xref: /linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
28 	"s0ix-enabled",
29 #define E1000E_PRIV_FLAGS_DISABLE_K1	BIT(1)
30 	"disable-k1",
31 };
32 
33 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
34 
35 #define E1000_STAT(str, m) { \
36 		.stat_string = str, \
37 		.type = E1000_STATS, \
38 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
39 		.stat_offset = offsetof(struct e1000_adapter, m) }
40 #define E1000_NETDEV_STAT(str, m) { \
41 		.stat_string = str, \
42 		.type = NETDEV_STATS, \
43 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
44 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
45 
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 	E1000_STAT("rx_packets", stats.gprc),
48 	E1000_STAT("tx_packets", stats.gptc),
49 	E1000_STAT("rx_bytes", stats.gorc),
50 	E1000_STAT("tx_bytes", stats.gotc),
51 	E1000_STAT("rx_broadcast", stats.bprc),
52 	E1000_STAT("tx_broadcast", stats.bptc),
53 	E1000_STAT("rx_multicast", stats.mprc),
54 	E1000_STAT("tx_multicast", stats.mptc),
55 	E1000_NETDEV_STAT("rx_errors", rx_errors),
56 	E1000_NETDEV_STAT("tx_errors", tx_errors),
57 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
58 	E1000_STAT("multicast", stats.mprc),
59 	E1000_STAT("collisions", stats.colc),
60 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
61 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
62 	E1000_STAT("rx_crc_errors", stats.crcerrs),
63 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
64 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
65 	E1000_STAT("rx_missed_errors", stats.mpc),
66 	E1000_STAT("tx_aborted_errors", stats.ecol),
67 	E1000_STAT("tx_carrier_errors", stats.tncrs),
68 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
69 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
70 	E1000_STAT("tx_window_errors", stats.latecol),
71 	E1000_STAT("tx_abort_late_coll", stats.latecol),
72 	E1000_STAT("tx_deferred_ok", stats.dc),
73 	E1000_STAT("tx_single_coll_ok", stats.scc),
74 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
75 	E1000_STAT("tx_timeout_count", tx_timeout_count),
76 	E1000_STAT("tx_restart_queue", restart_queue),
77 	E1000_STAT("rx_long_length_errors", stats.roc),
78 	E1000_STAT("rx_short_length_errors", stats.ruc),
79 	E1000_STAT("rx_align_errors", stats.algnerrc),
80 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
81 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
82 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
83 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
84 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
85 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
86 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
87 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
88 	E1000_STAT("rx_header_split", rx_hdr_split),
89 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
90 	E1000_STAT("tx_smbus", stats.mgptc),
91 	E1000_STAT("rx_smbus", stats.mgprc),
92 	E1000_STAT("dropped_smbus", stats.mgpdc),
93 	E1000_STAT("rx_dma_failed", rx_dma_failed),
94 	E1000_STAT("tx_dma_failed", tx_dma_failed),
95 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
96 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
97 	E1000_STAT("corr_ecc_errors", corr_errors),
98 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
99 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
100 };
101 
102 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
103 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
104 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
105 	"Register test  (offline)", "Eeprom test    (offline)",
106 	"Interrupt test (offline)", "Loopback test  (offline)",
107 	"Link test   (on/offline)"
108 };
109 
110 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
111 
112 static int e1000_get_link_ksettings(struct net_device *netdev,
113 				    struct ethtool_link_ksettings *cmd)
114 {
115 	u32 speed, supported, advertising, lp_advertising, lpa_t;
116 	struct e1000_adapter *adapter = netdev_priv(netdev);
117 	struct e1000_hw *hw = &adapter->hw;
118 
119 	if (hw->phy.media_type == e1000_media_type_copper) {
120 		supported = (SUPPORTED_10baseT_Half |
121 			     SUPPORTED_10baseT_Full |
122 			     SUPPORTED_100baseT_Half |
123 			     SUPPORTED_100baseT_Full |
124 			     SUPPORTED_1000baseT_Full |
125 			     SUPPORTED_Asym_Pause |
126 			     SUPPORTED_Autoneg |
127 			     SUPPORTED_Pause |
128 			     SUPPORTED_TP);
129 		if (hw->phy.type == e1000_phy_ife)
130 			supported &= ~SUPPORTED_1000baseT_Full;
131 		advertising = ADVERTISED_TP;
132 
133 		if (hw->mac.autoneg == 1) {
134 			advertising |= ADVERTISED_Autoneg;
135 			/* the e1000 autoneg seems to match ethtool nicely */
136 			advertising |= hw->phy.autoneg_advertised;
137 		}
138 
139 		cmd->base.port = PORT_TP;
140 		cmd->base.phy_address = hw->phy.addr;
141 	} else {
142 		supported   = (SUPPORTED_1000baseT_Full |
143 			       SUPPORTED_FIBRE |
144 			       SUPPORTED_Autoneg);
145 
146 		advertising = (ADVERTISED_1000baseT_Full |
147 			       ADVERTISED_FIBRE |
148 			       ADVERTISED_Autoneg);
149 
150 		cmd->base.port = PORT_FIBRE;
151 	}
152 
153 	speed = SPEED_UNKNOWN;
154 	cmd->base.duplex = DUPLEX_UNKNOWN;
155 
156 	if (netif_running(netdev)) {
157 		if (netif_carrier_ok(netdev)) {
158 			speed = adapter->link_speed;
159 			cmd->base.duplex = adapter->link_duplex - 1;
160 		}
161 	} else {
162 		u32 status = er32(STATUS);
163 
164 		if (status & E1000_STATUS_LU) {
165 			if (status & E1000_STATUS_SPEED_1000)
166 				speed = SPEED_1000;
167 			else if (status & E1000_STATUS_SPEED_100)
168 				speed = SPEED_100;
169 			else
170 				speed = SPEED_10;
171 
172 			if (status & E1000_STATUS_FD)
173 				cmd->base.duplex = DUPLEX_FULL;
174 			else
175 				cmd->base.duplex = DUPLEX_HALF;
176 		}
177 	}
178 
179 	cmd->base.speed = speed;
180 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
181 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
182 
183 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
184 	if ((hw->phy.media_type == e1000_media_type_copper) &&
185 	    netif_carrier_ok(netdev))
186 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
187 			ETH_TP_MDI_X : ETH_TP_MDI;
188 	else
189 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
190 
191 	if (hw->phy.mdix == AUTO_ALL_MODES)
192 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
193 	else
194 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
195 
196 	if (hw->phy.media_type != e1000_media_type_copper)
197 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
198 
199 	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
200 	lp_advertising = lpa_t |
201 	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
202 
203 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
204 						supported);
205 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
206 						advertising);
207 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
208 						lp_advertising);
209 
210 	return 0;
211 }
212 
213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 {
215 	struct e1000_mac_info *mac = &adapter->hw.mac;
216 
217 	mac->autoneg = 0;
218 
219 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
220 	 * for the switch() below to work
221 	 */
222 	if ((spd & 1) || (dplx & ~1))
223 		goto err_inval;
224 
225 	/* Fiber NICs only allow 1000 gbps Full duplex */
226 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
227 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
228 		goto err_inval;
229 	}
230 
231 	switch (spd + dplx) {
232 	case SPEED_10 + DUPLEX_HALF:
233 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
234 		break;
235 	case SPEED_10 + DUPLEX_FULL:
236 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
237 		break;
238 	case SPEED_100 + DUPLEX_HALF:
239 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
240 		break;
241 	case SPEED_100 + DUPLEX_FULL:
242 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
243 		break;
244 	case SPEED_1000 + DUPLEX_FULL:
245 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
246 			mac->autoneg = 1;
247 			adapter->hw.phy.autoneg_advertised =
248 				ADVERTISE_1000_FULL;
249 		} else {
250 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
251 		}
252 		break;
253 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
254 	default:
255 		goto err_inval;
256 	}
257 
258 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
259 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
260 
261 	return 0;
262 
263 err_inval:
264 	e_err("Unsupported Speed/Duplex configuration\n");
265 	return -EINVAL;
266 }
267 
268 static int e1000_set_link_ksettings(struct net_device *netdev,
269 				    const struct ethtool_link_ksettings *cmd)
270 {
271 	struct e1000_adapter *adapter = netdev_priv(netdev);
272 	struct e1000_hw *hw = &adapter->hw;
273 	int ret_val = 0;
274 	u32 advertising;
275 
276 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
277 						cmd->link_modes.advertising);
278 
279 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
280 	 * cannot be changed
281 	 */
282 	if (hw->phy.ops.check_reset_block &&
283 	    hw->phy.ops.check_reset_block(hw)) {
284 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
285 		return -EINVAL;
286 	}
287 
288 	/* MDI setting is only allowed when autoneg enabled because
289 	 * some hardware doesn't allow MDI setting when speed or
290 	 * duplex is forced.
291 	 */
292 	if (cmd->base.eth_tp_mdix_ctrl) {
293 		if (hw->phy.media_type != e1000_media_type_copper)
294 			return -EOPNOTSUPP;
295 
296 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
297 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
298 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
299 			return -EINVAL;
300 		}
301 	}
302 
303 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
304 		usleep_range(1000, 2000);
305 
306 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
307 		hw->mac.autoneg = 1;
308 		if (hw->phy.media_type == e1000_media_type_fiber)
309 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
310 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
311 		else
312 			hw->phy.autoneg_advertised = advertising |
313 			    ADVERTISED_TP | ADVERTISED_Autoneg;
314 		advertising = hw->phy.autoneg_advertised;
315 		if (adapter->fc_autoneg)
316 			hw->fc.requested_mode = e1000_fc_default;
317 	} else {
318 		u32 speed = cmd->base.speed;
319 		/* calling this overrides forced MDI setting */
320 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
321 			ret_val = -EINVAL;
322 			goto out;
323 		}
324 	}
325 
326 	/* MDI-X => 2; MDI => 1; Auto => 3 */
327 	if (cmd->base.eth_tp_mdix_ctrl) {
328 		/* fix up the value for auto (3 => 0) as zero is mapped
329 		 * internally to auto
330 		 */
331 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
332 			hw->phy.mdix = AUTO_ALL_MODES;
333 		else
334 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
335 	}
336 
337 	/* reset the link */
338 	if (netif_running(adapter->netdev)) {
339 		e1000e_down(adapter, true);
340 		e1000e_up(adapter);
341 	} else {
342 		e1000e_reset(adapter);
343 	}
344 
345 out:
346 	clear_bit(__E1000_RESETTING, &adapter->state);
347 	return ret_val;
348 }
349 
350 static void e1000_get_pauseparam(struct net_device *netdev,
351 				 struct ethtool_pauseparam *pause)
352 {
353 	struct e1000_adapter *adapter = netdev_priv(netdev);
354 	struct e1000_hw *hw = &adapter->hw;
355 
356 	pause->autoneg =
357 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
358 
359 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
360 		pause->rx_pause = 1;
361 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362 		pause->tx_pause = 1;
363 	} else if (hw->fc.current_mode == e1000_fc_full) {
364 		pause->rx_pause = 1;
365 		pause->tx_pause = 1;
366 	}
367 }
368 
369 static int e1000_set_pauseparam(struct net_device *netdev,
370 				struct ethtool_pauseparam *pause)
371 {
372 	struct e1000_adapter *adapter = netdev_priv(netdev);
373 	struct e1000_hw *hw = &adapter->hw;
374 	int retval = 0;
375 
376 	adapter->fc_autoneg = pause->autoneg;
377 
378 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379 		usleep_range(1000, 2000);
380 
381 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
382 		hw->fc.requested_mode = e1000_fc_default;
383 		if (netif_running(adapter->netdev)) {
384 			e1000e_down(adapter, true);
385 			e1000e_up(adapter);
386 		} else {
387 			e1000e_reset(adapter);
388 		}
389 	} else {
390 		if (pause->rx_pause && pause->tx_pause)
391 			hw->fc.requested_mode = e1000_fc_full;
392 		else if (pause->rx_pause && !pause->tx_pause)
393 			hw->fc.requested_mode = e1000_fc_rx_pause;
394 		else if (!pause->rx_pause && pause->tx_pause)
395 			hw->fc.requested_mode = e1000_fc_tx_pause;
396 		else if (!pause->rx_pause && !pause->tx_pause)
397 			hw->fc.requested_mode = e1000_fc_none;
398 
399 		hw->fc.current_mode = hw->fc.requested_mode;
400 
401 		if (hw->phy.media_type == e1000_media_type_fiber) {
402 			retval = hw->mac.ops.setup_link(hw);
403 			/* implicit goto out */
404 		} else {
405 			retval = e1000e_force_mac_fc(hw);
406 			if (retval)
407 				goto out;
408 			e1000e_set_fc_watermarks(hw);
409 		}
410 	}
411 
412 out:
413 	clear_bit(__E1000_RESETTING, &adapter->state);
414 	return retval;
415 }
416 
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 	struct e1000_adapter *adapter = netdev_priv(netdev);
420 	return adapter->msg_enable;
421 }
422 
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 	struct e1000_adapter *adapter = netdev_priv(netdev);
426 	adapter->msg_enable = data;
427 }
428 
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32	/* overestimate */
432 	return E1000_REGS_LEN * sizeof(u32);
433 }
434 
435 static void e1000_get_regs(struct net_device *netdev,
436 			   struct ethtool_regs *regs, void *p)
437 {
438 	struct e1000_adapter *adapter = netdev_priv(netdev);
439 	struct e1000_hw *hw = &adapter->hw;
440 	u32 *regs_buff = p;
441 	u16 phy_data;
442 
443 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
444 
445 	regs->version = (1u << 24) |
446 			(adapter->pdev->revision << 16) |
447 			adapter->pdev->device;
448 
449 	regs_buff[0] = er32(CTRL);
450 	regs_buff[1] = er32(STATUS);
451 
452 	regs_buff[2] = er32(RCTL);
453 	regs_buff[3] = er32(RDLEN(0));
454 	regs_buff[4] = er32(RDH(0));
455 	regs_buff[5] = er32(RDT(0));
456 	regs_buff[6] = er32(RDTR);
457 
458 	regs_buff[7] = er32(TCTL);
459 	regs_buff[8] = er32(TDLEN(0));
460 	regs_buff[9] = er32(TDH(0));
461 	regs_buff[10] = er32(TDT(0));
462 	regs_buff[11] = er32(TIDV);
463 
464 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
465 
466 	/* ethtool doesn't use anything past this point, so all this
467 	 * code is likely legacy junk for apps that may or may not exist
468 	 */
469 	if (hw->phy.type == e1000_phy_m88) {
470 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
471 		regs_buff[13] = (u32)phy_data; /* cable length */
472 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
473 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
476 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
477 		regs_buff[18] = regs_buff[13]; /* cable polarity */
478 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479 		regs_buff[20] = regs_buff[17]; /* polarity correction */
480 		/* phy receive errors */
481 		regs_buff[22] = adapter->phy_stats.receive_errors;
482 		regs_buff[23] = regs_buff[13]; /* mdix mode */
483 	}
484 	regs_buff[21] = 0;	/* was idle_errors */
485 	e1e_rphy(hw, MII_STAT1000, &phy_data);
486 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
487 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
488 }
489 
490 static int e1000_get_eeprom_len(struct net_device *netdev)
491 {
492 	struct e1000_adapter *adapter = netdev_priv(netdev);
493 	return adapter->hw.nvm.word_size * 2;
494 }
495 
496 static int e1000_get_eeprom(struct net_device *netdev,
497 			    struct ethtool_eeprom *eeprom, u8 *bytes)
498 {
499 	struct e1000_adapter *adapter = netdev_priv(netdev);
500 	struct e1000_hw *hw = &adapter->hw;
501 	u16 *eeprom_buff;
502 	int first_word;
503 	int last_word;
504 	int ret_val = 0;
505 	u16 i;
506 
507 	if (eeprom->len == 0)
508 		return -EINVAL;
509 
510 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
511 
512 	first_word = eeprom->offset >> 1;
513 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
514 
515 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
516 				    GFP_KERNEL);
517 	if (!eeprom_buff)
518 		return -ENOMEM;
519 
520 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
521 		ret_val = e1000_read_nvm(hw, first_word,
522 					 last_word - first_word + 1,
523 					 eeprom_buff);
524 	} else {
525 		for (i = 0; i < last_word - first_word + 1; i++) {
526 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
527 						 &eeprom_buff[i]);
528 			if (ret_val)
529 				break;
530 		}
531 	}
532 
533 	if (ret_val) {
534 		/* a read error occurred, throw away the result */
535 		memset(eeprom_buff, 0xff, sizeof(u16) *
536 		       (last_word - first_word + 1));
537 	} else {
538 		/* Device's eeprom is always little-endian, word addressable */
539 		for (i = 0; i < last_word - first_word + 1; i++)
540 			le16_to_cpus(&eeprom_buff[i]);
541 	}
542 
543 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
544 	kfree(eeprom_buff);
545 
546 	return ret_val;
547 }
548 
549 static int e1000_set_eeprom(struct net_device *netdev,
550 			    struct ethtool_eeprom *eeprom, u8 *bytes)
551 {
552 	struct e1000_adapter *adapter = netdev_priv(netdev);
553 	struct e1000_hw *hw = &adapter->hw;
554 	u16 *eeprom_buff;
555 	int ret_val = 0;
556 	size_t max_len;
557 	int first_word;
558 	int last_word;
559 	void *ptr;
560 	u16 i;
561 
562 	if (eeprom->len == 0)
563 		return -EOPNOTSUPP;
564 
565 	if (eeprom->magic !=
566 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
567 		return -EFAULT;
568 
569 	if (adapter->flags & FLAG_READ_ONLY_NVM)
570 		return -EINVAL;
571 
572 	max_len = hw->nvm.word_size * 2;
573 
574 	first_word = eeprom->offset >> 1;
575 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
576 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
577 	if (!eeprom_buff)
578 		return -ENOMEM;
579 
580 	ptr = (void *)eeprom_buff;
581 
582 	if (eeprom->offset & 1) {
583 		/* need read/modify/write of first changed EEPROM word */
584 		/* only the second byte of the word is being modified */
585 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
586 		ptr++;
587 	}
588 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
589 		/* need read/modify/write of last changed EEPROM word */
590 		/* only the first byte of the word is being modified */
591 		ret_val = e1000_read_nvm(hw, last_word, 1,
592 					 &eeprom_buff[last_word - first_word]);
593 
594 	if (ret_val)
595 		goto out;
596 
597 	/* Device's eeprom is always little-endian, word addressable */
598 	for (i = 0; i < last_word - first_word + 1; i++)
599 		le16_to_cpus(&eeprom_buff[i]);
600 
601 	memcpy(ptr, bytes, eeprom->len);
602 
603 	for (i = 0; i < last_word - first_word + 1; i++)
604 		cpu_to_le16s(&eeprom_buff[i]);
605 
606 	ret_val = e1000_write_nvm(hw, first_word,
607 				  last_word - first_word + 1, eeprom_buff);
608 
609 	if (ret_val)
610 		goto out;
611 
612 	/* Update the checksum over the first part of the EEPROM if needed
613 	 * and flush shadow RAM for applicable controllers
614 	 */
615 	if ((first_word <= NVM_CHECKSUM_REG) ||
616 	    (hw->mac.type == e1000_82583) ||
617 	    (hw->mac.type == e1000_82574) ||
618 	    (hw->mac.type == e1000_82573))
619 		ret_val = e1000e_update_nvm_checksum(hw);
620 
621 out:
622 	kfree(eeprom_buff);
623 	return ret_val;
624 }
625 
626 static void e1000_get_drvinfo(struct net_device *netdev,
627 			      struct ethtool_drvinfo *drvinfo)
628 {
629 	struct e1000_adapter *adapter = netdev_priv(netdev);
630 
631 	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
632 
633 	/* EEPROM image version # is reported as firmware version # for
634 	 * PCI-E controllers
635 	 */
636 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
637 		 "%d.%d-%d",
638 		 FIELD_GET(0xF000, adapter->eeprom_vers),
639 		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
640 		 (adapter->eeprom_vers & 0x000F));
641 
642 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
643 		sizeof(drvinfo->bus_info));
644 }
645 
646 static void e1000_get_ringparam(struct net_device *netdev,
647 				struct ethtool_ringparam *ring,
648 				struct kernel_ethtool_ringparam *kernel_ring,
649 				struct netlink_ext_ack *extack)
650 {
651 	struct e1000_adapter *adapter = netdev_priv(netdev);
652 
653 	ring->rx_max_pending = E1000_MAX_RXD;
654 	ring->tx_max_pending = E1000_MAX_TXD;
655 	ring->rx_pending = adapter->rx_ring_count;
656 	ring->tx_pending = adapter->tx_ring_count;
657 }
658 
659 static int e1000_set_ringparam(struct net_device *netdev,
660 			       struct ethtool_ringparam *ring,
661 			       struct kernel_ethtool_ringparam *kernel_ring,
662 			       struct netlink_ext_ack *extack)
663 {
664 	struct e1000_adapter *adapter = netdev_priv(netdev);
665 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
666 	int err = 0, size = sizeof(struct e1000_ring);
667 	bool set_tx = false, set_rx = false;
668 	u16 new_rx_count, new_tx_count;
669 
670 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
671 		return -EINVAL;
672 
673 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
674 			       E1000_MAX_RXD);
675 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
676 
677 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
678 			       E1000_MAX_TXD);
679 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
680 
681 	if ((new_tx_count == adapter->tx_ring_count) &&
682 	    (new_rx_count == adapter->rx_ring_count))
683 		/* nothing to do */
684 		return 0;
685 
686 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
687 		usleep_range(1000, 2000);
688 
689 	if (!netif_running(adapter->netdev)) {
690 		/* Set counts now and allocate resources during open() */
691 		adapter->tx_ring->count = new_tx_count;
692 		adapter->rx_ring->count = new_rx_count;
693 		adapter->tx_ring_count = new_tx_count;
694 		adapter->rx_ring_count = new_rx_count;
695 		goto clear_reset;
696 	}
697 
698 	set_tx = (new_tx_count != adapter->tx_ring_count);
699 	set_rx = (new_rx_count != adapter->rx_ring_count);
700 
701 	/* Allocate temporary storage for ring updates */
702 	if (set_tx) {
703 		temp_tx = vmalloc(size);
704 		if (!temp_tx) {
705 			err = -ENOMEM;
706 			goto free_temp;
707 		}
708 	}
709 	if (set_rx) {
710 		temp_rx = vmalloc(size);
711 		if (!temp_rx) {
712 			err = -ENOMEM;
713 			goto free_temp;
714 		}
715 	}
716 
717 	e1000e_down(adapter, true);
718 
719 	/* We can't just free everything and then setup again, because the
720 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
721 	 * structs.  First, attempt to allocate new resources...
722 	 */
723 	if (set_tx) {
724 		memcpy(temp_tx, adapter->tx_ring, size);
725 		temp_tx->count = new_tx_count;
726 		err = e1000e_setup_tx_resources(temp_tx);
727 		if (err)
728 			goto err_setup;
729 	}
730 	if (set_rx) {
731 		memcpy(temp_rx, adapter->rx_ring, size);
732 		temp_rx->count = new_rx_count;
733 		err = e1000e_setup_rx_resources(temp_rx);
734 		if (err)
735 			goto err_setup_rx;
736 	}
737 
738 	/* ...then free the old resources and copy back any new ring data */
739 	if (set_tx) {
740 		e1000e_free_tx_resources(adapter->tx_ring);
741 		memcpy(adapter->tx_ring, temp_tx, size);
742 		adapter->tx_ring_count = new_tx_count;
743 	}
744 	if (set_rx) {
745 		e1000e_free_rx_resources(adapter->rx_ring);
746 		memcpy(adapter->rx_ring, temp_rx, size);
747 		adapter->rx_ring_count = new_rx_count;
748 	}
749 
750 err_setup_rx:
751 	if (err && set_tx)
752 		e1000e_free_tx_resources(temp_tx);
753 err_setup:
754 	e1000e_up(adapter);
755 free_temp:
756 	vfree(temp_tx);
757 	vfree(temp_rx);
758 clear_reset:
759 	clear_bit(__E1000_RESETTING, &adapter->state);
760 	return err;
761 }
762 
763 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
764 			     int reg, int offset, u32 mask, u32 write)
765 {
766 	u32 pat, val;
767 	static const u32 test[] = {
768 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
769 	};
770 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
771 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
772 				      (test[pat] & write));
773 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
774 		if (val != (test[pat] & write & mask)) {
775 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
776 			      reg + (offset << 2), val,
777 			      (test[pat] & write & mask));
778 			*data = reg;
779 			return true;
780 		}
781 	}
782 	return false;
783 }
784 
785 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
786 			      int reg, u32 mask, u32 write)
787 {
788 	u32 val;
789 
790 	__ew32(&adapter->hw, reg, write & mask);
791 	val = __er32(&adapter->hw, reg);
792 	if ((write & mask) != (val & mask)) {
793 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
794 		      reg, (val & mask), (write & mask));
795 		*data = reg;
796 		return true;
797 	}
798 	return false;
799 }
800 
801 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
802 	do {                                                                   \
803 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
804 			return 1;                                              \
805 	} while (0)
806 #define REG_PATTERN_TEST(reg, mask, write)                                     \
807 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
808 
809 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
810 	do {                                                                   \
811 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
812 			return 1;                                              \
813 	} while (0)
814 
815 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
816 {
817 	struct e1000_hw *hw = &adapter->hw;
818 	struct e1000_mac_info *mac = &adapter->hw.mac;
819 	u32 value;
820 	u32 before;
821 	u32 after;
822 	u32 i;
823 	u32 toggle;
824 	u32 mask;
825 	u32 wlock_mac = 0;
826 
827 	/* The status register is Read Only, so a write should fail.
828 	 * Some bits that get toggled are ignored.  There are several bits
829 	 * on newer hardware that are r/w.
830 	 */
831 	switch (mac->type) {
832 	case e1000_82571:
833 	case e1000_82572:
834 	case e1000_80003es2lan:
835 		toggle = 0x7FFFF3FF;
836 		break;
837 	default:
838 		toggle = 0x7FFFF033;
839 		break;
840 	}
841 
842 	before = er32(STATUS);
843 	value = (er32(STATUS) & toggle);
844 	ew32(STATUS, toggle);
845 	after = er32(STATUS) & toggle;
846 	if (value != after) {
847 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
848 		      after, value);
849 		*data = 1;
850 		return 1;
851 	}
852 	/* restore previous status */
853 	ew32(STATUS, before);
854 
855 	if (!(adapter->flags & FLAG_IS_ICH)) {
856 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
857 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
858 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
859 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
860 	}
861 
862 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
863 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
864 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
865 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
866 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
867 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
868 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
869 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
870 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
871 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
872 
873 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
874 
875 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
876 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
877 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
878 
879 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
880 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
881 	if (!(adapter->flags & FLAG_IS_ICH))
882 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
883 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
884 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
885 	mask = 0x8003FFFF;
886 	switch (mac->type) {
887 	case e1000_ich10lan:
888 	case e1000_pchlan:
889 	case e1000_pch2lan:
890 	case e1000_pch_lpt:
891 	case e1000_pch_spt:
892 	case e1000_pch_cnp:
893 	case e1000_pch_tgp:
894 	case e1000_pch_adp:
895 	case e1000_pch_mtp:
896 	case e1000_pch_lnp:
897 	case e1000_pch_ptp:
898 	case e1000_pch_nvp:
899 		mask |= BIT(18);
900 		break;
901 	default:
902 		break;
903 	}
904 
905 	if (mac->type >= e1000_pch_lpt)
906 		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
907 
908 	for (i = 0; i < mac->rar_entry_count; i++) {
909 		if (mac->type >= e1000_pch_lpt) {
910 			/* Cannot test write-protected SHRAL[n] registers */
911 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
912 				continue;
913 
914 			/* SHRAH[9] different than the others */
915 			if (i == 10)
916 				mask |= BIT(30);
917 			else
918 				mask &= ~BIT(30);
919 		}
920 		if (mac->type == e1000_pch2lan) {
921 			/* SHRAH[0,1,2] different than previous */
922 			if (i == 1)
923 				mask &= 0xFFF4FFFF;
924 			/* SHRAH[3] different than SHRAH[0,1,2] */
925 			if (i == 4)
926 				mask |= BIT(30);
927 			/* RAR[1-6] owned by management engine - skipping */
928 			if (i > 0)
929 				i += 6;
930 		}
931 
932 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
933 				       0xFFFFFFFF);
934 		/* reset index to actual value */
935 		if ((mac->type == e1000_pch2lan) && (i > 6))
936 			i -= 6;
937 	}
938 
939 	for (i = 0; i < mac->mta_reg_count; i++)
940 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
941 
942 	*data = 0;
943 
944 	return 0;
945 }
946 
947 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
948 {
949 	u16 temp;
950 	u16 checksum = 0;
951 	u16 i;
952 
953 	*data = 0;
954 	/* Read and add up the contents of the EEPROM */
955 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
956 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
957 			*data = 1;
958 			return *data;
959 		}
960 		checksum += temp;
961 	}
962 
963 	/* If Checksum is not Correct return error else test passed */
964 	if (checksum != NVM_SUM && !(*data))
965 		*data = 2;
966 
967 	return *data;
968 }
969 
970 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
971 {
972 	struct net_device *netdev = (struct net_device *)data;
973 	struct e1000_adapter *adapter = netdev_priv(netdev);
974 	struct e1000_hw *hw = &adapter->hw;
975 
976 	adapter->test_icr |= er32(ICR);
977 
978 	return IRQ_HANDLED;
979 }
980 
981 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
982 {
983 	struct net_device *netdev = adapter->netdev;
984 	struct e1000_hw *hw = &adapter->hw;
985 	u32 mask;
986 	u32 shared_int = 1;
987 	u32 irq = adapter->pdev->irq;
988 	int i;
989 	int ret_val = 0;
990 	int int_mode = E1000E_INT_MODE_LEGACY;
991 
992 	*data = 0;
993 
994 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
995 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
996 		int_mode = adapter->int_mode;
997 		e1000e_reset_interrupt_capability(adapter);
998 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
999 		e1000e_set_interrupt_capability(adapter);
1000 	}
1001 	/* Hook up test interrupt handler just for this test */
1002 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1003 			 netdev)) {
1004 		shared_int = 0;
1005 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1006 			       netdev)) {
1007 		*data = 1;
1008 		ret_val = -1;
1009 		goto out;
1010 	}
1011 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1012 
1013 	/* Disable all the interrupts */
1014 	ew32(IMC, 0xFFFFFFFF);
1015 	e1e_flush();
1016 	usleep_range(10000, 11000);
1017 
1018 	/* Test each interrupt */
1019 	for (i = 0; i < 10; i++) {
1020 		/* Interrupt to test */
1021 		mask = BIT(i);
1022 
1023 		if (adapter->flags & FLAG_IS_ICH) {
1024 			switch (mask) {
1025 			case E1000_ICR_RXSEQ:
1026 				continue;
1027 			case 0x00000100:
1028 				if (adapter->hw.mac.type == e1000_ich8lan ||
1029 				    adapter->hw.mac.type == e1000_ich9lan)
1030 					continue;
1031 				break;
1032 			default:
1033 				break;
1034 			}
1035 		}
1036 
1037 		if (!shared_int) {
1038 			/* Disable the interrupt to be reported in
1039 			 * the cause register and then force the same
1040 			 * interrupt and see if one gets posted.  If
1041 			 * an interrupt was posted to the bus, the
1042 			 * test failed.
1043 			 */
1044 			adapter->test_icr = 0;
1045 			ew32(IMC, mask);
1046 			ew32(ICS, mask);
1047 			e1e_flush();
1048 			usleep_range(10000, 11000);
1049 
1050 			if (adapter->test_icr & mask) {
1051 				*data = 3;
1052 				break;
1053 			}
1054 		}
1055 
1056 		/* Enable the interrupt to be reported in
1057 		 * the cause register and then force the same
1058 		 * interrupt and see if one gets posted.  If
1059 		 * an interrupt was not posted to the bus, the
1060 		 * test failed.
1061 		 */
1062 		adapter->test_icr = 0;
1063 		ew32(IMS, mask);
1064 		ew32(ICS, mask);
1065 		e1e_flush();
1066 		usleep_range(10000, 11000);
1067 
1068 		if (!(adapter->test_icr & mask)) {
1069 			*data = 4;
1070 			break;
1071 		}
1072 
1073 		if (!shared_int) {
1074 			/* Disable the other interrupts to be reported in
1075 			 * the cause register and then force the other
1076 			 * interrupts and see if any get posted.  If
1077 			 * an interrupt was posted to the bus, the
1078 			 * test failed.
1079 			 */
1080 			adapter->test_icr = 0;
1081 			ew32(IMC, ~mask & 0x00007FFF);
1082 			ew32(ICS, ~mask & 0x00007FFF);
1083 			e1e_flush();
1084 			usleep_range(10000, 11000);
1085 
1086 			if (adapter->test_icr) {
1087 				*data = 5;
1088 				break;
1089 			}
1090 		}
1091 	}
1092 
1093 	/* Disable all the interrupts */
1094 	ew32(IMC, 0xFFFFFFFF);
1095 	e1e_flush();
1096 	usleep_range(10000, 11000);
1097 
1098 	/* Unhook test interrupt handler */
1099 	free_irq(irq, netdev);
1100 
1101 out:
1102 	if (int_mode == E1000E_INT_MODE_MSIX) {
1103 		e1000e_reset_interrupt_capability(adapter);
1104 		adapter->int_mode = int_mode;
1105 		e1000e_set_interrupt_capability(adapter);
1106 	}
1107 
1108 	return ret_val;
1109 }
1110 
1111 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1112 {
1113 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1114 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1115 	struct pci_dev *pdev = adapter->pdev;
1116 	struct e1000_buffer *buffer_info;
1117 	int i;
1118 
1119 	if (tx_ring->desc && tx_ring->buffer_info) {
1120 		for (i = 0; i < tx_ring->count; i++) {
1121 			buffer_info = &tx_ring->buffer_info[i];
1122 
1123 			if (buffer_info->dma)
1124 				dma_unmap_single(&pdev->dev,
1125 						 buffer_info->dma,
1126 						 buffer_info->length,
1127 						 DMA_TO_DEVICE);
1128 			dev_kfree_skb(buffer_info->skb);
1129 		}
1130 	}
1131 
1132 	if (rx_ring->desc && rx_ring->buffer_info) {
1133 		for (i = 0; i < rx_ring->count; i++) {
1134 			buffer_info = &rx_ring->buffer_info[i];
1135 
1136 			if (buffer_info->dma)
1137 				dma_unmap_single(&pdev->dev,
1138 						 buffer_info->dma,
1139 						 2048, DMA_FROM_DEVICE);
1140 			dev_kfree_skb(buffer_info->skb);
1141 		}
1142 	}
1143 
1144 	if (tx_ring->desc) {
1145 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1146 				  tx_ring->dma);
1147 		tx_ring->desc = NULL;
1148 	}
1149 	if (rx_ring->desc) {
1150 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1151 				  rx_ring->dma);
1152 		rx_ring->desc = NULL;
1153 	}
1154 
1155 	kfree(tx_ring->buffer_info);
1156 	tx_ring->buffer_info = NULL;
1157 	kfree(rx_ring->buffer_info);
1158 	rx_ring->buffer_info = NULL;
1159 }
1160 
1161 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1162 {
1163 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1164 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1165 	struct pci_dev *pdev = adapter->pdev;
1166 	struct e1000_hw *hw = &adapter->hw;
1167 	u32 rctl;
1168 	int i;
1169 	int ret_val;
1170 
1171 	/* Setup Tx descriptor ring and Tx buffers */
1172 
1173 	if (!tx_ring->count)
1174 		tx_ring->count = E1000_DEFAULT_TXD;
1175 
1176 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1177 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1178 	if (!tx_ring->buffer_info) {
1179 		ret_val = 1;
1180 		goto err_nomem;
1181 	}
1182 
1183 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1184 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1185 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1186 					   &tx_ring->dma, GFP_KERNEL);
1187 	if (!tx_ring->desc) {
1188 		ret_val = 2;
1189 		goto err_nomem;
1190 	}
1191 	tx_ring->next_to_use = 0;
1192 	tx_ring->next_to_clean = 0;
1193 
1194 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1195 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1196 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1197 	ew32(TDH(0), 0);
1198 	ew32(TDT(0), 0);
1199 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1200 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1201 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1202 
1203 	for (i = 0; i < tx_ring->count; i++) {
1204 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1205 		struct sk_buff *skb;
1206 		unsigned int skb_size = 1024;
1207 
1208 		skb = alloc_skb(skb_size, GFP_KERNEL);
1209 		if (!skb) {
1210 			ret_val = 3;
1211 			goto err_nomem;
1212 		}
1213 		skb_put(skb, skb_size);
1214 		tx_ring->buffer_info[i].skb = skb;
1215 		tx_ring->buffer_info[i].length = skb->len;
1216 		tx_ring->buffer_info[i].dma =
1217 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1218 				   DMA_TO_DEVICE);
1219 		if (dma_mapping_error(&pdev->dev,
1220 				      tx_ring->buffer_info[i].dma)) {
1221 			ret_val = 4;
1222 			goto err_nomem;
1223 		}
1224 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1225 		tx_desc->lower.data = cpu_to_le32(skb->len);
1226 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1227 						   E1000_TXD_CMD_IFCS |
1228 						   E1000_TXD_CMD_RS);
1229 		tx_desc->upper.data = 0;
1230 	}
1231 
1232 	/* Setup Rx descriptor ring and Rx buffers */
1233 
1234 	if (!rx_ring->count)
1235 		rx_ring->count = E1000_DEFAULT_RXD;
1236 
1237 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1238 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1239 	if (!rx_ring->buffer_info) {
1240 		ret_val = 5;
1241 		goto err_nomem;
1242 	}
1243 
1244 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1245 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1246 					   &rx_ring->dma, GFP_KERNEL);
1247 	if (!rx_ring->desc) {
1248 		ret_val = 6;
1249 		goto err_nomem;
1250 	}
1251 	rx_ring->next_to_use = 0;
1252 	rx_ring->next_to_clean = 0;
1253 
1254 	rctl = er32(RCTL);
1255 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1256 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1257 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1258 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1259 	ew32(RDLEN(0), rx_ring->size);
1260 	ew32(RDH(0), 0);
1261 	ew32(RDT(0), 0);
1262 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1263 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1264 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1265 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1266 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1267 	ew32(RCTL, rctl);
1268 
1269 	for (i = 0; i < rx_ring->count; i++) {
1270 		union e1000_rx_desc_extended *rx_desc;
1271 		struct sk_buff *skb;
1272 
1273 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1274 		if (!skb) {
1275 			ret_val = 7;
1276 			goto err_nomem;
1277 		}
1278 		skb_reserve(skb, NET_IP_ALIGN);
1279 		rx_ring->buffer_info[i].skb = skb;
1280 		rx_ring->buffer_info[i].dma =
1281 		    dma_map_single(&pdev->dev, skb->data, 2048,
1282 				   DMA_FROM_DEVICE);
1283 		if (dma_mapping_error(&pdev->dev,
1284 				      rx_ring->buffer_info[i].dma)) {
1285 			ret_val = 8;
1286 			goto err_nomem;
1287 		}
1288 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1289 		rx_desc->read.buffer_addr =
1290 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1291 		memset(skb->data, 0x00, skb->len);
1292 	}
1293 
1294 	return 0;
1295 
1296 err_nomem:
1297 	e1000_free_desc_rings(adapter);
1298 	return ret_val;
1299 }
1300 
1301 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1302 {
1303 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1304 	e1e_wphy(&adapter->hw, 29, 0x001F);
1305 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1306 	e1e_wphy(&adapter->hw, 29, 0x001A);
1307 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1308 }
1309 
1310 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1311 {
1312 	struct e1000_hw *hw = &adapter->hw;
1313 	u32 ctrl_reg = 0;
1314 	u16 phy_reg = 0;
1315 	s32 ret_val = 0;
1316 
1317 	hw->mac.autoneg = 0;
1318 
1319 	if (hw->phy.type == e1000_phy_ife) {
1320 		/* force 100, set loopback */
1321 		e1e_wphy(hw, MII_BMCR, 0x6100);
1322 
1323 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1324 		ctrl_reg = er32(CTRL);
1325 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1326 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1327 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1328 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1329 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1330 
1331 		ew32(CTRL, ctrl_reg);
1332 		e1e_flush();
1333 		usleep_range(500, 1000);
1334 
1335 		return 0;
1336 	}
1337 
1338 	/* Specific PHY configuration for loopback */
1339 	switch (hw->phy.type) {
1340 	case e1000_phy_m88:
1341 		/* Auto-MDI/MDIX Off */
1342 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1343 		/* reset to update Auto-MDI/MDIX */
1344 		e1e_wphy(hw, MII_BMCR, 0x9140);
1345 		/* autoneg off */
1346 		e1e_wphy(hw, MII_BMCR, 0x8140);
1347 		break;
1348 	case e1000_phy_gg82563:
1349 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1350 		break;
1351 	case e1000_phy_bm:
1352 		/* Set Default MAC Interface speed to 1GB */
1353 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1354 		phy_reg &= ~0x0007;
1355 		phy_reg |= 0x006;
1356 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1357 		/* Assert SW reset for above settings to take effect */
1358 		hw->phy.ops.commit(hw);
1359 		usleep_range(1000, 2000);
1360 		/* Force Full Duplex */
1361 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1362 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1363 		/* Set Link Up (in force link) */
1364 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1365 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1366 		/* Force Link */
1367 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1368 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1369 		/* Set Early Link Enable */
1370 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1371 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1372 		break;
1373 	case e1000_phy_82577:
1374 	case e1000_phy_82578:
1375 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1376 		ret_val = hw->phy.ops.acquire(hw);
1377 		if (ret_val) {
1378 			e_err("Cannot setup 1Gbps loopback.\n");
1379 			return ret_val;
1380 		}
1381 		e1000_configure_k1_ich8lan(hw, false);
1382 		hw->phy.ops.release(hw);
1383 		break;
1384 	case e1000_phy_82579:
1385 		/* Disable PHY energy detect power down */
1386 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1387 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1388 		/* Disable full chip energy detect */
1389 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1390 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1391 		/* Enable loopback on the PHY */
1392 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1393 		break;
1394 	default:
1395 		break;
1396 	}
1397 
1398 	/* force 1000, set loopback */
1399 	e1e_wphy(hw, MII_BMCR, 0x4140);
1400 	msleep(250);
1401 
1402 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1403 	ctrl_reg = er32(CTRL);
1404 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1405 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1406 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1407 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1408 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1409 
1410 	if (adapter->flags & FLAG_IS_ICH)
1411 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1412 
1413 	if (hw->phy.media_type == e1000_media_type_copper &&
1414 	    hw->phy.type == e1000_phy_m88) {
1415 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1416 	} else {
1417 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1418 		 * detected.
1419 		 */
1420 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1421 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1422 	}
1423 
1424 	ew32(CTRL, ctrl_reg);
1425 
1426 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1427 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1428 	 */
1429 	if (hw->phy.type == e1000_phy_m88)
1430 		e1000_phy_disable_receiver(adapter);
1431 
1432 	usleep_range(500, 1000);
1433 
1434 	return 0;
1435 }
1436 
1437 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1438 {
1439 	struct e1000_hw *hw = &adapter->hw;
1440 	u32 ctrl = er32(CTRL);
1441 	int link;
1442 
1443 	/* special requirements for 82571/82572 fiber adapters */
1444 
1445 	/* jump through hoops to make sure link is up because serdes
1446 	 * link is hardwired up
1447 	 */
1448 	ctrl |= E1000_CTRL_SLU;
1449 	ew32(CTRL, ctrl);
1450 
1451 	/* disable autoneg */
1452 	ctrl = er32(TXCW);
1453 	ctrl &= ~BIT(31);
1454 	ew32(TXCW, ctrl);
1455 
1456 	link = (er32(STATUS) & E1000_STATUS_LU);
1457 
1458 	if (!link) {
1459 		/* set invert loss of signal */
1460 		ctrl = er32(CTRL);
1461 		ctrl |= E1000_CTRL_ILOS;
1462 		ew32(CTRL, ctrl);
1463 	}
1464 
1465 	/* special write to serdes control register to enable SerDes analog
1466 	 * loopback
1467 	 */
1468 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1469 	e1e_flush();
1470 	usleep_range(10000, 11000);
1471 
1472 	return 0;
1473 }
1474 
1475 /* only call this for fiber/serdes connections to es2lan */
1476 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 	u32 ctrlext = er32(CTRL_EXT);
1480 	u32 ctrl = er32(CTRL);
1481 
1482 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1483 	 * on mac_type 80003es2lan)
1484 	 */
1485 	adapter->tx_fifo_head = ctrlext;
1486 
1487 	/* clear the serdes mode bits, putting the device into mac loopback */
1488 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1489 	ew32(CTRL_EXT, ctrlext);
1490 
1491 	/* force speed to 1000/FD, link up */
1492 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1493 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1494 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1495 	ew32(CTRL, ctrl);
1496 
1497 	/* set mac loopback */
1498 	ctrl = er32(RCTL);
1499 	ctrl |= E1000_RCTL_LBM_MAC;
1500 	ew32(RCTL, ctrl);
1501 
1502 	/* set testing mode parameters (no need to reset later) */
1503 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1504 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1505 	ew32(KMRNCTRLSTA,
1506 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1507 
1508 	return 0;
1509 }
1510 
1511 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 	u32 rctl, fext_nvm11, tarc0;
1515 
1516 	if (hw->mac.type >= e1000_pch_spt) {
1517 		fext_nvm11 = er32(FEXTNVM11);
1518 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1519 		ew32(FEXTNVM11, fext_nvm11);
1520 		tarc0 = er32(TARC(0));
1521 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1522 		tarc0 &= 0xcfffffff;
1523 		/* set bit 29 (value of MULR requests is now 2) */
1524 		tarc0 |= 0x20000000;
1525 		ew32(TARC(0), tarc0);
1526 	}
1527 	if (hw->phy.media_type == e1000_media_type_fiber ||
1528 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 		switch (hw->mac.type) {
1530 		case e1000_80003es2lan:
1531 			return e1000_set_es2lan_mac_loopback(adapter);
1532 		case e1000_82571:
1533 		case e1000_82572:
1534 			return e1000_set_82571_fiber_loopback(adapter);
1535 		default:
1536 			rctl = er32(RCTL);
1537 			rctl |= E1000_RCTL_LBM_TCVR;
1538 			ew32(RCTL, rctl);
1539 			return 0;
1540 		}
1541 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1542 		return e1000_integrated_phy_loopback(adapter);
1543 	}
1544 
1545 	return 7;
1546 }
1547 
1548 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1549 {
1550 	struct e1000_hw *hw = &adapter->hw;
1551 	u32 rctl, fext_nvm11, tarc0;
1552 	u16 phy_reg;
1553 
1554 	rctl = er32(RCTL);
1555 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1556 	ew32(RCTL, rctl);
1557 
1558 	switch (hw->mac.type) {
1559 	case e1000_pch_spt:
1560 	case e1000_pch_cnp:
1561 	case e1000_pch_tgp:
1562 	case e1000_pch_adp:
1563 	case e1000_pch_mtp:
1564 	case e1000_pch_lnp:
1565 	case e1000_pch_ptp:
1566 	case e1000_pch_nvp:
1567 		fext_nvm11 = er32(FEXTNVM11);
1568 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1569 		ew32(FEXTNVM11, fext_nvm11);
1570 		tarc0 = er32(TARC(0));
1571 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1572 		/* set bit 29 (value of MULR requests is now 0) */
1573 		tarc0 &= 0xcfffffff;
1574 		ew32(TARC(0), tarc0);
1575 		fallthrough;
1576 	case e1000_80003es2lan:
1577 		if (hw->phy.media_type == e1000_media_type_fiber ||
1578 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1579 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1580 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1581 			adapter->tx_fifo_head = 0;
1582 		}
1583 		fallthrough;
1584 	case e1000_82571:
1585 	case e1000_82572:
1586 		if (hw->phy.media_type == e1000_media_type_fiber ||
1587 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1588 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1589 			e1e_flush();
1590 			usleep_range(10000, 11000);
1591 			break;
1592 		}
1593 		fallthrough;
1594 	default:
1595 		hw->mac.autoneg = 1;
1596 		if (hw->phy.type == e1000_phy_gg82563)
1597 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1598 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1599 		if (phy_reg & BMCR_LOOPBACK) {
1600 			phy_reg &= ~BMCR_LOOPBACK;
1601 			e1e_wphy(hw, MII_BMCR, phy_reg);
1602 			if (hw->phy.ops.commit)
1603 				hw->phy.ops.commit(hw);
1604 		}
1605 		break;
1606 	}
1607 }
1608 
1609 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1610 				      unsigned int frame_size)
1611 {
1612 	memset(skb->data, 0xFF, frame_size);
1613 	frame_size &= ~1;
1614 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1615 	skb->data[frame_size / 2 + 10] = 0xBE;
1616 	skb->data[frame_size / 2 + 12] = 0xAF;
1617 }
1618 
1619 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1620 				    unsigned int frame_size)
1621 {
1622 	frame_size &= ~1;
1623 	if (*(skb->data + 3) == 0xFF)
1624 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1625 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1626 			return 0;
1627 	return 13;
1628 }
1629 
1630 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1631 {
1632 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1633 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1634 	struct pci_dev *pdev = adapter->pdev;
1635 	struct e1000_hw *hw = &adapter->hw;
1636 	struct e1000_buffer *buffer_info;
1637 	int i, j, k, l;
1638 	int lc;
1639 	int good_cnt;
1640 	int ret_val = 0;
1641 	unsigned long time;
1642 
1643 	ew32(RDT(0), rx_ring->count - 1);
1644 
1645 	/* Calculate the loop count based on the largest descriptor ring
1646 	 * The idea is to wrap the largest ring a number of times using 64
1647 	 * send/receive pairs during each loop
1648 	 */
1649 
1650 	if (rx_ring->count <= tx_ring->count)
1651 		lc = ((tx_ring->count / 64) * 2) + 1;
1652 	else
1653 		lc = ((rx_ring->count / 64) * 2) + 1;
1654 
1655 	k = 0;
1656 	l = 0;
1657 	/* loop count loop */
1658 	for (j = 0; j <= lc; j++) {
1659 		/* send the packets */
1660 		for (i = 0; i < 64; i++) {
1661 			buffer_info = &tx_ring->buffer_info[k];
1662 
1663 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1664 			dma_sync_single_for_device(&pdev->dev,
1665 						   buffer_info->dma,
1666 						   buffer_info->length,
1667 						   DMA_TO_DEVICE);
1668 			k++;
1669 			if (k == tx_ring->count)
1670 				k = 0;
1671 		}
1672 		ew32(TDT(0), k);
1673 		e1e_flush();
1674 		msleep(200);
1675 		time = jiffies;	/* set the start time for the receive */
1676 		good_cnt = 0;
1677 		/* receive the sent packets */
1678 		do {
1679 			buffer_info = &rx_ring->buffer_info[l];
1680 
1681 			dma_sync_single_for_cpu(&pdev->dev,
1682 						buffer_info->dma, 2048,
1683 						DMA_FROM_DEVICE);
1684 
1685 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1686 							   1024);
1687 			if (!ret_val)
1688 				good_cnt++;
1689 			l++;
1690 			if (l == rx_ring->count)
1691 				l = 0;
1692 			/* time + 20 msecs (200 msecs on 2.4) is more than
1693 			 * enough time to complete the receives, if it's
1694 			 * exceeded, break and error off
1695 			 */
1696 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1697 		if (good_cnt != 64) {
1698 			ret_val = 13;	/* ret_val is the same as mis-compare */
1699 			break;
1700 		}
1701 		if (time_after(jiffies, time + 20)) {
1702 			ret_val = 14;	/* error code for time out error */
1703 			break;
1704 		}
1705 	}
1706 	return ret_val;
1707 }
1708 
1709 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1710 {
1711 	struct e1000_hw *hw = &adapter->hw;
1712 
1713 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1714 	if (hw->phy.ops.check_reset_block &&
1715 	    hw->phy.ops.check_reset_block(hw)) {
1716 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1717 		*data = 0;
1718 		goto out;
1719 	}
1720 
1721 	*data = e1000_setup_desc_rings(adapter);
1722 	if (*data)
1723 		goto out;
1724 
1725 	*data = e1000_setup_loopback_test(adapter);
1726 	if (*data)
1727 		goto err_loopback;
1728 
1729 	*data = e1000_run_loopback_test(adapter);
1730 	e1000_loopback_cleanup(adapter);
1731 
1732 err_loopback:
1733 	e1000_free_desc_rings(adapter);
1734 out:
1735 	return *data;
1736 }
1737 
1738 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1739 {
1740 	struct e1000_hw *hw = &adapter->hw;
1741 
1742 	*data = 0;
1743 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1744 		int i = 0;
1745 
1746 		hw->mac.serdes_has_link = false;
1747 
1748 		/* On some blade server designs, link establishment
1749 		 * could take as long as 2-3 minutes
1750 		 */
1751 		do {
1752 			hw->mac.ops.check_for_link(hw);
1753 			if (hw->mac.serdes_has_link)
1754 				return *data;
1755 			msleep(20);
1756 		} while (i++ < 3750);
1757 
1758 		*data = 1;
1759 	} else {
1760 		hw->mac.ops.check_for_link(hw);
1761 		if (hw->mac.autoneg)
1762 			/* On some Phy/switch combinations, link establishment
1763 			 * can take a few seconds more than expected.
1764 			 */
1765 			msleep_interruptible(5000);
1766 
1767 		if (!(er32(STATUS) & E1000_STATUS_LU))
1768 			*data = 1;
1769 	}
1770 	return *data;
1771 }
1772 
1773 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1774 				 int sset)
1775 {
1776 	switch (sset) {
1777 	case ETH_SS_TEST:
1778 		return E1000_TEST_LEN;
1779 	case ETH_SS_STATS:
1780 		return E1000_STATS_LEN;
1781 	case ETH_SS_PRIV_FLAGS:
1782 		return E1000E_PRIV_FLAGS_STR_LEN;
1783 	default:
1784 		return -EOPNOTSUPP;
1785 	}
1786 }
1787 
1788 static void e1000_diag_test(struct net_device *netdev,
1789 			    struct ethtool_test *eth_test, u64 *data)
1790 {
1791 	struct e1000_adapter *adapter = netdev_priv(netdev);
1792 	u16 autoneg_advertised;
1793 	u8 forced_speed_duplex;
1794 	u8 autoneg;
1795 	bool if_running = netif_running(netdev);
1796 
1797 	set_bit(__E1000_TESTING, &adapter->state);
1798 
1799 	if (!if_running) {
1800 		/* Get control of and reset hardware */
1801 		if (adapter->flags & FLAG_HAS_AMT)
1802 			e1000e_get_hw_control(adapter);
1803 
1804 		e1000e_power_up_phy(adapter);
1805 
1806 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1807 		e1000e_reset(adapter);
1808 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1809 	}
1810 
1811 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1812 		/* Offline tests */
1813 
1814 		/* save speed, duplex, autoneg settings */
1815 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1816 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1817 		autoneg = adapter->hw.mac.autoneg;
1818 
1819 		e_info("offline testing starting\n");
1820 
1821 		if (if_running)
1822 			/* indicate we're in test mode */
1823 			e1000e_close(netdev);
1824 
1825 		if (e1000_reg_test(adapter, &data[0]))
1826 			eth_test->flags |= ETH_TEST_FL_FAILED;
1827 
1828 		e1000e_reset(adapter);
1829 		if (e1000_eeprom_test(adapter, &data[1]))
1830 			eth_test->flags |= ETH_TEST_FL_FAILED;
1831 
1832 		e1000e_reset(adapter);
1833 		if (e1000_intr_test(adapter, &data[2]))
1834 			eth_test->flags |= ETH_TEST_FL_FAILED;
1835 
1836 		e1000e_reset(adapter);
1837 		if (e1000_loopback_test(adapter, &data[3]))
1838 			eth_test->flags |= ETH_TEST_FL_FAILED;
1839 
1840 		/* force this routine to wait until autoneg complete/timeout */
1841 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1842 		e1000e_reset(adapter);
1843 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1844 
1845 		if (e1000_link_test(adapter, &data[4]))
1846 			eth_test->flags |= ETH_TEST_FL_FAILED;
1847 
1848 		/* restore speed, duplex, autoneg settings */
1849 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1850 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1851 		adapter->hw.mac.autoneg = autoneg;
1852 		e1000e_reset(adapter);
1853 
1854 		clear_bit(__E1000_TESTING, &adapter->state);
1855 		if (if_running)
1856 			e1000e_open(netdev);
1857 	} else {
1858 		/* Online tests */
1859 
1860 		e_info("online testing starting\n");
1861 
1862 		/* register, eeprom, intr and loopback tests not run online */
1863 		data[0] = 0;
1864 		data[1] = 0;
1865 		data[2] = 0;
1866 		data[3] = 0;
1867 
1868 		if (e1000_link_test(adapter, &data[4]))
1869 			eth_test->flags |= ETH_TEST_FL_FAILED;
1870 
1871 		clear_bit(__E1000_TESTING, &adapter->state);
1872 	}
1873 
1874 	if (!if_running) {
1875 		e1000e_reset(adapter);
1876 
1877 		if (adapter->flags & FLAG_HAS_AMT)
1878 			e1000e_release_hw_control(adapter);
1879 	}
1880 
1881 	msleep_interruptible(4 * 1000);
1882 }
1883 
1884 static void e1000_get_wol(struct net_device *netdev,
1885 			  struct ethtool_wolinfo *wol)
1886 {
1887 	struct e1000_adapter *adapter = netdev_priv(netdev);
1888 
1889 	wol->supported = 0;
1890 	wol->wolopts = 0;
1891 
1892 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1893 	    !device_can_wakeup(&adapter->pdev->dev))
1894 		return;
1895 
1896 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1897 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1898 
1899 	/* apply any specific unsupported masks here */
1900 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1901 		wol->supported &= ~WAKE_UCAST;
1902 
1903 		if (adapter->wol & E1000_WUFC_EX)
1904 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1905 	}
1906 
1907 	if (adapter->wol & E1000_WUFC_EX)
1908 		wol->wolopts |= WAKE_UCAST;
1909 	if (adapter->wol & E1000_WUFC_MC)
1910 		wol->wolopts |= WAKE_MCAST;
1911 	if (adapter->wol & E1000_WUFC_BC)
1912 		wol->wolopts |= WAKE_BCAST;
1913 	if (adapter->wol & E1000_WUFC_MAG)
1914 		wol->wolopts |= WAKE_MAGIC;
1915 	if (adapter->wol & E1000_WUFC_LNKC)
1916 		wol->wolopts |= WAKE_PHY;
1917 }
1918 
1919 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1920 {
1921 	struct e1000_adapter *adapter = netdev_priv(netdev);
1922 
1923 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1924 	    !device_can_wakeup(&adapter->pdev->dev) ||
1925 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1926 			      WAKE_MAGIC | WAKE_PHY)))
1927 		return -EOPNOTSUPP;
1928 
1929 	/* these settings will always override what we currently have */
1930 	adapter->wol = 0;
1931 
1932 	if (wol->wolopts & WAKE_UCAST)
1933 		adapter->wol |= E1000_WUFC_EX;
1934 	if (wol->wolopts & WAKE_MCAST)
1935 		adapter->wol |= E1000_WUFC_MC;
1936 	if (wol->wolopts & WAKE_BCAST)
1937 		adapter->wol |= E1000_WUFC_BC;
1938 	if (wol->wolopts & WAKE_MAGIC)
1939 		adapter->wol |= E1000_WUFC_MAG;
1940 	if (wol->wolopts & WAKE_PHY)
1941 		adapter->wol |= E1000_WUFC_LNKC;
1942 
1943 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1944 
1945 	return 0;
1946 }
1947 
1948 static int e1000_set_phys_id(struct net_device *netdev,
1949 			     enum ethtool_phys_id_state state)
1950 {
1951 	struct e1000_adapter *adapter = netdev_priv(netdev);
1952 	struct e1000_hw *hw = &adapter->hw;
1953 
1954 	switch (state) {
1955 	case ETHTOOL_ID_ACTIVE:
1956 		pm_runtime_get_sync(netdev->dev.parent);
1957 
1958 		if (!hw->mac.ops.blink_led)
1959 			return 2;	/* cycle on/off twice per second */
1960 
1961 		hw->mac.ops.blink_led(hw);
1962 		break;
1963 
1964 	case ETHTOOL_ID_INACTIVE:
1965 		if (hw->phy.type == e1000_phy_ife)
1966 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1967 		hw->mac.ops.led_off(hw);
1968 		hw->mac.ops.cleanup_led(hw);
1969 		pm_runtime_put_sync(netdev->dev.parent);
1970 		break;
1971 
1972 	case ETHTOOL_ID_ON:
1973 		hw->mac.ops.led_on(hw);
1974 		break;
1975 
1976 	case ETHTOOL_ID_OFF:
1977 		hw->mac.ops.led_off(hw);
1978 		break;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int e1000_get_coalesce(struct net_device *netdev,
1985 			      struct ethtool_coalesce *ec,
1986 			      struct kernel_ethtool_coalesce *kernel_coal,
1987 			      struct netlink_ext_ack *extack)
1988 {
1989 	struct e1000_adapter *adapter = netdev_priv(netdev);
1990 
1991 	if (adapter->itr_setting <= 4)
1992 		ec->rx_coalesce_usecs = adapter->itr_setting;
1993 	else
1994 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1995 
1996 	return 0;
1997 }
1998 
1999 static int e1000_set_coalesce(struct net_device *netdev,
2000 			      struct ethtool_coalesce *ec,
2001 			      struct kernel_ethtool_coalesce *kernel_coal,
2002 			      struct netlink_ext_ack *extack)
2003 {
2004 	struct e1000_adapter *adapter = netdev_priv(netdev);
2005 
2006 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2007 	    ((ec->rx_coalesce_usecs > 4) &&
2008 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2009 	    (ec->rx_coalesce_usecs == 2))
2010 		return -EINVAL;
2011 
2012 	if (ec->rx_coalesce_usecs == 4) {
2013 		adapter->itr_setting = 4;
2014 		adapter->itr = adapter->itr_setting;
2015 	} else if (ec->rx_coalesce_usecs <= 3) {
2016 		adapter->itr = 20000;
2017 		adapter->itr_setting = ec->rx_coalesce_usecs;
2018 	} else {
2019 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2020 		adapter->itr_setting = adapter->itr & ~3;
2021 	}
2022 
2023 	if (adapter->itr_setting != 0)
2024 		e1000e_write_itr(adapter, adapter->itr);
2025 	else
2026 		e1000e_write_itr(adapter, 0);
2027 
2028 	return 0;
2029 }
2030 
2031 static int e1000_nway_reset(struct net_device *netdev)
2032 {
2033 	struct e1000_adapter *adapter = netdev_priv(netdev);
2034 
2035 	if (!netif_running(netdev))
2036 		return -EAGAIN;
2037 
2038 	if (!adapter->hw.mac.autoneg)
2039 		return -EINVAL;
2040 
2041 	e1000e_reinit_locked(adapter);
2042 
2043 	return 0;
2044 }
2045 
2046 static void e1000_get_ethtool_stats(struct net_device *netdev,
2047 				    struct ethtool_stats __always_unused *stats,
2048 				    u64 *data)
2049 {
2050 	struct e1000_adapter *adapter = netdev_priv(netdev);
2051 	struct rtnl_link_stats64 net_stats;
2052 	int i;
2053 	char *p = NULL;
2054 
2055 	dev_get_stats(netdev, &net_stats);
2056 
2057 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2058 		switch (e1000_gstrings_stats[i].type) {
2059 		case NETDEV_STATS:
2060 			p = (char *)&net_stats +
2061 			    e1000_gstrings_stats[i].stat_offset;
2062 			break;
2063 		case E1000_STATS:
2064 			p = (char *)adapter +
2065 			    e1000_gstrings_stats[i].stat_offset;
2066 			break;
2067 		default:
2068 			data[i] = 0;
2069 			continue;
2070 		}
2071 
2072 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2073 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2074 	}
2075 }
2076 
2077 static void e1000_get_strings(struct net_device __always_unused *netdev,
2078 			      u32 stringset, u8 *data)
2079 {
2080 	u8 *p = data;
2081 	int i;
2082 
2083 	switch (stringset) {
2084 	case ETH_SS_TEST:
2085 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2086 		break;
2087 	case ETH_SS_STATS:
2088 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2089 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2090 			       ETH_GSTRING_LEN);
2091 			p += ETH_GSTRING_LEN;
2092 		}
2093 		break;
2094 	case ETH_SS_PRIV_FLAGS:
2095 		memcpy(data, e1000e_priv_flags_strings,
2096 		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2097 		break;
2098 	}
2099 }
2100 
2101 static int e1000_get_rxfh_fields(struct net_device *netdev,
2102 				 struct ethtool_rxfh_fields *info)
2103 {
2104 	struct e1000_adapter *adapter = netdev_priv(netdev);
2105 	struct e1000_hw *hw = &adapter->hw;
2106 	u32 mrqc;
2107 
2108 	info->data = 0;
2109 
2110 	mrqc = er32(MRQC);
2111 
2112 	if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2113 		return 0;
2114 
2115 	switch (info->flow_type) {
2116 	case TCP_V4_FLOW:
2117 		if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2118 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2119 		fallthrough;
2120 	case UDP_V4_FLOW:
2121 	case SCTP_V4_FLOW:
2122 	case AH_ESP_V4_FLOW:
2123 	case IPV4_FLOW:
2124 		if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2125 			info->data |= RXH_IP_SRC | RXH_IP_DST;
2126 		break;
2127 	case TCP_V6_FLOW:
2128 		if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2129 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2130 		fallthrough;
2131 	case UDP_V6_FLOW:
2132 	case SCTP_V6_FLOW:
2133 	case AH_ESP_V6_FLOW:
2134 	case IPV6_FLOW:
2135 		if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2136 			info->data |= RXH_IP_SRC | RXH_IP_DST;
2137 		break;
2138 	default:
2139 		break;
2140 	}
2141 	return 0;
2142 }
2143 
2144 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2145 {
2146 	struct e1000_adapter *adapter = netdev_priv(netdev);
2147 	struct e1000_hw *hw = &adapter->hw;
2148 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2149 	u32 ret_val;
2150 
2151 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2152 		return -EOPNOTSUPP;
2153 
2154 	switch (hw->phy.type) {
2155 	case e1000_phy_82579:
2156 		cap_addr = I82579_EEE_CAPABILITY;
2157 		lpa_addr = I82579_EEE_LP_ABILITY;
2158 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2159 		break;
2160 	case e1000_phy_i217:
2161 		cap_addr = I217_EEE_CAPABILITY;
2162 		lpa_addr = I217_EEE_LP_ABILITY;
2163 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2164 		break;
2165 	default:
2166 		return -EOPNOTSUPP;
2167 	}
2168 
2169 	ret_val = hw->phy.ops.acquire(hw);
2170 	if (ret_val)
2171 		return -EBUSY;
2172 
2173 	/* EEE Capability */
2174 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2175 	if (ret_val)
2176 		goto release;
2177 	mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2178 
2179 	/* EEE Advertised */
2180 	mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2181 
2182 	/* EEE Link Partner Advertised */
2183 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2184 	if (ret_val)
2185 		goto release;
2186 	mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2187 
2188 	/* EEE PCS Status */
2189 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2190 	if (ret_val)
2191 		goto release;
2192 	if (hw->phy.type == e1000_phy_82579)
2193 		phy_data <<= 8;
2194 
2195 	/* Result of the EEE auto negotiation - there is no register that
2196 	 * has the status of the EEE negotiation so do a best-guess based
2197 	 * on whether Tx or Rx LPI indications have been received.
2198 	 */
2199 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2200 		edata->eee_active = true;
2201 
2202 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2203 	edata->tx_lpi_enabled = true;
2204 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2205 
2206 release:
2207 	hw->phy.ops.release(hw);
2208 	if (ret_val)
2209 		ret_val = -ENODATA;
2210 
2211 	return ret_val;
2212 }
2213 
2214 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2215 {
2216 	struct e1000_adapter *adapter = netdev_priv(netdev);
2217 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2218 	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2219 	struct e1000_hw *hw = &adapter->hw;
2220 	struct ethtool_keee eee_curr;
2221 	s32 ret_val;
2222 
2223 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2224 	if (ret_val)
2225 		return ret_val;
2226 
2227 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2228 		e_err("Setting EEE tx-lpi is not supported\n");
2229 		return -EINVAL;
2230 	}
2231 
2232 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2233 		e_err("Setting EEE Tx LPI timer is not supported\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2238 			 supported);
2239 	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2240 			 supported);
2241 
2242 	if (linkmode_andnot(tmp, edata->advertised, supported)) {
2243 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2244 		return -EINVAL;
2245 	}
2246 
2247 	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2248 
2249 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2250 
2251 	/* reset the link */
2252 	if (netif_running(netdev))
2253 		e1000e_reinit_locked(adapter);
2254 	else
2255 		e1000e_reset(adapter);
2256 
2257 	return 0;
2258 }
2259 
2260 static int e1000e_get_ts_info(struct net_device *netdev,
2261 			      struct kernel_ethtool_ts_info *info)
2262 {
2263 	struct e1000_adapter *adapter = netdev_priv(netdev);
2264 
2265 	ethtool_op_get_ts_info(netdev, info);
2266 
2267 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2268 		return 0;
2269 
2270 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2271 				  SOF_TIMESTAMPING_RX_HARDWARE |
2272 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2273 
2274 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2275 
2276 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2277 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2278 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2279 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2280 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2281 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2282 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2283 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2284 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2285 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2286 			    BIT(HWTSTAMP_FILTER_ALL));
2287 
2288 	if (adapter->ptp_clock)
2289 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2290 
2291 	return 0;
2292 }
2293 
2294 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2295 {
2296 	struct e1000_adapter *adapter = netdev_priv(netdev);
2297 	u32 priv_flags = 0;
2298 
2299 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2300 		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2301 
2302 	if (adapter->flags2 & FLAG2_DISABLE_K1)
2303 		priv_flags |= E1000E_PRIV_FLAGS_DISABLE_K1;
2304 
2305 	return priv_flags;
2306 }
2307 
2308 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2309 {
2310 	struct e1000_adapter *adapter = netdev_priv(netdev);
2311 	struct e1000_hw *hw = &adapter->hw;
2312 	unsigned int flags2 = adapter->flags2;
2313 	unsigned int changed;
2314 
2315 	flags2 &= ~(FLAG2_ENABLE_S0IX_FLOWS | FLAG2_DISABLE_K1);
2316 
2317 	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2318 		if (hw->mac.type < e1000_pch_cnp) {
2319 			e_err("S0ix is not supported on this device\n");
2320 			return -EINVAL;
2321 		}
2322 
2323 		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2324 	}
2325 
2326 	if (priv_flags & E1000E_PRIV_FLAGS_DISABLE_K1) {
2327 		if (hw->mac.type < e1000_ich8lan) {
2328 			e_err("Disabling K1 is not supported on this device\n");
2329 			return -EINVAL;
2330 		}
2331 
2332 		flags2 |= FLAG2_DISABLE_K1;
2333 	}
2334 
2335 	changed = adapter->flags2 ^ flags2;
2336 	if (changed)
2337 		adapter->flags2 = flags2;
2338 
2339 	if (changed & FLAG2_DISABLE_K1) {
2340 		/* reset the hardware to apply the changes */
2341 		while (test_and_set_bit(__E1000_RESETTING,
2342 					&adapter->state))
2343 			usleep_range(1000, 2000);
2344 
2345 		if (netif_running(adapter->netdev)) {
2346 			e1000e_down(adapter, true);
2347 			e1000e_up(adapter);
2348 		} else {
2349 			e1000e_reset(adapter);
2350 		}
2351 
2352 		clear_bit(__E1000_RESETTING, &adapter->state);
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 static const struct ethtool_ops e1000_ethtool_ops = {
2359 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2360 	.get_drvinfo		= e1000_get_drvinfo,
2361 	.get_regs_len		= e1000_get_regs_len,
2362 	.get_regs		= e1000_get_regs,
2363 	.get_wol		= e1000_get_wol,
2364 	.set_wol		= e1000_set_wol,
2365 	.get_msglevel		= e1000_get_msglevel,
2366 	.set_msglevel		= e1000_set_msglevel,
2367 	.nway_reset		= e1000_nway_reset,
2368 	.get_link		= ethtool_op_get_link,
2369 	.get_eeprom_len		= e1000_get_eeprom_len,
2370 	.get_eeprom		= e1000_get_eeprom,
2371 	.set_eeprom		= e1000_set_eeprom,
2372 	.get_ringparam		= e1000_get_ringparam,
2373 	.set_ringparam		= e1000_set_ringparam,
2374 	.get_pauseparam		= e1000_get_pauseparam,
2375 	.set_pauseparam		= e1000_set_pauseparam,
2376 	.self_test		= e1000_diag_test,
2377 	.get_strings		= e1000_get_strings,
2378 	.set_phys_id		= e1000_set_phys_id,
2379 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2380 	.get_sset_count		= e1000e_get_sset_count,
2381 	.get_coalesce		= e1000_get_coalesce,
2382 	.set_coalesce		= e1000_set_coalesce,
2383 	.get_rxfh_fields	= e1000_get_rxfh_fields,
2384 	.get_ts_info		= e1000e_get_ts_info,
2385 	.get_eee		= e1000e_get_eee,
2386 	.set_eee		= e1000e_set_eee,
2387 	.get_link_ksettings	= e1000_get_link_ksettings,
2388 	.set_link_ksettings	= e1000_set_link_ksettings,
2389 	.get_priv_flags		= e1000e_get_priv_flags,
2390 	.set_priv_flags		= e1000e_set_priv_flags,
2391 };
2392 
2393 void e1000e_set_ethtool_ops(struct net_device *netdev)
2394 {
2395 	netdev->ethtool_ops = &e1000_ethtool_ops;
2396 }
2397