1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include <net/netdev_queues.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "ef100.h"
30 #include "rx_common.h"
31 #include "tx_common.h"
32 #include "nic.h"
33 #include "io.h"
34 #include "selftest.h"
35 #include "sriov.h"
36 #include "efx_devlink.h"
37
38 #include "mcdi_port_common.h"
39 #include "mcdi_pcol.h"
40 #include "workarounds.h"
41
42 /**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
49 MODULE_PARM_DESC(interrupt_mode,
50 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
51
52 module_param(rss_cpus, uint, 0444);
53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
54
55 /*
56 * Use separate channels for TX and RX events
57 *
58 * Set this to 1 to use separate channels for TX and RX. It allows us
59 * to control interrupt affinity separately for TX and RX.
60 *
61 * This is only used in MSI-X interrupt mode
62 */
63 bool efx_separate_tx_channels;
64 module_param(efx_separate_tx_channels, bool, 0444);
65 MODULE_PARM_DESC(efx_separate_tx_channels,
66 "Use separate channels for TX and RX");
67
68 /* Initial interrupt moderation settings. They can be modified after
69 * module load with ethtool.
70 *
71 * The default for RX should strike a balance between increasing the
72 * round-trip latency and reducing overhead.
73 */
74 static unsigned int rx_irq_mod_usec = 60;
75
76 /* Initial interrupt moderation settings. They can be modified after
77 * module load with ethtool.
78 *
79 * This default is chosen to ensure that a 10G link does not go idle
80 * while a TX queue is stopped after it has become full. A queue is
81 * restarted when it drops below half full. The time this takes (assuming
82 * worst case 3 descriptors per packet and 1024 descriptors) is
83 * 512 / 3 * 1.2 = 205 usec.
84 */
85 static unsigned int tx_irq_mod_usec = 150;
86
87 static bool phy_flash_cfg;
88 module_param(phy_flash_cfg, bool, 0644);
89 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
90
91 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
92 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
93 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
94 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
95 module_param(debug, uint, 0);
96 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
97
98 /**************************************************************************
99 *
100 * Utility functions and prototypes
101 *
102 *************************************************************************/
103
104 static void efx_remove_port(struct efx_nic *efx);
105 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
106 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
107 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
108 u32 flags);
109
110 /**************************************************************************
111 *
112 * Port handling
113 *
114 **************************************************************************/
115
116 static void efx_fini_port(struct efx_nic *efx);
117
efx_probe_port(struct efx_nic * efx)118 static int efx_probe_port(struct efx_nic *efx)
119 {
120 int rc;
121
122 netif_dbg(efx, probe, efx->net_dev, "create port\n");
123
124 if (phy_flash_cfg)
125 efx->phy_mode = PHY_MODE_SPECIAL;
126
127 /* Connect up MAC/PHY operations table */
128 rc = efx->type->probe_port(efx);
129 if (rc)
130 return rc;
131
132 /* Initialise MAC address to permanent address */
133 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
134
135 return 0;
136 }
137
efx_init_port(struct efx_nic * efx)138 static int efx_init_port(struct efx_nic *efx)
139 {
140 int rc;
141
142 netif_dbg(efx, drv, efx->net_dev, "init port\n");
143
144 mutex_lock(&efx->mac_lock);
145
146 efx->port_initialized = true;
147
148 /* Ensure the PHY advertises the correct flow control settings */
149 rc = efx_mcdi_port_reconfigure(efx);
150 if (rc && rc != -EPERM)
151 goto fail;
152
153 mutex_unlock(&efx->mac_lock);
154 return 0;
155
156 fail:
157 mutex_unlock(&efx->mac_lock);
158 return rc;
159 }
160
efx_fini_port(struct efx_nic * efx)161 static void efx_fini_port(struct efx_nic *efx)
162 {
163 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
164
165 if (!efx->port_initialized)
166 return;
167
168 efx->port_initialized = false;
169
170 efx->link_state.up = false;
171 efx_link_status_changed(efx);
172 }
173
efx_remove_port(struct efx_nic * efx)174 static void efx_remove_port(struct efx_nic *efx)
175 {
176 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
177
178 efx->type->remove_port(efx);
179 }
180
181 /**************************************************************************
182 *
183 * NIC handling
184 *
185 **************************************************************************/
186
187 static LIST_HEAD(efx_primary_list);
188 static LIST_HEAD(efx_unassociated_list);
189
efx_same_controller(struct efx_nic * left,struct efx_nic * right)190 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
191 {
192 return left->type == right->type &&
193 left->vpd_sn && right->vpd_sn &&
194 !strcmp(left->vpd_sn, right->vpd_sn);
195 }
196
efx_associate(struct efx_nic * efx)197 static void efx_associate(struct efx_nic *efx)
198 {
199 struct efx_nic *other, *next;
200
201 if (efx->primary == efx) {
202 /* Adding primary function; look for secondaries */
203
204 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
205 list_add_tail(&efx->node, &efx_primary_list);
206
207 list_for_each_entry_safe(other, next, &efx_unassociated_list,
208 node) {
209 if (efx_same_controller(efx, other)) {
210 list_del(&other->node);
211 netif_dbg(other, probe, other->net_dev,
212 "moving to secondary list of %s %s\n",
213 pci_name(efx->pci_dev),
214 efx->net_dev->name);
215 list_add_tail(&other->node,
216 &efx->secondary_list);
217 other->primary = efx;
218 }
219 }
220 } else {
221 /* Adding secondary function; look for primary */
222
223 list_for_each_entry(other, &efx_primary_list, node) {
224 if (efx_same_controller(efx, other)) {
225 netif_dbg(efx, probe, efx->net_dev,
226 "adding to secondary list of %s %s\n",
227 pci_name(other->pci_dev),
228 other->net_dev->name);
229 list_add_tail(&efx->node,
230 &other->secondary_list);
231 efx->primary = other;
232 return;
233 }
234 }
235
236 netif_dbg(efx, probe, efx->net_dev,
237 "adding to unassociated list\n");
238 list_add_tail(&efx->node, &efx_unassociated_list);
239 }
240 }
241
efx_dissociate(struct efx_nic * efx)242 static void efx_dissociate(struct efx_nic *efx)
243 {
244 struct efx_nic *other, *next;
245
246 list_del(&efx->node);
247 efx->primary = NULL;
248
249 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
250 list_del(&other->node);
251 netif_dbg(other, probe, other->net_dev,
252 "moving to unassociated list\n");
253 list_add_tail(&other->node, &efx_unassociated_list);
254 other->primary = NULL;
255 }
256 }
257
efx_probe_nic(struct efx_nic * efx)258 static int efx_probe_nic(struct efx_nic *efx)
259 {
260 int rc;
261
262 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
263
264 /* Carry out hardware-type specific initialisation */
265 rc = efx->type->probe(efx);
266 if (rc)
267 return rc;
268
269 do {
270 if (!efx->max_channels || !efx->max_tx_channels) {
271 netif_err(efx, drv, efx->net_dev,
272 "Insufficient resources to allocate"
273 " any channels\n");
274 rc = -ENOSPC;
275 goto fail1;
276 }
277
278 /* Determine the number of channels and queues by trying
279 * to hook in MSI-X interrupts.
280 */
281 rc = efx_probe_interrupts(efx);
282 if (rc)
283 goto fail1;
284
285 rc = efx_set_channels(efx);
286 if (rc)
287 goto fail1;
288
289 /* dimension_resources can fail with EAGAIN */
290 rc = efx->type->dimension_resources(efx);
291 if (rc != 0 && rc != -EAGAIN)
292 goto fail2;
293
294 if (rc == -EAGAIN)
295 /* try again with new max_channels */
296 efx_remove_interrupts(efx);
297
298 } while (rc == -EAGAIN);
299
300 if (efx->n_channels > 1)
301 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
302 sizeof(efx->rss_context.rx_hash_key));
303 efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
304
305 /* Initialise the interrupt moderation settings */
306 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
307 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
308 true);
309
310 return 0;
311
312 fail2:
313 efx_remove_interrupts(efx);
314 fail1:
315 efx->type->remove(efx);
316 return rc;
317 }
318
efx_remove_nic(struct efx_nic * efx)319 static void efx_remove_nic(struct efx_nic *efx)
320 {
321 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
322
323 efx_remove_interrupts(efx);
324 efx->type->remove(efx);
325 }
326
327 /**************************************************************************
328 *
329 * NIC startup/shutdown
330 *
331 *************************************************************************/
332
efx_probe_all(struct efx_nic * efx)333 static int efx_probe_all(struct efx_nic *efx)
334 {
335 int rc;
336
337 rc = efx_probe_nic(efx);
338 if (rc) {
339 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
340 goto fail1;
341 }
342
343 rc = efx_probe_port(efx);
344 if (rc) {
345 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
346 goto fail2;
347 }
348
349 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
350 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
351 rc = -EINVAL;
352 goto fail3;
353 }
354
355 #ifdef CONFIG_SFC_SRIOV
356 rc = efx->type->vswitching_probe(efx);
357 if (rc) /* not fatal; the PF will still work fine */
358 netif_warn(efx, probe, efx->net_dev,
359 "failed to setup vswitching rc=%d;"
360 " VFs may not function\n", rc);
361 #endif
362
363 rc = efx_probe_filters(efx);
364 if (rc) {
365 netif_err(efx, probe, efx->net_dev,
366 "failed to create filter tables\n");
367 goto fail4;
368 }
369
370 rc = efx_probe_channels(efx);
371 if (rc)
372 goto fail5;
373
374 efx->state = STATE_NET_DOWN;
375
376 return 0;
377
378 fail5:
379 efx_remove_filters(efx);
380 fail4:
381 #ifdef CONFIG_SFC_SRIOV
382 efx->type->vswitching_remove(efx);
383 #endif
384 fail3:
385 efx_remove_port(efx);
386 fail2:
387 efx_remove_nic(efx);
388 fail1:
389 return rc;
390 }
391
efx_remove_all(struct efx_nic * efx)392 static void efx_remove_all(struct efx_nic *efx)
393 {
394 rtnl_lock();
395 efx_xdp_setup_prog(efx, NULL);
396 rtnl_unlock();
397
398 efx_remove_channels(efx);
399 efx_remove_filters(efx);
400 #ifdef CONFIG_SFC_SRIOV
401 efx->type->vswitching_remove(efx);
402 #endif
403 efx_remove_port(efx);
404 efx_remove_nic(efx);
405 }
406
407 /**************************************************************************
408 *
409 * Interrupt moderation
410 *
411 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)412 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
413 {
414 if (usecs == 0)
415 return 0;
416 if (usecs * 1000 < efx->timer_quantum_ns)
417 return 1; /* never round down to 0 */
418 return usecs * 1000 / efx->timer_quantum_ns;
419 }
420
421 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)422 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
423 unsigned int rx_usecs, bool rx_adaptive,
424 bool rx_may_override_tx)
425 {
426 struct efx_channel *channel;
427 unsigned int timer_max_us;
428
429 EFX_ASSERT_RESET_SERIALISED(efx);
430
431 timer_max_us = efx->timer_max_ns / 1000;
432
433 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
434 return -EINVAL;
435
436 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
437 !rx_may_override_tx) {
438 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
439 "RX and TX IRQ moderation must be equal\n");
440 return -EINVAL;
441 }
442
443 efx->irq_rx_adaptive = rx_adaptive;
444 efx->irq_rx_moderation_us = rx_usecs;
445 efx_for_each_channel(channel, efx) {
446 if (efx_channel_has_rx_queue(channel))
447 channel->irq_moderation_us = rx_usecs;
448 else if (efx_channel_has_tx_queues(channel))
449 channel->irq_moderation_us = tx_usecs;
450 else if (efx_channel_is_xdp_tx(channel))
451 channel->irq_moderation_us = tx_usecs;
452 }
453
454 return 0;
455 }
456
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)457 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
458 unsigned int *rx_usecs, bool *rx_adaptive)
459 {
460 *rx_adaptive = efx->irq_rx_adaptive;
461 *rx_usecs = efx->irq_rx_moderation_us;
462
463 /* If channels are shared between RX and TX, so is IRQ
464 * moderation. Otherwise, IRQ moderation is the same for all
465 * TX channels and is not adaptive.
466 */
467 if (efx->tx_channel_offset == 0) {
468 *tx_usecs = *rx_usecs;
469 } else {
470 struct efx_channel *tx_channel;
471
472 tx_channel = efx->channel[efx->tx_channel_offset];
473 *tx_usecs = tx_channel->irq_moderation_us;
474 }
475 }
476
477 /**************************************************************************
478 *
479 * ioctls
480 *
481 *************************************************************************/
482
483 /* Net device ioctl
484 * Context: process, rtnl_lock() held.
485 */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)486 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
487 {
488 struct efx_nic *efx = efx_netdev_priv(net_dev);
489 struct mii_ioctl_data *data = if_mii(ifr);
490
491 /* Convert phy_id from older PRTAD/DEVAD format */
492 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
493 (data->phy_id & 0xfc00) == 0x0400)
494 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
495
496 return mdio_mii_ioctl(&efx->mdio, data, cmd);
497 }
498
499 /**************************************************************************
500 *
501 * Kernel net device interface
502 *
503 *************************************************************************/
504
505 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)506 int efx_net_open(struct net_device *net_dev)
507 {
508 struct efx_nic *efx = efx_netdev_priv(net_dev);
509 int rc;
510
511 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
512 raw_smp_processor_id());
513
514 rc = efx_check_disabled(efx);
515 if (rc)
516 return rc;
517 if (efx->phy_mode & PHY_MODE_SPECIAL)
518 return -EBUSY;
519 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
520 return -EIO;
521
522 /* Notify the kernel of the link state polled during driver load,
523 * before the monitor starts running */
524 efx_link_status_changed(efx);
525
526 efx_start_all(efx);
527 if (efx->state == STATE_DISABLED || efx->reset_pending)
528 netif_device_detach(efx->net_dev);
529 else
530 efx->state = STATE_NET_UP;
531
532 return 0;
533 }
534
535 /* Context: process, rtnl_lock() held.
536 * Note that the kernel will ignore our return code; this method
537 * should really be a void.
538 */
efx_net_stop(struct net_device * net_dev)539 int efx_net_stop(struct net_device *net_dev)
540 {
541 struct efx_nic *efx = efx_netdev_priv(net_dev);
542
543 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
544 raw_smp_processor_id());
545
546 /* Stop the device and flush all the channels */
547 efx_stop_all(efx);
548
549 return 0;
550 }
551
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)552 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
553 {
554 struct efx_nic *efx = efx_netdev_priv(net_dev);
555
556 if (efx->type->vlan_rx_add_vid)
557 return efx->type->vlan_rx_add_vid(efx, proto, vid);
558 else
559 return -EOPNOTSUPP;
560 }
561
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)562 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
563 {
564 struct efx_nic *efx = efx_netdev_priv(net_dev);
565
566 if (efx->type->vlan_rx_kill_vid)
567 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
568 else
569 return -EOPNOTSUPP;
570 }
571
efx_hwtstamp_set(struct net_device * net_dev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)572 static int efx_hwtstamp_set(struct net_device *net_dev,
573 struct kernel_hwtstamp_config *config,
574 struct netlink_ext_ack *extack)
575 {
576 struct efx_nic *efx = efx_netdev_priv(net_dev);
577
578 return efx_ptp_set_ts_config(efx, config, extack);
579 }
580
efx_hwtstamp_get(struct net_device * net_dev,struct kernel_hwtstamp_config * config)581 static int efx_hwtstamp_get(struct net_device *net_dev,
582 struct kernel_hwtstamp_config *config)
583 {
584 struct efx_nic *efx = efx_netdev_priv(net_dev);
585
586 return efx_ptp_get_ts_config(efx, config);
587 }
588
589 static const struct net_device_ops efx_netdev_ops = {
590 .ndo_open = efx_net_open,
591 .ndo_stop = efx_net_stop,
592 .ndo_get_stats64 = efx_net_stats,
593 .ndo_tx_timeout = efx_watchdog,
594 .ndo_start_xmit = efx_hard_start_xmit,
595 .ndo_validate_addr = eth_validate_addr,
596 .ndo_eth_ioctl = efx_ioctl,
597 .ndo_change_mtu = efx_change_mtu,
598 .ndo_set_mac_address = efx_set_mac_address,
599 .ndo_set_rx_mode = efx_set_rx_mode,
600 .ndo_set_features = efx_set_features,
601 .ndo_features_check = efx_features_check,
602 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
603 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
604 .ndo_hwtstamp_set = efx_hwtstamp_set,
605 .ndo_hwtstamp_get = efx_hwtstamp_get,
606 #ifdef CONFIG_SFC_SRIOV
607 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
608 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
609 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
610 .ndo_get_vf_config = efx_sriov_get_vf_config,
611 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
612 #endif
613 .ndo_get_phys_port_id = efx_get_phys_port_id,
614 .ndo_get_phys_port_name = efx_get_phys_port_name,
615 #ifdef CONFIG_RFS_ACCEL
616 .ndo_rx_flow_steer = efx_filter_rfs,
617 #endif
618 .ndo_xdp_xmit = efx_xdp_xmit,
619 .ndo_bpf = efx_xdp
620 };
621
efx_get_queue_stats_rx(struct net_device * net_dev,int idx,struct netdev_queue_stats_rx * stats)622 static void efx_get_queue_stats_rx(struct net_device *net_dev, int idx,
623 struct netdev_queue_stats_rx *stats)
624 {
625 struct efx_nic *efx = efx_netdev_priv(net_dev);
626 struct efx_rx_queue *rx_queue;
627 struct efx_channel *channel;
628
629 channel = efx_get_channel(efx, idx);
630 rx_queue = efx_channel_get_rx_queue(channel);
631 /* Count only packets since last time datapath was started */
632 stats->packets = rx_queue->rx_packets - rx_queue->old_rx_packets;
633 stats->bytes = rx_queue->rx_bytes - rx_queue->old_rx_bytes;
634 stats->hw_drops = efx_get_queue_stat_rx_hw_drops(channel) -
635 channel->old_n_rx_hw_drops;
636 stats->hw_drop_overruns = channel->n_rx_nodesc_trunc -
637 channel->old_n_rx_hw_drop_overruns;
638 }
639
efx_get_queue_stats_tx(struct net_device * net_dev,int idx,struct netdev_queue_stats_tx * stats)640 static void efx_get_queue_stats_tx(struct net_device *net_dev, int idx,
641 struct netdev_queue_stats_tx *stats)
642 {
643 struct efx_nic *efx = efx_netdev_priv(net_dev);
644 struct efx_tx_queue *tx_queue;
645 struct efx_channel *channel;
646
647 channel = efx_get_tx_channel(efx, idx);
648 stats->packets = 0;
649 stats->bytes = 0;
650 stats->hw_gso_packets = 0;
651 stats->hw_gso_wire_packets = 0;
652 efx_for_each_channel_tx_queue(tx_queue, channel) {
653 stats->packets += tx_queue->complete_packets -
654 tx_queue->old_complete_packets;
655 stats->bytes += tx_queue->complete_bytes -
656 tx_queue->old_complete_bytes;
657 /* Note that, unlike stats->packets and stats->bytes,
658 * these count TXes enqueued, rather than completed,
659 * which may not be what users expect.
660 */
661 stats->hw_gso_packets += tx_queue->tso_bursts -
662 tx_queue->old_tso_bursts;
663 stats->hw_gso_wire_packets += tx_queue->tso_packets -
664 tx_queue->old_tso_packets;
665 }
666 }
667
efx_get_base_stats(struct net_device * net_dev,struct netdev_queue_stats_rx * rx,struct netdev_queue_stats_tx * tx)668 static void efx_get_base_stats(struct net_device *net_dev,
669 struct netdev_queue_stats_rx *rx,
670 struct netdev_queue_stats_tx *tx)
671 {
672 struct efx_nic *efx = efx_netdev_priv(net_dev);
673 struct efx_tx_queue *tx_queue;
674 struct efx_rx_queue *rx_queue;
675 struct efx_channel *channel;
676
677 rx->packets = 0;
678 rx->bytes = 0;
679 rx->hw_drops = 0;
680 rx->hw_drop_overruns = 0;
681 tx->packets = 0;
682 tx->bytes = 0;
683 tx->hw_gso_packets = 0;
684 tx->hw_gso_wire_packets = 0;
685
686 /* Count all packets on non-core queues, and packets before last
687 * datapath start on core queues.
688 */
689 efx_for_each_channel(channel, efx) {
690 rx_queue = efx_channel_get_rx_queue(channel);
691 if (channel->channel >= net_dev->real_num_rx_queues) {
692 rx->packets += rx_queue->rx_packets;
693 rx->bytes += rx_queue->rx_bytes;
694 rx->hw_drops += efx_get_queue_stat_rx_hw_drops(channel);
695 rx->hw_drop_overruns += channel->n_rx_nodesc_trunc;
696 } else {
697 rx->packets += rx_queue->old_rx_packets;
698 rx->bytes += rx_queue->old_rx_bytes;
699 rx->hw_drops += channel->old_n_rx_hw_drops;
700 rx->hw_drop_overruns += channel->old_n_rx_hw_drop_overruns;
701 }
702 efx_for_each_channel_tx_queue(tx_queue, channel) {
703 if (channel->channel < efx->tx_channel_offset ||
704 channel->channel >= efx->tx_channel_offset +
705 net_dev->real_num_tx_queues) {
706 tx->packets += tx_queue->complete_packets;
707 tx->bytes += tx_queue->complete_bytes;
708 tx->hw_gso_packets += tx_queue->tso_bursts;
709 tx->hw_gso_wire_packets += tx_queue->tso_packets;
710 } else {
711 tx->packets += tx_queue->old_complete_packets;
712 tx->bytes += tx_queue->old_complete_bytes;
713 tx->hw_gso_packets += tx_queue->old_tso_bursts;
714 tx->hw_gso_wire_packets += tx_queue->old_tso_packets;
715 }
716 /* Include XDP TX in device-wide stats */
717 tx->packets += tx_queue->complete_xdp_packets;
718 tx->bytes += tx_queue->complete_xdp_bytes;
719 }
720 }
721 }
722
723 static const struct netdev_stat_ops efx_stat_ops = {
724 .get_queue_stats_rx = efx_get_queue_stats_rx,
725 .get_queue_stats_tx = efx_get_queue_stats_tx,
726 .get_base_stats = efx_get_base_stats,
727 };
728
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)729 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
730 {
731 struct bpf_prog *old_prog;
732
733 if (efx->xdp_rxq_info_failed) {
734 netif_err(efx, drv, efx->net_dev,
735 "Unable to bind XDP program due to previous failure of rxq_info\n");
736 return -EINVAL;
737 }
738
739 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
740 netif_err(efx, drv, efx->net_dev,
741 "Unable to configure XDP with MTU of %d (max: %d)\n",
742 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
743 return -EINVAL;
744 }
745
746 old_prog = rtnl_dereference(efx->xdp_prog);
747 rcu_assign_pointer(efx->xdp_prog, prog);
748 /* Release the reference that was originally passed by the caller. */
749 if (old_prog)
750 bpf_prog_put(old_prog);
751
752 return 0;
753 }
754
755 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)756 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
757 {
758 struct efx_nic *efx = efx_netdev_priv(dev);
759
760 switch (xdp->command) {
761 case XDP_SETUP_PROG:
762 return efx_xdp_setup_prog(efx, xdp->prog);
763 default:
764 return -EINVAL;
765 }
766 }
767
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)768 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
769 u32 flags)
770 {
771 struct efx_nic *efx = efx_netdev_priv(dev);
772
773 if (!netif_running(dev))
774 return -EINVAL;
775
776 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
777 }
778
efx_update_name(struct efx_nic * efx)779 static void efx_update_name(struct efx_nic *efx)
780 {
781 strcpy(efx->name, efx->net_dev->name);
782 efx_mtd_rename(efx);
783 efx_set_channel_names(efx);
784 }
785
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)786 static int efx_netdev_event(struct notifier_block *this,
787 unsigned long event, void *ptr)
788 {
789 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
790
791 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
792 event == NETDEV_CHANGENAME)
793 efx_update_name(efx_netdev_priv(net_dev));
794
795 return NOTIFY_DONE;
796 }
797
798 static struct notifier_block efx_netdev_notifier = {
799 .notifier_call = efx_netdev_event,
800 };
801
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)802 static ssize_t phy_type_show(struct device *dev,
803 struct device_attribute *attr, char *buf)
804 {
805 struct efx_nic *efx = dev_get_drvdata(dev);
806 return sprintf(buf, "%d\n", efx->phy_type);
807 }
808 static DEVICE_ATTR_RO(phy_type);
809
efx_register_netdev(struct efx_nic * efx)810 static int efx_register_netdev(struct efx_nic *efx)
811 {
812 struct net_device *net_dev = efx->net_dev;
813 struct efx_channel *channel;
814 int rc;
815
816 net_dev->watchdog_timeo = 5 * HZ;
817 net_dev->irq = efx->pci_dev->irq;
818 net_dev->netdev_ops = &efx_netdev_ops;
819 net_dev->stat_ops = &efx_stat_ops;
820 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
821 net_dev->priv_flags |= IFF_UNICAST_FLT;
822 net_dev->ethtool_ops = &efx_ethtool_ops;
823 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
824 net_dev->min_mtu = EFX_MIN_MTU;
825 net_dev->max_mtu = EFX_MAX_MTU;
826
827 rtnl_lock();
828
829 /* Enable resets to be scheduled and check whether any were
830 * already requested. If so, the NIC is probably hosed so we
831 * abort.
832 */
833 if (efx->reset_pending) {
834 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
835 rc = -EIO;
836 goto fail_locked;
837 }
838
839 rc = dev_alloc_name(net_dev, net_dev->name);
840 if (rc < 0)
841 goto fail_locked;
842 efx_update_name(efx);
843
844 /* Always start with carrier off; PHY events will detect the link */
845 netif_carrier_off(net_dev);
846
847 rc = register_netdevice(net_dev);
848 if (rc)
849 goto fail_locked;
850
851 efx_for_each_channel(channel, efx) {
852 struct efx_tx_queue *tx_queue;
853 efx_for_each_channel_tx_queue(tx_queue, channel)
854 efx_init_tx_queue_core_txq(tx_queue);
855 }
856
857 efx_associate(efx);
858
859 efx->state = STATE_NET_DOWN;
860
861 rtnl_unlock();
862
863 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
864 if (rc) {
865 netif_err(efx, drv, efx->net_dev,
866 "failed to init net dev attributes\n");
867 goto fail_registered;
868 }
869
870 efx_init_mcdi_logging(efx);
871
872 return 0;
873
874 fail_registered:
875 rtnl_lock();
876 efx_dissociate(efx);
877 unregister_netdevice(net_dev);
878 fail_locked:
879 efx->state = STATE_UNINIT;
880 rtnl_unlock();
881 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
882 return rc;
883 }
884
efx_unregister_netdev(struct efx_nic * efx)885 static void efx_unregister_netdev(struct efx_nic *efx)
886 {
887 if (!efx->net_dev)
888 return;
889
890 if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
891 return;
892
893 if (efx_dev_registered(efx)) {
894 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
895 efx_fini_mcdi_logging(efx);
896 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
897 unregister_netdev(efx->net_dev);
898 }
899 }
900
901 /**************************************************************************
902 *
903 * List of NICs we support
904 *
905 **************************************************************************/
906
907 /* PCI device ID table */
908 static const struct pci_device_id efx_pci_table[] = {
909 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
910 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
911 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
912 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
913 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
914 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
915 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
916 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
917 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
918 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
919 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
920 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
921 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
922 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
923 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
924 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
925 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03), /* X4 PF (FF/LL) */
926 .driver_data = (unsigned long)&efx_x4_nic_type},
927 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03), /* X4 PF (FF only) */
928 .driver_data = (unsigned long)&efx_x4_nic_type},
929 {0} /* end of list */
930 };
931
932 /**************************************************************************
933 *
934 * Data housekeeping
935 *
936 **************************************************************************/
937
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)938 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
939 {
940 u64 n_rx_nodesc_trunc = 0;
941 struct efx_channel *channel;
942
943 efx_for_each_channel(channel, efx)
944 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
945 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
946 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
947 }
948
949 /**************************************************************************
950 *
951 * PCI interface
952 *
953 **************************************************************************/
954
955 /* Main body of final NIC shutdown code
956 * This is called only at module unload (or hotplug removal).
957 */
efx_pci_remove_main(struct efx_nic * efx)958 static void efx_pci_remove_main(struct efx_nic *efx)
959 {
960 /* Flush reset_work. It can no longer be scheduled since we
961 * are not READY.
962 */
963 WARN_ON(efx_net_active(efx->state));
964 efx_flush_reset_workqueue(efx);
965
966 efx_disable_interrupts(efx);
967 efx_clear_interrupt_affinity(efx);
968 efx_nic_fini_interrupt(efx);
969 efx_fini_port(efx);
970 efx->type->fini(efx);
971 efx_fini_napi(efx);
972 efx_remove_all(efx);
973 }
974
975 /* Final NIC shutdown
976 * This is called only at module unload (or hotplug removal). A PF can call
977 * this on its VFs to ensure they are unbound first.
978 */
efx_pci_remove(struct pci_dev * pci_dev)979 static void efx_pci_remove(struct pci_dev *pci_dev)
980 {
981 struct efx_probe_data *probe_data;
982 struct efx_nic *efx;
983
984 efx = pci_get_drvdata(pci_dev);
985 if (!efx)
986 return;
987
988 /* Mark the NIC as fini, then stop the interface */
989 rtnl_lock();
990 efx_dissociate(efx);
991 dev_close(efx->net_dev);
992 efx_disable_interrupts(efx);
993 efx->state = STATE_UNINIT;
994 rtnl_unlock();
995
996 if (efx->type->sriov_fini)
997 efx->type->sriov_fini(efx);
998
999 efx_fini_devlink_lock(efx);
1000 efx_unregister_netdev(efx);
1001
1002 efx_mtd_remove(efx);
1003
1004 efx_pci_remove_main(efx);
1005
1006 efx_fini_io(efx);
1007 pci_dbg(efx->pci_dev, "shutdown successful\n");
1008
1009 efx_fini_devlink_and_unlock(efx);
1010 efx_fini_struct(efx);
1011 free_netdev(efx->net_dev);
1012 probe_data = container_of(efx, struct efx_probe_data, efx);
1013 kfree(probe_data);
1014 };
1015
1016 /* NIC VPD information
1017 * Called during probe to display the part number of the
1018 * installed NIC.
1019 */
efx_probe_vpd_strings(struct efx_nic * efx)1020 static void efx_probe_vpd_strings(struct efx_nic *efx)
1021 {
1022 struct pci_dev *dev = efx->pci_dev;
1023 unsigned int vpd_size, kw_len;
1024 u8 *vpd_data;
1025 int start;
1026
1027 vpd_data = pci_vpd_alloc(dev, &vpd_size);
1028 if (IS_ERR(vpd_data)) {
1029 pci_warn(dev, "Unable to read VPD\n");
1030 return;
1031 }
1032
1033 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1034 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
1035 if (start < 0)
1036 pci_err(dev, "Part number not found or incomplete\n");
1037 else
1038 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
1039
1040 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1041 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
1042 if (start < 0)
1043 pci_err(dev, "Serial number not found or incomplete\n");
1044 else
1045 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
1046
1047 kfree(vpd_data);
1048 }
1049
1050
1051 /* Main body of NIC initialisation
1052 * This is called at module load (or hotplug insertion, theoretically).
1053 */
efx_pci_probe_main(struct efx_nic * efx)1054 static int efx_pci_probe_main(struct efx_nic *efx)
1055 {
1056 int rc;
1057
1058 /* Do start-of-day initialisation */
1059 rc = efx_probe_all(efx);
1060 if (rc)
1061 goto fail1;
1062
1063 efx_init_napi(efx);
1064
1065 down_write(&efx->filter_sem);
1066 rc = efx->type->init(efx);
1067 up_write(&efx->filter_sem);
1068 if (rc) {
1069 pci_err(efx->pci_dev, "failed to initialise NIC\n");
1070 goto fail3;
1071 }
1072
1073 rc = efx_init_port(efx);
1074 if (rc) {
1075 netif_err(efx, probe, efx->net_dev,
1076 "failed to initialise port\n");
1077 goto fail4;
1078 }
1079
1080 rc = efx_nic_init_interrupt(efx);
1081 if (rc)
1082 goto fail5;
1083
1084 efx_set_interrupt_affinity(efx);
1085 rc = efx_enable_interrupts(efx);
1086 if (rc)
1087 goto fail6;
1088
1089 return 0;
1090
1091 fail6:
1092 efx_clear_interrupt_affinity(efx);
1093 efx_nic_fini_interrupt(efx);
1094 fail5:
1095 efx_fini_port(efx);
1096 fail4:
1097 efx->type->fini(efx);
1098 fail3:
1099 efx_fini_napi(efx);
1100 efx_remove_all(efx);
1101 fail1:
1102 return rc;
1103 }
1104
efx_pci_probe_post_io(struct efx_nic * efx)1105 static int efx_pci_probe_post_io(struct efx_nic *efx)
1106 {
1107 struct net_device *net_dev = efx->net_dev;
1108 int rc = efx_pci_probe_main(efx);
1109
1110 if (rc)
1111 return rc;
1112
1113 if (efx->type->sriov_init) {
1114 rc = efx->type->sriov_init(efx);
1115 if (rc)
1116 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1117 rc);
1118 }
1119
1120 /* Determine netdevice features */
1121 net_dev->features |= efx->type->offload_features;
1122
1123 /* Add TSO features */
1124 if (efx->type->tso_versions && efx->type->tso_versions(efx))
1125 net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1126
1127 /* Mask for features that also apply to VLAN devices */
1128 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1129 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1130 NETIF_F_RXCSUM);
1131
1132 /* Determine user configurable features */
1133 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1134
1135 /* Disable receiving frames with bad FCS, by default. */
1136 net_dev->features &= ~NETIF_F_RXALL;
1137
1138 /* Disable VLAN filtering by default. It may be enforced if
1139 * the feature is fixed (i.e. VLAN filters are required to
1140 * receive VLAN tagged packets due to vPort restrictions).
1141 */
1142 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1143 net_dev->features |= efx->fixed_features;
1144
1145 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1146 NETDEV_XDP_ACT_REDIRECT |
1147 NETDEV_XDP_ACT_NDO_XMIT;
1148
1149 /* devlink creation, registration and lock */
1150 rc = efx_probe_devlink_and_lock(efx);
1151 if (rc)
1152 pci_err(efx->pci_dev, "devlink registration failed");
1153
1154 rc = efx_register_netdev(efx);
1155 efx_probe_devlink_unlock(efx);
1156 if (!rc)
1157 return 0;
1158
1159 efx_pci_remove_main(efx);
1160 return rc;
1161 }
1162
1163 /* NIC initialisation
1164 *
1165 * This is called at module load (or hotplug insertion,
1166 * theoretically). It sets up PCI mappings, resets the NIC,
1167 * sets up and registers the network devices with the kernel and hooks
1168 * the interrupt service routine. It does not prepare the device for
1169 * transmission; this is left to the first time one of the network
1170 * interfaces is brought up (i.e. efx_net_open).
1171 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1172 static int efx_pci_probe(struct pci_dev *pci_dev,
1173 const struct pci_device_id *entry)
1174 {
1175 struct efx_probe_data *probe_data, **probe_ptr;
1176 struct net_device *net_dev;
1177 struct efx_nic *efx;
1178 int rc;
1179
1180 /* Allocate probe data and struct efx_nic */
1181 probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1182 if (!probe_data)
1183 return -ENOMEM;
1184 probe_data->pci_dev = pci_dev;
1185 efx = &probe_data->efx;
1186
1187 /* Allocate and initialise a struct net_device */
1188 net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1189 if (!net_dev) {
1190 rc = -ENOMEM;
1191 goto fail0;
1192 }
1193 probe_ptr = netdev_priv(net_dev);
1194 *probe_ptr = probe_data;
1195 efx->net_dev = net_dev;
1196 efx->type = (const struct efx_nic_type *) entry->driver_data;
1197 efx->fixed_features |= NETIF_F_HIGHDMA;
1198
1199 pci_set_drvdata(pci_dev, efx);
1200 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1201 rc = efx_init_struct(efx, pci_dev);
1202 if (rc)
1203 goto fail1;
1204 efx->mdio.dev = net_dev;
1205
1206 pci_info(pci_dev, "Solarflare NIC detected\n");
1207
1208 if (!efx->type->is_vf)
1209 efx_probe_vpd_strings(efx);
1210
1211 /* Set up basic I/O (BAR mappings etc) */
1212 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1213 efx->type->mem_map_size(efx));
1214 if (rc)
1215 goto fail2;
1216
1217 rc = efx_pci_probe_post_io(efx);
1218 if (rc) {
1219 /* On failure, retry once immediately.
1220 * If we aborted probe due to a scheduled reset, dismiss it.
1221 */
1222 efx->reset_pending = 0;
1223 rc = efx_pci_probe_post_io(efx);
1224 if (rc) {
1225 /* On another failure, retry once more
1226 * after a 50-305ms delay.
1227 */
1228 unsigned char r;
1229
1230 get_random_bytes(&r, 1);
1231 msleep((unsigned int)r + 50);
1232 efx->reset_pending = 0;
1233 rc = efx_pci_probe_post_io(efx);
1234 }
1235 }
1236 if (rc)
1237 goto fail3;
1238
1239 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1240
1241 /* Try to create MTDs, but allow this to fail */
1242 rtnl_lock();
1243 rc = efx_mtd_probe(efx);
1244 rtnl_unlock();
1245 if (rc && rc != -EPERM)
1246 netif_warn(efx, probe, efx->net_dev,
1247 "failed to create MTDs (%d)\n", rc);
1248
1249 if (efx->type->udp_tnl_push_ports)
1250 efx->type->udp_tnl_push_ports(efx);
1251
1252 return 0;
1253
1254 fail3:
1255 efx_fini_io(efx);
1256 fail2:
1257 efx_fini_struct(efx);
1258 fail1:
1259 WARN_ON(rc > 0);
1260 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1261 free_netdev(net_dev);
1262 fail0:
1263 kfree(probe_data);
1264 return rc;
1265 }
1266
1267 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1268 * enabled on success
1269 */
1270 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1271 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1272 {
1273 int rc;
1274 struct efx_nic *efx = pci_get_drvdata(dev);
1275
1276 if (efx->type->sriov_configure) {
1277 rc = efx->type->sriov_configure(efx, num_vfs);
1278 if (rc)
1279 return rc;
1280 else
1281 return num_vfs;
1282 } else
1283 return -EOPNOTSUPP;
1284 }
1285 #endif
1286
efx_pm_freeze(struct device * dev)1287 static int efx_pm_freeze(struct device *dev)
1288 {
1289 struct efx_nic *efx = dev_get_drvdata(dev);
1290
1291 rtnl_lock();
1292
1293 if (efx_net_active(efx->state)) {
1294 efx_device_detach_sync(efx);
1295
1296 efx_stop_all(efx);
1297 efx_disable_interrupts(efx);
1298
1299 efx->state = efx_freeze(efx->state);
1300 }
1301
1302 rtnl_unlock();
1303
1304 return 0;
1305 }
1306
efx_pci_shutdown(struct pci_dev * pci_dev)1307 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1308 {
1309 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1310
1311 if (!efx)
1312 return;
1313
1314 efx_pm_freeze(&pci_dev->dev);
1315 pci_disable_device(pci_dev);
1316 }
1317
efx_pm_thaw(struct device * dev)1318 static int efx_pm_thaw(struct device *dev)
1319 {
1320 int rc;
1321 struct efx_nic *efx = dev_get_drvdata(dev);
1322
1323 rtnl_lock();
1324
1325 if (efx_frozen(efx->state)) {
1326 rc = efx_enable_interrupts(efx);
1327 if (rc)
1328 goto fail;
1329
1330 mutex_lock(&efx->mac_lock);
1331 efx_mcdi_port_reconfigure(efx);
1332 mutex_unlock(&efx->mac_lock);
1333
1334 efx_start_all(efx);
1335
1336 efx_device_attach_if_not_resetting(efx);
1337
1338 efx->state = efx_thaw(efx->state);
1339
1340 efx->type->resume_wol(efx);
1341 }
1342
1343 rtnl_unlock();
1344
1345 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1346 efx_queue_reset_work(efx);
1347
1348 return 0;
1349
1350 fail:
1351 rtnl_unlock();
1352
1353 return rc;
1354 }
1355
efx_pm_poweroff(struct device * dev)1356 static int efx_pm_poweroff(struct device *dev)
1357 {
1358 struct pci_dev *pci_dev = to_pci_dev(dev);
1359 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1360
1361 efx->type->fini(efx);
1362
1363 efx->reset_pending = 0;
1364
1365 pci_save_state(pci_dev);
1366 return pci_set_power_state(pci_dev, PCI_D3hot);
1367 }
1368
1369 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1370 static int efx_pm_resume(struct device *dev)
1371 {
1372 struct pci_dev *pci_dev = to_pci_dev(dev);
1373 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1374 int rc;
1375
1376 rc = pci_set_power_state(pci_dev, PCI_D0);
1377 if (rc)
1378 return rc;
1379 pci_restore_state(pci_dev);
1380 rc = pci_enable_device(pci_dev);
1381 if (rc)
1382 return rc;
1383 pci_set_master(efx->pci_dev);
1384 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1385 if (rc)
1386 return rc;
1387 down_write(&efx->filter_sem);
1388 rc = efx->type->init(efx);
1389 up_write(&efx->filter_sem);
1390 if (rc)
1391 return rc;
1392 rc = efx_pm_thaw(dev);
1393 return rc;
1394 }
1395
efx_pm_suspend(struct device * dev)1396 static int efx_pm_suspend(struct device *dev)
1397 {
1398 int rc;
1399
1400 efx_pm_freeze(dev);
1401 rc = efx_pm_poweroff(dev);
1402 if (rc)
1403 efx_pm_resume(dev);
1404 return rc;
1405 }
1406
1407 static const struct dev_pm_ops efx_pm_ops = {
1408 .suspend = efx_pm_suspend,
1409 .resume = efx_pm_resume,
1410 .freeze = efx_pm_freeze,
1411 .thaw = efx_pm_thaw,
1412 .poweroff = efx_pm_poweroff,
1413 .restore = efx_pm_resume,
1414 };
1415
1416 static struct pci_driver efx_pci_driver = {
1417 .name = KBUILD_MODNAME,
1418 .id_table = efx_pci_table,
1419 .probe = efx_pci_probe,
1420 .remove = efx_pci_remove,
1421 .driver.pm = &efx_pm_ops,
1422 .shutdown = efx_pci_shutdown,
1423 .err_handler = &efx_err_handlers,
1424 #ifdef CONFIG_SFC_SRIOV
1425 .sriov_configure = efx_pci_sriov_configure,
1426 #endif
1427 };
1428
1429 /**************************************************************************
1430 *
1431 * Kernel module interface
1432 *
1433 *************************************************************************/
1434
efx_init_module(void)1435 static int __init efx_init_module(void)
1436 {
1437 int rc;
1438
1439 printk(KERN_INFO "Solarflare NET driver\n");
1440
1441 rc = register_netdevice_notifier(&efx_netdev_notifier);
1442 if (rc)
1443 goto err_notifier;
1444
1445 rc = efx_create_reset_workqueue();
1446 if (rc)
1447 goto err_reset;
1448
1449 rc = pci_register_driver(&efx_pci_driver);
1450 if (rc < 0)
1451 goto err_pci;
1452
1453 rc = pci_register_driver(&ef100_pci_driver);
1454 if (rc < 0)
1455 goto err_pci_ef100;
1456
1457 return 0;
1458
1459 err_pci_ef100:
1460 pci_unregister_driver(&efx_pci_driver);
1461 err_pci:
1462 efx_destroy_reset_workqueue();
1463 err_reset:
1464 unregister_netdevice_notifier(&efx_netdev_notifier);
1465 err_notifier:
1466 return rc;
1467 }
1468
efx_exit_module(void)1469 static void __exit efx_exit_module(void)
1470 {
1471 printk(KERN_INFO "Solarflare NET driver unloading\n");
1472
1473 pci_unregister_driver(&ef100_pci_driver);
1474 pci_unregister_driver(&efx_pci_driver);
1475 efx_destroy_reset_workqueue();
1476 unregister_netdevice_notifier(&efx_netdev_notifier);
1477
1478 }
1479
1480 module_init(efx_init_module);
1481 module_exit(efx_exit_module);
1482
1483 MODULE_AUTHOR("Solarflare Communications and "
1484 "Michael Brown <mbrown@fensystems.co.uk>");
1485 MODULE_DESCRIPTION("Solarflare network driver");
1486 MODULE_LICENSE("GPL");
1487 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1488