xref: /linux/fs/namei.c (revision 357660d7596bd40d1004762739e426b1fbe10a14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
initname(struct filename * name)128 static inline void initname(struct filename *name)
129 {
130 	name->uptr = NULL;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result);
214 	audit_getname(result);
215 	return result;
216 }
217 
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (refcnt != 1) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (name->name != name->iname) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 	if (unlikely(mask & MAY_WRITE)) {
547 		umode_t mode = inode->i_mode;
548 
549 		/* Nobody gets write access to a read-only fs. */
550 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 			return -EROFS;
552 	}
553 	return 0;
554 }
555 
556 /**
557  * inode_permission - Check for access rights to a given inode
558  * @idmap:	idmap of the mount the inode was found from
559  * @inode:	Inode to check permission on
560  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561  *
562  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
563  * this, letting us set arbitrary permissions for filesystem access without
564  * changing the "normal" UIDs which are used for other things.
565  *
566  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567  */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 		     struct inode *inode, int mask)
570 {
571 	int retval;
572 
573 	retval = sb_permission(inode->i_sb, inode, mask);
574 	if (retval)
575 		return retval;
576 
577 	if (unlikely(mask & MAY_WRITE)) {
578 		/*
579 		 * Nobody gets write access to an immutable file.
580 		 */
581 		if (IS_IMMUTABLE(inode))
582 			return -EPERM;
583 
584 		/*
585 		 * Updating mtime will likely cause i_uid and i_gid to be
586 		 * written back improperly if their true value is unknown
587 		 * to the vfs.
588 		 */
589 		if (HAS_UNMAPPED_ID(idmap, inode))
590 			return -EACCES;
591 	}
592 
593 	retval = do_inode_permission(idmap, inode, mask);
594 	if (retval)
595 		return retval;
596 
597 	retval = devcgroup_inode_permission(inode, mask);
598 	if (retval)
599 		return retval;
600 
601 	return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604 
605 /**
606  * path_get - get a reference to a path
607  * @path: path to get the reference to
608  *
609  * Given a path increment the reference count to the dentry and the vfsmount.
610  */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 	mntget(path->mnt);
614 	dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617 
618 /**
619  * path_put - put a reference to a path
620  * @path: path to put the reference to
621  *
622  * Given a path decrement the reference count to the dentry and the vfsmount.
623  */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 	dput(path->dentry);
627 	mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630 
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 	struct path	path;
634 	struct qstr	last;
635 	struct path	root;
636 	struct inode	*inode; /* path.dentry.d_inode */
637 	unsigned int	flags, state;
638 	unsigned	seq, next_seq, m_seq, r_seq;
639 	int		last_type;
640 	unsigned	depth;
641 	int		total_link_count;
642 	struct saved {
643 		struct path link;
644 		struct delayed_call done;
645 		const char *name;
646 		unsigned seq;
647 	} *stack, internal[EMBEDDED_LEVELS];
648 	struct filename	*name;
649 	const char *pathname;
650 	struct nameidata *saved;
651 	unsigned	root_seq;
652 	int		dfd;
653 	vfsuid_t	dir_vfsuid;
654 	umode_t		dir_mode;
655 } __randomize_layout;
656 
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660 
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 	struct nameidata *old = current->nameidata;
664 	p->stack = p->internal;
665 	p->depth = 0;
666 	p->dfd = dfd;
667 	p->name = name;
668 	p->pathname = likely(name) ? name->name : "";
669 	p->path.mnt = NULL;
670 	p->path.dentry = NULL;
671 	p->total_link_count = old ? old->total_link_count : 0;
672 	p->saved = old;
673 	current->nameidata = p;
674 }
675 
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 			  const struct path *root)
678 {
679 	__set_nameidata(p, dfd, name);
680 	p->state = 0;
681 	if (unlikely(root)) {
682 		p->state = ND_ROOT_PRESET;
683 		p->root = *root;
684 	}
685 }
686 
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 	struct nameidata *now = current->nameidata, *old = now->saved;
690 
691 	current->nameidata = old;
692 	if (old)
693 		old->total_link_count = now->total_link_count;
694 	if (now->stack != now->internal)
695 		kfree(now->stack);
696 }
697 
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 	struct saved *p;
701 
702 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 	if (unlikely(!p))
705 		return false;
706 	memcpy(p, nd->internal, sizeof(nd->internal));
707 	nd->stack = p;
708 	return true;
709 }
710 
711 /**
712  * path_connected - Verify that a dentry is below mnt.mnt_root
713  * @mnt: The mountpoint to check.
714  * @dentry: The dentry to check.
715  *
716  * Rename can sometimes move a file or directory outside of a bind
717  * mount, path_connected allows those cases to be detected.
718  */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 	struct super_block *sb = mnt->mnt_sb;
722 
723 	/* Bind mounts can have disconnected paths */
724 	if (mnt->mnt_root == sb->s_root)
725 		return true;
726 
727 	return is_subdir(dentry, mnt->mnt_root);
728 }
729 
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 	int i = nd->depth;
733 	while (i--) {
734 		struct saved *last = nd->stack + i;
735 		do_delayed_call(&last->done);
736 		clear_delayed_call(&last->done);
737 	}
738 }
739 
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 	nd->flags &= ~LOOKUP_RCU;
743 	nd->seq = nd->next_seq = 0;
744 	rcu_read_unlock();
745 }
746 
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 	drop_links(nd);
750 	if (!(nd->flags & LOOKUP_RCU)) {
751 		int i;
752 		path_put(&nd->path);
753 		for (i = 0; i < nd->depth; i++)
754 			path_put(&nd->stack[i].link);
755 		if (nd->state & ND_ROOT_GRABBED) {
756 			path_put(&nd->root);
757 			nd->state &= ~ND_ROOT_GRABBED;
758 		}
759 	} else {
760 		leave_rcu(nd);
761 	}
762 	nd->depth = 0;
763 	nd->path.mnt = NULL;
764 	nd->path.dentry = NULL;
765 }
766 
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 	int res = __legitimize_mnt(path->mnt, mseq);
771 	if (unlikely(res)) {
772 		if (res > 0)
773 			path->mnt = NULL;
774 		path->dentry = NULL;
775 		return false;
776 	}
777 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 		path->dentry = NULL;
779 		return false;
780 	}
781 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783 
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 			    struct path *path, unsigned seq)
786 {
787 	return __legitimize_path(path, seq, nd->m_seq);
788 }
789 
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 	int i;
793 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 		drop_links(nd);
795 		nd->depth = 0;
796 		return false;
797 	}
798 	for (i = 0; i < nd->depth; i++) {
799 		struct saved *last = nd->stack + i;
800 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 			drop_links(nd);
802 			nd->depth = i + 1;
803 			return false;
804 		}
805 	}
806 	return true;
807 }
808 
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 		return true;
814 	nd->state |= ND_ROOT_GRABBED;
815 	return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817 
818 /*
819  * Path walking has 2 modes, rcu-walk and ref-walk (see
820  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
821  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822  * normal reference counts on dentries and vfsmounts to transition to ref-walk
823  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
824  * got stuck, so ref-walk may continue from there. If this is not successful
825  * (eg. a seqcount has changed), then failure is returned and it's up to caller
826  * to restart the path walk from the beginning in ref-walk mode.
827  */
828 
829 /**
830  * try_to_unlazy - try to switch to ref-walk mode.
831  * @nd: nameidata pathwalk data
832  * Returns: true on success, false on failure
833  *
834  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835  * for ref-walk mode.
836  * Must be called from rcu-walk context.
837  * Nothing should touch nameidata between try_to_unlazy() failure and
838  * terminate_walk().
839  */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 	struct dentry *parent = nd->path.dentry;
843 
844 	BUG_ON(!(nd->flags & LOOKUP_RCU));
845 
846 	if (unlikely(!legitimize_links(nd)))
847 		goto out1;
848 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 		goto out;
850 	if (unlikely(!legitimize_root(nd)))
851 		goto out;
852 	leave_rcu(nd);
853 	BUG_ON(nd->inode != parent->d_inode);
854 	return true;
855 
856 out1:
857 	nd->path.mnt = NULL;
858 	nd->path.dentry = NULL;
859 out:
860 	leave_rcu(nd);
861 	return false;
862 }
863 
864 /**
865  * try_to_unlazy_next - try to switch to ref-walk mode.
866  * @nd: nameidata pathwalk data
867  * @dentry: next dentry to step into
868  * Returns: true on success, false on failure
869  *
870  * Similar to try_to_unlazy(), but here we have the next dentry already
871  * picked by rcu-walk and want to legitimize that in addition to the current
872  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
873  * Nothing should touch nameidata between try_to_unlazy_next() failure and
874  * terminate_walk().
875  */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 	int res;
879 	BUG_ON(!(nd->flags & LOOKUP_RCU));
880 
881 	if (unlikely(!legitimize_links(nd)))
882 		goto out2;
883 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 	if (unlikely(res)) {
885 		if (res > 0)
886 			goto out2;
887 		goto out1;
888 	}
889 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 		goto out1;
891 
892 	/*
893 	 * We need to move both the parent and the dentry from the RCU domain
894 	 * to be properly refcounted. And the sequence number in the dentry
895 	 * validates *both* dentry counters, since we checked the sequence
896 	 * number of the parent after we got the child sequence number. So we
897 	 * know the parent must still be valid if the child sequence number is
898 	 */
899 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 		goto out;
901 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 		goto out_dput;
903 	/*
904 	 * Sequence counts matched. Now make sure that the root is
905 	 * still valid and get it if required.
906 	 */
907 	if (unlikely(!legitimize_root(nd)))
908 		goto out_dput;
909 	leave_rcu(nd);
910 	return true;
911 
912 out2:
913 	nd->path.mnt = NULL;
914 out1:
915 	nd->path.dentry = NULL;
916 out:
917 	leave_rcu(nd);
918 	return false;
919 out_dput:
920 	leave_rcu(nd);
921 	dput(dentry);
922 	return false;
923 }
924 
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 			       struct dentry *dentry, unsigned int flags)
927 {
928 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 	else
931 		return 1;
932 }
933 
934 /**
935  * complete_walk - successful completion of path walk
936  * @nd:  pointer nameidata
937  *
938  * If we had been in RCU mode, drop out of it and legitimize nd->path.
939  * Revalidate the final result, unless we'd already done that during
940  * the path walk or the filesystem doesn't ask for it.  Return 0 on
941  * success, -error on failure.  In case of failure caller does not
942  * need to drop nd->path.
943  */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 	struct dentry *dentry = nd->path.dentry;
947 	int status;
948 
949 	if (nd->flags & LOOKUP_RCU) {
950 		/*
951 		 * We don't want to zero nd->root for scoped-lookups or
952 		 * externally-managed nd->root.
953 		 */
954 		if (!(nd->state & ND_ROOT_PRESET))
955 			if (!(nd->flags & LOOKUP_IS_SCOPED))
956 				nd->root.mnt = NULL;
957 		nd->flags &= ~LOOKUP_CACHED;
958 		if (!try_to_unlazy(nd))
959 			return -ECHILD;
960 	}
961 
962 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 		/*
964 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 		 * ever step outside the root during lookup" and should already
966 		 * be guaranteed by the rest of namei, we want to avoid a namei
967 		 * BUG resulting in userspace being given a path that was not
968 		 * scoped within the root at some point during the lookup.
969 		 *
970 		 * So, do a final sanity-check to make sure that in the
971 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 		 * we won't silently return an fd completely outside of the
973 		 * requested root to userspace.
974 		 *
975 		 * Userspace could move the path outside the root after this
976 		 * check, but as discussed elsewhere this is not a concern (the
977 		 * resolved file was inside the root at some point).
978 		 */
979 		if (!path_is_under(&nd->path, &nd->root))
980 			return -EXDEV;
981 	}
982 
983 	if (likely(!(nd->state & ND_JUMPED)))
984 		return 0;
985 
986 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 		return 0;
988 
989 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 	if (status > 0)
991 		return 0;
992 
993 	if (!status)
994 		status = -ESTALE;
995 
996 	return status;
997 }
998 
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 	struct fs_struct *fs = current->fs;
1002 
1003 	/*
1004 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 	 * still have to ensure it doesn't happen because it will cause a breakout
1006 	 * from the dirfd.
1007 	 */
1008 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 		return -ENOTRECOVERABLE;
1010 
1011 	if (nd->flags & LOOKUP_RCU) {
1012 		unsigned seq;
1013 
1014 		do {
1015 			seq = read_seqcount_begin(&fs->seq);
1016 			nd->root = fs->root;
1017 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 		} while (read_seqcount_retry(&fs->seq, seq));
1019 	} else {
1020 		get_fs_root(fs, &nd->root);
1021 		nd->state |= ND_ROOT_GRABBED;
1022 	}
1023 	return 0;
1024 }
1025 
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 		return -EXDEV;
1030 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 		/* Absolute path arguments to path_init() are allowed. */
1032 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 			return -EXDEV;
1034 	}
1035 	if (!nd->root.mnt) {
1036 		int error = set_root(nd);
1037 		if (error)
1038 			return error;
1039 	}
1040 	if (nd->flags & LOOKUP_RCU) {
1041 		struct dentry *d;
1042 		nd->path = nd->root;
1043 		d = nd->path.dentry;
1044 		nd->inode = d->d_inode;
1045 		nd->seq = nd->root_seq;
1046 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 			return -ECHILD;
1048 	} else {
1049 		path_put(&nd->path);
1050 		nd->path = nd->root;
1051 		path_get(&nd->path);
1052 		nd->inode = nd->path.dentry->d_inode;
1053 	}
1054 	nd->state |= ND_JUMPED;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Helper to directly jump to a known parsed path from ->get_link,
1060  * caller must have taken a reference to path beforehand.
1061  */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 	int error = -ELOOP;
1065 	struct nameidata *nd = current->nameidata;
1066 
1067 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 		goto err;
1069 
1070 	error = -EXDEV;
1071 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 		if (nd->path.mnt != path->mnt)
1073 			goto err;
1074 	}
1075 	/* Not currently safe for scoped-lookups. */
1076 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 		goto err;
1078 
1079 	path_put(&nd->path);
1080 	nd->path = *path;
1081 	nd->inode = nd->path.dentry->d_inode;
1082 	nd->state |= ND_JUMPED;
1083 	return 0;
1084 
1085 err:
1086 	path_put(path);
1087 	return error;
1088 }
1089 
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 	struct saved *last = nd->stack + --nd->depth;
1093 	do_delayed_call(&last->done);
1094 	if (!(nd->flags & LOOKUP_RCU))
1095 		path_put(&last->link);
1096 }
1097 
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102 
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 	{
1106 		.procname	= "protected_symlinks",
1107 		.data		= &sysctl_protected_symlinks,
1108 		.maxlen		= sizeof(int),
1109 		.mode		= 0644,
1110 		.proc_handler	= proc_dointvec_minmax,
1111 		.extra1		= SYSCTL_ZERO,
1112 		.extra2		= SYSCTL_ONE,
1113 	},
1114 	{
1115 		.procname	= "protected_hardlinks",
1116 		.data		= &sysctl_protected_hardlinks,
1117 		.maxlen		= sizeof(int),
1118 		.mode		= 0644,
1119 		.proc_handler	= proc_dointvec_minmax,
1120 		.extra1		= SYSCTL_ZERO,
1121 		.extra2		= SYSCTL_ONE,
1122 	},
1123 	{
1124 		.procname	= "protected_fifos",
1125 		.data		= &sysctl_protected_fifos,
1126 		.maxlen		= sizeof(int),
1127 		.mode		= 0644,
1128 		.proc_handler	= proc_dointvec_minmax,
1129 		.extra1		= SYSCTL_ZERO,
1130 		.extra2		= SYSCTL_TWO,
1131 	},
1132 	{
1133 		.procname	= "protected_regular",
1134 		.data		= &sysctl_protected_regular,
1135 		.maxlen		= sizeof(int),
1136 		.mode		= 0644,
1137 		.proc_handler	= proc_dointvec_minmax,
1138 		.extra1		= SYSCTL_ZERO,
1139 		.extra2		= SYSCTL_TWO,
1140 	},
1141 };
1142 
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 	register_sysctl_init("fs", namei_sysctls);
1146 	return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149 
1150 #endif /* CONFIG_SYSCTL */
1151 
1152 /**
1153  * may_follow_link - Check symlink following for unsafe situations
1154  * @nd: nameidata pathwalk data
1155  * @inode: Used for idmapping.
1156  *
1157  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159  * in a sticky world-writable directory. This is to protect privileged
1160  * processes from failing races against path names that may change out
1161  * from under them by way of other users creating malicious symlinks.
1162  * It will permit symlinks to be followed only when outside a sticky
1163  * world-writable directory, or when the uid of the symlink and follower
1164  * match, or when the directory owner matches the symlink's owner.
1165  *
1166  * Returns 0 if following the symlink is allowed, -ve on error.
1167  */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 	struct mnt_idmap *idmap;
1171 	vfsuid_t vfsuid;
1172 
1173 	if (!sysctl_protected_symlinks)
1174 		return 0;
1175 
1176 	idmap = mnt_idmap(nd->path.mnt);
1177 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 	/* Allowed if owner and follower match. */
1179 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 		return 0;
1181 
1182 	/* Allowed if parent directory not sticky and world-writable. */
1183 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 		return 0;
1185 
1186 	/* Allowed if parent directory and link owner match. */
1187 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 		return 0;
1189 
1190 	if (nd->flags & LOOKUP_RCU)
1191 		return -ECHILD;
1192 
1193 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 	return -EACCES;
1196 }
1197 
1198 /**
1199  * safe_hardlink_source - Check for safe hardlink conditions
1200  * @idmap: idmap of the mount the inode was found from
1201  * @inode: the source inode to hardlink from
1202  *
1203  * Return false if at least one of the following conditions:
1204  *    - inode is not a regular file
1205  *    - inode is setuid
1206  *    - inode is setgid and group-exec
1207  *    - access failure for read and write
1208  *
1209  * Otherwise returns true.
1210  */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 				 struct inode *inode)
1213 {
1214 	umode_t mode = inode->i_mode;
1215 
1216 	/* Special files should not get pinned to the filesystem. */
1217 	if (!S_ISREG(mode))
1218 		return false;
1219 
1220 	/* Setuid files should not get pinned to the filesystem. */
1221 	if (mode & S_ISUID)
1222 		return false;
1223 
1224 	/* Executable setgid files should not get pinned to the filesystem. */
1225 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 		return false;
1227 
1228 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 /**
1236  * may_linkat - Check permissions for creating a hardlink
1237  * @idmap: idmap of the mount the inode was found from
1238  * @link:  the source to hardlink from
1239  *
1240  * Block hardlink when all of:
1241  *  - sysctl_protected_hardlinks enabled
1242  *  - fsuid does not match inode
1243  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1244  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245  *
1246  * If the inode has been found through an idmapped mount the idmap of
1247  * the vfsmount must be passed through @idmap. This function will then take
1248  * care to map the inode according to @idmap before checking permissions.
1249  * On non-idmapped mounts or if permission checking is to be performed on the
1250  * raw inode simply pass @nop_mnt_idmap.
1251  *
1252  * Returns 0 if successful, -ve on error.
1253  */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 	struct inode *inode = link->dentry->d_inode;
1257 
1258 	/* Inode writeback is not safe when the uid or gid are invalid. */
1259 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 		return -EOVERFLOW;
1262 
1263 	if (!sysctl_protected_hardlinks)
1264 		return 0;
1265 
1266 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 	 * otherwise, it must be a safe source.
1268 	 */
1269 	if (safe_hardlink_source(idmap, inode) ||
1270 	    inode_owner_or_capable(idmap, inode))
1271 		return 0;
1272 
1273 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 	return -EPERM;
1275 }
1276 
1277 /**
1278  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279  *			  should be allowed, or not, on files that already
1280  *			  exist.
1281  * @idmap: idmap of the mount the inode was found from
1282  * @nd: nameidata pathwalk data
1283  * @inode: the inode of the file to open
1284  *
1285  * Block an O_CREAT open of a FIFO (or a regular file) when:
1286  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287  *   - the file already exists
1288  *   - we are in a sticky directory
1289  *   - we don't own the file
1290  *   - the owner of the directory doesn't own the file
1291  *   - the directory is world writable
1292  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293  * the directory doesn't have to be world writable: being group writable will
1294  * be enough.
1295  *
1296  * If the inode has been found through an idmapped mount the idmap of
1297  * the vfsmount must be passed through @idmap. This function will then take
1298  * care to map the inode according to @idmap before checking permissions.
1299  * On non-idmapped mounts or if permission checking is to be performed on the
1300  * raw inode simply pass @nop_mnt_idmap.
1301  *
1302  * Returns 0 if the open is allowed, -ve on error.
1303  */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 				struct inode *const inode)
1306 {
1307 	umode_t dir_mode = nd->dir_mode;
1308 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309 
1310 	if (likely(!(dir_mode & S_ISVTX)))
1311 		return 0;
1312 
1313 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 		return 0;
1315 
1316 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 		return 0;
1318 
1319 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320 
1321 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 		return 0;
1323 
1324 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 		return 0;
1326 
1327 	if (likely(dir_mode & 0002)) {
1328 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 		return -EACCES;
1330 	}
1331 
1332 	if (dir_mode & 0020) {
1333 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 					      "sticky_create_fifo");
1336 			return -EACCES;
1337 		}
1338 
1339 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 					      "sticky_create_regular");
1342 			return -EACCES;
1343 		}
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * follow_up - Find the mountpoint of path's vfsmount
1351  *
1352  * Given a path, find the mountpoint of its source file system.
1353  * Replace @path with the path of the mountpoint in the parent mount.
1354  * Up is towards /.
1355  *
1356  * Return 1 if we went up a level and 0 if we were already at the
1357  * root.
1358  */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 	struct mount *mnt = real_mount(path->mnt);
1362 	struct mount *parent;
1363 	struct dentry *mountpoint;
1364 
1365 	read_seqlock_excl(&mount_lock);
1366 	parent = mnt->mnt_parent;
1367 	if (parent == mnt) {
1368 		read_sequnlock_excl(&mount_lock);
1369 		return 0;
1370 	}
1371 	mntget(&parent->mnt);
1372 	mountpoint = dget(mnt->mnt_mountpoint);
1373 	read_sequnlock_excl(&mount_lock);
1374 	dput(path->dentry);
1375 	path->dentry = mountpoint;
1376 	mntput(path->mnt);
1377 	path->mnt = &parent->mnt;
1378 	return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381 
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 				  struct path *path, unsigned *seqp)
1384 {
1385 	while (mnt_has_parent(m)) {
1386 		struct dentry *mountpoint = m->mnt_mountpoint;
1387 
1388 		m = m->mnt_parent;
1389 		if (unlikely(root->dentry == mountpoint &&
1390 			     root->mnt == &m->mnt))
1391 			break;
1392 		if (mountpoint != m->mnt.mnt_root) {
1393 			path->mnt = &m->mnt;
1394 			path->dentry = mountpoint;
1395 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 			return true;
1397 		}
1398 	}
1399 	return false;
1400 }
1401 
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 			      struct path *path)
1404 {
1405 	bool found;
1406 
1407 	rcu_read_lock();
1408 	while (1) {
1409 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1410 
1411 		found = choose_mountpoint_rcu(m, root, path, &seq);
1412 		if (unlikely(!found)) {
1413 			if (!read_seqretry(&mount_lock, mseq))
1414 				break;
1415 		} else {
1416 			if (likely(__legitimize_path(path, seq, mseq)))
1417 				break;
1418 			rcu_read_unlock();
1419 			path_put(path);
1420 			rcu_read_lock();
1421 		}
1422 	}
1423 	rcu_read_unlock();
1424 	return found;
1425 }
1426 
1427 /*
1428  * Perform an automount
1429  * - return -EISDIR to tell follow_managed() to stop and return the path we
1430  *   were called with.
1431  */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 	struct dentry *dentry = path->dentry;
1435 
1436 	/* We don't want to mount if someone's just doing a stat -
1437 	 * unless they're stat'ing a directory and appended a '/' to
1438 	 * the name.
1439 	 *
1440 	 * We do, however, want to mount if someone wants to open or
1441 	 * create a file of any type under the mountpoint, wants to
1442 	 * traverse through the mountpoint or wants to open the
1443 	 * mounted directory.  Also, autofs may mark negative dentries
1444 	 * as being automount points.  These will need the attentions
1445 	 * of the daemon to instantiate them before they can be used.
1446 	 */
1447 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 	    dentry->d_inode)
1450 		return -EISDIR;
1451 
1452 	if (count && (*count)++ >= MAXSYMLINKS)
1453 		return -ELOOP;
1454 
1455 	return finish_automount(dentry->d_op->d_automount(path), path);
1456 }
1457 
1458 /*
1459  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1460  * dentries are pinned but not locked here, so negative dentry can go
1461  * positive right under us.  Use of smp_load_acquire() provides a barrier
1462  * sufficient for ->d_inode and ->d_flags consistency.
1463  */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1465 			     int *count, unsigned lookup_flags)
1466 {
1467 	struct vfsmount *mnt = path->mnt;
1468 	bool need_mntput = false;
1469 	int ret = 0;
1470 
1471 	while (flags & DCACHE_MANAGED_DENTRY) {
1472 		/* Allow the filesystem to manage the transit without i_mutex
1473 		 * being held. */
1474 		if (flags & DCACHE_MANAGE_TRANSIT) {
1475 			ret = path->dentry->d_op->d_manage(path, false);
1476 			flags = smp_load_acquire(&path->dentry->d_flags);
1477 			if (ret < 0)
1478 				break;
1479 		}
1480 
1481 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1482 			struct vfsmount *mounted = lookup_mnt(path);
1483 			if (mounted) {		// ... in our namespace
1484 				dput(path->dentry);
1485 				if (need_mntput)
1486 					mntput(path->mnt);
1487 				path->mnt = mounted;
1488 				path->dentry = dget(mounted->mnt_root);
1489 				// here we know it's positive
1490 				flags = path->dentry->d_flags;
1491 				need_mntput = true;
1492 				continue;
1493 			}
1494 		}
1495 
1496 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1497 			break;
1498 
1499 		// uncovered automount point
1500 		ret = follow_automount(path, count, lookup_flags);
1501 		flags = smp_load_acquire(&path->dentry->d_flags);
1502 		if (ret < 0)
1503 			break;
1504 	}
1505 
1506 	if (ret == -EISDIR)
1507 		ret = 0;
1508 	// possible if you race with several mount --move
1509 	if (need_mntput && path->mnt == mnt)
1510 		mntput(path->mnt);
1511 	if (!ret && unlikely(d_flags_negative(flags)))
1512 		ret = -ENOENT;
1513 	*jumped = need_mntput;
1514 	return ret;
1515 }
1516 
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1517 static inline int traverse_mounts(struct path *path, bool *jumped,
1518 				  int *count, unsigned lookup_flags)
1519 {
1520 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521 
1522 	/* fastpath */
1523 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1524 		*jumped = false;
1525 		if (unlikely(d_flags_negative(flags)))
1526 			return -ENOENT;
1527 		return 0;
1528 	}
1529 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1530 }
1531 
follow_down_one(struct path * path)1532 int follow_down_one(struct path *path)
1533 {
1534 	struct vfsmount *mounted;
1535 
1536 	mounted = lookup_mnt(path);
1537 	if (mounted) {
1538 		dput(path->dentry);
1539 		mntput(path->mnt);
1540 		path->mnt = mounted;
1541 		path->dentry = dget(mounted->mnt_root);
1542 		return 1;
1543 	}
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL(follow_down_one);
1547 
1548 /*
1549  * Follow down to the covering mount currently visible to userspace.  At each
1550  * point, the filesystem owning that dentry may be queried as to whether the
1551  * caller is permitted to proceed or not.
1552  */
follow_down(struct path * path,unsigned int flags)1553 int follow_down(struct path *path, unsigned int flags)
1554 {
1555 	struct vfsmount *mnt = path->mnt;
1556 	bool jumped;
1557 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1558 
1559 	if (path->mnt != mnt)
1560 		mntput(mnt);
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(follow_down);
1564 
1565 /*
1566  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1567  * we meet a managed dentry that would need blocking.
1568  */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 {
1571 	struct dentry *dentry = path->dentry;
1572 	unsigned int flags = dentry->d_flags;
1573 
1574 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1575 		return true;
1576 
1577 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1578 		return false;
1579 
1580 	for (;;) {
1581 		/*
1582 		 * Don't forget we might have a non-mountpoint managed dentry
1583 		 * that wants to block transit.
1584 		 */
1585 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1586 			int res = dentry->d_op->d_manage(path, true);
1587 			if (res)
1588 				return res == -EISDIR;
1589 			flags = dentry->d_flags;
1590 		}
1591 
1592 		if (flags & DCACHE_MOUNTED) {
1593 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1594 			if (mounted) {
1595 				path->mnt = &mounted->mnt;
1596 				dentry = path->dentry = mounted->mnt.mnt_root;
1597 				nd->state |= ND_JUMPED;
1598 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1599 				flags = dentry->d_flags;
1600 				// makes sure that non-RCU pathwalk could reach
1601 				// this state.
1602 				if (read_seqretry(&mount_lock, nd->m_seq))
1603 					return false;
1604 				continue;
1605 			}
1606 			if (read_seqretry(&mount_lock, nd->m_seq))
1607 				return false;
1608 		}
1609 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1610 	}
1611 }
1612 
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1614 			  struct path *path)
1615 {
1616 	bool jumped;
1617 	int ret;
1618 
1619 	path->mnt = nd->path.mnt;
1620 	path->dentry = dentry;
1621 	if (nd->flags & LOOKUP_RCU) {
1622 		unsigned int seq = nd->next_seq;
1623 		if (likely(__follow_mount_rcu(nd, path)))
1624 			return 0;
1625 		// *path and nd->next_seq might've been clobbered
1626 		path->mnt = nd->path.mnt;
1627 		path->dentry = dentry;
1628 		nd->next_seq = seq;
1629 		if (!try_to_unlazy_next(nd, dentry))
1630 			return -ECHILD;
1631 	}
1632 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1633 	if (jumped) {
1634 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1635 			ret = -EXDEV;
1636 		else
1637 			nd->state |= ND_JUMPED;
1638 	}
1639 	if (unlikely(ret)) {
1640 		dput(path->dentry);
1641 		if (path->mnt != nd->path.mnt)
1642 			mntput(path->mnt);
1643 	}
1644 	return ret;
1645 }
1646 
1647 /*
1648  * This looks up the name in dcache and possibly revalidates the found dentry.
1649  * NULL is returned if the dentry does not exist in the cache.
1650  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1651 static struct dentry *lookup_dcache(const struct qstr *name,
1652 				    struct dentry *dir,
1653 				    unsigned int flags)
1654 {
1655 	struct dentry *dentry = d_lookup(dir, name);
1656 	if (dentry) {
1657 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1658 		if (unlikely(error <= 0)) {
1659 			if (!error)
1660 				d_invalidate(dentry);
1661 			dput(dentry);
1662 			return ERR_PTR(error);
1663 		}
1664 	}
1665 	return dentry;
1666 }
1667 
1668 /*
1669  * Parent directory has inode locked exclusive.  This is one
1670  * and only case when ->lookup() gets called on non in-lookup
1671  * dentries - as the matter of fact, this only gets called
1672  * when directory is guaranteed to have no in-lookup children
1673  * at all.
1674  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1675  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1676  */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1677 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1678 				    struct dentry *base,
1679 				    unsigned int flags)
1680 {
1681 	struct dentry *dentry = lookup_dcache(name, base, flags);
1682 	struct dentry *old;
1683 	struct inode *dir = base->d_inode;
1684 
1685 	if (dentry)
1686 		goto found;
1687 
1688 	/* Don't create child dentry for a dead directory. */
1689 	if (unlikely(IS_DEADDIR(dir)))
1690 		return ERR_PTR(-ENOENT);
1691 
1692 	dentry = d_alloc(base, name);
1693 	if (unlikely(!dentry))
1694 		return ERR_PTR(-ENOMEM);
1695 
1696 	old = dir->i_op->lookup(dir, dentry, flags);
1697 	if (unlikely(old)) {
1698 		dput(dentry);
1699 		dentry = old;
1700 	}
1701 found:
1702 	if (IS_ERR(dentry))
1703 		return dentry;
1704 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1705 		dput(dentry);
1706 		return ERR_PTR(-ENOENT);
1707 	}
1708 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1709 		dput(dentry);
1710 		return ERR_PTR(-EEXIST);
1711 	}
1712 	return dentry;
1713 }
1714 EXPORT_SYMBOL(lookup_one_qstr_excl);
1715 
1716 /**
1717  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1718  * @nd: current nameidata
1719  *
1720  * Do a fast, but racy lookup in the dcache for the given dentry, and
1721  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1722  * found. On error, an ERR_PTR will be returned.
1723  *
1724  * If this function returns a valid dentry and the walk is no longer
1725  * lazy, the dentry will carry a reference that must later be put. If
1726  * RCU mode is still in force, then this is not the case and the dentry
1727  * must be legitimized before use. If this returns NULL, then the walk
1728  * will no longer be in RCU mode.
1729  */
lookup_fast(struct nameidata * nd)1730 static struct dentry *lookup_fast(struct nameidata *nd)
1731 {
1732 	struct dentry *dentry, *parent = nd->path.dentry;
1733 	int status = 1;
1734 
1735 	/*
1736 	 * Rename seqlock is not required here because in the off chance
1737 	 * of a false negative due to a concurrent rename, the caller is
1738 	 * going to fall back to non-racy lookup.
1739 	 */
1740 	if (nd->flags & LOOKUP_RCU) {
1741 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1742 		if (unlikely(!dentry)) {
1743 			if (!try_to_unlazy(nd))
1744 				return ERR_PTR(-ECHILD);
1745 			return NULL;
1746 		}
1747 
1748 		/*
1749 		 * This sequence count validates that the parent had no
1750 		 * changes while we did the lookup of the dentry above.
1751 		 */
1752 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1753 			return ERR_PTR(-ECHILD);
1754 
1755 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1756 		if (likely(status > 0))
1757 			return dentry;
1758 		if (!try_to_unlazy_next(nd, dentry))
1759 			return ERR_PTR(-ECHILD);
1760 		if (status == -ECHILD)
1761 			/* we'd been told to redo it in non-rcu mode */
1762 			status = d_revalidate(nd->inode, &nd->last,
1763 					      dentry, nd->flags);
1764 	} else {
1765 		dentry = __d_lookup(parent, &nd->last);
1766 		if (unlikely(!dentry))
1767 			return NULL;
1768 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1769 	}
1770 	if (unlikely(status <= 0)) {
1771 		if (!status)
1772 			d_invalidate(dentry);
1773 		dput(dentry);
1774 		return ERR_PTR(status);
1775 	}
1776 	return dentry;
1777 }
1778 
1779 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1780 static struct dentry *__lookup_slow(const struct qstr *name,
1781 				    struct dentry *dir,
1782 				    unsigned int flags)
1783 {
1784 	struct dentry *dentry, *old;
1785 	struct inode *inode = dir->d_inode;
1786 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1787 
1788 	/* Don't go there if it's already dead */
1789 	if (unlikely(IS_DEADDIR(inode)))
1790 		return ERR_PTR(-ENOENT);
1791 again:
1792 	dentry = d_alloc_parallel(dir, name, &wq);
1793 	if (IS_ERR(dentry))
1794 		return dentry;
1795 	if (unlikely(!d_in_lookup(dentry))) {
1796 		int error = d_revalidate(inode, name, dentry, flags);
1797 		if (unlikely(error <= 0)) {
1798 			if (!error) {
1799 				d_invalidate(dentry);
1800 				dput(dentry);
1801 				goto again;
1802 			}
1803 			dput(dentry);
1804 			dentry = ERR_PTR(error);
1805 		}
1806 	} else {
1807 		old = inode->i_op->lookup(inode, dentry, flags);
1808 		d_lookup_done(dentry);
1809 		if (unlikely(old)) {
1810 			dput(dentry);
1811 			dentry = old;
1812 		}
1813 	}
1814 	return dentry;
1815 }
1816 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1817 static struct dentry *lookup_slow(const struct qstr *name,
1818 				  struct dentry *dir,
1819 				  unsigned int flags)
1820 {
1821 	struct inode *inode = dir->d_inode;
1822 	struct dentry *res;
1823 	inode_lock_shared(inode);
1824 	res = __lookup_slow(name, dir, flags);
1825 	inode_unlock_shared(inode);
1826 	return res;
1827 }
1828 
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1829 static inline int may_lookup(struct mnt_idmap *idmap,
1830 			     struct nameidata *restrict nd)
1831 {
1832 	int err, mask;
1833 
1834 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1835 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1836 	if (likely(!err))
1837 		return 0;
1838 
1839 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1840 	if (!(nd->flags & LOOKUP_RCU))
1841 		return err;
1842 
1843 	// Drop out of RCU mode to make sure it wasn't transient
1844 	if (!try_to_unlazy(nd))
1845 		return -ECHILD;	// redo it all non-lazy
1846 
1847 	if (err != -ECHILD)	// hard error
1848 		return err;
1849 
1850 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1851 }
1852 
reserve_stack(struct nameidata * nd,struct path * link)1853 static int reserve_stack(struct nameidata *nd, struct path *link)
1854 {
1855 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1856 		return -ELOOP;
1857 
1858 	if (likely(nd->depth != EMBEDDED_LEVELS))
1859 		return 0;
1860 	if (likely(nd->stack != nd->internal))
1861 		return 0;
1862 	if (likely(nd_alloc_stack(nd)))
1863 		return 0;
1864 
1865 	if (nd->flags & LOOKUP_RCU) {
1866 		// we need to grab link before we do unlazy.  And we can't skip
1867 		// unlazy even if we fail to grab the link - cleanup needs it
1868 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1869 
1870 		if (!try_to_unlazy(nd) || !grabbed_link)
1871 			return -ECHILD;
1872 
1873 		if (nd_alloc_stack(nd))
1874 			return 0;
1875 	}
1876 	return -ENOMEM;
1877 }
1878 
1879 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1880 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1881 static const char *pick_link(struct nameidata *nd, struct path *link,
1882 		     struct inode *inode, int flags)
1883 {
1884 	struct saved *last;
1885 	const char *res;
1886 	int error = reserve_stack(nd, link);
1887 
1888 	if (unlikely(error)) {
1889 		if (!(nd->flags & LOOKUP_RCU))
1890 			path_put(link);
1891 		return ERR_PTR(error);
1892 	}
1893 	last = nd->stack + nd->depth++;
1894 	last->link = *link;
1895 	clear_delayed_call(&last->done);
1896 	last->seq = nd->next_seq;
1897 
1898 	if (flags & WALK_TRAILING) {
1899 		error = may_follow_link(nd, inode);
1900 		if (unlikely(error))
1901 			return ERR_PTR(error);
1902 	}
1903 
1904 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1905 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1906 		return ERR_PTR(-ELOOP);
1907 
1908 	if (!(nd->flags & LOOKUP_RCU)) {
1909 		touch_atime(&last->link);
1910 		cond_resched();
1911 	} else if (atime_needs_update(&last->link, inode)) {
1912 		if (!try_to_unlazy(nd))
1913 			return ERR_PTR(-ECHILD);
1914 		touch_atime(&last->link);
1915 	}
1916 
1917 	error = security_inode_follow_link(link->dentry, inode,
1918 					   nd->flags & LOOKUP_RCU);
1919 	if (unlikely(error))
1920 		return ERR_PTR(error);
1921 
1922 	res = READ_ONCE(inode->i_link);
1923 	if (!res) {
1924 		const char * (*get)(struct dentry *, struct inode *,
1925 				struct delayed_call *);
1926 		get = inode->i_op->get_link;
1927 		if (nd->flags & LOOKUP_RCU) {
1928 			res = get(NULL, inode, &last->done);
1929 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1930 				res = get(link->dentry, inode, &last->done);
1931 		} else {
1932 			res = get(link->dentry, inode, &last->done);
1933 		}
1934 		if (!res)
1935 			goto all_done;
1936 		if (IS_ERR(res))
1937 			return res;
1938 	}
1939 	if (*res == '/') {
1940 		error = nd_jump_root(nd);
1941 		if (unlikely(error))
1942 			return ERR_PTR(error);
1943 		while (unlikely(*++res == '/'))
1944 			;
1945 	}
1946 	if (*res)
1947 		return res;
1948 all_done: // pure jump
1949 	put_link(nd);
1950 	return NULL;
1951 }
1952 
1953 /*
1954  * Do we need to follow links? We _really_ want to be able
1955  * to do this check without having to look at inode->i_op,
1956  * so we keep a cache of "no, this doesn't need follow_link"
1957  * for the common case.
1958  *
1959  * NOTE: dentry must be what nd->next_seq had been sampled from.
1960  */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1961 static const char *step_into(struct nameidata *nd, int flags,
1962 		     struct dentry *dentry)
1963 {
1964 	struct path path;
1965 	struct inode *inode;
1966 	int err = handle_mounts(nd, dentry, &path);
1967 
1968 	if (err < 0)
1969 		return ERR_PTR(err);
1970 	inode = path.dentry->d_inode;
1971 	if (likely(!d_is_symlink(path.dentry)) ||
1972 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1973 	   (flags & WALK_NOFOLLOW)) {
1974 		/* not a symlink or should not follow */
1975 		if (nd->flags & LOOKUP_RCU) {
1976 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1977 				return ERR_PTR(-ECHILD);
1978 			if (unlikely(!inode))
1979 				return ERR_PTR(-ENOENT);
1980 		} else {
1981 			dput(nd->path.dentry);
1982 			if (nd->path.mnt != path.mnt)
1983 				mntput(nd->path.mnt);
1984 		}
1985 		nd->path = path;
1986 		nd->inode = inode;
1987 		nd->seq = nd->next_seq;
1988 		return NULL;
1989 	}
1990 	if (nd->flags & LOOKUP_RCU) {
1991 		/* make sure that d_is_symlink above matches inode */
1992 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1993 			return ERR_PTR(-ECHILD);
1994 	} else {
1995 		if (path.mnt == nd->path.mnt)
1996 			mntget(path.mnt);
1997 	}
1998 	return pick_link(nd, &path, inode, flags);
1999 }
2000 
follow_dotdot_rcu(struct nameidata * nd)2001 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2002 {
2003 	struct dentry *parent, *old;
2004 
2005 	if (path_equal(&nd->path, &nd->root))
2006 		goto in_root;
2007 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2008 		struct path path;
2009 		unsigned seq;
2010 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2011 					   &nd->root, &path, &seq))
2012 			goto in_root;
2013 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2014 			return ERR_PTR(-ECHILD);
2015 		nd->path = path;
2016 		nd->inode = path.dentry->d_inode;
2017 		nd->seq = seq;
2018 		// makes sure that non-RCU pathwalk could reach this state
2019 		if (read_seqretry(&mount_lock, nd->m_seq))
2020 			return ERR_PTR(-ECHILD);
2021 		/* we know that mountpoint was pinned */
2022 	}
2023 	old = nd->path.dentry;
2024 	parent = old->d_parent;
2025 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2026 	// makes sure that non-RCU pathwalk could reach this state
2027 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2028 		return ERR_PTR(-ECHILD);
2029 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2030 		return ERR_PTR(-ECHILD);
2031 	return parent;
2032 in_root:
2033 	if (read_seqretry(&mount_lock, nd->m_seq))
2034 		return ERR_PTR(-ECHILD);
2035 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2036 		return ERR_PTR(-ECHILD);
2037 	nd->next_seq = nd->seq;
2038 	return nd->path.dentry;
2039 }
2040 
follow_dotdot(struct nameidata * nd)2041 static struct dentry *follow_dotdot(struct nameidata *nd)
2042 {
2043 	struct dentry *parent;
2044 
2045 	if (path_equal(&nd->path, &nd->root))
2046 		goto in_root;
2047 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2048 		struct path path;
2049 
2050 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2051 				       &nd->root, &path))
2052 			goto in_root;
2053 		path_put(&nd->path);
2054 		nd->path = path;
2055 		nd->inode = path.dentry->d_inode;
2056 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2057 			return ERR_PTR(-EXDEV);
2058 	}
2059 	/* rare case of legitimate dget_parent()... */
2060 	parent = dget_parent(nd->path.dentry);
2061 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2062 		dput(parent);
2063 		return ERR_PTR(-ENOENT);
2064 	}
2065 	return parent;
2066 
2067 in_root:
2068 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2069 		return ERR_PTR(-EXDEV);
2070 	return dget(nd->path.dentry);
2071 }
2072 
handle_dots(struct nameidata * nd,int type)2073 static const char *handle_dots(struct nameidata *nd, int type)
2074 {
2075 	if (type == LAST_DOTDOT) {
2076 		const char *error = NULL;
2077 		struct dentry *parent;
2078 
2079 		if (!nd->root.mnt) {
2080 			error = ERR_PTR(set_root(nd));
2081 			if (error)
2082 				return error;
2083 		}
2084 		if (nd->flags & LOOKUP_RCU)
2085 			parent = follow_dotdot_rcu(nd);
2086 		else
2087 			parent = follow_dotdot(nd);
2088 		if (IS_ERR(parent))
2089 			return ERR_CAST(parent);
2090 		error = step_into(nd, WALK_NOFOLLOW, parent);
2091 		if (unlikely(error))
2092 			return error;
2093 
2094 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2095 			/*
2096 			 * If there was a racing rename or mount along our
2097 			 * path, then we can't be sure that ".." hasn't jumped
2098 			 * above nd->root (and so userspace should retry or use
2099 			 * some fallback).
2100 			 */
2101 			smp_rmb();
2102 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2103 				return ERR_PTR(-EAGAIN);
2104 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2105 				return ERR_PTR(-EAGAIN);
2106 		}
2107 	}
2108 	return NULL;
2109 }
2110 
walk_component(struct nameidata * nd,int flags)2111 static const char *walk_component(struct nameidata *nd, int flags)
2112 {
2113 	struct dentry *dentry;
2114 	/*
2115 	 * "." and ".." are special - ".." especially so because it has
2116 	 * to be able to know about the current root directory and
2117 	 * parent relationships.
2118 	 */
2119 	if (unlikely(nd->last_type != LAST_NORM)) {
2120 		if (!(flags & WALK_MORE) && nd->depth)
2121 			put_link(nd);
2122 		return handle_dots(nd, nd->last_type);
2123 	}
2124 	dentry = lookup_fast(nd);
2125 	if (IS_ERR(dentry))
2126 		return ERR_CAST(dentry);
2127 	if (unlikely(!dentry)) {
2128 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2129 		if (IS_ERR(dentry))
2130 			return ERR_CAST(dentry);
2131 	}
2132 	if (!(flags & WALK_MORE) && nd->depth)
2133 		put_link(nd);
2134 	return step_into(nd, flags, dentry);
2135 }
2136 
2137 /*
2138  * We can do the critical dentry name comparison and hashing
2139  * operations one word at a time, but we are limited to:
2140  *
2141  * - Architectures with fast unaligned word accesses. We could
2142  *   do a "get_unaligned()" if this helps and is sufficiently
2143  *   fast.
2144  *
2145  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2146  *   do not trap on the (extremely unlikely) case of a page
2147  *   crossing operation.
2148  *
2149  * - Furthermore, we need an efficient 64-bit compile for the
2150  *   64-bit case in order to generate the "number of bytes in
2151  *   the final mask". Again, that could be replaced with a
2152  *   efficient population count instruction or similar.
2153  */
2154 #ifdef CONFIG_DCACHE_WORD_ACCESS
2155 
2156 #include <asm/word-at-a-time.h>
2157 
2158 #ifdef HASH_MIX
2159 
2160 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2161 
2162 #elif defined(CONFIG_64BIT)
2163 /*
2164  * Register pressure in the mixing function is an issue, particularly
2165  * on 32-bit x86, but almost any function requires one state value and
2166  * one temporary.  Instead, use a function designed for two state values
2167  * and no temporaries.
2168  *
2169  * This function cannot create a collision in only two iterations, so
2170  * we have two iterations to achieve avalanche.  In those two iterations,
2171  * we have six layers of mixing, which is enough to spread one bit's
2172  * influence out to 2^6 = 64 state bits.
2173  *
2174  * Rotate constants are scored by considering either 64 one-bit input
2175  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2176  * probability of that delta causing a change to each of the 128 output
2177  * bits, using a sample of random initial states.
2178  *
2179  * The Shannon entropy of the computed probabilities is then summed
2180  * to produce a score.  Ideally, any input change has a 50% chance of
2181  * toggling any given output bit.
2182  *
2183  * Mixing scores (in bits) for (12,45):
2184  * Input delta: 1-bit      2-bit
2185  * 1 round:     713.3    42542.6
2186  * 2 rounds:   2753.7   140389.8
2187  * 3 rounds:   5954.1   233458.2
2188  * 4 rounds:   7862.6   256672.2
2189  * Perfect:    8192     258048
2190  *            (64*128) (64*63/2 * 128)
2191  */
2192 #define HASH_MIX(x, y, a)	\
2193 	(	x ^= (a),	\
2194 	y ^= x,	x = rol64(x,12),\
2195 	x += y,	y = rol64(y,45),\
2196 	y *= 9			)
2197 
2198 /*
2199  * Fold two longs into one 32-bit hash value.  This must be fast, but
2200  * latency isn't quite as critical, as there is a fair bit of additional
2201  * work done before the hash value is used.
2202  */
fold_hash(unsigned long x,unsigned long y)2203 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2204 {
2205 	y ^= x * GOLDEN_RATIO_64;
2206 	y *= GOLDEN_RATIO_64;
2207 	return y >> 32;
2208 }
2209 
2210 #else	/* 32-bit case */
2211 
2212 /*
2213  * Mixing scores (in bits) for (7,20):
2214  * Input delta: 1-bit      2-bit
2215  * 1 round:     330.3     9201.6
2216  * 2 rounds:   1246.4    25475.4
2217  * 3 rounds:   1907.1    31295.1
2218  * 4 rounds:   2042.3    31718.6
2219  * Perfect:    2048      31744
2220  *            (32*64)   (32*31/2 * 64)
2221  */
2222 #define HASH_MIX(x, y, a)	\
2223 	(	x ^= (a),	\
2224 	y ^= x,	x = rol32(x, 7),\
2225 	x += y,	y = rol32(y,20),\
2226 	y *= 9			)
2227 
fold_hash(unsigned long x,unsigned long y)2228 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2229 {
2230 	/* Use arch-optimized multiply if one exists */
2231 	return __hash_32(y ^ __hash_32(x));
2232 }
2233 
2234 #endif
2235 
2236 /*
2237  * Return the hash of a string of known length.  This is carfully
2238  * designed to match hash_name(), which is the more critical function.
2239  * In particular, we must end by hashing a final word containing 0..7
2240  * payload bytes, to match the way that hash_name() iterates until it
2241  * finds the delimiter after the name.
2242  */
full_name_hash(const void * salt,const char * name,unsigned int len)2243 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2244 {
2245 	unsigned long a, x = 0, y = (unsigned long)salt;
2246 
2247 	for (;;) {
2248 		if (!len)
2249 			goto done;
2250 		a = load_unaligned_zeropad(name);
2251 		if (len < sizeof(unsigned long))
2252 			break;
2253 		HASH_MIX(x, y, a);
2254 		name += sizeof(unsigned long);
2255 		len -= sizeof(unsigned long);
2256 	}
2257 	x ^= a & bytemask_from_count(len);
2258 done:
2259 	return fold_hash(x, y);
2260 }
2261 EXPORT_SYMBOL(full_name_hash);
2262 
2263 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2264 u64 hashlen_string(const void *salt, const char *name)
2265 {
2266 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2267 	unsigned long adata, mask, len;
2268 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2269 
2270 	len = 0;
2271 	goto inside;
2272 
2273 	do {
2274 		HASH_MIX(x, y, a);
2275 		len += sizeof(unsigned long);
2276 inside:
2277 		a = load_unaligned_zeropad(name+len);
2278 	} while (!has_zero(a, &adata, &constants));
2279 
2280 	adata = prep_zero_mask(a, adata, &constants);
2281 	mask = create_zero_mask(adata);
2282 	x ^= a & zero_bytemask(mask);
2283 
2284 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2285 }
2286 EXPORT_SYMBOL(hashlen_string);
2287 
2288 /*
2289  * Calculate the length and hash of the path component, and
2290  * return the length as the result.
2291  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2292 static inline const char *hash_name(struct nameidata *nd,
2293 				    const char *name,
2294 				    unsigned long *lastword)
2295 {
2296 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2297 	unsigned long adata, bdata, mask, len;
2298 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2299 
2300 	/*
2301 	 * The first iteration is special, because it can result in
2302 	 * '.' and '..' and has no mixing other than the final fold.
2303 	 */
2304 	a = load_unaligned_zeropad(name);
2305 	b = a ^ REPEAT_BYTE('/');
2306 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2307 		adata = prep_zero_mask(a, adata, &constants);
2308 		bdata = prep_zero_mask(b, bdata, &constants);
2309 		mask = create_zero_mask(adata | bdata);
2310 		a &= zero_bytemask(mask);
2311 		*lastword = a;
2312 		len = find_zero(mask);
2313 		nd->last.hash = fold_hash(a, y);
2314 		nd->last.len = len;
2315 		return name + len;
2316 	}
2317 
2318 	len = 0;
2319 	x = 0;
2320 	do {
2321 		HASH_MIX(x, y, a);
2322 		len += sizeof(unsigned long);
2323 		a = load_unaligned_zeropad(name+len);
2324 		b = a ^ REPEAT_BYTE('/');
2325 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2326 
2327 	adata = prep_zero_mask(a, adata, &constants);
2328 	bdata = prep_zero_mask(b, bdata, &constants);
2329 	mask = create_zero_mask(adata | bdata);
2330 	a &= zero_bytemask(mask);
2331 	x ^= a;
2332 	len += find_zero(mask);
2333 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2334 
2335 	nd->last.hash = fold_hash(x, y);
2336 	nd->last.len = len;
2337 	return name + len;
2338 }
2339 
2340 /*
2341  * Note that the 'last' word is always zero-masked, but
2342  * was loaded as a possibly big-endian word.
2343  */
2344 #ifdef __BIG_ENDIAN
2345   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2346   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2347 #endif
2348 
2349 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2350 
2351 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2352 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2353 {
2354 	unsigned long hash = init_name_hash(salt);
2355 	while (len--)
2356 		hash = partial_name_hash((unsigned char)*name++, hash);
2357 	return end_name_hash(hash);
2358 }
2359 EXPORT_SYMBOL(full_name_hash);
2360 
2361 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2362 u64 hashlen_string(const void *salt, const char *name)
2363 {
2364 	unsigned long hash = init_name_hash(salt);
2365 	unsigned long len = 0, c;
2366 
2367 	c = (unsigned char)*name;
2368 	while (c) {
2369 		len++;
2370 		hash = partial_name_hash(c, hash);
2371 		c = (unsigned char)name[len];
2372 	}
2373 	return hashlen_create(end_name_hash(hash), len);
2374 }
2375 EXPORT_SYMBOL(hashlen_string);
2376 
2377 /*
2378  * We know there's a real path component here of at least
2379  * one character.
2380  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2381 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2382 {
2383 	unsigned long hash = init_name_hash(nd->path.dentry);
2384 	unsigned long len = 0, c, last = 0;
2385 
2386 	c = (unsigned char)*name;
2387 	do {
2388 		last = (last << 8) + c;
2389 		len++;
2390 		hash = partial_name_hash(c, hash);
2391 		c = (unsigned char)name[len];
2392 	} while (c && c != '/');
2393 
2394 	// This is reliable for DOT or DOTDOT, since the component
2395 	// cannot contain NUL characters - top bits being zero means
2396 	// we cannot have had any other pathnames.
2397 	*lastword = last;
2398 	nd->last.hash = end_name_hash(hash);
2399 	nd->last.len = len;
2400 	return name + len;
2401 }
2402 
2403 #endif
2404 
2405 #ifndef LAST_WORD_IS_DOT
2406   #define LAST_WORD_IS_DOT	0x2e
2407   #define LAST_WORD_IS_DOTDOT	0x2e2e
2408 #endif
2409 
2410 /*
2411  * Name resolution.
2412  * This is the basic name resolution function, turning a pathname into
2413  * the final dentry. We expect 'base' to be positive and a directory.
2414  *
2415  * Returns 0 and nd will have valid dentry and mnt on success.
2416  * Returns error and drops reference to input namei data on failure.
2417  */
link_path_walk(const char * name,struct nameidata * nd)2418 static int link_path_walk(const char *name, struct nameidata *nd)
2419 {
2420 	int depth = 0; // depth <= nd->depth
2421 	int err;
2422 
2423 	nd->last_type = LAST_ROOT;
2424 	nd->flags |= LOOKUP_PARENT;
2425 	if (IS_ERR(name))
2426 		return PTR_ERR(name);
2427 	while (*name=='/')
2428 		name++;
2429 	if (!*name) {
2430 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2431 		return 0;
2432 	}
2433 
2434 	/* At this point we know we have a real path component. */
2435 	for(;;) {
2436 		struct mnt_idmap *idmap;
2437 		const char *link;
2438 		unsigned long lastword;
2439 
2440 		idmap = mnt_idmap(nd->path.mnt);
2441 		err = may_lookup(idmap, nd);
2442 		if (err)
2443 			return err;
2444 
2445 		nd->last.name = name;
2446 		name = hash_name(nd, name, &lastword);
2447 
2448 		switch(lastword) {
2449 		case LAST_WORD_IS_DOTDOT:
2450 			nd->last_type = LAST_DOTDOT;
2451 			nd->state |= ND_JUMPED;
2452 			break;
2453 
2454 		case LAST_WORD_IS_DOT:
2455 			nd->last_type = LAST_DOT;
2456 			break;
2457 
2458 		default:
2459 			nd->last_type = LAST_NORM;
2460 			nd->state &= ~ND_JUMPED;
2461 
2462 			struct dentry *parent = nd->path.dentry;
2463 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2464 				err = parent->d_op->d_hash(parent, &nd->last);
2465 				if (err < 0)
2466 					return err;
2467 			}
2468 		}
2469 
2470 		if (!*name)
2471 			goto OK;
2472 		/*
2473 		 * If it wasn't NUL, we know it was '/'. Skip that
2474 		 * slash, and continue until no more slashes.
2475 		 */
2476 		do {
2477 			name++;
2478 		} while (unlikely(*name == '/'));
2479 		if (unlikely(!*name)) {
2480 OK:
2481 			/* pathname or trailing symlink, done */
2482 			if (!depth) {
2483 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2484 				nd->dir_mode = nd->inode->i_mode;
2485 				nd->flags &= ~LOOKUP_PARENT;
2486 				return 0;
2487 			}
2488 			/* last component of nested symlink */
2489 			name = nd->stack[--depth].name;
2490 			link = walk_component(nd, 0);
2491 		} else {
2492 			/* not the last component */
2493 			link = walk_component(nd, WALK_MORE);
2494 		}
2495 		if (unlikely(link)) {
2496 			if (IS_ERR(link))
2497 				return PTR_ERR(link);
2498 			/* a symlink to follow */
2499 			nd->stack[depth++].name = name;
2500 			name = link;
2501 			continue;
2502 		}
2503 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2504 			if (nd->flags & LOOKUP_RCU) {
2505 				if (!try_to_unlazy(nd))
2506 					return -ECHILD;
2507 			}
2508 			return -ENOTDIR;
2509 		}
2510 	}
2511 }
2512 
2513 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2514 static const char *path_init(struct nameidata *nd, unsigned flags)
2515 {
2516 	int error;
2517 	const char *s = nd->pathname;
2518 
2519 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2520 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2521 		return ERR_PTR(-EAGAIN);
2522 
2523 	if (!*s)
2524 		flags &= ~LOOKUP_RCU;
2525 	if (flags & LOOKUP_RCU)
2526 		rcu_read_lock();
2527 	else
2528 		nd->seq = nd->next_seq = 0;
2529 
2530 	nd->flags = flags;
2531 	nd->state |= ND_JUMPED;
2532 
2533 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2534 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2535 	smp_rmb();
2536 
2537 	if (nd->state & ND_ROOT_PRESET) {
2538 		struct dentry *root = nd->root.dentry;
2539 		struct inode *inode = root->d_inode;
2540 		if (*s && unlikely(!d_can_lookup(root)))
2541 			return ERR_PTR(-ENOTDIR);
2542 		nd->path = nd->root;
2543 		nd->inode = inode;
2544 		if (flags & LOOKUP_RCU) {
2545 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2546 			nd->root_seq = nd->seq;
2547 		} else {
2548 			path_get(&nd->path);
2549 		}
2550 		return s;
2551 	}
2552 
2553 	nd->root.mnt = NULL;
2554 
2555 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2556 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2557 		error = nd_jump_root(nd);
2558 		if (unlikely(error))
2559 			return ERR_PTR(error);
2560 		return s;
2561 	}
2562 
2563 	/* Relative pathname -- get the starting-point it is relative to. */
2564 	if (nd->dfd == AT_FDCWD) {
2565 		if (flags & LOOKUP_RCU) {
2566 			struct fs_struct *fs = current->fs;
2567 			unsigned seq;
2568 
2569 			do {
2570 				seq = read_seqcount_begin(&fs->seq);
2571 				nd->path = fs->pwd;
2572 				nd->inode = nd->path.dentry->d_inode;
2573 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2574 			} while (read_seqcount_retry(&fs->seq, seq));
2575 		} else {
2576 			get_fs_pwd(current->fs, &nd->path);
2577 			nd->inode = nd->path.dentry->d_inode;
2578 		}
2579 	} else {
2580 		/* Caller must check execute permissions on the starting path component */
2581 		CLASS(fd_raw, f)(nd->dfd);
2582 		struct dentry *dentry;
2583 
2584 		if (fd_empty(f))
2585 			return ERR_PTR(-EBADF);
2586 
2587 		if (flags & LOOKUP_LINKAT_EMPTY) {
2588 			if (fd_file(f)->f_cred != current_cred() &&
2589 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2590 				return ERR_PTR(-ENOENT);
2591 		}
2592 
2593 		dentry = fd_file(f)->f_path.dentry;
2594 
2595 		if (*s && unlikely(!d_can_lookup(dentry)))
2596 			return ERR_PTR(-ENOTDIR);
2597 
2598 		nd->path = fd_file(f)->f_path;
2599 		if (flags & LOOKUP_RCU) {
2600 			nd->inode = nd->path.dentry->d_inode;
2601 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2602 		} else {
2603 			path_get(&nd->path);
2604 			nd->inode = nd->path.dentry->d_inode;
2605 		}
2606 	}
2607 
2608 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2609 	if (flags & LOOKUP_IS_SCOPED) {
2610 		nd->root = nd->path;
2611 		if (flags & LOOKUP_RCU) {
2612 			nd->root_seq = nd->seq;
2613 		} else {
2614 			path_get(&nd->root);
2615 			nd->state |= ND_ROOT_GRABBED;
2616 		}
2617 	}
2618 	return s;
2619 }
2620 
lookup_last(struct nameidata * nd)2621 static inline const char *lookup_last(struct nameidata *nd)
2622 {
2623 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2624 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2625 
2626 	return walk_component(nd, WALK_TRAILING);
2627 }
2628 
handle_lookup_down(struct nameidata * nd)2629 static int handle_lookup_down(struct nameidata *nd)
2630 {
2631 	if (!(nd->flags & LOOKUP_RCU))
2632 		dget(nd->path.dentry);
2633 	nd->next_seq = nd->seq;
2634 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2635 }
2636 
2637 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2638 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2639 {
2640 	const char *s = path_init(nd, flags);
2641 	int err;
2642 
2643 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2644 		err = handle_lookup_down(nd);
2645 		if (unlikely(err < 0))
2646 			s = ERR_PTR(err);
2647 	}
2648 
2649 	while (!(err = link_path_walk(s, nd)) &&
2650 	       (s = lookup_last(nd)) != NULL)
2651 		;
2652 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2653 		err = handle_lookup_down(nd);
2654 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2655 	}
2656 	if (!err)
2657 		err = complete_walk(nd);
2658 
2659 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2660 		if (!d_can_lookup(nd->path.dentry))
2661 			err = -ENOTDIR;
2662 	if (!err) {
2663 		*path = nd->path;
2664 		nd->path.mnt = NULL;
2665 		nd->path.dentry = NULL;
2666 	}
2667 	terminate_walk(nd);
2668 	return err;
2669 }
2670 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2671 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2672 		    struct path *path, struct path *root)
2673 {
2674 	int retval;
2675 	struct nameidata nd;
2676 	if (IS_ERR(name))
2677 		return PTR_ERR(name);
2678 	set_nameidata(&nd, dfd, name, root);
2679 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2680 	if (unlikely(retval == -ECHILD))
2681 		retval = path_lookupat(&nd, flags, path);
2682 	if (unlikely(retval == -ESTALE))
2683 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2684 
2685 	if (likely(!retval))
2686 		audit_inode(name, path->dentry,
2687 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2688 	restore_nameidata();
2689 	return retval;
2690 }
2691 
2692 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2693 static int path_parentat(struct nameidata *nd, unsigned flags,
2694 				struct path *parent)
2695 {
2696 	const char *s = path_init(nd, flags);
2697 	int err = link_path_walk(s, nd);
2698 	if (!err)
2699 		err = complete_walk(nd);
2700 	if (!err) {
2701 		*parent = nd->path;
2702 		nd->path.mnt = NULL;
2703 		nd->path.dentry = NULL;
2704 	}
2705 	terminate_walk(nd);
2706 	return err;
2707 }
2708 
2709 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2710 static int __filename_parentat(int dfd, struct filename *name,
2711 			       unsigned int flags, struct path *parent,
2712 			       struct qstr *last, int *type,
2713 			       const struct path *root)
2714 {
2715 	int retval;
2716 	struct nameidata nd;
2717 
2718 	if (IS_ERR(name))
2719 		return PTR_ERR(name);
2720 	set_nameidata(&nd, dfd, name, root);
2721 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2722 	if (unlikely(retval == -ECHILD))
2723 		retval = path_parentat(&nd, flags, parent);
2724 	if (unlikely(retval == -ESTALE))
2725 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2726 	if (likely(!retval)) {
2727 		*last = nd.last;
2728 		*type = nd.last_type;
2729 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2730 	}
2731 	restore_nameidata();
2732 	return retval;
2733 }
2734 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2735 static int filename_parentat(int dfd, struct filename *name,
2736 			     unsigned int flags, struct path *parent,
2737 			     struct qstr *last, int *type)
2738 {
2739 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2740 }
2741 
2742 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2743 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2744 {
2745 	struct dentry *d;
2746 	struct qstr last;
2747 	int type, error;
2748 
2749 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2750 	if (error)
2751 		return ERR_PTR(error);
2752 	if (unlikely(type != LAST_NORM)) {
2753 		path_put(path);
2754 		return ERR_PTR(-EINVAL);
2755 	}
2756 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2757 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2758 	if (IS_ERR(d)) {
2759 		inode_unlock(path->dentry->d_inode);
2760 		path_put(path);
2761 	}
2762 	return d;
2763 }
2764 
kern_path_locked(const char * name,struct path * path)2765 struct dentry *kern_path_locked(const char *name, struct path *path)
2766 {
2767 	struct filename *filename = getname_kernel(name);
2768 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2769 
2770 	putname(filename);
2771 	return res;
2772 }
2773 
user_path_locked_at(int dfd,const char __user * name,struct path * path)2774 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2775 {
2776 	struct filename *filename = getname(name);
2777 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2778 
2779 	putname(filename);
2780 	return res;
2781 }
2782 EXPORT_SYMBOL(user_path_locked_at);
2783 
kern_path(const char * name,unsigned int flags,struct path * path)2784 int kern_path(const char *name, unsigned int flags, struct path *path)
2785 {
2786 	struct filename *filename = getname_kernel(name);
2787 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2788 
2789 	putname(filename);
2790 	return ret;
2791 
2792 }
2793 EXPORT_SYMBOL(kern_path);
2794 
2795 /**
2796  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2797  * @filename: filename structure
2798  * @flags: lookup flags
2799  * @parent: pointer to struct path to fill
2800  * @last: last component
2801  * @type: type of the last component
2802  * @root: pointer to struct path of the base directory
2803  */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2804 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2805 			   struct path *parent, struct qstr *last, int *type,
2806 			   const struct path *root)
2807 {
2808 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2809 				    type, root);
2810 }
2811 EXPORT_SYMBOL(vfs_path_parent_lookup);
2812 
2813 /**
2814  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2815  * @dentry:  pointer to dentry of the base directory
2816  * @mnt: pointer to vfs mount of the base directory
2817  * @name: pointer to file name
2818  * @flags: lookup flags
2819  * @path: pointer to struct path to fill
2820  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2821 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2822 		    const char *name, unsigned int flags,
2823 		    struct path *path)
2824 {
2825 	struct filename *filename;
2826 	struct path root = {.mnt = mnt, .dentry = dentry};
2827 	int ret;
2828 
2829 	filename = getname_kernel(name);
2830 	/* the first argument of filename_lookup() is ignored with root */
2831 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2832 	putname(filename);
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL(vfs_path_lookup);
2836 
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2837 static int lookup_one_common(struct mnt_idmap *idmap,
2838 			     const char *name, struct dentry *base, int len,
2839 			     struct qstr *this)
2840 {
2841 	this->name = name;
2842 	this->len = len;
2843 	this->hash = full_name_hash(base, name, len);
2844 	if (!len)
2845 		return -EACCES;
2846 
2847 	if (is_dot_dotdot(name, len))
2848 		return -EACCES;
2849 
2850 	while (len--) {
2851 		unsigned int c = *(const unsigned char *)name++;
2852 		if (c == '/' || c == '\0')
2853 			return -EACCES;
2854 	}
2855 	/*
2856 	 * See if the low-level filesystem might want
2857 	 * to use its own hash..
2858 	 */
2859 	if (base->d_flags & DCACHE_OP_HASH) {
2860 		int err = base->d_op->d_hash(base, this);
2861 		if (err < 0)
2862 			return err;
2863 	}
2864 
2865 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2866 }
2867 
2868 /**
2869  * try_lookup_one_len - filesystem helper to lookup single pathname component
2870  * @name:	pathname component to lookup
2871  * @base:	base directory to lookup from
2872  * @len:	maximum length @len should be interpreted to
2873  *
2874  * Look up a dentry by name in the dcache, returning NULL if it does not
2875  * currently exist.  The function does not try to create a dentry.
2876  *
2877  * Note that this routine is purely a helper for filesystem usage and should
2878  * not be called by generic code.
2879  *
2880  * No locks need be held - only a counted reference to @base is needed.
2881  *
2882  */
try_lookup_one_len(const char * name,struct dentry * base,int len)2883 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2884 {
2885 	struct qstr this;
2886 	int err;
2887 
2888 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2889 	if (err)
2890 		return ERR_PTR(err);
2891 
2892 	return lookup_dcache(&this, base, 0);
2893 }
2894 EXPORT_SYMBOL(try_lookup_one_len);
2895 
2896 /**
2897  * lookup_one_len - filesystem helper to lookup single pathname component
2898  * @name:	pathname component to lookup
2899  * @base:	base directory to lookup from
2900  * @len:	maximum length @len should be interpreted to
2901  *
2902  * Note that this routine is purely a helper for filesystem usage and should
2903  * not be called by generic code.
2904  *
2905  * The caller must hold base->i_mutex.
2906  */
lookup_one_len(const char * name,struct dentry * base,int len)2907 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2908 {
2909 	struct dentry *dentry;
2910 	struct qstr this;
2911 	int err;
2912 
2913 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2914 
2915 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2916 	if (err)
2917 		return ERR_PTR(err);
2918 
2919 	dentry = lookup_dcache(&this, base, 0);
2920 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2921 }
2922 EXPORT_SYMBOL(lookup_one_len);
2923 
2924 /**
2925  * lookup_one - filesystem helper to lookup single pathname component
2926  * @idmap:	idmap of the mount the lookup is performed from
2927  * @name:	pathname component to lookup
2928  * @base:	base directory to lookup from
2929  * @len:	maximum length @len should be interpreted to
2930  *
2931  * Note that this routine is purely a helper for filesystem usage and should
2932  * not be called by generic code.
2933  *
2934  * The caller must hold base->i_mutex.
2935  */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2936 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2937 			  struct dentry *base, int len)
2938 {
2939 	struct dentry *dentry;
2940 	struct qstr this;
2941 	int err;
2942 
2943 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2944 
2945 	err = lookup_one_common(idmap, name, base, len, &this);
2946 	if (err)
2947 		return ERR_PTR(err);
2948 
2949 	dentry = lookup_dcache(&this, base, 0);
2950 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2951 }
2952 EXPORT_SYMBOL(lookup_one);
2953 
2954 /**
2955  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2956  * @idmap:	idmap of the mount the lookup is performed from
2957  * @name:	pathname component to lookup
2958  * @base:	base directory to lookup from
2959  * @len:	maximum length @len should be interpreted to
2960  *
2961  * Note that this routine is purely a helper for filesystem usage and should
2962  * not be called by generic code.
2963  *
2964  * Unlike lookup_one_len, it should be called without the parent
2965  * i_mutex held, and will take the i_mutex itself if necessary.
2966  */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2967 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2968 				   const char *name, struct dentry *base,
2969 				   int len)
2970 {
2971 	struct qstr this;
2972 	int err;
2973 	struct dentry *ret;
2974 
2975 	err = lookup_one_common(idmap, name, base, len, &this);
2976 	if (err)
2977 		return ERR_PTR(err);
2978 
2979 	ret = lookup_dcache(&this, base, 0);
2980 	if (!ret)
2981 		ret = lookup_slow(&this, base, 0);
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL(lookup_one_unlocked);
2985 
2986 /**
2987  * lookup_one_positive_unlocked - filesystem helper to lookup single
2988  *				  pathname component
2989  * @idmap:	idmap of the mount the lookup is performed from
2990  * @name:	pathname component to lookup
2991  * @base:	base directory to lookup from
2992  * @len:	maximum length @len should be interpreted to
2993  *
2994  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2995  * known positive or ERR_PTR(). This is what most of the users want.
2996  *
2997  * Note that pinned negative with unlocked parent _can_ become positive at any
2998  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2999  * positives have >d_inode stable, so this one avoids such problems.
3000  *
3001  * Note that this routine is purely a helper for filesystem usage and should
3002  * not be called by generic code.
3003  *
3004  * The helper should be called without i_mutex held.
3005  */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)3006 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3007 					    const char *name,
3008 					    struct dentry *base, int len)
3009 {
3010 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
3011 
3012 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3013 		dput(ret);
3014 		ret = ERR_PTR(-ENOENT);
3015 	}
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3019 
3020 /**
3021  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3022  * @name:	pathname component to lookup
3023  * @base:	base directory to lookup from
3024  * @len:	maximum length @len should be interpreted to
3025  *
3026  * Note that this routine is purely a helper for filesystem usage and should
3027  * not be called by generic code.
3028  *
3029  * Unlike lookup_one_len, it should be called without the parent
3030  * i_mutex held, and will take the i_mutex itself if necessary.
3031  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)3032 struct dentry *lookup_one_len_unlocked(const char *name,
3033 				       struct dentry *base, int len)
3034 {
3035 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3036 }
3037 EXPORT_SYMBOL(lookup_one_len_unlocked);
3038 
3039 /*
3040  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3041  * on negatives.  Returns known positive or ERR_PTR(); that's what
3042  * most of the users want.  Note that pinned negative with unlocked parent
3043  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3044  * need to be very careful; pinned positives have ->d_inode stable, so
3045  * this one avoids such problems.
3046  */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)3047 struct dentry *lookup_positive_unlocked(const char *name,
3048 				       struct dentry *base, int len)
3049 {
3050 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3051 }
3052 EXPORT_SYMBOL(lookup_positive_unlocked);
3053 
3054 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3055 int path_pts(struct path *path)
3056 {
3057 	/* Find something mounted on "pts" in the same directory as
3058 	 * the input path.
3059 	 */
3060 	struct dentry *parent = dget_parent(path->dentry);
3061 	struct dentry *child;
3062 	struct qstr this = QSTR_INIT("pts", 3);
3063 
3064 	if (unlikely(!path_connected(path->mnt, parent))) {
3065 		dput(parent);
3066 		return -ENOENT;
3067 	}
3068 	dput(path->dentry);
3069 	path->dentry = parent;
3070 	child = d_hash_and_lookup(parent, &this);
3071 	if (IS_ERR_OR_NULL(child))
3072 		return -ENOENT;
3073 
3074 	path->dentry = child;
3075 	dput(parent);
3076 	follow_down(path, 0);
3077 	return 0;
3078 }
3079 #endif
3080 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3081 int user_path_at(int dfd, const char __user *name, unsigned flags,
3082 		 struct path *path)
3083 {
3084 	struct filename *filename = getname_flags(name, flags);
3085 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3086 
3087 	putname(filename);
3088 	return ret;
3089 }
3090 EXPORT_SYMBOL(user_path_at);
3091 
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3092 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3093 		   struct inode *inode)
3094 {
3095 	kuid_t fsuid = current_fsuid();
3096 
3097 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3098 		return 0;
3099 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3100 		return 0;
3101 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3102 }
3103 EXPORT_SYMBOL(__check_sticky);
3104 
3105 /*
3106  *	Check whether we can remove a link victim from directory dir, check
3107  *  whether the type of victim is right.
3108  *  1. We can't do it if dir is read-only (done in permission())
3109  *  2. We should have write and exec permissions on dir
3110  *  3. We can't remove anything from append-only dir
3111  *  4. We can't do anything with immutable dir (done in permission())
3112  *  5. If the sticky bit on dir is set we should either
3113  *	a. be owner of dir, or
3114  *	b. be owner of victim, or
3115  *	c. have CAP_FOWNER capability
3116  *  6. If the victim is append-only or immutable we can't do antyhing with
3117  *     links pointing to it.
3118  *  7. If the victim has an unknown uid or gid we can't change the inode.
3119  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3120  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3121  * 10. We can't remove a root or mountpoint.
3122  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3123  *     nfs_async_unlink().
3124  */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3125 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3126 		      struct dentry *victim, bool isdir)
3127 {
3128 	struct inode *inode = d_backing_inode(victim);
3129 	int error;
3130 
3131 	if (d_is_negative(victim))
3132 		return -ENOENT;
3133 	BUG_ON(!inode);
3134 
3135 	BUG_ON(victim->d_parent->d_inode != dir);
3136 
3137 	/* Inode writeback is not safe when the uid or gid are invalid. */
3138 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3139 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3140 		return -EOVERFLOW;
3141 
3142 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3143 
3144 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3145 	if (error)
3146 		return error;
3147 	if (IS_APPEND(dir))
3148 		return -EPERM;
3149 
3150 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3151 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3152 	    HAS_UNMAPPED_ID(idmap, inode))
3153 		return -EPERM;
3154 	if (isdir) {
3155 		if (!d_is_dir(victim))
3156 			return -ENOTDIR;
3157 		if (IS_ROOT(victim))
3158 			return -EBUSY;
3159 	} else if (d_is_dir(victim))
3160 		return -EISDIR;
3161 	if (IS_DEADDIR(dir))
3162 		return -ENOENT;
3163 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3164 		return -EBUSY;
3165 	return 0;
3166 }
3167 
3168 /*	Check whether we can create an object with dentry child in directory
3169  *  dir.
3170  *  1. We can't do it if child already exists (open has special treatment for
3171  *     this case, but since we are inlined it's OK)
3172  *  2. We can't do it if dir is read-only (done in permission())
3173  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3174  *  4. We should have write and exec permissions on dir
3175  *  5. We can't do it if dir is immutable (done in permission())
3176  */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3177 static inline int may_create(struct mnt_idmap *idmap,
3178 			     struct inode *dir, struct dentry *child)
3179 {
3180 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3181 	if (child->d_inode)
3182 		return -EEXIST;
3183 	if (IS_DEADDIR(dir))
3184 		return -ENOENT;
3185 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3186 		return -EOVERFLOW;
3187 
3188 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3189 }
3190 
3191 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3192 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3193 {
3194 	struct dentry *p = p1, *q = p2, *r;
3195 
3196 	while ((r = p->d_parent) != p2 && r != p)
3197 		p = r;
3198 	if (r == p2) {
3199 		// p is a child of p2 and an ancestor of p1 or p1 itself
3200 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3201 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3202 		return p;
3203 	}
3204 	// p is the root of connected component that contains p1
3205 	// p2 does not occur on the path from p to p1
3206 	while ((r = q->d_parent) != p1 && r != p && r != q)
3207 		q = r;
3208 	if (r == p1) {
3209 		// q is a child of p1 and an ancestor of p2 or p2 itself
3210 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3211 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3212 		return q;
3213 	} else if (likely(r == p)) {
3214 		// both p2 and p1 are descendents of p
3215 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3216 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3217 		return NULL;
3218 	} else { // no common ancestor at the time we'd been called
3219 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3220 		return ERR_PTR(-EXDEV);
3221 	}
3222 }
3223 
3224 /*
3225  * p1 and p2 should be directories on the same fs.
3226  */
lock_rename(struct dentry * p1,struct dentry * p2)3227 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3228 {
3229 	if (p1 == p2) {
3230 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3231 		return NULL;
3232 	}
3233 
3234 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3235 	return lock_two_directories(p1, p2);
3236 }
3237 EXPORT_SYMBOL(lock_rename);
3238 
3239 /*
3240  * c1 and p2 should be on the same fs.
3241  */
lock_rename_child(struct dentry * c1,struct dentry * p2)3242 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3243 {
3244 	if (READ_ONCE(c1->d_parent) == p2) {
3245 		/*
3246 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3247 		 */
3248 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3249 		/*
3250 		 * now that p2 is locked, nobody can move in or out of it,
3251 		 * so the test below is safe.
3252 		 */
3253 		if (likely(c1->d_parent == p2))
3254 			return NULL;
3255 
3256 		/*
3257 		 * c1 got moved out of p2 while we'd been taking locks;
3258 		 * unlock and fall back to slow case.
3259 		 */
3260 		inode_unlock(p2->d_inode);
3261 	}
3262 
3263 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3264 	/*
3265 	 * nobody can move out of any directories on this fs.
3266 	 */
3267 	if (likely(c1->d_parent != p2))
3268 		return lock_two_directories(c1->d_parent, p2);
3269 
3270 	/*
3271 	 * c1 got moved into p2 while we were taking locks;
3272 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3273 	 * for consistency with lock_rename().
3274 	 */
3275 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3276 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3277 	return NULL;
3278 }
3279 EXPORT_SYMBOL(lock_rename_child);
3280 
unlock_rename(struct dentry * p1,struct dentry * p2)3281 void unlock_rename(struct dentry *p1, struct dentry *p2)
3282 {
3283 	inode_unlock(p1->d_inode);
3284 	if (p1 != p2) {
3285 		inode_unlock(p2->d_inode);
3286 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3287 	}
3288 }
3289 EXPORT_SYMBOL(unlock_rename);
3290 
3291 /**
3292  * vfs_prepare_mode - prepare the mode to be used for a new inode
3293  * @idmap:	idmap of the mount the inode was found from
3294  * @dir:	parent directory of the new inode
3295  * @mode:	mode of the new inode
3296  * @mask_perms:	allowed permission by the vfs
3297  * @type:	type of file to be created
3298  *
3299  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3300  * object to be created.
3301  *
3302  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3303  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3304  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3305  * POSIX ACL supporting filesystems.
3306  *
3307  * Note that it's currently valid for @type to be 0 if a directory is created.
3308  * Filesystems raise that flag individually and we need to check whether each
3309  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3310  * non-zero type.
3311  *
3312  * Returns: mode to be passed to the filesystem
3313  */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3314 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3315 				       const struct inode *dir, umode_t mode,
3316 				       umode_t mask_perms, umode_t type)
3317 {
3318 	mode = mode_strip_sgid(idmap, dir, mode);
3319 	mode = mode_strip_umask(dir, mode);
3320 
3321 	/*
3322 	 * Apply the vfs mandated allowed permission mask and set the type of
3323 	 * file to be created before we call into the filesystem.
3324 	 */
3325 	mode &= (mask_perms & ~S_IFMT);
3326 	mode |= (type & S_IFMT);
3327 
3328 	return mode;
3329 }
3330 
3331 /**
3332  * vfs_create - create new file
3333  * @idmap:	idmap of the mount the inode was found from
3334  * @dir:	inode of the parent directory
3335  * @dentry:	dentry of the child file
3336  * @mode:	mode of the child file
3337  * @want_excl:	whether the file must not yet exist
3338  *
3339  * Create a new file.
3340  *
3341  * If the inode has been found through an idmapped mount the idmap of
3342  * the vfsmount must be passed through @idmap. This function will then take
3343  * care to map the inode according to @idmap before checking permissions.
3344  * On non-idmapped mounts or if permission checking is to be performed on the
3345  * raw inode simply pass @nop_mnt_idmap.
3346  */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3347 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3348 	       struct dentry *dentry, umode_t mode, bool want_excl)
3349 {
3350 	int error;
3351 
3352 	error = may_create(idmap, dir, dentry);
3353 	if (error)
3354 		return error;
3355 
3356 	if (!dir->i_op->create)
3357 		return -EACCES;	/* shouldn't it be ENOSYS? */
3358 
3359 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3360 	error = security_inode_create(dir, dentry, mode);
3361 	if (error)
3362 		return error;
3363 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3364 	if (!error)
3365 		fsnotify_create(dir, dentry);
3366 	return error;
3367 }
3368 EXPORT_SYMBOL(vfs_create);
3369 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3370 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3371 		int (*f)(struct dentry *, umode_t, void *),
3372 		void *arg)
3373 {
3374 	struct inode *dir = dentry->d_parent->d_inode;
3375 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3376 	if (error)
3377 		return error;
3378 
3379 	mode &= S_IALLUGO;
3380 	mode |= S_IFREG;
3381 	error = security_inode_create(dir, dentry, mode);
3382 	if (error)
3383 		return error;
3384 	error = f(dentry, mode, arg);
3385 	if (!error)
3386 		fsnotify_create(dir, dentry);
3387 	return error;
3388 }
3389 EXPORT_SYMBOL(vfs_mkobj);
3390 
may_open_dev(const struct path * path)3391 bool may_open_dev(const struct path *path)
3392 {
3393 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3394 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3395 }
3396 
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3397 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3398 		    int acc_mode, int flag)
3399 {
3400 	struct dentry *dentry = path->dentry;
3401 	struct inode *inode = dentry->d_inode;
3402 	int error;
3403 
3404 	if (!inode)
3405 		return -ENOENT;
3406 
3407 	switch (inode->i_mode & S_IFMT) {
3408 	case S_IFLNK:
3409 		return -ELOOP;
3410 	case S_IFDIR:
3411 		if (acc_mode & MAY_WRITE)
3412 			return -EISDIR;
3413 		if (acc_mode & MAY_EXEC)
3414 			return -EACCES;
3415 		break;
3416 	case S_IFBLK:
3417 	case S_IFCHR:
3418 		if (!may_open_dev(path))
3419 			return -EACCES;
3420 		fallthrough;
3421 	case S_IFIFO:
3422 	case S_IFSOCK:
3423 		if (acc_mode & MAY_EXEC)
3424 			return -EACCES;
3425 		flag &= ~O_TRUNC;
3426 		break;
3427 	case S_IFREG:
3428 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3429 			return -EACCES;
3430 		break;
3431 	default:
3432 		VFS_BUG_ON_INODE(1, inode);
3433 	}
3434 
3435 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3436 	if (error)
3437 		return error;
3438 
3439 	/*
3440 	 * An append-only file must be opened in append mode for writing.
3441 	 */
3442 	if (IS_APPEND(inode)) {
3443 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3444 			return -EPERM;
3445 		if (flag & O_TRUNC)
3446 			return -EPERM;
3447 	}
3448 
3449 	/* O_NOATIME can only be set by the owner or superuser */
3450 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3451 		return -EPERM;
3452 
3453 	return 0;
3454 }
3455 
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3456 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3457 {
3458 	const struct path *path = &filp->f_path;
3459 	struct inode *inode = path->dentry->d_inode;
3460 	int error = get_write_access(inode);
3461 	if (error)
3462 		return error;
3463 
3464 	error = security_file_truncate(filp);
3465 	if (!error) {
3466 		error = do_truncate(idmap, path->dentry, 0,
3467 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3468 				    filp);
3469 	}
3470 	put_write_access(inode);
3471 	return error;
3472 }
3473 
open_to_namei_flags(int flag)3474 static inline int open_to_namei_flags(int flag)
3475 {
3476 	if ((flag & O_ACCMODE) == 3)
3477 		flag--;
3478 	return flag;
3479 }
3480 
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3481 static int may_o_create(struct mnt_idmap *idmap,
3482 			const struct path *dir, struct dentry *dentry,
3483 			umode_t mode)
3484 {
3485 	int error = security_path_mknod(dir, dentry, mode, 0);
3486 	if (error)
3487 		return error;
3488 
3489 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3490 		return -EOVERFLOW;
3491 
3492 	error = inode_permission(idmap, dir->dentry->d_inode,
3493 				 MAY_WRITE | MAY_EXEC);
3494 	if (error)
3495 		return error;
3496 
3497 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3498 }
3499 
3500 /*
3501  * Attempt to atomically look up, create and open a file from a negative
3502  * dentry.
3503  *
3504  * Returns 0 if successful.  The file will have been created and attached to
3505  * @file by the filesystem calling finish_open().
3506  *
3507  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3508  * be set.  The caller will need to perform the open themselves.  @path will
3509  * have been updated to point to the new dentry.  This may be negative.
3510  *
3511  * Returns an error code otherwise.
3512  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3513 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3514 				  struct file *file,
3515 				  int open_flag, umode_t mode)
3516 {
3517 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3518 	struct inode *dir =  nd->path.dentry->d_inode;
3519 	int error;
3520 
3521 	if (nd->flags & LOOKUP_DIRECTORY)
3522 		open_flag |= O_DIRECTORY;
3523 
3524 	file->f_path.dentry = DENTRY_NOT_SET;
3525 	file->f_path.mnt = nd->path.mnt;
3526 	error = dir->i_op->atomic_open(dir, dentry, file,
3527 				       open_to_namei_flags(open_flag), mode);
3528 	d_lookup_done(dentry);
3529 	if (!error) {
3530 		if (file->f_mode & FMODE_OPENED) {
3531 			if (unlikely(dentry != file->f_path.dentry)) {
3532 				dput(dentry);
3533 				dentry = dget(file->f_path.dentry);
3534 			}
3535 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3536 			error = -EIO;
3537 		} else {
3538 			if (file->f_path.dentry) {
3539 				dput(dentry);
3540 				dentry = file->f_path.dentry;
3541 			}
3542 			if (unlikely(d_is_negative(dentry)))
3543 				error = -ENOENT;
3544 		}
3545 	}
3546 	if (error) {
3547 		dput(dentry);
3548 		dentry = ERR_PTR(error);
3549 	}
3550 	return dentry;
3551 }
3552 
3553 /*
3554  * Look up and maybe create and open the last component.
3555  *
3556  * Must be called with parent locked (exclusive in O_CREAT case).
3557  *
3558  * Returns 0 on success, that is, if
3559  *  the file was successfully atomically created (if necessary) and opened, or
3560  *  the file was not completely opened at this time, though lookups and
3561  *  creations were performed.
3562  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3563  * In the latter case dentry returned in @path might be negative if O_CREAT
3564  * hadn't been specified.
3565  *
3566  * An error code is returned on failure.
3567  */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3568 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3569 				  const struct open_flags *op,
3570 				  bool got_write)
3571 {
3572 	struct mnt_idmap *idmap;
3573 	struct dentry *dir = nd->path.dentry;
3574 	struct inode *dir_inode = dir->d_inode;
3575 	int open_flag = op->open_flag;
3576 	struct dentry *dentry;
3577 	int error, create_error = 0;
3578 	umode_t mode = op->mode;
3579 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3580 
3581 	if (unlikely(IS_DEADDIR(dir_inode)))
3582 		return ERR_PTR(-ENOENT);
3583 
3584 	file->f_mode &= ~FMODE_CREATED;
3585 	dentry = d_lookup(dir, &nd->last);
3586 	for (;;) {
3587 		if (!dentry) {
3588 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3589 			if (IS_ERR(dentry))
3590 				return dentry;
3591 		}
3592 		if (d_in_lookup(dentry))
3593 			break;
3594 
3595 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3596 		if (likely(error > 0))
3597 			break;
3598 		if (error)
3599 			goto out_dput;
3600 		d_invalidate(dentry);
3601 		dput(dentry);
3602 		dentry = NULL;
3603 	}
3604 	if (dentry->d_inode) {
3605 		/* Cached positive dentry: will open in f_op->open */
3606 		return dentry;
3607 	}
3608 
3609 	if (open_flag & O_CREAT)
3610 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3611 
3612 	/*
3613 	 * Checking write permission is tricky, bacuse we don't know if we are
3614 	 * going to actually need it: O_CREAT opens should work as long as the
3615 	 * file exists.  But checking existence breaks atomicity.  The trick is
3616 	 * to check access and if not granted clear O_CREAT from the flags.
3617 	 *
3618 	 * Another problem is returing the "right" error value (e.g. for an
3619 	 * O_EXCL open we want to return EEXIST not EROFS).
3620 	 */
3621 	if (unlikely(!got_write))
3622 		open_flag &= ~O_TRUNC;
3623 	idmap = mnt_idmap(nd->path.mnt);
3624 	if (open_flag & O_CREAT) {
3625 		if (open_flag & O_EXCL)
3626 			open_flag &= ~O_TRUNC;
3627 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3628 		if (likely(got_write))
3629 			create_error = may_o_create(idmap, &nd->path,
3630 						    dentry, mode);
3631 		else
3632 			create_error = -EROFS;
3633 	}
3634 	if (create_error)
3635 		open_flag &= ~O_CREAT;
3636 	if (dir_inode->i_op->atomic_open) {
3637 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3638 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3639 			dentry = ERR_PTR(create_error);
3640 		return dentry;
3641 	}
3642 
3643 	if (d_in_lookup(dentry)) {
3644 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3645 							     nd->flags);
3646 		d_lookup_done(dentry);
3647 		if (unlikely(res)) {
3648 			if (IS_ERR(res)) {
3649 				error = PTR_ERR(res);
3650 				goto out_dput;
3651 			}
3652 			dput(dentry);
3653 			dentry = res;
3654 		}
3655 	}
3656 
3657 	/* Negative dentry, just create the file */
3658 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3659 		file->f_mode |= FMODE_CREATED;
3660 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3661 		if (!dir_inode->i_op->create) {
3662 			error = -EACCES;
3663 			goto out_dput;
3664 		}
3665 
3666 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3667 						mode, open_flag & O_EXCL);
3668 		if (error)
3669 			goto out_dput;
3670 	}
3671 	if (unlikely(create_error) && !dentry->d_inode) {
3672 		error = create_error;
3673 		goto out_dput;
3674 	}
3675 	return dentry;
3676 
3677 out_dput:
3678 	dput(dentry);
3679 	return ERR_PTR(error);
3680 }
3681 
trailing_slashes(struct nameidata * nd)3682 static inline bool trailing_slashes(struct nameidata *nd)
3683 {
3684 	return (bool)nd->last.name[nd->last.len];
3685 }
3686 
lookup_fast_for_open(struct nameidata * nd,int open_flag)3687 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3688 {
3689 	struct dentry *dentry;
3690 
3691 	if (open_flag & O_CREAT) {
3692 		if (trailing_slashes(nd))
3693 			return ERR_PTR(-EISDIR);
3694 
3695 		/* Don't bother on an O_EXCL create */
3696 		if (open_flag & O_EXCL)
3697 			return NULL;
3698 	}
3699 
3700 	if (trailing_slashes(nd))
3701 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3702 
3703 	dentry = lookup_fast(nd);
3704 	if (IS_ERR_OR_NULL(dentry))
3705 		return dentry;
3706 
3707 	if (open_flag & O_CREAT) {
3708 		/* Discard negative dentries. Need inode_lock to do the create */
3709 		if (!dentry->d_inode) {
3710 			if (!(nd->flags & LOOKUP_RCU))
3711 				dput(dentry);
3712 			dentry = NULL;
3713 		}
3714 	}
3715 	return dentry;
3716 }
3717 
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3718 static const char *open_last_lookups(struct nameidata *nd,
3719 		   struct file *file, const struct open_flags *op)
3720 {
3721 	struct dentry *dir = nd->path.dentry;
3722 	int open_flag = op->open_flag;
3723 	bool got_write = false;
3724 	struct dentry *dentry;
3725 	const char *res;
3726 
3727 	nd->flags |= op->intent;
3728 
3729 	if (nd->last_type != LAST_NORM) {
3730 		if (nd->depth)
3731 			put_link(nd);
3732 		return handle_dots(nd, nd->last_type);
3733 	}
3734 
3735 	/* We _can_ be in RCU mode here */
3736 	dentry = lookup_fast_for_open(nd, open_flag);
3737 	if (IS_ERR(dentry))
3738 		return ERR_CAST(dentry);
3739 
3740 	if (likely(dentry))
3741 		goto finish_lookup;
3742 
3743 	if (!(open_flag & O_CREAT)) {
3744 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3745 			return ERR_PTR(-ECHILD);
3746 	} else {
3747 		if (nd->flags & LOOKUP_RCU) {
3748 			if (!try_to_unlazy(nd))
3749 				return ERR_PTR(-ECHILD);
3750 		}
3751 	}
3752 
3753 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3754 		got_write = !mnt_want_write(nd->path.mnt);
3755 		/*
3756 		 * do _not_ fail yet - we might not need that or fail with
3757 		 * a different error; let lookup_open() decide; we'll be
3758 		 * dropping this one anyway.
3759 		 */
3760 	}
3761 	if (open_flag & O_CREAT)
3762 		inode_lock(dir->d_inode);
3763 	else
3764 		inode_lock_shared(dir->d_inode);
3765 	dentry = lookup_open(nd, file, op, got_write);
3766 	if (!IS_ERR(dentry)) {
3767 		if (file->f_mode & FMODE_CREATED)
3768 			fsnotify_create(dir->d_inode, dentry);
3769 		if (file->f_mode & FMODE_OPENED)
3770 			fsnotify_open(file);
3771 	}
3772 	if (open_flag & O_CREAT)
3773 		inode_unlock(dir->d_inode);
3774 	else
3775 		inode_unlock_shared(dir->d_inode);
3776 
3777 	if (got_write)
3778 		mnt_drop_write(nd->path.mnt);
3779 
3780 	if (IS_ERR(dentry))
3781 		return ERR_CAST(dentry);
3782 
3783 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3784 		dput(nd->path.dentry);
3785 		nd->path.dentry = dentry;
3786 		return NULL;
3787 	}
3788 
3789 finish_lookup:
3790 	if (nd->depth)
3791 		put_link(nd);
3792 	res = step_into(nd, WALK_TRAILING, dentry);
3793 	if (unlikely(res))
3794 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3795 	return res;
3796 }
3797 
3798 /*
3799  * Handle the last step of open()
3800  */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3801 static int do_open(struct nameidata *nd,
3802 		   struct file *file, const struct open_flags *op)
3803 {
3804 	struct mnt_idmap *idmap;
3805 	int open_flag = op->open_flag;
3806 	bool do_truncate;
3807 	int acc_mode;
3808 	int error;
3809 
3810 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3811 		error = complete_walk(nd);
3812 		if (error)
3813 			return error;
3814 	}
3815 	if (!(file->f_mode & FMODE_CREATED))
3816 		audit_inode(nd->name, nd->path.dentry, 0);
3817 	idmap = mnt_idmap(nd->path.mnt);
3818 	if (open_flag & O_CREAT) {
3819 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3820 			return -EEXIST;
3821 		if (d_is_dir(nd->path.dentry))
3822 			return -EISDIR;
3823 		error = may_create_in_sticky(idmap, nd,
3824 					     d_backing_inode(nd->path.dentry));
3825 		if (unlikely(error))
3826 			return error;
3827 	}
3828 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3829 		return -ENOTDIR;
3830 
3831 	do_truncate = false;
3832 	acc_mode = op->acc_mode;
3833 	if (file->f_mode & FMODE_CREATED) {
3834 		/* Don't check for write permission, don't truncate */
3835 		open_flag &= ~O_TRUNC;
3836 		acc_mode = 0;
3837 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3838 		error = mnt_want_write(nd->path.mnt);
3839 		if (error)
3840 			return error;
3841 		do_truncate = true;
3842 	}
3843 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3844 	if (!error && !(file->f_mode & FMODE_OPENED))
3845 		error = vfs_open(&nd->path, file);
3846 	if (!error)
3847 		error = security_file_post_open(file, op->acc_mode);
3848 	if (!error && do_truncate)
3849 		error = handle_truncate(idmap, file);
3850 	if (unlikely(error > 0)) {
3851 		WARN_ON(1);
3852 		error = -EINVAL;
3853 	}
3854 	if (do_truncate)
3855 		mnt_drop_write(nd->path.mnt);
3856 	return error;
3857 }
3858 
3859 /**
3860  * vfs_tmpfile - create tmpfile
3861  * @idmap:	idmap of the mount the inode was found from
3862  * @parentpath:	pointer to the path of the base directory
3863  * @file:	file descriptor of the new tmpfile
3864  * @mode:	mode of the new tmpfile
3865  *
3866  * Create a temporary file.
3867  *
3868  * If the inode has been found through an idmapped mount the idmap of
3869  * the vfsmount must be passed through @idmap. This function will then take
3870  * care to map the inode according to @idmap before checking permissions.
3871  * On non-idmapped mounts or if permission checking is to be performed on the
3872  * raw inode simply pass @nop_mnt_idmap.
3873  */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3874 int vfs_tmpfile(struct mnt_idmap *idmap,
3875 		const struct path *parentpath,
3876 		struct file *file, umode_t mode)
3877 {
3878 	struct dentry *child;
3879 	struct inode *dir = d_inode(parentpath->dentry);
3880 	struct inode *inode;
3881 	int error;
3882 	int open_flag = file->f_flags;
3883 
3884 	/* we want directory to be writable */
3885 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3886 	if (error)
3887 		return error;
3888 	if (!dir->i_op->tmpfile)
3889 		return -EOPNOTSUPP;
3890 	child = d_alloc(parentpath->dentry, &slash_name);
3891 	if (unlikely(!child))
3892 		return -ENOMEM;
3893 	file->f_path.mnt = parentpath->mnt;
3894 	file->f_path.dentry = child;
3895 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3896 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3897 	dput(child);
3898 	if (file->f_mode & FMODE_OPENED)
3899 		fsnotify_open(file);
3900 	if (error)
3901 		return error;
3902 	/* Don't check for other permissions, the inode was just created */
3903 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3904 	if (error)
3905 		return error;
3906 	inode = file_inode(file);
3907 	if (!(open_flag & O_EXCL)) {
3908 		spin_lock(&inode->i_lock);
3909 		inode->i_state |= I_LINKABLE;
3910 		spin_unlock(&inode->i_lock);
3911 	}
3912 	security_inode_post_create_tmpfile(idmap, inode);
3913 	return 0;
3914 }
3915 
3916 /**
3917  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3918  * @idmap:	idmap of the mount the inode was found from
3919  * @parentpath:	path of the base directory
3920  * @mode:	mode of the new tmpfile
3921  * @open_flag:	flags
3922  * @cred:	credentials for open
3923  *
3924  * Create and open a temporary file.  The file is not accounted in nr_files,
3925  * hence this is only for kernel internal use, and must not be installed into
3926  * file tables or such.
3927  */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3928 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3929 				 const struct path *parentpath,
3930 				 umode_t mode, int open_flag,
3931 				 const struct cred *cred)
3932 {
3933 	struct file *file;
3934 	int error;
3935 
3936 	file = alloc_empty_file_noaccount(open_flag, cred);
3937 	if (IS_ERR(file))
3938 		return file;
3939 
3940 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3941 	if (error) {
3942 		fput(file);
3943 		file = ERR_PTR(error);
3944 	}
3945 	return file;
3946 }
3947 EXPORT_SYMBOL(kernel_tmpfile_open);
3948 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3949 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3950 		const struct open_flags *op,
3951 		struct file *file)
3952 {
3953 	struct path path;
3954 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3955 
3956 	if (unlikely(error))
3957 		return error;
3958 	error = mnt_want_write(path.mnt);
3959 	if (unlikely(error))
3960 		goto out;
3961 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3962 	if (error)
3963 		goto out2;
3964 	audit_inode(nd->name, file->f_path.dentry, 0);
3965 out2:
3966 	mnt_drop_write(path.mnt);
3967 out:
3968 	path_put(&path);
3969 	return error;
3970 }
3971 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3972 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3973 {
3974 	struct path path;
3975 	int error = path_lookupat(nd, flags, &path);
3976 	if (!error) {
3977 		audit_inode(nd->name, path.dentry, 0);
3978 		error = vfs_open(&path, file);
3979 		path_put(&path);
3980 	}
3981 	return error;
3982 }
3983 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3984 static struct file *path_openat(struct nameidata *nd,
3985 			const struct open_flags *op, unsigned flags)
3986 {
3987 	struct file *file;
3988 	int error;
3989 
3990 	file = alloc_empty_file(op->open_flag, current_cred());
3991 	if (IS_ERR(file))
3992 		return file;
3993 
3994 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3995 		error = do_tmpfile(nd, flags, op, file);
3996 	} else if (unlikely(file->f_flags & O_PATH)) {
3997 		error = do_o_path(nd, flags, file);
3998 	} else {
3999 		const char *s = path_init(nd, flags);
4000 		while (!(error = link_path_walk(s, nd)) &&
4001 		       (s = open_last_lookups(nd, file, op)) != NULL)
4002 			;
4003 		if (!error)
4004 			error = do_open(nd, file, op);
4005 		terminate_walk(nd);
4006 	}
4007 	if (likely(!error)) {
4008 		if (likely(file->f_mode & FMODE_OPENED))
4009 			return file;
4010 		WARN_ON(1);
4011 		error = -EINVAL;
4012 	}
4013 	fput_close(file);
4014 	if (error == -EOPENSTALE) {
4015 		if (flags & LOOKUP_RCU)
4016 			error = -ECHILD;
4017 		else
4018 			error = -ESTALE;
4019 	}
4020 	return ERR_PTR(error);
4021 }
4022 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4023 struct file *do_filp_open(int dfd, struct filename *pathname,
4024 		const struct open_flags *op)
4025 {
4026 	struct nameidata nd;
4027 	int flags = op->lookup_flags;
4028 	struct file *filp;
4029 
4030 	set_nameidata(&nd, dfd, pathname, NULL);
4031 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4032 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4033 		filp = path_openat(&nd, op, flags);
4034 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4035 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4036 	restore_nameidata();
4037 	return filp;
4038 }
4039 
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4040 struct file *do_file_open_root(const struct path *root,
4041 		const char *name, const struct open_flags *op)
4042 {
4043 	struct nameidata nd;
4044 	struct file *file;
4045 	struct filename *filename;
4046 	int flags = op->lookup_flags;
4047 
4048 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4049 		return ERR_PTR(-ELOOP);
4050 
4051 	filename = getname_kernel(name);
4052 	if (IS_ERR(filename))
4053 		return ERR_CAST(filename);
4054 
4055 	set_nameidata(&nd, -1, filename, root);
4056 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4057 	if (unlikely(file == ERR_PTR(-ECHILD)))
4058 		file = path_openat(&nd, op, flags);
4059 	if (unlikely(file == ERR_PTR(-ESTALE)))
4060 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4061 	restore_nameidata();
4062 	putname(filename);
4063 	return file;
4064 }
4065 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4066 static struct dentry *filename_create(int dfd, struct filename *name,
4067 				      struct path *path, unsigned int lookup_flags)
4068 {
4069 	struct dentry *dentry = ERR_PTR(-EEXIST);
4070 	struct qstr last;
4071 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4072 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4073 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4074 	int type;
4075 	int err2;
4076 	int error;
4077 
4078 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4079 	if (error)
4080 		return ERR_PTR(error);
4081 
4082 	/*
4083 	 * Yucky last component or no last component at all?
4084 	 * (foo/., foo/.., /////)
4085 	 */
4086 	if (unlikely(type != LAST_NORM))
4087 		goto out;
4088 
4089 	/* don't fail immediately if it's r/o, at least try to report other errors */
4090 	err2 = mnt_want_write(path->mnt);
4091 	/*
4092 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4093 	 * '/', and a directory wasn't requested.
4094 	 */
4095 	if (last.name[last.len] && !want_dir)
4096 		create_flags &= ~LOOKUP_CREATE;
4097 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4098 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4099 				      reval_flag | create_flags);
4100 	if (IS_ERR(dentry))
4101 		goto unlock;
4102 
4103 	if (unlikely(err2)) {
4104 		error = err2;
4105 		goto fail;
4106 	}
4107 	return dentry;
4108 fail:
4109 	dput(dentry);
4110 	dentry = ERR_PTR(error);
4111 unlock:
4112 	inode_unlock(path->dentry->d_inode);
4113 	if (!err2)
4114 		mnt_drop_write(path->mnt);
4115 out:
4116 	path_put(path);
4117 	return dentry;
4118 }
4119 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4120 struct dentry *kern_path_create(int dfd, const char *pathname,
4121 				struct path *path, unsigned int lookup_flags)
4122 {
4123 	struct filename *filename = getname_kernel(pathname);
4124 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4125 
4126 	putname(filename);
4127 	return res;
4128 }
4129 EXPORT_SYMBOL(kern_path_create);
4130 
done_path_create(struct path * path,struct dentry * dentry)4131 void done_path_create(struct path *path, struct dentry *dentry)
4132 {
4133 	if (!IS_ERR(dentry))
4134 		dput(dentry);
4135 	inode_unlock(path->dentry->d_inode);
4136 	mnt_drop_write(path->mnt);
4137 	path_put(path);
4138 }
4139 EXPORT_SYMBOL(done_path_create);
4140 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4141 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4142 				struct path *path, unsigned int lookup_flags)
4143 {
4144 	struct filename *filename = getname(pathname);
4145 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4146 
4147 	putname(filename);
4148 	return res;
4149 }
4150 EXPORT_SYMBOL(user_path_create);
4151 
4152 /**
4153  * vfs_mknod - create device node or file
4154  * @idmap:	idmap of the mount the inode was found from
4155  * @dir:	inode of the parent directory
4156  * @dentry:	dentry of the child device node
4157  * @mode:	mode of the child device node
4158  * @dev:	device number of device to create
4159  *
4160  * Create a device node or file.
4161  *
4162  * If the inode has been found through an idmapped mount the idmap of
4163  * the vfsmount must be passed through @idmap. This function will then take
4164  * care to map the inode according to @idmap before checking permissions.
4165  * On non-idmapped mounts or if permission checking is to be performed on the
4166  * raw inode simply pass @nop_mnt_idmap.
4167  */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4168 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4169 	      struct dentry *dentry, umode_t mode, dev_t dev)
4170 {
4171 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4172 	int error = may_create(idmap, dir, dentry);
4173 
4174 	if (error)
4175 		return error;
4176 
4177 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4178 	    !capable(CAP_MKNOD))
4179 		return -EPERM;
4180 
4181 	if (!dir->i_op->mknod)
4182 		return -EPERM;
4183 
4184 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4185 	error = devcgroup_inode_mknod(mode, dev);
4186 	if (error)
4187 		return error;
4188 
4189 	error = security_inode_mknod(dir, dentry, mode, dev);
4190 	if (error)
4191 		return error;
4192 
4193 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4194 	if (!error)
4195 		fsnotify_create(dir, dentry);
4196 	return error;
4197 }
4198 EXPORT_SYMBOL(vfs_mknod);
4199 
may_mknod(umode_t mode)4200 static int may_mknod(umode_t mode)
4201 {
4202 	switch (mode & S_IFMT) {
4203 	case S_IFREG:
4204 	case S_IFCHR:
4205 	case S_IFBLK:
4206 	case S_IFIFO:
4207 	case S_IFSOCK:
4208 	case 0: /* zero mode translates to S_IFREG */
4209 		return 0;
4210 	case S_IFDIR:
4211 		return -EPERM;
4212 	default:
4213 		return -EINVAL;
4214 	}
4215 }
4216 
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4217 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4218 		unsigned int dev)
4219 {
4220 	struct mnt_idmap *idmap;
4221 	struct dentry *dentry;
4222 	struct path path;
4223 	int error;
4224 	unsigned int lookup_flags = 0;
4225 
4226 	error = may_mknod(mode);
4227 	if (error)
4228 		goto out1;
4229 retry:
4230 	dentry = filename_create(dfd, name, &path, lookup_flags);
4231 	error = PTR_ERR(dentry);
4232 	if (IS_ERR(dentry))
4233 		goto out1;
4234 
4235 	error = security_path_mknod(&path, dentry,
4236 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4237 	if (error)
4238 		goto out2;
4239 
4240 	idmap = mnt_idmap(path.mnt);
4241 	switch (mode & S_IFMT) {
4242 		case 0: case S_IFREG:
4243 			error = vfs_create(idmap, path.dentry->d_inode,
4244 					   dentry, mode, true);
4245 			if (!error)
4246 				security_path_post_mknod(idmap, dentry);
4247 			break;
4248 		case S_IFCHR: case S_IFBLK:
4249 			error = vfs_mknod(idmap, path.dentry->d_inode,
4250 					  dentry, mode, new_decode_dev(dev));
4251 			break;
4252 		case S_IFIFO: case S_IFSOCK:
4253 			error = vfs_mknod(idmap, path.dentry->d_inode,
4254 					  dentry, mode, 0);
4255 			break;
4256 	}
4257 out2:
4258 	done_path_create(&path, dentry);
4259 	if (retry_estale(error, lookup_flags)) {
4260 		lookup_flags |= LOOKUP_REVAL;
4261 		goto retry;
4262 	}
4263 out1:
4264 	putname(name);
4265 	return error;
4266 }
4267 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4268 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4269 		unsigned int, dev)
4270 {
4271 	return do_mknodat(dfd, getname(filename), mode, dev);
4272 }
4273 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4274 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4275 {
4276 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4277 }
4278 
4279 /**
4280  * vfs_mkdir - create directory returning correct dentry if possible
4281  * @idmap:	idmap of the mount the inode was found from
4282  * @dir:	inode of the parent directory
4283  * @dentry:	dentry of the child directory
4284  * @mode:	mode of the child directory
4285  *
4286  * Create a directory.
4287  *
4288  * If the inode has been found through an idmapped mount the idmap of
4289  * the vfsmount must be passed through @idmap. This function will then take
4290  * care to map the inode according to @idmap before checking permissions.
4291  * On non-idmapped mounts or if permission checking is to be performed on the
4292  * raw inode simply pass @nop_mnt_idmap.
4293  *
4294  * In the event that the filesystem does not use the *@dentry but leaves it
4295  * negative or unhashes it and possibly splices a different one returning it,
4296  * the original dentry is dput() and the alternate is returned.
4297  *
4298  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4299  */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4300 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4301 			 struct dentry *dentry, umode_t mode)
4302 {
4303 	int error;
4304 	unsigned max_links = dir->i_sb->s_max_links;
4305 	struct dentry *de;
4306 
4307 	error = may_create(idmap, dir, dentry);
4308 	if (error)
4309 		goto err;
4310 
4311 	error = -EPERM;
4312 	if (!dir->i_op->mkdir)
4313 		goto err;
4314 
4315 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4316 	error = security_inode_mkdir(dir, dentry, mode);
4317 	if (error)
4318 		goto err;
4319 
4320 	error = -EMLINK;
4321 	if (max_links && dir->i_nlink >= max_links)
4322 		goto err;
4323 
4324 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4325 	error = PTR_ERR(de);
4326 	if (IS_ERR(de))
4327 		goto err;
4328 	if (de) {
4329 		dput(dentry);
4330 		dentry = de;
4331 	}
4332 	fsnotify_mkdir(dir, dentry);
4333 	return dentry;
4334 
4335 err:
4336 	dput(dentry);
4337 	return ERR_PTR(error);
4338 }
4339 EXPORT_SYMBOL(vfs_mkdir);
4340 
do_mkdirat(int dfd,struct filename * name,umode_t mode)4341 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4342 {
4343 	struct dentry *dentry;
4344 	struct path path;
4345 	int error;
4346 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4347 
4348 retry:
4349 	dentry = filename_create(dfd, name, &path, lookup_flags);
4350 	error = PTR_ERR(dentry);
4351 	if (IS_ERR(dentry))
4352 		goto out_putname;
4353 
4354 	error = security_path_mkdir(&path, dentry,
4355 			mode_strip_umask(path.dentry->d_inode, mode));
4356 	if (!error) {
4357 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4358 				  dentry, mode);
4359 		if (IS_ERR(dentry))
4360 			error = PTR_ERR(dentry);
4361 	}
4362 	done_path_create(&path, dentry);
4363 	if (retry_estale(error, lookup_flags)) {
4364 		lookup_flags |= LOOKUP_REVAL;
4365 		goto retry;
4366 	}
4367 out_putname:
4368 	putname(name);
4369 	return error;
4370 }
4371 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4372 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4373 {
4374 	return do_mkdirat(dfd, getname(pathname), mode);
4375 }
4376 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4377 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4378 {
4379 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4380 }
4381 
4382 /**
4383  * vfs_rmdir - remove directory
4384  * @idmap:	idmap of the mount the inode was found from
4385  * @dir:	inode of the parent directory
4386  * @dentry:	dentry of the child directory
4387  *
4388  * Remove a directory.
4389  *
4390  * If the inode has been found through an idmapped mount the idmap of
4391  * the vfsmount must be passed through @idmap. This function will then take
4392  * care to map the inode according to @idmap before checking permissions.
4393  * On non-idmapped mounts or if permission checking is to be performed on the
4394  * raw inode simply pass @nop_mnt_idmap.
4395  */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4396 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4397 		     struct dentry *dentry)
4398 {
4399 	int error = may_delete(idmap, dir, dentry, 1);
4400 
4401 	if (error)
4402 		return error;
4403 
4404 	if (!dir->i_op->rmdir)
4405 		return -EPERM;
4406 
4407 	dget(dentry);
4408 	inode_lock(dentry->d_inode);
4409 
4410 	error = -EBUSY;
4411 	if (is_local_mountpoint(dentry) ||
4412 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4413 		goto out;
4414 
4415 	error = security_inode_rmdir(dir, dentry);
4416 	if (error)
4417 		goto out;
4418 
4419 	error = dir->i_op->rmdir(dir, dentry);
4420 	if (error)
4421 		goto out;
4422 
4423 	shrink_dcache_parent(dentry);
4424 	dentry->d_inode->i_flags |= S_DEAD;
4425 	dont_mount(dentry);
4426 	detach_mounts(dentry);
4427 
4428 out:
4429 	inode_unlock(dentry->d_inode);
4430 	dput(dentry);
4431 	if (!error)
4432 		d_delete_notify(dir, dentry);
4433 	return error;
4434 }
4435 EXPORT_SYMBOL(vfs_rmdir);
4436 
do_rmdir(int dfd,struct filename * name)4437 int do_rmdir(int dfd, struct filename *name)
4438 {
4439 	int error;
4440 	struct dentry *dentry;
4441 	struct path path;
4442 	struct qstr last;
4443 	int type;
4444 	unsigned int lookup_flags = 0;
4445 retry:
4446 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4447 	if (error)
4448 		goto exit1;
4449 
4450 	switch (type) {
4451 	case LAST_DOTDOT:
4452 		error = -ENOTEMPTY;
4453 		goto exit2;
4454 	case LAST_DOT:
4455 		error = -EINVAL;
4456 		goto exit2;
4457 	case LAST_ROOT:
4458 		error = -EBUSY;
4459 		goto exit2;
4460 	}
4461 
4462 	error = mnt_want_write(path.mnt);
4463 	if (error)
4464 		goto exit2;
4465 
4466 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4467 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4468 	error = PTR_ERR(dentry);
4469 	if (IS_ERR(dentry))
4470 		goto exit3;
4471 	error = security_path_rmdir(&path, dentry);
4472 	if (error)
4473 		goto exit4;
4474 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4475 exit4:
4476 	dput(dentry);
4477 exit3:
4478 	inode_unlock(path.dentry->d_inode);
4479 	mnt_drop_write(path.mnt);
4480 exit2:
4481 	path_put(&path);
4482 	if (retry_estale(error, lookup_flags)) {
4483 		lookup_flags |= LOOKUP_REVAL;
4484 		goto retry;
4485 	}
4486 exit1:
4487 	putname(name);
4488 	return error;
4489 }
4490 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4491 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4492 {
4493 	return do_rmdir(AT_FDCWD, getname(pathname));
4494 }
4495 
4496 /**
4497  * vfs_unlink - unlink a filesystem object
4498  * @idmap:	idmap of the mount the inode was found from
4499  * @dir:	parent directory
4500  * @dentry:	victim
4501  * @delegated_inode: returns victim inode, if the inode is delegated.
4502  *
4503  * The caller must hold dir->i_mutex.
4504  *
4505  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4506  * return a reference to the inode in delegated_inode.  The caller
4507  * should then break the delegation on that inode and retry.  Because
4508  * breaking a delegation may take a long time, the caller should drop
4509  * dir->i_mutex before doing so.
4510  *
4511  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4512  * be appropriate for callers that expect the underlying filesystem not
4513  * to be NFS exported.
4514  *
4515  * If the inode has been found through an idmapped mount the idmap of
4516  * the vfsmount must be passed through @idmap. This function will then take
4517  * care to map the inode according to @idmap before checking permissions.
4518  * On non-idmapped mounts or if permission checking is to be performed on the
4519  * raw inode simply pass @nop_mnt_idmap.
4520  */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4521 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4522 	       struct dentry *dentry, struct inode **delegated_inode)
4523 {
4524 	struct inode *target = dentry->d_inode;
4525 	int error = may_delete(idmap, dir, dentry, 0);
4526 
4527 	if (error)
4528 		return error;
4529 
4530 	if (!dir->i_op->unlink)
4531 		return -EPERM;
4532 
4533 	inode_lock(target);
4534 	if (IS_SWAPFILE(target))
4535 		error = -EPERM;
4536 	else if (is_local_mountpoint(dentry))
4537 		error = -EBUSY;
4538 	else {
4539 		error = security_inode_unlink(dir, dentry);
4540 		if (!error) {
4541 			error = try_break_deleg(target, delegated_inode);
4542 			if (error)
4543 				goto out;
4544 			error = dir->i_op->unlink(dir, dentry);
4545 			if (!error) {
4546 				dont_mount(dentry);
4547 				detach_mounts(dentry);
4548 			}
4549 		}
4550 	}
4551 out:
4552 	inode_unlock(target);
4553 
4554 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4555 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4556 		fsnotify_unlink(dir, dentry);
4557 	} else if (!error) {
4558 		fsnotify_link_count(target);
4559 		d_delete_notify(dir, dentry);
4560 	}
4561 
4562 	return error;
4563 }
4564 EXPORT_SYMBOL(vfs_unlink);
4565 
4566 /*
4567  * Make sure that the actual truncation of the file will occur outside its
4568  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4569  * writeout happening, and we don't want to prevent access to the directory
4570  * while waiting on the I/O.
4571  */
do_unlinkat(int dfd,struct filename * name)4572 int do_unlinkat(int dfd, struct filename *name)
4573 {
4574 	int error;
4575 	struct dentry *dentry;
4576 	struct path path;
4577 	struct qstr last;
4578 	int type;
4579 	struct inode *inode = NULL;
4580 	struct inode *delegated_inode = NULL;
4581 	unsigned int lookup_flags = 0;
4582 retry:
4583 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4584 	if (error)
4585 		goto exit1;
4586 
4587 	error = -EISDIR;
4588 	if (type != LAST_NORM)
4589 		goto exit2;
4590 
4591 	error = mnt_want_write(path.mnt);
4592 	if (error)
4593 		goto exit2;
4594 retry_deleg:
4595 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4596 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4597 	error = PTR_ERR(dentry);
4598 	if (!IS_ERR(dentry)) {
4599 
4600 		/* Why not before? Because we want correct error value */
4601 		if (last.name[last.len])
4602 			goto slashes;
4603 		inode = dentry->d_inode;
4604 		ihold(inode);
4605 		error = security_path_unlink(&path, dentry);
4606 		if (error)
4607 			goto exit3;
4608 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4609 				   dentry, &delegated_inode);
4610 exit3:
4611 		dput(dentry);
4612 	}
4613 	inode_unlock(path.dentry->d_inode);
4614 	if (inode)
4615 		iput(inode);	/* truncate the inode here */
4616 	inode = NULL;
4617 	if (delegated_inode) {
4618 		error = break_deleg_wait(&delegated_inode);
4619 		if (!error)
4620 			goto retry_deleg;
4621 	}
4622 	mnt_drop_write(path.mnt);
4623 exit2:
4624 	path_put(&path);
4625 	if (retry_estale(error, lookup_flags)) {
4626 		lookup_flags |= LOOKUP_REVAL;
4627 		inode = NULL;
4628 		goto retry;
4629 	}
4630 exit1:
4631 	putname(name);
4632 	return error;
4633 
4634 slashes:
4635 	if (d_is_dir(dentry))
4636 		error = -EISDIR;
4637 	else
4638 		error = -ENOTDIR;
4639 	goto exit3;
4640 }
4641 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4642 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4643 {
4644 	if ((flag & ~AT_REMOVEDIR) != 0)
4645 		return -EINVAL;
4646 
4647 	if (flag & AT_REMOVEDIR)
4648 		return do_rmdir(dfd, getname(pathname));
4649 	return do_unlinkat(dfd, getname(pathname));
4650 }
4651 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4652 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4653 {
4654 	return do_unlinkat(AT_FDCWD, getname(pathname));
4655 }
4656 
4657 /**
4658  * vfs_symlink - create symlink
4659  * @idmap:	idmap of the mount the inode was found from
4660  * @dir:	inode of the parent directory
4661  * @dentry:	dentry of the child symlink file
4662  * @oldname:	name of the file to link to
4663  *
4664  * Create a symlink.
4665  *
4666  * If the inode has been found through an idmapped mount the idmap of
4667  * the vfsmount must be passed through @idmap. This function will then take
4668  * care to map the inode according to @idmap before checking permissions.
4669  * On non-idmapped mounts or if permission checking is to be performed on the
4670  * raw inode simply pass @nop_mnt_idmap.
4671  */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4672 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4673 		struct dentry *dentry, const char *oldname)
4674 {
4675 	int error;
4676 
4677 	error = may_create(idmap, dir, dentry);
4678 	if (error)
4679 		return error;
4680 
4681 	if (!dir->i_op->symlink)
4682 		return -EPERM;
4683 
4684 	error = security_inode_symlink(dir, dentry, oldname);
4685 	if (error)
4686 		return error;
4687 
4688 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4689 	if (!error)
4690 		fsnotify_create(dir, dentry);
4691 	return error;
4692 }
4693 EXPORT_SYMBOL(vfs_symlink);
4694 
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4695 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4696 {
4697 	int error;
4698 	struct dentry *dentry;
4699 	struct path path;
4700 	unsigned int lookup_flags = 0;
4701 
4702 	if (IS_ERR(from)) {
4703 		error = PTR_ERR(from);
4704 		goto out_putnames;
4705 	}
4706 retry:
4707 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4708 	error = PTR_ERR(dentry);
4709 	if (IS_ERR(dentry))
4710 		goto out_putnames;
4711 
4712 	error = security_path_symlink(&path, dentry, from->name);
4713 	if (!error)
4714 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4715 				    dentry, from->name);
4716 	done_path_create(&path, dentry);
4717 	if (retry_estale(error, lookup_flags)) {
4718 		lookup_flags |= LOOKUP_REVAL;
4719 		goto retry;
4720 	}
4721 out_putnames:
4722 	putname(to);
4723 	putname(from);
4724 	return error;
4725 }
4726 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4727 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4728 		int, newdfd, const char __user *, newname)
4729 {
4730 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4731 }
4732 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4733 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4734 {
4735 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4736 }
4737 
4738 /**
4739  * vfs_link - create a new link
4740  * @old_dentry:	object to be linked
4741  * @idmap:	idmap of the mount
4742  * @dir:	new parent
4743  * @new_dentry:	where to create the new link
4744  * @delegated_inode: returns inode needing a delegation break
4745  *
4746  * The caller must hold dir->i_mutex
4747  *
4748  * If vfs_link discovers a delegation on the to-be-linked file in need
4749  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4750  * inode in delegated_inode.  The caller should then break the delegation
4751  * and retry.  Because breaking a delegation may take a long time, the
4752  * caller should drop the i_mutex before doing so.
4753  *
4754  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4755  * be appropriate for callers that expect the underlying filesystem not
4756  * to be NFS exported.
4757  *
4758  * If the inode has been found through an idmapped mount the idmap of
4759  * the vfsmount must be passed through @idmap. This function will then take
4760  * care to map the inode according to @idmap before checking permissions.
4761  * On non-idmapped mounts or if permission checking is to be performed on the
4762  * raw inode simply pass @nop_mnt_idmap.
4763  */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4764 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4765 	     struct inode *dir, struct dentry *new_dentry,
4766 	     struct inode **delegated_inode)
4767 {
4768 	struct inode *inode = old_dentry->d_inode;
4769 	unsigned max_links = dir->i_sb->s_max_links;
4770 	int error;
4771 
4772 	if (!inode)
4773 		return -ENOENT;
4774 
4775 	error = may_create(idmap, dir, new_dentry);
4776 	if (error)
4777 		return error;
4778 
4779 	if (dir->i_sb != inode->i_sb)
4780 		return -EXDEV;
4781 
4782 	/*
4783 	 * A link to an append-only or immutable file cannot be created.
4784 	 */
4785 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4786 		return -EPERM;
4787 	/*
4788 	 * Updating the link count will likely cause i_uid and i_gid to
4789 	 * be writen back improperly if their true value is unknown to
4790 	 * the vfs.
4791 	 */
4792 	if (HAS_UNMAPPED_ID(idmap, inode))
4793 		return -EPERM;
4794 	if (!dir->i_op->link)
4795 		return -EPERM;
4796 	if (S_ISDIR(inode->i_mode))
4797 		return -EPERM;
4798 
4799 	error = security_inode_link(old_dentry, dir, new_dentry);
4800 	if (error)
4801 		return error;
4802 
4803 	inode_lock(inode);
4804 	/* Make sure we don't allow creating hardlink to an unlinked file */
4805 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4806 		error =  -ENOENT;
4807 	else if (max_links && inode->i_nlink >= max_links)
4808 		error = -EMLINK;
4809 	else {
4810 		error = try_break_deleg(inode, delegated_inode);
4811 		if (!error)
4812 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4813 	}
4814 
4815 	if (!error && (inode->i_state & I_LINKABLE)) {
4816 		spin_lock(&inode->i_lock);
4817 		inode->i_state &= ~I_LINKABLE;
4818 		spin_unlock(&inode->i_lock);
4819 	}
4820 	inode_unlock(inode);
4821 	if (!error)
4822 		fsnotify_link(dir, inode, new_dentry);
4823 	return error;
4824 }
4825 EXPORT_SYMBOL(vfs_link);
4826 
4827 /*
4828  * Hardlinks are often used in delicate situations.  We avoid
4829  * security-related surprises by not following symlinks on the
4830  * newname.  --KAB
4831  *
4832  * We don't follow them on the oldname either to be compatible
4833  * with linux 2.0, and to avoid hard-linking to directories
4834  * and other special files.  --ADM
4835  */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4836 int do_linkat(int olddfd, struct filename *old, int newdfd,
4837 	      struct filename *new, int flags)
4838 {
4839 	struct mnt_idmap *idmap;
4840 	struct dentry *new_dentry;
4841 	struct path old_path, new_path;
4842 	struct inode *delegated_inode = NULL;
4843 	int how = 0;
4844 	int error;
4845 
4846 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4847 		error = -EINVAL;
4848 		goto out_putnames;
4849 	}
4850 	/*
4851 	 * To use null names we require CAP_DAC_READ_SEARCH or
4852 	 * that the open-time creds of the dfd matches current.
4853 	 * This ensures that not everyone will be able to create
4854 	 * a hardlink using the passed file descriptor.
4855 	 */
4856 	if (flags & AT_EMPTY_PATH)
4857 		how |= LOOKUP_LINKAT_EMPTY;
4858 
4859 	if (flags & AT_SYMLINK_FOLLOW)
4860 		how |= LOOKUP_FOLLOW;
4861 retry:
4862 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4863 	if (error)
4864 		goto out_putnames;
4865 
4866 	new_dentry = filename_create(newdfd, new, &new_path,
4867 					(how & LOOKUP_REVAL));
4868 	error = PTR_ERR(new_dentry);
4869 	if (IS_ERR(new_dentry))
4870 		goto out_putpath;
4871 
4872 	error = -EXDEV;
4873 	if (old_path.mnt != new_path.mnt)
4874 		goto out_dput;
4875 	idmap = mnt_idmap(new_path.mnt);
4876 	error = may_linkat(idmap, &old_path);
4877 	if (unlikely(error))
4878 		goto out_dput;
4879 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4880 	if (error)
4881 		goto out_dput;
4882 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4883 			 new_dentry, &delegated_inode);
4884 out_dput:
4885 	done_path_create(&new_path, new_dentry);
4886 	if (delegated_inode) {
4887 		error = break_deleg_wait(&delegated_inode);
4888 		if (!error) {
4889 			path_put(&old_path);
4890 			goto retry;
4891 		}
4892 	}
4893 	if (retry_estale(error, how)) {
4894 		path_put(&old_path);
4895 		how |= LOOKUP_REVAL;
4896 		goto retry;
4897 	}
4898 out_putpath:
4899 	path_put(&old_path);
4900 out_putnames:
4901 	putname(old);
4902 	putname(new);
4903 
4904 	return error;
4905 }
4906 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4907 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4908 		int, newdfd, const char __user *, newname, int, flags)
4909 {
4910 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4911 		newdfd, getname(newname), flags);
4912 }
4913 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4914 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4915 {
4916 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4917 }
4918 
4919 /**
4920  * vfs_rename - rename a filesystem object
4921  * @rd:		pointer to &struct renamedata info
4922  *
4923  * The caller must hold multiple mutexes--see lock_rename()).
4924  *
4925  * If vfs_rename discovers a delegation in need of breaking at either
4926  * the source or destination, it will return -EWOULDBLOCK and return a
4927  * reference to the inode in delegated_inode.  The caller should then
4928  * break the delegation and retry.  Because breaking a delegation may
4929  * take a long time, the caller should drop all locks before doing
4930  * so.
4931  *
4932  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4933  * be appropriate for callers that expect the underlying filesystem not
4934  * to be NFS exported.
4935  *
4936  * The worst of all namespace operations - renaming directory. "Perverted"
4937  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4938  * Problems:
4939  *
4940  *	a) we can get into loop creation.
4941  *	b) race potential - two innocent renames can create a loop together.
4942  *	   That's where 4.4BSD screws up. Current fix: serialization on
4943  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4944  *	   story.
4945  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4946  *	   and source (if it's a non-directory or a subdirectory that moves to
4947  *	   different parent).
4948  *	   And that - after we got ->i_mutex on parents (until then we don't know
4949  *	   whether the target exists).  Solution: try to be smart with locking
4950  *	   order for inodes.  We rely on the fact that tree topology may change
4951  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4952  *	   move will be locked.  Thus we can rank directories by the tree
4953  *	   (ancestors first) and rank all non-directories after them.
4954  *	   That works since everybody except rename does "lock parent, lookup,
4955  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4956  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4957  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4958  *	   we'd better make sure that there's no link(2) for them.
4959  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4960  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4961  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4962  *	   ->i_mutex on parents, which works but leads to some truly excessive
4963  *	   locking].
4964  */
vfs_rename(struct renamedata * rd)4965 int vfs_rename(struct renamedata *rd)
4966 {
4967 	int error;
4968 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4969 	struct dentry *old_dentry = rd->old_dentry;
4970 	struct dentry *new_dentry = rd->new_dentry;
4971 	struct inode **delegated_inode = rd->delegated_inode;
4972 	unsigned int flags = rd->flags;
4973 	bool is_dir = d_is_dir(old_dentry);
4974 	struct inode *source = old_dentry->d_inode;
4975 	struct inode *target = new_dentry->d_inode;
4976 	bool new_is_dir = false;
4977 	unsigned max_links = new_dir->i_sb->s_max_links;
4978 	struct name_snapshot old_name;
4979 	bool lock_old_subdir, lock_new_subdir;
4980 
4981 	if (source == target)
4982 		return 0;
4983 
4984 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4985 	if (error)
4986 		return error;
4987 
4988 	if (!target) {
4989 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4990 	} else {
4991 		new_is_dir = d_is_dir(new_dentry);
4992 
4993 		if (!(flags & RENAME_EXCHANGE))
4994 			error = may_delete(rd->new_mnt_idmap, new_dir,
4995 					   new_dentry, is_dir);
4996 		else
4997 			error = may_delete(rd->new_mnt_idmap, new_dir,
4998 					   new_dentry, new_is_dir);
4999 	}
5000 	if (error)
5001 		return error;
5002 
5003 	if (!old_dir->i_op->rename)
5004 		return -EPERM;
5005 
5006 	/*
5007 	 * If we are going to change the parent - check write permissions,
5008 	 * we'll need to flip '..'.
5009 	 */
5010 	if (new_dir != old_dir) {
5011 		if (is_dir) {
5012 			error = inode_permission(rd->old_mnt_idmap, source,
5013 						 MAY_WRITE);
5014 			if (error)
5015 				return error;
5016 		}
5017 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5018 			error = inode_permission(rd->new_mnt_idmap, target,
5019 						 MAY_WRITE);
5020 			if (error)
5021 				return error;
5022 		}
5023 	}
5024 
5025 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5026 				      flags);
5027 	if (error)
5028 		return error;
5029 
5030 	take_dentry_name_snapshot(&old_name, old_dentry);
5031 	dget(new_dentry);
5032 	/*
5033 	 * Lock children.
5034 	 * The source subdirectory needs to be locked on cross-directory
5035 	 * rename or cross-directory exchange since its parent changes.
5036 	 * The target subdirectory needs to be locked on cross-directory
5037 	 * exchange due to parent change and on any rename due to becoming
5038 	 * a victim.
5039 	 * Non-directories need locking in all cases (for NFS reasons);
5040 	 * they get locked after any subdirectories (in inode address order).
5041 	 *
5042 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5043 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5044 	 */
5045 	lock_old_subdir = new_dir != old_dir;
5046 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5047 	if (is_dir) {
5048 		if (lock_old_subdir)
5049 			inode_lock_nested(source, I_MUTEX_CHILD);
5050 		if (target && (!new_is_dir || lock_new_subdir))
5051 			inode_lock(target);
5052 	} else if (new_is_dir) {
5053 		if (lock_new_subdir)
5054 			inode_lock_nested(target, I_MUTEX_CHILD);
5055 		inode_lock(source);
5056 	} else {
5057 		lock_two_nondirectories(source, target);
5058 	}
5059 
5060 	error = -EPERM;
5061 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5062 		goto out;
5063 
5064 	error = -EBUSY;
5065 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5066 		goto out;
5067 
5068 	if (max_links && new_dir != old_dir) {
5069 		error = -EMLINK;
5070 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5071 			goto out;
5072 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5073 		    old_dir->i_nlink >= max_links)
5074 			goto out;
5075 	}
5076 	if (!is_dir) {
5077 		error = try_break_deleg(source, delegated_inode);
5078 		if (error)
5079 			goto out;
5080 	}
5081 	if (target && !new_is_dir) {
5082 		error = try_break_deleg(target, delegated_inode);
5083 		if (error)
5084 			goto out;
5085 	}
5086 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5087 				      new_dir, new_dentry, flags);
5088 	if (error)
5089 		goto out;
5090 
5091 	if (!(flags & RENAME_EXCHANGE) && target) {
5092 		if (is_dir) {
5093 			shrink_dcache_parent(new_dentry);
5094 			target->i_flags |= S_DEAD;
5095 		}
5096 		dont_mount(new_dentry);
5097 		detach_mounts(new_dentry);
5098 	}
5099 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5100 		if (!(flags & RENAME_EXCHANGE))
5101 			d_move(old_dentry, new_dentry);
5102 		else
5103 			d_exchange(old_dentry, new_dentry);
5104 	}
5105 out:
5106 	if (!is_dir || lock_old_subdir)
5107 		inode_unlock(source);
5108 	if (target && (!new_is_dir || lock_new_subdir))
5109 		inode_unlock(target);
5110 	dput(new_dentry);
5111 	if (!error) {
5112 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5113 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5114 		if (flags & RENAME_EXCHANGE) {
5115 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5116 				      new_is_dir, NULL, new_dentry);
5117 		}
5118 	}
5119 	release_dentry_name_snapshot(&old_name);
5120 
5121 	return error;
5122 }
5123 EXPORT_SYMBOL(vfs_rename);
5124 
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5125 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5126 		 struct filename *to, unsigned int flags)
5127 {
5128 	struct renamedata rd;
5129 	struct dentry *old_dentry, *new_dentry;
5130 	struct dentry *trap;
5131 	struct path old_path, new_path;
5132 	struct qstr old_last, new_last;
5133 	int old_type, new_type;
5134 	struct inode *delegated_inode = NULL;
5135 	unsigned int lookup_flags = 0, target_flags =
5136 		LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5137 	bool should_retry = false;
5138 	int error = -EINVAL;
5139 
5140 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5141 		goto put_names;
5142 
5143 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5144 	    (flags & RENAME_EXCHANGE))
5145 		goto put_names;
5146 
5147 	if (flags & RENAME_EXCHANGE)
5148 		target_flags = 0;
5149 	if (flags & RENAME_NOREPLACE)
5150 		target_flags |= LOOKUP_EXCL;
5151 
5152 retry:
5153 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5154 				  &old_last, &old_type);
5155 	if (error)
5156 		goto put_names;
5157 
5158 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5159 				  &new_type);
5160 	if (error)
5161 		goto exit1;
5162 
5163 	error = -EXDEV;
5164 	if (old_path.mnt != new_path.mnt)
5165 		goto exit2;
5166 
5167 	error = -EBUSY;
5168 	if (old_type != LAST_NORM)
5169 		goto exit2;
5170 
5171 	if (flags & RENAME_NOREPLACE)
5172 		error = -EEXIST;
5173 	if (new_type != LAST_NORM)
5174 		goto exit2;
5175 
5176 	error = mnt_want_write(old_path.mnt);
5177 	if (error)
5178 		goto exit2;
5179 
5180 retry_deleg:
5181 	trap = lock_rename(new_path.dentry, old_path.dentry);
5182 	if (IS_ERR(trap)) {
5183 		error = PTR_ERR(trap);
5184 		goto exit_lock_rename;
5185 	}
5186 
5187 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5188 					  lookup_flags);
5189 	error = PTR_ERR(old_dentry);
5190 	if (IS_ERR(old_dentry))
5191 		goto exit3;
5192 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5193 					  lookup_flags | target_flags);
5194 	error = PTR_ERR(new_dentry);
5195 	if (IS_ERR(new_dentry))
5196 		goto exit4;
5197 	if (flags & RENAME_EXCHANGE) {
5198 		if (!d_is_dir(new_dentry)) {
5199 			error = -ENOTDIR;
5200 			if (new_last.name[new_last.len])
5201 				goto exit5;
5202 		}
5203 	}
5204 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5205 	if (!d_is_dir(old_dentry)) {
5206 		error = -ENOTDIR;
5207 		if (old_last.name[old_last.len])
5208 			goto exit5;
5209 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5210 			goto exit5;
5211 	}
5212 	/* source should not be ancestor of target */
5213 	error = -EINVAL;
5214 	if (old_dentry == trap)
5215 		goto exit5;
5216 	/* target should not be an ancestor of source */
5217 	if (!(flags & RENAME_EXCHANGE))
5218 		error = -ENOTEMPTY;
5219 	if (new_dentry == trap)
5220 		goto exit5;
5221 
5222 	error = security_path_rename(&old_path, old_dentry,
5223 				     &new_path, new_dentry, flags);
5224 	if (error)
5225 		goto exit5;
5226 
5227 	rd.old_dir	   = old_path.dentry->d_inode;
5228 	rd.old_dentry	   = old_dentry;
5229 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5230 	rd.new_dir	   = new_path.dentry->d_inode;
5231 	rd.new_dentry	   = new_dentry;
5232 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5233 	rd.delegated_inode = &delegated_inode;
5234 	rd.flags	   = flags;
5235 	error = vfs_rename(&rd);
5236 exit5:
5237 	dput(new_dentry);
5238 exit4:
5239 	dput(old_dentry);
5240 exit3:
5241 	unlock_rename(new_path.dentry, old_path.dentry);
5242 exit_lock_rename:
5243 	if (delegated_inode) {
5244 		error = break_deleg_wait(&delegated_inode);
5245 		if (!error)
5246 			goto retry_deleg;
5247 	}
5248 	mnt_drop_write(old_path.mnt);
5249 exit2:
5250 	if (retry_estale(error, lookup_flags))
5251 		should_retry = true;
5252 	path_put(&new_path);
5253 exit1:
5254 	path_put(&old_path);
5255 	if (should_retry) {
5256 		should_retry = false;
5257 		lookup_flags |= LOOKUP_REVAL;
5258 		goto retry;
5259 	}
5260 put_names:
5261 	putname(from);
5262 	putname(to);
5263 	return error;
5264 }
5265 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5266 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5267 		int, newdfd, const char __user *, newname, unsigned int, flags)
5268 {
5269 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5270 				flags);
5271 }
5272 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5273 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5274 		int, newdfd, const char __user *, newname)
5275 {
5276 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5277 				0);
5278 }
5279 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5280 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5281 {
5282 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5283 				getname(newname), 0);
5284 }
5285 
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5286 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5287 {
5288 	int copylen;
5289 
5290 	copylen = linklen;
5291 	if (unlikely(copylen > (unsigned) buflen))
5292 		copylen = buflen;
5293 	if (copy_to_user(buffer, link, copylen))
5294 		copylen = -EFAULT;
5295 	return copylen;
5296 }
5297 
5298 /**
5299  * vfs_readlink - copy symlink body into userspace buffer
5300  * @dentry: dentry on which to get symbolic link
5301  * @buffer: user memory pointer
5302  * @buflen: size of buffer
5303  *
5304  * Does not touch atime.  That's up to the caller if necessary
5305  *
5306  * Does not call security hook.
5307  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5308 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5309 {
5310 	struct inode *inode = d_inode(dentry);
5311 	DEFINE_DELAYED_CALL(done);
5312 	const char *link;
5313 	int res;
5314 
5315 	if (inode->i_opflags & IOP_CACHED_LINK)
5316 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5317 
5318 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5319 		if (unlikely(inode->i_op->readlink))
5320 			return inode->i_op->readlink(dentry, buffer, buflen);
5321 
5322 		if (!d_is_symlink(dentry))
5323 			return -EINVAL;
5324 
5325 		spin_lock(&inode->i_lock);
5326 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5327 		spin_unlock(&inode->i_lock);
5328 	}
5329 
5330 	link = READ_ONCE(inode->i_link);
5331 	if (!link) {
5332 		link = inode->i_op->get_link(dentry, inode, &done);
5333 		if (IS_ERR(link))
5334 			return PTR_ERR(link);
5335 	}
5336 	res = readlink_copy(buffer, buflen, link, strlen(link));
5337 	do_delayed_call(&done);
5338 	return res;
5339 }
5340 EXPORT_SYMBOL(vfs_readlink);
5341 
5342 /**
5343  * vfs_get_link - get symlink body
5344  * @dentry: dentry on which to get symbolic link
5345  * @done: caller needs to free returned data with this
5346  *
5347  * Calls security hook and i_op->get_link() on the supplied inode.
5348  *
5349  * It does not touch atime.  That's up to the caller if necessary.
5350  *
5351  * Does not work on "special" symlinks like /proc/$$/fd/N
5352  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5353 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5354 {
5355 	const char *res = ERR_PTR(-EINVAL);
5356 	struct inode *inode = d_inode(dentry);
5357 
5358 	if (d_is_symlink(dentry)) {
5359 		res = ERR_PTR(security_inode_readlink(dentry));
5360 		if (!res)
5361 			res = inode->i_op->get_link(dentry, inode, done);
5362 	}
5363 	return res;
5364 }
5365 EXPORT_SYMBOL(vfs_get_link);
5366 
5367 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5368 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5369 			     struct delayed_call *callback)
5370 {
5371 	struct page *page;
5372 	struct address_space *mapping = inode->i_mapping;
5373 
5374 	if (!dentry) {
5375 		page = find_get_page(mapping, 0);
5376 		if (!page)
5377 			return ERR_PTR(-ECHILD);
5378 		if (!PageUptodate(page)) {
5379 			put_page(page);
5380 			return ERR_PTR(-ECHILD);
5381 		}
5382 	} else {
5383 		page = read_mapping_page(mapping, 0, NULL);
5384 		if (IS_ERR(page))
5385 			return (char*)page;
5386 	}
5387 	set_delayed_call(callback, page_put_link, page);
5388 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5389 	return page_address(page);
5390 }
5391 
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5392 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5393 			      struct delayed_call *callback)
5394 {
5395 	return __page_get_link(dentry, inode, callback);
5396 }
5397 EXPORT_SYMBOL_GPL(page_get_link_raw);
5398 
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5399 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5400 					struct delayed_call *callback)
5401 {
5402 	char *kaddr = __page_get_link(dentry, inode, callback);
5403 
5404 	if (!IS_ERR(kaddr))
5405 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5406 	return kaddr;
5407 }
5408 
5409 EXPORT_SYMBOL(page_get_link);
5410 
page_put_link(void * arg)5411 void page_put_link(void *arg)
5412 {
5413 	put_page(arg);
5414 }
5415 EXPORT_SYMBOL(page_put_link);
5416 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5417 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5418 {
5419 	const char *link;
5420 	int res;
5421 
5422 	DEFINE_DELAYED_CALL(done);
5423 	link = page_get_link(dentry, d_inode(dentry), &done);
5424 	res = PTR_ERR(link);
5425 	if (!IS_ERR(link))
5426 		res = readlink_copy(buffer, buflen, link, strlen(link));
5427 	do_delayed_call(&done);
5428 	return res;
5429 }
5430 EXPORT_SYMBOL(page_readlink);
5431 
page_symlink(struct inode * inode,const char * symname,int len)5432 int page_symlink(struct inode *inode, const char *symname, int len)
5433 {
5434 	struct address_space *mapping = inode->i_mapping;
5435 	const struct address_space_operations *aops = mapping->a_ops;
5436 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5437 	struct folio *folio;
5438 	void *fsdata = NULL;
5439 	int err;
5440 	unsigned int flags;
5441 
5442 retry:
5443 	if (nofs)
5444 		flags = memalloc_nofs_save();
5445 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5446 	if (nofs)
5447 		memalloc_nofs_restore(flags);
5448 	if (err)
5449 		goto fail;
5450 
5451 	memcpy(folio_address(folio), symname, len - 1);
5452 
5453 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5454 						folio, fsdata);
5455 	if (err < 0)
5456 		goto fail;
5457 	if (err < len-1)
5458 		goto retry;
5459 
5460 	mark_inode_dirty(inode);
5461 	return 0;
5462 fail:
5463 	return err;
5464 }
5465 EXPORT_SYMBOL(page_symlink);
5466 
5467 const struct inode_operations page_symlink_inode_operations = {
5468 	.get_link	= page_get_link,
5469 };
5470 EXPORT_SYMBOL(page_symlink_inode_operations);
5471