1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
initname(struct filename * name)128 static inline void initname(struct filename *name)
129 {
130 name->uptr = NULL;
131 name->aname = NULL;
132 atomic_set(&name->refcnt, 1);
133 }
134
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 struct filename *result;
139 char *kname;
140 int len;
141
142 result = audit_reusename(filename);
143 if (result)
144 return result;
145
146 result = __getname();
147 if (unlikely(!result))
148 return ERR_PTR(-ENOMEM);
149
150 /*
151 * First, try to embed the struct filename inside the names_cache
152 * allocation
153 */
154 kname = (char *)result->iname;
155 result->name = kname;
156
157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 /*
159 * Handle both empty path and copy failure in one go.
160 */
161 if (unlikely(len <= 0)) {
162 if (unlikely(len < 0)) {
163 __putname(result);
164 return ERR_PTR(len);
165 }
166
167 /* The empty path is special. */
168 if (!(flags & LOOKUP_EMPTY)) {
169 __putname(result);
170 return ERR_PTR(-ENOENT);
171 }
172 }
173
174 /*
175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 * separate struct filename so we can dedicate the entire
177 * names_cache allocation for the pathname, and re-do the copy from
178 * userland.
179 */
180 if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 const size_t size = offsetof(struct filename, iname[1]);
182 kname = (char *)result;
183
184 /*
185 * size is chosen that way we to guarantee that
186 * result->iname[0] is within the same object and that
187 * kname can't be equal to result->iname, no matter what.
188 */
189 result = kzalloc(size, GFP_KERNEL);
190 if (unlikely(!result)) {
191 __putname(kname);
192 return ERR_PTR(-ENOMEM);
193 }
194 result->name = kname;
195 len = strncpy_from_user(kname, filename, PATH_MAX);
196 if (unlikely(len < 0)) {
197 __putname(kname);
198 kfree(result);
199 return ERR_PTR(len);
200 }
201 /* The empty path is special. */
202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 __putname(kname);
204 kfree(result);
205 return ERR_PTR(-ENOENT);
206 }
207 if (unlikely(len == PATH_MAX)) {
208 __putname(kname);
209 kfree(result);
210 return ERR_PTR(-ENAMETOOLONG);
211 }
212 }
213 initname(result);
214 audit_getname(result);
215 return result;
216 }
217
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221
222 return getname_flags(filename, flags);
223 }
224
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 struct filename *name;
228 char c;
229
230 /* try to save on allocations; loss on um, though */
231 if (get_user(c, pathname))
232 return ERR_PTR(-EFAULT);
233 if (!c)
234 return NULL;
235
236 name = getname_flags(pathname, LOOKUP_EMPTY);
237 if (!IS_ERR(name) && !(name->name[0])) {
238 putname(name);
239 name = NULL;
240 }
241 return name;
242 }
243
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 struct filename *result;
247 int len = strlen(filename) + 1;
248
249 result = __getname();
250 if (unlikely(!result))
251 return ERR_PTR(-ENOMEM);
252
253 if (len <= EMBEDDED_NAME_MAX) {
254 result->name = (char *)result->iname;
255 } else if (len <= PATH_MAX) {
256 const size_t size = offsetof(struct filename, iname[1]);
257 struct filename *tmp;
258
259 tmp = kmalloc(size, GFP_KERNEL);
260 if (unlikely(!tmp)) {
261 __putname(result);
262 return ERR_PTR(-ENOMEM);
263 }
264 tmp->name = (char *)result;
265 result = tmp;
266 } else {
267 __putname(result);
268 return ERR_PTR(-ENAMETOOLONG);
269 }
270 memcpy((char *)result->name, filename, len);
271 initname(result);
272 audit_getname(result);
273 return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 int refcnt;
280
281 if (IS_ERR_OR_NULL(name))
282 return;
283
284 refcnt = atomic_read(&name->refcnt);
285 if (refcnt != 1) {
286 if (WARN_ON_ONCE(!refcnt))
287 return;
288
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
291 }
292
293 if (name->name != name->iname) {
294 __putname(name->name);
295 kfree(name);
296 } else
297 __putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300
301 /**
302 * check_acl - perform ACL permission checking
303 * @idmap: idmap of the mount the inode was found from
304 * @inode: inode to check permissions on
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 *
307 * This function performs the ACL permission checking. Since this function
308 * retrieve POSIX acls it needs to know whether it is called from a blocking or
309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 *
311 * If the inode has been found through an idmapped mount the idmap of
312 * the vfsmount must be passed through @idmap. This function will then take
313 * care to map the inode according to @idmap before checking permissions.
314 * On non-idmapped mounts or if permission checking is to be performed on the
315 * raw inode simply pass @nop_mnt_idmap.
316 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 struct posix_acl *acl;
322
323 if (mask & MAY_NOT_BLOCK) {
324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 if (!acl)
326 return -EAGAIN;
327 /* no ->get_inode_acl() calls in RCU mode... */
328 if (is_uncached_acl(acl))
329 return -ECHILD;
330 return posix_acl_permission(idmap, inode, acl, mask);
331 }
332
333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 if (IS_ERR(acl))
335 return PTR_ERR(acl);
336 if (acl) {
337 int error = posix_acl_permission(idmap, inode, acl, mask);
338 posix_acl_release(acl);
339 return error;
340 }
341 #endif
342
343 return -EAGAIN;
344 }
345
346 /*
347 * Very quick optimistic "we know we have no ACL's" check.
348 *
349 * Note that this is purely for ACL_TYPE_ACCESS, and purely
350 * for the "we have cached that there are no ACLs" case.
351 *
352 * If this returns true, we know there are no ACLs. But if
353 * it returns false, we might still not have ACLs (it could
354 * be the is_uncached_acl() case).
355 */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 return likely(!READ_ONCE(inode->i_acl));
360 #else
361 return true;
362 #endif
363 }
364
365 /**
366 * acl_permission_check - perform basic UNIX permission checking
367 * @idmap: idmap of the mount the inode was found from
368 * @inode: inode to check permissions on
369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 *
371 * This function performs the basic UNIX permission checking. Since this
372 * function may retrieve POSIX acls it needs to know whether it is called from a
373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 *
375 * If the inode has been found through an idmapped mount the idmap of
376 * the vfsmount must be passed through @idmap. This function will then take
377 * care to map the inode according to @idmap before checking permissions.
378 * On non-idmapped mounts or if permission checking is to be performed on the
379 * raw inode simply pass @nop_mnt_idmap.
380 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 struct inode *inode, int mask)
383 {
384 unsigned int mode = inode->i_mode;
385 vfsuid_t vfsuid;
386
387 /*
388 * Common cheap case: everybody has the requested
389 * rights, and there are no ACLs to check. No need
390 * to do any owner/group checks in that case.
391 *
392 * - 'mask&7' is the requested permission bit set
393 * - multiplying by 0111 spreads them out to all of ugo
394 * - '& ~mode' looks for missing inode permission bits
395 * - the '!' is for "no missing permissions"
396 *
397 * After that, we just need to check that there are no
398 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 * because it will dereference the ->i_sb pointer and we
400 * want to avoid that if at all possible.
401 */
402 if (!((mask & 7) * 0111 & ~mode)) {
403 if (no_acl_inode(inode))
404 return 0;
405 if (!IS_POSIXACL(inode))
406 return 0;
407 }
408
409 /* Are we the owner? If so, ACL's don't matter */
410 vfsuid = i_uid_into_vfsuid(idmap, inode);
411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 mask &= 7;
413 mode >>= 6;
414 return (mask & ~mode) ? -EACCES : 0;
415 }
416
417 /* Do we have ACL's? */
418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 int error = check_acl(idmap, inode, mask);
420 if (error != -EAGAIN)
421 return error;
422 }
423
424 /* Only RWX matters for group/other mode bits */
425 mask &= 7;
426
427 /*
428 * Are the group permissions different from
429 * the other permissions in the bits we care
430 * about? Need to check group ownership if so.
431 */
432 if (mask & (mode ^ (mode >> 3))) {
433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 if (vfsgid_in_group_p(vfsgid))
435 mode >>= 3;
436 }
437
438 /* Bits in 'mode' clear that we require? */
439 return (mask & ~mode) ? -EACCES : 0;
440 }
441
442 /**
443 * generic_permission - check for access rights on a Posix-like filesystem
444 * @idmap: idmap of the mount the inode was found from
445 * @inode: inode to check access rights for
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447 * %MAY_NOT_BLOCK ...)
448 *
449 * Used to check for read/write/execute permissions on a file.
450 * We use "fsuid" for this, letting us set arbitrary permissions
451 * for filesystem access without changing the "normal" uids which
452 * are used for other things.
453 *
454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455 * request cannot be satisfied (eg. requires blocking or too much complexity).
456 * It would then be called again in ref-walk mode.
457 *
458 * If the inode has been found through an idmapped mount the idmap of
459 * the vfsmount must be passed through @idmap. This function will then take
460 * care to map the inode according to @idmap before checking permissions.
461 * On non-idmapped mounts or if permission checking is to be performed on the
462 * raw inode simply pass @nop_mnt_idmap.
463 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 int mask)
466 {
467 int ret;
468
469 /*
470 * Do the basic permission checks.
471 */
472 ret = acl_permission_check(idmap, inode, mask);
473 if (ret != -EACCES)
474 return ret;
475
476 if (S_ISDIR(inode->i_mode)) {
477 /* DACs are overridable for directories */
478 if (!(mask & MAY_WRITE))
479 if (capable_wrt_inode_uidgid(idmap, inode,
480 CAP_DAC_READ_SEARCH))
481 return 0;
482 if (capable_wrt_inode_uidgid(idmap, inode,
483 CAP_DAC_OVERRIDE))
484 return 0;
485 return -EACCES;
486 }
487
488 /*
489 * Searching includes executable on directories, else just read.
490 */
491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 if (mask == MAY_READ)
493 if (capable_wrt_inode_uidgid(idmap, inode,
494 CAP_DAC_READ_SEARCH))
495 return 0;
496 /*
497 * Read/write DACs are always overridable.
498 * Executable DACs are overridable when there is
499 * at least one exec bit set.
500 */
501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 if (capable_wrt_inode_uidgid(idmap, inode,
503 CAP_DAC_OVERRIDE))
504 return 0;
505
506 return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509
510 /**
511 * do_inode_permission - UNIX permission checking
512 * @idmap: idmap of the mount the inode was found from
513 * @inode: inode to check permissions on
514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 *
516 * We _really_ want to just do "generic_permission()" without
517 * even looking at the inode->i_op values. So we keep a cache
518 * flag in inode->i_opflags, that says "this has not special
519 * permission function, use the fast case".
520 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 struct inode *inode, int mask)
523 {
524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 if (likely(inode->i_op->permission))
526 return inode->i_op->permission(idmap, inode, mask);
527
528 /* This gets set once for the inode lifetime */
529 spin_lock(&inode->i_lock);
530 inode->i_opflags |= IOP_FASTPERM;
531 spin_unlock(&inode->i_lock);
532 }
533 return generic_permission(idmap, inode, mask);
534 }
535
536 /**
537 * sb_permission - Check superblock-level permissions
538 * @sb: Superblock of inode to check permission on
539 * @inode: Inode to check permission on
540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 *
542 * Separate out file-system wide checks from inode-specific permission checks.
543 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 if (unlikely(mask & MAY_WRITE)) {
547 umode_t mode = inode->i_mode;
548
549 /* Nobody gets write access to a read-only fs. */
550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 return -EROFS;
552 }
553 return 0;
554 }
555
556 /**
557 * inode_permission - Check for access rights to a given inode
558 * @idmap: idmap of the mount the inode was found from
559 * @inode: Inode to check permission on
560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 *
562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
563 * this, letting us set arbitrary permissions for filesystem access without
564 * changing the "normal" UIDs which are used for other things.
565 *
566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 struct inode *inode, int mask)
570 {
571 int retval;
572
573 retval = sb_permission(inode->i_sb, inode, mask);
574 if (retval)
575 return retval;
576
577 if (unlikely(mask & MAY_WRITE)) {
578 /*
579 * Nobody gets write access to an immutable file.
580 */
581 if (IS_IMMUTABLE(inode))
582 return -EPERM;
583
584 /*
585 * Updating mtime will likely cause i_uid and i_gid to be
586 * written back improperly if their true value is unknown
587 * to the vfs.
588 */
589 if (HAS_UNMAPPED_ID(idmap, inode))
590 return -EACCES;
591 }
592
593 retval = do_inode_permission(idmap, inode, mask);
594 if (retval)
595 return retval;
596
597 retval = devcgroup_inode_permission(inode, mask);
598 if (retval)
599 return retval;
600
601 return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604
605 /**
606 * path_get - get a reference to a path
607 * @path: path to get the reference to
608 *
609 * Given a path increment the reference count to the dentry and the vfsmount.
610 */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 mntget(path->mnt);
614 dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617
618 /**
619 * path_put - put a reference to a path
620 * @path: path to put the reference to
621 *
622 * Given a path decrement the reference count to the dentry and the vfsmount.
623 */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 dput(path->dentry);
627 mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 struct path path;
634 struct qstr last;
635 struct path root;
636 struct inode *inode; /* path.dentry.d_inode */
637 unsigned int flags, state;
638 unsigned seq, next_seq, m_seq, r_seq;
639 int last_type;
640 unsigned depth;
641 int total_link_count;
642 struct saved {
643 struct path link;
644 struct delayed_call done;
645 const char *name;
646 unsigned seq;
647 } *stack, internal[EMBEDDED_LEVELS];
648 struct filename *name;
649 const char *pathname;
650 struct nameidata *saved;
651 unsigned root_seq;
652 int dfd;
653 vfsuid_t dir_vfsuid;
654 umode_t dir_mode;
655 } __randomize_layout;
656
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 struct nameidata *old = current->nameidata;
664 p->stack = p->internal;
665 p->depth = 0;
666 p->dfd = dfd;
667 p->name = name;
668 p->pathname = likely(name) ? name->name : "";
669 p->path.mnt = NULL;
670 p->path.dentry = NULL;
671 p->total_link_count = old ? old->total_link_count : 0;
672 p->saved = old;
673 current->nameidata = p;
674 }
675
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 const struct path *root)
678 {
679 __set_nameidata(p, dfd, name);
680 p->state = 0;
681 if (unlikely(root)) {
682 p->state = ND_ROOT_PRESET;
683 p->root = *root;
684 }
685 }
686
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 struct nameidata *now = current->nameidata, *old = now->saved;
690
691 current->nameidata = old;
692 if (old)
693 old->total_link_count = now->total_link_count;
694 if (now->stack != now->internal)
695 kfree(now->stack);
696 }
697
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 struct saved *p;
701
702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 if (unlikely(!p))
705 return false;
706 memcpy(p, nd->internal, sizeof(nd->internal));
707 nd->stack = p;
708 return true;
709 }
710
711 /**
712 * path_connected - Verify that a dentry is below mnt.mnt_root
713 * @mnt: The mountpoint to check.
714 * @dentry: The dentry to check.
715 *
716 * Rename can sometimes move a file or directory outside of a bind
717 * mount, path_connected allows those cases to be detected.
718 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 struct super_block *sb = mnt->mnt_sb;
722
723 /* Bind mounts can have disconnected paths */
724 if (mnt->mnt_root == sb->s_root)
725 return true;
726
727 return is_subdir(dentry, mnt->mnt_root);
728 }
729
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 int i = nd->depth;
733 while (i--) {
734 struct saved *last = nd->stack + i;
735 do_delayed_call(&last->done);
736 clear_delayed_call(&last->done);
737 }
738 }
739
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 nd->flags &= ~LOOKUP_RCU;
743 nd->seq = nd->next_seq = 0;
744 rcu_read_unlock();
745 }
746
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 drop_links(nd);
750 if (!(nd->flags & LOOKUP_RCU)) {
751 int i;
752 path_put(&nd->path);
753 for (i = 0; i < nd->depth; i++)
754 path_put(&nd->stack[i].link);
755 if (nd->state & ND_ROOT_GRABBED) {
756 path_put(&nd->root);
757 nd->state &= ~ND_ROOT_GRABBED;
758 }
759 } else {
760 leave_rcu(nd);
761 }
762 nd->depth = 0;
763 nd->path.mnt = NULL;
764 nd->path.dentry = NULL;
765 }
766
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 int res = __legitimize_mnt(path->mnt, mseq);
771 if (unlikely(res)) {
772 if (res > 0)
773 path->mnt = NULL;
774 path->dentry = NULL;
775 return false;
776 }
777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 path->dentry = NULL;
779 return false;
780 }
781 return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 struct path *path, unsigned seq)
786 {
787 return __legitimize_path(path, seq, nd->m_seq);
788 }
789
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 int i;
793 if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 drop_links(nd);
795 nd->depth = 0;
796 return false;
797 }
798 for (i = 0; i < nd->depth; i++) {
799 struct saved *last = nd->stack + i;
800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 drop_links(nd);
802 nd->depth = i + 1;
803 return false;
804 }
805 }
806 return true;
807 }
808
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 return true;
814 nd->state |= ND_ROOT_GRABBED;
815 return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817
818 /*
819 * Path walking has 2 modes, rcu-walk and ref-walk (see
820 * Documentation/filesystems/path-lookup.txt). In situations when we can't
821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822 * normal reference counts on dentries and vfsmounts to transition to ref-walk
823 * mode. Refcounts are grabbed at the last known good point before rcu-walk
824 * got stuck, so ref-walk may continue from there. If this is not successful
825 * (eg. a seqcount has changed), then failure is returned and it's up to caller
826 * to restart the path walk from the beginning in ref-walk mode.
827 */
828
829 /**
830 * try_to_unlazy - try to switch to ref-walk mode.
831 * @nd: nameidata pathwalk data
832 * Returns: true on success, false on failure
833 *
834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * for ref-walk mode.
836 * Must be called from rcu-walk context.
837 * Nothing should touch nameidata between try_to_unlazy() failure and
838 * terminate_walk().
839 */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 struct dentry *parent = nd->path.dentry;
843
844 BUG_ON(!(nd->flags & LOOKUP_RCU));
845
846 if (unlikely(!legitimize_links(nd)))
847 goto out1;
848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 goto out;
850 if (unlikely(!legitimize_root(nd)))
851 goto out;
852 leave_rcu(nd);
853 BUG_ON(nd->inode != parent->d_inode);
854 return true;
855
856 out1:
857 nd->path.mnt = NULL;
858 nd->path.dentry = NULL;
859 out:
860 leave_rcu(nd);
861 return false;
862 }
863
864 /**
865 * try_to_unlazy_next - try to switch to ref-walk mode.
866 * @nd: nameidata pathwalk data
867 * @dentry: next dentry to step into
868 * Returns: true on success, false on failure
869 *
870 * Similar to try_to_unlazy(), but here we have the next dentry already
871 * picked by rcu-walk and want to legitimize that in addition to the current
872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
873 * Nothing should touch nameidata between try_to_unlazy_next() failure and
874 * terminate_walk().
875 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 int res;
879 BUG_ON(!(nd->flags & LOOKUP_RCU));
880
881 if (unlikely(!legitimize_links(nd)))
882 goto out2;
883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 if (unlikely(res)) {
885 if (res > 0)
886 goto out2;
887 goto out1;
888 }
889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 goto out1;
891
892 /*
893 * We need to move both the parent and the dentry from the RCU domain
894 * to be properly refcounted. And the sequence number in the dentry
895 * validates *both* dentry counters, since we checked the sequence
896 * number of the parent after we got the child sequence number. So we
897 * know the parent must still be valid if the child sequence number is
898 */
899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 goto out;
901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 goto out_dput;
903 /*
904 * Sequence counts matched. Now make sure that the root is
905 * still valid and get it if required.
906 */
907 if (unlikely(!legitimize_root(nd)))
908 goto out_dput;
909 leave_rcu(nd);
910 return true;
911
912 out2:
913 nd->path.mnt = NULL;
914 out1:
915 nd->path.dentry = NULL;
916 out:
917 leave_rcu(nd);
918 return false;
919 out_dput:
920 leave_rcu(nd);
921 dput(dentry);
922 return false;
923 }
924
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 struct dentry *dentry, unsigned int flags)
927 {
928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 else
931 return 1;
932 }
933
934 /**
935 * complete_walk - successful completion of path walk
936 * @nd: pointer nameidata
937 *
938 * If we had been in RCU mode, drop out of it and legitimize nd->path.
939 * Revalidate the final result, unless we'd already done that during
940 * the path walk or the filesystem doesn't ask for it. Return 0 on
941 * success, -error on failure. In case of failure caller does not
942 * need to drop nd->path.
943 */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 struct dentry *dentry = nd->path.dentry;
947 int status;
948
949 if (nd->flags & LOOKUP_RCU) {
950 /*
951 * We don't want to zero nd->root for scoped-lookups or
952 * externally-managed nd->root.
953 */
954 if (!(nd->state & ND_ROOT_PRESET))
955 if (!(nd->flags & LOOKUP_IS_SCOPED))
956 nd->root.mnt = NULL;
957 nd->flags &= ~LOOKUP_CACHED;
958 if (!try_to_unlazy(nd))
959 return -ECHILD;
960 }
961
962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 /*
964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 * ever step outside the root during lookup" and should already
966 * be guaranteed by the rest of namei, we want to avoid a namei
967 * BUG resulting in userspace being given a path that was not
968 * scoped within the root at some point during the lookup.
969 *
970 * So, do a final sanity-check to make sure that in the
971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 * we won't silently return an fd completely outside of the
973 * requested root to userspace.
974 *
975 * Userspace could move the path outside the root after this
976 * check, but as discussed elsewhere this is not a concern (the
977 * resolved file was inside the root at some point).
978 */
979 if (!path_is_under(&nd->path, &nd->root))
980 return -EXDEV;
981 }
982
983 if (likely(!(nd->state & ND_JUMPED)))
984 return 0;
985
986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 return 0;
988
989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 if (status > 0)
991 return 0;
992
993 if (!status)
994 status = -ESTALE;
995
996 return status;
997 }
998
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 struct fs_struct *fs = current->fs;
1002
1003 /*
1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 * still have to ensure it doesn't happen because it will cause a breakout
1006 * from the dirfd.
1007 */
1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 return -ENOTRECOVERABLE;
1010
1011 if (nd->flags & LOOKUP_RCU) {
1012 unsigned seq;
1013
1014 do {
1015 seq = read_seqcount_begin(&fs->seq);
1016 nd->root = fs->root;
1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 } while (read_seqcount_retry(&fs->seq, seq));
1019 } else {
1020 get_fs_root(fs, &nd->root);
1021 nd->state |= ND_ROOT_GRABBED;
1022 }
1023 return 0;
1024 }
1025
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 return -EXDEV;
1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 /* Absolute path arguments to path_init() are allowed. */
1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 return -EXDEV;
1034 }
1035 if (!nd->root.mnt) {
1036 int error = set_root(nd);
1037 if (error)
1038 return error;
1039 }
1040 if (nd->flags & LOOKUP_RCU) {
1041 struct dentry *d;
1042 nd->path = nd->root;
1043 d = nd->path.dentry;
1044 nd->inode = d->d_inode;
1045 nd->seq = nd->root_seq;
1046 if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 return -ECHILD;
1048 } else {
1049 path_put(&nd->path);
1050 nd->path = nd->root;
1051 path_get(&nd->path);
1052 nd->inode = nd->path.dentry->d_inode;
1053 }
1054 nd->state |= ND_JUMPED;
1055 return 0;
1056 }
1057
1058 /*
1059 * Helper to directly jump to a known parsed path from ->get_link,
1060 * caller must have taken a reference to path beforehand.
1061 */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 int error = -ELOOP;
1065 struct nameidata *nd = current->nameidata;
1066
1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 goto err;
1069
1070 error = -EXDEV;
1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 if (nd->path.mnt != path->mnt)
1073 goto err;
1074 }
1075 /* Not currently safe for scoped-lookups. */
1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 goto err;
1078
1079 path_put(&nd->path);
1080 nd->path = *path;
1081 nd->inode = nd->path.dentry->d_inode;
1082 nd->state |= ND_JUMPED;
1083 return 0;
1084
1085 err:
1086 path_put(path);
1087 return error;
1088 }
1089
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 struct saved *last = nd->stack + --nd->depth;
1093 do_delayed_call(&last->done);
1094 if (!(nd->flags & LOOKUP_RCU))
1095 path_put(&last->link);
1096 }
1097
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 {
1106 .procname = "protected_symlinks",
1107 .data = &sysctl_protected_symlinks,
1108 .maxlen = sizeof(int),
1109 .mode = 0644,
1110 .proc_handler = proc_dointvec_minmax,
1111 .extra1 = SYSCTL_ZERO,
1112 .extra2 = SYSCTL_ONE,
1113 },
1114 {
1115 .procname = "protected_hardlinks",
1116 .data = &sysctl_protected_hardlinks,
1117 .maxlen = sizeof(int),
1118 .mode = 0644,
1119 .proc_handler = proc_dointvec_minmax,
1120 .extra1 = SYSCTL_ZERO,
1121 .extra2 = SYSCTL_ONE,
1122 },
1123 {
1124 .procname = "protected_fifos",
1125 .data = &sysctl_protected_fifos,
1126 .maxlen = sizeof(int),
1127 .mode = 0644,
1128 .proc_handler = proc_dointvec_minmax,
1129 .extra1 = SYSCTL_ZERO,
1130 .extra2 = SYSCTL_TWO,
1131 },
1132 {
1133 .procname = "protected_regular",
1134 .data = &sysctl_protected_regular,
1135 .maxlen = sizeof(int),
1136 .mode = 0644,
1137 .proc_handler = proc_dointvec_minmax,
1138 .extra1 = SYSCTL_ZERO,
1139 .extra2 = SYSCTL_TWO,
1140 },
1141 };
1142
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 register_sysctl_init("fs", namei_sysctls);
1146 return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149
1150 #endif /* CONFIG_SYSCTL */
1151
1152 /**
1153 * may_follow_link - Check symlink following for unsafe situations
1154 * @nd: nameidata pathwalk data
1155 * @inode: Used for idmapping.
1156 *
1157 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159 * in a sticky world-writable directory. This is to protect privileged
1160 * processes from failing races against path names that may change out
1161 * from under them by way of other users creating malicious symlinks.
1162 * It will permit symlinks to be followed only when outside a sticky
1163 * world-writable directory, or when the uid of the symlink and follower
1164 * match, or when the directory owner matches the symlink's owner.
1165 *
1166 * Returns 0 if following the symlink is allowed, -ve on error.
1167 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 struct mnt_idmap *idmap;
1171 vfsuid_t vfsuid;
1172
1173 if (!sysctl_protected_symlinks)
1174 return 0;
1175
1176 idmap = mnt_idmap(nd->path.mnt);
1177 vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 /* Allowed if owner and follower match. */
1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 return 0;
1181
1182 /* Allowed if parent directory not sticky and world-writable. */
1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 return 0;
1185
1186 /* Allowed if parent directory and link owner match. */
1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 return 0;
1189
1190 if (nd->flags & LOOKUP_RCU)
1191 return -ECHILD;
1192
1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 return -EACCES;
1196 }
1197
1198 /**
1199 * safe_hardlink_source - Check for safe hardlink conditions
1200 * @idmap: idmap of the mount the inode was found from
1201 * @inode: the source inode to hardlink from
1202 *
1203 * Return false if at least one of the following conditions:
1204 * - inode is not a regular file
1205 * - inode is setuid
1206 * - inode is setgid and group-exec
1207 * - access failure for read and write
1208 *
1209 * Otherwise returns true.
1210 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 struct inode *inode)
1213 {
1214 umode_t mode = inode->i_mode;
1215
1216 /* Special files should not get pinned to the filesystem. */
1217 if (!S_ISREG(mode))
1218 return false;
1219
1220 /* Setuid files should not get pinned to the filesystem. */
1221 if (mode & S_ISUID)
1222 return false;
1223
1224 /* Executable setgid files should not get pinned to the filesystem. */
1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 return false;
1227
1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 return false;
1231
1232 return true;
1233 }
1234
1235 /**
1236 * may_linkat - Check permissions for creating a hardlink
1237 * @idmap: idmap of the mount the inode was found from
1238 * @link: the source to hardlink from
1239 *
1240 * Block hardlink when all of:
1241 * - sysctl_protected_hardlinks enabled
1242 * - fsuid does not match inode
1243 * - hardlink source is unsafe (see safe_hardlink_source() above)
1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 *
1246 * If the inode has been found through an idmapped mount the idmap of
1247 * the vfsmount must be passed through @idmap. This function will then take
1248 * care to map the inode according to @idmap before checking permissions.
1249 * On non-idmapped mounts or if permission checking is to be performed on the
1250 * raw inode simply pass @nop_mnt_idmap.
1251 *
1252 * Returns 0 if successful, -ve on error.
1253 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 struct inode *inode = link->dentry->d_inode;
1257
1258 /* Inode writeback is not safe when the uid or gid are invalid. */
1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 return -EOVERFLOW;
1262
1263 if (!sysctl_protected_hardlinks)
1264 return 0;
1265
1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 * otherwise, it must be a safe source.
1268 */
1269 if (safe_hardlink_source(idmap, inode) ||
1270 inode_owner_or_capable(idmap, inode))
1271 return 0;
1272
1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 return -EPERM;
1275 }
1276
1277 /**
1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279 * should be allowed, or not, on files that already
1280 * exist.
1281 * @idmap: idmap of the mount the inode was found from
1282 * @nd: nameidata pathwalk data
1283 * @inode: the inode of the file to open
1284 *
1285 * Block an O_CREAT open of a FIFO (or a regular file) when:
1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287 * - the file already exists
1288 * - we are in a sticky directory
1289 * - we don't own the file
1290 * - the owner of the directory doesn't own the file
1291 * - the directory is world writable
1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293 * the directory doesn't have to be world writable: being group writable will
1294 * be enough.
1295 *
1296 * If the inode has been found through an idmapped mount the idmap of
1297 * the vfsmount must be passed through @idmap. This function will then take
1298 * care to map the inode according to @idmap before checking permissions.
1299 * On non-idmapped mounts or if permission checking is to be performed on the
1300 * raw inode simply pass @nop_mnt_idmap.
1301 *
1302 * Returns 0 if the open is allowed, -ve on error.
1303 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 struct inode *const inode)
1306 {
1307 umode_t dir_mode = nd->dir_mode;
1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309
1310 if (likely(!(dir_mode & S_ISVTX)))
1311 return 0;
1312
1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 return 0;
1315
1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 return 0;
1318
1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320
1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 return 0;
1323
1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 return 0;
1326
1327 if (likely(dir_mode & 0002)) {
1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 return -EACCES;
1330 }
1331
1332 if (dir_mode & 0020) {
1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 "sticky_create_fifo");
1336 return -EACCES;
1337 }
1338
1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 "sticky_create_regular");
1342 return -EACCES;
1343 }
1344 }
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * follow_up - Find the mountpoint of path's vfsmount
1351 *
1352 * Given a path, find the mountpoint of its source file system.
1353 * Replace @path with the path of the mountpoint in the parent mount.
1354 * Up is towards /.
1355 *
1356 * Return 1 if we went up a level and 0 if we were already at the
1357 * root.
1358 */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 struct mount *mnt = real_mount(path->mnt);
1362 struct mount *parent;
1363 struct dentry *mountpoint;
1364
1365 read_seqlock_excl(&mount_lock);
1366 parent = mnt->mnt_parent;
1367 if (parent == mnt) {
1368 read_sequnlock_excl(&mount_lock);
1369 return 0;
1370 }
1371 mntget(&parent->mnt);
1372 mountpoint = dget(mnt->mnt_mountpoint);
1373 read_sequnlock_excl(&mount_lock);
1374 dput(path->dentry);
1375 path->dentry = mountpoint;
1376 mntput(path->mnt);
1377 path->mnt = &parent->mnt;
1378 return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 struct path *path, unsigned *seqp)
1384 {
1385 while (mnt_has_parent(m)) {
1386 struct dentry *mountpoint = m->mnt_mountpoint;
1387
1388 m = m->mnt_parent;
1389 if (unlikely(root->dentry == mountpoint &&
1390 root->mnt == &m->mnt))
1391 break;
1392 if (mountpoint != m->mnt.mnt_root) {
1393 path->mnt = &m->mnt;
1394 path->dentry = mountpoint;
1395 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 return true;
1397 }
1398 }
1399 return false;
1400 }
1401
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 struct path *path)
1404 {
1405 bool found;
1406
1407 rcu_read_lock();
1408 while (1) {
1409 unsigned seq, mseq = read_seqbegin(&mount_lock);
1410
1411 found = choose_mountpoint_rcu(m, root, path, &seq);
1412 if (unlikely(!found)) {
1413 if (!read_seqretry(&mount_lock, mseq))
1414 break;
1415 } else {
1416 if (likely(__legitimize_path(path, seq, mseq)))
1417 break;
1418 rcu_read_unlock();
1419 path_put(path);
1420 rcu_read_lock();
1421 }
1422 }
1423 rcu_read_unlock();
1424 return found;
1425 }
1426
1427 /*
1428 * Perform an automount
1429 * - return -EISDIR to tell follow_managed() to stop and return the path we
1430 * were called with.
1431 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 struct dentry *dentry = path->dentry;
1435
1436 /* We don't want to mount if someone's just doing a stat -
1437 * unless they're stat'ing a directory and appended a '/' to
1438 * the name.
1439 *
1440 * We do, however, want to mount if someone wants to open or
1441 * create a file of any type under the mountpoint, wants to
1442 * traverse through the mountpoint or wants to open the
1443 * mounted directory. Also, autofs may mark negative dentries
1444 * as being automount points. These will need the attentions
1445 * of the daemon to instantiate them before they can be used.
1446 */
1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 dentry->d_inode)
1450 return -EISDIR;
1451
1452 if (count && (*count)++ >= MAXSYMLINKS)
1453 return -ELOOP;
1454
1455 return finish_automount(dentry->d_op->d_automount(path), path);
1456 }
1457
1458 /*
1459 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1460 * dentries are pinned but not locked here, so negative dentry can go
1461 * positive right under us. Use of smp_load_acquire() provides a barrier
1462 * sufficient for ->d_inode and ->d_flags consistency.
1463 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1465 int *count, unsigned lookup_flags)
1466 {
1467 struct vfsmount *mnt = path->mnt;
1468 bool need_mntput = false;
1469 int ret = 0;
1470
1471 while (flags & DCACHE_MANAGED_DENTRY) {
1472 /* Allow the filesystem to manage the transit without i_mutex
1473 * being held. */
1474 if (flags & DCACHE_MANAGE_TRANSIT) {
1475 ret = path->dentry->d_op->d_manage(path, false);
1476 flags = smp_load_acquire(&path->dentry->d_flags);
1477 if (ret < 0)
1478 break;
1479 }
1480
1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1482 struct vfsmount *mounted = lookup_mnt(path);
1483 if (mounted) { // ... in our namespace
1484 dput(path->dentry);
1485 if (need_mntput)
1486 mntput(path->mnt);
1487 path->mnt = mounted;
1488 path->dentry = dget(mounted->mnt_root);
1489 // here we know it's positive
1490 flags = path->dentry->d_flags;
1491 need_mntput = true;
1492 continue;
1493 }
1494 }
1495
1496 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1497 break;
1498
1499 // uncovered automount point
1500 ret = follow_automount(path, count, lookup_flags);
1501 flags = smp_load_acquire(&path->dentry->d_flags);
1502 if (ret < 0)
1503 break;
1504 }
1505
1506 if (ret == -EISDIR)
1507 ret = 0;
1508 // possible if you race with several mount --move
1509 if (need_mntput && path->mnt == mnt)
1510 mntput(path->mnt);
1511 if (!ret && unlikely(d_flags_negative(flags)))
1512 ret = -ENOENT;
1513 *jumped = need_mntput;
1514 return ret;
1515 }
1516
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1517 static inline int traverse_mounts(struct path *path, bool *jumped,
1518 int *count, unsigned lookup_flags)
1519 {
1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521
1522 /* fastpath */
1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1524 *jumped = false;
1525 if (unlikely(d_flags_negative(flags)))
1526 return -ENOENT;
1527 return 0;
1528 }
1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1530 }
1531
follow_down_one(struct path * path)1532 int follow_down_one(struct path *path)
1533 {
1534 struct vfsmount *mounted;
1535
1536 mounted = lookup_mnt(path);
1537 if (mounted) {
1538 dput(path->dentry);
1539 mntput(path->mnt);
1540 path->mnt = mounted;
1541 path->dentry = dget(mounted->mnt_root);
1542 return 1;
1543 }
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(follow_down_one);
1547
1548 /*
1549 * Follow down to the covering mount currently visible to userspace. At each
1550 * point, the filesystem owning that dentry may be queried as to whether the
1551 * caller is permitted to proceed or not.
1552 */
follow_down(struct path * path,unsigned int flags)1553 int follow_down(struct path *path, unsigned int flags)
1554 {
1555 struct vfsmount *mnt = path->mnt;
1556 bool jumped;
1557 int ret = traverse_mounts(path, &jumped, NULL, flags);
1558
1559 if (path->mnt != mnt)
1560 mntput(mnt);
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(follow_down);
1564
1565 /*
1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1567 * we meet a managed dentry that would need blocking.
1568 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 {
1571 struct dentry *dentry = path->dentry;
1572 unsigned int flags = dentry->d_flags;
1573
1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1575 return true;
1576
1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1578 return false;
1579
1580 for (;;) {
1581 /*
1582 * Don't forget we might have a non-mountpoint managed dentry
1583 * that wants to block transit.
1584 */
1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1586 int res = dentry->d_op->d_manage(path, true);
1587 if (res)
1588 return res == -EISDIR;
1589 flags = dentry->d_flags;
1590 }
1591
1592 if (flags & DCACHE_MOUNTED) {
1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1594 if (mounted) {
1595 path->mnt = &mounted->mnt;
1596 dentry = path->dentry = mounted->mnt.mnt_root;
1597 nd->state |= ND_JUMPED;
1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1599 flags = dentry->d_flags;
1600 // makes sure that non-RCU pathwalk could reach
1601 // this state.
1602 if (read_seqretry(&mount_lock, nd->m_seq))
1603 return false;
1604 continue;
1605 }
1606 if (read_seqretry(&mount_lock, nd->m_seq))
1607 return false;
1608 }
1609 return !(flags & DCACHE_NEED_AUTOMOUNT);
1610 }
1611 }
1612
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1614 struct path *path)
1615 {
1616 bool jumped;
1617 int ret;
1618
1619 path->mnt = nd->path.mnt;
1620 path->dentry = dentry;
1621 if (nd->flags & LOOKUP_RCU) {
1622 unsigned int seq = nd->next_seq;
1623 if (likely(__follow_mount_rcu(nd, path)))
1624 return 0;
1625 // *path and nd->next_seq might've been clobbered
1626 path->mnt = nd->path.mnt;
1627 path->dentry = dentry;
1628 nd->next_seq = seq;
1629 if (!try_to_unlazy_next(nd, dentry))
1630 return -ECHILD;
1631 }
1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1633 if (jumped) {
1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1635 ret = -EXDEV;
1636 else
1637 nd->state |= ND_JUMPED;
1638 }
1639 if (unlikely(ret)) {
1640 dput(path->dentry);
1641 if (path->mnt != nd->path.mnt)
1642 mntput(path->mnt);
1643 }
1644 return ret;
1645 }
1646
1647 /*
1648 * This looks up the name in dcache and possibly revalidates the found dentry.
1649 * NULL is returned if the dentry does not exist in the cache.
1650 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1651 static struct dentry *lookup_dcache(const struct qstr *name,
1652 struct dentry *dir,
1653 unsigned int flags)
1654 {
1655 struct dentry *dentry = d_lookup(dir, name);
1656 if (dentry) {
1657 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1658 if (unlikely(error <= 0)) {
1659 if (!error)
1660 d_invalidate(dentry);
1661 dput(dentry);
1662 return ERR_PTR(error);
1663 }
1664 }
1665 return dentry;
1666 }
1667
1668 /*
1669 * Parent directory has inode locked exclusive. This is one
1670 * and only case when ->lookup() gets called on non in-lookup
1671 * dentries - as the matter of fact, this only gets called
1672 * when directory is guaranteed to have no in-lookup children
1673 * at all.
1674 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1675 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1676 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1677 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1678 struct dentry *base,
1679 unsigned int flags)
1680 {
1681 struct dentry *dentry = lookup_dcache(name, base, flags);
1682 struct dentry *old;
1683 struct inode *dir = base->d_inode;
1684
1685 if (dentry)
1686 goto found;
1687
1688 /* Don't create child dentry for a dead directory. */
1689 if (unlikely(IS_DEADDIR(dir)))
1690 return ERR_PTR(-ENOENT);
1691
1692 dentry = d_alloc(base, name);
1693 if (unlikely(!dentry))
1694 return ERR_PTR(-ENOMEM);
1695
1696 old = dir->i_op->lookup(dir, dentry, flags);
1697 if (unlikely(old)) {
1698 dput(dentry);
1699 dentry = old;
1700 }
1701 found:
1702 if (IS_ERR(dentry))
1703 return dentry;
1704 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1705 dput(dentry);
1706 return ERR_PTR(-ENOENT);
1707 }
1708 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1709 dput(dentry);
1710 return ERR_PTR(-EEXIST);
1711 }
1712 return dentry;
1713 }
1714 EXPORT_SYMBOL(lookup_one_qstr_excl);
1715
1716 /**
1717 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1718 * @nd: current nameidata
1719 *
1720 * Do a fast, but racy lookup in the dcache for the given dentry, and
1721 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1722 * found. On error, an ERR_PTR will be returned.
1723 *
1724 * If this function returns a valid dentry and the walk is no longer
1725 * lazy, the dentry will carry a reference that must later be put. If
1726 * RCU mode is still in force, then this is not the case and the dentry
1727 * must be legitimized before use. If this returns NULL, then the walk
1728 * will no longer be in RCU mode.
1729 */
lookup_fast(struct nameidata * nd)1730 static struct dentry *lookup_fast(struct nameidata *nd)
1731 {
1732 struct dentry *dentry, *parent = nd->path.dentry;
1733 int status = 1;
1734
1735 /*
1736 * Rename seqlock is not required here because in the off chance
1737 * of a false negative due to a concurrent rename, the caller is
1738 * going to fall back to non-racy lookup.
1739 */
1740 if (nd->flags & LOOKUP_RCU) {
1741 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1742 if (unlikely(!dentry)) {
1743 if (!try_to_unlazy(nd))
1744 return ERR_PTR(-ECHILD);
1745 return NULL;
1746 }
1747
1748 /*
1749 * This sequence count validates that the parent had no
1750 * changes while we did the lookup of the dentry above.
1751 */
1752 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1753 return ERR_PTR(-ECHILD);
1754
1755 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1756 if (likely(status > 0))
1757 return dentry;
1758 if (!try_to_unlazy_next(nd, dentry))
1759 return ERR_PTR(-ECHILD);
1760 if (status == -ECHILD)
1761 /* we'd been told to redo it in non-rcu mode */
1762 status = d_revalidate(nd->inode, &nd->last,
1763 dentry, nd->flags);
1764 } else {
1765 dentry = __d_lookup(parent, &nd->last);
1766 if (unlikely(!dentry))
1767 return NULL;
1768 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1769 }
1770 if (unlikely(status <= 0)) {
1771 if (!status)
1772 d_invalidate(dentry);
1773 dput(dentry);
1774 return ERR_PTR(status);
1775 }
1776 return dentry;
1777 }
1778
1779 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1780 static struct dentry *__lookup_slow(const struct qstr *name,
1781 struct dentry *dir,
1782 unsigned int flags)
1783 {
1784 struct dentry *dentry, *old;
1785 struct inode *inode = dir->d_inode;
1786 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1787
1788 /* Don't go there if it's already dead */
1789 if (unlikely(IS_DEADDIR(inode)))
1790 return ERR_PTR(-ENOENT);
1791 again:
1792 dentry = d_alloc_parallel(dir, name, &wq);
1793 if (IS_ERR(dentry))
1794 return dentry;
1795 if (unlikely(!d_in_lookup(dentry))) {
1796 int error = d_revalidate(inode, name, dentry, flags);
1797 if (unlikely(error <= 0)) {
1798 if (!error) {
1799 d_invalidate(dentry);
1800 dput(dentry);
1801 goto again;
1802 }
1803 dput(dentry);
1804 dentry = ERR_PTR(error);
1805 }
1806 } else {
1807 old = inode->i_op->lookup(inode, dentry, flags);
1808 d_lookup_done(dentry);
1809 if (unlikely(old)) {
1810 dput(dentry);
1811 dentry = old;
1812 }
1813 }
1814 return dentry;
1815 }
1816
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1817 static struct dentry *lookup_slow(const struct qstr *name,
1818 struct dentry *dir,
1819 unsigned int flags)
1820 {
1821 struct inode *inode = dir->d_inode;
1822 struct dentry *res;
1823 inode_lock_shared(inode);
1824 res = __lookup_slow(name, dir, flags);
1825 inode_unlock_shared(inode);
1826 return res;
1827 }
1828
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1829 static inline int may_lookup(struct mnt_idmap *idmap,
1830 struct nameidata *restrict nd)
1831 {
1832 int err, mask;
1833
1834 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1835 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1836 if (likely(!err))
1837 return 0;
1838
1839 // If we failed, and we weren't in LOOKUP_RCU, it's final
1840 if (!(nd->flags & LOOKUP_RCU))
1841 return err;
1842
1843 // Drop out of RCU mode to make sure it wasn't transient
1844 if (!try_to_unlazy(nd))
1845 return -ECHILD; // redo it all non-lazy
1846
1847 if (err != -ECHILD) // hard error
1848 return err;
1849
1850 return inode_permission(idmap, nd->inode, MAY_EXEC);
1851 }
1852
reserve_stack(struct nameidata * nd,struct path * link)1853 static int reserve_stack(struct nameidata *nd, struct path *link)
1854 {
1855 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1856 return -ELOOP;
1857
1858 if (likely(nd->depth != EMBEDDED_LEVELS))
1859 return 0;
1860 if (likely(nd->stack != nd->internal))
1861 return 0;
1862 if (likely(nd_alloc_stack(nd)))
1863 return 0;
1864
1865 if (nd->flags & LOOKUP_RCU) {
1866 // we need to grab link before we do unlazy. And we can't skip
1867 // unlazy even if we fail to grab the link - cleanup needs it
1868 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1869
1870 if (!try_to_unlazy(nd) || !grabbed_link)
1871 return -ECHILD;
1872
1873 if (nd_alloc_stack(nd))
1874 return 0;
1875 }
1876 return -ENOMEM;
1877 }
1878
1879 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1880
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1881 static const char *pick_link(struct nameidata *nd, struct path *link,
1882 struct inode *inode, int flags)
1883 {
1884 struct saved *last;
1885 const char *res;
1886 int error = reserve_stack(nd, link);
1887
1888 if (unlikely(error)) {
1889 if (!(nd->flags & LOOKUP_RCU))
1890 path_put(link);
1891 return ERR_PTR(error);
1892 }
1893 last = nd->stack + nd->depth++;
1894 last->link = *link;
1895 clear_delayed_call(&last->done);
1896 last->seq = nd->next_seq;
1897
1898 if (flags & WALK_TRAILING) {
1899 error = may_follow_link(nd, inode);
1900 if (unlikely(error))
1901 return ERR_PTR(error);
1902 }
1903
1904 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1905 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1906 return ERR_PTR(-ELOOP);
1907
1908 if (!(nd->flags & LOOKUP_RCU)) {
1909 touch_atime(&last->link);
1910 cond_resched();
1911 } else if (atime_needs_update(&last->link, inode)) {
1912 if (!try_to_unlazy(nd))
1913 return ERR_PTR(-ECHILD);
1914 touch_atime(&last->link);
1915 }
1916
1917 error = security_inode_follow_link(link->dentry, inode,
1918 nd->flags & LOOKUP_RCU);
1919 if (unlikely(error))
1920 return ERR_PTR(error);
1921
1922 res = READ_ONCE(inode->i_link);
1923 if (!res) {
1924 const char * (*get)(struct dentry *, struct inode *,
1925 struct delayed_call *);
1926 get = inode->i_op->get_link;
1927 if (nd->flags & LOOKUP_RCU) {
1928 res = get(NULL, inode, &last->done);
1929 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1930 res = get(link->dentry, inode, &last->done);
1931 } else {
1932 res = get(link->dentry, inode, &last->done);
1933 }
1934 if (!res)
1935 goto all_done;
1936 if (IS_ERR(res))
1937 return res;
1938 }
1939 if (*res == '/') {
1940 error = nd_jump_root(nd);
1941 if (unlikely(error))
1942 return ERR_PTR(error);
1943 while (unlikely(*++res == '/'))
1944 ;
1945 }
1946 if (*res)
1947 return res;
1948 all_done: // pure jump
1949 put_link(nd);
1950 return NULL;
1951 }
1952
1953 /*
1954 * Do we need to follow links? We _really_ want to be able
1955 * to do this check without having to look at inode->i_op,
1956 * so we keep a cache of "no, this doesn't need follow_link"
1957 * for the common case.
1958 *
1959 * NOTE: dentry must be what nd->next_seq had been sampled from.
1960 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1961 static const char *step_into(struct nameidata *nd, int flags,
1962 struct dentry *dentry)
1963 {
1964 struct path path;
1965 struct inode *inode;
1966 int err = handle_mounts(nd, dentry, &path);
1967
1968 if (err < 0)
1969 return ERR_PTR(err);
1970 inode = path.dentry->d_inode;
1971 if (likely(!d_is_symlink(path.dentry)) ||
1972 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1973 (flags & WALK_NOFOLLOW)) {
1974 /* not a symlink or should not follow */
1975 if (nd->flags & LOOKUP_RCU) {
1976 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1977 return ERR_PTR(-ECHILD);
1978 if (unlikely(!inode))
1979 return ERR_PTR(-ENOENT);
1980 } else {
1981 dput(nd->path.dentry);
1982 if (nd->path.mnt != path.mnt)
1983 mntput(nd->path.mnt);
1984 }
1985 nd->path = path;
1986 nd->inode = inode;
1987 nd->seq = nd->next_seq;
1988 return NULL;
1989 }
1990 if (nd->flags & LOOKUP_RCU) {
1991 /* make sure that d_is_symlink above matches inode */
1992 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1993 return ERR_PTR(-ECHILD);
1994 } else {
1995 if (path.mnt == nd->path.mnt)
1996 mntget(path.mnt);
1997 }
1998 return pick_link(nd, &path, inode, flags);
1999 }
2000
follow_dotdot_rcu(struct nameidata * nd)2001 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2002 {
2003 struct dentry *parent, *old;
2004
2005 if (path_equal(&nd->path, &nd->root))
2006 goto in_root;
2007 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2008 struct path path;
2009 unsigned seq;
2010 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2011 &nd->root, &path, &seq))
2012 goto in_root;
2013 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2014 return ERR_PTR(-ECHILD);
2015 nd->path = path;
2016 nd->inode = path.dentry->d_inode;
2017 nd->seq = seq;
2018 // makes sure that non-RCU pathwalk could reach this state
2019 if (read_seqretry(&mount_lock, nd->m_seq))
2020 return ERR_PTR(-ECHILD);
2021 /* we know that mountpoint was pinned */
2022 }
2023 old = nd->path.dentry;
2024 parent = old->d_parent;
2025 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2026 // makes sure that non-RCU pathwalk could reach this state
2027 if (read_seqcount_retry(&old->d_seq, nd->seq))
2028 return ERR_PTR(-ECHILD);
2029 if (unlikely(!path_connected(nd->path.mnt, parent)))
2030 return ERR_PTR(-ECHILD);
2031 return parent;
2032 in_root:
2033 if (read_seqretry(&mount_lock, nd->m_seq))
2034 return ERR_PTR(-ECHILD);
2035 if (unlikely(nd->flags & LOOKUP_BENEATH))
2036 return ERR_PTR(-ECHILD);
2037 nd->next_seq = nd->seq;
2038 return nd->path.dentry;
2039 }
2040
follow_dotdot(struct nameidata * nd)2041 static struct dentry *follow_dotdot(struct nameidata *nd)
2042 {
2043 struct dentry *parent;
2044
2045 if (path_equal(&nd->path, &nd->root))
2046 goto in_root;
2047 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2048 struct path path;
2049
2050 if (!choose_mountpoint(real_mount(nd->path.mnt),
2051 &nd->root, &path))
2052 goto in_root;
2053 path_put(&nd->path);
2054 nd->path = path;
2055 nd->inode = path.dentry->d_inode;
2056 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2057 return ERR_PTR(-EXDEV);
2058 }
2059 /* rare case of legitimate dget_parent()... */
2060 parent = dget_parent(nd->path.dentry);
2061 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2062 dput(parent);
2063 return ERR_PTR(-ENOENT);
2064 }
2065 return parent;
2066
2067 in_root:
2068 if (unlikely(nd->flags & LOOKUP_BENEATH))
2069 return ERR_PTR(-EXDEV);
2070 return dget(nd->path.dentry);
2071 }
2072
handle_dots(struct nameidata * nd,int type)2073 static const char *handle_dots(struct nameidata *nd, int type)
2074 {
2075 if (type == LAST_DOTDOT) {
2076 const char *error = NULL;
2077 struct dentry *parent;
2078
2079 if (!nd->root.mnt) {
2080 error = ERR_PTR(set_root(nd));
2081 if (error)
2082 return error;
2083 }
2084 if (nd->flags & LOOKUP_RCU)
2085 parent = follow_dotdot_rcu(nd);
2086 else
2087 parent = follow_dotdot(nd);
2088 if (IS_ERR(parent))
2089 return ERR_CAST(parent);
2090 error = step_into(nd, WALK_NOFOLLOW, parent);
2091 if (unlikely(error))
2092 return error;
2093
2094 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2095 /*
2096 * If there was a racing rename or mount along our
2097 * path, then we can't be sure that ".." hasn't jumped
2098 * above nd->root (and so userspace should retry or use
2099 * some fallback).
2100 */
2101 smp_rmb();
2102 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2103 return ERR_PTR(-EAGAIN);
2104 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2105 return ERR_PTR(-EAGAIN);
2106 }
2107 }
2108 return NULL;
2109 }
2110
walk_component(struct nameidata * nd,int flags)2111 static const char *walk_component(struct nameidata *nd, int flags)
2112 {
2113 struct dentry *dentry;
2114 /*
2115 * "." and ".." are special - ".." especially so because it has
2116 * to be able to know about the current root directory and
2117 * parent relationships.
2118 */
2119 if (unlikely(nd->last_type != LAST_NORM)) {
2120 if (!(flags & WALK_MORE) && nd->depth)
2121 put_link(nd);
2122 return handle_dots(nd, nd->last_type);
2123 }
2124 dentry = lookup_fast(nd);
2125 if (IS_ERR(dentry))
2126 return ERR_CAST(dentry);
2127 if (unlikely(!dentry)) {
2128 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2129 if (IS_ERR(dentry))
2130 return ERR_CAST(dentry);
2131 }
2132 if (!(flags & WALK_MORE) && nd->depth)
2133 put_link(nd);
2134 return step_into(nd, flags, dentry);
2135 }
2136
2137 /*
2138 * We can do the critical dentry name comparison and hashing
2139 * operations one word at a time, but we are limited to:
2140 *
2141 * - Architectures with fast unaligned word accesses. We could
2142 * do a "get_unaligned()" if this helps and is sufficiently
2143 * fast.
2144 *
2145 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2146 * do not trap on the (extremely unlikely) case of a page
2147 * crossing operation.
2148 *
2149 * - Furthermore, we need an efficient 64-bit compile for the
2150 * 64-bit case in order to generate the "number of bytes in
2151 * the final mask". Again, that could be replaced with a
2152 * efficient population count instruction or similar.
2153 */
2154 #ifdef CONFIG_DCACHE_WORD_ACCESS
2155
2156 #include <asm/word-at-a-time.h>
2157
2158 #ifdef HASH_MIX
2159
2160 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2161
2162 #elif defined(CONFIG_64BIT)
2163 /*
2164 * Register pressure in the mixing function is an issue, particularly
2165 * on 32-bit x86, but almost any function requires one state value and
2166 * one temporary. Instead, use a function designed for two state values
2167 * and no temporaries.
2168 *
2169 * This function cannot create a collision in only two iterations, so
2170 * we have two iterations to achieve avalanche. In those two iterations,
2171 * we have six layers of mixing, which is enough to spread one bit's
2172 * influence out to 2^6 = 64 state bits.
2173 *
2174 * Rotate constants are scored by considering either 64 one-bit input
2175 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2176 * probability of that delta causing a change to each of the 128 output
2177 * bits, using a sample of random initial states.
2178 *
2179 * The Shannon entropy of the computed probabilities is then summed
2180 * to produce a score. Ideally, any input change has a 50% chance of
2181 * toggling any given output bit.
2182 *
2183 * Mixing scores (in bits) for (12,45):
2184 * Input delta: 1-bit 2-bit
2185 * 1 round: 713.3 42542.6
2186 * 2 rounds: 2753.7 140389.8
2187 * 3 rounds: 5954.1 233458.2
2188 * 4 rounds: 7862.6 256672.2
2189 * Perfect: 8192 258048
2190 * (64*128) (64*63/2 * 128)
2191 */
2192 #define HASH_MIX(x, y, a) \
2193 ( x ^= (a), \
2194 y ^= x, x = rol64(x,12),\
2195 x += y, y = rol64(y,45),\
2196 y *= 9 )
2197
2198 /*
2199 * Fold two longs into one 32-bit hash value. This must be fast, but
2200 * latency isn't quite as critical, as there is a fair bit of additional
2201 * work done before the hash value is used.
2202 */
fold_hash(unsigned long x,unsigned long y)2203 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2204 {
2205 y ^= x * GOLDEN_RATIO_64;
2206 y *= GOLDEN_RATIO_64;
2207 return y >> 32;
2208 }
2209
2210 #else /* 32-bit case */
2211
2212 /*
2213 * Mixing scores (in bits) for (7,20):
2214 * Input delta: 1-bit 2-bit
2215 * 1 round: 330.3 9201.6
2216 * 2 rounds: 1246.4 25475.4
2217 * 3 rounds: 1907.1 31295.1
2218 * 4 rounds: 2042.3 31718.6
2219 * Perfect: 2048 31744
2220 * (32*64) (32*31/2 * 64)
2221 */
2222 #define HASH_MIX(x, y, a) \
2223 ( x ^= (a), \
2224 y ^= x, x = rol32(x, 7),\
2225 x += y, y = rol32(y,20),\
2226 y *= 9 )
2227
fold_hash(unsigned long x,unsigned long y)2228 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2229 {
2230 /* Use arch-optimized multiply if one exists */
2231 return __hash_32(y ^ __hash_32(x));
2232 }
2233
2234 #endif
2235
2236 /*
2237 * Return the hash of a string of known length. This is carfully
2238 * designed to match hash_name(), which is the more critical function.
2239 * In particular, we must end by hashing a final word containing 0..7
2240 * payload bytes, to match the way that hash_name() iterates until it
2241 * finds the delimiter after the name.
2242 */
full_name_hash(const void * salt,const char * name,unsigned int len)2243 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2244 {
2245 unsigned long a, x = 0, y = (unsigned long)salt;
2246
2247 for (;;) {
2248 if (!len)
2249 goto done;
2250 a = load_unaligned_zeropad(name);
2251 if (len < sizeof(unsigned long))
2252 break;
2253 HASH_MIX(x, y, a);
2254 name += sizeof(unsigned long);
2255 len -= sizeof(unsigned long);
2256 }
2257 x ^= a & bytemask_from_count(len);
2258 done:
2259 return fold_hash(x, y);
2260 }
2261 EXPORT_SYMBOL(full_name_hash);
2262
2263 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2264 u64 hashlen_string(const void *salt, const char *name)
2265 {
2266 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2267 unsigned long adata, mask, len;
2268 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2269
2270 len = 0;
2271 goto inside;
2272
2273 do {
2274 HASH_MIX(x, y, a);
2275 len += sizeof(unsigned long);
2276 inside:
2277 a = load_unaligned_zeropad(name+len);
2278 } while (!has_zero(a, &adata, &constants));
2279
2280 adata = prep_zero_mask(a, adata, &constants);
2281 mask = create_zero_mask(adata);
2282 x ^= a & zero_bytemask(mask);
2283
2284 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2285 }
2286 EXPORT_SYMBOL(hashlen_string);
2287
2288 /*
2289 * Calculate the length and hash of the path component, and
2290 * return the length as the result.
2291 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2292 static inline const char *hash_name(struct nameidata *nd,
2293 const char *name,
2294 unsigned long *lastword)
2295 {
2296 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2297 unsigned long adata, bdata, mask, len;
2298 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2299
2300 /*
2301 * The first iteration is special, because it can result in
2302 * '.' and '..' and has no mixing other than the final fold.
2303 */
2304 a = load_unaligned_zeropad(name);
2305 b = a ^ REPEAT_BYTE('/');
2306 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2307 adata = prep_zero_mask(a, adata, &constants);
2308 bdata = prep_zero_mask(b, bdata, &constants);
2309 mask = create_zero_mask(adata | bdata);
2310 a &= zero_bytemask(mask);
2311 *lastword = a;
2312 len = find_zero(mask);
2313 nd->last.hash = fold_hash(a, y);
2314 nd->last.len = len;
2315 return name + len;
2316 }
2317
2318 len = 0;
2319 x = 0;
2320 do {
2321 HASH_MIX(x, y, a);
2322 len += sizeof(unsigned long);
2323 a = load_unaligned_zeropad(name+len);
2324 b = a ^ REPEAT_BYTE('/');
2325 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2326
2327 adata = prep_zero_mask(a, adata, &constants);
2328 bdata = prep_zero_mask(b, bdata, &constants);
2329 mask = create_zero_mask(adata | bdata);
2330 a &= zero_bytemask(mask);
2331 x ^= a;
2332 len += find_zero(mask);
2333 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2334
2335 nd->last.hash = fold_hash(x, y);
2336 nd->last.len = len;
2337 return name + len;
2338 }
2339
2340 /*
2341 * Note that the 'last' word is always zero-masked, but
2342 * was loaded as a possibly big-endian word.
2343 */
2344 #ifdef __BIG_ENDIAN
2345 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2346 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2347 #endif
2348
2349 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2350
2351 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2352 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2353 {
2354 unsigned long hash = init_name_hash(salt);
2355 while (len--)
2356 hash = partial_name_hash((unsigned char)*name++, hash);
2357 return end_name_hash(hash);
2358 }
2359 EXPORT_SYMBOL(full_name_hash);
2360
2361 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2362 u64 hashlen_string(const void *salt, const char *name)
2363 {
2364 unsigned long hash = init_name_hash(salt);
2365 unsigned long len = 0, c;
2366
2367 c = (unsigned char)*name;
2368 while (c) {
2369 len++;
2370 hash = partial_name_hash(c, hash);
2371 c = (unsigned char)name[len];
2372 }
2373 return hashlen_create(end_name_hash(hash), len);
2374 }
2375 EXPORT_SYMBOL(hashlen_string);
2376
2377 /*
2378 * We know there's a real path component here of at least
2379 * one character.
2380 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2381 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2382 {
2383 unsigned long hash = init_name_hash(nd->path.dentry);
2384 unsigned long len = 0, c, last = 0;
2385
2386 c = (unsigned char)*name;
2387 do {
2388 last = (last << 8) + c;
2389 len++;
2390 hash = partial_name_hash(c, hash);
2391 c = (unsigned char)name[len];
2392 } while (c && c != '/');
2393
2394 // This is reliable for DOT or DOTDOT, since the component
2395 // cannot contain NUL characters - top bits being zero means
2396 // we cannot have had any other pathnames.
2397 *lastword = last;
2398 nd->last.hash = end_name_hash(hash);
2399 nd->last.len = len;
2400 return name + len;
2401 }
2402
2403 #endif
2404
2405 #ifndef LAST_WORD_IS_DOT
2406 #define LAST_WORD_IS_DOT 0x2e
2407 #define LAST_WORD_IS_DOTDOT 0x2e2e
2408 #endif
2409
2410 /*
2411 * Name resolution.
2412 * This is the basic name resolution function, turning a pathname into
2413 * the final dentry. We expect 'base' to be positive and a directory.
2414 *
2415 * Returns 0 and nd will have valid dentry and mnt on success.
2416 * Returns error and drops reference to input namei data on failure.
2417 */
link_path_walk(const char * name,struct nameidata * nd)2418 static int link_path_walk(const char *name, struct nameidata *nd)
2419 {
2420 int depth = 0; // depth <= nd->depth
2421 int err;
2422
2423 nd->last_type = LAST_ROOT;
2424 nd->flags |= LOOKUP_PARENT;
2425 if (IS_ERR(name))
2426 return PTR_ERR(name);
2427 while (*name=='/')
2428 name++;
2429 if (!*name) {
2430 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2431 return 0;
2432 }
2433
2434 /* At this point we know we have a real path component. */
2435 for(;;) {
2436 struct mnt_idmap *idmap;
2437 const char *link;
2438 unsigned long lastword;
2439
2440 idmap = mnt_idmap(nd->path.mnt);
2441 err = may_lookup(idmap, nd);
2442 if (err)
2443 return err;
2444
2445 nd->last.name = name;
2446 name = hash_name(nd, name, &lastword);
2447
2448 switch(lastword) {
2449 case LAST_WORD_IS_DOTDOT:
2450 nd->last_type = LAST_DOTDOT;
2451 nd->state |= ND_JUMPED;
2452 break;
2453
2454 case LAST_WORD_IS_DOT:
2455 nd->last_type = LAST_DOT;
2456 break;
2457
2458 default:
2459 nd->last_type = LAST_NORM;
2460 nd->state &= ~ND_JUMPED;
2461
2462 struct dentry *parent = nd->path.dentry;
2463 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2464 err = parent->d_op->d_hash(parent, &nd->last);
2465 if (err < 0)
2466 return err;
2467 }
2468 }
2469
2470 if (!*name)
2471 goto OK;
2472 /*
2473 * If it wasn't NUL, we know it was '/'. Skip that
2474 * slash, and continue until no more slashes.
2475 */
2476 do {
2477 name++;
2478 } while (unlikely(*name == '/'));
2479 if (unlikely(!*name)) {
2480 OK:
2481 /* pathname or trailing symlink, done */
2482 if (!depth) {
2483 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2484 nd->dir_mode = nd->inode->i_mode;
2485 nd->flags &= ~LOOKUP_PARENT;
2486 return 0;
2487 }
2488 /* last component of nested symlink */
2489 name = nd->stack[--depth].name;
2490 link = walk_component(nd, 0);
2491 } else {
2492 /* not the last component */
2493 link = walk_component(nd, WALK_MORE);
2494 }
2495 if (unlikely(link)) {
2496 if (IS_ERR(link))
2497 return PTR_ERR(link);
2498 /* a symlink to follow */
2499 nd->stack[depth++].name = name;
2500 name = link;
2501 continue;
2502 }
2503 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2504 if (nd->flags & LOOKUP_RCU) {
2505 if (!try_to_unlazy(nd))
2506 return -ECHILD;
2507 }
2508 return -ENOTDIR;
2509 }
2510 }
2511 }
2512
2513 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2514 static const char *path_init(struct nameidata *nd, unsigned flags)
2515 {
2516 int error;
2517 const char *s = nd->pathname;
2518
2519 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2520 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2521 return ERR_PTR(-EAGAIN);
2522
2523 if (!*s)
2524 flags &= ~LOOKUP_RCU;
2525 if (flags & LOOKUP_RCU)
2526 rcu_read_lock();
2527 else
2528 nd->seq = nd->next_seq = 0;
2529
2530 nd->flags = flags;
2531 nd->state |= ND_JUMPED;
2532
2533 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2534 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2535 smp_rmb();
2536
2537 if (nd->state & ND_ROOT_PRESET) {
2538 struct dentry *root = nd->root.dentry;
2539 struct inode *inode = root->d_inode;
2540 if (*s && unlikely(!d_can_lookup(root)))
2541 return ERR_PTR(-ENOTDIR);
2542 nd->path = nd->root;
2543 nd->inode = inode;
2544 if (flags & LOOKUP_RCU) {
2545 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2546 nd->root_seq = nd->seq;
2547 } else {
2548 path_get(&nd->path);
2549 }
2550 return s;
2551 }
2552
2553 nd->root.mnt = NULL;
2554
2555 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2556 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2557 error = nd_jump_root(nd);
2558 if (unlikely(error))
2559 return ERR_PTR(error);
2560 return s;
2561 }
2562
2563 /* Relative pathname -- get the starting-point it is relative to. */
2564 if (nd->dfd == AT_FDCWD) {
2565 if (flags & LOOKUP_RCU) {
2566 struct fs_struct *fs = current->fs;
2567 unsigned seq;
2568
2569 do {
2570 seq = read_seqcount_begin(&fs->seq);
2571 nd->path = fs->pwd;
2572 nd->inode = nd->path.dentry->d_inode;
2573 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2574 } while (read_seqcount_retry(&fs->seq, seq));
2575 } else {
2576 get_fs_pwd(current->fs, &nd->path);
2577 nd->inode = nd->path.dentry->d_inode;
2578 }
2579 } else {
2580 /* Caller must check execute permissions on the starting path component */
2581 CLASS(fd_raw, f)(nd->dfd);
2582 struct dentry *dentry;
2583
2584 if (fd_empty(f))
2585 return ERR_PTR(-EBADF);
2586
2587 if (flags & LOOKUP_LINKAT_EMPTY) {
2588 if (fd_file(f)->f_cred != current_cred() &&
2589 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2590 return ERR_PTR(-ENOENT);
2591 }
2592
2593 dentry = fd_file(f)->f_path.dentry;
2594
2595 if (*s && unlikely(!d_can_lookup(dentry)))
2596 return ERR_PTR(-ENOTDIR);
2597
2598 nd->path = fd_file(f)->f_path;
2599 if (flags & LOOKUP_RCU) {
2600 nd->inode = nd->path.dentry->d_inode;
2601 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2602 } else {
2603 path_get(&nd->path);
2604 nd->inode = nd->path.dentry->d_inode;
2605 }
2606 }
2607
2608 /* For scoped-lookups we need to set the root to the dirfd as well. */
2609 if (flags & LOOKUP_IS_SCOPED) {
2610 nd->root = nd->path;
2611 if (flags & LOOKUP_RCU) {
2612 nd->root_seq = nd->seq;
2613 } else {
2614 path_get(&nd->root);
2615 nd->state |= ND_ROOT_GRABBED;
2616 }
2617 }
2618 return s;
2619 }
2620
lookup_last(struct nameidata * nd)2621 static inline const char *lookup_last(struct nameidata *nd)
2622 {
2623 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2624 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2625
2626 return walk_component(nd, WALK_TRAILING);
2627 }
2628
handle_lookup_down(struct nameidata * nd)2629 static int handle_lookup_down(struct nameidata *nd)
2630 {
2631 if (!(nd->flags & LOOKUP_RCU))
2632 dget(nd->path.dentry);
2633 nd->next_seq = nd->seq;
2634 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2635 }
2636
2637 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2638 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2639 {
2640 const char *s = path_init(nd, flags);
2641 int err;
2642
2643 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2644 err = handle_lookup_down(nd);
2645 if (unlikely(err < 0))
2646 s = ERR_PTR(err);
2647 }
2648
2649 while (!(err = link_path_walk(s, nd)) &&
2650 (s = lookup_last(nd)) != NULL)
2651 ;
2652 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2653 err = handle_lookup_down(nd);
2654 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2655 }
2656 if (!err)
2657 err = complete_walk(nd);
2658
2659 if (!err && nd->flags & LOOKUP_DIRECTORY)
2660 if (!d_can_lookup(nd->path.dentry))
2661 err = -ENOTDIR;
2662 if (!err) {
2663 *path = nd->path;
2664 nd->path.mnt = NULL;
2665 nd->path.dentry = NULL;
2666 }
2667 terminate_walk(nd);
2668 return err;
2669 }
2670
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2671 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2672 struct path *path, struct path *root)
2673 {
2674 int retval;
2675 struct nameidata nd;
2676 if (IS_ERR(name))
2677 return PTR_ERR(name);
2678 set_nameidata(&nd, dfd, name, root);
2679 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2680 if (unlikely(retval == -ECHILD))
2681 retval = path_lookupat(&nd, flags, path);
2682 if (unlikely(retval == -ESTALE))
2683 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2684
2685 if (likely(!retval))
2686 audit_inode(name, path->dentry,
2687 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2688 restore_nameidata();
2689 return retval;
2690 }
2691
2692 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2693 static int path_parentat(struct nameidata *nd, unsigned flags,
2694 struct path *parent)
2695 {
2696 const char *s = path_init(nd, flags);
2697 int err = link_path_walk(s, nd);
2698 if (!err)
2699 err = complete_walk(nd);
2700 if (!err) {
2701 *parent = nd->path;
2702 nd->path.mnt = NULL;
2703 nd->path.dentry = NULL;
2704 }
2705 terminate_walk(nd);
2706 return err;
2707 }
2708
2709 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2710 static int __filename_parentat(int dfd, struct filename *name,
2711 unsigned int flags, struct path *parent,
2712 struct qstr *last, int *type,
2713 const struct path *root)
2714 {
2715 int retval;
2716 struct nameidata nd;
2717
2718 if (IS_ERR(name))
2719 return PTR_ERR(name);
2720 set_nameidata(&nd, dfd, name, root);
2721 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2722 if (unlikely(retval == -ECHILD))
2723 retval = path_parentat(&nd, flags, parent);
2724 if (unlikely(retval == -ESTALE))
2725 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2726 if (likely(!retval)) {
2727 *last = nd.last;
2728 *type = nd.last_type;
2729 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2730 }
2731 restore_nameidata();
2732 return retval;
2733 }
2734
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2735 static int filename_parentat(int dfd, struct filename *name,
2736 unsigned int flags, struct path *parent,
2737 struct qstr *last, int *type)
2738 {
2739 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2740 }
2741
2742 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2743 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2744 {
2745 struct dentry *d;
2746 struct qstr last;
2747 int type, error;
2748
2749 error = filename_parentat(dfd, name, 0, path, &last, &type);
2750 if (error)
2751 return ERR_PTR(error);
2752 if (unlikely(type != LAST_NORM)) {
2753 path_put(path);
2754 return ERR_PTR(-EINVAL);
2755 }
2756 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2757 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2758 if (IS_ERR(d)) {
2759 inode_unlock(path->dentry->d_inode);
2760 path_put(path);
2761 }
2762 return d;
2763 }
2764
kern_path_locked(const char * name,struct path * path)2765 struct dentry *kern_path_locked(const char *name, struct path *path)
2766 {
2767 struct filename *filename = getname_kernel(name);
2768 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2769
2770 putname(filename);
2771 return res;
2772 }
2773
user_path_locked_at(int dfd,const char __user * name,struct path * path)2774 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2775 {
2776 struct filename *filename = getname(name);
2777 struct dentry *res = __kern_path_locked(dfd, filename, path);
2778
2779 putname(filename);
2780 return res;
2781 }
2782 EXPORT_SYMBOL(user_path_locked_at);
2783
kern_path(const char * name,unsigned int flags,struct path * path)2784 int kern_path(const char *name, unsigned int flags, struct path *path)
2785 {
2786 struct filename *filename = getname_kernel(name);
2787 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2788
2789 putname(filename);
2790 return ret;
2791
2792 }
2793 EXPORT_SYMBOL(kern_path);
2794
2795 /**
2796 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2797 * @filename: filename structure
2798 * @flags: lookup flags
2799 * @parent: pointer to struct path to fill
2800 * @last: last component
2801 * @type: type of the last component
2802 * @root: pointer to struct path of the base directory
2803 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2804 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2805 struct path *parent, struct qstr *last, int *type,
2806 const struct path *root)
2807 {
2808 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2809 type, root);
2810 }
2811 EXPORT_SYMBOL(vfs_path_parent_lookup);
2812
2813 /**
2814 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2815 * @dentry: pointer to dentry of the base directory
2816 * @mnt: pointer to vfs mount of the base directory
2817 * @name: pointer to file name
2818 * @flags: lookup flags
2819 * @path: pointer to struct path to fill
2820 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2821 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2822 const char *name, unsigned int flags,
2823 struct path *path)
2824 {
2825 struct filename *filename;
2826 struct path root = {.mnt = mnt, .dentry = dentry};
2827 int ret;
2828
2829 filename = getname_kernel(name);
2830 /* the first argument of filename_lookup() is ignored with root */
2831 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2832 putname(filename);
2833 return ret;
2834 }
2835 EXPORT_SYMBOL(vfs_path_lookup);
2836
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2837 static int lookup_one_common(struct mnt_idmap *idmap,
2838 const char *name, struct dentry *base, int len,
2839 struct qstr *this)
2840 {
2841 this->name = name;
2842 this->len = len;
2843 this->hash = full_name_hash(base, name, len);
2844 if (!len)
2845 return -EACCES;
2846
2847 if (is_dot_dotdot(name, len))
2848 return -EACCES;
2849
2850 while (len--) {
2851 unsigned int c = *(const unsigned char *)name++;
2852 if (c == '/' || c == '\0')
2853 return -EACCES;
2854 }
2855 /*
2856 * See if the low-level filesystem might want
2857 * to use its own hash..
2858 */
2859 if (base->d_flags & DCACHE_OP_HASH) {
2860 int err = base->d_op->d_hash(base, this);
2861 if (err < 0)
2862 return err;
2863 }
2864
2865 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2866 }
2867
2868 /**
2869 * try_lookup_one_len - filesystem helper to lookup single pathname component
2870 * @name: pathname component to lookup
2871 * @base: base directory to lookup from
2872 * @len: maximum length @len should be interpreted to
2873 *
2874 * Look up a dentry by name in the dcache, returning NULL if it does not
2875 * currently exist. The function does not try to create a dentry.
2876 *
2877 * Note that this routine is purely a helper for filesystem usage and should
2878 * not be called by generic code.
2879 *
2880 * No locks need be held - only a counted reference to @base is needed.
2881 *
2882 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2883 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2884 {
2885 struct qstr this;
2886 int err;
2887
2888 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2889 if (err)
2890 return ERR_PTR(err);
2891
2892 return lookup_dcache(&this, base, 0);
2893 }
2894 EXPORT_SYMBOL(try_lookup_one_len);
2895
2896 /**
2897 * lookup_one_len - filesystem helper to lookup single pathname component
2898 * @name: pathname component to lookup
2899 * @base: base directory to lookup from
2900 * @len: maximum length @len should be interpreted to
2901 *
2902 * Note that this routine is purely a helper for filesystem usage and should
2903 * not be called by generic code.
2904 *
2905 * The caller must hold base->i_mutex.
2906 */
lookup_one_len(const char * name,struct dentry * base,int len)2907 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2908 {
2909 struct dentry *dentry;
2910 struct qstr this;
2911 int err;
2912
2913 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2914
2915 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2916 if (err)
2917 return ERR_PTR(err);
2918
2919 dentry = lookup_dcache(&this, base, 0);
2920 return dentry ? dentry : __lookup_slow(&this, base, 0);
2921 }
2922 EXPORT_SYMBOL(lookup_one_len);
2923
2924 /**
2925 * lookup_one - filesystem helper to lookup single pathname component
2926 * @idmap: idmap of the mount the lookup is performed from
2927 * @name: pathname component to lookup
2928 * @base: base directory to lookup from
2929 * @len: maximum length @len should be interpreted to
2930 *
2931 * Note that this routine is purely a helper for filesystem usage and should
2932 * not be called by generic code.
2933 *
2934 * The caller must hold base->i_mutex.
2935 */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2936 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2937 struct dentry *base, int len)
2938 {
2939 struct dentry *dentry;
2940 struct qstr this;
2941 int err;
2942
2943 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2944
2945 err = lookup_one_common(idmap, name, base, len, &this);
2946 if (err)
2947 return ERR_PTR(err);
2948
2949 dentry = lookup_dcache(&this, base, 0);
2950 return dentry ? dentry : __lookup_slow(&this, base, 0);
2951 }
2952 EXPORT_SYMBOL(lookup_one);
2953
2954 /**
2955 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2956 * @idmap: idmap of the mount the lookup is performed from
2957 * @name: pathname component to lookup
2958 * @base: base directory to lookup from
2959 * @len: maximum length @len should be interpreted to
2960 *
2961 * Note that this routine is purely a helper for filesystem usage and should
2962 * not be called by generic code.
2963 *
2964 * Unlike lookup_one_len, it should be called without the parent
2965 * i_mutex held, and will take the i_mutex itself if necessary.
2966 */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2967 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2968 const char *name, struct dentry *base,
2969 int len)
2970 {
2971 struct qstr this;
2972 int err;
2973 struct dentry *ret;
2974
2975 err = lookup_one_common(idmap, name, base, len, &this);
2976 if (err)
2977 return ERR_PTR(err);
2978
2979 ret = lookup_dcache(&this, base, 0);
2980 if (!ret)
2981 ret = lookup_slow(&this, base, 0);
2982 return ret;
2983 }
2984 EXPORT_SYMBOL(lookup_one_unlocked);
2985
2986 /**
2987 * lookup_one_positive_unlocked - filesystem helper to lookup single
2988 * pathname component
2989 * @idmap: idmap of the mount the lookup is performed from
2990 * @name: pathname component to lookup
2991 * @base: base directory to lookup from
2992 * @len: maximum length @len should be interpreted to
2993 *
2994 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2995 * known positive or ERR_PTR(). This is what most of the users want.
2996 *
2997 * Note that pinned negative with unlocked parent _can_ become positive at any
2998 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2999 * positives have >d_inode stable, so this one avoids such problems.
3000 *
3001 * Note that this routine is purely a helper for filesystem usage and should
3002 * not be called by generic code.
3003 *
3004 * The helper should be called without i_mutex held.
3005 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)3006 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3007 const char *name,
3008 struct dentry *base, int len)
3009 {
3010 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
3011
3012 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3013 dput(ret);
3014 ret = ERR_PTR(-ENOENT);
3015 }
3016 return ret;
3017 }
3018 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3019
3020 /**
3021 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3022 * @name: pathname component to lookup
3023 * @base: base directory to lookup from
3024 * @len: maximum length @len should be interpreted to
3025 *
3026 * Note that this routine is purely a helper for filesystem usage and should
3027 * not be called by generic code.
3028 *
3029 * Unlike lookup_one_len, it should be called without the parent
3030 * i_mutex held, and will take the i_mutex itself if necessary.
3031 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)3032 struct dentry *lookup_one_len_unlocked(const char *name,
3033 struct dentry *base, int len)
3034 {
3035 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3036 }
3037 EXPORT_SYMBOL(lookup_one_len_unlocked);
3038
3039 /*
3040 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3041 * on negatives. Returns known positive or ERR_PTR(); that's what
3042 * most of the users want. Note that pinned negative with unlocked parent
3043 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3044 * need to be very careful; pinned positives have ->d_inode stable, so
3045 * this one avoids such problems.
3046 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)3047 struct dentry *lookup_positive_unlocked(const char *name,
3048 struct dentry *base, int len)
3049 {
3050 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3051 }
3052 EXPORT_SYMBOL(lookup_positive_unlocked);
3053
3054 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3055 int path_pts(struct path *path)
3056 {
3057 /* Find something mounted on "pts" in the same directory as
3058 * the input path.
3059 */
3060 struct dentry *parent = dget_parent(path->dentry);
3061 struct dentry *child;
3062 struct qstr this = QSTR_INIT("pts", 3);
3063
3064 if (unlikely(!path_connected(path->mnt, parent))) {
3065 dput(parent);
3066 return -ENOENT;
3067 }
3068 dput(path->dentry);
3069 path->dentry = parent;
3070 child = d_hash_and_lookup(parent, &this);
3071 if (IS_ERR_OR_NULL(child))
3072 return -ENOENT;
3073
3074 path->dentry = child;
3075 dput(parent);
3076 follow_down(path, 0);
3077 return 0;
3078 }
3079 #endif
3080
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3081 int user_path_at(int dfd, const char __user *name, unsigned flags,
3082 struct path *path)
3083 {
3084 struct filename *filename = getname_flags(name, flags);
3085 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3086
3087 putname(filename);
3088 return ret;
3089 }
3090 EXPORT_SYMBOL(user_path_at);
3091
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3092 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3093 struct inode *inode)
3094 {
3095 kuid_t fsuid = current_fsuid();
3096
3097 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3098 return 0;
3099 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3100 return 0;
3101 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3102 }
3103 EXPORT_SYMBOL(__check_sticky);
3104
3105 /*
3106 * Check whether we can remove a link victim from directory dir, check
3107 * whether the type of victim is right.
3108 * 1. We can't do it if dir is read-only (done in permission())
3109 * 2. We should have write and exec permissions on dir
3110 * 3. We can't remove anything from append-only dir
3111 * 4. We can't do anything with immutable dir (done in permission())
3112 * 5. If the sticky bit on dir is set we should either
3113 * a. be owner of dir, or
3114 * b. be owner of victim, or
3115 * c. have CAP_FOWNER capability
3116 * 6. If the victim is append-only or immutable we can't do antyhing with
3117 * links pointing to it.
3118 * 7. If the victim has an unknown uid or gid we can't change the inode.
3119 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3120 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3121 * 10. We can't remove a root or mountpoint.
3122 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3123 * nfs_async_unlink().
3124 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3125 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3126 struct dentry *victim, bool isdir)
3127 {
3128 struct inode *inode = d_backing_inode(victim);
3129 int error;
3130
3131 if (d_is_negative(victim))
3132 return -ENOENT;
3133 BUG_ON(!inode);
3134
3135 BUG_ON(victim->d_parent->d_inode != dir);
3136
3137 /* Inode writeback is not safe when the uid or gid are invalid. */
3138 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3139 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3140 return -EOVERFLOW;
3141
3142 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3143
3144 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3145 if (error)
3146 return error;
3147 if (IS_APPEND(dir))
3148 return -EPERM;
3149
3150 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3151 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3152 HAS_UNMAPPED_ID(idmap, inode))
3153 return -EPERM;
3154 if (isdir) {
3155 if (!d_is_dir(victim))
3156 return -ENOTDIR;
3157 if (IS_ROOT(victim))
3158 return -EBUSY;
3159 } else if (d_is_dir(victim))
3160 return -EISDIR;
3161 if (IS_DEADDIR(dir))
3162 return -ENOENT;
3163 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3164 return -EBUSY;
3165 return 0;
3166 }
3167
3168 /* Check whether we can create an object with dentry child in directory
3169 * dir.
3170 * 1. We can't do it if child already exists (open has special treatment for
3171 * this case, but since we are inlined it's OK)
3172 * 2. We can't do it if dir is read-only (done in permission())
3173 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3174 * 4. We should have write and exec permissions on dir
3175 * 5. We can't do it if dir is immutable (done in permission())
3176 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3177 static inline int may_create(struct mnt_idmap *idmap,
3178 struct inode *dir, struct dentry *child)
3179 {
3180 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3181 if (child->d_inode)
3182 return -EEXIST;
3183 if (IS_DEADDIR(dir))
3184 return -ENOENT;
3185 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3186 return -EOVERFLOW;
3187
3188 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3189 }
3190
3191 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3192 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3193 {
3194 struct dentry *p = p1, *q = p2, *r;
3195
3196 while ((r = p->d_parent) != p2 && r != p)
3197 p = r;
3198 if (r == p2) {
3199 // p is a child of p2 and an ancestor of p1 or p1 itself
3200 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3201 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3202 return p;
3203 }
3204 // p is the root of connected component that contains p1
3205 // p2 does not occur on the path from p to p1
3206 while ((r = q->d_parent) != p1 && r != p && r != q)
3207 q = r;
3208 if (r == p1) {
3209 // q is a child of p1 and an ancestor of p2 or p2 itself
3210 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3211 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3212 return q;
3213 } else if (likely(r == p)) {
3214 // both p2 and p1 are descendents of p
3215 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3216 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3217 return NULL;
3218 } else { // no common ancestor at the time we'd been called
3219 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3220 return ERR_PTR(-EXDEV);
3221 }
3222 }
3223
3224 /*
3225 * p1 and p2 should be directories on the same fs.
3226 */
lock_rename(struct dentry * p1,struct dentry * p2)3227 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3228 {
3229 if (p1 == p2) {
3230 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3231 return NULL;
3232 }
3233
3234 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3235 return lock_two_directories(p1, p2);
3236 }
3237 EXPORT_SYMBOL(lock_rename);
3238
3239 /*
3240 * c1 and p2 should be on the same fs.
3241 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3242 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3243 {
3244 if (READ_ONCE(c1->d_parent) == p2) {
3245 /*
3246 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3247 */
3248 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3249 /*
3250 * now that p2 is locked, nobody can move in or out of it,
3251 * so the test below is safe.
3252 */
3253 if (likely(c1->d_parent == p2))
3254 return NULL;
3255
3256 /*
3257 * c1 got moved out of p2 while we'd been taking locks;
3258 * unlock and fall back to slow case.
3259 */
3260 inode_unlock(p2->d_inode);
3261 }
3262
3263 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3264 /*
3265 * nobody can move out of any directories on this fs.
3266 */
3267 if (likely(c1->d_parent != p2))
3268 return lock_two_directories(c1->d_parent, p2);
3269
3270 /*
3271 * c1 got moved into p2 while we were taking locks;
3272 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3273 * for consistency with lock_rename().
3274 */
3275 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3276 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3277 return NULL;
3278 }
3279 EXPORT_SYMBOL(lock_rename_child);
3280
unlock_rename(struct dentry * p1,struct dentry * p2)3281 void unlock_rename(struct dentry *p1, struct dentry *p2)
3282 {
3283 inode_unlock(p1->d_inode);
3284 if (p1 != p2) {
3285 inode_unlock(p2->d_inode);
3286 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3287 }
3288 }
3289 EXPORT_SYMBOL(unlock_rename);
3290
3291 /**
3292 * vfs_prepare_mode - prepare the mode to be used for a new inode
3293 * @idmap: idmap of the mount the inode was found from
3294 * @dir: parent directory of the new inode
3295 * @mode: mode of the new inode
3296 * @mask_perms: allowed permission by the vfs
3297 * @type: type of file to be created
3298 *
3299 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3300 * object to be created.
3301 *
3302 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3303 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3304 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3305 * POSIX ACL supporting filesystems.
3306 *
3307 * Note that it's currently valid for @type to be 0 if a directory is created.
3308 * Filesystems raise that flag individually and we need to check whether each
3309 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3310 * non-zero type.
3311 *
3312 * Returns: mode to be passed to the filesystem
3313 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3314 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3315 const struct inode *dir, umode_t mode,
3316 umode_t mask_perms, umode_t type)
3317 {
3318 mode = mode_strip_sgid(idmap, dir, mode);
3319 mode = mode_strip_umask(dir, mode);
3320
3321 /*
3322 * Apply the vfs mandated allowed permission mask and set the type of
3323 * file to be created before we call into the filesystem.
3324 */
3325 mode &= (mask_perms & ~S_IFMT);
3326 mode |= (type & S_IFMT);
3327
3328 return mode;
3329 }
3330
3331 /**
3332 * vfs_create - create new file
3333 * @idmap: idmap of the mount the inode was found from
3334 * @dir: inode of the parent directory
3335 * @dentry: dentry of the child file
3336 * @mode: mode of the child file
3337 * @want_excl: whether the file must not yet exist
3338 *
3339 * Create a new file.
3340 *
3341 * If the inode has been found through an idmapped mount the idmap of
3342 * the vfsmount must be passed through @idmap. This function will then take
3343 * care to map the inode according to @idmap before checking permissions.
3344 * On non-idmapped mounts or if permission checking is to be performed on the
3345 * raw inode simply pass @nop_mnt_idmap.
3346 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3347 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3348 struct dentry *dentry, umode_t mode, bool want_excl)
3349 {
3350 int error;
3351
3352 error = may_create(idmap, dir, dentry);
3353 if (error)
3354 return error;
3355
3356 if (!dir->i_op->create)
3357 return -EACCES; /* shouldn't it be ENOSYS? */
3358
3359 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3360 error = security_inode_create(dir, dentry, mode);
3361 if (error)
3362 return error;
3363 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3364 if (!error)
3365 fsnotify_create(dir, dentry);
3366 return error;
3367 }
3368 EXPORT_SYMBOL(vfs_create);
3369
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3370 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3371 int (*f)(struct dentry *, umode_t, void *),
3372 void *arg)
3373 {
3374 struct inode *dir = dentry->d_parent->d_inode;
3375 int error = may_create(&nop_mnt_idmap, dir, dentry);
3376 if (error)
3377 return error;
3378
3379 mode &= S_IALLUGO;
3380 mode |= S_IFREG;
3381 error = security_inode_create(dir, dentry, mode);
3382 if (error)
3383 return error;
3384 error = f(dentry, mode, arg);
3385 if (!error)
3386 fsnotify_create(dir, dentry);
3387 return error;
3388 }
3389 EXPORT_SYMBOL(vfs_mkobj);
3390
may_open_dev(const struct path * path)3391 bool may_open_dev(const struct path *path)
3392 {
3393 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3394 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3395 }
3396
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3397 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3398 int acc_mode, int flag)
3399 {
3400 struct dentry *dentry = path->dentry;
3401 struct inode *inode = dentry->d_inode;
3402 int error;
3403
3404 if (!inode)
3405 return -ENOENT;
3406
3407 switch (inode->i_mode & S_IFMT) {
3408 case S_IFLNK:
3409 return -ELOOP;
3410 case S_IFDIR:
3411 if (acc_mode & MAY_WRITE)
3412 return -EISDIR;
3413 if (acc_mode & MAY_EXEC)
3414 return -EACCES;
3415 break;
3416 case S_IFBLK:
3417 case S_IFCHR:
3418 if (!may_open_dev(path))
3419 return -EACCES;
3420 fallthrough;
3421 case S_IFIFO:
3422 case S_IFSOCK:
3423 if (acc_mode & MAY_EXEC)
3424 return -EACCES;
3425 flag &= ~O_TRUNC;
3426 break;
3427 case S_IFREG:
3428 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3429 return -EACCES;
3430 break;
3431 default:
3432 VFS_BUG_ON_INODE(1, inode);
3433 }
3434
3435 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3436 if (error)
3437 return error;
3438
3439 /*
3440 * An append-only file must be opened in append mode for writing.
3441 */
3442 if (IS_APPEND(inode)) {
3443 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3444 return -EPERM;
3445 if (flag & O_TRUNC)
3446 return -EPERM;
3447 }
3448
3449 /* O_NOATIME can only be set by the owner or superuser */
3450 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3451 return -EPERM;
3452
3453 return 0;
3454 }
3455
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3456 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3457 {
3458 const struct path *path = &filp->f_path;
3459 struct inode *inode = path->dentry->d_inode;
3460 int error = get_write_access(inode);
3461 if (error)
3462 return error;
3463
3464 error = security_file_truncate(filp);
3465 if (!error) {
3466 error = do_truncate(idmap, path->dentry, 0,
3467 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3468 filp);
3469 }
3470 put_write_access(inode);
3471 return error;
3472 }
3473
open_to_namei_flags(int flag)3474 static inline int open_to_namei_flags(int flag)
3475 {
3476 if ((flag & O_ACCMODE) == 3)
3477 flag--;
3478 return flag;
3479 }
3480
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3481 static int may_o_create(struct mnt_idmap *idmap,
3482 const struct path *dir, struct dentry *dentry,
3483 umode_t mode)
3484 {
3485 int error = security_path_mknod(dir, dentry, mode, 0);
3486 if (error)
3487 return error;
3488
3489 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3490 return -EOVERFLOW;
3491
3492 error = inode_permission(idmap, dir->dentry->d_inode,
3493 MAY_WRITE | MAY_EXEC);
3494 if (error)
3495 return error;
3496
3497 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3498 }
3499
3500 /*
3501 * Attempt to atomically look up, create and open a file from a negative
3502 * dentry.
3503 *
3504 * Returns 0 if successful. The file will have been created and attached to
3505 * @file by the filesystem calling finish_open().
3506 *
3507 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3508 * be set. The caller will need to perform the open themselves. @path will
3509 * have been updated to point to the new dentry. This may be negative.
3510 *
3511 * Returns an error code otherwise.
3512 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3513 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3514 struct file *file,
3515 int open_flag, umode_t mode)
3516 {
3517 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3518 struct inode *dir = nd->path.dentry->d_inode;
3519 int error;
3520
3521 if (nd->flags & LOOKUP_DIRECTORY)
3522 open_flag |= O_DIRECTORY;
3523
3524 file->f_path.dentry = DENTRY_NOT_SET;
3525 file->f_path.mnt = nd->path.mnt;
3526 error = dir->i_op->atomic_open(dir, dentry, file,
3527 open_to_namei_flags(open_flag), mode);
3528 d_lookup_done(dentry);
3529 if (!error) {
3530 if (file->f_mode & FMODE_OPENED) {
3531 if (unlikely(dentry != file->f_path.dentry)) {
3532 dput(dentry);
3533 dentry = dget(file->f_path.dentry);
3534 }
3535 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3536 error = -EIO;
3537 } else {
3538 if (file->f_path.dentry) {
3539 dput(dentry);
3540 dentry = file->f_path.dentry;
3541 }
3542 if (unlikely(d_is_negative(dentry)))
3543 error = -ENOENT;
3544 }
3545 }
3546 if (error) {
3547 dput(dentry);
3548 dentry = ERR_PTR(error);
3549 }
3550 return dentry;
3551 }
3552
3553 /*
3554 * Look up and maybe create and open the last component.
3555 *
3556 * Must be called with parent locked (exclusive in O_CREAT case).
3557 *
3558 * Returns 0 on success, that is, if
3559 * the file was successfully atomically created (if necessary) and opened, or
3560 * the file was not completely opened at this time, though lookups and
3561 * creations were performed.
3562 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3563 * In the latter case dentry returned in @path might be negative if O_CREAT
3564 * hadn't been specified.
3565 *
3566 * An error code is returned on failure.
3567 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3568 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3569 const struct open_flags *op,
3570 bool got_write)
3571 {
3572 struct mnt_idmap *idmap;
3573 struct dentry *dir = nd->path.dentry;
3574 struct inode *dir_inode = dir->d_inode;
3575 int open_flag = op->open_flag;
3576 struct dentry *dentry;
3577 int error, create_error = 0;
3578 umode_t mode = op->mode;
3579 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3580
3581 if (unlikely(IS_DEADDIR(dir_inode)))
3582 return ERR_PTR(-ENOENT);
3583
3584 file->f_mode &= ~FMODE_CREATED;
3585 dentry = d_lookup(dir, &nd->last);
3586 for (;;) {
3587 if (!dentry) {
3588 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3589 if (IS_ERR(dentry))
3590 return dentry;
3591 }
3592 if (d_in_lookup(dentry))
3593 break;
3594
3595 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3596 if (likely(error > 0))
3597 break;
3598 if (error)
3599 goto out_dput;
3600 d_invalidate(dentry);
3601 dput(dentry);
3602 dentry = NULL;
3603 }
3604 if (dentry->d_inode) {
3605 /* Cached positive dentry: will open in f_op->open */
3606 return dentry;
3607 }
3608
3609 if (open_flag & O_CREAT)
3610 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3611
3612 /*
3613 * Checking write permission is tricky, bacuse we don't know if we are
3614 * going to actually need it: O_CREAT opens should work as long as the
3615 * file exists. But checking existence breaks atomicity. The trick is
3616 * to check access and if not granted clear O_CREAT from the flags.
3617 *
3618 * Another problem is returing the "right" error value (e.g. for an
3619 * O_EXCL open we want to return EEXIST not EROFS).
3620 */
3621 if (unlikely(!got_write))
3622 open_flag &= ~O_TRUNC;
3623 idmap = mnt_idmap(nd->path.mnt);
3624 if (open_flag & O_CREAT) {
3625 if (open_flag & O_EXCL)
3626 open_flag &= ~O_TRUNC;
3627 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3628 if (likely(got_write))
3629 create_error = may_o_create(idmap, &nd->path,
3630 dentry, mode);
3631 else
3632 create_error = -EROFS;
3633 }
3634 if (create_error)
3635 open_flag &= ~O_CREAT;
3636 if (dir_inode->i_op->atomic_open) {
3637 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3638 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3639 dentry = ERR_PTR(create_error);
3640 return dentry;
3641 }
3642
3643 if (d_in_lookup(dentry)) {
3644 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3645 nd->flags);
3646 d_lookup_done(dentry);
3647 if (unlikely(res)) {
3648 if (IS_ERR(res)) {
3649 error = PTR_ERR(res);
3650 goto out_dput;
3651 }
3652 dput(dentry);
3653 dentry = res;
3654 }
3655 }
3656
3657 /* Negative dentry, just create the file */
3658 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3659 file->f_mode |= FMODE_CREATED;
3660 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3661 if (!dir_inode->i_op->create) {
3662 error = -EACCES;
3663 goto out_dput;
3664 }
3665
3666 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3667 mode, open_flag & O_EXCL);
3668 if (error)
3669 goto out_dput;
3670 }
3671 if (unlikely(create_error) && !dentry->d_inode) {
3672 error = create_error;
3673 goto out_dput;
3674 }
3675 return dentry;
3676
3677 out_dput:
3678 dput(dentry);
3679 return ERR_PTR(error);
3680 }
3681
trailing_slashes(struct nameidata * nd)3682 static inline bool trailing_slashes(struct nameidata *nd)
3683 {
3684 return (bool)nd->last.name[nd->last.len];
3685 }
3686
lookup_fast_for_open(struct nameidata * nd,int open_flag)3687 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3688 {
3689 struct dentry *dentry;
3690
3691 if (open_flag & O_CREAT) {
3692 if (trailing_slashes(nd))
3693 return ERR_PTR(-EISDIR);
3694
3695 /* Don't bother on an O_EXCL create */
3696 if (open_flag & O_EXCL)
3697 return NULL;
3698 }
3699
3700 if (trailing_slashes(nd))
3701 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3702
3703 dentry = lookup_fast(nd);
3704 if (IS_ERR_OR_NULL(dentry))
3705 return dentry;
3706
3707 if (open_flag & O_CREAT) {
3708 /* Discard negative dentries. Need inode_lock to do the create */
3709 if (!dentry->d_inode) {
3710 if (!(nd->flags & LOOKUP_RCU))
3711 dput(dentry);
3712 dentry = NULL;
3713 }
3714 }
3715 return dentry;
3716 }
3717
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3718 static const char *open_last_lookups(struct nameidata *nd,
3719 struct file *file, const struct open_flags *op)
3720 {
3721 struct dentry *dir = nd->path.dentry;
3722 int open_flag = op->open_flag;
3723 bool got_write = false;
3724 struct dentry *dentry;
3725 const char *res;
3726
3727 nd->flags |= op->intent;
3728
3729 if (nd->last_type != LAST_NORM) {
3730 if (nd->depth)
3731 put_link(nd);
3732 return handle_dots(nd, nd->last_type);
3733 }
3734
3735 /* We _can_ be in RCU mode here */
3736 dentry = lookup_fast_for_open(nd, open_flag);
3737 if (IS_ERR(dentry))
3738 return ERR_CAST(dentry);
3739
3740 if (likely(dentry))
3741 goto finish_lookup;
3742
3743 if (!(open_flag & O_CREAT)) {
3744 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3745 return ERR_PTR(-ECHILD);
3746 } else {
3747 if (nd->flags & LOOKUP_RCU) {
3748 if (!try_to_unlazy(nd))
3749 return ERR_PTR(-ECHILD);
3750 }
3751 }
3752
3753 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3754 got_write = !mnt_want_write(nd->path.mnt);
3755 /*
3756 * do _not_ fail yet - we might not need that or fail with
3757 * a different error; let lookup_open() decide; we'll be
3758 * dropping this one anyway.
3759 */
3760 }
3761 if (open_flag & O_CREAT)
3762 inode_lock(dir->d_inode);
3763 else
3764 inode_lock_shared(dir->d_inode);
3765 dentry = lookup_open(nd, file, op, got_write);
3766 if (!IS_ERR(dentry)) {
3767 if (file->f_mode & FMODE_CREATED)
3768 fsnotify_create(dir->d_inode, dentry);
3769 if (file->f_mode & FMODE_OPENED)
3770 fsnotify_open(file);
3771 }
3772 if (open_flag & O_CREAT)
3773 inode_unlock(dir->d_inode);
3774 else
3775 inode_unlock_shared(dir->d_inode);
3776
3777 if (got_write)
3778 mnt_drop_write(nd->path.mnt);
3779
3780 if (IS_ERR(dentry))
3781 return ERR_CAST(dentry);
3782
3783 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3784 dput(nd->path.dentry);
3785 nd->path.dentry = dentry;
3786 return NULL;
3787 }
3788
3789 finish_lookup:
3790 if (nd->depth)
3791 put_link(nd);
3792 res = step_into(nd, WALK_TRAILING, dentry);
3793 if (unlikely(res))
3794 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3795 return res;
3796 }
3797
3798 /*
3799 * Handle the last step of open()
3800 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3801 static int do_open(struct nameidata *nd,
3802 struct file *file, const struct open_flags *op)
3803 {
3804 struct mnt_idmap *idmap;
3805 int open_flag = op->open_flag;
3806 bool do_truncate;
3807 int acc_mode;
3808 int error;
3809
3810 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3811 error = complete_walk(nd);
3812 if (error)
3813 return error;
3814 }
3815 if (!(file->f_mode & FMODE_CREATED))
3816 audit_inode(nd->name, nd->path.dentry, 0);
3817 idmap = mnt_idmap(nd->path.mnt);
3818 if (open_flag & O_CREAT) {
3819 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3820 return -EEXIST;
3821 if (d_is_dir(nd->path.dentry))
3822 return -EISDIR;
3823 error = may_create_in_sticky(idmap, nd,
3824 d_backing_inode(nd->path.dentry));
3825 if (unlikely(error))
3826 return error;
3827 }
3828 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3829 return -ENOTDIR;
3830
3831 do_truncate = false;
3832 acc_mode = op->acc_mode;
3833 if (file->f_mode & FMODE_CREATED) {
3834 /* Don't check for write permission, don't truncate */
3835 open_flag &= ~O_TRUNC;
3836 acc_mode = 0;
3837 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3838 error = mnt_want_write(nd->path.mnt);
3839 if (error)
3840 return error;
3841 do_truncate = true;
3842 }
3843 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3844 if (!error && !(file->f_mode & FMODE_OPENED))
3845 error = vfs_open(&nd->path, file);
3846 if (!error)
3847 error = security_file_post_open(file, op->acc_mode);
3848 if (!error && do_truncate)
3849 error = handle_truncate(idmap, file);
3850 if (unlikely(error > 0)) {
3851 WARN_ON(1);
3852 error = -EINVAL;
3853 }
3854 if (do_truncate)
3855 mnt_drop_write(nd->path.mnt);
3856 return error;
3857 }
3858
3859 /**
3860 * vfs_tmpfile - create tmpfile
3861 * @idmap: idmap of the mount the inode was found from
3862 * @parentpath: pointer to the path of the base directory
3863 * @file: file descriptor of the new tmpfile
3864 * @mode: mode of the new tmpfile
3865 *
3866 * Create a temporary file.
3867 *
3868 * If the inode has been found through an idmapped mount the idmap of
3869 * the vfsmount must be passed through @idmap. This function will then take
3870 * care to map the inode according to @idmap before checking permissions.
3871 * On non-idmapped mounts or if permission checking is to be performed on the
3872 * raw inode simply pass @nop_mnt_idmap.
3873 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3874 int vfs_tmpfile(struct mnt_idmap *idmap,
3875 const struct path *parentpath,
3876 struct file *file, umode_t mode)
3877 {
3878 struct dentry *child;
3879 struct inode *dir = d_inode(parentpath->dentry);
3880 struct inode *inode;
3881 int error;
3882 int open_flag = file->f_flags;
3883
3884 /* we want directory to be writable */
3885 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3886 if (error)
3887 return error;
3888 if (!dir->i_op->tmpfile)
3889 return -EOPNOTSUPP;
3890 child = d_alloc(parentpath->dentry, &slash_name);
3891 if (unlikely(!child))
3892 return -ENOMEM;
3893 file->f_path.mnt = parentpath->mnt;
3894 file->f_path.dentry = child;
3895 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3896 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3897 dput(child);
3898 if (file->f_mode & FMODE_OPENED)
3899 fsnotify_open(file);
3900 if (error)
3901 return error;
3902 /* Don't check for other permissions, the inode was just created */
3903 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3904 if (error)
3905 return error;
3906 inode = file_inode(file);
3907 if (!(open_flag & O_EXCL)) {
3908 spin_lock(&inode->i_lock);
3909 inode->i_state |= I_LINKABLE;
3910 spin_unlock(&inode->i_lock);
3911 }
3912 security_inode_post_create_tmpfile(idmap, inode);
3913 return 0;
3914 }
3915
3916 /**
3917 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3918 * @idmap: idmap of the mount the inode was found from
3919 * @parentpath: path of the base directory
3920 * @mode: mode of the new tmpfile
3921 * @open_flag: flags
3922 * @cred: credentials for open
3923 *
3924 * Create and open a temporary file. The file is not accounted in nr_files,
3925 * hence this is only for kernel internal use, and must not be installed into
3926 * file tables or such.
3927 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3928 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3929 const struct path *parentpath,
3930 umode_t mode, int open_flag,
3931 const struct cred *cred)
3932 {
3933 struct file *file;
3934 int error;
3935
3936 file = alloc_empty_file_noaccount(open_flag, cred);
3937 if (IS_ERR(file))
3938 return file;
3939
3940 error = vfs_tmpfile(idmap, parentpath, file, mode);
3941 if (error) {
3942 fput(file);
3943 file = ERR_PTR(error);
3944 }
3945 return file;
3946 }
3947 EXPORT_SYMBOL(kernel_tmpfile_open);
3948
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3949 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3950 const struct open_flags *op,
3951 struct file *file)
3952 {
3953 struct path path;
3954 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3955
3956 if (unlikely(error))
3957 return error;
3958 error = mnt_want_write(path.mnt);
3959 if (unlikely(error))
3960 goto out;
3961 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3962 if (error)
3963 goto out2;
3964 audit_inode(nd->name, file->f_path.dentry, 0);
3965 out2:
3966 mnt_drop_write(path.mnt);
3967 out:
3968 path_put(&path);
3969 return error;
3970 }
3971
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3972 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3973 {
3974 struct path path;
3975 int error = path_lookupat(nd, flags, &path);
3976 if (!error) {
3977 audit_inode(nd->name, path.dentry, 0);
3978 error = vfs_open(&path, file);
3979 path_put(&path);
3980 }
3981 return error;
3982 }
3983
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3984 static struct file *path_openat(struct nameidata *nd,
3985 const struct open_flags *op, unsigned flags)
3986 {
3987 struct file *file;
3988 int error;
3989
3990 file = alloc_empty_file(op->open_flag, current_cred());
3991 if (IS_ERR(file))
3992 return file;
3993
3994 if (unlikely(file->f_flags & __O_TMPFILE)) {
3995 error = do_tmpfile(nd, flags, op, file);
3996 } else if (unlikely(file->f_flags & O_PATH)) {
3997 error = do_o_path(nd, flags, file);
3998 } else {
3999 const char *s = path_init(nd, flags);
4000 while (!(error = link_path_walk(s, nd)) &&
4001 (s = open_last_lookups(nd, file, op)) != NULL)
4002 ;
4003 if (!error)
4004 error = do_open(nd, file, op);
4005 terminate_walk(nd);
4006 }
4007 if (likely(!error)) {
4008 if (likely(file->f_mode & FMODE_OPENED))
4009 return file;
4010 WARN_ON(1);
4011 error = -EINVAL;
4012 }
4013 fput_close(file);
4014 if (error == -EOPENSTALE) {
4015 if (flags & LOOKUP_RCU)
4016 error = -ECHILD;
4017 else
4018 error = -ESTALE;
4019 }
4020 return ERR_PTR(error);
4021 }
4022
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4023 struct file *do_filp_open(int dfd, struct filename *pathname,
4024 const struct open_flags *op)
4025 {
4026 struct nameidata nd;
4027 int flags = op->lookup_flags;
4028 struct file *filp;
4029
4030 set_nameidata(&nd, dfd, pathname, NULL);
4031 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4032 if (unlikely(filp == ERR_PTR(-ECHILD)))
4033 filp = path_openat(&nd, op, flags);
4034 if (unlikely(filp == ERR_PTR(-ESTALE)))
4035 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4036 restore_nameidata();
4037 return filp;
4038 }
4039
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4040 struct file *do_file_open_root(const struct path *root,
4041 const char *name, const struct open_flags *op)
4042 {
4043 struct nameidata nd;
4044 struct file *file;
4045 struct filename *filename;
4046 int flags = op->lookup_flags;
4047
4048 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4049 return ERR_PTR(-ELOOP);
4050
4051 filename = getname_kernel(name);
4052 if (IS_ERR(filename))
4053 return ERR_CAST(filename);
4054
4055 set_nameidata(&nd, -1, filename, root);
4056 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4057 if (unlikely(file == ERR_PTR(-ECHILD)))
4058 file = path_openat(&nd, op, flags);
4059 if (unlikely(file == ERR_PTR(-ESTALE)))
4060 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4061 restore_nameidata();
4062 putname(filename);
4063 return file;
4064 }
4065
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4066 static struct dentry *filename_create(int dfd, struct filename *name,
4067 struct path *path, unsigned int lookup_flags)
4068 {
4069 struct dentry *dentry = ERR_PTR(-EEXIST);
4070 struct qstr last;
4071 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4072 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4073 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4074 int type;
4075 int err2;
4076 int error;
4077
4078 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4079 if (error)
4080 return ERR_PTR(error);
4081
4082 /*
4083 * Yucky last component or no last component at all?
4084 * (foo/., foo/.., /////)
4085 */
4086 if (unlikely(type != LAST_NORM))
4087 goto out;
4088
4089 /* don't fail immediately if it's r/o, at least try to report other errors */
4090 err2 = mnt_want_write(path->mnt);
4091 /*
4092 * Do the final lookup. Suppress 'create' if there is a trailing
4093 * '/', and a directory wasn't requested.
4094 */
4095 if (last.name[last.len] && !want_dir)
4096 create_flags &= ~LOOKUP_CREATE;
4097 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4098 dentry = lookup_one_qstr_excl(&last, path->dentry,
4099 reval_flag | create_flags);
4100 if (IS_ERR(dentry))
4101 goto unlock;
4102
4103 if (unlikely(err2)) {
4104 error = err2;
4105 goto fail;
4106 }
4107 return dentry;
4108 fail:
4109 dput(dentry);
4110 dentry = ERR_PTR(error);
4111 unlock:
4112 inode_unlock(path->dentry->d_inode);
4113 if (!err2)
4114 mnt_drop_write(path->mnt);
4115 out:
4116 path_put(path);
4117 return dentry;
4118 }
4119
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4120 struct dentry *kern_path_create(int dfd, const char *pathname,
4121 struct path *path, unsigned int lookup_flags)
4122 {
4123 struct filename *filename = getname_kernel(pathname);
4124 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4125
4126 putname(filename);
4127 return res;
4128 }
4129 EXPORT_SYMBOL(kern_path_create);
4130
done_path_create(struct path * path,struct dentry * dentry)4131 void done_path_create(struct path *path, struct dentry *dentry)
4132 {
4133 if (!IS_ERR(dentry))
4134 dput(dentry);
4135 inode_unlock(path->dentry->d_inode);
4136 mnt_drop_write(path->mnt);
4137 path_put(path);
4138 }
4139 EXPORT_SYMBOL(done_path_create);
4140
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4141 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4142 struct path *path, unsigned int lookup_flags)
4143 {
4144 struct filename *filename = getname(pathname);
4145 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4146
4147 putname(filename);
4148 return res;
4149 }
4150 EXPORT_SYMBOL(user_path_create);
4151
4152 /**
4153 * vfs_mknod - create device node or file
4154 * @idmap: idmap of the mount the inode was found from
4155 * @dir: inode of the parent directory
4156 * @dentry: dentry of the child device node
4157 * @mode: mode of the child device node
4158 * @dev: device number of device to create
4159 *
4160 * Create a device node or file.
4161 *
4162 * If the inode has been found through an idmapped mount the idmap of
4163 * the vfsmount must be passed through @idmap. This function will then take
4164 * care to map the inode according to @idmap before checking permissions.
4165 * On non-idmapped mounts or if permission checking is to be performed on the
4166 * raw inode simply pass @nop_mnt_idmap.
4167 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4168 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4169 struct dentry *dentry, umode_t mode, dev_t dev)
4170 {
4171 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4172 int error = may_create(idmap, dir, dentry);
4173
4174 if (error)
4175 return error;
4176
4177 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4178 !capable(CAP_MKNOD))
4179 return -EPERM;
4180
4181 if (!dir->i_op->mknod)
4182 return -EPERM;
4183
4184 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4185 error = devcgroup_inode_mknod(mode, dev);
4186 if (error)
4187 return error;
4188
4189 error = security_inode_mknod(dir, dentry, mode, dev);
4190 if (error)
4191 return error;
4192
4193 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4194 if (!error)
4195 fsnotify_create(dir, dentry);
4196 return error;
4197 }
4198 EXPORT_SYMBOL(vfs_mknod);
4199
may_mknod(umode_t mode)4200 static int may_mknod(umode_t mode)
4201 {
4202 switch (mode & S_IFMT) {
4203 case S_IFREG:
4204 case S_IFCHR:
4205 case S_IFBLK:
4206 case S_IFIFO:
4207 case S_IFSOCK:
4208 case 0: /* zero mode translates to S_IFREG */
4209 return 0;
4210 case S_IFDIR:
4211 return -EPERM;
4212 default:
4213 return -EINVAL;
4214 }
4215 }
4216
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4217 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4218 unsigned int dev)
4219 {
4220 struct mnt_idmap *idmap;
4221 struct dentry *dentry;
4222 struct path path;
4223 int error;
4224 unsigned int lookup_flags = 0;
4225
4226 error = may_mknod(mode);
4227 if (error)
4228 goto out1;
4229 retry:
4230 dentry = filename_create(dfd, name, &path, lookup_flags);
4231 error = PTR_ERR(dentry);
4232 if (IS_ERR(dentry))
4233 goto out1;
4234
4235 error = security_path_mknod(&path, dentry,
4236 mode_strip_umask(path.dentry->d_inode, mode), dev);
4237 if (error)
4238 goto out2;
4239
4240 idmap = mnt_idmap(path.mnt);
4241 switch (mode & S_IFMT) {
4242 case 0: case S_IFREG:
4243 error = vfs_create(idmap, path.dentry->d_inode,
4244 dentry, mode, true);
4245 if (!error)
4246 security_path_post_mknod(idmap, dentry);
4247 break;
4248 case S_IFCHR: case S_IFBLK:
4249 error = vfs_mknod(idmap, path.dentry->d_inode,
4250 dentry, mode, new_decode_dev(dev));
4251 break;
4252 case S_IFIFO: case S_IFSOCK:
4253 error = vfs_mknod(idmap, path.dentry->d_inode,
4254 dentry, mode, 0);
4255 break;
4256 }
4257 out2:
4258 done_path_create(&path, dentry);
4259 if (retry_estale(error, lookup_flags)) {
4260 lookup_flags |= LOOKUP_REVAL;
4261 goto retry;
4262 }
4263 out1:
4264 putname(name);
4265 return error;
4266 }
4267
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4268 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4269 unsigned int, dev)
4270 {
4271 return do_mknodat(dfd, getname(filename), mode, dev);
4272 }
4273
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4274 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4275 {
4276 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4277 }
4278
4279 /**
4280 * vfs_mkdir - create directory returning correct dentry if possible
4281 * @idmap: idmap of the mount the inode was found from
4282 * @dir: inode of the parent directory
4283 * @dentry: dentry of the child directory
4284 * @mode: mode of the child directory
4285 *
4286 * Create a directory.
4287 *
4288 * If the inode has been found through an idmapped mount the idmap of
4289 * the vfsmount must be passed through @idmap. This function will then take
4290 * care to map the inode according to @idmap before checking permissions.
4291 * On non-idmapped mounts or if permission checking is to be performed on the
4292 * raw inode simply pass @nop_mnt_idmap.
4293 *
4294 * In the event that the filesystem does not use the *@dentry but leaves it
4295 * negative or unhashes it and possibly splices a different one returning it,
4296 * the original dentry is dput() and the alternate is returned.
4297 *
4298 * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4299 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4300 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4301 struct dentry *dentry, umode_t mode)
4302 {
4303 int error;
4304 unsigned max_links = dir->i_sb->s_max_links;
4305 struct dentry *de;
4306
4307 error = may_create(idmap, dir, dentry);
4308 if (error)
4309 goto err;
4310
4311 error = -EPERM;
4312 if (!dir->i_op->mkdir)
4313 goto err;
4314
4315 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4316 error = security_inode_mkdir(dir, dentry, mode);
4317 if (error)
4318 goto err;
4319
4320 error = -EMLINK;
4321 if (max_links && dir->i_nlink >= max_links)
4322 goto err;
4323
4324 de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4325 error = PTR_ERR(de);
4326 if (IS_ERR(de))
4327 goto err;
4328 if (de) {
4329 dput(dentry);
4330 dentry = de;
4331 }
4332 fsnotify_mkdir(dir, dentry);
4333 return dentry;
4334
4335 err:
4336 dput(dentry);
4337 return ERR_PTR(error);
4338 }
4339 EXPORT_SYMBOL(vfs_mkdir);
4340
do_mkdirat(int dfd,struct filename * name,umode_t mode)4341 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4342 {
4343 struct dentry *dentry;
4344 struct path path;
4345 int error;
4346 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4347
4348 retry:
4349 dentry = filename_create(dfd, name, &path, lookup_flags);
4350 error = PTR_ERR(dentry);
4351 if (IS_ERR(dentry))
4352 goto out_putname;
4353
4354 error = security_path_mkdir(&path, dentry,
4355 mode_strip_umask(path.dentry->d_inode, mode));
4356 if (!error) {
4357 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4358 dentry, mode);
4359 if (IS_ERR(dentry))
4360 error = PTR_ERR(dentry);
4361 }
4362 done_path_create(&path, dentry);
4363 if (retry_estale(error, lookup_flags)) {
4364 lookup_flags |= LOOKUP_REVAL;
4365 goto retry;
4366 }
4367 out_putname:
4368 putname(name);
4369 return error;
4370 }
4371
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4372 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4373 {
4374 return do_mkdirat(dfd, getname(pathname), mode);
4375 }
4376
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4377 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4378 {
4379 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4380 }
4381
4382 /**
4383 * vfs_rmdir - remove directory
4384 * @idmap: idmap of the mount the inode was found from
4385 * @dir: inode of the parent directory
4386 * @dentry: dentry of the child directory
4387 *
4388 * Remove a directory.
4389 *
4390 * If the inode has been found through an idmapped mount the idmap of
4391 * the vfsmount must be passed through @idmap. This function will then take
4392 * care to map the inode according to @idmap before checking permissions.
4393 * On non-idmapped mounts or if permission checking is to be performed on the
4394 * raw inode simply pass @nop_mnt_idmap.
4395 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4396 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4397 struct dentry *dentry)
4398 {
4399 int error = may_delete(idmap, dir, dentry, 1);
4400
4401 if (error)
4402 return error;
4403
4404 if (!dir->i_op->rmdir)
4405 return -EPERM;
4406
4407 dget(dentry);
4408 inode_lock(dentry->d_inode);
4409
4410 error = -EBUSY;
4411 if (is_local_mountpoint(dentry) ||
4412 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4413 goto out;
4414
4415 error = security_inode_rmdir(dir, dentry);
4416 if (error)
4417 goto out;
4418
4419 error = dir->i_op->rmdir(dir, dentry);
4420 if (error)
4421 goto out;
4422
4423 shrink_dcache_parent(dentry);
4424 dentry->d_inode->i_flags |= S_DEAD;
4425 dont_mount(dentry);
4426 detach_mounts(dentry);
4427
4428 out:
4429 inode_unlock(dentry->d_inode);
4430 dput(dentry);
4431 if (!error)
4432 d_delete_notify(dir, dentry);
4433 return error;
4434 }
4435 EXPORT_SYMBOL(vfs_rmdir);
4436
do_rmdir(int dfd,struct filename * name)4437 int do_rmdir(int dfd, struct filename *name)
4438 {
4439 int error;
4440 struct dentry *dentry;
4441 struct path path;
4442 struct qstr last;
4443 int type;
4444 unsigned int lookup_flags = 0;
4445 retry:
4446 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4447 if (error)
4448 goto exit1;
4449
4450 switch (type) {
4451 case LAST_DOTDOT:
4452 error = -ENOTEMPTY;
4453 goto exit2;
4454 case LAST_DOT:
4455 error = -EINVAL;
4456 goto exit2;
4457 case LAST_ROOT:
4458 error = -EBUSY;
4459 goto exit2;
4460 }
4461
4462 error = mnt_want_write(path.mnt);
4463 if (error)
4464 goto exit2;
4465
4466 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4467 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4468 error = PTR_ERR(dentry);
4469 if (IS_ERR(dentry))
4470 goto exit3;
4471 error = security_path_rmdir(&path, dentry);
4472 if (error)
4473 goto exit4;
4474 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4475 exit4:
4476 dput(dentry);
4477 exit3:
4478 inode_unlock(path.dentry->d_inode);
4479 mnt_drop_write(path.mnt);
4480 exit2:
4481 path_put(&path);
4482 if (retry_estale(error, lookup_flags)) {
4483 lookup_flags |= LOOKUP_REVAL;
4484 goto retry;
4485 }
4486 exit1:
4487 putname(name);
4488 return error;
4489 }
4490
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4491 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4492 {
4493 return do_rmdir(AT_FDCWD, getname(pathname));
4494 }
4495
4496 /**
4497 * vfs_unlink - unlink a filesystem object
4498 * @idmap: idmap of the mount the inode was found from
4499 * @dir: parent directory
4500 * @dentry: victim
4501 * @delegated_inode: returns victim inode, if the inode is delegated.
4502 *
4503 * The caller must hold dir->i_mutex.
4504 *
4505 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4506 * return a reference to the inode in delegated_inode. The caller
4507 * should then break the delegation on that inode and retry. Because
4508 * breaking a delegation may take a long time, the caller should drop
4509 * dir->i_mutex before doing so.
4510 *
4511 * Alternatively, a caller may pass NULL for delegated_inode. This may
4512 * be appropriate for callers that expect the underlying filesystem not
4513 * to be NFS exported.
4514 *
4515 * If the inode has been found through an idmapped mount the idmap of
4516 * the vfsmount must be passed through @idmap. This function will then take
4517 * care to map the inode according to @idmap before checking permissions.
4518 * On non-idmapped mounts or if permission checking is to be performed on the
4519 * raw inode simply pass @nop_mnt_idmap.
4520 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4521 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4522 struct dentry *dentry, struct inode **delegated_inode)
4523 {
4524 struct inode *target = dentry->d_inode;
4525 int error = may_delete(idmap, dir, dentry, 0);
4526
4527 if (error)
4528 return error;
4529
4530 if (!dir->i_op->unlink)
4531 return -EPERM;
4532
4533 inode_lock(target);
4534 if (IS_SWAPFILE(target))
4535 error = -EPERM;
4536 else if (is_local_mountpoint(dentry))
4537 error = -EBUSY;
4538 else {
4539 error = security_inode_unlink(dir, dentry);
4540 if (!error) {
4541 error = try_break_deleg(target, delegated_inode);
4542 if (error)
4543 goto out;
4544 error = dir->i_op->unlink(dir, dentry);
4545 if (!error) {
4546 dont_mount(dentry);
4547 detach_mounts(dentry);
4548 }
4549 }
4550 }
4551 out:
4552 inode_unlock(target);
4553
4554 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4555 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4556 fsnotify_unlink(dir, dentry);
4557 } else if (!error) {
4558 fsnotify_link_count(target);
4559 d_delete_notify(dir, dentry);
4560 }
4561
4562 return error;
4563 }
4564 EXPORT_SYMBOL(vfs_unlink);
4565
4566 /*
4567 * Make sure that the actual truncation of the file will occur outside its
4568 * directory's i_mutex. Truncate can take a long time if there is a lot of
4569 * writeout happening, and we don't want to prevent access to the directory
4570 * while waiting on the I/O.
4571 */
do_unlinkat(int dfd,struct filename * name)4572 int do_unlinkat(int dfd, struct filename *name)
4573 {
4574 int error;
4575 struct dentry *dentry;
4576 struct path path;
4577 struct qstr last;
4578 int type;
4579 struct inode *inode = NULL;
4580 struct inode *delegated_inode = NULL;
4581 unsigned int lookup_flags = 0;
4582 retry:
4583 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4584 if (error)
4585 goto exit1;
4586
4587 error = -EISDIR;
4588 if (type != LAST_NORM)
4589 goto exit2;
4590
4591 error = mnt_want_write(path.mnt);
4592 if (error)
4593 goto exit2;
4594 retry_deleg:
4595 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4596 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4597 error = PTR_ERR(dentry);
4598 if (!IS_ERR(dentry)) {
4599
4600 /* Why not before? Because we want correct error value */
4601 if (last.name[last.len])
4602 goto slashes;
4603 inode = dentry->d_inode;
4604 ihold(inode);
4605 error = security_path_unlink(&path, dentry);
4606 if (error)
4607 goto exit3;
4608 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4609 dentry, &delegated_inode);
4610 exit3:
4611 dput(dentry);
4612 }
4613 inode_unlock(path.dentry->d_inode);
4614 if (inode)
4615 iput(inode); /* truncate the inode here */
4616 inode = NULL;
4617 if (delegated_inode) {
4618 error = break_deleg_wait(&delegated_inode);
4619 if (!error)
4620 goto retry_deleg;
4621 }
4622 mnt_drop_write(path.mnt);
4623 exit2:
4624 path_put(&path);
4625 if (retry_estale(error, lookup_flags)) {
4626 lookup_flags |= LOOKUP_REVAL;
4627 inode = NULL;
4628 goto retry;
4629 }
4630 exit1:
4631 putname(name);
4632 return error;
4633
4634 slashes:
4635 if (d_is_dir(dentry))
4636 error = -EISDIR;
4637 else
4638 error = -ENOTDIR;
4639 goto exit3;
4640 }
4641
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4642 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4643 {
4644 if ((flag & ~AT_REMOVEDIR) != 0)
4645 return -EINVAL;
4646
4647 if (flag & AT_REMOVEDIR)
4648 return do_rmdir(dfd, getname(pathname));
4649 return do_unlinkat(dfd, getname(pathname));
4650 }
4651
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4652 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4653 {
4654 return do_unlinkat(AT_FDCWD, getname(pathname));
4655 }
4656
4657 /**
4658 * vfs_symlink - create symlink
4659 * @idmap: idmap of the mount the inode was found from
4660 * @dir: inode of the parent directory
4661 * @dentry: dentry of the child symlink file
4662 * @oldname: name of the file to link to
4663 *
4664 * Create a symlink.
4665 *
4666 * If the inode has been found through an idmapped mount the idmap of
4667 * the vfsmount must be passed through @idmap. This function will then take
4668 * care to map the inode according to @idmap before checking permissions.
4669 * On non-idmapped mounts or if permission checking is to be performed on the
4670 * raw inode simply pass @nop_mnt_idmap.
4671 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4672 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4673 struct dentry *dentry, const char *oldname)
4674 {
4675 int error;
4676
4677 error = may_create(idmap, dir, dentry);
4678 if (error)
4679 return error;
4680
4681 if (!dir->i_op->symlink)
4682 return -EPERM;
4683
4684 error = security_inode_symlink(dir, dentry, oldname);
4685 if (error)
4686 return error;
4687
4688 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4689 if (!error)
4690 fsnotify_create(dir, dentry);
4691 return error;
4692 }
4693 EXPORT_SYMBOL(vfs_symlink);
4694
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4695 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4696 {
4697 int error;
4698 struct dentry *dentry;
4699 struct path path;
4700 unsigned int lookup_flags = 0;
4701
4702 if (IS_ERR(from)) {
4703 error = PTR_ERR(from);
4704 goto out_putnames;
4705 }
4706 retry:
4707 dentry = filename_create(newdfd, to, &path, lookup_flags);
4708 error = PTR_ERR(dentry);
4709 if (IS_ERR(dentry))
4710 goto out_putnames;
4711
4712 error = security_path_symlink(&path, dentry, from->name);
4713 if (!error)
4714 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4715 dentry, from->name);
4716 done_path_create(&path, dentry);
4717 if (retry_estale(error, lookup_flags)) {
4718 lookup_flags |= LOOKUP_REVAL;
4719 goto retry;
4720 }
4721 out_putnames:
4722 putname(to);
4723 putname(from);
4724 return error;
4725 }
4726
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4727 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4728 int, newdfd, const char __user *, newname)
4729 {
4730 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4731 }
4732
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4733 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4734 {
4735 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4736 }
4737
4738 /**
4739 * vfs_link - create a new link
4740 * @old_dentry: object to be linked
4741 * @idmap: idmap of the mount
4742 * @dir: new parent
4743 * @new_dentry: where to create the new link
4744 * @delegated_inode: returns inode needing a delegation break
4745 *
4746 * The caller must hold dir->i_mutex
4747 *
4748 * If vfs_link discovers a delegation on the to-be-linked file in need
4749 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4750 * inode in delegated_inode. The caller should then break the delegation
4751 * and retry. Because breaking a delegation may take a long time, the
4752 * caller should drop the i_mutex before doing so.
4753 *
4754 * Alternatively, a caller may pass NULL for delegated_inode. This may
4755 * be appropriate for callers that expect the underlying filesystem not
4756 * to be NFS exported.
4757 *
4758 * If the inode has been found through an idmapped mount the idmap of
4759 * the vfsmount must be passed through @idmap. This function will then take
4760 * care to map the inode according to @idmap before checking permissions.
4761 * On non-idmapped mounts or if permission checking is to be performed on the
4762 * raw inode simply pass @nop_mnt_idmap.
4763 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4764 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4765 struct inode *dir, struct dentry *new_dentry,
4766 struct inode **delegated_inode)
4767 {
4768 struct inode *inode = old_dentry->d_inode;
4769 unsigned max_links = dir->i_sb->s_max_links;
4770 int error;
4771
4772 if (!inode)
4773 return -ENOENT;
4774
4775 error = may_create(idmap, dir, new_dentry);
4776 if (error)
4777 return error;
4778
4779 if (dir->i_sb != inode->i_sb)
4780 return -EXDEV;
4781
4782 /*
4783 * A link to an append-only or immutable file cannot be created.
4784 */
4785 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4786 return -EPERM;
4787 /*
4788 * Updating the link count will likely cause i_uid and i_gid to
4789 * be writen back improperly if their true value is unknown to
4790 * the vfs.
4791 */
4792 if (HAS_UNMAPPED_ID(idmap, inode))
4793 return -EPERM;
4794 if (!dir->i_op->link)
4795 return -EPERM;
4796 if (S_ISDIR(inode->i_mode))
4797 return -EPERM;
4798
4799 error = security_inode_link(old_dentry, dir, new_dentry);
4800 if (error)
4801 return error;
4802
4803 inode_lock(inode);
4804 /* Make sure we don't allow creating hardlink to an unlinked file */
4805 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4806 error = -ENOENT;
4807 else if (max_links && inode->i_nlink >= max_links)
4808 error = -EMLINK;
4809 else {
4810 error = try_break_deleg(inode, delegated_inode);
4811 if (!error)
4812 error = dir->i_op->link(old_dentry, dir, new_dentry);
4813 }
4814
4815 if (!error && (inode->i_state & I_LINKABLE)) {
4816 spin_lock(&inode->i_lock);
4817 inode->i_state &= ~I_LINKABLE;
4818 spin_unlock(&inode->i_lock);
4819 }
4820 inode_unlock(inode);
4821 if (!error)
4822 fsnotify_link(dir, inode, new_dentry);
4823 return error;
4824 }
4825 EXPORT_SYMBOL(vfs_link);
4826
4827 /*
4828 * Hardlinks are often used in delicate situations. We avoid
4829 * security-related surprises by not following symlinks on the
4830 * newname. --KAB
4831 *
4832 * We don't follow them on the oldname either to be compatible
4833 * with linux 2.0, and to avoid hard-linking to directories
4834 * and other special files. --ADM
4835 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4836 int do_linkat(int olddfd, struct filename *old, int newdfd,
4837 struct filename *new, int flags)
4838 {
4839 struct mnt_idmap *idmap;
4840 struct dentry *new_dentry;
4841 struct path old_path, new_path;
4842 struct inode *delegated_inode = NULL;
4843 int how = 0;
4844 int error;
4845
4846 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4847 error = -EINVAL;
4848 goto out_putnames;
4849 }
4850 /*
4851 * To use null names we require CAP_DAC_READ_SEARCH or
4852 * that the open-time creds of the dfd matches current.
4853 * This ensures that not everyone will be able to create
4854 * a hardlink using the passed file descriptor.
4855 */
4856 if (flags & AT_EMPTY_PATH)
4857 how |= LOOKUP_LINKAT_EMPTY;
4858
4859 if (flags & AT_SYMLINK_FOLLOW)
4860 how |= LOOKUP_FOLLOW;
4861 retry:
4862 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4863 if (error)
4864 goto out_putnames;
4865
4866 new_dentry = filename_create(newdfd, new, &new_path,
4867 (how & LOOKUP_REVAL));
4868 error = PTR_ERR(new_dentry);
4869 if (IS_ERR(new_dentry))
4870 goto out_putpath;
4871
4872 error = -EXDEV;
4873 if (old_path.mnt != new_path.mnt)
4874 goto out_dput;
4875 idmap = mnt_idmap(new_path.mnt);
4876 error = may_linkat(idmap, &old_path);
4877 if (unlikely(error))
4878 goto out_dput;
4879 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4880 if (error)
4881 goto out_dput;
4882 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4883 new_dentry, &delegated_inode);
4884 out_dput:
4885 done_path_create(&new_path, new_dentry);
4886 if (delegated_inode) {
4887 error = break_deleg_wait(&delegated_inode);
4888 if (!error) {
4889 path_put(&old_path);
4890 goto retry;
4891 }
4892 }
4893 if (retry_estale(error, how)) {
4894 path_put(&old_path);
4895 how |= LOOKUP_REVAL;
4896 goto retry;
4897 }
4898 out_putpath:
4899 path_put(&old_path);
4900 out_putnames:
4901 putname(old);
4902 putname(new);
4903
4904 return error;
4905 }
4906
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4907 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4908 int, newdfd, const char __user *, newname, int, flags)
4909 {
4910 return do_linkat(olddfd, getname_uflags(oldname, flags),
4911 newdfd, getname(newname), flags);
4912 }
4913
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4914 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4915 {
4916 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4917 }
4918
4919 /**
4920 * vfs_rename - rename a filesystem object
4921 * @rd: pointer to &struct renamedata info
4922 *
4923 * The caller must hold multiple mutexes--see lock_rename()).
4924 *
4925 * If vfs_rename discovers a delegation in need of breaking at either
4926 * the source or destination, it will return -EWOULDBLOCK and return a
4927 * reference to the inode in delegated_inode. The caller should then
4928 * break the delegation and retry. Because breaking a delegation may
4929 * take a long time, the caller should drop all locks before doing
4930 * so.
4931 *
4932 * Alternatively, a caller may pass NULL for delegated_inode. This may
4933 * be appropriate for callers that expect the underlying filesystem not
4934 * to be NFS exported.
4935 *
4936 * The worst of all namespace operations - renaming directory. "Perverted"
4937 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4938 * Problems:
4939 *
4940 * a) we can get into loop creation.
4941 * b) race potential - two innocent renames can create a loop together.
4942 * That's where 4.4BSD screws up. Current fix: serialization on
4943 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4944 * story.
4945 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4946 * and source (if it's a non-directory or a subdirectory that moves to
4947 * different parent).
4948 * And that - after we got ->i_mutex on parents (until then we don't know
4949 * whether the target exists). Solution: try to be smart with locking
4950 * order for inodes. We rely on the fact that tree topology may change
4951 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4952 * move will be locked. Thus we can rank directories by the tree
4953 * (ancestors first) and rank all non-directories after them.
4954 * That works since everybody except rename does "lock parent, lookup,
4955 * lock child" and rename is under ->s_vfs_rename_mutex.
4956 * HOWEVER, it relies on the assumption that any object with ->lookup()
4957 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4958 * we'd better make sure that there's no link(2) for them.
4959 * d) conversion from fhandle to dentry may come in the wrong moment - when
4960 * we are removing the target. Solution: we will have to grab ->i_mutex
4961 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4962 * ->i_mutex on parents, which works but leads to some truly excessive
4963 * locking].
4964 */
vfs_rename(struct renamedata * rd)4965 int vfs_rename(struct renamedata *rd)
4966 {
4967 int error;
4968 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4969 struct dentry *old_dentry = rd->old_dentry;
4970 struct dentry *new_dentry = rd->new_dentry;
4971 struct inode **delegated_inode = rd->delegated_inode;
4972 unsigned int flags = rd->flags;
4973 bool is_dir = d_is_dir(old_dentry);
4974 struct inode *source = old_dentry->d_inode;
4975 struct inode *target = new_dentry->d_inode;
4976 bool new_is_dir = false;
4977 unsigned max_links = new_dir->i_sb->s_max_links;
4978 struct name_snapshot old_name;
4979 bool lock_old_subdir, lock_new_subdir;
4980
4981 if (source == target)
4982 return 0;
4983
4984 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4985 if (error)
4986 return error;
4987
4988 if (!target) {
4989 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4990 } else {
4991 new_is_dir = d_is_dir(new_dentry);
4992
4993 if (!(flags & RENAME_EXCHANGE))
4994 error = may_delete(rd->new_mnt_idmap, new_dir,
4995 new_dentry, is_dir);
4996 else
4997 error = may_delete(rd->new_mnt_idmap, new_dir,
4998 new_dentry, new_is_dir);
4999 }
5000 if (error)
5001 return error;
5002
5003 if (!old_dir->i_op->rename)
5004 return -EPERM;
5005
5006 /*
5007 * If we are going to change the parent - check write permissions,
5008 * we'll need to flip '..'.
5009 */
5010 if (new_dir != old_dir) {
5011 if (is_dir) {
5012 error = inode_permission(rd->old_mnt_idmap, source,
5013 MAY_WRITE);
5014 if (error)
5015 return error;
5016 }
5017 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5018 error = inode_permission(rd->new_mnt_idmap, target,
5019 MAY_WRITE);
5020 if (error)
5021 return error;
5022 }
5023 }
5024
5025 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5026 flags);
5027 if (error)
5028 return error;
5029
5030 take_dentry_name_snapshot(&old_name, old_dentry);
5031 dget(new_dentry);
5032 /*
5033 * Lock children.
5034 * The source subdirectory needs to be locked on cross-directory
5035 * rename or cross-directory exchange since its parent changes.
5036 * The target subdirectory needs to be locked on cross-directory
5037 * exchange due to parent change and on any rename due to becoming
5038 * a victim.
5039 * Non-directories need locking in all cases (for NFS reasons);
5040 * they get locked after any subdirectories (in inode address order).
5041 *
5042 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5043 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5044 */
5045 lock_old_subdir = new_dir != old_dir;
5046 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5047 if (is_dir) {
5048 if (lock_old_subdir)
5049 inode_lock_nested(source, I_MUTEX_CHILD);
5050 if (target && (!new_is_dir || lock_new_subdir))
5051 inode_lock(target);
5052 } else if (new_is_dir) {
5053 if (lock_new_subdir)
5054 inode_lock_nested(target, I_MUTEX_CHILD);
5055 inode_lock(source);
5056 } else {
5057 lock_two_nondirectories(source, target);
5058 }
5059
5060 error = -EPERM;
5061 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5062 goto out;
5063
5064 error = -EBUSY;
5065 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5066 goto out;
5067
5068 if (max_links && new_dir != old_dir) {
5069 error = -EMLINK;
5070 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5071 goto out;
5072 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5073 old_dir->i_nlink >= max_links)
5074 goto out;
5075 }
5076 if (!is_dir) {
5077 error = try_break_deleg(source, delegated_inode);
5078 if (error)
5079 goto out;
5080 }
5081 if (target && !new_is_dir) {
5082 error = try_break_deleg(target, delegated_inode);
5083 if (error)
5084 goto out;
5085 }
5086 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5087 new_dir, new_dentry, flags);
5088 if (error)
5089 goto out;
5090
5091 if (!(flags & RENAME_EXCHANGE) && target) {
5092 if (is_dir) {
5093 shrink_dcache_parent(new_dentry);
5094 target->i_flags |= S_DEAD;
5095 }
5096 dont_mount(new_dentry);
5097 detach_mounts(new_dentry);
5098 }
5099 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5100 if (!(flags & RENAME_EXCHANGE))
5101 d_move(old_dentry, new_dentry);
5102 else
5103 d_exchange(old_dentry, new_dentry);
5104 }
5105 out:
5106 if (!is_dir || lock_old_subdir)
5107 inode_unlock(source);
5108 if (target && (!new_is_dir || lock_new_subdir))
5109 inode_unlock(target);
5110 dput(new_dentry);
5111 if (!error) {
5112 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5113 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5114 if (flags & RENAME_EXCHANGE) {
5115 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5116 new_is_dir, NULL, new_dentry);
5117 }
5118 }
5119 release_dentry_name_snapshot(&old_name);
5120
5121 return error;
5122 }
5123 EXPORT_SYMBOL(vfs_rename);
5124
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5125 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5126 struct filename *to, unsigned int flags)
5127 {
5128 struct renamedata rd;
5129 struct dentry *old_dentry, *new_dentry;
5130 struct dentry *trap;
5131 struct path old_path, new_path;
5132 struct qstr old_last, new_last;
5133 int old_type, new_type;
5134 struct inode *delegated_inode = NULL;
5135 unsigned int lookup_flags = 0, target_flags =
5136 LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5137 bool should_retry = false;
5138 int error = -EINVAL;
5139
5140 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5141 goto put_names;
5142
5143 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5144 (flags & RENAME_EXCHANGE))
5145 goto put_names;
5146
5147 if (flags & RENAME_EXCHANGE)
5148 target_flags = 0;
5149 if (flags & RENAME_NOREPLACE)
5150 target_flags |= LOOKUP_EXCL;
5151
5152 retry:
5153 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5154 &old_last, &old_type);
5155 if (error)
5156 goto put_names;
5157
5158 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5159 &new_type);
5160 if (error)
5161 goto exit1;
5162
5163 error = -EXDEV;
5164 if (old_path.mnt != new_path.mnt)
5165 goto exit2;
5166
5167 error = -EBUSY;
5168 if (old_type != LAST_NORM)
5169 goto exit2;
5170
5171 if (flags & RENAME_NOREPLACE)
5172 error = -EEXIST;
5173 if (new_type != LAST_NORM)
5174 goto exit2;
5175
5176 error = mnt_want_write(old_path.mnt);
5177 if (error)
5178 goto exit2;
5179
5180 retry_deleg:
5181 trap = lock_rename(new_path.dentry, old_path.dentry);
5182 if (IS_ERR(trap)) {
5183 error = PTR_ERR(trap);
5184 goto exit_lock_rename;
5185 }
5186
5187 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5188 lookup_flags);
5189 error = PTR_ERR(old_dentry);
5190 if (IS_ERR(old_dentry))
5191 goto exit3;
5192 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5193 lookup_flags | target_flags);
5194 error = PTR_ERR(new_dentry);
5195 if (IS_ERR(new_dentry))
5196 goto exit4;
5197 if (flags & RENAME_EXCHANGE) {
5198 if (!d_is_dir(new_dentry)) {
5199 error = -ENOTDIR;
5200 if (new_last.name[new_last.len])
5201 goto exit5;
5202 }
5203 }
5204 /* unless the source is a directory trailing slashes give -ENOTDIR */
5205 if (!d_is_dir(old_dentry)) {
5206 error = -ENOTDIR;
5207 if (old_last.name[old_last.len])
5208 goto exit5;
5209 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5210 goto exit5;
5211 }
5212 /* source should not be ancestor of target */
5213 error = -EINVAL;
5214 if (old_dentry == trap)
5215 goto exit5;
5216 /* target should not be an ancestor of source */
5217 if (!(flags & RENAME_EXCHANGE))
5218 error = -ENOTEMPTY;
5219 if (new_dentry == trap)
5220 goto exit5;
5221
5222 error = security_path_rename(&old_path, old_dentry,
5223 &new_path, new_dentry, flags);
5224 if (error)
5225 goto exit5;
5226
5227 rd.old_dir = old_path.dentry->d_inode;
5228 rd.old_dentry = old_dentry;
5229 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5230 rd.new_dir = new_path.dentry->d_inode;
5231 rd.new_dentry = new_dentry;
5232 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5233 rd.delegated_inode = &delegated_inode;
5234 rd.flags = flags;
5235 error = vfs_rename(&rd);
5236 exit5:
5237 dput(new_dentry);
5238 exit4:
5239 dput(old_dentry);
5240 exit3:
5241 unlock_rename(new_path.dentry, old_path.dentry);
5242 exit_lock_rename:
5243 if (delegated_inode) {
5244 error = break_deleg_wait(&delegated_inode);
5245 if (!error)
5246 goto retry_deleg;
5247 }
5248 mnt_drop_write(old_path.mnt);
5249 exit2:
5250 if (retry_estale(error, lookup_flags))
5251 should_retry = true;
5252 path_put(&new_path);
5253 exit1:
5254 path_put(&old_path);
5255 if (should_retry) {
5256 should_retry = false;
5257 lookup_flags |= LOOKUP_REVAL;
5258 goto retry;
5259 }
5260 put_names:
5261 putname(from);
5262 putname(to);
5263 return error;
5264 }
5265
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5266 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5267 int, newdfd, const char __user *, newname, unsigned int, flags)
5268 {
5269 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5270 flags);
5271 }
5272
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5273 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5274 int, newdfd, const char __user *, newname)
5275 {
5276 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5277 0);
5278 }
5279
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5280 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5281 {
5282 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5283 getname(newname), 0);
5284 }
5285
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5286 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5287 {
5288 int copylen;
5289
5290 copylen = linklen;
5291 if (unlikely(copylen > (unsigned) buflen))
5292 copylen = buflen;
5293 if (copy_to_user(buffer, link, copylen))
5294 copylen = -EFAULT;
5295 return copylen;
5296 }
5297
5298 /**
5299 * vfs_readlink - copy symlink body into userspace buffer
5300 * @dentry: dentry on which to get symbolic link
5301 * @buffer: user memory pointer
5302 * @buflen: size of buffer
5303 *
5304 * Does not touch atime. That's up to the caller if necessary
5305 *
5306 * Does not call security hook.
5307 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5308 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5309 {
5310 struct inode *inode = d_inode(dentry);
5311 DEFINE_DELAYED_CALL(done);
5312 const char *link;
5313 int res;
5314
5315 if (inode->i_opflags & IOP_CACHED_LINK)
5316 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5317
5318 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5319 if (unlikely(inode->i_op->readlink))
5320 return inode->i_op->readlink(dentry, buffer, buflen);
5321
5322 if (!d_is_symlink(dentry))
5323 return -EINVAL;
5324
5325 spin_lock(&inode->i_lock);
5326 inode->i_opflags |= IOP_DEFAULT_READLINK;
5327 spin_unlock(&inode->i_lock);
5328 }
5329
5330 link = READ_ONCE(inode->i_link);
5331 if (!link) {
5332 link = inode->i_op->get_link(dentry, inode, &done);
5333 if (IS_ERR(link))
5334 return PTR_ERR(link);
5335 }
5336 res = readlink_copy(buffer, buflen, link, strlen(link));
5337 do_delayed_call(&done);
5338 return res;
5339 }
5340 EXPORT_SYMBOL(vfs_readlink);
5341
5342 /**
5343 * vfs_get_link - get symlink body
5344 * @dentry: dentry on which to get symbolic link
5345 * @done: caller needs to free returned data with this
5346 *
5347 * Calls security hook and i_op->get_link() on the supplied inode.
5348 *
5349 * It does not touch atime. That's up to the caller if necessary.
5350 *
5351 * Does not work on "special" symlinks like /proc/$$/fd/N
5352 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5353 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5354 {
5355 const char *res = ERR_PTR(-EINVAL);
5356 struct inode *inode = d_inode(dentry);
5357
5358 if (d_is_symlink(dentry)) {
5359 res = ERR_PTR(security_inode_readlink(dentry));
5360 if (!res)
5361 res = inode->i_op->get_link(dentry, inode, done);
5362 }
5363 return res;
5364 }
5365 EXPORT_SYMBOL(vfs_get_link);
5366
5367 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5368 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5369 struct delayed_call *callback)
5370 {
5371 struct page *page;
5372 struct address_space *mapping = inode->i_mapping;
5373
5374 if (!dentry) {
5375 page = find_get_page(mapping, 0);
5376 if (!page)
5377 return ERR_PTR(-ECHILD);
5378 if (!PageUptodate(page)) {
5379 put_page(page);
5380 return ERR_PTR(-ECHILD);
5381 }
5382 } else {
5383 page = read_mapping_page(mapping, 0, NULL);
5384 if (IS_ERR(page))
5385 return (char*)page;
5386 }
5387 set_delayed_call(callback, page_put_link, page);
5388 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5389 return page_address(page);
5390 }
5391
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5392 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5393 struct delayed_call *callback)
5394 {
5395 return __page_get_link(dentry, inode, callback);
5396 }
5397 EXPORT_SYMBOL_GPL(page_get_link_raw);
5398
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5399 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5400 struct delayed_call *callback)
5401 {
5402 char *kaddr = __page_get_link(dentry, inode, callback);
5403
5404 if (!IS_ERR(kaddr))
5405 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5406 return kaddr;
5407 }
5408
5409 EXPORT_SYMBOL(page_get_link);
5410
page_put_link(void * arg)5411 void page_put_link(void *arg)
5412 {
5413 put_page(arg);
5414 }
5415 EXPORT_SYMBOL(page_put_link);
5416
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5417 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5418 {
5419 const char *link;
5420 int res;
5421
5422 DEFINE_DELAYED_CALL(done);
5423 link = page_get_link(dentry, d_inode(dentry), &done);
5424 res = PTR_ERR(link);
5425 if (!IS_ERR(link))
5426 res = readlink_copy(buffer, buflen, link, strlen(link));
5427 do_delayed_call(&done);
5428 return res;
5429 }
5430 EXPORT_SYMBOL(page_readlink);
5431
page_symlink(struct inode * inode,const char * symname,int len)5432 int page_symlink(struct inode *inode, const char *symname, int len)
5433 {
5434 struct address_space *mapping = inode->i_mapping;
5435 const struct address_space_operations *aops = mapping->a_ops;
5436 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5437 struct folio *folio;
5438 void *fsdata = NULL;
5439 int err;
5440 unsigned int flags;
5441
5442 retry:
5443 if (nofs)
5444 flags = memalloc_nofs_save();
5445 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5446 if (nofs)
5447 memalloc_nofs_restore(flags);
5448 if (err)
5449 goto fail;
5450
5451 memcpy(folio_address(folio), symname, len - 1);
5452
5453 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5454 folio, fsdata);
5455 if (err < 0)
5456 goto fail;
5457 if (err < len-1)
5458 goto retry;
5459
5460 mark_inode_dirty(inode);
5461 return 0;
5462 fail:
5463 return err;
5464 }
5465 EXPORT_SYMBOL(page_symlink);
5466
5467 const struct inode_operations page_symlink_inode_operations = {
5468 .get_link = page_get_link,
5469 };
5470 EXPORT_SYMBOL(page_symlink_inode_operations);
5471