1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include <linux/bitfield.h>
5
6 #include "e1000.h"
7
8 /**
9 * e1000e_get_bus_info_pcie - Get PCIe bus information
10 * @hw: pointer to the HW structure
11 *
12 * Determines and stores the system bus information for a particular
13 * network interface. The following bus information is determined and stored:
14 * bus speed, bus width, type (PCIe), and PCIe function.
15 **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)16 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
17 {
18 struct pci_dev *pdev = hw->adapter->pdev;
19 struct e1000_mac_info *mac = &hw->mac;
20 struct e1000_bus_info *bus = &hw->bus;
21 u16 pcie_link_status;
22
23 if (!pci_pcie_cap(pdev)) {
24 bus->width = e1000_bus_width_unknown;
25 } else {
26 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &pcie_link_status);
27 bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
28 pcie_link_status);
29 }
30
31 mac->ops.set_lan_id(hw);
32
33 return 0;
34 }
35
36 /**
37 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
38 *
39 * @hw: pointer to the HW structure
40 *
41 * Determines the LAN function id by reading memory-mapped registers
42 * and swaps the port value if requested.
43 **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)44 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
45 {
46 struct e1000_bus_info *bus = &hw->bus;
47 u32 reg;
48
49 /* The status register reports the correct function number
50 * for the device regardless of function swap state.
51 */
52 reg = er32(STATUS);
53 bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
54 }
55
56 /**
57 * e1000_set_lan_id_single_port - Set LAN id for a single port device
58 * @hw: pointer to the HW structure
59 *
60 * Sets the LAN function id to zero for a single port device.
61 **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)62 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
63 {
64 struct e1000_bus_info *bus = &hw->bus;
65
66 bus->func = 0;
67 }
68
69 /**
70 * e1000_clear_vfta_generic - Clear VLAN filter table
71 * @hw: pointer to the HW structure
72 *
73 * Clears the register array which contains the VLAN filter table by
74 * setting all the values to 0.
75 **/
e1000_clear_vfta_generic(struct e1000_hw * hw)76 void e1000_clear_vfta_generic(struct e1000_hw *hw)
77 {
78 u32 offset;
79
80 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
81 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
82 e1e_flush();
83 }
84 }
85
86 /**
87 * e1000_write_vfta_generic - Write value to VLAN filter table
88 * @hw: pointer to the HW structure
89 * @offset: register offset in VLAN filter table
90 * @value: register value written to VLAN filter table
91 *
92 * Writes value at the given offset in the register array which stores
93 * the VLAN filter table.
94 **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)95 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
96 {
97 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
98 e1e_flush();
99 }
100
101 /**
102 * e1000e_init_rx_addrs - Initialize receive address's
103 * @hw: pointer to the HW structure
104 * @rar_count: receive address registers
105 *
106 * Setup the receive address registers by setting the base receive address
107 * register to the devices MAC address and clearing all the other receive
108 * address registers to 0.
109 **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)110 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
111 {
112 u32 i;
113 u8 mac_addr[ETH_ALEN] = { 0 };
114
115 /* Setup the receive address */
116 e_dbg("Programming MAC Address into RAR[0]\n");
117
118 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
119
120 /* Zero out the other (rar_entry_count - 1) receive addresses */
121 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
122 for (i = 1; i < rar_count; i++)
123 hw->mac.ops.rar_set(hw, mac_addr, i);
124 }
125
126 /**
127 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
128 * @hw: pointer to the HW structure
129 *
130 * Checks the nvm for an alternate MAC address. An alternate MAC address
131 * can be setup by pre-boot software and must be treated like a permanent
132 * address and must override the actual permanent MAC address. If an
133 * alternate MAC address is found it is programmed into RAR0, replacing
134 * the permanent address that was installed into RAR0 by the Si on reset.
135 * This function will return SUCCESS unless it encounters an error while
136 * reading the EEPROM.
137 **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)138 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
139 {
140 u32 i;
141 s32 ret_val;
142 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
143 u8 alt_mac_addr[ETH_ALEN];
144
145 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
146 if (ret_val)
147 return ret_val;
148
149 /* not supported on 82573 */
150 if (hw->mac.type == e1000_82573)
151 return 0;
152
153 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
154 &nvm_alt_mac_addr_offset);
155 if (ret_val) {
156 e_dbg("NVM Read Error\n");
157 return ret_val;
158 }
159
160 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
161 (nvm_alt_mac_addr_offset == 0x0000))
162 /* There is no Alternate MAC Address */
163 return 0;
164
165 if (hw->bus.func == E1000_FUNC_1)
166 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
167 for (i = 0; i < ETH_ALEN; i += 2) {
168 offset = nvm_alt_mac_addr_offset + (i >> 1);
169 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
170 if (ret_val) {
171 e_dbg("NVM Read Error\n");
172 return ret_val;
173 }
174
175 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
176 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
177 }
178
179 /* if multicast bit is set, the alternate address will not be used */
180 if (is_multicast_ether_addr(alt_mac_addr)) {
181 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
182 return 0;
183 }
184
185 /* We have a valid alternate MAC address, and we want to treat it the
186 * same as the normal permanent MAC address stored by the HW into the
187 * RAR. Do this by mapping this address into RAR0.
188 */
189 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
190
191 return 0;
192 }
193
e1000e_rar_get_count_generic(struct e1000_hw * hw)194 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
195 {
196 return hw->mac.rar_entry_count;
197 }
198
199 /**
200 * e1000e_rar_set_generic - Set receive address register
201 * @hw: pointer to the HW structure
202 * @addr: pointer to the receive address
203 * @index: receive address array register
204 *
205 * Sets the receive address array register at index to the address passed
206 * in by addr.
207 **/
e1000e_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)208 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
209 {
210 u32 rar_low, rar_high;
211
212 /* HW expects these in little endian so we reverse the byte order
213 * from network order (big endian) to little endian
214 */
215 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
216 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
217
218 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
219
220 /* If MAC address zero, no need to set the AV bit */
221 if (rar_low || rar_high)
222 rar_high |= E1000_RAH_AV;
223
224 /* Some bridges will combine consecutive 32-bit writes into
225 * a single burst write, which will malfunction on some parts.
226 * The flushes avoid this.
227 */
228 ew32(RAL(index), rar_low);
229 e1e_flush();
230 ew32(RAH(index), rar_high);
231 e1e_flush();
232
233 return 0;
234 }
235
236 /**
237 * e1000_hash_mc_addr - Generate a multicast hash value
238 * @hw: pointer to the HW structure
239 * @mc_addr: pointer to a multicast address
240 *
241 * Generates a multicast address hash value which is used to determine
242 * the multicast filter table array address and new table value.
243 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)244 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
245 {
246 u32 hash_value, hash_mask;
247 u8 bit_shift = 0;
248
249 /* Register count multiplied by bits per register */
250 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
251
252 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
253 * where 0xFF would still fall within the hash mask.
254 */
255 while (hash_mask >> bit_shift != 0xFF)
256 bit_shift++;
257
258 /* The portion of the address that is used for the hash table
259 * is determined by the mc_filter_type setting.
260 * The algorithm is such that there is a total of 8 bits of shifting.
261 * The bit_shift for a mc_filter_type of 0 represents the number of
262 * left-shifts where the MSB of mc_addr[5] would still fall within
263 * the hash_mask. Case 0 does this exactly. Since there are a total
264 * of 8 bits of shifting, then mc_addr[4] will shift right the
265 * remaining number of bits. Thus 8 - bit_shift. The rest of the
266 * cases are a variation of this algorithm...essentially raising the
267 * number of bits to shift mc_addr[5] left, while still keeping the
268 * 8-bit shifting total.
269 *
270 * For example, given the following Destination MAC Address and an
271 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
272 * we can see that the bit_shift for case 0 is 4. These are the hash
273 * values resulting from each mc_filter_type...
274 * [0] [1] [2] [3] [4] [5]
275 * 01 AA 00 12 34 56
276 * LSB MSB
277 *
278 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
279 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
280 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
281 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
282 */
283 switch (hw->mac.mc_filter_type) {
284 default:
285 case 0:
286 break;
287 case 1:
288 bit_shift += 1;
289 break;
290 case 2:
291 bit_shift += 2;
292 break;
293 case 3:
294 bit_shift += 4;
295 break;
296 }
297
298 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
299 (((u16)mc_addr[5]) << bit_shift)));
300
301 return hash_value;
302 }
303
304 /**
305 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
306 * @hw: pointer to the HW structure
307 * @mc_addr_list: array of multicast addresses to program
308 * @mc_addr_count: number of multicast addresses to program
309 *
310 * Updates entire Multicast Table Array.
311 * The caller must have a packed mc_addr_list of multicast addresses.
312 **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)313 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
314 u8 *mc_addr_list, u32 mc_addr_count)
315 {
316 u32 hash_value, hash_bit, hash_reg;
317 int i;
318
319 /* clear mta_shadow */
320 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
321
322 /* update mta_shadow from mc_addr_list */
323 for (i = 0; (u32)i < mc_addr_count; i++) {
324 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
325
326 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
327 hash_bit = hash_value & 0x1F;
328
329 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
330 mc_addr_list += (ETH_ALEN);
331 }
332
333 /* replace the entire MTA table */
334 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
335 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
336
337 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
338 /*
339 * Do not queue up too many posted writes to prevent
340 * increased latency for other devices on the
341 * interconnect. Flush after each 8th posted write,
342 * to keep additional execution time low while still
343 * preventing increased latency.
344 */
345 if (!(i % 8) && i)
346 e1e_flush();
347 }
348 }
349 e1e_flush();
350 }
351
352 /**
353 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
354 * @hw: pointer to the HW structure
355 *
356 * Clears the base hardware counters by reading the counter registers.
357 **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)358 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
359 {
360 er32(CRCERRS);
361 er32(SYMERRS);
362 er32(MPC);
363 er32(SCC);
364 er32(ECOL);
365 er32(MCC);
366 er32(LATECOL);
367 er32(COLC);
368 er32(DC);
369 er32(SEC);
370 er32(RLEC);
371 er32(XONRXC);
372 er32(XONTXC);
373 er32(XOFFRXC);
374 er32(XOFFTXC);
375 er32(FCRUC);
376 er32(GPRC);
377 er32(BPRC);
378 er32(MPRC);
379 er32(GPTC);
380 er32(GORCL);
381 er32(GORCH);
382 er32(GOTCL);
383 er32(GOTCH);
384 er32(RNBC);
385 er32(RUC);
386 er32(RFC);
387 er32(ROC);
388 er32(RJC);
389 er32(TORL);
390 er32(TORH);
391 er32(TOTL);
392 er32(TOTH);
393 er32(TPR);
394 er32(TPT);
395 er32(MPTC);
396 er32(BPTC);
397 }
398
399 /**
400 * e1000e_check_for_copper_link - Check for link (Copper)
401 * @hw: pointer to the HW structure
402 *
403 * Checks to see of the link status of the hardware has changed. If a
404 * change in link status has been detected, then we read the PHY registers
405 * to get the current speed/duplex if link exists.
406 **/
e1000e_check_for_copper_link(struct e1000_hw * hw)407 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
408 {
409 struct e1000_mac_info *mac = &hw->mac;
410 s32 ret_val;
411 bool link;
412
413 /* We only want to go out to the PHY registers to see if Auto-Neg
414 * has completed and/or if our link status has changed. The
415 * get_link_status flag is set upon receiving a Link Status
416 * Change or Rx Sequence Error interrupt.
417 */
418 if (!mac->get_link_status)
419 return 0;
420 mac->get_link_status = false;
421
422 /* First we want to see if the MII Status Register reports
423 * link. If so, then we want to get the current speed/duplex
424 * of the PHY.
425 */
426 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
427 if (ret_val || !link)
428 goto out;
429
430 /* Check if there was DownShift, must be checked
431 * immediately after link-up
432 */
433 e1000e_check_downshift(hw);
434
435 /* If we are forcing speed/duplex, then we simply return since
436 * we have already determined whether we have link or not.
437 */
438 if (!mac->autoneg)
439 return -E1000_ERR_CONFIG;
440
441 /* Auto-Neg is enabled. Auto Speed Detection takes care
442 * of MAC speed/duplex configuration. So we only need to
443 * configure Collision Distance in the MAC.
444 */
445 mac->ops.config_collision_dist(hw);
446
447 /* Configure Flow Control now that Auto-Neg has completed.
448 * First, we need to restore the desired flow control
449 * settings because we may have had to re-autoneg with a
450 * different link partner.
451 */
452 ret_val = e1000e_config_fc_after_link_up(hw);
453 if (ret_val)
454 e_dbg("Error configuring flow control\n");
455
456 return ret_val;
457
458 out:
459 mac->get_link_status = true;
460 return ret_val;
461 }
462
463 /**
464 * e1000e_check_for_fiber_link - Check for link (Fiber)
465 * @hw: pointer to the HW structure
466 *
467 * Checks for link up on the hardware. If link is not up and we have
468 * a signal, then we need to force link up.
469 **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)470 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
471 {
472 struct e1000_mac_info *mac = &hw->mac;
473 u32 rxcw;
474 u32 ctrl;
475 u32 status;
476 s32 ret_val;
477
478 ctrl = er32(CTRL);
479 status = er32(STATUS);
480 rxcw = er32(RXCW);
481
482 /* If we don't have link (auto-negotiation failed or link partner
483 * cannot auto-negotiate), the cable is plugged in (we have signal),
484 * and our link partner is not trying to auto-negotiate with us (we
485 * are receiving idles or data), we need to force link up. We also
486 * need to give auto-negotiation time to complete, in case the cable
487 * was just plugged in. The autoneg_failed flag does this.
488 */
489 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
490 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
491 !(rxcw & E1000_RXCW_C)) {
492 if (!mac->autoneg_failed) {
493 mac->autoneg_failed = true;
494 return 0;
495 }
496 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
497
498 /* Disable auto-negotiation in the TXCW register */
499 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
500
501 /* Force link-up and also force full-duplex. */
502 ctrl = er32(CTRL);
503 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
504 ew32(CTRL, ctrl);
505
506 /* Configure Flow Control after forcing link up. */
507 ret_val = e1000e_config_fc_after_link_up(hw);
508 if (ret_val) {
509 e_dbg("Error configuring flow control\n");
510 return ret_val;
511 }
512 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
513 /* If we are forcing link and we are receiving /C/ ordered
514 * sets, re-enable auto-negotiation in the TXCW register
515 * and disable forced link in the Device Control register
516 * in an attempt to auto-negotiate with our link partner.
517 */
518 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
519 ew32(TXCW, mac->txcw);
520 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
521
522 mac->serdes_has_link = true;
523 }
524
525 return 0;
526 }
527
528 /**
529 * e1000e_check_for_serdes_link - Check for link (Serdes)
530 * @hw: pointer to the HW structure
531 *
532 * Checks for link up on the hardware. If link is not up and we have
533 * a signal, then we need to force link up.
534 **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)535 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
536 {
537 struct e1000_mac_info *mac = &hw->mac;
538 u32 rxcw;
539 u32 ctrl;
540 u32 status;
541 s32 ret_val;
542
543 ctrl = er32(CTRL);
544 status = er32(STATUS);
545 rxcw = er32(RXCW);
546
547 /* If we don't have link (auto-negotiation failed or link partner
548 * cannot auto-negotiate), and our link partner is not trying to
549 * auto-negotiate with us (we are receiving idles or data),
550 * we need to force link up. We also need to give auto-negotiation
551 * time to complete.
552 */
553 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
554 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
555 if (!mac->autoneg_failed) {
556 mac->autoneg_failed = true;
557 return 0;
558 }
559 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
560
561 /* Disable auto-negotiation in the TXCW register */
562 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
563
564 /* Force link-up and also force full-duplex. */
565 ctrl = er32(CTRL);
566 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
567 ew32(CTRL, ctrl);
568
569 /* Configure Flow Control after forcing link up. */
570 ret_val = e1000e_config_fc_after_link_up(hw);
571 if (ret_val) {
572 e_dbg("Error configuring flow control\n");
573 return ret_val;
574 }
575 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
576 /* If we are forcing link and we are receiving /C/ ordered
577 * sets, re-enable auto-negotiation in the TXCW register
578 * and disable forced link in the Device Control register
579 * in an attempt to auto-negotiate with our link partner.
580 */
581 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
582 ew32(TXCW, mac->txcw);
583 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
584
585 mac->serdes_has_link = true;
586 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
587 /* If we force link for non-auto-negotiation switch, check
588 * link status based on MAC synchronization for internal
589 * serdes media type.
590 */
591 /* SYNCH bit and IV bit are sticky. */
592 usleep_range(10, 20);
593 rxcw = er32(RXCW);
594 if (rxcw & E1000_RXCW_SYNCH) {
595 if (!(rxcw & E1000_RXCW_IV)) {
596 mac->serdes_has_link = true;
597 e_dbg("SERDES: Link up - forced.\n");
598 }
599 } else {
600 mac->serdes_has_link = false;
601 e_dbg("SERDES: Link down - force failed.\n");
602 }
603 }
604
605 if (E1000_TXCW_ANE & er32(TXCW)) {
606 status = er32(STATUS);
607 if (status & E1000_STATUS_LU) {
608 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
609 usleep_range(10, 20);
610 rxcw = er32(RXCW);
611 if (rxcw & E1000_RXCW_SYNCH) {
612 if (!(rxcw & E1000_RXCW_IV)) {
613 mac->serdes_has_link = true;
614 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
615 } else {
616 mac->serdes_has_link = false;
617 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
618 }
619 } else {
620 mac->serdes_has_link = false;
621 e_dbg("SERDES: Link down - no sync.\n");
622 }
623 } else {
624 mac->serdes_has_link = false;
625 e_dbg("SERDES: Link down - autoneg failed\n");
626 }
627 }
628
629 return 0;
630 }
631
632 /**
633 * e1000_set_default_fc_generic - Set flow control default values
634 * @hw: pointer to the HW structure
635 *
636 * Read the EEPROM for the default values for flow control and store the
637 * values.
638 **/
e1000_set_default_fc_generic(struct e1000_hw * hw)639 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
640 {
641 s32 ret_val;
642 u16 nvm_data;
643
644 /* Read and store word 0x0F of the EEPROM. This word contains bits
645 * that determine the hardware's default PAUSE (flow control) mode,
646 * a bit that determines whether the HW defaults to enabling or
647 * disabling auto-negotiation, and the direction of the
648 * SW defined pins. If there is no SW over-ride of the flow
649 * control setting, then the variable hw->fc will
650 * be initialized based on a value in the EEPROM.
651 */
652 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
653
654 if (ret_val) {
655 e_dbg("NVM Read Error\n");
656 return ret_val;
657 }
658
659 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
660 hw->fc.requested_mode = e1000_fc_none;
661 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
662 hw->fc.requested_mode = e1000_fc_tx_pause;
663 else
664 hw->fc.requested_mode = e1000_fc_full;
665
666 return 0;
667 }
668
669 /**
670 * e1000e_setup_link_generic - Setup flow control and link settings
671 * @hw: pointer to the HW structure
672 *
673 * Determines which flow control settings to use, then configures flow
674 * control. Calls the appropriate media-specific link configuration
675 * function. Assuming the adapter has a valid link partner, a valid link
676 * should be established. Assumes the hardware has previously been reset
677 * and the transmitter and receiver are not enabled.
678 **/
e1000e_setup_link_generic(struct e1000_hw * hw)679 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
680 {
681 s32 ret_val;
682
683 /* In the case of the phy reset being blocked, we already have a link.
684 * We do not need to set it up again.
685 */
686 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
687 return 0;
688
689 /* If requested flow control is set to default, set flow control
690 * based on the EEPROM flow control settings.
691 */
692 if (hw->fc.requested_mode == e1000_fc_default) {
693 ret_val = e1000_set_default_fc_generic(hw);
694 if (ret_val)
695 return ret_val;
696 }
697
698 /* Save off the requested flow control mode for use later. Depending
699 * on the link partner's capabilities, we may or may not use this mode.
700 */
701 hw->fc.current_mode = hw->fc.requested_mode;
702
703 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
704
705 /* Call the necessary media_type subroutine to configure the link. */
706 ret_val = hw->mac.ops.setup_physical_interface(hw);
707 if (ret_val)
708 return ret_val;
709
710 /* Initialize the flow control address, type, and PAUSE timer
711 * registers to their default values. This is done even if flow
712 * control is disabled, because it does not hurt anything to
713 * initialize these registers.
714 */
715 e_dbg("Initializing the Flow Control address, type and timer regs\n");
716 ew32(FCT, FLOW_CONTROL_TYPE);
717 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
718 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
719
720 ew32(FCTTV, hw->fc.pause_time);
721
722 return e1000e_set_fc_watermarks(hw);
723 }
724
725 /**
726 * e1000_commit_fc_settings_generic - Configure flow control
727 * @hw: pointer to the HW structure
728 *
729 * Write the flow control settings to the Transmit Config Word Register (TXCW)
730 * base on the flow control settings in e1000_mac_info.
731 **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)732 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
733 {
734 struct e1000_mac_info *mac = &hw->mac;
735 u32 txcw;
736
737 /* Check for a software override of the flow control settings, and
738 * setup the device accordingly. If auto-negotiation is enabled, then
739 * software will have to set the "PAUSE" bits to the correct value in
740 * the Transmit Config Word Register (TXCW) and re-start auto-
741 * negotiation. However, if auto-negotiation is disabled, then
742 * software will have to manually configure the two flow control enable
743 * bits in the CTRL register.
744 *
745 * The possible values of the "fc" parameter are:
746 * 0: Flow control is completely disabled
747 * 1: Rx flow control is enabled (we can receive pause frames,
748 * but not send pause frames).
749 * 2: Tx flow control is enabled (we can send pause frames but we
750 * do not support receiving pause frames).
751 * 3: Both Rx and Tx flow control (symmetric) are enabled.
752 */
753 switch (hw->fc.current_mode) {
754 case e1000_fc_none:
755 /* Flow control completely disabled by a software over-ride. */
756 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
757 break;
758 case e1000_fc_rx_pause:
759 /* Rx Flow control is enabled and Tx Flow control is disabled
760 * by a software over-ride. Since there really isn't a way to
761 * advertise that we are capable of Rx Pause ONLY, we will
762 * advertise that we support both symmetric and asymmetric Rx
763 * PAUSE. Later, we will disable the adapter's ability to send
764 * PAUSE frames.
765 */
766 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
767 break;
768 case e1000_fc_tx_pause:
769 /* Tx Flow control is enabled, and Rx Flow control is disabled,
770 * by a software over-ride.
771 */
772 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
773 break;
774 case e1000_fc_full:
775 /* Flow control (both Rx and Tx) is enabled by a software
776 * over-ride.
777 */
778 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
779 break;
780 default:
781 e_dbg("Flow control param set incorrectly\n");
782 return -E1000_ERR_CONFIG;
783 }
784
785 ew32(TXCW, txcw);
786 mac->txcw = txcw;
787
788 return 0;
789 }
790
791 /**
792 * e1000_poll_fiber_serdes_link_generic - Poll for link up
793 * @hw: pointer to the HW structure
794 *
795 * Polls for link up by reading the status register, if link fails to come
796 * up with auto-negotiation, then the link is forced if a signal is detected.
797 **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)798 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
799 {
800 struct e1000_mac_info *mac = &hw->mac;
801 u32 i, status;
802 s32 ret_val;
803
804 /* If we have a signal (the cable is plugged in, or assumed true for
805 * serdes media) then poll for a "Link-Up" indication in the Device
806 * Status Register. Time-out if a link isn't seen in 500 milliseconds
807 * seconds (Auto-negotiation should complete in less than 500
808 * milliseconds even if the other end is doing it in SW).
809 */
810 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
811 usleep_range(10000, 11000);
812 status = er32(STATUS);
813 if (status & E1000_STATUS_LU)
814 break;
815 }
816 if (i == FIBER_LINK_UP_LIMIT) {
817 e_dbg("Never got a valid link from auto-neg!!!\n");
818 mac->autoneg_failed = true;
819 /* AutoNeg failed to achieve a link, so we'll call
820 * mac->check_for_link. This routine will force the
821 * link up if we detect a signal. This will allow us to
822 * communicate with non-autonegotiating link partners.
823 */
824 ret_val = mac->ops.check_for_link(hw);
825 if (ret_val) {
826 e_dbg("Error while checking for link\n");
827 return ret_val;
828 }
829 mac->autoneg_failed = false;
830 } else {
831 mac->autoneg_failed = false;
832 e_dbg("Valid Link Found\n");
833 }
834
835 return 0;
836 }
837
838 /**
839 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
840 * @hw: pointer to the HW structure
841 *
842 * Configures collision distance and flow control for fiber and serdes
843 * links. Upon successful setup, poll for link.
844 **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)845 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
846 {
847 u32 ctrl;
848 s32 ret_val;
849
850 ctrl = er32(CTRL);
851
852 /* Take the link out of reset */
853 ctrl &= ~E1000_CTRL_LRST;
854
855 hw->mac.ops.config_collision_dist(hw);
856
857 ret_val = e1000_commit_fc_settings_generic(hw);
858 if (ret_val)
859 return ret_val;
860
861 /* Since auto-negotiation is enabled, take the link out of reset (the
862 * link will be in reset, because we previously reset the chip). This
863 * will restart auto-negotiation. If auto-negotiation is successful
864 * then the link-up status bit will be set and the flow control enable
865 * bits (RFCE and TFCE) will be set according to their negotiated value.
866 */
867 e_dbg("Auto-negotiation enabled\n");
868
869 ew32(CTRL, ctrl);
870 e1e_flush();
871 usleep_range(1000, 2000);
872
873 /* For these adapters, the SW definable pin 1 is set when the optics
874 * detect a signal. If we have a signal, then poll for a "Link-Up"
875 * indication.
876 */
877 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
878 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
879 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
880 } else {
881 e_dbg("No signal detected\n");
882 }
883
884 return ret_val;
885 }
886
887 /**
888 * e1000e_config_collision_dist_generic - Configure collision distance
889 * @hw: pointer to the HW structure
890 *
891 * Configures the collision distance to the default value and is used
892 * during link setup.
893 **/
e1000e_config_collision_dist_generic(struct e1000_hw * hw)894 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
895 {
896 u32 tctl;
897
898 tctl = er32(TCTL);
899
900 tctl &= ~E1000_TCTL_COLD;
901 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
902
903 ew32(TCTL, tctl);
904 e1e_flush();
905 }
906
907 /**
908 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
909 * @hw: pointer to the HW structure
910 *
911 * Sets the flow control high/low threshold (watermark) registers. If
912 * flow control XON frame transmission is enabled, then set XON frame
913 * transmission as well.
914 **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)915 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
916 {
917 u32 fcrtl = 0, fcrth = 0;
918
919 /* Set the flow control receive threshold registers. Normally,
920 * these registers will be set to a default threshold that may be
921 * adjusted later by the driver's runtime code. However, if the
922 * ability to transmit pause frames is not enabled, then these
923 * registers will be set to 0.
924 */
925 if (hw->fc.current_mode & e1000_fc_tx_pause) {
926 /* We need to set up the Receive Threshold high and low water
927 * marks as well as (optionally) enabling the transmission of
928 * XON frames.
929 */
930 fcrtl = hw->fc.low_water;
931 if (hw->fc.send_xon)
932 fcrtl |= E1000_FCRTL_XONE;
933
934 fcrth = hw->fc.high_water;
935 }
936 ew32(FCRTL, fcrtl);
937 ew32(FCRTH, fcrth);
938
939 return 0;
940 }
941
942 /**
943 * e1000e_force_mac_fc - Force the MAC's flow control settings
944 * @hw: pointer to the HW structure
945 *
946 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
947 * device control register to reflect the adapter settings. TFCE and RFCE
948 * need to be explicitly set by software when a copper PHY is used because
949 * autonegotiation is managed by the PHY rather than the MAC. Software must
950 * also configure these bits when link is forced on a fiber connection.
951 **/
e1000e_force_mac_fc(struct e1000_hw * hw)952 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
953 {
954 u32 ctrl;
955
956 ctrl = er32(CTRL);
957
958 /* Because we didn't get link via the internal auto-negotiation
959 * mechanism (we either forced link or we got link via PHY
960 * auto-neg), we have to manually enable/disable transmit an
961 * receive flow control.
962 *
963 * The "Case" statement below enables/disable flow control
964 * according to the "hw->fc.current_mode" parameter.
965 *
966 * The possible values of the "fc" parameter are:
967 * 0: Flow control is completely disabled
968 * 1: Rx flow control is enabled (we can receive pause
969 * frames but not send pause frames).
970 * 2: Tx flow control is enabled (we can send pause frames
971 * but we do not receive pause frames).
972 * 3: Both Rx and Tx flow control (symmetric) is enabled.
973 * other: No other values should be possible at this point.
974 */
975 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
976
977 switch (hw->fc.current_mode) {
978 case e1000_fc_none:
979 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
980 break;
981 case e1000_fc_rx_pause:
982 ctrl &= (~E1000_CTRL_TFCE);
983 ctrl |= E1000_CTRL_RFCE;
984 break;
985 case e1000_fc_tx_pause:
986 ctrl &= (~E1000_CTRL_RFCE);
987 ctrl |= E1000_CTRL_TFCE;
988 break;
989 case e1000_fc_full:
990 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
991 break;
992 default:
993 e_dbg("Flow control param set incorrectly\n");
994 return -E1000_ERR_CONFIG;
995 }
996
997 ew32(CTRL, ctrl);
998
999 return 0;
1000 }
1001
1002 /**
1003 * e1000e_config_fc_after_link_up - Configures flow control after link
1004 * @hw: pointer to the HW structure
1005 *
1006 * Checks the status of auto-negotiation after link up to ensure that the
1007 * speed and duplex were not forced. If the link needed to be forced, then
1008 * flow control needs to be forced also. If auto-negotiation is enabled
1009 * and did not fail, then we configure flow control based on our link
1010 * partner.
1011 **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)1012 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1013 {
1014 struct e1000_mac_info *mac = &hw->mac;
1015 s32 ret_val = 0;
1016 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1017 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1018 u16 speed, duplex;
1019
1020 /* Check for the case where we have fiber media and auto-neg failed
1021 * so we had to force link. In this case, we need to force the
1022 * configuration of the MAC to match the "fc" parameter.
1023 */
1024 if (mac->autoneg_failed) {
1025 if (hw->phy.media_type == e1000_media_type_fiber ||
1026 hw->phy.media_type == e1000_media_type_internal_serdes)
1027 ret_val = e1000e_force_mac_fc(hw);
1028 } else {
1029 if (hw->phy.media_type == e1000_media_type_copper)
1030 ret_val = e1000e_force_mac_fc(hw);
1031 }
1032
1033 if (ret_val) {
1034 e_dbg("Error forcing flow control settings\n");
1035 return ret_val;
1036 }
1037
1038 /* Check for the case where we have copper media and auto-neg is
1039 * enabled. In this case, we need to check and see if Auto-Neg
1040 * has completed, and if so, how the PHY and link partner has
1041 * flow control configured.
1042 */
1043 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1044 /* Read the MII Status Register and check to see if AutoNeg
1045 * has completed. We read this twice because this reg has
1046 * some "sticky" (latched) bits.
1047 */
1048 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1049 if (ret_val)
1050 return ret_val;
1051 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1052 if (ret_val)
1053 return ret_val;
1054
1055 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1056 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1057 return ret_val;
1058 }
1059
1060 /* The AutoNeg process has completed, so we now need to
1061 * read both the Auto Negotiation Advertisement
1062 * Register (Address 4) and the Auto_Negotiation Base
1063 * Page Ability Register (Address 5) to determine how
1064 * flow control was negotiated.
1065 */
1066 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1067 if (ret_val)
1068 return ret_val;
1069 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1070 if (ret_val)
1071 return ret_val;
1072
1073 /* Two bits in the Auto Negotiation Advertisement Register
1074 * (Address 4) and two bits in the Auto Negotiation Base
1075 * Page Ability Register (Address 5) determine flow control
1076 * for both the PHY and the link partner. The following
1077 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1078 * 1999, describes these PAUSE resolution bits and how flow
1079 * control is determined based upon these settings.
1080 * NOTE: DC = Don't Care
1081 *
1082 * LOCAL DEVICE | LINK PARTNER
1083 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1084 *-------|---------|-------|---------|--------------------
1085 * 0 | 0 | DC | DC | e1000_fc_none
1086 * 0 | 1 | 0 | DC | e1000_fc_none
1087 * 0 | 1 | 1 | 0 | e1000_fc_none
1088 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1089 * 1 | 0 | 0 | DC | e1000_fc_none
1090 * 1 | DC | 1 | DC | e1000_fc_full
1091 * 1 | 1 | 0 | 0 | e1000_fc_none
1092 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1093 *
1094 * Are both PAUSE bits set to 1? If so, this implies
1095 * Symmetric Flow Control is enabled at both ends. The
1096 * ASM_DIR bits are irrelevant per the spec.
1097 *
1098 * For Symmetric Flow Control:
1099 *
1100 * LOCAL DEVICE | LINK PARTNER
1101 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1102 *-------|---------|-------|---------|--------------------
1103 * 1 | DC | 1 | DC | E1000_fc_full
1104 *
1105 */
1106 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1107 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1108 /* Now we need to check if the user selected Rx ONLY
1109 * of pause frames. In this case, we had to advertise
1110 * FULL flow control because we could not advertise Rx
1111 * ONLY. Hence, we must now check to see if we need to
1112 * turn OFF the TRANSMISSION of PAUSE frames.
1113 */
1114 if (hw->fc.requested_mode == e1000_fc_full) {
1115 hw->fc.current_mode = e1000_fc_full;
1116 e_dbg("Flow Control = FULL.\n");
1117 } else {
1118 hw->fc.current_mode = e1000_fc_rx_pause;
1119 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1120 }
1121 }
1122 /* For receiving PAUSE frames ONLY.
1123 *
1124 * LOCAL DEVICE | LINK PARTNER
1125 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1126 *-------|---------|-------|---------|--------------------
1127 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1128 */
1129 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1130 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1131 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1132 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1133 hw->fc.current_mode = e1000_fc_tx_pause;
1134 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1135 }
1136 /* For transmitting PAUSE frames ONLY.
1137 *
1138 * LOCAL DEVICE | LINK PARTNER
1139 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1140 *-------|---------|-------|---------|--------------------
1141 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1142 */
1143 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1144 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1145 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1146 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1147 hw->fc.current_mode = e1000_fc_rx_pause;
1148 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1149 } else {
1150 /* Per the IEEE spec, at this point flow control
1151 * should be disabled.
1152 */
1153 hw->fc.current_mode = e1000_fc_none;
1154 e_dbg("Flow Control = NONE.\n");
1155 }
1156
1157 /* Now we need to do one last check... If we auto-
1158 * negotiated to HALF DUPLEX, flow control should not be
1159 * enabled per IEEE 802.3 spec.
1160 */
1161 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1162 if (ret_val) {
1163 e_dbg("Error getting link speed and duplex\n");
1164 return ret_val;
1165 }
1166
1167 if (duplex == HALF_DUPLEX)
1168 hw->fc.current_mode = e1000_fc_none;
1169
1170 /* Now we call a subroutine to actually force the MAC
1171 * controller to use the correct flow control settings.
1172 */
1173 ret_val = e1000e_force_mac_fc(hw);
1174 if (ret_val) {
1175 e_dbg("Error forcing flow control settings\n");
1176 return ret_val;
1177 }
1178 }
1179
1180 /* Check for the case where we have SerDes media and auto-neg is
1181 * enabled. In this case, we need to check and see if Auto-Neg
1182 * has completed, and if so, how the PHY and link partner has
1183 * flow control configured.
1184 */
1185 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1186 mac->autoneg) {
1187 /* Read the PCS_LSTS and check to see if AutoNeg
1188 * has completed.
1189 */
1190 pcs_status_reg = er32(PCS_LSTAT);
1191
1192 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1193 e_dbg("PCS Auto Neg has not completed.\n");
1194 return ret_val;
1195 }
1196
1197 /* The AutoNeg process has completed, so we now need to
1198 * read both the Auto Negotiation Advertisement
1199 * Register (PCS_ANADV) and the Auto_Negotiation Base
1200 * Page Ability Register (PCS_LPAB) to determine how
1201 * flow control was negotiated.
1202 */
1203 pcs_adv_reg = er32(PCS_ANADV);
1204 pcs_lp_ability_reg = er32(PCS_LPAB);
1205
1206 /* Two bits in the Auto Negotiation Advertisement Register
1207 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1208 * Page Ability Register (PCS_LPAB) determine flow control
1209 * for both the PHY and the link partner. The following
1210 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1211 * 1999, describes these PAUSE resolution bits and how flow
1212 * control is determined based upon these settings.
1213 * NOTE: DC = Don't Care
1214 *
1215 * LOCAL DEVICE | LINK PARTNER
1216 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1217 *-------|---------|-------|---------|--------------------
1218 * 0 | 0 | DC | DC | e1000_fc_none
1219 * 0 | 1 | 0 | DC | e1000_fc_none
1220 * 0 | 1 | 1 | 0 | e1000_fc_none
1221 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1222 * 1 | 0 | 0 | DC | e1000_fc_none
1223 * 1 | DC | 1 | DC | e1000_fc_full
1224 * 1 | 1 | 0 | 0 | e1000_fc_none
1225 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1226 *
1227 * Are both PAUSE bits set to 1? If so, this implies
1228 * Symmetric Flow Control is enabled at both ends. The
1229 * ASM_DIR bits are irrelevant per the spec.
1230 *
1231 * For Symmetric Flow Control:
1232 *
1233 * LOCAL DEVICE | LINK PARTNER
1234 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1235 *-------|---------|-------|---------|--------------------
1236 * 1 | DC | 1 | DC | e1000_fc_full
1237 *
1238 */
1239 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1240 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1241 /* Now we need to check if the user selected Rx ONLY
1242 * of pause frames. In this case, we had to advertise
1243 * FULL flow control because we could not advertise Rx
1244 * ONLY. Hence, we must now check to see if we need to
1245 * turn OFF the TRANSMISSION of PAUSE frames.
1246 */
1247 if (hw->fc.requested_mode == e1000_fc_full) {
1248 hw->fc.current_mode = e1000_fc_full;
1249 e_dbg("Flow Control = FULL.\n");
1250 } else {
1251 hw->fc.current_mode = e1000_fc_rx_pause;
1252 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1253 }
1254 }
1255 /* For receiving PAUSE frames ONLY.
1256 *
1257 * LOCAL DEVICE | LINK PARTNER
1258 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1259 *-------|---------|-------|---------|--------------------
1260 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1261 */
1262 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1263 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1264 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1265 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1266 hw->fc.current_mode = e1000_fc_tx_pause;
1267 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1268 }
1269 /* For transmitting PAUSE frames ONLY.
1270 *
1271 * LOCAL DEVICE | LINK PARTNER
1272 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1273 *-------|---------|-------|---------|--------------------
1274 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1275 */
1276 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1277 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1278 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1279 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1280 hw->fc.current_mode = e1000_fc_rx_pause;
1281 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1282 } else {
1283 /* Per the IEEE spec, at this point flow control
1284 * should be disabled.
1285 */
1286 hw->fc.current_mode = e1000_fc_none;
1287 e_dbg("Flow Control = NONE.\n");
1288 }
1289
1290 /* Now we call a subroutine to actually force the MAC
1291 * controller to use the correct flow control settings.
1292 */
1293 pcs_ctrl_reg = er32(PCS_LCTL);
1294 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1295 ew32(PCS_LCTL, pcs_ctrl_reg);
1296
1297 ret_val = e1000e_force_mac_fc(hw);
1298 if (ret_val) {
1299 e_dbg("Error forcing flow control settings\n");
1300 return ret_val;
1301 }
1302 }
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1309 * @hw: pointer to the HW structure
1310 * @speed: stores the current speed
1311 * @duplex: stores the current duplex
1312 *
1313 * Read the status register for the current speed/duplex and store the current
1314 * speed and duplex for copper connections.
1315 **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1316 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1317 u16 *duplex)
1318 {
1319 u32 status;
1320
1321 status = er32(STATUS);
1322 if (status & E1000_STATUS_SPEED_1000)
1323 *speed = SPEED_1000;
1324 else if (status & E1000_STATUS_SPEED_100)
1325 *speed = SPEED_100;
1326 else
1327 *speed = SPEED_10;
1328
1329 if (status & E1000_STATUS_FD)
1330 *duplex = FULL_DUPLEX;
1331 else
1332 *duplex = HALF_DUPLEX;
1333
1334 e_dbg("%u Mbps, %s Duplex\n",
1335 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1336 *duplex == FULL_DUPLEX ? "Full" : "Half");
1337
1338 return 0;
1339 }
1340
1341 /**
1342 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1343 * @hw: pointer to the HW structure
1344 * @speed: stores the current speed
1345 * @duplex: stores the current duplex
1346 *
1347 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1348 * for fiber/serdes links.
1349 **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused * hw,u16 * speed,u16 * duplex)1350 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1351 *hw, u16 *speed, u16 *duplex)
1352 {
1353 *speed = SPEED_1000;
1354 *duplex = FULL_DUPLEX;
1355
1356 return 0;
1357 }
1358
1359 /**
1360 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1361 * @hw: pointer to the HW structure
1362 *
1363 * Acquire the HW semaphore to access the PHY or NVM
1364 **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1365 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1366 {
1367 u32 swsm;
1368 s32 timeout = hw->nvm.word_size + 1;
1369 s32 i = 0;
1370
1371 /* Get the SW semaphore */
1372 while (i < timeout) {
1373 swsm = er32(SWSM);
1374 if (!(swsm & E1000_SWSM_SMBI))
1375 break;
1376
1377 udelay(100);
1378 i++;
1379 }
1380
1381 if (i == timeout) {
1382 e_dbg("Driver can't access device - SMBI bit is set.\n");
1383 return -E1000_ERR_NVM;
1384 }
1385
1386 /* Get the FW semaphore. */
1387 for (i = 0; i < timeout; i++) {
1388 swsm = er32(SWSM);
1389 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1390
1391 /* Semaphore acquired if bit latched */
1392 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1393 break;
1394
1395 udelay(100);
1396 }
1397
1398 if (i == timeout) {
1399 /* Release semaphores */
1400 e1000e_put_hw_semaphore(hw);
1401 e_dbg("Driver can't access the NVM\n");
1402 return -E1000_ERR_NVM;
1403 }
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * e1000e_put_hw_semaphore - Release hardware semaphore
1410 * @hw: pointer to the HW structure
1411 *
1412 * Release hardware semaphore used to access the PHY or NVM
1413 **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1414 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1415 {
1416 u32 swsm;
1417
1418 swsm = er32(SWSM);
1419 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1420 ew32(SWSM, swsm);
1421 }
1422
1423 /**
1424 * e1000e_get_auto_rd_done - Check for auto read completion
1425 * @hw: pointer to the HW structure
1426 *
1427 * Check EEPROM for Auto Read done bit.
1428 **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1429 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1430 {
1431 s32 i = 0;
1432
1433 while (i < AUTO_READ_DONE_TIMEOUT) {
1434 if (er32(EECD) & E1000_EECD_AUTO_RD)
1435 break;
1436 usleep_range(1000, 2000);
1437 i++;
1438 }
1439
1440 if (i == AUTO_READ_DONE_TIMEOUT) {
1441 e_dbg("Auto read by HW from NVM has not completed.\n");
1442 return -E1000_ERR_RESET;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * e1000e_valid_led_default - Verify a valid default LED config
1450 * @hw: pointer to the HW structure
1451 * @data: pointer to the NVM (EEPROM)
1452 *
1453 * Read the EEPROM for the current default LED configuration. If the
1454 * LED configuration is not valid, set to a valid LED configuration.
1455 **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1456 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1457 {
1458 s32 ret_val;
1459
1460 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1461 if (ret_val) {
1462 e_dbg("NVM Read Error\n");
1463 return ret_val;
1464 }
1465
1466 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1467 *data = ID_LED_DEFAULT;
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * e1000e_id_led_init_generic -
1474 * @hw: pointer to the HW structure
1475 *
1476 **/
e1000e_id_led_init_generic(struct e1000_hw * hw)1477 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1478 {
1479 struct e1000_mac_info *mac = &hw->mac;
1480 s32 ret_val;
1481 const u32 ledctl_mask = 0x000000FF;
1482 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1483 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1484 u16 data, i, temp;
1485 const u16 led_mask = 0x0F;
1486
1487 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1488 if (ret_val)
1489 return ret_val;
1490
1491 mac->ledctl_default = er32(LEDCTL);
1492 mac->ledctl_mode1 = mac->ledctl_default;
1493 mac->ledctl_mode2 = mac->ledctl_default;
1494
1495 for (i = 0; i < 4; i++) {
1496 temp = (data >> (i << 2)) & led_mask;
1497 switch (temp) {
1498 case ID_LED_ON1_DEF2:
1499 case ID_LED_ON1_ON2:
1500 case ID_LED_ON1_OFF2:
1501 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1502 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1503 break;
1504 case ID_LED_OFF1_DEF2:
1505 case ID_LED_OFF1_ON2:
1506 case ID_LED_OFF1_OFF2:
1507 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1508 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1509 break;
1510 default:
1511 /* Do nothing */
1512 break;
1513 }
1514 switch (temp) {
1515 case ID_LED_DEF1_ON2:
1516 case ID_LED_ON1_ON2:
1517 case ID_LED_OFF1_ON2:
1518 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1519 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1520 break;
1521 case ID_LED_DEF1_OFF2:
1522 case ID_LED_ON1_OFF2:
1523 case ID_LED_OFF1_OFF2:
1524 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1525 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1526 break;
1527 default:
1528 /* Do nothing */
1529 break;
1530 }
1531 }
1532
1533 return 0;
1534 }
1535
1536 /**
1537 * e1000e_setup_led_generic - Configures SW controllable LED
1538 * @hw: pointer to the HW structure
1539 *
1540 * This prepares the SW controllable LED for use and saves the current state
1541 * of the LED so it can be later restored.
1542 **/
e1000e_setup_led_generic(struct e1000_hw * hw)1543 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1544 {
1545 u32 ledctl;
1546
1547 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1548 return -E1000_ERR_CONFIG;
1549
1550 if (hw->phy.media_type == e1000_media_type_fiber) {
1551 ledctl = er32(LEDCTL);
1552 hw->mac.ledctl_default = ledctl;
1553 /* Turn off LED0 */
1554 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1555 E1000_LEDCTL_LED0_MODE_MASK);
1556 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1557 E1000_LEDCTL_LED0_MODE_SHIFT);
1558 ew32(LEDCTL, ledctl);
1559 } else if (hw->phy.media_type == e1000_media_type_copper) {
1560 ew32(LEDCTL, hw->mac.ledctl_mode1);
1561 }
1562
1563 return 0;
1564 }
1565
1566 /**
1567 * e1000e_cleanup_led_generic - Set LED config to default operation
1568 * @hw: pointer to the HW structure
1569 *
1570 * Remove the current LED configuration and set the LED configuration
1571 * to the default value, saved from the EEPROM.
1572 **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1573 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1574 {
1575 ew32(LEDCTL, hw->mac.ledctl_default);
1576 return 0;
1577 }
1578
1579 /**
1580 * e1000e_blink_led_generic - Blink LED
1581 * @hw: pointer to the HW structure
1582 *
1583 * Blink the LEDs which are set to be on.
1584 **/
e1000e_blink_led_generic(struct e1000_hw * hw)1585 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1586 {
1587 u32 ledctl_blink = 0;
1588 u32 i;
1589
1590 if (hw->phy.media_type == e1000_media_type_fiber) {
1591 /* always blink LED0 for PCI-E fiber */
1592 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1593 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1594 } else {
1595 /* Set the blink bit for each LED that's "on" (0x0E)
1596 * (or "off" if inverted) in ledctl_mode2. The blink
1597 * logic in hardware only works when mode is set to "on"
1598 * so it must be changed accordingly when the mode is
1599 * "off" and inverted.
1600 */
1601 ledctl_blink = hw->mac.ledctl_mode2;
1602 for (i = 0; i < 32; i += 8) {
1603 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1604 E1000_LEDCTL_LED0_MODE_MASK;
1605 u32 led_default = hw->mac.ledctl_default >> i;
1606
1607 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1608 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1609 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1610 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1611 ledctl_blink &=
1612 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1613 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1614 E1000_LEDCTL_MODE_LED_ON) << i;
1615 }
1616 }
1617 }
1618
1619 ew32(LEDCTL, ledctl_blink);
1620
1621 return 0;
1622 }
1623
1624 /**
1625 * e1000e_led_on_generic - Turn LED on
1626 * @hw: pointer to the HW structure
1627 *
1628 * Turn LED on.
1629 **/
e1000e_led_on_generic(struct e1000_hw * hw)1630 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1631 {
1632 u32 ctrl;
1633
1634 switch (hw->phy.media_type) {
1635 case e1000_media_type_fiber:
1636 ctrl = er32(CTRL);
1637 ctrl &= ~E1000_CTRL_SWDPIN0;
1638 ctrl |= E1000_CTRL_SWDPIO0;
1639 ew32(CTRL, ctrl);
1640 break;
1641 case e1000_media_type_copper:
1642 ew32(LEDCTL, hw->mac.ledctl_mode2);
1643 break;
1644 default:
1645 break;
1646 }
1647
1648 return 0;
1649 }
1650
1651 /**
1652 * e1000e_led_off_generic - Turn LED off
1653 * @hw: pointer to the HW structure
1654 *
1655 * Turn LED off.
1656 **/
e1000e_led_off_generic(struct e1000_hw * hw)1657 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1658 {
1659 u32 ctrl;
1660
1661 switch (hw->phy.media_type) {
1662 case e1000_media_type_fiber:
1663 ctrl = er32(CTRL);
1664 ctrl |= E1000_CTRL_SWDPIN0;
1665 ctrl |= E1000_CTRL_SWDPIO0;
1666 ew32(CTRL, ctrl);
1667 break;
1668 case e1000_media_type_copper:
1669 ew32(LEDCTL, hw->mac.ledctl_mode1);
1670 break;
1671 default:
1672 break;
1673 }
1674
1675 return 0;
1676 }
1677
1678 /**
1679 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1680 * @hw: pointer to the HW structure
1681 * @no_snoop: bitmap of snoop events
1682 *
1683 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1684 **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1685 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1686 {
1687 u32 gcr;
1688
1689 if (no_snoop) {
1690 gcr = er32(GCR);
1691 gcr &= ~(PCIE_NO_SNOOP_ALL);
1692 gcr |= no_snoop;
1693 ew32(GCR, gcr);
1694 }
1695 }
1696
1697 /**
1698 * e1000e_disable_pcie_master - Disables PCI-express master access
1699 * @hw: pointer to the HW structure
1700 *
1701 * Returns 0 if successful, else returns -10
1702 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1703 * the master requests to be disabled.
1704 *
1705 * Disables PCI-Express master access and verifies there are no pending
1706 * requests.
1707 **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1708 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1709 {
1710 u32 ctrl;
1711 s32 timeout = MASTER_DISABLE_TIMEOUT;
1712
1713 ctrl = er32(CTRL);
1714 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1715 ew32(CTRL, ctrl);
1716
1717 while (timeout) {
1718 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1719 break;
1720 usleep_range(100, 200);
1721 timeout--;
1722 }
1723
1724 if (!timeout) {
1725 e_dbg("Master requests are pending.\n");
1726 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1727 }
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1734 * @hw: pointer to the HW structure
1735 *
1736 * Reset the Adaptive Interframe Spacing throttle to default values.
1737 **/
e1000e_reset_adaptive(struct e1000_hw * hw)1738 void e1000e_reset_adaptive(struct e1000_hw *hw)
1739 {
1740 struct e1000_mac_info *mac = &hw->mac;
1741
1742 if (!mac->adaptive_ifs) {
1743 e_dbg("Not in Adaptive IFS mode!\n");
1744 return;
1745 }
1746
1747 mac->current_ifs_val = 0;
1748 mac->ifs_min_val = IFS_MIN;
1749 mac->ifs_max_val = IFS_MAX;
1750 mac->ifs_step_size = IFS_STEP;
1751 mac->ifs_ratio = IFS_RATIO;
1752
1753 mac->in_ifs_mode = false;
1754 ew32(AIT, 0);
1755 }
1756
1757 /**
1758 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1759 * @hw: pointer to the HW structure
1760 *
1761 * Update the Adaptive Interframe Spacing Throttle value based on the
1762 * time between transmitted packets and time between collisions.
1763 **/
e1000e_update_adaptive(struct e1000_hw * hw)1764 void e1000e_update_adaptive(struct e1000_hw *hw)
1765 {
1766 struct e1000_mac_info *mac = &hw->mac;
1767
1768 if (!mac->adaptive_ifs) {
1769 e_dbg("Not in Adaptive IFS mode!\n");
1770 return;
1771 }
1772
1773 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1774 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1775 mac->in_ifs_mode = true;
1776 if (mac->current_ifs_val < mac->ifs_max_val) {
1777 if (!mac->current_ifs_val)
1778 mac->current_ifs_val = mac->ifs_min_val;
1779 else
1780 mac->current_ifs_val +=
1781 mac->ifs_step_size;
1782 ew32(AIT, mac->current_ifs_val);
1783 }
1784 }
1785 } else {
1786 if (mac->in_ifs_mode &&
1787 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1788 mac->current_ifs_val = 0;
1789 mac->in_ifs_mode = false;
1790 ew32(AIT, 0);
1791 }
1792 }
1793 }
1794