_len_init(skb);
4643 tcx_set_ingress(skb, false);
4644 #ifdef CONFIG_NET_EGRESS
4645 if (static_branch_unlikely(&egress_needed_key)) {
4646 if (nf_hook_egress_active()) {
4647 skb = nf_hook_egress(skb, &rc, dev);
4648 if (!skb)
4649 goto out;
4650 }
4651
4652 netdev_xmit_skip_txqueue(false);
4653
4654 nf_skip_egress(skb, true);
4655 skb = sch_handle_egress(skb, &rc, dev);
4656 if (!skb)
4657 goto out;
4658 nf_skip_egress(skb, false);
4659
4660 if (netdev_xmit_txqueue_skipped())
4661 txq = netdev_tx_queue_mapping(dev, skb);
4662 }
4663 #endif
4664 /* If device/qdisc don't need skb->dst, release it right now while
4665 * its hot in this cpu cache.
4666 */
4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4668 skb_dst_drop(skb);
4669 else
4670 skb_dst_force(skb);
4671
4672 if (!txq)
4673 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4674
4675 q = rcu_dereference_bh(txq->qdisc);
4676
4677 trace_net_dev_queue(skb);
4678 if (q->enqueue) {
4679 rc = __dev_xmit_skb(skb, q, dev, txq);
4680 goto out;
4681 }
4682
4683 /* The device has no queue. Common case for software devices:
4684 * loopback, all the sorts of tunnels...
4685
4686 * Really, it is unlikely that netif_tx_lock protection is necessary
4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4688 * counters.)
4689 * However, it is possible, that they rely on protection
4690 * made by us here.
4691
4692 * Check this and shot the lock. It is not prone from deadlocks.
4693 *Either shot noqueue qdisc, it is even simpler 8)
4694 */
4695 if (dev->flags & IFF_UP) {
4696 int cpu = smp_processor_id(); /* ok because BHs are off */
4697
4698 /* Other cpus might concurrently change txq->xmit_lock_owner
4699 * to -1 or to their cpu id, but not to our id.
4700 */
4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4702 if (dev_xmit_recursion())
4703 goto recursion_alert;
4704
4705 skb = validate_xmit_skb(skb, dev, &again);
4706 if (!skb)
4707 goto out;
4708
4709 HARD_TX_LOCK(dev, txq, cpu);
4710
4711 if (!netif_xmit_stopped(txq)) {
4712 dev_xmit_recursion_inc();
4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4714 dev_xmit_recursion_dec();
4715 if (dev_xmit_complete(rc)) {
4716 HARD_TX_UNLOCK(dev, txq);
4717 goto out;
4718 }
4719 }
4720 HARD_TX_UNLOCK(dev, txq);
4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4722 dev->name);
4723 } else {
4724 /* Recursion is detected! It is possible,
4725 * unfortunately
4726 */
4727 recursion_alert:
4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4729 dev->name);
4730 }
4731 }
4732
4733 rc = -ENETDOWN;
4734 rcu_read_unlock_bh();
4735
4736 dev_core_stats_tx_dropped_inc(dev);
4737 kfree_skb_list(skb);
4738 return rc;
4739 out:
4740 rcu_read_unlock_bh();
4741 return rc;
4742 }
4743 EXPORT_SYMBOL(__dev_queue_xmit);
4744
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4746 {
4747 struct net_device *dev = skb->dev;
4748 struct sk_buff *orig_skb = skb;
4749 struct netdev_queue *txq;
4750 int ret = NETDEV_TX_BUSY;
4751 bool again = false;
4752
4753 if (unlikely(!netif_running(dev) ||
4754 !netif_carrier_ok(dev)))
4755 goto drop;
4756
4757 skb = validate_xmit_skb_list(skb, dev, &again);
4758 if (skb != orig_skb)
4759 goto drop;
4760
4761 skb_set_queue_mapping(skb, queue_id);
4762 txq = skb_get_tx_queue(dev, skb);
4763
4764 local_bh_disable();
4765
4766 dev_xmit_recursion_inc();
4767 HARD_TX_LOCK(dev, txq, smp_processor_id());
4768 if (!netif_xmit_frozen_or_drv_stopped(txq))
4769 ret = netdev_start_xmit(skb, dev, txq, false);
4770 HARD_TX_UNLOCK(dev, txq);
4771 dev_xmit_recursion_dec();
4772
4773 local_bh_enable();
4774 return ret;
4775 drop:
4776 dev_core_stats_tx_dropped_inc(dev);
4777 kfree_skb_list(skb);
4778 return NET_XMIT_DROP;
4779 }
4780 EXPORT_SYMBOL(__dev_direct_xmit);
4781
4782 /*************************************************************************
4783 * Receiver routines
4784 *************************************************************************/
4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4786
4787 int weight_p __read_mostly = 64; /* old backlog weight */
4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4790
4791 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4792 static inline void ____napi_schedule(struct softnet_data *sd,
4793 struct napi_struct *napi)
4794 {
4795 struct task_struct *thread;
4796
4797 lockdep_assert_irqs_disabled();
4798
4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4800 /* Paired with smp_mb__before_atomic() in
4801 * napi_enable()/netif_set_threaded().
4802 * Use READ_ONCE() to guarantee a complete
4803 * read on napi->thread. Only call
4804 * wake_up_process() when it's not NULL.
4805 */
4806 thread = READ_ONCE(napi->thread);
4807 if (thread) {
4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4809 goto use_local_napi;
4810
4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4812 wake_up_process(thread);
4813 return;
4814 }
4815 }
4816
4817 use_local_napi:
4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4819 list_add_tail(&napi->poll_list, &sd->poll_list);
4820 WRITE_ONCE(napi->list_owner, smp_processor_id());
4821 /* If not called from net_rx_action()
4822 * we have to raise NET_RX_SOFTIRQ.
4823 */
4824 if (!sd->in_net_rx_action)
4825 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4826 }
4827
4828 #ifdef CONFIG_RPS
4829
4830 struct static_key_false rps_needed __read_mostly;
4831 EXPORT_SYMBOL(rps_needed);
4832 struct static_key_false rfs_needed __read_mostly;
4833 EXPORT_SYMBOL(rfs_needed);
4834
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4836 {
4837 return hash_32(hash, flow_table->log);
4838 }
4839
4840 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4842 struct rps_dev_flow *rflow, u16 next_cpu)
4843 {
4844 if (next_cpu < nr_cpu_ids) {
4845 u32 head;
4846 #ifdef CONFIG_RFS_ACCEL
4847 struct netdev_rx_queue *rxqueue;
4848 struct rps_dev_flow_table *flow_table;
4849 struct rps_dev_flow *old_rflow;
4850 u16 rxq_index;
4851 u32 flow_id;
4852 int rc;
4853
4854 /* Should we steer this flow to a different hardware queue? */
4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4856 !(dev->features & NETIF_F_NTUPLE))
4857 goto out;
4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4859 if (rxq_index == skb_get_rx_queue(skb))
4860 goto out;
4861
4862 rxqueue = dev->_rx + rxq_index;
4863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4864 if (!flow_table)
4865 goto out;
4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4868 rxq_index, flow_id);
4869 if (rc < 0)
4870 goto out;
4871 old_rflow = rflow;
4872 rflow = &flow_table->flows[flow_id];
4873 WRITE_ONCE(rflow->filter, rc);
4874 if (old_rflow->filter == rc)
4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4876 out:
4877 #endif
4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4879 rps_input_queue_tail_save(&rflow->last_qtail, head);
4880 }
4881
4882 WRITE_ONCE(rflow->cpu, next_cpu);
4883 return rflow;
4884 }
4885
4886 /*
4887 * get_rps_cpu is called from netif_receive_skb and returns the target
4888 * CPU from the RPS map of the receiving queue for a given skb.
4889 * rcu_read_lock must be held on entry.
4890 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4892 struct rps_dev_flow **rflowp)
4893 {
4894 const struct rps_sock_flow_table *sock_flow_table;
4895 struct netdev_rx_queue *rxqueue = dev->_rx;
4896 struct rps_dev_flow_table *flow_table;
4897 struct rps_map *map;
4898 int cpu = -1;
4899 u32 tcpu;
4900 u32 hash;
4901
4902 if (skb_rx_queue_recorded(skb)) {
4903 u16 index = skb_get_rx_queue(skb);
4904
4905 if (unlikely(index >= dev->real_num_rx_queues)) {
4906 WARN_ONCE(dev->real_num_rx_queues > 1,
4907 "%s received packet on queue %u, but number "
4908 "of RX queues is %u\n",
4909 dev->name, index, dev->real_num_rx_queues);
4910 goto done;
4911 }
4912 rxqueue += index;
4913 }
4914
4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4916
4917 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4918 map = rcu_dereference(rxqueue->rps_map);
4919 if (!flow_table && !map)
4920 goto done;
4921
4922 skb_reset_network_header(skb);
4923 hash = skb_get_hash(skb);
4924 if (!hash)
4925 goto done;
4926
4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4928 if (flow_table && sock_flow_table) {
4929 struct rps_dev_flow *rflow;
4930 u32 next_cpu;
4931 u32 ident;
4932
4933 /* First check into global flow table if there is a match.
4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4935 */
4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4938 goto try_rps;
4939
4940 next_cpu = ident & net_hotdata.rps_cpu_mask;
4941
4942 /* OK, now we know there is a match,
4943 * we can look at the local (per receive queue) flow table
4944 */
4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4946 tcpu = rflow->cpu;
4947
4948 /*
4949 * If the desired CPU (where last recvmsg was done) is
4950 * different from current CPU (one in the rx-queue flow
4951 * table entry), switch if one of the following holds:
4952 * - Current CPU is unset (>= nr_cpu_ids).
4953 * - Current CPU is offline.
4954 * - The current CPU's queue tail has advanced beyond the
4955 * last packet that was enqueued using this table entry.
4956 * This guarantees that all previous packets for the flow
4957 * have been dequeued, thus preserving in order delivery.
4958 */
4959 if (unlikely(tcpu != next_cpu) &&
4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4962 rflow->last_qtail)) >= 0)) {
4963 tcpu = next_cpu;
4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4965 }
4966
4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4968 *rflowp = rflow;
4969 cpu = tcpu;
4970 goto done;
4971 }
4972 }
4973
4974 try_rps:
4975
4976 if (map) {
4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4978 if (cpu_online(tcpu)) {
4979 cpu = tcpu;
4980 goto done;
4981 }
4982 }
4983
4984 done:
4985 return cpu;
4986 }
4987
4988 #ifdef CONFIG_RFS_ACCEL
4989
4990 /**
4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4992 * @dev: Device on which the filter was set
4993 * @rxq_index: RX queue index
4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4996 *
4997 * Drivers that implement ndo_rx_flow_steer() should periodically call
4998 * this function for each installed filter and remove the filters for
4999 * which it returns %true.
5000 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5002 u32 flow_id, u16 filter_id)
5003 {
5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5005 struct rps_dev_flow_table *flow_table;
5006 struct rps_dev_flow *rflow;
5007 bool expire = true;
5008 unsigned int cpu;
5009
5010 rcu_read_lock();
5011 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5012 if (flow_table && flow_id < (1UL << flow_table->log)) {
5013 rflow = &flow_table->flows[flow_id];
5014 cpu = READ_ONCE(rflow->cpu);
5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5017 READ_ONCE(rflow->last_qtail)) <
5018 (int)(10 << flow_table->log)))
5019 expire = false;
5020 }
5021 rcu_read_unlock();
5022 return expire;
5023 }
5024 EXPORT_SYMBOL(rps_may_expire_flow);
5025
5026 #endif /* CONFIG_RFS_ACCEL */
5027
5028 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5029 static void rps_trigger_softirq(void *data)
5030 {
5031 struct softnet_data *sd = data;
5032
5033 ____napi_schedule(sd, &sd->backlog);
5034 /* Pairs with READ_ONCE() in softnet_seq_show() */
5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5036 }
5037
5038 #endif /* CONFIG_RPS */
5039
5040 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5041 static void trigger_rx_softirq(void *data)
5042 {
5043 struct softnet_data *sd = data;
5044
5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5046 smp_store_release(&sd->defer_ipi_scheduled, 0);
5047 }
5048
5049 /*
5050 * After we queued a packet into sd->input_pkt_queue,
5051 * we need to make sure this queue is serviced soon.
5052 *
5053 * - If this is another cpu queue, link it to our rps_ipi_list,
5054 * and make sure we will process rps_ipi_list from net_rx_action().
5055 *
5056 * - If this is our own queue, NAPI schedule our backlog.
5057 * Note that this also raises NET_RX_SOFTIRQ.
5058 */
napi_schedule_rps(struct softnet_data * sd)5059 static void napi_schedule_rps(struct softnet_data *sd)
5060 {
5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5062
5063 #ifdef CONFIG_RPS
5064 if (sd != mysd) {
5065 if (use_backlog_threads()) {
5066 __napi_schedule_irqoff(&sd->backlog);
5067 return;
5068 }
5069
5070 sd->rps_ipi_next = mysd->rps_ipi_list;
5071 mysd->rps_ipi_list = sd;
5072
5073 /* If not called from net_rx_action() or napi_threaded_poll()
5074 * we have to raise NET_RX_SOFTIRQ.
5075 */
5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5078 return;
5079 }
5080 #endif /* CONFIG_RPS */
5081 __napi_schedule_irqoff(&mysd->backlog);
5082 }
5083
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5085 {
5086 unsigned long flags;
5087
5088 if (use_backlog_threads()) {
5089 backlog_lock_irq_save(sd, &flags);
5090
5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5092 __napi_schedule_irqoff(&sd->backlog);
5093
5094 backlog_unlock_irq_restore(sd, &flags);
5095
5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5097 smp_call_function_single_async(cpu, &sd->defer_csd);
5098 }
5099 }
5100
5101 #ifdef CONFIG_NET_FLOW_LIMIT
5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5103 #endif
5104
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5106 {
5107 #ifdef CONFIG_NET_FLOW_LIMIT
5108 struct sd_flow_limit *fl;
5109 struct softnet_data *sd;
5110 unsigned int old_flow, new_flow;
5111
5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5113 return false;
5114
5115 sd = this_cpu_ptr(&softnet_data);
5116
5117 rcu_read_lock();
5118 fl = rcu_dereference(sd->flow_limit);
5119 if (fl) {
5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5121 old_flow = fl->history[fl->history_head];
5122 fl->history[fl->history_head] = new_flow;
5123
5124 fl->history_head++;
5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5126
5127 if (likely(fl->buckets[old_flow]))
5128 fl->buckets[old_flow]--;
5129
5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5131 /* Pairs with READ_ONCE() in softnet_seq_show() */
5132 WRITE_ONCE(fl->count, fl->count + 1);
5133 rcu_read_unlock();
5134 return true;
5135 }
5136 }
5137 rcu_read_unlock();
5138 #endif
5139 return false;
5140 }
5141
5142 /*
5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5144 * queue (may be a remote CPU queue).
5145 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5147 unsigned int *qtail)
5148 {
5149 enum skb_drop_reason reason;
5150 struct softnet_data *sd;
5151 unsigned long flags;
5152 unsigned int qlen;
5153 int max_backlog;
5154 u32 tail;
5155
5156 reason = SKB_DROP_REASON_DEV_READY;
5157 if (!netif_running(skb->dev))
5158 goto bad_dev;
5159
5160 reason = SKB_DROP_REASON_CPU_BACKLOG;
5161 sd = &per_cpu(softnet_data, cpu);
5162
5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5164 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5165 if (unlikely(qlen > max_backlog))
5166 goto cpu_backlog_drop;
5167 backlog_lock_irq_save(sd, &flags);
5168 qlen = skb_queue_len(&sd->input_pkt_queue);
5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5170 if (!qlen) {
5171 /* Schedule NAPI for backlog device. We can use
5172 * non atomic operation as we own the queue lock.
5173 */
5174 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5175 &sd->backlog.state))
5176 napi_schedule_rps(sd);
5177 }
5178 __skb_queue_tail(&sd->input_pkt_queue, skb);
5179 tail = rps_input_queue_tail_incr(sd);
5180 backlog_unlock_irq_restore(sd, &flags);
5181
5182 /* save the tail outside of the critical section */
5183 rps_input_queue_tail_save(qtail, tail);
5184 return NET_RX_SUCCESS;
5185 }
5186
5187 backlog_unlock_irq_restore(sd, &flags);
5188
5189 cpu_backlog_drop:
5190 atomic_inc(&sd->dropped);
5191 bad_dev:
5192 dev_core_stats_rx_dropped_inc(skb->dev);
5193 kfree_skb_reason(skb, reason);
5194 return NET_RX_DROP;
5195 }
5196
netif_get_rxqueue(struct sk_buff * skb)5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5198 {
5199 struct net_device *dev = skb->dev;
5200 struct netdev_rx_queue *rxqueue;
5201
5202 rxqueue = dev->_rx;
5203
5204 if (skb_rx_queue_recorded(skb)) {
5205 u16 index = skb_get_rx_queue(skb);
5206
5207 if (unlikely(index >= dev->real_num_rx_queues)) {
5208 WARN_ONCE(dev->real_num_rx_queues > 1,
5209 "%s received packet on queue %u, but number "
5210 "of RX queues is %u\n",
5211 dev->name, index, dev->real_num_rx_queues);
5212
5213 return rxqueue; /* Return first rxqueue */
5214 }
5215 rxqueue += index;
5216 }
5217 return rxqueue;
5218 }
5219
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5221 const struct bpf_prog *xdp_prog)
5222 {
5223 void *orig_data, *orig_data_end, *hard_start;
5224 struct netdev_rx_queue *rxqueue;
5225 bool orig_bcast, orig_host;
5226 u32 mac_len, frame_sz;
5227 __be16 orig_eth_type;
5228 struct ethhdr *eth;
5229 u32 metalen, act;
5230 int off;
5231
5232 /* The XDP program wants to see the packet starting at the MAC
5233 * header.
5234 */
5235 mac_len = skb->data - skb_mac_header(skb);
5236 hard_start = skb->data - skb_headroom(skb);
5237
5238 /* SKB "head" area always have tailroom for skb_shared_info */
5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5241
5242 rxqueue = netif_get_rxqueue(skb);
5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5245 skb_headlen(skb) + mac_len, true);
5246 if (skb_is_nonlinear(skb)) {
5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5248 xdp_buff_set_frags_flag(xdp);
5249 } else {
5250 xdp_buff_clear_frags_flag(xdp);
5251 }
5252
5253 orig_data_end = xdp->data_end;
5254 orig_data = xdp->data;
5255 eth = (struct ethhdr *)xdp->data;
5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5258 orig_eth_type = eth->h_proto;
5259
5260 act = bpf_prog_run_xdp(xdp_prog, xdp);
5261
5262 /* check if bpf_xdp_adjust_head was used */
5263 off = xdp->data - orig_data;
5264 if (off) {
5265 if (off > 0)
5266 __skb_pull(skb, off);
5267 else if (off < 0)
5268 __skb_push(skb, -off);
5269
5270 skb->mac_header += off;
5271 skb_reset_network_header(skb);
5272 }
5273
5274 /* check if bpf_xdp_adjust_tail was used */
5275 off = xdp->data_end - orig_data_end;
5276 if (off != 0) {
5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5278 skb->len += off; /* positive on grow, negative on shrink */
5279 }
5280
5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5283 */
5284 if (xdp_buff_has_frags(xdp))
5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5286 else
5287 skb->data_len = 0;
5288
5289 /* check if XDP changed eth hdr such SKB needs update */
5290 eth = (struct ethhdr *)xdp->data;
5291 if ((orig_eth_type != eth->h_proto) ||
5292 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5293 skb->dev->dev_addr)) ||
5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5295 __skb_push(skb, ETH_HLEN);
5296 skb->pkt_type = PACKET_HOST;
5297 skb->protocol = eth_type_trans(skb, skb->dev);
5298 }
5299
5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5301 * before calling us again on redirect path. We do not call do_redirect
5302 * as we leave that up to the caller.
5303 *
5304 * Caller is responsible for managing lifetime of skb (i.e. calling
5305 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5306 */
5307 switch (act) {
5308 case XDP_REDIRECT:
5309 case XDP_TX:
5310 __skb_push(skb, mac_len);
5311 break;
5312 case XDP_PASS:
5313 metalen = xdp->data - xdp->data_meta;
5314 if (metalen)
5315 skb_metadata_set(skb, metalen);
5316 break;
5317 }
5318
5319 return act;
5320 }
5321
5322 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5324 {
5325 struct sk_buff *skb = *pskb;
5326 int err, hroom, troom;
5327
5328 local_lock_nested_bh(&system_page_pool.bh_lock);
5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5330 local_unlock_nested_bh(&system_page_pool.bh_lock);
5331 if (!err)
5332 return 0;
5333
5334 /* In case we have to go down the path and also linearize,
5335 * then lets do the pskb_expand_head() work just once here.
5336 */
5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5338 troom = skb->tail + skb->data_len - skb->end;
5339 err = pskb_expand_head(skb,
5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5342 if (err)
5343 return err;
5344
5345 return skb_linearize(skb);
5346 }
5347
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5349 struct xdp_buff *xdp,
5350 const struct bpf_prog *xdp_prog)
5351 {
5352 struct sk_buff *skb = *pskb;
5353 u32 mac_len, act = XDP_DROP;
5354
5355 /* Reinjected packets coming from act_mirred or similar should
5356 * not get XDP generic processing.
5357 */
5358 if (skb_is_redirected(skb))
5359 return XDP_PASS;
5360
5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5362 * bytes. This is the guarantee that also native XDP provides,
5363 * thus we need to do it here as well.
5364 */
5365 mac_len = skb->data - skb_mac_header(skb);
5366 __skb_push(skb, mac_len);
5367
5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5370 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5371 goto do_drop;
5372 }
5373
5374 __skb_pull(*pskb, mac_len);
5375
5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5377 switch (act) {
5378 case XDP_REDIRECT:
5379 case XDP_TX:
5380 case XDP_PASS:
5381 break;
5382 default:
5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5384 fallthrough;
5385 case XDP_ABORTED:
5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5387 fallthrough;
5388 case XDP_DROP:
5389 do_drop:
5390 kfree_skb(*pskb);
5391 break;
5392 }
5393
5394 return act;
5395 }
5396
5397 /* When doing generic XDP we have to bypass the qdisc layer and the
5398 * network taps in order to match in-driver-XDP behavior. This also means
5399 * that XDP packets are able to starve other packets going through a qdisc,
5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5401 * queues, so they do not have this starvation issue.
5402 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5404 {
5405 struct net_device *dev = skb->dev;
5406 struct netdev_queue *txq;
5407 bool free_skb = true;
5408 int cpu, rc;
5409
5410 txq = netdev_core_pick_tx(dev, skb, NULL);
5411 cpu = smp_processor_id();
5412 HARD_TX_LOCK(dev, txq, cpu);
5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5414 rc = netdev_start_xmit(skb, dev, txq, 0);
5415 if (dev_xmit_complete(rc))
5416 free_skb = false;
5417 }
5418 HARD_TX_UNLOCK(dev, txq);
5419 if (free_skb) {
5420 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5421 dev_core_stats_tx_dropped_inc(dev);
5422 kfree_skb(skb);
5423 }
5424 }
5425
5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5427
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5429 {
5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5431
5432 if (xdp_prog) {
5433 struct xdp_buff xdp;
5434 u32 act;
5435 int err;
5436
5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5439 if (act != XDP_PASS) {
5440 switch (act) {
5441 case XDP_REDIRECT:
5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5443 &xdp, xdp_prog);
5444 if (err)
5445 goto out_redir;
5446 break;
5447 case XDP_TX:
5448 generic_xdp_tx(*pskb, xdp_prog);
5449 break;
5450 }
5451 bpf_net_ctx_clear(bpf_net_ctx);
5452 return XDP_DROP;
5453 }
5454 bpf_net_ctx_clear(bpf_net_ctx);
5455 }
5456 return XDP_PASS;
5457 out_redir:
5458 bpf_net_ctx_clear(bpf_net_ctx);
5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5460 return XDP_DROP;
5461 }
5462 EXPORT_SYMBOL_GPL(do_xdp_generic);
5463
netif_rx_internal(struct sk_buff * skb)5464 static int netif_rx_internal(struct sk_buff *skb)
5465 {
5466 int ret;
5467
5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469
5470 trace_netif_rx(skb);
5471
5472 #ifdef CONFIG_RPS
5473 if (static_branch_unlikely(&rps_needed)) {
5474 struct rps_dev_flow voidflow, *rflow = &voidflow;
5475 int cpu;
5476
5477 rcu_read_lock();
5478
5479 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5480 if (cpu < 0)
5481 cpu = smp_processor_id();
5482
5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5484
5485 rcu_read_unlock();
5486 } else
5487 #endif
5488 {
5489 unsigned int qtail;
5490
5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5492 }
5493 return ret;
5494 }
5495
5496 /**
5497 * __netif_rx - Slightly optimized version of netif_rx
5498 * @skb: buffer to post
5499 *
5500 * This behaves as netif_rx except that it does not disable bottom halves.
5501 * As a result this function may only be invoked from the interrupt context
5502 * (either hard or soft interrupt).
5503 */
__netif_rx(struct sk_buff * skb)5504 int __netif_rx(struct sk_buff *skb)
5505 {
5506 int ret;
5507
5508 lockdep_assert_once(hardirq_count() | softirq_count());
5509
5510 trace_netif_rx_entry(skb);
5511 ret = netif_rx_internal(skb);
5512 trace_netif_rx_exit(ret);
5513 return ret;
5514 }
5515 EXPORT_SYMBOL(__netif_rx);
5516
5517 /**
5518 * netif_rx - post buffer to the network code
5519 * @skb: buffer to post
5520 *
5521 * This function receives a packet from a device driver and queues it for
5522 * the upper (protocol) levels to process via the backlog NAPI device. It
5523 * always succeeds. The buffer may be dropped during processing for
5524 * congestion control or by the protocol layers.
5525 * The network buffer is passed via the backlog NAPI device. Modern NIC
5526 * driver should use NAPI and GRO.
5527 * This function can used from interrupt and from process context. The
5528 * caller from process context must not disable interrupts before invoking
5529 * this function.
5530 *
5531 * return values:
5532 * NET_RX_SUCCESS (no congestion)
5533 * NET_RX_DROP (packet was dropped)
5534 *
5535 */
netif_rx(struct sk_buff * skb)5536 int netif_rx(struct sk_buff *skb)
5537 {
5538 bool need_bh_off = !(hardirq_count() | softirq_count());
5539 int ret;
5540
5541 if (need_bh_off)
5542 local_bh_disable();
5543 trace_netif_rx_entry(skb);
5544 ret = netif_rx_internal(skb);
5545 trace_netif_rx_exit(ret);
5546 if (need_bh_off)
5547 local_bh_enable();
5548 return ret;
5549 }
5550 EXPORT_SYMBOL(netif_rx);
5551
net_tx_action(void)5552 static __latent_entropy void net_tx_action(void)
5553 {
5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5555
5556 if (sd->completion_queue) {
5557 struct sk_buff *clist;
5558
5559 local_irq_disable();
5560 clist = sd->completion_queue;
5561 sd->completion_queue = NULL;
5562 local_irq_enable();
5563
5564 while (clist) {
5565 struct sk_buff *skb = clist;
5566
5567 clist = clist->next;
5568
5569 WARN_ON(refcount_read(&skb->users));
5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5571 trace_consume_skb(skb, net_tx_action);
5572 else
5573 trace_kfree_skb(skb, net_tx_action,
5574 get_kfree_skb_cb(skb)->reason, NULL);
5575
5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5577 __kfree_skb(skb);
5578 else
5579 __napi_kfree_skb(skb,
5580 get_kfree_skb_cb(skb)->reason);
5581 }
5582 }
5583
5584 if (sd->output_queue) {
5585 struct Qdisc *head;
5586
5587 local_irq_disable();
5588 head = sd->output_queue;
5589 sd->output_queue = NULL;
5590 sd->output_queue_tailp = &sd->output_queue;
5591 local_irq_enable();
5592
5593 rcu_read_lock();
5594
5595 while (head) {
5596 struct Qdisc *q = head;
5597 spinlock_t *root_lock = NULL;
5598
5599 head = head->next_sched;
5600
5601 /* We need to make sure head->next_sched is read
5602 * before clearing __QDISC_STATE_SCHED
5603 */
5604 smp_mb__before_atomic();
5605
5606 if (!(q->flags & TCQ_F_NOLOCK)) {
5607 root_lock = qdisc_lock(q);
5608 spin_lock(root_lock);
5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5610 &q->state))) {
5611 /* There is a synchronize_net() between
5612 * STATE_DEACTIVATED flag being set and
5613 * qdisc_reset()/some_qdisc_is_busy() in
5614 * dev_deactivate(), so we can safely bail out
5615 * early here to avoid data race between
5616 * qdisc_deactivate() and some_qdisc_is_busy()
5617 * for lockless qdisc.
5618 */
5619 clear_bit(__QDISC_STATE_SCHED, &q->state);
5620 continue;
5621 }
5622
5623 clear_bit(__QDISC_STATE_SCHED, &q->state);
5624 qdisc_run(q);
5625 if (root_lock)
5626 spin_unlock(root_lock);
5627 }
5628
5629 rcu_read_unlock();
5630 }
5631
5632 xfrm_dev_backlog(sd);
5633 }
5634
5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5636 /* This hook is defined here for ATM LANE */
5637 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5638 unsigned char *addr) __read_mostly;
5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5640 #endif
5641
5642 /**
5643 * netdev_is_rx_handler_busy - check if receive handler is registered
5644 * @dev: device to check
5645 *
5646 * Check if a receive handler is already registered for a given device.
5647 * Return true if there one.
5648 *
5649 * The caller must hold the rtnl_mutex.
5650 */
netdev_is_rx_handler_busy(struct net_device * dev)5651 bool netdev_is_rx_handler_busy(struct net_device *dev)
5652 {
5653 ASSERT_RTNL();
5654 return dev && rtnl_dereference(dev->rx_handler);
5655 }
5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5657
5658 /**
5659 * netdev_rx_handler_register - register receive handler
5660 * @dev: device to register a handler for
5661 * @rx_handler: receive handler to register
5662 * @rx_handler_data: data pointer that is used by rx handler
5663 *
5664 * Register a receive handler for a device. This handler will then be
5665 * called from __netif_receive_skb. A negative errno code is returned
5666 * on a failure.
5667 *
5668 * The caller must hold the rtnl_mutex.
5669 *
5670 * For a general description of rx_handler, see enum rx_handler_result.
5671 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5672 int netdev_rx_handler_register(struct net_device *dev,
5673 rx_handler_func_t *rx_handler,
5674 void *rx_handler_data)
5675 {
5676 if (netdev_is_rx_handler_busy(dev))
5677 return -EBUSY;
5678
5679 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5680 return -EINVAL;
5681
5682 /* Note: rx_handler_data must be set before rx_handler */
5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5684 rcu_assign_pointer(dev->rx_handler, rx_handler);
5685
5686 return 0;
5687 }
5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5689
5690 /**
5691 * netdev_rx_handler_unregister - unregister receive handler
5692 * @dev: device to unregister a handler from
5693 *
5694 * Unregister a receive handler from a device.
5695 *
5696 * The caller must hold the rtnl_mutex.
5697 */
netdev_rx_handler_unregister(struct net_device * dev)5698 void netdev_rx_handler_unregister(struct net_device *dev)
5699 {
5700
5701 ASSERT_RTNL();
5702 RCU_INIT_POINTER(dev->rx_handler, NULL);
5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5704 * section has a guarantee to see a non NULL rx_handler_data
5705 * as well.
5706 */
5707 synchronize_net();
5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5709 }
5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5711
5712 /*
5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5714 * the special handling of PFMEMALLOC skbs.
5715 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5717 {
5718 switch (skb->protocol) {
5719 case htons(ETH_P_ARP):
5720 case htons(ETH_P_IP):
5721 case htons(ETH_P_IPV6):
5722 case htons(ETH_P_8021Q):
5723 case htons(ETH_P_8021AD):
5724 return true;
5725 default:
5726 return false;
5727 }
5728 }
5729
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5731 int *ret, struct net_device *orig_dev)
5732 {
5733 if (nf_hook_ingress_active(skb)) {
5734 int ingress_retval;
5735
5736 if (*pt_prev) {
5737 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5738 *pt_prev = NULL;
5739 }
5740
5741 rcu_read_lock();
5742 ingress_retval = nf_hook_ingress(skb);
5743 rcu_read_unlock();
5744 return ingress_retval;
5745 }
5746 return 0;
5747 }
5748
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5750 struct packet_type **ppt_prev)
5751 {
5752 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5753 struct packet_type *ptype, *pt_prev;
5754 rx_handler_func_t *rx_handler;
5755 struct sk_buff *skb = *pskb;
5756 struct net_device *orig_dev;
5757 bool deliver_exact = false;
5758 int ret = NET_RX_DROP;
5759 __be16 type;
5760
5761 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5762
5763 trace_netif_receive_skb(skb);
5764
5765 orig_dev = skb->dev;
5766
5767 skb_reset_network_header(skb);
5768 #if !defined(CONFIG_DEBUG_NET)
5769 /* We plan to no longer reset the transport header here.
5770 * Give some time to fuzzers and dev build to catch bugs
5771 * in network stacks.
5772 */
5773 if (!skb_transport_header_was_set(skb))
5774 skb_reset_transport_header(skb);
5775 #endif
5776 skb_reset_mac_len(skb);
5777
5778 pt_prev = NULL;
5779
5780 another_round:
5781 skb->skb_iif = skb->dev->ifindex;
5782
5783 __this_cpu_inc(softnet_data.processed);
5784
5785 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5786 int ret2;
5787
5788 migrate_disable();
5789 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5790 &skb);
5791 migrate_enable();
5792
5793 if (ret2 != XDP_PASS) {
5794 ret = NET_RX_DROP;
5795 goto out;
5796 }
5797 }
5798
5799 if (eth_type_vlan(skb->protocol)) {
5800 skb = skb_vlan_untag(skb);
5801 if (unlikely(!skb))
5802 goto out;
5803 }
5804
5805 if (skb_skip_tc_classify(skb))
5806 goto skip_classify;
5807
5808 if (pfmemalloc)
5809 goto skip_taps;
5810
5811 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5812 list) {
5813 if (pt_prev)
5814 ret = deliver_skb(skb, pt_prev, orig_dev);
5815 pt_prev = ptype;
5816 }
5817
5818 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5819 if (pt_prev)
5820 ret = deliver_skb(skb, pt_prev, orig_dev);
5821 pt_prev = ptype;
5822 }
5823
5824 skip_taps:
5825 #ifdef CONFIG_NET_INGRESS
5826 if (static_branch_unlikely(&ingress_needed_key)) {
5827 bool another = false;
5828
5829 nf_skip_egress(skb, true);
5830 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5831 &another);
5832 if (another)
5833 goto another_round;
5834 if (!skb)
5835 goto out;
5836
5837 nf_skip_egress(skb, false);
5838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5839 goto out;
5840 }
5841 #endif
5842 skb_reset_redirect(skb);
5843 skip_classify:
5844 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5845 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5846 goto drop;
5847 }
5848
5849 if (skb_vlan_tag_present(skb)) {
5850 if (pt_prev) {
5851 ret = deliver_skb(skb, pt_prev, orig_dev);
5852 pt_prev = NULL;
5853 }
5854 if (vlan_do_receive(&skb))
5855 goto another_round;
5856 else if (unlikely(!skb))
5857 goto out;
5858 }
5859
5860 rx_handler = rcu_dereference(skb->dev->rx_handler);
5861 if (rx_handler) {
5862 if (pt_prev) {
5863 ret = deliver_skb(skb, pt_prev, orig_dev);
5864 pt_prev = NULL;
5865 }
5866 switch (rx_handler(&skb)) {
5867 case RX_HANDLER_CONSUMED:
5868 ret = NET_RX_SUCCESS;
5869 goto out;
5870 case RX_HANDLER_ANOTHER:
5871 goto another_round;
5872 case RX_HANDLER_EXACT:
5873 deliver_exact = true;
5874 break;
5875 case RX_HANDLER_PASS:
5876 break;
5877 default:
5878 BUG();
5879 }
5880 }
5881
5882 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5883 check_vlan_id:
5884 if (skb_vlan_tag_get_id(skb)) {
5885 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5886 * find vlan device.
5887 */
5888 skb->pkt_type = PACKET_OTHERHOST;
5889 } else if (eth_type_vlan(skb->protocol)) {
5890 /* Outer header is 802.1P with vlan 0, inner header is
5891 * 802.1Q or 802.1AD and vlan_do_receive() above could
5892 * not find vlan dev for vlan id 0.
5893 */
5894 __vlan_hwaccel_clear_tag(skb);
5895 skb = skb_vlan_untag(skb);
5896 if (unlikely(!skb))
5897 goto out;
5898 if (vlan_do_receive(&skb))
5899 /* After stripping off 802.1P header with vlan 0
5900 * vlan dev is found for inner header.
5901 */
5902 goto another_round;
5903 else if (unlikely(!skb))
5904 goto out;
5905 else
5906 /* We have stripped outer 802.1P vlan 0 header.
5907 * But could not find vlan dev.
5908 * check again for vlan id to set OTHERHOST.
5909 */
5910 goto check_vlan_id;
5911 }
5912 /* Note: we might in the future use prio bits
5913 * and set skb->priority like in vlan_do_receive()
5914 * For the time being, just ignore Priority Code Point
5915 */
5916 __vlan_hwaccel_clear_tag(skb);
5917 }
5918
5919 type = skb->protocol;
5920
5921 /* deliver only exact match when indicated */
5922 if (likely(!deliver_exact)) {
5923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5924 &ptype_base[ntohs(type) &
5925 PTYPE_HASH_MASK]);
5926
5927 /* orig_dev and skb->dev could belong to different netns;
5928 * Even in such case we need to traverse only the list
5929 * coming from skb->dev, as the ptype owner (packet socket)
5930 * will use dev_net(skb->dev) to do namespace filtering.
5931 */
5932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5933 &dev_net_rcu(skb->dev)->ptype_specific);
5934 }
5935
5936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5937 &orig_dev->ptype_specific);
5938
5939 if (unlikely(skb->dev != orig_dev)) {
5940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5941 &skb->dev->ptype_specific);
5942 }
5943
5944 if (pt_prev) {
5945 *ppt_prev = pt_prev;
5946 } else {
5947 drop:
5948 if (!deliver_exact)
5949 dev_core_stats_rx_dropped_inc(skb->dev);
5950 else
5951 dev_core_stats_rx_nohandler_inc(skb->dev);
5952
5953 kfree_skb_reason(skb, drop_reason);
5954 /* Jamal, now you will not able to escape explaining
5955 * me how you were going to use this. :-)
5956 */
5957 ret = NET_RX_DROP;
5958 }
5959
5960 out:
5961 /* The invariant here is that if *ppt_prev is not NULL
5962 * then skb should also be non-NULL.
5963 *
5964 * Apparently *ppt_prev assignment above holds this invariant due to
5965 * skb dereferencing near it.
5966 */
5967 *pskb = skb;
5968 return ret;
5969 }
5970
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5971 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5972 {
5973 struct net_device *orig_dev = skb->dev;
5974 struct packet_type *pt_prev = NULL;
5975 int ret;
5976
5977 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5978 if (pt_prev)
5979 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5980 skb->dev, pt_prev, orig_dev);
5981 return ret;
5982 }
5983
5984 /**
5985 * netif_receive_skb_core - special purpose version of netif_receive_skb
5986 * @skb: buffer to process
5987 *
5988 * More direct receive version of netif_receive_skb(). It should
5989 * only be used by callers that have a need to skip RPS and Generic XDP.
5990 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5991 *
5992 * This function may only be called from softirq context and interrupts
5993 * should be enabled.
5994 *
5995 * Return values (usually ignored):
5996 * NET_RX_SUCCESS: no congestion
5997 * NET_RX_DROP: packet was dropped
5998 */
netif_receive_skb_core(struct sk_buff * skb)5999 int netif_receive_skb_core(struct sk_buff *skb)
6000 {
6001 int ret;
6002
6003 rcu_read_lock();
6004 ret = __netif_receive_skb_one_core(skb, false);
6005 rcu_read_unlock();
6006
6007 return ret;
6008 }
6009 EXPORT_SYMBOL(netif_receive_skb_core);
6010
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6011 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6012 struct packet_type *pt_prev,
6013 struct net_device *orig_dev)
6014 {
6015 struct sk_buff *skb, *next;
6016
6017 if (!pt_prev)
6018 return;
6019 if (list_empty(head))
6020 return;
6021 if (pt_prev->list_func != NULL)
6022 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6023 ip_list_rcv, head, pt_prev, orig_dev);
6024 else
6025 list_for_each_entry_safe(skb, next, head, list) {
6026 skb_list_del_init(skb);
6027 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6028 }
6029 }
6030
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6031 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6032 {
6033 /* Fast-path assumptions:
6034 * - There is no RX handler.
6035 * - Only one packet_type matches.
6036 * If either of these fails, we will end up doing some per-packet
6037 * processing in-line, then handling the 'last ptype' for the whole
6038 * sublist. This can't cause out-of-order delivery to any single ptype,
6039 * because the 'last ptype' must be constant across the sublist, and all
6040 * other ptypes are handled per-packet.
6041 */
6042 /* Current (common) ptype of sublist */
6043 struct packet_type *pt_curr = NULL;
6044 /* Current (common) orig_dev of sublist */
6045 struct net_device *od_curr = NULL;
6046 struct sk_buff *skb, *next;
6047 LIST_HEAD(sublist);
6048
6049 list_for_each_entry_safe(skb, next, head, list) {
6050 struct net_device *orig_dev = skb->dev;
6051 struct packet_type *pt_prev = NULL;
6052
6053 skb_list_del_init(skb);
6054 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6055 if (!pt_prev)
6056 continue;
6057 if (pt_curr != pt_prev || od_curr != orig_dev) {
6058 /* dispatch old sublist */
6059 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6060 /* start new sublist */
6061 INIT_LIST_HEAD(&sublist);
6062 pt_curr = pt_prev;
6063 od_curr = orig_dev;
6064 }
6065 list_add_tail(&skb->list, &sublist);
6066 }
6067
6068 /* dispatch final sublist */
6069 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6070 }
6071
__netif_receive_skb(struct sk_buff * skb)6072 static int __netif_receive_skb(struct sk_buff *skb)
6073 {
6074 int ret;
6075
6076 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6077 unsigned int noreclaim_flag;
6078
6079 /*
6080 * PFMEMALLOC skbs are special, they should
6081 * - be delivered to SOCK_MEMALLOC sockets only
6082 * - stay away from userspace
6083 * - have bounded memory usage
6084 *
6085 * Use PF_MEMALLOC as this saves us from propagating the allocation
6086 * context down to all allocation sites.
6087 */
6088 noreclaim_flag = memalloc_noreclaim_save();
6089 ret = __netif_receive_skb_one_core(skb, true);
6090 memalloc_noreclaim_restore(noreclaim_flag);
6091 } else
6092 ret = __netif_receive_skb_one_core(skb, false);
6093
6094 return ret;
6095 }
6096
__netif_receive_skb_list(struct list_head * head)6097 static void __netif_receive_skb_list(struct list_head *head)
6098 {
6099 unsigned long noreclaim_flag = 0;
6100 struct sk_buff *skb, *next;
6101 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6102
6103 list_for_each_entry_safe(skb, next, head, list) {
6104 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6105 struct list_head sublist;
6106
6107 /* Handle the previous sublist */
6108 list_cut_before(&sublist, head, &skb->list);
6109 if (!list_empty(&sublist))
6110 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6111 pfmemalloc = !pfmemalloc;
6112 /* See comments in __netif_receive_skb */
6113 if (pfmemalloc)
6114 noreclaim_flag = memalloc_noreclaim_save();
6115 else
6116 memalloc_noreclaim_restore(noreclaim_flag);
6117 }
6118 }
6119 /* Handle the remaining sublist */
6120 if (!list_empty(head))
6121 __netif_receive_skb_list_core(head, pfmemalloc);
6122 /* Restore pflags */
6123 if (pfmemalloc)
6124 memalloc_noreclaim_restore(noreclaim_flag);
6125 }
6126
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6127 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6128 {
6129 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6130 struct bpf_prog *new = xdp->prog;
6131 int ret = 0;
6132
6133 switch (xdp->command) {
6134 case XDP_SETUP_PROG:
6135 rcu_assign_pointer(dev->xdp_prog, new);
6136 if (old)
6137 bpf_prog_put(old);
6138
6139 if (old && !new) {
6140 static_branch_dec(&generic_xdp_needed_key);
6141 } else if (new && !old) {
6142 static_branch_inc(&generic_xdp_needed_key);
6143 netif_disable_lro(dev);
6144 dev_disable_gro_hw(dev);
6145 }
6146 break;
6147
6148 default:
6149 ret = -EINVAL;
6150 break;
6151 }
6152
6153 return ret;
6154 }
6155
netif_receive_skb_internal(struct sk_buff * skb)6156 static int netif_receive_skb_internal(struct sk_buff *skb)
6157 {
6158 int ret;
6159
6160 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6161
6162 if (skb_defer_rx_timestamp(skb))
6163 return NET_RX_SUCCESS;
6164
6165 rcu_read_lock();
6166 #ifdef CONFIG_RPS
6167 if (static_branch_unlikely(&rps_needed)) {
6168 struct rps_dev_flow voidflow, *rflow = &voidflow;
6169 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6170
6171 if (cpu >= 0) {
6172 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6173 rcu_read_unlock();
6174 return ret;
6175 }
6176 }
6177 #endif
6178 ret = __netif_receive_skb(skb);
6179 rcu_read_unlock();
6180 return ret;
6181 }
6182
netif_receive_skb_list_internal(struct list_head * head)6183 void netif_receive_skb_list_internal(struct list_head *head)
6184 {
6185 struct sk_buff *skb, *next;
6186 LIST_HEAD(sublist);
6187
6188 list_for_each_entry_safe(skb, next, head, list) {
6189 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6190 skb);
6191 skb_list_del_init(skb);
6192 if (!skb_defer_rx_timestamp(skb))
6193 list_add_tail(&skb->list, &sublist);
6194 }
6195 list_splice_init(&sublist, head);
6196
6197 rcu_read_lock();
6198 #ifdef CONFIG_RPS
6199 if (static_branch_unlikely(&rps_needed)) {
6200 list_for_each_entry_safe(skb, next, head, list) {
6201 struct rps_dev_flow voidflow, *rflow = &voidflow;
6202 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6203
6204 if (cpu >= 0) {
6205 /* Will be handled, remove from list */
6206 skb_list_del_init(skb);
6207 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6208 }
6209 }
6210 }
6211 #endif
6212 __netif_receive_skb_list(head);
6213 rcu_read_unlock();
6214 }
6215
6216 /**
6217 * netif_receive_skb - process receive buffer from network
6218 * @skb: buffer to process
6219 *
6220 * netif_receive_skb() is the main receive data processing function.
6221 * It always succeeds. The buffer may be dropped during processing
6222 * for congestion control or by the protocol layers.
6223 *
6224 * This function may only be called from softirq context and interrupts
6225 * should be enabled.
6226 *
6227 * Return values (usually ignored):
6228 * NET_RX_SUCCESS: no congestion
6229 * NET_RX_DROP: packet was dropped
6230 */
netif_receive_skb(struct sk_buff * skb)6231 int netif_receive_skb(struct sk_buff *skb)
6232 {
6233 int ret;
6234
6235 trace_netif_receive_skb_entry(skb);
6236
6237 ret = netif_receive_skb_internal(skb);
6238 trace_netif_receive_skb_exit(ret);
6239
6240 return ret;
6241 }
6242 EXPORT_SYMBOL(netif_receive_skb);
6243
6244 /**
6245 * netif_receive_skb_list - process many receive buffers from network
6246 * @head: list of skbs to process.
6247 *
6248 * Since return value of netif_receive_skb() is normally ignored, and
6249 * wouldn't be meaningful for a list, this function returns void.
6250 *
6251 * This function may only be called from softirq context and interrupts
6252 * should be enabled.
6253 */
netif_receive_skb_list(struct list_head * head)6254 void netif_receive_skb_list(struct list_head *head)
6255 {
6256 struct sk_buff *skb;
6257
6258 if (list_empty(head))
6259 return;
6260 if (trace_netif_receive_skb_list_entry_enabled()) {
6261 list_for_each_entry(skb, head, list)
6262 trace_netif_receive_skb_list_entry(skb);
6263 }
6264 netif_receive_skb_list_internal(head);
6265 trace_netif_receive_skb_list_exit(0);
6266 }
6267 EXPORT_SYMBOL(netif_receive_skb_list);
6268
6269 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6270 static void flush_backlog(struct work_struct *work)
6271 {
6272 struct sk_buff *skb, *tmp;
6273 struct sk_buff_head list;
6274 struct softnet_data *sd;
6275
6276 __skb_queue_head_init(&list);
6277 local_bh_disable();
6278 sd = this_cpu_ptr(&softnet_data);
6279
6280 backlog_lock_irq_disable(sd);
6281 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6282 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6283 __skb_unlink(skb, &sd->input_pkt_queue);
6284 __skb_queue_tail(&list, skb);
6285 rps_input_queue_head_incr(sd);
6286 }
6287 }
6288 backlog_unlock_irq_enable(sd);
6289
6290 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6291 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6292 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6293 __skb_unlink(skb, &sd->process_queue);
6294 __skb_queue_tail(&list, skb);
6295 rps_input_queue_head_incr(sd);
6296 }
6297 }
6298 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6299 local_bh_enable();
6300
6301 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6302 }
6303
flush_required(int cpu)6304 static bool flush_required(int cpu)
6305 {
6306 #if IS_ENABLED(CONFIG_RPS)
6307 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6308 bool do_flush;
6309
6310 backlog_lock_irq_disable(sd);
6311
6312 /* as insertion into process_queue happens with the rps lock held,
6313 * process_queue access may race only with dequeue
6314 */
6315 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6316 !skb_queue_empty_lockless(&sd->process_queue);
6317 backlog_unlock_irq_enable(sd);
6318
6319 return do_flush;
6320 #endif
6321 /* without RPS we can't safely check input_pkt_queue: during a
6322 * concurrent remote skb_queue_splice() we can detect as empty both
6323 * input_pkt_queue and process_queue even if the latter could end-up
6324 * containing a lot of packets.
6325 */
6326 return true;
6327 }
6328
6329 struct flush_backlogs {
6330 cpumask_t flush_cpus;
6331 struct work_struct w[];
6332 };
6333
flush_backlogs_alloc(void)6334 static struct flush_backlogs *flush_backlogs_alloc(void)
6335 {
6336 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6337 GFP_KERNEL);
6338 }
6339
6340 static struct flush_backlogs *flush_backlogs_fallback;
6341 static DEFINE_MUTEX(flush_backlogs_mutex);
6342
flush_all_backlogs(void)6343 static void flush_all_backlogs(void)
6344 {
6345 struct flush_backlogs *ptr = flush_backlogs_alloc();
6346 unsigned int cpu;
6347
6348 if (!ptr) {
6349 mutex_lock(&flush_backlogs_mutex);
6350 ptr = flush_backlogs_fallback;
6351 }
6352 cpumask_clear(&ptr->flush_cpus);
6353
6354 cpus_read_lock();
6355
6356 for_each_online_cpu(cpu) {
6357 if (flush_required(cpu)) {
6358 INIT_WORK(&ptr->w[cpu], flush_backlog);
6359 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6360 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6361 }
6362 }
6363
6364 /* we can have in flight packet[s] on the cpus we are not flushing,
6365 * synchronize_net() in unregister_netdevice_many() will take care of
6366 * them.
6367 */
6368 for_each_cpu(cpu, &ptr->flush_cpus)
6369 flush_work(&ptr->w[cpu]);
6370
6371 cpus_read_unlock();
6372
6373 if (ptr != flush_backlogs_fallback)
6374 kfree(ptr);
6375 else
6376 mutex_unlock(&flush_backlogs_mutex);
6377 }
6378
net_rps_send_ipi(struct softnet_data * remsd)6379 static void net_rps_send_ipi(struct softnet_data *remsd)
6380 {
6381 #ifdef CONFIG_RPS
6382 while (remsd) {
6383 struct softnet_data *next = remsd->rps_ipi_next;
6384
6385 if (cpu_online(remsd->cpu))
6386 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6387 remsd = next;
6388 }
6389 #endif
6390 }
6391
6392 /*
6393 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6394 * Note: called with local irq disabled, but exits with local irq enabled.
6395 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6396 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6397 {
6398 #ifdef CONFIG_RPS
6399 struct softnet_data *remsd = sd->rps_ipi_list;
6400
6401 if (!use_backlog_threads() && remsd) {
6402 sd->rps_ipi_list = NULL;
6403
6404 local_irq_enable();
6405
6406 /* Send pending IPI's to kick RPS processing on remote cpus. */
6407 net_rps_send_ipi(remsd);
6408 } else
6409 #endif
6410 local_irq_enable();
6411 }
6412
sd_has_rps_ipi_waiting(struct softnet_data * sd)6413 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6414 {
6415 #ifdef CONFIG_RPS
6416 return !use_backlog_threads() && sd->rps_ipi_list;
6417 #else
6418 return false;
6419 #endif
6420 }
6421
process_backlog(struct napi_struct * napi,int quota)6422 static int process_backlog(struct napi_struct *napi, int quota)
6423 {
6424 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6425 bool again = true;
6426 int work = 0;
6427
6428 /* Check if we have pending ipi, its better to send them now,
6429 * not waiting net_rx_action() end.
6430 */
6431 if (sd_has_rps_ipi_waiting(sd)) {
6432 local_irq_disable();
6433 net_rps_action_and_irq_enable(sd);
6434 }
6435
6436 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6437 while (again) {
6438 struct sk_buff *skb;
6439
6440 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6441 while ((skb = __skb_dequeue(&sd->process_queue))) {
6442 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6443 rcu_read_lock();
6444 __netif_receive_skb(skb);
6445 rcu_read_unlock();
6446 if (++work >= quota) {
6447 rps_input_queue_head_add(sd, work);
6448 return work;
6449 }
6450
6451 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6452 }
6453 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6454
6455 backlog_lock_irq_disable(sd);
6456 if (skb_queue_empty(&sd->input_pkt_queue)) {
6457 /*
6458 * Inline a custom version of __napi_complete().
6459 * only current cpu owns and manipulates this napi,
6460 * and NAPI_STATE_SCHED is the only possible flag set
6461 * on backlog.
6462 * We can use a plain write instead of clear_bit(),
6463 * and we dont need an smp_mb() memory barrier.
6464 */
6465 napi->state &= NAPIF_STATE_THREADED;
6466 again = false;
6467 } else {
6468 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6469 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6470 &sd->process_queue);
6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6472 }
6473 backlog_unlock_irq_enable(sd);
6474 }
6475
6476 if (work)
6477 rps_input_queue_head_add(sd, work);
6478 return work;
6479 }
6480
6481 /**
6482 * __napi_schedule - schedule for receive
6483 * @n: entry to schedule
6484 *
6485 * The entry's receive function will be scheduled to run.
6486 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6487 */
__napi_schedule(struct napi_struct * n)6488 void __napi_schedule(struct napi_struct *n)
6489 {
6490 unsigned long flags;
6491
6492 local_irq_save(flags);
6493 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6494 local_irq_restore(flags);
6495 }
6496 EXPORT_SYMBOL(__napi_schedule);
6497
6498 /**
6499 * napi_schedule_prep - check if napi can be scheduled
6500 * @n: napi context
6501 *
6502 * Test if NAPI routine is already running, and if not mark
6503 * it as running. This is used as a condition variable to
6504 * insure only one NAPI poll instance runs. We also make
6505 * sure there is no pending NAPI disable.
6506 */
napi_schedule_prep(struct napi_struct * n)6507 bool napi_schedule_prep(struct napi_struct *n)
6508 {
6509 unsigned long new, val = READ_ONCE(n->state);
6510
6511 do {
6512 if (unlikely(val & NAPIF_STATE_DISABLE))
6513 return false;
6514 new = val | NAPIF_STATE_SCHED;
6515
6516 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6517 * This was suggested by Alexander Duyck, as compiler
6518 * emits better code than :
6519 * if (val & NAPIF_STATE_SCHED)
6520 * new |= NAPIF_STATE_MISSED;
6521 */
6522 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6523 NAPIF_STATE_MISSED;
6524 } while (!try_cmpxchg(&n->state, &val, new));
6525
6526 return !(val & NAPIF_STATE_SCHED);
6527 }
6528 EXPORT_SYMBOL(napi_schedule_prep);
6529
6530 /**
6531 * __napi_schedule_irqoff - schedule for receive
6532 * @n: entry to schedule
6533 *
6534 * Variant of __napi_schedule() assuming hard irqs are masked.
6535 *
6536 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6537 * because the interrupt disabled assumption might not be true
6538 * due to force-threaded interrupts and spinlock substitution.
6539 */
__napi_schedule_irqoff(struct napi_struct * n)6540 void __napi_schedule_irqoff(struct napi_struct *n)
6541 {
6542 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6543 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6544 else
6545 __napi_schedule(n);
6546 }
6547 EXPORT_SYMBOL(__napi_schedule_irqoff);
6548
napi_complete_done(struct napi_struct * n,int work_done)6549 bool napi_complete_done(struct napi_struct *n, int work_done)
6550 {
6551 unsigned long flags, val, new, timeout = 0;
6552 bool ret = true;
6553
6554 /*
6555 * 1) Don't let napi dequeue from the cpu poll list
6556 * just in case its running on a different cpu.
6557 * 2) If we are busy polling, do nothing here, we have
6558 * the guarantee we will be called later.
6559 */
6560 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6561 NAPIF_STATE_IN_BUSY_POLL)))
6562 return false;
6563
6564 if (work_done) {
6565 if (n->gro.bitmask)
6566 timeout = napi_get_gro_flush_timeout(n);
6567 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6568 }
6569 if (n->defer_hard_irqs_count > 0) {
6570 n->defer_hard_irqs_count--;
6571 timeout = napi_get_gro_flush_timeout(n);
6572 if (timeout)
6573 ret = false;
6574 }
6575
6576 /*
6577 * When the NAPI instance uses a timeout and keeps postponing
6578 * it, we need to bound somehow the time packets are kept in
6579 * the GRO layer.
6580 */
6581 gro_flush_normal(&n->gro, !!timeout);
6582
6583 if (unlikely(!list_empty(&n->poll_list))) {
6584 /* If n->poll_list is not empty, we need to mask irqs */
6585 local_irq_save(flags);
6586 list_del_init(&n->poll_list);
6587 local_irq_restore(flags);
6588 }
6589 WRITE_ONCE(n->list_owner, -1);
6590
6591 val = READ_ONCE(n->state);
6592 do {
6593 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6594
6595 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6596 NAPIF_STATE_SCHED_THREADED |
6597 NAPIF_STATE_PREFER_BUSY_POLL);
6598
6599 /* If STATE_MISSED was set, leave STATE_SCHED set,
6600 * because we will call napi->poll() one more time.
6601 * This C code was suggested by Alexander Duyck to help gcc.
6602 */
6603 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6604 NAPIF_STATE_SCHED;
6605 } while (!try_cmpxchg(&n->state, &val, new));
6606
6607 if (unlikely(val & NAPIF_STATE_MISSED)) {
6608 __napi_schedule(n);
6609 return false;
6610 }
6611
6612 if (timeout)
6613 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6614 HRTIMER_MODE_REL_PINNED);
6615 return ret;
6616 }
6617 EXPORT_SYMBOL(napi_complete_done);
6618
skb_defer_free_flush(struct softnet_data * sd)6619 static void skb_defer_free_flush(struct softnet_data *sd)
6620 {
6621 struct sk_buff *skb, *next;
6622
6623 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6624 if (!READ_ONCE(sd->defer_list))
6625 return;
6626
6627 spin_lock(&sd->defer_lock);
6628 skb = sd->defer_list;
6629 sd->defer_list = NULL;
6630 sd->defer_count = 0;
6631 spin_unlock(&sd->defer_lock);
6632
6633 while (skb != NULL) {
6634 next = skb->next;
6635 napi_consume_skb(skb, 1);
6636 skb = next;
6637 }
6638 }
6639
6640 #if defined(CONFIG_NET_RX_BUSY_POLL)
6641
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6642 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6643 {
6644 if (!skip_schedule) {
6645 gro_normal_list(&napi->gro);
6646 __napi_schedule(napi);
6647 return;
6648 }
6649
6650 /* Flush too old packets. If HZ < 1000, flush all packets */
6651 gro_flush_normal(&napi->gro, HZ >= 1000);
6652
6653 clear_bit(NAPI_STATE_SCHED, &napi->state);
6654 }
6655
6656 enum {
6657 NAPI_F_PREFER_BUSY_POLL = 1,
6658 NAPI_F_END_ON_RESCHED = 2,
6659 };
6660
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6661 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6662 unsigned flags, u16 budget)
6663 {
6664 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6665 bool skip_schedule = false;
6666 unsigned long timeout;
6667 int rc;
6668
6669 /* Busy polling means there is a high chance device driver hard irq
6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671 * set in napi_schedule_prep().
6672 * Since we are about to call napi->poll() once more, we can safely
6673 * clear NAPI_STATE_MISSED.
6674 *
6675 * Note: x86 could use a single "lock and ..." instruction
6676 * to perform these two clear_bit()
6677 */
6678 clear_bit(NAPI_STATE_MISSED, &napi->state);
6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680
6681 local_bh_disable();
6682 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6683
6684 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6685 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6686 timeout = napi_get_gro_flush_timeout(napi);
6687 if (napi->defer_hard_irqs_count && timeout) {
6688 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6689 skip_schedule = true;
6690 }
6691 }
6692
6693 /* All we really want here is to re-enable device interrupts.
6694 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6695 */
6696 rc = napi->poll(napi, budget);
6697 /* We can't gro_normal_list() here, because napi->poll() might have
6698 * rearmed the napi (napi_complete_done()) in which case it could
6699 * already be running on another CPU.
6700 */
6701 trace_napi_poll(napi, rc, budget);
6702 netpoll_poll_unlock(have_poll_lock);
6703 if (rc == budget)
6704 __busy_poll_stop(napi, skip_schedule);
6705 bpf_net_ctx_clear(bpf_net_ctx);
6706 local_bh_enable();
6707 }
6708
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6709 static void __napi_busy_loop(unsigned int napi_id,
6710 bool (*loop_end)(void *, unsigned long),
6711 void *loop_end_arg, unsigned flags, u16 budget)
6712 {
6713 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6714 int (*napi_poll)(struct napi_struct *napi, int budget);
6715 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6716 void *have_poll_lock = NULL;
6717 struct napi_struct *napi;
6718
6719 WARN_ON_ONCE(!rcu_read_lock_held());
6720
6721 restart:
6722 napi_poll = NULL;
6723
6724 napi = napi_by_id(napi_id);
6725 if (!napi)
6726 return;
6727
6728 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6729 preempt_disable();
6730 for (;;) {
6731 int work = 0;
6732
6733 local_bh_disable();
6734 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6735 if (!napi_poll) {
6736 unsigned long val = READ_ONCE(napi->state);
6737
6738 /* If multiple threads are competing for this napi,
6739 * we avoid dirtying napi->state as much as we can.
6740 */
6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6742 NAPIF_STATE_IN_BUSY_POLL)) {
6743 if (flags & NAPI_F_PREFER_BUSY_POLL)
6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6745 goto count;
6746 }
6747 if (cmpxchg(&napi->state, val,
6748 val | NAPIF_STATE_IN_BUSY_POLL |
6749 NAPIF_STATE_SCHED) != val) {
6750 if (flags & NAPI_F_PREFER_BUSY_POLL)
6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6752 goto count;
6753 }
6754 have_poll_lock = netpoll_poll_lock(napi);
6755 napi_poll = napi->poll;
6756 }
6757 work = napi_poll(napi, budget);
6758 trace_napi_poll(napi, work, budget);
6759 gro_normal_list(&napi->gro);
6760 count:
6761 if (work > 0)
6762 __NET_ADD_STATS(dev_net(napi->dev),
6763 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6764 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6765 bpf_net_ctx_clear(bpf_net_ctx);
6766 local_bh_enable();
6767
6768 if (!loop_end || loop_end(loop_end_arg, start_time))
6769 break;
6770
6771 if (unlikely(need_resched())) {
6772 if (flags & NAPI_F_END_ON_RESCHED)
6773 break;
6774 if (napi_poll)
6775 busy_poll_stop(napi, have_poll_lock, flags, budget);
6776 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6777 preempt_enable();
6778 rcu_read_unlock();
6779 cond_resched();
6780 rcu_read_lock();
6781 if (loop_end(loop_end_arg, start_time))
6782 return;
6783 goto restart;
6784 }
6785 cpu_relax();
6786 }
6787 if (napi_poll)
6788 busy_poll_stop(napi, have_poll_lock, flags, budget);
6789 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6790 preempt_enable();
6791 }
6792
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6793 void napi_busy_loop_rcu(unsigned int napi_id,
6794 bool (*loop_end)(void *, unsigned long),
6795 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6796 {
6797 unsigned flags = NAPI_F_END_ON_RESCHED;
6798
6799 if (prefer_busy_poll)
6800 flags |= NAPI_F_PREFER_BUSY_POLL;
6801
6802 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6803 }
6804
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6805 void napi_busy_loop(unsigned int napi_id,
6806 bool (*loop_end)(void *, unsigned long),
6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808 {
6809 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6810
6811 rcu_read_lock();
6812 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6813 rcu_read_unlock();
6814 }
6815 EXPORT_SYMBOL(napi_busy_loop);
6816
napi_suspend_irqs(unsigned int napi_id)6817 void napi_suspend_irqs(unsigned int napi_id)
6818 {
6819 struct napi_struct *napi;
6820
6821 rcu_read_lock();
6822 napi = napi_by_id(napi_id);
6823 if (napi) {
6824 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6825
6826 if (timeout)
6827 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6828 HRTIMER_MODE_REL_PINNED);
6829 }
6830 rcu_read_unlock();
6831 }
6832
napi_resume_irqs(unsigned int napi_id)6833 void napi_resume_irqs(unsigned int napi_id)
6834 {
6835 struct napi_struct *napi;
6836
6837 rcu_read_lock();
6838 napi = napi_by_id(napi_id);
6839 if (napi) {
6840 /* If irq_suspend_timeout is set to 0 between the call to
6841 * napi_suspend_irqs and now, the original value still
6842 * determines the safety timeout as intended and napi_watchdog
6843 * will resume irq processing.
6844 */
6845 if (napi_get_irq_suspend_timeout(napi)) {
6846 local_bh_disable();
6847 napi_schedule(napi);
6848 local_bh_enable();
6849 }
6850 }
6851 rcu_read_unlock();
6852 }
6853
6854 #endif /* CONFIG_NET_RX_BUSY_POLL */
6855
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6856 static void __napi_hash_add_with_id(struct napi_struct *napi,
6857 unsigned int napi_id)
6858 {
6859 napi->gro.cached_napi_id = napi_id;
6860
6861 WRITE_ONCE(napi->napi_id, napi_id);
6862 hlist_add_head_rcu(&napi->napi_hash_node,
6863 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6864 }
6865
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6866 static void napi_hash_add_with_id(struct napi_struct *napi,
6867 unsigned int napi_id)
6868 {
6869 unsigned long flags;
6870
6871 spin_lock_irqsave(&napi_hash_lock, flags);
6872 WARN_ON_ONCE(napi_by_id(napi_id));
6873 __napi_hash_add_with_id(napi, napi_id);
6874 spin_unlock_irqrestore(&napi_hash_lock, flags);
6875 }
6876
napi_hash_add(struct napi_struct * napi)6877 static void napi_hash_add(struct napi_struct *napi)
6878 {
6879 unsigned long flags;
6880
6881 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6882 return;
6883
6884 spin_lock_irqsave(&napi_hash_lock, flags);
6885
6886 /* 0..NR_CPUS range is reserved for sender_cpu use */
6887 do {
6888 if (unlikely(!napi_id_valid(++napi_gen_id)))
6889 napi_gen_id = MIN_NAPI_ID;
6890 } while (napi_by_id(napi_gen_id));
6891
6892 __napi_hash_add_with_id(napi, napi_gen_id);
6893
6894 spin_unlock_irqrestore(&napi_hash_lock, flags);
6895 }
6896
6897 /* Warning : caller is responsible to make sure rcu grace period
6898 * is respected before freeing memory containing @napi
6899 */
napi_hash_del(struct napi_struct * napi)6900 static void napi_hash_del(struct napi_struct *napi)
6901 {
6902 unsigned long flags;
6903
6904 spin_lock_irqsave(&napi_hash_lock, flags);
6905
6906 hlist_del_init_rcu(&napi->napi_hash_node);
6907
6908 spin_unlock_irqrestore(&napi_hash_lock, flags);
6909 }
6910
napi_watchdog(struct hrtimer * timer)6911 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6912 {
6913 struct napi_struct *napi;
6914
6915 napi = container_of(timer, struct napi_struct, timer);
6916
6917 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6918 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6919 */
6920 if (!napi_disable_pending(napi) &&
6921 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6922 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6923 __napi_schedule_irqoff(napi);
6924 }
6925
6926 return HRTIMER_NORESTART;
6927 }
6928
napi_stop_kthread(struct napi_struct * napi)6929 static void napi_stop_kthread(struct napi_struct *napi)
6930 {
6931 unsigned long val, new;
6932
6933 /* Wait until the napi STATE_THREADED is unset. */
6934 while (true) {
6935 val = READ_ONCE(napi->state);
6936
6937 /* If napi kthread own this napi or the napi is idle,
6938 * STATE_THREADED can be unset here.
6939 */
6940 if ((val & NAPIF_STATE_SCHED_THREADED) ||
6941 !(val & NAPIF_STATE_SCHED)) {
6942 new = val & (~NAPIF_STATE_THREADED);
6943 } else {
6944 msleep(20);
6945 continue;
6946 }
6947
6948 if (try_cmpxchg(&napi->state, &val, new))
6949 break;
6950 }
6951
6952 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6953 * the kthread.
6954 */
6955 while (true) {
6956 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6957 break;
6958
6959 msleep(20);
6960 }
6961
6962 kthread_stop(napi->thread);
6963 napi->thread = NULL;
6964 }
6965
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)6966 int napi_set_threaded(struct napi_struct *napi,
6967 enum netdev_napi_threaded threaded)
6968 {
6969 if (threaded) {
6970 if (!napi->thread) {
6971 int err = napi_kthread_create(napi);
6972
6973 if (err)
6974 return err;
6975 }
6976 }
6977
6978 if (napi->config)
6979 napi->config->threaded = threaded;
6980
6981 if (!threaded && napi->thread) {
6982 napi_stop_kthread(napi);
6983 } else {
6984 /* Make sure kthread is created before THREADED bit is set. */
6985 smp_mb__before_atomic();
6986 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6987 }
6988
6989 return 0;
6990 }
6991
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)6992 int netif_set_threaded(struct net_device *dev,
6993 enum netdev_napi_threaded threaded)
6994 {
6995 struct napi_struct *napi;
6996 int err = 0;
6997
6998 netdev_assert_locked_or_invisible(dev);
6999
7000 if (threaded) {
7001 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7002 if (!napi->thread) {
7003 err = napi_kthread_create(napi);
7004 if (err) {
7005 threaded = NETDEV_NAPI_THREADED_DISABLED;
7006 break;
7007 }
7008 }
7009 }
7010 }
7011
7012 WRITE_ONCE(dev->threaded, threaded);
7013
7014 /* Make sure kthread is created before THREADED bit
7015 * is set.
7016 */
7017 smp_mb__before_atomic();
7018
7019 /* Setting/unsetting threaded mode on a napi might not immediately
7020 * take effect, if the current napi instance is actively being
7021 * polled. In this case, the switch between threaded mode and
7022 * softirq mode will happen in the next round of napi_schedule().
7023 * This should not cause hiccups/stalls to the live traffic.
7024 */
7025 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7026 if (!threaded && napi->thread)
7027 napi_stop_kthread(napi);
7028 else
7029 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7030 }
7031
7032 return err;
7033 }
7034
7035 /**
7036 * netif_threaded_enable() - enable threaded NAPIs
7037 * @dev: net_device instance
7038 *
7039 * Enable threaded mode for the NAPI instances of the device. This may be useful
7040 * for devices where multiple NAPI instances get scheduled by a single
7041 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7042 * than the core where IRQ is mapped.
7043 *
7044 * This function should be called before @dev is registered.
7045 */
netif_threaded_enable(struct net_device * dev)7046 void netif_threaded_enable(struct net_device *dev)
7047 {
7048 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7049 }
7050 EXPORT_SYMBOL(netif_threaded_enable);
7051
7052 /**
7053 * netif_queue_set_napi - Associate queue with the napi
7054 * @dev: device to which NAPI and queue belong
7055 * @queue_index: Index of queue
7056 * @type: queue type as RX or TX
7057 * @napi: NAPI context, pass NULL to clear previously set NAPI
7058 *
7059 * Set queue with its corresponding napi context. This should be done after
7060 * registering the NAPI handler for the queue-vector and the queues have been
7061 * mapped to the corresponding interrupt vector.
7062 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7063 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7064 enum netdev_queue_type type, struct napi_struct *napi)
7065 {
7066 struct netdev_rx_queue *rxq;
7067 struct netdev_queue *txq;
7068
7069 if (WARN_ON_ONCE(napi && !napi->dev))
7070 return;
7071 netdev_ops_assert_locked_or_invisible(dev);
7072
7073 switch (type) {
7074 case NETDEV_QUEUE_TYPE_RX:
7075 rxq = __netif_get_rx_queue(dev, queue_index);
7076 rxq->napi = napi;
7077 return;
7078 case NETDEV_QUEUE_TYPE_TX:
7079 txq = netdev_get_tx_queue(dev, queue_index);
7080 txq->napi = napi;
7081 return;
7082 default:
7083 return;
7084 }
7085 }
7086 EXPORT_SYMBOL(netif_queue_set_napi);
7087
7088 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7089 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7090 const cpumask_t *mask)
7091 {
7092 struct napi_struct *napi =
7093 container_of(notify, struct napi_struct, notify);
7094 #ifdef CONFIG_RFS_ACCEL
7095 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7096 int err;
7097 #endif
7098
7099 if (napi->config && napi->dev->irq_affinity_auto)
7100 cpumask_copy(&napi->config->affinity_mask, mask);
7101
7102 #ifdef CONFIG_RFS_ACCEL
7103 if (napi->dev->rx_cpu_rmap_auto) {
7104 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7105 if (err)
7106 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7107 err);
7108 }
7109 #endif
7110 }
7111
7112 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7113 static void netif_napi_affinity_release(struct kref *ref)
7114 {
7115 struct napi_struct *napi =
7116 container_of(ref, struct napi_struct, notify.kref);
7117 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7118
7119 netdev_assert_locked(napi->dev);
7120 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7121 &napi->state));
7122
7123 if (!napi->dev->rx_cpu_rmap_auto)
7124 return;
7125 rmap->obj[napi->napi_rmap_idx] = NULL;
7126 napi->napi_rmap_idx = -1;
7127 cpu_rmap_put(rmap);
7128 }
7129
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7130 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7131 {
7132 if (dev->rx_cpu_rmap_auto)
7133 return 0;
7134
7135 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7136 if (!dev->rx_cpu_rmap)
7137 return -ENOMEM;
7138
7139 dev->rx_cpu_rmap_auto = true;
7140 return 0;
7141 }
7142 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7143
netif_del_cpu_rmap(struct net_device * dev)7144 static void netif_del_cpu_rmap(struct net_device *dev)
7145 {
7146 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7147
7148 if (!dev->rx_cpu_rmap_auto)
7149 return;
7150
7151 /* Free the rmap */
7152 cpu_rmap_put(rmap);
7153 dev->rx_cpu_rmap = NULL;
7154 dev->rx_cpu_rmap_auto = false;
7155 }
7156
7157 #else
netif_napi_affinity_release(struct kref * ref)7158 static void netif_napi_affinity_release(struct kref *ref)
7159 {
7160 }
7161
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7162 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7163 {
7164 return 0;
7165 }
7166 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7167
netif_del_cpu_rmap(struct net_device * dev)7168 static void netif_del_cpu_rmap(struct net_device *dev)
7169 {
7170 }
7171 #endif
7172
netif_set_affinity_auto(struct net_device * dev)7173 void netif_set_affinity_auto(struct net_device *dev)
7174 {
7175 unsigned int i, maxqs, numa;
7176
7177 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7178 numa = dev_to_node(&dev->dev);
7179
7180 for (i = 0; i < maxqs; i++)
7181 cpumask_set_cpu(cpumask_local_spread(i, numa),
7182 &dev->napi_config[i].affinity_mask);
7183
7184 dev->irq_affinity_auto = true;
7185 }
7186 EXPORT_SYMBOL(netif_set_affinity_auto);
7187
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7188 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7189 {
7190 int rc;
7191
7192 netdev_assert_locked_or_invisible(napi->dev);
7193
7194 if (napi->irq == irq)
7195 return;
7196
7197 /* Remove existing resources */
7198 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7199 irq_set_affinity_notifier(napi->irq, NULL);
7200
7201 napi->irq = irq;
7202 if (irq < 0 ||
7203 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7204 return;
7205
7206 /* Abort for buggy drivers */
7207 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7208 return;
7209
7210 #ifdef CONFIG_RFS_ACCEL
7211 if (napi->dev->rx_cpu_rmap_auto) {
7212 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7213 if (rc < 0)
7214 return;
7215
7216 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7217 napi->napi_rmap_idx = rc;
7218 }
7219 #endif
7220
7221 /* Use core IRQ notifier */
7222 napi->notify.notify = netif_napi_irq_notify;
7223 napi->notify.release = netif_napi_affinity_release;
7224 rc = irq_set_affinity_notifier(irq, &napi->notify);
7225 if (rc) {
7226 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7227 rc);
7228 goto put_rmap;
7229 }
7230
7231 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7232 return;
7233
7234 put_rmap:
7235 #ifdef CONFIG_RFS_ACCEL
7236 if (napi->dev->rx_cpu_rmap_auto) {
7237 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7238 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7239 napi->napi_rmap_idx = -1;
7240 }
7241 #endif
7242 napi->notify.notify = NULL;
7243 napi->notify.release = NULL;
7244 }
7245 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7246
napi_restore_config(struct napi_struct * n)7247 static void napi_restore_config(struct napi_struct *n)
7248 {
7249 n->defer_hard_irqs = n->config->defer_hard_irqs;
7250 n->gro_flush_timeout = n->config->gro_flush_timeout;
7251 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7252
7253 if (n->dev->irq_affinity_auto &&
7254 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7255 irq_set_affinity(n->irq, &n->config->affinity_mask);
7256
7257 /* a NAPI ID might be stored in the config, if so use it. if not, use
7258 * napi_hash_add to generate one for us.
7259 */
7260 if (n->config->napi_id) {
7261 napi_hash_add_with_id(n, n->config->napi_id);
7262 } else {
7263 napi_hash_add(n);
7264 n->config->napi_id = n->napi_id;
7265 }
7266
7267 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7268 }
7269
napi_save_config(struct napi_struct * n)7270 static void napi_save_config(struct napi_struct *n)
7271 {
7272 n->config->defer_hard_irqs = n->defer_hard_irqs;
7273 n->config->gro_flush_timeout = n->gro_flush_timeout;
7274 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7275 napi_hash_del(n);
7276 }
7277
7278 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7279 * inherit an existing ID try to insert it at the right position.
7280 */
7281 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7282 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7283 {
7284 unsigned int new_id, pos_id;
7285 struct list_head *higher;
7286 struct napi_struct *pos;
7287
7288 new_id = UINT_MAX;
7289 if (napi->config && napi->config->napi_id)
7290 new_id = napi->config->napi_id;
7291
7292 higher = &dev->napi_list;
7293 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7294 if (napi_id_valid(pos->napi_id))
7295 pos_id = pos->napi_id;
7296 else if (pos->config)
7297 pos_id = pos->config->napi_id;
7298 else
7299 pos_id = UINT_MAX;
7300
7301 if (pos_id <= new_id)
7302 break;
7303 higher = &pos->dev_list;
7304 }
7305 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7306 }
7307
7308 /* Double check that napi_get_frags() allocates skbs with
7309 * skb->head being backed by slab, not a page fragment.
7310 * This is to make sure bug fixed in 3226b158e67c
7311 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7312 * does not accidentally come back.
7313 */
napi_get_frags_check(struct napi_struct * napi)7314 static void napi_get_frags_check(struct napi_struct *napi)
7315 {
7316 struct sk_buff *skb;
7317
7318 local_bh_disable();
7319 skb = napi_get_frags(napi);
7320 WARN_ON_ONCE(skb && skb->head_frag);
7321 napi_free_frags(napi);
7322 local_bh_enable();
7323 }
7324
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7325 void netif_napi_add_weight_locked(struct net_device *dev,
7326 struct napi_struct *napi,
7327 int (*poll)(struct napi_struct *, int),
7328 int weight)
7329 {
7330 netdev_assert_locked(dev);
7331 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7332 return;
7333
7334 INIT_LIST_HEAD(&napi->poll_list);
7335 INIT_HLIST_NODE(&napi->napi_hash_node);
7336 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7337 gro_init(&napi->gro);
7338 napi->skb = NULL;
7339 napi->poll = poll;
7340 if (weight > NAPI_POLL_WEIGHT)
7341 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7342 weight);
7343 napi->weight = weight;
7344 napi->dev = dev;
7345 #ifdef CONFIG_NETPOLL
7346 napi->poll_owner = -1;
7347 #endif
7348 napi->list_owner = -1;
7349 set_bit(NAPI_STATE_SCHED, &napi->state);
7350 set_bit(NAPI_STATE_NPSVC, &napi->state);
7351 netif_napi_dev_list_add(dev, napi);
7352
7353 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7354 * configuration will be loaded in napi_enable
7355 */
7356 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7357 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7358
7359 napi_get_frags_check(napi);
7360 /* Create kthread for this napi if dev->threaded is set.
7361 * Clear dev->threaded if kthread creation failed so that
7362 * threaded mode will not be enabled in napi_enable().
7363 */
7364 if (dev->threaded && napi_kthread_create(napi))
7365 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7366 netif_napi_set_irq_locked(napi, -1);
7367 }
7368 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7369
napi_disable_locked(struct napi_struct * n)7370 void napi_disable_locked(struct napi_struct *n)
7371 {
7372 unsigned long val, new;
7373
7374 might_sleep();
7375 netdev_assert_locked(n->dev);
7376
7377 set_bit(NAPI_STATE_DISABLE, &n->state);
7378
7379 val = READ_ONCE(n->state);
7380 do {
7381 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7382 usleep_range(20, 200);
7383 val = READ_ONCE(n->state);
7384 }
7385
7386 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7387 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7388 } while (!try_cmpxchg(&n->state, &val, new));
7389
7390 hrtimer_cancel(&n->timer);
7391
7392 if (n->config)
7393 napi_save_config(n);
7394 else
7395 napi_hash_del(n);
7396
7397 clear_bit(NAPI_STATE_DISABLE, &n->state);
7398 }
7399 EXPORT_SYMBOL(napi_disable_locked);
7400
7401 /**
7402 * napi_disable() - prevent NAPI from scheduling
7403 * @n: NAPI context
7404 *
7405 * Stop NAPI from being scheduled on this context.
7406 * Waits till any outstanding processing completes.
7407 * Takes netdev_lock() for associated net_device.
7408 */
napi_disable(struct napi_struct * n)7409 void napi_disable(struct napi_struct *n)
7410 {
7411 netdev_lock(n->dev);
7412 napi_disable_locked(n);
7413 netdev_unlock(n->dev);
7414 }
7415 EXPORT_SYMBOL(napi_disable);
7416
napi_enable_locked(struct napi_struct * n)7417 void napi_enable_locked(struct napi_struct *n)
7418 {
7419 unsigned long new, val = READ_ONCE(n->state);
7420
7421 if (n->config)
7422 napi_restore_config(n);
7423 else
7424 napi_hash_add(n);
7425
7426 do {
7427 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7428
7429 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7430 if (n->dev->threaded && n->thread)
7431 new |= NAPIF_STATE_THREADED;
7432 } while (!try_cmpxchg(&n->state, &val, new));
7433 }
7434 EXPORT_SYMBOL(napi_enable_locked);
7435
7436 /**
7437 * napi_enable() - enable NAPI scheduling
7438 * @n: NAPI context
7439 *
7440 * Enable scheduling of a NAPI instance.
7441 * Must be paired with napi_disable().
7442 * Takes netdev_lock() for associated net_device.
7443 */
napi_enable(struct napi_struct * n)7444 void napi_enable(struct napi_struct *n)
7445 {
7446 netdev_lock(n->dev);
7447 napi_enable_locked(n);
7448 netdev_unlock(n->dev);
7449 }
7450 EXPORT_SYMBOL(napi_enable);
7451
7452 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7453 void __netif_napi_del_locked(struct napi_struct *napi)
7454 {
7455 netdev_assert_locked(napi->dev);
7456
7457 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7458 return;
7459
7460 /* Make sure NAPI is disabled (or was never enabled). */
7461 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7462
7463 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7464 irq_set_affinity_notifier(napi->irq, NULL);
7465
7466 if (napi->config) {
7467 napi->index = -1;
7468 napi->config = NULL;
7469 }
7470
7471 list_del_rcu(&napi->dev_list);
7472 napi_free_frags(napi);
7473
7474 gro_cleanup(&napi->gro);
7475
7476 if (napi->thread) {
7477 kthread_stop(napi->thread);
7478 napi->thread = NULL;
7479 }
7480 }
7481 EXPORT_SYMBOL(__netif_napi_del_locked);
7482
__napi_poll(struct napi_struct * n,bool * repoll)7483 static int __napi_poll(struct napi_struct *n, bool *repoll)
7484 {
7485 int work, weight;
7486
7487 weight = n->weight;
7488
7489 /* This NAPI_STATE_SCHED test is for avoiding a race
7490 * with netpoll's poll_napi(). Only the entity which
7491 * obtains the lock and sees NAPI_STATE_SCHED set will
7492 * actually make the ->poll() call. Therefore we avoid
7493 * accidentally calling ->poll() when NAPI is not scheduled.
7494 */
7495 work = 0;
7496 if (napi_is_scheduled(n)) {
7497 work = n->poll(n, weight);
7498 trace_napi_poll(n, work, weight);
7499
7500 xdp_do_check_flushed(n);
7501 }
7502
7503 if (unlikely(work > weight))
7504 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7505 n->poll, work, weight);
7506
7507 if (likely(work < weight))
7508 return work;
7509
7510 /* Drivers must not modify the NAPI state if they
7511 * consume the entire weight. In such cases this code
7512 * still "owns" the NAPI instance and therefore can
7513 * move the instance around on the list at-will.
7514 */
7515 if (unlikely(napi_disable_pending(n))) {
7516 napi_complete(n);
7517 return work;
7518 }
7519
7520 /* The NAPI context has more processing work, but busy-polling
7521 * is preferred. Exit early.
7522 */
7523 if (napi_prefer_busy_poll(n)) {
7524 if (napi_complete_done(n, work)) {
7525 /* If timeout is not set, we need to make sure
7526 * that the NAPI is re-scheduled.
7527 */
7528 napi_schedule(n);
7529 }
7530 return work;
7531 }
7532
7533 /* Flush too old packets. If HZ < 1000, flush all packets */
7534 gro_flush_normal(&n->gro, HZ >= 1000);
7535
7536 /* Some drivers may have called napi_schedule
7537 * prior to exhausting their budget.
7538 */
7539 if (unlikely(!list_empty(&n->poll_list))) {
7540 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7541 n->dev ? n->dev->name : "backlog");
7542 return work;
7543 }
7544
7545 *repoll = true;
7546
7547 return work;
7548 }
7549
napi_poll(struct napi_struct * n,struct list_head * repoll)7550 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7551 {
7552 bool do_repoll = false;
7553 void *have;
7554 int work;
7555
7556 list_del_init(&n->poll_list);
7557
7558 have = netpoll_poll_lock(n);
7559
7560 work = __napi_poll(n, &do_repoll);
7561
7562 if (do_repoll) {
7563 #if defined(CONFIG_DEBUG_NET)
7564 if (unlikely(!napi_is_scheduled(n)))
7565 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7566 n->dev->name, n->poll);
7567 #endif
7568 list_add_tail(&n->poll_list, repoll);
7569 }
7570 netpoll_poll_unlock(have);
7571
7572 return work;
7573 }
7574
napi_thread_wait(struct napi_struct * napi)7575 static int napi_thread_wait(struct napi_struct *napi)
7576 {
7577 set_current_state(TASK_INTERRUPTIBLE);
7578
7579 while (!kthread_should_stop()) {
7580 /* Testing SCHED_THREADED bit here to make sure the current
7581 * kthread owns this napi and could poll on this napi.
7582 * Testing SCHED bit is not enough because SCHED bit might be
7583 * set by some other busy poll thread or by napi_disable().
7584 */
7585 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7586 WARN_ON(!list_empty(&napi->poll_list));
7587 __set_current_state(TASK_RUNNING);
7588 return 0;
7589 }
7590
7591 schedule();
7592 set_current_state(TASK_INTERRUPTIBLE);
7593 }
7594 __set_current_state(TASK_RUNNING);
7595
7596 return -1;
7597 }
7598
napi_threaded_poll_loop(struct napi_struct * napi)7599 static void napi_threaded_poll_loop(struct napi_struct *napi)
7600 {
7601 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7602 struct softnet_data *sd;
7603 unsigned long last_qs = jiffies;
7604
7605 for (;;) {
7606 bool repoll = false;
7607 void *have;
7608
7609 local_bh_disable();
7610 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7611
7612 sd = this_cpu_ptr(&softnet_data);
7613 sd->in_napi_threaded_poll = true;
7614
7615 have = netpoll_poll_lock(napi);
7616 __napi_poll(napi, &repoll);
7617 netpoll_poll_unlock(have);
7618
7619 sd->in_napi_threaded_poll = false;
7620 barrier();
7621
7622 if (sd_has_rps_ipi_waiting(sd)) {
7623 local_irq_disable();
7624 net_rps_action_and_irq_enable(sd);
7625 }
7626 skb_defer_free_flush(sd);
7627 bpf_net_ctx_clear(bpf_net_ctx);
7628 local_bh_enable();
7629
7630 if (!repoll)
7631 break;
7632
7633 rcu_softirq_qs_periodic(last_qs);
7634 cond_resched();
7635 }
7636 }
7637
napi_threaded_poll(void * data)7638 static int napi_threaded_poll(void *data)
7639 {
7640 struct napi_struct *napi = data;
7641
7642 while (!napi_thread_wait(napi))
7643 napi_threaded_poll_loop(napi);
7644
7645 return 0;
7646 }
7647
net_rx_action(void)7648 static __latent_entropy void net_rx_action(void)
7649 {
7650 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7651 unsigned long time_limit = jiffies +
7652 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7653 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7654 int budget = READ_ONCE(net_hotdata.netdev_budget);
7655 LIST_HEAD(list);
7656 LIST_HEAD(repoll);
7657
7658 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7659 start:
7660 sd->in_net_rx_action = true;
7661 local_irq_disable();
7662 list_splice_init(&sd->poll_list, &list);
7663 local_irq_enable();
7664
7665 for (;;) {
7666 struct napi_struct *n;
7667
7668 skb_defer_free_flush(sd);
7669
7670 if (list_empty(&list)) {
7671 if (list_empty(&repoll)) {
7672 sd->in_net_rx_action = false;
7673 barrier();
7674 /* We need to check if ____napi_schedule()
7675 * had refilled poll_list while
7676 * sd->in_net_rx_action was true.
7677 */
7678 if (!list_empty(&sd->poll_list))
7679 goto start;
7680 if (!sd_has_rps_ipi_waiting(sd))
7681 goto end;
7682 }
7683 break;
7684 }
7685
7686 n = list_first_entry(&list, struct napi_struct, poll_list);
7687 budget -= napi_poll(n, &repoll);
7688
7689 /* If softirq window is exhausted then punt.
7690 * Allow this to run for 2 jiffies since which will allow
7691 * an average latency of 1.5/HZ.
7692 */
7693 if (unlikely(budget <= 0 ||
7694 time_after_eq(jiffies, time_limit))) {
7695 /* Pairs with READ_ONCE() in softnet_seq_show() */
7696 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7697 break;
7698 }
7699 }
7700
7701 local_irq_disable();
7702
7703 list_splice_tail_init(&sd->poll_list, &list);
7704 list_splice_tail(&repoll, &list);
7705 list_splice(&list, &sd->poll_list);
7706 if (!list_empty(&sd->poll_list))
7707 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7708 else
7709 sd->in_net_rx_action = false;
7710
7711 net_rps_action_and_irq_enable(sd);
7712 end:
7713 bpf_net_ctx_clear(bpf_net_ctx);
7714 }
7715
7716 struct netdev_adjacent {
7717 struct net_device *dev;
7718 netdevice_tracker dev_tracker;
7719
7720 /* upper master flag, there can only be one master device per list */
7721 bool master;
7722
7723 /* lookup ignore flag */
7724 bool ignore;
7725
7726 /* counter for the number of times this device was added to us */
7727 u16 ref_nr;
7728
7729 /* private field for the users */
7730 void *private;
7731
7732 struct list_head list;
7733 struct rcu_head rcu;
7734 };
7735
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7736 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7737 struct list_head *adj_list)
7738 {
7739 struct netdev_adjacent *adj;
7740
7741 list_for_each_entry(adj, adj_list, list) {
7742 if (adj->dev == adj_dev)
7743 return adj;
7744 }
7745 return NULL;
7746 }
7747
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7748 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7749 struct netdev_nested_priv *priv)
7750 {
7751 struct net_device *dev = (struct net_device *)priv->data;
7752
7753 return upper_dev == dev;
7754 }
7755
7756 /**
7757 * netdev_has_upper_dev - Check if device is linked to an upper device
7758 * @dev: device
7759 * @upper_dev: upper device to check
7760 *
7761 * Find out if a device is linked to specified upper device and return true
7762 * in case it is. Note that this checks only immediate upper device,
7763 * not through a complete stack of devices. The caller must hold the RTNL lock.
7764 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7765 bool netdev_has_upper_dev(struct net_device *dev,
7766 struct net_device *upper_dev)
7767 {
7768 struct netdev_nested_priv priv = {
7769 .data = (void *)upper_dev,
7770 };
7771
7772 ASSERT_RTNL();
7773
7774 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7775 &priv);
7776 }
7777 EXPORT_SYMBOL(netdev_has_upper_dev);
7778
7779 /**
7780 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7781 * @dev: device
7782 * @upper_dev: upper device to check
7783 *
7784 * Find out if a device is linked to specified upper device and return true
7785 * in case it is. Note that this checks the entire upper device chain.
7786 * The caller must hold rcu lock.
7787 */
7788
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7789 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7790 struct net_device *upper_dev)
7791 {
7792 struct netdev_nested_priv priv = {
7793 .data = (void *)upper_dev,
7794 };
7795
7796 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7797 &priv);
7798 }
7799 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7800
7801 /**
7802 * netdev_has_any_upper_dev - Check if device is linked to some device
7803 * @dev: device
7804 *
7805 * Find out if a device is linked to an upper device and return true in case
7806 * it is. The caller must hold the RTNL lock.
7807 */
netdev_has_any_upper_dev(struct net_device * dev)7808 bool netdev_has_any_upper_dev(struct net_device *dev)
7809 {
7810 ASSERT_RTNL();
7811
7812 return !list_empty(&dev->adj_list.upper);
7813 }
7814 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7815
7816 /**
7817 * netdev_master_upper_dev_get - Get master upper device
7818 * @dev: device
7819 *
7820 * Find a master upper device and return pointer to it or NULL in case
7821 * it's not there. The caller must hold the RTNL lock.
7822 */
netdev_master_upper_dev_get(struct net_device * dev)7823 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7824 {
7825 struct netdev_adjacent *upper;
7826
7827 ASSERT_RTNL();
7828
7829 if (list_empty(&dev->adj_list.upper))
7830 return NULL;
7831
7832 upper = list_first_entry(&dev->adj_list.upper,
7833 struct netdev_adjacent, list);
7834 if (likely(upper->master))
7835 return upper->dev;
7836 return NULL;
7837 }
7838 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7839
__netdev_master_upper_dev_get(struct net_device * dev)7840 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7841 {
7842 struct netdev_adjacent *upper;
7843
7844 ASSERT_RTNL();
7845
7846 if (list_empty(&dev->adj_list.upper))
7847 return NULL;
7848
7849 upper = list_first_entry(&dev->adj_list.upper,
7850 struct netdev_adjacent, list);
7851 if (likely(upper->master) && !upper->ignore)
7852 return upper->dev;
7853 return NULL;
7854 }
7855
7856 /**
7857 * netdev_has_any_lower_dev - Check if device is linked to some device
7858 * @dev: device
7859 *
7860 * Find out if a device is linked to a lower device and return true in case
7861 * it is. The caller must hold the RTNL lock.
7862 */
netdev_has_any_lower_dev(struct net_device * dev)7863 static bool netdev_has_any_lower_dev(struct net_device *dev)
7864 {
7865 ASSERT_RTNL();
7866
7867 return !list_empty(&dev->adj_list.lower);
7868 }
7869
netdev_adjacent_get_private(struct list_head * adj_list)7870 void *netdev_adjacent_get_private(struct list_head *adj_list)
7871 {
7872 struct netdev_adjacent *adj;
7873
7874 adj = list_entry(adj_list, struct netdev_adjacent, list);
7875
7876 return adj->private;
7877 }
7878 EXPORT_SYMBOL(netdev_adjacent_get_private);
7879
7880 /**
7881 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7882 * @dev: device
7883 * @iter: list_head ** of the current position
7884 *
7885 * Gets the next device from the dev's upper list, starting from iter
7886 * position. The caller must hold RCU read lock.
7887 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7888 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7889 struct list_head **iter)
7890 {
7891 struct netdev_adjacent *upper;
7892
7893 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7894
7895 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7896
7897 if (&upper->list == &dev->adj_list.upper)
7898 return NULL;
7899
7900 *iter = &upper->list;
7901
7902 return upper->dev;
7903 }
7904 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7905
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7906 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7907 struct list_head **iter,
7908 bool *ignore)
7909 {
7910 struct netdev_adjacent *upper;
7911
7912 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7913
7914 if (&upper->list == &dev->adj_list.upper)
7915 return NULL;
7916
7917 *iter = &upper->list;
7918 *ignore = upper->ignore;
7919
7920 return upper->dev;
7921 }
7922
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7923 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7924 struct list_head **iter)
7925 {
7926 struct netdev_adjacent *upper;
7927
7928 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7929
7930 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7931
7932 if (&upper->list == &dev->adj_list.upper)
7933 return NULL;
7934
7935 *iter = &upper->list;
7936
7937 return upper->dev;
7938 }
7939
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7940 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7941 int (*fn)(struct net_device *dev,
7942 struct netdev_nested_priv *priv),
7943 struct netdev_nested_priv *priv)
7944 {
7945 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7946 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7947 int ret, cur = 0;
7948 bool ignore;
7949
7950 now = dev;
7951 iter = &dev->adj_list.upper;
7952
7953 while (1) {
7954 if (now != dev) {
7955 ret = fn(now, priv);
7956 if (ret)
7957 return ret;
7958 }
7959
7960 next = NULL;
7961 while (1) {
7962 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7963 if (!udev)
7964 break;
7965 if (ignore)
7966 continue;
7967
7968 next = udev;
7969 niter = &udev->adj_list.upper;
7970 dev_stack[cur] = now;
7971 iter_stack[cur++] = iter;
7972 break;
7973 }
7974
7975 if (!next) {
7976 if (!cur)
7977 return 0;
7978 next = dev_stack[--cur];
7979 niter = iter_stack[cur];
7980 }
7981
7982 now = next;
7983 iter = niter;
7984 }
7985
7986 return 0;
7987 }
7988
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7989 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7990 int (*fn)(struct net_device *dev,
7991 struct netdev_nested_priv *priv),
7992 struct netdev_nested_priv *priv)
7993 {
7994 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7995 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7996 int ret, cur = 0;
7997
7998 now = dev;
7999 iter = &dev->adj_list.upper;
8000
8001 while (1) {
8002 if (now != dev) {
8003 ret = fn(now, priv);
8004 if (ret)
8005 return ret;
8006 }
8007
8008 next = NULL;
8009 while (1) {
8010 udev = netdev_next_upper_dev_rcu(now, &iter);
8011 if (!udev)
8012 break;
8013
8014 next = udev;
8015 niter = &udev->adj_list.upper;
8016 dev_stack[cur] = now;
8017 iter_stack[cur++] = iter;
8018 break;
8019 }
8020
8021 if (!next) {
8022 if (!cur)
8023 return 0;
8024 next = dev_stack[--cur];
8025 niter = iter_stack[cur];
8026 }
8027
8028 now = next;
8029 iter = niter;
8030 }
8031
8032 return 0;
8033 }
8034 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8035
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8036 static bool __netdev_has_upper_dev(struct net_device *dev,
8037 struct net_device *upper_dev)
8038 {
8039 struct netdev_nested_priv priv = {
8040 .flags = 0,
8041 .data = (void *)upper_dev,
8042 };
8043
8044 ASSERT_RTNL();
8045
8046 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8047 &priv);
8048 }
8049
8050 /**
8051 * netdev_lower_get_next_private - Get the next ->private from the
8052 * lower neighbour list
8053 * @dev: device
8054 * @iter: list_head ** of the current position
8055 *
8056 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8057 * list, starting from iter position. The caller must hold either hold the
8058 * RTNL lock or its own locking that guarantees that the neighbour lower
8059 * list will remain unchanged.
8060 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8061 void *netdev_lower_get_next_private(struct net_device *dev,
8062 struct list_head **iter)
8063 {
8064 struct netdev_adjacent *lower;
8065
8066 lower = list_entry(*iter, struct netdev_adjacent, list);
8067
8068 if (&lower->list == &dev->adj_list.lower)
8069 return NULL;
8070
8071 *iter = lower->list.next;
8072
8073 return lower->private;
8074 }
8075 EXPORT_SYMBOL(netdev_lower_get_next_private);
8076
8077 /**
8078 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8079 * lower neighbour list, RCU
8080 * variant
8081 * @dev: device
8082 * @iter: list_head ** of the current position
8083 *
8084 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8085 * list, starting from iter position. The caller must hold RCU read lock.
8086 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8087 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8088 struct list_head **iter)
8089 {
8090 struct netdev_adjacent *lower;
8091
8092 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8093
8094 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8095
8096 if (&lower->list == &dev->adj_list.lower)
8097 return NULL;
8098
8099 *iter = &lower->list;
8100
8101 return lower->private;
8102 }
8103 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8104
8105 /**
8106 * netdev_lower_get_next - Get the next device from the lower neighbour
8107 * list
8108 * @dev: device
8109 * @iter: list_head ** of the current position
8110 *
8111 * Gets the next netdev_adjacent from the dev's lower neighbour
8112 * list, starting from iter position. The caller must hold RTNL lock or
8113 * its own locking that guarantees that the neighbour lower
8114 * list will remain unchanged.
8115 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8116 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8117 {
8118 struct netdev_adjacent *lower;
8119
8120 lower = list_entry(*iter, struct netdev_adjacent, list);
8121
8122 if (&lower->list == &dev->adj_list.lower)
8123 return NULL;
8124
8125 *iter = lower->list.next;
8126
8127 return lower->dev;
8128 }
8129 EXPORT_SYMBOL(netdev_lower_get_next);
8130
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8131 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8132 struct list_head **iter)
8133 {
8134 struct netdev_adjacent *lower;
8135
8136 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8137
8138 if (&lower->list == &dev->adj_list.lower)
8139 return NULL;
8140
8141 *iter = &lower->list;
8142
8143 return lower->dev;
8144 }
8145
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8146 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8147 struct list_head **iter,
8148 bool *ignore)
8149 {
8150 struct netdev_adjacent *lower;
8151
8152 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8153
8154 if (&lower->list == &dev->adj_list.lower)
8155 return NULL;
8156
8157 *iter = &lower->list;
8158 *ignore = lower->ignore;
8159
8160 return lower->dev;
8161 }
8162
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8163 int netdev_walk_all_lower_dev(struct net_device *dev,
8164 int (*fn)(struct net_device *dev,
8165 struct netdev_nested_priv *priv),
8166 struct netdev_nested_priv *priv)
8167 {
8168 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8169 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8170 int ret, cur = 0;
8171
8172 now = dev;
8173 iter = &dev->adj_list.lower;
8174
8175 while (1) {
8176 if (now != dev) {
8177 ret = fn(now, priv);
8178 if (ret)
8179 return ret;
8180 }
8181
8182 next = NULL;
8183 while (1) {
8184 ldev = netdev_next_lower_dev(now, &iter);
8185 if (!ldev)
8186 break;
8187
8188 next = ldev;
8189 niter = &ldev->adj_list.lower;
8190 dev_stack[cur] = now;
8191 iter_stack[cur++] = iter;
8192 break;
8193 }
8194
8195 if (!next) {
8196 if (!cur)
8197 return 0;
8198 next = dev_stack[--cur];
8199 niter = iter_stack[cur];
8200 }
8201
8202 now = next;
8203 iter = niter;
8204 }
8205
8206 return 0;
8207 }
8208 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8209
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8210 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8211 int (*fn)(struct net_device *dev,
8212 struct netdev_nested_priv *priv),
8213 struct netdev_nested_priv *priv)
8214 {
8215 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8216 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8217 int ret, cur = 0;
8218 bool ignore;
8219
8220 now = dev;
8221 iter = &dev->adj_list.lower;
8222
8223 while (1) {
8224 if (now != dev) {
8225 ret = fn(now, priv);
8226 if (ret)
8227 return ret;
8228 }
8229
8230 next = NULL;
8231 while (1) {
8232 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8233 if (!ldev)
8234 break;
8235 if (ignore)
8236 continue;
8237
8238 next = ldev;
8239 niter = &ldev->adj_list.lower;
8240 dev_stack[cur] = now;
8241 iter_stack[cur++] = iter;
8242 break;
8243 }
8244
8245 if (!next) {
8246 if (!cur)
8247 return 0;
8248 next = dev_stack[--cur];
8249 niter = iter_stack[cur];
8250 }
8251
8252 now = next;
8253 iter = niter;
8254 }
8255
8256 return 0;
8257 }
8258
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8259 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8260 struct list_head **iter)
8261 {
8262 struct netdev_adjacent *lower;
8263
8264 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8265 if (&lower->list == &dev->adj_list.lower)
8266 return NULL;
8267
8268 *iter = &lower->list;
8269
8270 return lower->dev;
8271 }
8272 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8273
__netdev_upper_depth(struct net_device * dev)8274 static u8 __netdev_upper_depth(struct net_device *dev)
8275 {
8276 struct net_device *udev;
8277 struct list_head *iter;
8278 u8 max_depth = 0;
8279 bool ignore;
8280
8281 for (iter = &dev->adj_list.upper,
8282 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8283 udev;
8284 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8285 if (ignore)
8286 continue;
8287 if (max_depth < udev->upper_level)
8288 max_depth = udev->upper_level;
8289 }
8290
8291 return max_depth;
8292 }
8293
__netdev_lower_depth(struct net_device * dev)8294 static u8 __netdev_lower_depth(struct net_device *dev)
8295 {
8296 struct net_device *ldev;
8297 struct list_head *iter;
8298 u8 max_depth = 0;
8299 bool ignore;
8300
8301 for (iter = &dev->adj_list.lower,
8302 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8303 ldev;
8304 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8305 if (ignore)
8306 continue;
8307 if (max_depth < ldev->lower_level)
8308 max_depth = ldev->lower_level;
8309 }
8310
8311 return max_depth;
8312 }
8313
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8314 static int __netdev_update_upper_level(struct net_device *dev,
8315 struct netdev_nested_priv *__unused)
8316 {
8317 dev->upper_level = __netdev_upper_depth(dev) + 1;
8318 return 0;
8319 }
8320
8321 #ifdef CONFIG_LOCKDEP
8322 static LIST_HEAD(net_unlink_list);
8323
net_unlink_todo(struct net_device * dev)8324 static void net_unlink_todo(struct net_device *dev)
8325 {
8326 if (list_empty(&dev->unlink_list))
8327 list_add_tail(&dev->unlink_list, &net_unlink_list);
8328 }
8329 #endif
8330
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8331 static int __netdev_update_lower_level(struct net_device *dev,
8332 struct netdev_nested_priv *priv)
8333 {
8334 dev->lower_level = __netdev_lower_depth(dev) + 1;
8335
8336 #ifdef CONFIG_LOCKDEP
8337 if (!priv)
8338 return 0;
8339
8340 if (priv->flags & NESTED_SYNC_IMM)
8341 dev->nested_level = dev->lower_level - 1;
8342 if (priv->flags & NESTED_SYNC_TODO)
8343 net_unlink_todo(dev);
8344 #endif
8345 return 0;
8346 }
8347
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8348 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8349 int (*fn)(struct net_device *dev,
8350 struct netdev_nested_priv *priv),
8351 struct netdev_nested_priv *priv)
8352 {
8353 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8354 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8355 int ret, cur = 0;
8356
8357 now = dev;
8358 iter = &dev->adj_list.lower;
8359
8360 while (1) {
8361 if (now != dev) {
8362 ret = fn(now, priv);
8363 if (ret)
8364 return ret;
8365 }
8366
8367 next = NULL;
8368 while (1) {
8369 ldev = netdev_next_lower_dev_rcu(now, &iter);
8370 if (!ldev)
8371 break;
8372
8373 next = ldev;
8374 niter = &ldev->adj_list.lower;
8375 dev_stack[cur] = now;
8376 iter_stack[cur++] = iter;
8377 break;
8378 }
8379
8380 if (!next) {
8381 if (!cur)
8382 return 0;
8383 next = dev_stack[--cur];
8384 niter = iter_stack[cur];
8385 }
8386
8387 now = next;
8388 iter = niter;
8389 }
8390
8391 return 0;
8392 }
8393 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8394
8395 /**
8396 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8397 * lower neighbour list, RCU
8398 * variant
8399 * @dev: device
8400 *
8401 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8402 * list. The caller must hold RCU read lock.
8403 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8404 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8405 {
8406 struct netdev_adjacent *lower;
8407
8408 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8409 struct netdev_adjacent, list);
8410 if (lower)
8411 return lower->private;
8412 return NULL;
8413 }
8414 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8415
8416 /**
8417 * netdev_master_upper_dev_get_rcu - Get master upper device
8418 * @dev: device
8419 *
8420 * Find a master upper device and return pointer to it or NULL in case
8421 * it's not there. The caller must hold the RCU read lock.
8422 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8423 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8424 {
8425 struct netdev_adjacent *upper;
8426
8427 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8428 struct netdev_adjacent, list);
8429 if (upper && likely(upper->master))
8430 return upper->dev;
8431 return NULL;
8432 }
8433 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8434
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8435 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8436 struct net_device *adj_dev,
8437 struct list_head *dev_list)
8438 {
8439 char linkname[IFNAMSIZ+7];
8440
8441 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8442 "upper_%s" : "lower_%s", adj_dev->name);
8443 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8444 linkname);
8445 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8446 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8447 char *name,
8448 struct list_head *dev_list)
8449 {
8450 char linkname[IFNAMSIZ+7];
8451
8452 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8453 "upper_%s" : "lower_%s", name);
8454 sysfs_remove_link(&(dev->dev.kobj), linkname);
8455 }
8456
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8457 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8458 struct net_device *adj_dev,
8459 struct list_head *dev_list)
8460 {
8461 return (dev_list == &dev->adj_list.upper ||
8462 dev_list == &dev->adj_list.lower) &&
8463 net_eq(dev_net(dev), dev_net(adj_dev));
8464 }
8465
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8466 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8467 struct net_device *adj_dev,
8468 struct list_head *dev_list,
8469 void *private, bool master)
8470 {
8471 struct netdev_adjacent *adj;
8472 int ret;
8473
8474 adj = __netdev_find_adj(adj_dev, dev_list);
8475
8476 if (adj) {
8477 adj->ref_nr += 1;
8478 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8479 dev->name, adj_dev->name, adj->ref_nr);
8480
8481 return 0;
8482 }
8483
8484 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8485 if (!adj)
8486 return -ENOMEM;
8487
8488 adj->dev = adj_dev;
8489 adj->master = master;
8490 adj->ref_nr = 1;
8491 adj->private = private;
8492 adj->ignore = false;
8493 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8494
8495 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8496 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8497
8498 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8499 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8500 if (ret)
8501 goto free_adj;
8502 }
8503
8504 /* Ensure that master link is always the first item in list. */
8505 if (master) {
8506 ret = sysfs_create_link(&(dev->dev.kobj),
8507 &(adj_dev->dev.kobj), "master");
8508 if (ret)
8509 goto remove_symlinks;
8510
8511 list_add_rcu(&adj->list, dev_list);
8512 } else {
8513 list_add_tail_rcu(&adj->list, dev_list);
8514 }
8515
8516 return 0;
8517
8518 remove_symlinks:
8519 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8520 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8521 free_adj:
8522 netdev_put(adj_dev, &adj->dev_tracker);
8523 kfree(adj);
8524
8525 return ret;
8526 }
8527
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8528 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8529 struct net_device *adj_dev,
8530 u16 ref_nr,
8531 struct list_head *dev_list)
8532 {
8533 struct netdev_adjacent *adj;
8534
8535 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8536 dev->name, adj_dev->name, ref_nr);
8537
8538 adj = __netdev_find_adj(adj_dev, dev_list);
8539
8540 if (!adj) {
8541 pr_err("Adjacency does not exist for device %s from %s\n",
8542 dev->name, adj_dev->name);
8543 WARN_ON(1);
8544 return;
8545 }
8546
8547 if (adj->ref_nr > ref_nr) {
8548 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8549 dev->name, adj_dev->name, ref_nr,
8550 adj->ref_nr - ref_nr);
8551 adj->ref_nr -= ref_nr;
8552 return;
8553 }
8554
8555 if (adj->master)
8556 sysfs_remove_link(&(dev->dev.kobj), "master");
8557
8558 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8559 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8560
8561 list_del_rcu(&adj->list);
8562 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8563 adj_dev->name, dev->name, adj_dev->name);
8564 netdev_put(adj_dev, &adj->dev_tracker);
8565 kfree_rcu(adj, rcu);
8566 }
8567
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8568 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8569 struct net_device *upper_dev,
8570 struct list_head *up_list,
8571 struct list_head *down_list,
8572 void *private, bool master)
8573 {
8574 int ret;
8575
8576 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8577 private, master);
8578 if (ret)
8579 return ret;
8580
8581 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8582 private, false);
8583 if (ret) {
8584 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8585 return ret;
8586 }
8587
8588 return 0;
8589 }
8590
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8591 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8592 struct net_device *upper_dev,
8593 u16 ref_nr,
8594 struct list_head *up_list,
8595 struct list_head *down_list)
8596 {
8597 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8598 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8599 }
8600
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8601 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8602 struct net_device *upper_dev,
8603 void *private, bool master)
8604 {
8605 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8606 &dev->adj_list.upper,
8607 &upper_dev->adj_list.lower,
8608 private, master);
8609 }
8610
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8611 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8612 struct net_device *upper_dev)
8613 {
8614 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8615 &dev->adj_list.upper,
8616 &upper_dev->adj_list.lower);
8617 }
8618
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8619 static int __netdev_upper_dev_link(struct net_device *dev,
8620 struct net_device *upper_dev, bool master,
8621 void *upper_priv, void *upper_info,
8622 struct netdev_nested_priv *priv,
8623 struct netlink_ext_ack *extack)
8624 {
8625 struct netdev_notifier_changeupper_info changeupper_info = {
8626 .info = {
8627 .dev = dev,
8628 .extack = extack,
8629 },
8630 .upper_dev = upper_dev,
8631 .master = master,
8632 .linking = true,
8633 .upper_info = upper_info,
8634 };
8635 struct net_device *master_dev;
8636 int ret = 0;
8637
8638 ASSERT_RTNL();
8639
8640 if (dev == upper_dev)
8641 return -EBUSY;
8642
8643 /* To prevent loops, check if dev is not upper device to upper_dev. */
8644 if (__netdev_has_upper_dev(upper_dev, dev))
8645 return -EBUSY;
8646
8647 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8648 return -EMLINK;
8649
8650 if (!master) {
8651 if (__netdev_has_upper_dev(dev, upper_dev))
8652 return -EEXIST;
8653 } else {
8654 master_dev = __netdev_master_upper_dev_get(dev);
8655 if (master_dev)
8656 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8657 }
8658
8659 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8660 &changeupper_info.info);
8661 ret = notifier_to_errno(ret);
8662 if (ret)
8663 return ret;
8664
8665 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8666 master);
8667 if (ret)
8668 return ret;
8669
8670 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8671 &changeupper_info.info);
8672 ret = notifier_to_errno(ret);
8673 if (ret)
8674 goto rollback;
8675
8676 __netdev_update_upper_level(dev, NULL);
8677 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8678
8679 __netdev_update_lower_level(upper_dev, priv);
8680 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8681 priv);
8682
8683 return 0;
8684
8685 rollback:
8686 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8687
8688 return ret;
8689 }
8690
8691 /**
8692 * netdev_upper_dev_link - Add a link to the upper device
8693 * @dev: device
8694 * @upper_dev: new upper device
8695 * @extack: netlink extended ack
8696 *
8697 * Adds a link to device which is upper to this one. The caller must hold
8698 * the RTNL lock. On a failure a negative errno code is returned.
8699 * On success the reference counts are adjusted and the function
8700 * returns zero.
8701 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8702 int netdev_upper_dev_link(struct net_device *dev,
8703 struct net_device *upper_dev,
8704 struct netlink_ext_ack *extack)
8705 {
8706 struct netdev_nested_priv priv = {
8707 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8708 .data = NULL,
8709 };
8710
8711 return __netdev_upper_dev_link(dev, upper_dev, false,
8712 NULL, NULL, &priv, extack);
8713 }
8714 EXPORT_SYMBOL(netdev_upper_dev_link);
8715
8716 /**
8717 * netdev_master_upper_dev_link - Add a master link to the upper device
8718 * @dev: device
8719 * @upper_dev: new upper device
8720 * @upper_priv: upper device private
8721 * @upper_info: upper info to be passed down via notifier
8722 * @extack: netlink extended ack
8723 *
8724 * Adds a link to device which is upper to this one. In this case, only
8725 * one master upper device can be linked, although other non-master devices
8726 * might be linked as well. The caller must hold the RTNL lock.
8727 * On a failure a negative errno code is returned. On success the reference
8728 * counts are adjusted and the function returns zero.
8729 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8730 int netdev_master_upper_dev_link(struct net_device *dev,
8731 struct net_device *upper_dev,
8732 void *upper_priv, void *upper_info,
8733 struct netlink_ext_ack *extack)
8734 {
8735 struct netdev_nested_priv priv = {
8736 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8737 .data = NULL,
8738 };
8739
8740 return __netdev_upper_dev_link(dev, upper_dev, true,
8741 upper_priv, upper_info, &priv, extack);
8742 }
8743 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8744
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8745 static void __netdev_upper_dev_unlink(struct net_device *dev,
8746 struct net_device *upper_dev,
8747 struct netdev_nested_priv *priv)
8748 {
8749 struct netdev_notifier_changeupper_info changeupper_info = {
8750 .info = {
8751 .dev = dev,
8752 },
8753 .upper_dev = upper_dev,
8754 .linking = false,
8755 };
8756
8757 ASSERT_RTNL();
8758
8759 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8760
8761 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8762 &changeupper_info.info);
8763
8764 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8765
8766 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8767 &changeupper_info.info);
8768
8769 __netdev_update_upper_level(dev, NULL);
8770 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8771
8772 __netdev_update_lower_level(upper_dev, priv);
8773 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8774 priv);
8775 }
8776
8777 /**
8778 * netdev_upper_dev_unlink - Removes a link to upper device
8779 * @dev: device
8780 * @upper_dev: new upper device
8781 *
8782 * Removes a link to device which is upper to this one. The caller must hold
8783 * the RTNL lock.
8784 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8785 void netdev_upper_dev_unlink(struct net_device *dev,
8786 struct net_device *upper_dev)
8787 {
8788 struct netdev_nested_priv priv = {
8789 .flags = NESTED_SYNC_TODO,
8790 .data = NULL,
8791 };
8792
8793 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8794 }
8795 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8796
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8797 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8798 struct net_device *lower_dev,
8799 bool val)
8800 {
8801 struct netdev_adjacent *adj;
8802
8803 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8804 if (adj)
8805 adj->ignore = val;
8806
8807 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8808 if (adj)
8809 adj->ignore = val;
8810 }
8811
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8812 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8813 struct net_device *lower_dev)
8814 {
8815 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8816 }
8817
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8818 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8819 struct net_device *lower_dev)
8820 {
8821 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8822 }
8823
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8824 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8825 struct net_device *new_dev,
8826 struct net_device *dev,
8827 struct netlink_ext_ack *extack)
8828 {
8829 struct netdev_nested_priv priv = {
8830 .flags = 0,
8831 .data = NULL,
8832 };
8833 int err;
8834
8835 if (!new_dev)
8836 return 0;
8837
8838 if (old_dev && new_dev != old_dev)
8839 netdev_adjacent_dev_disable(dev, old_dev);
8840 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8841 extack);
8842 if (err) {
8843 if (old_dev && new_dev != old_dev)
8844 netdev_adjacent_dev_enable(dev, old_dev);
8845 return err;
8846 }
8847
8848 return 0;
8849 }
8850 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8851
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8852 void netdev_adjacent_change_commit(struct net_device *old_dev,
8853 struct net_device *new_dev,
8854 struct net_device *dev)
8855 {
8856 struct netdev_nested_priv priv = {
8857 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8858 .data = NULL,
8859 };
8860
8861 if (!new_dev || !old_dev)
8862 return;
8863
8864 if (new_dev == old_dev)
8865 return;
8866
8867 netdev_adjacent_dev_enable(dev, old_dev);
8868 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8869 }
8870 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8871
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8872 void netdev_adjacent_change_abort(struct net_device *old_dev,
8873 struct net_device *new_dev,
8874 struct net_device *dev)
8875 {
8876 struct netdev_nested_priv priv = {
8877 .flags = 0,
8878 .data = NULL,
8879 };
8880
8881 if (!new_dev)
8882 return;
8883
8884 if (old_dev && new_dev != old_dev)
8885 netdev_adjacent_dev_enable(dev, old_dev);
8886
8887 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8888 }
8889 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8890
8891 /**
8892 * netdev_bonding_info_change - Dispatch event about slave change
8893 * @dev: device
8894 * @bonding_info: info to dispatch
8895 *
8896 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8897 * The caller must hold the RTNL lock.
8898 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8899 void netdev_bonding_info_change(struct net_device *dev,
8900 struct netdev_bonding_info *bonding_info)
8901 {
8902 struct netdev_notifier_bonding_info info = {
8903 .info.dev = dev,
8904 };
8905
8906 memcpy(&info.bonding_info, bonding_info,
8907 sizeof(struct netdev_bonding_info));
8908 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8909 &info.info);
8910 }
8911 EXPORT_SYMBOL(netdev_bonding_info_change);
8912
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8913 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8914 struct netlink_ext_ack *extack)
8915 {
8916 struct netdev_notifier_offload_xstats_info info = {
8917 .info.dev = dev,
8918 .info.extack = extack,
8919 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8920 };
8921 int err;
8922 int rc;
8923
8924 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8925 GFP_KERNEL);
8926 if (!dev->offload_xstats_l3)
8927 return -ENOMEM;
8928
8929 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8930 NETDEV_OFFLOAD_XSTATS_DISABLE,
8931 &info.info);
8932 err = notifier_to_errno(rc);
8933 if (err)
8934 goto free_stats;
8935
8936 return 0;
8937
8938 free_stats:
8939 kfree(dev->offload_xstats_l3);
8940 dev->offload_xstats_l3 = NULL;
8941 return err;
8942 }
8943
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8944 int netdev_offload_xstats_enable(struct net_device *dev,
8945 enum netdev_offload_xstats_type type,
8946 struct netlink_ext_ack *extack)
8947 {
8948 ASSERT_RTNL();
8949
8950 if (netdev_offload_xstats_enabled(dev, type))
8951 return -EALREADY;
8952
8953 switch (type) {
8954 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8955 return netdev_offload_xstats_enable_l3(dev, extack);
8956 }
8957
8958 WARN_ON(1);
8959 return -EINVAL;
8960 }
8961 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8962
netdev_offload_xstats_disable_l3(struct net_device * dev)8963 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8964 {
8965 struct netdev_notifier_offload_xstats_info info = {
8966 .info.dev = dev,
8967 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8968 };
8969
8970 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8971 &info.info);
8972 kfree(dev->offload_xstats_l3);
8973 dev->offload_xstats_l3 = NULL;
8974 }
8975
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8976 int netdev_offload_xstats_disable(struct net_device *dev,
8977 enum netdev_offload_xstats_type type)
8978 {
8979 ASSERT_RTNL();
8980
8981 if (!netdev_offload_xstats_enabled(dev, type))
8982 return -EALREADY;
8983
8984 switch (type) {
8985 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8986 netdev_offload_xstats_disable_l3(dev);
8987 return 0;
8988 }
8989
8990 WARN_ON(1);
8991 return -EINVAL;
8992 }
8993 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8994
netdev_offload_xstats_disable_all(struct net_device * dev)8995 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8996 {
8997 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8998 }
8999
9000 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9001 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9002 enum netdev_offload_xstats_type type)
9003 {
9004 switch (type) {
9005 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9006 return dev->offload_xstats_l3;
9007 }
9008
9009 WARN_ON(1);
9010 return NULL;
9011 }
9012
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9013 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9014 enum netdev_offload_xstats_type type)
9015 {
9016 ASSERT_RTNL();
9017
9018 return netdev_offload_xstats_get_ptr(dev, type);
9019 }
9020 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9021
9022 struct netdev_notifier_offload_xstats_ru {
9023 bool used;
9024 };
9025
9026 struct netdev_notifier_offload_xstats_rd {
9027 struct rtnl_hw_stats64 stats;
9028 bool used;
9029 };
9030
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9031 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9032 const struct rtnl_hw_stats64 *src)
9033 {
9034 dest->rx_packets += src->rx_packets;
9035 dest->tx_packets += src->tx_packets;
9036 dest->rx_bytes += src->rx_bytes;
9037 dest->tx_bytes += src->tx_bytes;
9038 dest->rx_errors += src->rx_errors;
9039 dest->tx_errors += src->tx_errors;
9040 dest->rx_dropped += src->rx_dropped;
9041 dest->tx_dropped += src->tx_dropped;
9042 dest->multicast += src->multicast;
9043 }
9044
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9045 static int netdev_offload_xstats_get_used(struct net_device *dev,
9046 enum netdev_offload_xstats_type type,
9047 bool *p_used,
9048 struct netlink_ext_ack *extack)
9049 {
9050 struct netdev_notifier_offload_xstats_ru report_used = {};
9051 struct netdev_notifier_offload_xstats_info info = {
9052 .info.dev = dev,
9053 .info.extack = extack,
9054 .type = type,
9055 .report_used = &report_used,
9056 };
9057 int rc;
9058
9059 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9060 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9061 &info.info);
9062 *p_used = report_used.used;
9063 return notifier_to_errno(rc);
9064 }
9065
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9066 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9067 enum netdev_offload_xstats_type type,
9068 struct rtnl_hw_stats64 *p_stats,
9069 bool *p_used,
9070 struct netlink_ext_ack *extack)
9071 {
9072 struct netdev_notifier_offload_xstats_rd report_delta = {};
9073 struct netdev_notifier_offload_xstats_info info = {
9074 .info.dev = dev,
9075 .info.extack = extack,
9076 .type = type,
9077 .report_delta = &report_delta,
9078 };
9079 struct rtnl_hw_stats64 *stats;
9080 int rc;
9081
9082 stats = netdev_offload_xstats_get_ptr(dev, type);
9083 if (WARN_ON(!stats))
9084 return -EINVAL;
9085
9086 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9087 &info.info);
9088
9089 /* Cache whatever we got, even if there was an error, otherwise the
9090 * successful stats retrievals would get lost.
9091 */
9092 netdev_hw_stats64_add(stats, &report_delta.stats);
9093
9094 if (p_stats)
9095 *p_stats = *stats;
9096 *p_used = report_delta.used;
9097
9098 return notifier_to_errno(rc);
9099 }
9100
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9101 int netdev_offload_xstats_get(struct net_device *dev,
9102 enum netdev_offload_xstats_type type,
9103 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9104 struct netlink_ext_ack *extack)
9105 {
9106 ASSERT_RTNL();
9107
9108 if (p_stats)
9109 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9110 p_used, extack);
9111 else
9112 return netdev_offload_xstats_get_used(dev, type, p_used,
9113 extack);
9114 }
9115 EXPORT_SYMBOL(netdev_offload_xstats_get);
9116
9117 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9118 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9119 const struct rtnl_hw_stats64 *stats)
9120 {
9121 report_delta->used = true;
9122 netdev_hw_stats64_add(&report_delta->stats, stats);
9123 }
9124 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9125
9126 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9127 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9128 {
9129 report_used->used = true;
9130 }
9131 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9132
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9133 void netdev_offload_xstats_push_delta(struct net_device *dev,
9134 enum netdev_offload_xstats_type type,
9135 const struct rtnl_hw_stats64 *p_stats)
9136 {
9137 struct rtnl_hw_stats64 *stats;
9138
9139 ASSERT_RTNL();
9140
9141 stats = netdev_offload_xstats_get_ptr(dev, type);
9142 if (WARN_ON(!stats))
9143 return;
9144
9145 netdev_hw_stats64_add(stats, p_stats);
9146 }
9147 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9148
9149 /**
9150 * netdev_get_xmit_slave - Get the xmit slave of master device
9151 * @dev: device
9152 * @skb: The packet
9153 * @all_slaves: assume all the slaves are active
9154 *
9155 * The reference counters are not incremented so the caller must be
9156 * careful with locks. The caller must hold RCU lock.
9157 * %NULL is returned if no slave is found.
9158 */
9159
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9160 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9161 struct sk_buff *skb,
9162 bool all_slaves)
9163 {
9164 const struct net_device_ops *ops = dev->netdev_ops;
9165
9166 if (!ops->ndo_get_xmit_slave)
9167 return NULL;
9168 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9169 }
9170 EXPORT_SYMBOL(netdev_get_xmit_slave);
9171
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9172 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9173 struct sock *sk)
9174 {
9175 const struct net_device_ops *ops = dev->netdev_ops;
9176
9177 if (!ops->ndo_sk_get_lower_dev)
9178 return NULL;
9179 return ops->ndo_sk_get_lower_dev(dev, sk);
9180 }
9181
9182 /**
9183 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9184 * @dev: device
9185 * @sk: the socket
9186 *
9187 * %NULL is returned if no lower device is found.
9188 */
9189
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9190 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9191 struct sock *sk)
9192 {
9193 struct net_device *lower;
9194
9195 lower = netdev_sk_get_lower_dev(dev, sk);
9196 while (lower) {
9197 dev = lower;
9198 lower = netdev_sk_get_lower_dev(dev, sk);
9199 }
9200
9201 return dev;
9202 }
9203 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9204
netdev_adjacent_add_links(struct net_device * dev)9205 static void netdev_adjacent_add_links(struct net_device *dev)
9206 {
9207 struct netdev_adjacent *iter;
9208
9209 struct net *net = dev_net(dev);
9210
9211 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9212 if (!net_eq(net, dev_net(iter->dev)))
9213 continue;
9214 netdev_adjacent_sysfs_add(iter->dev, dev,
9215 &iter->dev->adj_list.lower);
9216 netdev_adjacent_sysfs_add(dev, iter->dev,
9217 &dev->adj_list.upper);
9218 }
9219
9220 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9221 if (!net_eq(net, dev_net(iter->dev)))
9222 continue;
9223 netdev_adjacent_sysfs_add(iter->dev, dev,
9224 &iter->dev->adj_list.upper);
9225 netdev_adjacent_sysfs_add(dev, iter->dev,
9226 &dev->adj_list.lower);
9227 }
9228 }
9229
netdev_adjacent_del_links(struct net_device * dev)9230 static void netdev_adjacent_del_links(struct net_device *dev)
9231 {
9232 struct netdev_adjacent *iter;
9233
9234 struct net *net = dev_net(dev);
9235
9236 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9237 if (!net_eq(net, dev_net(iter->dev)))
9238 continue;
9239 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9240 &iter->dev->adj_list.lower);
9241 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9242 &dev->adj_list.upper);
9243 }
9244
9245 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9246 if (!net_eq(net, dev_net(iter->dev)))
9247 continue;
9248 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9249 &iter->dev->adj_list.upper);
9250 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9251 &dev->adj_list.lower);
9252 }
9253 }
9254
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9255 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9256 {
9257 struct netdev_adjacent *iter;
9258
9259 struct net *net = dev_net(dev);
9260
9261 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9262 if (!net_eq(net, dev_net(iter->dev)))
9263 continue;
9264 netdev_adjacent_sysfs_del(iter->dev, oldname,
9265 &iter->dev->adj_list.lower);
9266 netdev_adjacent_sysfs_add(iter->dev, dev,
9267 &iter->dev->adj_list.lower);
9268 }
9269
9270 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9271 if (!net_eq(net, dev_net(iter->dev)))
9272 continue;
9273 netdev_adjacent_sysfs_del(iter->dev, oldname,
9274 &iter->dev->adj_list.upper);
9275 netdev_adjacent_sysfs_add(iter->dev, dev,
9276 &iter->dev->adj_list.upper);
9277 }
9278 }
9279
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9280 void *netdev_lower_dev_get_private(struct net_device *dev,
9281 struct net_device *lower_dev)
9282 {
9283 struct netdev_adjacent *lower;
9284
9285 if (!lower_dev)
9286 return NULL;
9287 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9288 if (!lower)
9289 return NULL;
9290
9291 return lower->private;
9292 }
9293 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9294
9295
9296 /**
9297 * netdev_lower_state_changed - Dispatch event about lower device state change
9298 * @lower_dev: device
9299 * @lower_state_info: state to dispatch
9300 *
9301 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9302 * The caller must hold the RTNL lock.
9303 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9304 void netdev_lower_state_changed(struct net_device *lower_dev,
9305 void *lower_state_info)
9306 {
9307 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9308 .info.dev = lower_dev,
9309 };
9310
9311 ASSERT_RTNL();
9312 changelowerstate_info.lower_state_info = lower_state_info;
9313 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9314 &changelowerstate_info.info);
9315 }
9316 EXPORT_SYMBOL(netdev_lower_state_changed);
9317
dev_change_rx_flags(struct net_device * dev,int flags)9318 static void dev_change_rx_flags(struct net_device *dev, int flags)
9319 {
9320 const struct net_device_ops *ops = dev->netdev_ops;
9321
9322 if (ops->ndo_change_rx_flags)
9323 ops->ndo_change_rx_flags(dev, flags);
9324 }
9325
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9326 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9327 {
9328 unsigned int old_flags = dev->flags;
9329 unsigned int promiscuity, flags;
9330 kuid_t uid;
9331 kgid_t gid;
9332
9333 ASSERT_RTNL();
9334
9335 promiscuity = dev->promiscuity + inc;
9336 if (promiscuity == 0) {
9337 /*
9338 * Avoid overflow.
9339 * If inc causes overflow, untouch promisc and return error.
9340 */
9341 if (unlikely(inc > 0)) {
9342 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9343 return -EOVERFLOW;
9344 }
9345 flags = old_flags & ~IFF_PROMISC;
9346 } else {
9347 flags = old_flags | IFF_PROMISC;
9348 }
9349 WRITE_ONCE(dev->promiscuity, promiscuity);
9350 if (flags != old_flags) {
9351 WRITE_ONCE(dev->flags, flags);
9352 netdev_info(dev, "%s promiscuous mode\n",
9353 dev->flags & IFF_PROMISC ? "entered" : "left");
9354 if (audit_enabled) {
9355 current_uid_gid(&uid, &gid);
9356 audit_log(audit_context(), GFP_ATOMIC,
9357 AUDIT_ANOM_PROMISCUOUS,
9358 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9359 dev->name, (dev->flags & IFF_PROMISC),
9360 (old_flags & IFF_PROMISC),
9361 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9362 from_kuid(&init_user_ns, uid),
9363 from_kgid(&init_user_ns, gid),
9364 audit_get_sessionid(current));
9365 }
9366
9367 dev_change_rx_flags(dev, IFF_PROMISC);
9368 }
9369 if (notify) {
9370 /* The ops lock is only required to ensure consistent locking
9371 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9372 * called without the lock, even for devices that are ops
9373 * locked, such as in `dev_uc_sync_multiple` when using
9374 * bonding or teaming.
9375 */
9376 netdev_ops_assert_locked(dev);
9377 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9378 }
9379 return 0;
9380 }
9381
netif_set_promiscuity(struct net_device * dev,int inc)9382 int netif_set_promiscuity(struct net_device *dev, int inc)
9383 {
9384 unsigned int old_flags = dev->flags;
9385 int err;
9386
9387 err = __dev_set_promiscuity(dev, inc, true);
9388 if (err < 0)
9389 return err;
9390 if (dev->flags != old_flags)
9391 dev_set_rx_mode(dev);
9392 return err;
9393 }
9394
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9395 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9396 {
9397 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9398 unsigned int allmulti, flags;
9399
9400 ASSERT_RTNL();
9401
9402 allmulti = dev->allmulti + inc;
9403 if (allmulti == 0) {
9404 /*
9405 * Avoid overflow.
9406 * If inc causes overflow, untouch allmulti and return error.
9407 */
9408 if (unlikely(inc > 0)) {
9409 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9410 return -EOVERFLOW;
9411 }
9412 flags = old_flags & ~IFF_ALLMULTI;
9413 } else {
9414 flags = old_flags | IFF_ALLMULTI;
9415 }
9416 WRITE_ONCE(dev->allmulti, allmulti);
9417 if (flags != old_flags) {
9418 WRITE_ONCE(dev->flags, flags);
9419 netdev_info(dev, "%s allmulticast mode\n",
9420 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9421 dev_change_rx_flags(dev, IFF_ALLMULTI);
9422 dev_set_rx_mode(dev);
9423 if (notify)
9424 __dev_notify_flags(dev, old_flags,
9425 dev->gflags ^ old_gflags, 0, NULL);
9426 }
9427 return 0;
9428 }
9429
9430 /*
9431 * Upload unicast and multicast address lists to device and
9432 * configure RX filtering. When the device doesn't support unicast
9433 * filtering it is put in promiscuous mode while unicast addresses
9434 * are present.
9435 */
__dev_set_rx_mode(struct net_device * dev)9436 void __dev_set_rx_mode(struct net_device *dev)
9437 {
9438 const struct net_device_ops *ops = dev->netdev_ops;
9439
9440 /* dev_open will call this function so the list will stay sane. */
9441 if (!(dev->flags&IFF_UP))
9442 return;
9443
9444 if (!netif_device_present(dev))
9445 return;
9446
9447 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9448 /* Unicast addresses changes may only happen under the rtnl,
9449 * therefore calling __dev_set_promiscuity here is safe.
9450 */
9451 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9452 __dev_set_promiscuity(dev, 1, false);
9453 dev->uc_promisc = true;
9454 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9455 __dev_set_promiscuity(dev, -1, false);
9456 dev->uc_promisc = false;
9457 }
9458 }
9459
9460 if (ops->ndo_set_rx_mode)
9461 ops->ndo_set_rx_mode(dev);
9462 }
9463
dev_set_rx_mode(struct net_device * dev)9464 void dev_set_rx_mode(struct net_device *dev)
9465 {
9466 netif_addr_lock_bh(dev);
9467 __dev_set_rx_mode(dev);
9468 netif_addr_unlock_bh(dev);
9469 }
9470
9471 /**
9472 * netif_get_flags() - get flags reported to userspace
9473 * @dev: device
9474 *
9475 * Get the combination of flag bits exported through APIs to userspace.
9476 */
netif_get_flags(const struct net_device * dev)9477 unsigned int netif_get_flags(const struct net_device *dev)
9478 {
9479 unsigned int flags;
9480
9481 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9482 IFF_ALLMULTI |
9483 IFF_RUNNING |
9484 IFF_LOWER_UP |
9485 IFF_DORMANT)) |
9486 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9487 IFF_ALLMULTI));
9488
9489 if (netif_running(dev)) {
9490 if (netif_oper_up(dev))
9491 flags |= IFF_RUNNING;
9492 if (netif_carrier_ok(dev))
9493 flags |= IFF_LOWER_UP;
9494 if (netif_dormant(dev))
9495 flags |= IFF_DORMANT;
9496 }
9497
9498 return flags;
9499 }
9500 EXPORT_SYMBOL(netif_get_flags);
9501
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9502 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9503 struct netlink_ext_ack *extack)
9504 {
9505 unsigned int old_flags = dev->flags;
9506 int ret;
9507
9508 ASSERT_RTNL();
9509
9510 /*
9511 * Set the flags on our device.
9512 */
9513
9514 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9515 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9516 IFF_AUTOMEDIA)) |
9517 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9518 IFF_ALLMULTI));
9519
9520 /*
9521 * Load in the correct multicast list now the flags have changed.
9522 */
9523
9524 if ((old_flags ^ flags) & IFF_MULTICAST)
9525 dev_change_rx_flags(dev, IFF_MULTICAST);
9526
9527 dev_set_rx_mode(dev);
9528
9529 /*
9530 * Have we downed the interface. We handle IFF_UP ourselves
9531 * according to user attempts to set it, rather than blindly
9532 * setting it.
9533 */
9534
9535 ret = 0;
9536 if ((old_flags ^ flags) & IFF_UP) {
9537 if (old_flags & IFF_UP)
9538 __dev_close(dev);
9539 else
9540 ret = __dev_open(dev, extack);
9541 }
9542
9543 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9544 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9545 old_flags = dev->flags;
9546
9547 dev->gflags ^= IFF_PROMISC;
9548
9549 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9550 if (dev->flags != old_flags)
9551 dev_set_rx_mode(dev);
9552 }
9553
9554 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9555 * is important. Some (broken) drivers set IFF_PROMISC, when
9556 * IFF_ALLMULTI is requested not asking us and not reporting.
9557 */
9558 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9559 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9560
9561 dev->gflags ^= IFF_ALLMULTI;
9562 netif_set_allmulti(dev, inc, false);
9563 }
9564
9565 return ret;
9566 }
9567
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9568 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9569 unsigned int gchanges, u32 portid,
9570 const struct nlmsghdr *nlh)
9571 {
9572 unsigned int changes = dev->flags ^ old_flags;
9573
9574 if (gchanges)
9575 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9576
9577 if (changes & IFF_UP) {
9578 if (dev->flags & IFF_UP)
9579 call_netdevice_notifiers(NETDEV_UP, dev);
9580 else
9581 call_netdevice_notifiers(NETDEV_DOWN, dev);
9582 }
9583
9584 if (dev->flags & IFF_UP &&
9585 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9586 struct netdev_notifier_change_info change_info = {
9587 .info = {
9588 .dev = dev,
9589 },
9590 .flags_changed = changes,
9591 };
9592
9593 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9594 }
9595 }
9596
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9597 int netif_change_flags(struct net_device *dev, unsigned int flags,
9598 struct netlink_ext_ack *extack)
9599 {
9600 int ret;
9601 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9602
9603 ret = __dev_change_flags(dev, flags, extack);
9604 if (ret < 0)
9605 return ret;
9606
9607 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9608 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9609 return ret;
9610 }
9611
__netif_set_mtu(struct net_device * dev,int new_mtu)9612 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9613 {
9614 const struct net_device_ops *ops = dev->netdev_ops;
9615
9616 if (ops->ndo_change_mtu)
9617 return ops->ndo_change_mtu(dev, new_mtu);
9618
9619 /* Pairs with all the lockless reads of dev->mtu in the stack */
9620 WRITE_ONCE(dev->mtu, new_mtu);
9621 return 0;
9622 }
9623 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9624
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9625 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9626 struct netlink_ext_ack *extack)
9627 {
9628 /* MTU must be positive, and in range */
9629 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9630 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9631 return -EINVAL;
9632 }
9633
9634 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9635 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9636 return -EINVAL;
9637 }
9638 return 0;
9639 }
9640
9641 /**
9642 * netif_set_mtu_ext() - Change maximum transfer unit
9643 * @dev: device
9644 * @new_mtu: new transfer unit
9645 * @extack: netlink extended ack
9646 *
9647 * Change the maximum transfer size of the network device.
9648 *
9649 * Return: 0 on success, -errno on failure.
9650 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9651 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9652 struct netlink_ext_ack *extack)
9653 {
9654 int err, orig_mtu;
9655
9656 netdev_ops_assert_locked(dev);
9657
9658 if (new_mtu == dev->mtu)
9659 return 0;
9660
9661 err = dev_validate_mtu(dev, new_mtu, extack);
9662 if (err)
9663 return err;
9664
9665 if (!netif_device_present(dev))
9666 return -ENODEV;
9667
9668 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9669 err = notifier_to_errno(err);
9670 if (err)
9671 return err;
9672
9673 orig_mtu = dev->mtu;
9674 err = __netif_set_mtu(dev, new_mtu);
9675
9676 if (!err) {
9677 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9678 orig_mtu);
9679 err = notifier_to_errno(err);
9680 if (err) {
9681 /* setting mtu back and notifying everyone again,
9682 * so that they have a chance to revert changes.
9683 */
9684 __netif_set_mtu(dev, orig_mtu);
9685 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9686 new_mtu);
9687 }
9688 }
9689 return err;
9690 }
9691
netif_set_mtu(struct net_device * dev,int new_mtu)9692 int netif_set_mtu(struct net_device *dev, int new_mtu)
9693 {
9694 struct netlink_ext_ack extack;
9695 int err;
9696
9697 memset(&extack, 0, sizeof(extack));
9698 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9699 if (err && extack._msg)
9700 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9701 return err;
9702 }
9703 EXPORT_SYMBOL(netif_set_mtu);
9704
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9705 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9706 {
9707 unsigned int orig_len = dev->tx_queue_len;
9708 int res;
9709
9710 if (new_len != (unsigned int)new_len)
9711 return -ERANGE;
9712
9713 if (new_len != orig_len) {
9714 WRITE_ONCE(dev->tx_queue_len, new_len);
9715 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9716 res = notifier_to_errno(res);
9717 if (res)
9718 goto err_rollback;
9719 res = dev_qdisc_change_tx_queue_len(dev);
9720 if (res)
9721 goto err_rollback;
9722 }
9723
9724 return 0;
9725
9726 err_rollback:
9727 netdev_err(dev, "refused to change device tx_queue_len\n");
9728 WRITE_ONCE(dev->tx_queue_len, orig_len);
9729 return res;
9730 }
9731
netif_set_group(struct net_device * dev,int new_group)9732 void netif_set_group(struct net_device *dev, int new_group)
9733 {
9734 dev->group = new_group;
9735 }
9736
9737 /**
9738 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9739 * @dev: device
9740 * @addr: new address
9741 * @extack: netlink extended ack
9742 *
9743 * Return: 0 on success, -errno on failure.
9744 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9745 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9746 struct netlink_ext_ack *extack)
9747 {
9748 struct netdev_notifier_pre_changeaddr_info info = {
9749 .info.dev = dev,
9750 .info.extack = extack,
9751 .dev_addr = addr,
9752 };
9753 int rc;
9754
9755 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9756 return notifier_to_errno(rc);
9757 }
9758 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9759
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9760 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9761 struct netlink_ext_ack *extack)
9762 {
9763 const struct net_device_ops *ops = dev->netdev_ops;
9764 int err;
9765
9766 if (!ops->ndo_set_mac_address)
9767 return -EOPNOTSUPP;
9768 if (ss->ss_family != dev->type)
9769 return -EINVAL;
9770 if (!netif_device_present(dev))
9771 return -ENODEV;
9772 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9773 if (err)
9774 return err;
9775 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9776 err = ops->ndo_set_mac_address(dev, ss);
9777 if (err)
9778 return err;
9779 }
9780 dev->addr_assign_type = NET_ADDR_SET;
9781 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9782 add_device_randomness(dev->dev_addr, dev->addr_len);
9783 return 0;
9784 }
9785
9786 DECLARE_RWSEM(dev_addr_sem);
9787
9788 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9789 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9790 {
9791 size_t size = sizeof(sa->sa_data_min);
9792 struct net_device *dev;
9793 int ret = 0;
9794
9795 down_read(&dev_addr_sem);
9796 rcu_read_lock();
9797
9798 dev = dev_get_by_name_rcu(net, dev_name);
9799 if (!dev) {
9800 ret = -ENODEV;
9801 goto unlock;
9802 }
9803 if (!dev->addr_len)
9804 memset(sa->sa_data, 0, size);
9805 else
9806 memcpy(sa->sa_data, dev->dev_addr,
9807 min_t(size_t, size, dev->addr_len));
9808 sa->sa_family = dev->type;
9809
9810 unlock:
9811 rcu_read_unlock();
9812 up_read(&dev_addr_sem);
9813 return ret;
9814 }
9815 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9816
netif_change_carrier(struct net_device * dev,bool new_carrier)9817 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9818 {
9819 const struct net_device_ops *ops = dev->netdev_ops;
9820
9821 if (!ops->ndo_change_carrier)
9822 return -EOPNOTSUPP;
9823 if (!netif_device_present(dev))
9824 return -ENODEV;
9825 return ops->ndo_change_carrier(dev, new_carrier);
9826 }
9827
9828 /**
9829 * dev_get_phys_port_id - Get device physical port ID
9830 * @dev: device
9831 * @ppid: port ID
9832 *
9833 * Get device physical port ID
9834 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9835 int dev_get_phys_port_id(struct net_device *dev,
9836 struct netdev_phys_item_id *ppid)
9837 {
9838 const struct net_device_ops *ops = dev->netdev_ops;
9839
9840 if (!ops->ndo_get_phys_port_id)
9841 return -EOPNOTSUPP;
9842 return ops->ndo_get_phys_port_id(dev, ppid);
9843 }
9844
9845 /**
9846 * dev_get_phys_port_name - Get device physical port name
9847 * @dev: device
9848 * @name: port name
9849 * @len: limit of bytes to copy to name
9850 *
9851 * Get device physical port name
9852 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9853 int dev_get_phys_port_name(struct net_device *dev,
9854 char *name, size_t len)
9855 {
9856 const struct net_device_ops *ops = dev->netdev_ops;
9857 int err;
9858
9859 if (ops->ndo_get_phys_port_name) {
9860 err = ops->ndo_get_phys_port_name(dev, name, len);
9861 if (err != -EOPNOTSUPP)
9862 return err;
9863 }
9864 return devlink_compat_phys_port_name_get(dev, name, len);
9865 }
9866
9867 /**
9868 * netif_get_port_parent_id() - Get the device's port parent identifier
9869 * @dev: network device
9870 * @ppid: pointer to a storage for the port's parent identifier
9871 * @recurse: allow/disallow recursion to lower devices
9872 *
9873 * Get the devices's port parent identifier.
9874 *
9875 * Return: 0 on success, -errno on failure.
9876 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9877 int netif_get_port_parent_id(struct net_device *dev,
9878 struct netdev_phys_item_id *ppid, bool recurse)
9879 {
9880 const struct net_device_ops *ops = dev->netdev_ops;
9881 struct netdev_phys_item_id first = { };
9882 struct net_device *lower_dev;
9883 struct list_head *iter;
9884 int err;
9885
9886 if (ops->ndo_get_port_parent_id) {
9887 err = ops->ndo_get_port_parent_id(dev, ppid);
9888 if (err != -EOPNOTSUPP)
9889 return err;
9890 }
9891
9892 err = devlink_compat_switch_id_get(dev, ppid);
9893 if (!recurse || err != -EOPNOTSUPP)
9894 return err;
9895
9896 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9897 err = netif_get_port_parent_id(lower_dev, ppid, true);
9898 if (err)
9899 break;
9900 if (!first.id_len)
9901 first = *ppid;
9902 else if (memcmp(&first, ppid, sizeof(*ppid)))
9903 return -EOPNOTSUPP;
9904 }
9905
9906 return err;
9907 }
9908 EXPORT_SYMBOL(netif_get_port_parent_id);
9909
9910 /**
9911 * netdev_port_same_parent_id - Indicate if two network devices have
9912 * the same port parent identifier
9913 * @a: first network device
9914 * @b: second network device
9915 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9916 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9917 {
9918 struct netdev_phys_item_id a_id = { };
9919 struct netdev_phys_item_id b_id = { };
9920
9921 if (netif_get_port_parent_id(a, &a_id, true) ||
9922 netif_get_port_parent_id(b, &b_id, true))
9923 return false;
9924
9925 return netdev_phys_item_id_same(&a_id, &b_id);
9926 }
9927 EXPORT_SYMBOL(netdev_port_same_parent_id);
9928
netif_change_proto_down(struct net_device * dev,bool proto_down)9929 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9930 {
9931 if (!dev->change_proto_down)
9932 return -EOPNOTSUPP;
9933 if (!netif_device_present(dev))
9934 return -ENODEV;
9935 if (proto_down)
9936 netif_carrier_off(dev);
9937 else
9938 netif_carrier_on(dev);
9939 WRITE_ONCE(dev->proto_down, proto_down);
9940 return 0;
9941 }
9942
9943 /**
9944 * netdev_change_proto_down_reason_locked - proto down reason
9945 *
9946 * @dev: device
9947 * @mask: proto down mask
9948 * @value: proto down value
9949 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9950 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9951 unsigned long mask, u32 value)
9952 {
9953 u32 proto_down_reason;
9954 int b;
9955
9956 if (!mask) {
9957 proto_down_reason = value;
9958 } else {
9959 proto_down_reason = dev->proto_down_reason;
9960 for_each_set_bit(b, &mask, 32) {
9961 if (value & (1 << b))
9962 proto_down_reason |= BIT(b);
9963 else
9964 proto_down_reason &= ~BIT(b);
9965 }
9966 }
9967 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9968 }
9969
9970 struct bpf_xdp_link {
9971 struct bpf_link link;
9972 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9973 int flags;
9974 };
9975
dev_xdp_mode(struct net_device * dev,u32 flags)9976 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9977 {
9978 if (flags & XDP_FLAGS_HW_MODE)
9979 return XDP_MODE_HW;
9980 if (flags & XDP_FLAGS_DRV_MODE)
9981 return XDP_MODE_DRV;
9982 if (flags & XDP_FLAGS_SKB_MODE)
9983 return XDP_MODE_SKB;
9984 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9985 }
9986
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9987 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9988 {
9989 switch (mode) {
9990 case XDP_MODE_SKB:
9991 return generic_xdp_install;
9992 case XDP_MODE_DRV:
9993 case XDP_MODE_HW:
9994 return dev->netdev_ops->ndo_bpf;
9995 default:
9996 return NULL;
9997 }
9998 }
9999
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10000 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10001 enum bpf_xdp_mode mode)
10002 {
10003 return dev->xdp_state[mode].link;
10004 }
10005
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10006 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10007 enum bpf_xdp_mode mode)
10008 {
10009 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10010
10011 if (link)
10012 return link->link.prog;
10013 return dev->xdp_state[mode].prog;
10014 }
10015
dev_xdp_prog_count(struct net_device * dev)10016 u8 dev_xdp_prog_count(struct net_device *dev)
10017 {
10018 u8 count = 0;
10019 int i;
10020
10021 for (i = 0; i < __MAX_XDP_MODE; i++)
10022 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10023 count++;
10024 return count;
10025 }
10026 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10027
dev_xdp_sb_prog_count(struct net_device * dev)10028 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10029 {
10030 u8 count = 0;
10031 int i;
10032
10033 for (i = 0; i < __MAX_XDP_MODE; i++)
10034 if (dev->xdp_state[i].prog &&
10035 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10036 count++;
10037 return count;
10038 }
10039
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10040 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10041 {
10042 if (!dev->netdev_ops->ndo_bpf)
10043 return -EOPNOTSUPP;
10044
10045 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10046 bpf->command == XDP_SETUP_PROG &&
10047 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10048 NL_SET_ERR_MSG(bpf->extack,
10049 "unable to propagate XDP to device using tcp-data-split");
10050 return -EBUSY;
10051 }
10052
10053 if (dev_get_min_mp_channel_count(dev)) {
10054 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10055 return -EBUSY;
10056 }
10057
10058 return dev->netdev_ops->ndo_bpf(dev, bpf);
10059 }
10060 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10061
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10062 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10063 {
10064 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10065
10066 return prog ? prog->aux->id : 0;
10067 }
10068
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10069 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10070 struct bpf_xdp_link *link)
10071 {
10072 dev->xdp_state[mode].link = link;
10073 dev->xdp_state[mode].prog = NULL;
10074 }
10075
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10076 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10077 struct bpf_prog *prog)
10078 {
10079 dev->xdp_state[mode].link = NULL;
10080 dev->xdp_state[mode].prog = prog;
10081 }
10082
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10083 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10084 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10085 u32 flags, struct bpf_prog *prog)
10086 {
10087 struct netdev_bpf xdp;
10088 int err;
10089
10090 netdev_ops_assert_locked(dev);
10091
10092 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10093 prog && !prog->aux->xdp_has_frags) {
10094 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10095 return -EBUSY;
10096 }
10097
10098 if (dev_get_min_mp_channel_count(dev)) {
10099 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10100 return -EBUSY;
10101 }
10102
10103 memset(&xdp, 0, sizeof(xdp));
10104 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10105 xdp.extack = extack;
10106 xdp.flags = flags;
10107 xdp.prog = prog;
10108
10109 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10110 * "moved" into driver), so they don't increment it on their own, but
10111 * they do decrement refcnt when program is detached or replaced.
10112 * Given net_device also owns link/prog, we need to bump refcnt here
10113 * to prevent drivers from underflowing it.
10114 */
10115 if (prog)
10116 bpf_prog_inc(prog);
10117 err = bpf_op(dev, &xdp);
10118 if (err) {
10119 if (prog)
10120 bpf_prog_put(prog);
10121 return err;
10122 }
10123
10124 if (mode != XDP_MODE_HW)
10125 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10126
10127 return 0;
10128 }
10129
dev_xdp_uninstall(struct net_device * dev)10130 static void dev_xdp_uninstall(struct net_device *dev)
10131 {
10132 struct bpf_xdp_link *link;
10133 struct bpf_prog *prog;
10134 enum bpf_xdp_mode mode;
10135 bpf_op_t bpf_op;
10136
10137 ASSERT_RTNL();
10138
10139 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10140 prog = dev_xdp_prog(dev, mode);
10141 if (!prog)
10142 continue;
10143
10144 bpf_op = dev_xdp_bpf_op(dev, mode);
10145 if (!bpf_op)
10146 continue;
10147
10148 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10149
10150 /* auto-detach link from net device */
10151 link = dev_xdp_link(dev, mode);
10152 if (link)
10153 link->dev = NULL;
10154 else
10155 bpf_prog_put(prog);
10156
10157 dev_xdp_set_link(dev, mode, NULL);
10158 }
10159 }
10160
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10161 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10162 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10163 struct bpf_prog *old_prog, u32 flags)
10164 {
10165 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10166 struct bpf_prog *cur_prog;
10167 struct net_device *upper;
10168 struct list_head *iter;
10169 enum bpf_xdp_mode mode;
10170 bpf_op_t bpf_op;
10171 int err;
10172
10173 ASSERT_RTNL();
10174
10175 /* either link or prog attachment, never both */
10176 if (link && (new_prog || old_prog))
10177 return -EINVAL;
10178 /* link supports only XDP mode flags */
10179 if (link && (flags & ~XDP_FLAGS_MODES)) {
10180 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10181 return -EINVAL;
10182 }
10183 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10184 if (num_modes > 1) {
10185 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10186 return -EINVAL;
10187 }
10188 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10189 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10190 NL_SET_ERR_MSG(extack,
10191 "More than one program loaded, unset mode is ambiguous");
10192 return -EINVAL;
10193 }
10194 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10195 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10196 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10197 return -EINVAL;
10198 }
10199
10200 mode = dev_xdp_mode(dev, flags);
10201 /* can't replace attached link */
10202 if (dev_xdp_link(dev, mode)) {
10203 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10204 return -EBUSY;
10205 }
10206
10207 /* don't allow if an upper device already has a program */
10208 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10209 if (dev_xdp_prog_count(upper) > 0) {
10210 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10211 return -EEXIST;
10212 }
10213 }
10214
10215 cur_prog = dev_xdp_prog(dev, mode);
10216 /* can't replace attached prog with link */
10217 if (link && cur_prog) {
10218 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10219 return -EBUSY;
10220 }
10221 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10222 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10223 return -EEXIST;
10224 }
10225
10226 /* put effective new program into new_prog */
10227 if (link)
10228 new_prog = link->link.prog;
10229
10230 if (new_prog) {
10231 bool offload = mode == XDP_MODE_HW;
10232 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10233 ? XDP_MODE_DRV : XDP_MODE_SKB;
10234
10235 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10236 NL_SET_ERR_MSG(extack, "XDP program already attached");
10237 return -EBUSY;
10238 }
10239 if (!offload && dev_xdp_prog(dev, other_mode)) {
10240 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10241 return -EEXIST;
10242 }
10243 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10244 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10245 return -EINVAL;
10246 }
10247 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10248 NL_SET_ERR_MSG(extack, "Program bound to different device");
10249 return -EINVAL;
10250 }
10251 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10252 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10253 return -EINVAL;
10254 }
10255 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10256 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10257 return -EINVAL;
10258 }
10259 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10260 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10261 return -EINVAL;
10262 }
10263 }
10264
10265 /* don't call drivers if the effective program didn't change */
10266 if (new_prog != cur_prog) {
10267 bpf_op = dev_xdp_bpf_op(dev, mode);
10268 if (!bpf_op) {
10269 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10270 return -EOPNOTSUPP;
10271 }
10272
10273 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10274 if (err)
10275 return err;
10276 }
10277
10278 if (link)
10279 dev_xdp_set_link(dev, mode, link);
10280 else
10281 dev_xdp_set_prog(dev, mode, new_prog);
10282 if (cur_prog)
10283 bpf_prog_put(cur_prog);
10284
10285 return 0;
10286 }
10287
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10288 static int dev_xdp_attach_link(struct net_device *dev,
10289 struct netlink_ext_ack *extack,
10290 struct bpf_xdp_link *link)
10291 {
10292 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10293 }
10294
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10295 static int dev_xdp_detach_link(struct net_device *dev,
10296 struct netlink_ext_ack *extack,
10297 struct bpf_xdp_link *link)
10298 {
10299 enum bpf_xdp_mode mode;
10300 bpf_op_t bpf_op;
10301
10302 ASSERT_RTNL();
10303
10304 mode = dev_xdp_mode(dev, link->flags);
10305 if (dev_xdp_link(dev, mode) != link)
10306 return -EINVAL;
10307
10308 bpf_op = dev_xdp_bpf_op(dev, mode);
10309 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10310 dev_xdp_set_link(dev, mode, NULL);
10311 return 0;
10312 }
10313
bpf_xdp_link_release(struct bpf_link * link)10314 static void bpf_xdp_link_release(struct bpf_link *link)
10315 {
10316 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10317
10318 rtnl_lock();
10319
10320 /* if racing with net_device's tear down, xdp_link->dev might be
10321 * already NULL, in which case link was already auto-detached
10322 */
10323 if (xdp_link->dev) {
10324 netdev_lock_ops(xdp_link->dev);
10325 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10326 netdev_unlock_ops(xdp_link->dev);
10327 xdp_link->dev = NULL;
10328 }
10329
10330 rtnl_unlock();
10331 }
10332
bpf_xdp_link_detach(struct bpf_link * link)10333 static int bpf_xdp_link_detach(struct bpf_link *link)
10334 {
10335 bpf_xdp_link_release(link);
10336 return 0;
10337 }
10338
bpf_xdp_link_dealloc(struct bpf_link * link)10339 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10340 {
10341 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10342
10343 kfree(xdp_link);
10344 }
10345
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10346 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10347 struct seq_file *seq)
10348 {
10349 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10350 u32 ifindex = 0;
10351
10352 rtnl_lock();
10353 if (xdp_link->dev)
10354 ifindex = xdp_link->dev->ifindex;
10355 rtnl_unlock();
10356
10357 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10358 }
10359
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10360 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10361 struct bpf_link_info *info)
10362 {
10363 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10364 u32 ifindex = 0;
10365
10366 rtnl_lock();
10367 if (xdp_link->dev)
10368 ifindex = xdp_link->dev->ifindex;
10369 rtnl_unlock();
10370
10371 info->xdp.ifindex = ifindex;
10372 return 0;
10373 }
10374
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10375 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10376 struct bpf_prog *old_prog)
10377 {
10378 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10379 enum bpf_xdp_mode mode;
10380 bpf_op_t bpf_op;
10381 int err = 0;
10382
10383 rtnl_lock();
10384
10385 /* link might have been auto-released already, so fail */
10386 if (!xdp_link->dev) {
10387 err = -ENOLINK;
10388 goto out_unlock;
10389 }
10390
10391 if (old_prog && link->prog != old_prog) {
10392 err = -EPERM;
10393 goto out_unlock;
10394 }
10395 old_prog = link->prog;
10396 if (old_prog->type != new_prog->type ||
10397 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10398 err = -EINVAL;
10399 goto out_unlock;
10400 }
10401
10402 if (old_prog == new_prog) {
10403 /* no-op, don't disturb drivers */
10404 bpf_prog_put(new_prog);
10405 goto out_unlock;
10406 }
10407
10408 netdev_lock_ops(xdp_link->dev);
10409 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10410 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10411 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10412 xdp_link->flags, new_prog);
10413 netdev_unlock_ops(xdp_link->dev);
10414 if (err)
10415 goto out_unlock;
10416
10417 old_prog = xchg(&link->prog, new_prog);
10418 bpf_prog_put(old_prog);
10419
10420 out_unlock:
10421 rtnl_unlock();
10422 return err;
10423 }
10424
10425 static const struct bpf_link_ops bpf_xdp_link_lops = {
10426 .release = bpf_xdp_link_release,
10427 .dealloc = bpf_xdp_link_dealloc,
10428 .detach = bpf_xdp_link_detach,
10429 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10430 .fill_link_info = bpf_xdp_link_fill_link_info,
10431 .update_prog = bpf_xdp_link_update,
10432 };
10433
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10434 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10435 {
10436 struct net *net = current->nsproxy->net_ns;
10437 struct bpf_link_primer link_primer;
10438 struct netlink_ext_ack extack = {};
10439 struct bpf_xdp_link *link;
10440 struct net_device *dev;
10441 int err, fd;
10442
10443 rtnl_lock();
10444 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10445 if (!dev) {
10446 rtnl_unlock();
10447 return -EINVAL;
10448 }
10449
10450 link = kzalloc(sizeof(*link), GFP_USER);
10451 if (!link) {
10452 err = -ENOMEM;
10453 goto unlock;
10454 }
10455
10456 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10457 attr->link_create.attach_type);
10458 link->dev = dev;
10459 link->flags = attr->link_create.flags;
10460
10461 err = bpf_link_prime(&link->link, &link_primer);
10462 if (err) {
10463 kfree(link);
10464 goto unlock;
10465 }
10466
10467 netdev_lock_ops(dev);
10468 err = dev_xdp_attach_link(dev, &extack, link);
10469 netdev_unlock_ops(dev);
10470 rtnl_unlock();
10471
10472 if (err) {
10473 link->dev = NULL;
10474 bpf_link_cleanup(&link_primer);
10475 trace_bpf_xdp_link_attach_failed(extack._msg);
10476 goto out_put_dev;
10477 }
10478
10479 fd = bpf_link_settle(&link_primer);
10480 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10481 dev_put(dev);
10482 return fd;
10483
10484 unlock:
10485 rtnl_unlock();
10486
10487 out_put_dev:
10488 dev_put(dev);
10489 return err;
10490 }
10491
10492 /**
10493 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10494 * @dev: device
10495 * @extack: netlink extended ack
10496 * @fd: new program fd or negative value to clear
10497 * @expected_fd: old program fd that userspace expects to replace or clear
10498 * @flags: xdp-related flags
10499 *
10500 * Set or clear a bpf program for a device
10501 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10502 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10503 int fd, int expected_fd, u32 flags)
10504 {
10505 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10506 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10507 int err;
10508
10509 ASSERT_RTNL();
10510
10511 if (fd >= 0) {
10512 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10513 mode != XDP_MODE_SKB);
10514 if (IS_ERR(new_prog))
10515 return PTR_ERR(new_prog);
10516 }
10517
10518 if (expected_fd >= 0) {
10519 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10520 mode != XDP_MODE_SKB);
10521 if (IS_ERR(old_prog)) {
10522 err = PTR_ERR(old_prog);
10523 old_prog = NULL;
10524 goto err_out;
10525 }
10526 }
10527
10528 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10529
10530 err_out:
10531 if (err && new_prog)
10532 bpf_prog_put(new_prog);
10533 if (old_prog)
10534 bpf_prog_put(old_prog);
10535 return err;
10536 }
10537
dev_get_min_mp_channel_count(const struct net_device * dev)10538 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10539 {
10540 int i;
10541
10542 netdev_ops_assert_locked(dev);
10543
10544 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10545 if (dev->_rx[i].mp_params.mp_priv)
10546 /* The channel count is the idx plus 1. */
10547 return i + 1;
10548
10549 return 0;
10550 }
10551
10552 /**
10553 * dev_index_reserve() - allocate an ifindex in a namespace
10554 * @net: the applicable net namespace
10555 * @ifindex: requested ifindex, pass %0 to get one allocated
10556 *
10557 * Allocate a ifindex for a new device. Caller must either use the ifindex
10558 * to store the device (via list_netdevice()) or call dev_index_release()
10559 * to give the index up.
10560 *
10561 * Return: a suitable unique value for a new device interface number or -errno.
10562 */
dev_index_reserve(struct net * net,u32 ifindex)10563 static int dev_index_reserve(struct net *net, u32 ifindex)
10564 {
10565 int err;
10566
10567 if (ifindex > INT_MAX) {
10568 DEBUG_NET_WARN_ON_ONCE(1);
10569 return -EINVAL;
10570 }
10571
10572 if (!ifindex)
10573 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10574 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10575 else
10576 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10577 if (err < 0)
10578 return err;
10579
10580 return ifindex;
10581 }
10582
dev_index_release(struct net * net,int ifindex)10583 static void dev_index_release(struct net *net, int ifindex)
10584 {
10585 /* Expect only unused indexes, unlist_netdevice() removes the used */
10586 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10587 }
10588
from_cleanup_net(void)10589 static bool from_cleanup_net(void)
10590 {
10591 #ifdef CONFIG_NET_NS
10592 return current == READ_ONCE(cleanup_net_task);
10593 #else
10594 return false;
10595 #endif
10596 }
10597
10598 /* Delayed registration/unregisteration */
10599 LIST_HEAD(net_todo_list);
10600 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10601 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10602
net_set_todo(struct net_device * dev)10603 static void net_set_todo(struct net_device *dev)
10604 {
10605 list_add_tail(&dev->todo_list, &net_todo_list);
10606 }
10607
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10608 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10609 struct net_device *upper, netdev_features_t features)
10610 {
10611 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10612 netdev_features_t feature;
10613 int feature_bit;
10614
10615 for_each_netdev_feature(upper_disables, feature_bit) {
10616 feature = __NETIF_F_BIT(feature_bit);
10617 if (!(upper->wanted_features & feature)
10618 && (features & feature)) {
10619 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10620 &feature, upper->name);
10621 features &= ~feature;
10622 }
10623 }
10624
10625 return features;
10626 }
10627
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10628 static void netdev_sync_lower_features(struct net_device *upper,
10629 struct net_device *lower, netdev_features_t features)
10630 {
10631 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10632 netdev_features_t feature;
10633 int feature_bit;
10634
10635 for_each_netdev_feature(upper_disables, feature_bit) {
10636 feature = __NETIF_F_BIT(feature_bit);
10637 if (!(features & feature) && (lower->features & feature)) {
10638 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10639 &feature, lower->name);
10640 netdev_lock_ops(lower);
10641 lower->wanted_features &= ~feature;
10642 __netdev_update_features(lower);
10643
10644 if (unlikely(lower->features & feature))
10645 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10646 &feature, lower->name);
10647 else
10648 netdev_features_change(lower);
10649 netdev_unlock_ops(lower);
10650 }
10651 }
10652 }
10653
netdev_has_ip_or_hw_csum(netdev_features_t features)10654 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10655 {
10656 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10657 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10658 bool hw_csum = features & NETIF_F_HW_CSUM;
10659
10660 return ip_csum || hw_csum;
10661 }
10662
netdev_fix_features(struct net_device * dev,netdev_features_t features)10663 static netdev_features_t netdev_fix_features(struct net_device *dev,
10664 netdev_features_t features)
10665 {
10666 /* Fix illegal checksum combinations */
10667 if ((features & NETIF_F_HW_CSUM) &&
10668 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10669 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10670 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10671 }
10672
10673 /* TSO requires that SG is present as well. */
10674 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10675 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10676 features &= ~NETIF_F_ALL_TSO;
10677 }
10678
10679 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10680 !(features & NETIF_F_IP_CSUM)) {
10681 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10682 features &= ~NETIF_F_TSO;
10683 features &= ~NETIF_F_TSO_ECN;
10684 }
10685
10686 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10687 !(features & NETIF_F_IPV6_CSUM)) {
10688 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10689 features &= ~NETIF_F_TSO6;
10690 }
10691
10692 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10693 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10694 features &= ~NETIF_F_TSO_MANGLEID;
10695
10696 /* TSO ECN requires that TSO is present as well. */
10697 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10698 features &= ~NETIF_F_TSO_ECN;
10699
10700 /* Software GSO depends on SG. */
10701 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10702 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10703 features &= ~NETIF_F_GSO;
10704 }
10705
10706 /* GSO partial features require GSO partial be set */
10707 if ((features & dev->gso_partial_features) &&
10708 !(features & NETIF_F_GSO_PARTIAL)) {
10709 netdev_dbg(dev,
10710 "Dropping partially supported GSO features since no GSO partial.\n");
10711 features &= ~dev->gso_partial_features;
10712 }
10713
10714 if (!(features & NETIF_F_RXCSUM)) {
10715 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10716 * successfully merged by hardware must also have the
10717 * checksum verified by hardware. If the user does not
10718 * want to enable RXCSUM, logically, we should disable GRO_HW.
10719 */
10720 if (features & NETIF_F_GRO_HW) {
10721 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10722 features &= ~NETIF_F_GRO_HW;
10723 }
10724 }
10725
10726 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10727 if (features & NETIF_F_RXFCS) {
10728 if (features & NETIF_F_LRO) {
10729 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10730 features &= ~NETIF_F_LRO;
10731 }
10732
10733 if (features & NETIF_F_GRO_HW) {
10734 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10735 features &= ~NETIF_F_GRO_HW;
10736 }
10737 }
10738
10739 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10740 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10741 features &= ~NETIF_F_LRO;
10742 }
10743
10744 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10745 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10746 features &= ~NETIF_F_HW_TLS_TX;
10747 }
10748
10749 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10750 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10751 features &= ~NETIF_F_HW_TLS_RX;
10752 }
10753
10754 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10755 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10756 features &= ~NETIF_F_GSO_UDP_L4;
10757 }
10758
10759 return features;
10760 }
10761
__netdev_update_features(struct net_device * dev)10762 int __netdev_update_features(struct net_device *dev)
10763 {
10764 struct net_device *upper, *lower;
10765 netdev_features_t features;
10766 struct list_head *iter;
10767 int err = -1;
10768
10769 ASSERT_RTNL();
10770 netdev_ops_assert_locked(dev);
10771
10772 features = netdev_get_wanted_features(dev);
10773
10774 if (dev->netdev_ops->ndo_fix_features)
10775 features = dev->netdev_ops->ndo_fix_features(dev, features);
10776
10777 /* driver might be less strict about feature dependencies */
10778 features = netdev_fix_features(dev, features);
10779
10780 /* some features can't be enabled if they're off on an upper device */
10781 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10782 features = netdev_sync_upper_features(dev, upper, features);
10783
10784 if (dev->features == features)
10785 goto sync_lower;
10786
10787 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10788 &dev->features, &features);
10789
10790 if (dev->netdev_ops->ndo_set_features)
10791 err = dev->netdev_ops->ndo_set_features(dev, features);
10792 else
10793 err = 0;
10794
10795 if (unlikely(err < 0)) {
10796 netdev_err(dev,
10797 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10798 err, &features, &dev->features);
10799 /* return non-0 since some features might have changed and
10800 * it's better to fire a spurious notification than miss it
10801 */
10802 return -1;
10803 }
10804
10805 sync_lower:
10806 /* some features must be disabled on lower devices when disabled
10807 * on an upper device (think: bonding master or bridge)
10808 */
10809 netdev_for_each_lower_dev(dev, lower, iter)
10810 netdev_sync_lower_features(dev, lower, features);
10811
10812 if (!err) {
10813 netdev_features_t diff = features ^ dev->features;
10814
10815 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10816 /* udp_tunnel_{get,drop}_rx_info both need
10817 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10818 * device, or they won't do anything.
10819 * Thus we need to update dev->features
10820 * *before* calling udp_tunnel_get_rx_info,
10821 * but *after* calling udp_tunnel_drop_rx_info.
10822 */
10823 udp_tunnel_nic_lock(dev);
10824 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10825 dev->features = features;
10826 udp_tunnel_get_rx_info(dev);
10827 } else {
10828 udp_tunnel_drop_rx_info(dev);
10829 }
10830 udp_tunnel_nic_unlock(dev);
10831 }
10832
10833 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10834 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10835 dev->features = features;
10836 err |= vlan_get_rx_ctag_filter_info(dev);
10837 } else {
10838 vlan_drop_rx_ctag_filter_info(dev);
10839 }
10840 }
10841
10842 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10843 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10844 dev->features = features;
10845 err |= vlan_get_rx_stag_filter_info(dev);
10846 } else {
10847 vlan_drop_rx_stag_filter_info(dev);
10848 }
10849 }
10850
10851 dev->features = features;
10852 }
10853
10854 return err < 0 ? 0 : 1;
10855 }
10856
10857 /**
10858 * netdev_update_features - recalculate device features
10859 * @dev: the device to check
10860 *
10861 * Recalculate dev->features set and send notifications if it
10862 * has changed. Should be called after driver or hardware dependent
10863 * conditions might have changed that influence the features.
10864 */
netdev_update_features(struct net_device * dev)10865 void netdev_update_features(struct net_device *dev)
10866 {
10867 if (__netdev_update_features(dev))
10868 netdev_features_change(dev);
10869 }
10870 EXPORT_SYMBOL(netdev_update_features);
10871
10872 /**
10873 * netdev_change_features - recalculate device features
10874 * @dev: the device to check
10875 *
10876 * Recalculate dev->features set and send notifications even
10877 * if they have not changed. Should be called instead of
10878 * netdev_update_features() if also dev->vlan_features might
10879 * have changed to allow the changes to be propagated to stacked
10880 * VLAN devices.
10881 */
netdev_change_features(struct net_device * dev)10882 void netdev_change_features(struct net_device *dev)
10883 {
10884 __netdev_update_features(dev);
10885 netdev_features_change(dev);
10886 }
10887 EXPORT_SYMBOL(netdev_change_features);
10888
10889 /**
10890 * netif_stacked_transfer_operstate - transfer operstate
10891 * @rootdev: the root or lower level device to transfer state from
10892 * @dev: the device to transfer operstate to
10893 *
10894 * Transfer operational state from root to device. This is normally
10895 * called when a stacking relationship exists between the root
10896 * device and the device(a leaf device).
10897 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10898 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10899 struct net_device *dev)
10900 {
10901 if (rootdev->operstate == IF_OPER_DORMANT)
10902 netif_dormant_on(dev);
10903 else
10904 netif_dormant_off(dev);
10905
10906 if (rootdev->operstate == IF_OPER_TESTING)
10907 netif_testing_on(dev);
10908 else
10909 netif_testing_off(dev);
10910
10911 if (netif_carrier_ok(rootdev))
10912 netif_carrier_on(dev);
10913 else
10914 netif_carrier_off(dev);
10915 }
10916 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10917
netif_alloc_rx_queues(struct net_device * dev)10918 static int netif_alloc_rx_queues(struct net_device *dev)
10919 {
10920 unsigned int i, count = dev->num_rx_queues;
10921 struct netdev_rx_queue *rx;
10922 size_t sz = count * sizeof(*rx);
10923 int err = 0;
10924
10925 BUG_ON(count < 1);
10926
10927 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10928 if (!rx)
10929 return -ENOMEM;
10930
10931 dev->_rx = rx;
10932
10933 for (i = 0; i < count; i++) {
10934 rx[i].dev = dev;
10935
10936 /* XDP RX-queue setup */
10937 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10938 if (err < 0)
10939 goto err_rxq_info;
10940 }
10941 return 0;
10942
10943 err_rxq_info:
10944 /* Rollback successful reg's and free other resources */
10945 while (i--)
10946 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10947 kvfree(dev->_rx);
10948 dev->_rx = NULL;
10949 return err;
10950 }
10951
netif_free_rx_queues(struct net_device * dev)10952 static void netif_free_rx_queues(struct net_device *dev)
10953 {
10954 unsigned int i, count = dev->num_rx_queues;
10955
10956 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10957 if (!dev->_rx)
10958 return;
10959
10960 for (i = 0; i < count; i++)
10961 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10962
10963 kvfree(dev->_rx);
10964 }
10965
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10966 static void netdev_init_one_queue(struct net_device *dev,
10967 struct netdev_queue *queue, void *_unused)
10968 {
10969 /* Initialize queue lock */
10970 spin_lock_init(&queue->_xmit_lock);
10971 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10972 queue->xmit_lock_owner = -1;
10973 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10974 queue->dev = dev;
10975 #ifdef CONFIG_BQL
10976 dql_init(&queue->dql, HZ);
10977 #endif
10978 }
10979
netif_free_tx_queues(struct net_device * dev)10980 static void netif_free_tx_queues(struct net_device *dev)
10981 {
10982 kvfree(dev->_tx);
10983 }
10984
netif_alloc_netdev_queues(struct net_device * dev)10985 static int netif_alloc_netdev_queues(struct net_device *dev)
10986 {
10987 unsigned int count = dev->num_tx_queues;
10988 struct netdev_queue *tx;
10989 size_t sz = count * sizeof(*tx);
10990
10991 if (count < 1 || count > 0xffff)
10992 return -EINVAL;
10993
10994 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10995 if (!tx)
10996 return -ENOMEM;
10997
10998 dev->_tx = tx;
10999
11000 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11001 spin_lock_init(&dev->tx_global_lock);
11002
11003 return 0;
11004 }
11005
netif_tx_stop_all_queues(struct net_device * dev)11006 void netif_tx_stop_all_queues(struct net_device *dev)
11007 {
11008 unsigned int i;
11009
11010 for (i = 0; i < dev->num_tx_queues; i++) {
11011 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11012
11013 netif_tx_stop_queue(txq);
11014 }
11015 }
11016 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11017
netdev_do_alloc_pcpu_stats(struct net_device * dev)11018 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11019 {
11020 void __percpu *v;
11021
11022 /* Drivers implementing ndo_get_peer_dev must support tstat
11023 * accounting, so that skb_do_redirect() can bump the dev's
11024 * RX stats upon network namespace switch.
11025 */
11026 if (dev->netdev_ops->ndo_get_peer_dev &&
11027 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11028 return -EOPNOTSUPP;
11029
11030 switch (dev->pcpu_stat_type) {
11031 case NETDEV_PCPU_STAT_NONE:
11032 return 0;
11033 case NETDEV_PCPU_STAT_LSTATS:
11034 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11035 break;
11036 case NETDEV_PCPU_STAT_TSTATS:
11037 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11038 break;
11039 case NETDEV_PCPU_STAT_DSTATS:
11040 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11041 break;
11042 default:
11043 return -EINVAL;
11044 }
11045
11046 return v ? 0 : -ENOMEM;
11047 }
11048
netdev_do_free_pcpu_stats(struct net_device * dev)11049 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11050 {
11051 switch (dev->pcpu_stat_type) {
11052 case NETDEV_PCPU_STAT_NONE:
11053 return;
11054 case NETDEV_PCPU_STAT_LSTATS:
11055 free_percpu(dev->lstats);
11056 break;
11057 case NETDEV_PCPU_STAT_TSTATS:
11058 free_percpu(dev->tstats);
11059 break;
11060 case NETDEV_PCPU_STAT_DSTATS:
11061 free_percpu(dev->dstats);
11062 break;
11063 }
11064 }
11065
netdev_free_phy_link_topology(struct net_device * dev)11066 static void netdev_free_phy_link_topology(struct net_device *dev)
11067 {
11068 struct phy_link_topology *topo = dev->link_topo;
11069
11070 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11071 xa_destroy(&topo->phys);
11072 kfree(topo);
11073 dev->link_topo = NULL;
11074 }
11075 }
11076
11077 /**
11078 * register_netdevice() - register a network device
11079 * @dev: device to register
11080 *
11081 * Take a prepared network device structure and make it externally accessible.
11082 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11083 * Callers must hold the rtnl lock - you may want register_netdev()
11084 * instead of this.
11085 */
register_netdevice(struct net_device * dev)11086 int register_netdevice(struct net_device *dev)
11087 {
11088 int ret;
11089 struct net *net = dev_net(dev);
11090
11091 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11092 NETDEV_FEATURE_COUNT);
11093 BUG_ON(dev_boot_phase);
11094 ASSERT_RTNL();
11095
11096 might_sleep();
11097
11098 /* When net_device's are persistent, this will be fatal. */
11099 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11100 BUG_ON(!net);
11101
11102 ret = ethtool_check_ops(dev->ethtool_ops);
11103 if (ret)
11104 return ret;
11105
11106 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11107 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11108 mutex_init(&dev->ethtool->rss_lock);
11109
11110 spin_lock_init(&dev->addr_list_lock);
11111 netdev_set_addr_lockdep_class(dev);
11112
11113 ret = dev_get_valid_name(net, dev, dev->name);
11114 if (ret < 0)
11115 goto out;
11116
11117 ret = -ENOMEM;
11118 dev->name_node = netdev_name_node_head_alloc(dev);
11119 if (!dev->name_node)
11120 goto out;
11121
11122 /* Init, if this function is available */
11123 if (dev->netdev_ops->ndo_init) {
11124 ret = dev->netdev_ops->ndo_init(dev);
11125 if (ret) {
11126 if (ret > 0)
11127 ret = -EIO;
11128 goto err_free_name;
11129 }
11130 }
11131
11132 if (((dev->hw_features | dev->features) &
11133 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11134 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11135 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11136 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11137 ret = -EINVAL;
11138 goto err_uninit;
11139 }
11140
11141 ret = netdev_do_alloc_pcpu_stats(dev);
11142 if (ret)
11143 goto err_uninit;
11144
11145 ret = dev_index_reserve(net, dev->ifindex);
11146 if (ret < 0)
11147 goto err_free_pcpu;
11148 dev->ifindex = ret;
11149
11150 /* Transfer changeable features to wanted_features and enable
11151 * software offloads (GSO and GRO).
11152 */
11153 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11154 dev->features |= NETIF_F_SOFT_FEATURES;
11155
11156 if (dev->udp_tunnel_nic_info) {
11157 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11158 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11159 }
11160
11161 dev->wanted_features = dev->features & dev->hw_features;
11162
11163 if (!(dev->flags & IFF_LOOPBACK))
11164 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11165
11166 /* If IPv4 TCP segmentation offload is supported we should also
11167 * allow the device to enable segmenting the frame with the option
11168 * of ignoring a static IP ID value. This doesn't enable the
11169 * feature itself but allows the user to enable it later.
11170 */
11171 if (dev->hw_features & NETIF_F_TSO)
11172 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11173 if (dev->vlan_features & NETIF_F_TSO)
11174 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11175 if (dev->mpls_features & NETIF_F_TSO)
11176 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11177 if (dev->hw_enc_features & NETIF_F_TSO)
11178 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11179
11180 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11181 */
11182 dev->vlan_features |= NETIF_F_HIGHDMA;
11183
11184 /* Make NETIF_F_SG inheritable to tunnel devices.
11185 */
11186 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11187
11188 /* Make NETIF_F_SG inheritable to MPLS.
11189 */
11190 dev->mpls_features |= NETIF_F_SG;
11191
11192 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11193 ret = notifier_to_errno(ret);
11194 if (ret)
11195 goto err_ifindex_release;
11196
11197 ret = netdev_register_kobject(dev);
11198
11199 netdev_lock(dev);
11200 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11201 netdev_unlock(dev);
11202
11203 if (ret)
11204 goto err_uninit_notify;
11205
11206 netdev_lock_ops(dev);
11207 __netdev_update_features(dev);
11208 netdev_unlock_ops(dev);
11209
11210 /*
11211 * Default initial state at registry is that the
11212 * device is present.
11213 */
11214
11215 set_bit(__LINK_STATE_PRESENT, &dev->state);
11216
11217 linkwatch_init_dev(dev);
11218
11219 dev_init_scheduler(dev);
11220
11221 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11222 list_netdevice(dev);
11223
11224 add_device_randomness(dev->dev_addr, dev->addr_len);
11225
11226 /* If the device has permanent device address, driver should
11227 * set dev_addr and also addr_assign_type should be set to
11228 * NET_ADDR_PERM (default value).
11229 */
11230 if (dev->addr_assign_type == NET_ADDR_PERM)
11231 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11232
11233 /* Notify protocols, that a new device appeared. */
11234 netdev_lock_ops(dev);
11235 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11236 netdev_unlock_ops(dev);
11237 ret = notifier_to_errno(ret);
11238 if (ret) {
11239 /* Expect explicit free_netdev() on failure */
11240 dev->needs_free_netdev = false;
11241 unregister_netdevice_queue(dev, NULL);
11242 goto out;
11243 }
11244 /*
11245 * Prevent userspace races by waiting until the network
11246 * device is fully setup before sending notifications.
11247 */
11248 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11249 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11250
11251 out:
11252 return ret;
11253
11254 err_uninit_notify:
11255 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11256 err_ifindex_release:
11257 dev_index_release(net, dev->ifindex);
11258 err_free_pcpu:
11259 netdev_do_free_pcpu_stats(dev);
11260 err_uninit:
11261 if (dev->netdev_ops->ndo_uninit)
11262 dev->netdev_ops->ndo_uninit(dev);
11263 if (dev->priv_destructor)
11264 dev->priv_destructor(dev);
11265 err_free_name:
11266 netdev_name_node_free(dev->name_node);
11267 goto out;
11268 }
11269 EXPORT_SYMBOL(register_netdevice);
11270
11271 /* Initialize the core of a dummy net device.
11272 * The setup steps dummy netdevs need which normal netdevs get by going
11273 * through register_netdevice().
11274 */
init_dummy_netdev(struct net_device * dev)11275 static void init_dummy_netdev(struct net_device *dev)
11276 {
11277 /* make sure we BUG if trying to hit standard
11278 * register/unregister code path
11279 */
11280 dev->reg_state = NETREG_DUMMY;
11281
11282 /* a dummy interface is started by default */
11283 set_bit(__LINK_STATE_PRESENT, &dev->state);
11284 set_bit(__LINK_STATE_START, &dev->state);
11285
11286 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11287 * because users of this 'device' dont need to change
11288 * its refcount.
11289 */
11290 }
11291
11292 /**
11293 * register_netdev - register a network device
11294 * @dev: device to register
11295 *
11296 * Take a completed network device structure and add it to the kernel
11297 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11298 * chain. 0 is returned on success. A negative errno code is returned
11299 * on a failure to set up the device, or if the name is a duplicate.
11300 *
11301 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11302 * and expands the device name if you passed a format string to
11303 * alloc_netdev.
11304 */
register_netdev(struct net_device * dev)11305 int register_netdev(struct net_device *dev)
11306 {
11307 struct net *net = dev_net(dev);
11308 int err;
11309
11310 if (rtnl_net_lock_killable(net))
11311 return -EINTR;
11312
11313 err = register_netdevice(dev);
11314
11315 rtnl_net_unlock(net);
11316
11317 return err;
11318 }
11319 EXPORT_SYMBOL(register_netdev);
11320
netdev_refcnt_read(const struct net_device * dev)11321 int netdev_refcnt_read(const struct net_device *dev)
11322 {
11323 #ifdef CONFIG_PCPU_DEV_REFCNT
11324 int i, refcnt = 0;
11325
11326 for_each_possible_cpu(i)
11327 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11328 return refcnt;
11329 #else
11330 return refcount_read(&dev->dev_refcnt);
11331 #endif
11332 }
11333 EXPORT_SYMBOL(netdev_refcnt_read);
11334
11335 int netdev_unregister_timeout_secs __read_mostly = 10;
11336
11337 #define WAIT_REFS_MIN_MSECS 1
11338 #define WAIT_REFS_MAX_MSECS 250
11339 /**
11340 * netdev_wait_allrefs_any - wait until all references are gone.
11341 * @list: list of net_devices to wait on
11342 *
11343 * This is called when unregistering network devices.
11344 *
11345 * Any protocol or device that holds a reference should register
11346 * for netdevice notification, and cleanup and put back the
11347 * reference if they receive an UNREGISTER event.
11348 * We can get stuck here if buggy protocols don't correctly
11349 * call dev_put.
11350 */
netdev_wait_allrefs_any(struct list_head * list)11351 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11352 {
11353 unsigned long rebroadcast_time, warning_time;
11354 struct net_device *dev;
11355 int wait = 0;
11356
11357 rebroadcast_time = warning_time = jiffies;
11358
11359 list_for_each_entry(dev, list, todo_list)
11360 if (netdev_refcnt_read(dev) == 1)
11361 return dev;
11362
11363 while (true) {
11364 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11365 rtnl_lock();
11366
11367 /* Rebroadcast unregister notification */
11368 list_for_each_entry(dev, list, todo_list)
11369 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11370
11371 __rtnl_unlock();
11372 rcu_barrier();
11373 rtnl_lock();
11374
11375 list_for_each_entry(dev, list, todo_list)
11376 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11377 &dev->state)) {
11378 /* We must not have linkwatch events
11379 * pending on unregister. If this
11380 * happens, we simply run the queue
11381 * unscheduled, resulting in a noop
11382 * for this device.
11383 */
11384 linkwatch_run_queue();
11385 break;
11386 }
11387
11388 __rtnl_unlock();
11389
11390 rebroadcast_time = jiffies;
11391 }
11392
11393 rcu_barrier();
11394
11395 if (!wait) {
11396 wait = WAIT_REFS_MIN_MSECS;
11397 } else {
11398 msleep(wait);
11399 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11400 }
11401
11402 list_for_each_entry(dev, list, todo_list)
11403 if (netdev_refcnt_read(dev) == 1)
11404 return dev;
11405
11406 if (time_after(jiffies, warning_time +
11407 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11408 list_for_each_entry(dev, list, todo_list) {
11409 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11410 dev->name, netdev_refcnt_read(dev));
11411 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11412 }
11413
11414 warning_time = jiffies;
11415 }
11416 }
11417 }
11418
11419 /* The sequence is:
11420 *
11421 * rtnl_lock();
11422 * ...
11423 * register_netdevice(x1);
11424 * register_netdevice(x2);
11425 * ...
11426 * unregister_netdevice(y1);
11427 * unregister_netdevice(y2);
11428 * ...
11429 * rtnl_unlock();
11430 * free_netdev(y1);
11431 * free_netdev(y2);
11432 *
11433 * We are invoked by rtnl_unlock().
11434 * This allows us to deal with problems:
11435 * 1) We can delete sysfs objects which invoke hotplug
11436 * without deadlocking with linkwatch via keventd.
11437 * 2) Since we run with the RTNL semaphore not held, we can sleep
11438 * safely in order to wait for the netdev refcnt to drop to zero.
11439 *
11440 * We must not return until all unregister events added during
11441 * the interval the lock was held have been completed.
11442 */
netdev_run_todo(void)11443 void netdev_run_todo(void)
11444 {
11445 struct net_device *dev, *tmp;
11446 struct list_head list;
11447 int cnt;
11448 #ifdef CONFIG_LOCKDEP
11449 struct list_head unlink_list;
11450
11451 list_replace_init(&net_unlink_list, &unlink_list);
11452
11453 while (!list_empty(&unlink_list)) {
11454 dev = list_first_entry(&unlink_list, struct net_device,
11455 unlink_list);
11456 list_del_init(&dev->unlink_list);
11457 dev->nested_level = dev->lower_level - 1;
11458 }
11459 #endif
11460
11461 /* Snapshot list, allow later requests */
11462 list_replace_init(&net_todo_list, &list);
11463
11464 __rtnl_unlock();
11465
11466 /* Wait for rcu callbacks to finish before next phase */
11467 if (!list_empty(&list))
11468 rcu_barrier();
11469
11470 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11471 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11472 netdev_WARN(dev, "run_todo but not unregistering\n");
11473 list_del(&dev->todo_list);
11474 continue;
11475 }
11476
11477 netdev_lock(dev);
11478 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11479 netdev_unlock(dev);
11480 linkwatch_sync_dev(dev);
11481 }
11482
11483 cnt = 0;
11484 while (!list_empty(&list)) {
11485 dev = netdev_wait_allrefs_any(&list);
11486 list_del(&dev->todo_list);
11487
11488 /* paranoia */
11489 BUG_ON(netdev_refcnt_read(dev) != 1);
11490 BUG_ON(!list_empty(&dev->ptype_all));
11491 BUG_ON(!list_empty(&dev->ptype_specific));
11492 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11493 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11494
11495 netdev_do_free_pcpu_stats(dev);
11496 if (dev->priv_destructor)
11497 dev->priv_destructor(dev);
11498 if (dev->needs_free_netdev)
11499 free_netdev(dev);
11500
11501 cnt++;
11502
11503 /* Free network device */
11504 kobject_put(&dev->dev.kobj);
11505 }
11506 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11507 wake_up(&netdev_unregistering_wq);
11508 }
11509
11510 /* Collate per-cpu network dstats statistics
11511 *
11512 * Read per-cpu network statistics from dev->dstats and populate the related
11513 * fields in @s.
11514 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11515 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11516 const struct pcpu_dstats __percpu *dstats)
11517 {
11518 int cpu;
11519
11520 for_each_possible_cpu(cpu) {
11521 u64 rx_packets, rx_bytes, rx_drops;
11522 u64 tx_packets, tx_bytes, tx_drops;
11523 const struct pcpu_dstats *stats;
11524 unsigned int start;
11525
11526 stats = per_cpu_ptr(dstats, cpu);
11527 do {
11528 start = u64_stats_fetch_begin(&stats->syncp);
11529 rx_packets = u64_stats_read(&stats->rx_packets);
11530 rx_bytes = u64_stats_read(&stats->rx_bytes);
11531 rx_drops = u64_stats_read(&stats->rx_drops);
11532 tx_packets = u64_stats_read(&stats->tx_packets);
11533 tx_bytes = u64_stats_read(&stats->tx_bytes);
11534 tx_drops = u64_stats_read(&stats->tx_drops);
11535 } while (u64_stats_fetch_retry(&stats->syncp, start));
11536
11537 s->rx_packets += rx_packets;
11538 s->rx_bytes += rx_bytes;
11539 s->rx_dropped += rx_drops;
11540 s->tx_packets += tx_packets;
11541 s->tx_bytes += tx_bytes;
11542 s->tx_dropped += tx_drops;
11543 }
11544 }
11545
11546 /* ndo_get_stats64 implementation for dtstats-based accounting.
11547 *
11548 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11549 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11550 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11551 static void dev_get_dstats64(const struct net_device *dev,
11552 struct rtnl_link_stats64 *s)
11553 {
11554 netdev_stats_to_stats64(s, &dev->stats);
11555 dev_fetch_dstats(s, dev->dstats);
11556 }
11557
11558 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11559 * all the same fields in the same order as net_device_stats, with only
11560 * the type differing, but rtnl_link_stats64 may have additional fields
11561 * at the end for newer counters.
11562 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11563 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11564 const struct net_device_stats *netdev_stats)
11565 {
11566 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11567 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11568 u64 *dst = (u64 *)stats64;
11569
11570 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11571 for (i = 0; i < n; i++)
11572 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11573 /* zero out counters that only exist in rtnl_link_stats64 */
11574 memset((char *)stats64 + n * sizeof(u64), 0,
11575 sizeof(*stats64) - n * sizeof(u64));
11576 }
11577 EXPORT_SYMBOL(netdev_stats_to_stats64);
11578
netdev_core_stats_alloc(struct net_device * dev)11579 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11580 struct net_device *dev)
11581 {
11582 struct net_device_core_stats __percpu *p;
11583
11584 p = alloc_percpu_gfp(struct net_device_core_stats,
11585 GFP_ATOMIC | __GFP_NOWARN);
11586
11587 if (p && cmpxchg(&dev->core_stats, NULL, p))
11588 free_percpu(p);
11589
11590 /* This READ_ONCE() pairs with the cmpxchg() above */
11591 return READ_ONCE(dev->core_stats);
11592 }
11593
netdev_core_stats_inc(struct net_device * dev,u32 offset)11594 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11595 {
11596 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11597 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11598 unsigned long __percpu *field;
11599
11600 if (unlikely(!p)) {
11601 p = netdev_core_stats_alloc(dev);
11602 if (!p)
11603 return;
11604 }
11605
11606 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11607 this_cpu_inc(*field);
11608 }
11609 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11610
11611 /**
11612 * dev_get_stats - get network device statistics
11613 * @dev: device to get statistics from
11614 * @storage: place to store stats
11615 *
11616 * Get network statistics from device. Return @storage.
11617 * The device driver may provide its own method by setting
11618 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11619 * otherwise the internal statistics structure is used.
11620 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11621 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11622 struct rtnl_link_stats64 *storage)
11623 {
11624 const struct net_device_ops *ops = dev->netdev_ops;
11625 const struct net_device_core_stats __percpu *p;
11626
11627 /*
11628 * IPv{4,6} and udp tunnels share common stat helpers and use
11629 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11630 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11631 */
11632 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11633 offsetof(struct pcpu_dstats, rx_bytes));
11634 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11635 offsetof(struct pcpu_dstats, rx_packets));
11636 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11637 offsetof(struct pcpu_dstats, tx_bytes));
11638 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11639 offsetof(struct pcpu_dstats, tx_packets));
11640
11641 if (ops->ndo_get_stats64) {
11642 memset(storage, 0, sizeof(*storage));
11643 ops->ndo_get_stats64(dev, storage);
11644 } else if (ops->ndo_get_stats) {
11645 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11646 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11647 dev_get_tstats64(dev, storage);
11648 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11649 dev_get_dstats64(dev, storage);
11650 } else {
11651 netdev_stats_to_stats64(storage, &dev->stats);
11652 }
11653
11654 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11655 p = READ_ONCE(dev->core_stats);
11656 if (p) {
11657 const struct net_device_core_stats *core_stats;
11658 int i;
11659
11660 for_each_possible_cpu(i) {
11661 core_stats = per_cpu_ptr(p, i);
11662 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11663 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11664 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11665 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11666 }
11667 }
11668 return storage;
11669 }
11670 EXPORT_SYMBOL(dev_get_stats);
11671
11672 /**
11673 * dev_fetch_sw_netstats - get per-cpu network device statistics
11674 * @s: place to store stats
11675 * @netstats: per-cpu network stats to read from
11676 *
11677 * Read per-cpu network statistics and populate the related fields in @s.
11678 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11679 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11680 const struct pcpu_sw_netstats __percpu *netstats)
11681 {
11682 int cpu;
11683
11684 for_each_possible_cpu(cpu) {
11685 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11686 const struct pcpu_sw_netstats *stats;
11687 unsigned int start;
11688
11689 stats = per_cpu_ptr(netstats, cpu);
11690 do {
11691 start = u64_stats_fetch_begin(&stats->syncp);
11692 rx_packets = u64_stats_read(&stats->rx_packets);
11693 rx_bytes = u64_stats_read(&stats->rx_bytes);
11694 tx_packets = u64_stats_read(&stats->tx_packets);
11695 tx_bytes = u64_stats_read(&stats->tx_bytes);
11696 } while (u64_stats_fetch_retry(&stats->syncp, start));
11697
11698 s->rx_packets += rx_packets;
11699 s->rx_bytes += rx_bytes;
11700 s->tx_packets += tx_packets;
11701 s->tx_bytes += tx_bytes;
11702 }
11703 }
11704 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11705
11706 /**
11707 * dev_get_tstats64 - ndo_get_stats64 implementation
11708 * @dev: device to get statistics from
11709 * @s: place to store stats
11710 *
11711 * Populate @s from dev->stats and dev->tstats. Can be used as
11712 * ndo_get_stats64() callback.
11713 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11714 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11715 {
11716 netdev_stats_to_stats64(s, &dev->stats);
11717 dev_fetch_sw_netstats(s, dev->tstats);
11718 }
11719 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11720
dev_ingress_queue_create(struct net_device * dev)11721 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11722 {
11723 struct netdev_queue *queue = dev_ingress_queue(dev);
11724
11725 #ifdef CONFIG_NET_CLS_ACT
11726 if (queue)
11727 return queue;
11728 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11729 if (!queue)
11730 return NULL;
11731 netdev_init_one_queue(dev, queue, NULL);
11732 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11733 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11734 rcu_assign_pointer(dev->ingress_queue, queue);
11735 #endif
11736 return queue;
11737 }
11738
11739 static const struct ethtool_ops default_ethtool_ops;
11740
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11741 void netdev_set_default_ethtool_ops(struct net_device *dev,
11742 const struct ethtool_ops *ops)
11743 {
11744 if (dev->ethtool_ops == &default_ethtool_ops)
11745 dev->ethtool_ops = ops;
11746 }
11747 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11748
11749 /**
11750 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11751 * @dev: netdev to enable the IRQ coalescing on
11752 *
11753 * Sets a conservative default for SW IRQ coalescing. Users can use
11754 * sysfs attributes to override the default values.
11755 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11756 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11757 {
11758 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11759
11760 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11761 netdev_set_gro_flush_timeout(dev, 20000);
11762 netdev_set_defer_hard_irqs(dev, 1);
11763 }
11764 }
11765 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11766
11767 /**
11768 * alloc_netdev_mqs - allocate network device
11769 * @sizeof_priv: size of private data to allocate space for
11770 * @name: device name format string
11771 * @name_assign_type: origin of device name
11772 * @setup: callback to initialize device
11773 * @txqs: the number of TX subqueues to allocate
11774 * @rxqs: the number of RX subqueues to allocate
11775 *
11776 * Allocates a struct net_device with private data area for driver use
11777 * and performs basic initialization. Also allocates subqueue structs
11778 * for each queue on the device.
11779 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11780 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11781 unsigned char name_assign_type,
11782 void (*setup)(struct net_device *),
11783 unsigned int txqs, unsigned int rxqs)
11784 {
11785 struct net_device *dev;
11786 size_t napi_config_sz;
11787 unsigned int maxqs;
11788
11789 BUG_ON(strlen(name) >= sizeof(dev->name));
11790
11791 if (txqs < 1) {
11792 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11793 return NULL;
11794 }
11795
11796 if (rxqs < 1) {
11797 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11798 return NULL;
11799 }
11800
11801 maxqs = max(txqs, rxqs);
11802
11803 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11804 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11805 if (!dev)
11806 return NULL;
11807
11808 dev->priv_len = sizeof_priv;
11809
11810 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11811 #ifdef CONFIG_PCPU_DEV_REFCNT
11812 dev->pcpu_refcnt = alloc_percpu(int);
11813 if (!dev->pcpu_refcnt)
11814 goto free_dev;
11815 __dev_hold(dev);
11816 #else
11817 refcount_set(&dev->dev_refcnt, 1);
11818 #endif
11819
11820 if (dev_addr_init(dev))
11821 goto free_pcpu;
11822
11823 dev_mc_init(dev);
11824 dev_uc_init(dev);
11825
11826 dev_net_set(dev, &init_net);
11827
11828 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11829 dev->xdp_zc_max_segs = 1;
11830 dev->gso_max_segs = GSO_MAX_SEGS;
11831 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11832 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11833 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11834 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11835 dev->tso_max_segs = TSO_MAX_SEGS;
11836 dev->upper_level = 1;
11837 dev->lower_level = 1;
11838 #ifdef CONFIG_LOCKDEP
11839 dev->nested_level = 0;
11840 INIT_LIST_HEAD(&dev->unlink_list);
11841 #endif
11842
11843 INIT_LIST_HEAD(&dev->napi_list);
11844 INIT_LIST_HEAD(&dev->unreg_list);
11845 INIT_LIST_HEAD(&dev->close_list);
11846 INIT_LIST_HEAD(&dev->link_watch_list);
11847 INIT_LIST_HEAD(&dev->adj_list.upper);
11848 INIT_LIST_HEAD(&dev->adj_list.lower);
11849 INIT_LIST_HEAD(&dev->ptype_all);
11850 INIT_LIST_HEAD(&dev->ptype_specific);
11851 INIT_LIST_HEAD(&dev->net_notifier_list);
11852 #ifdef CONFIG_NET_SCHED
11853 hash_init(dev->qdisc_hash);
11854 #endif
11855
11856 mutex_init(&dev->lock);
11857
11858 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11859 setup(dev);
11860
11861 if (!dev->tx_queue_len) {
11862 dev->priv_flags |= IFF_NO_QUEUE;
11863 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11864 }
11865
11866 dev->num_tx_queues = txqs;
11867 dev->real_num_tx_queues = txqs;
11868 if (netif_alloc_netdev_queues(dev))
11869 goto free_all;
11870
11871 dev->num_rx_queues = rxqs;
11872 dev->real_num_rx_queues = rxqs;
11873 if (netif_alloc_rx_queues(dev))
11874 goto free_all;
11875 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11876 if (!dev->ethtool)
11877 goto free_all;
11878
11879 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11880 if (!dev->cfg)
11881 goto free_all;
11882 dev->cfg_pending = dev->cfg;
11883
11884 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11885 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11886 if (!dev->napi_config)
11887 goto free_all;
11888
11889 strscpy(dev->name, name);
11890 dev->name_assign_type = name_assign_type;
11891 dev->group = INIT_NETDEV_GROUP;
11892 if (!dev->ethtool_ops)
11893 dev->ethtool_ops = &default_ethtool_ops;
11894
11895 nf_hook_netdev_init(dev);
11896
11897 return dev;
11898
11899 free_all:
11900 free_netdev(dev);
11901 return NULL;
11902
11903 free_pcpu:
11904 #ifdef CONFIG_PCPU_DEV_REFCNT
11905 free_percpu(dev->pcpu_refcnt);
11906 free_dev:
11907 #endif
11908 kvfree(dev);
11909 return NULL;
11910 }
11911 EXPORT_SYMBOL(alloc_netdev_mqs);
11912
netdev_napi_exit(struct net_device * dev)11913 static void netdev_napi_exit(struct net_device *dev)
11914 {
11915 if (!list_empty(&dev->napi_list)) {
11916 struct napi_struct *p, *n;
11917
11918 netdev_lock(dev);
11919 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11920 __netif_napi_del_locked(p);
11921 netdev_unlock(dev);
11922
11923 synchronize_net();
11924 }
11925
11926 kvfree(dev->napi_config);
11927 }
11928
11929 /**
11930 * free_netdev - free network device
11931 * @dev: device
11932 *
11933 * This function does the last stage of destroying an allocated device
11934 * interface. The reference to the device object is released. If this
11935 * is the last reference then it will be freed.Must be called in process
11936 * context.
11937 */
free_netdev(struct net_device * dev)11938 void free_netdev(struct net_device *dev)
11939 {
11940 might_sleep();
11941
11942 /* When called immediately after register_netdevice() failed the unwind
11943 * handling may still be dismantling the device. Handle that case by
11944 * deferring the free.
11945 */
11946 if (dev->reg_state == NETREG_UNREGISTERING) {
11947 ASSERT_RTNL();
11948 dev->needs_free_netdev = true;
11949 return;
11950 }
11951
11952 WARN_ON(dev->cfg != dev->cfg_pending);
11953 kfree(dev->cfg);
11954 kfree(dev->ethtool);
11955 netif_free_tx_queues(dev);
11956 netif_free_rx_queues(dev);
11957
11958 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11959
11960 /* Flush device addresses */
11961 dev_addr_flush(dev);
11962
11963 netdev_napi_exit(dev);
11964
11965 netif_del_cpu_rmap(dev);
11966
11967 ref_tracker_dir_exit(&dev->refcnt_tracker);
11968 #ifdef CONFIG_PCPU_DEV_REFCNT
11969 free_percpu(dev->pcpu_refcnt);
11970 dev->pcpu_refcnt = NULL;
11971 #endif
11972 free_percpu(dev->core_stats);
11973 dev->core_stats = NULL;
11974 free_percpu(dev->xdp_bulkq);
11975 dev->xdp_bulkq = NULL;
11976
11977 netdev_free_phy_link_topology(dev);
11978
11979 mutex_destroy(&dev->lock);
11980
11981 /* Compatibility with error handling in drivers */
11982 if (dev->reg_state == NETREG_UNINITIALIZED ||
11983 dev->reg_state == NETREG_DUMMY) {
11984 kvfree(dev);
11985 return;
11986 }
11987
11988 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11989 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11990
11991 /* will free via device release */
11992 put_device(&dev->dev);
11993 }
11994 EXPORT_SYMBOL(free_netdev);
11995
11996 /**
11997 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11998 * @sizeof_priv: size of private data to allocate space for
11999 *
12000 * Return: the allocated net_device on success, NULL otherwise
12001 */
alloc_netdev_dummy(int sizeof_priv)12002 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12003 {
12004 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12005 init_dummy_netdev);
12006 }
12007 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12008
12009 /**
12010 * synchronize_net - Synchronize with packet receive processing
12011 *
12012 * Wait for packets currently being received to be done.
12013 * Does not block later packets from starting.
12014 */
synchronize_net(void)12015 void synchronize_net(void)
12016 {
12017 might_sleep();
12018 if (from_cleanup_net() || rtnl_is_locked())
12019 synchronize_rcu_expedited();
12020 else
12021 synchronize_rcu();
12022 }
12023 EXPORT_SYMBOL(synchronize_net);
12024
netdev_rss_contexts_free(struct net_device * dev)12025 static void netdev_rss_contexts_free(struct net_device *dev)
12026 {
12027 struct ethtool_rxfh_context *ctx;
12028 unsigned long context;
12029
12030 mutex_lock(&dev->ethtool->rss_lock);
12031 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12032 xa_erase(&dev->ethtool->rss_ctx, context);
12033 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12034 kfree(ctx);
12035 }
12036 xa_destroy(&dev->ethtool->rss_ctx);
12037 mutex_unlock(&dev->ethtool->rss_lock);
12038 }
12039
12040 /**
12041 * unregister_netdevice_queue - remove device from the kernel
12042 * @dev: device
12043 * @head: list
12044 *
12045 * This function shuts down a device interface and removes it
12046 * from the kernel tables.
12047 * If head not NULL, device is queued to be unregistered later.
12048 *
12049 * Callers must hold the rtnl semaphore. You may want
12050 * unregister_netdev() instead of this.
12051 */
12052
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12053 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12054 {
12055 ASSERT_RTNL();
12056
12057 if (head) {
12058 list_move_tail(&dev->unreg_list, head);
12059 } else {
12060 LIST_HEAD(single);
12061
12062 list_add(&dev->unreg_list, &single);
12063 unregister_netdevice_many(&single);
12064 }
12065 }
12066 EXPORT_SYMBOL(unregister_netdevice_queue);
12067
dev_memory_provider_uninstall(struct net_device * dev)12068 static void dev_memory_provider_uninstall(struct net_device *dev)
12069 {
12070 unsigned int i;
12071
12072 for (i = 0; i < dev->real_num_rx_queues; i++) {
12073 struct netdev_rx_queue *rxq = &dev->_rx[i];
12074 struct pp_memory_provider_params *p = &rxq->mp_params;
12075
12076 if (p->mp_ops && p->mp_ops->uninstall)
12077 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12078 }
12079 }
12080
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12081 void unregister_netdevice_many_notify(struct list_head *head,
12082 u32 portid, const struct nlmsghdr *nlh)
12083 {
12084 struct net_device *dev, *tmp;
12085 LIST_HEAD(close_head);
12086 int cnt = 0;
12087
12088 BUG_ON(dev_boot_phase);
12089 ASSERT_RTNL();
12090
12091 if (list_empty(head))
12092 return;
12093
12094 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12095 /* Some devices call without registering
12096 * for initialization unwind. Remove those
12097 * devices and proceed with the remaining.
12098 */
12099 if (dev->reg_state == NETREG_UNINITIALIZED) {
12100 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12101 dev->name, dev);
12102
12103 WARN_ON(1);
12104 list_del(&dev->unreg_list);
12105 continue;
12106 }
12107 dev->dismantle = true;
12108 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12109 }
12110
12111 /* If device is running, close it first. Start with ops locked... */
12112 list_for_each_entry(dev, head, unreg_list) {
12113 if (netdev_need_ops_lock(dev)) {
12114 list_add_tail(&dev->close_list, &close_head);
12115 netdev_lock(dev);
12116 }
12117 }
12118 netif_close_many(&close_head, true);
12119 /* ... now unlock them and go over the rest. */
12120 list_for_each_entry(dev, head, unreg_list) {
12121 if (netdev_need_ops_lock(dev))
12122 netdev_unlock(dev);
12123 else
12124 list_add_tail(&dev->close_list, &close_head);
12125 }
12126 netif_close_many(&close_head, true);
12127
12128 list_for_each_entry(dev, head, unreg_list) {
12129 /* And unlink it from device chain. */
12130 unlist_netdevice(dev);
12131 netdev_lock(dev);
12132 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12133 netdev_unlock(dev);
12134 }
12135 flush_all_backlogs();
12136
12137 synchronize_net();
12138
12139 list_for_each_entry(dev, head, unreg_list) {
12140 struct sk_buff *skb = NULL;
12141
12142 /* Shutdown queueing discipline. */
12143 netdev_lock_ops(dev);
12144 dev_shutdown(dev);
12145 dev_tcx_uninstall(dev);
12146 dev_xdp_uninstall(dev);
12147 dev_memory_provider_uninstall(dev);
12148 netdev_unlock_ops(dev);
12149 bpf_dev_bound_netdev_unregister(dev);
12150
12151 netdev_offload_xstats_disable_all(dev);
12152
12153 /* Notify protocols, that we are about to destroy
12154 * this device. They should clean all the things.
12155 */
12156 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12157
12158 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12159 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12160 GFP_KERNEL, NULL, 0,
12161 portid, nlh);
12162
12163 /*
12164 * Flush the unicast and multicast chains
12165 */
12166 dev_uc_flush(dev);
12167 dev_mc_flush(dev);
12168
12169 netdev_name_node_alt_flush(dev);
12170 netdev_name_node_free(dev->name_node);
12171
12172 netdev_rss_contexts_free(dev);
12173
12174 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12175
12176 if (dev->netdev_ops->ndo_uninit)
12177 dev->netdev_ops->ndo_uninit(dev);
12178
12179 mutex_destroy(&dev->ethtool->rss_lock);
12180
12181 net_shaper_flush_netdev(dev);
12182
12183 if (skb)
12184 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12185
12186 /* Notifier chain MUST detach us all upper devices. */
12187 WARN_ON(netdev_has_any_upper_dev(dev));
12188 WARN_ON(netdev_has_any_lower_dev(dev));
12189
12190 /* Remove entries from kobject tree */
12191 netdev_unregister_kobject(dev);
12192 #ifdef CONFIG_XPS
12193 /* Remove XPS queueing entries */
12194 netif_reset_xps_queues_gt(dev, 0);
12195 #endif
12196 }
12197
12198 synchronize_net();
12199
12200 list_for_each_entry(dev, head, unreg_list) {
12201 netdev_put(dev, &dev->dev_registered_tracker);
12202 net_set_todo(dev);
12203 cnt++;
12204 }
12205 atomic_add(cnt, &dev_unreg_count);
12206
12207 list_del(head);
12208 }
12209
12210 /**
12211 * unregister_netdevice_many - unregister many devices
12212 * @head: list of devices
12213 *
12214 * Note: As most callers use a stack allocated list_head,
12215 * we force a list_del() to make sure stack won't be corrupted later.
12216 */
unregister_netdevice_many(struct list_head * head)12217 void unregister_netdevice_many(struct list_head *head)
12218 {
12219 unregister_netdevice_many_notify(head, 0, NULL);
12220 }
12221 EXPORT_SYMBOL(unregister_netdevice_many);
12222
12223 /**
12224 * unregister_netdev - remove device from the kernel
12225 * @dev: device
12226 *
12227 * This function shuts down a device interface and removes it
12228 * from the kernel tables.
12229 *
12230 * This is just a wrapper for unregister_netdevice that takes
12231 * the rtnl semaphore. In general you want to use this and not
12232 * unregister_netdevice.
12233 */
unregister_netdev(struct net_device * dev)12234 void unregister_netdev(struct net_device *dev)
12235 {
12236 rtnl_net_dev_lock(dev);
12237 unregister_netdevice(dev);
12238 rtnl_net_dev_unlock(dev);
12239 }
12240 EXPORT_SYMBOL(unregister_netdev);
12241
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12242 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12243 const char *pat, int new_ifindex,
12244 struct netlink_ext_ack *extack)
12245 {
12246 struct netdev_name_node *name_node;
12247 struct net *net_old = dev_net(dev);
12248 char new_name[IFNAMSIZ] = {};
12249 int err, new_nsid;
12250
12251 ASSERT_RTNL();
12252
12253 /* Don't allow namespace local devices to be moved. */
12254 err = -EINVAL;
12255 if (dev->netns_immutable) {
12256 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12257 goto out;
12258 }
12259
12260 /* Ensure the device has been registered */
12261 if (dev->reg_state != NETREG_REGISTERED) {
12262 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12263 goto out;
12264 }
12265
12266 /* Get out if there is nothing todo */
12267 err = 0;
12268 if (net_eq(net_old, net))
12269 goto out;
12270
12271 /* Pick the destination device name, and ensure
12272 * we can use it in the destination network namespace.
12273 */
12274 err = -EEXIST;
12275 if (netdev_name_in_use(net, dev->name)) {
12276 /* We get here if we can't use the current device name */
12277 if (!pat) {
12278 NL_SET_ERR_MSG(extack,
12279 "An interface with the same name exists in the target netns");
12280 goto out;
12281 }
12282 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12283 if (err < 0) {
12284 NL_SET_ERR_MSG_FMT(extack,
12285 "Unable to use '%s' for the new interface name in the target netns",
12286 pat);
12287 goto out;
12288 }
12289 }
12290 /* Check that none of the altnames conflicts. */
12291 err = -EEXIST;
12292 netdev_for_each_altname(dev, name_node) {
12293 if (netdev_name_in_use(net, name_node->name)) {
12294 NL_SET_ERR_MSG_FMT(extack,
12295 "An interface with the altname %s exists in the target netns",
12296 name_node->name);
12297 goto out;
12298 }
12299 }
12300
12301 /* Check that new_ifindex isn't used yet. */
12302 if (new_ifindex) {
12303 err = dev_index_reserve(net, new_ifindex);
12304 if (err < 0) {
12305 NL_SET_ERR_MSG_FMT(extack,
12306 "The ifindex %d is not available in the target netns",
12307 new_ifindex);
12308 goto out;
12309 }
12310 } else {
12311 /* If there is an ifindex conflict assign a new one */
12312 err = dev_index_reserve(net, dev->ifindex);
12313 if (err == -EBUSY)
12314 err = dev_index_reserve(net, 0);
12315 if (err < 0) {
12316 NL_SET_ERR_MSG(extack,
12317 "Unable to allocate a new ifindex in the target netns");
12318 goto out;
12319 }
12320 new_ifindex = err;
12321 }
12322
12323 /*
12324 * And now a mini version of register_netdevice unregister_netdevice.
12325 */
12326
12327 netdev_lock_ops(dev);
12328 /* If device is running close it first. */
12329 netif_close(dev);
12330 /* And unlink it from device chain */
12331 unlist_netdevice(dev);
12332
12333 if (!netdev_need_ops_lock(dev))
12334 netdev_lock(dev);
12335 dev->moving_ns = true;
12336 netdev_unlock(dev);
12337
12338 synchronize_net();
12339
12340 /* Shutdown queueing discipline. */
12341 netdev_lock_ops(dev);
12342 dev_shutdown(dev);
12343 netdev_unlock_ops(dev);
12344
12345 /* Notify protocols, that we are about to destroy
12346 * this device. They should clean all the things.
12347 *
12348 * Note that dev->reg_state stays at NETREG_REGISTERED.
12349 * This is wanted because this way 8021q and macvlan know
12350 * the device is just moving and can keep their slaves up.
12351 */
12352 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12353 rcu_barrier();
12354
12355 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12356
12357 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12358 new_ifindex);
12359
12360 /*
12361 * Flush the unicast and multicast chains
12362 */
12363 dev_uc_flush(dev);
12364 dev_mc_flush(dev);
12365
12366 /* Send a netdev-removed uevent to the old namespace */
12367 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12368 netdev_adjacent_del_links(dev);
12369
12370 /* Move per-net netdevice notifiers that are following the netdevice */
12371 move_netdevice_notifiers_dev_net(dev, net);
12372
12373 /* Actually switch the network namespace */
12374 netdev_lock(dev);
12375 dev_net_set(dev, net);
12376 netdev_unlock(dev);
12377 dev->ifindex = new_ifindex;
12378
12379 if (new_name[0]) {
12380 /* Rename the netdev to prepared name */
12381 write_seqlock_bh(&netdev_rename_lock);
12382 strscpy(dev->name, new_name, IFNAMSIZ);
12383 write_sequnlock_bh(&netdev_rename_lock);
12384 }
12385
12386 /* Fixup kobjects */
12387 dev_set_uevent_suppress(&dev->dev, 1);
12388 err = device_rename(&dev->dev, dev->name);
12389 dev_set_uevent_suppress(&dev->dev, 0);
12390 WARN_ON(err);
12391
12392 /* Send a netdev-add uevent to the new namespace */
12393 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12394 netdev_adjacent_add_links(dev);
12395
12396 /* Adapt owner in case owning user namespace of target network
12397 * namespace is different from the original one.
12398 */
12399 err = netdev_change_owner(dev, net_old, net);
12400 WARN_ON(err);
12401
12402 netdev_lock(dev);
12403 dev->moving_ns = false;
12404 if (!netdev_need_ops_lock(dev))
12405 netdev_unlock(dev);
12406
12407 /* Add the device back in the hashes */
12408 list_netdevice(dev);
12409 /* Notify protocols, that a new device appeared. */
12410 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12411 netdev_unlock_ops(dev);
12412
12413 /*
12414 * Prevent userspace races by waiting until the network
12415 * device is fully setup before sending notifications.
12416 */
12417 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12418
12419 synchronize_net();
12420 err = 0;
12421 out:
12422 return err;
12423 }
12424
dev_cpu_dead(unsigned int oldcpu)12425 static int dev_cpu_dead(unsigned int oldcpu)
12426 {
12427 struct sk_buff **list_skb;
12428 struct sk_buff *skb;
12429 unsigned int cpu;
12430 struct softnet_data *sd, *oldsd, *remsd = NULL;
12431
12432 local_irq_disable();
12433 cpu = smp_processor_id();
12434 sd = &per_cpu(softnet_data, cpu);
12435 oldsd = &per_cpu(softnet_data, oldcpu);
12436
12437 /* Find end of our completion_queue. */
12438 list_skb = &sd->completion_queue;
12439 while (*list_skb)
12440 list_skb = &(*list_skb)->next;
12441 /* Append completion queue from offline CPU. */
12442 *list_skb = oldsd->completion_queue;
12443 oldsd->completion_queue = NULL;
12444
12445 /* Append output queue from offline CPU. */
12446 if (oldsd->output_queue) {
12447 *sd->output_queue_tailp = oldsd->output_queue;
12448 sd->output_queue_tailp = oldsd->output_queue_tailp;
12449 oldsd->output_queue = NULL;
12450 oldsd->output_queue_tailp = &oldsd->output_queue;
12451 }
12452 /* Append NAPI poll list from offline CPU, with one exception :
12453 * process_backlog() must be called by cpu owning percpu backlog.
12454 * We properly handle process_queue & input_pkt_queue later.
12455 */
12456 while (!list_empty(&oldsd->poll_list)) {
12457 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12458 struct napi_struct,
12459 poll_list);
12460
12461 list_del_init(&napi->poll_list);
12462 if (napi->poll == process_backlog)
12463 napi->state &= NAPIF_STATE_THREADED;
12464 else
12465 ____napi_schedule(sd, napi);
12466 }
12467
12468 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12469 local_irq_enable();
12470
12471 if (!use_backlog_threads()) {
12472 #ifdef CONFIG_RPS
12473 remsd = oldsd->rps_ipi_list;
12474 oldsd->rps_ipi_list = NULL;
12475 #endif
12476 /* send out pending IPI's on offline CPU */
12477 net_rps_send_ipi(remsd);
12478 }
12479
12480 /* Process offline CPU's input_pkt_queue */
12481 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12482 netif_rx(skb);
12483 rps_input_queue_head_incr(oldsd);
12484 }
12485 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12486 netif_rx(skb);
12487 rps_input_queue_head_incr(oldsd);
12488 }
12489
12490 return 0;
12491 }
12492
12493 /**
12494 * netdev_increment_features - increment feature set by one
12495 * @all: current feature set
12496 * @one: new feature set
12497 * @mask: mask feature set
12498 *
12499 * Computes a new feature set after adding a device with feature set
12500 * @one to the master device with current feature set @all. Will not
12501 * enable anything that is off in @mask. Returns the new feature set.
12502 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12503 netdev_features_t netdev_increment_features(netdev_features_t all,
12504 netdev_features_t one, netdev_features_t mask)
12505 {
12506 if (mask & NETIF_F_HW_CSUM)
12507 mask |= NETIF_F_CSUM_MASK;
12508 mask |= NETIF_F_VLAN_CHALLENGED;
12509
12510 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12511 all &= one | ~NETIF_F_ALL_FOR_ALL;
12512
12513 /* If one device supports hw checksumming, set for all. */
12514 if (all & NETIF_F_HW_CSUM)
12515 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12516
12517 return all;
12518 }
12519 EXPORT_SYMBOL(netdev_increment_features);
12520
netdev_create_hash(void)12521 static struct hlist_head * __net_init netdev_create_hash(void)
12522 {
12523 int i;
12524 struct hlist_head *hash;
12525
12526 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12527 if (hash != NULL)
12528 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12529 INIT_HLIST_HEAD(&hash[i]);
12530
12531 return hash;
12532 }
12533
12534 /* Initialize per network namespace state */
netdev_init(struct net * net)12535 static int __net_init netdev_init(struct net *net)
12536 {
12537 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12538 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12539
12540 INIT_LIST_HEAD(&net->dev_base_head);
12541
12542 net->dev_name_head = netdev_create_hash();
12543 if (net->dev_name_head == NULL)
12544 goto err_name;
12545
12546 net->dev_index_head = netdev_create_hash();
12547 if (net->dev_index_head == NULL)
12548 goto err_idx;
12549
12550 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12551
12552 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12553
12554 return 0;
12555
12556 err_idx:
12557 kfree(net->dev_name_head);
12558 err_name:
12559 return -ENOMEM;
12560 }
12561
12562 /**
12563 * netdev_drivername - network driver for the device
12564 * @dev: network device
12565 *
12566 * Determine network driver for device.
12567 */
netdev_drivername(const struct net_device * dev)12568 const char *netdev_drivername(const struct net_device *dev)
12569 {
12570 const struct device_driver *driver;
12571 const struct device *parent;
12572 const char *empty = "";
12573
12574 parent = dev->dev.parent;
12575 if (!parent)
12576 return empty;
12577
12578 driver = parent->driver;
12579 if (driver && driver->name)
12580 return driver->name;
12581 return empty;
12582 }
12583
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12584 static void __netdev_printk(const char *level, const struct net_device *dev,
12585 struct va_format *vaf)
12586 {
12587 if (dev && dev->dev.parent) {
12588 dev_printk_emit(level[1] - '0',
12589 dev->dev.parent,
12590 "%s %s %s%s: %pV",
12591 dev_driver_string(dev->dev.parent),
12592 dev_name(dev->dev.parent),
12593 netdev_name(dev), netdev_reg_state(dev),
12594 vaf);
12595 } else if (dev) {
12596 printk("%s%s%s: %pV",
12597 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12598 } else {
12599 printk("%s(NULL net_device): %pV", level, vaf);
12600 }
12601 }
12602
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12603 void netdev_printk(const char *level, const struct net_device *dev,
12604 const char *format, ...)
12605 {
12606 struct va_format vaf;
12607 va_list args;
12608
12609 va_start(args, format);
12610
12611 vaf.fmt = format;
12612 vaf.va = &args;
12613
12614 __netdev_printk(level, dev, &vaf);
12615
12616 va_end(args);
12617 }
12618 EXPORT_SYMBOL(netdev_printk);
12619
12620 #define define_netdev_printk_level(func, level) \
12621 void func(const struct net_device *dev, const char *fmt, ...) \
12622 { \
12623 struct va_format vaf; \
12624 va_list args; \
12625 \
12626 va_start(args, fmt); \
12627 \
12628 vaf.fmt = fmt; \
12629 vaf.va = &args; \
12630 \
12631 __netdev_printk(level, dev, &vaf); \
12632 \
12633 va_end(args); \
12634 } \
12635 EXPORT_SYMBOL(func);
12636
12637 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12638 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12639 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12640 define_netdev_printk_level(netdev_err, KERN_ERR);
12641 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12642 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12643 define_netdev_printk_level(netdev_info, KERN_INFO);
12644
netdev_exit(struct net * net)12645 static void __net_exit netdev_exit(struct net *net)
12646 {
12647 kfree(net->dev_name_head);
12648 kfree(net->dev_index_head);
12649 xa_destroy(&net->dev_by_index);
12650 if (net != &init_net)
12651 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12652 }
12653
12654 static struct pernet_operations __net_initdata netdev_net_ops = {
12655 .init = netdev_init,
12656 .exit = netdev_exit,
12657 };
12658
default_device_exit_net(struct net * net)12659 static void __net_exit default_device_exit_net(struct net *net)
12660 {
12661 struct netdev_name_node *name_node, *tmp;
12662 struct net_device *dev, *aux;
12663 /*
12664 * Push all migratable network devices back to the
12665 * initial network namespace
12666 */
12667 ASSERT_RTNL();
12668 for_each_netdev_safe(net, dev, aux) {
12669 int err;
12670 char fb_name[IFNAMSIZ];
12671
12672 /* Ignore unmoveable devices (i.e. loopback) */
12673 if (dev->netns_immutable)
12674 continue;
12675
12676 /* Leave virtual devices for the generic cleanup */
12677 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12678 continue;
12679
12680 /* Push remaining network devices to init_net */
12681 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12682 if (netdev_name_in_use(&init_net, fb_name))
12683 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12684
12685 netdev_for_each_altname_safe(dev, name_node, tmp)
12686 if (netdev_name_in_use(&init_net, name_node->name))
12687 __netdev_name_node_alt_destroy(name_node);
12688
12689 err = dev_change_net_namespace(dev, &init_net, fb_name);
12690 if (err) {
12691 pr_emerg("%s: failed to move %s to init_net: %d\n",
12692 __func__, dev->name, err);
12693 BUG();
12694 }
12695 }
12696 }
12697
default_device_exit_batch(struct list_head * net_list)12698 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12699 {
12700 /* At exit all network devices most be removed from a network
12701 * namespace. Do this in the reverse order of registration.
12702 * Do this across as many network namespaces as possible to
12703 * improve batching efficiency.
12704 */
12705 struct net_device *dev;
12706 struct net *net;
12707 LIST_HEAD(dev_kill_list);
12708
12709 rtnl_lock();
12710 list_for_each_entry(net, net_list, exit_list) {
12711 default_device_exit_net(net);
12712 cond_resched();
12713 }
12714
12715 list_for_each_entry(net, net_list, exit_list) {
12716 for_each_netdev_reverse(net, dev) {
12717 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12718 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12719 else
12720 unregister_netdevice_queue(dev, &dev_kill_list);
12721 }
12722 }
12723 unregister_netdevice_many(&dev_kill_list);
12724 rtnl_unlock();
12725 }
12726
12727 static struct pernet_operations __net_initdata default_device_ops = {
12728 .exit_batch = default_device_exit_batch,
12729 };
12730
net_dev_struct_check(void)12731 static void __init net_dev_struct_check(void)
12732 {
12733 /* TX read-mostly hotpath */
12734 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12736 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12737 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12739 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12740 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12741 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12742 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12743 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12744 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12745 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12747 #ifdef CONFIG_XPS
12748 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12749 #endif
12750 #ifdef CONFIG_NETFILTER_EGRESS
12751 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12752 #endif
12753 #ifdef CONFIG_NET_XGRESS
12754 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12755 #endif
12756 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12757
12758 /* TXRX read-mostly hotpath */
12759 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12760 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12761 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12762 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12763 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12764 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12765 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12766
12767 /* RX read-mostly hotpath */
12768 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12769 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12775 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12776 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12777 #ifdef CONFIG_NETPOLL
12778 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12779 #endif
12780 #ifdef CONFIG_NET_XGRESS
12781 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12782 #endif
12783 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12784 }
12785
12786 /*
12787 * Initialize the DEV module. At boot time this walks the device list and
12788 * unhooks any devices that fail to initialise (normally hardware not
12789 * present) and leaves us with a valid list of present and active devices.
12790 *
12791 */
12792
12793 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12794 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12795
net_page_pool_create(int cpuid)12796 static int net_page_pool_create(int cpuid)
12797 {
12798 #if IS_ENABLED(CONFIG_PAGE_POOL)
12799 struct page_pool_params page_pool_params = {
12800 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12801 .flags = PP_FLAG_SYSTEM_POOL,
12802 .nid = cpu_to_mem(cpuid),
12803 };
12804 struct page_pool *pp_ptr;
12805 int err;
12806
12807 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12808 if (IS_ERR(pp_ptr))
12809 return -ENOMEM;
12810
12811 err = xdp_reg_page_pool(pp_ptr);
12812 if (err) {
12813 page_pool_destroy(pp_ptr);
12814 return err;
12815 }
12816
12817 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12818 #endif
12819 return 0;
12820 }
12821
backlog_napi_should_run(unsigned int cpu)12822 static int backlog_napi_should_run(unsigned int cpu)
12823 {
12824 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12825 struct napi_struct *napi = &sd->backlog;
12826
12827 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12828 }
12829
run_backlog_napi(unsigned int cpu)12830 static void run_backlog_napi(unsigned int cpu)
12831 {
12832 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12833
12834 napi_threaded_poll_loop(&sd->backlog);
12835 }
12836
backlog_napi_setup(unsigned int cpu)12837 static void backlog_napi_setup(unsigned int cpu)
12838 {
12839 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12840 struct napi_struct *napi = &sd->backlog;
12841
12842 napi->thread = this_cpu_read(backlog_napi);
12843 set_bit(NAPI_STATE_THREADED, &napi->state);
12844 }
12845
12846 static struct smp_hotplug_thread backlog_threads = {
12847 .store = &backlog_napi,
12848 .thread_should_run = backlog_napi_should_run,
12849 .thread_fn = run_backlog_napi,
12850 .thread_comm = "backlog_napi/%u",
12851 .setup = backlog_napi_setup,
12852 };
12853
12854 /*
12855 * This is called single threaded during boot, so no need
12856 * to take the rtnl semaphore.
12857 */
net_dev_init(void)12858 static int __init net_dev_init(void)
12859 {
12860 int i, rc = -ENOMEM;
12861
12862 BUG_ON(!dev_boot_phase);
12863
12864 net_dev_struct_check();
12865
12866 if (dev_proc_init())
12867 goto out;
12868
12869 if (netdev_kobject_init())
12870 goto out;
12871
12872 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12873 INIT_LIST_HEAD(&ptype_base[i]);
12874
12875 if (register_pernet_subsys(&netdev_net_ops))
12876 goto out;
12877
12878 /*
12879 * Initialise the packet receive queues.
12880 */
12881
12882 flush_backlogs_fallback = flush_backlogs_alloc();
12883 if (!flush_backlogs_fallback)
12884 goto out;
12885
12886 for_each_possible_cpu(i) {
12887 struct softnet_data *sd = &per_cpu(softnet_data, i);
12888
12889 skb_queue_head_init(&sd->input_pkt_queue);
12890 skb_queue_head_init(&sd->process_queue);
12891 #ifdef CONFIG_XFRM_OFFLOAD
12892 skb_queue_head_init(&sd->xfrm_backlog);
12893 #endif
12894 INIT_LIST_HEAD(&sd->poll_list);
12895 sd->output_queue_tailp = &sd->output_queue;
12896 #ifdef CONFIG_RPS
12897 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12898 sd->cpu = i;
12899 #endif
12900 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12901 spin_lock_init(&sd->defer_lock);
12902
12903 gro_init(&sd->backlog.gro);
12904 sd->backlog.poll = process_backlog;
12905 sd->backlog.weight = weight_p;
12906 INIT_LIST_HEAD(&sd->backlog.poll_list);
12907
12908 if (net_page_pool_create(i))
12909 goto out;
12910 }
12911 if (use_backlog_threads())
12912 smpboot_register_percpu_thread(&backlog_threads);
12913
12914 dev_boot_phase = 0;
12915
12916 /* The loopback device is special if any other network devices
12917 * is present in a network namespace the loopback device must
12918 * be present. Since we now dynamically allocate and free the
12919 * loopback device ensure this invariant is maintained by
12920 * keeping the loopback device as the first device on the
12921 * list of network devices. Ensuring the loopback devices
12922 * is the first device that appears and the last network device
12923 * that disappears.
12924 */
12925 if (register_pernet_device(&loopback_net_ops))
12926 goto out;
12927
12928 if (register_pernet_device(&default_device_ops))
12929 goto out;
12930
12931 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12932 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12933
12934 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12935 NULL, dev_cpu_dead);
12936 WARN_ON(rc < 0);
12937 rc = 0;
12938
12939 /* avoid static key IPIs to isolated CPUs */
12940 if (housekeeping_enabled(HK_TYPE_MISC))
12941 net_enable_timestamp();
12942 out:
12943 if (rc < 0) {
12944 for_each_possible_cpu(i) {
12945 struct page_pool *pp_ptr;
12946
12947 pp_ptr = per_cpu(system_page_pool.pool, i);
12948 if (!pp_ptr)
12949 continue;
12950
12951 xdp_unreg_page_pool(pp_ptr);
12952 page_pool_destroy(pp_ptr);
12953 per_cpu(system_page_pool.pool, i) = NULL;
12954 }
12955 }
12956
12957 return rc;
12958 }
12959
12960 subsys_initcall(net_dev_init);
12961