xref: /linux/fs/namei.c (revision 9e355113f02be17db573d579515dee63621b7c8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 	name->uptr = uptr;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result, filename);
214 	audit_getname(result);
215 	return result;
216 }
217 
218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result, NULL);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (unlikely(refcnt != 1)) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (unlikely(name->name != name->iname)) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  *
544  * Note: lookup_inode_permission_may_exec() does not call here. If you add
545  * MAY_EXEC checks, adjust it.
546  */
547 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
548 {
549 	if (mask & MAY_WRITE) {
550 		umode_t mode = inode->i_mode;
551 
552 		/* Nobody gets write access to a read-only fs. */
553 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
554 			return -EROFS;
555 	}
556 	return 0;
557 }
558 
559 /**
560  * inode_permission - Check for access rights to a given inode
561  * @idmap:	idmap of the mount the inode was found from
562  * @inode:	Inode to check permission on
563  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
564  *
565  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
566  * this, letting us set arbitrary permissions for filesystem access without
567  * changing the "normal" UIDs which are used for other things.
568  *
569  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
570  */
571 int inode_permission(struct mnt_idmap *idmap,
572 		     struct inode *inode, int mask)
573 {
574 	int retval;
575 
576 	retval = sb_permission(inode->i_sb, inode, mask);
577 	if (unlikely(retval))
578 		return retval;
579 
580 	if (mask & MAY_WRITE) {
581 		/*
582 		 * Nobody gets write access to an immutable file.
583 		 */
584 		if (unlikely(IS_IMMUTABLE(inode)))
585 			return -EPERM;
586 
587 		/*
588 		 * Updating mtime will likely cause i_uid and i_gid to be
589 		 * written back improperly if their true value is unknown
590 		 * to the vfs.
591 		 */
592 		if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
593 			return -EACCES;
594 	}
595 
596 	retval = do_inode_permission(idmap, inode, mask);
597 	if (unlikely(retval))
598 		return retval;
599 
600 	retval = devcgroup_inode_permission(inode, mask);
601 	if (unlikely(retval))
602 		return retval;
603 
604 	return security_inode_permission(inode, mask);
605 }
606 EXPORT_SYMBOL(inode_permission);
607 
608 /*
609  * lookup_inode_permission_may_exec - Check traversal right for given inode
610  *
611  * This is a special case routine for may_lookup() making assumptions specific
612  * to path traversal. Use inode_permission() if you are doing something else.
613  *
614  * Work is shaved off compared to inode_permission() as follows:
615  * - we know for a fact there is no MAY_WRITE to worry about
616  * - it is an invariant the inode is a directory
617  *
618  * Since majority of real-world traversal happens on inodes which grant it for
619  * everyone, we check it upfront and only resort to more expensive work if it
620  * fails.
621  *
622  * Filesystems which have their own ->permission hook and consequently miss out
623  * on IOP_FASTPERM can still get the optimization if they set IOP_FASTPERM_MAY_EXEC
624  * on their directory inodes.
625  */
626 static __always_inline int lookup_inode_permission_may_exec(struct mnt_idmap *idmap,
627 	struct inode *inode, int mask)
628 {
629 	/* Lookup already checked this to return -ENOTDIR */
630 	VFS_BUG_ON_INODE(!S_ISDIR(inode->i_mode), inode);
631 	VFS_BUG_ON((mask & ~MAY_NOT_BLOCK) != 0);
632 
633 	mask |= MAY_EXEC;
634 
635 	if (unlikely(!(inode->i_opflags & (IOP_FASTPERM | IOP_FASTPERM_MAY_EXEC))))
636 		return inode_permission(idmap, inode, mask);
637 
638 	if (unlikely(((inode->i_mode & 0111) != 0111) || !no_acl_inode(inode)))
639 		return inode_permission(idmap, inode, mask);
640 
641 	return security_inode_permission(inode, mask);
642 }
643 
644 /**
645  * path_get - get a reference to a path
646  * @path: path to get the reference to
647  *
648  * Given a path increment the reference count to the dentry and the vfsmount.
649  */
650 void path_get(const struct path *path)
651 {
652 	mntget(path->mnt);
653 	dget(path->dentry);
654 }
655 EXPORT_SYMBOL(path_get);
656 
657 /**
658  * path_put - put a reference to a path
659  * @path: path to put the reference to
660  *
661  * Given a path decrement the reference count to the dentry and the vfsmount.
662  */
663 void path_put(const struct path *path)
664 {
665 	dput(path->dentry);
666 	mntput(path->mnt);
667 }
668 EXPORT_SYMBOL(path_put);
669 
670 #define EMBEDDED_LEVELS 2
671 struct nameidata {
672 	struct path	path;
673 	struct qstr	last;
674 	struct path	root;
675 	struct inode	*inode; /* path.dentry.d_inode */
676 	unsigned int	flags, state;
677 	unsigned	seq, next_seq, m_seq, r_seq;
678 	int		last_type;
679 	unsigned	depth;
680 	int		total_link_count;
681 	struct saved {
682 		struct path link;
683 		struct delayed_call done;
684 		const char *name;
685 		unsigned seq;
686 	} *stack, internal[EMBEDDED_LEVELS];
687 	struct filename	*name;
688 	const char *pathname;
689 	struct nameidata *saved;
690 	unsigned	root_seq;
691 	int		dfd;
692 	vfsuid_t	dir_vfsuid;
693 	umode_t		dir_mode;
694 } __randomize_layout;
695 
696 #define ND_ROOT_PRESET 1
697 #define ND_ROOT_GRABBED 2
698 #define ND_JUMPED 4
699 
700 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
701 {
702 	struct nameidata *old = current->nameidata;
703 	p->stack = p->internal;
704 	p->depth = 0;
705 	p->dfd = dfd;
706 	p->name = name;
707 	p->pathname = likely(name) ? name->name : "";
708 	p->path.mnt = NULL;
709 	p->path.dentry = NULL;
710 	p->total_link_count = old ? old->total_link_count : 0;
711 	p->saved = old;
712 	current->nameidata = p;
713 }
714 
715 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
716 			  const struct path *root)
717 {
718 	__set_nameidata(p, dfd, name);
719 	p->state = 0;
720 	if (unlikely(root)) {
721 		p->state = ND_ROOT_PRESET;
722 		p->root = *root;
723 	}
724 }
725 
726 static void restore_nameidata(void)
727 {
728 	struct nameidata *now = current->nameidata, *old = now->saved;
729 
730 	current->nameidata = old;
731 	if (old)
732 		old->total_link_count = now->total_link_count;
733 	if (now->stack != now->internal)
734 		kfree(now->stack);
735 }
736 
737 static bool nd_alloc_stack(struct nameidata *nd)
738 {
739 	struct saved *p;
740 
741 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
742 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
743 	if (unlikely(!p))
744 		return false;
745 	memcpy(p, nd->internal, sizeof(nd->internal));
746 	nd->stack = p;
747 	return true;
748 }
749 
750 /**
751  * path_connected - Verify that a dentry is below mnt.mnt_root
752  * @mnt: The mountpoint to check.
753  * @dentry: The dentry to check.
754  *
755  * Rename can sometimes move a file or directory outside of a bind
756  * mount, path_connected allows those cases to be detected.
757  */
758 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
759 {
760 	struct super_block *sb = mnt->mnt_sb;
761 
762 	/* Bind mounts can have disconnected paths */
763 	if (mnt->mnt_root == sb->s_root)
764 		return true;
765 
766 	return is_subdir(dentry, mnt->mnt_root);
767 }
768 
769 static void drop_links(struct nameidata *nd)
770 {
771 	int i = nd->depth;
772 	while (i--) {
773 		struct saved *last = nd->stack + i;
774 		do_delayed_call(&last->done);
775 		clear_delayed_call(&last->done);
776 	}
777 }
778 
779 static void leave_rcu(struct nameidata *nd)
780 {
781 	nd->flags &= ~LOOKUP_RCU;
782 	nd->seq = nd->next_seq = 0;
783 	rcu_read_unlock();
784 }
785 
786 static void terminate_walk(struct nameidata *nd)
787 {
788 	if (unlikely(nd->depth))
789 		drop_links(nd);
790 	if (!(nd->flags & LOOKUP_RCU)) {
791 		int i;
792 		path_put(&nd->path);
793 		for (i = 0; i < nd->depth; i++)
794 			path_put(&nd->stack[i].link);
795 		if (nd->state & ND_ROOT_GRABBED) {
796 			path_put(&nd->root);
797 			nd->state &= ~ND_ROOT_GRABBED;
798 		}
799 	} else {
800 		leave_rcu(nd);
801 	}
802 	nd->depth = 0;
803 	nd->path.mnt = NULL;
804 	nd->path.dentry = NULL;
805 }
806 
807 /* path_put is needed afterwards regardless of success or failure */
808 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
809 {
810 	int res = __legitimize_mnt(path->mnt, mseq);
811 	if (unlikely(res)) {
812 		if (res > 0)
813 			path->mnt = NULL;
814 		path->dentry = NULL;
815 		return false;
816 	}
817 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
818 		path->dentry = NULL;
819 		return false;
820 	}
821 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
822 }
823 
824 static inline bool legitimize_path(struct nameidata *nd,
825 			    struct path *path, unsigned seq)
826 {
827 	return __legitimize_path(path, seq, nd->m_seq);
828 }
829 
830 static bool legitimize_links(struct nameidata *nd)
831 {
832 	int i;
833 
834 	VFS_BUG_ON(nd->flags & LOOKUP_CACHED);
835 
836 	for (i = 0; i < nd->depth; i++) {
837 		struct saved *last = nd->stack + i;
838 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
839 			drop_links(nd);
840 			nd->depth = i + 1;
841 			return false;
842 		}
843 	}
844 	return true;
845 }
846 
847 static bool legitimize_root(struct nameidata *nd)
848 {
849 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
850 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
851 		return true;
852 	nd->state |= ND_ROOT_GRABBED;
853 	return legitimize_path(nd, &nd->root, nd->root_seq);
854 }
855 
856 /*
857  * Path walking has 2 modes, rcu-walk and ref-walk (see
858  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
859  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
860  * normal reference counts on dentries and vfsmounts to transition to ref-walk
861  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
862  * got stuck, so ref-walk may continue from there. If this is not successful
863  * (eg. a seqcount has changed), then failure is returned and it's up to caller
864  * to restart the path walk from the beginning in ref-walk mode.
865  */
866 
867 /**
868  * try_to_unlazy - try to switch to ref-walk mode.
869  * @nd: nameidata pathwalk data
870  * Returns: true on success, false on failure
871  *
872  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
873  * for ref-walk mode.
874  * Must be called from rcu-walk context.
875  * Nothing should touch nameidata between try_to_unlazy() failure and
876  * terminate_walk().
877  */
878 static bool try_to_unlazy(struct nameidata *nd)
879 {
880 	struct dentry *parent = nd->path.dentry;
881 
882 	VFS_BUG_ON(!(nd->flags & LOOKUP_RCU));
883 
884 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
885 		drop_links(nd);
886 		nd->depth = 0;
887 		goto out1;
888 	}
889 	if (unlikely(nd->depth && !legitimize_links(nd)))
890 		goto out1;
891 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
892 		goto out;
893 	if (unlikely(!legitimize_root(nd)))
894 		goto out;
895 	leave_rcu(nd);
896 	BUG_ON(nd->inode != parent->d_inode);
897 	return true;
898 
899 out1:
900 	nd->path.mnt = NULL;
901 	nd->path.dentry = NULL;
902 out:
903 	leave_rcu(nd);
904 	return false;
905 }
906 
907 /**
908  * try_to_unlazy_next - try to switch to ref-walk mode.
909  * @nd: nameidata pathwalk data
910  * @dentry: next dentry to step into
911  * Returns: true on success, false on failure
912  *
913  * Similar to try_to_unlazy(), but here we have the next dentry already
914  * picked by rcu-walk and want to legitimize that in addition to the current
915  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
916  * Nothing should touch nameidata between try_to_unlazy_next() failure and
917  * terminate_walk().
918  */
919 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
920 {
921 	int res;
922 
923 	VFS_BUG_ON(!(nd->flags & LOOKUP_RCU));
924 
925 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
926 		drop_links(nd);
927 		nd->depth = 0;
928 		goto out2;
929 	}
930 	if (unlikely(nd->depth && !legitimize_links(nd)))
931 		goto out2;
932 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
933 	if (unlikely(res)) {
934 		if (res > 0)
935 			goto out2;
936 		goto out1;
937 	}
938 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
939 		goto out1;
940 
941 	/*
942 	 * We need to move both the parent and the dentry from the RCU domain
943 	 * to be properly refcounted. And the sequence number in the dentry
944 	 * validates *both* dentry counters, since we checked the sequence
945 	 * number of the parent after we got the child sequence number. So we
946 	 * know the parent must still be valid if the child sequence number is
947 	 */
948 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
949 		goto out;
950 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
951 		goto out_dput;
952 	/*
953 	 * Sequence counts matched. Now make sure that the root is
954 	 * still valid and get it if required.
955 	 */
956 	if (unlikely(!legitimize_root(nd)))
957 		goto out_dput;
958 	leave_rcu(nd);
959 	return true;
960 
961 out2:
962 	nd->path.mnt = NULL;
963 out1:
964 	nd->path.dentry = NULL;
965 out:
966 	leave_rcu(nd);
967 	return false;
968 out_dput:
969 	leave_rcu(nd);
970 	dput(dentry);
971 	return false;
972 }
973 
974 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
975 			       struct dentry *dentry, unsigned int flags)
976 {
977 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
978 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
979 	else
980 		return 1;
981 }
982 
983 /**
984  * complete_walk - successful completion of path walk
985  * @nd:  pointer nameidata
986  *
987  * If we had been in RCU mode, drop out of it and legitimize nd->path.
988  * Revalidate the final result, unless we'd already done that during
989  * the path walk or the filesystem doesn't ask for it.  Return 0 on
990  * success, -error on failure.  In case of failure caller does not
991  * need to drop nd->path.
992  */
993 static int complete_walk(struct nameidata *nd)
994 {
995 	struct dentry *dentry = nd->path.dentry;
996 	int status;
997 
998 	if (nd->flags & LOOKUP_RCU) {
999 		/*
1000 		 * We don't want to zero nd->root for scoped-lookups or
1001 		 * externally-managed nd->root.
1002 		 */
1003 		if (likely(!(nd->state & ND_ROOT_PRESET)))
1004 			if (likely(!(nd->flags & LOOKUP_IS_SCOPED)))
1005 				nd->root.mnt = NULL;
1006 		nd->flags &= ~LOOKUP_CACHED;
1007 		if (!try_to_unlazy(nd))
1008 			return -ECHILD;
1009 	}
1010 
1011 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1012 		/*
1013 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
1014 		 * ever step outside the root during lookup" and should already
1015 		 * be guaranteed by the rest of namei, we want to avoid a namei
1016 		 * BUG resulting in userspace being given a path that was not
1017 		 * scoped within the root at some point during the lookup.
1018 		 *
1019 		 * So, do a final sanity-check to make sure that in the
1020 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
1021 		 * we won't silently return an fd completely outside of the
1022 		 * requested root to userspace.
1023 		 *
1024 		 * Userspace could move the path outside the root after this
1025 		 * check, but as discussed elsewhere this is not a concern (the
1026 		 * resolved file was inside the root at some point).
1027 		 */
1028 		if (!path_is_under(&nd->path, &nd->root))
1029 			return -EXDEV;
1030 	}
1031 
1032 	if (likely(!(nd->state & ND_JUMPED)))
1033 		return 0;
1034 
1035 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
1036 		return 0;
1037 
1038 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
1039 	if (status > 0)
1040 		return 0;
1041 
1042 	if (!status)
1043 		status = -ESTALE;
1044 
1045 	return status;
1046 }
1047 
1048 static int set_root(struct nameidata *nd)
1049 {
1050 	struct fs_struct *fs = current->fs;
1051 
1052 	/*
1053 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1054 	 * still have to ensure it doesn't happen because it will cause a breakout
1055 	 * from the dirfd.
1056 	 */
1057 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1058 		return -ENOTRECOVERABLE;
1059 
1060 	if (nd->flags & LOOKUP_RCU) {
1061 		unsigned seq;
1062 
1063 		do {
1064 			seq = read_seqbegin(&fs->seq);
1065 			nd->root = fs->root;
1066 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1067 		} while (read_seqretry(&fs->seq, seq));
1068 	} else {
1069 		get_fs_root(fs, &nd->root);
1070 		nd->state |= ND_ROOT_GRABBED;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static int nd_jump_root(struct nameidata *nd)
1076 {
1077 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1078 		return -EXDEV;
1079 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1080 		/* Absolute path arguments to path_init() are allowed. */
1081 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1082 			return -EXDEV;
1083 	}
1084 	if (!nd->root.mnt) {
1085 		int error = set_root(nd);
1086 		if (unlikely(error))
1087 			return error;
1088 	}
1089 	if (nd->flags & LOOKUP_RCU) {
1090 		struct dentry *d;
1091 		nd->path = nd->root;
1092 		d = nd->path.dentry;
1093 		nd->inode = d->d_inode;
1094 		nd->seq = nd->root_seq;
1095 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1096 			return -ECHILD;
1097 	} else {
1098 		path_put(&nd->path);
1099 		nd->path = nd->root;
1100 		path_get(&nd->path);
1101 		nd->inode = nd->path.dentry->d_inode;
1102 	}
1103 	nd->state |= ND_JUMPED;
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Helper to directly jump to a known parsed path from ->get_link,
1109  * caller must have taken a reference to path beforehand.
1110  */
1111 int nd_jump_link(const struct path *path)
1112 {
1113 	int error = -ELOOP;
1114 	struct nameidata *nd = current->nameidata;
1115 
1116 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1117 		goto err;
1118 
1119 	error = -EXDEV;
1120 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1121 		if (nd->path.mnt != path->mnt)
1122 			goto err;
1123 	}
1124 	/* Not currently safe for scoped-lookups. */
1125 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1126 		goto err;
1127 
1128 	path_put(&nd->path);
1129 	nd->path = *path;
1130 	nd->inode = nd->path.dentry->d_inode;
1131 	nd->state |= ND_JUMPED;
1132 	return 0;
1133 
1134 err:
1135 	path_put(path);
1136 	return error;
1137 }
1138 
1139 static inline void put_link(struct nameidata *nd)
1140 {
1141 	struct saved *last = nd->stack + --nd->depth;
1142 	do_delayed_call(&last->done);
1143 	if (!(nd->flags & LOOKUP_RCU))
1144 		path_put(&last->link);
1145 }
1146 
1147 static int sysctl_protected_symlinks __read_mostly;
1148 static int sysctl_protected_hardlinks __read_mostly;
1149 static int sysctl_protected_fifos __read_mostly;
1150 static int sysctl_protected_regular __read_mostly;
1151 
1152 #ifdef CONFIG_SYSCTL
1153 static const struct ctl_table namei_sysctls[] = {
1154 	{
1155 		.procname	= "protected_symlinks",
1156 		.data		= &sysctl_protected_symlinks,
1157 		.maxlen		= sizeof(int),
1158 		.mode		= 0644,
1159 		.proc_handler	= proc_dointvec_minmax,
1160 		.extra1		= SYSCTL_ZERO,
1161 		.extra2		= SYSCTL_ONE,
1162 	},
1163 	{
1164 		.procname	= "protected_hardlinks",
1165 		.data		= &sysctl_protected_hardlinks,
1166 		.maxlen		= sizeof(int),
1167 		.mode		= 0644,
1168 		.proc_handler	= proc_dointvec_minmax,
1169 		.extra1		= SYSCTL_ZERO,
1170 		.extra2		= SYSCTL_ONE,
1171 	},
1172 	{
1173 		.procname	= "protected_fifos",
1174 		.data		= &sysctl_protected_fifos,
1175 		.maxlen		= sizeof(int),
1176 		.mode		= 0644,
1177 		.proc_handler	= proc_dointvec_minmax,
1178 		.extra1		= SYSCTL_ZERO,
1179 		.extra2		= SYSCTL_TWO,
1180 	},
1181 	{
1182 		.procname	= "protected_regular",
1183 		.data		= &sysctl_protected_regular,
1184 		.maxlen		= sizeof(int),
1185 		.mode		= 0644,
1186 		.proc_handler	= proc_dointvec_minmax,
1187 		.extra1		= SYSCTL_ZERO,
1188 		.extra2		= SYSCTL_TWO,
1189 	},
1190 };
1191 
1192 static int __init init_fs_namei_sysctls(void)
1193 {
1194 	register_sysctl_init("fs", namei_sysctls);
1195 	return 0;
1196 }
1197 fs_initcall(init_fs_namei_sysctls);
1198 
1199 #endif /* CONFIG_SYSCTL */
1200 
1201 /**
1202  * may_follow_link - Check symlink following for unsafe situations
1203  * @nd: nameidata pathwalk data
1204  * @inode: Used for idmapping.
1205  *
1206  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1207  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1208  * in a sticky world-writable directory. This is to protect privileged
1209  * processes from failing races against path names that may change out
1210  * from under them by way of other users creating malicious symlinks.
1211  * It will permit symlinks to be followed only when outside a sticky
1212  * world-writable directory, or when the uid of the symlink and follower
1213  * match, or when the directory owner matches the symlink's owner.
1214  *
1215  * Returns 0 if following the symlink is allowed, -ve on error.
1216  */
1217 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1218 {
1219 	struct mnt_idmap *idmap;
1220 	vfsuid_t vfsuid;
1221 
1222 	if (!sysctl_protected_symlinks)
1223 		return 0;
1224 
1225 	idmap = mnt_idmap(nd->path.mnt);
1226 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1227 	/* Allowed if owner and follower match. */
1228 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1229 		return 0;
1230 
1231 	/* Allowed if parent directory not sticky and world-writable. */
1232 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1233 		return 0;
1234 
1235 	/* Allowed if parent directory and link owner match. */
1236 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1237 		return 0;
1238 
1239 	if (nd->flags & LOOKUP_RCU)
1240 		return -ECHILD;
1241 
1242 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1243 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1244 	return -EACCES;
1245 }
1246 
1247 /**
1248  * safe_hardlink_source - Check for safe hardlink conditions
1249  * @idmap: idmap of the mount the inode was found from
1250  * @inode: the source inode to hardlink from
1251  *
1252  * Return false if at least one of the following conditions:
1253  *    - inode is not a regular file
1254  *    - inode is setuid
1255  *    - inode is setgid and group-exec
1256  *    - access failure for read and write
1257  *
1258  * Otherwise returns true.
1259  */
1260 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1261 				 struct inode *inode)
1262 {
1263 	umode_t mode = inode->i_mode;
1264 
1265 	/* Special files should not get pinned to the filesystem. */
1266 	if (!S_ISREG(mode))
1267 		return false;
1268 
1269 	/* Setuid files should not get pinned to the filesystem. */
1270 	if (mode & S_ISUID)
1271 		return false;
1272 
1273 	/* Executable setgid files should not get pinned to the filesystem. */
1274 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1275 		return false;
1276 
1277 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1278 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 /**
1285  * may_linkat - Check permissions for creating a hardlink
1286  * @idmap: idmap of the mount the inode was found from
1287  * @link:  the source to hardlink from
1288  *
1289  * Block hardlink when all of:
1290  *  - sysctl_protected_hardlinks enabled
1291  *  - fsuid does not match inode
1292  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1293  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1294  *
1295  * If the inode has been found through an idmapped mount the idmap of
1296  * the vfsmount must be passed through @idmap. This function will then take
1297  * care to map the inode according to @idmap before checking permissions.
1298  * On non-idmapped mounts or if permission checking is to be performed on the
1299  * raw inode simply pass @nop_mnt_idmap.
1300  *
1301  * Returns 0 if successful, -ve on error.
1302  */
1303 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1304 {
1305 	struct inode *inode = link->dentry->d_inode;
1306 
1307 	/* Inode writeback is not safe when the uid or gid are invalid. */
1308 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1309 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1310 		return -EOVERFLOW;
1311 
1312 	if (!sysctl_protected_hardlinks)
1313 		return 0;
1314 
1315 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1316 	 * otherwise, it must be a safe source.
1317 	 */
1318 	if (safe_hardlink_source(idmap, inode) ||
1319 	    inode_owner_or_capable(idmap, inode))
1320 		return 0;
1321 
1322 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1323 	return -EPERM;
1324 }
1325 
1326 /**
1327  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1328  *			  should be allowed, or not, on files that already
1329  *			  exist.
1330  * @idmap: idmap of the mount the inode was found from
1331  * @nd: nameidata pathwalk data
1332  * @inode: the inode of the file to open
1333  *
1334  * Block an O_CREAT open of a FIFO (or a regular file) when:
1335  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1336  *   - the file already exists
1337  *   - we are in a sticky directory
1338  *   - we don't own the file
1339  *   - the owner of the directory doesn't own the file
1340  *   - the directory is world writable
1341  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1342  * the directory doesn't have to be world writable: being group writable will
1343  * be enough.
1344  *
1345  * If the inode has been found through an idmapped mount the idmap of
1346  * the vfsmount must be passed through @idmap. This function will then take
1347  * care to map the inode according to @idmap before checking permissions.
1348  * On non-idmapped mounts or if permission checking is to be performed on the
1349  * raw inode simply pass @nop_mnt_idmap.
1350  *
1351  * Returns 0 if the open is allowed, -ve on error.
1352  */
1353 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1354 				struct inode *const inode)
1355 {
1356 	umode_t dir_mode = nd->dir_mode;
1357 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1358 
1359 	if (likely(!(dir_mode & S_ISVTX)))
1360 		return 0;
1361 
1362 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1363 		return 0;
1364 
1365 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1366 		return 0;
1367 
1368 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1369 
1370 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1371 		return 0;
1372 
1373 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1374 		return 0;
1375 
1376 	if (likely(dir_mode & 0002)) {
1377 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1378 		return -EACCES;
1379 	}
1380 
1381 	if (dir_mode & 0020) {
1382 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1383 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1384 					      "sticky_create_fifo");
1385 			return -EACCES;
1386 		}
1387 
1388 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1389 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1390 					      "sticky_create_regular");
1391 			return -EACCES;
1392 		}
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * follow_up - Find the mountpoint of path's vfsmount
1400  *
1401  * Given a path, find the mountpoint of its source file system.
1402  * Replace @path with the path of the mountpoint in the parent mount.
1403  * Up is towards /.
1404  *
1405  * Return 1 if we went up a level and 0 if we were already at the
1406  * root.
1407  */
1408 int follow_up(struct path *path)
1409 {
1410 	struct mount *mnt = real_mount(path->mnt);
1411 	struct mount *parent;
1412 	struct dentry *mountpoint;
1413 
1414 	read_seqlock_excl(&mount_lock);
1415 	parent = mnt->mnt_parent;
1416 	if (parent == mnt) {
1417 		read_sequnlock_excl(&mount_lock);
1418 		return 0;
1419 	}
1420 	mntget(&parent->mnt);
1421 	mountpoint = dget(mnt->mnt_mountpoint);
1422 	read_sequnlock_excl(&mount_lock);
1423 	dput(path->dentry);
1424 	path->dentry = mountpoint;
1425 	mntput(path->mnt);
1426 	path->mnt = &parent->mnt;
1427 	return 1;
1428 }
1429 EXPORT_SYMBOL(follow_up);
1430 
1431 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1432 				  struct path *path, unsigned *seqp)
1433 {
1434 	while (mnt_has_parent(m)) {
1435 		struct dentry *mountpoint = m->mnt_mountpoint;
1436 
1437 		m = m->mnt_parent;
1438 		if (unlikely(root->dentry == mountpoint &&
1439 			     root->mnt == &m->mnt))
1440 			break;
1441 		if (mountpoint != m->mnt.mnt_root) {
1442 			path->mnt = &m->mnt;
1443 			path->dentry = mountpoint;
1444 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1445 			return true;
1446 		}
1447 	}
1448 	return false;
1449 }
1450 
1451 static bool choose_mountpoint(struct mount *m, const struct path *root,
1452 			      struct path *path)
1453 {
1454 	bool found;
1455 
1456 	rcu_read_lock();
1457 	while (1) {
1458 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1459 
1460 		found = choose_mountpoint_rcu(m, root, path, &seq);
1461 		if (unlikely(!found)) {
1462 			if (!read_seqretry(&mount_lock, mseq))
1463 				break;
1464 		} else {
1465 			if (likely(__legitimize_path(path, seq, mseq)))
1466 				break;
1467 			rcu_read_unlock();
1468 			path_put(path);
1469 			rcu_read_lock();
1470 		}
1471 	}
1472 	rcu_read_unlock();
1473 	return found;
1474 }
1475 
1476 /*
1477  * Perform an automount
1478  * - return -EISDIR to tell follow_managed() to stop and return the path we
1479  *   were called with.
1480  */
1481 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1482 {
1483 	struct dentry *dentry = path->dentry;
1484 
1485 	/* We don't want to mount if someone's just doing a stat -
1486 	 * unless they're stat'ing a directory and appended a '/' to
1487 	 * the name.
1488 	 *
1489 	 * We do, however, want to mount if someone wants to open or
1490 	 * create a file of any type under the mountpoint, wants to
1491 	 * traverse through the mountpoint or wants to open the
1492 	 * mounted directory.  Also, autofs may mark negative dentries
1493 	 * as being automount points.  These will need the attentions
1494 	 * of the daemon to instantiate them before they can be used.
1495 	 */
1496 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1497 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1498 	    dentry->d_inode)
1499 		return -EISDIR;
1500 
1501 	/* No need to trigger automounts if mountpoint crossing is disabled. */
1502 	if (lookup_flags & LOOKUP_NO_XDEV)
1503 		return -EXDEV;
1504 
1505 	if (count && (*count)++ >= MAXSYMLINKS)
1506 		return -ELOOP;
1507 
1508 	return finish_automount(dentry->d_op->d_automount(path), path);
1509 }
1510 
1511 /*
1512  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1513  * dentries are pinned but not locked here, so negative dentry can go
1514  * positive right under us.  Use of smp_load_acquire() provides a barrier
1515  * sufficient for ->d_inode and ->d_flags consistency.
1516  */
1517 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1518 			     int *count, unsigned lookup_flags)
1519 {
1520 	struct vfsmount *mnt = path->mnt;
1521 	bool need_mntput = false;
1522 	int ret = 0;
1523 
1524 	while (flags & DCACHE_MANAGED_DENTRY) {
1525 		/* Allow the filesystem to manage the transit without i_rwsem
1526 		 * being held. */
1527 		if (flags & DCACHE_MANAGE_TRANSIT) {
1528 			if (lookup_flags & LOOKUP_NO_XDEV) {
1529 				ret = -EXDEV;
1530 				break;
1531 			}
1532 			ret = path->dentry->d_op->d_manage(path, false);
1533 			flags = smp_load_acquire(&path->dentry->d_flags);
1534 			if (ret < 0)
1535 				break;
1536 		}
1537 
1538 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1539 			struct vfsmount *mounted = lookup_mnt(path);
1540 			if (mounted) {		// ... in our namespace
1541 				dput(path->dentry);
1542 				if (need_mntput)
1543 					mntput(path->mnt);
1544 				path->mnt = mounted;
1545 				path->dentry = dget(mounted->mnt_root);
1546 				// here we know it's positive
1547 				flags = path->dentry->d_flags;
1548 				need_mntput = true;
1549 				if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1550 					ret = -EXDEV;
1551 					break;
1552 				}
1553 				continue;
1554 			}
1555 		}
1556 
1557 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1558 			break;
1559 
1560 		// uncovered automount point
1561 		ret = follow_automount(path, count, lookup_flags);
1562 		flags = smp_load_acquire(&path->dentry->d_flags);
1563 		if (ret < 0)
1564 			break;
1565 	}
1566 
1567 	if (ret == -EISDIR)
1568 		ret = 0;
1569 	// possible if you race with several mount --move
1570 	if (need_mntput && path->mnt == mnt)
1571 		mntput(path->mnt);
1572 	if (!ret && unlikely(d_flags_negative(flags)))
1573 		ret = -ENOENT;
1574 	*jumped = need_mntput;
1575 	return ret;
1576 }
1577 
1578 static inline int traverse_mounts(struct path *path, bool *jumped,
1579 				  int *count, unsigned lookup_flags)
1580 {
1581 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1582 
1583 	/* fastpath */
1584 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1585 		*jumped = false;
1586 		if (unlikely(d_flags_negative(flags)))
1587 			return -ENOENT;
1588 		return 0;
1589 	}
1590 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1591 }
1592 
1593 int follow_down_one(struct path *path)
1594 {
1595 	struct vfsmount *mounted;
1596 
1597 	mounted = lookup_mnt(path);
1598 	if (mounted) {
1599 		dput(path->dentry);
1600 		mntput(path->mnt);
1601 		path->mnt = mounted;
1602 		path->dentry = dget(mounted->mnt_root);
1603 		return 1;
1604 	}
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL(follow_down_one);
1608 
1609 /*
1610  * Follow down to the covering mount currently visible to userspace.  At each
1611  * point, the filesystem owning that dentry may be queried as to whether the
1612  * caller is permitted to proceed or not.
1613  */
1614 int follow_down(struct path *path, unsigned int flags)
1615 {
1616 	struct vfsmount *mnt = path->mnt;
1617 	bool jumped;
1618 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1619 
1620 	if (path->mnt != mnt)
1621 		mntput(mnt);
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL(follow_down);
1625 
1626 /*
1627  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1628  * we meet a managed dentry that would need blocking.
1629  */
1630 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1631 {
1632 	struct dentry *dentry = path->dentry;
1633 	unsigned int flags = dentry->d_flags;
1634 
1635 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1636 		return false;
1637 
1638 	for (;;) {
1639 		/*
1640 		 * Don't forget we might have a non-mountpoint managed dentry
1641 		 * that wants to block transit.
1642 		 */
1643 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1644 			int res = dentry->d_op->d_manage(path, true);
1645 			if (res)
1646 				return res == -EISDIR;
1647 			flags = dentry->d_flags;
1648 		}
1649 
1650 		if (flags & DCACHE_MOUNTED) {
1651 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1652 			if (mounted) {
1653 				path->mnt = &mounted->mnt;
1654 				dentry = path->dentry = mounted->mnt.mnt_root;
1655 				nd->state |= ND_JUMPED;
1656 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1657 				flags = dentry->d_flags;
1658 				// makes sure that non-RCU pathwalk could reach
1659 				// this state.
1660 				if (read_seqretry(&mount_lock, nd->m_seq))
1661 					return false;
1662 				continue;
1663 			}
1664 			if (read_seqretry(&mount_lock, nd->m_seq))
1665 				return false;
1666 		}
1667 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1668 	}
1669 }
1670 
1671 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1672 			  struct path *path)
1673 {
1674 	bool jumped;
1675 	int ret;
1676 
1677 	path->mnt = nd->path.mnt;
1678 	path->dentry = dentry;
1679 	if (nd->flags & LOOKUP_RCU) {
1680 		unsigned int seq = nd->next_seq;
1681 		if (likely(!d_managed(dentry)))
1682 			return 0;
1683 		if (likely(__follow_mount_rcu(nd, path)))
1684 			return 0;
1685 		// *path and nd->next_seq might've been clobbered
1686 		path->mnt = nd->path.mnt;
1687 		path->dentry = dentry;
1688 		nd->next_seq = seq;
1689 		if (unlikely(!try_to_unlazy_next(nd, dentry)))
1690 			return -ECHILD;
1691 	}
1692 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1693 	if (jumped)
1694 		nd->state |= ND_JUMPED;
1695 	if (unlikely(ret)) {
1696 		dput(path->dentry);
1697 		if (path->mnt != nd->path.mnt)
1698 			mntput(path->mnt);
1699 	}
1700 	return ret;
1701 }
1702 
1703 /*
1704  * This looks up the name in dcache and possibly revalidates the found dentry.
1705  * NULL is returned if the dentry does not exist in the cache.
1706  */
1707 static struct dentry *lookup_dcache(const struct qstr *name,
1708 				    struct dentry *dir,
1709 				    unsigned int flags)
1710 {
1711 	struct dentry *dentry = d_lookup(dir, name);
1712 	if (dentry) {
1713 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1714 		if (unlikely(error <= 0)) {
1715 			if (!error)
1716 				d_invalidate(dentry);
1717 			dput(dentry);
1718 			return ERR_PTR(error);
1719 		}
1720 	}
1721 	return dentry;
1722 }
1723 
1724 /*
1725  * Parent directory has inode locked exclusive.  This is one
1726  * and only case when ->lookup() gets called on non in-lookup
1727  * dentries - as the matter of fact, this only gets called
1728  * when directory is guaranteed to have no in-lookup children
1729  * at all.
1730  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1731  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1732  */
1733 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1734 				    struct dentry *base, unsigned int flags)
1735 {
1736 	struct dentry *dentry;
1737 	struct dentry *old;
1738 	struct inode *dir;
1739 
1740 	dentry = lookup_dcache(name, base, flags);
1741 	if (dentry)
1742 		goto found;
1743 
1744 	/* Don't create child dentry for a dead directory. */
1745 	dir = base->d_inode;
1746 	if (unlikely(IS_DEADDIR(dir)))
1747 		return ERR_PTR(-ENOENT);
1748 
1749 	dentry = d_alloc(base, name);
1750 	if (unlikely(!dentry))
1751 		return ERR_PTR(-ENOMEM);
1752 
1753 	old = dir->i_op->lookup(dir, dentry, flags);
1754 	if (unlikely(old)) {
1755 		dput(dentry);
1756 		dentry = old;
1757 	}
1758 found:
1759 	if (IS_ERR(dentry))
1760 		return dentry;
1761 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1762 		dput(dentry);
1763 		return ERR_PTR(-ENOENT);
1764 	}
1765 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1766 		dput(dentry);
1767 		return ERR_PTR(-EEXIST);
1768 	}
1769 	return dentry;
1770 }
1771 EXPORT_SYMBOL(lookup_one_qstr_excl);
1772 
1773 /**
1774  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1775  * @nd: current nameidata
1776  *
1777  * Do a fast, but racy lookup in the dcache for the given dentry, and
1778  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1779  * found. On error, an ERR_PTR will be returned.
1780  *
1781  * If this function returns a valid dentry and the walk is no longer
1782  * lazy, the dentry will carry a reference that must later be put. If
1783  * RCU mode is still in force, then this is not the case and the dentry
1784  * must be legitimized before use. If this returns NULL, then the walk
1785  * will no longer be in RCU mode.
1786  */
1787 static struct dentry *lookup_fast(struct nameidata *nd)
1788 {
1789 	struct dentry *dentry, *parent = nd->path.dentry;
1790 	int status = 1;
1791 
1792 	/*
1793 	 * Rename seqlock is not required here because in the off chance
1794 	 * of a false negative due to a concurrent rename, the caller is
1795 	 * going to fall back to non-racy lookup.
1796 	 */
1797 	if (nd->flags & LOOKUP_RCU) {
1798 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1799 		if (unlikely(!dentry)) {
1800 			if (!try_to_unlazy(nd))
1801 				return ERR_PTR(-ECHILD);
1802 			return NULL;
1803 		}
1804 
1805 		/*
1806 		 * This sequence count validates that the parent had no
1807 		 * changes while we did the lookup of the dentry above.
1808 		 */
1809 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1810 			return ERR_PTR(-ECHILD);
1811 
1812 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1813 		if (likely(status > 0))
1814 			return dentry;
1815 		if (!try_to_unlazy_next(nd, dentry))
1816 			return ERR_PTR(-ECHILD);
1817 		if (status == -ECHILD)
1818 			/* we'd been told to redo it in non-rcu mode */
1819 			status = d_revalidate(nd->inode, &nd->last,
1820 					      dentry, nd->flags);
1821 	} else {
1822 		dentry = __d_lookup(parent, &nd->last);
1823 		if (unlikely(!dentry))
1824 			return NULL;
1825 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1826 	}
1827 	if (unlikely(status <= 0)) {
1828 		if (!status)
1829 			d_invalidate(dentry);
1830 		dput(dentry);
1831 		return ERR_PTR(status);
1832 	}
1833 	return dentry;
1834 }
1835 
1836 /* Fast lookup failed, do it the slow way */
1837 static struct dentry *__lookup_slow(const struct qstr *name,
1838 				    struct dentry *dir,
1839 				    unsigned int flags)
1840 {
1841 	struct dentry *dentry, *old;
1842 	struct inode *inode = dir->d_inode;
1843 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1844 
1845 	/* Don't go there if it's already dead */
1846 	if (unlikely(IS_DEADDIR(inode)))
1847 		return ERR_PTR(-ENOENT);
1848 again:
1849 	dentry = d_alloc_parallel(dir, name, &wq);
1850 	if (IS_ERR(dentry))
1851 		return dentry;
1852 	if (unlikely(!d_in_lookup(dentry))) {
1853 		int error = d_revalidate(inode, name, dentry, flags);
1854 		if (unlikely(error <= 0)) {
1855 			if (!error) {
1856 				d_invalidate(dentry);
1857 				dput(dentry);
1858 				goto again;
1859 			}
1860 			dput(dentry);
1861 			dentry = ERR_PTR(error);
1862 		}
1863 	} else {
1864 		old = inode->i_op->lookup(inode, dentry, flags);
1865 		d_lookup_done(dentry);
1866 		if (unlikely(old)) {
1867 			dput(dentry);
1868 			dentry = old;
1869 		}
1870 	}
1871 	return dentry;
1872 }
1873 
1874 static noinline struct dentry *lookup_slow(const struct qstr *name,
1875 				  struct dentry *dir,
1876 				  unsigned int flags)
1877 {
1878 	struct inode *inode = dir->d_inode;
1879 	struct dentry *res;
1880 	inode_lock_shared(inode);
1881 	res = __lookup_slow(name, dir, flags);
1882 	inode_unlock_shared(inode);
1883 	return res;
1884 }
1885 
1886 static struct dentry *lookup_slow_killable(const struct qstr *name,
1887 					   struct dentry *dir,
1888 					   unsigned int flags)
1889 {
1890 	struct inode *inode = dir->d_inode;
1891 	struct dentry *res;
1892 
1893 	if (inode_lock_shared_killable(inode))
1894 		return ERR_PTR(-EINTR);
1895 	res = __lookup_slow(name, dir, flags);
1896 	inode_unlock_shared(inode);
1897 	return res;
1898 }
1899 
1900 static inline int may_lookup(struct mnt_idmap *idmap,
1901 			     struct nameidata *restrict nd)
1902 {
1903 	int err, mask;
1904 
1905 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1906 	err = lookup_inode_permission_may_exec(idmap, nd->inode, mask);
1907 	if (likely(!err))
1908 		return 0;
1909 
1910 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1911 	if (!(nd->flags & LOOKUP_RCU))
1912 		return err;
1913 
1914 	// Drop out of RCU mode to make sure it wasn't transient
1915 	if (!try_to_unlazy(nd))
1916 		return -ECHILD;	// redo it all non-lazy
1917 
1918 	if (err != -ECHILD)	// hard error
1919 		return err;
1920 
1921 	return lookup_inode_permission_may_exec(idmap, nd->inode, 0);
1922 }
1923 
1924 static int reserve_stack(struct nameidata *nd, struct path *link)
1925 {
1926 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1927 		return -ELOOP;
1928 
1929 	if (likely(nd->depth != EMBEDDED_LEVELS))
1930 		return 0;
1931 	if (likely(nd->stack != nd->internal))
1932 		return 0;
1933 	if (likely(nd_alloc_stack(nd)))
1934 		return 0;
1935 
1936 	if (nd->flags & LOOKUP_RCU) {
1937 		// we need to grab link before we do unlazy.  And we can't skip
1938 		// unlazy even if we fail to grab the link - cleanup needs it
1939 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1940 
1941 		if (!try_to_unlazy(nd) || !grabbed_link)
1942 			return -ECHILD;
1943 
1944 		if (nd_alloc_stack(nd))
1945 			return 0;
1946 	}
1947 	return -ENOMEM;
1948 }
1949 
1950 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1951 
1952 static noinline const char *pick_link(struct nameidata *nd, struct path *link,
1953 		     struct inode *inode, int flags)
1954 {
1955 	struct saved *last;
1956 	const char *res;
1957 	int error;
1958 
1959 	if (nd->flags & LOOKUP_RCU) {
1960 		/* make sure that d_is_symlink from step_into_slowpath() matches the inode */
1961 		if (read_seqcount_retry(&link->dentry->d_seq, nd->next_seq))
1962 			return ERR_PTR(-ECHILD);
1963 	} else {
1964 		if (link->mnt == nd->path.mnt)
1965 			mntget(link->mnt);
1966 	}
1967 
1968 	error = reserve_stack(nd, link);
1969 	if (unlikely(error)) {
1970 		if (!(nd->flags & LOOKUP_RCU))
1971 			path_put(link);
1972 		return ERR_PTR(error);
1973 	}
1974 	last = nd->stack + nd->depth++;
1975 	last->link = *link;
1976 	clear_delayed_call(&last->done);
1977 	last->seq = nd->next_seq;
1978 
1979 	if (flags & WALK_TRAILING) {
1980 		error = may_follow_link(nd, inode);
1981 		if (unlikely(error))
1982 			return ERR_PTR(error);
1983 	}
1984 
1985 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1986 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1987 		return ERR_PTR(-ELOOP);
1988 
1989 	if (unlikely(atime_needs_update(&last->link, inode))) {
1990 		if (nd->flags & LOOKUP_RCU) {
1991 			if (!try_to_unlazy(nd))
1992 				return ERR_PTR(-ECHILD);
1993 		}
1994 		touch_atime(&last->link);
1995 		cond_resched();
1996 	}
1997 
1998 	error = security_inode_follow_link(link->dentry, inode,
1999 					   nd->flags & LOOKUP_RCU);
2000 	if (unlikely(error))
2001 		return ERR_PTR(error);
2002 
2003 	res = READ_ONCE(inode->i_link);
2004 	if (!res) {
2005 		const char * (*get)(struct dentry *, struct inode *,
2006 				struct delayed_call *);
2007 		get = inode->i_op->get_link;
2008 		if (nd->flags & LOOKUP_RCU) {
2009 			res = get(NULL, inode, &last->done);
2010 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
2011 				res = get(link->dentry, inode, &last->done);
2012 		} else {
2013 			res = get(link->dentry, inode, &last->done);
2014 		}
2015 		if (!res)
2016 			goto all_done;
2017 		if (IS_ERR(res))
2018 			return res;
2019 	}
2020 	if (*res == '/') {
2021 		error = nd_jump_root(nd);
2022 		if (unlikely(error))
2023 			return ERR_PTR(error);
2024 		while (unlikely(*++res == '/'))
2025 			;
2026 	}
2027 	if (*res)
2028 		return res;
2029 all_done: // pure jump
2030 	put_link(nd);
2031 	return NULL;
2032 }
2033 
2034 /*
2035  * Do we need to follow links? We _really_ want to be able
2036  * to do this check without having to look at inode->i_op,
2037  * so we keep a cache of "no, this doesn't need follow_link"
2038  * for the common case.
2039  *
2040  * NOTE: dentry must be what nd->next_seq had been sampled from.
2041  */
2042 static noinline const char *step_into_slowpath(struct nameidata *nd, int flags,
2043 		     struct dentry *dentry)
2044 {
2045 	struct path path;
2046 	struct inode *inode;
2047 	int err;
2048 
2049 	err = handle_mounts(nd, dentry, &path);
2050 	if (unlikely(err < 0))
2051 		return ERR_PTR(err);
2052 	inode = path.dentry->d_inode;
2053 	if (likely(!d_is_symlink(path.dentry)) ||
2054 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
2055 	   (flags & WALK_NOFOLLOW)) {
2056 		/* not a symlink or should not follow */
2057 		if (nd->flags & LOOKUP_RCU) {
2058 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2059 				return ERR_PTR(-ECHILD);
2060 			if (unlikely(!inode))
2061 				return ERR_PTR(-ENOENT);
2062 		} else {
2063 			dput(nd->path.dentry);
2064 			if (nd->path.mnt != path.mnt)
2065 				mntput(nd->path.mnt);
2066 		}
2067 		nd->path = path;
2068 		nd->inode = inode;
2069 		nd->seq = nd->next_seq;
2070 		return NULL;
2071 	}
2072 	return pick_link(nd, &path, inode, flags);
2073 }
2074 
2075 static __always_inline const char *step_into(struct nameidata *nd, int flags,
2076                     struct dentry *dentry)
2077 {
2078 	/*
2079 	 * In the common case we are in rcu-walk and traversing over a non-mounted on
2080 	 * directory (as opposed to e.g., a symlink).
2081 	 *
2082 	 * We can handle that and negative entries with the checks below.
2083 	 */
2084 	if (likely((nd->flags & LOOKUP_RCU) &&
2085 	    !d_managed(dentry) && !d_is_symlink(dentry))) {
2086 		struct inode *inode = dentry->d_inode;
2087 		if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
2088 			return ERR_PTR(-ECHILD);
2089 		if (unlikely(!inode))
2090 			return ERR_PTR(-ENOENT);
2091 		nd->path.dentry = dentry;
2092 		/* nd->path.mnt is retained on purpose */
2093 		nd->inode = inode;
2094 		nd->seq = nd->next_seq;
2095 		return NULL;
2096 	}
2097 	return step_into_slowpath(nd, flags, dentry);
2098 }
2099 
2100 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2101 {
2102 	struct dentry *parent, *old;
2103 
2104 	if (path_equal(&nd->path, &nd->root))
2105 		goto in_root;
2106 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2107 		struct path path;
2108 		unsigned seq;
2109 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2110 					   &nd->root, &path, &seq))
2111 			goto in_root;
2112 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2113 			return ERR_PTR(-ECHILD);
2114 		nd->path = path;
2115 		nd->inode = path.dentry->d_inode;
2116 		nd->seq = seq;
2117 		// makes sure that non-RCU pathwalk could reach this state
2118 		if (read_seqretry(&mount_lock, nd->m_seq))
2119 			return ERR_PTR(-ECHILD);
2120 		/* we know that mountpoint was pinned */
2121 	}
2122 	old = nd->path.dentry;
2123 	parent = old->d_parent;
2124 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2125 	// makes sure that non-RCU pathwalk could reach this state
2126 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2127 		return ERR_PTR(-ECHILD);
2128 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2129 		return ERR_PTR(-ECHILD);
2130 	return parent;
2131 in_root:
2132 	if (read_seqretry(&mount_lock, nd->m_seq))
2133 		return ERR_PTR(-ECHILD);
2134 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2135 		return ERR_PTR(-ECHILD);
2136 	nd->next_seq = nd->seq;
2137 	return nd->path.dentry;
2138 }
2139 
2140 static struct dentry *follow_dotdot(struct nameidata *nd)
2141 {
2142 	struct dentry *parent;
2143 
2144 	if (path_equal(&nd->path, &nd->root))
2145 		goto in_root;
2146 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2147 		struct path path;
2148 
2149 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2150 				       &nd->root, &path))
2151 			goto in_root;
2152 		path_put(&nd->path);
2153 		nd->path = path;
2154 		nd->inode = path.dentry->d_inode;
2155 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2156 			return ERR_PTR(-EXDEV);
2157 	}
2158 	/* rare case of legitimate dget_parent()... */
2159 	parent = dget_parent(nd->path.dentry);
2160 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2161 		dput(parent);
2162 		return ERR_PTR(-ENOENT);
2163 	}
2164 	return parent;
2165 
2166 in_root:
2167 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2168 		return ERR_PTR(-EXDEV);
2169 	return dget(nd->path.dentry);
2170 }
2171 
2172 static const char *handle_dots(struct nameidata *nd, int type)
2173 {
2174 	if (type == LAST_DOTDOT) {
2175 		const char *error = NULL;
2176 		struct dentry *parent;
2177 
2178 		if (!nd->root.mnt) {
2179 			error = ERR_PTR(set_root(nd));
2180 			if (unlikely(error))
2181 				return error;
2182 		}
2183 		if (nd->flags & LOOKUP_RCU)
2184 			parent = follow_dotdot_rcu(nd);
2185 		else
2186 			parent = follow_dotdot(nd);
2187 		if (IS_ERR(parent))
2188 			return ERR_CAST(parent);
2189 		error = step_into(nd, WALK_NOFOLLOW, parent);
2190 		if (unlikely(error))
2191 			return error;
2192 
2193 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2194 			/*
2195 			 * If there was a racing rename or mount along our
2196 			 * path, then we can't be sure that ".." hasn't jumped
2197 			 * above nd->root (and so userspace should retry or use
2198 			 * some fallback).
2199 			 */
2200 			smp_rmb();
2201 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2202 				return ERR_PTR(-EAGAIN);
2203 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2204 				return ERR_PTR(-EAGAIN);
2205 		}
2206 	}
2207 	return NULL;
2208 }
2209 
2210 static __always_inline const char *walk_component(struct nameidata *nd, int flags)
2211 {
2212 	struct dentry *dentry;
2213 	/*
2214 	 * "." and ".." are special - ".." especially so because it has
2215 	 * to be able to know about the current root directory and
2216 	 * parent relationships.
2217 	 */
2218 	if (unlikely(nd->last_type != LAST_NORM)) {
2219 		if (unlikely(nd->depth) && !(flags & WALK_MORE))
2220 			put_link(nd);
2221 		return handle_dots(nd, nd->last_type);
2222 	}
2223 	dentry = lookup_fast(nd);
2224 	if (IS_ERR(dentry))
2225 		return ERR_CAST(dentry);
2226 	if (unlikely(!dentry)) {
2227 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2228 		if (IS_ERR(dentry))
2229 			return ERR_CAST(dentry);
2230 	}
2231 	if (unlikely(nd->depth) && !(flags & WALK_MORE))
2232 		put_link(nd);
2233 	return step_into(nd, flags, dentry);
2234 }
2235 
2236 /*
2237  * We can do the critical dentry name comparison and hashing
2238  * operations one word at a time, but we are limited to:
2239  *
2240  * - Architectures with fast unaligned word accesses. We could
2241  *   do a "get_unaligned()" if this helps and is sufficiently
2242  *   fast.
2243  *
2244  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2245  *   do not trap on the (extremely unlikely) case of a page
2246  *   crossing operation.
2247  *
2248  * - Furthermore, we need an efficient 64-bit compile for the
2249  *   64-bit case in order to generate the "number of bytes in
2250  *   the final mask". Again, that could be replaced with a
2251  *   efficient population count instruction or similar.
2252  */
2253 #ifdef CONFIG_DCACHE_WORD_ACCESS
2254 
2255 #include <asm/word-at-a-time.h>
2256 
2257 #ifdef HASH_MIX
2258 
2259 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2260 
2261 #elif defined(CONFIG_64BIT)
2262 /*
2263  * Register pressure in the mixing function is an issue, particularly
2264  * on 32-bit x86, but almost any function requires one state value and
2265  * one temporary.  Instead, use a function designed for two state values
2266  * and no temporaries.
2267  *
2268  * This function cannot create a collision in only two iterations, so
2269  * we have two iterations to achieve avalanche.  In those two iterations,
2270  * we have six layers of mixing, which is enough to spread one bit's
2271  * influence out to 2^6 = 64 state bits.
2272  *
2273  * Rotate constants are scored by considering either 64 one-bit input
2274  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2275  * probability of that delta causing a change to each of the 128 output
2276  * bits, using a sample of random initial states.
2277  *
2278  * The Shannon entropy of the computed probabilities is then summed
2279  * to produce a score.  Ideally, any input change has a 50% chance of
2280  * toggling any given output bit.
2281  *
2282  * Mixing scores (in bits) for (12,45):
2283  * Input delta: 1-bit      2-bit
2284  * 1 round:     713.3    42542.6
2285  * 2 rounds:   2753.7   140389.8
2286  * 3 rounds:   5954.1   233458.2
2287  * 4 rounds:   7862.6   256672.2
2288  * Perfect:    8192     258048
2289  *            (64*128) (64*63/2 * 128)
2290  */
2291 #define HASH_MIX(x, y, a)	\
2292 	(	x ^= (a),	\
2293 	y ^= x,	x = rol64(x,12),\
2294 	x += y,	y = rol64(y,45),\
2295 	y *= 9			)
2296 
2297 /*
2298  * Fold two longs into one 32-bit hash value.  This must be fast, but
2299  * latency isn't quite as critical, as there is a fair bit of additional
2300  * work done before the hash value is used.
2301  */
2302 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2303 {
2304 	y ^= x * GOLDEN_RATIO_64;
2305 	y *= GOLDEN_RATIO_64;
2306 	return y >> 32;
2307 }
2308 
2309 #else	/* 32-bit case */
2310 
2311 /*
2312  * Mixing scores (in bits) for (7,20):
2313  * Input delta: 1-bit      2-bit
2314  * 1 round:     330.3     9201.6
2315  * 2 rounds:   1246.4    25475.4
2316  * 3 rounds:   1907.1    31295.1
2317  * 4 rounds:   2042.3    31718.6
2318  * Perfect:    2048      31744
2319  *            (32*64)   (32*31/2 * 64)
2320  */
2321 #define HASH_MIX(x, y, a)	\
2322 	(	x ^= (a),	\
2323 	y ^= x,	x = rol32(x, 7),\
2324 	x += y,	y = rol32(y,20),\
2325 	y *= 9			)
2326 
2327 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2328 {
2329 	/* Use arch-optimized multiply if one exists */
2330 	return __hash_32(y ^ __hash_32(x));
2331 }
2332 
2333 #endif
2334 
2335 /*
2336  * Return the hash of a string of known length.  This is carfully
2337  * designed to match hash_name(), which is the more critical function.
2338  * In particular, we must end by hashing a final word containing 0..7
2339  * payload bytes, to match the way that hash_name() iterates until it
2340  * finds the delimiter after the name.
2341  */
2342 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2343 {
2344 	unsigned long a, x = 0, y = (unsigned long)salt;
2345 
2346 	for (;;) {
2347 		if (!len)
2348 			goto done;
2349 		a = load_unaligned_zeropad(name);
2350 		if (len < sizeof(unsigned long))
2351 			break;
2352 		HASH_MIX(x, y, a);
2353 		name += sizeof(unsigned long);
2354 		len -= sizeof(unsigned long);
2355 	}
2356 	x ^= a & bytemask_from_count(len);
2357 done:
2358 	return fold_hash(x, y);
2359 }
2360 EXPORT_SYMBOL(full_name_hash);
2361 
2362 /* Return the "hash_len" (hash and length) of a null-terminated string */
2363 u64 hashlen_string(const void *salt, const char *name)
2364 {
2365 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2366 	unsigned long adata, mask, len;
2367 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2368 
2369 	len = 0;
2370 	goto inside;
2371 
2372 	do {
2373 		HASH_MIX(x, y, a);
2374 		len += sizeof(unsigned long);
2375 inside:
2376 		a = load_unaligned_zeropad(name+len);
2377 	} while (!has_zero(a, &adata, &constants));
2378 
2379 	adata = prep_zero_mask(a, adata, &constants);
2380 	mask = create_zero_mask(adata);
2381 	x ^= a & zero_bytemask(mask);
2382 
2383 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2384 }
2385 EXPORT_SYMBOL(hashlen_string);
2386 
2387 /*
2388  * Calculate the length and hash of the path component, and
2389  * return the length as the result.
2390  */
2391 static inline const char *hash_name(struct nameidata *nd,
2392 				    const char *name,
2393 				    unsigned long *lastword)
2394 {
2395 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2396 	unsigned long adata, bdata, mask, len;
2397 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2398 
2399 	/*
2400 	 * The first iteration is special, because it can result in
2401 	 * '.' and '..' and has no mixing other than the final fold.
2402 	 */
2403 	a = load_unaligned_zeropad(name);
2404 	b = a ^ REPEAT_BYTE('/');
2405 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2406 		adata = prep_zero_mask(a, adata, &constants);
2407 		bdata = prep_zero_mask(b, bdata, &constants);
2408 		mask = create_zero_mask(adata | bdata);
2409 		a &= zero_bytemask(mask);
2410 		*lastword = a;
2411 		len = find_zero(mask);
2412 		nd->last.hash = fold_hash(a, y);
2413 		nd->last.len = len;
2414 		return name + len;
2415 	}
2416 
2417 	len = 0;
2418 	x = 0;
2419 	do {
2420 		HASH_MIX(x, y, a);
2421 		len += sizeof(unsigned long);
2422 		a = load_unaligned_zeropad(name+len);
2423 		b = a ^ REPEAT_BYTE('/');
2424 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2425 
2426 	adata = prep_zero_mask(a, adata, &constants);
2427 	bdata = prep_zero_mask(b, bdata, &constants);
2428 	mask = create_zero_mask(adata | bdata);
2429 	a &= zero_bytemask(mask);
2430 	x ^= a;
2431 	len += find_zero(mask);
2432 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2433 
2434 	nd->last.hash = fold_hash(x, y);
2435 	nd->last.len = len;
2436 	return name + len;
2437 }
2438 
2439 /*
2440  * Note that the 'last' word is always zero-masked, but
2441  * was loaded as a possibly big-endian word.
2442  */
2443 #ifdef __BIG_ENDIAN
2444   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2445   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2446 #endif
2447 
2448 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2449 
2450 /* Return the hash of a string of known length */
2451 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2452 {
2453 	unsigned long hash = init_name_hash(salt);
2454 	while (len--)
2455 		hash = partial_name_hash((unsigned char)*name++, hash);
2456 	return end_name_hash(hash);
2457 }
2458 EXPORT_SYMBOL(full_name_hash);
2459 
2460 /* Return the "hash_len" (hash and length) of a null-terminated string */
2461 u64 hashlen_string(const void *salt, const char *name)
2462 {
2463 	unsigned long hash = init_name_hash(salt);
2464 	unsigned long len = 0, c;
2465 
2466 	c = (unsigned char)*name;
2467 	while (c) {
2468 		len++;
2469 		hash = partial_name_hash(c, hash);
2470 		c = (unsigned char)name[len];
2471 	}
2472 	return hashlen_create(end_name_hash(hash), len);
2473 }
2474 EXPORT_SYMBOL(hashlen_string);
2475 
2476 /*
2477  * We know there's a real path component here of at least
2478  * one character.
2479  */
2480 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2481 {
2482 	unsigned long hash = init_name_hash(nd->path.dentry);
2483 	unsigned long len = 0, c, last = 0;
2484 
2485 	c = (unsigned char)*name;
2486 	do {
2487 		last = (last << 8) + c;
2488 		len++;
2489 		hash = partial_name_hash(c, hash);
2490 		c = (unsigned char)name[len];
2491 	} while (c && c != '/');
2492 
2493 	// This is reliable for DOT or DOTDOT, since the component
2494 	// cannot contain NUL characters - top bits being zero means
2495 	// we cannot have had any other pathnames.
2496 	*lastword = last;
2497 	nd->last.hash = end_name_hash(hash);
2498 	nd->last.len = len;
2499 	return name + len;
2500 }
2501 
2502 #endif
2503 
2504 #ifndef LAST_WORD_IS_DOT
2505   #define LAST_WORD_IS_DOT	0x2e
2506   #define LAST_WORD_IS_DOTDOT	0x2e2e
2507 #endif
2508 
2509 /*
2510  * Name resolution.
2511  * This is the basic name resolution function, turning a pathname into
2512  * the final dentry. We expect 'base' to be positive and a directory.
2513  *
2514  * Returns 0 and nd will have valid dentry and mnt on success.
2515  * Returns error and drops reference to input namei data on failure.
2516  */
2517 static int link_path_walk(const char *name, struct nameidata *nd)
2518 {
2519 	int depth = 0; // depth <= nd->depth
2520 	int err;
2521 
2522 	nd->last_type = LAST_ROOT;
2523 	nd->flags |= LOOKUP_PARENT;
2524 	if (IS_ERR(name))
2525 		return PTR_ERR(name);
2526 	if (*name == '/') {
2527 		do {
2528 			name++;
2529 		} while (unlikely(*name == '/'));
2530 	}
2531 	if (unlikely(!*name)) {
2532 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2533 		return 0;
2534 	}
2535 
2536 	/* At this point we know we have a real path component. */
2537 	for(;;) {
2538 		struct mnt_idmap *idmap;
2539 		const char *link;
2540 		unsigned long lastword;
2541 
2542 		idmap = mnt_idmap(nd->path.mnt);
2543 		err = may_lookup(idmap, nd);
2544 		if (unlikely(err))
2545 			return err;
2546 
2547 		nd->last.name = name;
2548 		name = hash_name(nd, name, &lastword);
2549 
2550 		switch(lastword) {
2551 		case LAST_WORD_IS_DOTDOT:
2552 			nd->last_type = LAST_DOTDOT;
2553 			nd->state |= ND_JUMPED;
2554 			break;
2555 
2556 		case LAST_WORD_IS_DOT:
2557 			nd->last_type = LAST_DOT;
2558 			break;
2559 
2560 		default:
2561 			nd->last_type = LAST_NORM;
2562 			nd->state &= ~ND_JUMPED;
2563 
2564 			struct dentry *parent = nd->path.dentry;
2565 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2566 				err = parent->d_op->d_hash(parent, &nd->last);
2567 				if (err < 0)
2568 					return err;
2569 			}
2570 		}
2571 
2572 		if (!*name)
2573 			goto OK;
2574 		/*
2575 		 * If it wasn't NUL, we know it was '/'. Skip that
2576 		 * slash, and continue until no more slashes.
2577 		 */
2578 		do {
2579 			name++;
2580 		} while (unlikely(*name == '/'));
2581 		if (unlikely(!*name)) {
2582 OK:
2583 			/* pathname or trailing symlink, done */
2584 			if (likely(!depth)) {
2585 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2586 				nd->dir_mode = nd->inode->i_mode;
2587 				nd->flags &= ~LOOKUP_PARENT;
2588 				return 0;
2589 			}
2590 			/* last component of nested symlink */
2591 			name = nd->stack[--depth].name;
2592 			link = walk_component(nd, 0);
2593 		} else {
2594 			/* not the last component */
2595 			link = walk_component(nd, WALK_MORE);
2596 		}
2597 		if (unlikely(link)) {
2598 			if (IS_ERR(link))
2599 				return PTR_ERR(link);
2600 			/* a symlink to follow */
2601 			nd->stack[depth++].name = name;
2602 			name = link;
2603 			continue;
2604 		}
2605 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2606 			if (nd->flags & LOOKUP_RCU) {
2607 				if (!try_to_unlazy(nd))
2608 					return -ECHILD;
2609 			}
2610 			return -ENOTDIR;
2611 		}
2612 	}
2613 }
2614 
2615 /* must be paired with terminate_walk() */
2616 static const char *path_init(struct nameidata *nd, unsigned flags)
2617 {
2618 	int error;
2619 	const char *s = nd->pathname;
2620 
2621 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2622 	if (unlikely((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED))
2623 		return ERR_PTR(-EAGAIN);
2624 
2625 	if (unlikely(!*s))
2626 		flags &= ~LOOKUP_RCU;
2627 	if (flags & LOOKUP_RCU)
2628 		rcu_read_lock();
2629 	else
2630 		nd->seq = nd->next_seq = 0;
2631 
2632 	nd->flags = flags;
2633 	nd->state |= ND_JUMPED;
2634 
2635 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2636 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2637 	smp_rmb();
2638 
2639 	if (unlikely(nd->state & ND_ROOT_PRESET)) {
2640 		struct dentry *root = nd->root.dentry;
2641 		struct inode *inode = root->d_inode;
2642 		if (*s && unlikely(!d_can_lookup(root)))
2643 			return ERR_PTR(-ENOTDIR);
2644 		nd->path = nd->root;
2645 		nd->inode = inode;
2646 		if (flags & LOOKUP_RCU) {
2647 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2648 			nd->root_seq = nd->seq;
2649 		} else {
2650 			path_get(&nd->path);
2651 		}
2652 		return s;
2653 	}
2654 
2655 	nd->root.mnt = NULL;
2656 
2657 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2658 	if (*s == '/' && likely(!(flags & LOOKUP_IN_ROOT))) {
2659 		error = nd_jump_root(nd);
2660 		if (unlikely(error))
2661 			return ERR_PTR(error);
2662 		return s;
2663 	}
2664 
2665 	/* Relative pathname -- get the starting-point it is relative to. */
2666 	if (nd->dfd == AT_FDCWD) {
2667 		if (flags & LOOKUP_RCU) {
2668 			struct fs_struct *fs = current->fs;
2669 			unsigned seq;
2670 
2671 			do {
2672 				seq = read_seqbegin(&fs->seq);
2673 				nd->path = fs->pwd;
2674 				nd->inode = nd->path.dentry->d_inode;
2675 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2676 			} while (read_seqretry(&fs->seq, seq));
2677 		} else {
2678 			get_fs_pwd(current->fs, &nd->path);
2679 			nd->inode = nd->path.dentry->d_inode;
2680 		}
2681 	} else {
2682 		/* Caller must check execute permissions on the starting path component */
2683 		CLASS(fd_raw, f)(nd->dfd);
2684 		struct dentry *dentry;
2685 
2686 		if (fd_empty(f))
2687 			return ERR_PTR(-EBADF);
2688 
2689 		if (flags & LOOKUP_LINKAT_EMPTY) {
2690 			if (fd_file(f)->f_cred != current_cred() &&
2691 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2692 				return ERR_PTR(-ENOENT);
2693 		}
2694 
2695 		dentry = fd_file(f)->f_path.dentry;
2696 
2697 		if (*s && unlikely(!d_can_lookup(dentry)))
2698 			return ERR_PTR(-ENOTDIR);
2699 
2700 		nd->path = fd_file(f)->f_path;
2701 		if (flags & LOOKUP_RCU) {
2702 			nd->inode = nd->path.dentry->d_inode;
2703 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2704 		} else {
2705 			path_get(&nd->path);
2706 			nd->inode = nd->path.dentry->d_inode;
2707 		}
2708 	}
2709 
2710 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2711 	if (unlikely(flags & LOOKUP_IS_SCOPED)) {
2712 		nd->root = nd->path;
2713 		if (flags & LOOKUP_RCU) {
2714 			nd->root_seq = nd->seq;
2715 		} else {
2716 			path_get(&nd->root);
2717 			nd->state |= ND_ROOT_GRABBED;
2718 		}
2719 	}
2720 	return s;
2721 }
2722 
2723 static inline const char *lookup_last(struct nameidata *nd)
2724 {
2725 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2726 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2727 
2728 	return walk_component(nd, WALK_TRAILING);
2729 }
2730 
2731 static int handle_lookup_down(struct nameidata *nd)
2732 {
2733 	if (!(nd->flags & LOOKUP_RCU))
2734 		dget(nd->path.dentry);
2735 	nd->next_seq = nd->seq;
2736 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2737 }
2738 
2739 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2740 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2741 {
2742 	const char *s = path_init(nd, flags);
2743 	int err;
2744 
2745 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2746 		err = handle_lookup_down(nd);
2747 		if (unlikely(err < 0))
2748 			s = ERR_PTR(err);
2749 	}
2750 
2751 	while (!(err = link_path_walk(s, nd)) &&
2752 	       (s = lookup_last(nd)) != NULL)
2753 		;
2754 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2755 		err = handle_lookup_down(nd);
2756 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2757 	}
2758 	if (!err)
2759 		err = complete_walk(nd);
2760 
2761 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2762 		if (!d_can_lookup(nd->path.dentry))
2763 			err = -ENOTDIR;
2764 	if (!err) {
2765 		*path = nd->path;
2766 		nd->path.mnt = NULL;
2767 		nd->path.dentry = NULL;
2768 	}
2769 	terminate_walk(nd);
2770 	return err;
2771 }
2772 
2773 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2774 		    struct path *path, const struct path *root)
2775 {
2776 	int retval;
2777 	struct nameidata nd;
2778 	if (IS_ERR(name))
2779 		return PTR_ERR(name);
2780 	set_nameidata(&nd, dfd, name, root);
2781 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2782 	if (unlikely(retval == -ECHILD))
2783 		retval = path_lookupat(&nd, flags, path);
2784 	if (unlikely(retval == -ESTALE))
2785 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2786 
2787 	if (likely(!retval))
2788 		audit_inode(name, path->dentry,
2789 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2790 	restore_nameidata();
2791 	return retval;
2792 }
2793 
2794 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2795 static int path_parentat(struct nameidata *nd, unsigned flags,
2796 				struct path *parent)
2797 {
2798 	const char *s = path_init(nd, flags);
2799 	int err = link_path_walk(s, nd);
2800 	if (!err)
2801 		err = complete_walk(nd);
2802 	if (!err) {
2803 		*parent = nd->path;
2804 		nd->path.mnt = NULL;
2805 		nd->path.dentry = NULL;
2806 	}
2807 	terminate_walk(nd);
2808 	return err;
2809 }
2810 
2811 /* Note: this does not consume "name" */
2812 static int __filename_parentat(int dfd, struct filename *name,
2813 			       unsigned int flags, struct path *parent,
2814 			       struct qstr *last, int *type,
2815 			       const struct path *root)
2816 {
2817 	int retval;
2818 	struct nameidata nd;
2819 
2820 	if (IS_ERR(name))
2821 		return PTR_ERR(name);
2822 	set_nameidata(&nd, dfd, name, root);
2823 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2824 	if (unlikely(retval == -ECHILD))
2825 		retval = path_parentat(&nd, flags, parent);
2826 	if (unlikely(retval == -ESTALE))
2827 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2828 	if (likely(!retval)) {
2829 		*last = nd.last;
2830 		*type = nd.last_type;
2831 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2832 	}
2833 	restore_nameidata();
2834 	return retval;
2835 }
2836 
2837 static int filename_parentat(int dfd, struct filename *name,
2838 			     unsigned int flags, struct path *parent,
2839 			     struct qstr *last, int *type)
2840 {
2841 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2842 }
2843 
2844 /**
2845  * __start_dirop - begin a create or remove dirop, performing locking and lookup
2846  * @parent:       the dentry of the parent in which the operation will occur
2847  * @name:         a qstr holding the name within that parent
2848  * @lookup_flags: intent and other lookup flags.
2849  * @state:        task state bitmask
2850  *
2851  * The lookup is performed and necessary locks are taken so that, on success,
2852  * the returned dentry can be operated on safely.
2853  * The qstr must already have the hash value calculated.
2854  *
2855  * Returns: a locked dentry, or an error.
2856  *
2857  */
2858 static struct dentry *__start_dirop(struct dentry *parent, struct qstr *name,
2859 				    unsigned int lookup_flags,
2860 				    unsigned int state)
2861 {
2862 	struct dentry *dentry;
2863 	struct inode *dir = d_inode(parent);
2864 
2865 	if (state == TASK_KILLABLE) {
2866 		int ret = down_write_killable_nested(&dir->i_rwsem,
2867 						     I_MUTEX_PARENT);
2868 		if (ret)
2869 			return ERR_PTR(ret);
2870 	} else {
2871 		inode_lock_nested(dir, I_MUTEX_PARENT);
2872 	}
2873 	dentry = lookup_one_qstr_excl(name, parent, lookup_flags);
2874 	if (IS_ERR(dentry))
2875 		inode_unlock(dir);
2876 	return dentry;
2877 }
2878 
2879 struct dentry *start_dirop(struct dentry *parent, struct qstr *name,
2880 			   unsigned int lookup_flags)
2881 {
2882 	return __start_dirop(parent, name, lookup_flags, TASK_NORMAL);
2883 }
2884 
2885 /**
2886  * end_dirop - signal completion of a dirop
2887  * @de: the dentry which was returned by start_dirop or similar.
2888  *
2889  * If the de is an error, nothing happens. Otherwise any lock taken to
2890  * protect the dentry is dropped and the dentry itself is release (dput()).
2891  */
2892 void end_dirop(struct dentry *de)
2893 {
2894 	if (!IS_ERR(de)) {
2895 		inode_unlock(de->d_parent->d_inode);
2896 		dput(de);
2897 	}
2898 }
2899 EXPORT_SYMBOL(end_dirop);
2900 
2901 /* does lookup, returns the object with parent locked */
2902 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2903 					   struct path *path)
2904 {
2905 	struct path parent_path __free(path_put) = {};
2906 	struct dentry *d;
2907 	struct qstr last;
2908 	int type, error;
2909 
2910 	error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2911 	if (error)
2912 		return ERR_PTR(error);
2913 	if (unlikely(type != LAST_NORM))
2914 		return ERR_PTR(-EINVAL);
2915 	/* don't fail immediately if it's r/o, at least try to report other errors */
2916 	error = mnt_want_write(parent_path.mnt);
2917 	d = start_dirop(parent_path.dentry, &last, 0);
2918 	if (IS_ERR(d))
2919 		goto drop;
2920 	if (error)
2921 		goto fail;
2922 	path->dentry = no_free_ptr(parent_path.dentry);
2923 	path->mnt = no_free_ptr(parent_path.mnt);
2924 	return d;
2925 
2926 fail:
2927 	end_dirop(d);
2928 	d = ERR_PTR(error);
2929 drop:
2930 	if (!error)
2931 		mnt_drop_write(parent_path.mnt);
2932 	return d;
2933 }
2934 
2935 /**
2936  * kern_path_parent: lookup path returning parent and target
2937  * @name: path name
2938  * @path: path to store parent in
2939  *
2940  * The path @name should end with a normal component, not "." or ".." or "/".
2941  * A lookup is performed and if successful the parent information
2942  * is store in @parent and the dentry is returned.
2943  *
2944  * The dentry maybe negative, the parent will be positive.
2945  *
2946  * Returns:  dentry or error.
2947  */
2948 struct dentry *kern_path_parent(const char *name, struct path *path)
2949 {
2950 	struct path parent_path __free(path_put) = {};
2951 	struct filename *filename __free(putname) = getname_kernel(name);
2952 	struct dentry *d;
2953 	struct qstr last;
2954 	int type, error;
2955 
2956 	error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2957 	if (error)
2958 		return ERR_PTR(error);
2959 	if (unlikely(type != LAST_NORM))
2960 		return ERR_PTR(-EINVAL);
2961 
2962 	d = lookup_noperm_unlocked(&last, parent_path.dentry);
2963 	if (IS_ERR(d))
2964 		return d;
2965 	path->dentry = no_free_ptr(parent_path.dentry);
2966 	path->mnt = no_free_ptr(parent_path.mnt);
2967 	return d;
2968 }
2969 
2970 struct dentry *start_removing_path(const char *name, struct path *path)
2971 {
2972 	struct filename *filename = getname_kernel(name);
2973 	struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2974 
2975 	putname(filename);
2976 	return res;
2977 }
2978 
2979 struct dentry *start_removing_user_path_at(int dfd,
2980 					   const char __user *name,
2981 					   struct path *path)
2982 {
2983 	struct filename *filename = getname(name);
2984 	struct dentry *res = __start_removing_path(dfd, filename, path);
2985 
2986 	putname(filename);
2987 	return res;
2988 }
2989 EXPORT_SYMBOL(start_removing_user_path_at);
2990 
2991 int kern_path(const char *name, unsigned int flags, struct path *path)
2992 {
2993 	struct filename *filename = getname_kernel(name);
2994 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2995 
2996 	putname(filename);
2997 	return ret;
2998 
2999 }
3000 EXPORT_SYMBOL(kern_path);
3001 
3002 /**
3003  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
3004  * @filename: filename structure
3005  * @flags: lookup flags
3006  * @parent: pointer to struct path to fill
3007  * @last: last component
3008  * @type: type of the last component
3009  * @root: pointer to struct path of the base directory
3010  */
3011 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
3012 			   struct path *parent, struct qstr *last, int *type,
3013 			   const struct path *root)
3014 {
3015 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
3016 				    type, root);
3017 }
3018 EXPORT_SYMBOL(vfs_path_parent_lookup);
3019 
3020 /**
3021  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
3022  * @dentry:  pointer to dentry of the base directory
3023  * @mnt: pointer to vfs mount of the base directory
3024  * @name: pointer to file name
3025  * @flags: lookup flags
3026  * @path: pointer to struct path to fill
3027  */
3028 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
3029 		    const char *name, unsigned int flags,
3030 		    struct path *path)
3031 {
3032 	struct filename *filename;
3033 	struct path root = {.mnt = mnt, .dentry = dentry};
3034 	int ret;
3035 
3036 	filename = getname_kernel(name);
3037 	/* the first argument of filename_lookup() is ignored with root */
3038 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
3039 	putname(filename);
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL(vfs_path_lookup);
3043 
3044 int lookup_noperm_common(struct qstr *qname, struct dentry *base)
3045 {
3046 	const char *name = qname->name;
3047 	u32 len = qname->len;
3048 
3049 	qname->hash = full_name_hash(base, name, len);
3050 	if (!len)
3051 		return -EACCES;
3052 
3053 	if (is_dot_dotdot(name, len))
3054 		return -EACCES;
3055 
3056 	while (len--) {
3057 		unsigned int c = *(const unsigned char *)name++;
3058 		if (c == '/' || c == '\0')
3059 			return -EACCES;
3060 	}
3061 	/*
3062 	 * See if the low-level filesystem might want
3063 	 * to use its own hash..
3064 	 */
3065 	if (base->d_flags & DCACHE_OP_HASH) {
3066 		int err = base->d_op->d_hash(base, qname);
3067 		if (err < 0)
3068 			return err;
3069 	}
3070 	return 0;
3071 }
3072 
3073 static int lookup_one_common(struct mnt_idmap *idmap,
3074 			     struct qstr *qname, struct dentry *base)
3075 {
3076 	int err;
3077 	err = lookup_noperm_common(qname, base);
3078 	if (err < 0)
3079 		return err;
3080 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
3081 }
3082 
3083 /**
3084  * try_lookup_noperm - filesystem helper to lookup single pathname component
3085  * @name:	qstr storing pathname component to lookup
3086  * @base:	base directory to lookup from
3087  *
3088  * Look up a dentry by name in the dcache, returning NULL if it does not
3089  * currently exist.  The function does not try to create a dentry and if one
3090  * is found it doesn't try to revalidate it.
3091  *
3092  * Note that this routine is purely a helper for filesystem usage and should
3093  * not be called by generic code.  It does no permission checking.
3094  *
3095  * No locks need be held - only a counted reference to @base is needed.
3096  *
3097  */
3098 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
3099 {
3100 	int err;
3101 
3102 	err = lookup_noperm_common(name, base);
3103 	if (err)
3104 		return ERR_PTR(err);
3105 
3106 	return d_lookup(base, name);
3107 }
3108 EXPORT_SYMBOL(try_lookup_noperm);
3109 
3110 /**
3111  * lookup_noperm - filesystem helper to lookup single pathname component
3112  * @name:	qstr storing pathname component to lookup
3113  * @base:	base directory to lookup from
3114  *
3115  * Note that this routine is purely a helper for filesystem usage and should
3116  * not be called by generic code.  It does no permission checking.
3117  *
3118  * The caller must hold base->i_rwsem.
3119  */
3120 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
3121 {
3122 	struct dentry *dentry;
3123 	int err;
3124 
3125 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3126 
3127 	err = lookup_noperm_common(name, base);
3128 	if (err)
3129 		return ERR_PTR(err);
3130 
3131 	dentry = lookup_dcache(name, base, 0);
3132 	return dentry ? dentry : __lookup_slow(name, base, 0);
3133 }
3134 EXPORT_SYMBOL(lookup_noperm);
3135 
3136 /**
3137  * lookup_one - lookup single pathname component
3138  * @idmap:	idmap of the mount the lookup is performed from
3139  * @name:	qstr holding pathname component to lookup
3140  * @base:	base directory to lookup from
3141  *
3142  * This can be used for in-kernel filesystem clients such as file servers.
3143  *
3144  * The caller must hold base->i_rwsem.
3145  */
3146 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3147 			  struct dentry *base)
3148 {
3149 	struct dentry *dentry;
3150 	int err;
3151 
3152 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3153 
3154 	err = lookup_one_common(idmap, name, base);
3155 	if (err)
3156 		return ERR_PTR(err);
3157 
3158 	dentry = lookup_dcache(name, base, 0);
3159 	return dentry ? dentry : __lookup_slow(name, base, 0);
3160 }
3161 EXPORT_SYMBOL(lookup_one);
3162 
3163 /**
3164  * lookup_one_unlocked - lookup single pathname component
3165  * @idmap:	idmap of the mount the lookup is performed from
3166  * @name:	qstr olding pathname component to lookup
3167  * @base:	base directory to lookup from
3168  *
3169  * This can be used for in-kernel filesystem clients such as file servers.
3170  *
3171  * Unlike lookup_one, it should be called without the parent
3172  * i_rwsem held, and will take the i_rwsem itself if necessary.
3173  */
3174 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3175 				   struct dentry *base)
3176 {
3177 	int err;
3178 	struct dentry *ret;
3179 
3180 	err = lookup_one_common(idmap, name, base);
3181 	if (err)
3182 		return ERR_PTR(err);
3183 
3184 	ret = lookup_dcache(name, base, 0);
3185 	if (!ret)
3186 		ret = lookup_slow(name, base, 0);
3187 	return ret;
3188 }
3189 EXPORT_SYMBOL(lookup_one_unlocked);
3190 
3191 /**
3192  * lookup_one_positive_killable - lookup single pathname component
3193  * @idmap:	idmap of the mount the lookup is performed from
3194  * @name:	qstr olding pathname component to lookup
3195  * @base:	base directory to lookup from
3196  *
3197  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3198  * known positive or ERR_PTR(). This is what most of the users want.
3199  *
3200  * Note that pinned negative with unlocked parent _can_ become positive at any
3201  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3202  * positives have >d_inode stable, so this one avoids such problems.
3203  *
3204  * This can be used for in-kernel filesystem clients such as file servers.
3205  *
3206  * It should be called without the parent i_rwsem held, and will take
3207  * the i_rwsem itself if necessary.  If a fatal signal is pending or
3208  * delivered, it will return %-EINTR if the lock is needed.
3209  */
3210 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3211 					    struct qstr *name,
3212 					    struct dentry *base)
3213 {
3214 	int err;
3215 	struct dentry *ret;
3216 
3217 	err = lookup_one_common(idmap, name, base);
3218 	if (err)
3219 		return ERR_PTR(err);
3220 
3221 	ret = lookup_dcache(name, base, 0);
3222 	if (!ret)
3223 		ret = lookup_slow_killable(name, base, 0);
3224 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3225 		dput(ret);
3226 		ret = ERR_PTR(-ENOENT);
3227 	}
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL(lookup_one_positive_killable);
3231 
3232 /**
3233  * lookup_one_positive_unlocked - lookup single pathname component
3234  * @idmap:	idmap of the mount the lookup is performed from
3235  * @name:	qstr holding pathname component to lookup
3236  * @base:	base directory to lookup from
3237  *
3238  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3239  * known positive or ERR_PTR(). This is what most of the users want.
3240  *
3241  * Note that pinned negative with unlocked parent _can_ become positive at any
3242  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3243  * positives have >d_inode stable, so this one avoids such problems.
3244  *
3245  * This can be used for in-kernel filesystem clients such as file servers.
3246  *
3247  * The helper should be called without i_rwsem held.
3248  */
3249 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3250 					    struct qstr *name,
3251 					    struct dentry *base)
3252 {
3253 	struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3254 
3255 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3256 		dput(ret);
3257 		ret = ERR_PTR(-ENOENT);
3258 	}
3259 	return ret;
3260 }
3261 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3262 
3263 /**
3264  * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3265  * @name:	pathname component to lookup
3266  * @base:	base directory to lookup from
3267  *
3268  * Note that this routine is purely a helper for filesystem usage and should
3269  * not be called by generic code. It does no permission checking.
3270  *
3271  * Unlike lookup_noperm(), it should be called without the parent
3272  * i_rwsem held, and will take the i_rwsem itself if necessary.
3273  *
3274  * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3275  * existed.
3276  */
3277 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3278 {
3279 	struct dentry *ret;
3280 	int err;
3281 
3282 	err = lookup_noperm_common(name, base);
3283 	if (err)
3284 		return ERR_PTR(err);
3285 
3286 	ret = lookup_dcache(name, base, 0);
3287 	if (!ret)
3288 		ret = lookup_slow(name, base, 0);
3289 	return ret;
3290 }
3291 EXPORT_SYMBOL(lookup_noperm_unlocked);
3292 
3293 /*
3294  * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3295  * on negatives.  Returns known positive or ERR_PTR(); that's what
3296  * most of the users want.  Note that pinned negative with unlocked parent
3297  * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3298  * need to be very careful; pinned positives have ->d_inode stable, so
3299  * this one avoids such problems.
3300  */
3301 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3302 					       struct dentry *base)
3303 {
3304 	struct dentry *ret;
3305 
3306 	ret = lookup_noperm_unlocked(name, base);
3307 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3308 		dput(ret);
3309 		ret = ERR_PTR(-ENOENT);
3310 	}
3311 	return ret;
3312 }
3313 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3314 
3315 /**
3316  * start_creating - prepare to create a given name with permission checking
3317  * @idmap:  idmap of the mount
3318  * @parent: directory in which to prepare to create the name
3319  * @name:   the name to be created
3320  *
3321  * Locks are taken and a lookup is performed prior to creating
3322  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3323  * against @idmap.
3324  *
3325  * If the name already exists, a positive dentry is returned, so
3326  * behaviour is similar to O_CREAT without O_EXCL, which doesn't fail
3327  * with -EEXIST.
3328  *
3329  * Returns: a negative or positive dentry, or an error.
3330  */
3331 struct dentry *start_creating(struct mnt_idmap *idmap, struct dentry *parent,
3332 			      struct qstr *name)
3333 {
3334 	int err = lookup_one_common(idmap, name, parent);
3335 
3336 	if (err)
3337 		return ERR_PTR(err);
3338 	return start_dirop(parent, name, LOOKUP_CREATE);
3339 }
3340 EXPORT_SYMBOL(start_creating);
3341 
3342 /**
3343  * start_removing - prepare to remove a given name with permission checking
3344  * @idmap:  idmap of the mount
3345  * @parent: directory in which to find the name
3346  * @name:   the name to be removed
3347  *
3348  * Locks are taken and a lookup in performed prior to removing
3349  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3350  * against @idmap.
3351  *
3352  * If the name doesn't exist, an error is returned.
3353  *
3354  * end_removing() should be called when removal is complete, or aborted.
3355  *
3356  * Returns: a positive dentry, or an error.
3357  */
3358 struct dentry *start_removing(struct mnt_idmap *idmap, struct dentry *parent,
3359 			      struct qstr *name)
3360 {
3361 	int err = lookup_one_common(idmap, name, parent);
3362 
3363 	if (err)
3364 		return ERR_PTR(err);
3365 	return start_dirop(parent, name, 0);
3366 }
3367 EXPORT_SYMBOL(start_removing);
3368 
3369 /**
3370  * start_creating_killable - prepare to create a given name with permission checking
3371  * @idmap:  idmap of the mount
3372  * @parent: directory in which to prepare to create the name
3373  * @name:   the name to be created
3374  *
3375  * Locks are taken and a lookup in performed prior to creating
3376  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3377  * against @idmap.
3378  *
3379  * If the name already exists, a positive dentry is returned.
3380  *
3381  * If a signal is received or was already pending, the function aborts
3382  * with -EINTR;
3383  *
3384  * Returns: a negative or positive dentry, or an error.
3385  */
3386 struct dentry *start_creating_killable(struct mnt_idmap *idmap,
3387 				       struct dentry *parent,
3388 				       struct qstr *name)
3389 {
3390 	int err = lookup_one_common(idmap, name, parent);
3391 
3392 	if (err)
3393 		return ERR_PTR(err);
3394 	return __start_dirop(parent, name, LOOKUP_CREATE, TASK_KILLABLE);
3395 }
3396 EXPORT_SYMBOL(start_creating_killable);
3397 
3398 /**
3399  * start_removing_killable - prepare to remove a given name with permission checking
3400  * @idmap:  idmap of the mount
3401  * @parent: directory in which to find the name
3402  * @name:   the name to be removed
3403  *
3404  * Locks are taken and a lookup in performed prior to removing
3405  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3406  * against @idmap.
3407  *
3408  * If the name doesn't exist, an error is returned.
3409  *
3410  * end_removing() should be called when removal is complete, or aborted.
3411  *
3412  * If a signal is received or was already pending, the function aborts
3413  * with -EINTR;
3414  *
3415  * Returns: a positive dentry, or an error.
3416  */
3417 struct dentry *start_removing_killable(struct mnt_idmap *idmap,
3418 				       struct dentry *parent,
3419 				       struct qstr *name)
3420 {
3421 	int err = lookup_one_common(idmap, name, parent);
3422 
3423 	if (err)
3424 		return ERR_PTR(err);
3425 	return __start_dirop(parent, name, 0, TASK_KILLABLE);
3426 }
3427 EXPORT_SYMBOL(start_removing_killable);
3428 
3429 /**
3430  * start_creating_noperm - prepare to create a given name without permission checking
3431  * @parent: directory in which to prepare to create the name
3432  * @name:   the name to be created
3433  *
3434  * Locks are taken and a lookup in performed prior to creating
3435  * an object in a directory.
3436  *
3437  * If the name already exists, a positive dentry is returned.
3438  *
3439  * Returns: a negative or positive dentry, or an error.
3440  */
3441 struct dentry *start_creating_noperm(struct dentry *parent,
3442 				     struct qstr *name)
3443 {
3444 	int err = lookup_noperm_common(name, parent);
3445 
3446 	if (err)
3447 		return ERR_PTR(err);
3448 	return start_dirop(parent, name, LOOKUP_CREATE);
3449 }
3450 EXPORT_SYMBOL(start_creating_noperm);
3451 
3452 /**
3453  * start_removing_noperm - prepare to remove a given name without permission checking
3454  * @parent: directory in which to find the name
3455  * @name:   the name to be removed
3456  *
3457  * Locks are taken and a lookup in performed prior to removing
3458  * an object from a directory.
3459  *
3460  * If the name doesn't exist, an error is returned.
3461  *
3462  * end_removing() should be called when removal is complete, or aborted.
3463  *
3464  * Returns: a positive dentry, or an error.
3465  */
3466 struct dentry *start_removing_noperm(struct dentry *parent,
3467 				     struct qstr *name)
3468 {
3469 	int err = lookup_noperm_common(name, parent);
3470 
3471 	if (err)
3472 		return ERR_PTR(err);
3473 	return start_dirop(parent, name, 0);
3474 }
3475 EXPORT_SYMBOL(start_removing_noperm);
3476 
3477 /**
3478  * start_creating_dentry - prepare to create a given dentry
3479  * @parent: directory from which dentry should be removed
3480  * @child:  the dentry to be removed
3481  *
3482  * A lock is taken to protect the dentry again other dirops and
3483  * the validity of the dentry is checked: correct parent and still hashed.
3484  *
3485  * If the dentry is valid and negative a reference is taken and
3486  * returned.  If not an error is returned.
3487  *
3488  * end_creating() should be called when creation is complete, or aborted.
3489  *
3490  * Returns: the valid dentry, or an error.
3491  */
3492 struct dentry *start_creating_dentry(struct dentry *parent,
3493 				     struct dentry *child)
3494 {
3495 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3496 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3497 		     child->d_parent != parent ||
3498 		     d_unhashed(child))) {
3499 		inode_unlock(parent->d_inode);
3500 		return ERR_PTR(-EINVAL);
3501 	}
3502 	if (d_is_positive(child)) {
3503 		inode_unlock(parent->d_inode);
3504 		return ERR_PTR(-EEXIST);
3505 	}
3506 	return dget(child);
3507 }
3508 EXPORT_SYMBOL(start_creating_dentry);
3509 
3510 /**
3511  * start_removing_dentry - prepare to remove a given dentry
3512  * @parent: directory from which dentry should be removed
3513  * @child:  the dentry to be removed
3514  *
3515  * A lock is taken to protect the dentry again other dirops and
3516  * the validity of the dentry is checked: correct parent and still hashed.
3517  *
3518  * If the dentry is valid and positive, a reference is taken and
3519  * returned.  If not an error is returned.
3520  *
3521  * end_removing() should be called when removal is complete, or aborted.
3522  *
3523  * Returns: the valid dentry, or an error.
3524  */
3525 struct dentry *start_removing_dentry(struct dentry *parent,
3526 				     struct dentry *child)
3527 {
3528 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3529 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3530 		     child->d_parent != parent ||
3531 		     d_unhashed(child))) {
3532 		inode_unlock(parent->d_inode);
3533 		return ERR_PTR(-EINVAL);
3534 	}
3535 	if (d_is_negative(child)) {
3536 		inode_unlock(parent->d_inode);
3537 		return ERR_PTR(-ENOENT);
3538 	}
3539 	return dget(child);
3540 }
3541 EXPORT_SYMBOL(start_removing_dentry);
3542 
3543 #ifdef CONFIG_UNIX98_PTYS
3544 int path_pts(struct path *path)
3545 {
3546 	/* Find something mounted on "pts" in the same directory as
3547 	 * the input path.
3548 	 */
3549 	struct dentry *parent = dget_parent(path->dentry);
3550 	struct dentry *child;
3551 	struct qstr this = QSTR_INIT("pts", 3);
3552 
3553 	if (unlikely(!path_connected(path->mnt, parent))) {
3554 		dput(parent);
3555 		return -ENOENT;
3556 	}
3557 	dput(path->dentry);
3558 	path->dentry = parent;
3559 	child = d_hash_and_lookup(parent, &this);
3560 	if (IS_ERR_OR_NULL(child))
3561 		return -ENOENT;
3562 
3563 	path->dentry = child;
3564 	dput(parent);
3565 	follow_down(path, 0);
3566 	return 0;
3567 }
3568 #endif
3569 
3570 int user_path_at(int dfd, const char __user *name, unsigned flags,
3571 		 struct path *path)
3572 {
3573 	struct filename *filename = getname_flags(name, flags);
3574 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3575 
3576 	putname(filename);
3577 	return ret;
3578 }
3579 EXPORT_SYMBOL(user_path_at);
3580 
3581 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3582 		   struct inode *inode)
3583 {
3584 	kuid_t fsuid = current_fsuid();
3585 
3586 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3587 		return 0;
3588 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3589 		return 0;
3590 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3591 }
3592 EXPORT_SYMBOL(__check_sticky);
3593 
3594 /*
3595  *	Check whether we can remove a link victim from directory dir, check
3596  *  whether the type of victim is right.
3597  *  1. We can't do it if dir is read-only (done in permission())
3598  *  2. We should have write and exec permissions on dir
3599  *  3. We can't remove anything from append-only dir
3600  *  4. We can't do anything with immutable dir (done in permission())
3601  *  5. If the sticky bit on dir is set we should either
3602  *	a. be owner of dir, or
3603  *	b. be owner of victim, or
3604  *	c. have CAP_FOWNER capability
3605  *  6. If the victim is append-only or immutable we can't do antyhing with
3606  *     links pointing to it.
3607  *  7. If the victim has an unknown uid or gid we can't change the inode.
3608  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3609  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3610  * 10. We can't remove a root or mountpoint.
3611  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3612  *     nfs_async_unlink().
3613  */
3614 int may_delete_dentry(struct mnt_idmap *idmap, struct inode *dir,
3615 		      struct dentry *victim, bool isdir)
3616 {
3617 	struct inode *inode = d_backing_inode(victim);
3618 	int error;
3619 
3620 	if (d_is_negative(victim))
3621 		return -ENOENT;
3622 	BUG_ON(!inode);
3623 
3624 	BUG_ON(victim->d_parent->d_inode != dir);
3625 
3626 	/* Inode writeback is not safe when the uid or gid are invalid. */
3627 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3628 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3629 		return -EOVERFLOW;
3630 
3631 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3632 
3633 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3634 	if (error)
3635 		return error;
3636 	if (IS_APPEND(dir))
3637 		return -EPERM;
3638 
3639 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3640 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3641 	    HAS_UNMAPPED_ID(idmap, inode))
3642 		return -EPERM;
3643 	if (isdir) {
3644 		if (!d_is_dir(victim))
3645 			return -ENOTDIR;
3646 		if (IS_ROOT(victim))
3647 			return -EBUSY;
3648 	} else if (d_is_dir(victim))
3649 		return -EISDIR;
3650 	if (IS_DEADDIR(dir))
3651 		return -ENOENT;
3652 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3653 		return -EBUSY;
3654 	return 0;
3655 }
3656 EXPORT_SYMBOL(may_delete_dentry);
3657 
3658 /*	Check whether we can create an object with dentry child in directory
3659  *  dir.
3660  *  1. We can't do it if child already exists (open has special treatment for
3661  *     this case, but since we are inlined it's OK)
3662  *  2. We can't do it if dir is read-only (done in permission())
3663  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3664  *  4. We should have write and exec permissions on dir
3665  *  5. We can't do it if dir is immutable (done in permission())
3666  */
3667 int may_create_dentry(struct mnt_idmap *idmap,
3668 		      struct inode *dir, struct dentry *child)
3669 {
3670 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3671 	if (child->d_inode)
3672 		return -EEXIST;
3673 	if (IS_DEADDIR(dir))
3674 		return -ENOENT;
3675 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3676 		return -EOVERFLOW;
3677 
3678 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3679 }
3680 EXPORT_SYMBOL(may_create_dentry);
3681 
3682 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3683 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3684 {
3685 	struct dentry *p = p1, *q = p2, *r;
3686 
3687 	while ((r = p->d_parent) != p2 && r != p)
3688 		p = r;
3689 	if (r == p2) {
3690 		// p is a child of p2 and an ancestor of p1 or p1 itself
3691 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3692 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3693 		return p;
3694 	}
3695 	// p is the root of connected component that contains p1
3696 	// p2 does not occur on the path from p to p1
3697 	while ((r = q->d_parent) != p1 && r != p && r != q)
3698 		q = r;
3699 	if (r == p1) {
3700 		// q is a child of p1 and an ancestor of p2 or p2 itself
3701 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3702 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3703 		return q;
3704 	} else if (likely(r == p)) {
3705 		// both p2 and p1 are descendents of p
3706 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3707 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3708 		return NULL;
3709 	} else { // no common ancestor at the time we'd been called
3710 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3711 		return ERR_PTR(-EXDEV);
3712 	}
3713 }
3714 
3715 /*
3716  * p1 and p2 should be directories on the same fs.
3717  */
3718 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3719 {
3720 	if (p1 == p2) {
3721 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3722 		return NULL;
3723 	}
3724 
3725 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3726 	return lock_two_directories(p1, p2);
3727 }
3728 EXPORT_SYMBOL(lock_rename);
3729 
3730 /*
3731  * c1 and p2 should be on the same fs.
3732  */
3733 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3734 {
3735 	if (READ_ONCE(c1->d_parent) == p2) {
3736 		/*
3737 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3738 		 */
3739 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3740 		/*
3741 		 * now that p2 is locked, nobody can move in or out of it,
3742 		 * so the test below is safe.
3743 		 */
3744 		if (likely(c1->d_parent == p2))
3745 			return NULL;
3746 
3747 		/*
3748 		 * c1 got moved out of p2 while we'd been taking locks;
3749 		 * unlock and fall back to slow case.
3750 		 */
3751 		inode_unlock(p2->d_inode);
3752 	}
3753 
3754 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3755 	/*
3756 	 * nobody can move out of any directories on this fs.
3757 	 */
3758 	if (likely(c1->d_parent != p2))
3759 		return lock_two_directories(c1->d_parent, p2);
3760 
3761 	/*
3762 	 * c1 got moved into p2 while we were taking locks;
3763 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3764 	 * for consistency with lock_rename().
3765 	 */
3766 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3767 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3768 	return NULL;
3769 }
3770 EXPORT_SYMBOL(lock_rename_child);
3771 
3772 void unlock_rename(struct dentry *p1, struct dentry *p2)
3773 {
3774 	inode_unlock(p1->d_inode);
3775 	if (p1 != p2) {
3776 		inode_unlock(p2->d_inode);
3777 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3778 	}
3779 }
3780 EXPORT_SYMBOL(unlock_rename);
3781 
3782 /**
3783  * __start_renaming - lookup and lock names for rename
3784  * @rd:           rename data containing parents and flags, and
3785  *                for receiving found dentries
3786  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3787  *                LOOKUP_NO_SYMLINKS etc).
3788  * @old_last:     name of object in @rd.old_parent
3789  * @new_last:     name of object in @rd.new_parent
3790  *
3791  * Look up two names and ensure locks are in place for
3792  * rename.
3793  *
3794  * On success the found dentries are stored in @rd.old_dentry,
3795  * @rd.new_dentry and an extra ref is taken on @rd.old_parent.
3796  * These references and the lock are dropped by end_renaming().
3797  *
3798  * The passed in qstrs must have the hash calculated, and no permission
3799  * checking is performed.
3800  *
3801  * Returns: zero or an error.
3802  */
3803 static int
3804 __start_renaming(struct renamedata *rd, int lookup_flags,
3805 		 struct qstr *old_last, struct qstr *new_last)
3806 {
3807 	struct dentry *trap;
3808 	struct dentry *d1, *d2;
3809 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3810 	int err;
3811 
3812 	if (rd->flags & RENAME_EXCHANGE)
3813 		target_flags = 0;
3814 	if (rd->flags & RENAME_NOREPLACE)
3815 		target_flags |= LOOKUP_EXCL;
3816 
3817 	trap = lock_rename(rd->old_parent, rd->new_parent);
3818 	if (IS_ERR(trap))
3819 		return PTR_ERR(trap);
3820 
3821 	d1 = lookup_one_qstr_excl(old_last, rd->old_parent,
3822 				  lookup_flags);
3823 	err = PTR_ERR(d1);
3824 	if (IS_ERR(d1))
3825 		goto out_unlock;
3826 
3827 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3828 				  lookup_flags | target_flags);
3829 	err = PTR_ERR(d2);
3830 	if (IS_ERR(d2))
3831 		goto out_dput_d1;
3832 
3833 	if (d1 == trap) {
3834 		/* source is an ancestor of target */
3835 		err = -EINVAL;
3836 		goto out_dput_d2;
3837 	}
3838 
3839 	if (d2 == trap) {
3840 		/* target is an ancestor of source */
3841 		if (rd->flags & RENAME_EXCHANGE)
3842 			err = -EINVAL;
3843 		else
3844 			err = -ENOTEMPTY;
3845 		goto out_dput_d2;
3846 	}
3847 
3848 	rd->old_dentry = d1;
3849 	rd->new_dentry = d2;
3850 	dget(rd->old_parent);
3851 	return 0;
3852 
3853 out_dput_d2:
3854 	dput(d2);
3855 out_dput_d1:
3856 	dput(d1);
3857 out_unlock:
3858 	unlock_rename(rd->old_parent, rd->new_parent);
3859 	return err;
3860 }
3861 
3862 /**
3863  * start_renaming - lookup and lock names for rename with permission checking
3864  * @rd:           rename data containing parents and flags, and
3865  *                for receiving found dentries
3866  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3867  *                LOOKUP_NO_SYMLINKS etc).
3868  * @old_last:     name of object in @rd.old_parent
3869  * @new_last:     name of object in @rd.new_parent
3870  *
3871  * Look up two names and ensure locks are in place for
3872  * rename.
3873  *
3874  * On success the found dentries are stored in @rd.old_dentry,
3875  * @rd.new_dentry.  Also the refcount on @rd->old_parent is increased.
3876  * These references and the lock are dropped by end_renaming().
3877  *
3878  * The passed in qstrs need not have the hash calculated, and basic
3879  * eXecute permission checking is performed against @rd.mnt_idmap.
3880  *
3881  * Returns: zero or an error.
3882  */
3883 int start_renaming(struct renamedata *rd, int lookup_flags,
3884 		   struct qstr *old_last, struct qstr *new_last)
3885 {
3886 	int err;
3887 
3888 	err = lookup_one_common(rd->mnt_idmap, old_last, rd->old_parent);
3889 	if (err)
3890 		return err;
3891 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3892 	if (err)
3893 		return err;
3894 	return __start_renaming(rd, lookup_flags, old_last, new_last);
3895 }
3896 EXPORT_SYMBOL(start_renaming);
3897 
3898 static int
3899 __start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3900 			struct dentry *old_dentry, struct qstr *new_last)
3901 {
3902 	struct dentry *trap;
3903 	struct dentry *d2;
3904 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3905 	int err;
3906 
3907 	if (rd->flags & RENAME_EXCHANGE)
3908 		target_flags = 0;
3909 	if (rd->flags & RENAME_NOREPLACE)
3910 		target_flags |= LOOKUP_EXCL;
3911 
3912 	/* Already have the dentry - need to be sure to lock the correct parent */
3913 	trap = lock_rename_child(old_dentry, rd->new_parent);
3914 	if (IS_ERR(trap))
3915 		return PTR_ERR(trap);
3916 	if (d_unhashed(old_dentry) ||
3917 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent)) {
3918 		/* dentry was removed, or moved and explicit parent requested */
3919 		err = -EINVAL;
3920 		goto out_unlock;
3921 	}
3922 
3923 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3924 				  lookup_flags | target_flags);
3925 	err = PTR_ERR(d2);
3926 	if (IS_ERR(d2))
3927 		goto out_unlock;
3928 
3929 	if (old_dentry == trap) {
3930 		/* source is an ancestor of target */
3931 		err = -EINVAL;
3932 		goto out_dput_d2;
3933 	}
3934 
3935 	if (d2 == trap) {
3936 		/* target is an ancestor of source */
3937 		if (rd->flags & RENAME_EXCHANGE)
3938 			err = -EINVAL;
3939 		else
3940 			err = -ENOTEMPTY;
3941 		goto out_dput_d2;
3942 	}
3943 
3944 	rd->old_dentry = dget(old_dentry);
3945 	rd->new_dentry = d2;
3946 	rd->old_parent = dget(old_dentry->d_parent);
3947 	return 0;
3948 
3949 out_dput_d2:
3950 	dput(d2);
3951 out_unlock:
3952 	unlock_rename(old_dentry->d_parent, rd->new_parent);
3953 	return err;
3954 }
3955 
3956 /**
3957  * start_renaming_dentry - lookup and lock name for rename with permission checking
3958  * @rd:           rename data containing parents and flags, and
3959  *                for receiving found dentries
3960  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3961  *                LOOKUP_NO_SYMLINKS etc).
3962  * @old_dentry:   dentry of name to move
3963  * @new_last:     name of target in @rd.new_parent
3964  *
3965  * Look up target name and ensure locks are in place for
3966  * rename.
3967  *
3968  * On success the found dentry is stored in @rd.new_dentry and
3969  * @rd.old_parent is confirmed to be the parent of @old_dentry.  If it
3970  * was originally %NULL, it is set.  In either case a reference is taken
3971  * so that end_renaming() can have a stable reference to unlock.
3972  *
3973  * References and the lock can be dropped with end_renaming()
3974  *
3975  * The passed in qstr need not have the hash calculated, and basic
3976  * eXecute permission checking is performed against @rd.mnt_idmap.
3977  *
3978  * Returns: zero or an error.
3979  */
3980 int start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3981 			  struct dentry *old_dentry, struct qstr *new_last)
3982 {
3983 	int err;
3984 
3985 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3986 	if (err)
3987 		return err;
3988 	return __start_renaming_dentry(rd, lookup_flags, old_dentry, new_last);
3989 }
3990 EXPORT_SYMBOL(start_renaming_dentry);
3991 
3992 /**
3993  * start_renaming_two_dentries - Lock to dentries in given parents for rename
3994  * @rd:           rename data containing parent
3995  * @old_dentry:   dentry of name to move
3996  * @new_dentry:   dentry to move to
3997  *
3998  * Ensure locks are in place for rename and check parentage is still correct.
3999  *
4000  * On success the two dentries are stored in @rd.old_dentry and
4001  * @rd.new_dentry and @rd.old_parent and @rd.new_parent are confirmed to
4002  * be the parents of the dentries.
4003  *
4004  * References and the lock can be dropped with end_renaming()
4005  *
4006  * Returns: zero or an error.
4007  */
4008 int
4009 start_renaming_two_dentries(struct renamedata *rd,
4010 			    struct dentry *old_dentry, struct dentry *new_dentry)
4011 {
4012 	struct dentry *trap;
4013 	int err;
4014 
4015 	/* Already have the dentry - need to be sure to lock the correct parent */
4016 	trap = lock_rename_child(old_dentry, rd->new_parent);
4017 	if (IS_ERR(trap))
4018 		return PTR_ERR(trap);
4019 	err = -EINVAL;
4020 	if (d_unhashed(old_dentry) ||
4021 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent))
4022 		/* old_dentry was removed, or moved and explicit parent requested */
4023 		goto out_unlock;
4024 	if (d_unhashed(new_dentry) ||
4025 	    rd->new_parent != new_dentry->d_parent)
4026 		/* new_dentry was removed or moved */
4027 		goto out_unlock;
4028 
4029 	if (old_dentry == trap)
4030 		/* source is an ancestor of target */
4031 		goto out_unlock;
4032 
4033 	if (new_dentry == trap) {
4034 		/* target is an ancestor of source */
4035 		if (rd->flags & RENAME_EXCHANGE)
4036 			err = -EINVAL;
4037 		else
4038 			err = -ENOTEMPTY;
4039 		goto out_unlock;
4040 	}
4041 
4042 	err = -EEXIST;
4043 	if (d_is_positive(new_dentry) && (rd->flags & RENAME_NOREPLACE))
4044 		goto out_unlock;
4045 
4046 	rd->old_dentry = dget(old_dentry);
4047 	rd->new_dentry = dget(new_dentry);
4048 	rd->old_parent = dget(old_dentry->d_parent);
4049 	return 0;
4050 
4051 out_unlock:
4052 	unlock_rename(old_dentry->d_parent, rd->new_parent);
4053 	return err;
4054 }
4055 EXPORT_SYMBOL(start_renaming_two_dentries);
4056 
4057 void end_renaming(struct renamedata *rd)
4058 {
4059 	unlock_rename(rd->old_parent, rd->new_parent);
4060 	dput(rd->old_dentry);
4061 	dput(rd->new_dentry);
4062 	dput(rd->old_parent);
4063 }
4064 EXPORT_SYMBOL(end_renaming);
4065 
4066 /**
4067  * vfs_prepare_mode - prepare the mode to be used for a new inode
4068  * @idmap:	idmap of the mount the inode was found from
4069  * @dir:	parent directory of the new inode
4070  * @mode:	mode of the new inode
4071  * @mask_perms:	allowed permission by the vfs
4072  * @type:	type of file to be created
4073  *
4074  * This helper consolidates and enforces vfs restrictions on the @mode of a new
4075  * object to be created.
4076  *
4077  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
4078  * the kernel documentation for mode_strip_umask()). Moving umask stripping
4079  * after setgid stripping allows the same ordering for both non-POSIX ACL and
4080  * POSIX ACL supporting filesystems.
4081  *
4082  * Note that it's currently valid for @type to be 0 if a directory is created.
4083  * Filesystems raise that flag individually and we need to check whether each
4084  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
4085  * non-zero type.
4086  *
4087  * Returns: mode to be passed to the filesystem
4088  */
4089 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
4090 				       const struct inode *dir, umode_t mode,
4091 				       umode_t mask_perms, umode_t type)
4092 {
4093 	mode = mode_strip_sgid(idmap, dir, mode);
4094 	mode = mode_strip_umask(dir, mode);
4095 
4096 	/*
4097 	 * Apply the vfs mandated allowed permission mask and set the type of
4098 	 * file to be created before we call into the filesystem.
4099 	 */
4100 	mode &= (mask_perms & ~S_IFMT);
4101 	mode |= (type & S_IFMT);
4102 
4103 	return mode;
4104 }
4105 
4106 /**
4107  * vfs_create - create new file
4108  * @idmap:	idmap of the mount the inode was found from
4109  * @dentry:	dentry of the child file
4110  * @mode:	mode of the child file
4111  * @di:		returns parent inode, if the inode is delegated.
4112  *
4113  * Create a new file.
4114  *
4115  * If the inode has been found through an idmapped mount the idmap of
4116  * the vfsmount must be passed through @idmap. This function will then take
4117  * care to map the inode according to @idmap before checking permissions.
4118  * On non-idmapped mounts or if permission checking is to be performed on the
4119  * raw inode simply pass @nop_mnt_idmap.
4120  */
4121 int vfs_create(struct mnt_idmap *idmap, struct dentry *dentry, umode_t mode,
4122 	       struct delegated_inode *di)
4123 {
4124 	struct inode *dir = d_inode(dentry->d_parent);
4125 	int error;
4126 
4127 	error = may_create_dentry(idmap, dir, dentry);
4128 	if (error)
4129 		return error;
4130 
4131 	if (!dir->i_op->create)
4132 		return -EACCES;	/* shouldn't it be ENOSYS? */
4133 
4134 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
4135 	error = security_inode_create(dir, dentry, mode);
4136 	if (error)
4137 		return error;
4138 	error = try_break_deleg(dir, di);
4139 	if (error)
4140 		return error;
4141 	error = dir->i_op->create(idmap, dir, dentry, mode, true);
4142 	if (!error)
4143 		fsnotify_create(dir, dentry);
4144 	return error;
4145 }
4146 EXPORT_SYMBOL(vfs_create);
4147 
4148 int vfs_mkobj(struct dentry *dentry, umode_t mode,
4149 		int (*f)(struct dentry *, umode_t, void *),
4150 		void *arg)
4151 {
4152 	struct inode *dir = dentry->d_parent->d_inode;
4153 	int error = may_create_dentry(&nop_mnt_idmap, dir, dentry);
4154 	if (error)
4155 		return error;
4156 
4157 	mode &= S_IALLUGO;
4158 	mode |= S_IFREG;
4159 	error = security_inode_create(dir, dentry, mode);
4160 	if (error)
4161 		return error;
4162 	error = f(dentry, mode, arg);
4163 	if (!error)
4164 		fsnotify_create(dir, dentry);
4165 	return error;
4166 }
4167 EXPORT_SYMBOL(vfs_mkobj);
4168 
4169 bool may_open_dev(const struct path *path)
4170 {
4171 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
4172 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
4173 }
4174 
4175 static int may_open(struct mnt_idmap *idmap, const struct path *path,
4176 		    int acc_mode, int flag)
4177 {
4178 	struct dentry *dentry = path->dentry;
4179 	struct inode *inode = dentry->d_inode;
4180 	int error;
4181 
4182 	if (!inode)
4183 		return -ENOENT;
4184 
4185 	switch (inode->i_mode & S_IFMT) {
4186 	case S_IFLNK:
4187 		return -ELOOP;
4188 	case S_IFDIR:
4189 		if (acc_mode & MAY_WRITE)
4190 			return -EISDIR;
4191 		if (acc_mode & MAY_EXEC)
4192 			return -EACCES;
4193 		break;
4194 	case S_IFBLK:
4195 	case S_IFCHR:
4196 		if (!may_open_dev(path))
4197 			return -EACCES;
4198 		fallthrough;
4199 	case S_IFIFO:
4200 	case S_IFSOCK:
4201 		if (acc_mode & MAY_EXEC)
4202 			return -EACCES;
4203 		flag &= ~O_TRUNC;
4204 		break;
4205 	case S_IFREG:
4206 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
4207 			return -EACCES;
4208 		break;
4209 	default:
4210 		VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
4211 	}
4212 
4213 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
4214 	if (error)
4215 		return error;
4216 
4217 	/*
4218 	 * An append-only file must be opened in append mode for writing.
4219 	 */
4220 	if (IS_APPEND(inode)) {
4221 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
4222 			return -EPERM;
4223 		if (flag & O_TRUNC)
4224 			return -EPERM;
4225 	}
4226 
4227 	/* O_NOATIME can only be set by the owner or superuser */
4228 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
4229 		return -EPERM;
4230 
4231 	return 0;
4232 }
4233 
4234 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
4235 {
4236 	const struct path *path = &filp->f_path;
4237 	struct inode *inode = path->dentry->d_inode;
4238 	int error = get_write_access(inode);
4239 	if (error)
4240 		return error;
4241 
4242 	error = security_file_truncate(filp);
4243 	if (!error) {
4244 		error = do_truncate(idmap, path->dentry, 0,
4245 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
4246 				    filp);
4247 	}
4248 	put_write_access(inode);
4249 	return error;
4250 }
4251 
4252 static inline int open_to_namei_flags(int flag)
4253 {
4254 	if ((flag & O_ACCMODE) == 3)
4255 		flag--;
4256 	return flag;
4257 }
4258 
4259 static int may_o_create(struct mnt_idmap *idmap,
4260 			const struct path *dir, struct dentry *dentry,
4261 			umode_t mode)
4262 {
4263 	int error = security_path_mknod(dir, dentry, mode, 0);
4264 	if (error)
4265 		return error;
4266 
4267 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
4268 		return -EOVERFLOW;
4269 
4270 	error = inode_permission(idmap, dir->dentry->d_inode,
4271 				 MAY_WRITE | MAY_EXEC);
4272 	if (error)
4273 		return error;
4274 
4275 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
4276 }
4277 
4278 /*
4279  * Attempt to atomically look up, create and open a file from a negative
4280  * dentry.
4281  *
4282  * Returns 0 if successful.  The file will have been created and attached to
4283  * @file by the filesystem calling finish_open().
4284  *
4285  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
4286  * be set.  The caller will need to perform the open themselves.  @path will
4287  * have been updated to point to the new dentry.  This may be negative.
4288  *
4289  * Returns an error code otherwise.
4290  */
4291 static struct dentry *atomic_open(const struct path *path, struct dentry *dentry,
4292 				  struct file *file,
4293 				  int open_flag, umode_t mode)
4294 {
4295 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
4296 	struct inode *dir =  path->dentry->d_inode;
4297 	int error;
4298 
4299 	file->__f_path.dentry = DENTRY_NOT_SET;
4300 	file->__f_path.mnt = path->mnt;
4301 	error = dir->i_op->atomic_open(dir, dentry, file,
4302 				       open_to_namei_flags(open_flag), mode);
4303 	d_lookup_done(dentry);
4304 	if (!error) {
4305 		if (file->f_mode & FMODE_OPENED) {
4306 			if (unlikely(dentry != file->f_path.dentry)) {
4307 				dput(dentry);
4308 				dentry = dget(file->f_path.dentry);
4309 			}
4310 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
4311 			error = -EIO;
4312 		} else {
4313 			if (file->f_path.dentry) {
4314 				dput(dentry);
4315 				dentry = file->f_path.dentry;
4316 			}
4317 			if (unlikely(d_is_negative(dentry)))
4318 				error = -ENOENT;
4319 		}
4320 	}
4321 	if (error) {
4322 		dput(dentry);
4323 		dentry = ERR_PTR(error);
4324 	}
4325 	return dentry;
4326 }
4327 
4328 /*
4329  * Look up and maybe create and open the last component.
4330  *
4331  * Must be called with parent locked (exclusive in O_CREAT case).
4332  *
4333  * Returns 0 on success, that is, if
4334  *  the file was successfully atomically created (if necessary) and opened, or
4335  *  the file was not completely opened at this time, though lookups and
4336  *  creations were performed.
4337  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
4338  * In the latter case dentry returned in @path might be negative if O_CREAT
4339  * hadn't been specified.
4340  *
4341  * An error code is returned on failure.
4342  */
4343 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
4344 				  const struct open_flags *op,
4345 				  bool got_write, struct delegated_inode *delegated_inode)
4346 {
4347 	struct mnt_idmap *idmap;
4348 	struct dentry *dir = nd->path.dentry;
4349 	struct inode *dir_inode = dir->d_inode;
4350 	int open_flag = op->open_flag;
4351 	struct dentry *dentry;
4352 	int error, create_error = 0;
4353 	umode_t mode = op->mode;
4354 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
4355 
4356 	if (unlikely(IS_DEADDIR(dir_inode)))
4357 		return ERR_PTR(-ENOENT);
4358 
4359 	file->f_mode &= ~FMODE_CREATED;
4360 	dentry = d_lookup(dir, &nd->last);
4361 	for (;;) {
4362 		if (!dentry) {
4363 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
4364 			if (IS_ERR(dentry))
4365 				return dentry;
4366 		}
4367 		if (d_in_lookup(dentry))
4368 			break;
4369 
4370 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
4371 		if (likely(error > 0))
4372 			break;
4373 		if (error)
4374 			goto out_dput;
4375 		d_invalidate(dentry);
4376 		dput(dentry);
4377 		dentry = NULL;
4378 	}
4379 	if (dentry->d_inode) {
4380 		/* Cached positive dentry: will open in f_op->open */
4381 		return dentry;
4382 	}
4383 
4384 	if (open_flag & O_CREAT)
4385 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
4386 
4387 	/*
4388 	 * Checking write permission is tricky, bacuse we don't know if we are
4389 	 * going to actually need it: O_CREAT opens should work as long as the
4390 	 * file exists.  But checking existence breaks atomicity.  The trick is
4391 	 * to check access and if not granted clear O_CREAT from the flags.
4392 	 *
4393 	 * Another problem is returing the "right" error value (e.g. for an
4394 	 * O_EXCL open we want to return EEXIST not EROFS).
4395 	 */
4396 	if (unlikely(!got_write))
4397 		open_flag &= ~O_TRUNC;
4398 	idmap = mnt_idmap(nd->path.mnt);
4399 	if (open_flag & O_CREAT) {
4400 		if (open_flag & O_EXCL)
4401 			open_flag &= ~O_TRUNC;
4402 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
4403 		if (likely(got_write))
4404 			create_error = may_o_create(idmap, &nd->path,
4405 						    dentry, mode);
4406 		else
4407 			create_error = -EROFS;
4408 	}
4409 	if (create_error)
4410 		open_flag &= ~O_CREAT;
4411 	if (dir_inode->i_op->atomic_open) {
4412 		if (nd->flags & LOOKUP_DIRECTORY)
4413 			open_flag |= O_DIRECTORY;
4414 		dentry = atomic_open(&nd->path, dentry, file, open_flag, mode);
4415 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
4416 			dentry = ERR_PTR(create_error);
4417 		return dentry;
4418 	}
4419 
4420 	if (d_in_lookup(dentry)) {
4421 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
4422 							     nd->flags);
4423 		d_lookup_done(dentry);
4424 		if (unlikely(res)) {
4425 			if (IS_ERR(res)) {
4426 				error = PTR_ERR(res);
4427 				goto out_dput;
4428 			}
4429 			dput(dentry);
4430 			dentry = res;
4431 		}
4432 	}
4433 
4434 	/* Negative dentry, just create the file */
4435 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
4436 		/* but break the directory lease first! */
4437 		error = try_break_deleg(dir_inode, delegated_inode);
4438 		if (error)
4439 			goto out_dput;
4440 
4441 		file->f_mode |= FMODE_CREATED;
4442 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
4443 		if (!dir_inode->i_op->create) {
4444 			error = -EACCES;
4445 			goto out_dput;
4446 		}
4447 
4448 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
4449 						mode, open_flag & O_EXCL);
4450 		if (error)
4451 			goto out_dput;
4452 	}
4453 	if (unlikely(create_error) && !dentry->d_inode) {
4454 		error = create_error;
4455 		goto out_dput;
4456 	}
4457 	return dentry;
4458 
4459 out_dput:
4460 	dput(dentry);
4461 	return ERR_PTR(error);
4462 }
4463 
4464 static inline bool trailing_slashes(struct nameidata *nd)
4465 {
4466 	return (bool)nd->last.name[nd->last.len];
4467 }
4468 
4469 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
4470 {
4471 	struct dentry *dentry;
4472 
4473 	if (open_flag & O_CREAT) {
4474 		if (trailing_slashes(nd))
4475 			return ERR_PTR(-EISDIR);
4476 
4477 		/* Don't bother on an O_EXCL create */
4478 		if (open_flag & O_EXCL)
4479 			return NULL;
4480 	}
4481 
4482 	if (trailing_slashes(nd))
4483 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
4484 
4485 	dentry = lookup_fast(nd);
4486 	if (IS_ERR_OR_NULL(dentry))
4487 		return dentry;
4488 
4489 	if (open_flag & O_CREAT) {
4490 		/* Discard negative dentries. Need inode_lock to do the create */
4491 		if (!dentry->d_inode) {
4492 			if (!(nd->flags & LOOKUP_RCU))
4493 				dput(dentry);
4494 			dentry = NULL;
4495 		}
4496 	}
4497 	return dentry;
4498 }
4499 
4500 static const char *open_last_lookups(struct nameidata *nd,
4501 		   struct file *file, const struct open_flags *op)
4502 {
4503 	struct delegated_inode delegated_inode = { };
4504 	struct dentry *dir = nd->path.dentry;
4505 	int open_flag = op->open_flag;
4506 	bool got_write = false;
4507 	struct dentry *dentry;
4508 	const char *res;
4509 
4510 	nd->flags |= op->intent;
4511 
4512 	if (nd->last_type != LAST_NORM) {
4513 		if (nd->depth)
4514 			put_link(nd);
4515 		return handle_dots(nd, nd->last_type);
4516 	}
4517 
4518 	/* We _can_ be in RCU mode here */
4519 	dentry = lookup_fast_for_open(nd, open_flag);
4520 	if (IS_ERR(dentry))
4521 		return ERR_CAST(dentry);
4522 
4523 	if (likely(dentry))
4524 		goto finish_lookup;
4525 
4526 	if (!(open_flag & O_CREAT)) {
4527 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
4528 			return ERR_PTR(-ECHILD);
4529 	} else {
4530 		if (nd->flags & LOOKUP_RCU) {
4531 			if (!try_to_unlazy(nd))
4532 				return ERR_PTR(-ECHILD);
4533 		}
4534 	}
4535 retry:
4536 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
4537 		got_write = !mnt_want_write(nd->path.mnt);
4538 		/*
4539 		 * do _not_ fail yet - we might not need that or fail with
4540 		 * a different error; let lookup_open() decide; we'll be
4541 		 * dropping this one anyway.
4542 		 */
4543 	}
4544 	if (open_flag & O_CREAT)
4545 		inode_lock(dir->d_inode);
4546 	else
4547 		inode_lock_shared(dir->d_inode);
4548 	dentry = lookup_open(nd, file, op, got_write, &delegated_inode);
4549 	if (!IS_ERR(dentry)) {
4550 		if (file->f_mode & FMODE_CREATED)
4551 			fsnotify_create(dir->d_inode, dentry);
4552 		if (file->f_mode & FMODE_OPENED)
4553 			fsnotify_open(file);
4554 	}
4555 	if (open_flag & O_CREAT)
4556 		inode_unlock(dir->d_inode);
4557 	else
4558 		inode_unlock_shared(dir->d_inode);
4559 
4560 	if (got_write)
4561 		mnt_drop_write(nd->path.mnt);
4562 
4563 	if (IS_ERR(dentry)) {
4564 		if (is_delegated(&delegated_inode)) {
4565 			int error = break_deleg_wait(&delegated_inode);
4566 
4567 			if (!error)
4568 				goto retry;
4569 			return ERR_PTR(error);
4570 		}
4571 		return ERR_CAST(dentry);
4572 	}
4573 
4574 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
4575 		dput(nd->path.dentry);
4576 		nd->path.dentry = dentry;
4577 		return NULL;
4578 	}
4579 
4580 finish_lookup:
4581 	if (nd->depth)
4582 		put_link(nd);
4583 	res = step_into(nd, WALK_TRAILING, dentry);
4584 	if (unlikely(res))
4585 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
4586 	return res;
4587 }
4588 
4589 /*
4590  * Handle the last step of open()
4591  */
4592 static int do_open(struct nameidata *nd,
4593 		   struct file *file, const struct open_flags *op)
4594 {
4595 	struct mnt_idmap *idmap;
4596 	int open_flag = op->open_flag;
4597 	bool do_truncate;
4598 	int acc_mode;
4599 	int error;
4600 
4601 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
4602 		error = complete_walk(nd);
4603 		if (error)
4604 			return error;
4605 	}
4606 	if (!(file->f_mode & FMODE_CREATED))
4607 		audit_inode(nd->name, nd->path.dentry, 0);
4608 	idmap = mnt_idmap(nd->path.mnt);
4609 	if (open_flag & O_CREAT) {
4610 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
4611 			return -EEXIST;
4612 		if (d_is_dir(nd->path.dentry))
4613 			return -EISDIR;
4614 		error = may_create_in_sticky(idmap, nd,
4615 					     d_backing_inode(nd->path.dentry));
4616 		if (unlikely(error))
4617 			return error;
4618 	}
4619 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
4620 		return -ENOTDIR;
4621 
4622 	do_truncate = false;
4623 	acc_mode = op->acc_mode;
4624 	if (file->f_mode & FMODE_CREATED) {
4625 		/* Don't check for write permission, don't truncate */
4626 		open_flag &= ~O_TRUNC;
4627 		acc_mode = 0;
4628 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
4629 		error = mnt_want_write(nd->path.mnt);
4630 		if (error)
4631 			return error;
4632 		do_truncate = true;
4633 	}
4634 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
4635 	if (!error && !(file->f_mode & FMODE_OPENED))
4636 		error = vfs_open(&nd->path, file);
4637 	if (!error)
4638 		error = security_file_post_open(file, op->acc_mode);
4639 	if (!error && do_truncate)
4640 		error = handle_truncate(idmap, file);
4641 	if (unlikely(error > 0)) {
4642 		WARN_ON(1);
4643 		error = -EINVAL;
4644 	}
4645 	if (do_truncate)
4646 		mnt_drop_write(nd->path.mnt);
4647 	return error;
4648 }
4649 
4650 /**
4651  * vfs_tmpfile - create tmpfile
4652  * @idmap:	idmap of the mount the inode was found from
4653  * @parentpath:	pointer to the path of the base directory
4654  * @file:	file descriptor of the new tmpfile
4655  * @mode:	mode of the new tmpfile
4656  *
4657  * Create a temporary file.
4658  *
4659  * If the inode has been found through an idmapped mount the idmap of
4660  * the vfsmount must be passed through @idmap. This function will then take
4661  * care to map the inode according to @idmap before checking permissions.
4662  * On non-idmapped mounts or if permission checking is to be performed on the
4663  * raw inode simply pass @nop_mnt_idmap.
4664  */
4665 int vfs_tmpfile(struct mnt_idmap *idmap,
4666 		const struct path *parentpath,
4667 		struct file *file, umode_t mode)
4668 {
4669 	struct dentry *child;
4670 	struct inode *dir = d_inode(parentpath->dentry);
4671 	struct inode *inode;
4672 	int error;
4673 	int open_flag = file->f_flags;
4674 
4675 	/* we want directory to be writable */
4676 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4677 	if (error)
4678 		return error;
4679 	if (!dir->i_op->tmpfile)
4680 		return -EOPNOTSUPP;
4681 	child = d_alloc(parentpath->dentry, &slash_name);
4682 	if (unlikely(!child))
4683 		return -ENOMEM;
4684 	file->__f_path.mnt = parentpath->mnt;
4685 	file->__f_path.dentry = child;
4686 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4687 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
4688 	dput(child);
4689 	if (file->f_mode & FMODE_OPENED)
4690 		fsnotify_open(file);
4691 	if (error)
4692 		return error;
4693 	/* Don't check for other permissions, the inode was just created */
4694 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
4695 	if (error)
4696 		return error;
4697 	inode = file_inode(file);
4698 	if (!(open_flag & O_EXCL)) {
4699 		spin_lock(&inode->i_lock);
4700 		inode_state_set(inode, I_LINKABLE);
4701 		spin_unlock(&inode->i_lock);
4702 	}
4703 	security_inode_post_create_tmpfile(idmap, inode);
4704 	return 0;
4705 }
4706 
4707 /**
4708  * kernel_tmpfile_open - open a tmpfile for kernel internal use
4709  * @idmap:	idmap of the mount the inode was found from
4710  * @parentpath:	path of the base directory
4711  * @mode:	mode of the new tmpfile
4712  * @open_flag:	flags
4713  * @cred:	credentials for open
4714  *
4715  * Create and open a temporary file.  The file is not accounted in nr_files,
4716  * hence this is only for kernel internal use, and must not be installed into
4717  * file tables or such.
4718  */
4719 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4720 				 const struct path *parentpath,
4721 				 umode_t mode, int open_flag,
4722 				 const struct cred *cred)
4723 {
4724 	struct file *file;
4725 	int error;
4726 
4727 	file = alloc_empty_file_noaccount(open_flag, cred);
4728 	if (IS_ERR(file))
4729 		return file;
4730 
4731 	error = vfs_tmpfile(idmap, parentpath, file, mode);
4732 	if (error) {
4733 		fput(file);
4734 		file = ERR_PTR(error);
4735 	}
4736 	return file;
4737 }
4738 EXPORT_SYMBOL(kernel_tmpfile_open);
4739 
4740 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4741 		const struct open_flags *op,
4742 		struct file *file)
4743 {
4744 	struct path path;
4745 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4746 
4747 	if (unlikely(error))
4748 		return error;
4749 	error = mnt_want_write(path.mnt);
4750 	if (unlikely(error))
4751 		goto out;
4752 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4753 	if (error)
4754 		goto out2;
4755 	audit_inode(nd->name, file->f_path.dentry, 0);
4756 out2:
4757 	mnt_drop_write(path.mnt);
4758 out:
4759 	path_put(&path);
4760 	return error;
4761 }
4762 
4763 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4764 {
4765 	struct path path;
4766 	int error = path_lookupat(nd, flags, &path);
4767 	if (!error) {
4768 		audit_inode(nd->name, path.dentry, 0);
4769 		error = vfs_open(&path, file);
4770 		path_put(&path);
4771 	}
4772 	return error;
4773 }
4774 
4775 static struct file *path_openat(struct nameidata *nd,
4776 			const struct open_flags *op, unsigned flags)
4777 {
4778 	struct file *file;
4779 	int error;
4780 
4781 	file = alloc_empty_file(op->open_flag, current_cred());
4782 	if (IS_ERR(file))
4783 		return file;
4784 
4785 	if (unlikely(file->f_flags & __O_TMPFILE)) {
4786 		error = do_tmpfile(nd, flags, op, file);
4787 	} else if (unlikely(file->f_flags & O_PATH)) {
4788 		error = do_o_path(nd, flags, file);
4789 	} else {
4790 		const char *s = path_init(nd, flags);
4791 		while (!(error = link_path_walk(s, nd)) &&
4792 		       (s = open_last_lookups(nd, file, op)) != NULL)
4793 			;
4794 		if (!error)
4795 			error = do_open(nd, file, op);
4796 		terminate_walk(nd);
4797 	}
4798 	if (likely(!error)) {
4799 		if (likely(file->f_mode & FMODE_OPENED))
4800 			return file;
4801 		WARN_ON(1);
4802 		error = -EINVAL;
4803 	}
4804 	fput_close(file);
4805 	if (error == -EOPENSTALE) {
4806 		if (flags & LOOKUP_RCU)
4807 			error = -ECHILD;
4808 		else
4809 			error = -ESTALE;
4810 	}
4811 	return ERR_PTR(error);
4812 }
4813 
4814 struct file *do_filp_open(int dfd, struct filename *pathname,
4815 		const struct open_flags *op)
4816 {
4817 	struct nameidata nd;
4818 	int flags = op->lookup_flags;
4819 	struct file *filp;
4820 
4821 	set_nameidata(&nd, dfd, pathname, NULL);
4822 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4823 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4824 		filp = path_openat(&nd, op, flags);
4825 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4826 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4827 	restore_nameidata();
4828 	return filp;
4829 }
4830 
4831 struct file *do_file_open_root(const struct path *root,
4832 		const char *name, const struct open_flags *op)
4833 {
4834 	struct nameidata nd;
4835 	struct file *file;
4836 	struct filename *filename;
4837 	int flags = op->lookup_flags;
4838 
4839 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4840 		return ERR_PTR(-ELOOP);
4841 
4842 	filename = getname_kernel(name);
4843 	if (IS_ERR(filename))
4844 		return ERR_CAST(filename);
4845 
4846 	set_nameidata(&nd, -1, filename, root);
4847 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4848 	if (unlikely(file == ERR_PTR(-ECHILD)))
4849 		file = path_openat(&nd, op, flags);
4850 	if (unlikely(file == ERR_PTR(-ESTALE)))
4851 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4852 	restore_nameidata();
4853 	putname(filename);
4854 	return file;
4855 }
4856 
4857 static struct dentry *filename_create(int dfd, struct filename *name,
4858 				      struct path *path, unsigned int lookup_flags)
4859 {
4860 	struct dentry *dentry = ERR_PTR(-EEXIST);
4861 	struct qstr last;
4862 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4863 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4864 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4865 	int type;
4866 	int error;
4867 
4868 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4869 	if (error)
4870 		return ERR_PTR(error);
4871 
4872 	/*
4873 	 * Yucky last component or no last component at all?
4874 	 * (foo/., foo/.., /////)
4875 	 */
4876 	if (unlikely(type != LAST_NORM))
4877 		goto out;
4878 
4879 	/* don't fail immediately if it's r/o, at least try to report other errors */
4880 	error = mnt_want_write(path->mnt);
4881 	/*
4882 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4883 	 * '/', and a directory wasn't requested.
4884 	 */
4885 	if (last.name[last.len] && !want_dir)
4886 		create_flags &= ~LOOKUP_CREATE;
4887 	dentry = start_dirop(path->dentry, &last, reval_flag | create_flags);
4888 	if (IS_ERR(dentry))
4889 		goto out_drop_write;
4890 
4891 	if (unlikely(error))
4892 		goto fail;
4893 
4894 	return dentry;
4895 fail:
4896 	end_dirop(dentry);
4897 	dentry = ERR_PTR(error);
4898 out_drop_write:
4899 	if (!error)
4900 		mnt_drop_write(path->mnt);
4901 out:
4902 	path_put(path);
4903 	return dentry;
4904 }
4905 
4906 struct dentry *start_creating_path(int dfd, const char *pathname,
4907 				   struct path *path, unsigned int lookup_flags)
4908 {
4909 	struct filename *filename = getname_kernel(pathname);
4910 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4911 
4912 	putname(filename);
4913 	return res;
4914 }
4915 EXPORT_SYMBOL(start_creating_path);
4916 
4917 /**
4918  * end_creating_path - finish a code section started by start_creating_path()
4919  * @path: the path instantiated by start_creating_path()
4920  * @dentry: the dentry returned by start_creating_path()
4921  *
4922  * end_creating_path() will unlock and locks taken by start_creating_path()
4923  * and drop an references that were taken.  It should only be called
4924  * if start_creating_path() returned a non-error.
4925  * If vfs_mkdir() was called and it returned an error, that error *should*
4926  * be passed to end_creating_path() together with the path.
4927  */
4928 void end_creating_path(const struct path *path, struct dentry *dentry)
4929 {
4930 	end_creating(dentry);
4931 	mnt_drop_write(path->mnt);
4932 	path_put(path);
4933 }
4934 EXPORT_SYMBOL(end_creating_path);
4935 
4936 inline struct dentry *start_creating_user_path(
4937 	int dfd, const char __user *pathname,
4938 	struct path *path, unsigned int lookup_flags)
4939 {
4940 	struct filename *filename = getname(pathname);
4941 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4942 
4943 	putname(filename);
4944 	return res;
4945 }
4946 EXPORT_SYMBOL(start_creating_user_path);
4947 
4948 /**
4949  * dentry_create - Create and open a file
4950  * @path: path to create
4951  * @flags: O\_ flags
4952  * @mode: mode bits for new file
4953  * @cred: credentials to use
4954  *
4955  * Caller must hold the parent directory's lock, and have prepared
4956  * a negative dentry, placed in @path->dentry, for the new file.
4957  *
4958  * Caller sets @path->mnt to the vfsmount of the filesystem where
4959  * the new file is to be created. The parent directory and the
4960  * negative dentry must reside on the same filesystem instance.
4961  *
4962  * On success, returns a ``struct file *``. Otherwise an ERR_PTR
4963  * is returned.
4964  */
4965 struct file *dentry_create(struct path *path, int flags, umode_t mode,
4966 			   const struct cred *cred)
4967 {
4968 	struct file *file __free(fput) = NULL;
4969 	struct dentry *dentry = path->dentry;
4970 	struct dentry *dir = dentry->d_parent;
4971 	struct inode *dir_inode = d_inode(dir);
4972 	struct mnt_idmap *idmap;
4973 	int error, create_error;
4974 
4975 	file = alloc_empty_file(flags, cred);
4976 	if (IS_ERR(file))
4977 		return file;
4978 
4979 	idmap = mnt_idmap(path->mnt);
4980 
4981 	if (dir_inode->i_op->atomic_open) {
4982 		path->dentry = dir;
4983 		mode = vfs_prepare_mode(idmap, dir_inode, mode, S_IALLUGO, S_IFREG);
4984 
4985 		create_error = may_o_create(idmap, path, dentry, mode);
4986 		if (create_error)
4987 			flags &= ~O_CREAT;
4988 
4989 		dentry = atomic_open(path, dentry, file, flags, mode);
4990 		error = PTR_ERR_OR_ZERO(dentry);
4991 
4992 		if (unlikely(create_error) && error == -ENOENT)
4993 			error = create_error;
4994 
4995 		if (!error) {
4996 			if (file->f_mode & FMODE_CREATED)
4997 				fsnotify_create(dir->d_inode, dentry);
4998 			if (file->f_mode & FMODE_OPENED)
4999 				fsnotify_open(file);
5000 		}
5001 
5002 		path->dentry = dentry;
5003 
5004 	} else {
5005 		error = vfs_create(mnt_idmap(path->mnt), path->dentry, mode, NULL);
5006 		if (!error)
5007 			error = vfs_open(path, file);
5008 	}
5009 	if (unlikely(error))
5010 		return ERR_PTR(error);
5011 
5012 	return no_free_ptr(file);
5013 }
5014 EXPORT_SYMBOL(dentry_create);
5015 
5016 /**
5017  * vfs_mknod - create device node or file
5018  * @idmap:		idmap of the mount the inode was found from
5019  * @dir:		inode of the parent directory
5020  * @dentry:		dentry of the child device node
5021  * @mode:		mode of the child device node
5022  * @dev:		device number of device to create
5023  * @delegated_inode:	returns parent inode, if the inode is delegated.
5024  *
5025  * Create a device node or file.
5026  *
5027  * If the inode has been found through an idmapped mount the idmap of
5028  * the vfsmount must be passed through @idmap. This function will then take
5029  * care to map the inode according to @idmap before checking permissions.
5030  * On non-idmapped mounts or if permission checking is to be performed on the
5031  * raw inode simply pass @nop_mnt_idmap.
5032  */
5033 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
5034 	      struct dentry *dentry, umode_t mode, dev_t dev,
5035 	      struct delegated_inode *delegated_inode)
5036 {
5037 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
5038 	int error = may_create_dentry(idmap, dir, dentry);
5039 
5040 	if (error)
5041 		return error;
5042 
5043 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
5044 	    !capable(CAP_MKNOD))
5045 		return -EPERM;
5046 
5047 	if (!dir->i_op->mknod)
5048 		return -EPERM;
5049 
5050 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
5051 	error = devcgroup_inode_mknod(mode, dev);
5052 	if (error)
5053 		return error;
5054 
5055 	error = security_inode_mknod(dir, dentry, mode, dev);
5056 	if (error)
5057 		return error;
5058 
5059 	error = try_break_deleg(dir, delegated_inode);
5060 	if (error)
5061 		return error;
5062 
5063 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
5064 	if (!error)
5065 		fsnotify_create(dir, dentry);
5066 	return error;
5067 }
5068 EXPORT_SYMBOL(vfs_mknod);
5069 
5070 static int may_mknod(umode_t mode)
5071 {
5072 	switch (mode & S_IFMT) {
5073 	case S_IFREG:
5074 	case S_IFCHR:
5075 	case S_IFBLK:
5076 	case S_IFIFO:
5077 	case S_IFSOCK:
5078 	case 0: /* zero mode translates to S_IFREG */
5079 		return 0;
5080 	case S_IFDIR:
5081 		return -EPERM;
5082 	default:
5083 		return -EINVAL;
5084 	}
5085 }
5086 
5087 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
5088 		unsigned int dev)
5089 {
5090 	struct delegated_inode di = { };
5091 	struct mnt_idmap *idmap;
5092 	struct dentry *dentry;
5093 	struct path path;
5094 	int error;
5095 	unsigned int lookup_flags = 0;
5096 
5097 	error = may_mknod(mode);
5098 	if (error)
5099 		goto out1;
5100 retry:
5101 	dentry = filename_create(dfd, name, &path, lookup_flags);
5102 	error = PTR_ERR(dentry);
5103 	if (IS_ERR(dentry))
5104 		goto out1;
5105 
5106 	error = security_path_mknod(&path, dentry,
5107 			mode_strip_umask(path.dentry->d_inode, mode), dev);
5108 	if (error)
5109 		goto out2;
5110 
5111 	idmap = mnt_idmap(path.mnt);
5112 	switch (mode & S_IFMT) {
5113 		case 0: case S_IFREG:
5114 			error = vfs_create(idmap, dentry, mode, &di);
5115 			if (!error)
5116 				security_path_post_mknod(idmap, dentry);
5117 			break;
5118 		case S_IFCHR: case S_IFBLK:
5119 			error = vfs_mknod(idmap, path.dentry->d_inode,
5120 					  dentry, mode, new_decode_dev(dev), &di);
5121 			break;
5122 		case S_IFIFO: case S_IFSOCK:
5123 			error = vfs_mknod(idmap, path.dentry->d_inode,
5124 					  dentry, mode, 0, &di);
5125 			break;
5126 	}
5127 out2:
5128 	end_creating_path(&path, dentry);
5129 	if (is_delegated(&di)) {
5130 		error = break_deleg_wait(&di);
5131 		if (!error)
5132 			goto retry;
5133 	}
5134 	if (retry_estale(error, lookup_flags)) {
5135 		lookup_flags |= LOOKUP_REVAL;
5136 		goto retry;
5137 	}
5138 out1:
5139 	putname(name);
5140 	return error;
5141 }
5142 
5143 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
5144 		unsigned int, dev)
5145 {
5146 	return do_mknodat(dfd, getname(filename), mode, dev);
5147 }
5148 
5149 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
5150 {
5151 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
5152 }
5153 
5154 /**
5155  * vfs_mkdir - create directory returning correct dentry if possible
5156  * @idmap:		idmap of the mount the inode was found from
5157  * @dir:		inode of the parent directory
5158  * @dentry:		dentry of the child directory
5159  * @mode:		mode of the child directory
5160  * @delegated_inode:	returns parent inode, if the inode is delegated.
5161  *
5162  * Create a directory.
5163  *
5164  * If the inode has been found through an idmapped mount the idmap of
5165  * the vfsmount must be passed through @idmap. This function will then take
5166  * care to map the inode according to @idmap before checking permissions.
5167  * On non-idmapped mounts or if permission checking is to be performed on the
5168  * raw inode simply pass @nop_mnt_idmap.
5169  *
5170  * In the event that the filesystem does not use the *@dentry but leaves it
5171  * negative or unhashes it and possibly splices a different one returning it,
5172  * the original dentry is dput() and the alternate is returned.
5173  *
5174  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
5175  */
5176 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
5177 			 struct dentry *dentry, umode_t mode,
5178 			 struct delegated_inode *delegated_inode)
5179 {
5180 	int error;
5181 	unsigned max_links = dir->i_sb->s_max_links;
5182 	struct dentry *de;
5183 
5184 	error = may_create_dentry(idmap, dir, dentry);
5185 	if (error)
5186 		goto err;
5187 
5188 	error = -EPERM;
5189 	if (!dir->i_op->mkdir)
5190 		goto err;
5191 
5192 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
5193 	error = security_inode_mkdir(dir, dentry, mode);
5194 	if (error)
5195 		goto err;
5196 
5197 	error = -EMLINK;
5198 	if (max_links && dir->i_nlink >= max_links)
5199 		goto err;
5200 
5201 	error = try_break_deleg(dir, delegated_inode);
5202 	if (error)
5203 		goto err;
5204 
5205 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
5206 	error = PTR_ERR(de);
5207 	if (IS_ERR(de))
5208 		goto err;
5209 	if (de) {
5210 		dput(dentry);
5211 		dentry = de;
5212 	}
5213 	fsnotify_mkdir(dir, dentry);
5214 	return dentry;
5215 
5216 err:
5217 	end_creating(dentry);
5218 	return ERR_PTR(error);
5219 }
5220 EXPORT_SYMBOL(vfs_mkdir);
5221 
5222 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
5223 {
5224 	struct dentry *dentry;
5225 	struct path path;
5226 	int error;
5227 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
5228 	struct delegated_inode delegated_inode = { };
5229 
5230 retry:
5231 	dentry = filename_create(dfd, name, &path, lookup_flags);
5232 	error = PTR_ERR(dentry);
5233 	if (IS_ERR(dentry))
5234 		goto out_putname;
5235 
5236 	error = security_path_mkdir(&path, dentry,
5237 			mode_strip_umask(path.dentry->d_inode, mode));
5238 	if (!error) {
5239 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5240 				   dentry, mode, &delegated_inode);
5241 		if (IS_ERR(dentry))
5242 			error = PTR_ERR(dentry);
5243 	}
5244 	end_creating_path(&path, dentry);
5245 	if (is_delegated(&delegated_inode)) {
5246 		error = break_deleg_wait(&delegated_inode);
5247 		if (!error)
5248 			goto retry;
5249 	}
5250 	if (retry_estale(error, lookup_flags)) {
5251 		lookup_flags |= LOOKUP_REVAL;
5252 		goto retry;
5253 	}
5254 out_putname:
5255 	putname(name);
5256 	return error;
5257 }
5258 
5259 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
5260 {
5261 	return do_mkdirat(dfd, getname(pathname), mode);
5262 }
5263 
5264 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
5265 {
5266 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
5267 }
5268 
5269 /**
5270  * vfs_rmdir - remove directory
5271  * @idmap:		idmap of the mount the inode was found from
5272  * @dir:		inode of the parent directory
5273  * @dentry:		dentry of the child directory
5274  * @delegated_inode:	returns parent inode, if it's delegated.
5275  *
5276  * Remove a directory.
5277  *
5278  * If the inode has been found through an idmapped mount the idmap of
5279  * the vfsmount must be passed through @idmap. This function will then take
5280  * care to map the inode according to @idmap before checking permissions.
5281  * On non-idmapped mounts or if permission checking is to be performed on the
5282  * raw inode simply pass @nop_mnt_idmap.
5283  */
5284 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
5285 	      struct dentry *dentry, struct delegated_inode *delegated_inode)
5286 {
5287 	int error = may_delete_dentry(idmap, dir, dentry, true);
5288 
5289 	if (error)
5290 		return error;
5291 
5292 	if (!dir->i_op->rmdir)
5293 		return -EPERM;
5294 
5295 	dget(dentry);
5296 	inode_lock(dentry->d_inode);
5297 
5298 	error = -EBUSY;
5299 	if (is_local_mountpoint(dentry) ||
5300 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
5301 		goto out;
5302 
5303 	error = security_inode_rmdir(dir, dentry);
5304 	if (error)
5305 		goto out;
5306 
5307 	error = try_break_deleg(dir, delegated_inode);
5308 	if (error)
5309 		goto out;
5310 
5311 	error = dir->i_op->rmdir(dir, dentry);
5312 	if (error)
5313 		goto out;
5314 
5315 	shrink_dcache_parent(dentry);
5316 	dentry->d_inode->i_flags |= S_DEAD;
5317 	dont_mount(dentry);
5318 	detach_mounts(dentry);
5319 
5320 out:
5321 	inode_unlock(dentry->d_inode);
5322 	dput(dentry);
5323 	if (!error)
5324 		d_delete_notify(dir, dentry);
5325 	return error;
5326 }
5327 EXPORT_SYMBOL(vfs_rmdir);
5328 
5329 int do_rmdir(int dfd, struct filename *name)
5330 {
5331 	int error;
5332 	struct dentry *dentry;
5333 	struct path path;
5334 	struct qstr last;
5335 	int type;
5336 	unsigned int lookup_flags = 0;
5337 	struct delegated_inode delegated_inode = { };
5338 retry:
5339 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5340 	if (error)
5341 		goto exit1;
5342 
5343 	switch (type) {
5344 	case LAST_DOTDOT:
5345 		error = -ENOTEMPTY;
5346 		goto exit2;
5347 	case LAST_DOT:
5348 		error = -EINVAL;
5349 		goto exit2;
5350 	case LAST_ROOT:
5351 		error = -EBUSY;
5352 		goto exit2;
5353 	}
5354 
5355 	error = mnt_want_write(path.mnt);
5356 	if (error)
5357 		goto exit2;
5358 
5359 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5360 	error = PTR_ERR(dentry);
5361 	if (IS_ERR(dentry))
5362 		goto exit3;
5363 	error = security_path_rmdir(&path, dentry);
5364 	if (error)
5365 		goto exit4;
5366 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5367 			  dentry, &delegated_inode);
5368 exit4:
5369 	end_dirop(dentry);
5370 exit3:
5371 	mnt_drop_write(path.mnt);
5372 exit2:
5373 	path_put(&path);
5374 	if (is_delegated(&delegated_inode)) {
5375 		error = break_deleg_wait(&delegated_inode);
5376 		if (!error)
5377 			goto retry;
5378 	}
5379 	if (retry_estale(error, lookup_flags)) {
5380 		lookup_flags |= LOOKUP_REVAL;
5381 		goto retry;
5382 	}
5383 exit1:
5384 	putname(name);
5385 	return error;
5386 }
5387 
5388 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
5389 {
5390 	return do_rmdir(AT_FDCWD, getname(pathname));
5391 }
5392 
5393 /**
5394  * vfs_unlink - unlink a filesystem object
5395  * @idmap:	idmap of the mount the inode was found from
5396  * @dir:	parent directory
5397  * @dentry:	victim
5398  * @delegated_inode: returns victim inode, if the inode is delegated.
5399  *
5400  * The caller must hold dir->i_rwsem exclusively.
5401  *
5402  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
5403  * return a reference to the inode in delegated_inode.  The caller
5404  * should then break the delegation on that inode and retry.  Because
5405  * breaking a delegation may take a long time, the caller should drop
5406  * dir->i_rwsem before doing so.
5407  *
5408  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5409  * be appropriate for callers that expect the underlying filesystem not
5410  * to be NFS exported.
5411  *
5412  * If the inode has been found through an idmapped mount the idmap of
5413  * the vfsmount must be passed through @idmap. This function will then take
5414  * care to map the inode according to @idmap before checking permissions.
5415  * On non-idmapped mounts or if permission checking is to be performed on the
5416  * raw inode simply pass @nop_mnt_idmap.
5417  */
5418 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
5419 	       struct dentry *dentry, struct delegated_inode *delegated_inode)
5420 {
5421 	struct inode *target = dentry->d_inode;
5422 	int error = may_delete_dentry(idmap, dir, dentry, false);
5423 
5424 	if (error)
5425 		return error;
5426 
5427 	if (!dir->i_op->unlink)
5428 		return -EPERM;
5429 
5430 	inode_lock(target);
5431 	if (IS_SWAPFILE(target))
5432 		error = -EPERM;
5433 	else if (is_local_mountpoint(dentry))
5434 		error = -EBUSY;
5435 	else {
5436 		error = security_inode_unlink(dir, dentry);
5437 		if (!error) {
5438 			error = try_break_deleg(dir, delegated_inode);
5439 			if (error)
5440 				goto out;
5441 			error = try_break_deleg(target, delegated_inode);
5442 			if (error)
5443 				goto out;
5444 			error = dir->i_op->unlink(dir, dentry);
5445 			if (!error) {
5446 				dont_mount(dentry);
5447 				detach_mounts(dentry);
5448 			}
5449 		}
5450 	}
5451 out:
5452 	inode_unlock(target);
5453 
5454 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
5455 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
5456 		fsnotify_unlink(dir, dentry);
5457 	} else if (!error) {
5458 		fsnotify_link_count(target);
5459 		d_delete_notify(dir, dentry);
5460 	}
5461 
5462 	return error;
5463 }
5464 EXPORT_SYMBOL(vfs_unlink);
5465 
5466 /*
5467  * Make sure that the actual truncation of the file will occur outside its
5468  * directory's i_rwsem.  Truncate can take a long time if there is a lot of
5469  * writeout happening, and we don't want to prevent access to the directory
5470  * while waiting on the I/O.
5471  */
5472 int do_unlinkat(int dfd, struct filename *name)
5473 {
5474 	int error;
5475 	struct dentry *dentry;
5476 	struct path path;
5477 	struct qstr last;
5478 	int type;
5479 	struct inode *inode;
5480 	struct delegated_inode delegated_inode = { };
5481 	unsigned int lookup_flags = 0;
5482 retry:
5483 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5484 	if (error)
5485 		goto exit_putname;
5486 
5487 	error = -EISDIR;
5488 	if (type != LAST_NORM)
5489 		goto exit_path_put;
5490 
5491 	error = mnt_want_write(path.mnt);
5492 	if (error)
5493 		goto exit_path_put;
5494 retry_deleg:
5495 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5496 	error = PTR_ERR(dentry);
5497 	if (IS_ERR(dentry))
5498 		goto exit_drop_write;
5499 
5500 	/* Why not before? Because we want correct error value */
5501 	if (unlikely(last.name[last.len])) {
5502 		if (d_is_dir(dentry))
5503 			error = -EISDIR;
5504 		else
5505 			error = -ENOTDIR;
5506 		end_dirop(dentry);
5507 		goto exit_drop_write;
5508 	}
5509 	inode = dentry->d_inode;
5510 	ihold(inode);
5511 	error = security_path_unlink(&path, dentry);
5512 	if (error)
5513 		goto exit_end_dirop;
5514 	error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5515 			   dentry, &delegated_inode);
5516 exit_end_dirop:
5517 	end_dirop(dentry);
5518 	iput(inode);	/* truncate the inode here */
5519 	if (is_delegated(&delegated_inode)) {
5520 		error = break_deleg_wait(&delegated_inode);
5521 		if (!error)
5522 			goto retry_deleg;
5523 	}
5524 exit_drop_write:
5525 	mnt_drop_write(path.mnt);
5526 exit_path_put:
5527 	path_put(&path);
5528 	if (retry_estale(error, lookup_flags)) {
5529 		lookup_flags |= LOOKUP_REVAL;
5530 		goto retry;
5531 	}
5532 exit_putname:
5533 	putname(name);
5534 	return error;
5535 }
5536 
5537 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
5538 {
5539 	if ((flag & ~AT_REMOVEDIR) != 0)
5540 		return -EINVAL;
5541 
5542 	if (flag & AT_REMOVEDIR)
5543 		return do_rmdir(dfd, getname(pathname));
5544 	return do_unlinkat(dfd, getname(pathname));
5545 }
5546 
5547 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
5548 {
5549 	return do_unlinkat(AT_FDCWD, getname(pathname));
5550 }
5551 
5552 /**
5553  * vfs_symlink - create symlink
5554  * @idmap:	idmap of the mount the inode was found from
5555  * @dir:	inode of the parent directory
5556  * @dentry:	dentry of the child symlink file
5557  * @oldname:	name of the file to link to
5558  * @delegated_inode: returns victim inode, if the inode is delegated.
5559  *
5560  * Create a symlink.
5561  *
5562  * If the inode has been found through an idmapped mount the idmap of
5563  * the vfsmount must be passed through @idmap. This function will then take
5564  * care to map the inode according to @idmap before checking permissions.
5565  * On non-idmapped mounts or if permission checking is to be performed on the
5566  * raw inode simply pass @nop_mnt_idmap.
5567  */
5568 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
5569 		struct dentry *dentry, const char *oldname,
5570 		struct delegated_inode *delegated_inode)
5571 {
5572 	int error;
5573 
5574 	error = may_create_dentry(idmap, dir, dentry);
5575 	if (error)
5576 		return error;
5577 
5578 	if (!dir->i_op->symlink)
5579 		return -EPERM;
5580 
5581 	error = security_inode_symlink(dir, dentry, oldname);
5582 	if (error)
5583 		return error;
5584 
5585 	error = try_break_deleg(dir, delegated_inode);
5586 	if (error)
5587 		return error;
5588 
5589 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
5590 	if (!error)
5591 		fsnotify_create(dir, dentry);
5592 	return error;
5593 }
5594 EXPORT_SYMBOL(vfs_symlink);
5595 
5596 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
5597 {
5598 	int error;
5599 	struct dentry *dentry;
5600 	struct path path;
5601 	unsigned int lookup_flags = 0;
5602 	struct delegated_inode delegated_inode = { };
5603 
5604 	if (IS_ERR(from)) {
5605 		error = PTR_ERR(from);
5606 		goto out_putnames;
5607 	}
5608 retry:
5609 	dentry = filename_create(newdfd, to, &path, lookup_flags);
5610 	error = PTR_ERR(dentry);
5611 	if (IS_ERR(dentry))
5612 		goto out_putnames;
5613 
5614 	error = security_path_symlink(&path, dentry, from->name);
5615 	if (!error)
5616 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5617 				    dentry, from->name, &delegated_inode);
5618 	end_creating_path(&path, dentry);
5619 	if (is_delegated(&delegated_inode)) {
5620 		error = break_deleg_wait(&delegated_inode);
5621 		if (!error)
5622 			goto retry;
5623 	}
5624 	if (retry_estale(error, lookup_flags)) {
5625 		lookup_flags |= LOOKUP_REVAL;
5626 		goto retry;
5627 	}
5628 out_putnames:
5629 	putname(to);
5630 	putname(from);
5631 	return error;
5632 }
5633 
5634 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
5635 		int, newdfd, const char __user *, newname)
5636 {
5637 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
5638 }
5639 
5640 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
5641 {
5642 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
5643 }
5644 
5645 /**
5646  * vfs_link - create a new link
5647  * @old_dentry:	object to be linked
5648  * @idmap:	idmap of the mount
5649  * @dir:	new parent
5650  * @new_dentry:	where to create the new link
5651  * @delegated_inode: returns inode needing a delegation break
5652  *
5653  * The caller must hold dir->i_rwsem exclusively.
5654  *
5655  * If vfs_link discovers a delegation on the to-be-linked file in need
5656  * of breaking, it will return -EWOULDBLOCK and return a reference to the
5657  * inode in delegated_inode.  The caller should then break the delegation
5658  * and retry.  Because breaking a delegation may take a long time, the
5659  * caller should drop the i_rwsem before doing so.
5660  *
5661  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5662  * be appropriate for callers that expect the underlying filesystem not
5663  * to be NFS exported.
5664  *
5665  * If the inode has been found through an idmapped mount the idmap of
5666  * the vfsmount must be passed through @idmap. This function will then take
5667  * care to map the inode according to @idmap before checking permissions.
5668  * On non-idmapped mounts or if permission checking is to be performed on the
5669  * raw inode simply pass @nop_mnt_idmap.
5670  */
5671 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
5672 	     struct inode *dir, struct dentry *new_dentry,
5673 	     struct delegated_inode *delegated_inode)
5674 {
5675 	struct inode *inode = old_dentry->d_inode;
5676 	unsigned max_links = dir->i_sb->s_max_links;
5677 	int error;
5678 
5679 	if (!inode)
5680 		return -ENOENT;
5681 
5682 	error = may_create_dentry(idmap, dir, new_dentry);
5683 	if (error)
5684 		return error;
5685 
5686 	if (dir->i_sb != inode->i_sb)
5687 		return -EXDEV;
5688 
5689 	/*
5690 	 * A link to an append-only or immutable file cannot be created.
5691 	 */
5692 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5693 		return -EPERM;
5694 	/*
5695 	 * Updating the link count will likely cause i_uid and i_gid to
5696 	 * be written back improperly if their true value is unknown to
5697 	 * the vfs.
5698 	 */
5699 	if (HAS_UNMAPPED_ID(idmap, inode))
5700 		return -EPERM;
5701 	if (!dir->i_op->link)
5702 		return -EPERM;
5703 	if (S_ISDIR(inode->i_mode))
5704 		return -EPERM;
5705 
5706 	error = security_inode_link(old_dentry, dir, new_dentry);
5707 	if (error)
5708 		return error;
5709 
5710 	inode_lock(inode);
5711 	/* Make sure we don't allow creating hardlink to an unlinked file */
5712 	if (inode->i_nlink == 0 && !(inode_state_read_once(inode) & I_LINKABLE))
5713 		error =  -ENOENT;
5714 	else if (max_links && inode->i_nlink >= max_links)
5715 		error = -EMLINK;
5716 	else {
5717 		error = try_break_deleg(dir, delegated_inode);
5718 		if (!error)
5719 			error = try_break_deleg(inode, delegated_inode);
5720 		if (!error)
5721 			error = dir->i_op->link(old_dentry, dir, new_dentry);
5722 	}
5723 
5724 	if (!error && (inode_state_read_once(inode) & I_LINKABLE)) {
5725 		spin_lock(&inode->i_lock);
5726 		inode_state_clear(inode, I_LINKABLE);
5727 		spin_unlock(&inode->i_lock);
5728 	}
5729 	inode_unlock(inode);
5730 	if (!error)
5731 		fsnotify_link(dir, inode, new_dentry);
5732 	return error;
5733 }
5734 EXPORT_SYMBOL(vfs_link);
5735 
5736 /*
5737  * Hardlinks are often used in delicate situations.  We avoid
5738  * security-related surprises by not following symlinks on the
5739  * newname.  --KAB
5740  *
5741  * We don't follow them on the oldname either to be compatible
5742  * with linux 2.0, and to avoid hard-linking to directories
5743  * and other special files.  --ADM
5744  */
5745 int do_linkat(int olddfd, struct filename *old, int newdfd,
5746 	      struct filename *new, int flags)
5747 {
5748 	struct mnt_idmap *idmap;
5749 	struct dentry *new_dentry;
5750 	struct path old_path, new_path;
5751 	struct delegated_inode delegated_inode = { };
5752 	int how = 0;
5753 	int error;
5754 
5755 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
5756 		error = -EINVAL;
5757 		goto out_putnames;
5758 	}
5759 	/*
5760 	 * To use null names we require CAP_DAC_READ_SEARCH or
5761 	 * that the open-time creds of the dfd matches current.
5762 	 * This ensures that not everyone will be able to create
5763 	 * a hardlink using the passed file descriptor.
5764 	 */
5765 	if (flags & AT_EMPTY_PATH)
5766 		how |= LOOKUP_LINKAT_EMPTY;
5767 
5768 	if (flags & AT_SYMLINK_FOLLOW)
5769 		how |= LOOKUP_FOLLOW;
5770 retry:
5771 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
5772 	if (error)
5773 		goto out_putnames;
5774 
5775 	new_dentry = filename_create(newdfd, new, &new_path,
5776 					(how & LOOKUP_REVAL));
5777 	error = PTR_ERR(new_dentry);
5778 	if (IS_ERR(new_dentry))
5779 		goto out_putpath;
5780 
5781 	error = -EXDEV;
5782 	if (old_path.mnt != new_path.mnt)
5783 		goto out_dput;
5784 	idmap = mnt_idmap(new_path.mnt);
5785 	error = may_linkat(idmap, &old_path);
5786 	if (unlikely(error))
5787 		goto out_dput;
5788 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
5789 	if (error)
5790 		goto out_dput;
5791 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5792 			 new_dentry, &delegated_inode);
5793 out_dput:
5794 	end_creating_path(&new_path, new_dentry);
5795 	if (is_delegated(&delegated_inode)) {
5796 		error = break_deleg_wait(&delegated_inode);
5797 		if (!error) {
5798 			path_put(&old_path);
5799 			goto retry;
5800 		}
5801 	}
5802 	if (retry_estale(error, how)) {
5803 		path_put(&old_path);
5804 		how |= LOOKUP_REVAL;
5805 		goto retry;
5806 	}
5807 out_putpath:
5808 	path_put(&old_path);
5809 out_putnames:
5810 	putname(old);
5811 	putname(new);
5812 
5813 	return error;
5814 }
5815 
5816 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5817 		int, newdfd, const char __user *, newname, int, flags)
5818 {
5819 	return do_linkat(olddfd, getname_uflags(oldname, flags),
5820 		newdfd, getname(newname), flags);
5821 }
5822 
5823 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5824 {
5825 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5826 }
5827 
5828 /**
5829  * vfs_rename - rename a filesystem object
5830  * @rd:		pointer to &struct renamedata info
5831  *
5832  * The caller must hold multiple mutexes--see lock_rename()).
5833  *
5834  * If vfs_rename discovers a delegation in need of breaking at either
5835  * the source or destination, it will return -EWOULDBLOCK and return a
5836  * reference to the inode in delegated_inode.  The caller should then
5837  * break the delegation and retry.  Because breaking a delegation may
5838  * take a long time, the caller should drop all locks before doing
5839  * so.
5840  *
5841  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5842  * be appropriate for callers that expect the underlying filesystem not
5843  * to be NFS exported.
5844  *
5845  * The worst of all namespace operations - renaming directory. "Perverted"
5846  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5847  * Problems:
5848  *
5849  *	a) we can get into loop creation.
5850  *	b) race potential - two innocent renames can create a loop together.
5851  *	   That's where 4.4BSD screws up. Current fix: serialization on
5852  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5853  *	   story.
5854  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5855  *	   and source (if it's a non-directory or a subdirectory that moves to
5856  *	   different parent).
5857  *	   And that - after we got ->i_rwsem on parents (until then we don't know
5858  *	   whether the target exists).  Solution: try to be smart with locking
5859  *	   order for inodes.  We rely on the fact that tree topology may change
5860  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
5861  *	   move will be locked.  Thus we can rank directories by the tree
5862  *	   (ancestors first) and rank all non-directories after them.
5863  *	   That works since everybody except rename does "lock parent, lookup,
5864  *	   lock child" and rename is under ->s_vfs_rename_mutex.
5865  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
5866  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
5867  *	   we'd better make sure that there's no link(2) for them.
5868  *	d) conversion from fhandle to dentry may come in the wrong moment - when
5869  *	   we are removing the target. Solution: we will have to grab ->i_rwsem
5870  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5871  *	   ->i_rwsem on parents, which works but leads to some truly excessive
5872  *	   locking].
5873  */
5874 int vfs_rename(struct renamedata *rd)
5875 {
5876 	int error;
5877 	struct inode *old_dir = d_inode(rd->old_parent);
5878 	struct inode *new_dir = d_inode(rd->new_parent);
5879 	struct dentry *old_dentry = rd->old_dentry;
5880 	struct dentry *new_dentry = rd->new_dentry;
5881 	struct delegated_inode *delegated_inode = rd->delegated_inode;
5882 	unsigned int flags = rd->flags;
5883 	bool is_dir = d_is_dir(old_dentry);
5884 	struct inode *source = old_dentry->d_inode;
5885 	struct inode *target = new_dentry->d_inode;
5886 	bool new_is_dir = false;
5887 	unsigned max_links = new_dir->i_sb->s_max_links;
5888 	struct name_snapshot old_name;
5889 	bool lock_old_subdir, lock_new_subdir;
5890 
5891 	if (source == target)
5892 		return 0;
5893 
5894 	error = may_delete_dentry(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5895 	if (error)
5896 		return error;
5897 
5898 	if (!target) {
5899 		error = may_create_dentry(rd->mnt_idmap, new_dir, new_dentry);
5900 	} else {
5901 		new_is_dir = d_is_dir(new_dentry);
5902 
5903 		if (!(flags & RENAME_EXCHANGE))
5904 			error = may_delete_dentry(rd->mnt_idmap, new_dir,
5905 						  new_dentry, is_dir);
5906 		else
5907 			error = may_delete_dentry(rd->mnt_idmap, new_dir,
5908 						  new_dentry, new_is_dir);
5909 	}
5910 	if (error)
5911 		return error;
5912 
5913 	if (!old_dir->i_op->rename)
5914 		return -EPERM;
5915 
5916 	/*
5917 	 * If we are going to change the parent - check write permissions,
5918 	 * we'll need to flip '..'.
5919 	 */
5920 	if (new_dir != old_dir) {
5921 		if (is_dir) {
5922 			error = inode_permission(rd->mnt_idmap, source,
5923 						 MAY_WRITE);
5924 			if (error)
5925 				return error;
5926 		}
5927 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5928 			error = inode_permission(rd->mnt_idmap, target,
5929 						 MAY_WRITE);
5930 			if (error)
5931 				return error;
5932 		}
5933 	}
5934 
5935 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5936 				      flags);
5937 	if (error)
5938 		return error;
5939 
5940 	take_dentry_name_snapshot(&old_name, old_dentry);
5941 	dget(new_dentry);
5942 	/*
5943 	 * Lock children.
5944 	 * The source subdirectory needs to be locked on cross-directory
5945 	 * rename or cross-directory exchange since its parent changes.
5946 	 * The target subdirectory needs to be locked on cross-directory
5947 	 * exchange due to parent change and on any rename due to becoming
5948 	 * a victim.
5949 	 * Non-directories need locking in all cases (for NFS reasons);
5950 	 * they get locked after any subdirectories (in inode address order).
5951 	 *
5952 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5953 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5954 	 */
5955 	lock_old_subdir = new_dir != old_dir;
5956 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5957 	if (is_dir) {
5958 		if (lock_old_subdir)
5959 			inode_lock_nested(source, I_MUTEX_CHILD);
5960 		if (target && (!new_is_dir || lock_new_subdir))
5961 			inode_lock(target);
5962 	} else if (new_is_dir) {
5963 		if (lock_new_subdir)
5964 			inode_lock_nested(target, I_MUTEX_CHILD);
5965 		inode_lock(source);
5966 	} else {
5967 		lock_two_nondirectories(source, target);
5968 	}
5969 
5970 	error = -EPERM;
5971 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5972 		goto out;
5973 
5974 	error = -EBUSY;
5975 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5976 		goto out;
5977 
5978 	if (max_links && new_dir != old_dir) {
5979 		error = -EMLINK;
5980 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5981 			goto out;
5982 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5983 		    old_dir->i_nlink >= max_links)
5984 			goto out;
5985 	}
5986 	error = try_break_deleg(old_dir, delegated_inode);
5987 	if (error)
5988 		goto out;
5989 	if (new_dir != old_dir) {
5990 		error = try_break_deleg(new_dir, delegated_inode);
5991 		if (error)
5992 			goto out;
5993 	}
5994 	if (!is_dir) {
5995 		error = try_break_deleg(source, delegated_inode);
5996 		if (error)
5997 			goto out;
5998 	}
5999 	if (target && !new_is_dir) {
6000 		error = try_break_deleg(target, delegated_inode);
6001 		if (error)
6002 			goto out;
6003 	}
6004 	error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
6005 				      new_dir, new_dentry, flags);
6006 	if (error)
6007 		goto out;
6008 
6009 	if (!(flags & RENAME_EXCHANGE) && target) {
6010 		if (is_dir) {
6011 			shrink_dcache_parent(new_dentry);
6012 			target->i_flags |= S_DEAD;
6013 		}
6014 		dont_mount(new_dentry);
6015 		detach_mounts(new_dentry);
6016 	}
6017 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
6018 		if (!(flags & RENAME_EXCHANGE))
6019 			d_move(old_dentry, new_dentry);
6020 		else
6021 			d_exchange(old_dentry, new_dentry);
6022 	}
6023 out:
6024 	if (!is_dir || lock_old_subdir)
6025 		inode_unlock(source);
6026 	if (target && (!new_is_dir || lock_new_subdir))
6027 		inode_unlock(target);
6028 	dput(new_dentry);
6029 	if (!error) {
6030 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
6031 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
6032 		if (flags & RENAME_EXCHANGE) {
6033 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
6034 				      new_is_dir, NULL, new_dentry);
6035 		}
6036 	}
6037 	release_dentry_name_snapshot(&old_name);
6038 
6039 	return error;
6040 }
6041 EXPORT_SYMBOL(vfs_rename);
6042 
6043 int do_renameat2(int olddfd, struct filename *from, int newdfd,
6044 		 struct filename *to, unsigned int flags)
6045 {
6046 	struct renamedata rd;
6047 	struct path old_path, new_path;
6048 	struct qstr old_last, new_last;
6049 	int old_type, new_type;
6050 	struct delegated_inode delegated_inode = { };
6051 	unsigned int lookup_flags = 0;
6052 	bool should_retry = false;
6053 	int error = -EINVAL;
6054 
6055 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
6056 		goto put_names;
6057 
6058 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
6059 	    (flags & RENAME_EXCHANGE))
6060 		goto put_names;
6061 
6062 retry:
6063 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
6064 				  &old_last, &old_type);
6065 	if (error)
6066 		goto put_names;
6067 
6068 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
6069 				  &new_type);
6070 	if (error)
6071 		goto exit1;
6072 
6073 	error = -EXDEV;
6074 	if (old_path.mnt != new_path.mnt)
6075 		goto exit2;
6076 
6077 	error = -EBUSY;
6078 	if (old_type != LAST_NORM)
6079 		goto exit2;
6080 
6081 	if (flags & RENAME_NOREPLACE)
6082 		error = -EEXIST;
6083 	if (new_type != LAST_NORM)
6084 		goto exit2;
6085 
6086 	error = mnt_want_write(old_path.mnt);
6087 	if (error)
6088 		goto exit2;
6089 
6090 retry_deleg:
6091 	rd.old_parent	   = old_path.dentry;
6092 	rd.mnt_idmap	   = mnt_idmap(old_path.mnt);
6093 	rd.new_parent	   = new_path.dentry;
6094 	rd.delegated_inode = &delegated_inode;
6095 	rd.flags	   = flags;
6096 
6097 	error = __start_renaming(&rd, lookup_flags, &old_last, &new_last);
6098 	if (error)
6099 		goto exit_lock_rename;
6100 
6101 	if (flags & RENAME_EXCHANGE) {
6102 		if (!d_is_dir(rd.new_dentry)) {
6103 			error = -ENOTDIR;
6104 			if (new_last.name[new_last.len])
6105 				goto exit_unlock;
6106 		}
6107 	}
6108 	/* unless the source is a directory trailing slashes give -ENOTDIR */
6109 	if (!d_is_dir(rd.old_dentry)) {
6110 		error = -ENOTDIR;
6111 		if (old_last.name[old_last.len])
6112 			goto exit_unlock;
6113 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
6114 			goto exit_unlock;
6115 	}
6116 
6117 	error = security_path_rename(&old_path, rd.old_dentry,
6118 				     &new_path, rd.new_dentry, flags);
6119 	if (error)
6120 		goto exit_unlock;
6121 
6122 	error = vfs_rename(&rd);
6123 exit_unlock:
6124 	end_renaming(&rd);
6125 exit_lock_rename:
6126 	if (is_delegated(&delegated_inode)) {
6127 		error = break_deleg_wait(&delegated_inode);
6128 		if (!error)
6129 			goto retry_deleg;
6130 	}
6131 	mnt_drop_write(old_path.mnt);
6132 exit2:
6133 	if (retry_estale(error, lookup_flags))
6134 		should_retry = true;
6135 	path_put(&new_path);
6136 exit1:
6137 	path_put(&old_path);
6138 	if (should_retry) {
6139 		should_retry = false;
6140 		lookup_flags |= LOOKUP_REVAL;
6141 		goto retry;
6142 	}
6143 put_names:
6144 	putname(from);
6145 	putname(to);
6146 	return error;
6147 }
6148 
6149 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
6150 		int, newdfd, const char __user *, newname, unsigned int, flags)
6151 {
6152 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6153 				flags);
6154 }
6155 
6156 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
6157 		int, newdfd, const char __user *, newname)
6158 {
6159 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6160 				0);
6161 }
6162 
6163 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
6164 {
6165 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
6166 				getname(newname), 0);
6167 }
6168 
6169 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
6170 {
6171 	int copylen;
6172 
6173 	copylen = linklen;
6174 	if (unlikely(copylen > (unsigned) buflen))
6175 		copylen = buflen;
6176 	if (copy_to_user(buffer, link, copylen))
6177 		copylen = -EFAULT;
6178 	return copylen;
6179 }
6180 
6181 /**
6182  * vfs_readlink - copy symlink body into userspace buffer
6183  * @dentry: dentry on which to get symbolic link
6184  * @buffer: user memory pointer
6185  * @buflen: size of buffer
6186  *
6187  * Does not touch atime.  That's up to the caller if necessary
6188  *
6189  * Does not call security hook.
6190  */
6191 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6192 {
6193 	struct inode *inode = d_inode(dentry);
6194 	DEFINE_DELAYED_CALL(done);
6195 	const char *link;
6196 	int res;
6197 
6198 	if (inode->i_opflags & IOP_CACHED_LINK)
6199 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
6200 
6201 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
6202 		if (unlikely(inode->i_op->readlink))
6203 			return inode->i_op->readlink(dentry, buffer, buflen);
6204 
6205 		if (!d_is_symlink(dentry))
6206 			return -EINVAL;
6207 
6208 		spin_lock(&inode->i_lock);
6209 		inode->i_opflags |= IOP_DEFAULT_READLINK;
6210 		spin_unlock(&inode->i_lock);
6211 	}
6212 
6213 	link = READ_ONCE(inode->i_link);
6214 	if (!link) {
6215 		link = inode->i_op->get_link(dentry, inode, &done);
6216 		if (IS_ERR(link))
6217 			return PTR_ERR(link);
6218 	}
6219 	res = readlink_copy(buffer, buflen, link, strlen(link));
6220 	do_delayed_call(&done);
6221 	return res;
6222 }
6223 EXPORT_SYMBOL(vfs_readlink);
6224 
6225 /**
6226  * vfs_get_link - get symlink body
6227  * @dentry: dentry on which to get symbolic link
6228  * @done: caller needs to free returned data with this
6229  *
6230  * Calls security hook and i_op->get_link() on the supplied inode.
6231  *
6232  * It does not touch atime.  That's up to the caller if necessary.
6233  *
6234  * Does not work on "special" symlinks like /proc/$$/fd/N
6235  */
6236 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
6237 {
6238 	const char *res = ERR_PTR(-EINVAL);
6239 	struct inode *inode = d_inode(dentry);
6240 
6241 	if (d_is_symlink(dentry)) {
6242 		res = ERR_PTR(security_inode_readlink(dentry));
6243 		if (!res)
6244 			res = inode->i_op->get_link(dentry, inode, done);
6245 	}
6246 	return res;
6247 }
6248 EXPORT_SYMBOL(vfs_get_link);
6249 
6250 /* get the link contents into pagecache */
6251 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
6252 			     struct delayed_call *callback)
6253 {
6254 	struct folio *folio;
6255 	struct address_space *mapping = inode->i_mapping;
6256 
6257 	if (!dentry) {
6258 		folio = filemap_get_folio(mapping, 0);
6259 		if (IS_ERR(folio))
6260 			return ERR_PTR(-ECHILD);
6261 		if (!folio_test_uptodate(folio)) {
6262 			folio_put(folio);
6263 			return ERR_PTR(-ECHILD);
6264 		}
6265 	} else {
6266 		folio = read_mapping_folio(mapping, 0, NULL);
6267 		if (IS_ERR(folio))
6268 			return ERR_CAST(folio);
6269 	}
6270 	set_delayed_call(callback, page_put_link, folio);
6271 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
6272 	return folio_address(folio);
6273 }
6274 
6275 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
6276 			      struct delayed_call *callback)
6277 {
6278 	return __page_get_link(dentry, inode, callback);
6279 }
6280 EXPORT_SYMBOL_GPL(page_get_link_raw);
6281 
6282 /**
6283  * page_get_link() - An implementation of the get_link inode_operation.
6284  * @dentry: The directory entry which is the symlink.
6285  * @inode: The inode for the symlink.
6286  * @callback: Used to drop the reference to the symlink.
6287  *
6288  * Filesystems which store their symlinks in the page cache should use
6289  * this to implement the get_link() member of their inode_operations.
6290  *
6291  * Return: A pointer to the NUL-terminated symlink.
6292  */
6293 const char *page_get_link(struct dentry *dentry, struct inode *inode,
6294 					struct delayed_call *callback)
6295 {
6296 	char *kaddr = __page_get_link(dentry, inode, callback);
6297 
6298 	if (!IS_ERR(kaddr))
6299 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
6300 	return kaddr;
6301 }
6302 EXPORT_SYMBOL(page_get_link);
6303 
6304 /**
6305  * page_put_link() - Drop the reference to the symlink.
6306  * @arg: The folio which contains the symlink.
6307  *
6308  * This is used internally by page_get_link().  It is exported for use
6309  * by filesystems which need to implement a variant of page_get_link()
6310  * themselves.  Despite the apparent symmetry, filesystems which use
6311  * page_get_link() do not need to call page_put_link().
6312  *
6313  * The argument, while it has a void pointer type, must be a pointer to
6314  * the folio which was retrieved from the page cache.  The delayed_call
6315  * infrastructure is used to drop the reference count once the caller
6316  * is done with the symlink.
6317  */
6318 void page_put_link(void *arg)
6319 {
6320 	folio_put(arg);
6321 }
6322 EXPORT_SYMBOL(page_put_link);
6323 
6324 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6325 {
6326 	const char *link;
6327 	int res;
6328 
6329 	DEFINE_DELAYED_CALL(done);
6330 	link = page_get_link(dentry, d_inode(dentry), &done);
6331 	res = PTR_ERR(link);
6332 	if (!IS_ERR(link))
6333 		res = readlink_copy(buffer, buflen, link, strlen(link));
6334 	do_delayed_call(&done);
6335 	return res;
6336 }
6337 EXPORT_SYMBOL(page_readlink);
6338 
6339 int page_symlink(struct inode *inode, const char *symname, int len)
6340 {
6341 	struct address_space *mapping = inode->i_mapping;
6342 	const struct address_space_operations *aops = mapping->a_ops;
6343 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
6344 	struct folio *folio;
6345 	void *fsdata = NULL;
6346 	int err;
6347 	unsigned int flags;
6348 
6349 retry:
6350 	if (nofs)
6351 		flags = memalloc_nofs_save();
6352 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
6353 	if (nofs)
6354 		memalloc_nofs_restore(flags);
6355 	if (err)
6356 		goto fail;
6357 
6358 	memcpy(folio_address(folio), symname, len - 1);
6359 
6360 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
6361 						folio, fsdata);
6362 	if (err < 0)
6363 		goto fail;
6364 	if (err < len-1)
6365 		goto retry;
6366 
6367 	mark_inode_dirty(inode);
6368 	return 0;
6369 fail:
6370 	return err;
6371 }
6372 EXPORT_SYMBOL(page_symlink);
6373 
6374 const struct inode_operations page_symlink_inode_operations = {
6375 	.get_link	= page_get_link,
6376 };
6377 EXPORT_SYMBOL(page_symlink_inode_operations);
6378