1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "disk-io.h"
17 #include "extent-tree.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "dev-replace.h"
22 #include "sysfs.h"
23 #include "tree-checker.h"
24 #include "space-info.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "zoned.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "uuid-tree.h"
31 #include "ioctl.h"
32 #include "relocation.h"
33 #include "scrub.h"
34 #include "super.h"
35 #include "raid-stripe-tree.h"
36
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
38 BTRFS_BLOCK_GROUP_RAID10 | \
39 BTRFS_BLOCK_GROUP_RAID56_MASK)
40
41 struct btrfs_io_geometry {
42 u32 stripe_index;
43 u32 stripe_nr;
44 int mirror_num;
45 int num_stripes;
46 u64 stripe_offset;
47 u64 raid56_full_stripe_start;
48 int max_errors;
49 enum btrfs_map_op op;
50 bool use_rst;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags)
217 return;
218
219 #define DESCRIBE_FLAG(flag, desc) \
220 do { \
221 if (flags & (flag)) { \
222 ret = snprintf(bp, size_bp, "%s|", (desc)); \
223 if (ret < 0 || ret >= size_bp) \
224 goto out_overflow; \
225 size_bp -= ret; \
226 bp += ret; \
227 flags &= ~(flag); \
228 } \
229 } while (0)
230
231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
234
235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
238 btrfs_raid_array[i].raid_name);
239 #undef DESCRIBE_FLAG
240
241 if (flags) {
242 ret = snprintf(bp, size_bp, "0x%llx|", flags);
243 size_bp -= ret;
244 }
245
246 if (size_bp < size_buf)
247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
248
249 /*
250 * The text is trimmed, it's up to the caller to provide sufficiently
251 * large buffer
252 */
253 out_overflow:;
254 }
255
256 static int init_first_rw_device(struct btrfs_trans_handle *trans);
257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
259
260 /*
261 * Device locking
262 * ==============
263 *
264 * There are several mutexes that protect manipulation of devices and low-level
265 * structures like chunks but not block groups, extents or files
266 *
267 * uuid_mutex (global lock)
268 * ------------------------
269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
271 * device) or requested by the device= mount option
272 *
273 * the mutex can be very coarse and can cover long-running operations
274 *
275 * protects: updates to fs_devices counters like missing devices, rw devices,
276 * seeding, structure cloning, opening/closing devices at mount/umount time
277 *
278 * global::fs_devs - add, remove, updates to the global list
279 *
280 * does not protect: manipulation of the fs_devices::devices list in general
281 * but in mount context it could be used to exclude list modifications by eg.
282 * scan ioctl
283 *
284 * btrfs_device::name - renames (write side), read is RCU
285 *
286 * fs_devices::device_list_mutex (per-fs, with RCU)
287 * ------------------------------------------------
288 * protects updates to fs_devices::devices, ie. adding and deleting
289 *
290 * simple list traversal with read-only actions can be done with RCU protection
291 *
292 * may be used to exclude some operations from running concurrently without any
293 * modifications to the list (see write_all_supers)
294 *
295 * Is not required at mount and close times, because our device list is
296 * protected by the uuid_mutex at that point.
297 *
298 * balance_mutex
299 * -------------
300 * protects balance structures (status, state) and context accessed from
301 * several places (internally, ioctl)
302 *
303 * chunk_mutex
304 * -----------
305 * protects chunks, adding or removing during allocation, trim or when a new
306 * device is added/removed. Additionally it also protects post_commit_list of
307 * individual devices, since they can be added to the transaction's
308 * post_commit_list only with chunk_mutex held.
309 *
310 * cleaner_mutex
311 * -------------
312 * a big lock that is held by the cleaner thread and prevents running subvolume
313 * cleaning together with relocation or delayed iputs
314 *
315 *
316 * Lock nesting
317 * ============
318 *
319 * uuid_mutex
320 * device_list_mutex
321 * chunk_mutex
322 * balance_mutex
323 *
324 *
325 * Exclusive operations
326 * ====================
327 *
328 * Maintains the exclusivity of the following operations that apply to the
329 * whole filesystem and cannot run in parallel.
330 *
331 * - Balance (*)
332 * - Device add
333 * - Device remove
334 * - Device replace (*)
335 * - Resize
336 *
337 * The device operations (as above) can be in one of the following states:
338 *
339 * - Running state
340 * - Paused state
341 * - Completed state
342 *
343 * Only device operations marked with (*) can go into the Paused state for the
344 * following reasons:
345 *
346 * - ioctl (only Balance can be Paused through ioctl)
347 * - filesystem remounted as read-only
348 * - filesystem unmounted and mounted as read-only
349 * - system power-cycle and filesystem mounted as read-only
350 * - filesystem or device errors leading to forced read-only
351 *
352 * The status of exclusive operation is set and cleared atomically.
353 * During the course of Paused state, fs_info::exclusive_operation remains set.
354 * A device operation in Paused or Running state can be canceled or resumed
355 * either by ioctl (Balance only) or when remounted as read-write.
356 * The exclusive status is cleared when the device operation is canceled or
357 * completed.
358 */
359
360 DEFINE_MUTEX(uuid_mutex);
361 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
363 {
364 return &fs_uuids;
365 }
366
367 /*
368 * Allocate new btrfs_fs_devices structure identified by a fsid.
369 *
370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
371 * fs_devices::metadata_fsid
372 *
373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374 * The returned struct is not linked onto any lists and can be destroyed with
375 * kfree() right away.
376 */
alloc_fs_devices(const u8 * fsid)377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
378 {
379 struct btrfs_fs_devices *fs_devs;
380
381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
382 if (!fs_devs)
383 return ERR_PTR(-ENOMEM);
384
385 mutex_init(&fs_devs->device_list_mutex);
386
387 INIT_LIST_HEAD(&fs_devs->devices);
388 INIT_LIST_HEAD(&fs_devs->alloc_list);
389 INIT_LIST_HEAD(&fs_devs->fs_list);
390 INIT_LIST_HEAD(&fs_devs->seed_list);
391
392 if (fsid) {
393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 }
396
397 return fs_devs;
398 }
399
btrfs_free_device(struct btrfs_device * device)400 static void btrfs_free_device(struct btrfs_device *device)
401 {
402 WARN_ON(!list_empty(&device->post_commit_list));
403 /*
404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is
405 * reading the device name.
406 */
407 kfree(rcu_dereference_raw(device->name));
408 btrfs_extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411 }
412
free_fs_devices(struct btrfs_fs_devices * fs_devices)413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 WARN_ON(fs_devices->holding);
419 while (!list_empty(&fs_devices->devices)) {
420 device = list_first_entry(&fs_devices->devices,
421 struct btrfs_device, dev_list);
422 list_del(&device->dev_list);
423 btrfs_free_device(device);
424 }
425 kfree(fs_devices);
426 }
427
btrfs_cleanup_fs_uuids(void)428 void __exit btrfs_cleanup_fs_uuids(void)
429 {
430 struct btrfs_fs_devices *fs_devices;
431
432 while (!list_empty(&fs_uuids)) {
433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices,
434 fs_list);
435 list_del(&fs_devices->fs_list);
436 free_fs_devices(fs_devices);
437 }
438 }
439
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
441 const u8 *fsid, const u8 *metadata_fsid)
442 {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
444 return false;
445
446 if (!metadata_fsid)
447 return true;
448
449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
450 return false;
451
452 return true;
453 }
454
find_fsid(const u8 * fsid,const u8 * metadata_fsid)455 static noinline struct btrfs_fs_devices *find_fsid(
456 const u8 *fsid, const u8 *metadata_fsid)
457 {
458 struct btrfs_fs_devices *fs_devices;
459
460 ASSERT(fsid);
461
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
465 return fs_devices;
466 }
467 return NULL;
468 }
469
470 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
472 int flush, struct file **bdev_file,
473 struct btrfs_super_block **disk_super)
474 {
475 struct block_device *bdev;
476 int ret;
477
478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops);
479
480 if (IS_ERR(*bdev_file)) {
481 ret = PTR_ERR(*bdev_file);
482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
483 device_path, flags, ret);
484 goto error;
485 }
486 bdev = file_bdev(*bdev_file);
487
488 if (flush)
489 sync_blockdev(bdev);
490 if (holder) {
491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
492 if (ret) {
493 bdev_fput(*bdev_file);
494 goto error;
495 }
496 }
497 invalidate_bdev(bdev);
498 *disk_super = btrfs_read_disk_super(bdev, 0, false);
499 if (IS_ERR(*disk_super)) {
500 ret = PTR_ERR(*disk_super);
501 bdev_fput(*bdev_file);
502 goto error;
503 }
504
505 return 0;
506
507 error:
508 *disk_super = NULL;
509 *bdev_file = NULL;
510 return ret;
511 }
512
513 /*
514 * Search and remove all stale devices (which are not mounted). When both
515 * inputs are NULL, it will search and release all stale devices.
516 *
517 * @devt: Optional. When provided will it release all unmounted devices
518 * matching this devt only.
519 * @skip_device: Optional. Will skip this device when searching for the stale
520 * devices.
521 *
522 * Return: 0 for success or if @devt is 0.
523 * -EBUSY if @devt is a mounted device.
524 * -ENOENT if @devt does not match any device in the list.
525 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
527 {
528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
529 struct btrfs_device *device, *tmp_device;
530 int ret;
531 bool freed = false;
532
533 lockdep_assert_held(&uuid_mutex);
534
535 /* Return good status if there is no instance of devt. */
536 ret = 0;
537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
538
539 mutex_lock(&fs_devices->device_list_mutex);
540 list_for_each_entry_safe(device, tmp_device,
541 &fs_devices->devices, dev_list) {
542 if (skip_device && skip_device == device)
543 continue;
544 if (devt && devt != device->devt)
545 continue;
546 if (fs_devices->opened || fs_devices->holding) {
547 if (devt)
548 ret = -EBUSY;
549 break;
550 }
551
552 /* delete the stale device */
553 fs_devices->num_devices--;
554 list_del(&device->dev_list);
555 btrfs_free_device(device);
556
557 freed = true;
558 }
559 mutex_unlock(&fs_devices->device_list_mutex);
560
561 if (fs_devices->num_devices == 0) {
562 btrfs_sysfs_remove_fsid(fs_devices);
563 list_del(&fs_devices->fs_list);
564 free_fs_devices(fs_devices);
565 }
566 }
567
568 /* If there is at least one freed device return 0. */
569 if (freed)
570 return 0;
571
572 return ret;
573 }
574
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)575 static struct btrfs_fs_devices *find_fsid_by_device(
576 struct btrfs_super_block *disk_super,
577 dev_t devt, bool *same_fsid_diff_dev)
578 {
579 struct btrfs_fs_devices *fsid_fs_devices;
580 struct btrfs_fs_devices *devt_fs_devices;
581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
583 bool found_by_devt = false;
584
585 /* Find the fs_device by the usual method, if found use it. */
586 fsid_fs_devices = find_fsid(disk_super->fsid,
587 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
588
589 /* The temp_fsid feature is supported only with single device filesystem. */
590 if (btrfs_super_num_devices(disk_super) != 1)
591 return fsid_fs_devices;
592
593 /*
594 * A seed device is an integral component of the sprout device, which
595 * functions as a multi-device filesystem. So, temp-fsid feature is
596 * not supported.
597 */
598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
599 return fsid_fs_devices;
600
601 /* Try to find a fs_devices by matching devt. */
602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
603 struct btrfs_device *device;
604
605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
606 if (device->devt == devt) {
607 found_by_devt = true;
608 break;
609 }
610 }
611 if (found_by_devt)
612 break;
613 }
614
615 if (found_by_devt) {
616 /* Existing device. */
617 if (fsid_fs_devices == NULL) {
618 if (devt_fs_devices->opened == 0) {
619 /* Stale device. */
620 return NULL;
621 } else {
622 /* temp_fsid is mounting a subvol. */
623 return devt_fs_devices;
624 }
625 } else {
626 /* Regular or temp_fsid device mounting a subvol. */
627 return devt_fs_devices;
628 }
629 } else {
630 /* New device. */
631 if (fsid_fs_devices == NULL) {
632 return NULL;
633 } else {
634 /* sb::fsid is already used create a new temp_fsid. */
635 *same_fsid_diff_dev = true;
636 return NULL;
637 }
638 }
639
640 /* Not reached. */
641 }
642
643 /*
644 * This is only used on mount, and we are protected from competing things
645 * messing with our fs_devices by the uuid_mutex, thus we do not need the
646 * fs_devices->device_list_mutex here.
647 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
649 struct btrfs_device *device, blk_mode_t flags,
650 void *holder)
651 {
652 struct file *bdev_file;
653 struct btrfs_super_block *disk_super;
654 u64 devid;
655 int ret;
656
657 if (device->bdev)
658 return -EINVAL;
659 if (!device->name)
660 return -EINVAL;
661
662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1,
663 &bdev_file, &disk_super);
664 if (ret)
665 return ret;
666
667 devid = btrfs_stack_device_id(&disk_super->dev_item);
668 if (devid != device->devid)
669 goto error_free_page;
670
671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
672 goto error_free_page;
673
674 device->generation = btrfs_super_generation(disk_super);
675
676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
677 if (btrfs_super_incompat_flags(disk_super) &
678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
679 btrfs_err(NULL,
680 "invalid seeding and uuid-changed device detected");
681 goto error_free_page;
682 }
683
684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 fs_devices->seeding = true;
686 } else {
687 if (bdev_read_only(file_bdev(bdev_file)))
688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
689 else
690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 }
692
693 if (!bdev_nonrot(file_bdev(bdev_file)))
694 fs_devices->rotating = true;
695
696 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
697 fs_devices->discardable = true;
698
699 device->bdev_file = bdev_file;
700 device->bdev = file_bdev(bdev_file);
701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
702
703 if (device->devt != device->bdev->bd_dev) {
704 btrfs_warn(NULL,
705 "device %s maj:min changed from %d:%d to %d:%d",
706 rcu_dereference_raw(device->name), MAJOR(device->devt),
707 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
708 MINOR(device->bdev->bd_dev));
709
710 device->devt = device->bdev->bd_dev;
711 }
712
713 fs_devices->open_devices++;
714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
715 device->devid != BTRFS_DEV_REPLACE_DEVID) {
716 fs_devices->rw_devices++;
717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
718 }
719 btrfs_release_disk_super(disk_super);
720
721 return 0;
722
723 error_free_page:
724 btrfs_release_disk_super(disk_super);
725 bdev_fput(bdev_file);
726
727 return -EINVAL;
728 }
729
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
731 {
732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
734
735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
736 }
737
is_same_device(struct btrfs_device * device,const char * new_path)738 static bool is_same_device(struct btrfs_device *device, const char *new_path)
739 {
740 struct path old = { .mnt = NULL, .dentry = NULL };
741 struct path new = { .mnt = NULL, .dentry = NULL };
742 char AUTO_KFREE(old_path);
743 bool is_same = false;
744 int ret;
745
746 if (!device->name)
747 goto out;
748
749 old_path = kzalloc(PATH_MAX, GFP_NOFS);
750 if (!old_path)
751 goto out;
752
753 rcu_read_lock();
754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX);
755 rcu_read_unlock();
756 if (ret < 0)
757 goto out;
758
759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
760 if (ret)
761 goto out;
762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
763 if (ret)
764 goto out;
765 if (path_equal(&old, &new))
766 is_same = true;
767 out:
768 path_put(&old);
769 path_put(&new);
770 return is_same;
771 }
772
773 /*
774 * Add new device to list of registered devices
775 *
776 * Returns:
777 * device pointer which was just added or updated when successful
778 * error pointer when failed
779 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)780 static noinline struct btrfs_device *device_list_add(const char *path,
781 struct btrfs_super_block *disk_super,
782 bool *new_device_added)
783 {
784 struct btrfs_device *device;
785 struct btrfs_fs_devices *fs_devices = NULL;
786 const char *name;
787 u64 found_transid = btrfs_super_generation(disk_super);
788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 dev_t path_devt;
790 int ret;
791 bool same_fsid_diff_dev = false;
792 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
793 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
794
795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
796 btrfs_err(NULL,
797 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
798 path);
799 return ERR_PTR(-EAGAIN);
800 }
801
802 ret = lookup_bdev(path, &path_devt);
803 if (ret) {
804 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
805 path, ret);
806 return ERR_PTR(ret);
807 }
808
809 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
810
811 if (!fs_devices) {
812 fs_devices = alloc_fs_devices(disk_super->fsid);
813 if (IS_ERR(fs_devices))
814 return ERR_CAST(fs_devices);
815
816 if (has_metadata_uuid)
817 memcpy(fs_devices->metadata_uuid,
818 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
819
820 if (same_fsid_diff_dev) {
821 generate_random_uuid(fs_devices->fsid);
822 fs_devices->temp_fsid = true;
823 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU",
824 path, MAJOR(path_devt), MINOR(path_devt),
825 fs_devices->fsid);
826 }
827
828 mutex_lock(&fs_devices->device_list_mutex);
829 list_add(&fs_devices->fs_list, &fs_uuids);
830
831 device = NULL;
832 } else {
833 struct btrfs_dev_lookup_args args = {
834 .devid = devid,
835 .uuid = disk_super->dev_item.uuid,
836 };
837
838 mutex_lock(&fs_devices->device_list_mutex);
839 device = btrfs_find_device(fs_devices, &args);
840
841 if (found_transid > fs_devices->latest_generation) {
842 memcpy(fs_devices->fsid, disk_super->fsid,
843 BTRFS_FSID_SIZE);
844 memcpy(fs_devices->metadata_uuid,
845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 }
847 }
848
849 if (!device) {
850 unsigned int nofs_flag;
851
852 if (fs_devices->opened) {
853 btrfs_err(NULL,
854 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
855 path, MAJOR(path_devt), MINOR(path_devt),
856 fs_devices->fsid, current->comm,
857 task_pid_nr(current));
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-EBUSY);
860 }
861
862 nofs_flag = memalloc_nofs_save();
863 device = btrfs_alloc_device(NULL, &devid,
864 disk_super->dev_item.uuid, path);
865 memalloc_nofs_restore(nofs_flag);
866 if (IS_ERR(device)) {
867 mutex_unlock(&fs_devices->device_list_mutex);
868 /* we can safely leave the fs_devices entry around */
869 return device;
870 }
871
872 device->devt = path_devt;
873
874 list_add_rcu(&device->dev_list, &fs_devices->devices);
875 fs_devices->num_devices++;
876
877 device->fs_devices = fs_devices;
878 *new_device_added = true;
879
880 if (disk_super->label[0])
881 pr_info(
882 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
883 disk_super->label, devid, found_transid, path,
884 MAJOR(path_devt), MINOR(path_devt),
885 current->comm, task_pid_nr(current));
886 else
887 pr_info(
888 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
889 disk_super->fsid, devid, found_transid, path,
890 MAJOR(path_devt), MINOR(path_devt),
891 current->comm, task_pid_nr(current));
892
893 } else if (!device->name || !is_same_device(device, path)) {
894 const char *old_name;
895
896 /*
897 * When FS is already mounted.
898 * 1. If you are here and if the device->name is NULL that
899 * means this device was missing at time of FS mount.
900 * 2. If you are here and if the device->name is different
901 * from 'path' that means either
902 * a. The same device disappeared and reappeared with
903 * different name. or
904 * b. The missing-disk-which-was-replaced, has
905 * reappeared now.
906 *
907 * We must allow 1 and 2a above. But 2b would be a spurious
908 * and unintentional.
909 *
910 * Further in case of 1 and 2a above, the disk at 'path'
911 * would have missed some transaction when it was away and
912 * in case of 2a the stale bdev has to be updated as well.
913 * 2b must not be allowed at all time.
914 */
915
916 /*
917 * For now, we do allow update to btrfs_fs_device through the
918 * btrfs dev scan cli after FS has been mounted. We're still
919 * tracking a problem where systems fail mount by subvolume id
920 * when we reject replacement on a mounted FS.
921 */
922 if (!fs_devices->opened && found_transid < device->generation) {
923 /*
924 * That is if the FS is _not_ mounted and if you
925 * are here, that means there is more than one
926 * disk with same uuid and devid.We keep the one
927 * with larger generation number or the last-in if
928 * generation are equal.
929 */
930 mutex_unlock(&fs_devices->device_list_mutex);
931 btrfs_err(NULL,
932 "device %s already registered with a higher generation, found %llu expect %llu",
933 path, found_transid, device->generation);
934 return ERR_PTR(-EEXIST);
935 }
936
937 /*
938 * We are going to replace the device path for a given devid,
939 * make sure it's the same device if the device is mounted
940 *
941 * NOTE: the device->fs_info may not be reliable here so pass
942 * in a NULL to message helpers instead. This avoids a possible
943 * use-after-free when the fs_info and fs_info->sb are already
944 * torn down.
945 */
946 if (device->bdev) {
947 if (device->devt != path_devt) {
948 mutex_unlock(&fs_devices->device_list_mutex);
949 btrfs_warn(NULL,
950 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
951 path, devid, found_transid,
952 current->comm,
953 task_pid_nr(current));
954 return ERR_PTR(-EEXIST);
955 }
956 btrfs_info(NULL,
957 "devid %llu device path %s changed to %s scanned by %s (%d)",
958 devid, btrfs_dev_name(device),
959 path, current->comm,
960 task_pid_nr(current));
961 }
962
963 name = kstrdup(path, GFP_NOFS);
964 if (!name) {
965 mutex_unlock(&fs_devices->device_list_mutex);
966 return ERR_PTR(-ENOMEM);
967 }
968 rcu_read_lock();
969 old_name = rcu_dereference(device->name);
970 rcu_read_unlock();
971 rcu_assign_pointer(device->name, name);
972 kfree_rcu_mightsleep(old_name);
973
974 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
975 fs_devices->missing_devices--;
976 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
977 }
978 device->devt = path_devt;
979 }
980
981 /*
982 * Unmount does not free the btrfs_device struct but would zero
983 * generation along with most of the other members. So just update
984 * it back. We need it to pick the disk with largest generation
985 * (as above).
986 */
987 if (!fs_devices->opened) {
988 device->generation = found_transid;
989 fs_devices->latest_generation = max_t(u64, found_transid,
990 fs_devices->latest_generation);
991 }
992
993 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
994
995 mutex_unlock(&fs_devices->device_list_mutex);
996 return device;
997 }
998
clone_fs_devices(struct btrfs_fs_devices * orig)999 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1000 {
1001 struct btrfs_fs_devices *fs_devices;
1002 struct btrfs_device *device;
1003 struct btrfs_device *orig_dev;
1004 int ret = 0;
1005
1006 lockdep_assert_held(&uuid_mutex);
1007
1008 fs_devices = alloc_fs_devices(orig->fsid);
1009 if (IS_ERR(fs_devices))
1010 return fs_devices;
1011
1012 fs_devices->total_devices = orig->total_devices;
1013
1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1015 const char *dev_path = NULL;
1016
1017 /*
1018 * This is ok to do without RCU read locked because we hold the
1019 * uuid mutex so nothing we touch in here is going to disappear.
1020 */
1021 if (orig_dev->name)
1022 dev_path = rcu_dereference_raw(orig_dev->name);
1023
1024 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1025 orig_dev->uuid, dev_path);
1026 if (IS_ERR(device)) {
1027 ret = PTR_ERR(device);
1028 goto error;
1029 }
1030
1031 if (orig_dev->zone_info) {
1032 struct btrfs_zoned_device_info *zone_info;
1033
1034 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1035 if (!zone_info) {
1036 btrfs_free_device(device);
1037 ret = -ENOMEM;
1038 goto error;
1039 }
1040 device->zone_info = zone_info;
1041 }
1042
1043 list_add(&device->dev_list, &fs_devices->devices);
1044 device->fs_devices = fs_devices;
1045 fs_devices->num_devices++;
1046 }
1047 return fs_devices;
1048 error:
1049 free_fs_devices(fs_devices);
1050 return ERR_PTR(ret);
1051 }
1052
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1053 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1054 struct btrfs_device **latest_dev)
1055 {
1056 struct btrfs_device *device, *next;
1057
1058 /* This is the initialized path, it is safe to release the devices. */
1059 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1060 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1061 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1062 &device->dev_state) &&
1063 !test_bit(BTRFS_DEV_STATE_MISSING,
1064 &device->dev_state) &&
1065 (!*latest_dev ||
1066 device->generation > (*latest_dev)->generation)) {
1067 *latest_dev = device;
1068 }
1069 continue;
1070 }
1071
1072 /*
1073 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1074 * in btrfs_init_dev_replace() so just continue.
1075 */
1076 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1077 continue;
1078
1079 if (device->bdev_file) {
1080 bdev_fput(device->bdev_file);
1081 device->bdev = NULL;
1082 device->bdev_file = NULL;
1083 fs_devices->open_devices--;
1084 }
1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086 list_del_init(&device->dev_alloc_list);
1087 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088 fs_devices->rw_devices--;
1089 }
1090 list_del_init(&device->dev_list);
1091 fs_devices->num_devices--;
1092 btrfs_free_device(device);
1093 }
1094
1095 }
1096
1097 /*
1098 * After we have read the system tree and know devids belonging to this
1099 * filesystem, remove the device which does not belong there.
1100 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1101 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1102 {
1103 struct btrfs_device *latest_dev = NULL;
1104 struct btrfs_fs_devices *seed_dev;
1105
1106 mutex_lock(&uuid_mutex);
1107 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1108
1109 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1110 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1111
1112 fs_devices->latest_dev = latest_dev;
1113
1114 mutex_unlock(&uuid_mutex);
1115 }
1116
btrfs_close_bdev(struct btrfs_device * device)1117 static void btrfs_close_bdev(struct btrfs_device *device)
1118 {
1119 if (!device->bdev)
1120 return;
1121
1122 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1123 sync_blockdev(device->bdev);
1124 invalidate_bdev(device->bdev);
1125 }
1126
1127 bdev_fput(device->bdev_file);
1128 }
1129
btrfs_close_one_device(struct btrfs_device * device)1130 static void btrfs_close_one_device(struct btrfs_device *device)
1131 {
1132 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1133
1134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1135 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1136 list_del_init(&device->dev_alloc_list);
1137 fs_devices->rw_devices--;
1138 }
1139
1140 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1141 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1142
1143 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1144 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1145 fs_devices->missing_devices--;
1146 }
1147
1148 btrfs_close_bdev(device);
1149 if (device->bdev) {
1150 fs_devices->open_devices--;
1151 device->bdev = NULL;
1152 device->bdev_file = NULL;
1153 }
1154 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1155 btrfs_destroy_dev_zone_info(device);
1156
1157 device->fs_info = NULL;
1158 atomic_set(&device->dev_stats_ccnt, 0);
1159 btrfs_extent_io_tree_release(&device->alloc_state);
1160
1161 /*
1162 * Reset the flush error record. We might have a transient flush error
1163 * in this mount, and if so we aborted the current transaction and set
1164 * the fs to an error state, guaranteeing no super blocks can be further
1165 * committed. However that error might be transient and if we unmount the
1166 * filesystem and mount it again, we should allow the mount to succeed
1167 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1168 * filesystem again we still get flush errors, then we will again abort
1169 * any transaction and set the error state, guaranteeing no commits of
1170 * unsafe super blocks.
1171 */
1172 device->last_flush_error = 0;
1173
1174 /* Verify the device is back in a pristine state */
1175 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1176 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1177 WARN_ON(!list_empty(&device->dev_alloc_list));
1178 WARN_ON(!list_empty(&device->post_commit_list));
1179 }
1180
close_fs_devices(struct btrfs_fs_devices * fs_devices)1181 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1182 {
1183 struct btrfs_device *device, *tmp;
1184
1185 lockdep_assert_held(&uuid_mutex);
1186
1187 if (--fs_devices->opened > 0)
1188 return;
1189
1190 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1191 btrfs_close_one_device(device);
1192
1193 WARN_ON(fs_devices->open_devices);
1194 WARN_ON(fs_devices->rw_devices);
1195 fs_devices->opened = 0;
1196 fs_devices->seeding = false;
1197 fs_devices->fs_info = NULL;
1198 }
1199
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1200 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1201 {
1202 LIST_HEAD(list);
1203 struct btrfs_fs_devices *tmp;
1204
1205 mutex_lock(&uuid_mutex);
1206 close_fs_devices(fs_devices);
1207 if (!fs_devices->opened && !fs_devices->holding) {
1208 list_splice_init(&fs_devices->seed_list, &list);
1209
1210 /*
1211 * If the struct btrfs_fs_devices is not assembled with any
1212 * other device, it can be re-initialized during the next mount
1213 * without the needing device-scan step. Therefore, it can be
1214 * fully freed.
1215 */
1216 if (fs_devices->num_devices == 1) {
1217 list_del(&fs_devices->fs_list);
1218 free_fs_devices(fs_devices);
1219 }
1220 }
1221
1222
1223 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1224 close_fs_devices(fs_devices);
1225 list_del(&fs_devices->seed_list);
1226 free_fs_devices(fs_devices);
1227 }
1228 mutex_unlock(&uuid_mutex);
1229 }
1230
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1231 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1232 blk_mode_t flags, void *holder)
1233 {
1234 struct btrfs_device *device;
1235 struct btrfs_device *latest_dev = NULL;
1236 struct btrfs_device *tmp_device;
1237 s64 __maybe_unused value = 0;
1238 int ret = 0;
1239
1240 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1241 dev_list) {
1242 int ret2;
1243
1244 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1245 if (ret2 == 0 &&
1246 (!latest_dev || device->generation > latest_dev->generation)) {
1247 latest_dev = device;
1248 } else if (ret2 == -ENODATA) {
1249 fs_devices->num_devices--;
1250 list_del(&device->dev_list);
1251 btrfs_free_device(device);
1252 }
1253 if (ret == 0 && ret2 != 0)
1254 ret = ret2;
1255 }
1256
1257 if (fs_devices->open_devices == 0) {
1258 if (ret)
1259 return ret;
1260 return -EINVAL;
1261 }
1262
1263 fs_devices->opened = 1;
1264 fs_devices->latest_dev = latest_dev;
1265 fs_devices->total_rw_bytes = 0;
1266 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1267 #ifdef CONFIG_BTRFS_EXPERIMENTAL
1268 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ;
1269 fs_devices->read_devid = latest_dev->devid;
1270 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(),
1271 &value);
1272 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1273 fs_devices->collect_fs_stats = true;
1274
1275 if (value) {
1276 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1277 fs_devices->rr_min_contig_read = value;
1278 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID)
1279 fs_devices->read_devid = value;
1280 }
1281 #else
1282 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1283 #endif
1284
1285 return 0;
1286 }
1287
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1288 static int devid_cmp(void *priv, const struct list_head *a,
1289 const struct list_head *b)
1290 {
1291 const struct btrfs_device *dev1, *dev2;
1292
1293 dev1 = list_entry(a, struct btrfs_device, dev_list);
1294 dev2 = list_entry(b, struct btrfs_device, dev_list);
1295
1296 if (dev1->devid < dev2->devid)
1297 return -1;
1298 else if (dev1->devid > dev2->devid)
1299 return 1;
1300 return 0;
1301 }
1302
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1303 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1304 blk_mode_t flags, void *holder)
1305 {
1306 int ret;
1307
1308 lockdep_assert_held(&uuid_mutex);
1309 /*
1310 * The device_list_mutex cannot be taken here in case opening the
1311 * underlying device takes further locks like open_mutex.
1312 *
1313 * We also don't need the lock here as this is called during mount and
1314 * exclusion is provided by uuid_mutex
1315 */
1316
1317 if (fs_devices->opened) {
1318 fs_devices->opened++;
1319 ret = 0;
1320 } else {
1321 list_sort(NULL, &fs_devices->devices, devid_cmp);
1322 ret = open_fs_devices(fs_devices, flags, holder);
1323 }
1324
1325 return ret;
1326 }
1327
btrfs_release_disk_super(struct btrfs_super_block * super)1328 void btrfs_release_disk_super(struct btrfs_super_block *super)
1329 {
1330 struct page *page = virt_to_page(super);
1331
1332 put_page(page);
1333 }
1334
btrfs_read_disk_super(struct block_device * bdev,int copy_num,bool drop_cache)1335 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1336 int copy_num, bool drop_cache)
1337 {
1338 struct btrfs_super_block *super;
1339 struct page *page;
1340 u64 bytenr, bytenr_orig;
1341 struct address_space *mapping = bdev->bd_mapping;
1342 int ret;
1343
1344 bytenr_orig = btrfs_sb_offset(copy_num);
1345 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
1346 if (ret < 0) {
1347 if (ret == -ENOENT)
1348 ret = -EINVAL;
1349 return ERR_PTR(ret);
1350 }
1351
1352 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
1353 return ERR_PTR(-EINVAL);
1354
1355 if (drop_cache) {
1356 /* This should only be called with the primary sb. */
1357 ASSERT(copy_num == 0);
1358
1359 /*
1360 * Drop the page of the primary superblock, so later read will
1361 * always read from the device.
1362 */
1363 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT,
1364 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
1365 }
1366
1367 filemap_invalidate_lock(mapping);
1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
1369 filemap_invalidate_unlock(mapping);
1370 if (IS_ERR(page))
1371 return ERR_CAST(page);
1372
1373 super = page_address(page);
1374 if (btrfs_super_magic(super) != BTRFS_MAGIC ||
1375 btrfs_super_bytenr(super) != bytenr_orig) {
1376 btrfs_release_disk_super(super);
1377 return ERR_PTR(-EINVAL);
1378 }
1379
1380 /*
1381 * Make sure the last byte of label is properly NUL terminated. We use
1382 * '%s' to print the label, if not properly NUL terminated we can access
1383 * beyond the label.
1384 */
1385 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1])
1386 super->label[BTRFS_LABEL_SIZE - 1] = 0;
1387
1388 return super;
1389 }
1390
btrfs_forget_devices(dev_t devt)1391 int btrfs_forget_devices(dev_t devt)
1392 {
1393 int ret;
1394
1395 mutex_lock(&uuid_mutex);
1396 ret = btrfs_free_stale_devices(devt, NULL);
1397 mutex_unlock(&uuid_mutex);
1398
1399 return ret;
1400 }
1401
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1402 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1403 const char *path, dev_t devt,
1404 bool mount_arg_dev)
1405 {
1406 struct btrfs_fs_devices *fs_devices;
1407
1408 /*
1409 * Do not skip device registration for mounted devices with matching
1410 * maj:min but different paths. Booting without initrd relies on
1411 * /dev/root initially, later replaced with the actual root device.
1412 * A successful scan ensures grub2-probe selects the correct device.
1413 */
1414 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1415 struct btrfs_device *device;
1416
1417 mutex_lock(&fs_devices->device_list_mutex);
1418
1419 if (!fs_devices->opened) {
1420 mutex_unlock(&fs_devices->device_list_mutex);
1421 continue;
1422 }
1423
1424 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1425 if (device->bdev && (device->bdev->bd_dev == devt) &&
1426 strcmp(rcu_dereference_raw(device->name), path) != 0) {
1427 mutex_unlock(&fs_devices->device_list_mutex);
1428
1429 /* Do not skip registration. */
1430 return false;
1431 }
1432 }
1433 mutex_unlock(&fs_devices->device_list_mutex);
1434 }
1435
1436 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1437 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1438 return true;
1439
1440 return false;
1441 }
1442
1443 /*
1444 * Look for a btrfs signature on a device. This may be called out of the mount path
1445 * and we are not allowed to call set_blocksize during the scan. The superblock
1446 * is read via pagecache.
1447 *
1448 * With @mount_arg_dev it's a scan during mount time that will always register
1449 * the device or return an error. Multi-device and seeding devices are registered
1450 * in both cases.
1451 */
btrfs_scan_one_device(const char * path,bool mount_arg_dev)1452 struct btrfs_device *btrfs_scan_one_device(const char *path,
1453 bool mount_arg_dev)
1454 {
1455 struct btrfs_super_block *disk_super;
1456 bool new_device_added = false;
1457 struct btrfs_device *device = NULL;
1458 struct file *bdev_file;
1459 dev_t devt;
1460
1461 lockdep_assert_held(&uuid_mutex);
1462
1463 /*
1464 * Avoid an exclusive open here, as the systemd-udev may initiate the
1465 * device scan which may race with the user's mount or mkfs command,
1466 * resulting in failure.
1467 * Since the device scan is solely for reading purposes, there is no
1468 * need for an exclusive open. Additionally, the devices are read again
1469 * during the mount process. It is ok to get some inconsistent
1470 * values temporarily, as the device paths of the fsid are the only
1471 * required information for assembling the volume.
1472 */
1473 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL);
1474 if (IS_ERR(bdev_file))
1475 return ERR_CAST(bdev_file);
1476
1477 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false);
1478 if (IS_ERR(disk_super)) {
1479 device = ERR_CAST(disk_super);
1480 goto error_bdev_put;
1481 }
1482
1483 devt = file_bdev(bdev_file)->bd_dev;
1484 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1485 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)",
1486 path, MAJOR(devt), MINOR(devt));
1487
1488 btrfs_free_stale_devices(devt, NULL);
1489
1490 device = NULL;
1491 goto free_disk_super;
1492 }
1493
1494 device = device_list_add(path, disk_super, &new_device_added);
1495 if (!IS_ERR(device) && new_device_added)
1496 btrfs_free_stale_devices(device->devt, device);
1497
1498 free_disk_super:
1499 btrfs_release_disk_super(disk_super);
1500
1501 error_bdev_put:
1502 bdev_fput(bdev_file);
1503
1504 return device;
1505 }
1506
1507 /*
1508 * Try to find a chunk that intersects [start, start + len] range and when one
1509 * such is found, record the end of it in *start
1510 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1511 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1512 u64 len)
1513 {
1514 u64 physical_start, physical_end;
1515
1516 lockdep_assert_held(&device->fs_info->chunk_mutex);
1517
1518 if (btrfs_find_first_extent_bit(&device->alloc_state, *start,
1519 &physical_start, &physical_end,
1520 CHUNK_ALLOCATED, NULL)) {
1521
1522 if (in_range(physical_start, *start, len) ||
1523 in_range(*start, physical_start,
1524 physical_end + 1 - physical_start)) {
1525 *start = physical_end + 1;
1526 return true;
1527 }
1528 }
1529 return false;
1530 }
1531
dev_extent_search_start(struct btrfs_device * device)1532 static u64 dev_extent_search_start(struct btrfs_device *device)
1533 {
1534 switch (device->fs_devices->chunk_alloc_policy) {
1535 default:
1536 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1537 fallthrough;
1538 case BTRFS_CHUNK_ALLOC_REGULAR:
1539 return BTRFS_DEVICE_RANGE_RESERVED;
1540 case BTRFS_CHUNK_ALLOC_ZONED:
1541 /*
1542 * We don't care about the starting region like regular
1543 * allocator, because we anyway use/reserve the first two zones
1544 * for superblock logging.
1545 */
1546 return 0;
1547 }
1548 }
1549
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1550 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1551 u64 *hole_start, u64 *hole_size,
1552 u64 num_bytes)
1553 {
1554 u64 zone_size = device->zone_info->zone_size;
1555 u64 pos;
1556 int ret;
1557 bool changed = false;
1558
1559 ASSERT(IS_ALIGNED(*hole_start, zone_size),
1560 "hole_start=%llu zone_size=%llu", *hole_start, zone_size);
1561
1562 while (*hole_size > 0) {
1563 pos = btrfs_find_allocatable_zones(device, *hole_start,
1564 *hole_start + *hole_size,
1565 num_bytes);
1566 if (pos != *hole_start) {
1567 *hole_size = *hole_start + *hole_size - pos;
1568 *hole_start = pos;
1569 changed = true;
1570 if (*hole_size < num_bytes)
1571 break;
1572 }
1573
1574 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1575
1576 /* Range is ensured to be empty */
1577 if (!ret)
1578 return changed;
1579
1580 /* Given hole range was invalid (outside of device) */
1581 if (ret == -ERANGE) {
1582 *hole_start += *hole_size;
1583 *hole_size = 0;
1584 return true;
1585 }
1586
1587 *hole_start += zone_size;
1588 *hole_size -= zone_size;
1589 changed = true;
1590 }
1591
1592 return changed;
1593 }
1594
1595 /*
1596 * Check if specified hole is suitable for allocation.
1597 *
1598 * @device: the device which we have the hole
1599 * @hole_start: starting position of the hole
1600 * @hole_size: the size of the hole
1601 * @num_bytes: the size of the free space that we need
1602 *
1603 * This function may modify @hole_start and @hole_size to reflect the suitable
1604 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1605 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1606 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1607 u64 *hole_size, u64 num_bytes)
1608 {
1609 bool changed = false;
1610 u64 hole_end = *hole_start + *hole_size;
1611
1612 for (;;) {
1613 /*
1614 * Check before we set max_hole_start, otherwise we could end up
1615 * sending back this offset anyway.
1616 */
1617 if (contains_pending_extent(device, hole_start, *hole_size)) {
1618 if (hole_end >= *hole_start)
1619 *hole_size = hole_end - *hole_start;
1620 else
1621 *hole_size = 0;
1622 changed = true;
1623 }
1624
1625 switch (device->fs_devices->chunk_alloc_policy) {
1626 default:
1627 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1628 fallthrough;
1629 case BTRFS_CHUNK_ALLOC_REGULAR:
1630 /* No extra check */
1631 break;
1632 case BTRFS_CHUNK_ALLOC_ZONED:
1633 if (dev_extent_hole_check_zoned(device, hole_start,
1634 hole_size, num_bytes)) {
1635 changed = true;
1636 /*
1637 * The changed hole can contain pending extent.
1638 * Loop again to check that.
1639 */
1640 continue;
1641 }
1642 break;
1643 }
1644
1645 break;
1646 }
1647
1648 return changed;
1649 }
1650
1651 /*
1652 * Find free space in the specified device.
1653 *
1654 * @device: the device which we search the free space in
1655 * @num_bytes: the size of the free space that we need
1656 * @search_start: the position from which to begin the search
1657 * @start: store the start of the free space.
1658 * @len: the size of the free space. that we find, or the size
1659 * of the max free space if we don't find suitable free space
1660 *
1661 * This does a pretty simple search, the expectation is that it is called very
1662 * infrequently and that a given device has a small number of extents.
1663 *
1664 * @start is used to store the start of the free space if we find. But if we
1665 * don't find suitable free space, it will be used to store the start position
1666 * of the max free space.
1667 *
1668 * @len is used to store the size of the free space that we find.
1669 * But if we don't find suitable free space, it is used to store the size of
1670 * the max free space.
1671 *
1672 * NOTE: This function will search *commit* root of device tree, and does extra
1673 * check to ensure dev extents are not double allocated.
1674 * This makes the function safe to allocate dev extents but may not report
1675 * correct usable device space, as device extent freed in current transaction
1676 * is not reported as available.
1677 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1678 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1679 u64 *start, u64 *len)
1680 {
1681 struct btrfs_fs_info *fs_info = device->fs_info;
1682 struct btrfs_root *root = fs_info->dev_root;
1683 struct btrfs_key key;
1684 struct btrfs_dev_extent *dev_extent;
1685 BTRFS_PATH_AUTO_FREE(path);
1686 u64 search_start;
1687 u64 hole_size;
1688 u64 max_hole_start;
1689 u64 max_hole_size = 0;
1690 u64 extent_end;
1691 u64 search_end = device->total_bytes;
1692 int ret;
1693 int slot;
1694 struct extent_buffer *l;
1695
1696 search_start = dev_extent_search_start(device);
1697 max_hole_start = search_start;
1698
1699 WARN_ON(device->zone_info &&
1700 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1701
1702 path = btrfs_alloc_path();
1703 if (!path) {
1704 ret = -ENOMEM;
1705 goto out;
1706 }
1707 again:
1708 if (search_start >= search_end ||
1709 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1710 ret = -ENOSPC;
1711 goto out;
1712 }
1713
1714 path->reada = READA_FORWARD;
1715 path->search_commit_root = true;
1716 path->skip_locking = true;
1717
1718 key.objectid = device->devid;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1720 key.offset = search_start;
1721
1722 ret = btrfs_search_backwards(root, &key, path);
1723 if (ret < 0)
1724 goto out;
1725
1726 while (search_start < search_end) {
1727 l = path->nodes[0];
1728 slot = path->slots[0];
1729 if (slot >= btrfs_header_nritems(l)) {
1730 ret = btrfs_next_leaf(root, path);
1731 if (ret == 0)
1732 continue;
1733 if (ret < 0)
1734 goto out;
1735
1736 break;
1737 }
1738 btrfs_item_key_to_cpu(l, &key, slot);
1739
1740 if (key.objectid < device->devid)
1741 goto next;
1742
1743 if (key.objectid > device->devid)
1744 break;
1745
1746 if (key.type != BTRFS_DEV_EXTENT_KEY)
1747 goto next;
1748
1749 if (key.offset > search_end)
1750 break;
1751
1752 if (key.offset > search_start) {
1753 hole_size = key.offset - search_start;
1754 dev_extent_hole_check(device, &search_start, &hole_size,
1755 num_bytes);
1756
1757 if (hole_size > max_hole_size) {
1758 max_hole_start = search_start;
1759 max_hole_size = hole_size;
1760 }
1761
1762 /*
1763 * If this free space is greater than which we need,
1764 * it must be the max free space that we have found
1765 * until now, so max_hole_start must point to the start
1766 * of this free space and the length of this free space
1767 * is stored in max_hole_size. Thus, we return
1768 * max_hole_start and max_hole_size and go back to the
1769 * caller.
1770 */
1771 if (hole_size >= num_bytes) {
1772 ret = 0;
1773 goto out;
1774 }
1775 }
1776
1777 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1778 extent_end = key.offset + btrfs_dev_extent_length(l,
1779 dev_extent);
1780 if (extent_end > search_start)
1781 search_start = extent_end;
1782 next:
1783 path->slots[0]++;
1784 cond_resched();
1785 }
1786
1787 /*
1788 * At this point, search_start should be the end of
1789 * allocated dev extents, and when shrinking the device,
1790 * search_end may be smaller than search_start.
1791 */
1792 if (search_end > search_start) {
1793 hole_size = search_end - search_start;
1794 if (dev_extent_hole_check(device, &search_start, &hole_size,
1795 num_bytes)) {
1796 btrfs_release_path(path);
1797 goto again;
1798 }
1799
1800 if (hole_size > max_hole_size) {
1801 max_hole_start = search_start;
1802 max_hole_size = hole_size;
1803 }
1804 }
1805
1806 /* See above. */
1807 if (max_hole_size < num_bytes)
1808 ret = -ENOSPC;
1809 else
1810 ret = 0;
1811
1812 ASSERT(max_hole_start + max_hole_size <= search_end,
1813 "max_hole_start=%llu max_hole_size=%llu search_end=%llu",
1814 max_hole_start, max_hole_size, search_end);
1815 out:
1816 *start = max_hole_start;
1817 if (len)
1818 *len = max_hole_size;
1819 return ret;
1820 }
1821
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1823 struct btrfs_device *device,
1824 u64 start, u64 *dev_extent_len)
1825 {
1826 struct btrfs_fs_info *fs_info = device->fs_info;
1827 struct btrfs_root *root = fs_info->dev_root;
1828 int ret;
1829 BTRFS_PATH_AUTO_FREE(path);
1830 struct btrfs_key key;
1831 struct btrfs_key found_key;
1832 struct extent_buffer *leaf = NULL;
1833 struct btrfs_dev_extent *extent = NULL;
1834
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
1838
1839 key.objectid = device->devid;
1840 key.type = BTRFS_DEV_EXTENT_KEY;
1841 key.offset = start;
1842 again:
1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1844 if (ret > 0) {
1845 ret = btrfs_previous_item(root, path, key.objectid,
1846 BTRFS_DEV_EXTENT_KEY);
1847 if (ret)
1848 return ret;
1849 leaf = path->nodes[0];
1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1851 extent = btrfs_item_ptr(leaf, path->slots[0],
1852 struct btrfs_dev_extent);
1853 BUG_ON(found_key.offset > start || found_key.offset +
1854 btrfs_dev_extent_length(leaf, extent) < start);
1855 key = found_key;
1856 btrfs_release_path(path);
1857 goto again;
1858 } else if (ret == 0) {
1859 leaf = path->nodes[0];
1860 extent = btrfs_item_ptr(leaf, path->slots[0],
1861 struct btrfs_dev_extent);
1862 } else {
1863 return ret;
1864 }
1865
1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1867
1868 ret = btrfs_del_item(trans, root, path);
1869 if (ret == 0)
1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1871 return ret;
1872 }
1873
find_next_chunk(struct btrfs_fs_info * fs_info)1874 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1875 {
1876 struct rb_node *n;
1877 u64 ret = 0;
1878
1879 read_lock(&fs_info->mapping_tree_lock);
1880 n = rb_last(&fs_info->mapping_tree.rb_root);
1881 if (n) {
1882 struct btrfs_chunk_map *map;
1883
1884 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1885 ret = map->start + map->chunk_len;
1886 }
1887 read_unlock(&fs_info->mapping_tree_lock);
1888
1889 return ret;
1890 }
1891
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1892 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1893 u64 *devid_ret)
1894 {
1895 int ret;
1896 struct btrfs_key key;
1897 struct btrfs_key found_key;
1898 BTRFS_PATH_AUTO_FREE(path);
1899
1900 path = btrfs_alloc_path();
1901 if (!path)
1902 return -ENOMEM;
1903
1904 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1905 key.type = BTRFS_DEV_ITEM_KEY;
1906 key.offset = (u64)-1;
1907
1908 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1909 if (ret < 0)
1910 return ret;
1911
1912 if (unlikely(ret == 0)) {
1913 /* Corruption */
1914 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1915 return -EUCLEAN;
1916 }
1917
1918 ret = btrfs_previous_item(fs_info->chunk_root, path,
1919 BTRFS_DEV_ITEMS_OBJECTID,
1920 BTRFS_DEV_ITEM_KEY);
1921 if (ret) {
1922 *devid_ret = 1;
1923 } else {
1924 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1925 path->slots[0]);
1926 *devid_ret = found_key.offset + 1;
1927 }
1928 return 0;
1929 }
1930
1931 /*
1932 * the device information is stored in the chunk root
1933 * the btrfs_device struct should be fully filled in
1934 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1935 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1936 struct btrfs_device *device)
1937 {
1938 int ret;
1939 BTRFS_PATH_AUTO_FREE(path);
1940 struct btrfs_dev_item *dev_item;
1941 struct extent_buffer *leaf;
1942 struct btrfs_key key;
1943 unsigned long ptr;
1944
1945 path = btrfs_alloc_path();
1946 if (!path)
1947 return -ENOMEM;
1948
1949 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1950 key.type = BTRFS_DEV_ITEM_KEY;
1951 key.offset = device->devid;
1952
1953 btrfs_reserve_chunk_metadata(trans, true);
1954 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1955 &key, sizeof(*dev_item));
1956 btrfs_trans_release_chunk_metadata(trans);
1957 if (ret)
1958 return ret;
1959
1960 leaf = path->nodes[0];
1961 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1962
1963 btrfs_set_device_id(leaf, dev_item, device->devid);
1964 btrfs_set_device_generation(leaf, dev_item, 0);
1965 btrfs_set_device_type(leaf, dev_item, device->type);
1966 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1967 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1968 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1969 btrfs_set_device_total_bytes(leaf, dev_item,
1970 btrfs_device_get_disk_total_bytes(device));
1971 btrfs_set_device_bytes_used(leaf, dev_item,
1972 btrfs_device_get_bytes_used(device));
1973 btrfs_set_device_group(leaf, dev_item, 0);
1974 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1975 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1976 btrfs_set_device_start_offset(leaf, dev_item, 0);
1977
1978 ptr = btrfs_device_uuid(dev_item);
1979 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1980 ptr = btrfs_device_fsid(dev_item);
1981 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1982 ptr, BTRFS_FSID_SIZE);
1983
1984 return 0;
1985 }
1986
1987 /*
1988 * Function to update ctime/mtime for a given device path.
1989 * Mainly used for ctime/mtime based probe like libblkid.
1990 *
1991 * We don't care about errors here, this is just to be kind to userspace.
1992 */
update_dev_time(const char * device_path)1993 static void update_dev_time(const char *device_path)
1994 {
1995 struct path path;
1996
1997 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) {
1998 vfs_utimes(&path, NULL);
1999 path_put(&path);
2000 }
2001 }
2002
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2003 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2004 struct btrfs_device *device)
2005 {
2006 struct btrfs_root *root = device->fs_info->chunk_root;
2007 int ret;
2008 BTRFS_PATH_AUTO_FREE(path);
2009 struct btrfs_key key;
2010
2011 path = btrfs_alloc_path();
2012 if (!path)
2013 return -ENOMEM;
2014
2015 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2016 key.type = BTRFS_DEV_ITEM_KEY;
2017 key.offset = device->devid;
2018
2019 btrfs_reserve_chunk_metadata(trans, false);
2020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2021 btrfs_trans_release_chunk_metadata(trans);
2022 if (ret > 0)
2023 return -ENOENT;
2024 if (ret < 0)
2025 return ret;
2026
2027 return btrfs_del_item(trans, root, path);
2028 }
2029
2030 /*
2031 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2032 * filesystem. It's up to the caller to adjust that number regarding eg. device
2033 * replace.
2034 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2035 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2036 u64 num_devices)
2037 {
2038 u64 all_avail;
2039 unsigned seq;
2040 int i;
2041
2042 do {
2043 seq = read_seqbegin(&fs_info->profiles_lock);
2044
2045 all_avail = fs_info->avail_data_alloc_bits |
2046 fs_info->avail_system_alloc_bits |
2047 fs_info->avail_metadata_alloc_bits;
2048 } while (read_seqretry(&fs_info->profiles_lock, seq));
2049
2050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2051 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2052 continue;
2053
2054 if (num_devices < btrfs_raid_array[i].devs_min)
2055 return btrfs_raid_array[i].mindev_error;
2056 }
2057
2058 return 0;
2059 }
2060
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2061 static struct btrfs_device * btrfs_find_next_active_device(
2062 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2063 {
2064 struct btrfs_device *next_device;
2065
2066 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2067 if (next_device != device &&
2068 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2069 && next_device->bdev)
2070 return next_device;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 /*
2077 * Helper function to check if the given device is part of s_bdev / latest_dev
2078 * and replace it with the provided or the next active device, in the context
2079 * where this function called, there should be always be another device (or
2080 * this_dev) which is active.
2081 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2082 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2083 struct btrfs_device *next_device)
2084 {
2085 struct btrfs_fs_info *fs_info = device->fs_info;
2086
2087 if (!next_device)
2088 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2089 device);
2090 ASSERT(next_device);
2091
2092 if (fs_info->sb->s_bdev &&
2093 (fs_info->sb->s_bdev == device->bdev))
2094 fs_info->sb->s_bdev = next_device->bdev;
2095
2096 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2097 fs_info->fs_devices->latest_dev = next_device;
2098 }
2099
2100 /*
2101 * Return btrfs_fs_devices::num_devices excluding the device that's being
2102 * currently replaced.
2103 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2104 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2105 {
2106 u64 num_devices = fs_info->fs_devices->num_devices;
2107
2108 down_read(&fs_info->dev_replace.rwsem);
2109 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2110 ASSERT(num_devices > 1, "num_devices=%llu", num_devices);
2111 num_devices--;
2112 }
2113 up_read(&fs_info->dev_replace.rwsem);
2114
2115 return num_devices;
2116 }
2117
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2118 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2119 struct block_device *bdev, int copy_num)
2120 {
2121 struct btrfs_super_block *disk_super;
2122 const size_t len = sizeof(disk_super->magic);
2123 const u64 bytenr = btrfs_sb_offset(copy_num);
2124 int ret;
2125
2126 disk_super = btrfs_read_disk_super(bdev, copy_num, false);
2127 if (IS_ERR(disk_super))
2128 return;
2129
2130 memset(&disk_super->magic, 0, len);
2131 folio_mark_dirty(virt_to_folio(disk_super));
2132 btrfs_release_disk_super(disk_super);
2133
2134 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2135 if (ret)
2136 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2137 copy_num, ret);
2138 }
2139
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2140 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2141 {
2142 int copy_num;
2143 struct block_device *bdev = device->bdev;
2144
2145 if (!bdev)
2146 return;
2147
2148 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2149 if (bdev_is_zoned(bdev))
2150 btrfs_reset_sb_log_zones(bdev, copy_num);
2151 else
2152 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2153 }
2154
2155 /* Notify udev that device has changed */
2156 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2157
2158 /* Update ctime/mtime for device path for libblkid */
2159 update_dev_time(rcu_dereference_raw(device->name));
2160 }
2161
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2162 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2163 struct btrfs_dev_lookup_args *args,
2164 struct file **bdev_file)
2165 {
2166 struct btrfs_trans_handle *trans;
2167 struct btrfs_device *device;
2168 struct btrfs_fs_devices *cur_devices;
2169 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2170 u64 num_devices;
2171 int ret = 0;
2172
2173 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2174 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2175 return -EINVAL;
2176 }
2177
2178 /*
2179 * The device list in fs_devices is accessed without locks (neither
2180 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2181 * filesystem and another device rm cannot run.
2182 */
2183 num_devices = btrfs_num_devices(fs_info);
2184
2185 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2186 if (ret)
2187 return ret;
2188
2189 device = btrfs_find_device(fs_info->fs_devices, args);
2190 if (!device) {
2191 if (args->missing)
2192 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2193 else
2194 ret = -ENOENT;
2195 return ret;
2196 }
2197
2198 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2199 btrfs_warn(fs_info,
2200 "cannot remove device %s (devid %llu) due to active swapfile",
2201 btrfs_dev_name(device), device->devid);
2202 return -ETXTBSY;
2203 }
2204
2205 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2206 return BTRFS_ERROR_DEV_TGT_REPLACE;
2207
2208 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2209 fs_info->fs_devices->rw_devices == 1)
2210 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2211
2212 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2213 mutex_lock(&fs_info->chunk_mutex);
2214 list_del_init(&device->dev_alloc_list);
2215 device->fs_devices->rw_devices--;
2216 mutex_unlock(&fs_info->chunk_mutex);
2217 }
2218
2219 ret = btrfs_shrink_device(device, 0);
2220 if (ret)
2221 goto error_undo;
2222
2223 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2224 if (IS_ERR(trans)) {
2225 ret = PTR_ERR(trans);
2226 goto error_undo;
2227 }
2228
2229 ret = btrfs_rm_dev_item(trans, device);
2230 if (unlikely(ret)) {
2231 /* Any error in dev item removal is critical */
2232 btrfs_crit(fs_info,
2233 "failed to remove device item for devid %llu: %d",
2234 device->devid, ret);
2235 btrfs_abort_transaction(trans, ret);
2236 btrfs_end_transaction(trans);
2237 return ret;
2238 }
2239
2240 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2241 btrfs_scrub_cancel_dev(device);
2242
2243 /*
2244 * the device list mutex makes sure that we don't change
2245 * the device list while someone else is writing out all
2246 * the device supers. Whoever is writing all supers, should
2247 * lock the device list mutex before getting the number of
2248 * devices in the super block (super_copy). Conversely,
2249 * whoever updates the number of devices in the super block
2250 * (super_copy) should hold the device list mutex.
2251 */
2252
2253 /*
2254 * In normal cases the cur_devices == fs_devices. But in case
2255 * of deleting a seed device, the cur_devices should point to
2256 * its own fs_devices listed under the fs_devices->seed_list.
2257 */
2258 cur_devices = device->fs_devices;
2259 mutex_lock(&fs_devices->device_list_mutex);
2260 list_del_rcu(&device->dev_list);
2261
2262 cur_devices->num_devices--;
2263 cur_devices->total_devices--;
2264 /* Update total_devices of the parent fs_devices if it's seed */
2265 if (cur_devices != fs_devices)
2266 fs_devices->total_devices--;
2267
2268 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2269 cur_devices->missing_devices--;
2270
2271 btrfs_assign_next_active_device(device, NULL);
2272
2273 if (device->bdev_file) {
2274 cur_devices->open_devices--;
2275 /* remove sysfs entry */
2276 btrfs_sysfs_remove_device(device);
2277 }
2278
2279 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2280 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2281 mutex_unlock(&fs_devices->device_list_mutex);
2282
2283 /*
2284 * At this point, the device is zero sized and detached from the
2285 * devices list. All that's left is to zero out the old supers and
2286 * free the device.
2287 *
2288 * We cannot call btrfs_close_bdev() here because we're holding the sb
2289 * write lock, and bdev_fput() on the block device will pull in the
2290 * ->open_mutex on the block device and it's dependencies. Instead
2291 * just flush the device and let the caller do the final bdev_release.
2292 */
2293 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2294 btrfs_scratch_superblocks(fs_info, device);
2295 if (device->bdev) {
2296 sync_blockdev(device->bdev);
2297 invalidate_bdev(device->bdev);
2298 }
2299 }
2300
2301 *bdev_file = device->bdev_file;
2302 synchronize_rcu();
2303 btrfs_free_device(device);
2304
2305 /*
2306 * This can happen if cur_devices is the private seed devices list. We
2307 * cannot call close_fs_devices() here because it expects the uuid_mutex
2308 * to be held, but in fact we don't need that for the private
2309 * seed_devices, we can simply decrement cur_devices->opened and then
2310 * remove it from our list and free the fs_devices.
2311 */
2312 if (cur_devices->num_devices == 0) {
2313 list_del_init(&cur_devices->seed_list);
2314 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened);
2315 cur_devices->opened--;
2316 free_fs_devices(cur_devices);
2317 }
2318
2319 ret = btrfs_commit_transaction(trans);
2320
2321 return ret;
2322
2323 error_undo:
2324 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2325 mutex_lock(&fs_info->chunk_mutex);
2326 list_add(&device->dev_alloc_list,
2327 &fs_devices->alloc_list);
2328 device->fs_devices->rw_devices++;
2329 mutex_unlock(&fs_info->chunk_mutex);
2330 }
2331 return ret;
2332 }
2333
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2334 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2335 {
2336 struct btrfs_fs_devices *fs_devices;
2337
2338 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2339
2340 /*
2341 * in case of fs with no seed, srcdev->fs_devices will point
2342 * to fs_devices of fs_info. However when the dev being replaced is
2343 * a seed dev it will point to the seed's local fs_devices. In short
2344 * srcdev will have its correct fs_devices in both the cases.
2345 */
2346 fs_devices = srcdev->fs_devices;
2347
2348 list_del_rcu(&srcdev->dev_list);
2349 list_del(&srcdev->dev_alloc_list);
2350 fs_devices->num_devices--;
2351 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2352 fs_devices->missing_devices--;
2353
2354 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2355 fs_devices->rw_devices--;
2356
2357 if (srcdev->bdev)
2358 fs_devices->open_devices--;
2359 }
2360
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2361 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2362 {
2363 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2364
2365 mutex_lock(&uuid_mutex);
2366
2367 btrfs_close_bdev(srcdev);
2368 synchronize_rcu();
2369 btrfs_free_device(srcdev);
2370
2371 /* if this is no devs we rather delete the fs_devices */
2372 if (!fs_devices->num_devices) {
2373 /*
2374 * On a mounted FS, num_devices can't be zero unless it's a
2375 * seed. In case of a seed device being replaced, the replace
2376 * target added to the sprout FS, so there will be no more
2377 * device left under the seed FS.
2378 */
2379 ASSERT(fs_devices->seeding);
2380
2381 list_del_init(&fs_devices->seed_list);
2382 close_fs_devices(fs_devices);
2383 free_fs_devices(fs_devices);
2384 }
2385 mutex_unlock(&uuid_mutex);
2386 }
2387
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2388 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2389 {
2390 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2391
2392 mutex_lock(&fs_devices->device_list_mutex);
2393
2394 btrfs_sysfs_remove_device(tgtdev);
2395
2396 if (tgtdev->bdev)
2397 fs_devices->open_devices--;
2398
2399 fs_devices->num_devices--;
2400
2401 btrfs_assign_next_active_device(tgtdev, NULL);
2402
2403 list_del_rcu(&tgtdev->dev_list);
2404
2405 mutex_unlock(&fs_devices->device_list_mutex);
2406
2407 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2408
2409 btrfs_close_bdev(tgtdev);
2410 synchronize_rcu();
2411 btrfs_free_device(tgtdev);
2412 }
2413
2414 /*
2415 * Populate args from device at path.
2416 *
2417 * @fs_info: the filesystem
2418 * @args: the args to populate
2419 * @path: the path to the device
2420 *
2421 * This will read the super block of the device at @path and populate @args with
2422 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2423 * lookup a device to operate on, but need to do it before we take any locks.
2424 * This properly handles the special case of "missing" that a user may pass in,
2425 * and does some basic sanity checks. The caller must make sure that @path is
2426 * properly NUL terminated before calling in, and must call
2427 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2428 * uuid buffers.
2429 *
2430 * Return: 0 for success, -errno for failure
2431 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2432 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2433 struct btrfs_dev_lookup_args *args,
2434 const char *path)
2435 {
2436 struct btrfs_super_block *disk_super;
2437 struct file *bdev_file;
2438 int ret;
2439
2440 if (!path || !path[0])
2441 return -EINVAL;
2442 if (!strcmp(path, "missing")) {
2443 args->missing = true;
2444 return 0;
2445 }
2446
2447 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2448 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2449 if (!args->uuid || !args->fsid) {
2450 btrfs_put_dev_args_from_path(args);
2451 return -ENOMEM;
2452 }
2453
2454 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2455 &bdev_file, &disk_super);
2456 if (ret) {
2457 btrfs_put_dev_args_from_path(args);
2458 return ret;
2459 }
2460
2461 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2462 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2463 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2464 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2465 else
2466 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2467 btrfs_release_disk_super(disk_super);
2468 bdev_fput(bdev_file);
2469 return 0;
2470 }
2471
2472 /*
2473 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2474 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2475 * that don't need to be freed.
2476 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2477 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2478 {
2479 kfree(args->uuid);
2480 kfree(args->fsid);
2481 args->uuid = NULL;
2482 args->fsid = NULL;
2483 }
2484
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2485 struct btrfs_device *btrfs_find_device_by_devspec(
2486 struct btrfs_fs_info *fs_info, u64 devid,
2487 const char *device_path)
2488 {
2489 BTRFS_DEV_LOOKUP_ARGS(args);
2490 struct btrfs_device *device;
2491 int ret;
2492
2493 if (devid) {
2494 args.devid = devid;
2495 device = btrfs_find_device(fs_info->fs_devices, &args);
2496 if (!device)
2497 return ERR_PTR(-ENOENT);
2498 return device;
2499 }
2500
2501 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2502 if (ret)
2503 return ERR_PTR(ret);
2504 device = btrfs_find_device(fs_info->fs_devices, &args);
2505 btrfs_put_dev_args_from_path(&args);
2506 if (!device)
2507 return ERR_PTR(-ENOENT);
2508 return device;
2509 }
2510
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2511 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2512 {
2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2514 struct btrfs_fs_devices *old_devices;
2515 struct btrfs_fs_devices *seed_devices;
2516
2517 lockdep_assert_held(&uuid_mutex);
2518 if (!fs_devices->seeding)
2519 return ERR_PTR(-EINVAL);
2520
2521 /*
2522 * Private copy of the seed devices, anchored at
2523 * fs_info->fs_devices->seed_list
2524 */
2525 seed_devices = alloc_fs_devices(NULL);
2526 if (IS_ERR(seed_devices))
2527 return seed_devices;
2528
2529 /*
2530 * It's necessary to retain a copy of the original seed fs_devices in
2531 * fs_uuids so that filesystems which have been seeded can successfully
2532 * reference the seed device from open_seed_devices. This also supports
2533 * multiple fs seed.
2534 */
2535 old_devices = clone_fs_devices(fs_devices);
2536 if (IS_ERR(old_devices)) {
2537 kfree(seed_devices);
2538 return old_devices;
2539 }
2540
2541 list_add(&old_devices->fs_list, &fs_uuids);
2542
2543 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2544 seed_devices->opened = 1;
2545 INIT_LIST_HEAD(&seed_devices->devices);
2546 INIT_LIST_HEAD(&seed_devices->alloc_list);
2547 mutex_init(&seed_devices->device_list_mutex);
2548
2549 return seed_devices;
2550 }
2551
2552 /*
2553 * Splice seed devices into the sprout fs_devices.
2554 * Generate a new fsid for the sprouted read-write filesystem.
2555 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2556 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2557 struct btrfs_fs_devices *seed_devices)
2558 {
2559 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2560 struct btrfs_super_block *disk_super = fs_info->super_copy;
2561 struct btrfs_device *device;
2562 u64 super_flags;
2563
2564 /*
2565 * We are updating the fsid, the thread leading to device_list_add()
2566 * could race, so uuid_mutex is needed.
2567 */
2568 lockdep_assert_held(&uuid_mutex);
2569
2570 /*
2571 * The threads listed below may traverse dev_list but can do that without
2572 * device_list_mutex:
2573 * - All device ops and balance - as we are in btrfs_exclop_start.
2574 * - Various dev_list readers - are using RCU.
2575 * - btrfs_ioctl_fitrim() - is using RCU.
2576 *
2577 * For-read threads as below are using device_list_mutex:
2578 * - Readonly scrub btrfs_scrub_dev()
2579 * - Readonly scrub btrfs_scrub_progress()
2580 * - btrfs_get_dev_stats()
2581 */
2582 lockdep_assert_held(&fs_devices->device_list_mutex);
2583
2584 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2585 synchronize_rcu);
2586 list_for_each_entry(device, &seed_devices->devices, dev_list)
2587 device->fs_devices = seed_devices;
2588
2589 fs_devices->seeding = false;
2590 fs_devices->num_devices = 0;
2591 fs_devices->open_devices = 0;
2592 fs_devices->missing_devices = 0;
2593 fs_devices->rotating = false;
2594 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2595
2596 generate_random_uuid(fs_devices->fsid);
2597 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2598 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2599
2600 super_flags = btrfs_super_flags(disk_super) &
2601 ~BTRFS_SUPER_FLAG_SEEDING;
2602 btrfs_set_super_flags(disk_super, super_flags);
2603 }
2604
2605 /*
2606 * Store the expected generation for seed devices in device items.
2607 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2608 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2609 {
2610 BTRFS_DEV_LOOKUP_ARGS(args);
2611 struct btrfs_fs_info *fs_info = trans->fs_info;
2612 struct btrfs_root *root = fs_info->chunk_root;
2613 BTRFS_PATH_AUTO_FREE(path);
2614 struct extent_buffer *leaf;
2615 struct btrfs_dev_item *dev_item;
2616 struct btrfs_device *device;
2617 struct btrfs_key key;
2618 u8 fs_uuid[BTRFS_FSID_SIZE];
2619 u8 dev_uuid[BTRFS_UUID_SIZE];
2620 int ret;
2621
2622 path = btrfs_alloc_path();
2623 if (!path)
2624 return -ENOMEM;
2625
2626 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2627 key.type = BTRFS_DEV_ITEM_KEY;
2628 key.offset = 0;
2629
2630 while (1) {
2631 btrfs_reserve_chunk_metadata(trans, false);
2632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2633 btrfs_trans_release_chunk_metadata(trans);
2634 if (ret < 0)
2635 return ret;
2636
2637 leaf = path->nodes[0];
2638 next_slot:
2639 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2640 ret = btrfs_next_leaf(root, path);
2641 if (ret > 0)
2642 break;
2643 if (ret < 0)
2644 return ret;
2645 leaf = path->nodes[0];
2646 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2647 btrfs_release_path(path);
2648 continue;
2649 }
2650
2651 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2652 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2653 key.type != BTRFS_DEV_ITEM_KEY)
2654 break;
2655
2656 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2657 struct btrfs_dev_item);
2658 args.devid = btrfs_device_id(leaf, dev_item);
2659 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2660 BTRFS_UUID_SIZE);
2661 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2662 BTRFS_FSID_SIZE);
2663 args.uuid = dev_uuid;
2664 args.fsid = fs_uuid;
2665 device = btrfs_find_device(fs_info->fs_devices, &args);
2666 BUG_ON(!device); /* Logic error */
2667
2668 if (device->fs_devices->seeding)
2669 btrfs_set_device_generation(leaf, dev_item,
2670 device->generation);
2671
2672 path->slots[0]++;
2673 goto next_slot;
2674 }
2675 return 0;
2676 }
2677
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2678 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2679 {
2680 struct btrfs_root *root = fs_info->dev_root;
2681 struct btrfs_trans_handle *trans;
2682 struct btrfs_device *device;
2683 struct file *bdev_file;
2684 struct super_block *sb = fs_info->sb;
2685 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2686 struct btrfs_fs_devices *seed_devices = NULL;
2687 u64 orig_super_total_bytes;
2688 u64 orig_super_num_devices;
2689 int ret = 0;
2690 bool seeding_dev = false;
2691 bool locked = false;
2692
2693 if (sb_rdonly(sb) && !fs_devices->seeding)
2694 return -EROFS;
2695
2696 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2697 fs_info->sb, &fs_holder_ops);
2698 if (IS_ERR(bdev_file))
2699 return PTR_ERR(bdev_file);
2700
2701 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2702 ret = -EINVAL;
2703 goto error;
2704 }
2705
2706 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) {
2707 ret = -EINVAL;
2708 goto error;
2709 }
2710
2711 if (fs_devices->seeding) {
2712 seeding_dev = true;
2713 down_write(&sb->s_umount);
2714 mutex_lock(&uuid_mutex);
2715 locked = true;
2716 }
2717
2718 sync_blockdev(file_bdev(bdev_file));
2719
2720 rcu_read_lock();
2721 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2722 if (device->bdev == file_bdev(bdev_file)) {
2723 ret = -EEXIST;
2724 rcu_read_unlock();
2725 goto error;
2726 }
2727 }
2728 rcu_read_unlock();
2729
2730 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2731 if (IS_ERR(device)) {
2732 /* we can safely leave the fs_devices entry around */
2733 ret = PTR_ERR(device);
2734 goto error;
2735 }
2736
2737 device->fs_info = fs_info;
2738 device->bdev_file = bdev_file;
2739 device->bdev = file_bdev(bdev_file);
2740 ret = lookup_bdev(device_path, &device->devt);
2741 if (ret)
2742 goto error_free_device;
2743
2744 ret = btrfs_get_dev_zone_info(device, false);
2745 if (ret)
2746 goto error_free_device;
2747
2748 trans = btrfs_start_transaction(root, 0);
2749 if (IS_ERR(trans)) {
2750 ret = PTR_ERR(trans);
2751 goto error_free_zone;
2752 }
2753
2754 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2755 device->generation = trans->transid;
2756 device->io_width = fs_info->sectorsize;
2757 device->io_align = fs_info->sectorsize;
2758 device->sector_size = fs_info->sectorsize;
2759 device->total_bytes =
2760 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2761 device->disk_total_bytes = device->total_bytes;
2762 device->commit_total_bytes = device->total_bytes;
2763 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2764 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2765 device->dev_stats_valid = 1;
2766 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2767
2768 if (seeding_dev) {
2769 /* GFP_KERNEL allocation must not be under device_list_mutex */
2770 seed_devices = btrfs_init_sprout(fs_info);
2771 if (IS_ERR(seed_devices)) {
2772 ret = PTR_ERR(seed_devices);
2773 btrfs_abort_transaction(trans, ret);
2774 goto error_trans;
2775 }
2776 }
2777
2778 mutex_lock(&fs_devices->device_list_mutex);
2779 if (seeding_dev) {
2780 btrfs_setup_sprout(fs_info, seed_devices);
2781 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2782 device);
2783 }
2784
2785 device->fs_devices = fs_devices;
2786
2787 mutex_lock(&fs_info->chunk_mutex);
2788 list_add_rcu(&device->dev_list, &fs_devices->devices);
2789 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2790 fs_devices->num_devices++;
2791 fs_devices->open_devices++;
2792 fs_devices->rw_devices++;
2793 fs_devices->total_devices++;
2794 fs_devices->total_rw_bytes += device->total_bytes;
2795
2796 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2797
2798 if (!bdev_nonrot(device->bdev))
2799 fs_devices->rotating = true;
2800
2801 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2802 btrfs_set_super_total_bytes(fs_info->super_copy,
2803 round_down(orig_super_total_bytes + device->total_bytes,
2804 fs_info->sectorsize));
2805
2806 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2807 btrfs_set_super_num_devices(fs_info->super_copy,
2808 orig_super_num_devices + 1);
2809
2810 /*
2811 * we've got more storage, clear any full flags on the space
2812 * infos
2813 */
2814 btrfs_clear_space_info_full(fs_info);
2815
2816 mutex_unlock(&fs_info->chunk_mutex);
2817
2818 /* Add sysfs device entry */
2819 btrfs_sysfs_add_device(device);
2820
2821 mutex_unlock(&fs_devices->device_list_mutex);
2822
2823 if (seeding_dev) {
2824 mutex_lock(&fs_info->chunk_mutex);
2825 ret = init_first_rw_device(trans);
2826 mutex_unlock(&fs_info->chunk_mutex);
2827 if (unlikely(ret)) {
2828 btrfs_abort_transaction(trans, ret);
2829 goto error_sysfs;
2830 }
2831 }
2832
2833 ret = btrfs_add_dev_item(trans, device);
2834 if (unlikely(ret)) {
2835 btrfs_abort_transaction(trans, ret);
2836 goto error_sysfs;
2837 }
2838
2839 if (seeding_dev) {
2840 ret = btrfs_finish_sprout(trans);
2841 if (unlikely(ret)) {
2842 btrfs_abort_transaction(trans, ret);
2843 goto error_sysfs;
2844 }
2845
2846 /*
2847 * fs_devices now represents the newly sprouted filesystem and
2848 * its fsid has been changed by btrfs_sprout_splice().
2849 */
2850 btrfs_sysfs_update_sprout_fsid(fs_devices);
2851 }
2852
2853 ret = btrfs_commit_transaction(trans);
2854
2855 if (seeding_dev) {
2856 mutex_unlock(&uuid_mutex);
2857 up_write(&sb->s_umount);
2858 locked = false;
2859
2860 if (ret) /* transaction commit */
2861 return ret;
2862
2863 ret = btrfs_relocate_sys_chunks(fs_info);
2864 if (ret < 0)
2865 btrfs_handle_fs_error(fs_info, ret,
2866 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2867 trans = btrfs_attach_transaction(root);
2868 if (IS_ERR(trans)) {
2869 if (PTR_ERR(trans) == -ENOENT)
2870 return 0;
2871 ret = PTR_ERR(trans);
2872 trans = NULL;
2873 goto error_sysfs;
2874 }
2875 ret = btrfs_commit_transaction(trans);
2876 }
2877
2878 /*
2879 * Now that we have written a new super block to this device, check all
2880 * other fs_devices list if device_path alienates any other scanned
2881 * device.
2882 * We can ignore the return value as it typically returns -EINVAL and
2883 * only succeeds if the device was an alien.
2884 */
2885 btrfs_forget_devices(device->devt);
2886
2887 /* Update ctime/mtime for blkid or udev */
2888 update_dev_time(device_path);
2889
2890 return ret;
2891
2892 error_sysfs:
2893 btrfs_sysfs_remove_device(device);
2894 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2895 mutex_lock(&fs_info->chunk_mutex);
2896 list_del_rcu(&device->dev_list);
2897 list_del(&device->dev_alloc_list);
2898 fs_info->fs_devices->num_devices--;
2899 fs_info->fs_devices->open_devices--;
2900 fs_info->fs_devices->rw_devices--;
2901 fs_info->fs_devices->total_devices--;
2902 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2903 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2904 btrfs_set_super_total_bytes(fs_info->super_copy,
2905 orig_super_total_bytes);
2906 btrfs_set_super_num_devices(fs_info->super_copy,
2907 orig_super_num_devices);
2908 mutex_unlock(&fs_info->chunk_mutex);
2909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2910 error_trans:
2911 if (trans)
2912 btrfs_end_transaction(trans);
2913 error_free_zone:
2914 btrfs_destroy_dev_zone_info(device);
2915 error_free_device:
2916 btrfs_free_device(device);
2917 error:
2918 bdev_fput(bdev_file);
2919 if (locked) {
2920 mutex_unlock(&uuid_mutex);
2921 up_write(&sb->s_umount);
2922 }
2923 return ret;
2924 }
2925
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2926 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2927 struct btrfs_device *device)
2928 {
2929 int ret;
2930 BTRFS_PATH_AUTO_FREE(path);
2931 struct btrfs_root *root = device->fs_info->chunk_root;
2932 struct btrfs_dev_item *dev_item;
2933 struct extent_buffer *leaf;
2934 struct btrfs_key key;
2935
2936 path = btrfs_alloc_path();
2937 if (!path)
2938 return -ENOMEM;
2939
2940 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2941 key.type = BTRFS_DEV_ITEM_KEY;
2942 key.offset = device->devid;
2943
2944 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2945 if (ret < 0)
2946 return ret;
2947
2948 if (ret > 0)
2949 return -ENOENT;
2950
2951 leaf = path->nodes[0];
2952 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2953
2954 btrfs_set_device_id(leaf, dev_item, device->devid);
2955 btrfs_set_device_type(leaf, dev_item, device->type);
2956 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2957 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2958 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2959 btrfs_set_device_total_bytes(leaf, dev_item,
2960 btrfs_device_get_disk_total_bytes(device));
2961 btrfs_set_device_bytes_used(leaf, dev_item,
2962 btrfs_device_get_bytes_used(device));
2963 return ret;
2964 }
2965
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2966 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2967 struct btrfs_device *device, u64 new_size)
2968 {
2969 struct btrfs_fs_info *fs_info = device->fs_info;
2970 struct btrfs_super_block *super_copy = fs_info->super_copy;
2971 u64 old_total;
2972 u64 diff;
2973 int ret;
2974
2975 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2976 return -EACCES;
2977
2978 new_size = round_down(new_size, fs_info->sectorsize);
2979
2980 mutex_lock(&fs_info->chunk_mutex);
2981 old_total = btrfs_super_total_bytes(super_copy);
2982 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2983
2984 if (new_size <= device->total_bytes ||
2985 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2986 mutex_unlock(&fs_info->chunk_mutex);
2987 return -EINVAL;
2988 }
2989
2990 btrfs_set_super_total_bytes(super_copy,
2991 round_down(old_total + diff, fs_info->sectorsize));
2992 device->fs_devices->total_rw_bytes += diff;
2993 atomic64_add(diff, &fs_info->free_chunk_space);
2994
2995 btrfs_device_set_total_bytes(device, new_size);
2996 btrfs_device_set_disk_total_bytes(device, new_size);
2997 btrfs_clear_space_info_full(device->fs_info);
2998 if (list_empty(&device->post_commit_list))
2999 list_add_tail(&device->post_commit_list,
3000 &trans->transaction->dev_update_list);
3001 mutex_unlock(&fs_info->chunk_mutex);
3002
3003 btrfs_reserve_chunk_metadata(trans, false);
3004 ret = btrfs_update_device(trans, device);
3005 btrfs_trans_release_chunk_metadata(trans);
3006
3007 return ret;
3008 }
3009
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3010 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3011 {
3012 struct btrfs_fs_info *fs_info = trans->fs_info;
3013 struct btrfs_root *root = fs_info->chunk_root;
3014 int ret;
3015 BTRFS_PATH_AUTO_FREE(path);
3016 struct btrfs_key key;
3017
3018 path = btrfs_alloc_path();
3019 if (!path)
3020 return -ENOMEM;
3021
3022 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3023 key.type = BTRFS_CHUNK_ITEM_KEY;
3024 key.offset = chunk_offset;
3025
3026 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3027 if (ret < 0)
3028 return ret;
3029 if (unlikely(ret > 0)) {
3030 /* Logic error or corruption */
3031 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3032 chunk_offset);
3033 btrfs_abort_transaction(trans, -ENOENT);
3034 return -EUCLEAN;
3035 }
3036
3037 ret = btrfs_del_item(trans, root, path);
3038 if (unlikely(ret < 0)) {
3039 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3040 btrfs_abort_transaction(trans, ret);
3041 return ret;
3042 }
3043 return ret;
3044 }
3045
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3046 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3047 {
3048 struct btrfs_super_block *super_copy = fs_info->super_copy;
3049 struct btrfs_disk_key *disk_key;
3050 struct btrfs_chunk *chunk;
3051 u8 *ptr;
3052 int ret = 0;
3053 u32 num_stripes;
3054 u32 array_size;
3055 u32 len = 0;
3056 u32 cur;
3057 struct btrfs_key key;
3058
3059 lockdep_assert_held(&fs_info->chunk_mutex);
3060 array_size = btrfs_super_sys_array_size(super_copy);
3061
3062 ptr = super_copy->sys_chunk_array;
3063 cur = 0;
3064
3065 while (cur < array_size) {
3066 disk_key = (struct btrfs_disk_key *)ptr;
3067 btrfs_disk_key_to_cpu(&key, disk_key);
3068
3069 len = sizeof(*disk_key);
3070
3071 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3072 chunk = (struct btrfs_chunk *)(ptr + len);
3073 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3074 len += btrfs_chunk_item_size(num_stripes);
3075 } else {
3076 ret = -EIO;
3077 break;
3078 }
3079 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3080 key.offset == chunk_offset) {
3081 memmove(ptr, ptr + len, array_size - (cur + len));
3082 array_size -= len;
3083 btrfs_set_super_sys_array_size(super_copy, array_size);
3084 } else {
3085 ptr += len;
3086 cur += len;
3087 }
3088 }
3089 return ret;
3090 }
3091
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3092 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3093 u64 logical, u64 length)
3094 {
3095 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3096 struct rb_node *prev = NULL;
3097 struct rb_node *orig_prev;
3098 struct btrfs_chunk_map *map;
3099 struct btrfs_chunk_map *prev_map = NULL;
3100
3101 while (node) {
3102 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3103 prev = node;
3104 prev_map = map;
3105
3106 if (logical < map->start) {
3107 node = node->rb_left;
3108 } else if (logical >= map->start + map->chunk_len) {
3109 node = node->rb_right;
3110 } else {
3111 refcount_inc(&map->refs);
3112 return map;
3113 }
3114 }
3115
3116 if (!prev)
3117 return NULL;
3118
3119 orig_prev = prev;
3120 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3121 prev = rb_next(prev);
3122 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3123 }
3124
3125 if (!prev) {
3126 prev = orig_prev;
3127 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3128 while (prev && logical < prev_map->start) {
3129 prev = rb_prev(prev);
3130 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3131 }
3132 }
3133
3134 if (prev) {
3135 u64 end = logical + length;
3136
3137 /*
3138 * Caller can pass a U64_MAX length when it wants to get any
3139 * chunk starting at an offset of 'logical' or higher, so deal
3140 * with underflow by resetting the end offset to U64_MAX.
3141 */
3142 if (end < logical)
3143 end = U64_MAX;
3144
3145 if (end > prev_map->start &&
3146 logical < prev_map->start + prev_map->chunk_len) {
3147 refcount_inc(&prev_map->refs);
3148 return prev_map;
3149 }
3150 }
3151
3152 return NULL;
3153 }
3154
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3155 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3156 u64 logical, u64 length)
3157 {
3158 struct btrfs_chunk_map *map;
3159
3160 read_lock(&fs_info->mapping_tree_lock);
3161 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3162 read_unlock(&fs_info->mapping_tree_lock);
3163
3164 return map;
3165 }
3166
3167 /*
3168 * Find the mapping containing the given logical extent.
3169 *
3170 * @logical: Logical block offset in bytes.
3171 * @length: Length of extent in bytes.
3172 *
3173 * Return: Chunk mapping or ERR_PTR.
3174 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3175 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3176 u64 logical, u64 length)
3177 {
3178 struct btrfs_chunk_map *map;
3179
3180 map = btrfs_find_chunk_map(fs_info, logical, length);
3181
3182 if (unlikely(!map)) {
3183 btrfs_crit(fs_info,
3184 "unable to find chunk map for logical %llu length %llu",
3185 logical, length);
3186 return ERR_PTR(-EINVAL);
3187 }
3188
3189 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3190 btrfs_crit(fs_info,
3191 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3192 logical, logical + length, map->start,
3193 map->start + map->chunk_len);
3194 btrfs_free_chunk_map(map);
3195 return ERR_PTR(-EINVAL);
3196 }
3197
3198 /* Callers are responsible for dropping the reference. */
3199 return map;
3200 }
3201
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3202 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3203 struct btrfs_chunk_map *map, u64 chunk_offset)
3204 {
3205 int i;
3206
3207 /*
3208 * Removing chunk items and updating the device items in the chunks btree
3209 * requires holding the chunk_mutex.
3210 * See the comment at btrfs_chunk_alloc() for the details.
3211 */
3212 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3213
3214 for (i = 0; i < map->num_stripes; i++) {
3215 int ret;
3216
3217 ret = btrfs_update_device(trans, map->stripes[i].dev);
3218 if (ret)
3219 return ret;
3220 }
3221
3222 return btrfs_free_chunk(trans, chunk_offset);
3223 }
3224
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3225 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3226 {
3227 struct btrfs_fs_info *fs_info = trans->fs_info;
3228 struct btrfs_chunk_map *map;
3229 u64 dev_extent_len = 0;
3230 int i, ret = 0;
3231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3232
3233 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3234 if (IS_ERR(map)) {
3235 /*
3236 * This is a logic error, but we don't want to just rely on the
3237 * user having built with ASSERT enabled, so if ASSERT doesn't
3238 * do anything we still error out.
3239 */
3240 DEBUG_WARN("errr %ld reading chunk map at offset %llu",
3241 PTR_ERR(map), chunk_offset);
3242 return PTR_ERR(map);
3243 }
3244
3245 /*
3246 * First delete the device extent items from the devices btree.
3247 * We take the device_list_mutex to avoid racing with the finishing phase
3248 * of a device replace operation. See the comment below before acquiring
3249 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3250 * because that can result in a deadlock when deleting the device extent
3251 * items from the devices btree - COWing an extent buffer from the btree
3252 * may result in allocating a new metadata chunk, which would attempt to
3253 * lock again fs_info->chunk_mutex.
3254 */
3255 mutex_lock(&fs_devices->device_list_mutex);
3256 for (i = 0; i < map->num_stripes; i++) {
3257 struct btrfs_device *device = map->stripes[i].dev;
3258 ret = btrfs_free_dev_extent(trans, device,
3259 map->stripes[i].physical,
3260 &dev_extent_len);
3261 if (unlikely(ret)) {
3262 mutex_unlock(&fs_devices->device_list_mutex);
3263 btrfs_abort_transaction(trans, ret);
3264 goto out;
3265 }
3266
3267 if (device->bytes_used > 0) {
3268 mutex_lock(&fs_info->chunk_mutex);
3269 btrfs_device_set_bytes_used(device,
3270 device->bytes_used - dev_extent_len);
3271 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3272 btrfs_clear_space_info_full(fs_info);
3273
3274 if (list_empty(&device->post_commit_list)) {
3275 list_add_tail(&device->post_commit_list,
3276 &trans->transaction->dev_update_list);
3277 }
3278
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 }
3281 }
3282 mutex_unlock(&fs_devices->device_list_mutex);
3283
3284 /*
3285 * We acquire fs_info->chunk_mutex for 2 reasons:
3286 *
3287 * 1) Just like with the first phase of the chunk allocation, we must
3288 * reserve system space, do all chunk btree updates and deletions, and
3289 * update the system chunk array in the superblock while holding this
3290 * mutex. This is for similar reasons as explained on the comment at
3291 * the top of btrfs_chunk_alloc();
3292 *
3293 * 2) Prevent races with the final phase of a device replace operation
3294 * that replaces the device object associated with the map's stripes,
3295 * because the device object's id can change at any time during that
3296 * final phase of the device replace operation
3297 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3298 * replaced device and then see it with an ID of
3299 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3300 * the device item, which does not exists on the chunk btree.
3301 * The finishing phase of device replace acquires both the
3302 * device_list_mutex and the chunk_mutex, in that order, so we are
3303 * safe by just acquiring the chunk_mutex.
3304 */
3305 trans->removing_chunk = true;
3306 mutex_lock(&fs_info->chunk_mutex);
3307
3308 check_system_chunk(trans, map->type);
3309
3310 ret = remove_chunk_item(trans, map, chunk_offset);
3311 /*
3312 * Normally we should not get -ENOSPC since we reserved space before
3313 * through the call to check_system_chunk().
3314 *
3315 * Despite our system space_info having enough free space, we may not
3316 * be able to allocate extents from its block groups, because all have
3317 * an incompatible profile, which will force us to allocate a new system
3318 * block group with the right profile, or right after we called
3319 * check_system_space() above, a scrub turned the only system block group
3320 * with enough free space into RO mode.
3321 * This is explained with more detail at do_chunk_alloc().
3322 *
3323 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3324 */
3325 if (ret == -ENOSPC) {
3326 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3327 struct btrfs_block_group *sys_bg;
3328 struct btrfs_space_info *space_info;
3329
3330 space_info = btrfs_find_space_info(fs_info, sys_flags);
3331 if (unlikely(!space_info)) {
3332 ret = -EINVAL;
3333 btrfs_abort_transaction(trans, ret);
3334 goto out;
3335 }
3336
3337 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags);
3338 if (IS_ERR(sys_bg)) {
3339 ret = PTR_ERR(sys_bg);
3340 btrfs_abort_transaction(trans, ret);
3341 goto out;
3342 }
3343
3344 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3345 if (unlikely(ret)) {
3346 btrfs_abort_transaction(trans, ret);
3347 goto out;
3348 }
3349
3350 ret = remove_chunk_item(trans, map, chunk_offset);
3351 if (unlikely(ret)) {
3352 btrfs_abort_transaction(trans, ret);
3353 goto out;
3354 }
3355 } else if (unlikely(ret)) {
3356 btrfs_abort_transaction(trans, ret);
3357 goto out;
3358 }
3359
3360 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3361
3362 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3363 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3364 if (unlikely(ret)) {
3365 btrfs_abort_transaction(trans, ret);
3366 goto out;
3367 }
3368 }
3369
3370 mutex_unlock(&fs_info->chunk_mutex);
3371 trans->removing_chunk = false;
3372
3373 /*
3374 * We are done with chunk btree updates and deletions, so release the
3375 * system space we previously reserved (with check_system_chunk()).
3376 */
3377 btrfs_trans_release_chunk_metadata(trans);
3378
3379 ret = btrfs_remove_block_group(trans, map);
3380 if (unlikely(ret)) {
3381 btrfs_abort_transaction(trans, ret);
3382 goto out;
3383 }
3384
3385 out:
3386 if (trans->removing_chunk) {
3387 mutex_unlock(&fs_info->chunk_mutex);
3388 trans->removing_chunk = false;
3389 }
3390 /* once for us */
3391 btrfs_free_chunk_map(map);
3392 return ret;
3393 }
3394
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset,bool verbose)3395 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3396 bool verbose)
3397 {
3398 struct btrfs_root *root = fs_info->chunk_root;
3399 struct btrfs_trans_handle *trans;
3400 struct btrfs_block_group *block_group;
3401 u64 length;
3402 int ret;
3403
3404 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3405 btrfs_err(fs_info,
3406 "relocate: not supported on extent tree v2 yet");
3407 return -EINVAL;
3408 }
3409
3410 /*
3411 * Prevent races with automatic removal of unused block groups.
3412 * After we relocate and before we remove the chunk with offset
3413 * chunk_offset, automatic removal of the block group can kick in,
3414 * resulting in a failure when calling btrfs_remove_chunk() below.
3415 *
3416 * Make sure to acquire this mutex before doing a tree search (dev
3417 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3418 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3419 * we release the path used to search the chunk/dev tree and before
3420 * the current task acquires this mutex and calls us.
3421 */
3422 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3423
3424 /* step one, relocate all the extents inside this chunk */
3425 btrfs_scrub_pause(fs_info);
3426 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true);
3427 btrfs_scrub_continue(fs_info);
3428 if (ret) {
3429 /*
3430 * If we had a transaction abort, stop all running scrubs.
3431 * See transaction.c:cleanup_transaction() why we do it here.
3432 */
3433 if (BTRFS_FS_ERROR(fs_info))
3434 btrfs_scrub_cancel(fs_info);
3435 return ret;
3436 }
3437
3438 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3439 if (!block_group)
3440 return -ENOENT;
3441 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3442 length = block_group->length;
3443 btrfs_put_block_group(block_group);
3444
3445 /*
3446 * On a zoned file system, discard the whole block group, this will
3447 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3448 * resetting the zone fails, don't treat it as a fatal problem from the
3449 * filesystem's point of view.
3450 */
3451 if (btrfs_is_zoned(fs_info)) {
3452 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3453 if (ret)
3454 btrfs_info(fs_info,
3455 "failed to reset zone %llu after relocation",
3456 chunk_offset);
3457 }
3458
3459 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3460 chunk_offset);
3461 if (IS_ERR(trans)) {
3462 ret = PTR_ERR(trans);
3463 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3464 return ret;
3465 }
3466
3467 /*
3468 * step two, delete the device extents and the
3469 * chunk tree entries
3470 */
3471 ret = btrfs_remove_chunk(trans, chunk_offset);
3472 btrfs_end_transaction(trans);
3473 return ret;
3474 }
3475
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3476 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3477 {
3478 struct btrfs_root *chunk_root = fs_info->chunk_root;
3479 BTRFS_PATH_AUTO_FREE(path);
3480 struct extent_buffer *leaf;
3481 struct btrfs_chunk *chunk;
3482 struct btrfs_key key;
3483 struct btrfs_key found_key;
3484 u64 chunk_type;
3485 bool retried = false;
3486 int failed = 0;
3487 int ret;
3488
3489 path = btrfs_alloc_path();
3490 if (!path)
3491 return -ENOMEM;
3492
3493 again:
3494 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3495 key.type = BTRFS_CHUNK_ITEM_KEY;
3496 key.offset = (u64)-1;
3497
3498 while (1) {
3499 mutex_lock(&fs_info->reclaim_bgs_lock);
3500 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3501 if (ret < 0) {
3502 mutex_unlock(&fs_info->reclaim_bgs_lock);
3503 return ret;
3504 }
3505 if (unlikely(ret == 0)) {
3506 /*
3507 * On the first search we would find chunk tree with
3508 * offset -1, which is not possible. On subsequent
3509 * loops this would find an existing item on an invalid
3510 * offset (one less than the previous one, wrong
3511 * alignment and size).
3512 */
3513 mutex_unlock(&fs_info->reclaim_bgs_lock);
3514 return -EUCLEAN;
3515 }
3516
3517 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3518 key.type);
3519 if (ret)
3520 mutex_unlock(&fs_info->reclaim_bgs_lock);
3521 if (ret < 0)
3522 return ret;
3523 if (ret > 0)
3524 break;
3525
3526 leaf = path->nodes[0];
3527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3528
3529 chunk = btrfs_item_ptr(leaf, path->slots[0],
3530 struct btrfs_chunk);
3531 chunk_type = btrfs_chunk_type(leaf, chunk);
3532 btrfs_release_path(path);
3533
3534 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3535 ret = btrfs_relocate_chunk(fs_info, found_key.offset,
3536 true);
3537 if (ret == -ENOSPC)
3538 failed++;
3539 else
3540 BUG_ON(ret);
3541 }
3542 mutex_unlock(&fs_info->reclaim_bgs_lock);
3543
3544 if (found_key.offset == 0)
3545 break;
3546 key.offset = found_key.offset - 1;
3547 }
3548 ret = 0;
3549 if (failed && !retried) {
3550 failed = 0;
3551 retried = true;
3552 goto again;
3553 } else if (WARN_ON(failed && retried)) {
3554 ret = -ENOSPC;
3555 }
3556 return ret;
3557 }
3558
3559 /*
3560 * return 1 : allocate a data chunk successfully,
3561 * return <0: errors during allocating a data chunk,
3562 * return 0 : no need to allocate a data chunk.
3563 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3564 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3565 u64 chunk_offset)
3566 {
3567 struct btrfs_block_group *cache;
3568 u64 bytes_used;
3569 u64 chunk_type;
3570
3571 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572 ASSERT(cache);
3573 chunk_type = cache->flags;
3574 btrfs_put_block_group(cache);
3575
3576 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3577 return 0;
3578
3579 spin_lock(&fs_info->data_sinfo->lock);
3580 bytes_used = fs_info->data_sinfo->bytes_used;
3581 spin_unlock(&fs_info->data_sinfo->lock);
3582
3583 if (!bytes_used) {
3584 struct btrfs_trans_handle *trans;
3585 int ret;
3586
3587 trans = btrfs_join_transaction(fs_info->tree_root);
3588 if (IS_ERR(trans))
3589 return PTR_ERR(trans);
3590
3591 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3592 btrfs_end_transaction(trans);
3593 if (ret < 0)
3594 return ret;
3595 return 1;
3596 }
3597
3598 return 0;
3599 }
3600
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3601 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3602 const struct btrfs_disk_balance_args *disk)
3603 {
3604 memset(cpu, 0, sizeof(*cpu));
3605
3606 cpu->profiles = le64_to_cpu(disk->profiles);
3607 cpu->usage = le64_to_cpu(disk->usage);
3608 cpu->devid = le64_to_cpu(disk->devid);
3609 cpu->pstart = le64_to_cpu(disk->pstart);
3610 cpu->pend = le64_to_cpu(disk->pend);
3611 cpu->vstart = le64_to_cpu(disk->vstart);
3612 cpu->vend = le64_to_cpu(disk->vend);
3613 cpu->target = le64_to_cpu(disk->target);
3614 cpu->flags = le64_to_cpu(disk->flags);
3615 cpu->limit = le64_to_cpu(disk->limit);
3616 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3617 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3618 }
3619
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3620 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3621 const struct btrfs_balance_args *cpu)
3622 {
3623 memset(disk, 0, sizeof(*disk));
3624
3625 disk->profiles = cpu_to_le64(cpu->profiles);
3626 disk->usage = cpu_to_le64(cpu->usage);
3627 disk->devid = cpu_to_le64(cpu->devid);
3628 disk->pstart = cpu_to_le64(cpu->pstart);
3629 disk->pend = cpu_to_le64(cpu->pend);
3630 disk->vstart = cpu_to_le64(cpu->vstart);
3631 disk->vend = cpu_to_le64(cpu->vend);
3632 disk->target = cpu_to_le64(cpu->target);
3633 disk->flags = cpu_to_le64(cpu->flags);
3634 disk->limit = cpu_to_le64(cpu->limit);
3635 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3636 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3637 }
3638
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3639 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3640 struct btrfs_balance_control *bctl)
3641 {
3642 struct btrfs_root *root = fs_info->tree_root;
3643 struct btrfs_trans_handle *trans;
3644 struct btrfs_balance_item *item;
3645 struct btrfs_disk_balance_args disk_bargs;
3646 struct btrfs_path *path;
3647 struct extent_buffer *leaf;
3648 struct btrfs_key key;
3649 int ret, err;
3650
3651 path = btrfs_alloc_path();
3652 if (!path)
3653 return -ENOMEM;
3654
3655 trans = btrfs_start_transaction(root, 0);
3656 if (IS_ERR(trans)) {
3657 btrfs_free_path(path);
3658 return PTR_ERR(trans);
3659 }
3660
3661 key.objectid = BTRFS_BALANCE_OBJECTID;
3662 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3663 key.offset = 0;
3664
3665 ret = btrfs_insert_empty_item(trans, root, path, &key,
3666 sizeof(*item));
3667 if (ret)
3668 goto out;
3669
3670 leaf = path->nodes[0];
3671 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3672
3673 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3674
3675 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3676 btrfs_set_balance_data(leaf, item, &disk_bargs);
3677 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3678 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3679 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3680 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3681 btrfs_set_balance_flags(leaf, item, bctl->flags);
3682 out:
3683 btrfs_free_path(path);
3684 err = btrfs_commit_transaction(trans);
3685 if (err && !ret)
3686 ret = err;
3687 return ret;
3688 }
3689
del_balance_item(struct btrfs_fs_info * fs_info)3690 static int del_balance_item(struct btrfs_fs_info *fs_info)
3691 {
3692 struct btrfs_root *root = fs_info->tree_root;
3693 struct btrfs_trans_handle *trans;
3694 struct btrfs_path *path;
3695 struct btrfs_key key;
3696 int ret, err;
3697
3698 path = btrfs_alloc_path();
3699 if (!path)
3700 return -ENOMEM;
3701
3702 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3703 if (IS_ERR(trans)) {
3704 btrfs_free_path(path);
3705 return PTR_ERR(trans);
3706 }
3707
3708 key.objectid = BTRFS_BALANCE_OBJECTID;
3709 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3710 key.offset = 0;
3711
3712 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3713 if (ret < 0)
3714 goto out;
3715 if (ret > 0) {
3716 ret = -ENOENT;
3717 goto out;
3718 }
3719
3720 ret = btrfs_del_item(trans, root, path);
3721 out:
3722 btrfs_free_path(path);
3723 err = btrfs_commit_transaction(trans);
3724 if (err && !ret)
3725 ret = err;
3726 return ret;
3727 }
3728
3729 /*
3730 * This is a heuristic used to reduce the number of chunks balanced on
3731 * resume after balance was interrupted.
3732 */
update_balance_args(struct btrfs_balance_control * bctl)3733 static void update_balance_args(struct btrfs_balance_control *bctl)
3734 {
3735 /*
3736 * Turn on soft mode for chunk types that were being converted.
3737 */
3738 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3739 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3740 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3741 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3742 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3743 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3744
3745 /*
3746 * Turn on usage filter if is not already used. The idea is
3747 * that chunks that we have already balanced should be
3748 * reasonably full. Don't do it for chunks that are being
3749 * converted - that will keep us from relocating unconverted
3750 * (albeit full) chunks.
3751 */
3752 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3753 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3754 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3755 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3756 bctl->data.usage = 90;
3757 }
3758 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3759 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3760 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3761 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3762 bctl->sys.usage = 90;
3763 }
3764 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3765 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3766 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3767 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3768 bctl->meta.usage = 90;
3769 }
3770 }
3771
3772 /*
3773 * Clear the balance status in fs_info and delete the balance item from disk.
3774 */
reset_balance_state(struct btrfs_fs_info * fs_info)3775 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3776 {
3777 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3778 int ret;
3779
3780 ASSERT(fs_info->balance_ctl);
3781
3782 spin_lock(&fs_info->balance_lock);
3783 fs_info->balance_ctl = NULL;
3784 spin_unlock(&fs_info->balance_lock);
3785
3786 kfree(bctl);
3787 ret = del_balance_item(fs_info);
3788 if (ret)
3789 btrfs_handle_fs_error(fs_info, ret, NULL);
3790 }
3791
3792 /*
3793 * Balance filters. Return 1 if chunk should be filtered out
3794 * (should not be balanced).
3795 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3796 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3797 {
3798 chunk_type = chunk_to_extended(chunk_type) &
3799 BTRFS_EXTENDED_PROFILE_MASK;
3800
3801 if (bargs->profiles & chunk_type)
3802 return false;
3803
3804 return true;
3805 }
3806
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3807 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3808 struct btrfs_balance_args *bargs)
3809 {
3810 struct btrfs_block_group *cache;
3811 u64 chunk_used;
3812 u64 user_thresh_min;
3813 u64 user_thresh_max;
3814 bool ret = true;
3815
3816 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3817 chunk_used = cache->used;
3818
3819 if (bargs->usage_min == 0)
3820 user_thresh_min = 0;
3821 else
3822 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3823
3824 if (bargs->usage_max == 0)
3825 user_thresh_max = 1;
3826 else if (bargs->usage_max > 100)
3827 user_thresh_max = cache->length;
3828 else
3829 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3830
3831 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3832 ret = false;
3833
3834 btrfs_put_block_group(cache);
3835 return ret;
3836 }
3837
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3838 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3839 struct btrfs_balance_args *bargs)
3840 {
3841 struct btrfs_block_group *cache;
3842 u64 chunk_used, user_thresh;
3843 bool ret = true;
3844
3845 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3846 chunk_used = cache->used;
3847
3848 if (bargs->usage_min == 0)
3849 user_thresh = 1;
3850 else if (bargs->usage > 100)
3851 user_thresh = cache->length;
3852 else
3853 user_thresh = mult_perc(cache->length, bargs->usage);
3854
3855 if (chunk_used < user_thresh)
3856 ret = false;
3857
3858 btrfs_put_block_group(cache);
3859 return ret;
3860 }
3861
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3862 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3863 struct btrfs_balance_args *bargs)
3864 {
3865 struct btrfs_stripe *stripe;
3866 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3867 int i;
3868
3869 for (i = 0; i < num_stripes; i++) {
3870 stripe = btrfs_stripe_nr(chunk, i);
3871 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3872 return false;
3873 }
3874
3875 return true;
3876 }
3877
calc_data_stripes(u64 type,int num_stripes)3878 static u64 calc_data_stripes(u64 type, int num_stripes)
3879 {
3880 const int index = btrfs_bg_flags_to_raid_index(type);
3881 const int ncopies = btrfs_raid_array[index].ncopies;
3882 const int nparity = btrfs_raid_array[index].nparity;
3883
3884 return (num_stripes - nparity) / ncopies;
3885 }
3886
3887 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3888 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3889 struct btrfs_balance_args *bargs)
3890 {
3891 struct btrfs_stripe *stripe;
3892 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893 u64 stripe_offset;
3894 u64 stripe_length;
3895 u64 type;
3896 int factor;
3897 int i;
3898
3899 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3900 return false;
3901
3902 type = btrfs_chunk_type(leaf, chunk);
3903 factor = calc_data_stripes(type, num_stripes);
3904
3905 for (i = 0; i < num_stripes; i++) {
3906 stripe = btrfs_stripe_nr(chunk, i);
3907 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3908 continue;
3909
3910 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3911 stripe_length = btrfs_chunk_length(leaf, chunk);
3912 stripe_length = div_u64(stripe_length, factor);
3913
3914 if (stripe_offset < bargs->pend &&
3915 stripe_offset + stripe_length > bargs->pstart)
3916 return false;
3917 }
3918
3919 return true;
3920 }
3921
3922 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3923 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3924 u64 chunk_offset, struct btrfs_balance_args *bargs)
3925 {
3926 if (chunk_offset < bargs->vend &&
3927 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3928 /* at least part of the chunk is inside this vrange */
3929 return false;
3930
3931 return true;
3932 }
3933
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3934 static bool chunk_stripes_range_filter(struct extent_buffer *leaf,
3935 struct btrfs_chunk *chunk,
3936 struct btrfs_balance_args *bargs)
3937 {
3938 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3939
3940 if (bargs->stripes_min <= num_stripes
3941 && num_stripes <= bargs->stripes_max)
3942 return false;
3943
3944 return true;
3945 }
3946
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3947 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3948 {
3949 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3950 return false;
3951
3952 chunk_type = chunk_to_extended(chunk_type) &
3953 BTRFS_EXTENDED_PROFILE_MASK;
3954
3955 if (bargs->target == chunk_type)
3956 return true;
3957
3958 return false;
3959 }
3960
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3961 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3962 u64 chunk_offset)
3963 {
3964 struct btrfs_fs_info *fs_info = leaf->fs_info;
3965 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3966 struct btrfs_balance_args *bargs = NULL;
3967 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3968
3969 /* type filter */
3970 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3971 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3972 return false;
3973 }
3974
3975 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3976 bargs = &bctl->data;
3977 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3978 bargs = &bctl->sys;
3979 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3980 bargs = &bctl->meta;
3981
3982 /* profiles filter */
3983 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3984 chunk_profiles_filter(chunk_type, bargs)) {
3985 return false;
3986 }
3987
3988 /* usage filter */
3989 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3990 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3991 return false;
3992 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3993 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3994 return false;
3995 }
3996
3997 /* devid filter */
3998 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3999 chunk_devid_filter(leaf, chunk, bargs)) {
4000 return false;
4001 }
4002
4003 /* drange filter, makes sense only with devid filter */
4004 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4005 chunk_drange_filter(leaf, chunk, bargs)) {
4006 return false;
4007 }
4008
4009 /* vrange filter */
4010 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4011 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4012 return false;
4013 }
4014
4015 /* stripes filter */
4016 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4017 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4018 return false;
4019 }
4020
4021 /* soft profile changing mode */
4022 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4023 chunk_soft_convert_filter(chunk_type, bargs)) {
4024 return false;
4025 }
4026
4027 /*
4028 * limited by count, must be the last filter
4029 */
4030 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4031 if (bargs->limit == 0)
4032 return false;
4033 else
4034 bargs->limit--;
4035 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4036 /*
4037 * Same logic as the 'limit' filter; the minimum cannot be
4038 * determined here because we do not have the global information
4039 * about the count of all chunks that satisfy the filters.
4040 */
4041 if (bargs->limit_max == 0)
4042 return false;
4043 else
4044 bargs->limit_max--;
4045 }
4046
4047 return true;
4048 }
4049
__btrfs_balance(struct btrfs_fs_info * fs_info)4050 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4051 {
4052 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4053 struct btrfs_root *chunk_root = fs_info->chunk_root;
4054 u64 chunk_type;
4055 struct btrfs_chunk *chunk;
4056 BTRFS_PATH_AUTO_FREE(path);
4057 struct btrfs_key key;
4058 struct btrfs_key found_key;
4059 struct extent_buffer *leaf;
4060 int slot;
4061 int ret;
4062 int enospc_errors = 0;
4063 bool counting = true;
4064 /* The single value limit and min/max limits use the same bytes in the */
4065 u64 limit_data = bctl->data.limit;
4066 u64 limit_meta = bctl->meta.limit;
4067 u64 limit_sys = bctl->sys.limit;
4068 u32 count_data = 0;
4069 u32 count_meta = 0;
4070 u32 count_sys = 0;
4071 int chunk_reserved = 0;
4072
4073 path = btrfs_alloc_path();
4074 if (!path) {
4075 ret = -ENOMEM;
4076 goto error;
4077 }
4078
4079 /* zero out stat counters */
4080 spin_lock(&fs_info->balance_lock);
4081 memset(&bctl->stat, 0, sizeof(bctl->stat));
4082 spin_unlock(&fs_info->balance_lock);
4083 again:
4084 if (!counting) {
4085 /*
4086 * The single value limit and min/max limits use the same bytes
4087 * in the
4088 */
4089 bctl->data.limit = limit_data;
4090 bctl->meta.limit = limit_meta;
4091 bctl->sys.limit = limit_sys;
4092 }
4093 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4094 key.type = BTRFS_CHUNK_ITEM_KEY;
4095 key.offset = (u64)-1;
4096
4097 while (1) {
4098 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4099 atomic_read(&fs_info->balance_cancel_req)) {
4100 ret = -ECANCELED;
4101 goto error;
4102 }
4103
4104 mutex_lock(&fs_info->reclaim_bgs_lock);
4105 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4106 if (ret < 0) {
4107 mutex_unlock(&fs_info->reclaim_bgs_lock);
4108 goto error;
4109 }
4110
4111 /*
4112 * this shouldn't happen, it means the last relocate
4113 * failed
4114 */
4115 if (ret == 0)
4116 BUG(); /* FIXME break ? */
4117
4118 ret = btrfs_previous_item(chunk_root, path, 0,
4119 BTRFS_CHUNK_ITEM_KEY);
4120 if (ret) {
4121 mutex_unlock(&fs_info->reclaim_bgs_lock);
4122 ret = 0;
4123 break;
4124 }
4125
4126 leaf = path->nodes[0];
4127 slot = path->slots[0];
4128 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4129
4130 if (found_key.objectid != key.objectid) {
4131 mutex_unlock(&fs_info->reclaim_bgs_lock);
4132 break;
4133 }
4134
4135 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4136 chunk_type = btrfs_chunk_type(leaf, chunk);
4137
4138 if (!counting) {
4139 spin_lock(&fs_info->balance_lock);
4140 bctl->stat.considered++;
4141 spin_unlock(&fs_info->balance_lock);
4142 }
4143
4144 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4145
4146 btrfs_release_path(path);
4147 if (!ret) {
4148 mutex_unlock(&fs_info->reclaim_bgs_lock);
4149 goto loop;
4150 }
4151
4152 if (counting) {
4153 mutex_unlock(&fs_info->reclaim_bgs_lock);
4154 spin_lock(&fs_info->balance_lock);
4155 bctl->stat.expected++;
4156 spin_unlock(&fs_info->balance_lock);
4157
4158 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4159 count_data++;
4160 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4161 count_sys++;
4162 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4163 count_meta++;
4164
4165 goto loop;
4166 }
4167
4168 /*
4169 * Apply limit_min filter, no need to check if the LIMITS
4170 * filter is used, limit_min is 0 by default
4171 */
4172 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4173 count_data < bctl->data.limit_min)
4174 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4175 count_meta < bctl->meta.limit_min)
4176 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4177 count_sys < bctl->sys.limit_min)) {
4178 mutex_unlock(&fs_info->reclaim_bgs_lock);
4179 goto loop;
4180 }
4181
4182 if (!chunk_reserved) {
4183 /*
4184 * We may be relocating the only data chunk we have,
4185 * which could potentially end up with losing data's
4186 * raid profile, so lets allocate an empty one in
4187 * advance.
4188 */
4189 ret = btrfs_may_alloc_data_chunk(fs_info,
4190 found_key.offset);
4191 if (ret < 0) {
4192 mutex_unlock(&fs_info->reclaim_bgs_lock);
4193 goto error;
4194 } else if (ret == 1) {
4195 chunk_reserved = 1;
4196 }
4197 }
4198
4199 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true);
4200 mutex_unlock(&fs_info->reclaim_bgs_lock);
4201 if (ret == -ENOSPC) {
4202 enospc_errors++;
4203 } else if (ret == -ETXTBSY) {
4204 btrfs_info(fs_info,
4205 "skipping relocation of block group %llu due to active swapfile",
4206 found_key.offset);
4207 ret = 0;
4208 } else if (ret) {
4209 goto error;
4210 } else {
4211 spin_lock(&fs_info->balance_lock);
4212 bctl->stat.completed++;
4213 spin_unlock(&fs_info->balance_lock);
4214 }
4215 loop:
4216 if (found_key.offset == 0)
4217 break;
4218 key.offset = found_key.offset - 1;
4219 }
4220
4221 if (counting) {
4222 btrfs_release_path(path);
4223 counting = false;
4224 goto again;
4225 }
4226 error:
4227 if (enospc_errors) {
4228 btrfs_info(fs_info, "%d enospc errors during balance",
4229 enospc_errors);
4230 if (!ret)
4231 ret = -ENOSPC;
4232 }
4233
4234 return ret;
4235 }
4236
4237 /*
4238 * See if a given profile is valid and reduced.
4239 *
4240 * @flags: profile to validate
4241 * @extended: if true @flags is treated as an extended profile
4242 */
alloc_profile_is_valid(u64 flags,bool extended)4243 static int alloc_profile_is_valid(u64 flags, bool extended)
4244 {
4245 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4246 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4247
4248 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4249
4250 /* 1) check that all other bits are zeroed */
4251 if (flags & ~mask)
4252 return 0;
4253
4254 /* 2) see if profile is reduced */
4255 if (flags == 0)
4256 return !extended; /* "0" is valid for usual profiles */
4257
4258 return has_single_bit_set(flags);
4259 }
4260
4261 /*
4262 * Validate target profile against allowed profiles and return true if it's OK.
4263 * Otherwise print the error message and return false.
4264 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4265 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4266 const struct btrfs_balance_args *bargs,
4267 u64 allowed, const char *type)
4268 {
4269 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4270 return true;
4271
4272 /* Profile is valid and does not have bits outside of the allowed set */
4273 if (alloc_profile_is_valid(bargs->target, 1) &&
4274 (bargs->target & ~allowed) == 0)
4275 return true;
4276
4277 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4278 type, btrfs_bg_type_to_raid_name(bargs->target));
4279 return false;
4280 }
4281
4282 /*
4283 * Fill @buf with textual description of balance filter flags @bargs, up to
4284 * @size_buf including the terminating null. The output may be trimmed if it
4285 * does not fit into the provided buffer.
4286 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4287 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4288 u32 size_buf)
4289 {
4290 int ret;
4291 u32 size_bp = size_buf;
4292 char *bp = buf;
4293 u64 flags = bargs->flags;
4294 char tmp_buf[128] = {'\0'};
4295
4296 if (!flags)
4297 return;
4298
4299 #define CHECK_APPEND_NOARG(a) \
4300 do { \
4301 ret = snprintf(bp, size_bp, (a)); \
4302 if (ret < 0 || ret >= size_bp) \
4303 goto out_overflow; \
4304 size_bp -= ret; \
4305 bp += ret; \
4306 } while (0)
4307
4308 #define CHECK_APPEND_1ARG(a, v1) \
4309 do { \
4310 ret = snprintf(bp, size_bp, (a), (v1)); \
4311 if (ret < 0 || ret >= size_bp) \
4312 goto out_overflow; \
4313 size_bp -= ret; \
4314 bp += ret; \
4315 } while (0)
4316
4317 #define CHECK_APPEND_2ARG(a, v1, v2) \
4318 do { \
4319 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4320 if (ret < 0 || ret >= size_bp) \
4321 goto out_overflow; \
4322 size_bp -= ret; \
4323 bp += ret; \
4324 } while (0)
4325
4326 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4327 CHECK_APPEND_1ARG("convert=%s,",
4328 btrfs_bg_type_to_raid_name(bargs->target));
4329
4330 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4331 CHECK_APPEND_NOARG("soft,");
4332
4333 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4334 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4335 sizeof(tmp_buf));
4336 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4337 }
4338
4339 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4340 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4341
4342 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4343 CHECK_APPEND_2ARG("usage=%u..%u,",
4344 bargs->usage_min, bargs->usage_max);
4345
4346 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4347 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4348
4349 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4350 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4351 bargs->pstart, bargs->pend);
4352
4353 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4354 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4355 bargs->vstart, bargs->vend);
4356
4357 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4358 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4359
4360 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4361 CHECK_APPEND_2ARG("limit=%u..%u,",
4362 bargs->limit_min, bargs->limit_max);
4363
4364 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4365 CHECK_APPEND_2ARG("stripes=%u..%u,",
4366 bargs->stripes_min, bargs->stripes_max);
4367
4368 #undef CHECK_APPEND_2ARG
4369 #undef CHECK_APPEND_1ARG
4370 #undef CHECK_APPEND_NOARG
4371
4372 out_overflow:
4373
4374 if (size_bp < size_buf)
4375 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4376 else
4377 buf[0] = '\0';
4378 }
4379
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4380 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4381 {
4382 u32 size_buf = 1024;
4383 char tmp_buf[192] = {'\0'};
4384 char AUTO_KFREE(buf);
4385 char *bp;
4386 u32 size_bp = size_buf;
4387 int ret;
4388 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4389
4390 buf = kzalloc(size_buf, GFP_KERNEL);
4391 if (!buf)
4392 return;
4393
4394 bp = buf;
4395
4396 #define CHECK_APPEND_1ARG(a, v1) \
4397 do { \
4398 ret = snprintf(bp, size_bp, (a), (v1)); \
4399 if (ret < 0 || ret >= size_bp) \
4400 goto out_overflow; \
4401 size_bp -= ret; \
4402 bp += ret; \
4403 } while (0)
4404
4405 if (bctl->flags & BTRFS_BALANCE_FORCE)
4406 CHECK_APPEND_1ARG("%s", "-f ");
4407
4408 if (bctl->flags & BTRFS_BALANCE_DATA) {
4409 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4410 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4411 }
4412
4413 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4414 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4415 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4416 }
4417
4418 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4419 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4420 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4421 }
4422
4423 #undef CHECK_APPEND_1ARG
4424
4425 out_overflow:
4426
4427 if (size_bp < size_buf)
4428 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4429 btrfs_info(fs_info, "balance: %s %s",
4430 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4431 "resume" : "start", buf);
4432 }
4433
4434 /*
4435 * Should be called with balance mutex held
4436 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4437 int btrfs_balance(struct btrfs_fs_info *fs_info,
4438 struct btrfs_balance_control *bctl,
4439 struct btrfs_ioctl_balance_args *bargs)
4440 {
4441 u64 meta_target, data_target;
4442 u64 allowed;
4443 int mixed = 0;
4444 int ret;
4445 u64 num_devices;
4446 unsigned seq;
4447 bool reducing_redundancy;
4448 bool paused = false;
4449 int i;
4450
4451 if (btrfs_fs_closing(fs_info) ||
4452 atomic_read(&fs_info->balance_pause_req) ||
4453 btrfs_should_cancel_balance(fs_info)) {
4454 ret = -EINVAL;
4455 goto out;
4456 }
4457
4458 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4459 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4460 mixed = 1;
4461
4462 /*
4463 * In case of mixed groups both data and meta should be picked,
4464 * and identical options should be given for both of them.
4465 */
4466 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4467 if (mixed && (bctl->flags & allowed)) {
4468 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4469 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4470 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4471 btrfs_err(fs_info,
4472 "balance: mixed groups data and metadata options must be the same");
4473 ret = -EINVAL;
4474 goto out;
4475 }
4476 }
4477
4478 /*
4479 * rw_devices will not change at the moment, device add/delete/replace
4480 * are exclusive
4481 */
4482 num_devices = fs_info->fs_devices->rw_devices;
4483
4484 /*
4485 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4486 * special bit for it, to make it easier to distinguish. Thus we need
4487 * to set it manually, or balance would refuse the profile.
4488 */
4489 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4490 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4491 if (num_devices >= btrfs_raid_array[i].devs_min)
4492 allowed |= btrfs_raid_array[i].bg_flag;
4493
4494 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4495 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4496 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4497 ret = -EINVAL;
4498 goto out;
4499 }
4500
4501 /*
4502 * Allow to reduce metadata or system integrity only if force set for
4503 * profiles with redundancy (copies, parity)
4504 */
4505 allowed = 0;
4506 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4507 if (btrfs_raid_array[i].ncopies >= 2 ||
4508 btrfs_raid_array[i].tolerated_failures >= 1)
4509 allowed |= btrfs_raid_array[i].bg_flag;
4510 }
4511 do {
4512 seq = read_seqbegin(&fs_info->profiles_lock);
4513
4514 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4515 (fs_info->avail_system_alloc_bits & allowed) &&
4516 !(bctl->sys.target & allowed)) ||
4517 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4518 (fs_info->avail_metadata_alloc_bits & allowed) &&
4519 !(bctl->meta.target & allowed)))
4520 reducing_redundancy = true;
4521 else
4522 reducing_redundancy = false;
4523
4524 /* if we're not converting, the target field is uninitialized */
4525 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4526 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4527 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4528 bctl->data.target : fs_info->avail_data_alloc_bits;
4529 } while (read_seqretry(&fs_info->profiles_lock, seq));
4530
4531 if (reducing_redundancy) {
4532 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4533 btrfs_info(fs_info,
4534 "balance: force reducing metadata redundancy");
4535 } else {
4536 btrfs_err(fs_info,
4537 "balance: reduces metadata redundancy, use --force if you want this");
4538 ret = -EINVAL;
4539 goto out;
4540 }
4541 }
4542
4543 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4544 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4545 btrfs_warn(fs_info,
4546 "balance: metadata profile %s has lower redundancy than data profile %s",
4547 btrfs_bg_type_to_raid_name(meta_target),
4548 btrfs_bg_type_to_raid_name(data_target));
4549 }
4550
4551 ret = insert_balance_item(fs_info, bctl);
4552 if (ret && ret != -EEXIST)
4553 goto out;
4554
4555 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4556 BUG_ON(ret == -EEXIST);
4557 BUG_ON(fs_info->balance_ctl);
4558 spin_lock(&fs_info->balance_lock);
4559 fs_info->balance_ctl = bctl;
4560 spin_unlock(&fs_info->balance_lock);
4561 } else {
4562 BUG_ON(ret != -EEXIST);
4563 spin_lock(&fs_info->balance_lock);
4564 update_balance_args(bctl);
4565 spin_unlock(&fs_info->balance_lock);
4566 }
4567
4568 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4569 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4570 describe_balance_start_or_resume(fs_info);
4571 mutex_unlock(&fs_info->balance_mutex);
4572
4573 ret = __btrfs_balance(fs_info);
4574
4575 mutex_lock(&fs_info->balance_mutex);
4576 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4577 btrfs_info(fs_info, "balance: paused");
4578 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4579 paused = true;
4580 }
4581 /*
4582 * Balance can be canceled by:
4583 *
4584 * - Regular cancel request
4585 * Then ret == -ECANCELED and balance_cancel_req > 0
4586 *
4587 * - Fatal signal to "btrfs" process
4588 * Either the signal caught by wait_reserve_ticket() and callers
4589 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4590 * got -ECANCELED.
4591 * Either way, in this case balance_cancel_req = 0, and
4592 * ret == -EINTR or ret == -ECANCELED.
4593 *
4594 * So here we only check the return value to catch canceled balance.
4595 */
4596 else if (ret == -ECANCELED || ret == -EINTR)
4597 btrfs_info(fs_info, "balance: canceled");
4598 else
4599 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4600
4601 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4602
4603 if (bargs) {
4604 memset(bargs, 0, sizeof(*bargs));
4605 btrfs_update_ioctl_balance_args(fs_info, bargs);
4606 }
4607
4608 /* We didn't pause, we can clean everything up. */
4609 if (!paused) {
4610 reset_balance_state(fs_info);
4611 btrfs_exclop_finish(fs_info);
4612 }
4613
4614 wake_up(&fs_info->balance_wait_q);
4615
4616 return ret;
4617 out:
4618 if (bctl->flags & BTRFS_BALANCE_RESUME)
4619 reset_balance_state(fs_info);
4620 else
4621 kfree(bctl);
4622 btrfs_exclop_finish(fs_info);
4623
4624 return ret;
4625 }
4626
balance_kthread(void * data)4627 static int balance_kthread(void *data)
4628 {
4629 struct btrfs_fs_info *fs_info = data;
4630 int ret = 0;
4631
4632 guard(super_write)(fs_info->sb);
4633
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (fs_info->balance_ctl)
4636 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4637 mutex_unlock(&fs_info->balance_mutex);
4638
4639 return ret;
4640 }
4641
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4642 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4643 {
4644 struct task_struct *tsk;
4645
4646 mutex_lock(&fs_info->balance_mutex);
4647 if (!fs_info->balance_ctl) {
4648 mutex_unlock(&fs_info->balance_mutex);
4649 return 0;
4650 }
4651 mutex_unlock(&fs_info->balance_mutex);
4652
4653 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4654 btrfs_info(fs_info, "balance: resume skipped");
4655 return 0;
4656 }
4657
4658 spin_lock(&fs_info->super_lock);
4659 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED,
4660 "exclusive_operation=%d", fs_info->exclusive_operation);
4661 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4662 spin_unlock(&fs_info->super_lock);
4663 /*
4664 * A ro->rw remount sequence should continue with the paused balance
4665 * regardless of who pauses it, system or the user as of now, so set
4666 * the resume flag.
4667 */
4668 spin_lock(&fs_info->balance_lock);
4669 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4670 spin_unlock(&fs_info->balance_lock);
4671
4672 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4673 return PTR_ERR_OR_ZERO(tsk);
4674 }
4675
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4676 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4677 {
4678 struct btrfs_balance_control *bctl;
4679 struct btrfs_balance_item *item;
4680 struct btrfs_disk_balance_args disk_bargs;
4681 BTRFS_PATH_AUTO_FREE(path);
4682 struct extent_buffer *leaf;
4683 struct btrfs_key key;
4684 int ret;
4685
4686 path = btrfs_alloc_path();
4687 if (!path)
4688 return -ENOMEM;
4689
4690 key.objectid = BTRFS_BALANCE_OBJECTID;
4691 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4692 key.offset = 0;
4693
4694 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4695 if (ret < 0)
4696 return ret;
4697 if (ret > 0) { /* ret = -ENOENT; */
4698 return 0;
4699 }
4700
4701 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4702 if (!bctl)
4703 return -ENOMEM;
4704
4705 leaf = path->nodes[0];
4706 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4707
4708 bctl->flags = btrfs_balance_flags(leaf, item);
4709 bctl->flags |= BTRFS_BALANCE_RESUME;
4710
4711 btrfs_balance_data(leaf, item, &disk_bargs);
4712 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4713 btrfs_balance_meta(leaf, item, &disk_bargs);
4714 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4715 btrfs_balance_sys(leaf, item, &disk_bargs);
4716 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4717
4718 /*
4719 * This should never happen, as the paused balance state is recovered
4720 * during mount without any chance of other exclusive ops to collide.
4721 *
4722 * This gives the exclusive op status to balance and keeps in paused
4723 * state until user intervention (cancel or umount). If the ownership
4724 * cannot be assigned, show a message but do not fail. The balance
4725 * is in a paused state and must have fs_info::balance_ctl properly
4726 * set up.
4727 */
4728 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4729 btrfs_warn(fs_info,
4730 "balance: cannot set exclusive op status, resume manually");
4731
4732 btrfs_release_path(path);
4733
4734 mutex_lock(&fs_info->balance_mutex);
4735 BUG_ON(fs_info->balance_ctl);
4736 spin_lock(&fs_info->balance_lock);
4737 fs_info->balance_ctl = bctl;
4738 spin_unlock(&fs_info->balance_lock);
4739 mutex_unlock(&fs_info->balance_mutex);
4740 return ret;
4741 }
4742
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4744 {
4745 int ret = 0;
4746
4747 mutex_lock(&fs_info->balance_mutex);
4748 if (!fs_info->balance_ctl) {
4749 mutex_unlock(&fs_info->balance_mutex);
4750 return -ENOTCONN;
4751 }
4752
4753 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4754 atomic_inc(&fs_info->balance_pause_req);
4755 mutex_unlock(&fs_info->balance_mutex);
4756
4757 wait_event(fs_info->balance_wait_q,
4758 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4759
4760 mutex_lock(&fs_info->balance_mutex);
4761 /* we are good with balance_ctl ripped off from under us */
4762 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4763 atomic_dec(&fs_info->balance_pause_req);
4764 } else {
4765 ret = -ENOTCONN;
4766 }
4767
4768 mutex_unlock(&fs_info->balance_mutex);
4769 return ret;
4770 }
4771
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4773 {
4774 mutex_lock(&fs_info->balance_mutex);
4775 if (!fs_info->balance_ctl) {
4776 mutex_unlock(&fs_info->balance_mutex);
4777 return -ENOTCONN;
4778 }
4779
4780 /*
4781 * A paused balance with the item stored on disk can be resumed at
4782 * mount time if the mount is read-write. Otherwise it's still paused
4783 * and we must not allow cancelling as it deletes the item.
4784 */
4785 if (sb_rdonly(fs_info->sb)) {
4786 mutex_unlock(&fs_info->balance_mutex);
4787 return -EROFS;
4788 }
4789
4790 atomic_inc(&fs_info->balance_cancel_req);
4791 /*
4792 * if we are running just wait and return, balance item is
4793 * deleted in btrfs_balance in this case
4794 */
4795 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4796 mutex_unlock(&fs_info->balance_mutex);
4797 wait_event(fs_info->balance_wait_q,
4798 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4799 mutex_lock(&fs_info->balance_mutex);
4800 } else {
4801 mutex_unlock(&fs_info->balance_mutex);
4802 /*
4803 * Lock released to allow other waiters to continue, we'll
4804 * reexamine the status again.
4805 */
4806 mutex_lock(&fs_info->balance_mutex);
4807
4808 if (fs_info->balance_ctl) {
4809 reset_balance_state(fs_info);
4810 btrfs_exclop_finish(fs_info);
4811 btrfs_info(fs_info, "balance: canceled");
4812 }
4813 }
4814
4815 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4816 atomic_dec(&fs_info->balance_cancel_req);
4817 mutex_unlock(&fs_info->balance_mutex);
4818 return 0;
4819 }
4820
4821 /*
4822 * shrinking a device means finding all of the device extents past
4823 * the new size, and then following the back refs to the chunks.
4824 * The chunk relocation code actually frees the device extent
4825 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4826 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4827 {
4828 struct btrfs_fs_info *fs_info = device->fs_info;
4829 struct btrfs_root *root = fs_info->dev_root;
4830 struct btrfs_trans_handle *trans;
4831 struct btrfs_dev_extent *dev_extent = NULL;
4832 struct btrfs_path *path;
4833 u64 length;
4834 u64 chunk_offset;
4835 int ret;
4836 int slot;
4837 int failed = 0;
4838 bool retried = false;
4839 struct extent_buffer *l;
4840 struct btrfs_key key;
4841 struct btrfs_super_block *super_copy = fs_info->super_copy;
4842 u64 old_total = btrfs_super_total_bytes(super_copy);
4843 u64 old_size = btrfs_device_get_total_bytes(device);
4844 u64 diff;
4845 u64 start;
4846 u64 free_diff = 0;
4847
4848 new_size = round_down(new_size, fs_info->sectorsize);
4849 start = new_size;
4850 diff = round_down(old_size - new_size, fs_info->sectorsize);
4851
4852 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4853 return -EINVAL;
4854
4855 path = btrfs_alloc_path();
4856 if (!path)
4857 return -ENOMEM;
4858
4859 path->reada = READA_BACK;
4860
4861 trans = btrfs_start_transaction(root, 0);
4862 if (IS_ERR(trans)) {
4863 btrfs_free_path(path);
4864 return PTR_ERR(trans);
4865 }
4866
4867 mutex_lock(&fs_info->chunk_mutex);
4868
4869 btrfs_device_set_total_bytes(device, new_size);
4870 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4871 device->fs_devices->total_rw_bytes -= diff;
4872
4873 /*
4874 * The new free_chunk_space is new_size - used, so we have to
4875 * subtract the delta of the old free_chunk_space which included
4876 * old_size - used. If used > new_size then just subtract this
4877 * entire device's free space.
4878 */
4879 if (device->bytes_used < new_size)
4880 free_diff = (old_size - device->bytes_used) -
4881 (new_size - device->bytes_used);
4882 else
4883 free_diff = old_size - device->bytes_used;
4884 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4885 }
4886
4887 /*
4888 * Once the device's size has been set to the new size, ensure all
4889 * in-memory chunks are synced to disk so that the loop below sees them
4890 * and relocates them accordingly.
4891 */
4892 if (contains_pending_extent(device, &start, diff)) {
4893 mutex_unlock(&fs_info->chunk_mutex);
4894 ret = btrfs_commit_transaction(trans);
4895 if (ret)
4896 goto done;
4897 } else {
4898 mutex_unlock(&fs_info->chunk_mutex);
4899 btrfs_end_transaction(trans);
4900 }
4901
4902 again:
4903 key.objectid = device->devid;
4904 key.type = BTRFS_DEV_EXTENT_KEY;
4905 key.offset = (u64)-1;
4906
4907 do {
4908 mutex_lock(&fs_info->reclaim_bgs_lock);
4909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4910 if (ret < 0) {
4911 mutex_unlock(&fs_info->reclaim_bgs_lock);
4912 goto done;
4913 }
4914
4915 ret = btrfs_previous_item(root, path, 0, key.type);
4916 if (ret) {
4917 mutex_unlock(&fs_info->reclaim_bgs_lock);
4918 if (ret < 0)
4919 goto done;
4920 ret = 0;
4921 btrfs_release_path(path);
4922 break;
4923 }
4924
4925 l = path->nodes[0];
4926 slot = path->slots[0];
4927 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4928
4929 if (key.objectid != device->devid) {
4930 mutex_unlock(&fs_info->reclaim_bgs_lock);
4931 btrfs_release_path(path);
4932 break;
4933 }
4934
4935 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4936 length = btrfs_dev_extent_length(l, dev_extent);
4937
4938 if (key.offset + length <= new_size) {
4939 mutex_unlock(&fs_info->reclaim_bgs_lock);
4940 btrfs_release_path(path);
4941 break;
4942 }
4943
4944 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4945 btrfs_release_path(path);
4946
4947 /*
4948 * We may be relocating the only data chunk we have,
4949 * which could potentially end up with losing data's
4950 * raid profile, so lets allocate an empty one in
4951 * advance.
4952 */
4953 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4954 if (ret < 0) {
4955 mutex_unlock(&fs_info->reclaim_bgs_lock);
4956 goto done;
4957 }
4958
4959 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true);
4960 mutex_unlock(&fs_info->reclaim_bgs_lock);
4961 if (ret == -ENOSPC) {
4962 failed++;
4963 } else if (ret) {
4964 if (ret == -ETXTBSY) {
4965 btrfs_warn(fs_info,
4966 "could not shrink block group %llu due to active swapfile",
4967 chunk_offset);
4968 }
4969 goto done;
4970 }
4971 } while (key.offset-- > 0);
4972
4973 if (failed && !retried) {
4974 failed = 0;
4975 retried = true;
4976 goto again;
4977 } else if (failed && retried) {
4978 ret = -ENOSPC;
4979 goto done;
4980 }
4981
4982 /* Shrinking succeeded, else we would be at "done". */
4983 trans = btrfs_start_transaction(root, 0);
4984 if (IS_ERR(trans)) {
4985 ret = PTR_ERR(trans);
4986 goto done;
4987 }
4988
4989 mutex_lock(&fs_info->chunk_mutex);
4990 /* Clear all state bits beyond the shrunk device size */
4991 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1,
4992 CHUNK_STATE_MASK, NULL);
4993
4994 btrfs_device_set_disk_total_bytes(device, new_size);
4995 if (list_empty(&device->post_commit_list))
4996 list_add_tail(&device->post_commit_list,
4997 &trans->transaction->dev_update_list);
4998
4999 WARN_ON(diff > old_total);
5000 btrfs_set_super_total_bytes(super_copy,
5001 round_down(old_total - diff, fs_info->sectorsize));
5002 mutex_unlock(&fs_info->chunk_mutex);
5003
5004 btrfs_reserve_chunk_metadata(trans, false);
5005 /* Now btrfs_update_device() will change the on-disk size. */
5006 ret = btrfs_update_device(trans, device);
5007 btrfs_trans_release_chunk_metadata(trans);
5008 if (unlikely(ret < 0)) {
5009 btrfs_abort_transaction(trans, ret);
5010 btrfs_end_transaction(trans);
5011 } else {
5012 ret = btrfs_commit_transaction(trans);
5013 }
5014 done:
5015 btrfs_free_path(path);
5016 if (ret) {
5017 mutex_lock(&fs_info->chunk_mutex);
5018 btrfs_device_set_total_bytes(device, old_size);
5019 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5020 device->fs_devices->total_rw_bytes += diff;
5021 atomic64_add(free_diff, &fs_info->free_chunk_space);
5022 }
5023 mutex_unlock(&fs_info->chunk_mutex);
5024 }
5025 return ret;
5026 }
5027
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5028 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5029 struct btrfs_key *key,
5030 struct btrfs_chunk *chunk, int item_size)
5031 {
5032 struct btrfs_super_block *super_copy = fs_info->super_copy;
5033 struct btrfs_disk_key disk_key;
5034 u32 array_size;
5035 u8 *ptr;
5036
5037 lockdep_assert_held(&fs_info->chunk_mutex);
5038
5039 array_size = btrfs_super_sys_array_size(super_copy);
5040 if (array_size + item_size + sizeof(disk_key)
5041 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5042 return -EFBIG;
5043
5044 ptr = super_copy->sys_chunk_array + array_size;
5045 btrfs_cpu_key_to_disk(&disk_key, key);
5046 memcpy(ptr, &disk_key, sizeof(disk_key));
5047 ptr += sizeof(disk_key);
5048 memcpy(ptr, chunk, item_size);
5049 item_size += sizeof(disk_key);
5050 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5051
5052 return 0;
5053 }
5054
5055 /*
5056 * sort the devices in descending order by max_avail, total_avail
5057 */
btrfs_cmp_device_info(const void * a,const void * b)5058 static int btrfs_cmp_device_info(const void *a, const void *b)
5059 {
5060 const struct btrfs_device_info *di_a = a;
5061 const struct btrfs_device_info *di_b = b;
5062
5063 if (di_a->max_avail > di_b->max_avail)
5064 return -1;
5065 if (di_a->max_avail < di_b->max_avail)
5066 return 1;
5067 if (di_a->total_avail > di_b->total_avail)
5068 return -1;
5069 if (di_a->total_avail < di_b->total_avail)
5070 return 1;
5071 return 0;
5072 }
5073
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5074 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5075 {
5076 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5077 return;
5078
5079 btrfs_set_fs_incompat(info, RAID56);
5080 }
5081
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5082 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5083 {
5084 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5085 return;
5086
5087 btrfs_set_fs_incompat(info, RAID1C34);
5088 }
5089
5090 /*
5091 * Structure used internally for btrfs_create_chunk() function.
5092 * Wraps needed parameters.
5093 */
5094 struct alloc_chunk_ctl {
5095 u64 start;
5096 u64 type;
5097 /* Total number of stripes to allocate */
5098 int num_stripes;
5099 /* sub_stripes info for map */
5100 int sub_stripes;
5101 /* Stripes per device */
5102 int dev_stripes;
5103 /* Maximum number of devices to use */
5104 int devs_max;
5105 /* Minimum number of devices to use */
5106 int devs_min;
5107 /* ndevs has to be a multiple of this */
5108 int devs_increment;
5109 /* Number of copies */
5110 int ncopies;
5111 /* Number of stripes worth of bytes to store parity information */
5112 int nparity;
5113 u64 max_stripe_size;
5114 u64 max_chunk_size;
5115 u64 dev_extent_min;
5116 u64 stripe_size;
5117 u64 chunk_size;
5118 int ndevs;
5119 /* Space_info the block group is going to belong. */
5120 struct btrfs_space_info *space_info;
5121 };
5122
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5123 static void init_alloc_chunk_ctl_policy_regular(
5124 struct btrfs_fs_devices *fs_devices,
5125 struct alloc_chunk_ctl *ctl)
5126 {
5127 struct btrfs_space_info *space_info;
5128
5129 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5130 ASSERT(space_info);
5131
5132 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5133 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5134
5135 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5136 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5137
5138 /* We don't want a chunk larger than 10% of writable space */
5139 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5140 ctl->max_chunk_size);
5141 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5142 }
5143
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5144 static void init_alloc_chunk_ctl_policy_zoned(
5145 struct btrfs_fs_devices *fs_devices,
5146 struct alloc_chunk_ctl *ctl)
5147 {
5148 u64 zone_size = fs_devices->fs_info->zone_size;
5149 u64 limit;
5150 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5151 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5152 u64 min_chunk_size = min_data_stripes * zone_size;
5153 u64 type = ctl->type;
5154
5155 ctl->max_stripe_size = zone_size;
5156 if (type & BTRFS_BLOCK_GROUP_DATA) {
5157 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5158 zone_size);
5159 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5160 ctl->max_chunk_size = ctl->max_stripe_size;
5161 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5162 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5163 ctl->devs_max = min_t(int, ctl->devs_max,
5164 BTRFS_MAX_DEVS_SYS_CHUNK);
5165 } else {
5166 BUG();
5167 }
5168
5169 /* We don't want a chunk larger than 10% of writable space */
5170 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5171 zone_size),
5172 min_chunk_size);
5173 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5174 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5175 }
5176
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5177 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5178 struct alloc_chunk_ctl *ctl)
5179 {
5180 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5181
5182 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5183 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5184 ctl->devs_max = btrfs_raid_array[index].devs_max;
5185 if (!ctl->devs_max)
5186 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5187 ctl->devs_min = btrfs_raid_array[index].devs_min;
5188 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5189 ctl->ncopies = btrfs_raid_array[index].ncopies;
5190 ctl->nparity = btrfs_raid_array[index].nparity;
5191 ctl->ndevs = 0;
5192
5193 switch (fs_devices->chunk_alloc_policy) {
5194 default:
5195 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5196 fallthrough;
5197 case BTRFS_CHUNK_ALLOC_REGULAR:
5198 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5199 break;
5200 case BTRFS_CHUNK_ALLOC_ZONED:
5201 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5202 break;
5203 }
5204 }
5205
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5206 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5207 struct alloc_chunk_ctl *ctl,
5208 struct btrfs_device_info *devices_info)
5209 {
5210 struct btrfs_fs_info *info = fs_devices->fs_info;
5211 struct btrfs_device *device;
5212 u64 total_avail;
5213 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5214 int ret;
5215 int ndevs = 0;
5216 u64 max_avail;
5217 u64 dev_offset;
5218
5219 /*
5220 * in the first pass through the devices list, we gather information
5221 * about the available holes on each device.
5222 */
5223 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5224 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5225 WARN(1, KERN_ERR
5226 "BTRFS: read-only device in alloc_list\n");
5227 continue;
5228 }
5229
5230 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5231 &device->dev_state) ||
5232 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5233 continue;
5234
5235 if (device->total_bytes > device->bytes_used)
5236 total_avail = device->total_bytes - device->bytes_used;
5237 else
5238 total_avail = 0;
5239
5240 /* If there is no space on this device, skip it. */
5241 if (total_avail < ctl->dev_extent_min)
5242 continue;
5243
5244 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5245 &max_avail);
5246 if (ret && ret != -ENOSPC)
5247 return ret;
5248
5249 if (ret == 0)
5250 max_avail = dev_extent_want;
5251
5252 if (max_avail < ctl->dev_extent_min) {
5253 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5254 btrfs_debug(info,
5255 "%s: devid %llu has no free space, have=%llu want=%llu",
5256 __func__, device->devid, max_avail,
5257 ctl->dev_extent_min);
5258 continue;
5259 }
5260
5261 if (ndevs == fs_devices->rw_devices) {
5262 WARN(1, "%s: found more than %llu devices\n",
5263 __func__, fs_devices->rw_devices);
5264 break;
5265 }
5266 devices_info[ndevs].dev_offset = dev_offset;
5267 devices_info[ndevs].max_avail = max_avail;
5268 devices_info[ndevs].total_avail = total_avail;
5269 devices_info[ndevs].dev = device;
5270 ++ndevs;
5271 }
5272 ctl->ndevs = ndevs;
5273
5274 /*
5275 * now sort the devices by hole size / available space
5276 */
5277 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5278 btrfs_cmp_device_info, NULL);
5279
5280 return 0;
5281 }
5282
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5283 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5284 struct btrfs_device_info *devices_info)
5285 {
5286 /* Number of stripes that count for block group size */
5287 int data_stripes;
5288
5289 /*
5290 * The primary goal is to maximize the number of stripes, so use as
5291 * many devices as possible, even if the stripes are not maximum sized.
5292 *
5293 * The DUP profile stores more than one stripe per device, the
5294 * max_avail is the total size so we have to adjust.
5295 */
5296 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5297 ctl->dev_stripes);
5298 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5299
5300 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5301 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5302
5303 /*
5304 * Use the number of data stripes to figure out how big this chunk is
5305 * really going to be in terms of logical address space, and compare
5306 * that answer with the max chunk size. If it's higher, we try to
5307 * reduce stripe_size.
5308 */
5309 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5310 /*
5311 * Reduce stripe_size, round it up to a 16MB boundary again and
5312 * then use it, unless it ends up being even bigger than the
5313 * previous value we had already.
5314 */
5315 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5316 data_stripes), SZ_16M),
5317 ctl->stripe_size);
5318 }
5319
5320 /* Stripe size should not go beyond 1G. */
5321 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5322
5323 /* Align to BTRFS_STRIPE_LEN */
5324 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5325 ctl->chunk_size = ctl->stripe_size * data_stripes;
5326
5327 return 0;
5328 }
5329
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5330 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5331 struct btrfs_device_info *devices_info)
5332 {
5333 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5334 /* Number of stripes that count for block group size */
5335 int data_stripes;
5336
5337 /*
5338 * It should hold because:
5339 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5340 */
5341 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min,
5342 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs,
5343 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min);
5344
5345 ctl->stripe_size = zone_size;
5346 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5347 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5348
5349 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5350 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5351 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5352 ctl->stripe_size) + ctl->nparity,
5353 ctl->dev_stripes);
5354 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5355 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5356 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size,
5357 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu",
5358 ctl->stripe_size, data_stripes, ctl->max_chunk_size);
5359 }
5360
5361 ctl->chunk_size = ctl->stripe_size * data_stripes;
5362
5363 return 0;
5364 }
5365
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5366 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369 {
5370 struct btrfs_fs_info *info = fs_devices->fs_info;
5371
5372 /*
5373 * Round down to number of usable stripes, devs_increment can be any
5374 * number so we can't use round_down() that requires power of 2, while
5375 * rounddown is safe.
5376 */
5377 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5378
5379 if (ctl->ndevs < ctl->devs_min) {
5380 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5381 btrfs_debug(info,
5382 "%s: not enough devices with free space: have=%d minimum required=%d",
5383 __func__, ctl->ndevs, ctl->devs_min);
5384 }
5385 return -ENOSPC;
5386 }
5387
5388 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5389
5390 switch (fs_devices->chunk_alloc_policy) {
5391 default:
5392 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5393 fallthrough;
5394 case BTRFS_CHUNK_ALLOC_REGULAR:
5395 return decide_stripe_size_regular(ctl, devices_info);
5396 case BTRFS_CHUNK_ALLOC_ZONED:
5397 return decide_stripe_size_zoned(ctl, devices_info);
5398 }
5399 }
5400
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5401 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5402 {
5403 for (int i = 0; i < map->num_stripes; i++) {
5404 struct btrfs_io_stripe *stripe = &map->stripes[i];
5405 struct btrfs_device *device = stripe->dev;
5406
5407 btrfs_set_extent_bit(&device->alloc_state, stripe->physical,
5408 stripe->physical + map->stripe_size - 1,
5409 bits | EXTENT_NOWAIT, NULL);
5410 }
5411 }
5412
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5413 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5414 {
5415 for (int i = 0; i < map->num_stripes; i++) {
5416 struct btrfs_io_stripe *stripe = &map->stripes[i];
5417 struct btrfs_device *device = stripe->dev;
5418
5419 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical,
5420 stripe->physical + map->stripe_size - 1,
5421 bits | EXTENT_NOWAIT, NULL);
5422 }
5423 }
5424
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5425 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5426 {
5427 write_lock(&fs_info->mapping_tree_lock);
5428 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5429 RB_CLEAR_NODE(&map->rb_node);
5430 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5431 write_unlock(&fs_info->mapping_tree_lock);
5432
5433 /* Once for the tree reference. */
5434 btrfs_free_chunk_map(map);
5435 }
5436
btrfs_chunk_map_cmp(const struct rb_node * new,const struct rb_node * exist)5437 static int btrfs_chunk_map_cmp(const struct rb_node *new,
5438 const struct rb_node *exist)
5439 {
5440 const struct btrfs_chunk_map *new_map =
5441 rb_entry(new, struct btrfs_chunk_map, rb_node);
5442 const struct btrfs_chunk_map *exist_map =
5443 rb_entry(exist, struct btrfs_chunk_map, rb_node);
5444
5445 if (new_map->start == exist_map->start)
5446 return 0;
5447 if (new_map->start < exist_map->start)
5448 return -1;
5449 return 1;
5450 }
5451
5452 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5453 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5454 {
5455 struct rb_node *exist;
5456
5457 write_lock(&fs_info->mapping_tree_lock);
5458 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree,
5459 btrfs_chunk_map_cmp);
5460
5461 if (exist) {
5462 write_unlock(&fs_info->mapping_tree_lock);
5463 return -EEXIST;
5464 }
5465 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5466 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5467 write_unlock(&fs_info->mapping_tree_lock);
5468
5469 return 0;
5470 }
5471
5472 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5473 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5474 {
5475 struct btrfs_chunk_map *map;
5476
5477 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5478 if (!map)
5479 return NULL;
5480
5481 refcount_set(&map->refs, 1);
5482 RB_CLEAR_NODE(&map->rb_node);
5483
5484 return map;
5485 }
5486
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5487 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5488 struct alloc_chunk_ctl *ctl,
5489 struct btrfs_device_info *devices_info)
5490 {
5491 struct btrfs_fs_info *info = trans->fs_info;
5492 struct btrfs_chunk_map *map;
5493 struct btrfs_block_group *block_group;
5494 u64 start = ctl->start;
5495 u64 type = ctl->type;
5496 int ret;
5497
5498 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5499 if (!map)
5500 return ERR_PTR(-ENOMEM);
5501
5502 map->start = start;
5503 map->chunk_len = ctl->chunk_size;
5504 map->stripe_size = ctl->stripe_size;
5505 map->type = type;
5506 map->io_align = BTRFS_STRIPE_LEN;
5507 map->io_width = BTRFS_STRIPE_LEN;
5508 map->sub_stripes = ctl->sub_stripes;
5509 map->num_stripes = ctl->num_stripes;
5510
5511 for (int i = 0; i < ctl->ndevs; i++) {
5512 for (int j = 0; j < ctl->dev_stripes; j++) {
5513 int s = i * ctl->dev_stripes + j;
5514 map->stripes[s].dev = devices_info[i].dev;
5515 map->stripes[s].physical = devices_info[i].dev_offset +
5516 j * ctl->stripe_size;
5517 }
5518 }
5519
5520 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5521
5522 ret = btrfs_add_chunk_map(info, map);
5523 if (ret) {
5524 btrfs_free_chunk_map(map);
5525 return ERR_PTR(ret);
5526 }
5527
5528 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start,
5529 ctl->chunk_size);
5530 if (IS_ERR(block_group)) {
5531 btrfs_remove_chunk_map(info, map);
5532 return block_group;
5533 }
5534
5535 for (int i = 0; i < map->num_stripes; i++) {
5536 struct btrfs_device *dev = map->stripes[i].dev;
5537
5538 btrfs_device_set_bytes_used(dev,
5539 dev->bytes_used + ctl->stripe_size);
5540 if (list_empty(&dev->post_commit_list))
5541 list_add_tail(&dev->post_commit_list,
5542 &trans->transaction->dev_update_list);
5543 }
5544
5545 atomic64_sub(ctl->stripe_size * map->num_stripes,
5546 &info->free_chunk_space);
5547
5548 check_raid56_incompat_flag(info, type);
5549 check_raid1c34_incompat_flag(info, type);
5550
5551 return block_group;
5552 }
5553
btrfs_create_chunk(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type)5554 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5555 struct btrfs_space_info *space_info,
5556 u64 type)
5557 {
5558 struct btrfs_fs_info *info = trans->fs_info;
5559 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5560 struct btrfs_device_info AUTO_KFREE(devices_info);
5561 struct alloc_chunk_ctl ctl;
5562 int ret;
5563
5564 lockdep_assert_held(&info->chunk_mutex);
5565
5566 if (!alloc_profile_is_valid(type, 0)) {
5567 DEBUG_WARN("invalid alloc profile for type %llu", type);
5568 return ERR_PTR(-EINVAL);
5569 }
5570
5571 if (list_empty(&fs_devices->alloc_list)) {
5572 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5573 btrfs_debug(info, "%s: no writable device", __func__);
5574 return ERR_PTR(-ENOSPC);
5575 }
5576
5577 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5578 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5579 DEBUG_WARN();
5580 return ERR_PTR(-EINVAL);
5581 }
5582
5583 ctl.start = find_next_chunk(info);
5584 ctl.type = type;
5585 ctl.space_info = space_info;
5586 init_alloc_chunk_ctl(fs_devices, &ctl);
5587
5588 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5589 GFP_NOFS);
5590 if (!devices_info)
5591 return ERR_PTR(-ENOMEM);
5592
5593 ret = gather_device_info(fs_devices, &ctl, devices_info);
5594 if (ret < 0)
5595 return ERR_PTR(ret);
5596
5597 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5598 if (ret < 0)
5599 return ERR_PTR(ret);
5600
5601 return create_chunk(trans, &ctl, devices_info);
5602 }
5603
5604 /*
5605 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5606 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5607 * chunks.
5608 *
5609 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5610 * phases.
5611 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5612 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5613 struct btrfs_block_group *bg)
5614 {
5615 struct btrfs_fs_info *fs_info = trans->fs_info;
5616 struct btrfs_root *chunk_root = fs_info->chunk_root;
5617 struct btrfs_key key;
5618 struct btrfs_chunk *chunk;
5619 struct btrfs_stripe *stripe;
5620 struct btrfs_chunk_map *map;
5621 size_t item_size;
5622 int i;
5623 int ret;
5624
5625 /*
5626 * We take the chunk_mutex for 2 reasons:
5627 *
5628 * 1) Updates and insertions in the chunk btree must be done while holding
5629 * the chunk_mutex, as well as updating the system chunk array in the
5630 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5631 * details;
5632 *
5633 * 2) To prevent races with the final phase of a device replace operation
5634 * that replaces the device object associated with the map's stripes,
5635 * because the device object's id can change at any time during that
5636 * final phase of the device replace operation
5637 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5638 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5639 * which would cause a failure when updating the device item, which does
5640 * not exists, or persisting a stripe of the chunk item with such ID.
5641 * Here we can't use the device_list_mutex because our caller already
5642 * has locked the chunk_mutex, and the final phase of device replace
5643 * acquires both mutexes - first the device_list_mutex and then the
5644 * chunk_mutex. Using any of those two mutexes protects us from a
5645 * concurrent device replace.
5646 */
5647 lockdep_assert_held(&fs_info->chunk_mutex);
5648
5649 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5650 if (IS_ERR(map)) {
5651 ret = PTR_ERR(map);
5652 btrfs_abort_transaction(trans, ret);
5653 return ret;
5654 }
5655
5656 item_size = btrfs_chunk_item_size(map->num_stripes);
5657
5658 chunk = kzalloc(item_size, GFP_NOFS);
5659 if (unlikely(!chunk)) {
5660 ret = -ENOMEM;
5661 btrfs_abort_transaction(trans, ret);
5662 goto out;
5663 }
5664
5665 for (i = 0; i < map->num_stripes; i++) {
5666 struct btrfs_device *device = map->stripes[i].dev;
5667
5668 ret = btrfs_update_device(trans, device);
5669 if (ret)
5670 goto out;
5671 }
5672
5673 stripe = &chunk->stripe;
5674 for (i = 0; i < map->num_stripes; i++) {
5675 struct btrfs_device *device = map->stripes[i].dev;
5676 const u64 dev_offset = map->stripes[i].physical;
5677
5678 btrfs_set_stack_stripe_devid(stripe, device->devid);
5679 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5680 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5681 stripe++;
5682 }
5683
5684 btrfs_set_stack_chunk_length(chunk, bg->length);
5685 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5686 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5687 btrfs_set_stack_chunk_type(chunk, map->type);
5688 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5689 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5690 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5691 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5692 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5693
5694 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5695 key.type = BTRFS_CHUNK_ITEM_KEY;
5696 key.offset = bg->start;
5697
5698 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5699 if (ret)
5700 goto out;
5701
5702 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5703
5704 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5705 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5706 if (ret)
5707 goto out;
5708 }
5709
5710 out:
5711 kfree(chunk);
5712 btrfs_free_chunk_map(map);
5713 return ret;
5714 }
5715
init_first_rw_device(struct btrfs_trans_handle * trans)5716 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5717 {
5718 struct btrfs_fs_info *fs_info = trans->fs_info;
5719 u64 alloc_profile;
5720 struct btrfs_block_group *meta_bg;
5721 struct btrfs_space_info *meta_space_info;
5722 struct btrfs_block_group *sys_bg;
5723 struct btrfs_space_info *sys_space_info;
5724
5725 /*
5726 * When adding a new device for sprouting, the seed device is read-only
5727 * so we must first allocate a metadata and a system chunk. But before
5728 * adding the block group items to the extent, device and chunk btrees,
5729 * we must first:
5730 *
5731 * 1) Create both chunks without doing any changes to the btrees, as
5732 * otherwise we would get -ENOSPC since the block groups from the
5733 * seed device are read-only;
5734 *
5735 * 2) Add the device item for the new sprout device - finishing the setup
5736 * of a new block group requires updating the device item in the chunk
5737 * btree, so it must exist when we attempt to do it. The previous step
5738 * ensures this does not fail with -ENOSPC.
5739 *
5740 * After that we can add the block group items to their btrees:
5741 * update existing device item in the chunk btree, add a new block group
5742 * item to the extent btree, add a new chunk item to the chunk btree and
5743 * finally add the new device extent items to the devices btree.
5744 */
5745
5746 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5747 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5748 if (!meta_space_info) {
5749 DEBUG_WARN();
5750 return -EINVAL;
5751 }
5752 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile);
5753 if (IS_ERR(meta_bg))
5754 return PTR_ERR(meta_bg);
5755
5756 alloc_profile = btrfs_system_alloc_profile(fs_info);
5757 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5758 if (!sys_space_info) {
5759 DEBUG_WARN();
5760 return -EINVAL;
5761 }
5762 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile);
5763 if (IS_ERR(sys_bg))
5764 return PTR_ERR(sys_bg);
5765
5766 return 0;
5767 }
5768
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5769 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5770 {
5771 const int index = btrfs_bg_flags_to_raid_index(map->type);
5772
5773 return btrfs_raid_array[index].tolerated_failures;
5774 }
5775
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5776 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5777 {
5778 struct btrfs_chunk_map *map;
5779 int miss_ndevs = 0;
5780 int i;
5781 bool ret = true;
5782
5783 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5784 if (IS_ERR(map))
5785 return false;
5786
5787 for (i = 0; i < map->num_stripes; i++) {
5788 if (test_bit(BTRFS_DEV_STATE_MISSING,
5789 &map->stripes[i].dev->dev_state)) {
5790 miss_ndevs++;
5791 continue;
5792 }
5793 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5794 &map->stripes[i].dev->dev_state)) {
5795 ret = false;
5796 goto end;
5797 }
5798 }
5799
5800 /*
5801 * If the number of missing devices is larger than max errors, we can
5802 * not write the data into that chunk successfully.
5803 */
5804 if (miss_ndevs > btrfs_chunk_max_errors(map))
5805 ret = false;
5806 end:
5807 btrfs_free_chunk_map(map);
5808 return ret;
5809 }
5810
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5811 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5812 {
5813 write_lock(&fs_info->mapping_tree_lock);
5814 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5815 struct btrfs_chunk_map *map;
5816 struct rb_node *node;
5817
5818 node = rb_first_cached(&fs_info->mapping_tree);
5819 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5820 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5821 RB_CLEAR_NODE(&map->rb_node);
5822 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5823 /* Once for the tree ref. */
5824 btrfs_free_chunk_map(map);
5825 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5826 }
5827 write_unlock(&fs_info->mapping_tree_lock);
5828 }
5829
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5830 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5831 {
5832 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5833
5834 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5835 return 2;
5836
5837 /*
5838 * There could be two corrupted data stripes, we need to loop retry in
5839 * order to rebuild the correct data.
5840 *
5841 * Fail a stripe at a time on every retry except the stripe under
5842 * reconstruction.
5843 */
5844 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5845 return map->num_stripes;
5846
5847 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5848 return btrfs_raid_array[index].ncopies;
5849 }
5850
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5851 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5852 {
5853 struct btrfs_chunk_map *map;
5854 int ret;
5855
5856 map = btrfs_get_chunk_map(fs_info, logical, len);
5857 if (IS_ERR(map))
5858 /*
5859 * We could return errors for these cases, but that could get
5860 * ugly and we'd probably do the same thing which is just not do
5861 * anything else and exit, so return 1 so the callers don't try
5862 * to use other copies.
5863 */
5864 return 1;
5865
5866 ret = btrfs_chunk_map_num_copies(map);
5867 btrfs_free_chunk_map(map);
5868 return ret;
5869 }
5870
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5871 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5872 u64 logical)
5873 {
5874 struct btrfs_chunk_map *map;
5875 unsigned long len = fs_info->sectorsize;
5876
5877 if (!btrfs_fs_incompat(fs_info, RAID56))
5878 return len;
5879
5880 map = btrfs_get_chunk_map(fs_info, logical, len);
5881
5882 if (!WARN_ON(IS_ERR(map))) {
5883 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5884 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5885 btrfs_free_chunk_map(map);
5886 }
5887 return len;
5888 }
5889
5890 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_read_preferred(struct btrfs_chunk_map * map,int first,int num_stripes)5891 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes)
5892 {
5893 for (int index = first; index < first + num_stripes; index++) {
5894 const struct btrfs_device *device = map->stripes[index].dev;
5895
5896 if (device->devid == READ_ONCE(device->fs_devices->read_devid))
5897 return index;
5898 }
5899
5900 /* If no read-preferred device is set use the first stripe. */
5901 return first;
5902 }
5903
5904 struct stripe_mirror {
5905 u64 devid;
5906 int num;
5907 };
5908
btrfs_cmp_devid(const void * a,const void * b)5909 static int btrfs_cmp_devid(const void *a, const void *b)
5910 {
5911 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a;
5912 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b;
5913
5914 if (s1->devid < s2->devid)
5915 return -1;
5916 if (s1->devid > s2->devid)
5917 return 1;
5918 return 0;
5919 }
5920
5921 /*
5922 * Select a stripe for reading using the round-robin algorithm.
5923 *
5924 * 1. Compute the read cycle as the total sectors read divided by the minimum
5925 * sectors per device.
5926 * 2. Determine the stripe number for the current read by taking the modulus
5927 * of the read cycle with the total number of stripes:
5928 *
5929 * stripe index = (total sectors / min sectors per dev) % num stripes
5930 *
5931 * The calculated stripe index is then used to select the corresponding device
5932 * from the list of devices, which is ordered by devid.
5933 */
btrfs_read_rr(const struct btrfs_chunk_map * map,int first,int num_stripes)5934 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes)
5935 {
5936 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 };
5937 struct btrfs_device *device = map->stripes[first].dev;
5938 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info;
5939 unsigned int read_cycle;
5940 unsigned int total_reads;
5941 unsigned int min_reads_per_dev;
5942
5943 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks);
5944 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >>
5945 fs_info->sectorsize_bits;
5946
5947 for (int index = 0, i = first; i < first + num_stripes; i++) {
5948 stripes[index].devid = map->stripes[i].dev->devid;
5949 stripes[index].num = i;
5950 index++;
5951 }
5952 sort(stripes, num_stripes, sizeof(struct stripe_mirror),
5953 btrfs_cmp_devid, NULL);
5954
5955 read_cycle = total_reads / min_reads_per_dev;
5956 return stripes[read_cycle % num_stripes].num;
5957 }
5958 #endif
5959
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,bool dev_replace_is_ongoing)5960 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5961 struct btrfs_chunk_map *map, int first,
5962 bool dev_replace_is_ongoing)
5963 {
5964 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5965 int i;
5966 int num_stripes;
5967 int preferred_mirror;
5968 int tolerance;
5969 struct btrfs_device *srcdev;
5970
5971 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)),
5972 "type=%llu", map->type);
5973
5974 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5975 num_stripes = map->sub_stripes;
5976 else
5977 num_stripes = map->num_stripes;
5978
5979 switch (policy) {
5980 default:
5981 /* Shouldn't happen, just warn and use pid instead of failing */
5982 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5983 policy);
5984 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5985 fallthrough;
5986 case BTRFS_READ_POLICY_PID:
5987 preferred_mirror = first + (current->pid % num_stripes);
5988 break;
5989 #ifdef CONFIG_BTRFS_EXPERIMENTAL
5990 case BTRFS_READ_POLICY_RR:
5991 preferred_mirror = btrfs_read_rr(map, first, num_stripes);
5992 break;
5993 case BTRFS_READ_POLICY_DEVID:
5994 preferred_mirror = btrfs_read_preferred(map, first, num_stripes);
5995 break;
5996 #endif
5997 }
5998
5999 if (dev_replace_is_ongoing &&
6000 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6001 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6002 srcdev = fs_info->dev_replace.srcdev;
6003 else
6004 srcdev = NULL;
6005
6006 /*
6007 * try to avoid the drive that is the source drive for a
6008 * dev-replace procedure, only choose it if no other non-missing
6009 * mirror is available
6010 */
6011 for (tolerance = 0; tolerance < 2; tolerance++) {
6012 if (map->stripes[preferred_mirror].dev->bdev &&
6013 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6014 return preferred_mirror;
6015 for (i = first; i < first + num_stripes; i++) {
6016 if (map->stripes[i].dev->bdev &&
6017 (tolerance || map->stripes[i].dev != srcdev))
6018 return i;
6019 }
6020 }
6021
6022 /* we couldn't find one that doesn't fail. Just return something
6023 * and the io error handling code will clean up eventually
6024 */
6025 return preferred_mirror;
6026 }
6027
6028 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6029 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6030 u64 logical, u16 total_stripes)
6031 {
6032 struct btrfs_io_context *bioc;
6033
6034 bioc = kzalloc(struct_size(bioc, stripes, total_stripes), GFP_NOFS);
6035
6036 if (!bioc)
6037 return NULL;
6038
6039 refcount_set(&bioc->refs, 1);
6040
6041 bioc->fs_info = fs_info;
6042 bioc->replace_stripe_src = -1;
6043 bioc->full_stripe_logical = (u64)-1;
6044 bioc->logical = logical;
6045
6046 return bioc;
6047 }
6048
btrfs_get_bioc(struct btrfs_io_context * bioc)6049 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6050 {
6051 WARN_ON(!refcount_read(&bioc->refs));
6052 refcount_inc(&bioc->refs);
6053 }
6054
btrfs_put_bioc(struct btrfs_io_context * bioc)6055 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6056 {
6057 if (!bioc)
6058 return;
6059 if (refcount_dec_and_test(&bioc->refs))
6060 kfree(bioc);
6061 }
6062
6063 /*
6064 * Please note that, discard won't be sent to target device of device
6065 * replace.
6066 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6067 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6068 u64 logical, u64 *length_ret,
6069 u32 *num_stripes)
6070 {
6071 struct btrfs_chunk_map *map;
6072 struct btrfs_discard_stripe *stripes;
6073 u64 length = *length_ret;
6074 u64 offset;
6075 u32 stripe_nr;
6076 u32 stripe_nr_end;
6077 u32 stripe_cnt;
6078 u64 stripe_end_offset;
6079 u64 stripe_offset;
6080 u32 stripe_index;
6081 u32 factor = 0;
6082 u32 sub_stripes = 0;
6083 u32 stripes_per_dev = 0;
6084 u32 remaining_stripes = 0;
6085 u32 last_stripe = 0;
6086 int ret;
6087 int i;
6088
6089 map = btrfs_get_chunk_map(fs_info, logical, length);
6090 if (IS_ERR(map))
6091 return ERR_CAST(map);
6092
6093 /* we don't discard raid56 yet */
6094 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6095 ret = -EOPNOTSUPP;
6096 goto out_free_map;
6097 }
6098
6099 offset = logical - map->start;
6100 length = min_t(u64, map->start + map->chunk_len - logical, length);
6101 *length_ret = length;
6102
6103 /*
6104 * stripe_nr counts the total number of stripes we have to stride
6105 * to get to this block
6106 */
6107 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6108
6109 /* stripe_offset is the offset of this block in its stripe */
6110 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6111
6112 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6113 BTRFS_STRIPE_LEN_SHIFT;
6114 stripe_cnt = stripe_nr_end - stripe_nr;
6115 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6116 (offset + length);
6117 /*
6118 * after this, stripe_nr is the number of stripes on this
6119 * device we have to walk to find the data, and stripe_index is
6120 * the number of our device in the stripe array
6121 */
6122 *num_stripes = 1;
6123 stripe_index = 0;
6124 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6125 BTRFS_BLOCK_GROUP_RAID10)) {
6126 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6127 sub_stripes = 1;
6128 else
6129 sub_stripes = map->sub_stripes;
6130
6131 factor = map->num_stripes / sub_stripes;
6132 *num_stripes = min_t(u64, map->num_stripes,
6133 sub_stripes * stripe_cnt);
6134 stripe_index = stripe_nr % factor;
6135 stripe_nr /= factor;
6136 stripe_index *= sub_stripes;
6137
6138 remaining_stripes = stripe_cnt % factor;
6139 stripes_per_dev = stripe_cnt / factor;
6140 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6141 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6142 BTRFS_BLOCK_GROUP_DUP)) {
6143 *num_stripes = map->num_stripes;
6144 } else {
6145 stripe_index = stripe_nr % map->num_stripes;
6146 stripe_nr /= map->num_stripes;
6147 }
6148
6149 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6150 if (!stripes) {
6151 ret = -ENOMEM;
6152 goto out_free_map;
6153 }
6154
6155 for (i = 0; i < *num_stripes; i++) {
6156 stripes[i].physical =
6157 map->stripes[stripe_index].physical +
6158 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6159 stripes[i].dev = map->stripes[stripe_index].dev;
6160
6161 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6162 BTRFS_BLOCK_GROUP_RAID10)) {
6163 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6164
6165 if (i / sub_stripes < remaining_stripes)
6166 stripes[i].length += BTRFS_STRIPE_LEN;
6167
6168 /*
6169 * Special for the first stripe and
6170 * the last stripe:
6171 *
6172 * |-------|...|-------|
6173 * |----------|
6174 * off end_off
6175 */
6176 if (i < sub_stripes)
6177 stripes[i].length -= stripe_offset;
6178
6179 if (stripe_index >= last_stripe &&
6180 stripe_index <= (last_stripe +
6181 sub_stripes - 1))
6182 stripes[i].length -= stripe_end_offset;
6183
6184 if (i == sub_stripes - 1)
6185 stripe_offset = 0;
6186 } else {
6187 stripes[i].length = length;
6188 }
6189
6190 stripe_index++;
6191 if (stripe_index == map->num_stripes) {
6192 stripe_index = 0;
6193 stripe_nr++;
6194 }
6195 }
6196
6197 btrfs_free_chunk_map(map);
6198 return stripes;
6199 out_free_map:
6200 btrfs_free_chunk_map(map);
6201 return ERR_PTR(ret);
6202 }
6203
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6204 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6205 {
6206 struct btrfs_block_group *cache;
6207 bool ret;
6208
6209 /* Non zoned filesystem does not use "to_copy" flag */
6210 if (!btrfs_is_zoned(fs_info))
6211 return false;
6212
6213 cache = btrfs_lookup_block_group(fs_info, logical);
6214
6215 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6216
6217 btrfs_put_block_group(cache);
6218 return ret;
6219 }
6220
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6221 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6222 struct btrfs_dev_replace *dev_replace,
6223 u64 logical,
6224 struct btrfs_io_geometry *io_geom)
6225 {
6226 u64 srcdev_devid = dev_replace->srcdev->devid;
6227 /*
6228 * At this stage, num_stripes is still the real number of stripes,
6229 * excluding the duplicated stripes.
6230 */
6231 int num_stripes = io_geom->num_stripes;
6232 int max_errors = io_geom->max_errors;
6233 int nr_extra_stripes = 0;
6234 int i;
6235
6236 /*
6237 * A block group which has "to_copy" set will eventually be copied by
6238 * the dev-replace process. We can avoid cloning IO here.
6239 */
6240 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6241 return;
6242
6243 /*
6244 * Duplicate the write operations while the dev-replace procedure is
6245 * running. Since the copying of the old disk to the new disk takes
6246 * place at run time while the filesystem is mounted writable, the
6247 * regular write operations to the old disk have to be duplicated to go
6248 * to the new disk as well.
6249 *
6250 * Note that device->missing is handled by the caller, and that the
6251 * write to the old disk is already set up in the stripes array.
6252 */
6253 for (i = 0; i < num_stripes; i++) {
6254 struct btrfs_io_stripe *old = &bioc->stripes[i];
6255 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6256
6257 if (old->dev->devid != srcdev_devid)
6258 continue;
6259
6260 new->physical = old->physical;
6261 new->dev = dev_replace->tgtdev;
6262 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6263 bioc->replace_stripe_src = i;
6264 nr_extra_stripes++;
6265 }
6266
6267 /* We can only have at most 2 extra nr_stripes (for DUP). */
6268 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes);
6269 /*
6270 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6271 * replace.
6272 * If we have 2 extra stripes, only choose the one with smaller physical.
6273 */
6274 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6275 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6276 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6277
6278 /* Only DUP can have two extra stripes. */
6279 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP,
6280 "map_type=%llu", bioc->map_type);
6281
6282 /*
6283 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6284 * The extra stripe would still be there, but won't be accessed.
6285 */
6286 if (first->physical > second->physical) {
6287 swap(second->physical, first->physical);
6288 swap(second->dev, first->dev);
6289 nr_extra_stripes--;
6290 }
6291 }
6292
6293 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6294 io_geom->max_errors = max_errors + nr_extra_stripes;
6295 bioc->replace_nr_stripes = nr_extra_stripes;
6296 }
6297
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6298 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6299 struct btrfs_io_geometry *io_geom)
6300 {
6301 /*
6302 * Stripe_nr is the stripe where this block falls. stripe_offset is
6303 * the offset of this block in its stripe.
6304 */
6305 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6306 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6307 ASSERT(io_geom->stripe_offset < U32_MAX,
6308 "stripe_offset=%llu", io_geom->stripe_offset);
6309
6310 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6311 unsigned long full_stripe_len =
6312 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6313
6314 /*
6315 * For full stripe start, we use previously calculated
6316 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6317 * STRIPE_LEN.
6318 *
6319 * By this we can avoid u64 division completely. And we have
6320 * to go rounddown(), not round_down(), as nr_data_stripes is
6321 * not ensured to be power of 2.
6322 */
6323 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6324 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6325
6326 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset,
6327 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu",
6328 io_geom->raid56_full_stripe_start, full_stripe_len, offset);
6329 ASSERT(io_geom->raid56_full_stripe_start <= offset,
6330 "raid56_full_stripe_start=%llu offset=%llu",
6331 io_geom->raid56_full_stripe_start, offset);
6332 /*
6333 * For writes to RAID56, allow to write a full stripe set, but
6334 * no straddling of stripe sets.
6335 */
6336 if (io_geom->op == BTRFS_MAP_WRITE)
6337 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6338 }
6339
6340 /*
6341 * For other RAID types and for RAID56 reads, allow a single stripe (on
6342 * a single disk).
6343 */
6344 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6345 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6346 return U64_MAX;
6347 }
6348
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6349 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6350 u64 *length, struct btrfs_io_stripe *dst,
6351 struct btrfs_chunk_map *map,
6352 struct btrfs_io_geometry *io_geom)
6353 {
6354 dst->dev = map->stripes[io_geom->stripe_index].dev;
6355
6356 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst)
6357 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6358 map->type,
6359 io_geom->stripe_index, dst);
6360
6361 dst->physical = map->stripes[io_geom->stripe_index].physical +
6362 io_geom->stripe_offset +
6363 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6364 return 0;
6365 }
6366
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,struct btrfs_io_geometry * io_geom)6367 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6368 const struct btrfs_io_stripe *smap,
6369 const struct btrfs_chunk_map *map,
6370 int num_alloc_stripes,
6371 struct btrfs_io_geometry *io_geom)
6372 {
6373 if (!smap)
6374 return false;
6375
6376 if (num_alloc_stripes != 1)
6377 return false;
6378
6379 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ)
6380 return false;
6381
6382 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1)
6383 return false;
6384
6385 return true;
6386 }
6387
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6388 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6389 struct btrfs_io_geometry *io_geom)
6390 {
6391 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6392 io_geom->stripe_nr /= map->num_stripes;
6393 if (io_geom->op == BTRFS_MAP_READ)
6394 io_geom->mirror_num = 1;
6395 }
6396
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6397 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6398 struct btrfs_chunk_map *map,
6399 struct btrfs_io_geometry *io_geom,
6400 bool dev_replace_is_ongoing)
6401 {
6402 if (io_geom->op != BTRFS_MAP_READ) {
6403 io_geom->num_stripes = map->num_stripes;
6404 return;
6405 }
6406
6407 if (io_geom->mirror_num) {
6408 io_geom->stripe_index = io_geom->mirror_num - 1;
6409 return;
6410 }
6411
6412 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6413 dev_replace_is_ongoing);
6414 io_geom->mirror_num = io_geom->stripe_index + 1;
6415 }
6416
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6417 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6418 struct btrfs_io_geometry *io_geom)
6419 {
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->num_stripes;
6422 return;
6423 }
6424
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index = io_geom->mirror_num - 1;
6427 return;
6428 }
6429
6430 io_geom->mirror_num = 1;
6431 }
6432
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6433 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6434 struct btrfs_chunk_map *map,
6435 struct btrfs_io_geometry *io_geom,
6436 bool dev_replace_is_ongoing)
6437 {
6438 u32 factor = map->num_stripes / map->sub_stripes;
6439 int old_stripe_index;
6440
6441 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6442 io_geom->stripe_nr /= factor;
6443
6444 if (io_geom->op != BTRFS_MAP_READ) {
6445 io_geom->num_stripes = map->sub_stripes;
6446 return;
6447 }
6448
6449 if (io_geom->mirror_num) {
6450 io_geom->stripe_index += io_geom->mirror_num - 1;
6451 return;
6452 }
6453
6454 old_stripe_index = io_geom->stripe_index;
6455 io_geom->stripe_index = find_live_mirror(fs_info, map,
6456 io_geom->stripe_index,
6457 dev_replace_is_ongoing);
6458 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6459 }
6460
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6461 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6462 struct btrfs_io_geometry *io_geom,
6463 u64 logical, u64 *length)
6464 {
6465 int data_stripes = nr_data_stripes(map);
6466
6467 /*
6468 * Needs full stripe mapping.
6469 *
6470 * Push stripe_nr back to the start of the full stripe For those cases
6471 * needing a full stripe, @stripe_nr is the full stripe number.
6472 *
6473 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6474 * that can be expensive. Here we just divide @stripe_nr with
6475 * @data_stripes.
6476 */
6477 io_geom->stripe_nr /= data_stripes;
6478
6479 /* RAID[56] write or recovery. Return all stripes */
6480 io_geom->num_stripes = map->num_stripes;
6481 io_geom->max_errors = btrfs_chunk_max_errors(map);
6482
6483 /* Return the length to the full stripe end. */
6484 *length = min(logical + *length,
6485 io_geom->raid56_full_stripe_start + map->start +
6486 btrfs_stripe_nr_to_offset(data_stripes)) -
6487 logical;
6488 io_geom->stripe_index = 0;
6489 io_geom->stripe_offset = 0;
6490 }
6491
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6492 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6493 struct btrfs_io_geometry *io_geom)
6494 {
6495 int data_stripes = nr_data_stripes(map);
6496
6497 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num);
6498 /* Just grab the data stripe directly. */
6499 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6500 io_geom->stripe_nr /= data_stripes;
6501
6502 /* We distribute the parity blocks across stripes. */
6503 io_geom->stripe_index =
6504 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6505
6506 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6507 io_geom->mirror_num = 1;
6508 }
6509
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6510 static void map_blocks_single(const struct btrfs_chunk_map *map,
6511 struct btrfs_io_geometry *io_geom)
6512 {
6513 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6514 io_geom->stripe_nr /= map->num_stripes;
6515 io_geom->mirror_num = io_geom->stripe_index + 1;
6516 }
6517
6518 /*
6519 * Map one logical range to one or more physical ranges.
6520 *
6521 * @length: (Mandatory) mapped length of this run.
6522 * One logical range can be split into different segments
6523 * due to factors like zones and RAID0/5/6/10 stripe
6524 * boundaries.
6525 *
6526 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6527 * which has one or more physical ranges (btrfs_io_stripe)
6528 * recorded inside.
6529 * Caller should call btrfs_put_bioc() to free it after use.
6530 *
6531 * @smap: (Optional) single physical range optimization.
6532 * If the map request can be fulfilled by one single
6533 * physical range, and this is parameter is not NULL,
6534 * then @bioc_ret would be NULL, and @smap would be
6535 * updated.
6536 *
6537 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6538 * value is 0.
6539 *
6540 * Mirror number 0 means to choose any live mirrors.
6541 *
6542 * For non-RAID56 profiles, non-zero mirror_num means
6543 * the Nth mirror. (e.g. mirror_num 1 means the first
6544 * copy).
6545 *
6546 * For RAID56 profile, mirror 1 means rebuild from P and
6547 * the remaining data stripes.
6548 *
6549 * For RAID6 profile, mirror > 2 means mark another
6550 * data/P stripe error and rebuild from the remaining
6551 * stripes..
6552 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6553 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6554 u64 logical, u64 *length,
6555 struct btrfs_io_context **bioc_ret,
6556 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6557 {
6558 struct btrfs_chunk_map *map;
6559 struct btrfs_io_geometry io_geom = { 0 };
6560 u64 map_offset;
6561 int ret = 0;
6562 int num_copies;
6563 struct btrfs_io_context *bioc = NULL;
6564 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6565 bool dev_replace_is_ongoing = false;
6566 u16 num_alloc_stripes;
6567 u64 max_len;
6568
6569 ASSERT(bioc_ret);
6570
6571 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6572 io_geom.num_stripes = 1;
6573 io_geom.stripe_index = 0;
6574 io_geom.op = op;
6575
6576 map = btrfs_get_chunk_map(fs_info, logical, *length);
6577 if (IS_ERR(map))
6578 return PTR_ERR(map);
6579
6580 num_copies = btrfs_chunk_map_num_copies(map);
6581 if (io_geom.mirror_num > num_copies)
6582 return -EINVAL;
6583
6584 map_offset = logical - map->start;
6585 io_geom.raid56_full_stripe_start = (u64)-1;
6586 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6587 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6588 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type);
6589
6590 if (dev_replace->replace_task != current)
6591 down_read(&dev_replace->rwsem);
6592
6593 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6594 /*
6595 * Hold the semaphore for read during the whole operation, write is
6596 * requested at commit time but must wait.
6597 */
6598 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6599 up_read(&dev_replace->rwsem);
6600
6601 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6602 case BTRFS_BLOCK_GROUP_RAID0:
6603 map_blocks_raid0(map, &io_geom);
6604 break;
6605 case BTRFS_BLOCK_GROUP_RAID1:
6606 case BTRFS_BLOCK_GROUP_RAID1C3:
6607 case BTRFS_BLOCK_GROUP_RAID1C4:
6608 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6609 break;
6610 case BTRFS_BLOCK_GROUP_DUP:
6611 map_blocks_dup(map, &io_geom);
6612 break;
6613 case BTRFS_BLOCK_GROUP_RAID10:
6614 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6615 break;
6616 case BTRFS_BLOCK_GROUP_RAID5:
6617 case BTRFS_BLOCK_GROUP_RAID6:
6618 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6619 map_blocks_raid56_write(map, &io_geom, logical, length);
6620 else
6621 map_blocks_raid56_read(map, &io_geom);
6622 break;
6623 default:
6624 /*
6625 * After this, stripe_nr is the number of stripes on this
6626 * device we have to walk to find the data, and stripe_index is
6627 * the number of our device in the stripe array
6628 */
6629 map_blocks_single(map, &io_geom);
6630 break;
6631 }
6632 if (io_geom.stripe_index >= map->num_stripes) {
6633 btrfs_crit(fs_info,
6634 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6635 io_geom.stripe_index, map->num_stripes);
6636 ret = -EINVAL;
6637 goto out;
6638 }
6639
6640 num_alloc_stripes = io_geom.num_stripes;
6641 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6642 op != BTRFS_MAP_READ)
6643 /*
6644 * For replace case, we need to add extra stripes for extra
6645 * duplicated stripes.
6646 *
6647 * For both WRITE and GET_READ_MIRRORS, we may have at most
6648 * 2 more stripes (DUP types, otherwise 1).
6649 */
6650 num_alloc_stripes += 2;
6651
6652 /*
6653 * If this I/O maps to a single device, try to return the device and
6654 * physical block information on the stack instead of allocating an
6655 * I/O context structure.
6656 */
6657 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) {
6658 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6659 if (mirror_num_ret)
6660 *mirror_num_ret = io_geom.mirror_num;
6661 *bioc_ret = NULL;
6662 goto out;
6663 }
6664
6665 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6666 if (!bioc) {
6667 ret = -ENOMEM;
6668 goto out;
6669 }
6670 bioc->map_type = map->type;
6671 bioc->use_rst = io_geom.use_rst;
6672
6673 /*
6674 * For RAID56 full map, we need to make sure the stripes[] follows the
6675 * rule that data stripes are all ordered, then followed with P and Q
6676 * (if we have).
6677 *
6678 * It's still mostly the same as other profiles, just with extra rotation.
6679 */
6680 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6681 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6682 /*
6683 * For RAID56 @stripe_nr is already the number of full stripes
6684 * before us, which is also the rotation value (needs to modulo
6685 * with num_stripes).
6686 *
6687 * In this case, we just add @stripe_nr with @i, then do the
6688 * modulo, to reduce one modulo call.
6689 */
6690 bioc->full_stripe_logical = map->start +
6691 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6692 nr_data_stripes(map));
6693 for (int i = 0; i < io_geom.num_stripes; i++) {
6694 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6695 u32 stripe_index;
6696
6697 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6698 dst->dev = map->stripes[stripe_index].dev;
6699 dst->physical =
6700 map->stripes[stripe_index].physical +
6701 io_geom.stripe_offset +
6702 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6703 }
6704 } else {
6705 /*
6706 * For all other non-RAID56 profiles, just copy the target
6707 * stripe into the bioc.
6708 */
6709 for (int i = 0; i < io_geom.num_stripes; i++) {
6710 ret = set_io_stripe(fs_info, logical, length,
6711 &bioc->stripes[i], map, &io_geom);
6712 if (ret < 0)
6713 break;
6714 io_geom.stripe_index++;
6715 }
6716 }
6717
6718 if (ret) {
6719 *bioc_ret = NULL;
6720 btrfs_put_bioc(bioc);
6721 goto out;
6722 }
6723
6724 if (op != BTRFS_MAP_READ)
6725 io_geom.max_errors = btrfs_chunk_max_errors(map);
6726
6727 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6728 op != BTRFS_MAP_READ) {
6729 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6730 }
6731
6732 *bioc_ret = bioc;
6733 bioc->num_stripes = io_geom.num_stripes;
6734 bioc->max_errors = io_geom.max_errors;
6735 bioc->mirror_num = io_geom.mirror_num;
6736
6737 out:
6738 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6739 lockdep_assert_held(&dev_replace->rwsem);
6740 /* Unlock and let waiting writers proceed */
6741 up_read(&dev_replace->rwsem);
6742 }
6743 btrfs_free_chunk_map(map);
6744 return ret;
6745 }
6746
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6747 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6748 const struct btrfs_fs_devices *fs_devices)
6749 {
6750 if (args->fsid == NULL)
6751 return true;
6752 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6753 return true;
6754 return false;
6755 }
6756
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6757 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6758 const struct btrfs_device *device)
6759 {
6760 if (args->devt)
6761 return device->devt == args->devt;
6762 if (args->missing) {
6763 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6764 !device->bdev)
6765 return true;
6766 return false;
6767 }
6768
6769 if (device->devid != args->devid)
6770 return false;
6771 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6772 return false;
6773 return true;
6774 }
6775
6776 /*
6777 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6778 * return NULL.
6779 *
6780 * If devid and uuid are both specified, the match must be exact, otherwise
6781 * only devid is used.
6782 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6783 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6784 const struct btrfs_dev_lookup_args *args)
6785 {
6786 struct btrfs_device *device;
6787 struct btrfs_fs_devices *seed_devs;
6788
6789 if (dev_args_match_fs_devices(args, fs_devices)) {
6790 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6791 if (dev_args_match_device(args, device))
6792 return device;
6793 }
6794 }
6795
6796 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6797 if (!dev_args_match_fs_devices(args, seed_devs))
6798 continue;
6799 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6800 if (dev_args_match_device(args, device))
6801 return device;
6802 }
6803 }
6804
6805 return NULL;
6806 }
6807
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6808 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6809 u64 devid, u8 *dev_uuid)
6810 {
6811 struct btrfs_device *device;
6812 unsigned int nofs_flag;
6813
6814 /*
6815 * We call this under the chunk_mutex, so we want to use NOFS for this
6816 * allocation, however we don't want to change btrfs_alloc_device() to
6817 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6818 * places.
6819 */
6820
6821 nofs_flag = memalloc_nofs_save();
6822 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6823 memalloc_nofs_restore(nofs_flag);
6824 if (IS_ERR(device))
6825 return device;
6826
6827 list_add(&device->dev_list, &fs_devices->devices);
6828 device->fs_devices = fs_devices;
6829 fs_devices->num_devices++;
6830
6831 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6832 fs_devices->missing_devices++;
6833
6834 return device;
6835 }
6836
6837 /*
6838 * Allocate new device struct, set up devid and UUID.
6839 *
6840 * @fs_info: used only for generating a new devid, can be NULL if
6841 * devid is provided (i.e. @devid != NULL).
6842 * @devid: a pointer to devid for this device. If NULL a new devid
6843 * is generated.
6844 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6845 * is generated.
6846 * @path: a pointer to device path if available, NULL otherwise.
6847 *
6848 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6849 * on error. Returned struct is not linked onto any lists and must be
6850 * destroyed with btrfs_free_device.
6851 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6852 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6853 const u64 *devid, const u8 *uuid,
6854 const char *path)
6855 {
6856 struct btrfs_device *dev;
6857 u64 tmp;
6858
6859 if (WARN_ON(!devid && !fs_info))
6860 return ERR_PTR(-EINVAL);
6861
6862 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6863 if (!dev)
6864 return ERR_PTR(-ENOMEM);
6865
6866 INIT_LIST_HEAD(&dev->dev_list);
6867 INIT_LIST_HEAD(&dev->dev_alloc_list);
6868 INIT_LIST_HEAD(&dev->post_commit_list);
6869
6870 atomic_set(&dev->dev_stats_ccnt, 0);
6871 btrfs_device_data_ordered_init(dev);
6872 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6873
6874 if (devid)
6875 tmp = *devid;
6876 else {
6877 int ret;
6878
6879 ret = find_next_devid(fs_info, &tmp);
6880 if (ret) {
6881 btrfs_free_device(dev);
6882 return ERR_PTR(ret);
6883 }
6884 }
6885 dev->devid = tmp;
6886
6887 if (uuid)
6888 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6889 else
6890 generate_random_uuid(dev->uuid);
6891
6892 if (path) {
6893 const char *name;
6894
6895 name = kstrdup(path, GFP_KERNEL);
6896 if (!name) {
6897 btrfs_free_device(dev);
6898 return ERR_PTR(-ENOMEM);
6899 }
6900 rcu_assign_pointer(dev->name, name);
6901 }
6902
6903 return dev;
6904 }
6905
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6906 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6907 u64 devid, u8 *uuid, bool error)
6908 {
6909 if (error)
6910 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6911 devid, uuid);
6912 else
6913 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6914 devid, uuid);
6915 }
6916
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6917 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6918 {
6919 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6920
6921 return div_u64(map->chunk_len, data_stripes);
6922 }
6923
6924 #if BITS_PER_LONG == 32
6925 /*
6926 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6927 * can't be accessed on 32bit systems.
6928 *
6929 * This function do mount time check to reject the fs if it already has
6930 * metadata chunk beyond that limit.
6931 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6932 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6933 u64 logical, u64 length, u64 type)
6934 {
6935 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6936 return 0;
6937
6938 if (logical + length < MAX_LFS_FILESIZE)
6939 return 0;
6940
6941 btrfs_err_32bit_limit(fs_info);
6942 return -EOVERFLOW;
6943 }
6944
6945 /*
6946 * This is to give early warning for any metadata chunk reaching
6947 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6948 * Although we can still access the metadata, it's not going to be possible
6949 * once the limit is reached.
6950 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6951 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6952 u64 logical, u64 length, u64 type)
6953 {
6954 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6955 return;
6956
6957 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6958 return;
6959
6960 btrfs_warn_32bit_limit(fs_info);
6961 }
6962 #endif
6963
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6964 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6965 u64 devid, u8 *uuid)
6966 {
6967 struct btrfs_device *dev;
6968
6969 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6970 btrfs_report_missing_device(fs_info, devid, uuid, true);
6971 return ERR_PTR(-ENOENT);
6972 }
6973
6974 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6975 if (IS_ERR(dev)) {
6976 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6977 devid, PTR_ERR(dev));
6978 return dev;
6979 }
6980 btrfs_report_missing_device(fs_info, devid, uuid, false);
6981
6982 return dev;
6983 }
6984
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6985 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6986 struct btrfs_chunk *chunk)
6987 {
6988 BTRFS_DEV_LOOKUP_ARGS(args);
6989 struct btrfs_fs_info *fs_info = leaf->fs_info;
6990 struct btrfs_chunk_map *map;
6991 u64 logical;
6992 u64 length;
6993 u64 devid;
6994 u64 type;
6995 u8 uuid[BTRFS_UUID_SIZE];
6996 int index;
6997 int num_stripes;
6998 int ret;
6999 int i;
7000
7001 logical = key->offset;
7002 length = btrfs_chunk_length(leaf, chunk);
7003 type = btrfs_chunk_type(leaf, chunk);
7004 index = btrfs_bg_flags_to_raid_index(type);
7005 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7006
7007 #if BITS_PER_LONG == 32
7008 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7009 if (ret < 0)
7010 return ret;
7011 warn_32bit_meta_chunk(fs_info, logical, length, type);
7012 #endif
7013
7014 map = btrfs_find_chunk_map(fs_info, logical, 1);
7015
7016 /* already mapped? */
7017 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7018 btrfs_free_chunk_map(map);
7019 return 0;
7020 } else if (map) {
7021 btrfs_free_chunk_map(map);
7022 }
7023
7024 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7025 if (!map)
7026 return -ENOMEM;
7027
7028 map->start = logical;
7029 map->chunk_len = length;
7030 map->num_stripes = num_stripes;
7031 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7032 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7033 map->type = type;
7034 /*
7035 * We can't use the sub_stripes value, as for profiles other than
7036 * RAID10, they may have 0 as sub_stripes for filesystems created by
7037 * older mkfs (<v5.4).
7038 * In that case, it can cause divide-by-zero errors later.
7039 * Since currently sub_stripes is fixed for each profile, let's
7040 * use the trusted value instead.
7041 */
7042 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7043 map->verified_stripes = 0;
7044 map->stripe_size = btrfs_calc_stripe_length(map);
7045 for (i = 0; i < num_stripes; i++) {
7046 map->stripes[i].physical =
7047 btrfs_stripe_offset_nr(leaf, chunk, i);
7048 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7049 args.devid = devid;
7050 read_extent_buffer(leaf, uuid, (unsigned long)
7051 btrfs_stripe_dev_uuid_nr(chunk, i),
7052 BTRFS_UUID_SIZE);
7053 args.uuid = uuid;
7054 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7055 if (!map->stripes[i].dev) {
7056 map->stripes[i].dev = handle_missing_device(fs_info,
7057 devid, uuid);
7058 if (IS_ERR(map->stripes[i].dev)) {
7059 ret = PTR_ERR(map->stripes[i].dev);
7060 btrfs_free_chunk_map(map);
7061 return ret;
7062 }
7063 }
7064
7065 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7066 &(map->stripes[i].dev->dev_state));
7067 }
7068
7069 ret = btrfs_add_chunk_map(fs_info, map);
7070 if (ret < 0) {
7071 btrfs_err(fs_info,
7072 "failed to add chunk map, start=%llu len=%llu: %d",
7073 map->start, map->chunk_len, ret);
7074 btrfs_free_chunk_map(map);
7075 }
7076
7077 return ret;
7078 }
7079
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7080 static void fill_device_from_item(struct extent_buffer *leaf,
7081 struct btrfs_dev_item *dev_item,
7082 struct btrfs_device *device)
7083 {
7084 unsigned long ptr;
7085
7086 device->devid = btrfs_device_id(leaf, dev_item);
7087 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7088 device->total_bytes = device->disk_total_bytes;
7089 device->commit_total_bytes = device->disk_total_bytes;
7090 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7091 device->commit_bytes_used = device->bytes_used;
7092 device->type = btrfs_device_type(leaf, dev_item);
7093 device->io_align = btrfs_device_io_align(leaf, dev_item);
7094 device->io_width = btrfs_device_io_width(leaf, dev_item);
7095 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7096 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7098
7099 ptr = btrfs_device_uuid(dev_item);
7100 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7101 }
7102
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7103 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7104 u8 *fsid)
7105 {
7106 struct btrfs_fs_devices *fs_devices;
7107 int ret;
7108
7109 lockdep_assert_held(&uuid_mutex);
7110 ASSERT(fsid);
7111
7112 /* This will match only for multi-device seed fs */
7113 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7114 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7115 return fs_devices;
7116
7117
7118 fs_devices = find_fsid(fsid, NULL);
7119 if (!fs_devices) {
7120 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7121 btrfs_err(fs_info,
7122 "failed to find fsid %pU when attempting to open seed devices",
7123 fsid);
7124 return ERR_PTR(-ENOENT);
7125 }
7126
7127 fs_devices = alloc_fs_devices(fsid);
7128 if (IS_ERR(fs_devices))
7129 return fs_devices;
7130
7131 fs_devices->seeding = true;
7132 fs_devices->opened = 1;
7133 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7134 return fs_devices;
7135 }
7136
7137 /*
7138 * Upon first call for a seed fs fsid, just create a private copy of the
7139 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7140 */
7141 fs_devices = clone_fs_devices(fs_devices);
7142 if (IS_ERR(fs_devices))
7143 return fs_devices;
7144
7145 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb);
7146 if (ret) {
7147 free_fs_devices(fs_devices);
7148 return ERR_PTR(ret);
7149 }
7150
7151 if (!fs_devices->seeding) {
7152 close_fs_devices(fs_devices);
7153 free_fs_devices(fs_devices);
7154 return ERR_PTR(-EINVAL);
7155 }
7156
7157 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7158
7159 return fs_devices;
7160 }
7161
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7162 static int read_one_dev(struct extent_buffer *leaf,
7163 struct btrfs_dev_item *dev_item)
7164 {
7165 BTRFS_DEV_LOOKUP_ARGS(args);
7166 struct btrfs_fs_info *fs_info = leaf->fs_info;
7167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7168 struct btrfs_device *device;
7169 u64 devid;
7170 int ret;
7171 u8 fs_uuid[BTRFS_FSID_SIZE];
7172 u8 dev_uuid[BTRFS_UUID_SIZE];
7173
7174 devid = btrfs_device_id(leaf, dev_item);
7175 args.devid = devid;
7176 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7177 BTRFS_UUID_SIZE);
7178 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7179 BTRFS_FSID_SIZE);
7180 args.uuid = dev_uuid;
7181 args.fsid = fs_uuid;
7182
7183 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7184 fs_devices = open_seed_devices(fs_info, fs_uuid);
7185 if (IS_ERR(fs_devices))
7186 return PTR_ERR(fs_devices);
7187 }
7188
7189 device = btrfs_find_device(fs_info->fs_devices, &args);
7190 if (!device) {
7191 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7192 btrfs_report_missing_device(fs_info, devid,
7193 dev_uuid, true);
7194 return -ENOENT;
7195 }
7196
7197 device = add_missing_dev(fs_devices, devid, dev_uuid);
7198 if (IS_ERR(device)) {
7199 btrfs_err(fs_info,
7200 "failed to add missing dev %llu: %ld",
7201 devid, PTR_ERR(device));
7202 return PTR_ERR(device);
7203 }
7204 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7205 } else {
7206 if (!device->bdev) {
7207 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7208 btrfs_report_missing_device(fs_info,
7209 devid, dev_uuid, true);
7210 return -ENOENT;
7211 }
7212 btrfs_report_missing_device(fs_info, devid,
7213 dev_uuid, false);
7214 }
7215
7216 if (!device->bdev &&
7217 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7218 /*
7219 * this happens when a device that was properly setup
7220 * in the device info lists suddenly goes bad.
7221 * device->bdev is NULL, and so we have to set
7222 * device->missing to one here
7223 */
7224 device->fs_devices->missing_devices++;
7225 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7226 }
7227
7228 /* Move the device to its own fs_devices */
7229 if (device->fs_devices != fs_devices) {
7230 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7231 &device->dev_state));
7232
7233 list_move(&device->dev_list, &fs_devices->devices);
7234 device->fs_devices->num_devices--;
7235 fs_devices->num_devices++;
7236
7237 device->fs_devices->missing_devices--;
7238 fs_devices->missing_devices++;
7239
7240 device->fs_devices = fs_devices;
7241 }
7242 }
7243
7244 if (device->fs_devices != fs_info->fs_devices) {
7245 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7246 if (device->generation !=
7247 btrfs_device_generation(leaf, dev_item))
7248 return -EINVAL;
7249 }
7250
7251 fill_device_from_item(leaf, dev_item, device);
7252 if (device->bdev) {
7253 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7254
7255 if (device->total_bytes > max_total_bytes) {
7256 btrfs_err(fs_info,
7257 "device total_bytes should be at most %llu but found %llu",
7258 max_total_bytes, device->total_bytes);
7259 return -EINVAL;
7260 }
7261 }
7262 set_bit(BTRFS_DEV_STATE_ITEM_FOUND, &device->dev_state);
7263 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7264 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7265 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7266 device->fs_devices->total_rw_bytes += device->total_bytes;
7267 atomic64_add(device->total_bytes - device->bytes_used,
7268 &fs_info->free_chunk_space);
7269 }
7270 ret = 0;
7271 return ret;
7272 }
7273
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7274 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7275 {
7276 struct btrfs_super_block *super_copy = fs_info->super_copy;
7277 struct extent_buffer *sb;
7278 u8 *array_ptr;
7279 unsigned long sb_array_offset;
7280 int ret = 0;
7281 u32 array_size;
7282 u32 cur_offset;
7283 struct btrfs_key key;
7284
7285 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7286
7287 /*
7288 * We allocated a dummy extent, just to use extent buffer accessors.
7289 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7290 * that's fine, we will not go beyond system chunk array anyway.
7291 */
7292 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7293 if (!sb)
7294 return -ENOMEM;
7295 set_extent_buffer_uptodate(sb);
7296
7297 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7298 array_size = btrfs_super_sys_array_size(super_copy);
7299
7300 array_ptr = super_copy->sys_chunk_array;
7301 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7302 cur_offset = 0;
7303
7304 while (cur_offset < array_size) {
7305 struct btrfs_chunk *chunk;
7306 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr;
7307 u32 len = sizeof(*disk_key);
7308
7309 /*
7310 * The sys_chunk_array has been already verified at super block
7311 * read time. Only do ASSERT()s for basic checks.
7312 */
7313 ASSERT(cur_offset + len <= array_size);
7314
7315 btrfs_disk_key_to_cpu(&key, disk_key);
7316
7317 array_ptr += len;
7318 sb_array_offset += len;
7319 cur_offset += len;
7320
7321 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY);
7322
7323 chunk = (struct btrfs_chunk *)sb_array_offset;
7324 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM);
7325
7326 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk));
7327
7328 ASSERT(cur_offset + len <= array_size);
7329
7330 ret = read_one_chunk(&key, sb, chunk);
7331 if (ret)
7332 break;
7333
7334 array_ptr += len;
7335 sb_array_offset += len;
7336 cur_offset += len;
7337 }
7338 clear_extent_buffer_uptodate(sb);
7339 free_extent_buffer_stale(sb);
7340 return ret;
7341 }
7342
7343 /*
7344 * Check if all chunks in the fs are OK for read-write degraded mount
7345 *
7346 * If the @failing_dev is specified, it's accounted as missing.
7347 *
7348 * Return true if all chunks meet the minimal RW mount requirements.
7349 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7350 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7351 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7352 struct btrfs_device *failing_dev)
7353 {
7354 struct btrfs_chunk_map *map;
7355 u64 next_start;
7356 bool ret = true;
7357
7358 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7359 /* No chunk at all? Return false anyway */
7360 if (!map) {
7361 ret = false;
7362 goto out;
7363 }
7364 while (map) {
7365 int missing = 0;
7366 int max_tolerated;
7367 int i;
7368
7369 max_tolerated =
7370 btrfs_get_num_tolerated_disk_barrier_failures(
7371 map->type);
7372 for (i = 0; i < map->num_stripes; i++) {
7373 struct btrfs_device *dev = map->stripes[i].dev;
7374
7375 if (!dev || !dev->bdev ||
7376 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7377 dev->last_flush_error)
7378 missing++;
7379 else if (failing_dev && failing_dev == dev)
7380 missing++;
7381 }
7382 if (missing > max_tolerated) {
7383 if (!failing_dev)
7384 btrfs_warn(fs_info,
7385 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7386 map->start, missing, max_tolerated);
7387 btrfs_free_chunk_map(map);
7388 ret = false;
7389 goto out;
7390 }
7391 next_start = map->start + map->chunk_len;
7392 btrfs_free_chunk_map(map);
7393
7394 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7395 }
7396 out:
7397 return ret;
7398 }
7399
readahead_tree_node_children(struct extent_buffer * node)7400 static void readahead_tree_node_children(struct extent_buffer *node)
7401 {
7402 int i;
7403 const int nr_items = btrfs_header_nritems(node);
7404
7405 for (i = 0; i < nr_items; i++)
7406 btrfs_readahead_node_child(node, i);
7407 }
7408
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7409 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7410 {
7411 struct btrfs_root *root = fs_info->chunk_root;
7412 BTRFS_PATH_AUTO_FREE(path);
7413 struct extent_buffer *leaf;
7414 struct btrfs_key key;
7415 struct btrfs_key found_key;
7416 int ret;
7417 int slot;
7418 int iter_ret = 0;
7419 u64 total_dev = 0;
7420 u64 last_ra_node = 0;
7421
7422 path = btrfs_alloc_path();
7423 if (!path)
7424 return -ENOMEM;
7425
7426 /*
7427 * uuid_mutex is needed only if we are mounting a sprout FS
7428 * otherwise we don't need it.
7429 */
7430 mutex_lock(&uuid_mutex);
7431
7432 /*
7433 * It is possible for mount and umount to race in such a way that
7434 * we execute this code path, but open_fs_devices failed to clear
7435 * total_rw_bytes. We certainly want it cleared before reading the
7436 * device items, so clear it here.
7437 */
7438 fs_info->fs_devices->total_rw_bytes = 0;
7439
7440 /*
7441 * Lockdep complains about possible circular locking dependency between
7442 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7443 * used for freeze protection of a fs (struct super_block.s_writers),
7444 * which we take when starting a transaction, and extent buffers of the
7445 * chunk tree if we call read_one_dev() while holding a lock on an
7446 * extent buffer of the chunk tree. Since we are mounting the filesystem
7447 * and at this point there can't be any concurrent task modifying the
7448 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7449 */
7450 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7451 path->skip_locking = true;
7452
7453 /*
7454 * Read all device items, and then all the chunk items. All
7455 * device items are found before any chunk item (their object id
7456 * is smaller than the lowest possible object id for a chunk
7457 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7458 */
7459 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7460 key.type = 0;
7461 key.offset = 0;
7462 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7463 struct extent_buffer *node = path->nodes[1];
7464
7465 leaf = path->nodes[0];
7466 slot = path->slots[0];
7467
7468 if (node) {
7469 if (last_ra_node != node->start) {
7470 readahead_tree_node_children(node);
7471 last_ra_node = node->start;
7472 }
7473 }
7474 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7475 struct btrfs_dev_item *dev_item;
7476 dev_item = btrfs_item_ptr(leaf, slot,
7477 struct btrfs_dev_item);
7478 ret = read_one_dev(leaf, dev_item);
7479 if (ret)
7480 goto error;
7481 total_dev++;
7482 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7483 struct btrfs_chunk *chunk;
7484
7485 /*
7486 * We are only called at mount time, so no need to take
7487 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7488 * we always lock first fs_info->chunk_mutex before
7489 * acquiring any locks on the chunk tree. This is a
7490 * requirement for chunk allocation, see the comment on
7491 * top of btrfs_chunk_alloc() for details.
7492 */
7493 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7494 ret = read_one_chunk(&found_key, leaf, chunk);
7495 if (ret)
7496 goto error;
7497 }
7498 }
7499 /* Catch error found during iteration */
7500 if (iter_ret < 0) {
7501 ret = iter_ret;
7502 goto error;
7503 }
7504
7505 /*
7506 * After loading chunk tree, we've got all device information,
7507 * do another round of validation checks.
7508 */
7509 if (total_dev != fs_info->fs_devices->total_devices) {
7510 btrfs_warn(fs_info,
7511 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7512 btrfs_super_num_devices(fs_info->super_copy),
7513 total_dev);
7514 fs_info->fs_devices->total_devices = total_dev;
7515 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7516 }
7517 if (btrfs_super_total_bytes(fs_info->super_copy) <
7518 fs_info->fs_devices->total_rw_bytes) {
7519 btrfs_err(fs_info,
7520 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7521 btrfs_super_total_bytes(fs_info->super_copy),
7522 fs_info->fs_devices->total_rw_bytes);
7523 ret = -EINVAL;
7524 goto error;
7525 }
7526 ret = 0;
7527 error:
7528 mutex_unlock(&uuid_mutex);
7529 return ret;
7530 }
7531
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7532 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7533 {
7534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7535 struct btrfs_device *device;
7536 int ret = 0;
7537
7538 mutex_lock(&fs_devices->device_list_mutex);
7539 list_for_each_entry(device, &fs_devices->devices, dev_list)
7540 device->fs_info = fs_info;
7541
7542 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7543 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7544 device->fs_info = fs_info;
7545 ret = btrfs_get_dev_zone_info(device, false);
7546 if (ret)
7547 break;
7548 }
7549
7550 seed_devs->fs_info = fs_info;
7551 }
7552 mutex_unlock(&fs_devices->device_list_mutex);
7553
7554 return ret;
7555 }
7556
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7557 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7558 const struct btrfs_dev_stats_item *ptr,
7559 int index)
7560 {
7561 u64 val;
7562
7563 read_extent_buffer(eb, &val,
7564 offsetof(struct btrfs_dev_stats_item, values) +
7565 ((unsigned long)ptr) + (index * sizeof(u64)),
7566 sizeof(val));
7567 return val;
7568 }
7569
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7570 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7571 struct btrfs_dev_stats_item *ptr,
7572 int index, u64 val)
7573 {
7574 write_extent_buffer(eb, &val,
7575 offsetof(struct btrfs_dev_stats_item, values) +
7576 ((unsigned long)ptr) + (index * sizeof(u64)),
7577 sizeof(val));
7578 }
7579
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7580 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7581 struct btrfs_path *path)
7582 {
7583 struct btrfs_dev_stats_item *ptr;
7584 struct extent_buffer *eb;
7585 struct btrfs_key key;
7586 int item_size;
7587 int i, ret, slot;
7588
7589 if (!device->fs_info->dev_root)
7590 return 0;
7591
7592 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7593 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7594 key.offset = device->devid;
7595 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7596 if (ret) {
7597 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7598 btrfs_dev_stat_set(device, i, 0);
7599 device->dev_stats_valid = 1;
7600 btrfs_release_path(path);
7601 return ret < 0 ? ret : 0;
7602 }
7603 slot = path->slots[0];
7604 eb = path->nodes[0];
7605 item_size = btrfs_item_size(eb, slot);
7606
7607 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7608
7609 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7610 if (item_size >= (1 + i) * sizeof(__le64))
7611 btrfs_dev_stat_set(device, i,
7612 btrfs_dev_stats_value(eb, ptr, i));
7613 else
7614 btrfs_dev_stat_set(device, i, 0);
7615 }
7616
7617 device->dev_stats_valid = 1;
7618 btrfs_dev_stat_print_on_load(device);
7619 btrfs_release_path(path);
7620
7621 return 0;
7622 }
7623
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7624 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7625 {
7626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7627 struct btrfs_device *device;
7628 BTRFS_PATH_AUTO_FREE(path);
7629 int ret = 0;
7630
7631 path = btrfs_alloc_path();
7632 if (!path)
7633 return -ENOMEM;
7634
7635 mutex_lock(&fs_devices->device_list_mutex);
7636 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7637 ret = btrfs_device_init_dev_stats(device, path);
7638 if (ret)
7639 goto out;
7640 }
7641 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7642 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7643 ret = btrfs_device_init_dev_stats(device, path);
7644 if (ret)
7645 goto out;
7646 }
7647 }
7648 out:
7649 mutex_unlock(&fs_devices->device_list_mutex);
7650 return ret;
7651 }
7652
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7653 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7654 struct btrfs_device *device)
7655 {
7656 struct btrfs_fs_info *fs_info = trans->fs_info;
7657 struct btrfs_root *dev_root = fs_info->dev_root;
7658 BTRFS_PATH_AUTO_FREE(path);
7659 struct btrfs_key key;
7660 struct extent_buffer *eb;
7661 struct btrfs_dev_stats_item *ptr;
7662 int ret;
7663 int i;
7664
7665 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7666 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7667 key.offset = device->devid;
7668
7669 path = btrfs_alloc_path();
7670 if (!path)
7671 return -ENOMEM;
7672 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7673 if (ret < 0) {
7674 btrfs_warn(fs_info,
7675 "error %d while searching for dev_stats item for device %s",
7676 ret, btrfs_dev_name(device));
7677 return ret;
7678 }
7679
7680 if (ret == 0 &&
7681 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7682 /* need to delete old one and insert a new one */
7683 ret = btrfs_del_item(trans, dev_root, path);
7684 if (ret != 0) {
7685 btrfs_warn(fs_info,
7686 "delete too small dev_stats item for device %s failed %d",
7687 btrfs_dev_name(device), ret);
7688 return ret;
7689 }
7690 ret = 1;
7691 }
7692
7693 if (ret == 1) {
7694 /* need to insert a new item */
7695 btrfs_release_path(path);
7696 ret = btrfs_insert_empty_item(trans, dev_root, path,
7697 &key, sizeof(*ptr));
7698 if (ret < 0) {
7699 btrfs_warn(fs_info,
7700 "insert dev_stats item for device %s failed %d",
7701 btrfs_dev_name(device), ret);
7702 return ret;
7703 }
7704 }
7705
7706 eb = path->nodes[0];
7707 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7708 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7709 btrfs_set_dev_stats_value(eb, ptr, i,
7710 btrfs_dev_stat_read(device, i));
7711 return ret;
7712 }
7713
7714 /*
7715 * called from commit_transaction. Writes all changed device stats to disk.
7716 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7717 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7718 {
7719 struct btrfs_fs_info *fs_info = trans->fs_info;
7720 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7721 struct btrfs_device *device;
7722 int stats_cnt;
7723 int ret = 0;
7724
7725 mutex_lock(&fs_devices->device_list_mutex);
7726 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7727 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7728 if (!device->dev_stats_valid || stats_cnt == 0)
7729 continue;
7730
7731
7732 /*
7733 * There is a LOAD-LOAD control dependency between the value of
7734 * dev_stats_ccnt and updating the on-disk values which requires
7735 * reading the in-memory counters. Such control dependencies
7736 * require explicit read memory barriers.
7737 *
7738 * This memory barriers pairs with smp_mb__before_atomic in
7739 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7740 * barrier implied by atomic_xchg in
7741 * btrfs_dev_stats_read_and_reset
7742 */
7743 smp_rmb();
7744
7745 ret = update_dev_stat_item(trans, device);
7746 if (!ret)
7747 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7748 }
7749 mutex_unlock(&fs_devices->device_list_mutex);
7750
7751 return ret;
7752 }
7753
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7754 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7755 {
7756 btrfs_dev_stat_inc(dev, index);
7757
7758 if (!dev->dev_stats_valid)
7759 return;
7760 btrfs_err_rl(dev->fs_info,
7761 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7762 btrfs_dev_name(dev),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7766 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7767 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7768 }
7769
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7770 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7771 {
7772 int i;
7773
7774 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7775 if (btrfs_dev_stat_read(dev, i) != 0)
7776 break;
7777 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7778 return; /* all values == 0, suppress message */
7779
7780 btrfs_info(dev->fs_info,
7781 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7782 btrfs_dev_name(dev),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7788 }
7789
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7790 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7791 struct btrfs_ioctl_get_dev_stats *stats)
7792 {
7793 BTRFS_DEV_LOOKUP_ARGS(args);
7794 struct btrfs_device *dev;
7795 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7796 int i;
7797
7798 mutex_lock(&fs_devices->device_list_mutex);
7799 args.devid = stats->devid;
7800 dev = btrfs_find_device(fs_info->fs_devices, &args);
7801 mutex_unlock(&fs_devices->device_list_mutex);
7802
7803 if (!dev) {
7804 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7805 return -ENODEV;
7806 } else if (!dev->dev_stats_valid) {
7807 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7808 return -ENODEV;
7809 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7810 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7811 if (stats->nr_items > i)
7812 stats->values[i] =
7813 btrfs_dev_stat_read_and_reset(dev, i);
7814 else
7815 btrfs_dev_stat_set(dev, i, 0);
7816 }
7817 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7818 current->comm, task_pid_nr(current));
7819 } else {
7820 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7821 if (stats->nr_items > i)
7822 stats->values[i] = btrfs_dev_stat_read(dev, i);
7823 }
7824 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7825 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7826 return 0;
7827 }
7828
7829 /*
7830 * Update the size and bytes used for each device where it changed. This is
7831 * delayed since we would otherwise get errors while writing out the
7832 * superblocks.
7833 *
7834 * Must be invoked during transaction commit.
7835 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7836 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7837 {
7838 struct btrfs_device *curr, *next;
7839
7840 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state);
7841
7842 if (list_empty(&trans->dev_update_list))
7843 return;
7844
7845 /*
7846 * We don't need the device_list_mutex here. This list is owned by the
7847 * transaction and the transaction must complete before the device is
7848 * released.
7849 */
7850 mutex_lock(&trans->fs_info->chunk_mutex);
7851 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7852 post_commit_list) {
7853 list_del_init(&curr->post_commit_list);
7854 curr->commit_total_bytes = curr->disk_total_bytes;
7855 curr->commit_bytes_used = curr->bytes_used;
7856 }
7857 mutex_unlock(&trans->fs_info->chunk_mutex);
7858 }
7859
7860 /*
7861 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7862 */
btrfs_bg_type_to_factor(u64 flags)7863 int btrfs_bg_type_to_factor(u64 flags)
7864 {
7865 const int index = btrfs_bg_flags_to_raid_index(flags);
7866
7867 return btrfs_raid_array[index].ncopies;
7868 }
7869
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7870 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873 {
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct btrfs_chunk_map *map;
7876 struct btrfs_device *dev;
7877 u64 stripe_len;
7878 bool found = false;
7879 int ret = 0;
7880 int i;
7881
7882 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7883 if (unlikely(!map)) {
7884 btrfs_err(fs_info,
7885 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7886 physical_offset, devid);
7887 ret = -EUCLEAN;
7888 goto out;
7889 }
7890
7891 stripe_len = btrfs_calc_stripe_length(map);
7892 if (unlikely(physical_len != stripe_len)) {
7893 btrfs_err(fs_info,
7894 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7895 physical_offset, devid, map->start, physical_len,
7896 stripe_len);
7897 ret = -EUCLEAN;
7898 goto out;
7899 }
7900
7901 /*
7902 * Very old mkfs.btrfs (before v4.15) will not respect the reserved
7903 * space. Although kernel can handle it without problem, better to warn
7904 * the users.
7905 */
7906 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7907 btrfs_warn(fs_info,
7908 "devid %llu physical %llu len %llu inside the reserved space",
7909 devid, physical_offset, physical_len);
7910
7911 for (i = 0; i < map->num_stripes; i++) {
7912 if (unlikely(map->stripes[i].dev->devid == devid &&
7913 map->stripes[i].physical == physical_offset)) {
7914 found = true;
7915 if (map->verified_stripes >= map->num_stripes) {
7916 btrfs_err(fs_info,
7917 "too many dev extents for chunk %llu found",
7918 map->start);
7919 ret = -EUCLEAN;
7920 goto out;
7921 }
7922 map->verified_stripes++;
7923 break;
7924 }
7925 }
7926 if (unlikely(!found)) {
7927 btrfs_err(fs_info,
7928 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7929 physical_offset, devid);
7930 ret = -EUCLEAN;
7931 }
7932
7933 /* Make sure no dev extent is beyond device boundary */
7934 dev = btrfs_find_device(fs_info->fs_devices, &args);
7935 if (unlikely(!dev)) {
7936 btrfs_err(fs_info, "failed to find devid %llu", devid);
7937 ret = -EUCLEAN;
7938 goto out;
7939 }
7940
7941 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) {
7942 btrfs_err(fs_info,
7943 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7944 devid, physical_offset, physical_len,
7945 dev->disk_total_bytes);
7946 ret = -EUCLEAN;
7947 goto out;
7948 }
7949
7950 if (dev->zone_info) {
7951 u64 zone_size = dev->zone_info->zone_size;
7952
7953 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) ||
7954 !IS_ALIGNED(physical_len, zone_size))) {
7955 btrfs_err(fs_info,
7956 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7957 devid, physical_offset, physical_len);
7958 ret = -EUCLEAN;
7959 goto out;
7960 }
7961 }
7962
7963 out:
7964 btrfs_free_chunk_map(map);
7965 return ret;
7966 }
7967
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7968 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7969 {
7970 struct rb_node *node;
7971 int ret = 0;
7972
7973 read_lock(&fs_info->mapping_tree_lock);
7974 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7975 struct btrfs_chunk_map *map;
7976
7977 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7978 if (unlikely(map->num_stripes != map->verified_stripes)) {
7979 btrfs_err(fs_info,
7980 "chunk %llu has missing dev extent, have %d expect %d",
7981 map->start, map->verified_stripes, map->num_stripes);
7982 ret = -EUCLEAN;
7983 goto out;
7984 }
7985 }
7986 out:
7987 read_unlock(&fs_info->mapping_tree_lock);
7988 return ret;
7989 }
7990
7991 /*
7992 * Ensure that all dev extents are mapped to correct chunk, otherwise
7993 * later chunk allocation/free would cause unexpected behavior.
7994 *
7995 * NOTE: This will iterate through the whole device tree, which should be of
7996 * the same size level as the chunk tree. This slightly increases mount time.
7997 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7998 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7999 {
8000 BTRFS_PATH_AUTO_FREE(path);
8001 struct btrfs_root *root = fs_info->dev_root;
8002 struct btrfs_key key;
8003 u64 prev_devid = 0;
8004 u64 prev_dev_ext_end = 0;
8005 int ret = 0;
8006
8007 /*
8008 * We don't have a dev_root because we mounted with ignorebadroots and
8009 * failed to load the root, so we want to skip the verification in this
8010 * case for sure.
8011 *
8012 * However if the dev root is fine, but the tree itself is corrupted
8013 * we'd still fail to mount. This verification is only to make sure
8014 * writes can happen safely, so instead just bypass this check
8015 * completely in the case of IGNOREBADROOTS.
8016 */
8017 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8018 return 0;
8019
8020 key.objectid = 1;
8021 key.type = BTRFS_DEV_EXTENT_KEY;
8022 key.offset = 0;
8023
8024 path = btrfs_alloc_path();
8025 if (!path)
8026 return -ENOMEM;
8027
8028 path->reada = READA_FORWARD;
8029 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8030 if (ret < 0)
8031 return ret;
8032
8033 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8034 ret = btrfs_next_leaf(root, path);
8035 if (ret < 0)
8036 return ret;
8037 /* No dev extents at all? Not good */
8038 if (unlikely(ret > 0))
8039 return -EUCLEAN;
8040 }
8041 while (1) {
8042 struct extent_buffer *leaf = path->nodes[0];
8043 struct btrfs_dev_extent *dext;
8044 int slot = path->slots[0];
8045 u64 chunk_offset;
8046 u64 physical_offset;
8047 u64 physical_len;
8048 u64 devid;
8049
8050 btrfs_item_key_to_cpu(leaf, &key, slot);
8051 if (key.type != BTRFS_DEV_EXTENT_KEY)
8052 break;
8053 devid = key.objectid;
8054 physical_offset = key.offset;
8055
8056 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8057 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8058 physical_len = btrfs_dev_extent_length(leaf, dext);
8059
8060 /* Check if this dev extent overlaps with the previous one */
8061 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) {
8062 btrfs_err(fs_info,
8063 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8064 devid, physical_offset, prev_dev_ext_end);
8065 return -EUCLEAN;
8066 }
8067
8068 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8069 physical_offset, physical_len);
8070 if (ret < 0)
8071 return ret;
8072 prev_devid = devid;
8073 prev_dev_ext_end = physical_offset + physical_len;
8074
8075 ret = btrfs_next_item(root, path);
8076 if (ret < 0)
8077 return ret;
8078 if (ret > 0) {
8079 ret = 0;
8080 break;
8081 }
8082 }
8083
8084 /* Ensure all chunks have corresponding dev extents */
8085 return verify_chunk_dev_extent_mapping(fs_info);
8086 }
8087
8088 /*
8089 * Ensure that all devices registered in the fs have their device items in the
8090 * chunk tree.
8091 *
8092 * Return true if unexpected device is found.
8093 * Return false otherwise.
8094 */
btrfs_verify_dev_items(const struct btrfs_fs_info * fs_info)8095 bool btrfs_verify_dev_items(const struct btrfs_fs_info *fs_info)
8096 {
8097 struct btrfs_fs_devices *seed_devs;
8098 struct btrfs_device *dev;
8099 bool ret = false;
8100
8101 mutex_lock(&uuid_mutex);
8102 list_for_each_entry(dev, &fs_info->fs_devices->devices, dev_list) {
8103 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) {
8104 btrfs_err(fs_info,
8105 "devid %llu path %s is registered but not found in chunk tree",
8106 dev->devid, btrfs_dev_name(dev));
8107 ret = true;
8108 }
8109 }
8110 list_for_each_entry(seed_devs, &fs_info->fs_devices->seed_list, seed_list) {
8111 list_for_each_entry(dev, &seed_devs->devices, dev_list) {
8112 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) {
8113 btrfs_err(fs_info,
8114 "devid %llu path %s is registered but not found in chunk tree",
8115 dev->devid, btrfs_dev_name(dev));
8116 ret = true;
8117 }
8118 }
8119 }
8120 mutex_unlock(&uuid_mutex);
8121 if (ret)
8122 btrfs_err(fs_info,
8123 "remove the above devices or use 'btrfs device scan --forget <dev>' to unregister them before mount");
8124 return ret;
8125 }
8126
8127 /*
8128 * Check whether the given block group or device is pinned by any inode being
8129 * used as a swapfile.
8130 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8131 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8132 {
8133 struct btrfs_swapfile_pin *sp;
8134 struct rb_node *node;
8135
8136 spin_lock(&fs_info->swapfile_pins_lock);
8137 node = fs_info->swapfile_pins.rb_node;
8138 while (node) {
8139 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8140 if (ptr < sp->ptr)
8141 node = node->rb_left;
8142 else if (ptr > sp->ptr)
8143 node = node->rb_right;
8144 else
8145 break;
8146 }
8147 spin_unlock(&fs_info->swapfile_pins_lock);
8148 return node != NULL;
8149 }
8150
relocating_repair_kthread(void * data)8151 static int relocating_repair_kthread(void *data)
8152 {
8153 struct btrfs_block_group *cache = data;
8154 struct btrfs_fs_info *fs_info = cache->fs_info;
8155 u64 target;
8156 int ret = 0;
8157
8158 target = cache->start;
8159 btrfs_put_block_group(cache);
8160
8161 guard(super_write)(fs_info->sb);
8162
8163 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8164 btrfs_info(fs_info,
8165 "zoned: skip relocating block group %llu to repair: EBUSY",
8166 target);
8167 return -EBUSY;
8168 }
8169
8170 mutex_lock(&fs_info->reclaim_bgs_lock);
8171
8172 /* Ensure block group still exists */
8173 cache = btrfs_lookup_block_group(fs_info, target);
8174 if (!cache)
8175 goto out;
8176
8177 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8178 goto out;
8179
8180 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8181 if (ret < 0)
8182 goto out;
8183
8184 btrfs_info(fs_info,
8185 "zoned: relocating block group %llu to repair IO failure",
8186 target);
8187 ret = btrfs_relocate_chunk(fs_info, target, true);
8188
8189 out:
8190 if (cache)
8191 btrfs_put_block_group(cache);
8192 mutex_unlock(&fs_info->reclaim_bgs_lock);
8193 btrfs_exclop_finish(fs_info);
8194
8195 return ret;
8196 }
8197
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8198 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8199 {
8200 struct btrfs_block_group *cache;
8201
8202 if (!btrfs_is_zoned(fs_info))
8203 return false;
8204
8205 /* Do not attempt to repair in degraded state */
8206 if (btrfs_test_opt(fs_info, DEGRADED))
8207 return true;
8208
8209 cache = btrfs_lookup_block_group(fs_info, logical);
8210 if (!cache)
8211 return true;
8212
8213 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8214 btrfs_put_block_group(cache);
8215 return true;
8216 }
8217
8218 kthread_run(relocating_repair_kthread, cache,
8219 "btrfs-relocating-repair");
8220
8221 return true;
8222 }
8223
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8224 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8225 struct btrfs_io_stripe *smap,
8226 u64 logical)
8227 {
8228 int data_stripes = nr_bioc_data_stripes(bioc);
8229 int i;
8230
8231 for (i = 0; i < data_stripes; i++) {
8232 u64 stripe_start = bioc->full_stripe_logical +
8233 btrfs_stripe_nr_to_offset(i);
8234
8235 if (logical >= stripe_start &&
8236 logical < stripe_start + BTRFS_STRIPE_LEN)
8237 break;
8238 }
8239 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes);
8240 smap->dev = bioc->stripes[i].dev;
8241 smap->physical = bioc->stripes[i].physical +
8242 ((logical - bioc->full_stripe_logical) &
8243 BTRFS_STRIPE_LEN_MASK);
8244 }
8245
8246 /*
8247 * Map a repair write into a single device.
8248 *
8249 * A repair write is triggered by read time repair or scrub, which would only
8250 * update the contents of a single device.
8251 * Not update any other mirrors nor go through RMW path.
8252 *
8253 * Callers should ensure:
8254 *
8255 * - Call btrfs_bio_counter_inc_blocked() first
8256 * - The range does not cross stripe boundary
8257 * - Has a valid @mirror_num passed in.
8258 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8259 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8260 struct btrfs_io_stripe *smap, u64 logical,
8261 u32 length, int mirror_num)
8262 {
8263 struct btrfs_io_context *bioc = NULL;
8264 u64 map_length = length;
8265 int mirror_ret = mirror_num;
8266 int ret;
8267
8268 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num);
8269
8270 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8271 &bioc, smap, &mirror_ret);
8272 if (ret < 0)
8273 return ret;
8274
8275 /* The map range should not cross stripe boundary. */
8276 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length);
8277
8278 /* Already mapped to single stripe. */
8279 if (!bioc)
8280 goto out;
8281
8282 /* Map the RAID56 multi-stripe writes to a single one. */
8283 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8284 map_raid56_repair_block(bioc, smap, logical);
8285 goto out;
8286 }
8287
8288 ASSERT(mirror_num <= bioc->num_stripes,
8289 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes);
8290 smap->dev = bioc->stripes[mirror_num - 1].dev;
8291 smap->physical = bioc->stripes[mirror_num - 1].physical;
8292 out:
8293 btrfs_put_bioc(bioc);
8294 ASSERT(smap->dev);
8295 return 0;
8296 }
8297