1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include <net/netdev_queues.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "ef100.h"
30 #include "rx_common.h"
31 #include "tx_common.h"
32 #include "nic.h"
33 #include "io.h"
34 #include "selftest.h"
35 #include "sriov.h"
36 #include "efx_devlink.h"
37
38 #include "mcdi_port_common.h"
39 #include "mcdi_pcol.h"
40 #include "workarounds.h"
41
42 /**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
49 MODULE_PARM_DESC(interrupt_mode,
50 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
51
52 module_param(rss_cpus, uint, 0444);
53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
54
55 /*
56 * Use separate channels for TX and RX events
57 *
58 * Set this to 1 to use separate channels for TX and RX. It allows us
59 * to control interrupt affinity separately for TX and RX.
60 *
61 * This is only used in MSI-X interrupt mode
62 */
63 bool efx_separate_tx_channels;
64 module_param(efx_separate_tx_channels, bool, 0444);
65 MODULE_PARM_DESC(efx_separate_tx_channels,
66 "Use separate channels for TX and RX");
67
68 /* Initial interrupt moderation settings. They can be modified after
69 * module load with ethtool.
70 *
71 * The default for RX should strike a balance between increasing the
72 * round-trip latency and reducing overhead.
73 */
74 static unsigned int rx_irq_mod_usec = 60;
75
76 /* Initial interrupt moderation settings. They can be modified after
77 * module load with ethtool.
78 *
79 * This default is chosen to ensure that a 10G link does not go idle
80 * while a TX queue is stopped after it has become full. A queue is
81 * restarted when it drops below half full. The time this takes (assuming
82 * worst case 3 descriptors per packet and 1024 descriptors) is
83 * 512 / 3 * 1.2 = 205 usec.
84 */
85 static unsigned int tx_irq_mod_usec = 150;
86
87 static bool phy_flash_cfg;
88 module_param(phy_flash_cfg, bool, 0644);
89 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
90
91 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
92 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
93 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
94 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
95 module_param(debug, uint, 0);
96 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
97
98 /**************************************************************************
99 *
100 * Utility functions and prototypes
101 *
102 *************************************************************************/
103
104 static void efx_remove_port(struct efx_nic *efx);
105 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
106 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
107 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
108 u32 flags);
109
110 /**************************************************************************
111 *
112 * Port handling
113 *
114 **************************************************************************/
115
116 static void efx_fini_port(struct efx_nic *efx);
117
efx_probe_port(struct efx_nic * efx)118 static int efx_probe_port(struct efx_nic *efx)
119 {
120 int rc;
121
122 netif_dbg(efx, probe, efx->net_dev, "create port\n");
123
124 if (phy_flash_cfg)
125 efx->phy_mode = PHY_MODE_SPECIAL;
126
127 /* Connect up MAC/PHY operations table */
128 rc = efx->type->probe_port(efx);
129 if (rc)
130 return rc;
131
132 /* Initialise MAC address to permanent address */
133 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
134
135 return 0;
136 }
137
efx_init_port(struct efx_nic * efx)138 static int efx_init_port(struct efx_nic *efx)
139 {
140 int rc;
141
142 netif_dbg(efx, drv, efx->net_dev, "init port\n");
143
144 mutex_lock(&efx->mac_lock);
145
146 efx->port_initialized = true;
147
148 /* Ensure the PHY advertises the correct flow control settings */
149 rc = efx_mcdi_port_reconfigure(efx);
150 if (rc && rc != -EPERM)
151 goto fail;
152
153 mutex_unlock(&efx->mac_lock);
154 return 0;
155
156 fail:
157 mutex_unlock(&efx->mac_lock);
158 return rc;
159 }
160
efx_fini_port(struct efx_nic * efx)161 static void efx_fini_port(struct efx_nic *efx)
162 {
163 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
164
165 if (!efx->port_initialized)
166 return;
167
168 efx->port_initialized = false;
169
170 efx->link_state.up = false;
171 efx_link_status_changed(efx);
172 }
173
efx_remove_port(struct efx_nic * efx)174 static void efx_remove_port(struct efx_nic *efx)
175 {
176 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
177
178 efx->type->remove_port(efx);
179 }
180
181 /**************************************************************************
182 *
183 * NIC handling
184 *
185 **************************************************************************/
186
187 static LIST_HEAD(efx_primary_list);
188 static LIST_HEAD(efx_unassociated_list);
189
efx_same_controller(struct efx_nic * left,struct efx_nic * right)190 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
191 {
192 return left->type == right->type &&
193 left->vpd_sn && right->vpd_sn &&
194 !strcmp(left->vpd_sn, right->vpd_sn);
195 }
196
efx_associate(struct efx_nic * efx)197 static void efx_associate(struct efx_nic *efx)
198 {
199 struct efx_nic *other, *next;
200
201 if (efx->primary == efx) {
202 /* Adding primary function; look for secondaries */
203
204 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
205 list_add_tail(&efx->node, &efx_primary_list);
206
207 list_for_each_entry_safe(other, next, &efx_unassociated_list,
208 node) {
209 if (efx_same_controller(efx, other)) {
210 list_del(&other->node);
211 netif_dbg(other, probe, other->net_dev,
212 "moving to secondary list of %s %s\n",
213 pci_name(efx->pci_dev),
214 efx->net_dev->name);
215 list_add_tail(&other->node,
216 &efx->secondary_list);
217 other->primary = efx;
218 }
219 }
220 } else {
221 /* Adding secondary function; look for primary */
222
223 list_for_each_entry(other, &efx_primary_list, node) {
224 if (efx_same_controller(efx, other)) {
225 netif_dbg(efx, probe, efx->net_dev,
226 "adding to secondary list of %s %s\n",
227 pci_name(other->pci_dev),
228 other->net_dev->name);
229 list_add_tail(&efx->node,
230 &other->secondary_list);
231 efx->primary = other;
232 return;
233 }
234 }
235
236 netif_dbg(efx, probe, efx->net_dev,
237 "adding to unassociated list\n");
238 list_add_tail(&efx->node, &efx_unassociated_list);
239 }
240 }
241
efx_dissociate(struct efx_nic * efx)242 static void efx_dissociate(struct efx_nic *efx)
243 {
244 struct efx_nic *other, *next;
245
246 list_del(&efx->node);
247 efx->primary = NULL;
248
249 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
250 list_del(&other->node);
251 netif_dbg(other, probe, other->net_dev,
252 "moving to unassociated list\n");
253 list_add_tail(&other->node, &efx_unassociated_list);
254 other->primary = NULL;
255 }
256 }
257
efx_probe_nic(struct efx_nic * efx)258 static int efx_probe_nic(struct efx_nic *efx)
259 {
260 int rc;
261
262 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
263
264 /* Carry out hardware-type specific initialisation */
265 rc = efx->type->probe(efx);
266 if (rc)
267 return rc;
268
269 do {
270 if (!efx->max_channels || !efx->max_tx_channels) {
271 netif_err(efx, drv, efx->net_dev,
272 "Insufficient resources to allocate"
273 " any channels\n");
274 rc = -ENOSPC;
275 goto fail1;
276 }
277
278 /* Determine the number of channels and queues by trying
279 * to hook in MSI-X interrupts.
280 */
281 rc = efx_probe_interrupts(efx);
282 if (rc)
283 goto fail1;
284
285 rc = efx_set_channels(efx);
286 if (rc)
287 goto fail1;
288
289 /* dimension_resources can fail with EAGAIN */
290 rc = efx->type->dimension_resources(efx);
291 if (rc != 0 && rc != -EAGAIN)
292 goto fail2;
293
294 if (rc == -EAGAIN)
295 /* try again with new max_channels */
296 efx_remove_interrupts(efx);
297
298 } while (rc == -EAGAIN);
299
300 if (efx->n_channels > 1)
301 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
302 sizeof(efx->rss_context.rx_hash_key));
303 efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
304
305 /* Initialise the interrupt moderation settings */
306 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
307 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
308 true);
309
310 return 0;
311
312 fail2:
313 efx_remove_interrupts(efx);
314 fail1:
315 efx->type->remove(efx);
316 return rc;
317 }
318
efx_remove_nic(struct efx_nic * efx)319 static void efx_remove_nic(struct efx_nic *efx)
320 {
321 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
322
323 efx_remove_interrupts(efx);
324 efx->type->remove(efx);
325 }
326
327 /**************************************************************************
328 *
329 * NIC startup/shutdown
330 *
331 *************************************************************************/
332
efx_probe_all(struct efx_nic * efx)333 static int efx_probe_all(struct efx_nic *efx)
334 {
335 int rc;
336
337 rc = efx_probe_nic(efx);
338 if (rc) {
339 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
340 goto fail1;
341 }
342
343 rc = efx_probe_port(efx);
344 if (rc) {
345 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
346 goto fail2;
347 }
348
349 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
350 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
351 rc = -EINVAL;
352 goto fail3;
353 }
354
355 #ifdef CONFIG_SFC_SRIOV
356 rc = efx->type->vswitching_probe(efx);
357 if (rc) /* not fatal; the PF will still work fine */
358 netif_warn(efx, probe, efx->net_dev,
359 "failed to setup vswitching rc=%d;"
360 " VFs may not function\n", rc);
361 #endif
362
363 rc = efx_probe_filters(efx);
364 if (rc) {
365 netif_err(efx, probe, efx->net_dev,
366 "failed to create filter tables\n");
367 goto fail4;
368 }
369
370 rc = efx_probe_channels(efx);
371 if (rc)
372 goto fail5;
373
374 efx->state = STATE_NET_DOWN;
375
376 return 0;
377
378 fail5:
379 efx_remove_filters(efx);
380 fail4:
381 #ifdef CONFIG_SFC_SRIOV
382 efx->type->vswitching_remove(efx);
383 #endif
384 fail3:
385 efx_remove_port(efx);
386 fail2:
387 efx_remove_nic(efx);
388 fail1:
389 return rc;
390 }
391
efx_remove_all(struct efx_nic * efx)392 static void efx_remove_all(struct efx_nic *efx)
393 {
394 rtnl_lock();
395 efx_xdp_setup_prog(efx, NULL);
396 rtnl_unlock();
397
398 efx_remove_channels(efx);
399 efx_remove_filters(efx);
400 #ifdef CONFIG_SFC_SRIOV
401 efx->type->vswitching_remove(efx);
402 #endif
403 efx_remove_port(efx);
404 efx_remove_nic(efx);
405 }
406
407 /**************************************************************************
408 *
409 * Interrupt moderation
410 *
411 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)412 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
413 {
414 if (usecs == 0)
415 return 0;
416 if (usecs * 1000 < efx->timer_quantum_ns)
417 return 1; /* never round down to 0 */
418 return usecs * 1000 / efx->timer_quantum_ns;
419 }
420
421 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)422 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
423 unsigned int rx_usecs, bool rx_adaptive,
424 bool rx_may_override_tx)
425 {
426 struct efx_channel *channel;
427 unsigned int timer_max_us;
428
429 EFX_ASSERT_RESET_SERIALISED(efx);
430
431 timer_max_us = efx->timer_max_ns / 1000;
432
433 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
434 return -EINVAL;
435
436 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
437 !rx_may_override_tx) {
438 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
439 "RX and TX IRQ moderation must be equal\n");
440 return -EINVAL;
441 }
442
443 efx->irq_rx_adaptive = rx_adaptive;
444 efx->irq_rx_moderation_us = rx_usecs;
445 efx_for_each_channel(channel, efx) {
446 if (efx_channel_has_rx_queue(channel))
447 channel->irq_moderation_us = rx_usecs;
448 else if (efx_channel_has_tx_queues(channel))
449 channel->irq_moderation_us = tx_usecs;
450 else if (efx_channel_is_xdp_tx(channel))
451 channel->irq_moderation_us = tx_usecs;
452 }
453
454 return 0;
455 }
456
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)457 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
458 unsigned int *rx_usecs, bool *rx_adaptive)
459 {
460 *rx_adaptive = efx->irq_rx_adaptive;
461 *rx_usecs = efx->irq_rx_moderation_us;
462
463 /* If channels are shared between RX and TX, so is IRQ
464 * moderation. Otherwise, IRQ moderation is the same for all
465 * TX channels and is not adaptive.
466 */
467 if (efx->tx_channel_offset == 0) {
468 *tx_usecs = *rx_usecs;
469 } else {
470 struct efx_channel *tx_channel;
471
472 tx_channel = efx->channel[efx->tx_channel_offset];
473 *tx_usecs = tx_channel->irq_moderation_us;
474 }
475 }
476
477 /**************************************************************************
478 *
479 * Kernel net device interface
480 *
481 *************************************************************************/
482
483 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)484 int efx_net_open(struct net_device *net_dev)
485 {
486 struct efx_nic *efx = efx_netdev_priv(net_dev);
487 int rc;
488
489 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
490 raw_smp_processor_id());
491
492 rc = efx_check_disabled(efx);
493 if (rc)
494 return rc;
495 if (efx->phy_mode & PHY_MODE_SPECIAL)
496 return -EBUSY;
497 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
498 return -EIO;
499
500 /* Notify the kernel of the link state polled during driver load,
501 * before the monitor starts running */
502 efx_link_status_changed(efx);
503
504 efx_start_all(efx);
505 if (efx->state == STATE_DISABLED || efx->reset_pending)
506 netif_device_detach(efx->net_dev);
507 else
508 efx->state = STATE_NET_UP;
509
510 return 0;
511 }
512
513 /* Context: process, rtnl_lock() held.
514 * Note that the kernel will ignore our return code; this method
515 * should really be a void.
516 */
efx_net_stop(struct net_device * net_dev)517 int efx_net_stop(struct net_device *net_dev)
518 {
519 struct efx_nic *efx = efx_netdev_priv(net_dev);
520
521 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
522 raw_smp_processor_id());
523
524 /* Stop the device and flush all the channels */
525 efx_stop_all(efx);
526
527 return 0;
528 }
529
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)530 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
531 {
532 struct efx_nic *efx = efx_netdev_priv(net_dev);
533
534 if (efx->type->vlan_rx_add_vid)
535 return efx->type->vlan_rx_add_vid(efx, proto, vid);
536 else
537 return -EOPNOTSUPP;
538 }
539
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)540 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
541 {
542 struct efx_nic *efx = efx_netdev_priv(net_dev);
543
544 if (efx->type->vlan_rx_kill_vid)
545 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
546 else
547 return -EOPNOTSUPP;
548 }
549
efx_hwtstamp_set(struct net_device * net_dev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)550 static int efx_hwtstamp_set(struct net_device *net_dev,
551 struct kernel_hwtstamp_config *config,
552 struct netlink_ext_ack *extack)
553 {
554 struct efx_nic *efx = efx_netdev_priv(net_dev);
555
556 return efx_ptp_set_ts_config(efx, config, extack);
557 }
558
efx_hwtstamp_get(struct net_device * net_dev,struct kernel_hwtstamp_config * config)559 static int efx_hwtstamp_get(struct net_device *net_dev,
560 struct kernel_hwtstamp_config *config)
561 {
562 struct efx_nic *efx = efx_netdev_priv(net_dev);
563
564 return efx_ptp_get_ts_config(efx, config);
565 }
566
567 static const struct net_device_ops efx_netdev_ops = {
568 .ndo_open = efx_net_open,
569 .ndo_stop = efx_net_stop,
570 .ndo_get_stats64 = efx_net_stats,
571 .ndo_tx_timeout = efx_watchdog,
572 .ndo_start_xmit = efx_hard_start_xmit,
573 .ndo_validate_addr = eth_validate_addr,
574 .ndo_change_mtu = efx_change_mtu,
575 .ndo_set_mac_address = efx_set_mac_address,
576 .ndo_set_rx_mode = efx_set_rx_mode,
577 .ndo_set_features = efx_set_features,
578 .ndo_features_check = efx_features_check,
579 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
580 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
581 .ndo_hwtstamp_set = efx_hwtstamp_set,
582 .ndo_hwtstamp_get = efx_hwtstamp_get,
583 #ifdef CONFIG_SFC_SRIOV
584 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
585 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
586 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
587 .ndo_get_vf_config = efx_sriov_get_vf_config,
588 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
589 #endif
590 .ndo_get_phys_port_id = efx_get_phys_port_id,
591 .ndo_get_phys_port_name = efx_get_phys_port_name,
592 #ifdef CONFIG_RFS_ACCEL
593 .ndo_rx_flow_steer = efx_filter_rfs,
594 #endif
595 .ndo_xdp_xmit = efx_xdp_xmit,
596 .ndo_bpf = efx_xdp
597 };
598
efx_get_queue_stats_rx(struct net_device * net_dev,int idx,struct netdev_queue_stats_rx * stats)599 static void efx_get_queue_stats_rx(struct net_device *net_dev, int idx,
600 struct netdev_queue_stats_rx *stats)
601 {
602 struct efx_nic *efx = efx_netdev_priv(net_dev);
603 struct efx_rx_queue *rx_queue;
604 struct efx_channel *channel;
605
606 channel = efx_get_channel(efx, idx);
607 rx_queue = efx_channel_get_rx_queue(channel);
608 /* Count only packets since last time datapath was started */
609 stats->packets = rx_queue->rx_packets - rx_queue->old_rx_packets;
610 stats->bytes = rx_queue->rx_bytes - rx_queue->old_rx_bytes;
611 stats->hw_drops = efx_get_queue_stat_rx_hw_drops(channel) -
612 channel->old_n_rx_hw_drops;
613 stats->hw_drop_overruns = channel->n_rx_nodesc_trunc -
614 channel->old_n_rx_hw_drop_overruns;
615 }
616
efx_get_queue_stats_tx(struct net_device * net_dev,int idx,struct netdev_queue_stats_tx * stats)617 static void efx_get_queue_stats_tx(struct net_device *net_dev, int idx,
618 struct netdev_queue_stats_tx *stats)
619 {
620 struct efx_nic *efx = efx_netdev_priv(net_dev);
621 struct efx_tx_queue *tx_queue;
622 struct efx_channel *channel;
623
624 channel = efx_get_tx_channel(efx, idx);
625 stats->packets = 0;
626 stats->bytes = 0;
627 stats->hw_gso_packets = 0;
628 stats->hw_gso_wire_packets = 0;
629 efx_for_each_channel_tx_queue(tx_queue, channel) {
630 stats->packets += tx_queue->complete_packets -
631 tx_queue->old_complete_packets;
632 stats->bytes += tx_queue->complete_bytes -
633 tx_queue->old_complete_bytes;
634 /* Note that, unlike stats->packets and stats->bytes,
635 * these count TXes enqueued, rather than completed,
636 * which may not be what users expect.
637 */
638 stats->hw_gso_packets += tx_queue->tso_bursts -
639 tx_queue->old_tso_bursts;
640 stats->hw_gso_wire_packets += tx_queue->tso_packets -
641 tx_queue->old_tso_packets;
642 }
643 }
644
efx_get_base_stats(struct net_device * net_dev,struct netdev_queue_stats_rx * rx,struct netdev_queue_stats_tx * tx)645 static void efx_get_base_stats(struct net_device *net_dev,
646 struct netdev_queue_stats_rx *rx,
647 struct netdev_queue_stats_tx *tx)
648 {
649 struct efx_nic *efx = efx_netdev_priv(net_dev);
650 struct efx_tx_queue *tx_queue;
651 struct efx_rx_queue *rx_queue;
652 struct efx_channel *channel;
653
654 rx->packets = 0;
655 rx->bytes = 0;
656 rx->hw_drops = 0;
657 rx->hw_drop_overruns = 0;
658 tx->packets = 0;
659 tx->bytes = 0;
660 tx->hw_gso_packets = 0;
661 tx->hw_gso_wire_packets = 0;
662
663 /* Count all packets on non-core queues, and packets before last
664 * datapath start on core queues.
665 */
666 efx_for_each_channel(channel, efx) {
667 rx_queue = efx_channel_get_rx_queue(channel);
668 if (channel->channel >= net_dev->real_num_rx_queues) {
669 rx->packets += rx_queue->rx_packets;
670 rx->bytes += rx_queue->rx_bytes;
671 rx->hw_drops += efx_get_queue_stat_rx_hw_drops(channel);
672 rx->hw_drop_overruns += channel->n_rx_nodesc_trunc;
673 } else {
674 rx->packets += rx_queue->old_rx_packets;
675 rx->bytes += rx_queue->old_rx_bytes;
676 rx->hw_drops += channel->old_n_rx_hw_drops;
677 rx->hw_drop_overruns += channel->old_n_rx_hw_drop_overruns;
678 }
679 efx_for_each_channel_tx_queue(tx_queue, channel) {
680 if (channel->channel < efx->tx_channel_offset ||
681 channel->channel >= efx->tx_channel_offset +
682 net_dev->real_num_tx_queues) {
683 tx->packets += tx_queue->complete_packets;
684 tx->bytes += tx_queue->complete_bytes;
685 tx->hw_gso_packets += tx_queue->tso_bursts;
686 tx->hw_gso_wire_packets += tx_queue->tso_packets;
687 } else {
688 tx->packets += tx_queue->old_complete_packets;
689 tx->bytes += tx_queue->old_complete_bytes;
690 tx->hw_gso_packets += tx_queue->old_tso_bursts;
691 tx->hw_gso_wire_packets += tx_queue->old_tso_packets;
692 }
693 /* Include XDP TX in device-wide stats */
694 tx->packets += tx_queue->complete_xdp_packets;
695 tx->bytes += tx_queue->complete_xdp_bytes;
696 }
697 }
698 }
699
700 static const struct netdev_stat_ops efx_stat_ops = {
701 .get_queue_stats_rx = efx_get_queue_stats_rx,
702 .get_queue_stats_tx = efx_get_queue_stats_tx,
703 .get_base_stats = efx_get_base_stats,
704 };
705
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)706 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
707 {
708 struct bpf_prog *old_prog;
709
710 if (efx->xdp_rxq_info_failed) {
711 netif_err(efx, drv, efx->net_dev,
712 "Unable to bind XDP program due to previous failure of rxq_info\n");
713 return -EINVAL;
714 }
715
716 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
717 netif_err(efx, drv, efx->net_dev,
718 "Unable to configure XDP with MTU of %d (max: %d)\n",
719 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
720 return -EINVAL;
721 }
722
723 old_prog = rtnl_dereference(efx->xdp_prog);
724 rcu_assign_pointer(efx->xdp_prog, prog);
725 /* Release the reference that was originally passed by the caller. */
726 if (old_prog)
727 bpf_prog_put(old_prog);
728
729 return 0;
730 }
731
732 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)733 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
734 {
735 struct efx_nic *efx = efx_netdev_priv(dev);
736
737 switch (xdp->command) {
738 case XDP_SETUP_PROG:
739 return efx_xdp_setup_prog(efx, xdp->prog);
740 default:
741 return -EINVAL;
742 }
743 }
744
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)745 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
746 u32 flags)
747 {
748 struct efx_nic *efx = efx_netdev_priv(dev);
749
750 if (!netif_running(dev))
751 return -EINVAL;
752
753 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
754 }
755
efx_update_name(struct efx_nic * efx)756 static void efx_update_name(struct efx_nic *efx)
757 {
758 strcpy(efx->name, efx->net_dev->name);
759 efx_mtd_rename(efx);
760 efx_set_channel_names(efx);
761 }
762
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)763 static int efx_netdev_event(struct notifier_block *this,
764 unsigned long event, void *ptr)
765 {
766 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
767
768 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
769 event == NETDEV_CHANGENAME)
770 efx_update_name(efx_netdev_priv(net_dev));
771
772 return NOTIFY_DONE;
773 }
774
775 static struct notifier_block efx_netdev_notifier = {
776 .notifier_call = efx_netdev_event,
777 };
778
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)779 static ssize_t phy_type_show(struct device *dev,
780 struct device_attribute *attr, char *buf)
781 {
782 struct efx_nic *efx = dev_get_drvdata(dev);
783 return sprintf(buf, "%d\n", efx->phy_type);
784 }
785 static DEVICE_ATTR_RO(phy_type);
786
efx_register_netdev(struct efx_nic * efx)787 static int efx_register_netdev(struct efx_nic *efx)
788 {
789 struct net_device *net_dev = efx->net_dev;
790 struct efx_channel *channel;
791 int rc;
792
793 net_dev->watchdog_timeo = 5 * HZ;
794 net_dev->irq = efx->pci_dev->irq;
795 net_dev->netdev_ops = &efx_netdev_ops;
796 net_dev->stat_ops = &efx_stat_ops;
797 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
798 net_dev->priv_flags |= IFF_UNICAST_FLT;
799 net_dev->ethtool_ops = &efx_ethtool_ops;
800 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
801 net_dev->min_mtu = EFX_MIN_MTU;
802 net_dev->max_mtu = EFX_MAX_MTU;
803
804 rtnl_lock();
805
806 /* Enable resets to be scheduled and check whether any were
807 * already requested. If so, the NIC is probably hosed so we
808 * abort.
809 */
810 if (efx->reset_pending) {
811 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
812 rc = -EIO;
813 goto fail_locked;
814 }
815
816 rc = dev_alloc_name(net_dev, net_dev->name);
817 if (rc < 0)
818 goto fail_locked;
819 efx_update_name(efx);
820
821 /* Always start with carrier off; PHY events will detect the link */
822 netif_carrier_off(net_dev);
823
824 rc = register_netdevice(net_dev);
825 if (rc)
826 goto fail_locked;
827
828 efx_for_each_channel(channel, efx) {
829 struct efx_tx_queue *tx_queue;
830 efx_for_each_channel_tx_queue(tx_queue, channel)
831 efx_init_tx_queue_core_txq(tx_queue);
832 }
833
834 efx_associate(efx);
835
836 efx->state = STATE_NET_DOWN;
837
838 rtnl_unlock();
839
840 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
841 if (rc) {
842 netif_err(efx, drv, efx->net_dev,
843 "failed to init net dev attributes\n");
844 goto fail_registered;
845 }
846
847 efx_init_mcdi_logging(efx);
848
849 return 0;
850
851 fail_registered:
852 rtnl_lock();
853 efx_dissociate(efx);
854 unregister_netdevice(net_dev);
855 fail_locked:
856 efx->state = STATE_UNINIT;
857 rtnl_unlock();
858 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
859 return rc;
860 }
861
efx_unregister_netdev(struct efx_nic * efx)862 static void efx_unregister_netdev(struct efx_nic *efx)
863 {
864 if (!efx->net_dev)
865 return;
866
867 if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
868 return;
869
870 if (efx_dev_registered(efx)) {
871 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
872 efx_fini_mcdi_logging(efx);
873 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
874 unregister_netdev(efx->net_dev);
875 }
876 }
877
878 /**************************************************************************
879 *
880 * List of NICs we support
881 *
882 **************************************************************************/
883
884 /* PCI device ID table */
885 static const struct pci_device_id efx_pci_table[] = {
886 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
887 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
888 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
889 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
890 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
891 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
892 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
893 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
894 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
895 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
896 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
897 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
898 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
899 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
900 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
901 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
902 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03), /* X4 PF (FF/LL) */
903 .driver_data = (unsigned long)&efx_x4_nic_type},
904 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03), /* X4 PF (FF only) */
905 .driver_data = (unsigned long)&efx_x4_nic_type},
906 {0} /* end of list */
907 };
908
909 /**************************************************************************
910 *
911 * Data housekeeping
912 *
913 **************************************************************************/
914
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)915 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
916 {
917 u64 n_rx_nodesc_trunc = 0;
918 struct efx_channel *channel;
919
920 efx_for_each_channel(channel, efx)
921 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
922 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
923 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
924 }
925
926 /**************************************************************************
927 *
928 * PCI interface
929 *
930 **************************************************************************/
931
932 /* Main body of final NIC shutdown code
933 * This is called only at module unload (or hotplug removal).
934 */
efx_pci_remove_main(struct efx_nic * efx)935 static void efx_pci_remove_main(struct efx_nic *efx)
936 {
937 /* Flush reset_work. It can no longer be scheduled since we
938 * are not READY.
939 */
940 WARN_ON(efx_net_active(efx->state));
941 efx_flush_reset_workqueue(efx);
942
943 efx_disable_interrupts(efx);
944 efx_clear_interrupt_affinity(efx);
945 efx_nic_fini_interrupt(efx);
946 efx_fini_port(efx);
947 efx->type->fini(efx);
948 efx_fini_napi(efx);
949 efx_remove_all(efx);
950 }
951
952 /* Final NIC shutdown
953 * This is called only at module unload (or hotplug removal). A PF can call
954 * this on its VFs to ensure they are unbound first.
955 */
efx_pci_remove(struct pci_dev * pci_dev)956 static void efx_pci_remove(struct pci_dev *pci_dev)
957 {
958 struct efx_probe_data *probe_data;
959 struct efx_nic *efx;
960
961 efx = pci_get_drvdata(pci_dev);
962 if (!efx)
963 return;
964
965 /* Mark the NIC as fini, then stop the interface */
966 rtnl_lock();
967 efx_dissociate(efx);
968 dev_close(efx->net_dev);
969 efx_disable_interrupts(efx);
970 efx->state = STATE_UNINIT;
971 rtnl_unlock();
972
973 if (efx->type->sriov_fini)
974 efx->type->sriov_fini(efx);
975
976 efx_fini_devlink_lock(efx);
977 efx_unregister_netdev(efx);
978
979 efx_mtd_remove(efx);
980
981 efx_pci_remove_main(efx);
982
983 efx_fini_io(efx);
984 pci_dbg(efx->pci_dev, "shutdown successful\n");
985
986 efx_fini_devlink_and_unlock(efx);
987 efx_fini_struct(efx);
988 free_netdev(efx->net_dev);
989 probe_data = container_of(efx, struct efx_probe_data, efx);
990 kfree(probe_data);
991 };
992
993 /* NIC VPD information
994 * Called during probe to display the part number of the
995 * installed NIC.
996 */
efx_probe_vpd_strings(struct efx_nic * efx)997 static void efx_probe_vpd_strings(struct efx_nic *efx)
998 {
999 struct pci_dev *dev = efx->pci_dev;
1000 unsigned int vpd_size, kw_len;
1001 u8 *vpd_data;
1002 int start;
1003
1004 vpd_data = pci_vpd_alloc(dev, &vpd_size);
1005 if (IS_ERR(vpd_data)) {
1006 pci_warn(dev, "Unable to read VPD\n");
1007 return;
1008 }
1009
1010 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1011 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
1012 if (start < 0)
1013 pci_err(dev, "Part number not found or incomplete\n");
1014 else
1015 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
1016
1017 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1018 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
1019 if (start < 0)
1020 pci_err(dev, "Serial number not found or incomplete\n");
1021 else
1022 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
1023
1024 kfree(vpd_data);
1025 }
1026
1027
1028 /* Main body of NIC initialisation
1029 * This is called at module load (or hotplug insertion, theoretically).
1030 */
efx_pci_probe_main(struct efx_nic * efx)1031 static int efx_pci_probe_main(struct efx_nic *efx)
1032 {
1033 int rc;
1034
1035 /* Do start-of-day initialisation */
1036 rc = efx_probe_all(efx);
1037 if (rc)
1038 goto fail1;
1039
1040 efx_init_napi(efx);
1041
1042 down_write(&efx->filter_sem);
1043 rc = efx->type->init(efx);
1044 up_write(&efx->filter_sem);
1045 if (rc) {
1046 pci_err(efx->pci_dev, "failed to initialise NIC\n");
1047 goto fail3;
1048 }
1049
1050 rc = efx_init_port(efx);
1051 if (rc) {
1052 netif_err(efx, probe, efx->net_dev,
1053 "failed to initialise port\n");
1054 goto fail4;
1055 }
1056
1057 rc = efx_nic_init_interrupt(efx);
1058 if (rc)
1059 goto fail5;
1060
1061 efx_set_interrupt_affinity(efx);
1062 rc = efx_enable_interrupts(efx);
1063 if (rc)
1064 goto fail6;
1065
1066 return 0;
1067
1068 fail6:
1069 efx_clear_interrupt_affinity(efx);
1070 efx_nic_fini_interrupt(efx);
1071 fail5:
1072 efx_fini_port(efx);
1073 fail4:
1074 efx->type->fini(efx);
1075 fail3:
1076 efx_fini_napi(efx);
1077 efx_remove_all(efx);
1078 fail1:
1079 return rc;
1080 }
1081
efx_pci_probe_post_io(struct efx_nic * efx)1082 static int efx_pci_probe_post_io(struct efx_nic *efx)
1083 {
1084 struct net_device *net_dev = efx->net_dev;
1085 int rc = efx_pci_probe_main(efx);
1086
1087 if (rc)
1088 return rc;
1089
1090 if (efx->type->sriov_init) {
1091 rc = efx->type->sriov_init(efx);
1092 if (rc)
1093 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1094 rc);
1095 }
1096
1097 /* Determine netdevice features */
1098 net_dev->features |= efx->type->offload_features;
1099
1100 /* Add TSO features */
1101 if (efx->type->tso_versions && efx->type->tso_versions(efx))
1102 net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1103
1104 /* Mask for features that also apply to VLAN devices */
1105 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1106 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1107 NETIF_F_RXCSUM);
1108
1109 /* Determine user configurable features */
1110 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1111
1112 /* Disable receiving frames with bad FCS, by default. */
1113 net_dev->features &= ~NETIF_F_RXALL;
1114
1115 /* Disable VLAN filtering by default. It may be enforced if
1116 * the feature is fixed (i.e. VLAN filters are required to
1117 * receive VLAN tagged packets due to vPort restrictions).
1118 */
1119 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1120 net_dev->features |= efx->fixed_features;
1121
1122 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1123 NETDEV_XDP_ACT_REDIRECT |
1124 NETDEV_XDP_ACT_NDO_XMIT;
1125
1126 /* devlink creation, registration and lock */
1127 rc = efx_probe_devlink_and_lock(efx);
1128 if (rc)
1129 pci_err(efx->pci_dev, "devlink registration failed");
1130
1131 rc = efx_register_netdev(efx);
1132 efx_probe_devlink_unlock(efx);
1133 if (!rc)
1134 return 0;
1135
1136 efx_pci_remove_main(efx);
1137 return rc;
1138 }
1139
1140 /* NIC initialisation
1141 *
1142 * This is called at module load (or hotplug insertion,
1143 * theoretically). It sets up PCI mappings, resets the NIC,
1144 * sets up and registers the network devices with the kernel and hooks
1145 * the interrupt service routine. It does not prepare the device for
1146 * transmission; this is left to the first time one of the network
1147 * interfaces is brought up (i.e. efx_net_open).
1148 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1149 static int efx_pci_probe(struct pci_dev *pci_dev,
1150 const struct pci_device_id *entry)
1151 {
1152 struct efx_probe_data *probe_data, **probe_ptr;
1153 struct net_device *net_dev;
1154 struct efx_nic *efx;
1155 int rc;
1156
1157 /* Allocate probe data and struct efx_nic */
1158 probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1159 if (!probe_data)
1160 return -ENOMEM;
1161 probe_data->pci_dev = pci_dev;
1162 efx = &probe_data->efx;
1163
1164 /* Allocate and initialise a struct net_device */
1165 net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1166 if (!net_dev) {
1167 rc = -ENOMEM;
1168 goto fail0;
1169 }
1170 probe_ptr = netdev_priv(net_dev);
1171 *probe_ptr = probe_data;
1172 efx->net_dev = net_dev;
1173 efx->type = (const struct efx_nic_type *) entry->driver_data;
1174 efx->fixed_features |= NETIF_F_HIGHDMA;
1175
1176 pci_set_drvdata(pci_dev, efx);
1177 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1178 rc = efx_init_struct(efx, pci_dev);
1179 if (rc)
1180 goto fail1;
1181
1182 pci_info(pci_dev, "Solarflare NIC detected\n");
1183
1184 if (!efx->type->is_vf)
1185 efx_probe_vpd_strings(efx);
1186
1187 /* Set up basic I/O (BAR mappings etc) */
1188 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1189 efx->type->mem_map_size(efx));
1190 if (rc)
1191 goto fail2;
1192
1193 rc = efx_pci_probe_post_io(efx);
1194 if (rc) {
1195 /* On failure, retry once immediately.
1196 * If we aborted probe due to a scheduled reset, dismiss it.
1197 */
1198 efx->reset_pending = 0;
1199 rc = efx_pci_probe_post_io(efx);
1200 if (rc) {
1201 /* On another failure, retry once more
1202 * after a 50-305ms delay.
1203 */
1204 unsigned char r;
1205
1206 get_random_bytes(&r, 1);
1207 msleep((unsigned int)r + 50);
1208 efx->reset_pending = 0;
1209 rc = efx_pci_probe_post_io(efx);
1210 }
1211 }
1212 if (rc)
1213 goto fail3;
1214
1215 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1216
1217 /* Try to create MTDs, but allow this to fail */
1218 rtnl_lock();
1219 rc = efx_mtd_probe(efx);
1220 rtnl_unlock();
1221 if (rc && rc != -EPERM)
1222 netif_warn(efx, probe, efx->net_dev,
1223 "failed to create MTDs (%d)\n", rc);
1224
1225 if (efx->type->udp_tnl_push_ports)
1226 efx->type->udp_tnl_push_ports(efx);
1227
1228 return 0;
1229
1230 fail3:
1231 efx_fini_io(efx);
1232 fail2:
1233 efx_fini_struct(efx);
1234 fail1:
1235 WARN_ON(rc > 0);
1236 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1237 free_netdev(net_dev);
1238 fail0:
1239 kfree(probe_data);
1240 return rc;
1241 }
1242
1243 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1244 * enabled on success
1245 */
1246 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1247 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1248 {
1249 int rc;
1250 struct efx_nic *efx = pci_get_drvdata(dev);
1251
1252 if (efx->type->sriov_configure) {
1253 rc = efx->type->sriov_configure(efx, num_vfs);
1254 if (rc)
1255 return rc;
1256 else
1257 return num_vfs;
1258 } else
1259 return -EOPNOTSUPP;
1260 }
1261 #endif
1262
efx_pm_freeze(struct device * dev)1263 static int efx_pm_freeze(struct device *dev)
1264 {
1265 struct efx_nic *efx = dev_get_drvdata(dev);
1266
1267 rtnl_lock();
1268
1269 if (efx_net_active(efx->state)) {
1270 efx_device_detach_sync(efx);
1271
1272 efx_stop_all(efx);
1273 efx_disable_interrupts(efx);
1274
1275 efx->state = efx_freeze(efx->state);
1276 }
1277
1278 rtnl_unlock();
1279
1280 return 0;
1281 }
1282
efx_pci_shutdown(struct pci_dev * pci_dev)1283 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1284 {
1285 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1286
1287 if (!efx)
1288 return;
1289
1290 efx_pm_freeze(&pci_dev->dev);
1291 pci_disable_device(pci_dev);
1292 }
1293
efx_pm_thaw(struct device * dev)1294 static int efx_pm_thaw(struct device *dev)
1295 {
1296 int rc;
1297 struct efx_nic *efx = dev_get_drvdata(dev);
1298
1299 rtnl_lock();
1300
1301 if (efx_frozen(efx->state)) {
1302 rc = efx_enable_interrupts(efx);
1303 if (rc)
1304 goto fail;
1305
1306 mutex_lock(&efx->mac_lock);
1307 efx_mcdi_port_reconfigure(efx);
1308 mutex_unlock(&efx->mac_lock);
1309
1310 efx_start_all(efx);
1311
1312 efx_device_attach_if_not_resetting(efx);
1313
1314 efx->state = efx_thaw(efx->state);
1315
1316 efx->type->resume_wol(efx);
1317 }
1318
1319 rtnl_unlock();
1320
1321 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1322 efx_queue_reset_work(efx);
1323
1324 return 0;
1325
1326 fail:
1327 rtnl_unlock();
1328
1329 return rc;
1330 }
1331
efx_pm_poweroff(struct device * dev)1332 static int efx_pm_poweroff(struct device *dev)
1333 {
1334 struct pci_dev *pci_dev = to_pci_dev(dev);
1335 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1336
1337 efx->type->fini(efx);
1338
1339 efx->reset_pending = 0;
1340
1341 pci_save_state(pci_dev);
1342 return pci_set_power_state(pci_dev, PCI_D3hot);
1343 }
1344
1345 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1346 static int efx_pm_resume(struct device *dev)
1347 {
1348 struct pci_dev *pci_dev = to_pci_dev(dev);
1349 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1350 int rc;
1351
1352 rc = pci_set_power_state(pci_dev, PCI_D0);
1353 if (rc)
1354 return rc;
1355 pci_restore_state(pci_dev);
1356 rc = pci_enable_device(pci_dev);
1357 if (rc)
1358 return rc;
1359 pci_set_master(efx->pci_dev);
1360 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1361 if (rc)
1362 return rc;
1363 down_write(&efx->filter_sem);
1364 rc = efx->type->init(efx);
1365 up_write(&efx->filter_sem);
1366 if (rc)
1367 return rc;
1368 rc = efx_pm_thaw(dev);
1369 return rc;
1370 }
1371
efx_pm_suspend(struct device * dev)1372 static int efx_pm_suspend(struct device *dev)
1373 {
1374 int rc;
1375
1376 efx_pm_freeze(dev);
1377 rc = efx_pm_poweroff(dev);
1378 if (rc)
1379 efx_pm_resume(dev);
1380 return rc;
1381 }
1382
1383 static const struct dev_pm_ops efx_pm_ops = {
1384 .suspend = efx_pm_suspend,
1385 .resume = efx_pm_resume,
1386 .freeze = efx_pm_freeze,
1387 .thaw = efx_pm_thaw,
1388 .poweroff = efx_pm_poweroff,
1389 .restore = efx_pm_resume,
1390 };
1391
1392 static struct pci_driver efx_pci_driver = {
1393 .name = KBUILD_MODNAME,
1394 .id_table = efx_pci_table,
1395 .probe = efx_pci_probe,
1396 .remove = efx_pci_remove,
1397 .driver.pm = &efx_pm_ops,
1398 .shutdown = efx_pci_shutdown,
1399 .err_handler = &efx_err_handlers,
1400 #ifdef CONFIG_SFC_SRIOV
1401 .sriov_configure = efx_pci_sriov_configure,
1402 #endif
1403 };
1404
1405 /**************************************************************************
1406 *
1407 * Kernel module interface
1408 *
1409 *************************************************************************/
1410
efx_init_module(void)1411 static int __init efx_init_module(void)
1412 {
1413 int rc;
1414
1415 printk(KERN_INFO "Solarflare NET driver\n");
1416
1417 rc = register_netdevice_notifier(&efx_netdev_notifier);
1418 if (rc)
1419 goto err_notifier;
1420
1421 rc = efx_create_reset_workqueue();
1422 if (rc)
1423 goto err_reset;
1424
1425 rc = pci_register_driver(&efx_pci_driver);
1426 if (rc < 0)
1427 goto err_pci;
1428
1429 rc = pci_register_driver(&ef100_pci_driver);
1430 if (rc < 0)
1431 goto err_pci_ef100;
1432
1433 return 0;
1434
1435 err_pci_ef100:
1436 pci_unregister_driver(&efx_pci_driver);
1437 err_pci:
1438 efx_destroy_reset_workqueue();
1439 err_reset:
1440 unregister_netdevice_notifier(&efx_netdev_notifier);
1441 err_notifier:
1442 return rc;
1443 }
1444
efx_exit_module(void)1445 static void __exit efx_exit_module(void)
1446 {
1447 printk(KERN_INFO "Solarflare NET driver unloading\n");
1448
1449 pci_unregister_driver(&ef100_pci_driver);
1450 pci_unregister_driver(&efx_pci_driver);
1451 efx_destroy_reset_workqueue();
1452 unregister_netdevice_notifier(&efx_netdev_notifier);
1453
1454 }
1455
1456 module_init(efx_init_module);
1457 module_exit(efx_exit_module);
1458
1459 MODULE_AUTHOR("Solarflare Communications and "
1460 "Michael Brown <mbrown@fensystems.co.uk>");
1461 MODULE_DESCRIPTION("Solarflare network driver");
1462 MODULE_LICENSE("GPL");
1463 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1464