xref: /linux/net/core/dev.c (revision b5c6891b2c5b54bf58069966296917da46cda6f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
netdev_lock_pos(unsigned short dev_type)509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
netdev_set_addr_lockdep_class(struct net_device * dev)530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
ptype_head(const struct packet_type * pt)573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL)) {
576 		if (!pt->af_packet_net && !pt->dev)
577 			return NULL;
578 
579 		return pt->dev ? &pt->dev->ptype_all :
580 				 &pt->af_packet_net->ptype_all;
581 	}
582 
583 	if (pt->dev)
584 		return &pt->dev->ptype_specific;
585 
586 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589 
590 /**
591  *	dev_add_pack - add packet handler
592  *	@pt: packet type declaration
593  *
594  *	Add a protocol handler to the networking stack. The passed &packet_type
595  *	is linked into kernel lists and may not be freed until it has been
596  *	removed from the kernel lists.
597  *
598  *	This call does not sleep therefore it can not
599  *	guarantee all CPU's that are in middle of receiving packets
600  *	will see the new packet type (until the next received packet).
601  */
602 
dev_add_pack(struct packet_type * pt)603 void dev_add_pack(struct packet_type *pt)
604 {
605 	struct list_head *head = ptype_head(pt);
606 
607 	if (WARN_ON_ONCE(!head))
608 		return;
609 
610 	spin_lock(&ptype_lock);
611 	list_add_rcu(&pt->list, head);
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615 
616 /**
617  *	__dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *      The packet type might still be in use by receivers
626  *	and must not be freed until after all the CPU's have gone
627  *	through a quiescent state.
628  */
__dev_remove_pack(struct packet_type * pt)629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 	struct list_head *head = ptype_head(pt);
632 	struct packet_type *pt1;
633 
634 	if (!head)
635 		return;
636 
637 	spin_lock(&ptype_lock);
638 
639 	list_for_each_entry(pt1, head, list) {
640 		if (pt == pt1) {
641 			list_del_rcu(&pt->list);
642 			goto out;
643 		}
644 	}
645 
646 	pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 	spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651 
652 /**
653  *	dev_remove_pack	 - remove packet handler
654  *	@pt: packet type declaration
655  *
656  *	Remove a protocol handler that was previously added to the kernel
657  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658  *	from the kernel lists and can be freed or reused once this function
659  *	returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
dev_remove_pack(struct packet_type * pt)664 void dev_remove_pack(struct packet_type *pt)
665 {
666 	__dev_remove_pack(pt);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671 
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
dev_fwd_path(struct net_device_path_stack * stack)722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 	int k = stack->num_paths++;
725 
726 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 		return NULL;
728 
729 	return &stack->path[k];
730 }
731 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 			  struct net_device_path_stack *stack)
734 {
735 	const struct net_device *last_dev;
736 	struct net_device_path_ctx ctx = {
737 		.dev	= dev,
738 	};
739 	struct net_device_path *path;
740 	int ret = 0;
741 
742 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 	stack->num_paths = 0;
744 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 		last_dev = ctx.dev;
746 		path = dev_fwd_path(stack);
747 		if (!path)
748 			return -1;
749 
750 		memset(path, 0, sizeof(struct net_device_path));
751 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 		if (ret < 0)
753 			return -1;
754 
755 		if (WARN_ON_ONCE(last_dev == ctx.dev))
756 			return -1;
757 	}
758 
759 	if (!ctx.dev)
760 		return ret;
761 
762 	path = dev_fwd_path(stack);
763 	if (!path)
764 		return -1;
765 	path->type = DEV_PATH_ETHERNET;
766 	path->dev = ctx.dev;
767 
768 	return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771 
772 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 	struct napi_struct *napi;
777 
778 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 		if (napi->napi_id == napi_id)
780 			return napi;
781 
782 	return NULL;
783 }
784 
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 	struct napi_struct *napi;
790 
791 	napi = napi_by_id(napi_id);
792 	if (!napi)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(!napi->dev))
796 		return NULL;
797 	if (!net_eq(net, dev_net(napi->dev)))
798 		return NULL;
799 
800 	return napi;
801 }
802 
803 /**
804  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805  *	@net: the applicable net namespace
806  *	@napi_id: ID of a NAPI of a target device
807  *
808  *	Find a NAPI instance with @napi_id. Lock its device.
809  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810  *	netdev_unlock() must be called to release it.
811  *
812  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813  */
814 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 	struct napi_struct *napi;
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 		rcu_read_unlock();
824 		return NULL;
825 	}
826 
827 	dev = napi->dev;
828 	dev_hold(dev);
829 	rcu_read_unlock();
830 
831 	dev = __netdev_put_lock(dev);
832 	if (!dev)
833 		return NULL;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (napi && napi->dev != dev)
838 		napi = NULL;
839 	rcu_read_unlock();
840 
841 	if (!napi)
842 		netdev_unlock(dev);
843 	return napi;
844 }
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore.
852  *	If the name is found a pointer to the device is returned.
853  *	If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
__dev_get_by_name(struct net * net,const char * name)858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
dev_get_by_name_rcu(struct net * net,const char * name)879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 	struct net_device *dev;
892 
893 	rcu_read_lock();
894 	dev = dev_get_by_name_rcu(net, name);
895 	dev_hold(dev);
896 	rcu_read_unlock();
897 	return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900 
901 /**
902  *	netdev_get_by_name() - find a device by its name
903  *	@net: the applicable net namespace
904  *	@name: name to find
905  *	@tracker: tracking object for the acquired reference
906  *	@gfp: allocation flags for the tracker
907  *
908  *	Find an interface by name. This can be called from any
909  *	context and does its own locking. The returned handle has
910  *	the usage count incremented and the caller must use netdev_put() to
911  *	release it when it is no longer needed. %NULL is returned if no
912  *	matching device is found.
913  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 				      netdevice_tracker *tracker, gfp_t gfp)
916 {
917 	struct net_device *dev;
918 
919 	dev = dev_get_by_name(net, name);
920 	if (dev)
921 		netdev_tracker_alloc(dev, tracker, gfp);
922 	return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925 
926 /**
927  *	__dev_get_by_index - find a device by its ifindex
928  *	@net: the applicable net namespace
929  *	@ifindex: index of device
930  *
931  *	Search for an interface by index. Returns %NULL if the device
932  *	is not found or a pointer to the device. The device has not
933  *	had its reference counter increased so the caller must be careful
934  *	about locking. The caller must hold the RTNL semaphore.
935  */
936 
__dev_get_by_index(struct net * net,int ifindex)937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 	struct net_device *dev;
940 	struct hlist_head *head = dev_index_hash(net, ifindex);
941 
942 	hlist_for_each_entry(dev, head, index_hlist)
943 		if (dev->ifindex == ifindex)
944 			return dev;
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949 
950 /**
951  *	dev_get_by_index_rcu - find a device by its ifindex
952  *	@net: the applicable net namespace
953  *	@ifindex: index of device
954  *
955  *	Search for an interface by index. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not
957  *	had its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
dev_get_by_index_rcu(struct net * net,int ifindex)961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 	struct hlist_head *head = dev_index_hash(net, ifindex);
965 
966 	hlist_for_each_entry_rcu(dev, head, index_hlist)
967 		if (dev->ifindex == ifindex)
968 			return dev;
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973 
974 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	netdev_get_by_index() - find a device by its ifindex
989  *	@net: the applicable net namespace
990  *	@ifindex: index of device
991  *	@tracker: tracking object for the acquired reference
992  *	@gfp: allocation flags for the tracker
993  *
994  *	Search for an interface by index. Returns NULL if the device
995  *	is not found or a pointer to the device. The device returned has
996  *	had a reference added and the pointer is safe until the user calls
997  *	netdev_put() to indicate they have finished with it.
998  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 				       netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 	struct net_device *dev;
1003 
1004 	dev = dev_get_by_index(net, ifindex);
1005 	if (dev)
1006 		netdev_tracker_alloc(dev, tracker, gfp);
1007 	return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010 
1011 /**
1012  *	dev_get_by_napi_id - find a device by napi_id
1013  *	@napi_id: ID of the NAPI struct
1014  *
1015  *	Search for an interface by NAPI ID. Returns %NULL if the device
1016  *	is not found or a pointer to the device. The device has not had
1017  *	its reference counter increased so the caller must be careful
1018  *	about locking. The caller must hold RCU lock.
1019  */
dev_get_by_napi_id(unsigned int napi_id)1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 	struct napi_struct *napi;
1023 
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 
1026 	if (!napi_id_valid(napi_id))
1027 		return NULL;
1028 
1029 	napi = napi_by_id(napi_id);
1030 
1031 	return napi ? napi->dev : NULL;
1032 }
1033 
1034 /* Release the held reference on the net_device, and if the net_device
1035  * is still registered try to lock the instance lock. If device is being
1036  * unregistered NULL will be returned (but the reference has been released,
1037  * either way!)
1038  *
1039  * This helper is intended for locking net_device after it has been looked up
1040  * using a lockless lookup helper. Lock prevents the instance from going away.
1041  */
__netdev_put_lock(struct net_device * dev)1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 	netdev_lock(dev);
1045 	if (dev->reg_state > NETREG_REGISTERED) {
1046 		netdev_unlock(dev);
1047 		dev_put(dev);
1048 		return NULL;
1049 	}
1050 	dev_put(dev);
1051 	return dev;
1052 }
1053 
1054 /**
1055  *	netdev_get_by_index_lock() - find a device by its ifindex
1056  *	@net: the applicable net namespace
1057  *	@ifindex: index of device
1058  *
1059  *	Search for an interface by index. If a valid device
1060  *	with @ifindex is found it will be returned with netdev->lock held.
1061  *	netdev_unlock() must be called to release it.
1062  *
1063  *	Return: pointer to a device with lock held, NULL if not found.
1064  */
netdev_get_by_index_lock(struct net * net,int ifindex)1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 	struct net_device *dev;
1068 
1069 	dev = dev_get_by_index(net, ifindex);
1070 	if (!dev)
1071 		return NULL;
1072 
1073 	return __netdev_put_lock(dev);
1074 }
1075 
1076 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 		    unsigned long *index)
1079 {
1080 	if (dev)
1081 		netdev_unlock(dev);
1082 
1083 	do {
1084 		rcu_read_lock();
1085 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 		if (!dev) {
1087 			rcu_read_unlock();
1088 			return NULL;
1089 		}
1090 		dev_hold(dev);
1091 		rcu_read_unlock();
1092 
1093 		dev = __netdev_put_lock(dev);
1094 		if (dev)
1095 			return dev;
1096 
1097 		(*index)++;
1098 	} while (true);
1099 }
1100 
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102 
netdev_copy_name(struct net_device * dev,char * name)1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 	unsigned int seq;
1106 
1107 	do {
1108 		seq = read_seqbegin(&netdev_rename_lock);
1109 		strscpy(name, dev->name, IFNAMSIZ);
1110 	} while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112 
1113 /**
1114  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115  *	@net: network namespace
1116  *	@name: a pointer to the buffer where the name will be stored.
1117  *	@ifindex: the ifindex of the interface to get the name from.
1118  */
netdev_get_name(struct net * net,char * name,int ifindex)1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 	struct net_device *dev;
1122 	int ret;
1123 
1124 	rcu_read_lock();
1125 
1126 	dev = dev_get_by_index_rcu(net, ifindex);
1127 	if (!dev) {
1128 		ret = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	netdev_copy_name(dev, name);
1133 
1134 	ret = 0;
1135 out:
1136 	rcu_read_unlock();
1137 	return ret;
1138 }
1139 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 			 const char *ha)
1142 {
1143 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145 
1146 /**
1147  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148  *	@net: the applicable net namespace
1149  *	@type: media type of device
1150  *	@ha: hardware address
1151  *
1152  *	Search for an interface by MAC address. Returns NULL if the device
1153  *	is not found or a pointer to the device.
1154  *	The caller must hold RCU.
1155  *	The returned device has not had its ref count increased
1156  *	and the caller must therefore be careful about locking
1157  *
1158  */
1159 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 				       const char *ha)
1162 {
1163 	struct net_device *dev;
1164 
1165 	for_each_netdev_rcu(net, dev)
1166 		if (dev_addr_cmp(dev, type, ha))
1167 			return dev;
1168 
1169 	return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172 
1173 /**
1174  * dev_getbyhwaddr() - find a device by its hardware address
1175  * @net: the applicable net namespace
1176  * @type: media type of device
1177  * @ha: hardware address
1178  *
1179  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180  * rtnl_lock.
1181  *
1182  * Context: rtnl_lock() must be held.
1183  * Return: pointer to the net_device, or NULL if not found
1184  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 				   const char *ha)
1187 {
1188 	struct net_device *dev;
1189 
1190 	ASSERT_RTNL();
1191 	for_each_netdev(net, dev)
1192 		if (dev_addr_cmp(dev, type, ha))
1193 			return dev;
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 	struct net_device *dev, *ret = NULL;
1202 
1203 	rcu_read_lock();
1204 	for_each_netdev_rcu(net, dev)
1205 		if (dev->type == type) {
1206 			dev_hold(dev);
1207 			ret = dev;
1208 			break;
1209 		}
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214 
1215 /**
1216  *	__dev_get_by_flags - find any device with given flags
1217  *	@net: the applicable net namespace
1218  *	@if_flags: IFF_* values
1219  *	@mask: bitmask of bits in if_flags to check
1220  *
1221  *	Search for any interface with the given flags. Returns NULL if a device
1222  *	is not found or a pointer to the device. Must be called inside
1223  *	rtnl_lock(), and result refcount is unchanged.
1224  */
1225 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 				      unsigned short mask)
1228 {
1229 	struct net_device *dev, *ret;
1230 
1231 	ASSERT_RTNL();
1232 
1233 	ret = NULL;
1234 	for_each_netdev(net, dev) {
1235 		if (((dev->flags ^ if_flags) & mask) == 0) {
1236 			ret = dev;
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243 
1244 /**
1245  *	dev_valid_name - check if name is okay for network device
1246  *	@name: name string
1247  *
1248  *	Network device names need to be valid file names to
1249  *	allow sysfs to work.  We also disallow any kind of
1250  *	whitespace.
1251  */
dev_valid_name(const char * name)1252 bool dev_valid_name(const char *name)
1253 {
1254 	if (*name == '\0')
1255 		return false;
1256 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 		return false;
1258 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 		return false;
1260 
1261 	while (*name) {
1262 		if (*name == '/' || *name == ':' || isspace(*name))
1263 			return false;
1264 		name++;
1265 	}
1266 	return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269 
1270 /**
1271  *	__dev_alloc_name - allocate a name for a device
1272  *	@net: network namespace to allocate the device name in
1273  *	@name: name format string
1274  *	@res: result name string
1275  *
1276  *	Passed a format string - eg "lt%d" it will try and find a suitable
1277  *	id. It scans list of devices to build up a free map, then chooses
1278  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279  *	while allocating the name and adding the device in order to avoid
1280  *	duplicates.
1281  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282  *	Returns the number of the unit assigned or a negative errno code.
1283  */
1284 
__dev_alloc_name(struct net * net,const char * name,char * res)1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 	int i = 0;
1288 	const char *p;
1289 	const int max_netdevices = 8*PAGE_SIZE;
1290 	unsigned long *inuse;
1291 	struct net_device *d;
1292 	char buf[IFNAMSIZ];
1293 
1294 	/* Verify the string as this thing may have come from the user.
1295 	 * There must be one "%d" and no other "%" characters.
1296 	 */
1297 	p = strchr(name, '%');
1298 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 		return -EINVAL;
1300 
1301 	/* Use one page as a bit array of possible slots */
1302 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 	if (!inuse)
1304 		return -ENOMEM;
1305 
1306 	for_each_netdev(net, d) {
1307 		struct netdev_name_node *name_node;
1308 
1309 		netdev_for_each_altname(d, name_node) {
1310 			if (!sscanf(name_node->name, name, &i))
1311 				continue;
1312 			if (i < 0 || i >= max_netdevices)
1313 				continue;
1314 
1315 			/* avoid cases where sscanf is not exact inverse of printf */
1316 			snprintf(buf, IFNAMSIZ, name, i);
1317 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 				__set_bit(i, inuse);
1319 		}
1320 		if (!sscanf(d->name, name, &i))
1321 			continue;
1322 		if (i < 0 || i >= max_netdevices)
1323 			continue;
1324 
1325 		/* avoid cases where sscanf is not exact inverse of printf */
1326 		snprintf(buf, IFNAMSIZ, name, i);
1327 		if (!strncmp(buf, d->name, IFNAMSIZ))
1328 			__set_bit(i, inuse);
1329 	}
1330 
1331 	i = find_first_zero_bit(inuse, max_netdevices);
1332 	bitmap_free(inuse);
1333 	if (i == max_netdevices)
1334 		return -ENFILE;
1335 
1336 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 	strscpy(buf, name, IFNAMSIZ);
1338 	snprintf(res, IFNAMSIZ, buf, i);
1339 	return i;
1340 }
1341 
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 			       const char *want_name, char *out_name,
1345 			       int dup_errno)
1346 {
1347 	if (!dev_valid_name(want_name))
1348 		return -EINVAL;
1349 
1350 	if (strchr(want_name, '%'))
1351 		return __dev_alloc_name(net, want_name, out_name);
1352 
1353 	if (netdev_name_in_use(net, want_name))
1354 		return -dup_errno;
1355 	if (out_name != want_name)
1356 		strscpy(out_name, want_name, IFNAMSIZ);
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	dev_alloc_name - allocate a name for a device
1362  *	@dev: device
1363  *	@name: name format string
1364  *
1365  *	Passed a format string - eg "lt%d" it will try and find a suitable
1366  *	id. It scans list of devices to build up a free map, then chooses
1367  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368  *	while allocating the name and adding the device in order to avoid
1369  *	duplicates.
1370  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371  *	Returns the number of the unit assigned or a negative errno code.
1372  */
1373 
dev_alloc_name(struct net_device * dev,const char * name)1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 			      const char *name)
1382 {
1383 	int ret;
1384 
1385 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 	return ret < 0 ? ret : 0;
1387 }
1388 
netif_change_name(struct net_device * dev,const char * newname)1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 	struct net *net = dev_net(dev);
1392 	unsigned char old_assign_type;
1393 	char oldname[IFNAMSIZ];
1394 	int err = 0;
1395 	int ret;
1396 
1397 	ASSERT_RTNL_NET(net);
1398 
1399 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 		return 0;
1401 
1402 	memcpy(oldname, dev->name, IFNAMSIZ);
1403 
1404 	write_seqlock_bh(&netdev_rename_lock);
1405 	err = dev_get_valid_name(net, dev, newname);
1406 	write_sequnlock_bh(&netdev_rename_lock);
1407 
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (oldname[0] && !strchr(oldname, '%'))
1412 		netdev_info(dev, "renamed from %s%s\n", oldname,
1413 			    dev->flags & IFF_UP ? " (while UP)" : "");
1414 
1415 	old_assign_type = dev->name_assign_type;
1416 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417 
1418 rollback:
1419 	ret = device_rename(&dev->dev, dev->name);
1420 	if (ret) {
1421 		write_seqlock_bh(&netdev_rename_lock);
1422 		memcpy(dev->name, oldname, IFNAMSIZ);
1423 		write_sequnlock_bh(&netdev_rename_lock);
1424 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 		return ret;
1426 	}
1427 
1428 	netdev_adjacent_rename_links(dev, oldname);
1429 
1430 	netdev_name_node_del(dev->name_node);
1431 
1432 	synchronize_net();
1433 
1434 	netdev_name_node_add(net, dev->name_node);
1435 
1436 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 	ret = notifier_to_errno(ret);
1438 
1439 	if (ret) {
1440 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441 		if (err >= 0) {
1442 			err = ret;
1443 			write_seqlock_bh(&netdev_rename_lock);
1444 			memcpy(dev->name, oldname, IFNAMSIZ);
1445 			write_sequnlock_bh(&netdev_rename_lock);
1446 			memcpy(oldname, newname, IFNAMSIZ);
1447 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 			old_assign_type = NET_NAME_RENAMED;
1449 			goto rollback;
1450 		} else {
1451 			netdev_err(dev, "name change rollback failed: %d\n",
1452 				   ret);
1453 		}
1454 	}
1455 
1456 	return err;
1457 }
1458 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 	struct dev_ifalias *new_alias = NULL;
1462 
1463 	if (len >= IFALIASZ)
1464 		return -EINVAL;
1465 
1466 	if (len) {
1467 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 		if (!new_alias)
1469 			return -ENOMEM;
1470 
1471 		memcpy(new_alias->ifalias, alias, len);
1472 		new_alias->ifalias[len] = 0;
1473 	}
1474 
1475 	mutex_lock(&ifalias_mutex);
1476 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 					mutex_is_locked(&ifalias_mutex));
1478 	mutex_unlock(&ifalias_mutex);
1479 
1480 	if (new_alias)
1481 		kfree_rcu(new_alias, rcuhead);
1482 
1483 	return len;
1484 }
1485 
1486 /**
1487  *	dev_get_alias - get ifalias of a device
1488  *	@dev: device
1489  *	@name: buffer to store name of ifalias
1490  *	@len: size of buffer
1491  *
1492  *	get ifalias for a device.  Caller must make sure dev cannot go
1493  *	away,  e.g. rcu read lock or own a reference count to device.
1494  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 	const struct dev_ifalias *alias;
1498 	int ret = 0;
1499 
1500 	rcu_read_lock();
1501 	alias = rcu_dereference(dev->ifalias);
1502 	if (alias)
1503 		ret = snprintf(name, len, "%s", alias->ifalias);
1504 	rcu_read_unlock();
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  *	netdev_features_change - device changes features
1511  *	@dev: device to cause notification
1512  *
1513  *	Called to indicate a device has changed features.
1514  */
netdev_features_change(struct net_device * dev)1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520 
netif_state_change(struct net_device * dev)1521 void netif_state_change(struct net_device *dev)
1522 {
1523 	netdev_ops_assert_locked_or_invisible(dev);
1524 
1525 	if (dev->flags & IFF_UP) {
1526 		struct netdev_notifier_change_info change_info = {
1527 			.info.dev = dev,
1528 		};
1529 
1530 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1531 					      &change_info.info);
1532 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1533 	}
1534 }
1535 
1536 /**
1537  * __netdev_notify_peers - notify network peers about existence of @dev,
1538  * to be called when rtnl lock is already held.
1539  * @dev: network device
1540  *
1541  * Generate traffic such that interested network peers are aware of
1542  * @dev, such as by generating a gratuitous ARP. This may be used when
1543  * a device wants to inform the rest of the network about some sort of
1544  * reconfiguration such as a failover event or virtual machine
1545  * migration.
1546  */
__netdev_notify_peers(struct net_device * dev)1547 void __netdev_notify_peers(struct net_device *dev)
1548 {
1549 	ASSERT_RTNL();
1550 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1551 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1552 }
1553 EXPORT_SYMBOL(__netdev_notify_peers);
1554 
1555 /**
1556  * netdev_notify_peers - notify network peers about existence of @dev
1557  * @dev: network device
1558  *
1559  * Generate traffic such that interested network peers are aware of
1560  * @dev, such as by generating a gratuitous ARP. This may be used when
1561  * a device wants to inform the rest of the network about some sort of
1562  * reconfiguration such as a failover event or virtual machine
1563  * migration.
1564  */
netdev_notify_peers(struct net_device * dev)1565 void netdev_notify_peers(struct net_device *dev)
1566 {
1567 	rtnl_lock();
1568 	__netdev_notify_peers(dev);
1569 	rtnl_unlock();
1570 }
1571 EXPORT_SYMBOL(netdev_notify_peers);
1572 
1573 static int napi_threaded_poll(void *data);
1574 
napi_kthread_create(struct napi_struct * n)1575 static int napi_kthread_create(struct napi_struct *n)
1576 {
1577 	int err = 0;
1578 
1579 	/* Create and wake up the kthread once to put it in
1580 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1581 	 * warning and work with loadavg.
1582 	 */
1583 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1584 				n->dev->name, n->napi_id);
1585 	if (IS_ERR(n->thread)) {
1586 		err = PTR_ERR(n->thread);
1587 		pr_err("kthread_run failed with err %d\n", err);
1588 		n->thread = NULL;
1589 	}
1590 
1591 	return err;
1592 }
1593 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1594 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1595 {
1596 	const struct net_device_ops *ops = dev->netdev_ops;
1597 	int ret;
1598 
1599 	ASSERT_RTNL();
1600 	dev_addr_check(dev);
1601 
1602 	if (!netif_device_present(dev)) {
1603 		/* may be detached because parent is runtime-suspended */
1604 		if (dev->dev.parent)
1605 			pm_runtime_resume(dev->dev.parent);
1606 		if (!netif_device_present(dev))
1607 			return -ENODEV;
1608 	}
1609 
1610 	/* Block netpoll from trying to do any rx path servicing.
1611 	 * If we don't do this there is a chance ndo_poll_controller
1612 	 * or ndo_poll may be running while we open the device
1613 	 */
1614 	netpoll_poll_disable(dev);
1615 
1616 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1617 	ret = notifier_to_errno(ret);
1618 	if (ret)
1619 		return ret;
1620 
1621 	set_bit(__LINK_STATE_START, &dev->state);
1622 
1623 	netdev_ops_assert_locked(dev);
1624 
1625 	if (ops->ndo_validate_addr)
1626 		ret = ops->ndo_validate_addr(dev);
1627 
1628 	if (!ret && ops->ndo_open)
1629 		ret = ops->ndo_open(dev);
1630 
1631 	netpoll_poll_enable(dev);
1632 
1633 	if (ret)
1634 		clear_bit(__LINK_STATE_START, &dev->state);
1635 	else {
1636 		netif_set_up(dev, true);
1637 		dev_set_rx_mode(dev);
1638 		dev_activate(dev);
1639 		add_device_randomness(dev->dev_addr, dev->addr_len);
1640 	}
1641 
1642 	return ret;
1643 }
1644 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1645 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1646 {
1647 	int ret;
1648 
1649 	if (dev->flags & IFF_UP)
1650 		return 0;
1651 
1652 	ret = __dev_open(dev, extack);
1653 	if (ret < 0)
1654 		return ret;
1655 
1656 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1657 	call_netdevice_notifiers(NETDEV_UP, dev);
1658 
1659 	return ret;
1660 }
1661 
__dev_close_many(struct list_head * head)1662 static void __dev_close_many(struct list_head *head)
1663 {
1664 	struct net_device *dev;
1665 
1666 	ASSERT_RTNL();
1667 	might_sleep();
1668 
1669 	list_for_each_entry(dev, head, close_list) {
1670 		/* Temporarily disable netpoll until the interface is down */
1671 		netpoll_poll_disable(dev);
1672 
1673 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1674 
1675 		clear_bit(__LINK_STATE_START, &dev->state);
1676 
1677 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1678 		 * can be even on different cpu. So just clear netif_running().
1679 		 *
1680 		 * dev->stop() will invoke napi_disable() on all of it's
1681 		 * napi_struct instances on this device.
1682 		 */
1683 		smp_mb__after_atomic(); /* Commit netif_running(). */
1684 	}
1685 
1686 	dev_deactivate_many(head);
1687 
1688 	list_for_each_entry(dev, head, close_list) {
1689 		const struct net_device_ops *ops = dev->netdev_ops;
1690 
1691 		/*
1692 		 *	Call the device specific close. This cannot fail.
1693 		 *	Only if device is UP
1694 		 *
1695 		 *	We allow it to be called even after a DETACH hot-plug
1696 		 *	event.
1697 		 */
1698 
1699 		netdev_ops_assert_locked(dev);
1700 
1701 		if (ops->ndo_stop)
1702 			ops->ndo_stop(dev);
1703 
1704 		netif_set_up(dev, false);
1705 		netpoll_poll_enable(dev);
1706 	}
1707 }
1708 
__dev_close(struct net_device * dev)1709 static void __dev_close(struct net_device *dev)
1710 {
1711 	LIST_HEAD(single);
1712 
1713 	list_add(&dev->close_list, &single);
1714 	__dev_close_many(&single);
1715 	list_del(&single);
1716 }
1717 
dev_close_many(struct list_head * head,bool unlink)1718 void dev_close_many(struct list_head *head, bool unlink)
1719 {
1720 	struct net_device *dev, *tmp;
1721 
1722 	/* Remove the devices that don't need to be closed */
1723 	list_for_each_entry_safe(dev, tmp, head, close_list)
1724 		if (!(dev->flags & IFF_UP))
1725 			list_del_init(&dev->close_list);
1726 
1727 	__dev_close_many(head);
1728 
1729 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1730 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1731 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1732 		if (unlink)
1733 			list_del_init(&dev->close_list);
1734 	}
1735 }
1736 EXPORT_SYMBOL(dev_close_many);
1737 
netif_close(struct net_device * dev)1738 void netif_close(struct net_device *dev)
1739 {
1740 	if (dev->flags & IFF_UP) {
1741 		LIST_HEAD(single);
1742 
1743 		list_add(&dev->close_list, &single);
1744 		dev_close_many(&single, true);
1745 		list_del(&single);
1746 	}
1747 }
1748 EXPORT_SYMBOL(netif_close);
1749 
netif_disable_lro(struct net_device * dev)1750 void netif_disable_lro(struct net_device *dev)
1751 {
1752 	struct net_device *lower_dev;
1753 	struct list_head *iter;
1754 
1755 	dev->wanted_features &= ~NETIF_F_LRO;
1756 	netdev_update_features(dev);
1757 
1758 	if (unlikely(dev->features & NETIF_F_LRO))
1759 		netdev_WARN(dev, "failed to disable LRO!\n");
1760 
1761 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1762 		netdev_lock_ops(lower_dev);
1763 		netif_disable_lro(lower_dev);
1764 		netdev_unlock_ops(lower_dev);
1765 	}
1766 }
1767 EXPORT_IPV6_MOD(netif_disable_lro);
1768 
1769 /**
1770  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1771  *	@dev: device
1772  *
1773  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1774  *	called under RTNL.  This is needed if Generic XDP is installed on
1775  *	the device.
1776  */
dev_disable_gro_hw(struct net_device * dev)1777 static void dev_disable_gro_hw(struct net_device *dev)
1778 {
1779 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1780 	netdev_update_features(dev);
1781 
1782 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1783 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1784 }
1785 
netdev_cmd_to_name(enum netdev_cmd cmd)1786 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1787 {
1788 #define N(val) 						\
1789 	case NETDEV_##val:				\
1790 		return "NETDEV_" __stringify(val);
1791 	switch (cmd) {
1792 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1793 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1794 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1795 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1796 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1797 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1798 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1799 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1800 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1801 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1802 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1803 	N(XDP_FEAT_CHANGE)
1804 	}
1805 #undef N
1806 	return "UNKNOWN_NETDEV_EVENT";
1807 }
1808 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1809 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1810 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1811 				   struct net_device *dev)
1812 {
1813 	struct netdev_notifier_info info = {
1814 		.dev = dev,
1815 	};
1816 
1817 	return nb->notifier_call(nb, val, &info);
1818 }
1819 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1820 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1821 					     struct net_device *dev)
1822 {
1823 	int err;
1824 
1825 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1826 	err = notifier_to_errno(err);
1827 	if (err)
1828 		return err;
1829 
1830 	if (!(dev->flags & IFF_UP))
1831 		return 0;
1832 
1833 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1834 	return 0;
1835 }
1836 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1837 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1838 						struct net_device *dev)
1839 {
1840 	if (dev->flags & IFF_UP) {
1841 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1842 					dev);
1843 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1844 	}
1845 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1846 }
1847 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1848 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1849 						 struct net *net)
1850 {
1851 	struct net_device *dev;
1852 	int err;
1853 
1854 	for_each_netdev(net, dev) {
1855 		netdev_lock_ops(dev);
1856 		err = call_netdevice_register_notifiers(nb, dev);
1857 		netdev_unlock_ops(dev);
1858 		if (err)
1859 			goto rollback;
1860 	}
1861 	return 0;
1862 
1863 rollback:
1864 	for_each_netdev_continue_reverse(net, dev)
1865 		call_netdevice_unregister_notifiers(nb, dev);
1866 	return err;
1867 }
1868 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1869 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1870 						    struct net *net)
1871 {
1872 	struct net_device *dev;
1873 
1874 	for_each_netdev(net, dev)
1875 		call_netdevice_unregister_notifiers(nb, dev);
1876 }
1877 
1878 static int dev_boot_phase = 1;
1879 
1880 /**
1881  * register_netdevice_notifier - register a network notifier block
1882  * @nb: notifier
1883  *
1884  * Register a notifier to be called when network device events occur.
1885  * The notifier passed is linked into the kernel structures and must
1886  * not be reused until it has been unregistered. A negative errno code
1887  * is returned on a failure.
1888  *
1889  * When registered all registration and up events are replayed
1890  * to the new notifier to allow device to have a race free
1891  * view of the network device list.
1892  */
1893 
register_netdevice_notifier(struct notifier_block * nb)1894 int register_netdevice_notifier(struct notifier_block *nb)
1895 {
1896 	struct net *net;
1897 	int err;
1898 
1899 	/* Close race with setup_net() and cleanup_net() */
1900 	down_write(&pernet_ops_rwsem);
1901 
1902 	/* When RTNL is removed, we need protection for netdev_chain. */
1903 	rtnl_lock();
1904 
1905 	err = raw_notifier_chain_register(&netdev_chain, nb);
1906 	if (err)
1907 		goto unlock;
1908 	if (dev_boot_phase)
1909 		goto unlock;
1910 	for_each_net(net) {
1911 		__rtnl_net_lock(net);
1912 		err = call_netdevice_register_net_notifiers(nb, net);
1913 		__rtnl_net_unlock(net);
1914 		if (err)
1915 			goto rollback;
1916 	}
1917 
1918 unlock:
1919 	rtnl_unlock();
1920 	up_write(&pernet_ops_rwsem);
1921 	return err;
1922 
1923 rollback:
1924 	for_each_net_continue_reverse(net) {
1925 		__rtnl_net_lock(net);
1926 		call_netdevice_unregister_net_notifiers(nb, net);
1927 		__rtnl_net_unlock(net);
1928 	}
1929 
1930 	raw_notifier_chain_unregister(&netdev_chain, nb);
1931 	goto unlock;
1932 }
1933 EXPORT_SYMBOL(register_netdevice_notifier);
1934 
1935 /**
1936  * unregister_netdevice_notifier - unregister a network notifier block
1937  * @nb: notifier
1938  *
1939  * Unregister a notifier previously registered by
1940  * register_netdevice_notifier(). The notifier is unlinked into the
1941  * kernel structures and may then be reused. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * After unregistering unregister and down device events are synthesized
1945  * for all devices on the device list to the removed notifier to remove
1946  * the need for special case cleanup code.
1947  */
1948 
unregister_netdevice_notifier(struct notifier_block * nb)1949 int unregister_netdevice_notifier(struct notifier_block *nb)
1950 {
1951 	struct net *net;
1952 	int err;
1953 
1954 	/* Close race with setup_net() and cleanup_net() */
1955 	down_write(&pernet_ops_rwsem);
1956 	rtnl_lock();
1957 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1958 	if (err)
1959 		goto unlock;
1960 
1961 	for_each_net(net) {
1962 		__rtnl_net_lock(net);
1963 		call_netdevice_unregister_net_notifiers(nb, net);
1964 		__rtnl_net_unlock(net);
1965 	}
1966 
1967 unlock:
1968 	rtnl_unlock();
1969 	up_write(&pernet_ops_rwsem);
1970 	return err;
1971 }
1972 EXPORT_SYMBOL(unregister_netdevice_notifier);
1973 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1974 static int __register_netdevice_notifier_net(struct net *net,
1975 					     struct notifier_block *nb,
1976 					     bool ignore_call_fail)
1977 {
1978 	int err;
1979 
1980 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1981 	if (err)
1982 		return err;
1983 	if (dev_boot_phase)
1984 		return 0;
1985 
1986 	err = call_netdevice_register_net_notifiers(nb, net);
1987 	if (err && !ignore_call_fail)
1988 		goto chain_unregister;
1989 
1990 	return 0;
1991 
1992 chain_unregister:
1993 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	return err;
1995 }
1996 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1997 static int __unregister_netdevice_notifier_net(struct net *net,
1998 					       struct notifier_block *nb)
1999 {
2000 	int err;
2001 
2002 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2003 	if (err)
2004 		return err;
2005 
2006 	call_netdevice_unregister_net_notifiers(nb, net);
2007 	return 0;
2008 }
2009 
2010 /**
2011  * register_netdevice_notifier_net - register a per-netns network notifier block
2012  * @net: network namespace
2013  * @nb: notifier
2014  *
2015  * Register a notifier to be called when network device events occur.
2016  * The notifier passed is linked into the kernel structures and must
2017  * not be reused until it has been unregistered. A negative errno code
2018  * is returned on a failure.
2019  *
2020  * When registered all registration and up events are replayed
2021  * to the new notifier to allow device to have a race free
2022  * view of the network device list.
2023  */
2024 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2025 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2026 {
2027 	int err;
2028 
2029 	rtnl_net_lock(net);
2030 	err = __register_netdevice_notifier_net(net, nb, false);
2031 	rtnl_net_unlock(net);
2032 
2033 	return err;
2034 }
2035 EXPORT_SYMBOL(register_netdevice_notifier_net);
2036 
2037 /**
2038  * unregister_netdevice_notifier_net - unregister a per-netns
2039  *                                     network notifier block
2040  * @net: network namespace
2041  * @nb: notifier
2042  *
2043  * Unregister a notifier previously registered by
2044  * register_netdevice_notifier_net(). The notifier is unlinked from the
2045  * kernel structures and may then be reused. A negative errno code
2046  * is returned on a failure.
2047  *
2048  * After unregistering unregister and down device events are synthesized
2049  * for all devices on the device list to the removed notifier to remove
2050  * the need for special case cleanup code.
2051  */
2052 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2053 int unregister_netdevice_notifier_net(struct net *net,
2054 				      struct notifier_block *nb)
2055 {
2056 	int err;
2057 
2058 	rtnl_net_lock(net);
2059 	err = __unregister_netdevice_notifier_net(net, nb);
2060 	rtnl_net_unlock(net);
2061 
2062 	return err;
2063 }
2064 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2065 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2066 static void __move_netdevice_notifier_net(struct net *src_net,
2067 					  struct net *dst_net,
2068 					  struct notifier_block *nb)
2069 {
2070 	__unregister_netdevice_notifier_net(src_net, nb);
2071 	__register_netdevice_notifier_net(dst_net, nb, true);
2072 }
2073 
rtnl_net_dev_lock(struct net_device * dev)2074 static void rtnl_net_dev_lock(struct net_device *dev)
2075 {
2076 	bool again;
2077 
2078 	do {
2079 		struct net *net;
2080 
2081 		again = false;
2082 
2083 		/* netns might be being dismantled. */
2084 		rcu_read_lock();
2085 		net = dev_net_rcu(dev);
2086 		net_passive_inc(net);
2087 		rcu_read_unlock();
2088 
2089 		rtnl_net_lock(net);
2090 
2091 #ifdef CONFIG_NET_NS
2092 		/* dev might have been moved to another netns. */
2093 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2094 			rtnl_net_unlock(net);
2095 			net_passive_dec(net);
2096 			again = true;
2097 		}
2098 #endif
2099 	} while (again);
2100 }
2101 
rtnl_net_dev_unlock(struct net_device * dev)2102 static void rtnl_net_dev_unlock(struct net_device *dev)
2103 {
2104 	struct net *net = dev_net(dev);
2105 
2106 	rtnl_net_unlock(net);
2107 	net_passive_dec(net);
2108 }
2109 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2110 int register_netdevice_notifier_dev_net(struct net_device *dev,
2111 					struct notifier_block *nb,
2112 					struct netdev_net_notifier *nn)
2113 {
2114 	int err;
2115 
2116 	rtnl_net_dev_lock(dev);
2117 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2118 	if (!err) {
2119 		nn->nb = nb;
2120 		list_add(&nn->list, &dev->net_notifier_list);
2121 	}
2122 	rtnl_net_dev_unlock(dev);
2123 
2124 	return err;
2125 }
2126 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2127 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2128 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2129 					  struct notifier_block *nb,
2130 					  struct netdev_net_notifier *nn)
2131 {
2132 	int err;
2133 
2134 	rtnl_net_dev_lock(dev);
2135 	list_del(&nn->list);
2136 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2137 	rtnl_net_dev_unlock(dev);
2138 
2139 	return err;
2140 }
2141 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2142 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2143 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2144 					     struct net *net)
2145 {
2146 	struct netdev_net_notifier *nn;
2147 
2148 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2149 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2150 }
2151 
2152 /**
2153  *	call_netdevice_notifiers_info - call all network notifier blocks
2154  *	@val: value passed unmodified to notifier function
2155  *	@info: notifier information data
2156  *
2157  *	Call all network notifier blocks.  Parameters and return value
2158  *	are as for raw_notifier_call_chain().
2159  */
2160 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2161 int call_netdevice_notifiers_info(unsigned long val,
2162 				  struct netdev_notifier_info *info)
2163 {
2164 	struct net *net = dev_net(info->dev);
2165 	int ret;
2166 
2167 	ASSERT_RTNL();
2168 
2169 	/* Run per-netns notifier block chain first, then run the global one.
2170 	 * Hopefully, one day, the global one is going to be removed after
2171 	 * all notifier block registrators get converted to be per-netns.
2172 	 */
2173 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2174 	if (ret & NOTIFY_STOP_MASK)
2175 		return ret;
2176 	return raw_notifier_call_chain(&netdev_chain, val, info);
2177 }
2178 
2179 /**
2180  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2181  *	                                       for and rollback on error
2182  *	@val_up: value passed unmodified to notifier function
2183  *	@val_down: value passed unmodified to the notifier function when
2184  *	           recovering from an error on @val_up
2185  *	@info: notifier information data
2186  *
2187  *	Call all per-netns network notifier blocks, but not notifier blocks on
2188  *	the global notifier chain. Parameters and return value are as for
2189  *	raw_notifier_call_chain_robust().
2190  */
2191 
2192 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2193 call_netdevice_notifiers_info_robust(unsigned long val_up,
2194 				     unsigned long val_down,
2195 				     struct netdev_notifier_info *info)
2196 {
2197 	struct net *net = dev_net(info->dev);
2198 
2199 	ASSERT_RTNL();
2200 
2201 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2202 					      val_up, val_down, info);
2203 }
2204 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2205 static int call_netdevice_notifiers_extack(unsigned long val,
2206 					   struct net_device *dev,
2207 					   struct netlink_ext_ack *extack)
2208 {
2209 	struct netdev_notifier_info info = {
2210 		.dev = dev,
2211 		.extack = extack,
2212 	};
2213 
2214 	return call_netdevice_notifiers_info(val, &info);
2215 }
2216 
2217 /**
2218  *	call_netdevice_notifiers - call all network notifier blocks
2219  *      @val: value passed unmodified to notifier function
2220  *      @dev: net_device pointer passed unmodified to notifier function
2221  *
2222  *	Call all network notifier blocks.  Parameters and return value
2223  *	are as for raw_notifier_call_chain().
2224  */
2225 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2226 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2227 {
2228 	return call_netdevice_notifiers_extack(val, dev, NULL);
2229 }
2230 EXPORT_SYMBOL(call_netdevice_notifiers);
2231 
2232 /**
2233  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2234  *	@val: value passed unmodified to notifier function
2235  *	@dev: net_device pointer passed unmodified to notifier function
2236  *	@arg: additional u32 argument passed to the notifier function
2237  *
2238  *	Call all network notifier blocks.  Parameters and return value
2239  *	are as for raw_notifier_call_chain().
2240  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2241 static int call_netdevice_notifiers_mtu(unsigned long val,
2242 					struct net_device *dev, u32 arg)
2243 {
2244 	struct netdev_notifier_info_ext info = {
2245 		.info.dev = dev,
2246 		.ext.mtu = arg,
2247 	};
2248 
2249 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2250 
2251 	return call_netdevice_notifiers_info(val, &info.info);
2252 }
2253 
2254 #ifdef CONFIG_NET_INGRESS
2255 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2256 
net_inc_ingress_queue(void)2257 void net_inc_ingress_queue(void)
2258 {
2259 	static_branch_inc(&ingress_needed_key);
2260 }
2261 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2262 
net_dec_ingress_queue(void)2263 void net_dec_ingress_queue(void)
2264 {
2265 	static_branch_dec(&ingress_needed_key);
2266 }
2267 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2268 #endif
2269 
2270 #ifdef CONFIG_NET_EGRESS
2271 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2272 
net_inc_egress_queue(void)2273 void net_inc_egress_queue(void)
2274 {
2275 	static_branch_inc(&egress_needed_key);
2276 }
2277 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2278 
net_dec_egress_queue(void)2279 void net_dec_egress_queue(void)
2280 {
2281 	static_branch_dec(&egress_needed_key);
2282 }
2283 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2284 #endif
2285 
2286 #ifdef CONFIG_NET_CLS_ACT
2287 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2288 EXPORT_SYMBOL(tcf_sw_enabled_key);
2289 #endif
2290 
2291 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2292 EXPORT_SYMBOL(netstamp_needed_key);
2293 #ifdef CONFIG_JUMP_LABEL
2294 static atomic_t netstamp_needed_deferred;
2295 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2296 static void netstamp_clear(struct work_struct *work)
2297 {
2298 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2299 	int wanted;
2300 
2301 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2302 	if (wanted > 0)
2303 		static_branch_enable(&netstamp_needed_key);
2304 	else
2305 		static_branch_disable(&netstamp_needed_key);
2306 }
2307 static DECLARE_WORK(netstamp_work, netstamp_clear);
2308 #endif
2309 
net_enable_timestamp(void)2310 void net_enable_timestamp(void)
2311 {
2312 #ifdef CONFIG_JUMP_LABEL
2313 	int wanted = atomic_read(&netstamp_wanted);
2314 
2315 	while (wanted > 0) {
2316 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2317 			return;
2318 	}
2319 	atomic_inc(&netstamp_needed_deferred);
2320 	schedule_work(&netstamp_work);
2321 #else
2322 	static_branch_inc(&netstamp_needed_key);
2323 #endif
2324 }
2325 EXPORT_SYMBOL(net_enable_timestamp);
2326 
net_disable_timestamp(void)2327 void net_disable_timestamp(void)
2328 {
2329 #ifdef CONFIG_JUMP_LABEL
2330 	int wanted = atomic_read(&netstamp_wanted);
2331 
2332 	while (wanted > 1) {
2333 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2334 			return;
2335 	}
2336 	atomic_dec(&netstamp_needed_deferred);
2337 	schedule_work(&netstamp_work);
2338 #else
2339 	static_branch_dec(&netstamp_needed_key);
2340 #endif
2341 }
2342 EXPORT_SYMBOL(net_disable_timestamp);
2343 
net_timestamp_set(struct sk_buff * skb)2344 static inline void net_timestamp_set(struct sk_buff *skb)
2345 {
2346 	skb->tstamp = 0;
2347 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2348 	if (static_branch_unlikely(&netstamp_needed_key))
2349 		skb->tstamp = ktime_get_real();
2350 }
2351 
2352 #define net_timestamp_check(COND, SKB)				\
2353 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2354 		if ((COND) && !(SKB)->tstamp)			\
2355 			(SKB)->tstamp = ktime_get_real();	\
2356 	}							\
2357 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2358 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2359 {
2360 	return __is_skb_forwardable(dev, skb, true);
2361 }
2362 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2363 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2364 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2365 			      bool check_mtu)
2366 {
2367 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2368 
2369 	if (likely(!ret)) {
2370 		skb->protocol = eth_type_trans(skb, dev);
2371 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2372 	}
2373 
2374 	return ret;
2375 }
2376 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2377 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2378 {
2379 	return __dev_forward_skb2(dev, skb, true);
2380 }
2381 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2382 
2383 /**
2384  * dev_forward_skb - loopback an skb to another netif
2385  *
2386  * @dev: destination network device
2387  * @skb: buffer to forward
2388  *
2389  * return values:
2390  *	NET_RX_SUCCESS	(no congestion)
2391  *	NET_RX_DROP     (packet was dropped, but freed)
2392  *
2393  * dev_forward_skb can be used for injecting an skb from the
2394  * start_xmit function of one device into the receive queue
2395  * of another device.
2396  *
2397  * The receiving device may be in another namespace, so
2398  * we have to clear all information in the skb that could
2399  * impact namespace isolation.
2400  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2401 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2402 {
2403 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2404 }
2405 EXPORT_SYMBOL_GPL(dev_forward_skb);
2406 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2407 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2408 {
2409 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2410 }
2411 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2412 static inline int deliver_skb(struct sk_buff *skb,
2413 			      struct packet_type *pt_prev,
2414 			      struct net_device *orig_dev)
2415 {
2416 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2417 		return -ENOMEM;
2418 	refcount_inc(&skb->users);
2419 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2420 }
2421 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2422 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2423 					  struct packet_type **pt,
2424 					  struct net_device *orig_dev,
2425 					  __be16 type,
2426 					  struct list_head *ptype_list)
2427 {
2428 	struct packet_type *ptype, *pt_prev = *pt;
2429 
2430 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2431 		if (ptype->type != type)
2432 			continue;
2433 		if (pt_prev)
2434 			deliver_skb(skb, pt_prev, orig_dev);
2435 		pt_prev = ptype;
2436 	}
2437 	*pt = pt_prev;
2438 }
2439 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2440 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2441 {
2442 	if (!ptype->af_packet_priv || !skb->sk)
2443 		return false;
2444 
2445 	if (ptype->id_match)
2446 		return ptype->id_match(ptype, skb->sk);
2447 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2448 		return true;
2449 
2450 	return false;
2451 }
2452 
2453 /**
2454  * dev_nit_active_rcu - return true if any network interface taps are in use
2455  *
2456  * The caller must hold the RCU lock
2457  *
2458  * @dev: network device to check for the presence of taps
2459  */
dev_nit_active_rcu(const struct net_device * dev)2460 bool dev_nit_active_rcu(const struct net_device *dev)
2461 {
2462 	/* Callers may hold either RCU or RCU BH lock */
2463 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2464 
2465 	return !list_empty(&dev_net(dev)->ptype_all) ||
2466 	       !list_empty(&dev->ptype_all);
2467 }
2468 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2469 
2470 /*
2471  *	Support routine. Sends outgoing frames to any network
2472  *	taps currently in use.
2473  */
2474 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2475 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2476 {
2477 	struct packet_type *ptype, *pt_prev = NULL;
2478 	struct list_head *ptype_list;
2479 	struct sk_buff *skb2 = NULL;
2480 
2481 	rcu_read_lock();
2482 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2483 again:
2484 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 		if (READ_ONCE(ptype->ignore_outgoing))
2486 			continue;
2487 
2488 		/* Never send packets back to the socket
2489 		 * they originated from - MvS (miquels@drinkel.ow.org)
2490 		 */
2491 		if (skb_loop_sk(ptype, skb))
2492 			continue;
2493 
2494 		if (pt_prev) {
2495 			deliver_skb(skb2, pt_prev, skb->dev);
2496 			pt_prev = ptype;
2497 			continue;
2498 		}
2499 
2500 		/* need to clone skb, done only once */
2501 		skb2 = skb_clone(skb, GFP_ATOMIC);
2502 		if (!skb2)
2503 			goto out_unlock;
2504 
2505 		net_timestamp_set(skb2);
2506 
2507 		/* skb->nh should be correctly
2508 		 * set by sender, so that the second statement is
2509 		 * just protection against buggy protocols.
2510 		 */
2511 		skb_reset_mac_header(skb2);
2512 
2513 		if (skb_network_header(skb2) < skb2->data ||
2514 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2515 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2516 					     ntohs(skb2->protocol),
2517 					     dev->name);
2518 			skb_reset_network_header(skb2);
2519 		}
2520 
2521 		skb2->transport_header = skb2->network_header;
2522 		skb2->pkt_type = PACKET_OUTGOING;
2523 		pt_prev = ptype;
2524 	}
2525 
2526 	if (ptype_list != &dev->ptype_all) {
2527 		ptype_list = &dev->ptype_all;
2528 		goto again;
2529 	}
2530 out_unlock:
2531 	if (pt_prev) {
2532 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2533 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2534 		else
2535 			kfree_skb(skb2);
2536 	}
2537 	rcu_read_unlock();
2538 }
2539 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2540 
2541 /**
2542  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2543  * @dev: Network device
2544  * @txq: number of queues available
2545  *
2546  * If real_num_tx_queues is changed the tc mappings may no longer be
2547  * valid. To resolve this verify the tc mapping remains valid and if
2548  * not NULL the mapping. With no priorities mapping to this
2549  * offset/count pair it will no longer be used. In the worst case TC0
2550  * is invalid nothing can be done so disable priority mappings. If is
2551  * expected that drivers will fix this mapping if they can before
2552  * calling netif_set_real_num_tx_queues.
2553  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2554 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2555 {
2556 	int i;
2557 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2558 
2559 	/* If TC0 is invalidated disable TC mapping */
2560 	if (tc->offset + tc->count > txq) {
2561 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2562 		dev->num_tc = 0;
2563 		return;
2564 	}
2565 
2566 	/* Invalidated prio to tc mappings set to TC0 */
2567 	for (i = 1; i < TC_BITMASK + 1; i++) {
2568 		int q = netdev_get_prio_tc_map(dev, i);
2569 
2570 		tc = &dev->tc_to_txq[q];
2571 		if (tc->offset + tc->count > txq) {
2572 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2573 				    i, q);
2574 			netdev_set_prio_tc_map(dev, i, 0);
2575 		}
2576 	}
2577 }
2578 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2579 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2580 {
2581 	if (dev->num_tc) {
2582 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2583 		int i;
2584 
2585 		/* walk through the TCs and see if it falls into any of them */
2586 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2587 			if ((txq - tc->offset) < tc->count)
2588 				return i;
2589 		}
2590 
2591 		/* didn't find it, just return -1 to indicate no match */
2592 		return -1;
2593 	}
2594 
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL(netdev_txq_to_tc);
2598 
2599 #ifdef CONFIG_XPS
2600 static struct static_key xps_needed __read_mostly;
2601 static struct static_key xps_rxqs_needed __read_mostly;
2602 static DEFINE_MUTEX(xps_map_mutex);
2603 #define xmap_dereference(P)		\
2604 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2605 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2606 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2607 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2608 {
2609 	struct xps_map *map = NULL;
2610 	int pos;
2611 
2612 	map = xmap_dereference(dev_maps->attr_map[tci]);
2613 	if (!map)
2614 		return false;
2615 
2616 	for (pos = map->len; pos--;) {
2617 		if (map->queues[pos] != index)
2618 			continue;
2619 
2620 		if (map->len > 1) {
2621 			map->queues[pos] = map->queues[--map->len];
2622 			break;
2623 		}
2624 
2625 		if (old_maps)
2626 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2627 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2628 		kfree_rcu(map, rcu);
2629 		return false;
2630 	}
2631 
2632 	return true;
2633 }
2634 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2635 static bool remove_xps_queue_cpu(struct net_device *dev,
2636 				 struct xps_dev_maps *dev_maps,
2637 				 int cpu, u16 offset, u16 count)
2638 {
2639 	int num_tc = dev_maps->num_tc;
2640 	bool active = false;
2641 	int tci;
2642 
2643 	for (tci = cpu * num_tc; num_tc--; tci++) {
2644 		int i, j;
2645 
2646 		for (i = count, j = offset; i--; j++) {
2647 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2648 				break;
2649 		}
2650 
2651 		active |= i < 0;
2652 	}
2653 
2654 	return active;
2655 }
2656 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2657 static void reset_xps_maps(struct net_device *dev,
2658 			   struct xps_dev_maps *dev_maps,
2659 			   enum xps_map_type type)
2660 {
2661 	static_key_slow_dec_cpuslocked(&xps_needed);
2662 	if (type == XPS_RXQS)
2663 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2664 
2665 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2666 
2667 	kfree_rcu(dev_maps, rcu);
2668 }
2669 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2670 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2671 			   u16 offset, u16 count)
2672 {
2673 	struct xps_dev_maps *dev_maps;
2674 	bool active = false;
2675 	int i, j;
2676 
2677 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2678 	if (!dev_maps)
2679 		return;
2680 
2681 	for (j = 0; j < dev_maps->nr_ids; j++)
2682 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2683 	if (!active)
2684 		reset_xps_maps(dev, dev_maps, type);
2685 
2686 	if (type == XPS_CPUS) {
2687 		for (i = offset + (count - 1); count--; i--)
2688 			netdev_queue_numa_node_write(
2689 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2690 	}
2691 }
2692 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2693 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2694 				   u16 count)
2695 {
2696 	if (!static_key_false(&xps_needed))
2697 		return;
2698 
2699 	cpus_read_lock();
2700 	mutex_lock(&xps_map_mutex);
2701 
2702 	if (static_key_false(&xps_rxqs_needed))
2703 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2704 
2705 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2706 
2707 	mutex_unlock(&xps_map_mutex);
2708 	cpus_read_unlock();
2709 }
2710 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2711 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2712 {
2713 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2714 }
2715 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2716 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2717 				      u16 index, bool is_rxqs_map)
2718 {
2719 	struct xps_map *new_map;
2720 	int alloc_len = XPS_MIN_MAP_ALLOC;
2721 	int i, pos;
2722 
2723 	for (pos = 0; map && pos < map->len; pos++) {
2724 		if (map->queues[pos] != index)
2725 			continue;
2726 		return map;
2727 	}
2728 
2729 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2730 	if (map) {
2731 		if (pos < map->alloc_len)
2732 			return map;
2733 
2734 		alloc_len = map->alloc_len * 2;
2735 	}
2736 
2737 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2738 	 *  map
2739 	 */
2740 	if (is_rxqs_map)
2741 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2742 	else
2743 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2744 				       cpu_to_node(attr_index));
2745 	if (!new_map)
2746 		return NULL;
2747 
2748 	for (i = 0; i < pos; i++)
2749 		new_map->queues[i] = map->queues[i];
2750 	new_map->alloc_len = alloc_len;
2751 	new_map->len = pos;
2752 
2753 	return new_map;
2754 }
2755 
2756 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2757 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2758 			      struct xps_dev_maps *new_dev_maps, int index,
2759 			      int tc, bool skip_tc)
2760 {
2761 	int i, tci = index * dev_maps->num_tc;
2762 	struct xps_map *map;
2763 
2764 	/* copy maps belonging to foreign traffic classes */
2765 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2766 		if (i == tc && skip_tc)
2767 			continue;
2768 
2769 		/* fill in the new device map from the old device map */
2770 		map = xmap_dereference(dev_maps->attr_map[tci]);
2771 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2772 	}
2773 }
2774 
2775 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2776 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2777 			  u16 index, enum xps_map_type type)
2778 {
2779 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2780 	const unsigned long *online_mask = NULL;
2781 	bool active = false, copy = false;
2782 	int i, j, tci, numa_node_id = -2;
2783 	int maps_sz, num_tc = 1, tc = 0;
2784 	struct xps_map *map, *new_map;
2785 	unsigned int nr_ids;
2786 
2787 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2788 
2789 	if (dev->num_tc) {
2790 		/* Do not allow XPS on subordinate device directly */
2791 		num_tc = dev->num_tc;
2792 		if (num_tc < 0)
2793 			return -EINVAL;
2794 
2795 		/* If queue belongs to subordinate dev use its map */
2796 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2797 
2798 		tc = netdev_txq_to_tc(dev, index);
2799 		if (tc < 0)
2800 			return -EINVAL;
2801 	}
2802 
2803 	mutex_lock(&xps_map_mutex);
2804 
2805 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2806 	if (type == XPS_RXQS) {
2807 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2808 		nr_ids = dev->num_rx_queues;
2809 	} else {
2810 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2811 		if (num_possible_cpus() > 1)
2812 			online_mask = cpumask_bits(cpu_online_mask);
2813 		nr_ids = nr_cpu_ids;
2814 	}
2815 
2816 	if (maps_sz < L1_CACHE_BYTES)
2817 		maps_sz = L1_CACHE_BYTES;
2818 
2819 	/* The old dev_maps could be larger or smaller than the one we're
2820 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2821 	 * between. We could try to be smart, but let's be safe instead and only
2822 	 * copy foreign traffic classes if the two map sizes match.
2823 	 */
2824 	if (dev_maps &&
2825 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2826 		copy = true;
2827 
2828 	/* allocate memory for queue storage */
2829 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2830 	     j < nr_ids;) {
2831 		if (!new_dev_maps) {
2832 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2833 			if (!new_dev_maps) {
2834 				mutex_unlock(&xps_map_mutex);
2835 				return -ENOMEM;
2836 			}
2837 
2838 			new_dev_maps->nr_ids = nr_ids;
2839 			new_dev_maps->num_tc = num_tc;
2840 		}
2841 
2842 		tci = j * num_tc + tc;
2843 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2844 
2845 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2846 		if (!map)
2847 			goto error;
2848 
2849 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2850 	}
2851 
2852 	if (!new_dev_maps)
2853 		goto out_no_new_maps;
2854 
2855 	if (!dev_maps) {
2856 		/* Increment static keys at most once per type */
2857 		static_key_slow_inc_cpuslocked(&xps_needed);
2858 		if (type == XPS_RXQS)
2859 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2860 	}
2861 
2862 	for (j = 0; j < nr_ids; j++) {
2863 		bool skip_tc = false;
2864 
2865 		tci = j * num_tc + tc;
2866 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2867 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2868 			/* add tx-queue to CPU/rx-queue maps */
2869 			int pos = 0;
2870 
2871 			skip_tc = true;
2872 
2873 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2874 			while ((pos < map->len) && (map->queues[pos] != index))
2875 				pos++;
2876 
2877 			if (pos == map->len)
2878 				map->queues[map->len++] = index;
2879 #ifdef CONFIG_NUMA
2880 			if (type == XPS_CPUS) {
2881 				if (numa_node_id == -2)
2882 					numa_node_id = cpu_to_node(j);
2883 				else if (numa_node_id != cpu_to_node(j))
2884 					numa_node_id = -1;
2885 			}
2886 #endif
2887 		}
2888 
2889 		if (copy)
2890 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2891 					  skip_tc);
2892 	}
2893 
2894 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2895 
2896 	/* Cleanup old maps */
2897 	if (!dev_maps)
2898 		goto out_no_old_maps;
2899 
2900 	for (j = 0; j < dev_maps->nr_ids; j++) {
2901 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2902 			map = xmap_dereference(dev_maps->attr_map[tci]);
2903 			if (!map)
2904 				continue;
2905 
2906 			if (copy) {
2907 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2908 				if (map == new_map)
2909 					continue;
2910 			}
2911 
2912 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2913 			kfree_rcu(map, rcu);
2914 		}
2915 	}
2916 
2917 	old_dev_maps = dev_maps;
2918 
2919 out_no_old_maps:
2920 	dev_maps = new_dev_maps;
2921 	active = true;
2922 
2923 out_no_new_maps:
2924 	if (type == XPS_CPUS)
2925 		/* update Tx queue numa node */
2926 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2927 					     (numa_node_id >= 0) ?
2928 					     numa_node_id : NUMA_NO_NODE);
2929 
2930 	if (!dev_maps)
2931 		goto out_no_maps;
2932 
2933 	/* removes tx-queue from unused CPUs/rx-queues */
2934 	for (j = 0; j < dev_maps->nr_ids; j++) {
2935 		tci = j * dev_maps->num_tc;
2936 
2937 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2938 			if (i == tc &&
2939 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2940 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2941 				continue;
2942 
2943 			active |= remove_xps_queue(dev_maps,
2944 						   copy ? old_dev_maps : NULL,
2945 						   tci, index);
2946 		}
2947 	}
2948 
2949 	if (old_dev_maps)
2950 		kfree_rcu(old_dev_maps, rcu);
2951 
2952 	/* free map if not active */
2953 	if (!active)
2954 		reset_xps_maps(dev, dev_maps, type);
2955 
2956 out_no_maps:
2957 	mutex_unlock(&xps_map_mutex);
2958 
2959 	return 0;
2960 error:
2961 	/* remove any maps that we added */
2962 	for (j = 0; j < nr_ids; j++) {
2963 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2964 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2965 			map = copy ?
2966 			      xmap_dereference(dev_maps->attr_map[tci]) :
2967 			      NULL;
2968 			if (new_map && new_map != map)
2969 				kfree(new_map);
2970 		}
2971 	}
2972 
2973 	mutex_unlock(&xps_map_mutex);
2974 
2975 	kfree(new_dev_maps);
2976 	return -ENOMEM;
2977 }
2978 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2979 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2980 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2981 			u16 index)
2982 {
2983 	int ret;
2984 
2985 	cpus_read_lock();
2986 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2987 	cpus_read_unlock();
2988 
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL(netif_set_xps_queue);
2992 
2993 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2994 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2995 {
2996 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2997 
2998 	/* Unbind any subordinate channels */
2999 	while (txq-- != &dev->_tx[0]) {
3000 		if (txq->sb_dev)
3001 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3002 	}
3003 }
3004 
netdev_reset_tc(struct net_device * dev)3005 void netdev_reset_tc(struct net_device *dev)
3006 {
3007 #ifdef CONFIG_XPS
3008 	netif_reset_xps_queues_gt(dev, 0);
3009 #endif
3010 	netdev_unbind_all_sb_channels(dev);
3011 
3012 	/* Reset TC configuration of device */
3013 	dev->num_tc = 0;
3014 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3015 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3016 }
3017 EXPORT_SYMBOL(netdev_reset_tc);
3018 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3019 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3020 {
3021 	if (tc >= dev->num_tc)
3022 		return -EINVAL;
3023 
3024 #ifdef CONFIG_XPS
3025 	netif_reset_xps_queues(dev, offset, count);
3026 #endif
3027 	dev->tc_to_txq[tc].count = count;
3028 	dev->tc_to_txq[tc].offset = offset;
3029 	return 0;
3030 }
3031 EXPORT_SYMBOL(netdev_set_tc_queue);
3032 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3033 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3034 {
3035 	if (num_tc > TC_MAX_QUEUE)
3036 		return -EINVAL;
3037 
3038 #ifdef CONFIG_XPS
3039 	netif_reset_xps_queues_gt(dev, 0);
3040 #endif
3041 	netdev_unbind_all_sb_channels(dev);
3042 
3043 	dev->num_tc = num_tc;
3044 	return 0;
3045 }
3046 EXPORT_SYMBOL(netdev_set_num_tc);
3047 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3048 void netdev_unbind_sb_channel(struct net_device *dev,
3049 			      struct net_device *sb_dev)
3050 {
3051 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3052 
3053 #ifdef CONFIG_XPS
3054 	netif_reset_xps_queues_gt(sb_dev, 0);
3055 #endif
3056 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3057 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3058 
3059 	while (txq-- != &dev->_tx[0]) {
3060 		if (txq->sb_dev == sb_dev)
3061 			txq->sb_dev = NULL;
3062 	}
3063 }
3064 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3065 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3066 int netdev_bind_sb_channel_queue(struct net_device *dev,
3067 				 struct net_device *sb_dev,
3068 				 u8 tc, u16 count, u16 offset)
3069 {
3070 	/* Make certain the sb_dev and dev are already configured */
3071 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3072 		return -EINVAL;
3073 
3074 	/* We cannot hand out queues we don't have */
3075 	if ((offset + count) > dev->real_num_tx_queues)
3076 		return -EINVAL;
3077 
3078 	/* Record the mapping */
3079 	sb_dev->tc_to_txq[tc].count = count;
3080 	sb_dev->tc_to_txq[tc].offset = offset;
3081 
3082 	/* Provide a way for Tx queue to find the tc_to_txq map or
3083 	 * XPS map for itself.
3084 	 */
3085 	while (count--)
3086 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3087 
3088 	return 0;
3089 }
3090 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3091 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3092 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3093 {
3094 	/* Do not use a multiqueue device to represent a subordinate channel */
3095 	if (netif_is_multiqueue(dev))
3096 		return -ENODEV;
3097 
3098 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3099 	 * Channel 0 is meant to be "native" mode and used only to represent
3100 	 * the main root device. We allow writing 0 to reset the device back
3101 	 * to normal mode after being used as a subordinate channel.
3102 	 */
3103 	if (channel > S16_MAX)
3104 		return -EINVAL;
3105 
3106 	dev->num_tc = -channel;
3107 
3108 	return 0;
3109 }
3110 EXPORT_SYMBOL(netdev_set_sb_channel);
3111 
3112 /*
3113  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3114  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3115  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3116 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3117 {
3118 	bool disabling;
3119 	int rc;
3120 
3121 	disabling = txq < dev->real_num_tx_queues;
3122 
3123 	if (txq < 1 || txq > dev->num_tx_queues)
3124 		return -EINVAL;
3125 
3126 	if (dev->reg_state == NETREG_REGISTERED ||
3127 	    dev->reg_state == NETREG_UNREGISTERING) {
3128 		ASSERT_RTNL();
3129 		netdev_ops_assert_locked(dev);
3130 
3131 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3132 						  txq);
3133 		if (rc)
3134 			return rc;
3135 
3136 		if (dev->num_tc)
3137 			netif_setup_tc(dev, txq);
3138 
3139 		net_shaper_set_real_num_tx_queues(dev, txq);
3140 
3141 		dev_qdisc_change_real_num_tx(dev, txq);
3142 
3143 		dev->real_num_tx_queues = txq;
3144 
3145 		if (disabling) {
3146 			synchronize_net();
3147 			qdisc_reset_all_tx_gt(dev, txq);
3148 #ifdef CONFIG_XPS
3149 			netif_reset_xps_queues_gt(dev, txq);
3150 #endif
3151 		}
3152 	} else {
3153 		dev->real_num_tx_queues = txq;
3154 	}
3155 
3156 	return 0;
3157 }
3158 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3159 
3160 /**
3161  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3162  *	@dev: Network device
3163  *	@rxq: Actual number of RX queues
3164  *
3165  *	This must be called either with the rtnl_lock held or before
3166  *	registration of the net device.  Returns 0 on success, or a
3167  *	negative error code.  If called before registration, it always
3168  *	succeeds.
3169  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3170 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3171 {
3172 	int rc;
3173 
3174 	if (rxq < 1 || rxq > dev->num_rx_queues)
3175 		return -EINVAL;
3176 
3177 	if (dev->reg_state == NETREG_REGISTERED) {
3178 		ASSERT_RTNL();
3179 		netdev_ops_assert_locked(dev);
3180 
3181 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3182 						  rxq);
3183 		if (rc)
3184 			return rc;
3185 	}
3186 
3187 	dev->real_num_rx_queues = rxq;
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3191 
3192 /**
3193  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3194  *	@dev: Network device
3195  *	@txq: Actual number of TX queues
3196  *	@rxq: Actual number of RX queues
3197  *
3198  *	Set the real number of both TX and RX queues.
3199  *	Does nothing if the number of queues is already correct.
3200  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3201 int netif_set_real_num_queues(struct net_device *dev,
3202 			      unsigned int txq, unsigned int rxq)
3203 {
3204 	unsigned int old_rxq = dev->real_num_rx_queues;
3205 	int err;
3206 
3207 	if (txq < 1 || txq > dev->num_tx_queues ||
3208 	    rxq < 1 || rxq > dev->num_rx_queues)
3209 		return -EINVAL;
3210 
3211 	/* Start from increases, so the error path only does decreases -
3212 	 * decreases can't fail.
3213 	 */
3214 	if (rxq > dev->real_num_rx_queues) {
3215 		err = netif_set_real_num_rx_queues(dev, rxq);
3216 		if (err)
3217 			return err;
3218 	}
3219 	if (txq > dev->real_num_tx_queues) {
3220 		err = netif_set_real_num_tx_queues(dev, txq);
3221 		if (err)
3222 			goto undo_rx;
3223 	}
3224 	if (rxq < dev->real_num_rx_queues)
3225 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3226 	if (txq < dev->real_num_tx_queues)
3227 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3228 
3229 	return 0;
3230 undo_rx:
3231 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3232 	return err;
3233 }
3234 EXPORT_SYMBOL(netif_set_real_num_queues);
3235 
3236 /**
3237  * netif_set_tso_max_size() - set the max size of TSO frames supported
3238  * @dev:	netdev to update
3239  * @size:	max skb->len of a TSO frame
3240  *
3241  * Set the limit on the size of TSO super-frames the device can handle.
3242  * Unless explicitly set the stack will assume the value of
3243  * %GSO_LEGACY_MAX_SIZE.
3244  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3245 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3246 {
3247 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3248 	if (size < READ_ONCE(dev->gso_max_size))
3249 		netif_set_gso_max_size(dev, size);
3250 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3251 		netif_set_gso_ipv4_max_size(dev, size);
3252 }
3253 EXPORT_SYMBOL(netif_set_tso_max_size);
3254 
3255 /**
3256  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3257  * @dev:	netdev to update
3258  * @segs:	max number of TCP segments
3259  *
3260  * Set the limit on the number of TCP segments the device can generate from
3261  * a single TSO super-frame.
3262  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3263  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3264 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3265 {
3266 	dev->tso_max_segs = segs;
3267 	if (segs < READ_ONCE(dev->gso_max_segs))
3268 		netif_set_gso_max_segs(dev, segs);
3269 }
3270 EXPORT_SYMBOL(netif_set_tso_max_segs);
3271 
3272 /**
3273  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3274  * @to:		netdev to update
3275  * @from:	netdev from which to copy the limits
3276  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3277 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3278 {
3279 	netif_set_tso_max_size(to, from->tso_max_size);
3280 	netif_set_tso_max_segs(to, from->tso_max_segs);
3281 }
3282 EXPORT_SYMBOL(netif_inherit_tso_max);
3283 
3284 /**
3285  * netif_get_num_default_rss_queues - default number of RSS queues
3286  *
3287  * Default value is the number of physical cores if there are only 1 or 2, or
3288  * divided by 2 if there are more.
3289  */
netif_get_num_default_rss_queues(void)3290 int netif_get_num_default_rss_queues(void)
3291 {
3292 	cpumask_var_t cpus;
3293 	int cpu, count = 0;
3294 
3295 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3296 		return 1;
3297 
3298 	cpumask_copy(cpus, cpu_online_mask);
3299 	for_each_cpu(cpu, cpus) {
3300 		++count;
3301 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3302 	}
3303 	free_cpumask_var(cpus);
3304 
3305 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3306 }
3307 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3308 
__netif_reschedule(struct Qdisc * q)3309 static void __netif_reschedule(struct Qdisc *q)
3310 {
3311 	struct softnet_data *sd;
3312 	unsigned long flags;
3313 
3314 	local_irq_save(flags);
3315 	sd = this_cpu_ptr(&softnet_data);
3316 	q->next_sched = NULL;
3317 	*sd->output_queue_tailp = q;
3318 	sd->output_queue_tailp = &q->next_sched;
3319 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3320 	local_irq_restore(flags);
3321 }
3322 
__netif_schedule(struct Qdisc * q)3323 void __netif_schedule(struct Qdisc *q)
3324 {
3325 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3326 		__netif_reschedule(q);
3327 }
3328 EXPORT_SYMBOL(__netif_schedule);
3329 
3330 struct dev_kfree_skb_cb {
3331 	enum skb_drop_reason reason;
3332 };
3333 
get_kfree_skb_cb(const struct sk_buff * skb)3334 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3335 {
3336 	return (struct dev_kfree_skb_cb *)skb->cb;
3337 }
3338 
netif_schedule_queue(struct netdev_queue * txq)3339 void netif_schedule_queue(struct netdev_queue *txq)
3340 {
3341 	rcu_read_lock();
3342 	if (!netif_xmit_stopped(txq)) {
3343 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3344 
3345 		__netif_schedule(q);
3346 	}
3347 	rcu_read_unlock();
3348 }
3349 EXPORT_SYMBOL(netif_schedule_queue);
3350 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3351 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3352 {
3353 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3354 		struct Qdisc *q;
3355 
3356 		rcu_read_lock();
3357 		q = rcu_dereference(dev_queue->qdisc);
3358 		__netif_schedule(q);
3359 		rcu_read_unlock();
3360 	}
3361 }
3362 EXPORT_SYMBOL(netif_tx_wake_queue);
3363 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3364 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3365 {
3366 	unsigned long flags;
3367 
3368 	if (unlikely(!skb))
3369 		return;
3370 
3371 	if (likely(refcount_read(&skb->users) == 1)) {
3372 		smp_rmb();
3373 		refcount_set(&skb->users, 0);
3374 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3375 		return;
3376 	}
3377 	get_kfree_skb_cb(skb)->reason = reason;
3378 	local_irq_save(flags);
3379 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3380 	__this_cpu_write(softnet_data.completion_queue, skb);
3381 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3382 	local_irq_restore(flags);
3383 }
3384 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3385 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3386 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3387 {
3388 	if (in_hardirq() || irqs_disabled())
3389 		dev_kfree_skb_irq_reason(skb, reason);
3390 	else
3391 		kfree_skb_reason(skb, reason);
3392 }
3393 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3394 
3395 
3396 /**
3397  * netif_device_detach - mark device as removed
3398  * @dev: network device
3399  *
3400  * Mark device as removed from system and therefore no longer available.
3401  */
netif_device_detach(struct net_device * dev)3402 void netif_device_detach(struct net_device *dev)
3403 {
3404 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3405 	    netif_running(dev)) {
3406 		netif_tx_stop_all_queues(dev);
3407 	}
3408 }
3409 EXPORT_SYMBOL(netif_device_detach);
3410 
3411 /**
3412  * netif_device_attach - mark device as attached
3413  * @dev: network device
3414  *
3415  * Mark device as attached from system and restart if needed.
3416  */
netif_device_attach(struct net_device * dev)3417 void netif_device_attach(struct net_device *dev)
3418 {
3419 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3420 	    netif_running(dev)) {
3421 		netif_tx_wake_all_queues(dev);
3422 		netdev_watchdog_up(dev);
3423 	}
3424 }
3425 EXPORT_SYMBOL(netif_device_attach);
3426 
3427 /*
3428  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3429  * to be used as a distribution range.
3430  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3431 static u16 skb_tx_hash(const struct net_device *dev,
3432 		       const struct net_device *sb_dev,
3433 		       struct sk_buff *skb)
3434 {
3435 	u32 hash;
3436 	u16 qoffset = 0;
3437 	u16 qcount = dev->real_num_tx_queues;
3438 
3439 	if (dev->num_tc) {
3440 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3441 
3442 		qoffset = sb_dev->tc_to_txq[tc].offset;
3443 		qcount = sb_dev->tc_to_txq[tc].count;
3444 		if (unlikely(!qcount)) {
3445 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3446 					     sb_dev->name, qoffset, tc);
3447 			qoffset = 0;
3448 			qcount = dev->real_num_tx_queues;
3449 		}
3450 	}
3451 
3452 	if (skb_rx_queue_recorded(skb)) {
3453 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3454 		hash = skb_get_rx_queue(skb);
3455 		if (hash >= qoffset)
3456 			hash -= qoffset;
3457 		while (unlikely(hash >= qcount))
3458 			hash -= qcount;
3459 		return hash + qoffset;
3460 	}
3461 
3462 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3463 }
3464 
skb_warn_bad_offload(const struct sk_buff * skb)3465 void skb_warn_bad_offload(const struct sk_buff *skb)
3466 {
3467 	static const netdev_features_t null_features;
3468 	struct net_device *dev = skb->dev;
3469 	const char *name = "";
3470 
3471 	if (!net_ratelimit())
3472 		return;
3473 
3474 	if (dev) {
3475 		if (dev->dev.parent)
3476 			name = dev_driver_string(dev->dev.parent);
3477 		else
3478 			name = netdev_name(dev);
3479 	}
3480 	skb_dump(KERN_WARNING, skb, false);
3481 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3482 	     name, dev ? &dev->features : &null_features,
3483 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3484 }
3485 
3486 /*
3487  * Invalidate hardware checksum when packet is to be mangled, and
3488  * complete checksum manually on outgoing path.
3489  */
skb_checksum_help(struct sk_buff * skb)3490 int skb_checksum_help(struct sk_buff *skb)
3491 {
3492 	__wsum csum;
3493 	int ret = 0, offset;
3494 
3495 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3496 		goto out_set_summed;
3497 
3498 	if (unlikely(skb_is_gso(skb))) {
3499 		skb_warn_bad_offload(skb);
3500 		return -EINVAL;
3501 	}
3502 
3503 	if (!skb_frags_readable(skb)) {
3504 		return -EFAULT;
3505 	}
3506 
3507 	/* Before computing a checksum, we should make sure no frag could
3508 	 * be modified by an external entity : checksum could be wrong.
3509 	 */
3510 	if (skb_has_shared_frag(skb)) {
3511 		ret = __skb_linearize(skb);
3512 		if (ret)
3513 			goto out;
3514 	}
3515 
3516 	offset = skb_checksum_start_offset(skb);
3517 	ret = -EINVAL;
3518 	if (unlikely(offset >= skb_headlen(skb))) {
3519 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3520 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3521 			  offset, skb_headlen(skb));
3522 		goto out;
3523 	}
3524 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3525 
3526 	offset += skb->csum_offset;
3527 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3528 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3529 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3530 			  offset + sizeof(__sum16), skb_headlen(skb));
3531 		goto out;
3532 	}
3533 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3534 	if (ret)
3535 		goto out;
3536 
3537 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3538 out_set_summed:
3539 	skb->ip_summed = CHECKSUM_NONE;
3540 out:
3541 	return ret;
3542 }
3543 EXPORT_SYMBOL(skb_checksum_help);
3544 
skb_crc32c_csum_help(struct sk_buff * skb)3545 int skb_crc32c_csum_help(struct sk_buff *skb)
3546 {
3547 	__le32 crc32c_csum;
3548 	int ret = 0, offset, start;
3549 
3550 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3551 		goto out;
3552 
3553 	if (unlikely(skb_is_gso(skb)))
3554 		goto out;
3555 
3556 	/* Before computing a checksum, we should make sure no frag could
3557 	 * be modified by an external entity : checksum could be wrong.
3558 	 */
3559 	if (unlikely(skb_has_shared_frag(skb))) {
3560 		ret = __skb_linearize(skb);
3561 		if (ret)
3562 			goto out;
3563 	}
3564 	start = skb_checksum_start_offset(skb);
3565 	offset = start + offsetof(struct sctphdr, checksum);
3566 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3567 		ret = -EINVAL;
3568 		goto out;
3569 	}
3570 
3571 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3572 	if (ret)
3573 		goto out;
3574 
3575 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3576 						  skb->len - start, ~(__u32)0,
3577 						  crc32c_csum_stub));
3578 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3579 	skb_reset_csum_not_inet(skb);
3580 out:
3581 	return ret;
3582 }
3583 EXPORT_SYMBOL(skb_crc32c_csum_help);
3584 
skb_network_protocol(struct sk_buff * skb,int * depth)3585 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3586 {
3587 	__be16 type = skb->protocol;
3588 
3589 	/* Tunnel gso handlers can set protocol to ethernet. */
3590 	if (type == htons(ETH_P_TEB)) {
3591 		struct ethhdr *eth;
3592 
3593 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3594 			return 0;
3595 
3596 		eth = (struct ethhdr *)skb->data;
3597 		type = eth->h_proto;
3598 	}
3599 
3600 	return vlan_get_protocol_and_depth(skb, type, depth);
3601 }
3602 
3603 
3604 /* Take action when hardware reception checksum errors are detected. */
3605 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3606 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3607 {
3608 	netdev_err(dev, "hw csum failure\n");
3609 	skb_dump(KERN_ERR, skb, true);
3610 	dump_stack();
3611 }
3612 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3613 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3614 {
3615 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3616 }
3617 EXPORT_SYMBOL(netdev_rx_csum_fault);
3618 #endif
3619 
3620 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3621 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3622 {
3623 #ifdef CONFIG_HIGHMEM
3624 	int i;
3625 
3626 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3627 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3628 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3629 			struct page *page = skb_frag_page(frag);
3630 
3631 			if (page && PageHighMem(page))
3632 				return 1;
3633 		}
3634 	}
3635 #endif
3636 	return 0;
3637 }
3638 
3639 /* If MPLS offload request, verify we are testing hardware MPLS features
3640  * instead of standard features for the netdev.
3641  */
3642 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3643 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3644 					   netdev_features_t features,
3645 					   __be16 type)
3646 {
3647 	if (eth_p_mpls(type))
3648 		features &= skb->dev->mpls_features;
3649 
3650 	return features;
3651 }
3652 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3653 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3654 					   netdev_features_t features,
3655 					   __be16 type)
3656 {
3657 	return features;
3658 }
3659 #endif
3660 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3661 static netdev_features_t harmonize_features(struct sk_buff *skb,
3662 	netdev_features_t features)
3663 {
3664 	__be16 type;
3665 
3666 	type = skb_network_protocol(skb, NULL);
3667 	features = net_mpls_features(skb, features, type);
3668 
3669 	if (skb->ip_summed != CHECKSUM_NONE &&
3670 	    !can_checksum_protocol(features, type)) {
3671 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3672 	}
3673 	if (illegal_highdma(skb->dev, skb))
3674 		features &= ~NETIF_F_SG;
3675 
3676 	return features;
3677 }
3678 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3679 netdev_features_t passthru_features_check(struct sk_buff *skb,
3680 					  struct net_device *dev,
3681 					  netdev_features_t features)
3682 {
3683 	return features;
3684 }
3685 EXPORT_SYMBOL(passthru_features_check);
3686 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3687 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3688 					     struct net_device *dev,
3689 					     netdev_features_t features)
3690 {
3691 	return vlan_features_check(skb, features);
3692 }
3693 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3694 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3695 					    struct net_device *dev,
3696 					    netdev_features_t features)
3697 {
3698 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3699 
3700 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3701 		return features & ~NETIF_F_GSO_MASK;
3702 
3703 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3704 		return features & ~NETIF_F_GSO_MASK;
3705 
3706 	if (!skb_shinfo(skb)->gso_type) {
3707 		skb_warn_bad_offload(skb);
3708 		return features & ~NETIF_F_GSO_MASK;
3709 	}
3710 
3711 	/* Support for GSO partial features requires software
3712 	 * intervention before we can actually process the packets
3713 	 * so we need to strip support for any partial features now
3714 	 * and we can pull them back in after we have partially
3715 	 * segmented the frame.
3716 	 */
3717 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3718 		features &= ~dev->gso_partial_features;
3719 
3720 	/* Make sure to clear the IPv4 ID mangling feature if the
3721 	 * IPv4 header has the potential to be fragmented.
3722 	 */
3723 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3724 		struct iphdr *iph = skb->encapsulation ?
3725 				    inner_ip_hdr(skb) : ip_hdr(skb);
3726 
3727 		if (!(iph->frag_off & htons(IP_DF)))
3728 			features &= ~NETIF_F_TSO_MANGLEID;
3729 	}
3730 
3731 	return features;
3732 }
3733 
netif_skb_features(struct sk_buff * skb)3734 netdev_features_t netif_skb_features(struct sk_buff *skb)
3735 {
3736 	struct net_device *dev = skb->dev;
3737 	netdev_features_t features = dev->features;
3738 
3739 	if (skb_is_gso(skb))
3740 		features = gso_features_check(skb, dev, features);
3741 
3742 	/* If encapsulation offload request, verify we are testing
3743 	 * hardware encapsulation features instead of standard
3744 	 * features for the netdev
3745 	 */
3746 	if (skb->encapsulation)
3747 		features &= dev->hw_enc_features;
3748 
3749 	if (skb_vlan_tagged(skb))
3750 		features = netdev_intersect_features(features,
3751 						     dev->vlan_features |
3752 						     NETIF_F_HW_VLAN_CTAG_TX |
3753 						     NETIF_F_HW_VLAN_STAG_TX);
3754 
3755 	if (dev->netdev_ops->ndo_features_check)
3756 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3757 								features);
3758 	else
3759 		features &= dflt_features_check(skb, dev, features);
3760 
3761 	return harmonize_features(skb, features);
3762 }
3763 EXPORT_SYMBOL(netif_skb_features);
3764 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3765 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3766 		    struct netdev_queue *txq, bool more)
3767 {
3768 	unsigned int len;
3769 	int rc;
3770 
3771 	if (dev_nit_active_rcu(dev))
3772 		dev_queue_xmit_nit(skb, dev);
3773 
3774 	len = skb->len;
3775 	trace_net_dev_start_xmit(skb, dev);
3776 	rc = netdev_start_xmit(skb, dev, txq, more);
3777 	trace_net_dev_xmit(skb, rc, dev, len);
3778 
3779 	return rc;
3780 }
3781 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3782 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3783 				    struct netdev_queue *txq, int *ret)
3784 {
3785 	struct sk_buff *skb = first;
3786 	int rc = NETDEV_TX_OK;
3787 
3788 	while (skb) {
3789 		struct sk_buff *next = skb->next;
3790 
3791 		skb_mark_not_on_list(skb);
3792 		rc = xmit_one(skb, dev, txq, next != NULL);
3793 		if (unlikely(!dev_xmit_complete(rc))) {
3794 			skb->next = next;
3795 			goto out;
3796 		}
3797 
3798 		skb = next;
3799 		if (netif_tx_queue_stopped(txq) && skb) {
3800 			rc = NETDEV_TX_BUSY;
3801 			break;
3802 		}
3803 	}
3804 
3805 out:
3806 	*ret = rc;
3807 	return skb;
3808 }
3809 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3810 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3811 					  netdev_features_t features)
3812 {
3813 	if (skb_vlan_tag_present(skb) &&
3814 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3815 		skb = __vlan_hwaccel_push_inside(skb);
3816 	return skb;
3817 }
3818 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3819 int skb_csum_hwoffload_help(struct sk_buff *skb,
3820 			    const netdev_features_t features)
3821 {
3822 	if (unlikely(skb_csum_is_sctp(skb)))
3823 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3824 			skb_crc32c_csum_help(skb);
3825 
3826 	if (features & NETIF_F_HW_CSUM)
3827 		return 0;
3828 
3829 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3830 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3831 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3832 		    !ipv6_has_hopopt_jumbo(skb))
3833 			goto sw_checksum;
3834 
3835 		switch (skb->csum_offset) {
3836 		case offsetof(struct tcphdr, check):
3837 		case offsetof(struct udphdr, check):
3838 			return 0;
3839 		}
3840 	}
3841 
3842 sw_checksum:
3843 	return skb_checksum_help(skb);
3844 }
3845 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3846 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3847 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3848 {
3849 	netdev_features_t features;
3850 
3851 	if (!skb_frags_readable(skb))
3852 		goto out_kfree_skb;
3853 
3854 	features = netif_skb_features(skb);
3855 	skb = validate_xmit_vlan(skb, features);
3856 	if (unlikely(!skb))
3857 		goto out_null;
3858 
3859 	skb = sk_validate_xmit_skb(skb, dev);
3860 	if (unlikely(!skb))
3861 		goto out_null;
3862 
3863 	if (netif_needs_gso(skb, features)) {
3864 		struct sk_buff *segs;
3865 
3866 		segs = skb_gso_segment(skb, features);
3867 		if (IS_ERR(segs)) {
3868 			goto out_kfree_skb;
3869 		} else if (segs) {
3870 			consume_skb(skb);
3871 			skb = segs;
3872 		}
3873 	} else {
3874 		if (skb_needs_linearize(skb, features) &&
3875 		    __skb_linearize(skb))
3876 			goto out_kfree_skb;
3877 
3878 		/* If packet is not checksummed and device does not
3879 		 * support checksumming for this protocol, complete
3880 		 * checksumming here.
3881 		 */
3882 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3883 			if (skb->encapsulation)
3884 				skb_set_inner_transport_header(skb,
3885 							       skb_checksum_start_offset(skb));
3886 			else
3887 				skb_set_transport_header(skb,
3888 							 skb_checksum_start_offset(skb));
3889 			if (skb_csum_hwoffload_help(skb, features))
3890 				goto out_kfree_skb;
3891 		}
3892 	}
3893 
3894 	skb = validate_xmit_xfrm(skb, features, again);
3895 
3896 	return skb;
3897 
3898 out_kfree_skb:
3899 	kfree_skb(skb);
3900 out_null:
3901 	dev_core_stats_tx_dropped_inc(dev);
3902 	return NULL;
3903 }
3904 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3905 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3906 {
3907 	struct sk_buff *next, *head = NULL, *tail;
3908 
3909 	for (; skb != NULL; skb = next) {
3910 		next = skb->next;
3911 		skb_mark_not_on_list(skb);
3912 
3913 		/* in case skb won't be segmented, point to itself */
3914 		skb->prev = skb;
3915 
3916 		skb = validate_xmit_skb(skb, dev, again);
3917 		if (!skb)
3918 			continue;
3919 
3920 		if (!head)
3921 			head = skb;
3922 		else
3923 			tail->next = skb;
3924 		/* If skb was segmented, skb->prev points to
3925 		 * the last segment. If not, it still contains skb.
3926 		 */
3927 		tail = skb->prev;
3928 	}
3929 	return head;
3930 }
3931 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3932 
qdisc_pkt_len_init(struct sk_buff * skb)3933 static void qdisc_pkt_len_init(struct sk_buff *skb)
3934 {
3935 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3936 
3937 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3938 
3939 	/* To get more precise estimation of bytes sent on wire,
3940 	 * we add to pkt_len the headers size of all segments
3941 	 */
3942 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3943 		u16 gso_segs = shinfo->gso_segs;
3944 		unsigned int hdr_len;
3945 
3946 		/* mac layer + network layer */
3947 		hdr_len = skb_transport_offset(skb);
3948 
3949 		/* + transport layer */
3950 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3951 			const struct tcphdr *th;
3952 			struct tcphdr _tcphdr;
3953 
3954 			th = skb_header_pointer(skb, hdr_len,
3955 						sizeof(_tcphdr), &_tcphdr);
3956 			if (likely(th))
3957 				hdr_len += __tcp_hdrlen(th);
3958 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3959 			struct udphdr _udphdr;
3960 
3961 			if (skb_header_pointer(skb, hdr_len,
3962 					       sizeof(_udphdr), &_udphdr))
3963 				hdr_len += sizeof(struct udphdr);
3964 		}
3965 
3966 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3967 			int payload = skb->len - hdr_len;
3968 
3969 			/* Malicious packet. */
3970 			if (payload <= 0)
3971 				return;
3972 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3973 		}
3974 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3975 	}
3976 }
3977 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3978 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3979 			     struct sk_buff **to_free,
3980 			     struct netdev_queue *txq)
3981 {
3982 	int rc;
3983 
3984 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3985 	if (rc == NET_XMIT_SUCCESS)
3986 		trace_qdisc_enqueue(q, txq, skb);
3987 	return rc;
3988 }
3989 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3990 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3991 				 struct net_device *dev,
3992 				 struct netdev_queue *txq)
3993 {
3994 	spinlock_t *root_lock = qdisc_lock(q);
3995 	struct sk_buff *to_free = NULL;
3996 	bool contended;
3997 	int rc;
3998 
3999 	qdisc_calculate_pkt_len(skb, q);
4000 
4001 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4002 
4003 	if (q->flags & TCQ_F_NOLOCK) {
4004 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4005 		    qdisc_run_begin(q)) {
4006 			/* Retest nolock_qdisc_is_empty() within the protection
4007 			 * of q->seqlock to protect from racing with requeuing.
4008 			 */
4009 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4010 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4011 				__qdisc_run(q);
4012 				qdisc_run_end(q);
4013 
4014 				goto no_lock_out;
4015 			}
4016 
4017 			qdisc_bstats_cpu_update(q, skb);
4018 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4019 			    !nolock_qdisc_is_empty(q))
4020 				__qdisc_run(q);
4021 
4022 			qdisc_run_end(q);
4023 			return NET_XMIT_SUCCESS;
4024 		}
4025 
4026 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4027 		qdisc_run(q);
4028 
4029 no_lock_out:
4030 		if (unlikely(to_free))
4031 			kfree_skb_list_reason(to_free,
4032 					      tcf_get_drop_reason(to_free));
4033 		return rc;
4034 	}
4035 
4036 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4037 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4038 		return NET_XMIT_DROP;
4039 	}
4040 	/*
4041 	 * Heuristic to force contended enqueues to serialize on a
4042 	 * separate lock before trying to get qdisc main lock.
4043 	 * This permits qdisc->running owner to get the lock more
4044 	 * often and dequeue packets faster.
4045 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4046 	 * and then other tasks will only enqueue packets. The packets will be
4047 	 * sent after the qdisc owner is scheduled again. To prevent this
4048 	 * scenario the task always serialize on the lock.
4049 	 */
4050 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4051 	if (unlikely(contended))
4052 		spin_lock(&q->busylock);
4053 
4054 	spin_lock(root_lock);
4055 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4056 		__qdisc_drop(skb, &to_free);
4057 		rc = NET_XMIT_DROP;
4058 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4059 		   qdisc_run_begin(q)) {
4060 		/*
4061 		 * This is a work-conserving queue; there are no old skbs
4062 		 * waiting to be sent out; and the qdisc is not running -
4063 		 * xmit the skb directly.
4064 		 */
4065 
4066 		qdisc_bstats_update(q, skb);
4067 
4068 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4069 			if (unlikely(contended)) {
4070 				spin_unlock(&q->busylock);
4071 				contended = false;
4072 			}
4073 			__qdisc_run(q);
4074 		}
4075 
4076 		qdisc_run_end(q);
4077 		rc = NET_XMIT_SUCCESS;
4078 	} else {
4079 		WRITE_ONCE(q->owner, smp_processor_id());
4080 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4081 		WRITE_ONCE(q->owner, -1);
4082 		if (qdisc_run_begin(q)) {
4083 			if (unlikely(contended)) {
4084 				spin_unlock(&q->busylock);
4085 				contended = false;
4086 			}
4087 			__qdisc_run(q);
4088 			qdisc_run_end(q);
4089 		}
4090 	}
4091 	spin_unlock(root_lock);
4092 	if (unlikely(to_free))
4093 		kfree_skb_list_reason(to_free,
4094 				      tcf_get_drop_reason(to_free));
4095 	if (unlikely(contended))
4096 		spin_unlock(&q->busylock);
4097 	return rc;
4098 }
4099 
4100 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4101 static void skb_update_prio(struct sk_buff *skb)
4102 {
4103 	const struct netprio_map *map;
4104 	const struct sock *sk;
4105 	unsigned int prioidx;
4106 
4107 	if (skb->priority)
4108 		return;
4109 	map = rcu_dereference_bh(skb->dev->priomap);
4110 	if (!map)
4111 		return;
4112 	sk = skb_to_full_sk(skb);
4113 	if (!sk)
4114 		return;
4115 
4116 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4117 
4118 	if (prioidx < map->priomap_len)
4119 		skb->priority = map->priomap[prioidx];
4120 }
4121 #else
4122 #define skb_update_prio(skb)
4123 #endif
4124 
4125 /**
4126  *	dev_loopback_xmit - loop back @skb
4127  *	@net: network namespace this loopback is happening in
4128  *	@sk:  sk needed to be a netfilter okfn
4129  *	@skb: buffer to transmit
4130  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4131 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4132 {
4133 	skb_reset_mac_header(skb);
4134 	__skb_pull(skb, skb_network_offset(skb));
4135 	skb->pkt_type = PACKET_LOOPBACK;
4136 	if (skb->ip_summed == CHECKSUM_NONE)
4137 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4138 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4139 	skb_dst_force(skb);
4140 	netif_rx(skb);
4141 	return 0;
4142 }
4143 EXPORT_SYMBOL(dev_loopback_xmit);
4144 
4145 #ifdef CONFIG_NET_EGRESS
4146 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4147 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4148 {
4149 	int qm = skb_get_queue_mapping(skb);
4150 
4151 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4152 }
4153 
4154 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4155 static bool netdev_xmit_txqueue_skipped(void)
4156 {
4157 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4158 }
4159 
netdev_xmit_skip_txqueue(bool skip)4160 void netdev_xmit_skip_txqueue(bool skip)
4161 {
4162 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4163 }
4164 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4165 
4166 #else
netdev_xmit_txqueue_skipped(void)4167 static bool netdev_xmit_txqueue_skipped(void)
4168 {
4169 	return current->net_xmit.skip_txqueue;
4170 }
4171 
netdev_xmit_skip_txqueue(bool skip)4172 void netdev_xmit_skip_txqueue(bool skip)
4173 {
4174 	current->net_xmit.skip_txqueue = skip;
4175 }
4176 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4177 #endif
4178 #endif /* CONFIG_NET_EGRESS */
4179 
4180 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4181 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4182 		  enum skb_drop_reason *drop_reason)
4183 {
4184 	int ret = TC_ACT_UNSPEC;
4185 #ifdef CONFIG_NET_CLS_ACT
4186 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4187 	struct tcf_result res;
4188 
4189 	if (!miniq)
4190 		return ret;
4191 
4192 	/* Global bypass */
4193 	if (!static_branch_likely(&tcf_sw_enabled_key))
4194 		return ret;
4195 
4196 	/* Block-wise bypass */
4197 	if (tcf_block_bypass_sw(miniq->block))
4198 		return ret;
4199 
4200 	tc_skb_cb(skb)->mru = 0;
4201 	tc_skb_cb(skb)->post_ct = false;
4202 	tcf_set_drop_reason(skb, *drop_reason);
4203 
4204 	mini_qdisc_bstats_cpu_update(miniq, skb);
4205 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4206 	/* Only tcf related quirks below. */
4207 	switch (ret) {
4208 	case TC_ACT_SHOT:
4209 		*drop_reason = tcf_get_drop_reason(skb);
4210 		mini_qdisc_qstats_cpu_drop(miniq);
4211 		break;
4212 	case TC_ACT_OK:
4213 	case TC_ACT_RECLASSIFY:
4214 		skb->tc_index = TC_H_MIN(res.classid);
4215 		break;
4216 	}
4217 #endif /* CONFIG_NET_CLS_ACT */
4218 	return ret;
4219 }
4220 
4221 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4222 
tcx_inc(void)4223 void tcx_inc(void)
4224 {
4225 	static_branch_inc(&tcx_needed_key);
4226 }
4227 
tcx_dec(void)4228 void tcx_dec(void)
4229 {
4230 	static_branch_dec(&tcx_needed_key);
4231 }
4232 
4233 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4234 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4235 	const bool needs_mac)
4236 {
4237 	const struct bpf_mprog_fp *fp;
4238 	const struct bpf_prog *prog;
4239 	int ret = TCX_NEXT;
4240 
4241 	if (needs_mac)
4242 		__skb_push(skb, skb->mac_len);
4243 	bpf_mprog_foreach_prog(entry, fp, prog) {
4244 		bpf_compute_data_pointers(skb);
4245 		ret = bpf_prog_run(prog, skb);
4246 		if (ret != TCX_NEXT)
4247 			break;
4248 	}
4249 	if (needs_mac)
4250 		__skb_pull(skb, skb->mac_len);
4251 	return tcx_action_code(skb, ret);
4252 }
4253 
4254 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4255 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4256 		   struct net_device *orig_dev, bool *another)
4257 {
4258 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4259 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4260 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4261 	int sch_ret;
4262 
4263 	if (!entry)
4264 		return skb;
4265 
4266 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4267 	if (*pt_prev) {
4268 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4269 		*pt_prev = NULL;
4270 	}
4271 
4272 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4273 	tcx_set_ingress(skb, true);
4274 
4275 	if (static_branch_unlikely(&tcx_needed_key)) {
4276 		sch_ret = tcx_run(entry, skb, true);
4277 		if (sch_ret != TC_ACT_UNSPEC)
4278 			goto ingress_verdict;
4279 	}
4280 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4281 ingress_verdict:
4282 	switch (sch_ret) {
4283 	case TC_ACT_REDIRECT:
4284 		/* skb_mac_header check was done by BPF, so we can safely
4285 		 * push the L2 header back before redirecting to another
4286 		 * netdev.
4287 		 */
4288 		__skb_push(skb, skb->mac_len);
4289 		if (skb_do_redirect(skb) == -EAGAIN) {
4290 			__skb_pull(skb, skb->mac_len);
4291 			*another = true;
4292 			break;
4293 		}
4294 		*ret = NET_RX_SUCCESS;
4295 		bpf_net_ctx_clear(bpf_net_ctx);
4296 		return NULL;
4297 	case TC_ACT_SHOT:
4298 		kfree_skb_reason(skb, drop_reason);
4299 		*ret = NET_RX_DROP;
4300 		bpf_net_ctx_clear(bpf_net_ctx);
4301 		return NULL;
4302 	/* used by tc_run */
4303 	case TC_ACT_STOLEN:
4304 	case TC_ACT_QUEUED:
4305 	case TC_ACT_TRAP:
4306 		consume_skb(skb);
4307 		fallthrough;
4308 	case TC_ACT_CONSUMED:
4309 		*ret = NET_RX_SUCCESS;
4310 		bpf_net_ctx_clear(bpf_net_ctx);
4311 		return NULL;
4312 	}
4313 	bpf_net_ctx_clear(bpf_net_ctx);
4314 
4315 	return skb;
4316 }
4317 
4318 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4319 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4320 {
4321 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4322 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4323 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4324 	int sch_ret;
4325 
4326 	if (!entry)
4327 		return skb;
4328 
4329 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4330 
4331 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4332 	 * already set by the caller.
4333 	 */
4334 	if (static_branch_unlikely(&tcx_needed_key)) {
4335 		sch_ret = tcx_run(entry, skb, false);
4336 		if (sch_ret != TC_ACT_UNSPEC)
4337 			goto egress_verdict;
4338 	}
4339 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4340 egress_verdict:
4341 	switch (sch_ret) {
4342 	case TC_ACT_REDIRECT:
4343 		/* No need to push/pop skb's mac_header here on egress! */
4344 		skb_do_redirect(skb);
4345 		*ret = NET_XMIT_SUCCESS;
4346 		bpf_net_ctx_clear(bpf_net_ctx);
4347 		return NULL;
4348 	case TC_ACT_SHOT:
4349 		kfree_skb_reason(skb, drop_reason);
4350 		*ret = NET_XMIT_DROP;
4351 		bpf_net_ctx_clear(bpf_net_ctx);
4352 		return NULL;
4353 	/* used by tc_run */
4354 	case TC_ACT_STOLEN:
4355 	case TC_ACT_QUEUED:
4356 	case TC_ACT_TRAP:
4357 		consume_skb(skb);
4358 		fallthrough;
4359 	case TC_ACT_CONSUMED:
4360 		*ret = NET_XMIT_SUCCESS;
4361 		bpf_net_ctx_clear(bpf_net_ctx);
4362 		return NULL;
4363 	}
4364 	bpf_net_ctx_clear(bpf_net_ctx);
4365 
4366 	return skb;
4367 }
4368 #else
4369 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4370 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4371 		   struct net_device *orig_dev, bool *another)
4372 {
4373 	return skb;
4374 }
4375 
4376 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4377 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4378 {
4379 	return skb;
4380 }
4381 #endif /* CONFIG_NET_XGRESS */
4382 
4383 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4384 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4385 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4386 {
4387 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4388 	struct xps_map *map;
4389 	int queue_index = -1;
4390 
4391 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4392 		return queue_index;
4393 
4394 	tci *= dev_maps->num_tc;
4395 	tci += tc;
4396 
4397 	map = rcu_dereference(dev_maps->attr_map[tci]);
4398 	if (map) {
4399 		if (map->len == 1)
4400 			queue_index = map->queues[0];
4401 		else
4402 			queue_index = map->queues[reciprocal_scale(
4403 						skb_get_hash(skb), map->len)];
4404 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4405 			queue_index = -1;
4406 	}
4407 	return queue_index;
4408 }
4409 #endif
4410 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4411 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4412 			 struct sk_buff *skb)
4413 {
4414 #ifdef CONFIG_XPS
4415 	struct xps_dev_maps *dev_maps;
4416 	struct sock *sk = skb->sk;
4417 	int queue_index = -1;
4418 
4419 	if (!static_key_false(&xps_needed))
4420 		return -1;
4421 
4422 	rcu_read_lock();
4423 	if (!static_key_false(&xps_rxqs_needed))
4424 		goto get_cpus_map;
4425 
4426 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4427 	if (dev_maps) {
4428 		int tci = sk_rx_queue_get(sk);
4429 
4430 		if (tci >= 0)
4431 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4432 							  tci);
4433 	}
4434 
4435 get_cpus_map:
4436 	if (queue_index < 0) {
4437 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4438 		if (dev_maps) {
4439 			unsigned int tci = skb->sender_cpu - 1;
4440 
4441 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4442 							  tci);
4443 		}
4444 	}
4445 	rcu_read_unlock();
4446 
4447 	return queue_index;
4448 #else
4449 	return -1;
4450 #endif
4451 }
4452 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4453 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4454 		     struct net_device *sb_dev)
4455 {
4456 	return 0;
4457 }
4458 EXPORT_SYMBOL(dev_pick_tx_zero);
4459 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4460 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4461 		     struct net_device *sb_dev)
4462 {
4463 	struct sock *sk = skb->sk;
4464 	int queue_index = sk_tx_queue_get(sk);
4465 
4466 	sb_dev = sb_dev ? : dev;
4467 
4468 	if (queue_index < 0 || skb->ooo_okay ||
4469 	    queue_index >= dev->real_num_tx_queues) {
4470 		int new_index = get_xps_queue(dev, sb_dev, skb);
4471 
4472 		if (new_index < 0)
4473 			new_index = skb_tx_hash(dev, sb_dev, skb);
4474 
4475 		if (queue_index != new_index && sk &&
4476 		    sk_fullsock(sk) &&
4477 		    rcu_access_pointer(sk->sk_dst_cache))
4478 			sk_tx_queue_set(sk, new_index);
4479 
4480 		queue_index = new_index;
4481 	}
4482 
4483 	return queue_index;
4484 }
4485 EXPORT_SYMBOL(netdev_pick_tx);
4486 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4487 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4488 					 struct sk_buff *skb,
4489 					 struct net_device *sb_dev)
4490 {
4491 	int queue_index = 0;
4492 
4493 #ifdef CONFIG_XPS
4494 	u32 sender_cpu = skb->sender_cpu - 1;
4495 
4496 	if (sender_cpu >= (u32)NR_CPUS)
4497 		skb->sender_cpu = raw_smp_processor_id() + 1;
4498 #endif
4499 
4500 	if (dev->real_num_tx_queues != 1) {
4501 		const struct net_device_ops *ops = dev->netdev_ops;
4502 
4503 		if (ops->ndo_select_queue)
4504 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4505 		else
4506 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4507 
4508 		queue_index = netdev_cap_txqueue(dev, queue_index);
4509 	}
4510 
4511 	skb_set_queue_mapping(skb, queue_index);
4512 	return netdev_get_tx_queue(dev, queue_index);
4513 }
4514 
4515 /**
4516  * __dev_queue_xmit() - transmit a buffer
4517  * @skb:	buffer to transmit
4518  * @sb_dev:	suboordinate device used for L2 forwarding offload
4519  *
4520  * Queue a buffer for transmission to a network device. The caller must
4521  * have set the device and priority and built the buffer before calling
4522  * this function. The function can be called from an interrupt.
4523  *
4524  * When calling this method, interrupts MUST be enabled. This is because
4525  * the BH enable code must have IRQs enabled so that it will not deadlock.
4526  *
4527  * Regardless of the return value, the skb is consumed, so it is currently
4528  * difficult to retry a send to this method. (You can bump the ref count
4529  * before sending to hold a reference for retry if you are careful.)
4530  *
4531  * Return:
4532  * * 0				- buffer successfully transmitted
4533  * * positive qdisc return code	- NET_XMIT_DROP etc.
4534  * * negative errno		- other errors
4535  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4536 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4537 {
4538 	struct net_device *dev = skb->dev;
4539 	struct netdev_queue *txq = NULL;
4540 	struct Qdisc *q;
4541 	int rc = -ENOMEM;
4542 	bool again = false;
4543 
4544 	skb_reset_mac_header(skb);
4545 	skb_assert_len(skb);
4546 
4547 	if (unlikely(skb_shinfo(skb)->tx_flags &
4548 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4549 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4550 
4551 	/* Disable soft irqs for various locks below. Also
4552 	 * stops preemption for RCU.
4553 	 */
4554 	rcu_read_lock_bh();
4555 
4556 	skb_update_prio(skb);
4557 
4558 	qdisc_pkt_len_init(skb);
4559 	tcx_set_ingress(skb, false);
4560 #ifdef CONFIG_NET_EGRESS
4561 	if (static_branch_unlikely(&egress_needed_key)) {
4562 		if (nf_hook_egress_active()) {
4563 			skb = nf_hook_egress(skb, &rc, dev);
4564 			if (!skb)
4565 				goto out;
4566 		}
4567 
4568 		netdev_xmit_skip_txqueue(false);
4569 
4570 		nf_skip_egress(skb, true);
4571 		skb = sch_handle_egress(skb, &rc, dev);
4572 		if (!skb)
4573 			goto out;
4574 		nf_skip_egress(skb, false);
4575 
4576 		if (netdev_xmit_txqueue_skipped())
4577 			txq = netdev_tx_queue_mapping(dev, skb);
4578 	}
4579 #endif
4580 	/* If device/qdisc don't need skb->dst, release it right now while
4581 	 * its hot in this cpu cache.
4582 	 */
4583 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4584 		skb_dst_drop(skb);
4585 	else
4586 		skb_dst_force(skb);
4587 
4588 	if (!txq)
4589 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4590 
4591 	q = rcu_dereference_bh(txq->qdisc);
4592 
4593 	trace_net_dev_queue(skb);
4594 	if (q->enqueue) {
4595 		rc = __dev_xmit_skb(skb, q, dev, txq);
4596 		goto out;
4597 	}
4598 
4599 	/* The device has no queue. Common case for software devices:
4600 	 * loopback, all the sorts of tunnels...
4601 
4602 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4603 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4604 	 * counters.)
4605 	 * However, it is possible, that they rely on protection
4606 	 * made by us here.
4607 
4608 	 * Check this and shot the lock. It is not prone from deadlocks.
4609 	 *Either shot noqueue qdisc, it is even simpler 8)
4610 	 */
4611 	if (dev->flags & IFF_UP) {
4612 		int cpu = smp_processor_id(); /* ok because BHs are off */
4613 
4614 		/* Other cpus might concurrently change txq->xmit_lock_owner
4615 		 * to -1 or to their cpu id, but not to our id.
4616 		 */
4617 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4618 			if (dev_xmit_recursion())
4619 				goto recursion_alert;
4620 
4621 			skb = validate_xmit_skb(skb, dev, &again);
4622 			if (!skb)
4623 				goto out;
4624 
4625 			HARD_TX_LOCK(dev, txq, cpu);
4626 
4627 			if (!netif_xmit_stopped(txq)) {
4628 				dev_xmit_recursion_inc();
4629 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4630 				dev_xmit_recursion_dec();
4631 				if (dev_xmit_complete(rc)) {
4632 					HARD_TX_UNLOCK(dev, txq);
4633 					goto out;
4634 				}
4635 			}
4636 			HARD_TX_UNLOCK(dev, txq);
4637 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4638 					     dev->name);
4639 		} else {
4640 			/* Recursion is detected! It is possible,
4641 			 * unfortunately
4642 			 */
4643 recursion_alert:
4644 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4645 					     dev->name);
4646 		}
4647 	}
4648 
4649 	rc = -ENETDOWN;
4650 	rcu_read_unlock_bh();
4651 
4652 	dev_core_stats_tx_dropped_inc(dev);
4653 	kfree_skb_list(skb);
4654 	return rc;
4655 out:
4656 	rcu_read_unlock_bh();
4657 	return rc;
4658 }
4659 EXPORT_SYMBOL(__dev_queue_xmit);
4660 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4661 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4662 {
4663 	struct net_device *dev = skb->dev;
4664 	struct sk_buff *orig_skb = skb;
4665 	struct netdev_queue *txq;
4666 	int ret = NETDEV_TX_BUSY;
4667 	bool again = false;
4668 
4669 	if (unlikely(!netif_running(dev) ||
4670 		     !netif_carrier_ok(dev)))
4671 		goto drop;
4672 
4673 	skb = validate_xmit_skb_list(skb, dev, &again);
4674 	if (skb != orig_skb)
4675 		goto drop;
4676 
4677 	skb_set_queue_mapping(skb, queue_id);
4678 	txq = skb_get_tx_queue(dev, skb);
4679 
4680 	local_bh_disable();
4681 
4682 	dev_xmit_recursion_inc();
4683 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4684 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4685 		ret = netdev_start_xmit(skb, dev, txq, false);
4686 	HARD_TX_UNLOCK(dev, txq);
4687 	dev_xmit_recursion_dec();
4688 
4689 	local_bh_enable();
4690 	return ret;
4691 drop:
4692 	dev_core_stats_tx_dropped_inc(dev);
4693 	kfree_skb_list(skb);
4694 	return NET_XMIT_DROP;
4695 }
4696 EXPORT_SYMBOL(__dev_direct_xmit);
4697 
4698 /*************************************************************************
4699  *			Receiver routines
4700  *************************************************************************/
4701 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4702 
4703 int weight_p __read_mostly = 64;           /* old backlog weight */
4704 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4705 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4706 
4707 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4708 static inline void ____napi_schedule(struct softnet_data *sd,
4709 				     struct napi_struct *napi)
4710 {
4711 	struct task_struct *thread;
4712 
4713 	lockdep_assert_irqs_disabled();
4714 
4715 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4716 		/* Paired with smp_mb__before_atomic() in
4717 		 * napi_enable()/dev_set_threaded().
4718 		 * Use READ_ONCE() to guarantee a complete
4719 		 * read on napi->thread. Only call
4720 		 * wake_up_process() when it's not NULL.
4721 		 */
4722 		thread = READ_ONCE(napi->thread);
4723 		if (thread) {
4724 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4725 				goto use_local_napi;
4726 
4727 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4728 			wake_up_process(thread);
4729 			return;
4730 		}
4731 	}
4732 
4733 use_local_napi:
4734 	list_add_tail(&napi->poll_list, &sd->poll_list);
4735 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4736 	/* If not called from net_rx_action()
4737 	 * we have to raise NET_RX_SOFTIRQ.
4738 	 */
4739 	if (!sd->in_net_rx_action)
4740 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4741 }
4742 
4743 #ifdef CONFIG_RPS
4744 
4745 struct static_key_false rps_needed __read_mostly;
4746 EXPORT_SYMBOL(rps_needed);
4747 struct static_key_false rfs_needed __read_mostly;
4748 EXPORT_SYMBOL(rfs_needed);
4749 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4750 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4751 {
4752 	return hash_32(hash, flow_table->log);
4753 }
4754 
4755 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4756 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4757 	    struct rps_dev_flow *rflow, u16 next_cpu)
4758 {
4759 	if (next_cpu < nr_cpu_ids) {
4760 		u32 head;
4761 #ifdef CONFIG_RFS_ACCEL
4762 		struct netdev_rx_queue *rxqueue;
4763 		struct rps_dev_flow_table *flow_table;
4764 		struct rps_dev_flow *old_rflow;
4765 		u16 rxq_index;
4766 		u32 flow_id;
4767 		int rc;
4768 
4769 		/* Should we steer this flow to a different hardware queue? */
4770 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4771 		    !(dev->features & NETIF_F_NTUPLE))
4772 			goto out;
4773 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4774 		if (rxq_index == skb_get_rx_queue(skb))
4775 			goto out;
4776 
4777 		rxqueue = dev->_rx + rxq_index;
4778 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4779 		if (!flow_table)
4780 			goto out;
4781 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4782 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4783 							rxq_index, flow_id);
4784 		if (rc < 0)
4785 			goto out;
4786 		old_rflow = rflow;
4787 		rflow = &flow_table->flows[flow_id];
4788 		WRITE_ONCE(rflow->filter, rc);
4789 		if (old_rflow->filter == rc)
4790 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4791 	out:
4792 #endif
4793 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4794 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4795 	}
4796 
4797 	WRITE_ONCE(rflow->cpu, next_cpu);
4798 	return rflow;
4799 }
4800 
4801 /*
4802  * get_rps_cpu is called from netif_receive_skb and returns the target
4803  * CPU from the RPS map of the receiving queue for a given skb.
4804  * rcu_read_lock must be held on entry.
4805  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4806 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4807 		       struct rps_dev_flow **rflowp)
4808 {
4809 	const struct rps_sock_flow_table *sock_flow_table;
4810 	struct netdev_rx_queue *rxqueue = dev->_rx;
4811 	struct rps_dev_flow_table *flow_table;
4812 	struct rps_map *map;
4813 	int cpu = -1;
4814 	u32 tcpu;
4815 	u32 hash;
4816 
4817 	if (skb_rx_queue_recorded(skb)) {
4818 		u16 index = skb_get_rx_queue(skb);
4819 
4820 		if (unlikely(index >= dev->real_num_rx_queues)) {
4821 			WARN_ONCE(dev->real_num_rx_queues > 1,
4822 				  "%s received packet on queue %u, but number "
4823 				  "of RX queues is %u\n",
4824 				  dev->name, index, dev->real_num_rx_queues);
4825 			goto done;
4826 		}
4827 		rxqueue += index;
4828 	}
4829 
4830 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4831 
4832 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4833 	map = rcu_dereference(rxqueue->rps_map);
4834 	if (!flow_table && !map)
4835 		goto done;
4836 
4837 	skb_reset_network_header(skb);
4838 	hash = skb_get_hash(skb);
4839 	if (!hash)
4840 		goto done;
4841 
4842 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4843 	if (flow_table && sock_flow_table) {
4844 		struct rps_dev_flow *rflow;
4845 		u32 next_cpu;
4846 		u32 ident;
4847 
4848 		/* First check into global flow table if there is a match.
4849 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4850 		 */
4851 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4852 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4853 			goto try_rps;
4854 
4855 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4856 
4857 		/* OK, now we know there is a match,
4858 		 * we can look at the local (per receive queue) flow table
4859 		 */
4860 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4861 		tcpu = rflow->cpu;
4862 
4863 		/*
4864 		 * If the desired CPU (where last recvmsg was done) is
4865 		 * different from current CPU (one in the rx-queue flow
4866 		 * table entry), switch if one of the following holds:
4867 		 *   - Current CPU is unset (>= nr_cpu_ids).
4868 		 *   - Current CPU is offline.
4869 		 *   - The current CPU's queue tail has advanced beyond the
4870 		 *     last packet that was enqueued using this table entry.
4871 		 *     This guarantees that all previous packets for the flow
4872 		 *     have been dequeued, thus preserving in order delivery.
4873 		 */
4874 		if (unlikely(tcpu != next_cpu) &&
4875 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4876 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4877 		      rflow->last_qtail)) >= 0)) {
4878 			tcpu = next_cpu;
4879 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4880 		}
4881 
4882 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4883 			*rflowp = rflow;
4884 			cpu = tcpu;
4885 			goto done;
4886 		}
4887 	}
4888 
4889 try_rps:
4890 
4891 	if (map) {
4892 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4893 		if (cpu_online(tcpu)) {
4894 			cpu = tcpu;
4895 			goto done;
4896 		}
4897 	}
4898 
4899 done:
4900 	return cpu;
4901 }
4902 
4903 #ifdef CONFIG_RFS_ACCEL
4904 
4905 /**
4906  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4907  * @dev: Device on which the filter was set
4908  * @rxq_index: RX queue index
4909  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4910  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4911  *
4912  * Drivers that implement ndo_rx_flow_steer() should periodically call
4913  * this function for each installed filter and remove the filters for
4914  * which it returns %true.
4915  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4916 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4917 			 u32 flow_id, u16 filter_id)
4918 {
4919 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4920 	struct rps_dev_flow_table *flow_table;
4921 	struct rps_dev_flow *rflow;
4922 	bool expire = true;
4923 	unsigned int cpu;
4924 
4925 	rcu_read_lock();
4926 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4927 	if (flow_table && flow_id < (1UL << flow_table->log)) {
4928 		rflow = &flow_table->flows[flow_id];
4929 		cpu = READ_ONCE(rflow->cpu);
4930 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4931 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4932 			   READ_ONCE(rflow->last_qtail)) <
4933 		     (int)(10 << flow_table->log)))
4934 			expire = false;
4935 	}
4936 	rcu_read_unlock();
4937 	return expire;
4938 }
4939 EXPORT_SYMBOL(rps_may_expire_flow);
4940 
4941 #endif /* CONFIG_RFS_ACCEL */
4942 
4943 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4944 static void rps_trigger_softirq(void *data)
4945 {
4946 	struct softnet_data *sd = data;
4947 
4948 	____napi_schedule(sd, &sd->backlog);
4949 	sd->received_rps++;
4950 }
4951 
4952 #endif /* CONFIG_RPS */
4953 
4954 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4955 static void trigger_rx_softirq(void *data)
4956 {
4957 	struct softnet_data *sd = data;
4958 
4959 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4960 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4961 }
4962 
4963 /*
4964  * After we queued a packet into sd->input_pkt_queue,
4965  * we need to make sure this queue is serviced soon.
4966  *
4967  * - If this is another cpu queue, link it to our rps_ipi_list,
4968  *   and make sure we will process rps_ipi_list from net_rx_action().
4969  *
4970  * - If this is our own queue, NAPI schedule our backlog.
4971  *   Note that this also raises NET_RX_SOFTIRQ.
4972  */
napi_schedule_rps(struct softnet_data * sd)4973 static void napi_schedule_rps(struct softnet_data *sd)
4974 {
4975 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4976 
4977 #ifdef CONFIG_RPS
4978 	if (sd != mysd) {
4979 		if (use_backlog_threads()) {
4980 			__napi_schedule_irqoff(&sd->backlog);
4981 			return;
4982 		}
4983 
4984 		sd->rps_ipi_next = mysd->rps_ipi_list;
4985 		mysd->rps_ipi_list = sd;
4986 
4987 		/* If not called from net_rx_action() or napi_threaded_poll()
4988 		 * we have to raise NET_RX_SOFTIRQ.
4989 		 */
4990 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4991 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4992 		return;
4993 	}
4994 #endif /* CONFIG_RPS */
4995 	__napi_schedule_irqoff(&mysd->backlog);
4996 }
4997 
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)4998 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4999 {
5000 	unsigned long flags;
5001 
5002 	if (use_backlog_threads()) {
5003 		backlog_lock_irq_save(sd, &flags);
5004 
5005 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5006 			__napi_schedule_irqoff(&sd->backlog);
5007 
5008 		backlog_unlock_irq_restore(sd, &flags);
5009 
5010 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5011 		smp_call_function_single_async(cpu, &sd->defer_csd);
5012 	}
5013 }
5014 
5015 #ifdef CONFIG_NET_FLOW_LIMIT
5016 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5017 #endif
5018 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5019 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5020 {
5021 #ifdef CONFIG_NET_FLOW_LIMIT
5022 	struct sd_flow_limit *fl;
5023 	struct softnet_data *sd;
5024 	unsigned int old_flow, new_flow;
5025 
5026 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5027 		return false;
5028 
5029 	sd = this_cpu_ptr(&softnet_data);
5030 
5031 	rcu_read_lock();
5032 	fl = rcu_dereference(sd->flow_limit);
5033 	if (fl) {
5034 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5035 		old_flow = fl->history[fl->history_head];
5036 		fl->history[fl->history_head] = new_flow;
5037 
5038 		fl->history_head++;
5039 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5040 
5041 		if (likely(fl->buckets[old_flow]))
5042 			fl->buckets[old_flow]--;
5043 
5044 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5045 			fl->count++;
5046 			rcu_read_unlock();
5047 			return true;
5048 		}
5049 	}
5050 	rcu_read_unlock();
5051 #endif
5052 	return false;
5053 }
5054 
5055 /*
5056  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5057  * queue (may be a remote CPU queue).
5058  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5059 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5060 			      unsigned int *qtail)
5061 {
5062 	enum skb_drop_reason reason;
5063 	struct softnet_data *sd;
5064 	unsigned long flags;
5065 	unsigned int qlen;
5066 	int max_backlog;
5067 	u32 tail;
5068 
5069 	reason = SKB_DROP_REASON_DEV_READY;
5070 	if (!netif_running(skb->dev))
5071 		goto bad_dev;
5072 
5073 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5074 	sd = &per_cpu(softnet_data, cpu);
5075 
5076 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5077 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5078 	if (unlikely(qlen > max_backlog))
5079 		goto cpu_backlog_drop;
5080 	backlog_lock_irq_save(sd, &flags);
5081 	qlen = skb_queue_len(&sd->input_pkt_queue);
5082 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5083 		if (!qlen) {
5084 			/* Schedule NAPI for backlog device. We can use
5085 			 * non atomic operation as we own the queue lock.
5086 			 */
5087 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5088 						&sd->backlog.state))
5089 				napi_schedule_rps(sd);
5090 		}
5091 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5092 		tail = rps_input_queue_tail_incr(sd);
5093 		backlog_unlock_irq_restore(sd, &flags);
5094 
5095 		/* save the tail outside of the critical section */
5096 		rps_input_queue_tail_save(qtail, tail);
5097 		return NET_RX_SUCCESS;
5098 	}
5099 
5100 	backlog_unlock_irq_restore(sd, &flags);
5101 
5102 cpu_backlog_drop:
5103 	atomic_inc(&sd->dropped);
5104 bad_dev:
5105 	dev_core_stats_rx_dropped_inc(skb->dev);
5106 	kfree_skb_reason(skb, reason);
5107 	return NET_RX_DROP;
5108 }
5109 
netif_get_rxqueue(struct sk_buff * skb)5110 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5111 {
5112 	struct net_device *dev = skb->dev;
5113 	struct netdev_rx_queue *rxqueue;
5114 
5115 	rxqueue = dev->_rx;
5116 
5117 	if (skb_rx_queue_recorded(skb)) {
5118 		u16 index = skb_get_rx_queue(skb);
5119 
5120 		if (unlikely(index >= dev->real_num_rx_queues)) {
5121 			WARN_ONCE(dev->real_num_rx_queues > 1,
5122 				  "%s received packet on queue %u, but number "
5123 				  "of RX queues is %u\n",
5124 				  dev->name, index, dev->real_num_rx_queues);
5125 
5126 			return rxqueue; /* Return first rxqueue */
5127 		}
5128 		rxqueue += index;
5129 	}
5130 	return rxqueue;
5131 }
5132 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5133 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5134 			     const struct bpf_prog *xdp_prog)
5135 {
5136 	void *orig_data, *orig_data_end, *hard_start;
5137 	struct netdev_rx_queue *rxqueue;
5138 	bool orig_bcast, orig_host;
5139 	u32 mac_len, frame_sz;
5140 	__be16 orig_eth_type;
5141 	struct ethhdr *eth;
5142 	u32 metalen, act;
5143 	int off;
5144 
5145 	/* The XDP program wants to see the packet starting at the MAC
5146 	 * header.
5147 	 */
5148 	mac_len = skb->data - skb_mac_header(skb);
5149 	hard_start = skb->data - skb_headroom(skb);
5150 
5151 	/* SKB "head" area always have tailroom for skb_shared_info */
5152 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5153 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5154 
5155 	rxqueue = netif_get_rxqueue(skb);
5156 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5157 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5158 			 skb_headlen(skb) + mac_len, true);
5159 	if (skb_is_nonlinear(skb)) {
5160 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5161 		xdp_buff_set_frags_flag(xdp);
5162 	} else {
5163 		xdp_buff_clear_frags_flag(xdp);
5164 	}
5165 
5166 	orig_data_end = xdp->data_end;
5167 	orig_data = xdp->data;
5168 	eth = (struct ethhdr *)xdp->data;
5169 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5170 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5171 	orig_eth_type = eth->h_proto;
5172 
5173 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5174 
5175 	/* check if bpf_xdp_adjust_head was used */
5176 	off = xdp->data - orig_data;
5177 	if (off) {
5178 		if (off > 0)
5179 			__skb_pull(skb, off);
5180 		else if (off < 0)
5181 			__skb_push(skb, -off);
5182 
5183 		skb->mac_header += off;
5184 		skb_reset_network_header(skb);
5185 	}
5186 
5187 	/* check if bpf_xdp_adjust_tail was used */
5188 	off = xdp->data_end - orig_data_end;
5189 	if (off != 0) {
5190 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5191 		skb->len += off; /* positive on grow, negative on shrink */
5192 	}
5193 
5194 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5195 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5196 	 */
5197 	if (xdp_buff_has_frags(xdp))
5198 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5199 	else
5200 		skb->data_len = 0;
5201 
5202 	/* check if XDP changed eth hdr such SKB needs update */
5203 	eth = (struct ethhdr *)xdp->data;
5204 	if ((orig_eth_type != eth->h_proto) ||
5205 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5206 						  skb->dev->dev_addr)) ||
5207 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5208 		__skb_push(skb, ETH_HLEN);
5209 		skb->pkt_type = PACKET_HOST;
5210 		skb->protocol = eth_type_trans(skb, skb->dev);
5211 	}
5212 
5213 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5214 	 * before calling us again on redirect path. We do not call do_redirect
5215 	 * as we leave that up to the caller.
5216 	 *
5217 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5218 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5219 	 */
5220 	switch (act) {
5221 	case XDP_REDIRECT:
5222 	case XDP_TX:
5223 		__skb_push(skb, mac_len);
5224 		break;
5225 	case XDP_PASS:
5226 		metalen = xdp->data - xdp->data_meta;
5227 		if (metalen)
5228 			skb_metadata_set(skb, metalen);
5229 		break;
5230 	}
5231 
5232 	return act;
5233 }
5234 
5235 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5236 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5237 {
5238 	struct sk_buff *skb = *pskb;
5239 	int err, hroom, troom;
5240 
5241 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5242 		return 0;
5243 
5244 	/* In case we have to go down the path and also linearize,
5245 	 * then lets do the pskb_expand_head() work just once here.
5246 	 */
5247 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5248 	troom = skb->tail + skb->data_len - skb->end;
5249 	err = pskb_expand_head(skb,
5250 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5251 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5252 	if (err)
5253 		return err;
5254 
5255 	return skb_linearize(skb);
5256 }
5257 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5258 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5259 				     struct xdp_buff *xdp,
5260 				     const struct bpf_prog *xdp_prog)
5261 {
5262 	struct sk_buff *skb = *pskb;
5263 	u32 mac_len, act = XDP_DROP;
5264 
5265 	/* Reinjected packets coming from act_mirred or similar should
5266 	 * not get XDP generic processing.
5267 	 */
5268 	if (skb_is_redirected(skb))
5269 		return XDP_PASS;
5270 
5271 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5272 	 * bytes. This is the guarantee that also native XDP provides,
5273 	 * thus we need to do it here as well.
5274 	 */
5275 	mac_len = skb->data - skb_mac_header(skb);
5276 	__skb_push(skb, mac_len);
5277 
5278 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5279 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5280 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5281 			goto do_drop;
5282 	}
5283 
5284 	__skb_pull(*pskb, mac_len);
5285 
5286 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5287 	switch (act) {
5288 	case XDP_REDIRECT:
5289 	case XDP_TX:
5290 	case XDP_PASS:
5291 		break;
5292 	default:
5293 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5294 		fallthrough;
5295 	case XDP_ABORTED:
5296 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5297 		fallthrough;
5298 	case XDP_DROP:
5299 	do_drop:
5300 		kfree_skb(*pskb);
5301 		break;
5302 	}
5303 
5304 	return act;
5305 }
5306 
5307 /* When doing generic XDP we have to bypass the qdisc layer and the
5308  * network taps in order to match in-driver-XDP behavior. This also means
5309  * that XDP packets are able to starve other packets going through a qdisc,
5310  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5311  * queues, so they do not have this starvation issue.
5312  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5313 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5314 {
5315 	struct net_device *dev = skb->dev;
5316 	struct netdev_queue *txq;
5317 	bool free_skb = true;
5318 	int cpu, rc;
5319 
5320 	txq = netdev_core_pick_tx(dev, skb, NULL);
5321 	cpu = smp_processor_id();
5322 	HARD_TX_LOCK(dev, txq, cpu);
5323 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5324 		rc = netdev_start_xmit(skb, dev, txq, 0);
5325 		if (dev_xmit_complete(rc))
5326 			free_skb = false;
5327 	}
5328 	HARD_TX_UNLOCK(dev, txq);
5329 	if (free_skb) {
5330 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5331 		dev_core_stats_tx_dropped_inc(dev);
5332 		kfree_skb(skb);
5333 	}
5334 }
5335 
5336 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5337 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5338 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5339 {
5340 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5341 
5342 	if (xdp_prog) {
5343 		struct xdp_buff xdp;
5344 		u32 act;
5345 		int err;
5346 
5347 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5348 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5349 		if (act != XDP_PASS) {
5350 			switch (act) {
5351 			case XDP_REDIRECT:
5352 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5353 							      &xdp, xdp_prog);
5354 				if (err)
5355 					goto out_redir;
5356 				break;
5357 			case XDP_TX:
5358 				generic_xdp_tx(*pskb, xdp_prog);
5359 				break;
5360 			}
5361 			bpf_net_ctx_clear(bpf_net_ctx);
5362 			return XDP_DROP;
5363 		}
5364 		bpf_net_ctx_clear(bpf_net_ctx);
5365 	}
5366 	return XDP_PASS;
5367 out_redir:
5368 	bpf_net_ctx_clear(bpf_net_ctx);
5369 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5370 	return XDP_DROP;
5371 }
5372 EXPORT_SYMBOL_GPL(do_xdp_generic);
5373 
netif_rx_internal(struct sk_buff * skb)5374 static int netif_rx_internal(struct sk_buff *skb)
5375 {
5376 	int ret;
5377 
5378 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5379 
5380 	trace_netif_rx(skb);
5381 
5382 #ifdef CONFIG_RPS
5383 	if (static_branch_unlikely(&rps_needed)) {
5384 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5385 		int cpu;
5386 
5387 		rcu_read_lock();
5388 
5389 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5390 		if (cpu < 0)
5391 			cpu = smp_processor_id();
5392 
5393 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5394 
5395 		rcu_read_unlock();
5396 	} else
5397 #endif
5398 	{
5399 		unsigned int qtail;
5400 
5401 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5402 	}
5403 	return ret;
5404 }
5405 
5406 /**
5407  *	__netif_rx	-	Slightly optimized version of netif_rx
5408  *	@skb: buffer to post
5409  *
5410  *	This behaves as netif_rx except that it does not disable bottom halves.
5411  *	As a result this function may only be invoked from the interrupt context
5412  *	(either hard or soft interrupt).
5413  */
__netif_rx(struct sk_buff * skb)5414 int __netif_rx(struct sk_buff *skb)
5415 {
5416 	int ret;
5417 
5418 	lockdep_assert_once(hardirq_count() | softirq_count());
5419 
5420 	trace_netif_rx_entry(skb);
5421 	ret = netif_rx_internal(skb);
5422 	trace_netif_rx_exit(ret);
5423 	return ret;
5424 }
5425 EXPORT_SYMBOL(__netif_rx);
5426 
5427 /**
5428  *	netif_rx	-	post buffer to the network code
5429  *	@skb: buffer to post
5430  *
5431  *	This function receives a packet from a device driver and queues it for
5432  *	the upper (protocol) levels to process via the backlog NAPI device. It
5433  *	always succeeds. The buffer may be dropped during processing for
5434  *	congestion control or by the protocol layers.
5435  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5436  *	driver should use NAPI and GRO.
5437  *	This function can used from interrupt and from process context. The
5438  *	caller from process context must not disable interrupts before invoking
5439  *	this function.
5440  *
5441  *	return values:
5442  *	NET_RX_SUCCESS	(no congestion)
5443  *	NET_RX_DROP     (packet was dropped)
5444  *
5445  */
netif_rx(struct sk_buff * skb)5446 int netif_rx(struct sk_buff *skb)
5447 {
5448 	bool need_bh_off = !(hardirq_count() | softirq_count());
5449 	int ret;
5450 
5451 	if (need_bh_off)
5452 		local_bh_disable();
5453 	trace_netif_rx_entry(skb);
5454 	ret = netif_rx_internal(skb);
5455 	trace_netif_rx_exit(ret);
5456 	if (need_bh_off)
5457 		local_bh_enable();
5458 	return ret;
5459 }
5460 EXPORT_SYMBOL(netif_rx);
5461 
net_tx_action(void)5462 static __latent_entropy void net_tx_action(void)
5463 {
5464 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5465 
5466 	if (sd->completion_queue) {
5467 		struct sk_buff *clist;
5468 
5469 		local_irq_disable();
5470 		clist = sd->completion_queue;
5471 		sd->completion_queue = NULL;
5472 		local_irq_enable();
5473 
5474 		while (clist) {
5475 			struct sk_buff *skb = clist;
5476 
5477 			clist = clist->next;
5478 
5479 			WARN_ON(refcount_read(&skb->users));
5480 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5481 				trace_consume_skb(skb, net_tx_action);
5482 			else
5483 				trace_kfree_skb(skb, net_tx_action,
5484 						get_kfree_skb_cb(skb)->reason, NULL);
5485 
5486 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5487 				__kfree_skb(skb);
5488 			else
5489 				__napi_kfree_skb(skb,
5490 						 get_kfree_skb_cb(skb)->reason);
5491 		}
5492 	}
5493 
5494 	if (sd->output_queue) {
5495 		struct Qdisc *head;
5496 
5497 		local_irq_disable();
5498 		head = sd->output_queue;
5499 		sd->output_queue = NULL;
5500 		sd->output_queue_tailp = &sd->output_queue;
5501 		local_irq_enable();
5502 
5503 		rcu_read_lock();
5504 
5505 		while (head) {
5506 			struct Qdisc *q = head;
5507 			spinlock_t *root_lock = NULL;
5508 
5509 			head = head->next_sched;
5510 
5511 			/* We need to make sure head->next_sched is read
5512 			 * before clearing __QDISC_STATE_SCHED
5513 			 */
5514 			smp_mb__before_atomic();
5515 
5516 			if (!(q->flags & TCQ_F_NOLOCK)) {
5517 				root_lock = qdisc_lock(q);
5518 				spin_lock(root_lock);
5519 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5520 						     &q->state))) {
5521 				/* There is a synchronize_net() between
5522 				 * STATE_DEACTIVATED flag being set and
5523 				 * qdisc_reset()/some_qdisc_is_busy() in
5524 				 * dev_deactivate(), so we can safely bail out
5525 				 * early here to avoid data race between
5526 				 * qdisc_deactivate() and some_qdisc_is_busy()
5527 				 * for lockless qdisc.
5528 				 */
5529 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5530 				continue;
5531 			}
5532 
5533 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5534 			qdisc_run(q);
5535 			if (root_lock)
5536 				spin_unlock(root_lock);
5537 		}
5538 
5539 		rcu_read_unlock();
5540 	}
5541 
5542 	xfrm_dev_backlog(sd);
5543 }
5544 
5545 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5546 /* This hook is defined here for ATM LANE */
5547 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5548 			     unsigned char *addr) __read_mostly;
5549 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5550 #endif
5551 
5552 /**
5553  *	netdev_is_rx_handler_busy - check if receive handler is registered
5554  *	@dev: device to check
5555  *
5556  *	Check if a receive handler is already registered for a given device.
5557  *	Return true if there one.
5558  *
5559  *	The caller must hold the rtnl_mutex.
5560  */
netdev_is_rx_handler_busy(struct net_device * dev)5561 bool netdev_is_rx_handler_busy(struct net_device *dev)
5562 {
5563 	ASSERT_RTNL();
5564 	return dev && rtnl_dereference(dev->rx_handler);
5565 }
5566 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5567 
5568 /**
5569  *	netdev_rx_handler_register - register receive handler
5570  *	@dev: device to register a handler for
5571  *	@rx_handler: receive handler to register
5572  *	@rx_handler_data: data pointer that is used by rx handler
5573  *
5574  *	Register a receive handler for a device. This handler will then be
5575  *	called from __netif_receive_skb. A negative errno code is returned
5576  *	on a failure.
5577  *
5578  *	The caller must hold the rtnl_mutex.
5579  *
5580  *	For a general description of rx_handler, see enum rx_handler_result.
5581  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5582 int netdev_rx_handler_register(struct net_device *dev,
5583 			       rx_handler_func_t *rx_handler,
5584 			       void *rx_handler_data)
5585 {
5586 	if (netdev_is_rx_handler_busy(dev))
5587 		return -EBUSY;
5588 
5589 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5590 		return -EINVAL;
5591 
5592 	/* Note: rx_handler_data must be set before rx_handler */
5593 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5594 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5595 
5596 	return 0;
5597 }
5598 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5599 
5600 /**
5601  *	netdev_rx_handler_unregister - unregister receive handler
5602  *	@dev: device to unregister a handler from
5603  *
5604  *	Unregister a receive handler from a device.
5605  *
5606  *	The caller must hold the rtnl_mutex.
5607  */
netdev_rx_handler_unregister(struct net_device * dev)5608 void netdev_rx_handler_unregister(struct net_device *dev)
5609 {
5610 
5611 	ASSERT_RTNL();
5612 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5613 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5614 	 * section has a guarantee to see a non NULL rx_handler_data
5615 	 * as well.
5616 	 */
5617 	synchronize_net();
5618 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5619 }
5620 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5621 
5622 /*
5623  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5624  * the special handling of PFMEMALLOC skbs.
5625  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5626 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5627 {
5628 	switch (skb->protocol) {
5629 	case htons(ETH_P_ARP):
5630 	case htons(ETH_P_IP):
5631 	case htons(ETH_P_IPV6):
5632 	case htons(ETH_P_8021Q):
5633 	case htons(ETH_P_8021AD):
5634 		return true;
5635 	default:
5636 		return false;
5637 	}
5638 }
5639 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5640 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5641 			     int *ret, struct net_device *orig_dev)
5642 {
5643 	if (nf_hook_ingress_active(skb)) {
5644 		int ingress_retval;
5645 
5646 		if (*pt_prev) {
5647 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5648 			*pt_prev = NULL;
5649 		}
5650 
5651 		rcu_read_lock();
5652 		ingress_retval = nf_hook_ingress(skb);
5653 		rcu_read_unlock();
5654 		return ingress_retval;
5655 	}
5656 	return 0;
5657 }
5658 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5659 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5660 				    struct packet_type **ppt_prev)
5661 {
5662 	struct packet_type *ptype, *pt_prev;
5663 	rx_handler_func_t *rx_handler;
5664 	struct sk_buff *skb = *pskb;
5665 	struct net_device *orig_dev;
5666 	bool deliver_exact = false;
5667 	int ret = NET_RX_DROP;
5668 	__be16 type;
5669 
5670 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5671 
5672 	trace_netif_receive_skb(skb);
5673 
5674 	orig_dev = skb->dev;
5675 
5676 	skb_reset_network_header(skb);
5677 #if !defined(CONFIG_DEBUG_NET)
5678 	/* We plan to no longer reset the transport header here.
5679 	 * Give some time to fuzzers and dev build to catch bugs
5680 	 * in network stacks.
5681 	 */
5682 	if (!skb_transport_header_was_set(skb))
5683 		skb_reset_transport_header(skb);
5684 #endif
5685 	skb_reset_mac_len(skb);
5686 
5687 	pt_prev = NULL;
5688 
5689 another_round:
5690 	skb->skb_iif = skb->dev->ifindex;
5691 
5692 	__this_cpu_inc(softnet_data.processed);
5693 
5694 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5695 		int ret2;
5696 
5697 		migrate_disable();
5698 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5699 				      &skb);
5700 		migrate_enable();
5701 
5702 		if (ret2 != XDP_PASS) {
5703 			ret = NET_RX_DROP;
5704 			goto out;
5705 		}
5706 	}
5707 
5708 	if (eth_type_vlan(skb->protocol)) {
5709 		skb = skb_vlan_untag(skb);
5710 		if (unlikely(!skb))
5711 			goto out;
5712 	}
5713 
5714 	if (skb_skip_tc_classify(skb))
5715 		goto skip_classify;
5716 
5717 	if (pfmemalloc)
5718 		goto skip_taps;
5719 
5720 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5721 				list) {
5722 		if (pt_prev)
5723 			ret = deliver_skb(skb, pt_prev, orig_dev);
5724 		pt_prev = ptype;
5725 	}
5726 
5727 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5728 		if (pt_prev)
5729 			ret = deliver_skb(skb, pt_prev, orig_dev);
5730 		pt_prev = ptype;
5731 	}
5732 
5733 skip_taps:
5734 #ifdef CONFIG_NET_INGRESS
5735 	if (static_branch_unlikely(&ingress_needed_key)) {
5736 		bool another = false;
5737 
5738 		nf_skip_egress(skb, true);
5739 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5740 					 &another);
5741 		if (another)
5742 			goto another_round;
5743 		if (!skb)
5744 			goto out;
5745 
5746 		nf_skip_egress(skb, false);
5747 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5748 			goto out;
5749 	}
5750 #endif
5751 	skb_reset_redirect(skb);
5752 skip_classify:
5753 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5754 		goto drop;
5755 
5756 	if (skb_vlan_tag_present(skb)) {
5757 		if (pt_prev) {
5758 			ret = deliver_skb(skb, pt_prev, orig_dev);
5759 			pt_prev = NULL;
5760 		}
5761 		if (vlan_do_receive(&skb))
5762 			goto another_round;
5763 		else if (unlikely(!skb))
5764 			goto out;
5765 	}
5766 
5767 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5768 	if (rx_handler) {
5769 		if (pt_prev) {
5770 			ret = deliver_skb(skb, pt_prev, orig_dev);
5771 			pt_prev = NULL;
5772 		}
5773 		switch (rx_handler(&skb)) {
5774 		case RX_HANDLER_CONSUMED:
5775 			ret = NET_RX_SUCCESS;
5776 			goto out;
5777 		case RX_HANDLER_ANOTHER:
5778 			goto another_round;
5779 		case RX_HANDLER_EXACT:
5780 			deliver_exact = true;
5781 			break;
5782 		case RX_HANDLER_PASS:
5783 			break;
5784 		default:
5785 			BUG();
5786 		}
5787 	}
5788 
5789 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5790 check_vlan_id:
5791 		if (skb_vlan_tag_get_id(skb)) {
5792 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5793 			 * find vlan device.
5794 			 */
5795 			skb->pkt_type = PACKET_OTHERHOST;
5796 		} else if (eth_type_vlan(skb->protocol)) {
5797 			/* Outer header is 802.1P with vlan 0, inner header is
5798 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5799 			 * not find vlan dev for vlan id 0.
5800 			 */
5801 			__vlan_hwaccel_clear_tag(skb);
5802 			skb = skb_vlan_untag(skb);
5803 			if (unlikely(!skb))
5804 				goto out;
5805 			if (vlan_do_receive(&skb))
5806 				/* After stripping off 802.1P header with vlan 0
5807 				 * vlan dev is found for inner header.
5808 				 */
5809 				goto another_round;
5810 			else if (unlikely(!skb))
5811 				goto out;
5812 			else
5813 				/* We have stripped outer 802.1P vlan 0 header.
5814 				 * But could not find vlan dev.
5815 				 * check again for vlan id to set OTHERHOST.
5816 				 */
5817 				goto check_vlan_id;
5818 		}
5819 		/* Note: we might in the future use prio bits
5820 		 * and set skb->priority like in vlan_do_receive()
5821 		 * For the time being, just ignore Priority Code Point
5822 		 */
5823 		__vlan_hwaccel_clear_tag(skb);
5824 	}
5825 
5826 	type = skb->protocol;
5827 
5828 	/* deliver only exact match when indicated */
5829 	if (likely(!deliver_exact)) {
5830 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5831 				       &ptype_base[ntohs(type) &
5832 						   PTYPE_HASH_MASK]);
5833 
5834 		/* orig_dev and skb->dev could belong to different netns;
5835 		 * Even in such case we need to traverse only the list
5836 		 * coming from skb->dev, as the ptype owner (packet socket)
5837 		 * will use dev_net(skb->dev) to do namespace filtering.
5838 		 */
5839 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5840 				       &dev_net_rcu(skb->dev)->ptype_specific);
5841 	}
5842 
5843 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5844 			       &orig_dev->ptype_specific);
5845 
5846 	if (unlikely(skb->dev != orig_dev)) {
5847 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5848 				       &skb->dev->ptype_specific);
5849 	}
5850 
5851 	if (pt_prev) {
5852 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5853 			goto drop;
5854 		*ppt_prev = pt_prev;
5855 	} else {
5856 drop:
5857 		if (!deliver_exact)
5858 			dev_core_stats_rx_dropped_inc(skb->dev);
5859 		else
5860 			dev_core_stats_rx_nohandler_inc(skb->dev);
5861 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5862 		/* Jamal, now you will not able to escape explaining
5863 		 * me how you were going to use this. :-)
5864 		 */
5865 		ret = NET_RX_DROP;
5866 	}
5867 
5868 out:
5869 	/* The invariant here is that if *ppt_prev is not NULL
5870 	 * then skb should also be non-NULL.
5871 	 *
5872 	 * Apparently *ppt_prev assignment above holds this invariant due to
5873 	 * skb dereferencing near it.
5874 	 */
5875 	*pskb = skb;
5876 	return ret;
5877 }
5878 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5879 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5880 {
5881 	struct net_device *orig_dev = skb->dev;
5882 	struct packet_type *pt_prev = NULL;
5883 	int ret;
5884 
5885 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5886 	if (pt_prev)
5887 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5888 					 skb->dev, pt_prev, orig_dev);
5889 	return ret;
5890 }
5891 
5892 /**
5893  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5894  *	@skb: buffer to process
5895  *
5896  *	More direct receive version of netif_receive_skb().  It should
5897  *	only be used by callers that have a need to skip RPS and Generic XDP.
5898  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5899  *
5900  *	This function may only be called from softirq context and interrupts
5901  *	should be enabled.
5902  *
5903  *	Return values (usually ignored):
5904  *	NET_RX_SUCCESS: no congestion
5905  *	NET_RX_DROP: packet was dropped
5906  */
netif_receive_skb_core(struct sk_buff * skb)5907 int netif_receive_skb_core(struct sk_buff *skb)
5908 {
5909 	int ret;
5910 
5911 	rcu_read_lock();
5912 	ret = __netif_receive_skb_one_core(skb, false);
5913 	rcu_read_unlock();
5914 
5915 	return ret;
5916 }
5917 EXPORT_SYMBOL(netif_receive_skb_core);
5918 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5919 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5920 						  struct packet_type *pt_prev,
5921 						  struct net_device *orig_dev)
5922 {
5923 	struct sk_buff *skb, *next;
5924 
5925 	if (!pt_prev)
5926 		return;
5927 	if (list_empty(head))
5928 		return;
5929 	if (pt_prev->list_func != NULL)
5930 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5931 				   ip_list_rcv, head, pt_prev, orig_dev);
5932 	else
5933 		list_for_each_entry_safe(skb, next, head, list) {
5934 			skb_list_del_init(skb);
5935 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5936 		}
5937 }
5938 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5939 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5940 {
5941 	/* Fast-path assumptions:
5942 	 * - There is no RX handler.
5943 	 * - Only one packet_type matches.
5944 	 * If either of these fails, we will end up doing some per-packet
5945 	 * processing in-line, then handling the 'last ptype' for the whole
5946 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5947 	 * because the 'last ptype' must be constant across the sublist, and all
5948 	 * other ptypes are handled per-packet.
5949 	 */
5950 	/* Current (common) ptype of sublist */
5951 	struct packet_type *pt_curr = NULL;
5952 	/* Current (common) orig_dev of sublist */
5953 	struct net_device *od_curr = NULL;
5954 	struct sk_buff *skb, *next;
5955 	LIST_HEAD(sublist);
5956 
5957 	list_for_each_entry_safe(skb, next, head, list) {
5958 		struct net_device *orig_dev = skb->dev;
5959 		struct packet_type *pt_prev = NULL;
5960 
5961 		skb_list_del_init(skb);
5962 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5963 		if (!pt_prev)
5964 			continue;
5965 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5966 			/* dispatch old sublist */
5967 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5968 			/* start new sublist */
5969 			INIT_LIST_HEAD(&sublist);
5970 			pt_curr = pt_prev;
5971 			od_curr = orig_dev;
5972 		}
5973 		list_add_tail(&skb->list, &sublist);
5974 	}
5975 
5976 	/* dispatch final sublist */
5977 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5978 }
5979 
__netif_receive_skb(struct sk_buff * skb)5980 static int __netif_receive_skb(struct sk_buff *skb)
5981 {
5982 	int ret;
5983 
5984 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5985 		unsigned int noreclaim_flag;
5986 
5987 		/*
5988 		 * PFMEMALLOC skbs are special, they should
5989 		 * - be delivered to SOCK_MEMALLOC sockets only
5990 		 * - stay away from userspace
5991 		 * - have bounded memory usage
5992 		 *
5993 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5994 		 * context down to all allocation sites.
5995 		 */
5996 		noreclaim_flag = memalloc_noreclaim_save();
5997 		ret = __netif_receive_skb_one_core(skb, true);
5998 		memalloc_noreclaim_restore(noreclaim_flag);
5999 	} else
6000 		ret = __netif_receive_skb_one_core(skb, false);
6001 
6002 	return ret;
6003 }
6004 
__netif_receive_skb_list(struct list_head * head)6005 static void __netif_receive_skb_list(struct list_head *head)
6006 {
6007 	unsigned long noreclaim_flag = 0;
6008 	struct sk_buff *skb, *next;
6009 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6010 
6011 	list_for_each_entry_safe(skb, next, head, list) {
6012 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6013 			struct list_head sublist;
6014 
6015 			/* Handle the previous sublist */
6016 			list_cut_before(&sublist, head, &skb->list);
6017 			if (!list_empty(&sublist))
6018 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6019 			pfmemalloc = !pfmemalloc;
6020 			/* See comments in __netif_receive_skb */
6021 			if (pfmemalloc)
6022 				noreclaim_flag = memalloc_noreclaim_save();
6023 			else
6024 				memalloc_noreclaim_restore(noreclaim_flag);
6025 		}
6026 	}
6027 	/* Handle the remaining sublist */
6028 	if (!list_empty(head))
6029 		__netif_receive_skb_list_core(head, pfmemalloc);
6030 	/* Restore pflags */
6031 	if (pfmemalloc)
6032 		memalloc_noreclaim_restore(noreclaim_flag);
6033 }
6034 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6035 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6036 {
6037 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6038 	struct bpf_prog *new = xdp->prog;
6039 	int ret = 0;
6040 
6041 	switch (xdp->command) {
6042 	case XDP_SETUP_PROG:
6043 		rcu_assign_pointer(dev->xdp_prog, new);
6044 		if (old)
6045 			bpf_prog_put(old);
6046 
6047 		if (old && !new) {
6048 			static_branch_dec(&generic_xdp_needed_key);
6049 		} else if (new && !old) {
6050 			static_branch_inc(&generic_xdp_needed_key);
6051 			netif_disable_lro(dev);
6052 			dev_disable_gro_hw(dev);
6053 		}
6054 		break;
6055 
6056 	default:
6057 		ret = -EINVAL;
6058 		break;
6059 	}
6060 
6061 	return ret;
6062 }
6063 
netif_receive_skb_internal(struct sk_buff * skb)6064 static int netif_receive_skb_internal(struct sk_buff *skb)
6065 {
6066 	int ret;
6067 
6068 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6069 
6070 	if (skb_defer_rx_timestamp(skb))
6071 		return NET_RX_SUCCESS;
6072 
6073 	rcu_read_lock();
6074 #ifdef CONFIG_RPS
6075 	if (static_branch_unlikely(&rps_needed)) {
6076 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6077 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6078 
6079 		if (cpu >= 0) {
6080 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6081 			rcu_read_unlock();
6082 			return ret;
6083 		}
6084 	}
6085 #endif
6086 	ret = __netif_receive_skb(skb);
6087 	rcu_read_unlock();
6088 	return ret;
6089 }
6090 
netif_receive_skb_list_internal(struct list_head * head)6091 void netif_receive_skb_list_internal(struct list_head *head)
6092 {
6093 	struct sk_buff *skb, *next;
6094 	LIST_HEAD(sublist);
6095 
6096 	list_for_each_entry_safe(skb, next, head, list) {
6097 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6098 				    skb);
6099 		skb_list_del_init(skb);
6100 		if (!skb_defer_rx_timestamp(skb))
6101 			list_add_tail(&skb->list, &sublist);
6102 	}
6103 	list_splice_init(&sublist, head);
6104 
6105 	rcu_read_lock();
6106 #ifdef CONFIG_RPS
6107 	if (static_branch_unlikely(&rps_needed)) {
6108 		list_for_each_entry_safe(skb, next, head, list) {
6109 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6110 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6111 
6112 			if (cpu >= 0) {
6113 				/* Will be handled, remove from list */
6114 				skb_list_del_init(skb);
6115 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6116 			}
6117 		}
6118 	}
6119 #endif
6120 	__netif_receive_skb_list(head);
6121 	rcu_read_unlock();
6122 }
6123 
6124 /**
6125  *	netif_receive_skb - process receive buffer from network
6126  *	@skb: buffer to process
6127  *
6128  *	netif_receive_skb() is the main receive data processing function.
6129  *	It always succeeds. The buffer may be dropped during processing
6130  *	for congestion control or by the protocol layers.
6131  *
6132  *	This function may only be called from softirq context and interrupts
6133  *	should be enabled.
6134  *
6135  *	Return values (usually ignored):
6136  *	NET_RX_SUCCESS: no congestion
6137  *	NET_RX_DROP: packet was dropped
6138  */
netif_receive_skb(struct sk_buff * skb)6139 int netif_receive_skb(struct sk_buff *skb)
6140 {
6141 	int ret;
6142 
6143 	trace_netif_receive_skb_entry(skb);
6144 
6145 	ret = netif_receive_skb_internal(skb);
6146 	trace_netif_receive_skb_exit(ret);
6147 
6148 	return ret;
6149 }
6150 EXPORT_SYMBOL(netif_receive_skb);
6151 
6152 /**
6153  *	netif_receive_skb_list - process many receive buffers from network
6154  *	@head: list of skbs to process.
6155  *
6156  *	Since return value of netif_receive_skb() is normally ignored, and
6157  *	wouldn't be meaningful for a list, this function returns void.
6158  *
6159  *	This function may only be called from softirq context and interrupts
6160  *	should be enabled.
6161  */
netif_receive_skb_list(struct list_head * head)6162 void netif_receive_skb_list(struct list_head *head)
6163 {
6164 	struct sk_buff *skb;
6165 
6166 	if (list_empty(head))
6167 		return;
6168 	if (trace_netif_receive_skb_list_entry_enabled()) {
6169 		list_for_each_entry(skb, head, list)
6170 			trace_netif_receive_skb_list_entry(skb);
6171 	}
6172 	netif_receive_skb_list_internal(head);
6173 	trace_netif_receive_skb_list_exit(0);
6174 }
6175 EXPORT_SYMBOL(netif_receive_skb_list);
6176 
6177 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6178 static void flush_backlog(struct work_struct *work)
6179 {
6180 	struct sk_buff *skb, *tmp;
6181 	struct sk_buff_head list;
6182 	struct softnet_data *sd;
6183 
6184 	__skb_queue_head_init(&list);
6185 	local_bh_disable();
6186 	sd = this_cpu_ptr(&softnet_data);
6187 
6188 	backlog_lock_irq_disable(sd);
6189 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6190 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6191 			__skb_unlink(skb, &sd->input_pkt_queue);
6192 			__skb_queue_tail(&list, skb);
6193 			rps_input_queue_head_incr(sd);
6194 		}
6195 	}
6196 	backlog_unlock_irq_enable(sd);
6197 
6198 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6199 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6200 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6201 			__skb_unlink(skb, &sd->process_queue);
6202 			__skb_queue_tail(&list, skb);
6203 			rps_input_queue_head_incr(sd);
6204 		}
6205 	}
6206 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6207 	local_bh_enable();
6208 
6209 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6210 }
6211 
flush_required(int cpu)6212 static bool flush_required(int cpu)
6213 {
6214 #if IS_ENABLED(CONFIG_RPS)
6215 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6216 	bool do_flush;
6217 
6218 	backlog_lock_irq_disable(sd);
6219 
6220 	/* as insertion into process_queue happens with the rps lock held,
6221 	 * process_queue access may race only with dequeue
6222 	 */
6223 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6224 		   !skb_queue_empty_lockless(&sd->process_queue);
6225 	backlog_unlock_irq_enable(sd);
6226 
6227 	return do_flush;
6228 #endif
6229 	/* without RPS we can't safely check input_pkt_queue: during a
6230 	 * concurrent remote skb_queue_splice() we can detect as empty both
6231 	 * input_pkt_queue and process_queue even if the latter could end-up
6232 	 * containing a lot of packets.
6233 	 */
6234 	return true;
6235 }
6236 
6237 struct flush_backlogs {
6238 	cpumask_t		flush_cpus;
6239 	struct work_struct	w[];
6240 };
6241 
flush_backlogs_alloc(void)6242 static struct flush_backlogs *flush_backlogs_alloc(void)
6243 {
6244 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6245 		       GFP_KERNEL);
6246 }
6247 
6248 static struct flush_backlogs *flush_backlogs_fallback;
6249 static DEFINE_MUTEX(flush_backlogs_mutex);
6250 
flush_all_backlogs(void)6251 static void flush_all_backlogs(void)
6252 {
6253 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6254 	unsigned int cpu;
6255 
6256 	if (!ptr) {
6257 		mutex_lock(&flush_backlogs_mutex);
6258 		ptr = flush_backlogs_fallback;
6259 	}
6260 	cpumask_clear(&ptr->flush_cpus);
6261 
6262 	cpus_read_lock();
6263 
6264 	for_each_online_cpu(cpu) {
6265 		if (flush_required(cpu)) {
6266 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6267 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6268 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6269 		}
6270 	}
6271 
6272 	/* we can have in flight packet[s] on the cpus we are not flushing,
6273 	 * synchronize_net() in unregister_netdevice_many() will take care of
6274 	 * them.
6275 	 */
6276 	for_each_cpu(cpu, &ptr->flush_cpus)
6277 		flush_work(&ptr->w[cpu]);
6278 
6279 	cpus_read_unlock();
6280 
6281 	if (ptr != flush_backlogs_fallback)
6282 		kfree(ptr);
6283 	else
6284 		mutex_unlock(&flush_backlogs_mutex);
6285 }
6286 
net_rps_send_ipi(struct softnet_data * remsd)6287 static void net_rps_send_ipi(struct softnet_data *remsd)
6288 {
6289 #ifdef CONFIG_RPS
6290 	while (remsd) {
6291 		struct softnet_data *next = remsd->rps_ipi_next;
6292 
6293 		if (cpu_online(remsd->cpu))
6294 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6295 		remsd = next;
6296 	}
6297 #endif
6298 }
6299 
6300 /*
6301  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6302  * Note: called with local irq disabled, but exits with local irq enabled.
6303  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6304 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6305 {
6306 #ifdef CONFIG_RPS
6307 	struct softnet_data *remsd = sd->rps_ipi_list;
6308 
6309 	if (!use_backlog_threads() && remsd) {
6310 		sd->rps_ipi_list = NULL;
6311 
6312 		local_irq_enable();
6313 
6314 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6315 		net_rps_send_ipi(remsd);
6316 	} else
6317 #endif
6318 		local_irq_enable();
6319 }
6320 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6321 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6322 {
6323 #ifdef CONFIG_RPS
6324 	return !use_backlog_threads() && sd->rps_ipi_list;
6325 #else
6326 	return false;
6327 #endif
6328 }
6329 
process_backlog(struct napi_struct * napi,int quota)6330 static int process_backlog(struct napi_struct *napi, int quota)
6331 {
6332 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6333 	bool again = true;
6334 	int work = 0;
6335 
6336 	/* Check if we have pending ipi, its better to send them now,
6337 	 * not waiting net_rx_action() end.
6338 	 */
6339 	if (sd_has_rps_ipi_waiting(sd)) {
6340 		local_irq_disable();
6341 		net_rps_action_and_irq_enable(sd);
6342 	}
6343 
6344 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6345 	while (again) {
6346 		struct sk_buff *skb;
6347 
6348 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6349 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6350 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6351 			rcu_read_lock();
6352 			__netif_receive_skb(skb);
6353 			rcu_read_unlock();
6354 			if (++work >= quota) {
6355 				rps_input_queue_head_add(sd, work);
6356 				return work;
6357 			}
6358 
6359 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6360 		}
6361 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6362 
6363 		backlog_lock_irq_disable(sd);
6364 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6365 			/*
6366 			 * Inline a custom version of __napi_complete().
6367 			 * only current cpu owns and manipulates this napi,
6368 			 * and NAPI_STATE_SCHED is the only possible flag set
6369 			 * on backlog.
6370 			 * We can use a plain write instead of clear_bit(),
6371 			 * and we dont need an smp_mb() memory barrier.
6372 			 */
6373 			napi->state &= NAPIF_STATE_THREADED;
6374 			again = false;
6375 		} else {
6376 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6377 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6378 						   &sd->process_queue);
6379 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6380 		}
6381 		backlog_unlock_irq_enable(sd);
6382 	}
6383 
6384 	if (work)
6385 		rps_input_queue_head_add(sd, work);
6386 	return work;
6387 }
6388 
6389 /**
6390  * __napi_schedule - schedule for receive
6391  * @n: entry to schedule
6392  *
6393  * The entry's receive function will be scheduled to run.
6394  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6395  */
__napi_schedule(struct napi_struct * n)6396 void __napi_schedule(struct napi_struct *n)
6397 {
6398 	unsigned long flags;
6399 
6400 	local_irq_save(flags);
6401 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6402 	local_irq_restore(flags);
6403 }
6404 EXPORT_SYMBOL(__napi_schedule);
6405 
6406 /**
6407  *	napi_schedule_prep - check if napi can be scheduled
6408  *	@n: napi context
6409  *
6410  * Test if NAPI routine is already running, and if not mark
6411  * it as running.  This is used as a condition variable to
6412  * insure only one NAPI poll instance runs.  We also make
6413  * sure there is no pending NAPI disable.
6414  */
napi_schedule_prep(struct napi_struct * n)6415 bool napi_schedule_prep(struct napi_struct *n)
6416 {
6417 	unsigned long new, val = READ_ONCE(n->state);
6418 
6419 	do {
6420 		if (unlikely(val & NAPIF_STATE_DISABLE))
6421 			return false;
6422 		new = val | NAPIF_STATE_SCHED;
6423 
6424 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6425 		 * This was suggested by Alexander Duyck, as compiler
6426 		 * emits better code than :
6427 		 * if (val & NAPIF_STATE_SCHED)
6428 		 *     new |= NAPIF_STATE_MISSED;
6429 		 */
6430 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6431 						   NAPIF_STATE_MISSED;
6432 	} while (!try_cmpxchg(&n->state, &val, new));
6433 
6434 	return !(val & NAPIF_STATE_SCHED);
6435 }
6436 EXPORT_SYMBOL(napi_schedule_prep);
6437 
6438 /**
6439  * __napi_schedule_irqoff - schedule for receive
6440  * @n: entry to schedule
6441  *
6442  * Variant of __napi_schedule() assuming hard irqs are masked.
6443  *
6444  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6445  * because the interrupt disabled assumption might not be true
6446  * due to force-threaded interrupts and spinlock substitution.
6447  */
__napi_schedule_irqoff(struct napi_struct * n)6448 void __napi_schedule_irqoff(struct napi_struct *n)
6449 {
6450 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6451 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6452 	else
6453 		__napi_schedule(n);
6454 }
6455 EXPORT_SYMBOL(__napi_schedule_irqoff);
6456 
napi_complete_done(struct napi_struct * n,int work_done)6457 bool napi_complete_done(struct napi_struct *n, int work_done)
6458 {
6459 	unsigned long flags, val, new, timeout = 0;
6460 	bool ret = true;
6461 
6462 	/*
6463 	 * 1) Don't let napi dequeue from the cpu poll list
6464 	 *    just in case its running on a different cpu.
6465 	 * 2) If we are busy polling, do nothing here, we have
6466 	 *    the guarantee we will be called later.
6467 	 */
6468 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6469 				 NAPIF_STATE_IN_BUSY_POLL)))
6470 		return false;
6471 
6472 	if (work_done) {
6473 		if (n->gro.bitmask)
6474 			timeout = napi_get_gro_flush_timeout(n);
6475 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6476 	}
6477 	if (n->defer_hard_irqs_count > 0) {
6478 		n->defer_hard_irqs_count--;
6479 		timeout = napi_get_gro_flush_timeout(n);
6480 		if (timeout)
6481 			ret = false;
6482 	}
6483 
6484 	/*
6485 	 * When the NAPI instance uses a timeout and keeps postponing
6486 	 * it, we need to bound somehow the time packets are kept in
6487 	 * the GRO layer.
6488 	 */
6489 	gro_flush(&n->gro, !!timeout);
6490 	gro_normal_list(&n->gro);
6491 
6492 	if (unlikely(!list_empty(&n->poll_list))) {
6493 		/* If n->poll_list is not empty, we need to mask irqs */
6494 		local_irq_save(flags);
6495 		list_del_init(&n->poll_list);
6496 		local_irq_restore(flags);
6497 	}
6498 	WRITE_ONCE(n->list_owner, -1);
6499 
6500 	val = READ_ONCE(n->state);
6501 	do {
6502 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6503 
6504 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6505 			      NAPIF_STATE_SCHED_THREADED |
6506 			      NAPIF_STATE_PREFER_BUSY_POLL);
6507 
6508 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6509 		 * because we will call napi->poll() one more time.
6510 		 * This C code was suggested by Alexander Duyck to help gcc.
6511 		 */
6512 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6513 						    NAPIF_STATE_SCHED;
6514 	} while (!try_cmpxchg(&n->state, &val, new));
6515 
6516 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6517 		__napi_schedule(n);
6518 		return false;
6519 	}
6520 
6521 	if (timeout)
6522 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6523 			      HRTIMER_MODE_REL_PINNED);
6524 	return ret;
6525 }
6526 EXPORT_SYMBOL(napi_complete_done);
6527 
skb_defer_free_flush(struct softnet_data * sd)6528 static void skb_defer_free_flush(struct softnet_data *sd)
6529 {
6530 	struct sk_buff *skb, *next;
6531 
6532 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6533 	if (!READ_ONCE(sd->defer_list))
6534 		return;
6535 
6536 	spin_lock(&sd->defer_lock);
6537 	skb = sd->defer_list;
6538 	sd->defer_list = NULL;
6539 	sd->defer_count = 0;
6540 	spin_unlock(&sd->defer_lock);
6541 
6542 	while (skb != NULL) {
6543 		next = skb->next;
6544 		napi_consume_skb(skb, 1);
6545 		skb = next;
6546 	}
6547 }
6548 
6549 #if defined(CONFIG_NET_RX_BUSY_POLL)
6550 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6551 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6552 {
6553 	if (!skip_schedule) {
6554 		gro_normal_list(&napi->gro);
6555 		__napi_schedule(napi);
6556 		return;
6557 	}
6558 
6559 	/* Flush too old packets. If HZ < 1000, flush all packets */
6560 	gro_flush(&napi->gro, HZ >= 1000);
6561 	gro_normal_list(&napi->gro);
6562 
6563 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6564 }
6565 
6566 enum {
6567 	NAPI_F_PREFER_BUSY_POLL	= 1,
6568 	NAPI_F_END_ON_RESCHED	= 2,
6569 };
6570 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6571 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6572 			   unsigned flags, u16 budget)
6573 {
6574 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6575 	bool skip_schedule = false;
6576 	unsigned long timeout;
6577 	int rc;
6578 
6579 	/* Busy polling means there is a high chance device driver hard irq
6580 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6581 	 * set in napi_schedule_prep().
6582 	 * Since we are about to call napi->poll() once more, we can safely
6583 	 * clear NAPI_STATE_MISSED.
6584 	 *
6585 	 * Note: x86 could use a single "lock and ..." instruction
6586 	 * to perform these two clear_bit()
6587 	 */
6588 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6589 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6590 
6591 	local_bh_disable();
6592 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6593 
6594 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6595 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6596 		timeout = napi_get_gro_flush_timeout(napi);
6597 		if (napi->defer_hard_irqs_count && timeout) {
6598 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6599 			skip_schedule = true;
6600 		}
6601 	}
6602 
6603 	/* All we really want here is to re-enable device interrupts.
6604 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6605 	 */
6606 	rc = napi->poll(napi, budget);
6607 	/* We can't gro_normal_list() here, because napi->poll() might have
6608 	 * rearmed the napi (napi_complete_done()) in which case it could
6609 	 * already be running on another CPU.
6610 	 */
6611 	trace_napi_poll(napi, rc, budget);
6612 	netpoll_poll_unlock(have_poll_lock);
6613 	if (rc == budget)
6614 		__busy_poll_stop(napi, skip_schedule);
6615 	bpf_net_ctx_clear(bpf_net_ctx);
6616 	local_bh_enable();
6617 }
6618 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6619 static void __napi_busy_loop(unsigned int napi_id,
6620 		      bool (*loop_end)(void *, unsigned long),
6621 		      void *loop_end_arg, unsigned flags, u16 budget)
6622 {
6623 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6624 	int (*napi_poll)(struct napi_struct *napi, int budget);
6625 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6626 	void *have_poll_lock = NULL;
6627 	struct napi_struct *napi;
6628 
6629 	WARN_ON_ONCE(!rcu_read_lock_held());
6630 
6631 restart:
6632 	napi_poll = NULL;
6633 
6634 	napi = napi_by_id(napi_id);
6635 	if (!napi)
6636 		return;
6637 
6638 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6639 		preempt_disable();
6640 	for (;;) {
6641 		int work = 0;
6642 
6643 		local_bh_disable();
6644 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6645 		if (!napi_poll) {
6646 			unsigned long val = READ_ONCE(napi->state);
6647 
6648 			/* If multiple threads are competing for this napi,
6649 			 * we avoid dirtying napi->state as much as we can.
6650 			 */
6651 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6652 				   NAPIF_STATE_IN_BUSY_POLL)) {
6653 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6654 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6655 				goto count;
6656 			}
6657 			if (cmpxchg(&napi->state, val,
6658 				    val | NAPIF_STATE_IN_BUSY_POLL |
6659 					  NAPIF_STATE_SCHED) != val) {
6660 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6661 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6662 				goto count;
6663 			}
6664 			have_poll_lock = netpoll_poll_lock(napi);
6665 			napi_poll = napi->poll;
6666 		}
6667 		work = napi_poll(napi, budget);
6668 		trace_napi_poll(napi, work, budget);
6669 		gro_normal_list(&napi->gro);
6670 count:
6671 		if (work > 0)
6672 			__NET_ADD_STATS(dev_net(napi->dev),
6673 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6674 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6675 		bpf_net_ctx_clear(bpf_net_ctx);
6676 		local_bh_enable();
6677 
6678 		if (!loop_end || loop_end(loop_end_arg, start_time))
6679 			break;
6680 
6681 		if (unlikely(need_resched())) {
6682 			if (flags & NAPI_F_END_ON_RESCHED)
6683 				break;
6684 			if (napi_poll)
6685 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6686 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6687 				preempt_enable();
6688 			rcu_read_unlock();
6689 			cond_resched();
6690 			rcu_read_lock();
6691 			if (loop_end(loop_end_arg, start_time))
6692 				return;
6693 			goto restart;
6694 		}
6695 		cpu_relax();
6696 	}
6697 	if (napi_poll)
6698 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6699 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6700 		preempt_enable();
6701 }
6702 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6703 void napi_busy_loop_rcu(unsigned int napi_id,
6704 			bool (*loop_end)(void *, unsigned long),
6705 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6706 {
6707 	unsigned flags = NAPI_F_END_ON_RESCHED;
6708 
6709 	if (prefer_busy_poll)
6710 		flags |= NAPI_F_PREFER_BUSY_POLL;
6711 
6712 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6713 }
6714 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6715 void napi_busy_loop(unsigned int napi_id,
6716 		    bool (*loop_end)(void *, unsigned long),
6717 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6718 {
6719 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6720 
6721 	rcu_read_lock();
6722 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6723 	rcu_read_unlock();
6724 }
6725 EXPORT_SYMBOL(napi_busy_loop);
6726 
napi_suspend_irqs(unsigned int napi_id)6727 void napi_suspend_irqs(unsigned int napi_id)
6728 {
6729 	struct napi_struct *napi;
6730 
6731 	rcu_read_lock();
6732 	napi = napi_by_id(napi_id);
6733 	if (napi) {
6734 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6735 
6736 		if (timeout)
6737 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6738 				      HRTIMER_MODE_REL_PINNED);
6739 	}
6740 	rcu_read_unlock();
6741 }
6742 
napi_resume_irqs(unsigned int napi_id)6743 void napi_resume_irqs(unsigned int napi_id)
6744 {
6745 	struct napi_struct *napi;
6746 
6747 	rcu_read_lock();
6748 	napi = napi_by_id(napi_id);
6749 	if (napi) {
6750 		/* If irq_suspend_timeout is set to 0 between the call to
6751 		 * napi_suspend_irqs and now, the original value still
6752 		 * determines the safety timeout as intended and napi_watchdog
6753 		 * will resume irq processing.
6754 		 */
6755 		if (napi_get_irq_suspend_timeout(napi)) {
6756 			local_bh_disable();
6757 			napi_schedule(napi);
6758 			local_bh_enable();
6759 		}
6760 	}
6761 	rcu_read_unlock();
6762 }
6763 
6764 #endif /* CONFIG_NET_RX_BUSY_POLL */
6765 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6766 static void __napi_hash_add_with_id(struct napi_struct *napi,
6767 				    unsigned int napi_id)
6768 {
6769 	napi->gro.cached_napi_id = napi_id;
6770 
6771 	WRITE_ONCE(napi->napi_id, napi_id);
6772 	hlist_add_head_rcu(&napi->napi_hash_node,
6773 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6774 }
6775 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6776 static void napi_hash_add_with_id(struct napi_struct *napi,
6777 				  unsigned int napi_id)
6778 {
6779 	unsigned long flags;
6780 
6781 	spin_lock_irqsave(&napi_hash_lock, flags);
6782 	WARN_ON_ONCE(napi_by_id(napi_id));
6783 	__napi_hash_add_with_id(napi, napi_id);
6784 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6785 }
6786 
napi_hash_add(struct napi_struct * napi)6787 static void napi_hash_add(struct napi_struct *napi)
6788 {
6789 	unsigned long flags;
6790 
6791 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6792 		return;
6793 
6794 	spin_lock_irqsave(&napi_hash_lock, flags);
6795 
6796 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6797 	do {
6798 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6799 			napi_gen_id = MIN_NAPI_ID;
6800 	} while (napi_by_id(napi_gen_id));
6801 
6802 	__napi_hash_add_with_id(napi, napi_gen_id);
6803 
6804 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6805 }
6806 
6807 /* Warning : caller is responsible to make sure rcu grace period
6808  * is respected before freeing memory containing @napi
6809  */
napi_hash_del(struct napi_struct * napi)6810 static void napi_hash_del(struct napi_struct *napi)
6811 {
6812 	unsigned long flags;
6813 
6814 	spin_lock_irqsave(&napi_hash_lock, flags);
6815 
6816 	hlist_del_init_rcu(&napi->napi_hash_node);
6817 
6818 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6819 }
6820 
napi_watchdog(struct hrtimer * timer)6821 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6822 {
6823 	struct napi_struct *napi;
6824 
6825 	napi = container_of(timer, struct napi_struct, timer);
6826 
6827 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6828 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6829 	 */
6830 	if (!napi_disable_pending(napi) &&
6831 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6832 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6833 		__napi_schedule_irqoff(napi);
6834 	}
6835 
6836 	return HRTIMER_NORESTART;
6837 }
6838 
dev_set_threaded(struct net_device * dev,bool threaded)6839 int dev_set_threaded(struct net_device *dev, bool threaded)
6840 {
6841 	struct napi_struct *napi;
6842 	int err = 0;
6843 
6844 	netdev_assert_locked_or_invisible(dev);
6845 
6846 	if (dev->threaded == threaded)
6847 		return 0;
6848 
6849 	if (threaded) {
6850 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6851 			if (!napi->thread) {
6852 				err = napi_kthread_create(napi);
6853 				if (err) {
6854 					threaded = false;
6855 					break;
6856 				}
6857 			}
6858 		}
6859 	}
6860 
6861 	WRITE_ONCE(dev->threaded, threaded);
6862 
6863 	/* Make sure kthread is created before THREADED bit
6864 	 * is set.
6865 	 */
6866 	smp_mb__before_atomic();
6867 
6868 	/* Setting/unsetting threaded mode on a napi might not immediately
6869 	 * take effect, if the current napi instance is actively being
6870 	 * polled. In this case, the switch between threaded mode and
6871 	 * softirq mode will happen in the next round of napi_schedule().
6872 	 * This should not cause hiccups/stalls to the live traffic.
6873 	 */
6874 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6875 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6876 
6877 	return err;
6878 }
6879 EXPORT_SYMBOL(dev_set_threaded);
6880 
6881 /**
6882  * netif_queue_set_napi - Associate queue with the napi
6883  * @dev: device to which NAPI and queue belong
6884  * @queue_index: Index of queue
6885  * @type: queue type as RX or TX
6886  * @napi: NAPI context, pass NULL to clear previously set NAPI
6887  *
6888  * Set queue with its corresponding napi context. This should be done after
6889  * registering the NAPI handler for the queue-vector and the queues have been
6890  * mapped to the corresponding interrupt vector.
6891  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6892 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6893 			  enum netdev_queue_type type, struct napi_struct *napi)
6894 {
6895 	struct netdev_rx_queue *rxq;
6896 	struct netdev_queue *txq;
6897 
6898 	if (WARN_ON_ONCE(napi && !napi->dev))
6899 		return;
6900 	netdev_ops_assert_locked_or_invisible(dev);
6901 
6902 	switch (type) {
6903 	case NETDEV_QUEUE_TYPE_RX:
6904 		rxq = __netif_get_rx_queue(dev, queue_index);
6905 		rxq->napi = napi;
6906 		return;
6907 	case NETDEV_QUEUE_TYPE_TX:
6908 		txq = netdev_get_tx_queue(dev, queue_index);
6909 		txq->napi = napi;
6910 		return;
6911 	default:
6912 		return;
6913 	}
6914 }
6915 EXPORT_SYMBOL(netif_queue_set_napi);
6916 
6917 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6918 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6919 		      const cpumask_t *mask)
6920 {
6921 	struct napi_struct *napi =
6922 		container_of(notify, struct napi_struct, notify);
6923 #ifdef CONFIG_RFS_ACCEL
6924 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6925 	int err;
6926 #endif
6927 
6928 	if (napi->config && napi->dev->irq_affinity_auto)
6929 		cpumask_copy(&napi->config->affinity_mask, mask);
6930 
6931 #ifdef CONFIG_RFS_ACCEL
6932 	if (napi->dev->rx_cpu_rmap_auto) {
6933 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6934 		if (err)
6935 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6936 				    err);
6937 	}
6938 #endif
6939 }
6940 
6941 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6942 static void netif_napi_affinity_release(struct kref *ref)
6943 {
6944 	struct napi_struct *napi =
6945 		container_of(ref, struct napi_struct, notify.kref);
6946 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6947 
6948 	netdev_assert_locked(napi->dev);
6949 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6950 				   &napi->state));
6951 
6952 	if (!napi->dev->rx_cpu_rmap_auto)
6953 		return;
6954 	rmap->obj[napi->napi_rmap_idx] = NULL;
6955 	napi->napi_rmap_idx = -1;
6956 	cpu_rmap_put(rmap);
6957 }
6958 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6959 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6960 {
6961 	if (dev->rx_cpu_rmap_auto)
6962 		return 0;
6963 
6964 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6965 	if (!dev->rx_cpu_rmap)
6966 		return -ENOMEM;
6967 
6968 	dev->rx_cpu_rmap_auto = true;
6969 	return 0;
6970 }
6971 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6972 
netif_del_cpu_rmap(struct net_device * dev)6973 static void netif_del_cpu_rmap(struct net_device *dev)
6974 {
6975 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6976 
6977 	if (!dev->rx_cpu_rmap_auto)
6978 		return;
6979 
6980 	/* Free the rmap */
6981 	cpu_rmap_put(rmap);
6982 	dev->rx_cpu_rmap = NULL;
6983 	dev->rx_cpu_rmap_auto = false;
6984 }
6985 
6986 #else
netif_napi_affinity_release(struct kref * ref)6987 static void netif_napi_affinity_release(struct kref *ref)
6988 {
6989 }
6990 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6991 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6992 {
6993 	return 0;
6994 }
6995 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6996 
netif_del_cpu_rmap(struct net_device * dev)6997 static void netif_del_cpu_rmap(struct net_device *dev)
6998 {
6999 }
7000 #endif
7001 
netif_set_affinity_auto(struct net_device * dev)7002 void netif_set_affinity_auto(struct net_device *dev)
7003 {
7004 	unsigned int i, maxqs, numa;
7005 
7006 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7007 	numa = dev_to_node(&dev->dev);
7008 
7009 	for (i = 0; i < maxqs; i++)
7010 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7011 				&dev->napi_config[i].affinity_mask);
7012 
7013 	dev->irq_affinity_auto = true;
7014 }
7015 EXPORT_SYMBOL(netif_set_affinity_auto);
7016 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7017 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7018 {
7019 	int rc;
7020 
7021 	netdev_assert_locked_or_invisible(napi->dev);
7022 
7023 	if (napi->irq == irq)
7024 		return;
7025 
7026 	/* Remove existing resources */
7027 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7028 		irq_set_affinity_notifier(napi->irq, NULL);
7029 
7030 	napi->irq = irq;
7031 	if (irq < 0 ||
7032 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7033 		return;
7034 
7035 	/* Abort for buggy drivers */
7036 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7037 		return;
7038 
7039 #ifdef CONFIG_RFS_ACCEL
7040 	if (napi->dev->rx_cpu_rmap_auto) {
7041 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7042 		if (rc < 0)
7043 			return;
7044 
7045 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7046 		napi->napi_rmap_idx = rc;
7047 	}
7048 #endif
7049 
7050 	/* Use core IRQ notifier */
7051 	napi->notify.notify = netif_napi_irq_notify;
7052 	napi->notify.release = netif_napi_affinity_release;
7053 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7054 	if (rc) {
7055 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7056 			    rc);
7057 		goto put_rmap;
7058 	}
7059 
7060 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7061 	return;
7062 
7063 put_rmap:
7064 #ifdef CONFIG_RFS_ACCEL
7065 	if (napi->dev->rx_cpu_rmap_auto) {
7066 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7067 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7068 		napi->napi_rmap_idx = -1;
7069 	}
7070 #endif
7071 	napi->notify.notify = NULL;
7072 	napi->notify.release = NULL;
7073 }
7074 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7075 
napi_restore_config(struct napi_struct * n)7076 static void napi_restore_config(struct napi_struct *n)
7077 {
7078 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7079 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7080 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7081 
7082 	if (n->dev->irq_affinity_auto &&
7083 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7084 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7085 
7086 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7087 	 * napi_hash_add to generate one for us.
7088 	 */
7089 	if (n->config->napi_id) {
7090 		napi_hash_add_with_id(n, n->config->napi_id);
7091 	} else {
7092 		napi_hash_add(n);
7093 		n->config->napi_id = n->napi_id;
7094 	}
7095 }
7096 
napi_save_config(struct napi_struct * n)7097 static void napi_save_config(struct napi_struct *n)
7098 {
7099 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7100 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7101 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7102 	napi_hash_del(n);
7103 }
7104 
7105 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7106  * inherit an existing ID try to insert it at the right position.
7107  */
7108 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7109 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7110 {
7111 	unsigned int new_id, pos_id;
7112 	struct list_head *higher;
7113 	struct napi_struct *pos;
7114 
7115 	new_id = UINT_MAX;
7116 	if (napi->config && napi->config->napi_id)
7117 		new_id = napi->config->napi_id;
7118 
7119 	higher = &dev->napi_list;
7120 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7121 		if (napi_id_valid(pos->napi_id))
7122 			pos_id = pos->napi_id;
7123 		else if (pos->config)
7124 			pos_id = pos->config->napi_id;
7125 		else
7126 			pos_id = UINT_MAX;
7127 
7128 		if (pos_id <= new_id)
7129 			break;
7130 		higher = &pos->dev_list;
7131 	}
7132 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7133 }
7134 
7135 /* Double check that napi_get_frags() allocates skbs with
7136  * skb->head being backed by slab, not a page fragment.
7137  * This is to make sure bug fixed in 3226b158e67c
7138  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7139  * does not accidentally come back.
7140  */
napi_get_frags_check(struct napi_struct * napi)7141 static void napi_get_frags_check(struct napi_struct *napi)
7142 {
7143 	struct sk_buff *skb;
7144 
7145 	local_bh_disable();
7146 	skb = napi_get_frags(napi);
7147 	WARN_ON_ONCE(skb && skb->head_frag);
7148 	napi_free_frags(napi);
7149 	local_bh_enable();
7150 }
7151 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7152 void netif_napi_add_weight_locked(struct net_device *dev,
7153 				  struct napi_struct *napi,
7154 				  int (*poll)(struct napi_struct *, int),
7155 				  int weight)
7156 {
7157 	netdev_assert_locked(dev);
7158 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7159 		return;
7160 
7161 	INIT_LIST_HEAD(&napi->poll_list);
7162 	INIT_HLIST_NODE(&napi->napi_hash_node);
7163 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7164 	gro_init(&napi->gro);
7165 	napi->skb = NULL;
7166 	napi->poll = poll;
7167 	if (weight > NAPI_POLL_WEIGHT)
7168 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7169 				weight);
7170 	napi->weight = weight;
7171 	napi->dev = dev;
7172 #ifdef CONFIG_NETPOLL
7173 	napi->poll_owner = -1;
7174 #endif
7175 	napi->list_owner = -1;
7176 	set_bit(NAPI_STATE_SCHED, &napi->state);
7177 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7178 	netif_napi_dev_list_add(dev, napi);
7179 
7180 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7181 	 * configuration will be loaded in napi_enable
7182 	 */
7183 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7184 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7185 
7186 	napi_get_frags_check(napi);
7187 	/* Create kthread for this napi if dev->threaded is set.
7188 	 * Clear dev->threaded if kthread creation failed so that
7189 	 * threaded mode will not be enabled in napi_enable().
7190 	 */
7191 	if (dev->threaded && napi_kthread_create(napi))
7192 		dev->threaded = false;
7193 	netif_napi_set_irq_locked(napi, -1);
7194 }
7195 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7196 
napi_disable_locked(struct napi_struct * n)7197 void napi_disable_locked(struct napi_struct *n)
7198 {
7199 	unsigned long val, new;
7200 
7201 	might_sleep();
7202 	netdev_assert_locked(n->dev);
7203 
7204 	set_bit(NAPI_STATE_DISABLE, &n->state);
7205 
7206 	val = READ_ONCE(n->state);
7207 	do {
7208 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7209 			usleep_range(20, 200);
7210 			val = READ_ONCE(n->state);
7211 		}
7212 
7213 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7214 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7215 	} while (!try_cmpxchg(&n->state, &val, new));
7216 
7217 	hrtimer_cancel(&n->timer);
7218 
7219 	if (n->config)
7220 		napi_save_config(n);
7221 	else
7222 		napi_hash_del(n);
7223 
7224 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7225 }
7226 EXPORT_SYMBOL(napi_disable_locked);
7227 
7228 /**
7229  * napi_disable() - prevent NAPI from scheduling
7230  * @n: NAPI context
7231  *
7232  * Stop NAPI from being scheduled on this context.
7233  * Waits till any outstanding processing completes.
7234  * Takes netdev_lock() for associated net_device.
7235  */
napi_disable(struct napi_struct * n)7236 void napi_disable(struct napi_struct *n)
7237 {
7238 	netdev_lock(n->dev);
7239 	napi_disable_locked(n);
7240 	netdev_unlock(n->dev);
7241 }
7242 EXPORT_SYMBOL(napi_disable);
7243 
napi_enable_locked(struct napi_struct * n)7244 void napi_enable_locked(struct napi_struct *n)
7245 {
7246 	unsigned long new, val = READ_ONCE(n->state);
7247 
7248 	if (n->config)
7249 		napi_restore_config(n);
7250 	else
7251 		napi_hash_add(n);
7252 
7253 	do {
7254 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7255 
7256 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7257 		if (n->dev->threaded && n->thread)
7258 			new |= NAPIF_STATE_THREADED;
7259 	} while (!try_cmpxchg(&n->state, &val, new));
7260 }
7261 EXPORT_SYMBOL(napi_enable_locked);
7262 
7263 /**
7264  * napi_enable() - enable NAPI scheduling
7265  * @n: NAPI context
7266  *
7267  * Enable scheduling of a NAPI instance.
7268  * Must be paired with napi_disable().
7269  * Takes netdev_lock() for associated net_device.
7270  */
napi_enable(struct napi_struct * n)7271 void napi_enable(struct napi_struct *n)
7272 {
7273 	netdev_lock(n->dev);
7274 	napi_enable_locked(n);
7275 	netdev_unlock(n->dev);
7276 }
7277 EXPORT_SYMBOL(napi_enable);
7278 
7279 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7280 void __netif_napi_del_locked(struct napi_struct *napi)
7281 {
7282 	netdev_assert_locked(napi->dev);
7283 
7284 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7285 		return;
7286 
7287 	/* Make sure NAPI is disabled (or was never enabled). */
7288 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7289 
7290 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7291 		irq_set_affinity_notifier(napi->irq, NULL);
7292 
7293 	if (napi->config) {
7294 		napi->index = -1;
7295 		napi->config = NULL;
7296 	}
7297 
7298 	list_del_rcu(&napi->dev_list);
7299 	napi_free_frags(napi);
7300 
7301 	gro_cleanup(&napi->gro);
7302 
7303 	if (napi->thread) {
7304 		kthread_stop(napi->thread);
7305 		napi->thread = NULL;
7306 	}
7307 }
7308 EXPORT_SYMBOL(__netif_napi_del_locked);
7309 
__napi_poll(struct napi_struct * n,bool * repoll)7310 static int __napi_poll(struct napi_struct *n, bool *repoll)
7311 {
7312 	int work, weight;
7313 
7314 	weight = n->weight;
7315 
7316 	/* This NAPI_STATE_SCHED test is for avoiding a race
7317 	 * with netpoll's poll_napi().  Only the entity which
7318 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7319 	 * actually make the ->poll() call.  Therefore we avoid
7320 	 * accidentally calling ->poll() when NAPI is not scheduled.
7321 	 */
7322 	work = 0;
7323 	if (napi_is_scheduled(n)) {
7324 		work = n->poll(n, weight);
7325 		trace_napi_poll(n, work, weight);
7326 
7327 		xdp_do_check_flushed(n);
7328 	}
7329 
7330 	if (unlikely(work > weight))
7331 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7332 				n->poll, work, weight);
7333 
7334 	if (likely(work < weight))
7335 		return work;
7336 
7337 	/* Drivers must not modify the NAPI state if they
7338 	 * consume the entire weight.  In such cases this code
7339 	 * still "owns" the NAPI instance and therefore can
7340 	 * move the instance around on the list at-will.
7341 	 */
7342 	if (unlikely(napi_disable_pending(n))) {
7343 		napi_complete(n);
7344 		return work;
7345 	}
7346 
7347 	/* The NAPI context has more processing work, but busy-polling
7348 	 * is preferred. Exit early.
7349 	 */
7350 	if (napi_prefer_busy_poll(n)) {
7351 		if (napi_complete_done(n, work)) {
7352 			/* If timeout is not set, we need to make sure
7353 			 * that the NAPI is re-scheduled.
7354 			 */
7355 			napi_schedule(n);
7356 		}
7357 		return work;
7358 	}
7359 
7360 	/* Flush too old packets. If HZ < 1000, flush all packets */
7361 	gro_flush(&n->gro, HZ >= 1000);
7362 	gro_normal_list(&n->gro);
7363 
7364 	/* Some drivers may have called napi_schedule
7365 	 * prior to exhausting their budget.
7366 	 */
7367 	if (unlikely(!list_empty(&n->poll_list))) {
7368 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7369 			     n->dev ? n->dev->name : "backlog");
7370 		return work;
7371 	}
7372 
7373 	*repoll = true;
7374 
7375 	return work;
7376 }
7377 
napi_poll(struct napi_struct * n,struct list_head * repoll)7378 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7379 {
7380 	bool do_repoll = false;
7381 	void *have;
7382 	int work;
7383 
7384 	list_del_init(&n->poll_list);
7385 
7386 	have = netpoll_poll_lock(n);
7387 
7388 	work = __napi_poll(n, &do_repoll);
7389 
7390 	if (do_repoll)
7391 		list_add_tail(&n->poll_list, repoll);
7392 
7393 	netpoll_poll_unlock(have);
7394 
7395 	return work;
7396 }
7397 
napi_thread_wait(struct napi_struct * napi)7398 static int napi_thread_wait(struct napi_struct *napi)
7399 {
7400 	set_current_state(TASK_INTERRUPTIBLE);
7401 
7402 	while (!kthread_should_stop()) {
7403 		/* Testing SCHED_THREADED bit here to make sure the current
7404 		 * kthread owns this napi and could poll on this napi.
7405 		 * Testing SCHED bit is not enough because SCHED bit might be
7406 		 * set by some other busy poll thread or by napi_disable().
7407 		 */
7408 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7409 			WARN_ON(!list_empty(&napi->poll_list));
7410 			__set_current_state(TASK_RUNNING);
7411 			return 0;
7412 		}
7413 
7414 		schedule();
7415 		set_current_state(TASK_INTERRUPTIBLE);
7416 	}
7417 	__set_current_state(TASK_RUNNING);
7418 
7419 	return -1;
7420 }
7421 
napi_threaded_poll_loop(struct napi_struct * napi)7422 static void napi_threaded_poll_loop(struct napi_struct *napi)
7423 {
7424 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7425 	struct softnet_data *sd;
7426 	unsigned long last_qs = jiffies;
7427 
7428 	for (;;) {
7429 		bool repoll = false;
7430 		void *have;
7431 
7432 		local_bh_disable();
7433 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7434 
7435 		sd = this_cpu_ptr(&softnet_data);
7436 		sd->in_napi_threaded_poll = true;
7437 
7438 		have = netpoll_poll_lock(napi);
7439 		__napi_poll(napi, &repoll);
7440 		netpoll_poll_unlock(have);
7441 
7442 		sd->in_napi_threaded_poll = false;
7443 		barrier();
7444 
7445 		if (sd_has_rps_ipi_waiting(sd)) {
7446 			local_irq_disable();
7447 			net_rps_action_and_irq_enable(sd);
7448 		}
7449 		skb_defer_free_flush(sd);
7450 		bpf_net_ctx_clear(bpf_net_ctx);
7451 		local_bh_enable();
7452 
7453 		if (!repoll)
7454 			break;
7455 
7456 		rcu_softirq_qs_periodic(last_qs);
7457 		cond_resched();
7458 	}
7459 }
7460 
napi_threaded_poll(void * data)7461 static int napi_threaded_poll(void *data)
7462 {
7463 	struct napi_struct *napi = data;
7464 
7465 	while (!napi_thread_wait(napi))
7466 		napi_threaded_poll_loop(napi);
7467 
7468 	return 0;
7469 }
7470 
net_rx_action(void)7471 static __latent_entropy void net_rx_action(void)
7472 {
7473 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7474 	unsigned long time_limit = jiffies +
7475 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7476 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7477 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7478 	LIST_HEAD(list);
7479 	LIST_HEAD(repoll);
7480 
7481 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7482 start:
7483 	sd->in_net_rx_action = true;
7484 	local_irq_disable();
7485 	list_splice_init(&sd->poll_list, &list);
7486 	local_irq_enable();
7487 
7488 	for (;;) {
7489 		struct napi_struct *n;
7490 
7491 		skb_defer_free_flush(sd);
7492 
7493 		if (list_empty(&list)) {
7494 			if (list_empty(&repoll)) {
7495 				sd->in_net_rx_action = false;
7496 				barrier();
7497 				/* We need to check if ____napi_schedule()
7498 				 * had refilled poll_list while
7499 				 * sd->in_net_rx_action was true.
7500 				 */
7501 				if (!list_empty(&sd->poll_list))
7502 					goto start;
7503 				if (!sd_has_rps_ipi_waiting(sd))
7504 					goto end;
7505 			}
7506 			break;
7507 		}
7508 
7509 		n = list_first_entry(&list, struct napi_struct, poll_list);
7510 		budget -= napi_poll(n, &repoll);
7511 
7512 		/* If softirq window is exhausted then punt.
7513 		 * Allow this to run for 2 jiffies since which will allow
7514 		 * an average latency of 1.5/HZ.
7515 		 */
7516 		if (unlikely(budget <= 0 ||
7517 			     time_after_eq(jiffies, time_limit))) {
7518 			sd->time_squeeze++;
7519 			break;
7520 		}
7521 	}
7522 
7523 	local_irq_disable();
7524 
7525 	list_splice_tail_init(&sd->poll_list, &list);
7526 	list_splice_tail(&repoll, &list);
7527 	list_splice(&list, &sd->poll_list);
7528 	if (!list_empty(&sd->poll_list))
7529 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7530 	else
7531 		sd->in_net_rx_action = false;
7532 
7533 	net_rps_action_and_irq_enable(sd);
7534 end:
7535 	bpf_net_ctx_clear(bpf_net_ctx);
7536 }
7537 
7538 struct netdev_adjacent {
7539 	struct net_device *dev;
7540 	netdevice_tracker dev_tracker;
7541 
7542 	/* upper master flag, there can only be one master device per list */
7543 	bool master;
7544 
7545 	/* lookup ignore flag */
7546 	bool ignore;
7547 
7548 	/* counter for the number of times this device was added to us */
7549 	u16 ref_nr;
7550 
7551 	/* private field for the users */
7552 	void *private;
7553 
7554 	struct list_head list;
7555 	struct rcu_head rcu;
7556 };
7557 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7558 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7559 						 struct list_head *adj_list)
7560 {
7561 	struct netdev_adjacent *adj;
7562 
7563 	list_for_each_entry(adj, adj_list, list) {
7564 		if (adj->dev == adj_dev)
7565 			return adj;
7566 	}
7567 	return NULL;
7568 }
7569 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7570 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7571 				    struct netdev_nested_priv *priv)
7572 {
7573 	struct net_device *dev = (struct net_device *)priv->data;
7574 
7575 	return upper_dev == dev;
7576 }
7577 
7578 /**
7579  * netdev_has_upper_dev - Check if device is linked to an upper device
7580  * @dev: device
7581  * @upper_dev: upper device to check
7582  *
7583  * Find out if a device is linked to specified upper device and return true
7584  * in case it is. Note that this checks only immediate upper device,
7585  * not through a complete stack of devices. The caller must hold the RTNL lock.
7586  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7587 bool netdev_has_upper_dev(struct net_device *dev,
7588 			  struct net_device *upper_dev)
7589 {
7590 	struct netdev_nested_priv priv = {
7591 		.data = (void *)upper_dev,
7592 	};
7593 
7594 	ASSERT_RTNL();
7595 
7596 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7597 					     &priv);
7598 }
7599 EXPORT_SYMBOL(netdev_has_upper_dev);
7600 
7601 /**
7602  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7603  * @dev: device
7604  * @upper_dev: upper device to check
7605  *
7606  * Find out if a device is linked to specified upper device and return true
7607  * in case it is. Note that this checks the entire upper device chain.
7608  * The caller must hold rcu lock.
7609  */
7610 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7611 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7612 				  struct net_device *upper_dev)
7613 {
7614 	struct netdev_nested_priv priv = {
7615 		.data = (void *)upper_dev,
7616 	};
7617 
7618 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7619 					       &priv);
7620 }
7621 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7622 
7623 /**
7624  * netdev_has_any_upper_dev - Check if device is linked to some device
7625  * @dev: device
7626  *
7627  * Find out if a device is linked to an upper device and return true in case
7628  * it is. The caller must hold the RTNL lock.
7629  */
netdev_has_any_upper_dev(struct net_device * dev)7630 bool netdev_has_any_upper_dev(struct net_device *dev)
7631 {
7632 	ASSERT_RTNL();
7633 
7634 	return !list_empty(&dev->adj_list.upper);
7635 }
7636 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7637 
7638 /**
7639  * netdev_master_upper_dev_get - Get master upper device
7640  * @dev: device
7641  *
7642  * Find a master upper device and return pointer to it or NULL in case
7643  * it's not there. The caller must hold the RTNL lock.
7644  */
netdev_master_upper_dev_get(struct net_device * dev)7645 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7646 {
7647 	struct netdev_adjacent *upper;
7648 
7649 	ASSERT_RTNL();
7650 
7651 	if (list_empty(&dev->adj_list.upper))
7652 		return NULL;
7653 
7654 	upper = list_first_entry(&dev->adj_list.upper,
7655 				 struct netdev_adjacent, list);
7656 	if (likely(upper->master))
7657 		return upper->dev;
7658 	return NULL;
7659 }
7660 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7661 
__netdev_master_upper_dev_get(struct net_device * dev)7662 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7663 {
7664 	struct netdev_adjacent *upper;
7665 
7666 	ASSERT_RTNL();
7667 
7668 	if (list_empty(&dev->adj_list.upper))
7669 		return NULL;
7670 
7671 	upper = list_first_entry(&dev->adj_list.upper,
7672 				 struct netdev_adjacent, list);
7673 	if (likely(upper->master) && !upper->ignore)
7674 		return upper->dev;
7675 	return NULL;
7676 }
7677 
7678 /**
7679  * netdev_has_any_lower_dev - Check if device is linked to some device
7680  * @dev: device
7681  *
7682  * Find out if a device is linked to a lower device and return true in case
7683  * it is. The caller must hold the RTNL lock.
7684  */
netdev_has_any_lower_dev(struct net_device * dev)7685 static bool netdev_has_any_lower_dev(struct net_device *dev)
7686 {
7687 	ASSERT_RTNL();
7688 
7689 	return !list_empty(&dev->adj_list.lower);
7690 }
7691 
netdev_adjacent_get_private(struct list_head * adj_list)7692 void *netdev_adjacent_get_private(struct list_head *adj_list)
7693 {
7694 	struct netdev_adjacent *adj;
7695 
7696 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7697 
7698 	return adj->private;
7699 }
7700 EXPORT_SYMBOL(netdev_adjacent_get_private);
7701 
7702 /**
7703  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7704  * @dev: device
7705  * @iter: list_head ** of the current position
7706  *
7707  * Gets the next device from the dev's upper list, starting from iter
7708  * position. The caller must hold RCU read lock.
7709  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7710 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7711 						 struct list_head **iter)
7712 {
7713 	struct netdev_adjacent *upper;
7714 
7715 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7716 
7717 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7718 
7719 	if (&upper->list == &dev->adj_list.upper)
7720 		return NULL;
7721 
7722 	*iter = &upper->list;
7723 
7724 	return upper->dev;
7725 }
7726 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7727 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7728 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7729 						  struct list_head **iter,
7730 						  bool *ignore)
7731 {
7732 	struct netdev_adjacent *upper;
7733 
7734 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7735 
7736 	if (&upper->list == &dev->adj_list.upper)
7737 		return NULL;
7738 
7739 	*iter = &upper->list;
7740 	*ignore = upper->ignore;
7741 
7742 	return upper->dev;
7743 }
7744 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7745 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7746 						    struct list_head **iter)
7747 {
7748 	struct netdev_adjacent *upper;
7749 
7750 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7751 
7752 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7753 
7754 	if (&upper->list == &dev->adj_list.upper)
7755 		return NULL;
7756 
7757 	*iter = &upper->list;
7758 
7759 	return upper->dev;
7760 }
7761 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7762 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7763 				       int (*fn)(struct net_device *dev,
7764 					 struct netdev_nested_priv *priv),
7765 				       struct netdev_nested_priv *priv)
7766 {
7767 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7768 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7769 	int ret, cur = 0;
7770 	bool ignore;
7771 
7772 	now = dev;
7773 	iter = &dev->adj_list.upper;
7774 
7775 	while (1) {
7776 		if (now != dev) {
7777 			ret = fn(now, priv);
7778 			if (ret)
7779 				return ret;
7780 		}
7781 
7782 		next = NULL;
7783 		while (1) {
7784 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7785 			if (!udev)
7786 				break;
7787 			if (ignore)
7788 				continue;
7789 
7790 			next = udev;
7791 			niter = &udev->adj_list.upper;
7792 			dev_stack[cur] = now;
7793 			iter_stack[cur++] = iter;
7794 			break;
7795 		}
7796 
7797 		if (!next) {
7798 			if (!cur)
7799 				return 0;
7800 			next = dev_stack[--cur];
7801 			niter = iter_stack[cur];
7802 		}
7803 
7804 		now = next;
7805 		iter = niter;
7806 	}
7807 
7808 	return 0;
7809 }
7810 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7811 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7812 				  int (*fn)(struct net_device *dev,
7813 					    struct netdev_nested_priv *priv),
7814 				  struct netdev_nested_priv *priv)
7815 {
7816 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7817 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7818 	int ret, cur = 0;
7819 
7820 	now = dev;
7821 	iter = &dev->adj_list.upper;
7822 
7823 	while (1) {
7824 		if (now != dev) {
7825 			ret = fn(now, priv);
7826 			if (ret)
7827 				return ret;
7828 		}
7829 
7830 		next = NULL;
7831 		while (1) {
7832 			udev = netdev_next_upper_dev_rcu(now, &iter);
7833 			if (!udev)
7834 				break;
7835 
7836 			next = udev;
7837 			niter = &udev->adj_list.upper;
7838 			dev_stack[cur] = now;
7839 			iter_stack[cur++] = iter;
7840 			break;
7841 		}
7842 
7843 		if (!next) {
7844 			if (!cur)
7845 				return 0;
7846 			next = dev_stack[--cur];
7847 			niter = iter_stack[cur];
7848 		}
7849 
7850 		now = next;
7851 		iter = niter;
7852 	}
7853 
7854 	return 0;
7855 }
7856 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7857 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7858 static bool __netdev_has_upper_dev(struct net_device *dev,
7859 				   struct net_device *upper_dev)
7860 {
7861 	struct netdev_nested_priv priv = {
7862 		.flags = 0,
7863 		.data = (void *)upper_dev,
7864 	};
7865 
7866 	ASSERT_RTNL();
7867 
7868 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7869 					   &priv);
7870 }
7871 
7872 /**
7873  * netdev_lower_get_next_private - Get the next ->private from the
7874  *				   lower neighbour list
7875  * @dev: device
7876  * @iter: list_head ** of the current position
7877  *
7878  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7879  * list, starting from iter position. The caller must hold either hold the
7880  * RTNL lock or its own locking that guarantees that the neighbour lower
7881  * list will remain unchanged.
7882  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7883 void *netdev_lower_get_next_private(struct net_device *dev,
7884 				    struct list_head **iter)
7885 {
7886 	struct netdev_adjacent *lower;
7887 
7888 	lower = list_entry(*iter, struct netdev_adjacent, list);
7889 
7890 	if (&lower->list == &dev->adj_list.lower)
7891 		return NULL;
7892 
7893 	*iter = lower->list.next;
7894 
7895 	return lower->private;
7896 }
7897 EXPORT_SYMBOL(netdev_lower_get_next_private);
7898 
7899 /**
7900  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7901  *				       lower neighbour list, RCU
7902  *				       variant
7903  * @dev: device
7904  * @iter: list_head ** of the current position
7905  *
7906  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7907  * list, starting from iter position. The caller must hold RCU read lock.
7908  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7909 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7910 					struct list_head **iter)
7911 {
7912 	struct netdev_adjacent *lower;
7913 
7914 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7915 
7916 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7917 
7918 	if (&lower->list == &dev->adj_list.lower)
7919 		return NULL;
7920 
7921 	*iter = &lower->list;
7922 
7923 	return lower->private;
7924 }
7925 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7926 
7927 /**
7928  * netdev_lower_get_next - Get the next device from the lower neighbour
7929  *                         list
7930  * @dev: device
7931  * @iter: list_head ** of the current position
7932  *
7933  * Gets the next netdev_adjacent from the dev's lower neighbour
7934  * list, starting from iter position. The caller must hold RTNL lock or
7935  * its own locking that guarantees that the neighbour lower
7936  * list will remain unchanged.
7937  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7938 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7939 {
7940 	struct netdev_adjacent *lower;
7941 
7942 	lower = list_entry(*iter, struct netdev_adjacent, list);
7943 
7944 	if (&lower->list == &dev->adj_list.lower)
7945 		return NULL;
7946 
7947 	*iter = lower->list.next;
7948 
7949 	return lower->dev;
7950 }
7951 EXPORT_SYMBOL(netdev_lower_get_next);
7952 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7953 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7954 						struct list_head **iter)
7955 {
7956 	struct netdev_adjacent *lower;
7957 
7958 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7959 
7960 	if (&lower->list == &dev->adj_list.lower)
7961 		return NULL;
7962 
7963 	*iter = &lower->list;
7964 
7965 	return lower->dev;
7966 }
7967 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7968 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7969 						  struct list_head **iter,
7970 						  bool *ignore)
7971 {
7972 	struct netdev_adjacent *lower;
7973 
7974 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7975 
7976 	if (&lower->list == &dev->adj_list.lower)
7977 		return NULL;
7978 
7979 	*iter = &lower->list;
7980 	*ignore = lower->ignore;
7981 
7982 	return lower->dev;
7983 }
7984 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7985 int netdev_walk_all_lower_dev(struct net_device *dev,
7986 			      int (*fn)(struct net_device *dev,
7987 					struct netdev_nested_priv *priv),
7988 			      struct netdev_nested_priv *priv)
7989 {
7990 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7991 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7992 	int ret, cur = 0;
7993 
7994 	now = dev;
7995 	iter = &dev->adj_list.lower;
7996 
7997 	while (1) {
7998 		if (now != dev) {
7999 			ret = fn(now, priv);
8000 			if (ret)
8001 				return ret;
8002 		}
8003 
8004 		next = NULL;
8005 		while (1) {
8006 			ldev = netdev_next_lower_dev(now, &iter);
8007 			if (!ldev)
8008 				break;
8009 
8010 			next = ldev;
8011 			niter = &ldev->adj_list.lower;
8012 			dev_stack[cur] = now;
8013 			iter_stack[cur++] = iter;
8014 			break;
8015 		}
8016 
8017 		if (!next) {
8018 			if (!cur)
8019 				return 0;
8020 			next = dev_stack[--cur];
8021 			niter = iter_stack[cur];
8022 		}
8023 
8024 		now = next;
8025 		iter = niter;
8026 	}
8027 
8028 	return 0;
8029 }
8030 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8031 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8032 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8033 				       int (*fn)(struct net_device *dev,
8034 					 struct netdev_nested_priv *priv),
8035 				       struct netdev_nested_priv *priv)
8036 {
8037 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8038 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8039 	int ret, cur = 0;
8040 	bool ignore;
8041 
8042 	now = dev;
8043 	iter = &dev->adj_list.lower;
8044 
8045 	while (1) {
8046 		if (now != dev) {
8047 			ret = fn(now, priv);
8048 			if (ret)
8049 				return ret;
8050 		}
8051 
8052 		next = NULL;
8053 		while (1) {
8054 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8055 			if (!ldev)
8056 				break;
8057 			if (ignore)
8058 				continue;
8059 
8060 			next = ldev;
8061 			niter = &ldev->adj_list.lower;
8062 			dev_stack[cur] = now;
8063 			iter_stack[cur++] = iter;
8064 			break;
8065 		}
8066 
8067 		if (!next) {
8068 			if (!cur)
8069 				return 0;
8070 			next = dev_stack[--cur];
8071 			niter = iter_stack[cur];
8072 		}
8073 
8074 		now = next;
8075 		iter = niter;
8076 	}
8077 
8078 	return 0;
8079 }
8080 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8081 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8082 					     struct list_head **iter)
8083 {
8084 	struct netdev_adjacent *lower;
8085 
8086 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8087 	if (&lower->list == &dev->adj_list.lower)
8088 		return NULL;
8089 
8090 	*iter = &lower->list;
8091 
8092 	return lower->dev;
8093 }
8094 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8095 
__netdev_upper_depth(struct net_device * dev)8096 static u8 __netdev_upper_depth(struct net_device *dev)
8097 {
8098 	struct net_device *udev;
8099 	struct list_head *iter;
8100 	u8 max_depth = 0;
8101 	bool ignore;
8102 
8103 	for (iter = &dev->adj_list.upper,
8104 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8105 	     udev;
8106 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8107 		if (ignore)
8108 			continue;
8109 		if (max_depth < udev->upper_level)
8110 			max_depth = udev->upper_level;
8111 	}
8112 
8113 	return max_depth;
8114 }
8115 
__netdev_lower_depth(struct net_device * dev)8116 static u8 __netdev_lower_depth(struct net_device *dev)
8117 {
8118 	struct net_device *ldev;
8119 	struct list_head *iter;
8120 	u8 max_depth = 0;
8121 	bool ignore;
8122 
8123 	for (iter = &dev->adj_list.lower,
8124 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8125 	     ldev;
8126 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8127 		if (ignore)
8128 			continue;
8129 		if (max_depth < ldev->lower_level)
8130 			max_depth = ldev->lower_level;
8131 	}
8132 
8133 	return max_depth;
8134 }
8135 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8136 static int __netdev_update_upper_level(struct net_device *dev,
8137 				       struct netdev_nested_priv *__unused)
8138 {
8139 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8140 	return 0;
8141 }
8142 
8143 #ifdef CONFIG_LOCKDEP
8144 static LIST_HEAD(net_unlink_list);
8145 
net_unlink_todo(struct net_device * dev)8146 static void net_unlink_todo(struct net_device *dev)
8147 {
8148 	if (list_empty(&dev->unlink_list))
8149 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8150 }
8151 #endif
8152 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8153 static int __netdev_update_lower_level(struct net_device *dev,
8154 				       struct netdev_nested_priv *priv)
8155 {
8156 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8157 
8158 #ifdef CONFIG_LOCKDEP
8159 	if (!priv)
8160 		return 0;
8161 
8162 	if (priv->flags & NESTED_SYNC_IMM)
8163 		dev->nested_level = dev->lower_level - 1;
8164 	if (priv->flags & NESTED_SYNC_TODO)
8165 		net_unlink_todo(dev);
8166 #endif
8167 	return 0;
8168 }
8169 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8170 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8171 				  int (*fn)(struct net_device *dev,
8172 					    struct netdev_nested_priv *priv),
8173 				  struct netdev_nested_priv *priv)
8174 {
8175 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8176 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8177 	int ret, cur = 0;
8178 
8179 	now = dev;
8180 	iter = &dev->adj_list.lower;
8181 
8182 	while (1) {
8183 		if (now != dev) {
8184 			ret = fn(now, priv);
8185 			if (ret)
8186 				return ret;
8187 		}
8188 
8189 		next = NULL;
8190 		while (1) {
8191 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8192 			if (!ldev)
8193 				break;
8194 
8195 			next = ldev;
8196 			niter = &ldev->adj_list.lower;
8197 			dev_stack[cur] = now;
8198 			iter_stack[cur++] = iter;
8199 			break;
8200 		}
8201 
8202 		if (!next) {
8203 			if (!cur)
8204 				return 0;
8205 			next = dev_stack[--cur];
8206 			niter = iter_stack[cur];
8207 		}
8208 
8209 		now = next;
8210 		iter = niter;
8211 	}
8212 
8213 	return 0;
8214 }
8215 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8216 
8217 /**
8218  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8219  *				       lower neighbour list, RCU
8220  *				       variant
8221  * @dev: device
8222  *
8223  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8224  * list. The caller must hold RCU read lock.
8225  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8226 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8227 {
8228 	struct netdev_adjacent *lower;
8229 
8230 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8231 			struct netdev_adjacent, list);
8232 	if (lower)
8233 		return lower->private;
8234 	return NULL;
8235 }
8236 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8237 
8238 /**
8239  * netdev_master_upper_dev_get_rcu - Get master upper device
8240  * @dev: device
8241  *
8242  * Find a master upper device and return pointer to it or NULL in case
8243  * it's not there. The caller must hold the RCU read lock.
8244  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8245 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8246 {
8247 	struct netdev_adjacent *upper;
8248 
8249 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8250 				       struct netdev_adjacent, list);
8251 	if (upper && likely(upper->master))
8252 		return upper->dev;
8253 	return NULL;
8254 }
8255 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8256 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8257 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8258 			      struct net_device *adj_dev,
8259 			      struct list_head *dev_list)
8260 {
8261 	char linkname[IFNAMSIZ+7];
8262 
8263 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8264 		"upper_%s" : "lower_%s", adj_dev->name);
8265 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8266 				 linkname);
8267 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8268 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8269 			       char *name,
8270 			       struct list_head *dev_list)
8271 {
8272 	char linkname[IFNAMSIZ+7];
8273 
8274 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8275 		"upper_%s" : "lower_%s", name);
8276 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8277 }
8278 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8279 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8280 						 struct net_device *adj_dev,
8281 						 struct list_head *dev_list)
8282 {
8283 	return (dev_list == &dev->adj_list.upper ||
8284 		dev_list == &dev->adj_list.lower) &&
8285 		net_eq(dev_net(dev), dev_net(adj_dev));
8286 }
8287 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8288 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8289 					struct net_device *adj_dev,
8290 					struct list_head *dev_list,
8291 					void *private, bool master)
8292 {
8293 	struct netdev_adjacent *adj;
8294 	int ret;
8295 
8296 	adj = __netdev_find_adj(adj_dev, dev_list);
8297 
8298 	if (adj) {
8299 		adj->ref_nr += 1;
8300 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8301 			 dev->name, adj_dev->name, adj->ref_nr);
8302 
8303 		return 0;
8304 	}
8305 
8306 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8307 	if (!adj)
8308 		return -ENOMEM;
8309 
8310 	adj->dev = adj_dev;
8311 	adj->master = master;
8312 	adj->ref_nr = 1;
8313 	adj->private = private;
8314 	adj->ignore = false;
8315 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8316 
8317 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8318 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8319 
8320 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8321 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8322 		if (ret)
8323 			goto free_adj;
8324 	}
8325 
8326 	/* Ensure that master link is always the first item in list. */
8327 	if (master) {
8328 		ret = sysfs_create_link(&(dev->dev.kobj),
8329 					&(adj_dev->dev.kobj), "master");
8330 		if (ret)
8331 			goto remove_symlinks;
8332 
8333 		list_add_rcu(&adj->list, dev_list);
8334 	} else {
8335 		list_add_tail_rcu(&adj->list, dev_list);
8336 	}
8337 
8338 	return 0;
8339 
8340 remove_symlinks:
8341 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8342 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8343 free_adj:
8344 	netdev_put(adj_dev, &adj->dev_tracker);
8345 	kfree(adj);
8346 
8347 	return ret;
8348 }
8349 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8350 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8351 					 struct net_device *adj_dev,
8352 					 u16 ref_nr,
8353 					 struct list_head *dev_list)
8354 {
8355 	struct netdev_adjacent *adj;
8356 
8357 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8358 		 dev->name, adj_dev->name, ref_nr);
8359 
8360 	adj = __netdev_find_adj(adj_dev, dev_list);
8361 
8362 	if (!adj) {
8363 		pr_err("Adjacency does not exist for device %s from %s\n",
8364 		       dev->name, adj_dev->name);
8365 		WARN_ON(1);
8366 		return;
8367 	}
8368 
8369 	if (adj->ref_nr > ref_nr) {
8370 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8371 			 dev->name, adj_dev->name, ref_nr,
8372 			 adj->ref_nr - ref_nr);
8373 		adj->ref_nr -= ref_nr;
8374 		return;
8375 	}
8376 
8377 	if (adj->master)
8378 		sysfs_remove_link(&(dev->dev.kobj), "master");
8379 
8380 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8381 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8382 
8383 	list_del_rcu(&adj->list);
8384 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8385 		 adj_dev->name, dev->name, adj_dev->name);
8386 	netdev_put(adj_dev, &adj->dev_tracker);
8387 	kfree_rcu(adj, rcu);
8388 }
8389 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8390 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8391 					    struct net_device *upper_dev,
8392 					    struct list_head *up_list,
8393 					    struct list_head *down_list,
8394 					    void *private, bool master)
8395 {
8396 	int ret;
8397 
8398 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8399 					   private, master);
8400 	if (ret)
8401 		return ret;
8402 
8403 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8404 					   private, false);
8405 	if (ret) {
8406 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8407 		return ret;
8408 	}
8409 
8410 	return 0;
8411 }
8412 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8413 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8414 					       struct net_device *upper_dev,
8415 					       u16 ref_nr,
8416 					       struct list_head *up_list,
8417 					       struct list_head *down_list)
8418 {
8419 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8420 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8421 }
8422 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8423 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8424 						struct net_device *upper_dev,
8425 						void *private, bool master)
8426 {
8427 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8428 						&dev->adj_list.upper,
8429 						&upper_dev->adj_list.lower,
8430 						private, master);
8431 }
8432 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8433 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8434 						   struct net_device *upper_dev)
8435 {
8436 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8437 					   &dev->adj_list.upper,
8438 					   &upper_dev->adj_list.lower);
8439 }
8440 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8441 static int __netdev_upper_dev_link(struct net_device *dev,
8442 				   struct net_device *upper_dev, bool master,
8443 				   void *upper_priv, void *upper_info,
8444 				   struct netdev_nested_priv *priv,
8445 				   struct netlink_ext_ack *extack)
8446 {
8447 	struct netdev_notifier_changeupper_info changeupper_info = {
8448 		.info = {
8449 			.dev = dev,
8450 			.extack = extack,
8451 		},
8452 		.upper_dev = upper_dev,
8453 		.master = master,
8454 		.linking = true,
8455 		.upper_info = upper_info,
8456 	};
8457 	struct net_device *master_dev;
8458 	int ret = 0;
8459 
8460 	ASSERT_RTNL();
8461 
8462 	if (dev == upper_dev)
8463 		return -EBUSY;
8464 
8465 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8466 	if (__netdev_has_upper_dev(upper_dev, dev))
8467 		return -EBUSY;
8468 
8469 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8470 		return -EMLINK;
8471 
8472 	if (!master) {
8473 		if (__netdev_has_upper_dev(dev, upper_dev))
8474 			return -EEXIST;
8475 	} else {
8476 		master_dev = __netdev_master_upper_dev_get(dev);
8477 		if (master_dev)
8478 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8479 	}
8480 
8481 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8482 					    &changeupper_info.info);
8483 	ret = notifier_to_errno(ret);
8484 	if (ret)
8485 		return ret;
8486 
8487 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8488 						   master);
8489 	if (ret)
8490 		return ret;
8491 
8492 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8493 					    &changeupper_info.info);
8494 	ret = notifier_to_errno(ret);
8495 	if (ret)
8496 		goto rollback;
8497 
8498 	__netdev_update_upper_level(dev, NULL);
8499 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8500 
8501 	__netdev_update_lower_level(upper_dev, priv);
8502 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8503 				    priv);
8504 
8505 	return 0;
8506 
8507 rollback:
8508 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8509 
8510 	return ret;
8511 }
8512 
8513 /**
8514  * netdev_upper_dev_link - Add a link to the upper device
8515  * @dev: device
8516  * @upper_dev: new upper device
8517  * @extack: netlink extended ack
8518  *
8519  * Adds a link to device which is upper to this one. The caller must hold
8520  * the RTNL lock. On a failure a negative errno code is returned.
8521  * On success the reference counts are adjusted and the function
8522  * returns zero.
8523  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8524 int netdev_upper_dev_link(struct net_device *dev,
8525 			  struct net_device *upper_dev,
8526 			  struct netlink_ext_ack *extack)
8527 {
8528 	struct netdev_nested_priv priv = {
8529 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8530 		.data = NULL,
8531 	};
8532 
8533 	return __netdev_upper_dev_link(dev, upper_dev, false,
8534 				       NULL, NULL, &priv, extack);
8535 }
8536 EXPORT_SYMBOL(netdev_upper_dev_link);
8537 
8538 /**
8539  * netdev_master_upper_dev_link - Add a master link to the upper device
8540  * @dev: device
8541  * @upper_dev: new upper device
8542  * @upper_priv: upper device private
8543  * @upper_info: upper info to be passed down via notifier
8544  * @extack: netlink extended ack
8545  *
8546  * Adds a link to device which is upper to this one. In this case, only
8547  * one master upper device can be linked, although other non-master devices
8548  * might be linked as well. The caller must hold the RTNL lock.
8549  * On a failure a negative errno code is returned. On success the reference
8550  * counts are adjusted and the function returns zero.
8551  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8552 int netdev_master_upper_dev_link(struct net_device *dev,
8553 				 struct net_device *upper_dev,
8554 				 void *upper_priv, void *upper_info,
8555 				 struct netlink_ext_ack *extack)
8556 {
8557 	struct netdev_nested_priv priv = {
8558 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8559 		.data = NULL,
8560 	};
8561 
8562 	return __netdev_upper_dev_link(dev, upper_dev, true,
8563 				       upper_priv, upper_info, &priv, extack);
8564 }
8565 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8566 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8567 static void __netdev_upper_dev_unlink(struct net_device *dev,
8568 				      struct net_device *upper_dev,
8569 				      struct netdev_nested_priv *priv)
8570 {
8571 	struct netdev_notifier_changeupper_info changeupper_info = {
8572 		.info = {
8573 			.dev = dev,
8574 		},
8575 		.upper_dev = upper_dev,
8576 		.linking = false,
8577 	};
8578 
8579 	ASSERT_RTNL();
8580 
8581 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8582 
8583 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8584 				      &changeupper_info.info);
8585 
8586 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8587 
8588 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8589 				      &changeupper_info.info);
8590 
8591 	__netdev_update_upper_level(dev, NULL);
8592 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8593 
8594 	__netdev_update_lower_level(upper_dev, priv);
8595 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8596 				    priv);
8597 }
8598 
8599 /**
8600  * netdev_upper_dev_unlink - Removes a link to upper device
8601  * @dev: device
8602  * @upper_dev: new upper device
8603  *
8604  * Removes a link to device which is upper to this one. The caller must hold
8605  * the RTNL lock.
8606  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8607 void netdev_upper_dev_unlink(struct net_device *dev,
8608 			     struct net_device *upper_dev)
8609 {
8610 	struct netdev_nested_priv priv = {
8611 		.flags = NESTED_SYNC_TODO,
8612 		.data = NULL,
8613 	};
8614 
8615 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8616 }
8617 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8618 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8619 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8620 				      struct net_device *lower_dev,
8621 				      bool val)
8622 {
8623 	struct netdev_adjacent *adj;
8624 
8625 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8626 	if (adj)
8627 		adj->ignore = val;
8628 
8629 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8630 	if (adj)
8631 		adj->ignore = val;
8632 }
8633 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8634 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8635 					struct net_device *lower_dev)
8636 {
8637 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8638 }
8639 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8640 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8641 				       struct net_device *lower_dev)
8642 {
8643 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8644 }
8645 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8646 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8647 				   struct net_device *new_dev,
8648 				   struct net_device *dev,
8649 				   struct netlink_ext_ack *extack)
8650 {
8651 	struct netdev_nested_priv priv = {
8652 		.flags = 0,
8653 		.data = NULL,
8654 	};
8655 	int err;
8656 
8657 	if (!new_dev)
8658 		return 0;
8659 
8660 	if (old_dev && new_dev != old_dev)
8661 		netdev_adjacent_dev_disable(dev, old_dev);
8662 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8663 				      extack);
8664 	if (err) {
8665 		if (old_dev && new_dev != old_dev)
8666 			netdev_adjacent_dev_enable(dev, old_dev);
8667 		return err;
8668 	}
8669 
8670 	return 0;
8671 }
8672 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8673 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8674 void netdev_adjacent_change_commit(struct net_device *old_dev,
8675 				   struct net_device *new_dev,
8676 				   struct net_device *dev)
8677 {
8678 	struct netdev_nested_priv priv = {
8679 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8680 		.data = NULL,
8681 	};
8682 
8683 	if (!new_dev || !old_dev)
8684 		return;
8685 
8686 	if (new_dev == old_dev)
8687 		return;
8688 
8689 	netdev_adjacent_dev_enable(dev, old_dev);
8690 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8691 }
8692 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8693 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8694 void netdev_adjacent_change_abort(struct net_device *old_dev,
8695 				  struct net_device *new_dev,
8696 				  struct net_device *dev)
8697 {
8698 	struct netdev_nested_priv priv = {
8699 		.flags = 0,
8700 		.data = NULL,
8701 	};
8702 
8703 	if (!new_dev)
8704 		return;
8705 
8706 	if (old_dev && new_dev != old_dev)
8707 		netdev_adjacent_dev_enable(dev, old_dev);
8708 
8709 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8710 }
8711 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8712 
8713 /**
8714  * netdev_bonding_info_change - Dispatch event about slave change
8715  * @dev: device
8716  * @bonding_info: info to dispatch
8717  *
8718  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8719  * The caller must hold the RTNL lock.
8720  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8721 void netdev_bonding_info_change(struct net_device *dev,
8722 				struct netdev_bonding_info *bonding_info)
8723 {
8724 	struct netdev_notifier_bonding_info info = {
8725 		.info.dev = dev,
8726 	};
8727 
8728 	memcpy(&info.bonding_info, bonding_info,
8729 	       sizeof(struct netdev_bonding_info));
8730 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8731 				      &info.info);
8732 }
8733 EXPORT_SYMBOL(netdev_bonding_info_change);
8734 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8735 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8736 					   struct netlink_ext_ack *extack)
8737 {
8738 	struct netdev_notifier_offload_xstats_info info = {
8739 		.info.dev = dev,
8740 		.info.extack = extack,
8741 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8742 	};
8743 	int err;
8744 	int rc;
8745 
8746 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8747 					 GFP_KERNEL);
8748 	if (!dev->offload_xstats_l3)
8749 		return -ENOMEM;
8750 
8751 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8752 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8753 						  &info.info);
8754 	err = notifier_to_errno(rc);
8755 	if (err)
8756 		goto free_stats;
8757 
8758 	return 0;
8759 
8760 free_stats:
8761 	kfree(dev->offload_xstats_l3);
8762 	dev->offload_xstats_l3 = NULL;
8763 	return err;
8764 }
8765 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8766 int netdev_offload_xstats_enable(struct net_device *dev,
8767 				 enum netdev_offload_xstats_type type,
8768 				 struct netlink_ext_ack *extack)
8769 {
8770 	ASSERT_RTNL();
8771 
8772 	if (netdev_offload_xstats_enabled(dev, type))
8773 		return -EALREADY;
8774 
8775 	switch (type) {
8776 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8777 		return netdev_offload_xstats_enable_l3(dev, extack);
8778 	}
8779 
8780 	WARN_ON(1);
8781 	return -EINVAL;
8782 }
8783 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8784 
netdev_offload_xstats_disable_l3(struct net_device * dev)8785 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8786 {
8787 	struct netdev_notifier_offload_xstats_info info = {
8788 		.info.dev = dev,
8789 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8790 	};
8791 
8792 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8793 				      &info.info);
8794 	kfree(dev->offload_xstats_l3);
8795 	dev->offload_xstats_l3 = NULL;
8796 }
8797 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8798 int netdev_offload_xstats_disable(struct net_device *dev,
8799 				  enum netdev_offload_xstats_type type)
8800 {
8801 	ASSERT_RTNL();
8802 
8803 	if (!netdev_offload_xstats_enabled(dev, type))
8804 		return -EALREADY;
8805 
8806 	switch (type) {
8807 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8808 		netdev_offload_xstats_disable_l3(dev);
8809 		return 0;
8810 	}
8811 
8812 	WARN_ON(1);
8813 	return -EINVAL;
8814 }
8815 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8816 
netdev_offload_xstats_disable_all(struct net_device * dev)8817 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8818 {
8819 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8820 }
8821 
8822 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8823 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8824 			      enum netdev_offload_xstats_type type)
8825 {
8826 	switch (type) {
8827 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8828 		return dev->offload_xstats_l3;
8829 	}
8830 
8831 	WARN_ON(1);
8832 	return NULL;
8833 }
8834 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8835 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8836 				   enum netdev_offload_xstats_type type)
8837 {
8838 	ASSERT_RTNL();
8839 
8840 	return netdev_offload_xstats_get_ptr(dev, type);
8841 }
8842 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8843 
8844 struct netdev_notifier_offload_xstats_ru {
8845 	bool used;
8846 };
8847 
8848 struct netdev_notifier_offload_xstats_rd {
8849 	struct rtnl_hw_stats64 stats;
8850 	bool used;
8851 };
8852 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8853 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8854 				  const struct rtnl_hw_stats64 *src)
8855 {
8856 	dest->rx_packets	  += src->rx_packets;
8857 	dest->tx_packets	  += src->tx_packets;
8858 	dest->rx_bytes		  += src->rx_bytes;
8859 	dest->tx_bytes		  += src->tx_bytes;
8860 	dest->rx_errors		  += src->rx_errors;
8861 	dest->tx_errors		  += src->tx_errors;
8862 	dest->rx_dropped	  += src->rx_dropped;
8863 	dest->tx_dropped	  += src->tx_dropped;
8864 	dest->multicast		  += src->multicast;
8865 }
8866 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8867 static int netdev_offload_xstats_get_used(struct net_device *dev,
8868 					  enum netdev_offload_xstats_type type,
8869 					  bool *p_used,
8870 					  struct netlink_ext_ack *extack)
8871 {
8872 	struct netdev_notifier_offload_xstats_ru report_used = {};
8873 	struct netdev_notifier_offload_xstats_info info = {
8874 		.info.dev = dev,
8875 		.info.extack = extack,
8876 		.type = type,
8877 		.report_used = &report_used,
8878 	};
8879 	int rc;
8880 
8881 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8882 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8883 					   &info.info);
8884 	*p_used = report_used.used;
8885 	return notifier_to_errno(rc);
8886 }
8887 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8888 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8889 					   enum netdev_offload_xstats_type type,
8890 					   struct rtnl_hw_stats64 *p_stats,
8891 					   bool *p_used,
8892 					   struct netlink_ext_ack *extack)
8893 {
8894 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8895 	struct netdev_notifier_offload_xstats_info info = {
8896 		.info.dev = dev,
8897 		.info.extack = extack,
8898 		.type = type,
8899 		.report_delta = &report_delta,
8900 	};
8901 	struct rtnl_hw_stats64 *stats;
8902 	int rc;
8903 
8904 	stats = netdev_offload_xstats_get_ptr(dev, type);
8905 	if (WARN_ON(!stats))
8906 		return -EINVAL;
8907 
8908 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8909 					   &info.info);
8910 
8911 	/* Cache whatever we got, even if there was an error, otherwise the
8912 	 * successful stats retrievals would get lost.
8913 	 */
8914 	netdev_hw_stats64_add(stats, &report_delta.stats);
8915 
8916 	if (p_stats)
8917 		*p_stats = *stats;
8918 	*p_used = report_delta.used;
8919 
8920 	return notifier_to_errno(rc);
8921 }
8922 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8923 int netdev_offload_xstats_get(struct net_device *dev,
8924 			      enum netdev_offload_xstats_type type,
8925 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8926 			      struct netlink_ext_ack *extack)
8927 {
8928 	ASSERT_RTNL();
8929 
8930 	if (p_stats)
8931 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8932 						       p_used, extack);
8933 	else
8934 		return netdev_offload_xstats_get_used(dev, type, p_used,
8935 						      extack);
8936 }
8937 EXPORT_SYMBOL(netdev_offload_xstats_get);
8938 
8939 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8940 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8941 				   const struct rtnl_hw_stats64 *stats)
8942 {
8943 	report_delta->used = true;
8944 	netdev_hw_stats64_add(&report_delta->stats, stats);
8945 }
8946 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8947 
8948 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8949 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8950 {
8951 	report_used->used = true;
8952 }
8953 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8954 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8955 void netdev_offload_xstats_push_delta(struct net_device *dev,
8956 				      enum netdev_offload_xstats_type type,
8957 				      const struct rtnl_hw_stats64 *p_stats)
8958 {
8959 	struct rtnl_hw_stats64 *stats;
8960 
8961 	ASSERT_RTNL();
8962 
8963 	stats = netdev_offload_xstats_get_ptr(dev, type);
8964 	if (WARN_ON(!stats))
8965 		return;
8966 
8967 	netdev_hw_stats64_add(stats, p_stats);
8968 }
8969 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8970 
8971 /**
8972  * netdev_get_xmit_slave - Get the xmit slave of master device
8973  * @dev: device
8974  * @skb: The packet
8975  * @all_slaves: assume all the slaves are active
8976  *
8977  * The reference counters are not incremented so the caller must be
8978  * careful with locks. The caller must hold RCU lock.
8979  * %NULL is returned if no slave is found.
8980  */
8981 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8982 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8983 					 struct sk_buff *skb,
8984 					 bool all_slaves)
8985 {
8986 	const struct net_device_ops *ops = dev->netdev_ops;
8987 
8988 	if (!ops->ndo_get_xmit_slave)
8989 		return NULL;
8990 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8991 }
8992 EXPORT_SYMBOL(netdev_get_xmit_slave);
8993 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8994 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8995 						  struct sock *sk)
8996 {
8997 	const struct net_device_ops *ops = dev->netdev_ops;
8998 
8999 	if (!ops->ndo_sk_get_lower_dev)
9000 		return NULL;
9001 	return ops->ndo_sk_get_lower_dev(dev, sk);
9002 }
9003 
9004 /**
9005  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9006  * @dev: device
9007  * @sk: the socket
9008  *
9009  * %NULL is returned if no lower device is found.
9010  */
9011 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9012 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9013 					    struct sock *sk)
9014 {
9015 	struct net_device *lower;
9016 
9017 	lower = netdev_sk_get_lower_dev(dev, sk);
9018 	while (lower) {
9019 		dev = lower;
9020 		lower = netdev_sk_get_lower_dev(dev, sk);
9021 	}
9022 
9023 	return dev;
9024 }
9025 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9026 
netdev_adjacent_add_links(struct net_device * dev)9027 static void netdev_adjacent_add_links(struct net_device *dev)
9028 {
9029 	struct netdev_adjacent *iter;
9030 
9031 	struct net *net = dev_net(dev);
9032 
9033 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9034 		if (!net_eq(net, dev_net(iter->dev)))
9035 			continue;
9036 		netdev_adjacent_sysfs_add(iter->dev, dev,
9037 					  &iter->dev->adj_list.lower);
9038 		netdev_adjacent_sysfs_add(dev, iter->dev,
9039 					  &dev->adj_list.upper);
9040 	}
9041 
9042 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9043 		if (!net_eq(net, dev_net(iter->dev)))
9044 			continue;
9045 		netdev_adjacent_sysfs_add(iter->dev, dev,
9046 					  &iter->dev->adj_list.upper);
9047 		netdev_adjacent_sysfs_add(dev, iter->dev,
9048 					  &dev->adj_list.lower);
9049 	}
9050 }
9051 
netdev_adjacent_del_links(struct net_device * dev)9052 static void netdev_adjacent_del_links(struct net_device *dev)
9053 {
9054 	struct netdev_adjacent *iter;
9055 
9056 	struct net *net = dev_net(dev);
9057 
9058 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9059 		if (!net_eq(net, dev_net(iter->dev)))
9060 			continue;
9061 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9062 					  &iter->dev->adj_list.lower);
9063 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9064 					  &dev->adj_list.upper);
9065 	}
9066 
9067 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9068 		if (!net_eq(net, dev_net(iter->dev)))
9069 			continue;
9070 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9071 					  &iter->dev->adj_list.upper);
9072 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9073 					  &dev->adj_list.lower);
9074 	}
9075 }
9076 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9077 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9078 {
9079 	struct netdev_adjacent *iter;
9080 
9081 	struct net *net = dev_net(dev);
9082 
9083 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9084 		if (!net_eq(net, dev_net(iter->dev)))
9085 			continue;
9086 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9087 					  &iter->dev->adj_list.lower);
9088 		netdev_adjacent_sysfs_add(iter->dev, dev,
9089 					  &iter->dev->adj_list.lower);
9090 	}
9091 
9092 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9093 		if (!net_eq(net, dev_net(iter->dev)))
9094 			continue;
9095 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9096 					  &iter->dev->adj_list.upper);
9097 		netdev_adjacent_sysfs_add(iter->dev, dev,
9098 					  &iter->dev->adj_list.upper);
9099 	}
9100 }
9101 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9102 void *netdev_lower_dev_get_private(struct net_device *dev,
9103 				   struct net_device *lower_dev)
9104 {
9105 	struct netdev_adjacent *lower;
9106 
9107 	if (!lower_dev)
9108 		return NULL;
9109 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9110 	if (!lower)
9111 		return NULL;
9112 
9113 	return lower->private;
9114 }
9115 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9116 
9117 
9118 /**
9119  * netdev_lower_state_changed - Dispatch event about lower device state change
9120  * @lower_dev: device
9121  * @lower_state_info: state to dispatch
9122  *
9123  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9124  * The caller must hold the RTNL lock.
9125  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9126 void netdev_lower_state_changed(struct net_device *lower_dev,
9127 				void *lower_state_info)
9128 {
9129 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9130 		.info.dev = lower_dev,
9131 	};
9132 
9133 	ASSERT_RTNL();
9134 	changelowerstate_info.lower_state_info = lower_state_info;
9135 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9136 				      &changelowerstate_info.info);
9137 }
9138 EXPORT_SYMBOL(netdev_lower_state_changed);
9139 
dev_change_rx_flags(struct net_device * dev,int flags)9140 static void dev_change_rx_flags(struct net_device *dev, int flags)
9141 {
9142 	const struct net_device_ops *ops = dev->netdev_ops;
9143 
9144 	if (ops->ndo_change_rx_flags)
9145 		ops->ndo_change_rx_flags(dev, flags);
9146 }
9147 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9148 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9149 {
9150 	unsigned int old_flags = dev->flags;
9151 	unsigned int promiscuity, flags;
9152 	kuid_t uid;
9153 	kgid_t gid;
9154 
9155 	ASSERT_RTNL();
9156 
9157 	promiscuity = dev->promiscuity + inc;
9158 	if (promiscuity == 0) {
9159 		/*
9160 		 * Avoid overflow.
9161 		 * If inc causes overflow, untouch promisc and return error.
9162 		 */
9163 		if (unlikely(inc > 0)) {
9164 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9165 			return -EOVERFLOW;
9166 		}
9167 		flags = old_flags & ~IFF_PROMISC;
9168 	} else {
9169 		flags = old_flags | IFF_PROMISC;
9170 	}
9171 	WRITE_ONCE(dev->promiscuity, promiscuity);
9172 	if (flags != old_flags) {
9173 		WRITE_ONCE(dev->flags, flags);
9174 		netdev_info(dev, "%s promiscuous mode\n",
9175 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9176 		if (audit_enabled) {
9177 			current_uid_gid(&uid, &gid);
9178 			audit_log(audit_context(), GFP_ATOMIC,
9179 				  AUDIT_ANOM_PROMISCUOUS,
9180 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9181 				  dev->name, (dev->flags & IFF_PROMISC),
9182 				  (old_flags & IFF_PROMISC),
9183 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9184 				  from_kuid(&init_user_ns, uid),
9185 				  from_kgid(&init_user_ns, gid),
9186 				  audit_get_sessionid(current));
9187 		}
9188 
9189 		dev_change_rx_flags(dev, IFF_PROMISC);
9190 	}
9191 	if (notify)
9192 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9193 	return 0;
9194 }
9195 
9196 /**
9197  *	dev_set_promiscuity	- update promiscuity count on a device
9198  *	@dev: device
9199  *	@inc: modifier
9200  *
9201  *	Add or remove promiscuity from a device. While the count in the device
9202  *	remains above zero the interface remains promiscuous. Once it hits zero
9203  *	the device reverts back to normal filtering operation. A negative inc
9204  *	value is used to drop promiscuity on the device.
9205  *	Return 0 if successful or a negative errno code on error.
9206  */
dev_set_promiscuity(struct net_device * dev,int inc)9207 int dev_set_promiscuity(struct net_device *dev, int inc)
9208 {
9209 	unsigned int old_flags = dev->flags;
9210 	int err;
9211 
9212 	err = __dev_set_promiscuity(dev, inc, true);
9213 	if (err < 0)
9214 		return err;
9215 	if (dev->flags != old_flags)
9216 		dev_set_rx_mode(dev);
9217 	return err;
9218 }
9219 EXPORT_SYMBOL(dev_set_promiscuity);
9220 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9221 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9222 {
9223 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9224 	unsigned int allmulti, flags;
9225 
9226 	ASSERT_RTNL();
9227 
9228 	allmulti = dev->allmulti + inc;
9229 	if (allmulti == 0) {
9230 		/*
9231 		 * Avoid overflow.
9232 		 * If inc causes overflow, untouch allmulti and return error.
9233 		 */
9234 		if (unlikely(inc > 0)) {
9235 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9236 			return -EOVERFLOW;
9237 		}
9238 		flags = old_flags & ~IFF_ALLMULTI;
9239 	} else {
9240 		flags = old_flags | IFF_ALLMULTI;
9241 	}
9242 	WRITE_ONCE(dev->allmulti, allmulti);
9243 	if (flags != old_flags) {
9244 		WRITE_ONCE(dev->flags, flags);
9245 		netdev_info(dev, "%s allmulticast mode\n",
9246 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9247 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9248 		dev_set_rx_mode(dev);
9249 		if (notify)
9250 			__dev_notify_flags(dev, old_flags,
9251 					   dev->gflags ^ old_gflags, 0, NULL);
9252 	}
9253 	return 0;
9254 }
9255 
9256 /*
9257  *	Upload unicast and multicast address lists to device and
9258  *	configure RX filtering. When the device doesn't support unicast
9259  *	filtering it is put in promiscuous mode while unicast addresses
9260  *	are present.
9261  */
__dev_set_rx_mode(struct net_device * dev)9262 void __dev_set_rx_mode(struct net_device *dev)
9263 {
9264 	const struct net_device_ops *ops = dev->netdev_ops;
9265 
9266 	/* dev_open will call this function so the list will stay sane. */
9267 	if (!(dev->flags&IFF_UP))
9268 		return;
9269 
9270 	if (!netif_device_present(dev))
9271 		return;
9272 
9273 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9274 		/* Unicast addresses changes may only happen under the rtnl,
9275 		 * therefore calling __dev_set_promiscuity here is safe.
9276 		 */
9277 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9278 			__dev_set_promiscuity(dev, 1, false);
9279 			dev->uc_promisc = true;
9280 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9281 			__dev_set_promiscuity(dev, -1, false);
9282 			dev->uc_promisc = false;
9283 		}
9284 	}
9285 
9286 	if (ops->ndo_set_rx_mode)
9287 		ops->ndo_set_rx_mode(dev);
9288 }
9289 
dev_set_rx_mode(struct net_device * dev)9290 void dev_set_rx_mode(struct net_device *dev)
9291 {
9292 	netif_addr_lock_bh(dev);
9293 	__dev_set_rx_mode(dev);
9294 	netif_addr_unlock_bh(dev);
9295 }
9296 
9297 /**
9298  *	dev_get_flags - get flags reported to userspace
9299  *	@dev: device
9300  *
9301  *	Get the combination of flag bits exported through APIs to userspace.
9302  */
dev_get_flags(const struct net_device * dev)9303 unsigned int dev_get_flags(const struct net_device *dev)
9304 {
9305 	unsigned int flags;
9306 
9307 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9308 				IFF_ALLMULTI |
9309 				IFF_RUNNING |
9310 				IFF_LOWER_UP |
9311 				IFF_DORMANT)) |
9312 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9313 				IFF_ALLMULTI));
9314 
9315 	if (netif_running(dev)) {
9316 		if (netif_oper_up(dev))
9317 			flags |= IFF_RUNNING;
9318 		if (netif_carrier_ok(dev))
9319 			flags |= IFF_LOWER_UP;
9320 		if (netif_dormant(dev))
9321 			flags |= IFF_DORMANT;
9322 	}
9323 
9324 	return flags;
9325 }
9326 EXPORT_SYMBOL(dev_get_flags);
9327 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9328 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9329 		       struct netlink_ext_ack *extack)
9330 {
9331 	unsigned int old_flags = dev->flags;
9332 	int ret;
9333 
9334 	ASSERT_RTNL();
9335 
9336 	/*
9337 	 *	Set the flags on our device.
9338 	 */
9339 
9340 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9341 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9342 			       IFF_AUTOMEDIA)) |
9343 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9344 				    IFF_ALLMULTI));
9345 
9346 	/*
9347 	 *	Load in the correct multicast list now the flags have changed.
9348 	 */
9349 
9350 	if ((old_flags ^ flags) & IFF_MULTICAST)
9351 		dev_change_rx_flags(dev, IFF_MULTICAST);
9352 
9353 	dev_set_rx_mode(dev);
9354 
9355 	/*
9356 	 *	Have we downed the interface. We handle IFF_UP ourselves
9357 	 *	according to user attempts to set it, rather than blindly
9358 	 *	setting it.
9359 	 */
9360 
9361 	ret = 0;
9362 	if ((old_flags ^ flags) & IFF_UP) {
9363 		if (old_flags & IFF_UP)
9364 			__dev_close(dev);
9365 		else
9366 			ret = __dev_open(dev, extack);
9367 	}
9368 
9369 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9370 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9371 		old_flags = dev->flags;
9372 
9373 		dev->gflags ^= IFF_PROMISC;
9374 
9375 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9376 			if (dev->flags != old_flags)
9377 				dev_set_rx_mode(dev);
9378 	}
9379 
9380 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9381 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9382 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9383 	 */
9384 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9385 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9386 
9387 		dev->gflags ^= IFF_ALLMULTI;
9388 		netif_set_allmulti(dev, inc, false);
9389 	}
9390 
9391 	return ret;
9392 }
9393 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9394 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9395 			unsigned int gchanges, u32 portid,
9396 			const struct nlmsghdr *nlh)
9397 {
9398 	unsigned int changes = dev->flags ^ old_flags;
9399 
9400 	if (gchanges)
9401 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9402 
9403 	if (changes & IFF_UP) {
9404 		if (dev->flags & IFF_UP)
9405 			call_netdevice_notifiers(NETDEV_UP, dev);
9406 		else
9407 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9408 	}
9409 
9410 	if (dev->flags & IFF_UP &&
9411 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9412 		struct netdev_notifier_change_info change_info = {
9413 			.info = {
9414 				.dev = dev,
9415 			},
9416 			.flags_changed = changes,
9417 		};
9418 
9419 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9420 	}
9421 }
9422 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9423 int netif_change_flags(struct net_device *dev, unsigned int flags,
9424 		       struct netlink_ext_ack *extack)
9425 {
9426 	int ret;
9427 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9428 
9429 	ret = __dev_change_flags(dev, flags, extack);
9430 	if (ret < 0)
9431 		return ret;
9432 
9433 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9434 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9435 	return ret;
9436 }
9437 
__dev_set_mtu(struct net_device * dev,int new_mtu)9438 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9439 {
9440 	const struct net_device_ops *ops = dev->netdev_ops;
9441 
9442 	if (ops->ndo_change_mtu)
9443 		return ops->ndo_change_mtu(dev, new_mtu);
9444 
9445 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9446 	WRITE_ONCE(dev->mtu, new_mtu);
9447 	return 0;
9448 }
9449 EXPORT_SYMBOL(__dev_set_mtu);
9450 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9451 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9452 		     struct netlink_ext_ack *extack)
9453 {
9454 	/* MTU must be positive, and in range */
9455 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9456 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9457 		return -EINVAL;
9458 	}
9459 
9460 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9461 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9462 		return -EINVAL;
9463 	}
9464 	return 0;
9465 }
9466 
9467 /**
9468  *	netif_set_mtu_ext - Change maximum transfer unit
9469  *	@dev: device
9470  *	@new_mtu: new transfer unit
9471  *	@extack: netlink extended ack
9472  *
9473  *	Change the maximum transfer size of the network device.
9474  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9475 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9476 		      struct netlink_ext_ack *extack)
9477 {
9478 	int err, orig_mtu;
9479 
9480 	if (new_mtu == dev->mtu)
9481 		return 0;
9482 
9483 	err = dev_validate_mtu(dev, new_mtu, extack);
9484 	if (err)
9485 		return err;
9486 
9487 	if (!netif_device_present(dev))
9488 		return -ENODEV;
9489 
9490 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9491 	err = notifier_to_errno(err);
9492 	if (err)
9493 		return err;
9494 
9495 	orig_mtu = dev->mtu;
9496 	err = __dev_set_mtu(dev, new_mtu);
9497 
9498 	if (!err) {
9499 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9500 						   orig_mtu);
9501 		err = notifier_to_errno(err);
9502 		if (err) {
9503 			/* setting mtu back and notifying everyone again,
9504 			 * so that they have a chance to revert changes.
9505 			 */
9506 			__dev_set_mtu(dev, orig_mtu);
9507 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9508 						     new_mtu);
9509 		}
9510 	}
9511 	return err;
9512 }
9513 
netif_set_mtu(struct net_device * dev,int new_mtu)9514 int netif_set_mtu(struct net_device *dev, int new_mtu)
9515 {
9516 	struct netlink_ext_ack extack;
9517 	int err;
9518 
9519 	memset(&extack, 0, sizeof(extack));
9520 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9521 	if (err && extack._msg)
9522 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9523 	return err;
9524 }
9525 EXPORT_SYMBOL(netif_set_mtu);
9526 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9527 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9528 {
9529 	unsigned int orig_len = dev->tx_queue_len;
9530 	int res;
9531 
9532 	if (new_len != (unsigned int)new_len)
9533 		return -ERANGE;
9534 
9535 	if (new_len != orig_len) {
9536 		WRITE_ONCE(dev->tx_queue_len, new_len);
9537 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9538 		res = notifier_to_errno(res);
9539 		if (res)
9540 			goto err_rollback;
9541 		res = dev_qdisc_change_tx_queue_len(dev);
9542 		if (res)
9543 			goto err_rollback;
9544 	}
9545 
9546 	return 0;
9547 
9548 err_rollback:
9549 	netdev_err(dev, "refused to change device tx_queue_len\n");
9550 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9551 	return res;
9552 }
9553 
netif_set_group(struct net_device * dev,int new_group)9554 void netif_set_group(struct net_device *dev, int new_group)
9555 {
9556 	dev->group = new_group;
9557 }
9558 
9559 /**
9560  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9561  *	@dev: device
9562  *	@addr: new address
9563  *	@extack: netlink extended ack
9564  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9565 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9566 			      struct netlink_ext_ack *extack)
9567 {
9568 	struct netdev_notifier_pre_changeaddr_info info = {
9569 		.info.dev = dev,
9570 		.info.extack = extack,
9571 		.dev_addr = addr,
9572 	};
9573 	int rc;
9574 
9575 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9576 	return notifier_to_errno(rc);
9577 }
9578 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9579 
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9580 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9581 			  struct netlink_ext_ack *extack)
9582 {
9583 	const struct net_device_ops *ops = dev->netdev_ops;
9584 	int err;
9585 
9586 	if (!ops->ndo_set_mac_address)
9587 		return -EOPNOTSUPP;
9588 	if (sa->sa_family != dev->type)
9589 		return -EINVAL;
9590 	if (!netif_device_present(dev))
9591 		return -ENODEV;
9592 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9593 	if (err)
9594 		return err;
9595 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9596 		err = ops->ndo_set_mac_address(dev, sa);
9597 		if (err)
9598 			return err;
9599 	}
9600 	dev->addr_assign_type = NET_ADDR_SET;
9601 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9602 	add_device_randomness(dev->dev_addr, dev->addr_len);
9603 	return 0;
9604 }
9605 
9606 DECLARE_RWSEM(dev_addr_sem);
9607 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9608 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9609 {
9610 	size_t size = sizeof(sa->sa_data_min);
9611 	struct net_device *dev;
9612 	int ret = 0;
9613 
9614 	down_read(&dev_addr_sem);
9615 	rcu_read_lock();
9616 
9617 	dev = dev_get_by_name_rcu(net, dev_name);
9618 	if (!dev) {
9619 		ret = -ENODEV;
9620 		goto unlock;
9621 	}
9622 	if (!dev->addr_len)
9623 		memset(sa->sa_data, 0, size);
9624 	else
9625 		memcpy(sa->sa_data, dev->dev_addr,
9626 		       min_t(size_t, size, dev->addr_len));
9627 	sa->sa_family = dev->type;
9628 
9629 unlock:
9630 	rcu_read_unlock();
9631 	up_read(&dev_addr_sem);
9632 	return ret;
9633 }
9634 EXPORT_SYMBOL(dev_get_mac_address);
9635 
netif_change_carrier(struct net_device * dev,bool new_carrier)9636 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9637 {
9638 	const struct net_device_ops *ops = dev->netdev_ops;
9639 
9640 	if (!ops->ndo_change_carrier)
9641 		return -EOPNOTSUPP;
9642 	if (!netif_device_present(dev))
9643 		return -ENODEV;
9644 	return ops->ndo_change_carrier(dev, new_carrier);
9645 }
9646 
9647 /**
9648  *	dev_get_phys_port_id - Get device physical port ID
9649  *	@dev: device
9650  *	@ppid: port ID
9651  *
9652  *	Get device physical port ID
9653  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9654 int dev_get_phys_port_id(struct net_device *dev,
9655 			 struct netdev_phys_item_id *ppid)
9656 {
9657 	const struct net_device_ops *ops = dev->netdev_ops;
9658 
9659 	if (!ops->ndo_get_phys_port_id)
9660 		return -EOPNOTSUPP;
9661 	return ops->ndo_get_phys_port_id(dev, ppid);
9662 }
9663 
9664 /**
9665  *	dev_get_phys_port_name - Get device physical port name
9666  *	@dev: device
9667  *	@name: port name
9668  *	@len: limit of bytes to copy to name
9669  *
9670  *	Get device physical port name
9671  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9672 int dev_get_phys_port_name(struct net_device *dev,
9673 			   char *name, size_t len)
9674 {
9675 	const struct net_device_ops *ops = dev->netdev_ops;
9676 	int err;
9677 
9678 	if (ops->ndo_get_phys_port_name) {
9679 		err = ops->ndo_get_phys_port_name(dev, name, len);
9680 		if (err != -EOPNOTSUPP)
9681 			return err;
9682 	}
9683 	return devlink_compat_phys_port_name_get(dev, name, len);
9684 }
9685 
9686 /**
9687  *	dev_get_port_parent_id - Get the device's port parent identifier
9688  *	@dev: network device
9689  *	@ppid: pointer to a storage for the port's parent identifier
9690  *	@recurse: allow/disallow recursion to lower devices
9691  *
9692  *	Get the devices's port parent identifier
9693  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9694 int dev_get_port_parent_id(struct net_device *dev,
9695 			   struct netdev_phys_item_id *ppid,
9696 			   bool recurse)
9697 {
9698 	const struct net_device_ops *ops = dev->netdev_ops;
9699 	struct netdev_phys_item_id first = { };
9700 	struct net_device *lower_dev;
9701 	struct list_head *iter;
9702 	int err;
9703 
9704 	if (ops->ndo_get_port_parent_id) {
9705 		err = ops->ndo_get_port_parent_id(dev, ppid);
9706 		if (err != -EOPNOTSUPP)
9707 			return err;
9708 	}
9709 
9710 	err = devlink_compat_switch_id_get(dev, ppid);
9711 	if (!recurse || err != -EOPNOTSUPP)
9712 		return err;
9713 
9714 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9715 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9716 		if (err)
9717 			break;
9718 		if (!first.id_len)
9719 			first = *ppid;
9720 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9721 			return -EOPNOTSUPP;
9722 	}
9723 
9724 	return err;
9725 }
9726 EXPORT_SYMBOL(dev_get_port_parent_id);
9727 
9728 /**
9729  *	netdev_port_same_parent_id - Indicate if two network devices have
9730  *	the same port parent identifier
9731  *	@a: first network device
9732  *	@b: second network device
9733  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9734 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9735 {
9736 	struct netdev_phys_item_id a_id = { };
9737 	struct netdev_phys_item_id b_id = { };
9738 
9739 	if (dev_get_port_parent_id(a, &a_id, true) ||
9740 	    dev_get_port_parent_id(b, &b_id, true))
9741 		return false;
9742 
9743 	return netdev_phys_item_id_same(&a_id, &b_id);
9744 }
9745 EXPORT_SYMBOL(netdev_port_same_parent_id);
9746 
netif_change_proto_down(struct net_device * dev,bool proto_down)9747 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9748 {
9749 	if (!dev->change_proto_down)
9750 		return -EOPNOTSUPP;
9751 	if (!netif_device_present(dev))
9752 		return -ENODEV;
9753 	if (proto_down)
9754 		netif_carrier_off(dev);
9755 	else
9756 		netif_carrier_on(dev);
9757 	WRITE_ONCE(dev->proto_down, proto_down);
9758 	return 0;
9759 }
9760 
9761 /**
9762  *	netdev_change_proto_down_reason_locked - proto down reason
9763  *
9764  *	@dev: device
9765  *	@mask: proto down mask
9766  *	@value: proto down value
9767  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9768 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9769 					    unsigned long mask, u32 value)
9770 {
9771 	u32 proto_down_reason;
9772 	int b;
9773 
9774 	if (!mask) {
9775 		proto_down_reason = value;
9776 	} else {
9777 		proto_down_reason = dev->proto_down_reason;
9778 		for_each_set_bit(b, &mask, 32) {
9779 			if (value & (1 << b))
9780 				proto_down_reason |= BIT(b);
9781 			else
9782 				proto_down_reason &= ~BIT(b);
9783 		}
9784 	}
9785 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9786 }
9787 
9788 struct bpf_xdp_link {
9789 	struct bpf_link link;
9790 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9791 	int flags;
9792 };
9793 
dev_xdp_mode(struct net_device * dev,u32 flags)9794 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9795 {
9796 	if (flags & XDP_FLAGS_HW_MODE)
9797 		return XDP_MODE_HW;
9798 	if (flags & XDP_FLAGS_DRV_MODE)
9799 		return XDP_MODE_DRV;
9800 	if (flags & XDP_FLAGS_SKB_MODE)
9801 		return XDP_MODE_SKB;
9802 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9803 }
9804 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9805 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9806 {
9807 	switch (mode) {
9808 	case XDP_MODE_SKB:
9809 		return generic_xdp_install;
9810 	case XDP_MODE_DRV:
9811 	case XDP_MODE_HW:
9812 		return dev->netdev_ops->ndo_bpf;
9813 	default:
9814 		return NULL;
9815 	}
9816 }
9817 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9818 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9819 					 enum bpf_xdp_mode mode)
9820 {
9821 	return dev->xdp_state[mode].link;
9822 }
9823 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9824 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9825 				     enum bpf_xdp_mode mode)
9826 {
9827 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9828 
9829 	if (link)
9830 		return link->link.prog;
9831 	return dev->xdp_state[mode].prog;
9832 }
9833 
dev_xdp_prog_count(struct net_device * dev)9834 u8 dev_xdp_prog_count(struct net_device *dev)
9835 {
9836 	u8 count = 0;
9837 	int i;
9838 
9839 	for (i = 0; i < __MAX_XDP_MODE; i++)
9840 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9841 			count++;
9842 	return count;
9843 }
9844 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9845 
dev_xdp_sb_prog_count(struct net_device * dev)9846 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9847 {
9848 	u8 count = 0;
9849 	int i;
9850 
9851 	for (i = 0; i < __MAX_XDP_MODE; i++)
9852 		if (dev->xdp_state[i].prog &&
9853 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9854 			count++;
9855 	return count;
9856 }
9857 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9858 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9859 {
9860 	if (!dev->netdev_ops->ndo_bpf)
9861 		return -EOPNOTSUPP;
9862 
9863 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9864 	    bpf->command == XDP_SETUP_PROG &&
9865 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9866 		NL_SET_ERR_MSG(bpf->extack,
9867 			       "unable to propagate XDP to device using tcp-data-split");
9868 		return -EBUSY;
9869 	}
9870 
9871 	if (dev_get_min_mp_channel_count(dev)) {
9872 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9873 		return -EBUSY;
9874 	}
9875 
9876 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9877 }
9878 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9879 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9880 {
9881 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9882 
9883 	return prog ? prog->aux->id : 0;
9884 }
9885 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9886 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9887 			     struct bpf_xdp_link *link)
9888 {
9889 	dev->xdp_state[mode].link = link;
9890 	dev->xdp_state[mode].prog = NULL;
9891 }
9892 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9893 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9894 			     struct bpf_prog *prog)
9895 {
9896 	dev->xdp_state[mode].link = NULL;
9897 	dev->xdp_state[mode].prog = prog;
9898 }
9899 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9900 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9901 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9902 			   u32 flags, struct bpf_prog *prog)
9903 {
9904 	struct netdev_bpf xdp;
9905 	int err;
9906 
9907 	netdev_ops_assert_locked(dev);
9908 
9909 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9910 	    prog && !prog->aux->xdp_has_frags) {
9911 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9912 		return -EBUSY;
9913 	}
9914 
9915 	if (dev_get_min_mp_channel_count(dev)) {
9916 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9917 		return -EBUSY;
9918 	}
9919 
9920 	memset(&xdp, 0, sizeof(xdp));
9921 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9922 	xdp.extack = extack;
9923 	xdp.flags = flags;
9924 	xdp.prog = prog;
9925 
9926 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9927 	 * "moved" into driver), so they don't increment it on their own, but
9928 	 * they do decrement refcnt when program is detached or replaced.
9929 	 * Given net_device also owns link/prog, we need to bump refcnt here
9930 	 * to prevent drivers from underflowing it.
9931 	 */
9932 	if (prog)
9933 		bpf_prog_inc(prog);
9934 	err = bpf_op(dev, &xdp);
9935 	if (err) {
9936 		if (prog)
9937 			bpf_prog_put(prog);
9938 		return err;
9939 	}
9940 
9941 	if (mode != XDP_MODE_HW)
9942 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9943 
9944 	return 0;
9945 }
9946 
dev_xdp_uninstall(struct net_device * dev)9947 static void dev_xdp_uninstall(struct net_device *dev)
9948 {
9949 	struct bpf_xdp_link *link;
9950 	struct bpf_prog *prog;
9951 	enum bpf_xdp_mode mode;
9952 	bpf_op_t bpf_op;
9953 
9954 	ASSERT_RTNL();
9955 
9956 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9957 		prog = dev_xdp_prog(dev, mode);
9958 		if (!prog)
9959 			continue;
9960 
9961 		bpf_op = dev_xdp_bpf_op(dev, mode);
9962 		if (!bpf_op)
9963 			continue;
9964 
9965 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9966 
9967 		/* auto-detach link from net device */
9968 		link = dev_xdp_link(dev, mode);
9969 		if (link)
9970 			link->dev = NULL;
9971 		else
9972 			bpf_prog_put(prog);
9973 
9974 		dev_xdp_set_link(dev, mode, NULL);
9975 	}
9976 }
9977 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9978 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9979 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9980 			  struct bpf_prog *old_prog, u32 flags)
9981 {
9982 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9983 	struct bpf_prog *cur_prog;
9984 	struct net_device *upper;
9985 	struct list_head *iter;
9986 	enum bpf_xdp_mode mode;
9987 	bpf_op_t bpf_op;
9988 	int err;
9989 
9990 	ASSERT_RTNL();
9991 
9992 	/* either link or prog attachment, never both */
9993 	if (link && (new_prog || old_prog))
9994 		return -EINVAL;
9995 	/* link supports only XDP mode flags */
9996 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9997 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9998 		return -EINVAL;
9999 	}
10000 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10001 	if (num_modes > 1) {
10002 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10003 		return -EINVAL;
10004 	}
10005 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10006 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10007 		NL_SET_ERR_MSG(extack,
10008 			       "More than one program loaded, unset mode is ambiguous");
10009 		return -EINVAL;
10010 	}
10011 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10012 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10013 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10014 		return -EINVAL;
10015 	}
10016 
10017 	mode = dev_xdp_mode(dev, flags);
10018 	/* can't replace attached link */
10019 	if (dev_xdp_link(dev, mode)) {
10020 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10021 		return -EBUSY;
10022 	}
10023 
10024 	/* don't allow if an upper device already has a program */
10025 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10026 		if (dev_xdp_prog_count(upper) > 0) {
10027 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10028 			return -EEXIST;
10029 		}
10030 	}
10031 
10032 	cur_prog = dev_xdp_prog(dev, mode);
10033 	/* can't replace attached prog with link */
10034 	if (link && cur_prog) {
10035 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10036 		return -EBUSY;
10037 	}
10038 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10039 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10040 		return -EEXIST;
10041 	}
10042 
10043 	/* put effective new program into new_prog */
10044 	if (link)
10045 		new_prog = link->link.prog;
10046 
10047 	if (new_prog) {
10048 		bool offload = mode == XDP_MODE_HW;
10049 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10050 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10051 
10052 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10053 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10054 			return -EBUSY;
10055 		}
10056 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10057 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10058 			return -EEXIST;
10059 		}
10060 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10061 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10062 			return -EINVAL;
10063 		}
10064 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10065 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10066 			return -EINVAL;
10067 		}
10068 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10069 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10070 			return -EINVAL;
10071 		}
10072 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10073 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10074 			return -EINVAL;
10075 		}
10076 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10077 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10078 			return -EINVAL;
10079 		}
10080 	}
10081 
10082 	/* don't call drivers if the effective program didn't change */
10083 	if (new_prog != cur_prog) {
10084 		bpf_op = dev_xdp_bpf_op(dev, mode);
10085 		if (!bpf_op) {
10086 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10087 			return -EOPNOTSUPP;
10088 		}
10089 
10090 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10091 		if (err)
10092 			return err;
10093 	}
10094 
10095 	if (link)
10096 		dev_xdp_set_link(dev, mode, link);
10097 	else
10098 		dev_xdp_set_prog(dev, mode, new_prog);
10099 	if (cur_prog)
10100 		bpf_prog_put(cur_prog);
10101 
10102 	return 0;
10103 }
10104 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10105 static int dev_xdp_attach_link(struct net_device *dev,
10106 			       struct netlink_ext_ack *extack,
10107 			       struct bpf_xdp_link *link)
10108 {
10109 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10110 }
10111 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10112 static int dev_xdp_detach_link(struct net_device *dev,
10113 			       struct netlink_ext_ack *extack,
10114 			       struct bpf_xdp_link *link)
10115 {
10116 	enum bpf_xdp_mode mode;
10117 	bpf_op_t bpf_op;
10118 
10119 	ASSERT_RTNL();
10120 
10121 	mode = dev_xdp_mode(dev, link->flags);
10122 	if (dev_xdp_link(dev, mode) != link)
10123 		return -EINVAL;
10124 
10125 	bpf_op = dev_xdp_bpf_op(dev, mode);
10126 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10127 	dev_xdp_set_link(dev, mode, NULL);
10128 	return 0;
10129 }
10130 
bpf_xdp_link_release(struct bpf_link * link)10131 static void bpf_xdp_link_release(struct bpf_link *link)
10132 {
10133 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10134 
10135 	rtnl_lock();
10136 
10137 	/* if racing with net_device's tear down, xdp_link->dev might be
10138 	 * already NULL, in which case link was already auto-detached
10139 	 */
10140 	if (xdp_link->dev) {
10141 		netdev_lock_ops(xdp_link->dev);
10142 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10143 		netdev_unlock_ops(xdp_link->dev);
10144 		xdp_link->dev = NULL;
10145 	}
10146 
10147 	rtnl_unlock();
10148 }
10149 
bpf_xdp_link_detach(struct bpf_link * link)10150 static int bpf_xdp_link_detach(struct bpf_link *link)
10151 {
10152 	bpf_xdp_link_release(link);
10153 	return 0;
10154 }
10155 
bpf_xdp_link_dealloc(struct bpf_link * link)10156 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10157 {
10158 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10159 
10160 	kfree(xdp_link);
10161 }
10162 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10163 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10164 				     struct seq_file *seq)
10165 {
10166 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10167 	u32 ifindex = 0;
10168 
10169 	rtnl_lock();
10170 	if (xdp_link->dev)
10171 		ifindex = xdp_link->dev->ifindex;
10172 	rtnl_unlock();
10173 
10174 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10175 }
10176 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10177 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10178 				       struct bpf_link_info *info)
10179 {
10180 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10181 	u32 ifindex = 0;
10182 
10183 	rtnl_lock();
10184 	if (xdp_link->dev)
10185 		ifindex = xdp_link->dev->ifindex;
10186 	rtnl_unlock();
10187 
10188 	info->xdp.ifindex = ifindex;
10189 	return 0;
10190 }
10191 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10192 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10193 			       struct bpf_prog *old_prog)
10194 {
10195 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10196 	enum bpf_xdp_mode mode;
10197 	bpf_op_t bpf_op;
10198 	int err = 0;
10199 
10200 	rtnl_lock();
10201 
10202 	/* link might have been auto-released already, so fail */
10203 	if (!xdp_link->dev) {
10204 		err = -ENOLINK;
10205 		goto out_unlock;
10206 	}
10207 
10208 	if (old_prog && link->prog != old_prog) {
10209 		err = -EPERM;
10210 		goto out_unlock;
10211 	}
10212 	old_prog = link->prog;
10213 	if (old_prog->type != new_prog->type ||
10214 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10215 		err = -EINVAL;
10216 		goto out_unlock;
10217 	}
10218 
10219 	if (old_prog == new_prog) {
10220 		/* no-op, don't disturb drivers */
10221 		bpf_prog_put(new_prog);
10222 		goto out_unlock;
10223 	}
10224 
10225 	netdev_lock_ops(xdp_link->dev);
10226 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10227 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10228 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10229 			      xdp_link->flags, new_prog);
10230 	netdev_unlock_ops(xdp_link->dev);
10231 	if (err)
10232 		goto out_unlock;
10233 
10234 	old_prog = xchg(&link->prog, new_prog);
10235 	bpf_prog_put(old_prog);
10236 
10237 out_unlock:
10238 	rtnl_unlock();
10239 	return err;
10240 }
10241 
10242 static const struct bpf_link_ops bpf_xdp_link_lops = {
10243 	.release = bpf_xdp_link_release,
10244 	.dealloc = bpf_xdp_link_dealloc,
10245 	.detach = bpf_xdp_link_detach,
10246 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10247 	.fill_link_info = bpf_xdp_link_fill_link_info,
10248 	.update_prog = bpf_xdp_link_update,
10249 };
10250 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10251 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10252 {
10253 	struct net *net = current->nsproxy->net_ns;
10254 	struct bpf_link_primer link_primer;
10255 	struct netlink_ext_ack extack = {};
10256 	struct bpf_xdp_link *link;
10257 	struct net_device *dev;
10258 	int err, fd;
10259 
10260 	rtnl_lock();
10261 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10262 	if (!dev) {
10263 		rtnl_unlock();
10264 		return -EINVAL;
10265 	}
10266 
10267 	link = kzalloc(sizeof(*link), GFP_USER);
10268 	if (!link) {
10269 		err = -ENOMEM;
10270 		goto unlock;
10271 	}
10272 
10273 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10274 	link->dev = dev;
10275 	link->flags = attr->link_create.flags;
10276 
10277 	err = bpf_link_prime(&link->link, &link_primer);
10278 	if (err) {
10279 		kfree(link);
10280 		goto unlock;
10281 	}
10282 
10283 	netdev_lock_ops(dev);
10284 	err = dev_xdp_attach_link(dev, &extack, link);
10285 	netdev_unlock_ops(dev);
10286 	rtnl_unlock();
10287 
10288 	if (err) {
10289 		link->dev = NULL;
10290 		bpf_link_cleanup(&link_primer);
10291 		trace_bpf_xdp_link_attach_failed(extack._msg);
10292 		goto out_put_dev;
10293 	}
10294 
10295 	fd = bpf_link_settle(&link_primer);
10296 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10297 	dev_put(dev);
10298 	return fd;
10299 
10300 unlock:
10301 	rtnl_unlock();
10302 
10303 out_put_dev:
10304 	dev_put(dev);
10305 	return err;
10306 }
10307 
10308 /**
10309  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10310  *	@dev: device
10311  *	@extack: netlink extended ack
10312  *	@fd: new program fd or negative value to clear
10313  *	@expected_fd: old program fd that userspace expects to replace or clear
10314  *	@flags: xdp-related flags
10315  *
10316  *	Set or clear a bpf program for a device
10317  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10318 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10319 		      int fd, int expected_fd, u32 flags)
10320 {
10321 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10322 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10323 	int err;
10324 
10325 	ASSERT_RTNL();
10326 
10327 	if (fd >= 0) {
10328 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10329 						 mode != XDP_MODE_SKB);
10330 		if (IS_ERR(new_prog))
10331 			return PTR_ERR(new_prog);
10332 	}
10333 
10334 	if (expected_fd >= 0) {
10335 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10336 						 mode != XDP_MODE_SKB);
10337 		if (IS_ERR(old_prog)) {
10338 			err = PTR_ERR(old_prog);
10339 			old_prog = NULL;
10340 			goto err_out;
10341 		}
10342 	}
10343 
10344 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10345 
10346 err_out:
10347 	if (err && new_prog)
10348 		bpf_prog_put(new_prog);
10349 	if (old_prog)
10350 		bpf_prog_put(old_prog);
10351 	return err;
10352 }
10353 
dev_get_min_mp_channel_count(const struct net_device * dev)10354 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10355 {
10356 	int i;
10357 
10358 	netdev_ops_assert_locked(dev);
10359 
10360 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10361 		if (dev->_rx[i].mp_params.mp_priv)
10362 			/* The channel count is the idx plus 1. */
10363 			return i + 1;
10364 
10365 	return 0;
10366 }
10367 
10368 /**
10369  * dev_index_reserve() - allocate an ifindex in a namespace
10370  * @net: the applicable net namespace
10371  * @ifindex: requested ifindex, pass %0 to get one allocated
10372  *
10373  * Allocate a ifindex for a new device. Caller must either use the ifindex
10374  * to store the device (via list_netdevice()) or call dev_index_release()
10375  * to give the index up.
10376  *
10377  * Return: a suitable unique value for a new device interface number or -errno.
10378  */
dev_index_reserve(struct net * net,u32 ifindex)10379 static int dev_index_reserve(struct net *net, u32 ifindex)
10380 {
10381 	int err;
10382 
10383 	if (ifindex > INT_MAX) {
10384 		DEBUG_NET_WARN_ON_ONCE(1);
10385 		return -EINVAL;
10386 	}
10387 
10388 	if (!ifindex)
10389 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10390 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10391 	else
10392 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10393 	if (err < 0)
10394 		return err;
10395 
10396 	return ifindex;
10397 }
10398 
dev_index_release(struct net * net,int ifindex)10399 static void dev_index_release(struct net *net, int ifindex)
10400 {
10401 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10402 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10403 }
10404 
from_cleanup_net(void)10405 static bool from_cleanup_net(void)
10406 {
10407 #ifdef CONFIG_NET_NS
10408 	return current == cleanup_net_task;
10409 #else
10410 	return false;
10411 #endif
10412 }
10413 
10414 /* Delayed registration/unregisteration */
10415 LIST_HEAD(net_todo_list);
10416 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10417 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10418 
net_set_todo(struct net_device * dev)10419 static void net_set_todo(struct net_device *dev)
10420 {
10421 	list_add_tail(&dev->todo_list, &net_todo_list);
10422 }
10423 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10424 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10425 	struct net_device *upper, netdev_features_t features)
10426 {
10427 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10428 	netdev_features_t feature;
10429 	int feature_bit;
10430 
10431 	for_each_netdev_feature(upper_disables, feature_bit) {
10432 		feature = __NETIF_F_BIT(feature_bit);
10433 		if (!(upper->wanted_features & feature)
10434 		    && (features & feature)) {
10435 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10436 				   &feature, upper->name);
10437 			features &= ~feature;
10438 		}
10439 	}
10440 
10441 	return features;
10442 }
10443 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10444 static void netdev_sync_lower_features(struct net_device *upper,
10445 	struct net_device *lower, netdev_features_t features)
10446 {
10447 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10448 	netdev_features_t feature;
10449 	int feature_bit;
10450 
10451 	for_each_netdev_feature(upper_disables, feature_bit) {
10452 		feature = __NETIF_F_BIT(feature_bit);
10453 		if (!(features & feature) && (lower->features & feature)) {
10454 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10455 				   &feature, lower->name);
10456 			lower->wanted_features &= ~feature;
10457 			__netdev_update_features(lower);
10458 
10459 			if (unlikely(lower->features & feature))
10460 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10461 					    &feature, lower->name);
10462 			else
10463 				netdev_features_change(lower);
10464 		}
10465 	}
10466 }
10467 
netdev_has_ip_or_hw_csum(netdev_features_t features)10468 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10469 {
10470 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10471 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10472 	bool hw_csum = features & NETIF_F_HW_CSUM;
10473 
10474 	return ip_csum || hw_csum;
10475 }
10476 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10477 static netdev_features_t netdev_fix_features(struct net_device *dev,
10478 	netdev_features_t features)
10479 {
10480 	/* Fix illegal checksum combinations */
10481 	if ((features & NETIF_F_HW_CSUM) &&
10482 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10483 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10484 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10485 	}
10486 
10487 	/* TSO requires that SG is present as well. */
10488 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10489 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10490 		features &= ~NETIF_F_ALL_TSO;
10491 	}
10492 
10493 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10494 					!(features & NETIF_F_IP_CSUM)) {
10495 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10496 		features &= ~NETIF_F_TSO;
10497 		features &= ~NETIF_F_TSO_ECN;
10498 	}
10499 
10500 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10501 					 !(features & NETIF_F_IPV6_CSUM)) {
10502 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10503 		features &= ~NETIF_F_TSO6;
10504 	}
10505 
10506 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10507 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10508 		features &= ~NETIF_F_TSO_MANGLEID;
10509 
10510 	/* TSO ECN requires that TSO is present as well. */
10511 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10512 		features &= ~NETIF_F_TSO_ECN;
10513 
10514 	/* Software GSO depends on SG. */
10515 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10516 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10517 		features &= ~NETIF_F_GSO;
10518 	}
10519 
10520 	/* GSO partial features require GSO partial be set */
10521 	if ((features & dev->gso_partial_features) &&
10522 	    !(features & NETIF_F_GSO_PARTIAL)) {
10523 		netdev_dbg(dev,
10524 			   "Dropping partially supported GSO features since no GSO partial.\n");
10525 		features &= ~dev->gso_partial_features;
10526 	}
10527 
10528 	if (!(features & NETIF_F_RXCSUM)) {
10529 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10530 		 * successfully merged by hardware must also have the
10531 		 * checksum verified by hardware.  If the user does not
10532 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10533 		 */
10534 		if (features & NETIF_F_GRO_HW) {
10535 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10536 			features &= ~NETIF_F_GRO_HW;
10537 		}
10538 	}
10539 
10540 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10541 	if (features & NETIF_F_RXFCS) {
10542 		if (features & NETIF_F_LRO) {
10543 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10544 			features &= ~NETIF_F_LRO;
10545 		}
10546 
10547 		if (features & NETIF_F_GRO_HW) {
10548 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10549 			features &= ~NETIF_F_GRO_HW;
10550 		}
10551 	}
10552 
10553 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10554 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10555 		features &= ~NETIF_F_LRO;
10556 	}
10557 
10558 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10559 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10560 		features &= ~NETIF_F_HW_TLS_TX;
10561 	}
10562 
10563 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10564 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10565 		features &= ~NETIF_F_HW_TLS_RX;
10566 	}
10567 
10568 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10569 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10570 		features &= ~NETIF_F_GSO_UDP_L4;
10571 	}
10572 
10573 	return features;
10574 }
10575 
__netdev_update_features(struct net_device * dev)10576 int __netdev_update_features(struct net_device *dev)
10577 {
10578 	struct net_device *upper, *lower;
10579 	netdev_features_t features;
10580 	struct list_head *iter;
10581 	int err = -1;
10582 
10583 	ASSERT_RTNL();
10584 	netdev_ops_assert_locked(dev);
10585 
10586 	features = netdev_get_wanted_features(dev);
10587 
10588 	if (dev->netdev_ops->ndo_fix_features)
10589 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10590 
10591 	/* driver might be less strict about feature dependencies */
10592 	features = netdev_fix_features(dev, features);
10593 
10594 	/* some features can't be enabled if they're off on an upper device */
10595 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10596 		features = netdev_sync_upper_features(dev, upper, features);
10597 
10598 	if (dev->features == features)
10599 		goto sync_lower;
10600 
10601 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10602 		&dev->features, &features);
10603 
10604 	if (dev->netdev_ops->ndo_set_features)
10605 		err = dev->netdev_ops->ndo_set_features(dev, features);
10606 	else
10607 		err = 0;
10608 
10609 	if (unlikely(err < 0)) {
10610 		netdev_err(dev,
10611 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10612 			err, &features, &dev->features);
10613 		/* return non-0 since some features might have changed and
10614 		 * it's better to fire a spurious notification than miss it
10615 		 */
10616 		return -1;
10617 	}
10618 
10619 sync_lower:
10620 	/* some features must be disabled on lower devices when disabled
10621 	 * on an upper device (think: bonding master or bridge)
10622 	 */
10623 	netdev_for_each_lower_dev(dev, lower, iter)
10624 		netdev_sync_lower_features(dev, lower, features);
10625 
10626 	if (!err) {
10627 		netdev_features_t diff = features ^ dev->features;
10628 
10629 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10630 			/* udp_tunnel_{get,drop}_rx_info both need
10631 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10632 			 * device, or they won't do anything.
10633 			 * Thus we need to update dev->features
10634 			 * *before* calling udp_tunnel_get_rx_info,
10635 			 * but *after* calling udp_tunnel_drop_rx_info.
10636 			 */
10637 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10638 				dev->features = features;
10639 				udp_tunnel_get_rx_info(dev);
10640 			} else {
10641 				udp_tunnel_drop_rx_info(dev);
10642 			}
10643 		}
10644 
10645 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10646 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10647 				dev->features = features;
10648 				err |= vlan_get_rx_ctag_filter_info(dev);
10649 			} else {
10650 				vlan_drop_rx_ctag_filter_info(dev);
10651 			}
10652 		}
10653 
10654 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10655 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10656 				dev->features = features;
10657 				err |= vlan_get_rx_stag_filter_info(dev);
10658 			} else {
10659 				vlan_drop_rx_stag_filter_info(dev);
10660 			}
10661 		}
10662 
10663 		dev->features = features;
10664 	}
10665 
10666 	return err < 0 ? 0 : 1;
10667 }
10668 
10669 /**
10670  *	netdev_update_features - recalculate device features
10671  *	@dev: the device to check
10672  *
10673  *	Recalculate dev->features set and send notifications if it
10674  *	has changed. Should be called after driver or hardware dependent
10675  *	conditions might have changed that influence the features.
10676  */
netdev_update_features(struct net_device * dev)10677 void netdev_update_features(struct net_device *dev)
10678 {
10679 	if (__netdev_update_features(dev))
10680 		netdev_features_change(dev);
10681 }
10682 EXPORT_SYMBOL(netdev_update_features);
10683 
10684 /**
10685  *	netdev_change_features - recalculate device features
10686  *	@dev: the device to check
10687  *
10688  *	Recalculate dev->features set and send notifications even
10689  *	if they have not changed. Should be called instead of
10690  *	netdev_update_features() if also dev->vlan_features might
10691  *	have changed to allow the changes to be propagated to stacked
10692  *	VLAN devices.
10693  */
netdev_change_features(struct net_device * dev)10694 void netdev_change_features(struct net_device *dev)
10695 {
10696 	__netdev_update_features(dev);
10697 	netdev_features_change(dev);
10698 }
10699 EXPORT_SYMBOL(netdev_change_features);
10700 
10701 /**
10702  *	netif_stacked_transfer_operstate -	transfer operstate
10703  *	@rootdev: the root or lower level device to transfer state from
10704  *	@dev: the device to transfer operstate to
10705  *
10706  *	Transfer operational state from root to device. This is normally
10707  *	called when a stacking relationship exists between the root
10708  *	device and the device(a leaf device).
10709  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10710 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10711 					struct net_device *dev)
10712 {
10713 	if (rootdev->operstate == IF_OPER_DORMANT)
10714 		netif_dormant_on(dev);
10715 	else
10716 		netif_dormant_off(dev);
10717 
10718 	if (rootdev->operstate == IF_OPER_TESTING)
10719 		netif_testing_on(dev);
10720 	else
10721 		netif_testing_off(dev);
10722 
10723 	if (netif_carrier_ok(rootdev))
10724 		netif_carrier_on(dev);
10725 	else
10726 		netif_carrier_off(dev);
10727 }
10728 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10729 
netif_alloc_rx_queues(struct net_device * dev)10730 static int netif_alloc_rx_queues(struct net_device *dev)
10731 {
10732 	unsigned int i, count = dev->num_rx_queues;
10733 	struct netdev_rx_queue *rx;
10734 	size_t sz = count * sizeof(*rx);
10735 	int err = 0;
10736 
10737 	BUG_ON(count < 1);
10738 
10739 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10740 	if (!rx)
10741 		return -ENOMEM;
10742 
10743 	dev->_rx = rx;
10744 
10745 	for (i = 0; i < count; i++) {
10746 		rx[i].dev = dev;
10747 
10748 		/* XDP RX-queue setup */
10749 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10750 		if (err < 0)
10751 			goto err_rxq_info;
10752 	}
10753 	return 0;
10754 
10755 err_rxq_info:
10756 	/* Rollback successful reg's and free other resources */
10757 	while (i--)
10758 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10759 	kvfree(dev->_rx);
10760 	dev->_rx = NULL;
10761 	return err;
10762 }
10763 
netif_free_rx_queues(struct net_device * dev)10764 static void netif_free_rx_queues(struct net_device *dev)
10765 {
10766 	unsigned int i, count = dev->num_rx_queues;
10767 
10768 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10769 	if (!dev->_rx)
10770 		return;
10771 
10772 	for (i = 0; i < count; i++)
10773 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10774 
10775 	kvfree(dev->_rx);
10776 }
10777 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10778 static void netdev_init_one_queue(struct net_device *dev,
10779 				  struct netdev_queue *queue, void *_unused)
10780 {
10781 	/* Initialize queue lock */
10782 	spin_lock_init(&queue->_xmit_lock);
10783 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10784 	queue->xmit_lock_owner = -1;
10785 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10786 	queue->dev = dev;
10787 #ifdef CONFIG_BQL
10788 	dql_init(&queue->dql, HZ);
10789 #endif
10790 }
10791 
netif_free_tx_queues(struct net_device * dev)10792 static void netif_free_tx_queues(struct net_device *dev)
10793 {
10794 	kvfree(dev->_tx);
10795 }
10796 
netif_alloc_netdev_queues(struct net_device * dev)10797 static int netif_alloc_netdev_queues(struct net_device *dev)
10798 {
10799 	unsigned int count = dev->num_tx_queues;
10800 	struct netdev_queue *tx;
10801 	size_t sz = count * sizeof(*tx);
10802 
10803 	if (count < 1 || count > 0xffff)
10804 		return -EINVAL;
10805 
10806 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10807 	if (!tx)
10808 		return -ENOMEM;
10809 
10810 	dev->_tx = tx;
10811 
10812 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10813 	spin_lock_init(&dev->tx_global_lock);
10814 
10815 	return 0;
10816 }
10817 
netif_tx_stop_all_queues(struct net_device * dev)10818 void netif_tx_stop_all_queues(struct net_device *dev)
10819 {
10820 	unsigned int i;
10821 
10822 	for (i = 0; i < dev->num_tx_queues; i++) {
10823 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10824 
10825 		netif_tx_stop_queue(txq);
10826 	}
10827 }
10828 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10829 
netdev_do_alloc_pcpu_stats(struct net_device * dev)10830 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10831 {
10832 	void __percpu *v;
10833 
10834 	/* Drivers implementing ndo_get_peer_dev must support tstat
10835 	 * accounting, so that skb_do_redirect() can bump the dev's
10836 	 * RX stats upon network namespace switch.
10837 	 */
10838 	if (dev->netdev_ops->ndo_get_peer_dev &&
10839 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10840 		return -EOPNOTSUPP;
10841 
10842 	switch (dev->pcpu_stat_type) {
10843 	case NETDEV_PCPU_STAT_NONE:
10844 		return 0;
10845 	case NETDEV_PCPU_STAT_LSTATS:
10846 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10847 		break;
10848 	case NETDEV_PCPU_STAT_TSTATS:
10849 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10850 		break;
10851 	case NETDEV_PCPU_STAT_DSTATS:
10852 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10853 		break;
10854 	default:
10855 		return -EINVAL;
10856 	}
10857 
10858 	return v ? 0 : -ENOMEM;
10859 }
10860 
netdev_do_free_pcpu_stats(struct net_device * dev)10861 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10862 {
10863 	switch (dev->pcpu_stat_type) {
10864 	case NETDEV_PCPU_STAT_NONE:
10865 		return;
10866 	case NETDEV_PCPU_STAT_LSTATS:
10867 		free_percpu(dev->lstats);
10868 		break;
10869 	case NETDEV_PCPU_STAT_TSTATS:
10870 		free_percpu(dev->tstats);
10871 		break;
10872 	case NETDEV_PCPU_STAT_DSTATS:
10873 		free_percpu(dev->dstats);
10874 		break;
10875 	}
10876 }
10877 
netdev_free_phy_link_topology(struct net_device * dev)10878 static void netdev_free_phy_link_topology(struct net_device *dev)
10879 {
10880 	struct phy_link_topology *topo = dev->link_topo;
10881 
10882 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10883 		xa_destroy(&topo->phys);
10884 		kfree(topo);
10885 		dev->link_topo = NULL;
10886 	}
10887 }
10888 
10889 /**
10890  * register_netdevice() - register a network device
10891  * @dev: device to register
10892  *
10893  * Take a prepared network device structure and make it externally accessible.
10894  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10895  * Callers must hold the rtnl lock - you may want register_netdev()
10896  * instead of this.
10897  */
register_netdevice(struct net_device * dev)10898 int register_netdevice(struct net_device *dev)
10899 {
10900 	int ret;
10901 	struct net *net = dev_net(dev);
10902 
10903 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10904 		     NETDEV_FEATURE_COUNT);
10905 	BUG_ON(dev_boot_phase);
10906 	ASSERT_RTNL();
10907 
10908 	might_sleep();
10909 
10910 	/* When net_device's are persistent, this will be fatal. */
10911 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10912 	BUG_ON(!net);
10913 
10914 	ret = ethtool_check_ops(dev->ethtool_ops);
10915 	if (ret)
10916 		return ret;
10917 
10918 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10919 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10920 	mutex_init(&dev->ethtool->rss_lock);
10921 
10922 	spin_lock_init(&dev->addr_list_lock);
10923 	netdev_set_addr_lockdep_class(dev);
10924 
10925 	ret = dev_get_valid_name(net, dev, dev->name);
10926 	if (ret < 0)
10927 		goto out;
10928 
10929 	ret = -ENOMEM;
10930 	dev->name_node = netdev_name_node_head_alloc(dev);
10931 	if (!dev->name_node)
10932 		goto out;
10933 
10934 	/* Init, if this function is available */
10935 	if (dev->netdev_ops->ndo_init) {
10936 		ret = dev->netdev_ops->ndo_init(dev);
10937 		if (ret) {
10938 			if (ret > 0)
10939 				ret = -EIO;
10940 			goto err_free_name;
10941 		}
10942 	}
10943 
10944 	if (((dev->hw_features | dev->features) &
10945 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10946 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10947 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10948 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10949 		ret = -EINVAL;
10950 		goto err_uninit;
10951 	}
10952 
10953 	ret = netdev_do_alloc_pcpu_stats(dev);
10954 	if (ret)
10955 		goto err_uninit;
10956 
10957 	ret = dev_index_reserve(net, dev->ifindex);
10958 	if (ret < 0)
10959 		goto err_free_pcpu;
10960 	dev->ifindex = ret;
10961 
10962 	/* Transfer changeable features to wanted_features and enable
10963 	 * software offloads (GSO and GRO).
10964 	 */
10965 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10966 	dev->features |= NETIF_F_SOFT_FEATURES;
10967 
10968 	if (dev->udp_tunnel_nic_info) {
10969 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10970 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10971 	}
10972 
10973 	dev->wanted_features = dev->features & dev->hw_features;
10974 
10975 	if (!(dev->flags & IFF_LOOPBACK))
10976 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10977 
10978 	/* If IPv4 TCP segmentation offload is supported we should also
10979 	 * allow the device to enable segmenting the frame with the option
10980 	 * of ignoring a static IP ID value.  This doesn't enable the
10981 	 * feature itself but allows the user to enable it later.
10982 	 */
10983 	if (dev->hw_features & NETIF_F_TSO)
10984 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10985 	if (dev->vlan_features & NETIF_F_TSO)
10986 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10987 	if (dev->mpls_features & NETIF_F_TSO)
10988 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10989 	if (dev->hw_enc_features & NETIF_F_TSO)
10990 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10991 
10992 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10993 	 */
10994 	dev->vlan_features |= NETIF_F_HIGHDMA;
10995 
10996 	/* Make NETIF_F_SG inheritable to tunnel devices.
10997 	 */
10998 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10999 
11000 	/* Make NETIF_F_SG inheritable to MPLS.
11001 	 */
11002 	dev->mpls_features |= NETIF_F_SG;
11003 
11004 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11005 	ret = notifier_to_errno(ret);
11006 	if (ret)
11007 		goto err_ifindex_release;
11008 
11009 	ret = netdev_register_kobject(dev);
11010 
11011 	netdev_lock(dev);
11012 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11013 	netdev_unlock(dev);
11014 
11015 	if (ret)
11016 		goto err_uninit_notify;
11017 
11018 	netdev_lock_ops(dev);
11019 	__netdev_update_features(dev);
11020 	netdev_unlock_ops(dev);
11021 
11022 	/*
11023 	 *	Default initial state at registry is that the
11024 	 *	device is present.
11025 	 */
11026 
11027 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11028 
11029 	linkwatch_init_dev(dev);
11030 
11031 	dev_init_scheduler(dev);
11032 
11033 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11034 	list_netdevice(dev);
11035 
11036 	add_device_randomness(dev->dev_addr, dev->addr_len);
11037 
11038 	/* If the device has permanent device address, driver should
11039 	 * set dev_addr and also addr_assign_type should be set to
11040 	 * NET_ADDR_PERM (default value).
11041 	 */
11042 	if (dev->addr_assign_type == NET_ADDR_PERM)
11043 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11044 
11045 	/* Notify protocols, that a new device appeared. */
11046 	netdev_lock_ops(dev);
11047 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11048 	netdev_unlock_ops(dev);
11049 	ret = notifier_to_errno(ret);
11050 	if (ret) {
11051 		/* Expect explicit free_netdev() on failure */
11052 		dev->needs_free_netdev = false;
11053 		unregister_netdevice_queue(dev, NULL);
11054 		goto out;
11055 	}
11056 	/*
11057 	 *	Prevent userspace races by waiting until the network
11058 	 *	device is fully setup before sending notifications.
11059 	 */
11060 	if (!dev->rtnl_link_ops ||
11061 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11062 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11063 
11064 out:
11065 	return ret;
11066 
11067 err_uninit_notify:
11068 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11069 err_ifindex_release:
11070 	dev_index_release(net, dev->ifindex);
11071 err_free_pcpu:
11072 	netdev_do_free_pcpu_stats(dev);
11073 err_uninit:
11074 	if (dev->netdev_ops->ndo_uninit)
11075 		dev->netdev_ops->ndo_uninit(dev);
11076 	if (dev->priv_destructor)
11077 		dev->priv_destructor(dev);
11078 err_free_name:
11079 	netdev_name_node_free(dev->name_node);
11080 	goto out;
11081 }
11082 EXPORT_SYMBOL(register_netdevice);
11083 
11084 /* Initialize the core of a dummy net device.
11085  * The setup steps dummy netdevs need which normal netdevs get by going
11086  * through register_netdevice().
11087  */
init_dummy_netdev(struct net_device * dev)11088 static void init_dummy_netdev(struct net_device *dev)
11089 {
11090 	/* make sure we BUG if trying to hit standard
11091 	 * register/unregister code path
11092 	 */
11093 	dev->reg_state = NETREG_DUMMY;
11094 
11095 	/* a dummy interface is started by default */
11096 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11097 	set_bit(__LINK_STATE_START, &dev->state);
11098 
11099 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11100 	 * because users of this 'device' dont need to change
11101 	 * its refcount.
11102 	 */
11103 }
11104 
11105 /**
11106  *	register_netdev	- register a network device
11107  *	@dev: device to register
11108  *
11109  *	Take a completed network device structure and add it to the kernel
11110  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11111  *	chain. 0 is returned on success. A negative errno code is returned
11112  *	on a failure to set up the device, or if the name is a duplicate.
11113  *
11114  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11115  *	and expands the device name if you passed a format string to
11116  *	alloc_netdev.
11117  */
register_netdev(struct net_device * dev)11118 int register_netdev(struct net_device *dev)
11119 {
11120 	struct net *net = dev_net(dev);
11121 	int err;
11122 
11123 	if (rtnl_net_lock_killable(net))
11124 		return -EINTR;
11125 
11126 	err = register_netdevice(dev);
11127 
11128 	rtnl_net_unlock(net);
11129 
11130 	return err;
11131 }
11132 EXPORT_SYMBOL(register_netdev);
11133 
netdev_refcnt_read(const struct net_device * dev)11134 int netdev_refcnt_read(const struct net_device *dev)
11135 {
11136 #ifdef CONFIG_PCPU_DEV_REFCNT
11137 	int i, refcnt = 0;
11138 
11139 	for_each_possible_cpu(i)
11140 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11141 	return refcnt;
11142 #else
11143 	return refcount_read(&dev->dev_refcnt);
11144 #endif
11145 }
11146 EXPORT_SYMBOL(netdev_refcnt_read);
11147 
11148 int netdev_unregister_timeout_secs __read_mostly = 10;
11149 
11150 #define WAIT_REFS_MIN_MSECS 1
11151 #define WAIT_REFS_MAX_MSECS 250
11152 /**
11153  * netdev_wait_allrefs_any - wait until all references are gone.
11154  * @list: list of net_devices to wait on
11155  *
11156  * This is called when unregistering network devices.
11157  *
11158  * Any protocol or device that holds a reference should register
11159  * for netdevice notification, and cleanup and put back the
11160  * reference if they receive an UNREGISTER event.
11161  * We can get stuck here if buggy protocols don't correctly
11162  * call dev_put.
11163  */
netdev_wait_allrefs_any(struct list_head * list)11164 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11165 {
11166 	unsigned long rebroadcast_time, warning_time;
11167 	struct net_device *dev;
11168 	int wait = 0;
11169 
11170 	rebroadcast_time = warning_time = jiffies;
11171 
11172 	list_for_each_entry(dev, list, todo_list)
11173 		if (netdev_refcnt_read(dev) == 1)
11174 			return dev;
11175 
11176 	while (true) {
11177 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11178 			rtnl_lock();
11179 
11180 			/* Rebroadcast unregister notification */
11181 			list_for_each_entry(dev, list, todo_list)
11182 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11183 
11184 			__rtnl_unlock();
11185 			rcu_barrier();
11186 			rtnl_lock();
11187 
11188 			list_for_each_entry(dev, list, todo_list)
11189 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11190 					     &dev->state)) {
11191 					/* We must not have linkwatch events
11192 					 * pending on unregister. If this
11193 					 * happens, we simply run the queue
11194 					 * unscheduled, resulting in a noop
11195 					 * for this device.
11196 					 */
11197 					linkwatch_run_queue();
11198 					break;
11199 				}
11200 
11201 			__rtnl_unlock();
11202 
11203 			rebroadcast_time = jiffies;
11204 		}
11205 
11206 		rcu_barrier();
11207 
11208 		if (!wait) {
11209 			wait = WAIT_REFS_MIN_MSECS;
11210 		} else {
11211 			msleep(wait);
11212 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11213 		}
11214 
11215 		list_for_each_entry(dev, list, todo_list)
11216 			if (netdev_refcnt_read(dev) == 1)
11217 				return dev;
11218 
11219 		if (time_after(jiffies, warning_time +
11220 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11221 			list_for_each_entry(dev, list, todo_list) {
11222 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11223 					 dev->name, netdev_refcnt_read(dev));
11224 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11225 			}
11226 
11227 			warning_time = jiffies;
11228 		}
11229 	}
11230 }
11231 
11232 /* The sequence is:
11233  *
11234  *	rtnl_lock();
11235  *	...
11236  *	register_netdevice(x1);
11237  *	register_netdevice(x2);
11238  *	...
11239  *	unregister_netdevice(y1);
11240  *	unregister_netdevice(y2);
11241  *      ...
11242  *	rtnl_unlock();
11243  *	free_netdev(y1);
11244  *	free_netdev(y2);
11245  *
11246  * We are invoked by rtnl_unlock().
11247  * This allows us to deal with problems:
11248  * 1) We can delete sysfs objects which invoke hotplug
11249  *    without deadlocking with linkwatch via keventd.
11250  * 2) Since we run with the RTNL semaphore not held, we can sleep
11251  *    safely in order to wait for the netdev refcnt to drop to zero.
11252  *
11253  * We must not return until all unregister events added during
11254  * the interval the lock was held have been completed.
11255  */
netdev_run_todo(void)11256 void netdev_run_todo(void)
11257 {
11258 	struct net_device *dev, *tmp;
11259 	struct list_head list;
11260 	int cnt;
11261 #ifdef CONFIG_LOCKDEP
11262 	struct list_head unlink_list;
11263 
11264 	list_replace_init(&net_unlink_list, &unlink_list);
11265 
11266 	while (!list_empty(&unlink_list)) {
11267 		dev = list_first_entry(&unlink_list, struct net_device,
11268 				       unlink_list);
11269 		list_del_init(&dev->unlink_list);
11270 		dev->nested_level = dev->lower_level - 1;
11271 	}
11272 #endif
11273 
11274 	/* Snapshot list, allow later requests */
11275 	list_replace_init(&net_todo_list, &list);
11276 
11277 	__rtnl_unlock();
11278 
11279 	/* Wait for rcu callbacks to finish before next phase */
11280 	if (!list_empty(&list))
11281 		rcu_barrier();
11282 
11283 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11284 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11285 			netdev_WARN(dev, "run_todo but not unregistering\n");
11286 			list_del(&dev->todo_list);
11287 			continue;
11288 		}
11289 
11290 		netdev_lock(dev);
11291 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11292 		netdev_unlock(dev);
11293 		linkwatch_sync_dev(dev);
11294 	}
11295 
11296 	cnt = 0;
11297 	while (!list_empty(&list)) {
11298 		dev = netdev_wait_allrefs_any(&list);
11299 		list_del(&dev->todo_list);
11300 
11301 		/* paranoia */
11302 		BUG_ON(netdev_refcnt_read(dev) != 1);
11303 		BUG_ON(!list_empty(&dev->ptype_all));
11304 		BUG_ON(!list_empty(&dev->ptype_specific));
11305 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11306 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11307 
11308 		netdev_do_free_pcpu_stats(dev);
11309 		if (dev->priv_destructor)
11310 			dev->priv_destructor(dev);
11311 		if (dev->needs_free_netdev)
11312 			free_netdev(dev);
11313 
11314 		cnt++;
11315 
11316 		/* Free network device */
11317 		kobject_put(&dev->dev.kobj);
11318 	}
11319 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11320 		wake_up(&netdev_unregistering_wq);
11321 }
11322 
11323 /* Collate per-cpu network dstats statistics
11324  *
11325  * Read per-cpu network statistics from dev->dstats and populate the related
11326  * fields in @s.
11327  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11328 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11329 			     const struct pcpu_dstats __percpu *dstats)
11330 {
11331 	int cpu;
11332 
11333 	for_each_possible_cpu(cpu) {
11334 		u64 rx_packets, rx_bytes, rx_drops;
11335 		u64 tx_packets, tx_bytes, tx_drops;
11336 		const struct pcpu_dstats *stats;
11337 		unsigned int start;
11338 
11339 		stats = per_cpu_ptr(dstats, cpu);
11340 		do {
11341 			start = u64_stats_fetch_begin(&stats->syncp);
11342 			rx_packets = u64_stats_read(&stats->rx_packets);
11343 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11344 			rx_drops   = u64_stats_read(&stats->rx_drops);
11345 			tx_packets = u64_stats_read(&stats->tx_packets);
11346 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11347 			tx_drops   = u64_stats_read(&stats->tx_drops);
11348 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11349 
11350 		s->rx_packets += rx_packets;
11351 		s->rx_bytes   += rx_bytes;
11352 		s->rx_dropped += rx_drops;
11353 		s->tx_packets += tx_packets;
11354 		s->tx_bytes   += tx_bytes;
11355 		s->tx_dropped += tx_drops;
11356 	}
11357 }
11358 
11359 /* ndo_get_stats64 implementation for dtstats-based accounting.
11360  *
11361  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11362  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11363  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11364 static void dev_get_dstats64(const struct net_device *dev,
11365 			     struct rtnl_link_stats64 *s)
11366 {
11367 	netdev_stats_to_stats64(s, &dev->stats);
11368 	dev_fetch_dstats(s, dev->dstats);
11369 }
11370 
11371 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11372  * all the same fields in the same order as net_device_stats, with only
11373  * the type differing, but rtnl_link_stats64 may have additional fields
11374  * at the end for newer counters.
11375  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11376 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11377 			     const struct net_device_stats *netdev_stats)
11378 {
11379 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11380 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11381 	u64 *dst = (u64 *)stats64;
11382 
11383 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11384 	for (i = 0; i < n; i++)
11385 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11386 	/* zero out counters that only exist in rtnl_link_stats64 */
11387 	memset((char *)stats64 + n * sizeof(u64), 0,
11388 	       sizeof(*stats64) - n * sizeof(u64));
11389 }
11390 EXPORT_SYMBOL(netdev_stats_to_stats64);
11391 
netdev_core_stats_alloc(struct net_device * dev)11392 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11393 		struct net_device *dev)
11394 {
11395 	struct net_device_core_stats __percpu *p;
11396 
11397 	p = alloc_percpu_gfp(struct net_device_core_stats,
11398 			     GFP_ATOMIC | __GFP_NOWARN);
11399 
11400 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11401 		free_percpu(p);
11402 
11403 	/* This READ_ONCE() pairs with the cmpxchg() above */
11404 	return READ_ONCE(dev->core_stats);
11405 }
11406 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11407 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11408 {
11409 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11410 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11411 	unsigned long __percpu *field;
11412 
11413 	if (unlikely(!p)) {
11414 		p = netdev_core_stats_alloc(dev);
11415 		if (!p)
11416 			return;
11417 	}
11418 
11419 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11420 	this_cpu_inc(*field);
11421 }
11422 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11423 
11424 /**
11425  *	dev_get_stats	- get network device statistics
11426  *	@dev: device to get statistics from
11427  *	@storage: place to store stats
11428  *
11429  *	Get network statistics from device. Return @storage.
11430  *	The device driver may provide its own method by setting
11431  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11432  *	otherwise the internal statistics structure is used.
11433  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11434 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11435 					struct rtnl_link_stats64 *storage)
11436 {
11437 	const struct net_device_ops *ops = dev->netdev_ops;
11438 	const struct net_device_core_stats __percpu *p;
11439 
11440 	/*
11441 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11442 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11443 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11444 	 */
11445 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11446 		     offsetof(struct pcpu_dstats, rx_bytes));
11447 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11448 		     offsetof(struct pcpu_dstats, rx_packets));
11449 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11450 		     offsetof(struct pcpu_dstats, tx_bytes));
11451 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11452 		     offsetof(struct pcpu_dstats, tx_packets));
11453 
11454 	if (ops->ndo_get_stats64) {
11455 		memset(storage, 0, sizeof(*storage));
11456 		ops->ndo_get_stats64(dev, storage);
11457 	} else if (ops->ndo_get_stats) {
11458 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11459 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11460 		dev_get_tstats64(dev, storage);
11461 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11462 		dev_get_dstats64(dev, storage);
11463 	} else {
11464 		netdev_stats_to_stats64(storage, &dev->stats);
11465 	}
11466 
11467 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11468 	p = READ_ONCE(dev->core_stats);
11469 	if (p) {
11470 		const struct net_device_core_stats *core_stats;
11471 		int i;
11472 
11473 		for_each_possible_cpu(i) {
11474 			core_stats = per_cpu_ptr(p, i);
11475 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11476 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11477 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11478 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11479 		}
11480 	}
11481 	return storage;
11482 }
11483 EXPORT_SYMBOL(dev_get_stats);
11484 
11485 /**
11486  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11487  *	@s: place to store stats
11488  *	@netstats: per-cpu network stats to read from
11489  *
11490  *	Read per-cpu network statistics and populate the related fields in @s.
11491  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11492 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11493 			   const struct pcpu_sw_netstats __percpu *netstats)
11494 {
11495 	int cpu;
11496 
11497 	for_each_possible_cpu(cpu) {
11498 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11499 		const struct pcpu_sw_netstats *stats;
11500 		unsigned int start;
11501 
11502 		stats = per_cpu_ptr(netstats, cpu);
11503 		do {
11504 			start = u64_stats_fetch_begin(&stats->syncp);
11505 			rx_packets = u64_stats_read(&stats->rx_packets);
11506 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11507 			tx_packets = u64_stats_read(&stats->tx_packets);
11508 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11509 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11510 
11511 		s->rx_packets += rx_packets;
11512 		s->rx_bytes   += rx_bytes;
11513 		s->tx_packets += tx_packets;
11514 		s->tx_bytes   += tx_bytes;
11515 	}
11516 }
11517 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11518 
11519 /**
11520  *	dev_get_tstats64 - ndo_get_stats64 implementation
11521  *	@dev: device to get statistics from
11522  *	@s: place to store stats
11523  *
11524  *	Populate @s from dev->stats and dev->tstats. Can be used as
11525  *	ndo_get_stats64() callback.
11526  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11527 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11528 {
11529 	netdev_stats_to_stats64(s, &dev->stats);
11530 	dev_fetch_sw_netstats(s, dev->tstats);
11531 }
11532 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11533 
dev_ingress_queue_create(struct net_device * dev)11534 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11535 {
11536 	struct netdev_queue *queue = dev_ingress_queue(dev);
11537 
11538 #ifdef CONFIG_NET_CLS_ACT
11539 	if (queue)
11540 		return queue;
11541 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11542 	if (!queue)
11543 		return NULL;
11544 	netdev_init_one_queue(dev, queue, NULL);
11545 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11546 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11547 	rcu_assign_pointer(dev->ingress_queue, queue);
11548 #endif
11549 	return queue;
11550 }
11551 
11552 static const struct ethtool_ops default_ethtool_ops;
11553 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11554 void netdev_set_default_ethtool_ops(struct net_device *dev,
11555 				    const struct ethtool_ops *ops)
11556 {
11557 	if (dev->ethtool_ops == &default_ethtool_ops)
11558 		dev->ethtool_ops = ops;
11559 }
11560 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11561 
11562 /**
11563  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11564  * @dev: netdev to enable the IRQ coalescing on
11565  *
11566  * Sets a conservative default for SW IRQ coalescing. Users can use
11567  * sysfs attributes to override the default values.
11568  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11569 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11570 {
11571 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11572 
11573 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11574 		netdev_set_gro_flush_timeout(dev, 20000);
11575 		netdev_set_defer_hard_irqs(dev, 1);
11576 	}
11577 }
11578 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11579 
11580 /**
11581  * alloc_netdev_mqs - allocate network device
11582  * @sizeof_priv: size of private data to allocate space for
11583  * @name: device name format string
11584  * @name_assign_type: origin of device name
11585  * @setup: callback to initialize device
11586  * @txqs: the number of TX subqueues to allocate
11587  * @rxqs: the number of RX subqueues to allocate
11588  *
11589  * Allocates a struct net_device with private data area for driver use
11590  * and performs basic initialization.  Also allocates subqueue structs
11591  * for each queue on the device.
11592  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11593 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11594 		unsigned char name_assign_type,
11595 		void (*setup)(struct net_device *),
11596 		unsigned int txqs, unsigned int rxqs)
11597 {
11598 	struct net_device *dev;
11599 	size_t napi_config_sz;
11600 	unsigned int maxqs;
11601 
11602 	BUG_ON(strlen(name) >= sizeof(dev->name));
11603 
11604 	if (txqs < 1) {
11605 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11606 		return NULL;
11607 	}
11608 
11609 	if (rxqs < 1) {
11610 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11611 		return NULL;
11612 	}
11613 
11614 	maxqs = max(txqs, rxqs);
11615 
11616 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11617 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11618 	if (!dev)
11619 		return NULL;
11620 
11621 	dev->priv_len = sizeof_priv;
11622 
11623 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11624 #ifdef CONFIG_PCPU_DEV_REFCNT
11625 	dev->pcpu_refcnt = alloc_percpu(int);
11626 	if (!dev->pcpu_refcnt)
11627 		goto free_dev;
11628 	__dev_hold(dev);
11629 #else
11630 	refcount_set(&dev->dev_refcnt, 1);
11631 #endif
11632 
11633 	if (dev_addr_init(dev))
11634 		goto free_pcpu;
11635 
11636 	dev_mc_init(dev);
11637 	dev_uc_init(dev);
11638 
11639 	dev_net_set(dev, &init_net);
11640 
11641 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11642 	dev->xdp_zc_max_segs = 1;
11643 	dev->gso_max_segs = GSO_MAX_SEGS;
11644 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11645 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11646 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11647 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11648 	dev->tso_max_segs = TSO_MAX_SEGS;
11649 	dev->upper_level = 1;
11650 	dev->lower_level = 1;
11651 #ifdef CONFIG_LOCKDEP
11652 	dev->nested_level = 0;
11653 	INIT_LIST_HEAD(&dev->unlink_list);
11654 #endif
11655 
11656 	INIT_LIST_HEAD(&dev->napi_list);
11657 	INIT_LIST_HEAD(&dev->unreg_list);
11658 	INIT_LIST_HEAD(&dev->close_list);
11659 	INIT_LIST_HEAD(&dev->link_watch_list);
11660 	INIT_LIST_HEAD(&dev->adj_list.upper);
11661 	INIT_LIST_HEAD(&dev->adj_list.lower);
11662 	INIT_LIST_HEAD(&dev->ptype_all);
11663 	INIT_LIST_HEAD(&dev->ptype_specific);
11664 	INIT_LIST_HEAD(&dev->net_notifier_list);
11665 #ifdef CONFIG_NET_SCHED
11666 	hash_init(dev->qdisc_hash);
11667 #endif
11668 
11669 	mutex_init(&dev->lock);
11670 
11671 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11672 	setup(dev);
11673 
11674 	if (!dev->tx_queue_len) {
11675 		dev->priv_flags |= IFF_NO_QUEUE;
11676 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11677 	}
11678 
11679 	dev->num_tx_queues = txqs;
11680 	dev->real_num_tx_queues = txqs;
11681 	if (netif_alloc_netdev_queues(dev))
11682 		goto free_all;
11683 
11684 	dev->num_rx_queues = rxqs;
11685 	dev->real_num_rx_queues = rxqs;
11686 	if (netif_alloc_rx_queues(dev))
11687 		goto free_all;
11688 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11689 	if (!dev->ethtool)
11690 		goto free_all;
11691 
11692 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11693 	if (!dev->cfg)
11694 		goto free_all;
11695 	dev->cfg_pending = dev->cfg;
11696 
11697 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11698 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11699 	if (!dev->napi_config)
11700 		goto free_all;
11701 
11702 	strscpy(dev->name, name);
11703 	dev->name_assign_type = name_assign_type;
11704 	dev->group = INIT_NETDEV_GROUP;
11705 	if (!dev->ethtool_ops)
11706 		dev->ethtool_ops = &default_ethtool_ops;
11707 
11708 	nf_hook_netdev_init(dev);
11709 
11710 	return dev;
11711 
11712 free_all:
11713 	free_netdev(dev);
11714 	return NULL;
11715 
11716 free_pcpu:
11717 #ifdef CONFIG_PCPU_DEV_REFCNT
11718 	free_percpu(dev->pcpu_refcnt);
11719 free_dev:
11720 #endif
11721 	kvfree(dev);
11722 	return NULL;
11723 }
11724 EXPORT_SYMBOL(alloc_netdev_mqs);
11725 
netdev_napi_exit(struct net_device * dev)11726 static void netdev_napi_exit(struct net_device *dev)
11727 {
11728 	if (!list_empty(&dev->napi_list)) {
11729 		struct napi_struct *p, *n;
11730 
11731 		netdev_lock(dev);
11732 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11733 			__netif_napi_del_locked(p);
11734 		netdev_unlock(dev);
11735 
11736 		synchronize_net();
11737 	}
11738 
11739 	kvfree(dev->napi_config);
11740 }
11741 
11742 /**
11743  * free_netdev - free network device
11744  * @dev: device
11745  *
11746  * This function does the last stage of destroying an allocated device
11747  * interface. The reference to the device object is released. If this
11748  * is the last reference then it will be freed.Must be called in process
11749  * context.
11750  */
free_netdev(struct net_device * dev)11751 void free_netdev(struct net_device *dev)
11752 {
11753 	might_sleep();
11754 
11755 	/* When called immediately after register_netdevice() failed the unwind
11756 	 * handling may still be dismantling the device. Handle that case by
11757 	 * deferring the free.
11758 	 */
11759 	if (dev->reg_state == NETREG_UNREGISTERING) {
11760 		ASSERT_RTNL();
11761 		dev->needs_free_netdev = true;
11762 		return;
11763 	}
11764 
11765 	WARN_ON(dev->cfg != dev->cfg_pending);
11766 	kfree(dev->cfg);
11767 	kfree(dev->ethtool);
11768 	netif_free_tx_queues(dev);
11769 	netif_free_rx_queues(dev);
11770 
11771 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11772 
11773 	/* Flush device addresses */
11774 	dev_addr_flush(dev);
11775 
11776 	netdev_napi_exit(dev);
11777 
11778 	netif_del_cpu_rmap(dev);
11779 
11780 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11781 #ifdef CONFIG_PCPU_DEV_REFCNT
11782 	free_percpu(dev->pcpu_refcnt);
11783 	dev->pcpu_refcnt = NULL;
11784 #endif
11785 	free_percpu(dev->core_stats);
11786 	dev->core_stats = NULL;
11787 	free_percpu(dev->xdp_bulkq);
11788 	dev->xdp_bulkq = NULL;
11789 
11790 	netdev_free_phy_link_topology(dev);
11791 
11792 	mutex_destroy(&dev->lock);
11793 
11794 	/*  Compatibility with error handling in drivers */
11795 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11796 	    dev->reg_state == NETREG_DUMMY) {
11797 		kvfree(dev);
11798 		return;
11799 	}
11800 
11801 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11802 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11803 
11804 	/* will free via device release */
11805 	put_device(&dev->dev);
11806 }
11807 EXPORT_SYMBOL(free_netdev);
11808 
11809 /**
11810  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11811  * @sizeof_priv: size of private data to allocate space for
11812  *
11813  * Return: the allocated net_device on success, NULL otherwise
11814  */
alloc_netdev_dummy(int sizeof_priv)11815 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11816 {
11817 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11818 			    init_dummy_netdev);
11819 }
11820 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11821 
11822 /**
11823  *	synchronize_net -  Synchronize with packet receive processing
11824  *
11825  *	Wait for packets currently being received to be done.
11826  *	Does not block later packets from starting.
11827  */
synchronize_net(void)11828 void synchronize_net(void)
11829 {
11830 	might_sleep();
11831 	if (from_cleanup_net() || rtnl_is_locked())
11832 		synchronize_rcu_expedited();
11833 	else
11834 		synchronize_rcu();
11835 }
11836 EXPORT_SYMBOL(synchronize_net);
11837 
netdev_rss_contexts_free(struct net_device * dev)11838 static void netdev_rss_contexts_free(struct net_device *dev)
11839 {
11840 	struct ethtool_rxfh_context *ctx;
11841 	unsigned long context;
11842 
11843 	mutex_lock(&dev->ethtool->rss_lock);
11844 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11845 		struct ethtool_rxfh_param rxfh;
11846 
11847 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11848 		rxfh.key = ethtool_rxfh_context_key(ctx);
11849 		rxfh.hfunc = ctx->hfunc;
11850 		rxfh.input_xfrm = ctx->input_xfrm;
11851 		rxfh.rss_context = context;
11852 		rxfh.rss_delete = true;
11853 
11854 		xa_erase(&dev->ethtool->rss_ctx, context);
11855 		if (dev->ethtool_ops->create_rxfh_context)
11856 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11857 							      context, NULL);
11858 		else
11859 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11860 		kfree(ctx);
11861 	}
11862 	xa_destroy(&dev->ethtool->rss_ctx);
11863 	mutex_unlock(&dev->ethtool->rss_lock);
11864 }
11865 
11866 /**
11867  *	unregister_netdevice_queue - remove device from the kernel
11868  *	@dev: device
11869  *	@head: list
11870  *
11871  *	This function shuts down a device interface and removes it
11872  *	from the kernel tables.
11873  *	If head not NULL, device is queued to be unregistered later.
11874  *
11875  *	Callers must hold the rtnl semaphore.  You may want
11876  *	unregister_netdev() instead of this.
11877  */
11878 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11879 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11880 {
11881 	ASSERT_RTNL();
11882 
11883 	if (head) {
11884 		list_move_tail(&dev->unreg_list, head);
11885 	} else {
11886 		LIST_HEAD(single);
11887 
11888 		list_add(&dev->unreg_list, &single);
11889 		unregister_netdevice_many(&single);
11890 	}
11891 }
11892 EXPORT_SYMBOL(unregister_netdevice_queue);
11893 
dev_memory_provider_uninstall(struct net_device * dev)11894 static void dev_memory_provider_uninstall(struct net_device *dev)
11895 {
11896 	unsigned int i;
11897 
11898 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11899 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11900 		struct pp_memory_provider_params *p = &rxq->mp_params;
11901 
11902 		if (p->mp_ops && p->mp_ops->uninstall)
11903 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11904 	}
11905 }
11906 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11907 void unregister_netdevice_many_notify(struct list_head *head,
11908 				      u32 portid, const struct nlmsghdr *nlh)
11909 {
11910 	struct net_device *dev, *tmp;
11911 	LIST_HEAD(close_head);
11912 	int cnt = 0;
11913 
11914 	BUG_ON(dev_boot_phase);
11915 	ASSERT_RTNL();
11916 
11917 	if (list_empty(head))
11918 		return;
11919 
11920 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11921 		/* Some devices call without registering
11922 		 * for initialization unwind. Remove those
11923 		 * devices and proceed with the remaining.
11924 		 */
11925 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11926 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11927 				 dev->name, dev);
11928 
11929 			WARN_ON(1);
11930 			list_del(&dev->unreg_list);
11931 			continue;
11932 		}
11933 		dev->dismantle = true;
11934 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11935 	}
11936 
11937 	/* If device is running, close it first. Start with ops locked... */
11938 	list_for_each_entry(dev, head, unreg_list) {
11939 		if (netdev_need_ops_lock(dev)) {
11940 			list_add_tail(&dev->close_list, &close_head);
11941 			netdev_lock(dev);
11942 		}
11943 	}
11944 	dev_close_many(&close_head, true);
11945 	/* ... now unlock them and go over the rest. */
11946 	list_for_each_entry(dev, head, unreg_list) {
11947 		if (netdev_need_ops_lock(dev))
11948 			netdev_unlock(dev);
11949 		else
11950 			list_add_tail(&dev->close_list, &close_head);
11951 	}
11952 	dev_close_many(&close_head, true);
11953 
11954 	list_for_each_entry(dev, head, unreg_list) {
11955 		/* And unlink it from device chain. */
11956 		unlist_netdevice(dev);
11957 		netdev_lock(dev);
11958 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11959 		netdev_unlock(dev);
11960 	}
11961 	flush_all_backlogs();
11962 
11963 	synchronize_net();
11964 
11965 	list_for_each_entry(dev, head, unreg_list) {
11966 		struct sk_buff *skb = NULL;
11967 
11968 		/* Shutdown queueing discipline. */
11969 		dev_shutdown(dev);
11970 		dev_tcx_uninstall(dev);
11971 		netdev_lock_ops(dev);
11972 		dev_xdp_uninstall(dev);
11973 		dev_memory_provider_uninstall(dev);
11974 		netdev_unlock_ops(dev);
11975 		bpf_dev_bound_netdev_unregister(dev);
11976 
11977 		netdev_offload_xstats_disable_all(dev);
11978 
11979 		/* Notify protocols, that we are about to destroy
11980 		 * this device. They should clean all the things.
11981 		 */
11982 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11983 
11984 		if (!dev->rtnl_link_ops ||
11985 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11986 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11987 						     GFP_KERNEL, NULL, 0,
11988 						     portid, nlh);
11989 
11990 		/*
11991 		 *	Flush the unicast and multicast chains
11992 		 */
11993 		dev_uc_flush(dev);
11994 		dev_mc_flush(dev);
11995 
11996 		netdev_name_node_alt_flush(dev);
11997 		netdev_name_node_free(dev->name_node);
11998 
11999 		netdev_rss_contexts_free(dev);
12000 
12001 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12002 
12003 		if (dev->netdev_ops->ndo_uninit)
12004 			dev->netdev_ops->ndo_uninit(dev);
12005 
12006 		mutex_destroy(&dev->ethtool->rss_lock);
12007 
12008 		net_shaper_flush_netdev(dev);
12009 
12010 		if (skb)
12011 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12012 
12013 		/* Notifier chain MUST detach us all upper devices. */
12014 		WARN_ON(netdev_has_any_upper_dev(dev));
12015 		WARN_ON(netdev_has_any_lower_dev(dev));
12016 
12017 		/* Remove entries from kobject tree */
12018 		netdev_unregister_kobject(dev);
12019 #ifdef CONFIG_XPS
12020 		/* Remove XPS queueing entries */
12021 		netif_reset_xps_queues_gt(dev, 0);
12022 #endif
12023 	}
12024 
12025 	synchronize_net();
12026 
12027 	list_for_each_entry(dev, head, unreg_list) {
12028 		netdev_put(dev, &dev->dev_registered_tracker);
12029 		net_set_todo(dev);
12030 		cnt++;
12031 	}
12032 	atomic_add(cnt, &dev_unreg_count);
12033 
12034 	list_del(head);
12035 }
12036 
12037 /**
12038  *	unregister_netdevice_many - unregister many devices
12039  *	@head: list of devices
12040  *
12041  *  Note: As most callers use a stack allocated list_head,
12042  *  we force a list_del() to make sure stack won't be corrupted later.
12043  */
unregister_netdevice_many(struct list_head * head)12044 void unregister_netdevice_many(struct list_head *head)
12045 {
12046 	unregister_netdevice_many_notify(head, 0, NULL);
12047 }
12048 EXPORT_SYMBOL(unregister_netdevice_many);
12049 
12050 /**
12051  *	unregister_netdev - remove device from the kernel
12052  *	@dev: device
12053  *
12054  *	This function shuts down a device interface and removes it
12055  *	from the kernel tables.
12056  *
12057  *	This is just a wrapper for unregister_netdevice that takes
12058  *	the rtnl semaphore.  In general you want to use this and not
12059  *	unregister_netdevice.
12060  */
unregister_netdev(struct net_device * dev)12061 void unregister_netdev(struct net_device *dev)
12062 {
12063 	rtnl_net_dev_lock(dev);
12064 	unregister_netdevice(dev);
12065 	rtnl_net_dev_unlock(dev);
12066 }
12067 EXPORT_SYMBOL(unregister_netdev);
12068 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12069 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12070 			       const char *pat, int new_ifindex,
12071 			       struct netlink_ext_ack *extack)
12072 {
12073 	struct netdev_name_node *name_node;
12074 	struct net *net_old = dev_net(dev);
12075 	char new_name[IFNAMSIZ] = {};
12076 	int err, new_nsid;
12077 
12078 	ASSERT_RTNL();
12079 
12080 	/* Don't allow namespace local devices to be moved. */
12081 	err = -EINVAL;
12082 	if (dev->netns_immutable) {
12083 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12084 		goto out;
12085 	}
12086 
12087 	/* Ensure the device has been registered */
12088 	if (dev->reg_state != NETREG_REGISTERED) {
12089 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12090 		goto out;
12091 	}
12092 
12093 	/* Get out if there is nothing todo */
12094 	err = 0;
12095 	if (net_eq(net_old, net))
12096 		goto out;
12097 
12098 	/* Pick the destination device name, and ensure
12099 	 * we can use it in the destination network namespace.
12100 	 */
12101 	err = -EEXIST;
12102 	if (netdev_name_in_use(net, dev->name)) {
12103 		/* We get here if we can't use the current device name */
12104 		if (!pat) {
12105 			NL_SET_ERR_MSG(extack,
12106 				       "An interface with the same name exists in the target netns");
12107 			goto out;
12108 		}
12109 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12110 		if (err < 0) {
12111 			NL_SET_ERR_MSG_FMT(extack,
12112 					   "Unable to use '%s' for the new interface name in the target netns",
12113 					   pat);
12114 			goto out;
12115 		}
12116 	}
12117 	/* Check that none of the altnames conflicts. */
12118 	err = -EEXIST;
12119 	netdev_for_each_altname(dev, name_node) {
12120 		if (netdev_name_in_use(net, name_node->name)) {
12121 			NL_SET_ERR_MSG_FMT(extack,
12122 					   "An interface with the altname %s exists in the target netns",
12123 					   name_node->name);
12124 			goto out;
12125 		}
12126 	}
12127 
12128 	/* Check that new_ifindex isn't used yet. */
12129 	if (new_ifindex) {
12130 		err = dev_index_reserve(net, new_ifindex);
12131 		if (err < 0) {
12132 			NL_SET_ERR_MSG_FMT(extack,
12133 					   "The ifindex %d is not available in the target netns",
12134 					   new_ifindex);
12135 			goto out;
12136 		}
12137 	} else {
12138 		/* If there is an ifindex conflict assign a new one */
12139 		err = dev_index_reserve(net, dev->ifindex);
12140 		if (err == -EBUSY)
12141 			err = dev_index_reserve(net, 0);
12142 		if (err < 0) {
12143 			NL_SET_ERR_MSG(extack,
12144 				       "Unable to allocate a new ifindex in the target netns");
12145 			goto out;
12146 		}
12147 		new_ifindex = err;
12148 	}
12149 
12150 	/*
12151 	 * And now a mini version of register_netdevice unregister_netdevice.
12152 	 */
12153 
12154 	netdev_lock_ops(dev);
12155 	/* If device is running close it first. */
12156 	netif_close(dev);
12157 	/* And unlink it from device chain */
12158 	unlist_netdevice(dev);
12159 	netdev_unlock_ops(dev);
12160 
12161 	synchronize_net();
12162 
12163 	/* Shutdown queueing discipline. */
12164 	dev_shutdown(dev);
12165 
12166 	/* Notify protocols, that we are about to destroy
12167 	 * this device. They should clean all the things.
12168 	 *
12169 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12170 	 * This is wanted because this way 8021q and macvlan know
12171 	 * the device is just moving and can keep their slaves up.
12172 	 */
12173 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12174 	rcu_barrier();
12175 
12176 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12177 
12178 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12179 			    new_ifindex);
12180 
12181 	/*
12182 	 *	Flush the unicast and multicast chains
12183 	 */
12184 	dev_uc_flush(dev);
12185 	dev_mc_flush(dev);
12186 
12187 	/* Send a netdev-removed uevent to the old namespace */
12188 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12189 	netdev_adjacent_del_links(dev);
12190 
12191 	/* Move per-net netdevice notifiers that are following the netdevice */
12192 	move_netdevice_notifiers_dev_net(dev, net);
12193 
12194 	/* Actually switch the network namespace */
12195 	dev_net_set(dev, net);
12196 	dev->ifindex = new_ifindex;
12197 
12198 	if (new_name[0]) {
12199 		/* Rename the netdev to prepared name */
12200 		write_seqlock_bh(&netdev_rename_lock);
12201 		strscpy(dev->name, new_name, IFNAMSIZ);
12202 		write_sequnlock_bh(&netdev_rename_lock);
12203 	}
12204 
12205 	/* Fixup kobjects */
12206 	dev_set_uevent_suppress(&dev->dev, 1);
12207 	err = device_rename(&dev->dev, dev->name);
12208 	dev_set_uevent_suppress(&dev->dev, 0);
12209 	WARN_ON(err);
12210 
12211 	/* Send a netdev-add uevent to the new namespace */
12212 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12213 	netdev_adjacent_add_links(dev);
12214 
12215 	/* Adapt owner in case owning user namespace of target network
12216 	 * namespace is different from the original one.
12217 	 */
12218 	err = netdev_change_owner(dev, net_old, net);
12219 	WARN_ON(err);
12220 
12221 	netdev_lock_ops(dev);
12222 	/* Add the device back in the hashes */
12223 	list_netdevice(dev);
12224 	/* Notify protocols, that a new device appeared. */
12225 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12226 	netdev_unlock_ops(dev);
12227 
12228 	/*
12229 	 *	Prevent userspace races by waiting until the network
12230 	 *	device is fully setup before sending notifications.
12231 	 */
12232 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12233 
12234 	synchronize_net();
12235 	err = 0;
12236 out:
12237 	return err;
12238 }
12239 
dev_cpu_dead(unsigned int oldcpu)12240 static int dev_cpu_dead(unsigned int oldcpu)
12241 {
12242 	struct sk_buff **list_skb;
12243 	struct sk_buff *skb;
12244 	unsigned int cpu;
12245 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12246 
12247 	local_irq_disable();
12248 	cpu = smp_processor_id();
12249 	sd = &per_cpu(softnet_data, cpu);
12250 	oldsd = &per_cpu(softnet_data, oldcpu);
12251 
12252 	/* Find end of our completion_queue. */
12253 	list_skb = &sd->completion_queue;
12254 	while (*list_skb)
12255 		list_skb = &(*list_skb)->next;
12256 	/* Append completion queue from offline CPU. */
12257 	*list_skb = oldsd->completion_queue;
12258 	oldsd->completion_queue = NULL;
12259 
12260 	/* Append output queue from offline CPU. */
12261 	if (oldsd->output_queue) {
12262 		*sd->output_queue_tailp = oldsd->output_queue;
12263 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12264 		oldsd->output_queue = NULL;
12265 		oldsd->output_queue_tailp = &oldsd->output_queue;
12266 	}
12267 	/* Append NAPI poll list from offline CPU, with one exception :
12268 	 * process_backlog() must be called by cpu owning percpu backlog.
12269 	 * We properly handle process_queue & input_pkt_queue later.
12270 	 */
12271 	while (!list_empty(&oldsd->poll_list)) {
12272 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12273 							    struct napi_struct,
12274 							    poll_list);
12275 
12276 		list_del_init(&napi->poll_list);
12277 		if (napi->poll == process_backlog)
12278 			napi->state &= NAPIF_STATE_THREADED;
12279 		else
12280 			____napi_schedule(sd, napi);
12281 	}
12282 
12283 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12284 	local_irq_enable();
12285 
12286 	if (!use_backlog_threads()) {
12287 #ifdef CONFIG_RPS
12288 		remsd = oldsd->rps_ipi_list;
12289 		oldsd->rps_ipi_list = NULL;
12290 #endif
12291 		/* send out pending IPI's on offline CPU */
12292 		net_rps_send_ipi(remsd);
12293 	}
12294 
12295 	/* Process offline CPU's input_pkt_queue */
12296 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12297 		netif_rx(skb);
12298 		rps_input_queue_head_incr(oldsd);
12299 	}
12300 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12301 		netif_rx(skb);
12302 		rps_input_queue_head_incr(oldsd);
12303 	}
12304 
12305 	return 0;
12306 }
12307 
12308 /**
12309  *	netdev_increment_features - increment feature set by one
12310  *	@all: current feature set
12311  *	@one: new feature set
12312  *	@mask: mask feature set
12313  *
12314  *	Computes a new feature set after adding a device with feature set
12315  *	@one to the master device with current feature set @all.  Will not
12316  *	enable anything that is off in @mask. Returns the new feature set.
12317  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12318 netdev_features_t netdev_increment_features(netdev_features_t all,
12319 	netdev_features_t one, netdev_features_t mask)
12320 {
12321 	if (mask & NETIF_F_HW_CSUM)
12322 		mask |= NETIF_F_CSUM_MASK;
12323 	mask |= NETIF_F_VLAN_CHALLENGED;
12324 
12325 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12326 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12327 
12328 	/* If one device supports hw checksumming, set for all. */
12329 	if (all & NETIF_F_HW_CSUM)
12330 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12331 
12332 	return all;
12333 }
12334 EXPORT_SYMBOL(netdev_increment_features);
12335 
netdev_create_hash(void)12336 static struct hlist_head * __net_init netdev_create_hash(void)
12337 {
12338 	int i;
12339 	struct hlist_head *hash;
12340 
12341 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12342 	if (hash != NULL)
12343 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12344 			INIT_HLIST_HEAD(&hash[i]);
12345 
12346 	return hash;
12347 }
12348 
12349 /* Initialize per network namespace state */
netdev_init(struct net * net)12350 static int __net_init netdev_init(struct net *net)
12351 {
12352 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12353 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12354 
12355 	INIT_LIST_HEAD(&net->dev_base_head);
12356 
12357 	net->dev_name_head = netdev_create_hash();
12358 	if (net->dev_name_head == NULL)
12359 		goto err_name;
12360 
12361 	net->dev_index_head = netdev_create_hash();
12362 	if (net->dev_index_head == NULL)
12363 		goto err_idx;
12364 
12365 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12366 
12367 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12368 
12369 	return 0;
12370 
12371 err_idx:
12372 	kfree(net->dev_name_head);
12373 err_name:
12374 	return -ENOMEM;
12375 }
12376 
12377 /**
12378  *	netdev_drivername - network driver for the device
12379  *	@dev: network device
12380  *
12381  *	Determine network driver for device.
12382  */
netdev_drivername(const struct net_device * dev)12383 const char *netdev_drivername(const struct net_device *dev)
12384 {
12385 	const struct device_driver *driver;
12386 	const struct device *parent;
12387 	const char *empty = "";
12388 
12389 	parent = dev->dev.parent;
12390 	if (!parent)
12391 		return empty;
12392 
12393 	driver = parent->driver;
12394 	if (driver && driver->name)
12395 		return driver->name;
12396 	return empty;
12397 }
12398 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12399 static void __netdev_printk(const char *level, const struct net_device *dev,
12400 			    struct va_format *vaf)
12401 {
12402 	if (dev && dev->dev.parent) {
12403 		dev_printk_emit(level[1] - '0',
12404 				dev->dev.parent,
12405 				"%s %s %s%s: %pV",
12406 				dev_driver_string(dev->dev.parent),
12407 				dev_name(dev->dev.parent),
12408 				netdev_name(dev), netdev_reg_state(dev),
12409 				vaf);
12410 	} else if (dev) {
12411 		printk("%s%s%s: %pV",
12412 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12413 	} else {
12414 		printk("%s(NULL net_device): %pV", level, vaf);
12415 	}
12416 }
12417 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12418 void netdev_printk(const char *level, const struct net_device *dev,
12419 		   const char *format, ...)
12420 {
12421 	struct va_format vaf;
12422 	va_list args;
12423 
12424 	va_start(args, format);
12425 
12426 	vaf.fmt = format;
12427 	vaf.va = &args;
12428 
12429 	__netdev_printk(level, dev, &vaf);
12430 
12431 	va_end(args);
12432 }
12433 EXPORT_SYMBOL(netdev_printk);
12434 
12435 #define define_netdev_printk_level(func, level)			\
12436 void func(const struct net_device *dev, const char *fmt, ...)	\
12437 {								\
12438 	struct va_format vaf;					\
12439 	va_list args;						\
12440 								\
12441 	va_start(args, fmt);					\
12442 								\
12443 	vaf.fmt = fmt;						\
12444 	vaf.va = &args;						\
12445 								\
12446 	__netdev_printk(level, dev, &vaf);			\
12447 								\
12448 	va_end(args);						\
12449 }								\
12450 EXPORT_SYMBOL(func);
12451 
12452 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12453 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12454 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12455 define_netdev_printk_level(netdev_err, KERN_ERR);
12456 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12457 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12458 define_netdev_printk_level(netdev_info, KERN_INFO);
12459 
netdev_exit(struct net * net)12460 static void __net_exit netdev_exit(struct net *net)
12461 {
12462 	kfree(net->dev_name_head);
12463 	kfree(net->dev_index_head);
12464 	xa_destroy(&net->dev_by_index);
12465 	if (net != &init_net)
12466 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12467 }
12468 
12469 static struct pernet_operations __net_initdata netdev_net_ops = {
12470 	.init = netdev_init,
12471 	.exit = netdev_exit,
12472 };
12473 
default_device_exit_net(struct net * net)12474 static void __net_exit default_device_exit_net(struct net *net)
12475 {
12476 	struct netdev_name_node *name_node, *tmp;
12477 	struct net_device *dev, *aux;
12478 	/*
12479 	 * Push all migratable network devices back to the
12480 	 * initial network namespace
12481 	 */
12482 	ASSERT_RTNL();
12483 	for_each_netdev_safe(net, dev, aux) {
12484 		int err;
12485 		char fb_name[IFNAMSIZ];
12486 
12487 		/* Ignore unmoveable devices (i.e. loopback) */
12488 		if (dev->netns_immutable)
12489 			continue;
12490 
12491 		/* Leave virtual devices for the generic cleanup */
12492 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12493 			continue;
12494 
12495 		/* Push remaining network devices to init_net */
12496 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12497 		if (netdev_name_in_use(&init_net, fb_name))
12498 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12499 
12500 		netdev_for_each_altname_safe(dev, name_node, tmp)
12501 			if (netdev_name_in_use(&init_net, name_node->name))
12502 				__netdev_name_node_alt_destroy(name_node);
12503 
12504 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12505 		if (err) {
12506 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12507 				 __func__, dev->name, err);
12508 			BUG();
12509 		}
12510 	}
12511 }
12512 
default_device_exit_batch(struct list_head * net_list)12513 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12514 {
12515 	/* At exit all network devices most be removed from a network
12516 	 * namespace.  Do this in the reverse order of registration.
12517 	 * Do this across as many network namespaces as possible to
12518 	 * improve batching efficiency.
12519 	 */
12520 	struct net_device *dev;
12521 	struct net *net;
12522 	LIST_HEAD(dev_kill_list);
12523 
12524 	rtnl_lock();
12525 	list_for_each_entry(net, net_list, exit_list) {
12526 		default_device_exit_net(net);
12527 		cond_resched();
12528 	}
12529 
12530 	list_for_each_entry(net, net_list, exit_list) {
12531 		for_each_netdev_reverse(net, dev) {
12532 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12533 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12534 			else
12535 				unregister_netdevice_queue(dev, &dev_kill_list);
12536 		}
12537 	}
12538 	unregister_netdevice_many(&dev_kill_list);
12539 	rtnl_unlock();
12540 }
12541 
12542 static struct pernet_operations __net_initdata default_device_ops = {
12543 	.exit_batch = default_device_exit_batch,
12544 };
12545 
net_dev_struct_check(void)12546 static void __init net_dev_struct_check(void)
12547 {
12548 	/* TX read-mostly hotpath */
12549 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12551 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12553 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12554 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12556 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12557 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12559 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12560 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12561 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12562 #ifdef CONFIG_XPS
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12564 #endif
12565 #ifdef CONFIG_NETFILTER_EGRESS
12566 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12567 #endif
12568 #ifdef CONFIG_NET_XGRESS
12569 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12570 #endif
12571 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12572 
12573 	/* TXRX read-mostly hotpath */
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12577 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12578 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12579 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12580 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12581 
12582 	/* RX read-mostly hotpath */
12583 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12584 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12586 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12587 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12588 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12589 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12590 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12591 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12592 #ifdef CONFIG_NETPOLL
12593 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12594 #endif
12595 #ifdef CONFIG_NET_XGRESS
12596 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12597 #endif
12598 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12599 }
12600 
12601 /*
12602  *	Initialize the DEV module. At boot time this walks the device list and
12603  *	unhooks any devices that fail to initialise (normally hardware not
12604  *	present) and leaves us with a valid list of present and active devices.
12605  *
12606  */
12607 
12608 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12609 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12610 
net_page_pool_create(int cpuid)12611 static int net_page_pool_create(int cpuid)
12612 {
12613 #if IS_ENABLED(CONFIG_PAGE_POOL)
12614 	struct page_pool_params page_pool_params = {
12615 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12616 		.flags = PP_FLAG_SYSTEM_POOL,
12617 		.nid = cpu_to_mem(cpuid),
12618 	};
12619 	struct page_pool *pp_ptr;
12620 	int err;
12621 
12622 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12623 	if (IS_ERR(pp_ptr))
12624 		return -ENOMEM;
12625 
12626 	err = xdp_reg_page_pool(pp_ptr);
12627 	if (err) {
12628 		page_pool_destroy(pp_ptr);
12629 		return err;
12630 	}
12631 
12632 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12633 #endif
12634 	return 0;
12635 }
12636 
backlog_napi_should_run(unsigned int cpu)12637 static int backlog_napi_should_run(unsigned int cpu)
12638 {
12639 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12640 	struct napi_struct *napi = &sd->backlog;
12641 
12642 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12643 }
12644 
run_backlog_napi(unsigned int cpu)12645 static void run_backlog_napi(unsigned int cpu)
12646 {
12647 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12648 
12649 	napi_threaded_poll_loop(&sd->backlog);
12650 }
12651 
backlog_napi_setup(unsigned int cpu)12652 static void backlog_napi_setup(unsigned int cpu)
12653 {
12654 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12655 	struct napi_struct *napi = &sd->backlog;
12656 
12657 	napi->thread = this_cpu_read(backlog_napi);
12658 	set_bit(NAPI_STATE_THREADED, &napi->state);
12659 }
12660 
12661 static struct smp_hotplug_thread backlog_threads = {
12662 	.store			= &backlog_napi,
12663 	.thread_should_run	= backlog_napi_should_run,
12664 	.thread_fn		= run_backlog_napi,
12665 	.thread_comm		= "backlog_napi/%u",
12666 	.setup			= backlog_napi_setup,
12667 };
12668 
12669 /*
12670  *       This is called single threaded during boot, so no need
12671  *       to take the rtnl semaphore.
12672  */
net_dev_init(void)12673 static int __init net_dev_init(void)
12674 {
12675 	int i, rc = -ENOMEM;
12676 
12677 	BUG_ON(!dev_boot_phase);
12678 
12679 	net_dev_struct_check();
12680 
12681 	if (dev_proc_init())
12682 		goto out;
12683 
12684 	if (netdev_kobject_init())
12685 		goto out;
12686 
12687 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12688 		INIT_LIST_HEAD(&ptype_base[i]);
12689 
12690 	if (register_pernet_subsys(&netdev_net_ops))
12691 		goto out;
12692 
12693 	/*
12694 	 *	Initialise the packet receive queues.
12695 	 */
12696 
12697 	flush_backlogs_fallback = flush_backlogs_alloc();
12698 	if (!flush_backlogs_fallback)
12699 		goto out;
12700 
12701 	for_each_possible_cpu(i) {
12702 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12703 
12704 		skb_queue_head_init(&sd->input_pkt_queue);
12705 		skb_queue_head_init(&sd->process_queue);
12706 #ifdef CONFIG_XFRM_OFFLOAD
12707 		skb_queue_head_init(&sd->xfrm_backlog);
12708 #endif
12709 		INIT_LIST_HEAD(&sd->poll_list);
12710 		sd->output_queue_tailp = &sd->output_queue;
12711 #ifdef CONFIG_RPS
12712 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12713 		sd->cpu = i;
12714 #endif
12715 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12716 		spin_lock_init(&sd->defer_lock);
12717 
12718 		gro_init(&sd->backlog.gro);
12719 		sd->backlog.poll = process_backlog;
12720 		sd->backlog.weight = weight_p;
12721 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12722 
12723 		if (net_page_pool_create(i))
12724 			goto out;
12725 	}
12726 	if (use_backlog_threads())
12727 		smpboot_register_percpu_thread(&backlog_threads);
12728 
12729 	dev_boot_phase = 0;
12730 
12731 	/* The loopback device is special if any other network devices
12732 	 * is present in a network namespace the loopback device must
12733 	 * be present. Since we now dynamically allocate and free the
12734 	 * loopback device ensure this invariant is maintained by
12735 	 * keeping the loopback device as the first device on the
12736 	 * list of network devices.  Ensuring the loopback devices
12737 	 * is the first device that appears and the last network device
12738 	 * that disappears.
12739 	 */
12740 	if (register_pernet_device(&loopback_net_ops))
12741 		goto out;
12742 
12743 	if (register_pernet_device(&default_device_ops))
12744 		goto out;
12745 
12746 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12747 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12748 
12749 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12750 				       NULL, dev_cpu_dead);
12751 	WARN_ON(rc < 0);
12752 	rc = 0;
12753 
12754 	/* avoid static key IPIs to isolated CPUs */
12755 	if (housekeeping_enabled(HK_TYPE_MISC))
12756 		net_enable_timestamp();
12757 out:
12758 	if (rc < 0) {
12759 		for_each_possible_cpu(i) {
12760 			struct page_pool *pp_ptr;
12761 
12762 			pp_ptr = per_cpu(system_page_pool, i);
12763 			if (!pp_ptr)
12764 				continue;
12765 
12766 			xdp_unreg_page_pool(pp_ptr);
12767 			page_pool_destroy(pp_ptr);
12768 			per_cpu(system_page_pool, i) = NULL;
12769 		}
12770 	}
12771 
12772 	return rc;
12773 }
12774 
12775 subsys_initcall(net_dev_init);
12776