xref: /linux/net/core/dev.c (revision 8bf22c33e7a172fbc72464f4cc484d23a6b412ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	} else {
237 		local_irq_save(*flags);
238 		if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
239 			spin_lock(&sd->input_pkt_queue.lock);
240 	}
241 }
242 
backlog_lock_irq_disable(struct softnet_data * sd)243 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
244 {
245 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
246 		spin_lock_irq(&sd->input_pkt_queue.lock);
247 	else
248 		local_irq_disable();
249 }
250 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long flags)251 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
252 					      unsigned long flags)
253 {
254 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
255 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, flags);
256 	} else {
257 		if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 			spin_unlock(&sd->input_pkt_queue.lock);
259 		local_irq_restore(flags);
260 	}
261 }
262 
backlog_unlock_irq_enable(struct softnet_data * sd)263 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
264 {
265 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
266 		spin_unlock_irq(&sd->input_pkt_queue.lock);
267 	else
268 		local_irq_enable();
269 }
270 
netdev_name_node_alloc(struct net_device * dev,const char * name)271 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
272 						       const char *name)
273 {
274 	struct netdev_name_node *name_node;
275 
276 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
277 	if (!name_node)
278 		return NULL;
279 	INIT_HLIST_NODE(&name_node->hlist);
280 	name_node->dev = dev;
281 	name_node->name = name;
282 	return name_node;
283 }
284 
285 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)286 netdev_name_node_head_alloc(struct net_device *dev)
287 {
288 	struct netdev_name_node *name_node;
289 
290 	name_node = netdev_name_node_alloc(dev, dev->name);
291 	if (!name_node)
292 		return NULL;
293 	INIT_LIST_HEAD(&name_node->list);
294 	return name_node;
295 }
296 
netdev_name_node_free(struct netdev_name_node * name_node)297 static void netdev_name_node_free(struct netdev_name_node *name_node)
298 {
299 	kfree(name_node);
300 }
301 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)302 static void netdev_name_node_add(struct net *net,
303 				 struct netdev_name_node *name_node)
304 {
305 	hlist_add_head_rcu(&name_node->hlist,
306 			   dev_name_hash(net, name_node->name));
307 }
308 
netdev_name_node_del(struct netdev_name_node * name_node)309 static void netdev_name_node_del(struct netdev_name_node *name_node)
310 {
311 	hlist_del_rcu(&name_node->hlist);
312 }
313 
netdev_name_node_lookup(struct net * net,const char * name)314 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
315 							const char *name)
316 {
317 	struct hlist_head *head = dev_name_hash(net, name);
318 	struct netdev_name_node *name_node;
319 
320 	hlist_for_each_entry(name_node, head, hlist)
321 		if (!strcmp(name_node->name, name))
322 			return name_node;
323 	return NULL;
324 }
325 
netdev_name_node_lookup_rcu(struct net * net,const char * name)326 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
327 							    const char *name)
328 {
329 	struct hlist_head *head = dev_name_hash(net, name);
330 	struct netdev_name_node *name_node;
331 
332 	hlist_for_each_entry_rcu(name_node, head, hlist)
333 		if (!strcmp(name_node->name, name))
334 			return name_node;
335 	return NULL;
336 }
337 
netdev_name_in_use(struct net * net,const char * name)338 bool netdev_name_in_use(struct net *net, const char *name)
339 {
340 	return netdev_name_node_lookup(net, name);
341 }
342 EXPORT_SYMBOL(netdev_name_in_use);
343 
netdev_name_node_alt_create(struct net_device * dev,const char * name)344 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
345 {
346 	struct netdev_name_node *name_node;
347 	struct net *net = dev_net(dev);
348 
349 	name_node = netdev_name_node_lookup(net, name);
350 	if (name_node)
351 		return -EEXIST;
352 	name_node = netdev_name_node_alloc(dev, name);
353 	if (!name_node)
354 		return -ENOMEM;
355 	netdev_name_node_add(net, name_node);
356 	/* The node that holds dev->name acts as a head of per-device list. */
357 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
358 
359 	return 0;
360 }
361 
netdev_name_node_alt_free(struct rcu_head * head)362 static void netdev_name_node_alt_free(struct rcu_head *head)
363 {
364 	struct netdev_name_node *name_node =
365 		container_of(head, struct netdev_name_node, rcu);
366 
367 	kfree(name_node->name);
368 	netdev_name_node_free(name_node);
369 }
370 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)371 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
372 {
373 	netdev_name_node_del(name_node);
374 	list_del(&name_node->list);
375 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
376 }
377 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)378 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
379 {
380 	struct netdev_name_node *name_node;
381 	struct net *net = dev_net(dev);
382 
383 	name_node = netdev_name_node_lookup(net, name);
384 	if (!name_node)
385 		return -ENOENT;
386 	/* lookup might have found our primary name or a name belonging
387 	 * to another device.
388 	 */
389 	if (name_node == dev->name_node || name_node->dev != dev)
390 		return -EINVAL;
391 
392 	__netdev_name_node_alt_destroy(name_node);
393 	return 0;
394 }
395 
netdev_name_node_alt_flush(struct net_device * dev)396 static void netdev_name_node_alt_flush(struct net_device *dev)
397 {
398 	struct netdev_name_node *name_node, *tmp;
399 
400 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
401 		list_del(&name_node->list);
402 		netdev_name_node_alt_free(&name_node->rcu);
403 	}
404 }
405 
406 /* Device list insertion */
list_netdevice(struct net_device * dev)407 static void list_netdevice(struct net_device *dev)
408 {
409 	struct netdev_name_node *name_node;
410 	struct net *net = dev_net(dev);
411 
412 	ASSERT_RTNL();
413 
414 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
415 	netdev_name_node_add(net, dev->name_node);
416 	hlist_add_head_rcu(&dev->index_hlist,
417 			   dev_index_hash(net, dev->ifindex));
418 
419 	netdev_for_each_altname(dev, name_node)
420 		netdev_name_node_add(net, name_node);
421 
422 	/* We reserved the ifindex, this can't fail */
423 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
424 
425 	dev_base_seq_inc(net);
426 }
427 
428 /* Device list removal
429  * caller must respect a RCU grace period before freeing/reusing dev
430  */
unlist_netdevice(struct net_device * dev)431 static void unlist_netdevice(struct net_device *dev)
432 {
433 	struct netdev_name_node *name_node;
434 	struct net *net = dev_net(dev);
435 
436 	ASSERT_RTNL();
437 
438 	xa_erase(&net->dev_by_index, dev->ifindex);
439 
440 	netdev_for_each_altname(dev, name_node)
441 		netdev_name_node_del(name_node);
442 
443 	/* Unlink dev from the device chain */
444 	list_del_rcu(&dev->dev_list);
445 	netdev_name_node_del(dev->name_node);
446 	hlist_del_rcu(&dev->index_hlist);
447 
448 	dev_base_seq_inc(dev_net(dev));
449 }
450 
451 /*
452  *	Our notifier list
453  */
454 
455 static RAW_NOTIFIER_HEAD(netdev_chain);
456 
457 /*
458  *	Device drivers call our routines to queue packets here. We empty the
459  *	queue in the local softnet handler.
460  */
461 
462 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
463 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
464 };
465 EXPORT_PER_CPU_SYMBOL(softnet_data);
466 
467 /* Page_pool has a lockless array/stack to alloc/recycle pages.
468  * PP consumers must pay attention to run APIs in the appropriate context
469  * (e.g. NAPI context).
470  */
471 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
472 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
473 };
474 
475 #ifdef CONFIG_LOCKDEP
476 /*
477  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
478  * according to dev->type
479  */
480 static const unsigned short netdev_lock_type[] = {
481 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
482 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
483 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
484 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
485 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
486 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
487 	 ARPHRD_CAN, ARPHRD_MCTP,
488 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
489 	 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
490 	 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
491 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
492 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
493 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
494 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
495 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
496 	 ARPHRD_IEEE80211_RADIOTAP,
497 	 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
498 	 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
499 	 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
500 	 ARPHRD_VSOCKMON,
501 	 ARPHRD_VOID, ARPHRD_NONE};
502 
503 static const char *const netdev_lock_name[] = {
504 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
505 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
506 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
507 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
508 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
509 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
510 	"_xmit_CAN", "_xmit_MCTP",
511 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
512 	"_xmit_RAWHDLC", "_xmit_RAWIP",
513 	"_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
514 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
515 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
516 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
517 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
518 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
519 	"_xmit_IEEE80211_RADIOTAP",
520 	"_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
521 	"_xmit_PHONET", "_xmit_PHONET_PIPE",
522 	"_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
523 	"_xmit_VSOCKMON",
524 	"_xmit_VOID", "_xmit_NONE"};
525 
526 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
527 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
528 
netdev_lock_pos(unsigned short dev_type)529 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
530 {
531 	int i;
532 
533 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
534 		if (netdev_lock_type[i] == dev_type)
535 			return i;
536 	/* the last key is used by default */
537 	WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
538 	return ARRAY_SIZE(netdev_lock_type) - 1;
539 }
540 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)541 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
542 						 unsigned short dev_type)
543 {
544 	int i;
545 
546 	i = netdev_lock_pos(dev_type);
547 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
548 				   netdev_lock_name[i]);
549 }
550 
netdev_set_addr_lockdep_class(struct net_device * dev)551 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
552 {
553 	int i;
554 
555 	i = netdev_lock_pos(dev->type);
556 	lockdep_set_class_and_name(&dev->addr_list_lock,
557 				   &netdev_addr_lock_key[i],
558 				   netdev_lock_name[i]);
559 }
560 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)561 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
562 						 unsigned short dev_type)
563 {
564 }
565 
netdev_set_addr_lockdep_class(struct net_device * dev)566 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
567 {
568 }
569 #endif
570 
571 /*******************************************************************************
572  *
573  *		Protocol management and registration routines
574  *
575  *******************************************************************************/
576 
577 
578 /*
579  *	Add a protocol ID to the list. Now that the input handler is
580  *	smarter we can dispense with all the messy stuff that used to be
581  *	here.
582  *
583  *	BEWARE!!! Protocol handlers, mangling input packets,
584  *	MUST BE last in hash buckets and checking protocol handlers
585  *	MUST start from promiscuous ptype_all chain in net_bh.
586  *	It is true now, do not change it.
587  *	Explanation follows: if protocol handler, mangling packet, will
588  *	be the first on list, it is not able to sense, that packet
589  *	is cloned and should be copied-on-write, so that it will
590  *	change it and subsequent readers will get broken packet.
591  *							--ANK (980803)
592  */
593 
ptype_head(const struct packet_type * pt)594 static inline struct list_head *ptype_head(const struct packet_type *pt)
595 {
596 	if (pt->type == htons(ETH_P_ALL)) {
597 		if (!pt->af_packet_net && !pt->dev)
598 			return NULL;
599 
600 		return pt->dev ? &pt->dev->ptype_all :
601 				 &pt->af_packet_net->ptype_all;
602 	}
603 
604 	if (pt->dev)
605 		return &pt->dev->ptype_specific;
606 
607 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
608 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
609 }
610 
611 /**
612  *	dev_add_pack - add packet handler
613  *	@pt: packet type declaration
614  *
615  *	Add a protocol handler to the networking stack. The passed &packet_type
616  *	is linked into kernel lists and may not be freed until it has been
617  *	removed from the kernel lists.
618  *
619  *	This call does not sleep therefore it can not
620  *	guarantee all CPU's that are in middle of receiving packets
621  *	will see the new packet type (until the next received packet).
622  */
623 
dev_add_pack(struct packet_type * pt)624 void dev_add_pack(struct packet_type *pt)
625 {
626 	struct list_head *head = ptype_head(pt);
627 
628 	if (WARN_ON_ONCE(!head))
629 		return;
630 
631 	spin_lock(&ptype_lock);
632 	list_add_rcu(&pt->list, head);
633 	spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(dev_add_pack);
636 
637 /**
638  *	__dev_remove_pack	 - remove packet handler
639  *	@pt: packet type declaration
640  *
641  *	Remove a protocol handler that was previously added to the kernel
642  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
643  *	from the kernel lists and can be freed or reused once this function
644  *	returns.
645  *
646  *      The packet type might still be in use by receivers
647  *	and must not be freed until after all the CPU's have gone
648  *	through a quiescent state.
649  */
__dev_remove_pack(struct packet_type * pt)650 void __dev_remove_pack(struct packet_type *pt)
651 {
652 	struct list_head *head = ptype_head(pt);
653 	struct packet_type *pt1;
654 
655 	if (!head)
656 		return;
657 
658 	spin_lock(&ptype_lock);
659 
660 	list_for_each_entry(pt1, head, list) {
661 		if (pt == pt1) {
662 			list_del_rcu(&pt->list);
663 			goto out;
664 		}
665 	}
666 
667 	pr_warn("dev_remove_pack: %p not found\n", pt);
668 out:
669 	spin_unlock(&ptype_lock);
670 }
671 EXPORT_SYMBOL(__dev_remove_pack);
672 
673 /**
674  *	dev_remove_pack	 - remove packet handler
675  *	@pt: packet type declaration
676  *
677  *	Remove a protocol handler that was previously added to the kernel
678  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
679  *	from the kernel lists and can be freed or reused once this function
680  *	returns.
681  *
682  *	This call sleeps to guarantee that no CPU is looking at the packet
683  *	type after return.
684  */
dev_remove_pack(struct packet_type * pt)685 void dev_remove_pack(struct packet_type *pt)
686 {
687 	__dev_remove_pack(pt);
688 
689 	synchronize_net();
690 }
691 EXPORT_SYMBOL(dev_remove_pack);
692 
693 
694 /*******************************************************************************
695  *
696  *			    Device Interface Subroutines
697  *
698  *******************************************************************************/
699 
700 /**
701  *	dev_get_iflink	- get 'iflink' value of a interface
702  *	@dev: targeted interface
703  *
704  *	Indicates the ifindex the interface is linked to.
705  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
706  */
707 
dev_get_iflink(const struct net_device * dev)708 int dev_get_iflink(const struct net_device *dev)
709 {
710 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
711 		return dev->netdev_ops->ndo_get_iflink(dev);
712 
713 	return READ_ONCE(dev->ifindex);
714 }
715 EXPORT_SYMBOL(dev_get_iflink);
716 
717 /**
718  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
719  *	@dev: targeted interface
720  *	@skb: The packet.
721  *
722  *	For better visibility of tunnel traffic OVS needs to retrieve
723  *	egress tunnel information for a packet. Following API allows
724  *	user to get this info.
725  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)726 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
727 {
728 	struct ip_tunnel_info *info;
729 
730 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
731 		return -EINVAL;
732 
733 	info = skb_tunnel_info_unclone(skb);
734 	if (!info)
735 		return -ENOMEM;
736 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
737 		return -EINVAL;
738 
739 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
740 }
741 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
742 
dev_fwd_path(struct net_device_path_stack * stack)743 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
744 {
745 	int k = stack->num_paths++;
746 
747 	if (k >= NET_DEVICE_PATH_STACK_MAX)
748 		return NULL;
749 
750 	return &stack->path[k];
751 }
752 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)753 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
754 			  struct net_device_path_stack *stack)
755 {
756 	const struct net_device *last_dev;
757 	struct net_device_path_ctx ctx = {
758 		.dev	= dev,
759 	};
760 	struct net_device_path *path;
761 	int ret = 0;
762 
763 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
764 	stack->num_paths = 0;
765 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
766 		last_dev = ctx.dev;
767 		path = dev_fwd_path(stack);
768 		if (!path)
769 			return -1;
770 
771 		memset(path, 0, sizeof(struct net_device_path));
772 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
773 		if (ret < 0)
774 			return -1;
775 
776 		if (WARN_ON_ONCE(last_dev == ctx.dev))
777 			return -1;
778 	}
779 
780 	if (!ctx.dev)
781 		return ret;
782 
783 	path = dev_fwd_path(stack);
784 	if (!path)
785 		return -1;
786 	path->type = DEV_PATH_ETHERNET;
787 	path->dev = ctx.dev;
788 
789 	return ret;
790 }
791 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
792 
793 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)794 static struct napi_struct *napi_by_id(unsigned int napi_id)
795 {
796 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
797 	struct napi_struct *napi;
798 
799 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
800 		if (napi->napi_id == napi_id)
801 			return napi;
802 
803 	return NULL;
804 }
805 
806 /* must be called under rcu_read_lock(), as we dont take a reference */
807 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)808 netdev_napi_by_id(struct net *net, unsigned int napi_id)
809 {
810 	struct napi_struct *napi;
811 
812 	napi = napi_by_id(napi_id);
813 	if (!napi)
814 		return NULL;
815 
816 	if (WARN_ON_ONCE(!napi->dev))
817 		return NULL;
818 	if (!net_eq(net, dev_net(napi->dev)))
819 		return NULL;
820 
821 	return napi;
822 }
823 
824 /**
825  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
826  *	@net: the applicable net namespace
827  *	@napi_id: ID of a NAPI of a target device
828  *
829  *	Find a NAPI instance with @napi_id. Lock its device.
830  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
831  *	netdev_unlock() must be called to release it.
832  *
833  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
834  */
835 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)836 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
837 {
838 	struct napi_struct *napi;
839 	struct net_device *dev;
840 
841 	rcu_read_lock();
842 	napi = netdev_napi_by_id(net, napi_id);
843 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
844 		rcu_read_unlock();
845 		return NULL;
846 	}
847 
848 	dev = napi->dev;
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 
852 	dev = __netdev_put_lock(dev, net);
853 	if (!dev)
854 		return NULL;
855 
856 	rcu_read_lock();
857 	napi = netdev_napi_by_id(net, napi_id);
858 	if (napi && napi->dev != dev)
859 		napi = NULL;
860 	rcu_read_unlock();
861 
862 	if (!napi)
863 		netdev_unlock(dev);
864 	return napi;
865 }
866 
867 /**
868  *	__dev_get_by_name	- find a device by its name
869  *	@net: the applicable net namespace
870  *	@name: name to find
871  *
872  *	Find an interface by name. Must be called under RTNL semaphore.
873  *	If the name is found a pointer to the device is returned.
874  *	If the name is not found then %NULL is returned. The
875  *	reference counters are not incremented so the caller must be
876  *	careful with locks.
877  */
878 
__dev_get_by_name(struct net * net,const char * name)879 struct net_device *__dev_get_by_name(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(__dev_get_by_name);
887 
888 /**
889  * dev_get_by_name_rcu	- find a device by its name
890  * @net: the applicable net namespace
891  * @name: name to find
892  *
893  * Find an interface by name.
894  * If the name is found a pointer to the device is returned.
895  * If the name is not found then %NULL is returned.
896  * The reference counters are not incremented so the caller must be
897  * careful with locks. The caller must hold RCU lock.
898  */
899 
dev_get_by_name_rcu(struct net * net,const char * name)900 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
901 {
902 	struct netdev_name_node *node_name;
903 
904 	node_name = netdev_name_node_lookup_rcu(net, name);
905 	return node_name ? node_name->dev : NULL;
906 }
907 EXPORT_SYMBOL(dev_get_by_name_rcu);
908 
909 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 	struct net_device *dev;
913 
914 	rcu_read_lock();
915 	dev = dev_get_by_name_rcu(net, name);
916 	dev_hold(dev);
917 	rcu_read_unlock();
918 	return dev;
919 }
920 EXPORT_SYMBOL(dev_get_by_name);
921 
922 /**
923  *	netdev_get_by_name() - find a device by its name
924  *	@net: the applicable net namespace
925  *	@name: name to find
926  *	@tracker: tracking object for the acquired reference
927  *	@gfp: allocation flags for the tracker
928  *
929  *	Find an interface by name. This can be called from any
930  *	context and does its own locking. The returned handle has
931  *	the usage count incremented and the caller must use netdev_put() to
932  *	release it when it is no longer needed. %NULL is returned if no
933  *	matching device is found.
934  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)935 struct net_device *netdev_get_by_name(struct net *net, const char *name,
936 				      netdevice_tracker *tracker, gfp_t gfp)
937 {
938 	struct net_device *dev;
939 
940 	dev = dev_get_by_name(net, name);
941 	if (dev)
942 		netdev_tracker_alloc(dev, tracker, gfp);
943 	return dev;
944 }
945 EXPORT_SYMBOL(netdev_get_by_name);
946 
947 /**
948  *	__dev_get_by_index - find a device by its ifindex
949  *	@net: the applicable net namespace
950  *	@ifindex: index of device
951  *
952  *	Search for an interface by index. Returns %NULL if the device
953  *	is not found or a pointer to the device. The device has not
954  *	had its reference counter increased so the caller must be careful
955  *	about locking. The caller must hold the RTNL semaphore.
956  */
957 
__dev_get_by_index(struct net * net,int ifindex)958 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 	struct hlist_head *head = dev_index_hash(net, ifindex);
962 
963 	hlist_for_each_entry(dev, head, index_hlist)
964 		if (dev->ifindex == ifindex)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_get_by_index);
970 
971 /**
972  *	dev_get_by_index_rcu - find a device by its ifindex
973  *	@net: the applicable net namespace
974  *	@ifindex: index of device
975  *
976  *	Search for an interface by index. Returns %NULL if the device
977  *	is not found or a pointer to the device. The device has not
978  *	had its reference counter increased so the caller must be careful
979  *	about locking. The caller must hold RCU lock.
980  */
981 
dev_get_by_index_rcu(struct net * net,int ifindex)982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
983 {
984 	struct net_device *dev;
985 	struct hlist_head *head = dev_index_hash(net, ifindex);
986 
987 	hlist_for_each_entry_rcu(dev, head, index_hlist)
988 		if (dev->ifindex == ifindex)
989 			return dev;
990 
991 	return NULL;
992 }
993 EXPORT_SYMBOL(dev_get_by_index_rcu);
994 
995 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)996 struct net_device *dev_get_by_index(struct net *net, int ifindex)
997 {
998 	struct net_device *dev;
999 
1000 	rcu_read_lock();
1001 	dev = dev_get_by_index_rcu(net, ifindex);
1002 	dev_hold(dev);
1003 	rcu_read_unlock();
1004 	return dev;
1005 }
1006 EXPORT_SYMBOL(dev_get_by_index);
1007 
1008 /**
1009  *	netdev_get_by_index() - find a device by its ifindex
1010  *	@net: the applicable net namespace
1011  *	@ifindex: index of device
1012  *	@tracker: tracking object for the acquired reference
1013  *	@gfp: allocation flags for the tracker
1014  *
1015  *	Search for an interface by index. Returns NULL if the device
1016  *	is not found or a pointer to the device. The device returned has
1017  *	had a reference added and the pointer is safe until the user calls
1018  *	netdev_put() to indicate they have finished with it.
1019  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1020 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1021 				       netdevice_tracker *tracker, gfp_t gfp)
1022 {
1023 	struct net_device *dev;
1024 
1025 	dev = dev_get_by_index(net, ifindex);
1026 	if (dev)
1027 		netdev_tracker_alloc(dev, tracker, gfp);
1028 	return dev;
1029 }
1030 EXPORT_SYMBOL(netdev_get_by_index);
1031 
1032 /**
1033  *	dev_get_by_napi_id - find a device by napi_id
1034  *	@napi_id: ID of the NAPI struct
1035  *
1036  *	Search for an interface by NAPI ID. Returns %NULL if the device
1037  *	is not found or a pointer to the device. The device has not had
1038  *	its reference counter increased so the caller must be careful
1039  *	about locking. The caller must hold RCU lock.
1040  */
dev_get_by_napi_id(unsigned int napi_id)1041 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1042 {
1043 	struct napi_struct *napi;
1044 
1045 	WARN_ON_ONCE(!rcu_read_lock_held());
1046 
1047 	if (!napi_id_valid(napi_id))
1048 		return NULL;
1049 
1050 	napi = napi_by_id(napi_id);
1051 
1052 	return napi ? napi->dev : NULL;
1053 }
1054 
1055 /* Release the held reference on the net_device, and if the net_device
1056  * is still registered try to lock the instance lock. If device is being
1057  * unregistered NULL will be returned (but the reference has been released,
1058  * either way!)
1059  *
1060  * This helper is intended for locking net_device after it has been looked up
1061  * using a lockless lookup helper. Lock prevents the instance from going away.
1062  */
__netdev_put_lock(struct net_device * dev,struct net * net)1063 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1064 {
1065 	netdev_lock(dev);
1066 	if (dev->reg_state > NETREG_REGISTERED ||
1067 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1068 		netdev_unlock(dev);
1069 		dev_put(dev);
1070 		return NULL;
1071 	}
1072 	dev_put(dev);
1073 	return dev;
1074 }
1075 
1076 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1077 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1078 {
1079 	netdev_lock_ops_compat(dev);
1080 	if (dev->reg_state > NETREG_REGISTERED ||
1081 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1082 		netdev_unlock_ops_compat(dev);
1083 		dev_put(dev);
1084 		return NULL;
1085 	}
1086 	dev_put(dev);
1087 	return dev;
1088 }
1089 
1090 /**
1091  *	netdev_get_by_index_lock() - find a device by its ifindex
1092  *	@net: the applicable net namespace
1093  *	@ifindex: index of device
1094  *
1095  *	Search for an interface by index. If a valid device
1096  *	with @ifindex is found it will be returned with netdev->lock held.
1097  *	netdev_unlock() must be called to release it.
1098  *
1099  *	Return: pointer to a device with lock held, NULL if not found.
1100  */
netdev_get_by_index_lock(struct net * net,int ifindex)1101 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1102 {
1103 	struct net_device *dev;
1104 
1105 	dev = dev_get_by_index(net, ifindex);
1106 	if (!dev)
1107 		return NULL;
1108 
1109 	return __netdev_put_lock(dev, net);
1110 }
1111 
1112 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1113 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1114 {
1115 	struct net_device *dev;
1116 
1117 	dev = dev_get_by_index(net, ifindex);
1118 	if (!dev)
1119 		return NULL;
1120 
1121 	return __netdev_put_lock_ops_compat(dev, net);
1122 }
1123 
1124 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1125 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1126 		    unsigned long *index)
1127 {
1128 	if (dev)
1129 		netdev_unlock(dev);
1130 
1131 	do {
1132 		rcu_read_lock();
1133 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1134 		if (!dev) {
1135 			rcu_read_unlock();
1136 			return NULL;
1137 		}
1138 		dev_hold(dev);
1139 		rcu_read_unlock();
1140 
1141 		dev = __netdev_put_lock(dev, net);
1142 		if (dev)
1143 			return dev;
1144 
1145 		(*index)++;
1146 	} while (true);
1147 }
1148 
1149 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1150 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1151 			       unsigned long *index)
1152 {
1153 	if (dev)
1154 		netdev_unlock_ops_compat(dev);
1155 
1156 	do {
1157 		rcu_read_lock();
1158 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1159 		if (!dev) {
1160 			rcu_read_unlock();
1161 			return NULL;
1162 		}
1163 		dev_hold(dev);
1164 		rcu_read_unlock();
1165 
1166 		dev = __netdev_put_lock_ops_compat(dev, net);
1167 		if (dev)
1168 			return dev;
1169 
1170 		(*index)++;
1171 	} while (true);
1172 }
1173 
1174 static DEFINE_SEQLOCK(netdev_rename_lock);
1175 
netdev_copy_name(struct net_device * dev,char * name)1176 void netdev_copy_name(struct net_device *dev, char *name)
1177 {
1178 	unsigned int seq;
1179 
1180 	do {
1181 		seq = read_seqbegin(&netdev_rename_lock);
1182 		strscpy(name, dev->name, IFNAMSIZ);
1183 	} while (read_seqretry(&netdev_rename_lock, seq));
1184 }
1185 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1186 
1187 /**
1188  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1189  *	@net: network namespace
1190  *	@name: a pointer to the buffer where the name will be stored.
1191  *	@ifindex: the ifindex of the interface to get the name from.
1192  */
netdev_get_name(struct net * net,char * name,int ifindex)1193 int netdev_get_name(struct net *net, char *name, int ifindex)
1194 {
1195 	struct net_device *dev;
1196 	int ret;
1197 
1198 	rcu_read_lock();
1199 
1200 	dev = dev_get_by_index_rcu(net, ifindex);
1201 	if (!dev) {
1202 		ret = -ENODEV;
1203 		goto out;
1204 	}
1205 
1206 	netdev_copy_name(dev, name);
1207 
1208 	ret = 0;
1209 out:
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1214 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1215 			 const char *ha)
1216 {
1217 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1218 }
1219 
1220 /**
1221  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1222  *	@net: the applicable net namespace
1223  *	@type: media type of device
1224  *	@ha: hardware address
1225  *
1226  *	Search for an interface by MAC address. Returns NULL if the device
1227  *	is not found or a pointer to the device.
1228  *	The caller must hold RCU.
1229  *	The returned device has not had its ref count increased
1230  *	and the caller must therefore be careful about locking
1231  *
1232  */
1233 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1234 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1235 				       const char *ha)
1236 {
1237 	struct net_device *dev;
1238 
1239 	for_each_netdev_rcu(net, dev)
1240 		if (dev_addr_cmp(dev, type, ha))
1241 			return dev;
1242 
1243 	return NULL;
1244 }
1245 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1246 
1247 /**
1248  * dev_getbyhwaddr() - find a device by its hardware address
1249  * @net: the applicable net namespace
1250  * @type: media type of device
1251  * @ha: hardware address
1252  *
1253  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1254  * rtnl_lock.
1255  *
1256  * Context: rtnl_lock() must be held.
1257  * Return: pointer to the net_device, or NULL if not found
1258  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1259 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1260 				   const char *ha)
1261 {
1262 	struct net_device *dev;
1263 
1264 	ASSERT_RTNL();
1265 	for_each_netdev(net, dev)
1266 		if (dev_addr_cmp(dev, type, ha))
1267 			return dev;
1268 
1269 	return NULL;
1270 }
1271 EXPORT_SYMBOL(dev_getbyhwaddr);
1272 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1273 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1274 {
1275 	struct net_device *dev, *ret = NULL;
1276 
1277 	rcu_read_lock();
1278 	for_each_netdev_rcu(net, dev)
1279 		if (dev->type == type) {
1280 			dev_hold(dev);
1281 			ret = dev;
1282 			break;
1283 		}
1284 	rcu_read_unlock();
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1288 
1289 /**
1290  * netdev_get_by_flags_rcu - find any device with given flags
1291  * @net: the applicable net namespace
1292  * @tracker: tracking object for the acquired reference
1293  * @if_flags: IFF_* values
1294  * @mask: bitmask of bits in if_flags to check
1295  *
1296  * Search for any interface with the given flags.
1297  *
1298  * Context: rcu_read_lock() must be held.
1299  * Returns: NULL if a device is not found or a pointer to the device.
1300  */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1301 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1302 					   unsigned short if_flags, unsigned short mask)
1303 {
1304 	struct net_device *dev;
1305 
1306 	for_each_netdev_rcu(net, dev) {
1307 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1308 			netdev_hold(dev, tracker, GFP_ATOMIC);
1309 			return dev;
1310 		}
1311 	}
1312 
1313 	return NULL;
1314 }
1315 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1316 
1317 /**
1318  *	dev_valid_name - check if name is okay for network device
1319  *	@name: name string
1320  *
1321  *	Network device names need to be valid file names to
1322  *	allow sysfs to work.  We also disallow any kind of
1323  *	whitespace.
1324  */
dev_valid_name(const char * name)1325 bool dev_valid_name(const char *name)
1326 {
1327 	if (*name == '\0')
1328 		return false;
1329 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1330 		return false;
1331 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1332 		return false;
1333 
1334 	while (*name) {
1335 		if (*name == '/' || *name == ':' || isspace(*name))
1336 			return false;
1337 		name++;
1338 	}
1339 	return true;
1340 }
1341 EXPORT_SYMBOL(dev_valid_name);
1342 
1343 /**
1344  *	__dev_alloc_name - allocate a name for a device
1345  *	@net: network namespace to allocate the device name in
1346  *	@name: name format string
1347  *	@res: result name string
1348  *
1349  *	Passed a format string - eg "lt%d" it will try and find a suitable
1350  *	id. It scans list of devices to build up a free map, then chooses
1351  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1352  *	while allocating the name and adding the device in order to avoid
1353  *	duplicates.
1354  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1355  *	Returns the number of the unit assigned or a negative errno code.
1356  */
1357 
__dev_alloc_name(struct net * net,const char * name,char * res)1358 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1359 {
1360 	int i = 0;
1361 	const char *p;
1362 	const int max_netdevices = 8*PAGE_SIZE;
1363 	unsigned long *inuse;
1364 	struct net_device *d;
1365 	char buf[IFNAMSIZ];
1366 
1367 	/* Verify the string as this thing may have come from the user.
1368 	 * There must be one "%d" and no other "%" characters.
1369 	 */
1370 	p = strchr(name, '%');
1371 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1372 		return -EINVAL;
1373 
1374 	/* Use one page as a bit array of possible slots */
1375 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1376 	if (!inuse)
1377 		return -ENOMEM;
1378 
1379 	for_each_netdev(net, d) {
1380 		struct netdev_name_node *name_node;
1381 
1382 		netdev_for_each_altname(d, name_node) {
1383 			if (!sscanf(name_node->name, name, &i))
1384 				continue;
1385 			if (i < 0 || i >= max_netdevices)
1386 				continue;
1387 
1388 			/* avoid cases where sscanf is not exact inverse of printf */
1389 			snprintf(buf, IFNAMSIZ, name, i);
1390 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1391 				__set_bit(i, inuse);
1392 		}
1393 		if (!sscanf(d->name, name, &i))
1394 			continue;
1395 		if (i < 0 || i >= max_netdevices)
1396 			continue;
1397 
1398 		/* avoid cases where sscanf is not exact inverse of printf */
1399 		snprintf(buf, IFNAMSIZ, name, i);
1400 		if (!strncmp(buf, d->name, IFNAMSIZ))
1401 			__set_bit(i, inuse);
1402 	}
1403 
1404 	i = find_first_zero_bit(inuse, max_netdevices);
1405 	bitmap_free(inuse);
1406 	if (i == max_netdevices)
1407 		return -ENFILE;
1408 
1409 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1410 	strscpy(buf, name, IFNAMSIZ);
1411 	snprintf(res, IFNAMSIZ, buf, i);
1412 	return i;
1413 }
1414 
1415 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1416 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1417 			       const char *want_name, char *out_name,
1418 			       int dup_errno)
1419 {
1420 	if (!dev_valid_name(want_name))
1421 		return -EINVAL;
1422 
1423 	if (strchr(want_name, '%'))
1424 		return __dev_alloc_name(net, want_name, out_name);
1425 
1426 	if (netdev_name_in_use(net, want_name))
1427 		return -dup_errno;
1428 	if (out_name != want_name)
1429 		strscpy(out_name, want_name, IFNAMSIZ);
1430 	return 0;
1431 }
1432 
1433 /**
1434  *	dev_alloc_name - allocate a name for a device
1435  *	@dev: device
1436  *	@name: name format string
1437  *
1438  *	Passed a format string - eg "lt%d" it will try and find a suitable
1439  *	id. It scans list of devices to build up a free map, then chooses
1440  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1441  *	while allocating the name and adding the device in order to avoid
1442  *	duplicates.
1443  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1444  *	Returns the number of the unit assigned or a negative errno code.
1445  */
1446 
dev_alloc_name(struct net_device * dev,const char * name)1447 int dev_alloc_name(struct net_device *dev, const char *name)
1448 {
1449 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1450 }
1451 EXPORT_SYMBOL(dev_alloc_name);
1452 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1453 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1454 			      const char *name)
1455 {
1456 	int ret;
1457 
1458 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1459 	return ret < 0 ? ret : 0;
1460 }
1461 
netif_change_name(struct net_device * dev,const char * newname)1462 int netif_change_name(struct net_device *dev, const char *newname)
1463 {
1464 	struct net *net = dev_net(dev);
1465 	unsigned char old_assign_type;
1466 	char oldname[IFNAMSIZ];
1467 	int err = 0;
1468 	int ret;
1469 
1470 	ASSERT_RTNL_NET(net);
1471 
1472 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1473 		return 0;
1474 
1475 	memcpy(oldname, dev->name, IFNAMSIZ);
1476 
1477 	write_seqlock_bh(&netdev_rename_lock);
1478 	err = dev_get_valid_name(net, dev, newname);
1479 	write_sequnlock_bh(&netdev_rename_lock);
1480 
1481 	if (err < 0)
1482 		return err;
1483 
1484 	if (oldname[0] && !strchr(oldname, '%'))
1485 		netdev_info(dev, "renamed from %s%s\n", oldname,
1486 			    dev->flags & IFF_UP ? " (while UP)" : "");
1487 
1488 	old_assign_type = dev->name_assign_type;
1489 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1490 
1491 rollback:
1492 	ret = device_rename(&dev->dev, dev->name);
1493 	if (ret) {
1494 		write_seqlock_bh(&netdev_rename_lock);
1495 		memcpy(dev->name, oldname, IFNAMSIZ);
1496 		write_sequnlock_bh(&netdev_rename_lock);
1497 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1498 		return ret;
1499 	}
1500 
1501 	netdev_adjacent_rename_links(dev, oldname);
1502 
1503 	netdev_name_node_del(dev->name_node);
1504 
1505 	synchronize_net();
1506 
1507 	netdev_name_node_add(net, dev->name_node);
1508 
1509 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1510 	ret = notifier_to_errno(ret);
1511 
1512 	if (ret) {
1513 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1514 		if (err >= 0) {
1515 			err = ret;
1516 			write_seqlock_bh(&netdev_rename_lock);
1517 			memcpy(dev->name, oldname, IFNAMSIZ);
1518 			write_sequnlock_bh(&netdev_rename_lock);
1519 			memcpy(oldname, newname, IFNAMSIZ);
1520 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1521 			old_assign_type = NET_NAME_RENAMED;
1522 			goto rollback;
1523 		} else {
1524 			netdev_err(dev, "name change rollback failed: %d\n",
1525 				   ret);
1526 		}
1527 	}
1528 
1529 	return err;
1530 }
1531 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1532 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1533 {
1534 	struct dev_ifalias *new_alias = NULL;
1535 
1536 	if (len >= IFALIASZ)
1537 		return -EINVAL;
1538 
1539 	if (len) {
1540 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1541 		if (!new_alias)
1542 			return -ENOMEM;
1543 
1544 		memcpy(new_alias->ifalias, alias, len);
1545 		new_alias->ifalias[len] = 0;
1546 	}
1547 
1548 	mutex_lock(&ifalias_mutex);
1549 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1550 					mutex_is_locked(&ifalias_mutex));
1551 	mutex_unlock(&ifalias_mutex);
1552 
1553 	if (new_alias)
1554 		kfree_rcu(new_alias, rcuhead);
1555 
1556 	return len;
1557 }
1558 
1559 /**
1560  *	dev_get_alias - get ifalias of a device
1561  *	@dev: device
1562  *	@name: buffer to store name of ifalias
1563  *	@len: size of buffer
1564  *
1565  *	get ifalias for a device.  Caller must make sure dev cannot go
1566  *	away,  e.g. rcu read lock or own a reference count to device.
1567  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1568 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1569 {
1570 	const struct dev_ifalias *alias;
1571 	int ret = 0;
1572 
1573 	rcu_read_lock();
1574 	alias = rcu_dereference(dev->ifalias);
1575 	if (alias)
1576 		ret = snprintf(name, len, "%s", alias->ifalias);
1577 	rcu_read_unlock();
1578 
1579 	return ret;
1580 }
1581 
1582 /**
1583  *	netdev_features_change - device changes features
1584  *	@dev: device to cause notification
1585  *
1586  *	Called to indicate a device has changed features.
1587  */
netdev_features_change(struct net_device * dev)1588 void netdev_features_change(struct net_device *dev)
1589 {
1590 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1591 }
1592 EXPORT_SYMBOL(netdev_features_change);
1593 
netif_state_change(struct net_device * dev)1594 void netif_state_change(struct net_device *dev)
1595 {
1596 	netdev_ops_assert_locked_or_invisible(dev);
1597 
1598 	if (dev->flags & IFF_UP) {
1599 		struct netdev_notifier_change_info change_info = {
1600 			.info.dev = dev,
1601 		};
1602 
1603 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1604 					      &change_info.info);
1605 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1606 	}
1607 }
1608 
1609 /**
1610  * __netdev_notify_peers - notify network peers about existence of @dev,
1611  * to be called when rtnl lock is already held.
1612  * @dev: network device
1613  *
1614  * Generate traffic such that interested network peers are aware of
1615  * @dev, such as by generating a gratuitous ARP. This may be used when
1616  * a device wants to inform the rest of the network about some sort of
1617  * reconfiguration such as a failover event or virtual machine
1618  * migration.
1619  */
__netdev_notify_peers(struct net_device * dev)1620 void __netdev_notify_peers(struct net_device *dev)
1621 {
1622 	ASSERT_RTNL();
1623 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1624 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1625 }
1626 EXPORT_SYMBOL(__netdev_notify_peers);
1627 
1628 /**
1629  * netdev_notify_peers - notify network peers about existence of @dev
1630  * @dev: network device
1631  *
1632  * Generate traffic such that interested network peers are aware of
1633  * @dev, such as by generating a gratuitous ARP. This may be used when
1634  * a device wants to inform the rest of the network about some sort of
1635  * reconfiguration such as a failover event or virtual machine
1636  * migration.
1637  */
netdev_notify_peers(struct net_device * dev)1638 void netdev_notify_peers(struct net_device *dev)
1639 {
1640 	rtnl_lock();
1641 	__netdev_notify_peers(dev);
1642 	rtnl_unlock();
1643 }
1644 EXPORT_SYMBOL(netdev_notify_peers);
1645 
1646 static int napi_threaded_poll(void *data);
1647 
napi_kthread_create(struct napi_struct * n)1648 static int napi_kthread_create(struct napi_struct *n)
1649 {
1650 	int err = 0;
1651 
1652 	/* Create and wake up the kthread once to put it in
1653 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1654 	 * warning and work with loadavg.
1655 	 */
1656 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1657 				n->dev->name, n->napi_id);
1658 	if (IS_ERR(n->thread)) {
1659 		err = PTR_ERR(n->thread);
1660 		pr_err("kthread_run failed with err %d\n", err);
1661 		n->thread = NULL;
1662 	}
1663 
1664 	return err;
1665 }
1666 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1667 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1668 {
1669 	const struct net_device_ops *ops = dev->netdev_ops;
1670 	int ret;
1671 
1672 	ASSERT_RTNL();
1673 	dev_addr_check(dev);
1674 
1675 	if (!netif_device_present(dev)) {
1676 		/* may be detached because parent is runtime-suspended */
1677 		if (dev->dev.parent)
1678 			pm_runtime_resume(dev->dev.parent);
1679 		if (!netif_device_present(dev))
1680 			return -ENODEV;
1681 	}
1682 
1683 	/* Block netpoll from trying to do any rx path servicing.
1684 	 * If we don't do this there is a chance ndo_poll_controller
1685 	 * or ndo_poll may be running while we open the device
1686 	 */
1687 	netpoll_poll_disable(dev);
1688 
1689 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1690 	ret = notifier_to_errno(ret);
1691 	if (ret)
1692 		return ret;
1693 
1694 	set_bit(__LINK_STATE_START, &dev->state);
1695 
1696 	netdev_ops_assert_locked(dev);
1697 
1698 	if (ops->ndo_validate_addr)
1699 		ret = ops->ndo_validate_addr(dev);
1700 
1701 	if (!ret && ops->ndo_open)
1702 		ret = ops->ndo_open(dev);
1703 
1704 	netpoll_poll_enable(dev);
1705 
1706 	if (ret)
1707 		clear_bit(__LINK_STATE_START, &dev->state);
1708 	else {
1709 		netif_set_up(dev, true);
1710 		dev_set_rx_mode(dev);
1711 		dev_activate(dev);
1712 		add_device_randomness(dev->dev_addr, dev->addr_len);
1713 	}
1714 
1715 	return ret;
1716 }
1717 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1718 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1719 {
1720 	int ret;
1721 
1722 	if (dev->flags & IFF_UP)
1723 		return 0;
1724 
1725 	ret = __dev_open(dev, extack);
1726 	if (ret < 0)
1727 		return ret;
1728 
1729 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1730 	call_netdevice_notifiers(NETDEV_UP, dev);
1731 
1732 	return ret;
1733 }
1734 
__dev_close_many(struct list_head * head)1735 static void __dev_close_many(struct list_head *head)
1736 {
1737 	struct net_device *dev;
1738 
1739 	ASSERT_RTNL();
1740 	might_sleep();
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		/* Temporarily disable netpoll until the interface is down */
1744 		netpoll_poll_disable(dev);
1745 
1746 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1747 
1748 		clear_bit(__LINK_STATE_START, &dev->state);
1749 
1750 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1751 		 * can be even on different cpu. So just clear netif_running().
1752 		 *
1753 		 * dev->stop() will invoke napi_disable() on all of it's
1754 		 * napi_struct instances on this device.
1755 		 */
1756 		smp_mb__after_atomic(); /* Commit netif_running(). */
1757 	}
1758 
1759 	dev_deactivate_many(head);
1760 
1761 	list_for_each_entry(dev, head, close_list) {
1762 		const struct net_device_ops *ops = dev->netdev_ops;
1763 
1764 		/*
1765 		 *	Call the device specific close. This cannot fail.
1766 		 *	Only if device is UP
1767 		 *
1768 		 *	We allow it to be called even after a DETACH hot-plug
1769 		 *	event.
1770 		 */
1771 
1772 		netdev_ops_assert_locked(dev);
1773 
1774 		if (ops->ndo_stop)
1775 			ops->ndo_stop(dev);
1776 
1777 		netif_set_up(dev, false);
1778 		netpoll_poll_enable(dev);
1779 	}
1780 }
1781 
__dev_close(struct net_device * dev)1782 static void __dev_close(struct net_device *dev)
1783 {
1784 	LIST_HEAD(single);
1785 
1786 	list_add(&dev->close_list, &single);
1787 	__dev_close_many(&single);
1788 	list_del(&single);
1789 }
1790 
netif_close_many(struct list_head * head,bool unlink)1791 void netif_close_many(struct list_head *head, bool unlink)
1792 {
1793 	struct net_device *dev, *tmp;
1794 
1795 	/* Remove the devices that don't need to be closed */
1796 	list_for_each_entry_safe(dev, tmp, head, close_list)
1797 		if (!(dev->flags & IFF_UP))
1798 			list_del_init(&dev->close_list);
1799 
1800 	__dev_close_many(head);
1801 
1802 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1803 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1804 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1805 		if (unlink)
1806 			list_del_init(&dev->close_list);
1807 	}
1808 }
1809 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1810 
netif_close(struct net_device * dev)1811 void netif_close(struct net_device *dev)
1812 {
1813 	if (dev->flags & IFF_UP) {
1814 		LIST_HEAD(single);
1815 
1816 		list_add(&dev->close_list, &single);
1817 		netif_close_many(&single, true);
1818 		list_del(&single);
1819 	}
1820 }
1821 EXPORT_SYMBOL(netif_close);
1822 
netif_disable_lro(struct net_device * dev)1823 void netif_disable_lro(struct net_device *dev)
1824 {
1825 	struct net_device *lower_dev;
1826 	struct list_head *iter;
1827 
1828 	dev->wanted_features &= ~NETIF_F_LRO;
1829 	netdev_update_features(dev);
1830 
1831 	if (unlikely(dev->features & NETIF_F_LRO))
1832 		netdev_WARN(dev, "failed to disable LRO!\n");
1833 
1834 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1835 		netdev_lock_ops(lower_dev);
1836 		netif_disable_lro(lower_dev);
1837 		netdev_unlock_ops(lower_dev);
1838 	}
1839 }
1840 EXPORT_IPV6_MOD(netif_disable_lro);
1841 
1842 /**
1843  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1844  *	@dev: device
1845  *
1846  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1847  *	called under RTNL.  This is needed if Generic XDP is installed on
1848  *	the device.
1849  */
dev_disable_gro_hw(struct net_device * dev)1850 static void dev_disable_gro_hw(struct net_device *dev)
1851 {
1852 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1853 	netdev_update_features(dev);
1854 
1855 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1856 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1857 }
1858 
netdev_cmd_to_name(enum netdev_cmd cmd)1859 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1860 {
1861 #define N(val) 						\
1862 	case NETDEV_##val:				\
1863 		return "NETDEV_" __stringify(val);
1864 	switch (cmd) {
1865 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1866 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1867 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1868 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1869 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1870 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1871 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1872 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1873 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1874 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1875 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1876 	N(XDP_FEAT_CHANGE)
1877 	}
1878 #undef N
1879 	return "UNKNOWN_NETDEV_EVENT";
1880 }
1881 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1882 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1883 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1884 				   struct net_device *dev)
1885 {
1886 	struct netdev_notifier_info info = {
1887 		.dev = dev,
1888 	};
1889 
1890 	return nb->notifier_call(nb, val, &info);
1891 }
1892 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1893 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1894 					     struct net_device *dev)
1895 {
1896 	int err;
1897 
1898 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1899 	err = notifier_to_errno(err);
1900 	if (err)
1901 		return err;
1902 
1903 	if (!(dev->flags & IFF_UP))
1904 		return 0;
1905 
1906 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1907 	return 0;
1908 }
1909 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1910 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1911 						struct net_device *dev)
1912 {
1913 	if (dev->flags & IFF_UP) {
1914 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1915 					dev);
1916 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1917 	}
1918 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1919 }
1920 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1921 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1922 						 struct net *net)
1923 {
1924 	struct net_device *dev;
1925 	int err;
1926 
1927 	for_each_netdev(net, dev) {
1928 		netdev_lock_ops(dev);
1929 		err = call_netdevice_register_notifiers(nb, dev);
1930 		netdev_unlock_ops(dev);
1931 		if (err)
1932 			goto rollback;
1933 	}
1934 	return 0;
1935 
1936 rollback:
1937 	for_each_netdev_continue_reverse(net, dev)
1938 		call_netdevice_unregister_notifiers(nb, dev);
1939 	return err;
1940 }
1941 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1942 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1943 						    struct net *net)
1944 {
1945 	struct net_device *dev;
1946 
1947 	for_each_netdev(net, dev)
1948 		call_netdevice_unregister_notifiers(nb, dev);
1949 }
1950 
1951 static int dev_boot_phase = 1;
1952 
1953 /**
1954  * register_netdevice_notifier - register a network notifier block
1955  * @nb: notifier
1956  *
1957  * Register a notifier to be called when network device events occur.
1958  * The notifier passed is linked into the kernel structures and must
1959  * not be reused until it has been unregistered. A negative errno code
1960  * is returned on a failure.
1961  *
1962  * When registered all registration and up events are replayed
1963  * to the new notifier to allow device to have a race free
1964  * view of the network device list.
1965  */
1966 
register_netdevice_notifier(struct notifier_block * nb)1967 int register_netdevice_notifier(struct notifier_block *nb)
1968 {
1969 	struct net *net;
1970 	int err;
1971 
1972 	/* Close race with setup_net() and cleanup_net() */
1973 	down_write(&pernet_ops_rwsem);
1974 
1975 	/* When RTNL is removed, we need protection for netdev_chain. */
1976 	rtnl_lock();
1977 
1978 	err = raw_notifier_chain_register(&netdev_chain, nb);
1979 	if (err)
1980 		goto unlock;
1981 	if (dev_boot_phase)
1982 		goto unlock;
1983 	for_each_net(net) {
1984 		__rtnl_net_lock(net);
1985 		err = call_netdevice_register_net_notifiers(nb, net);
1986 		__rtnl_net_unlock(net);
1987 		if (err)
1988 			goto rollback;
1989 	}
1990 
1991 unlock:
1992 	rtnl_unlock();
1993 	up_write(&pernet_ops_rwsem);
1994 	return err;
1995 
1996 rollback:
1997 	for_each_net_continue_reverse(net) {
1998 		__rtnl_net_lock(net);
1999 		call_netdevice_unregister_net_notifiers(nb, net);
2000 		__rtnl_net_unlock(net);
2001 	}
2002 
2003 	raw_notifier_chain_unregister(&netdev_chain, nb);
2004 	goto unlock;
2005 }
2006 EXPORT_SYMBOL(register_netdevice_notifier);
2007 
2008 /**
2009  * unregister_netdevice_notifier - unregister a network notifier block
2010  * @nb: notifier
2011  *
2012  * Unregister a notifier previously registered by
2013  * register_netdevice_notifier(). The notifier is unlinked into the
2014  * kernel structures and may then be reused. A negative errno code
2015  * is returned on a failure.
2016  *
2017  * After unregistering unregister and down device events are synthesized
2018  * for all devices on the device list to the removed notifier to remove
2019  * the need for special case cleanup code.
2020  */
2021 
unregister_netdevice_notifier(struct notifier_block * nb)2022 int unregister_netdevice_notifier(struct notifier_block *nb)
2023 {
2024 	struct net *net;
2025 	int err;
2026 
2027 	/* Close race with setup_net() and cleanup_net() */
2028 	down_write(&pernet_ops_rwsem);
2029 	rtnl_lock();
2030 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2031 	if (err)
2032 		goto unlock;
2033 
2034 	for_each_net(net) {
2035 		__rtnl_net_lock(net);
2036 		call_netdevice_unregister_net_notifiers(nb, net);
2037 		__rtnl_net_unlock(net);
2038 	}
2039 
2040 unlock:
2041 	rtnl_unlock();
2042 	up_write(&pernet_ops_rwsem);
2043 	return err;
2044 }
2045 EXPORT_SYMBOL(unregister_netdevice_notifier);
2046 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2047 static int __register_netdevice_notifier_net(struct net *net,
2048 					     struct notifier_block *nb,
2049 					     bool ignore_call_fail)
2050 {
2051 	int err;
2052 
2053 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2054 	if (err)
2055 		return err;
2056 	if (dev_boot_phase)
2057 		return 0;
2058 
2059 	err = call_netdevice_register_net_notifiers(nb, net);
2060 	if (err && !ignore_call_fail)
2061 		goto chain_unregister;
2062 
2063 	return 0;
2064 
2065 chain_unregister:
2066 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2067 	return err;
2068 }
2069 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2070 static int __unregister_netdevice_notifier_net(struct net *net,
2071 					       struct notifier_block *nb)
2072 {
2073 	int err;
2074 
2075 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2076 	if (err)
2077 		return err;
2078 
2079 	call_netdevice_unregister_net_notifiers(nb, net);
2080 	return 0;
2081 }
2082 
2083 /**
2084  * register_netdevice_notifier_net - register a per-netns network notifier block
2085  * @net: network namespace
2086  * @nb: notifier
2087  *
2088  * Register a notifier to be called when network device events occur.
2089  * The notifier passed is linked into the kernel structures and must
2090  * not be reused until it has been unregistered. A negative errno code
2091  * is returned on a failure.
2092  *
2093  * When registered all registration and up events are replayed
2094  * to the new notifier to allow device to have a race free
2095  * view of the network device list.
2096  */
2097 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2098 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2099 {
2100 	int err;
2101 
2102 	rtnl_net_lock(net);
2103 	err = __register_netdevice_notifier_net(net, nb, false);
2104 	rtnl_net_unlock(net);
2105 
2106 	return err;
2107 }
2108 EXPORT_SYMBOL(register_netdevice_notifier_net);
2109 
2110 /**
2111  * unregister_netdevice_notifier_net - unregister a per-netns
2112  *                                     network notifier block
2113  * @net: network namespace
2114  * @nb: notifier
2115  *
2116  * Unregister a notifier previously registered by
2117  * register_netdevice_notifier_net(). The notifier is unlinked from the
2118  * kernel structures and may then be reused. A negative errno code
2119  * is returned on a failure.
2120  *
2121  * After unregistering unregister and down device events are synthesized
2122  * for all devices on the device list to the removed notifier to remove
2123  * the need for special case cleanup code.
2124  */
2125 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2126 int unregister_netdevice_notifier_net(struct net *net,
2127 				      struct notifier_block *nb)
2128 {
2129 	int err;
2130 
2131 	rtnl_net_lock(net);
2132 	err = __unregister_netdevice_notifier_net(net, nb);
2133 	rtnl_net_unlock(net);
2134 
2135 	return err;
2136 }
2137 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2138 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2139 static void __move_netdevice_notifier_net(struct net *src_net,
2140 					  struct net *dst_net,
2141 					  struct notifier_block *nb)
2142 {
2143 	__unregister_netdevice_notifier_net(src_net, nb);
2144 	__register_netdevice_notifier_net(dst_net, nb, true);
2145 }
2146 
rtnl_net_dev_lock(struct net_device * dev)2147 static void rtnl_net_dev_lock(struct net_device *dev)
2148 {
2149 	bool again;
2150 
2151 	do {
2152 		struct net *net;
2153 
2154 		again = false;
2155 
2156 		/* netns might be being dismantled. */
2157 		rcu_read_lock();
2158 		net = dev_net_rcu(dev);
2159 		net_passive_inc(net);
2160 		rcu_read_unlock();
2161 
2162 		rtnl_net_lock(net);
2163 
2164 #ifdef CONFIG_NET_NS
2165 		/* dev might have been moved to another netns. */
2166 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2167 			rtnl_net_unlock(net);
2168 			net_passive_dec(net);
2169 			again = true;
2170 		}
2171 #endif
2172 	} while (again);
2173 }
2174 
rtnl_net_dev_unlock(struct net_device * dev)2175 static void rtnl_net_dev_unlock(struct net_device *dev)
2176 {
2177 	struct net *net = dev_net(dev);
2178 
2179 	rtnl_net_unlock(net);
2180 	net_passive_dec(net);
2181 }
2182 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2183 int register_netdevice_notifier_dev_net(struct net_device *dev,
2184 					struct notifier_block *nb,
2185 					struct netdev_net_notifier *nn)
2186 {
2187 	int err;
2188 
2189 	rtnl_net_dev_lock(dev);
2190 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2191 	if (!err) {
2192 		nn->nb = nb;
2193 		list_add(&nn->list, &dev->net_notifier_list);
2194 	}
2195 	rtnl_net_dev_unlock(dev);
2196 
2197 	return err;
2198 }
2199 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2200 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2201 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2202 					  struct notifier_block *nb,
2203 					  struct netdev_net_notifier *nn)
2204 {
2205 	int err;
2206 
2207 	rtnl_net_dev_lock(dev);
2208 	list_del(&nn->list);
2209 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2210 	rtnl_net_dev_unlock(dev);
2211 
2212 	return err;
2213 }
2214 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2215 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2216 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2217 					     struct net *net)
2218 {
2219 	struct netdev_net_notifier *nn;
2220 
2221 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2222 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2223 }
2224 
2225 /**
2226  *	call_netdevice_notifiers_info - call all network notifier blocks
2227  *	@val: value passed unmodified to notifier function
2228  *	@info: notifier information data
2229  *
2230  *	Call all network notifier blocks.  Parameters and return value
2231  *	are as for raw_notifier_call_chain().
2232  */
2233 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2234 int call_netdevice_notifiers_info(unsigned long val,
2235 				  struct netdev_notifier_info *info)
2236 {
2237 	struct net *net = dev_net(info->dev);
2238 	int ret;
2239 
2240 	ASSERT_RTNL();
2241 
2242 	/* Run per-netns notifier block chain first, then run the global one.
2243 	 * Hopefully, one day, the global one is going to be removed after
2244 	 * all notifier block registrators get converted to be per-netns.
2245 	 */
2246 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2247 	if (ret & NOTIFY_STOP_MASK)
2248 		return ret;
2249 	return raw_notifier_call_chain(&netdev_chain, val, info);
2250 }
2251 
2252 /**
2253  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2254  *	                                       for and rollback on error
2255  *	@val_up: value passed unmodified to notifier function
2256  *	@val_down: value passed unmodified to the notifier function when
2257  *	           recovering from an error on @val_up
2258  *	@info: notifier information data
2259  *
2260  *	Call all per-netns network notifier blocks, but not notifier blocks on
2261  *	the global notifier chain. Parameters and return value are as for
2262  *	raw_notifier_call_chain_robust().
2263  */
2264 
2265 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2266 call_netdevice_notifiers_info_robust(unsigned long val_up,
2267 				     unsigned long val_down,
2268 				     struct netdev_notifier_info *info)
2269 {
2270 	struct net *net = dev_net(info->dev);
2271 
2272 	ASSERT_RTNL();
2273 
2274 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2275 					      val_up, val_down, info);
2276 }
2277 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2278 static int call_netdevice_notifiers_extack(unsigned long val,
2279 					   struct net_device *dev,
2280 					   struct netlink_ext_ack *extack)
2281 {
2282 	struct netdev_notifier_info info = {
2283 		.dev = dev,
2284 		.extack = extack,
2285 	};
2286 
2287 	return call_netdevice_notifiers_info(val, &info);
2288 }
2289 
2290 /**
2291  *	call_netdevice_notifiers - call all network notifier blocks
2292  *      @val: value passed unmodified to notifier function
2293  *      @dev: net_device pointer passed unmodified to notifier function
2294  *
2295  *	Call all network notifier blocks.  Parameters and return value
2296  *	are as for raw_notifier_call_chain().
2297  */
2298 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2299 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2300 {
2301 	return call_netdevice_notifiers_extack(val, dev, NULL);
2302 }
2303 EXPORT_SYMBOL(call_netdevice_notifiers);
2304 
2305 /**
2306  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2307  *	@val: value passed unmodified to notifier function
2308  *	@dev: net_device pointer passed unmodified to notifier function
2309  *	@arg: additional u32 argument passed to the notifier function
2310  *
2311  *	Call all network notifier blocks.  Parameters and return value
2312  *	are as for raw_notifier_call_chain().
2313  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2314 static int call_netdevice_notifiers_mtu(unsigned long val,
2315 					struct net_device *dev, u32 arg)
2316 {
2317 	struct netdev_notifier_info_ext info = {
2318 		.info.dev = dev,
2319 		.ext.mtu = arg,
2320 	};
2321 
2322 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2323 
2324 	return call_netdevice_notifiers_info(val, &info.info);
2325 }
2326 
2327 #ifdef CONFIG_NET_INGRESS
2328 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2329 
net_inc_ingress_queue(void)2330 void net_inc_ingress_queue(void)
2331 {
2332 	static_branch_inc(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2335 
net_dec_ingress_queue(void)2336 void net_dec_ingress_queue(void)
2337 {
2338 	static_branch_dec(&ingress_needed_key);
2339 }
2340 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2341 #endif
2342 
2343 #ifdef CONFIG_NET_EGRESS
2344 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2345 
net_inc_egress_queue(void)2346 void net_inc_egress_queue(void)
2347 {
2348 	static_branch_inc(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2351 
net_dec_egress_queue(void)2352 void net_dec_egress_queue(void)
2353 {
2354 	static_branch_dec(&egress_needed_key);
2355 }
2356 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2357 #endif
2358 
2359 #ifdef CONFIG_NET_CLS_ACT
2360 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2361 EXPORT_SYMBOL(tcf_sw_enabled_key);
2362 #endif
2363 
2364 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2365 EXPORT_SYMBOL(netstamp_needed_key);
2366 #ifdef CONFIG_JUMP_LABEL
2367 static atomic_t netstamp_needed_deferred;
2368 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2369 static void netstamp_clear(struct work_struct *work)
2370 {
2371 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2372 	int wanted;
2373 
2374 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2375 	if (wanted > 0)
2376 		static_branch_enable(&netstamp_needed_key);
2377 	else
2378 		static_branch_disable(&netstamp_needed_key);
2379 }
2380 static DECLARE_WORK(netstamp_work, netstamp_clear);
2381 #endif
2382 
net_enable_timestamp(void)2383 void net_enable_timestamp(void)
2384 {
2385 #ifdef CONFIG_JUMP_LABEL
2386 	int wanted = atomic_read(&netstamp_wanted);
2387 
2388 	while (wanted > 0) {
2389 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2390 			return;
2391 	}
2392 	atomic_inc(&netstamp_needed_deferred);
2393 	schedule_work(&netstamp_work);
2394 #else
2395 	static_branch_inc(&netstamp_needed_key);
2396 #endif
2397 }
2398 EXPORT_SYMBOL(net_enable_timestamp);
2399 
net_disable_timestamp(void)2400 void net_disable_timestamp(void)
2401 {
2402 #ifdef CONFIG_JUMP_LABEL
2403 	int wanted = atomic_read(&netstamp_wanted);
2404 
2405 	while (wanted > 1) {
2406 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2407 			return;
2408 	}
2409 	atomic_dec(&netstamp_needed_deferred);
2410 	schedule_work(&netstamp_work);
2411 #else
2412 	static_branch_dec(&netstamp_needed_key);
2413 #endif
2414 }
2415 EXPORT_SYMBOL(net_disable_timestamp);
2416 
net_timestamp_set(struct sk_buff * skb)2417 static inline void net_timestamp_set(struct sk_buff *skb)
2418 {
2419 	skb->tstamp = 0;
2420 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2421 	if (static_branch_unlikely(&netstamp_needed_key))
2422 		skb->tstamp = ktime_get_real();
2423 }
2424 
2425 #define net_timestamp_check(COND, SKB)				\
2426 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2427 		if ((COND) && !(SKB)->tstamp)			\
2428 			(SKB)->tstamp = ktime_get_real();	\
2429 	}							\
2430 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2431 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2432 {
2433 	return __is_skb_forwardable(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2436 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2437 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2438 			      bool check_mtu)
2439 {
2440 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2441 
2442 	if (likely(!ret)) {
2443 		skb->protocol = eth_type_trans(skb, dev);
2444 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2445 	}
2446 
2447 	return ret;
2448 }
2449 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2450 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2451 {
2452 	return __dev_forward_skb2(dev, skb, true);
2453 }
2454 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2455 
2456 /**
2457  * dev_forward_skb - loopback an skb to another netif
2458  *
2459  * @dev: destination network device
2460  * @skb: buffer to forward
2461  *
2462  * return values:
2463  *	NET_RX_SUCCESS	(no congestion)
2464  *	NET_RX_DROP     (packet was dropped, but freed)
2465  *
2466  * dev_forward_skb can be used for injecting an skb from the
2467  * start_xmit function of one device into the receive queue
2468  * of another device.
2469  *
2470  * The receiving device may be in another namespace, so
2471  * we have to clear all information in the skb that could
2472  * impact namespace isolation.
2473  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2477 }
2478 EXPORT_SYMBOL_GPL(dev_forward_skb);
2479 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2480 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2481 {
2482 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2483 }
2484 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2485 static int deliver_skb(struct sk_buff *skb,
2486 		       struct packet_type *pt_prev,
2487 		       struct net_device *orig_dev)
2488 {
2489 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2490 		return -ENOMEM;
2491 	refcount_inc(&skb->users);
2492 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2493 }
2494 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2495 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2496 					  struct packet_type **pt,
2497 					  struct net_device *orig_dev,
2498 					  __be16 type,
2499 					  struct list_head *ptype_list)
2500 {
2501 	struct packet_type *ptype, *pt_prev = *pt;
2502 
2503 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2504 		if (ptype->type != type)
2505 			continue;
2506 		if (unlikely(pt_prev))
2507 			deliver_skb(skb, pt_prev, orig_dev);
2508 		pt_prev = ptype;
2509 	}
2510 	*pt = pt_prev;
2511 }
2512 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2513 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2514 {
2515 	if (!ptype->af_packet_priv || !skb->sk)
2516 		return false;
2517 
2518 	if (ptype->id_match)
2519 		return ptype->id_match(ptype, skb->sk);
2520 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2521 		return true;
2522 
2523 	return false;
2524 }
2525 
2526 /**
2527  * dev_nit_active_rcu - return true if any network interface taps are in use
2528  *
2529  * The caller must hold the RCU lock
2530  *
2531  * @dev: network device to check for the presence of taps
2532  */
dev_nit_active_rcu(const struct net_device * dev)2533 bool dev_nit_active_rcu(const struct net_device *dev)
2534 {
2535 	/* Callers may hold either RCU or RCU BH lock */
2536 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2537 
2538 	return !list_empty(&dev_net(dev)->ptype_all) ||
2539 	       !list_empty(&dev->ptype_all);
2540 }
2541 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2542 
2543 /*
2544  *	Support routine. Sends outgoing frames to any network
2545  *	taps currently in use.
2546  */
2547 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2548 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2549 {
2550 	struct packet_type *ptype, *pt_prev = NULL;
2551 	struct list_head *ptype_list;
2552 	struct sk_buff *skb2 = NULL;
2553 
2554 	rcu_read_lock();
2555 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2556 again:
2557 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2558 		if (READ_ONCE(ptype->ignore_outgoing))
2559 			continue;
2560 
2561 		/* Never send packets back to the socket
2562 		 * they originated from - MvS (miquels@drinkel.ow.org)
2563 		 */
2564 		if (skb_loop_sk(ptype, skb))
2565 			continue;
2566 
2567 		if (unlikely(pt_prev)) {
2568 			deliver_skb(skb2, pt_prev, skb->dev);
2569 			pt_prev = ptype;
2570 			continue;
2571 		}
2572 
2573 		/* need to clone skb, done only once */
2574 		skb2 = skb_clone(skb, GFP_ATOMIC);
2575 		if (!skb2)
2576 			goto out_unlock;
2577 
2578 		net_timestamp_set(skb2);
2579 
2580 		/* skb->nh should be correctly
2581 		 * set by sender, so that the second statement is
2582 		 * just protection against buggy protocols.
2583 		 */
2584 		skb_reset_mac_header(skb2);
2585 
2586 		if (skb_network_header(skb2) < skb2->data ||
2587 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2588 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2589 					     ntohs(skb2->protocol),
2590 					     dev->name);
2591 			skb_reset_network_header(skb2);
2592 		}
2593 
2594 		skb2->transport_header = skb2->network_header;
2595 		skb2->pkt_type = PACKET_OUTGOING;
2596 		pt_prev = ptype;
2597 	}
2598 
2599 	if (ptype_list != &dev->ptype_all) {
2600 		ptype_list = &dev->ptype_all;
2601 		goto again;
2602 	}
2603 out_unlock:
2604 	if (pt_prev) {
2605 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2606 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2607 		else
2608 			kfree_skb(skb2);
2609 	}
2610 	rcu_read_unlock();
2611 }
2612 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2613 
2614 /**
2615  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2616  * @dev: Network device
2617  * @txq: number of queues available
2618  *
2619  * If real_num_tx_queues is changed the tc mappings may no longer be
2620  * valid. To resolve this verify the tc mapping remains valid and if
2621  * not NULL the mapping. With no priorities mapping to this
2622  * offset/count pair it will no longer be used. In the worst case TC0
2623  * is invalid nothing can be done so disable priority mappings. If is
2624  * expected that drivers will fix this mapping if they can before
2625  * calling netif_set_real_num_tx_queues.
2626  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2627 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2628 {
2629 	int i;
2630 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2631 
2632 	/* If TC0 is invalidated disable TC mapping */
2633 	if (tc->offset + tc->count > txq) {
2634 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2635 		dev->num_tc = 0;
2636 		return;
2637 	}
2638 
2639 	/* Invalidated prio to tc mappings set to TC0 */
2640 	for (i = 1; i < TC_BITMASK + 1; i++) {
2641 		int q = netdev_get_prio_tc_map(dev, i);
2642 
2643 		tc = &dev->tc_to_txq[q];
2644 		if (tc->offset + tc->count > txq) {
2645 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2646 				    i, q);
2647 			netdev_set_prio_tc_map(dev, i, 0);
2648 		}
2649 	}
2650 }
2651 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2652 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2653 {
2654 	if (dev->num_tc) {
2655 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2656 		int i;
2657 
2658 		/* walk through the TCs and see if it falls into any of them */
2659 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2660 			if ((txq - tc->offset) < tc->count)
2661 				return i;
2662 		}
2663 
2664 		/* didn't find it, just return -1 to indicate no match */
2665 		return -1;
2666 	}
2667 
2668 	return 0;
2669 }
2670 EXPORT_SYMBOL(netdev_txq_to_tc);
2671 
2672 #ifdef CONFIG_XPS
2673 static struct static_key xps_needed __read_mostly;
2674 static struct static_key xps_rxqs_needed __read_mostly;
2675 static DEFINE_MUTEX(xps_map_mutex);
2676 #define xmap_dereference(P)		\
2677 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2678 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2679 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2680 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2681 {
2682 	struct xps_map *map = NULL;
2683 	int pos;
2684 
2685 	map = xmap_dereference(dev_maps->attr_map[tci]);
2686 	if (!map)
2687 		return false;
2688 
2689 	for (pos = map->len; pos--;) {
2690 		if (map->queues[pos] != index)
2691 			continue;
2692 
2693 		if (map->len > 1) {
2694 			map->queues[pos] = map->queues[--map->len];
2695 			break;
2696 		}
2697 
2698 		if (old_maps)
2699 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2700 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701 		kfree_rcu(map, rcu);
2702 		return false;
2703 	}
2704 
2705 	return true;
2706 }
2707 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2708 static bool remove_xps_queue_cpu(struct net_device *dev,
2709 				 struct xps_dev_maps *dev_maps,
2710 				 int cpu, u16 offset, u16 count)
2711 {
2712 	int num_tc = dev_maps->num_tc;
2713 	bool active = false;
2714 	int tci;
2715 
2716 	for (tci = cpu * num_tc; num_tc--; tci++) {
2717 		int i, j;
2718 
2719 		for (i = count, j = offset; i--; j++) {
2720 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2721 				break;
2722 		}
2723 
2724 		active |= i < 0;
2725 	}
2726 
2727 	return active;
2728 }
2729 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2730 static void reset_xps_maps(struct net_device *dev,
2731 			   struct xps_dev_maps *dev_maps,
2732 			   enum xps_map_type type)
2733 {
2734 	static_key_slow_dec_cpuslocked(&xps_needed);
2735 	if (type == XPS_RXQS)
2736 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2737 
2738 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2739 
2740 	kfree_rcu(dev_maps, rcu);
2741 }
2742 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2743 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2744 			   u16 offset, u16 count)
2745 {
2746 	struct xps_dev_maps *dev_maps;
2747 	bool active = false;
2748 	int i, j;
2749 
2750 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2751 	if (!dev_maps)
2752 		return;
2753 
2754 	for (j = 0; j < dev_maps->nr_ids; j++)
2755 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2756 	if (!active)
2757 		reset_xps_maps(dev, dev_maps, type);
2758 
2759 	if (type == XPS_CPUS) {
2760 		for (i = offset + (count - 1); count--; i--)
2761 			netdev_queue_numa_node_write(
2762 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2763 	}
2764 }
2765 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2766 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2767 				   u16 count)
2768 {
2769 	if (!static_key_false(&xps_needed))
2770 		return;
2771 
2772 	cpus_read_lock();
2773 	mutex_lock(&xps_map_mutex);
2774 
2775 	if (static_key_false(&xps_rxqs_needed))
2776 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2777 
2778 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2779 
2780 	mutex_unlock(&xps_map_mutex);
2781 	cpus_read_unlock();
2782 }
2783 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2784 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2785 {
2786 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2787 }
2788 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2789 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2790 				      u16 index, bool is_rxqs_map)
2791 {
2792 	struct xps_map *new_map;
2793 	int alloc_len = XPS_MIN_MAP_ALLOC;
2794 	int i, pos;
2795 
2796 	for (pos = 0; map && pos < map->len; pos++) {
2797 		if (map->queues[pos] != index)
2798 			continue;
2799 		return map;
2800 	}
2801 
2802 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2803 	if (map) {
2804 		if (pos < map->alloc_len)
2805 			return map;
2806 
2807 		alloc_len = map->alloc_len * 2;
2808 	}
2809 
2810 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2811 	 *  map
2812 	 */
2813 	if (is_rxqs_map)
2814 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2815 	else
2816 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2817 				       cpu_to_node(attr_index));
2818 	if (!new_map)
2819 		return NULL;
2820 
2821 	for (i = 0; i < pos; i++)
2822 		new_map->queues[i] = map->queues[i];
2823 	new_map->alloc_len = alloc_len;
2824 	new_map->len = pos;
2825 
2826 	return new_map;
2827 }
2828 
2829 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2830 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2831 			      struct xps_dev_maps *new_dev_maps, int index,
2832 			      int tc, bool skip_tc)
2833 {
2834 	int i, tci = index * dev_maps->num_tc;
2835 	struct xps_map *map;
2836 
2837 	/* copy maps belonging to foreign traffic classes */
2838 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2839 		if (i == tc && skip_tc)
2840 			continue;
2841 
2842 		/* fill in the new device map from the old device map */
2843 		map = xmap_dereference(dev_maps->attr_map[tci]);
2844 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2845 	}
2846 }
2847 
2848 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2849 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2850 			  u16 index, enum xps_map_type type)
2851 {
2852 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2853 	const unsigned long *online_mask = NULL;
2854 	bool active = false, copy = false;
2855 	int i, j, tci, numa_node_id = -2;
2856 	int maps_sz, num_tc = 1, tc = 0;
2857 	struct xps_map *map, *new_map;
2858 	unsigned int nr_ids;
2859 
2860 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2861 
2862 	if (dev->num_tc) {
2863 		/* Do not allow XPS on subordinate device directly */
2864 		num_tc = dev->num_tc;
2865 		if (num_tc < 0)
2866 			return -EINVAL;
2867 
2868 		/* If queue belongs to subordinate dev use its map */
2869 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2870 
2871 		tc = netdev_txq_to_tc(dev, index);
2872 		if (tc < 0)
2873 			return -EINVAL;
2874 	}
2875 
2876 	mutex_lock(&xps_map_mutex);
2877 
2878 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2879 	if (type == XPS_RXQS) {
2880 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2881 		nr_ids = dev->num_rx_queues;
2882 	} else {
2883 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2884 		if (num_possible_cpus() > 1)
2885 			online_mask = cpumask_bits(cpu_online_mask);
2886 		nr_ids = nr_cpu_ids;
2887 	}
2888 
2889 	if (maps_sz < L1_CACHE_BYTES)
2890 		maps_sz = L1_CACHE_BYTES;
2891 
2892 	/* The old dev_maps could be larger or smaller than the one we're
2893 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2894 	 * between. We could try to be smart, but let's be safe instead and only
2895 	 * copy foreign traffic classes if the two map sizes match.
2896 	 */
2897 	if (dev_maps &&
2898 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2899 		copy = true;
2900 
2901 	/* allocate memory for queue storage */
2902 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2903 	     j < nr_ids;) {
2904 		if (!new_dev_maps) {
2905 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2906 			if (!new_dev_maps) {
2907 				mutex_unlock(&xps_map_mutex);
2908 				return -ENOMEM;
2909 			}
2910 
2911 			new_dev_maps->nr_ids = nr_ids;
2912 			new_dev_maps->num_tc = num_tc;
2913 		}
2914 
2915 		tci = j * num_tc + tc;
2916 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2917 
2918 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2919 		if (!map)
2920 			goto error;
2921 
2922 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2923 	}
2924 
2925 	if (!new_dev_maps)
2926 		goto out_no_new_maps;
2927 
2928 	if (!dev_maps) {
2929 		/* Increment static keys at most once per type */
2930 		static_key_slow_inc_cpuslocked(&xps_needed);
2931 		if (type == XPS_RXQS)
2932 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2933 	}
2934 
2935 	for (j = 0; j < nr_ids; j++) {
2936 		bool skip_tc = false;
2937 
2938 		tci = j * num_tc + tc;
2939 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2940 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2941 			/* add tx-queue to CPU/rx-queue maps */
2942 			int pos = 0;
2943 
2944 			skip_tc = true;
2945 
2946 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2947 			while ((pos < map->len) && (map->queues[pos] != index))
2948 				pos++;
2949 
2950 			if (pos == map->len)
2951 				map->queues[map->len++] = index;
2952 #ifdef CONFIG_NUMA
2953 			if (type == XPS_CPUS) {
2954 				if (numa_node_id == -2)
2955 					numa_node_id = cpu_to_node(j);
2956 				else if (numa_node_id != cpu_to_node(j))
2957 					numa_node_id = -1;
2958 			}
2959 #endif
2960 		}
2961 
2962 		if (copy)
2963 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2964 					  skip_tc);
2965 	}
2966 
2967 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2968 
2969 	/* Cleanup old maps */
2970 	if (!dev_maps)
2971 		goto out_no_old_maps;
2972 
2973 	for (j = 0; j < dev_maps->nr_ids; j++) {
2974 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2975 			map = xmap_dereference(dev_maps->attr_map[tci]);
2976 			if (!map)
2977 				continue;
2978 
2979 			if (copy) {
2980 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2981 				if (map == new_map)
2982 					continue;
2983 			}
2984 
2985 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2986 			kfree_rcu(map, rcu);
2987 		}
2988 	}
2989 
2990 	old_dev_maps = dev_maps;
2991 
2992 out_no_old_maps:
2993 	dev_maps = new_dev_maps;
2994 	active = true;
2995 
2996 out_no_new_maps:
2997 	if (type == XPS_CPUS)
2998 		/* update Tx queue numa node */
2999 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
3000 					     (numa_node_id >= 0) ?
3001 					     numa_node_id : NUMA_NO_NODE);
3002 
3003 	if (!dev_maps)
3004 		goto out_no_maps;
3005 
3006 	/* removes tx-queue from unused CPUs/rx-queues */
3007 	for (j = 0; j < dev_maps->nr_ids; j++) {
3008 		tci = j * dev_maps->num_tc;
3009 
3010 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3011 			if (i == tc &&
3012 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3013 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3014 				continue;
3015 
3016 			active |= remove_xps_queue(dev_maps,
3017 						   copy ? old_dev_maps : NULL,
3018 						   tci, index);
3019 		}
3020 	}
3021 
3022 	if (old_dev_maps)
3023 		kfree_rcu(old_dev_maps, rcu);
3024 
3025 	/* free map if not active */
3026 	if (!active)
3027 		reset_xps_maps(dev, dev_maps, type);
3028 
3029 out_no_maps:
3030 	mutex_unlock(&xps_map_mutex);
3031 
3032 	return 0;
3033 error:
3034 	/* remove any maps that we added */
3035 	for (j = 0; j < nr_ids; j++) {
3036 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3037 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3038 			map = copy ?
3039 			      xmap_dereference(dev_maps->attr_map[tci]) :
3040 			      NULL;
3041 			if (new_map && new_map != map)
3042 				kfree(new_map);
3043 		}
3044 	}
3045 
3046 	mutex_unlock(&xps_map_mutex);
3047 
3048 	kfree(new_dev_maps);
3049 	return -ENOMEM;
3050 }
3051 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3052 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3053 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3054 			u16 index)
3055 {
3056 	int ret;
3057 
3058 	cpus_read_lock();
3059 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3060 	cpus_read_unlock();
3061 
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL(netif_set_xps_queue);
3065 
3066 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3067 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3068 {
3069 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3070 
3071 	/* Unbind any subordinate channels */
3072 	while (txq-- != &dev->_tx[0]) {
3073 		if (txq->sb_dev)
3074 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3075 	}
3076 }
3077 
netdev_reset_tc(struct net_device * dev)3078 void netdev_reset_tc(struct net_device *dev)
3079 {
3080 #ifdef CONFIG_XPS
3081 	netif_reset_xps_queues_gt(dev, 0);
3082 #endif
3083 	netdev_unbind_all_sb_channels(dev);
3084 
3085 	/* Reset TC configuration of device */
3086 	dev->num_tc = 0;
3087 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3088 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3089 }
3090 EXPORT_SYMBOL(netdev_reset_tc);
3091 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3092 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3093 {
3094 	if (tc >= dev->num_tc)
3095 		return -EINVAL;
3096 
3097 #ifdef CONFIG_XPS
3098 	netif_reset_xps_queues(dev, offset, count);
3099 #endif
3100 	dev->tc_to_txq[tc].count = count;
3101 	dev->tc_to_txq[tc].offset = offset;
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL(netdev_set_tc_queue);
3105 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3106 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3107 {
3108 	if (num_tc > TC_MAX_QUEUE)
3109 		return -EINVAL;
3110 
3111 #ifdef CONFIG_XPS
3112 	netif_reset_xps_queues_gt(dev, 0);
3113 #endif
3114 	netdev_unbind_all_sb_channels(dev);
3115 
3116 	dev->num_tc = num_tc;
3117 	return 0;
3118 }
3119 EXPORT_SYMBOL(netdev_set_num_tc);
3120 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3121 void netdev_unbind_sb_channel(struct net_device *dev,
3122 			      struct net_device *sb_dev)
3123 {
3124 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3125 
3126 #ifdef CONFIG_XPS
3127 	netif_reset_xps_queues_gt(sb_dev, 0);
3128 #endif
3129 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3130 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3131 
3132 	while (txq-- != &dev->_tx[0]) {
3133 		if (txq->sb_dev == sb_dev)
3134 			txq->sb_dev = NULL;
3135 	}
3136 }
3137 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3138 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3139 int netdev_bind_sb_channel_queue(struct net_device *dev,
3140 				 struct net_device *sb_dev,
3141 				 u8 tc, u16 count, u16 offset)
3142 {
3143 	/* Make certain the sb_dev and dev are already configured */
3144 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3145 		return -EINVAL;
3146 
3147 	/* We cannot hand out queues we don't have */
3148 	if ((offset + count) > dev->real_num_tx_queues)
3149 		return -EINVAL;
3150 
3151 	/* Record the mapping */
3152 	sb_dev->tc_to_txq[tc].count = count;
3153 	sb_dev->tc_to_txq[tc].offset = offset;
3154 
3155 	/* Provide a way for Tx queue to find the tc_to_txq map or
3156 	 * XPS map for itself.
3157 	 */
3158 	while (count--)
3159 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3164 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3165 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3166 {
3167 	/* Do not use a multiqueue device to represent a subordinate channel */
3168 	if (netif_is_multiqueue(dev))
3169 		return -ENODEV;
3170 
3171 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3172 	 * Channel 0 is meant to be "native" mode and used only to represent
3173 	 * the main root device. We allow writing 0 to reset the device back
3174 	 * to normal mode after being used as a subordinate channel.
3175 	 */
3176 	if (channel > S16_MAX)
3177 		return -EINVAL;
3178 
3179 	dev->num_tc = -channel;
3180 
3181 	return 0;
3182 }
3183 EXPORT_SYMBOL(netdev_set_sb_channel);
3184 
3185 /*
3186  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3187  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3188  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3189 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3190 {
3191 	bool disabling;
3192 	int rc;
3193 
3194 	disabling = txq < dev->real_num_tx_queues;
3195 
3196 	if (txq < 1 || txq > dev->num_tx_queues)
3197 		return -EINVAL;
3198 
3199 	if (dev->reg_state == NETREG_REGISTERED ||
3200 	    dev->reg_state == NETREG_UNREGISTERING) {
3201 		netdev_ops_assert_locked(dev);
3202 
3203 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3204 						  txq);
3205 		if (rc)
3206 			return rc;
3207 
3208 		if (dev->num_tc)
3209 			netif_setup_tc(dev, txq);
3210 
3211 		net_shaper_set_real_num_tx_queues(dev, txq);
3212 
3213 		dev_qdisc_change_real_num_tx(dev, txq);
3214 
3215 		dev->real_num_tx_queues = txq;
3216 
3217 		if (disabling) {
3218 			synchronize_net();
3219 			qdisc_reset_all_tx_gt(dev, txq);
3220 #ifdef CONFIG_XPS
3221 			netif_reset_xps_queues_gt(dev, txq);
3222 #endif
3223 		}
3224 	} else {
3225 		dev->real_num_tx_queues = txq;
3226 	}
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3231 
3232 /**
3233  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3234  *	@dev: Network device
3235  *	@rxq: Actual number of RX queues
3236  *
3237  *	This must be called either with the rtnl_lock held or before
3238  *	registration of the net device.  Returns 0 on success, or a
3239  *	negative error code.  If called before registration, it always
3240  *	succeeds.
3241  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3242 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3243 {
3244 	int rc;
3245 
3246 	if (rxq < 1 || rxq > dev->num_rx_queues)
3247 		return -EINVAL;
3248 
3249 	if (dev->reg_state == NETREG_REGISTERED) {
3250 		netdev_ops_assert_locked(dev);
3251 
3252 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3253 						  rxq);
3254 		if (rc)
3255 			return rc;
3256 	}
3257 
3258 	dev->real_num_rx_queues = rxq;
3259 	return 0;
3260 }
3261 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3262 
3263 /**
3264  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3265  *	@dev: Network device
3266  *	@txq: Actual number of TX queues
3267  *	@rxq: Actual number of RX queues
3268  *
3269  *	Set the real number of both TX and RX queues.
3270  *	Does nothing if the number of queues is already correct.
3271  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3272 int netif_set_real_num_queues(struct net_device *dev,
3273 			      unsigned int txq, unsigned int rxq)
3274 {
3275 	unsigned int old_rxq = dev->real_num_rx_queues;
3276 	int err;
3277 
3278 	if (txq < 1 || txq > dev->num_tx_queues ||
3279 	    rxq < 1 || rxq > dev->num_rx_queues)
3280 		return -EINVAL;
3281 
3282 	/* Start from increases, so the error path only does decreases -
3283 	 * decreases can't fail.
3284 	 */
3285 	if (rxq > dev->real_num_rx_queues) {
3286 		err = netif_set_real_num_rx_queues(dev, rxq);
3287 		if (err)
3288 			return err;
3289 	}
3290 	if (txq > dev->real_num_tx_queues) {
3291 		err = netif_set_real_num_tx_queues(dev, txq);
3292 		if (err)
3293 			goto undo_rx;
3294 	}
3295 	if (rxq < dev->real_num_rx_queues)
3296 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3297 	if (txq < dev->real_num_tx_queues)
3298 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3299 
3300 	return 0;
3301 undo_rx:
3302 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3303 	return err;
3304 }
3305 EXPORT_SYMBOL(netif_set_real_num_queues);
3306 
3307 /**
3308  * netif_set_tso_max_size() - set the max size of TSO frames supported
3309  * @dev:	netdev to update
3310  * @size:	max skb->len of a TSO frame
3311  *
3312  * Set the limit on the size of TSO super-frames the device can handle.
3313  * Unless explicitly set the stack will assume the value of
3314  * %GSO_LEGACY_MAX_SIZE.
3315  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3316 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3317 {
3318 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3319 	if (size < READ_ONCE(dev->gso_max_size))
3320 		netif_set_gso_max_size(dev, size);
3321 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3322 		netif_set_gso_ipv4_max_size(dev, size);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_size);
3325 
3326 /**
3327  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3328  * @dev:	netdev to update
3329  * @segs:	max number of TCP segments
3330  *
3331  * Set the limit on the number of TCP segments the device can generate from
3332  * a single TSO super-frame.
3333  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3334  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3335 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3336 {
3337 	dev->tso_max_segs = segs;
3338 	if (segs < READ_ONCE(dev->gso_max_segs))
3339 		netif_set_gso_max_segs(dev, segs);
3340 }
3341 EXPORT_SYMBOL(netif_set_tso_max_segs);
3342 
3343 /**
3344  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3345  * @to:		netdev to update
3346  * @from:	netdev from which to copy the limits
3347  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3348 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3349 {
3350 	netif_set_tso_max_size(to, from->tso_max_size);
3351 	netif_set_tso_max_segs(to, from->tso_max_segs);
3352 }
3353 EXPORT_SYMBOL(netif_inherit_tso_max);
3354 
3355 /**
3356  * netif_get_num_default_rss_queues - default number of RSS queues
3357  *
3358  * Default value is the number of physical cores if there are only 1 or 2, or
3359  * divided by 2 if there are more.
3360  */
netif_get_num_default_rss_queues(void)3361 int netif_get_num_default_rss_queues(void)
3362 {
3363 	cpumask_var_t cpus;
3364 	int cpu, count = 0;
3365 
3366 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3367 		return 1;
3368 
3369 	cpumask_copy(cpus, cpu_online_mask);
3370 	for_each_cpu(cpu, cpus) {
3371 		++count;
3372 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3373 	}
3374 	free_cpumask_var(cpus);
3375 
3376 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3377 }
3378 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3379 
__netif_reschedule(struct Qdisc * q)3380 static void __netif_reschedule(struct Qdisc *q)
3381 {
3382 	struct softnet_data *sd;
3383 	unsigned long flags;
3384 
3385 	local_irq_save(flags);
3386 	sd = this_cpu_ptr(&softnet_data);
3387 	q->next_sched = NULL;
3388 	*sd->output_queue_tailp = q;
3389 	sd->output_queue_tailp = &q->next_sched;
3390 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3391 	local_irq_restore(flags);
3392 }
3393 
__netif_schedule(struct Qdisc * q)3394 void __netif_schedule(struct Qdisc *q)
3395 {
3396 	/* If q->defer_list is not empty, at least one thread is
3397 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3398 	 * This thread will attempt to run the queue.
3399 	 */
3400 	if (!llist_empty(&q->defer_list))
3401 		return;
3402 
3403 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3404 		__netif_reschedule(q);
3405 }
3406 EXPORT_SYMBOL(__netif_schedule);
3407 
3408 struct dev_kfree_skb_cb {
3409 	enum skb_drop_reason reason;
3410 };
3411 
get_kfree_skb_cb(const struct sk_buff * skb)3412 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3413 {
3414 	return (struct dev_kfree_skb_cb *)skb->cb;
3415 }
3416 
netif_schedule_queue(struct netdev_queue * txq)3417 void netif_schedule_queue(struct netdev_queue *txq)
3418 {
3419 	rcu_read_lock();
3420 	if (!netif_xmit_stopped(txq)) {
3421 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3422 
3423 		__netif_schedule(q);
3424 	}
3425 	rcu_read_unlock();
3426 }
3427 EXPORT_SYMBOL(netif_schedule_queue);
3428 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3429 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3430 {
3431 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3432 		struct Qdisc *q;
3433 
3434 		rcu_read_lock();
3435 		q = rcu_dereference(dev_queue->qdisc);
3436 		__netif_schedule(q);
3437 		rcu_read_unlock();
3438 	}
3439 }
3440 EXPORT_SYMBOL(netif_tx_wake_queue);
3441 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3442 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3443 {
3444 	unsigned long flags;
3445 
3446 	if (unlikely(!skb))
3447 		return;
3448 
3449 	if (likely(refcount_read(&skb->users) == 1)) {
3450 		smp_rmb();
3451 		refcount_set(&skb->users, 0);
3452 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3453 		return;
3454 	}
3455 	get_kfree_skb_cb(skb)->reason = reason;
3456 	local_irq_save(flags);
3457 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3458 	__this_cpu_write(softnet_data.completion_queue, skb);
3459 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3460 	local_irq_restore(flags);
3461 }
3462 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3463 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3464 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3465 {
3466 	if (in_hardirq() || irqs_disabled())
3467 		dev_kfree_skb_irq_reason(skb, reason);
3468 	else
3469 		kfree_skb_reason(skb, reason);
3470 }
3471 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3472 
3473 
3474 /**
3475  * netif_device_detach - mark device as removed
3476  * @dev: network device
3477  *
3478  * Mark device as removed from system and therefore no longer available.
3479  */
netif_device_detach(struct net_device * dev)3480 void netif_device_detach(struct net_device *dev)
3481 {
3482 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3483 	    netif_running(dev)) {
3484 		netif_tx_stop_all_queues(dev);
3485 	}
3486 }
3487 EXPORT_SYMBOL(netif_device_detach);
3488 
3489 /**
3490  * netif_device_attach - mark device as attached
3491  * @dev: network device
3492  *
3493  * Mark device as attached from system and restart if needed.
3494  */
netif_device_attach(struct net_device * dev)3495 void netif_device_attach(struct net_device *dev)
3496 {
3497 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3498 	    netif_running(dev)) {
3499 		netif_tx_wake_all_queues(dev);
3500 		netdev_watchdog_up(dev);
3501 	}
3502 }
3503 EXPORT_SYMBOL(netif_device_attach);
3504 
3505 /*
3506  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3507  * to be used as a distribution range.
3508  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3509 static u16 skb_tx_hash(const struct net_device *dev,
3510 		       const struct net_device *sb_dev,
3511 		       struct sk_buff *skb)
3512 {
3513 	u32 hash;
3514 	u16 qoffset = 0;
3515 	u16 qcount = dev->real_num_tx_queues;
3516 
3517 	if (dev->num_tc) {
3518 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3519 
3520 		qoffset = sb_dev->tc_to_txq[tc].offset;
3521 		qcount = sb_dev->tc_to_txq[tc].count;
3522 		if (unlikely(!qcount)) {
3523 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3524 					     sb_dev->name, qoffset, tc);
3525 			qoffset = 0;
3526 			qcount = dev->real_num_tx_queues;
3527 		}
3528 	}
3529 
3530 	if (skb_rx_queue_recorded(skb)) {
3531 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3532 		hash = skb_get_rx_queue(skb);
3533 		if (hash >= qoffset)
3534 			hash -= qoffset;
3535 		while (unlikely(hash >= qcount))
3536 			hash -= qcount;
3537 		return hash + qoffset;
3538 	}
3539 
3540 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3541 }
3542 
skb_warn_bad_offload(const struct sk_buff * skb)3543 void skb_warn_bad_offload(const struct sk_buff *skb)
3544 {
3545 	static const netdev_features_t null_features;
3546 	struct net_device *dev = skb->dev;
3547 	const char *name = "";
3548 
3549 	if (!net_ratelimit())
3550 		return;
3551 
3552 	if (dev) {
3553 		if (dev->dev.parent)
3554 			name = dev_driver_string(dev->dev.parent);
3555 		else
3556 			name = netdev_name(dev);
3557 	}
3558 	skb_dump(KERN_WARNING, skb, false);
3559 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3560 	     name, dev ? &dev->features : &null_features,
3561 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3562 }
3563 
3564 /*
3565  * Invalidate hardware checksum when packet is to be mangled, and
3566  * complete checksum manually on outgoing path.
3567  */
skb_checksum_help(struct sk_buff * skb)3568 int skb_checksum_help(struct sk_buff *skb)
3569 {
3570 	__wsum csum;
3571 	int ret = 0, offset;
3572 
3573 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3574 		goto out_set_summed;
3575 
3576 	if (unlikely(skb_is_gso(skb))) {
3577 		skb_warn_bad_offload(skb);
3578 		return -EINVAL;
3579 	}
3580 
3581 	if (!skb_frags_readable(skb)) {
3582 		return -EFAULT;
3583 	}
3584 
3585 	/* Before computing a checksum, we should make sure no frag could
3586 	 * be modified by an external entity : checksum could be wrong.
3587 	 */
3588 	if (skb_has_shared_frag(skb)) {
3589 		ret = __skb_linearize(skb);
3590 		if (ret)
3591 			goto out;
3592 	}
3593 
3594 	offset = skb_checksum_start_offset(skb);
3595 	ret = -EINVAL;
3596 	if (unlikely(offset >= skb_headlen(skb))) {
3597 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3598 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3599 			  offset, skb_headlen(skb));
3600 		goto out;
3601 	}
3602 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3603 
3604 	offset += skb->csum_offset;
3605 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3606 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3607 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3608 			  offset + sizeof(__sum16), skb_headlen(skb));
3609 		goto out;
3610 	}
3611 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3612 	if (ret)
3613 		goto out;
3614 
3615 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3616 out_set_summed:
3617 	skb->ip_summed = CHECKSUM_NONE;
3618 out:
3619 	return ret;
3620 }
3621 EXPORT_SYMBOL(skb_checksum_help);
3622 
3623 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3624 int skb_crc32c_csum_help(struct sk_buff *skb)
3625 {
3626 	u32 crc;
3627 	int ret = 0, offset, start;
3628 
3629 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3630 		goto out;
3631 
3632 	if (unlikely(skb_is_gso(skb)))
3633 		goto out;
3634 
3635 	/* Before computing a checksum, we should make sure no frag could
3636 	 * be modified by an external entity : checksum could be wrong.
3637 	 */
3638 	if (unlikely(skb_has_shared_frag(skb))) {
3639 		ret = __skb_linearize(skb);
3640 		if (ret)
3641 			goto out;
3642 	}
3643 	start = skb_checksum_start_offset(skb);
3644 	offset = start + offsetof(struct sctphdr, checksum);
3645 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3646 		ret = -EINVAL;
3647 		goto out;
3648 	}
3649 
3650 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3651 	if (ret)
3652 		goto out;
3653 
3654 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3655 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3656 	skb_reset_csum_not_inet(skb);
3657 out:
3658 	return ret;
3659 }
3660 EXPORT_SYMBOL(skb_crc32c_csum_help);
3661 #endif /* CONFIG_NET_CRC32C */
3662 
skb_network_protocol(struct sk_buff * skb,int * depth)3663 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3664 {
3665 	__be16 type = skb->protocol;
3666 
3667 	/* Tunnel gso handlers can set protocol to ethernet. */
3668 	if (type == htons(ETH_P_TEB)) {
3669 		struct ethhdr *eth;
3670 
3671 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3672 			return 0;
3673 
3674 		eth = (struct ethhdr *)skb->data;
3675 		type = eth->h_proto;
3676 	}
3677 
3678 	return vlan_get_protocol_and_depth(skb, type, depth);
3679 }
3680 
3681 
3682 /* Take action when hardware reception checksum errors are detected. */
3683 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3684 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3685 {
3686 	netdev_err(dev, "hw csum failure\n");
3687 	skb_dump(KERN_ERR, skb, true);
3688 	dump_stack();
3689 }
3690 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3691 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3692 {
3693 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3694 }
3695 EXPORT_SYMBOL(netdev_rx_csum_fault);
3696 #endif
3697 
3698 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3699 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3700 {
3701 #ifdef CONFIG_HIGHMEM
3702 	int i;
3703 
3704 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3705 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3706 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3707 			struct page *page = skb_frag_page(frag);
3708 
3709 			if (page && PageHighMem(page))
3710 				return 1;
3711 		}
3712 	}
3713 #endif
3714 	return 0;
3715 }
3716 
3717 /* If MPLS offload request, verify we are testing hardware MPLS features
3718  * instead of standard features for the netdev.
3719  */
3720 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3721 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3722 					   netdev_features_t features,
3723 					   __be16 type)
3724 {
3725 	if (eth_p_mpls(type))
3726 		features &= skb->dev->mpls_features;
3727 
3728 	return features;
3729 }
3730 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3731 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3732 					   netdev_features_t features,
3733 					   __be16 type)
3734 {
3735 	return features;
3736 }
3737 #endif
3738 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3739 static netdev_features_t harmonize_features(struct sk_buff *skb,
3740 	netdev_features_t features)
3741 {
3742 	__be16 type;
3743 
3744 	type = skb_network_protocol(skb, NULL);
3745 	features = net_mpls_features(skb, features, type);
3746 
3747 	if (skb->ip_summed != CHECKSUM_NONE &&
3748 	    !can_checksum_protocol(features, type)) {
3749 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3750 	}
3751 	if (illegal_highdma(skb->dev, skb))
3752 		features &= ~NETIF_F_SG;
3753 
3754 	return features;
3755 }
3756 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3757 netdev_features_t passthru_features_check(struct sk_buff *skb,
3758 					  struct net_device *dev,
3759 					  netdev_features_t features)
3760 {
3761 	return features;
3762 }
3763 EXPORT_SYMBOL(passthru_features_check);
3764 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3765 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3766 					     struct net_device *dev,
3767 					     netdev_features_t features)
3768 {
3769 	return vlan_features_check(skb, features);
3770 }
3771 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3772 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3773 					    struct net_device *dev,
3774 					    netdev_features_t features)
3775 {
3776 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3777 
3778 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3779 		return features & ~NETIF_F_GSO_MASK;
3780 
3781 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3782 		return features & ~NETIF_F_GSO_MASK;
3783 
3784 	if (!skb_shinfo(skb)->gso_type) {
3785 		skb_warn_bad_offload(skb);
3786 		return features & ~NETIF_F_GSO_MASK;
3787 	}
3788 
3789 	/* Support for GSO partial features requires software
3790 	 * intervention before we can actually process the packets
3791 	 * so we need to strip support for any partial features now
3792 	 * and we can pull them back in after we have partially
3793 	 * segmented the frame.
3794 	 */
3795 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3796 		features &= ~dev->gso_partial_features;
3797 
3798 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3799 	 * has the potential to be fragmented so that TSO does not generate
3800 	 * segments with the same ID. For encapsulated packets, the ID mangling
3801 	 * feature is guaranteed not to use the same ID for the outer IPv4
3802 	 * headers of the generated segments if the headers have the potential
3803 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3804 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3805 	 * segmentation-offloads.rst).
3806 	 */
3807 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3808 		struct iphdr *iph = skb->encapsulation ?
3809 				    inner_ip_hdr(skb) : ip_hdr(skb);
3810 
3811 		if (!(iph->frag_off & htons(IP_DF)))
3812 			features &= ~dev->mangleid_features;
3813 	}
3814 
3815 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3816 	 * so neither does TSO that depends on it.
3817 	 */
3818 	if (features & NETIF_F_IPV6_CSUM &&
3819 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3820 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3821 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3822 	    skb_transport_header_was_set(skb) &&
3823 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3824 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3825 
3826 	return features;
3827 }
3828 
netif_skb_features(struct sk_buff * skb)3829 netdev_features_t netif_skb_features(struct sk_buff *skb)
3830 {
3831 	struct net_device *dev = skb->dev;
3832 	netdev_features_t features = dev->features;
3833 
3834 	if (skb_is_gso(skb))
3835 		features = gso_features_check(skb, dev, features);
3836 
3837 	/* If encapsulation offload request, verify we are testing
3838 	 * hardware encapsulation features instead of standard
3839 	 * features for the netdev
3840 	 */
3841 	if (skb->encapsulation)
3842 		features &= dev->hw_enc_features;
3843 
3844 	if (skb_vlan_tagged(skb))
3845 		features = netdev_intersect_features(features,
3846 						     dev->vlan_features |
3847 						     NETIF_F_HW_VLAN_CTAG_TX |
3848 						     NETIF_F_HW_VLAN_STAG_TX);
3849 
3850 	if (dev->netdev_ops->ndo_features_check)
3851 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3852 								features);
3853 	else
3854 		features &= dflt_features_check(skb, dev, features);
3855 
3856 	return harmonize_features(skb, features);
3857 }
3858 EXPORT_SYMBOL(netif_skb_features);
3859 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3861 		    struct netdev_queue *txq, bool more)
3862 {
3863 	unsigned int len;
3864 	int rc;
3865 
3866 	if (dev_nit_active_rcu(dev))
3867 		dev_queue_xmit_nit(skb, dev);
3868 
3869 	len = skb->len;
3870 	trace_net_dev_start_xmit(skb, dev);
3871 	rc = netdev_start_xmit(skb, dev, txq, more);
3872 	trace_net_dev_xmit(skb, rc, dev, len);
3873 
3874 	return rc;
3875 }
3876 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3878 				    struct netdev_queue *txq, int *ret)
3879 {
3880 	struct sk_buff *skb = first;
3881 	int rc = NETDEV_TX_OK;
3882 
3883 	while (skb) {
3884 		struct sk_buff *next = skb->next;
3885 
3886 		skb_mark_not_on_list(skb);
3887 		rc = xmit_one(skb, dev, txq, next != NULL);
3888 		if (unlikely(!dev_xmit_complete(rc))) {
3889 			skb->next = next;
3890 			goto out;
3891 		}
3892 
3893 		skb = next;
3894 		if (netif_tx_queue_stopped(txq) && skb) {
3895 			rc = NETDEV_TX_BUSY;
3896 			break;
3897 		}
3898 	}
3899 
3900 out:
3901 	*ret = rc;
3902 	return skb;
3903 }
3904 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3906 					  netdev_features_t features)
3907 {
3908 	if (skb_vlan_tag_present(skb) &&
3909 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3910 		skb = __vlan_hwaccel_push_inside(skb);
3911 	return skb;
3912 }
3913 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3914 int skb_csum_hwoffload_help(struct sk_buff *skb,
3915 			    const netdev_features_t features)
3916 {
3917 	if (unlikely(skb_csum_is_sctp(skb)))
3918 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3919 			skb_crc32c_csum_help(skb);
3920 
3921 	if (features & NETIF_F_HW_CSUM)
3922 		return 0;
3923 
3924 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3925 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3926 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3927 			goto sw_checksum;
3928 
3929 		switch (skb->csum_offset) {
3930 		case offsetof(struct tcphdr, check):
3931 		case offsetof(struct udphdr, check):
3932 			return 0;
3933 		}
3934 	}
3935 
3936 sw_checksum:
3937 	return skb_checksum_help(skb);
3938 }
3939 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3940 
3941 /* Checks if this SKB belongs to an HW offloaded socket
3942  * and whether any SW fallbacks are required based on dev.
3943  * Check decrypted mark in case skb_orphan() cleared socket.
3944  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3945 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3946 					    struct net_device *dev)
3947 {
3948 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3949 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3950 				       struct sk_buff *skb);
3951 	struct sock *sk = skb->sk;
3952 
3953 	sk_validate = NULL;
3954 	if (sk) {
3955 		if (sk_fullsock(sk))
3956 			sk_validate = sk->sk_validate_xmit_skb;
3957 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3958 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3959 	}
3960 
3961 	if (sk_validate) {
3962 		skb = sk_validate(sk, dev, skb);
3963 	} else if (unlikely(skb_is_decrypted(skb))) {
3964 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3965 		kfree_skb(skb);
3966 		skb = NULL;
3967 	}
3968 #endif
3969 
3970 	return skb;
3971 }
3972 
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3973 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3974 						    struct net_device *dev)
3975 {
3976 	struct skb_shared_info *shinfo;
3977 	struct net_iov *niov;
3978 
3979 	if (likely(skb_frags_readable(skb)))
3980 		goto out;
3981 
3982 	if (!dev->netmem_tx)
3983 		goto out_free;
3984 
3985 	shinfo = skb_shinfo(skb);
3986 
3987 	if (shinfo->nr_frags > 0) {
3988 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3989 		if (net_is_devmem_iov(niov) &&
3990 		    net_devmem_iov_binding(niov)->dev != dev)
3991 			goto out_free;
3992 	}
3993 
3994 out:
3995 	return skb;
3996 
3997 out_free:
3998 	kfree_skb(skb);
3999 	return NULL;
4000 }
4001 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)4002 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
4003 {
4004 	netdev_features_t features;
4005 
4006 	skb = validate_xmit_unreadable_skb(skb, dev);
4007 	if (unlikely(!skb))
4008 		goto out_null;
4009 
4010 	features = netif_skb_features(skb);
4011 	skb = validate_xmit_vlan(skb, features);
4012 	if (unlikely(!skb))
4013 		goto out_null;
4014 
4015 	skb = sk_validate_xmit_skb(skb, dev);
4016 	if (unlikely(!skb))
4017 		goto out_null;
4018 
4019 	if (netif_needs_gso(skb, features)) {
4020 		struct sk_buff *segs;
4021 
4022 		segs = skb_gso_segment(skb, features);
4023 		if (IS_ERR(segs)) {
4024 			goto out_kfree_skb;
4025 		} else if (segs) {
4026 			consume_skb(skb);
4027 			skb = segs;
4028 		}
4029 	} else {
4030 		if (skb_needs_linearize(skb, features) &&
4031 		    __skb_linearize(skb))
4032 			goto out_kfree_skb;
4033 
4034 		/* If packet is not checksummed and device does not
4035 		 * support checksumming for this protocol, complete
4036 		 * checksumming here.
4037 		 */
4038 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 			if (skb->encapsulation)
4040 				skb_set_inner_transport_header(skb,
4041 							       skb_checksum_start_offset(skb));
4042 			else
4043 				skb_set_transport_header(skb,
4044 							 skb_checksum_start_offset(skb));
4045 			if (skb_csum_hwoffload_help(skb, features))
4046 				goto out_kfree_skb;
4047 		}
4048 	}
4049 
4050 	skb = validate_xmit_xfrm(skb, features, again);
4051 
4052 	return skb;
4053 
4054 out_kfree_skb:
4055 	kfree_skb(skb);
4056 out_null:
4057 	dev_core_stats_tx_dropped_inc(dev);
4058 	return NULL;
4059 }
4060 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4061 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4062 {
4063 	struct sk_buff *next, *head = NULL, *tail;
4064 
4065 	for (; skb != NULL; skb = next) {
4066 		next = skb->next;
4067 		skb_mark_not_on_list(skb);
4068 
4069 		/* in case skb won't be segmented, point to itself */
4070 		skb->prev = skb;
4071 
4072 		skb = validate_xmit_skb(skb, dev, again);
4073 		if (!skb)
4074 			continue;
4075 
4076 		if (!head)
4077 			head = skb;
4078 		else
4079 			tail->next = skb;
4080 		/* If skb was segmented, skb->prev points to
4081 		 * the last segment. If not, it still contains skb.
4082 		 */
4083 		tail = skb->prev;
4084 	}
4085 	return head;
4086 }
4087 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4088 
qdisc_pkt_len_segs_init(struct sk_buff * skb)4089 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4090 {
4091 	struct skb_shared_info *shinfo = skb_shinfo(skb);
4092 	u16 gso_segs;
4093 
4094 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4095 	if (!shinfo->gso_size) {
4096 		qdisc_skb_cb(skb)->pkt_segs = 1;
4097 		return;
4098 	}
4099 
4100 	qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4101 
4102 	/* To get more precise estimation of bytes sent on wire,
4103 	 * we add to pkt_len the headers size of all segments
4104 	 */
4105 	if (skb_transport_header_was_set(skb)) {
4106 		unsigned int hdr_len;
4107 
4108 		/* mac layer + network layer */
4109 		if (!skb->encapsulation)
4110 			hdr_len = skb_transport_offset(skb);
4111 		else
4112 			hdr_len = skb_inner_transport_offset(skb);
4113 
4114 		/* + transport layer */
4115 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4116 			const struct tcphdr *th;
4117 			struct tcphdr _tcphdr;
4118 
4119 			th = skb_header_pointer(skb, hdr_len,
4120 						sizeof(_tcphdr), &_tcphdr);
4121 			if (likely(th))
4122 				hdr_len += __tcp_hdrlen(th);
4123 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4124 			struct udphdr _udphdr;
4125 
4126 			if (skb_header_pointer(skb, hdr_len,
4127 					       sizeof(_udphdr), &_udphdr))
4128 				hdr_len += sizeof(struct udphdr);
4129 		}
4130 
4131 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4132 			int payload = skb->len - hdr_len;
4133 
4134 			/* Malicious packet. */
4135 			if (payload <= 0)
4136 				return;
4137 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4138 			shinfo->gso_segs = gso_segs;
4139 			qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4140 		}
4141 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4142 	}
4143 }
4144 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4145 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4146 			     struct sk_buff **to_free,
4147 			     struct netdev_queue *txq)
4148 {
4149 	int rc;
4150 
4151 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4152 	if (rc == NET_XMIT_SUCCESS)
4153 		trace_qdisc_enqueue(q, txq, skb);
4154 	return rc;
4155 }
4156 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4157 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4158 				 struct net_device *dev,
4159 				 struct netdev_queue *txq)
4160 {
4161 	struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4162 	spinlock_t *root_lock = qdisc_lock(q);
4163 	struct llist_node *ll_list, *first_n;
4164 	unsigned long defer_count = 0;
4165 	int rc;
4166 
4167 	qdisc_calculate_pkt_len(skb, q);
4168 
4169 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4170 
4171 	if (q->flags & TCQ_F_NOLOCK) {
4172 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4173 		    qdisc_run_begin(q)) {
4174 			/* Retest nolock_qdisc_is_empty() within the protection
4175 			 * of q->seqlock to protect from racing with requeuing.
4176 			 */
4177 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4178 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 				__qdisc_run(q);
4180 				to_free2 = qdisc_run_end(q);
4181 
4182 				goto free_skbs;
4183 			}
4184 
4185 			qdisc_bstats_cpu_update(q, skb);
4186 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4187 			    !nolock_qdisc_is_empty(q))
4188 				__qdisc_run(q);
4189 
4190 			to_free2 = qdisc_run_end(q);
4191 			rc = NET_XMIT_SUCCESS;
4192 			goto free_skbs;
4193 		}
4194 
4195 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4196 		to_free2 = qdisc_run(q);
4197 		goto free_skbs;
4198 	}
4199 
4200 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4201 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4202 	 * at most once to limit the number of skbs in defer_list.
4203 	 * We perform the defer_count increment only if the list is not empty,
4204 	 * because some arches have slow atomic_long_inc_return().
4205 	 */
4206 	first_n = READ_ONCE(q->defer_list.first);
4207 	do {
4208 		if (first_n && !defer_count) {
4209 			defer_count = atomic_long_inc_return(&q->defer_count);
4210 			if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4211 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4212 				return NET_XMIT_DROP;
4213 			}
4214 		}
4215 		skb->ll_node.next = first_n;
4216 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4217 
4218 	/* If defer_list was not empty, we know the cpu which queued
4219 	 * the first skb will process the whole list for us.
4220 	 */
4221 	if (first_n)
4222 		return NET_XMIT_SUCCESS;
4223 
4224 	spin_lock(root_lock);
4225 
4226 	ll_list = llist_del_all(&q->defer_list);
4227 	/* There is a small race because we clear defer_count not atomically
4228 	 * with the prior llist_del_all(). This means defer_list could grow
4229 	 * over qdisc_max_burst.
4230 	 */
4231 	atomic_long_set(&q->defer_count, 0);
4232 
4233 	ll_list = llist_reverse_order(ll_list);
4234 
4235 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4236 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4237 			__qdisc_drop(skb, &to_free);
4238 		rc = NET_XMIT_DROP;
4239 		goto unlock;
4240 	}
4241 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4242 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4243 		/*
4244 		 * This is a work-conserving queue; there are no old skbs
4245 		 * waiting to be sent out; and the qdisc is not running -
4246 		 * xmit the skb directly.
4247 		 */
4248 
4249 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4250 							  struct sk_buff,
4251 							  ll_node));
4252 		qdisc_bstats_update(q, skb);
4253 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4254 			__qdisc_run(q);
4255 		to_free2 = qdisc_run_end(q);
4256 		rc = NET_XMIT_SUCCESS;
4257 	} else {
4258 		int count = 0;
4259 
4260 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4261 			if (next) {
4262 				prefetch(next);
4263 				prefetch(&next->priority);
4264 				skb_mark_not_on_list(skb);
4265 			}
4266 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4267 			count++;
4268 		}
4269 		to_free2 = qdisc_run(q);
4270 		if (count != 1)
4271 			rc = NET_XMIT_SUCCESS;
4272 	}
4273 unlock:
4274 	spin_unlock(root_lock);
4275 
4276 free_skbs:
4277 	tcf_kfree_skb_list(to_free);
4278 	tcf_kfree_skb_list(to_free2);
4279 	return rc;
4280 }
4281 
4282 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4283 static void skb_update_prio(struct sk_buff *skb)
4284 {
4285 	const struct netprio_map *map;
4286 	const struct sock *sk;
4287 	unsigned int prioidx;
4288 
4289 	if (skb->priority)
4290 		return;
4291 	map = rcu_dereference_bh(skb->dev->priomap);
4292 	if (!map)
4293 		return;
4294 	sk = skb_to_full_sk(skb);
4295 	if (!sk)
4296 		return;
4297 
4298 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4299 
4300 	if (prioidx < map->priomap_len)
4301 		skb->priority = map->priomap[prioidx];
4302 }
4303 #else
4304 #define skb_update_prio(skb)
4305 #endif
4306 
4307 /**
4308  *	dev_loopback_xmit - loop back @skb
4309  *	@net: network namespace this loopback is happening in
4310  *	@sk:  sk needed to be a netfilter okfn
4311  *	@skb: buffer to transmit
4312  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4313 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4314 {
4315 	skb_reset_mac_header(skb);
4316 	__skb_pull(skb, skb_network_offset(skb));
4317 	skb->pkt_type = PACKET_LOOPBACK;
4318 	if (skb->ip_summed == CHECKSUM_NONE)
4319 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4320 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4321 	skb_dst_force(skb);
4322 	netif_rx(skb);
4323 	return 0;
4324 }
4325 EXPORT_SYMBOL(dev_loopback_xmit);
4326 
4327 #ifdef CONFIG_NET_EGRESS
4328 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4329 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4330 {
4331 	int qm = skb_get_queue_mapping(skb);
4332 
4333 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4334 }
4335 
4336 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4337 static bool netdev_xmit_txqueue_skipped(void)
4338 {
4339 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4340 }
4341 
netdev_xmit_skip_txqueue(bool skip)4342 void netdev_xmit_skip_txqueue(bool skip)
4343 {
4344 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4345 }
4346 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4347 
4348 #else
netdev_xmit_txqueue_skipped(void)4349 static bool netdev_xmit_txqueue_skipped(void)
4350 {
4351 	return current->net_xmit.skip_txqueue;
4352 }
4353 
netdev_xmit_skip_txqueue(bool skip)4354 void netdev_xmit_skip_txqueue(bool skip)
4355 {
4356 	current->net_xmit.skip_txqueue = skip;
4357 }
4358 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4359 #endif
4360 #endif /* CONFIG_NET_EGRESS */
4361 
4362 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4363 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4364 		  enum skb_drop_reason *drop_reason)
4365 {
4366 	int ret = TC_ACT_UNSPEC;
4367 #ifdef CONFIG_NET_CLS_ACT
4368 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4369 	struct tcf_result res;
4370 
4371 	if (!miniq)
4372 		return ret;
4373 
4374 	/* Global bypass */
4375 	if (!static_branch_likely(&tcf_sw_enabled_key))
4376 		return ret;
4377 
4378 	/* Block-wise bypass */
4379 	if (tcf_block_bypass_sw(miniq->block))
4380 		return ret;
4381 
4382 	tc_skb_cb(skb)->mru = 0;
4383 	qdisc_skb_cb(skb)->post_ct = false;
4384 	tcf_set_drop_reason(skb, *drop_reason);
4385 
4386 	mini_qdisc_bstats_cpu_update(miniq, skb);
4387 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4388 	/* Only tcf related quirks below. */
4389 	switch (ret) {
4390 	case TC_ACT_SHOT:
4391 		*drop_reason = tcf_get_drop_reason(skb);
4392 		mini_qdisc_qstats_cpu_drop(miniq);
4393 		break;
4394 	case TC_ACT_OK:
4395 	case TC_ACT_RECLASSIFY:
4396 		skb->tc_index = TC_H_MIN(res.classid);
4397 		break;
4398 	}
4399 #endif /* CONFIG_NET_CLS_ACT */
4400 	return ret;
4401 }
4402 
4403 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4404 
tcx_inc(void)4405 void tcx_inc(void)
4406 {
4407 	static_branch_inc(&tcx_needed_key);
4408 }
4409 
tcx_dec(void)4410 void tcx_dec(void)
4411 {
4412 	static_branch_dec(&tcx_needed_key);
4413 }
4414 
4415 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4416 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4417 	const bool needs_mac)
4418 {
4419 	const struct bpf_mprog_fp *fp;
4420 	const struct bpf_prog *prog;
4421 	int ret = TCX_NEXT;
4422 
4423 	if (needs_mac)
4424 		__skb_push(skb, skb->mac_len);
4425 	bpf_mprog_foreach_prog(entry, fp, prog) {
4426 		bpf_compute_data_pointers(skb);
4427 		ret = bpf_prog_run(prog, skb);
4428 		if (ret != TCX_NEXT)
4429 			break;
4430 	}
4431 	if (needs_mac)
4432 		__skb_pull(skb, skb->mac_len);
4433 	return tcx_action_code(skb, ret);
4434 }
4435 
4436 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4437 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4438 		   struct net_device *orig_dev, bool *another)
4439 {
4440 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4441 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4442 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4443 	int sch_ret;
4444 
4445 	if (!entry)
4446 		return skb;
4447 
4448 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4449 	if (unlikely(*pt_prev)) {
4450 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4451 		*pt_prev = NULL;
4452 	}
4453 
4454 	qdisc_pkt_len_segs_init(skb);
4455 	tcx_set_ingress(skb, true);
4456 
4457 	if (static_branch_unlikely(&tcx_needed_key)) {
4458 		sch_ret = tcx_run(entry, skb, true);
4459 		if (sch_ret != TC_ACT_UNSPEC)
4460 			goto ingress_verdict;
4461 	}
4462 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4463 ingress_verdict:
4464 	switch (sch_ret) {
4465 	case TC_ACT_REDIRECT:
4466 		/* skb_mac_header check was done by BPF, so we can safely
4467 		 * push the L2 header back before redirecting to another
4468 		 * netdev.
4469 		 */
4470 		__skb_push(skb, skb->mac_len);
4471 		if (skb_do_redirect(skb) == -EAGAIN) {
4472 			__skb_pull(skb, skb->mac_len);
4473 			*another = true;
4474 			break;
4475 		}
4476 		*ret = NET_RX_SUCCESS;
4477 		bpf_net_ctx_clear(bpf_net_ctx);
4478 		return NULL;
4479 	case TC_ACT_SHOT:
4480 		kfree_skb_reason(skb, drop_reason);
4481 		*ret = NET_RX_DROP;
4482 		bpf_net_ctx_clear(bpf_net_ctx);
4483 		return NULL;
4484 	/* used by tc_run */
4485 	case TC_ACT_STOLEN:
4486 	case TC_ACT_QUEUED:
4487 	case TC_ACT_TRAP:
4488 		consume_skb(skb);
4489 		fallthrough;
4490 	case TC_ACT_CONSUMED:
4491 		*ret = NET_RX_SUCCESS;
4492 		bpf_net_ctx_clear(bpf_net_ctx);
4493 		return NULL;
4494 	}
4495 	bpf_net_ctx_clear(bpf_net_ctx);
4496 
4497 	return skb;
4498 }
4499 
4500 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4501 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4502 {
4503 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4504 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4505 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4506 	int sch_ret;
4507 
4508 	if (!entry)
4509 		return skb;
4510 
4511 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4512 
4513 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4514 	 * already set by the caller.
4515 	 */
4516 	if (static_branch_unlikely(&tcx_needed_key)) {
4517 		sch_ret = tcx_run(entry, skb, false);
4518 		if (sch_ret != TC_ACT_UNSPEC)
4519 			goto egress_verdict;
4520 	}
4521 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4522 egress_verdict:
4523 	switch (sch_ret) {
4524 	case TC_ACT_REDIRECT:
4525 		/* No need to push/pop skb's mac_header here on egress! */
4526 		skb_do_redirect(skb);
4527 		*ret = NET_XMIT_SUCCESS;
4528 		bpf_net_ctx_clear(bpf_net_ctx);
4529 		return NULL;
4530 	case TC_ACT_SHOT:
4531 		kfree_skb_reason(skb, drop_reason);
4532 		*ret = NET_XMIT_DROP;
4533 		bpf_net_ctx_clear(bpf_net_ctx);
4534 		return NULL;
4535 	/* used by tc_run */
4536 	case TC_ACT_STOLEN:
4537 	case TC_ACT_QUEUED:
4538 	case TC_ACT_TRAP:
4539 		consume_skb(skb);
4540 		fallthrough;
4541 	case TC_ACT_CONSUMED:
4542 		*ret = NET_XMIT_SUCCESS;
4543 		bpf_net_ctx_clear(bpf_net_ctx);
4544 		return NULL;
4545 	}
4546 	bpf_net_ctx_clear(bpf_net_ctx);
4547 
4548 	return skb;
4549 }
4550 #else
4551 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4552 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4553 		   struct net_device *orig_dev, bool *another)
4554 {
4555 	return skb;
4556 }
4557 
4558 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4559 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4560 {
4561 	return skb;
4562 }
4563 #endif /* CONFIG_NET_XGRESS */
4564 
4565 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4566 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4567 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4568 {
4569 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4570 	struct xps_map *map;
4571 	int queue_index = -1;
4572 
4573 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4574 		return queue_index;
4575 
4576 	tci *= dev_maps->num_tc;
4577 	tci += tc;
4578 
4579 	map = rcu_dereference(dev_maps->attr_map[tci]);
4580 	if (map) {
4581 		if (map->len == 1)
4582 			queue_index = map->queues[0];
4583 		else
4584 			queue_index = map->queues[reciprocal_scale(
4585 						skb_get_hash(skb), map->len)];
4586 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4587 			queue_index = -1;
4588 	}
4589 	return queue_index;
4590 }
4591 #endif
4592 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4593 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4594 			 struct sk_buff *skb)
4595 {
4596 #ifdef CONFIG_XPS
4597 	struct xps_dev_maps *dev_maps;
4598 	struct sock *sk = skb->sk;
4599 	int queue_index = -1;
4600 
4601 	if (!static_key_false(&xps_needed))
4602 		return -1;
4603 
4604 	rcu_read_lock();
4605 	if (!static_key_false(&xps_rxqs_needed))
4606 		goto get_cpus_map;
4607 
4608 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4609 	if (dev_maps) {
4610 		int tci = sk_rx_queue_get(sk);
4611 
4612 		if (tci >= 0)
4613 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4614 							  tci);
4615 	}
4616 
4617 get_cpus_map:
4618 	if (queue_index < 0) {
4619 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4620 		if (dev_maps) {
4621 			unsigned int tci = skb->sender_cpu - 1;
4622 
4623 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4624 							  tci);
4625 		}
4626 	}
4627 	rcu_read_unlock();
4628 
4629 	return queue_index;
4630 #else
4631 	return -1;
4632 #endif
4633 }
4634 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4635 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4636 		     struct net_device *sb_dev)
4637 {
4638 	return 0;
4639 }
4640 EXPORT_SYMBOL(dev_pick_tx_zero);
4641 
sk_tx_queue_get(const struct sock * sk)4642 int sk_tx_queue_get(const struct sock *sk)
4643 {
4644 	int resel, val;
4645 
4646 	if (!sk)
4647 		return -1;
4648 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4649 	 * and sk_tx_queue_set().
4650 	 */
4651 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4652 
4653 	if (val == NO_QUEUE_MAPPING)
4654 		return -1;
4655 
4656 	if (!sk_fullsock(sk))
4657 		return val;
4658 
4659 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4660 	if (resel && time_is_before_jiffies(
4661 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4662 		return -1;
4663 
4664 	return val;
4665 }
4666 EXPORT_SYMBOL(sk_tx_queue_get);
4667 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4668 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4669 		     struct net_device *sb_dev)
4670 {
4671 	struct sock *sk = skb->sk;
4672 	int queue_index = sk_tx_queue_get(sk);
4673 
4674 	sb_dev = sb_dev ? : dev;
4675 
4676 	if (queue_index < 0 || skb->ooo_okay ||
4677 	    queue_index >= dev->real_num_tx_queues) {
4678 		int new_index = get_xps_queue(dev, sb_dev, skb);
4679 
4680 		if (new_index < 0)
4681 			new_index = skb_tx_hash(dev, sb_dev, skb);
4682 
4683 		if (sk && sk_fullsock(sk) &&
4684 		    rcu_access_pointer(sk->sk_dst_cache))
4685 			sk_tx_queue_set(sk, new_index);
4686 
4687 		queue_index = new_index;
4688 	}
4689 
4690 	return queue_index;
4691 }
4692 EXPORT_SYMBOL(netdev_pick_tx);
4693 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4694 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4695 					 struct sk_buff *skb,
4696 					 struct net_device *sb_dev)
4697 {
4698 	int queue_index = 0;
4699 
4700 #ifdef CONFIG_XPS
4701 	u32 sender_cpu = skb->sender_cpu - 1;
4702 
4703 	if (sender_cpu >= (u32)NR_CPUS)
4704 		skb->sender_cpu = raw_smp_processor_id() + 1;
4705 #endif
4706 
4707 	if (dev->real_num_tx_queues != 1) {
4708 		const struct net_device_ops *ops = dev->netdev_ops;
4709 
4710 		if (ops->ndo_select_queue)
4711 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4712 		else
4713 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4714 
4715 		queue_index = netdev_cap_txqueue(dev, queue_index);
4716 	}
4717 
4718 	skb_set_queue_mapping(skb, queue_index);
4719 	return netdev_get_tx_queue(dev, queue_index);
4720 }
4721 
4722 /**
4723  * __dev_queue_xmit() - transmit a buffer
4724  * @skb:	buffer to transmit
4725  * @sb_dev:	suboordinate device used for L2 forwarding offload
4726  *
4727  * Queue a buffer for transmission to a network device. The caller must
4728  * have set the device and priority and built the buffer before calling
4729  * this function. The function can be called from an interrupt.
4730  *
4731  * When calling this method, interrupts MUST be enabled. This is because
4732  * the BH enable code must have IRQs enabled so that it will not deadlock.
4733  *
4734  * Regardless of the return value, the skb is consumed, so it is currently
4735  * difficult to retry a send to this method. (You can bump the ref count
4736  * before sending to hold a reference for retry if you are careful.)
4737  *
4738  * Return:
4739  * * 0				- buffer successfully transmitted
4740  * * positive qdisc return code	- NET_XMIT_DROP etc.
4741  * * negative errno		- other errors
4742  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4743 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4744 {
4745 	struct net_device *dev = skb->dev;
4746 	struct netdev_queue *txq = NULL;
4747 	struct Qdisc *q;
4748 	int rc = -ENOMEM;
4749 	bool again = false;
4750 
4751 	skb_reset_mac_header(skb);
4752 	skb_assert_len(skb);
4753 
4754 	if (unlikely(skb_shinfo(skb)->tx_flags &
4755 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4756 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4757 
4758 	/* Disable soft irqs for various locks below. Also
4759 	 * stops preemption for RCU.
4760 	 */
4761 	rcu_read_lock_bh();
4762 
4763 	skb_update_prio(skb);
4764 
4765 	qdisc_pkt_len_segs_init(skb);
4766 	tcx_set_ingress(skb, false);
4767 #ifdef CONFIG_NET_EGRESS
4768 	if (static_branch_unlikely(&egress_needed_key)) {
4769 		if (nf_hook_egress_active()) {
4770 			skb = nf_hook_egress(skb, &rc, dev);
4771 			if (!skb)
4772 				goto out;
4773 		}
4774 
4775 		netdev_xmit_skip_txqueue(false);
4776 
4777 		nf_skip_egress(skb, true);
4778 		skb = sch_handle_egress(skb, &rc, dev);
4779 		if (!skb)
4780 			goto out;
4781 		nf_skip_egress(skb, false);
4782 
4783 		if (netdev_xmit_txqueue_skipped())
4784 			txq = netdev_tx_queue_mapping(dev, skb);
4785 	}
4786 #endif
4787 	/* If device/qdisc don't need skb->dst, release it right now while
4788 	 * its hot in this cpu cache.
4789 	 */
4790 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4791 		skb_dst_drop(skb);
4792 	else
4793 		skb_dst_force(skb);
4794 
4795 	if (!txq)
4796 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4797 
4798 	q = rcu_dereference_bh(txq->qdisc);
4799 
4800 	trace_net_dev_queue(skb);
4801 	if (q->enqueue) {
4802 		rc = __dev_xmit_skb(skb, q, dev, txq);
4803 		goto out;
4804 	}
4805 
4806 	/* The device has no queue. Common case for software devices:
4807 	 * loopback, all the sorts of tunnels...
4808 
4809 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4810 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4811 	 * counters.)
4812 	 * However, it is possible, that they rely on protection
4813 	 * made by us here.
4814 
4815 	 * Check this and shot the lock. It is not prone from deadlocks.
4816 	 *Either shot noqueue qdisc, it is even simpler 8)
4817 	 */
4818 	if (dev->flags & IFF_UP) {
4819 		int cpu = smp_processor_id(); /* ok because BHs are off */
4820 
4821 		/* Other cpus might concurrently change txq->xmit_lock_owner
4822 		 * to -1 or to their cpu id, but not to our id.
4823 		 */
4824 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4825 			if (dev_xmit_recursion())
4826 				goto recursion_alert;
4827 
4828 			skb = validate_xmit_skb(skb, dev, &again);
4829 			if (!skb)
4830 				goto out;
4831 
4832 			HARD_TX_LOCK(dev, txq, cpu);
4833 
4834 			if (!netif_xmit_stopped(txq)) {
4835 				dev_xmit_recursion_inc();
4836 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4837 				dev_xmit_recursion_dec();
4838 				if (dev_xmit_complete(rc)) {
4839 					HARD_TX_UNLOCK(dev, txq);
4840 					goto out;
4841 				}
4842 			}
4843 			HARD_TX_UNLOCK(dev, txq);
4844 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4845 					     dev->name);
4846 		} else {
4847 			/* Recursion is detected! It is possible,
4848 			 * unfortunately
4849 			 */
4850 recursion_alert:
4851 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4852 					     dev->name);
4853 		}
4854 	}
4855 
4856 	rc = -ENETDOWN;
4857 	rcu_read_unlock_bh();
4858 
4859 	dev_core_stats_tx_dropped_inc(dev);
4860 	kfree_skb_list(skb);
4861 	return rc;
4862 out:
4863 	rcu_read_unlock_bh();
4864 	return rc;
4865 }
4866 EXPORT_SYMBOL(__dev_queue_xmit);
4867 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4868 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4869 {
4870 	struct net_device *dev = skb->dev;
4871 	struct sk_buff *orig_skb = skb;
4872 	struct netdev_queue *txq;
4873 	int ret = NETDEV_TX_BUSY;
4874 	bool again = false;
4875 
4876 	if (unlikely(!netif_running(dev) ||
4877 		     !netif_carrier_ok(dev)))
4878 		goto drop;
4879 
4880 	skb = validate_xmit_skb_list(skb, dev, &again);
4881 	if (skb != orig_skb)
4882 		goto drop;
4883 
4884 	skb_set_queue_mapping(skb, queue_id);
4885 	txq = skb_get_tx_queue(dev, skb);
4886 
4887 	local_bh_disable();
4888 
4889 	dev_xmit_recursion_inc();
4890 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4891 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4892 		ret = netdev_start_xmit(skb, dev, txq, false);
4893 	HARD_TX_UNLOCK(dev, txq);
4894 	dev_xmit_recursion_dec();
4895 
4896 	local_bh_enable();
4897 	return ret;
4898 drop:
4899 	dev_core_stats_tx_dropped_inc(dev);
4900 	kfree_skb_list(skb);
4901 	return NET_XMIT_DROP;
4902 }
4903 EXPORT_SYMBOL(__dev_direct_xmit);
4904 
4905 /*************************************************************************
4906  *			Receiver routines
4907  *************************************************************************/
4908 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4909 
4910 int weight_p __read_mostly = 64;           /* old backlog weight */
4911 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4912 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4913 
4914 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4915 static inline void ____napi_schedule(struct softnet_data *sd,
4916 				     struct napi_struct *napi)
4917 {
4918 	struct task_struct *thread;
4919 
4920 	lockdep_assert_irqs_disabled();
4921 
4922 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4923 		/* Paired with smp_mb__before_atomic() in
4924 		 * napi_enable()/netif_set_threaded().
4925 		 * Use READ_ONCE() to guarantee a complete
4926 		 * read on napi->thread. Only call
4927 		 * wake_up_process() when it's not NULL.
4928 		 */
4929 		thread = READ_ONCE(napi->thread);
4930 		if (thread) {
4931 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4932 				goto use_local_napi;
4933 
4934 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4935 			wake_up_process(thread);
4936 			return;
4937 		}
4938 	}
4939 
4940 use_local_napi:
4941 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4942 	list_add_tail(&napi->poll_list, &sd->poll_list);
4943 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4944 	/* If not called from net_rx_action()
4945 	 * we have to raise NET_RX_SOFTIRQ.
4946 	 */
4947 	if (!sd->in_net_rx_action)
4948 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4949 }
4950 
4951 #ifdef CONFIG_RPS
4952 
4953 struct static_key_false rps_needed __read_mostly;
4954 EXPORT_SYMBOL(rps_needed);
4955 struct static_key_false rfs_needed __read_mostly;
4956 EXPORT_SYMBOL(rfs_needed);
4957 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4958 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4959 {
4960 	return hash_32(hash, flow_table->log);
4961 }
4962 
4963 #ifdef CONFIG_RFS_ACCEL
4964 /**
4965  * rps_flow_is_active - check whether the flow is recently active.
4966  * @rflow: Specific flow to check activity.
4967  * @flow_table: per-queue flowtable that @rflow belongs to.
4968  * @cpu: CPU saved in @rflow.
4969  *
4970  * If the CPU has processed many packets since the flow's last activity
4971  * (beyond 10 times the table size), the flow is considered stale.
4972  *
4973  * Return: true if flow was recently active.
4974  */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4975 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4976 			       struct rps_dev_flow_table *flow_table,
4977 			       unsigned int cpu)
4978 {
4979 	unsigned int flow_last_active;
4980 	unsigned int sd_input_head;
4981 
4982 	if (cpu >= nr_cpu_ids)
4983 		return false;
4984 
4985 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4986 	flow_last_active = READ_ONCE(rflow->last_qtail);
4987 
4988 	return (int)(sd_input_head - flow_last_active) <
4989 		(int)(10 << flow_table->log);
4990 }
4991 #endif
4992 
4993 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4994 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4995 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4996 	    u32 flow_id)
4997 {
4998 	if (next_cpu < nr_cpu_ids) {
4999 		u32 head;
5000 #ifdef CONFIG_RFS_ACCEL
5001 		struct netdev_rx_queue *rxqueue;
5002 		struct rps_dev_flow_table *flow_table;
5003 		struct rps_dev_flow *old_rflow;
5004 		struct rps_dev_flow *tmp_rflow;
5005 		unsigned int tmp_cpu;
5006 		u16 rxq_index;
5007 		int rc;
5008 
5009 		/* Should we steer this flow to a different hardware queue? */
5010 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5011 		    !(dev->features & NETIF_F_NTUPLE))
5012 			goto out;
5013 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5014 		if (rxq_index == skb_get_rx_queue(skb))
5015 			goto out;
5016 
5017 		rxqueue = dev->_rx + rxq_index;
5018 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
5019 		if (!flow_table)
5020 			goto out;
5021 
5022 		tmp_rflow = &flow_table->flows[flow_id];
5023 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5024 
5025 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5026 			if (rps_flow_is_active(tmp_rflow, flow_table,
5027 					       tmp_cpu)) {
5028 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5029 				    next_cpu == tmp_cpu)
5030 					goto out;
5031 			}
5032 		}
5033 
5034 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5035 							rxq_index, flow_id);
5036 		if (rc < 0)
5037 			goto out;
5038 
5039 		old_rflow = rflow;
5040 		rflow = tmp_rflow;
5041 		WRITE_ONCE(rflow->filter, rc);
5042 		WRITE_ONCE(rflow->hash, hash);
5043 
5044 		if (old_rflow->filter == rc)
5045 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5046 	out:
5047 #endif
5048 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5049 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5050 	}
5051 
5052 	WRITE_ONCE(rflow->cpu, next_cpu);
5053 	return rflow;
5054 }
5055 
5056 /*
5057  * get_rps_cpu is called from netif_receive_skb and returns the target
5058  * CPU from the RPS map of the receiving queue for a given skb.
5059  * rcu_read_lock must be held on entry.
5060  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5061 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5062 		       struct rps_dev_flow **rflowp)
5063 {
5064 	const struct rps_sock_flow_table *sock_flow_table;
5065 	struct netdev_rx_queue *rxqueue = dev->_rx;
5066 	struct rps_dev_flow_table *flow_table;
5067 	struct rps_map *map;
5068 	int cpu = -1;
5069 	u32 flow_id;
5070 	u32 tcpu;
5071 	u32 hash;
5072 
5073 	if (skb_rx_queue_recorded(skb)) {
5074 		u16 index = skb_get_rx_queue(skb);
5075 
5076 		if (unlikely(index >= dev->real_num_rx_queues)) {
5077 			WARN_ONCE(dev->real_num_rx_queues > 1,
5078 				  "%s received packet on queue %u, but number "
5079 				  "of RX queues is %u\n",
5080 				  dev->name, index, dev->real_num_rx_queues);
5081 			goto done;
5082 		}
5083 		rxqueue += index;
5084 	}
5085 
5086 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5087 
5088 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5089 	map = rcu_dereference(rxqueue->rps_map);
5090 	if (!flow_table && !map)
5091 		goto done;
5092 
5093 	skb_reset_network_header(skb);
5094 	hash = skb_get_hash(skb);
5095 	if (!hash)
5096 		goto done;
5097 
5098 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5099 	if (flow_table && sock_flow_table) {
5100 		struct rps_dev_flow *rflow;
5101 		u32 next_cpu;
5102 		u32 ident;
5103 
5104 		/* First check into global flow table if there is a match.
5105 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5106 		 */
5107 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5108 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5109 			goto try_rps;
5110 
5111 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5112 
5113 		/* OK, now we know there is a match,
5114 		 * we can look at the local (per receive queue) flow table
5115 		 */
5116 		flow_id = rfs_slot(hash, flow_table);
5117 		rflow = &flow_table->flows[flow_id];
5118 		tcpu = rflow->cpu;
5119 
5120 		/*
5121 		 * If the desired CPU (where last recvmsg was done) is
5122 		 * different from current CPU (one in the rx-queue flow
5123 		 * table entry), switch if one of the following holds:
5124 		 *   - Current CPU is unset (>= nr_cpu_ids).
5125 		 *   - Current CPU is offline.
5126 		 *   - The current CPU's queue tail has advanced beyond the
5127 		 *     last packet that was enqueued using this table entry.
5128 		 *     This guarantees that all previous packets for the flow
5129 		 *     have been dequeued, thus preserving in order delivery.
5130 		 */
5131 		if (unlikely(tcpu != next_cpu) &&
5132 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5133 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5134 		      rflow->last_qtail)) >= 0)) {
5135 			tcpu = next_cpu;
5136 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5137 					    flow_id);
5138 		}
5139 
5140 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5141 			*rflowp = rflow;
5142 			cpu = tcpu;
5143 			goto done;
5144 		}
5145 	}
5146 
5147 try_rps:
5148 
5149 	if (map) {
5150 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5151 		if (cpu_online(tcpu)) {
5152 			cpu = tcpu;
5153 			goto done;
5154 		}
5155 	}
5156 
5157 done:
5158 	return cpu;
5159 }
5160 
5161 #ifdef CONFIG_RFS_ACCEL
5162 
5163 /**
5164  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5165  * @dev: Device on which the filter was set
5166  * @rxq_index: RX queue index
5167  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5168  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5169  *
5170  * Drivers that implement ndo_rx_flow_steer() should periodically call
5171  * this function for each installed filter and remove the filters for
5172  * which it returns %true.
5173  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5174 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5175 			 u32 flow_id, u16 filter_id)
5176 {
5177 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5178 	struct rps_dev_flow_table *flow_table;
5179 	struct rps_dev_flow *rflow;
5180 	bool expire = true;
5181 
5182 	rcu_read_lock();
5183 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5184 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5185 		unsigned int cpu;
5186 
5187 		rflow = &flow_table->flows[flow_id];
5188 		cpu = READ_ONCE(rflow->cpu);
5189 		if (READ_ONCE(rflow->filter) == filter_id &&
5190 		    rps_flow_is_active(rflow, flow_table, cpu))
5191 			expire = false;
5192 	}
5193 	rcu_read_unlock();
5194 	return expire;
5195 }
5196 EXPORT_SYMBOL(rps_may_expire_flow);
5197 
5198 #endif /* CONFIG_RFS_ACCEL */
5199 
5200 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5201 static void rps_trigger_softirq(void *data)
5202 {
5203 	struct softnet_data *sd = data;
5204 
5205 	____napi_schedule(sd, &sd->backlog);
5206 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5207 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5208 }
5209 
5210 #endif /* CONFIG_RPS */
5211 
5212 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5213 static void trigger_rx_softirq(void *data)
5214 {
5215 	struct softnet_data *sd = data;
5216 
5217 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5219 }
5220 
5221 /*
5222  * After we queued a packet into sd->input_pkt_queue,
5223  * we need to make sure this queue is serviced soon.
5224  *
5225  * - If this is another cpu queue, link it to our rps_ipi_list,
5226  *   and make sure we will process rps_ipi_list from net_rx_action().
5227  *
5228  * - If this is our own queue, NAPI schedule our backlog.
5229  *   Note that this also raises NET_RX_SOFTIRQ.
5230  */
napi_schedule_rps(struct softnet_data * sd)5231 static void napi_schedule_rps(struct softnet_data *sd)
5232 {
5233 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5234 
5235 #ifdef CONFIG_RPS
5236 	if (sd != mysd) {
5237 		if (use_backlog_threads()) {
5238 			__napi_schedule_irqoff(&sd->backlog);
5239 			return;
5240 		}
5241 
5242 		sd->rps_ipi_next = mysd->rps_ipi_list;
5243 		mysd->rps_ipi_list = sd;
5244 
5245 		/* If not called from net_rx_action() or napi_threaded_poll()
5246 		 * we have to raise NET_RX_SOFTIRQ.
5247 		 */
5248 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5249 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5250 		return;
5251 	}
5252 #endif /* CONFIG_RPS */
5253 	__napi_schedule_irqoff(&mysd->backlog);
5254 }
5255 
kick_defer_list_purge(unsigned int cpu)5256 void kick_defer_list_purge(unsigned int cpu)
5257 {
5258 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5259 	unsigned long flags;
5260 
5261 	if (use_backlog_threads()) {
5262 		backlog_lock_irq_save(sd, &flags);
5263 
5264 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5265 			__napi_schedule_irqoff(&sd->backlog);
5266 
5267 		backlog_unlock_irq_restore(sd, flags);
5268 
5269 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5270 		smp_call_function_single_async(cpu, &sd->defer_csd);
5271 	}
5272 }
5273 
5274 #ifdef CONFIG_NET_FLOW_LIMIT
5275 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5276 #endif
5277 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5278 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5279 			   int max_backlog)
5280 {
5281 #ifdef CONFIG_NET_FLOW_LIMIT
5282 	unsigned int old_flow, new_flow;
5283 	const struct softnet_data *sd;
5284 	struct sd_flow_limit *fl;
5285 
5286 	if (likely(qlen < (max_backlog >> 1)))
5287 		return false;
5288 
5289 	sd = this_cpu_ptr(&softnet_data);
5290 
5291 	rcu_read_lock();
5292 	fl = rcu_dereference(sd->flow_limit);
5293 	if (fl) {
5294 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5295 		old_flow = fl->history[fl->history_head];
5296 		fl->history[fl->history_head] = new_flow;
5297 
5298 		fl->history_head++;
5299 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5300 
5301 		if (likely(fl->buckets[old_flow]))
5302 			fl->buckets[old_flow]--;
5303 
5304 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5305 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5306 			WRITE_ONCE(fl->count, fl->count + 1);
5307 			rcu_read_unlock();
5308 			return true;
5309 		}
5310 	}
5311 	rcu_read_unlock();
5312 #endif
5313 	return false;
5314 }
5315 
5316 /*
5317  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5318  * queue (may be a remote CPU queue).
5319  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5320 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5321 			      unsigned int *qtail)
5322 {
5323 	enum skb_drop_reason reason;
5324 	struct softnet_data *sd;
5325 	unsigned long flags;
5326 	unsigned int qlen;
5327 	int max_backlog;
5328 	u32 tail;
5329 
5330 	reason = SKB_DROP_REASON_DEV_READY;
5331 	if (unlikely(!netif_running(skb->dev)))
5332 		goto bad_dev;
5333 
5334 	sd = &per_cpu(softnet_data, cpu);
5335 
5336 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5337 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5338 	if (unlikely(qlen > max_backlog) ||
5339 	    skb_flow_limit(skb, qlen, max_backlog))
5340 		goto cpu_backlog_drop;
5341 	backlog_lock_irq_save(sd, &flags);
5342 	qlen = skb_queue_len(&sd->input_pkt_queue);
5343 	if (likely(qlen <= max_backlog)) {
5344 		if (!qlen) {
5345 			/* Schedule NAPI for backlog device. We can use
5346 			 * non atomic operation as we own the queue lock.
5347 			 */
5348 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5349 						&sd->backlog.state))
5350 				napi_schedule_rps(sd);
5351 		}
5352 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5353 		tail = rps_input_queue_tail_incr(sd);
5354 		backlog_unlock_irq_restore(sd, flags);
5355 
5356 		/* save the tail outside of the critical section */
5357 		rps_input_queue_tail_save(qtail, tail);
5358 		return NET_RX_SUCCESS;
5359 	}
5360 
5361 	backlog_unlock_irq_restore(sd, flags);
5362 
5363 cpu_backlog_drop:
5364 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5365 	numa_drop_add(&sd->drop_counters, 1);
5366 bad_dev:
5367 	dev_core_stats_rx_dropped_inc(skb->dev);
5368 	kfree_skb_reason(skb, reason);
5369 	return NET_RX_DROP;
5370 }
5371 
netif_get_rxqueue(struct sk_buff * skb)5372 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5373 {
5374 	struct net_device *dev = skb->dev;
5375 	struct netdev_rx_queue *rxqueue;
5376 
5377 	rxqueue = dev->_rx;
5378 
5379 	if (skb_rx_queue_recorded(skb)) {
5380 		u16 index = skb_get_rx_queue(skb);
5381 
5382 		if (unlikely(index >= dev->real_num_rx_queues)) {
5383 			WARN_ONCE(dev->real_num_rx_queues > 1,
5384 				  "%s received packet on queue %u, but number "
5385 				  "of RX queues is %u\n",
5386 				  dev->name, index, dev->real_num_rx_queues);
5387 
5388 			return rxqueue; /* Return first rxqueue */
5389 		}
5390 		rxqueue += index;
5391 	}
5392 	return rxqueue;
5393 }
5394 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5395 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5396 			     const struct bpf_prog *xdp_prog)
5397 {
5398 	void *orig_data, *orig_data_end, *hard_start;
5399 	struct netdev_rx_queue *rxqueue;
5400 	bool orig_bcast, orig_host;
5401 	u32 mac_len, frame_sz;
5402 	__be16 orig_eth_type;
5403 	struct ethhdr *eth;
5404 	u32 metalen, act;
5405 	int off;
5406 
5407 	/* The XDP program wants to see the packet starting at the MAC
5408 	 * header.
5409 	 */
5410 	mac_len = skb->data - skb_mac_header(skb);
5411 	hard_start = skb->data - skb_headroom(skb);
5412 
5413 	/* SKB "head" area always have tailroom for skb_shared_info */
5414 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5415 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5416 
5417 	rxqueue = netif_get_rxqueue(skb);
5418 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5419 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5420 			 skb_headlen(skb) + mac_len, true);
5421 	if (skb_is_nonlinear(skb)) {
5422 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5423 		xdp_buff_set_frags_flag(xdp);
5424 	} else {
5425 		xdp_buff_clear_frags_flag(xdp);
5426 	}
5427 
5428 	orig_data_end = xdp->data_end;
5429 	orig_data = xdp->data;
5430 	eth = (struct ethhdr *)xdp->data;
5431 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5432 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5433 	orig_eth_type = eth->h_proto;
5434 
5435 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5436 
5437 	/* check if bpf_xdp_adjust_head was used */
5438 	off = xdp->data - orig_data;
5439 	if (off) {
5440 		if (off > 0)
5441 			__skb_pull(skb, off);
5442 		else if (off < 0)
5443 			__skb_push(skb, -off);
5444 
5445 		skb->mac_header += off;
5446 		skb_reset_network_header(skb);
5447 	}
5448 
5449 	/* check if bpf_xdp_adjust_tail was used */
5450 	off = xdp->data_end - orig_data_end;
5451 	if (off != 0) {
5452 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5453 		skb->len += off; /* positive on grow, negative on shrink */
5454 	}
5455 
5456 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5457 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5458 	 */
5459 	if (xdp_buff_has_frags(xdp))
5460 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5461 	else
5462 		skb->data_len = 0;
5463 
5464 	/* check if XDP changed eth hdr such SKB needs update */
5465 	eth = (struct ethhdr *)xdp->data;
5466 	if ((orig_eth_type != eth->h_proto) ||
5467 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5468 						  skb->dev->dev_addr)) ||
5469 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5470 		__skb_push(skb, ETH_HLEN);
5471 		skb->pkt_type = PACKET_HOST;
5472 		skb->protocol = eth_type_trans(skb, skb->dev);
5473 	}
5474 
5475 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5476 	 * before calling us again on redirect path. We do not call do_redirect
5477 	 * as we leave that up to the caller.
5478 	 *
5479 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5480 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5481 	 */
5482 	switch (act) {
5483 	case XDP_REDIRECT:
5484 	case XDP_TX:
5485 		__skb_push(skb, mac_len);
5486 		break;
5487 	case XDP_PASS:
5488 		metalen = xdp->data - xdp->data_meta;
5489 		if (metalen)
5490 			skb_metadata_set(skb, metalen);
5491 		break;
5492 	}
5493 
5494 	return act;
5495 }
5496 
5497 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5498 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5499 {
5500 	struct sk_buff *skb = *pskb;
5501 	int err, hroom, troom;
5502 
5503 	local_lock_nested_bh(&system_page_pool.bh_lock);
5504 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5505 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5506 	if (!err)
5507 		return 0;
5508 
5509 	/* In case we have to go down the path and also linearize,
5510 	 * then lets do the pskb_expand_head() work just once here.
5511 	 */
5512 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5513 	troom = skb->tail + skb->data_len - skb->end;
5514 	err = pskb_expand_head(skb,
5515 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5516 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5517 	if (err)
5518 		return err;
5519 
5520 	return skb_linearize(skb);
5521 }
5522 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5523 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5524 				     struct xdp_buff *xdp,
5525 				     const struct bpf_prog *xdp_prog)
5526 {
5527 	struct sk_buff *skb = *pskb;
5528 	u32 mac_len, act = XDP_DROP;
5529 
5530 	/* Reinjected packets coming from act_mirred or similar should
5531 	 * not get XDP generic processing.
5532 	 */
5533 	if (skb_is_redirected(skb))
5534 		return XDP_PASS;
5535 
5536 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5537 	 * bytes. This is the guarantee that also native XDP provides,
5538 	 * thus we need to do it here as well.
5539 	 */
5540 	mac_len = skb->data - skb_mac_header(skb);
5541 	__skb_push(skb, mac_len);
5542 
5543 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5544 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5545 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5546 			goto do_drop;
5547 	}
5548 
5549 	__skb_pull(*pskb, mac_len);
5550 
5551 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5552 	switch (act) {
5553 	case XDP_REDIRECT:
5554 	case XDP_TX:
5555 	case XDP_PASS:
5556 		break;
5557 	default:
5558 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5559 		fallthrough;
5560 	case XDP_ABORTED:
5561 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5562 		fallthrough;
5563 	case XDP_DROP:
5564 	do_drop:
5565 		kfree_skb(*pskb);
5566 		break;
5567 	}
5568 
5569 	return act;
5570 }
5571 
5572 /* When doing generic XDP we have to bypass the qdisc layer and the
5573  * network taps in order to match in-driver-XDP behavior. This also means
5574  * that XDP packets are able to starve other packets going through a qdisc,
5575  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5576  * queues, so they do not have this starvation issue.
5577  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5578 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5579 {
5580 	struct net_device *dev = skb->dev;
5581 	struct netdev_queue *txq;
5582 	bool free_skb = true;
5583 	int cpu, rc;
5584 
5585 	txq = netdev_core_pick_tx(dev, skb, NULL);
5586 	cpu = smp_processor_id();
5587 	HARD_TX_LOCK(dev, txq, cpu);
5588 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5589 		rc = netdev_start_xmit(skb, dev, txq, 0);
5590 		if (dev_xmit_complete(rc))
5591 			free_skb = false;
5592 	}
5593 	HARD_TX_UNLOCK(dev, txq);
5594 	if (free_skb) {
5595 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5596 		dev_core_stats_tx_dropped_inc(dev);
5597 		kfree_skb(skb);
5598 	}
5599 }
5600 
5601 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5602 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5603 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5604 {
5605 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5606 
5607 	if (xdp_prog) {
5608 		struct xdp_buff xdp;
5609 		u32 act;
5610 		int err;
5611 
5612 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5613 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5614 		if (act != XDP_PASS) {
5615 			switch (act) {
5616 			case XDP_REDIRECT:
5617 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5618 							      &xdp, xdp_prog);
5619 				if (err)
5620 					goto out_redir;
5621 				break;
5622 			case XDP_TX:
5623 				generic_xdp_tx(*pskb, xdp_prog);
5624 				break;
5625 			}
5626 			bpf_net_ctx_clear(bpf_net_ctx);
5627 			return XDP_DROP;
5628 		}
5629 		bpf_net_ctx_clear(bpf_net_ctx);
5630 	}
5631 	return XDP_PASS;
5632 out_redir:
5633 	bpf_net_ctx_clear(bpf_net_ctx);
5634 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5635 	return XDP_DROP;
5636 }
5637 EXPORT_SYMBOL_GPL(do_xdp_generic);
5638 
netif_rx_internal(struct sk_buff * skb)5639 static int netif_rx_internal(struct sk_buff *skb)
5640 {
5641 	int ret;
5642 
5643 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5644 
5645 	trace_netif_rx(skb);
5646 
5647 #ifdef CONFIG_RPS
5648 	if (static_branch_unlikely(&rps_needed)) {
5649 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5650 		int cpu;
5651 
5652 		rcu_read_lock();
5653 
5654 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5655 		if (cpu < 0)
5656 			cpu = smp_processor_id();
5657 
5658 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5659 
5660 		rcu_read_unlock();
5661 	} else
5662 #endif
5663 	{
5664 		unsigned int qtail;
5665 
5666 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5667 	}
5668 	return ret;
5669 }
5670 
5671 /**
5672  *	__netif_rx	-	Slightly optimized version of netif_rx
5673  *	@skb: buffer to post
5674  *
5675  *	This behaves as netif_rx except that it does not disable bottom halves.
5676  *	As a result this function may only be invoked from the interrupt context
5677  *	(either hard or soft interrupt).
5678  */
__netif_rx(struct sk_buff * skb)5679 int __netif_rx(struct sk_buff *skb)
5680 {
5681 	int ret;
5682 
5683 	lockdep_assert_once(hardirq_count() | softirq_count());
5684 
5685 	trace_netif_rx_entry(skb);
5686 	ret = netif_rx_internal(skb);
5687 	trace_netif_rx_exit(ret);
5688 	return ret;
5689 }
5690 EXPORT_SYMBOL(__netif_rx);
5691 
5692 /**
5693  *	netif_rx	-	post buffer to the network code
5694  *	@skb: buffer to post
5695  *
5696  *	This function receives a packet from a device driver and queues it for
5697  *	the upper (protocol) levels to process via the backlog NAPI device. It
5698  *	always succeeds. The buffer may be dropped during processing for
5699  *	congestion control or by the protocol layers.
5700  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5701  *	driver should use NAPI and GRO.
5702  *	This function can used from interrupt and from process context. The
5703  *	caller from process context must not disable interrupts before invoking
5704  *	this function.
5705  *
5706  *	return values:
5707  *	NET_RX_SUCCESS	(no congestion)
5708  *	NET_RX_DROP     (packet was dropped)
5709  *
5710  */
netif_rx(struct sk_buff * skb)5711 int netif_rx(struct sk_buff *skb)
5712 {
5713 	bool need_bh_off = !(hardirq_count() | softirq_count());
5714 	int ret;
5715 
5716 	if (need_bh_off)
5717 		local_bh_disable();
5718 	trace_netif_rx_entry(skb);
5719 	ret = netif_rx_internal(skb);
5720 	trace_netif_rx_exit(ret);
5721 	if (need_bh_off)
5722 		local_bh_enable();
5723 	return ret;
5724 }
5725 EXPORT_SYMBOL(netif_rx);
5726 
net_tx_action(void)5727 static __latent_entropy void net_tx_action(void)
5728 {
5729 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5730 
5731 	if (sd->completion_queue) {
5732 		struct sk_buff *clist;
5733 
5734 		local_irq_disable();
5735 		clist = sd->completion_queue;
5736 		sd->completion_queue = NULL;
5737 		local_irq_enable();
5738 
5739 		while (clist) {
5740 			struct sk_buff *skb = clist;
5741 
5742 			clist = clist->next;
5743 
5744 			WARN_ON(refcount_read(&skb->users));
5745 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5746 				trace_consume_skb(skb, net_tx_action);
5747 			else
5748 				trace_kfree_skb(skb, net_tx_action,
5749 						get_kfree_skb_cb(skb)->reason, NULL);
5750 
5751 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5752 				__kfree_skb(skb);
5753 			else
5754 				__napi_kfree_skb(skb,
5755 						 get_kfree_skb_cb(skb)->reason);
5756 		}
5757 	}
5758 
5759 	if (sd->output_queue) {
5760 		struct Qdisc *head;
5761 
5762 		local_irq_disable();
5763 		head = sd->output_queue;
5764 		sd->output_queue = NULL;
5765 		sd->output_queue_tailp = &sd->output_queue;
5766 		local_irq_enable();
5767 
5768 		rcu_read_lock();
5769 
5770 		while (head) {
5771 			spinlock_t *root_lock = NULL;
5772 			struct sk_buff *to_free;
5773 			struct Qdisc *q = head;
5774 
5775 			head = head->next_sched;
5776 
5777 			/* We need to make sure head->next_sched is read
5778 			 * before clearing __QDISC_STATE_SCHED
5779 			 */
5780 			smp_mb__before_atomic();
5781 
5782 			if (!(q->flags & TCQ_F_NOLOCK)) {
5783 				root_lock = qdisc_lock(q);
5784 				spin_lock(root_lock);
5785 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5786 						     &q->state))) {
5787 				/* There is a synchronize_net() between
5788 				 * STATE_DEACTIVATED flag being set and
5789 				 * qdisc_reset()/some_qdisc_is_busy() in
5790 				 * dev_deactivate(), so we can safely bail out
5791 				 * early here to avoid data race between
5792 				 * qdisc_deactivate() and some_qdisc_is_busy()
5793 				 * for lockless qdisc.
5794 				 */
5795 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 				continue;
5797 			}
5798 
5799 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5800 			to_free = qdisc_run(q);
5801 			if (root_lock)
5802 				spin_unlock(root_lock);
5803 			tcf_kfree_skb_list(to_free);
5804 		}
5805 
5806 		rcu_read_unlock();
5807 	}
5808 
5809 	xfrm_dev_backlog(sd);
5810 }
5811 
5812 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5813 /* This hook is defined here for ATM LANE */
5814 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5815 			     unsigned char *addr) __read_mostly;
5816 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5817 #endif
5818 
5819 /**
5820  *	netdev_is_rx_handler_busy - check if receive handler is registered
5821  *	@dev: device to check
5822  *
5823  *	Check if a receive handler is already registered for a given device.
5824  *	Return true if there one.
5825  *
5826  *	The caller must hold the rtnl_mutex.
5827  */
netdev_is_rx_handler_busy(struct net_device * dev)5828 bool netdev_is_rx_handler_busy(struct net_device *dev)
5829 {
5830 	ASSERT_RTNL();
5831 	return dev && rtnl_dereference(dev->rx_handler);
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5834 
5835 /**
5836  *	netdev_rx_handler_register - register receive handler
5837  *	@dev: device to register a handler for
5838  *	@rx_handler: receive handler to register
5839  *	@rx_handler_data: data pointer that is used by rx handler
5840  *
5841  *	Register a receive handler for a device. This handler will then be
5842  *	called from __netif_receive_skb. A negative errno code is returned
5843  *	on a failure.
5844  *
5845  *	The caller must hold the rtnl_mutex.
5846  *
5847  *	For a general description of rx_handler, see enum rx_handler_result.
5848  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5849 int netdev_rx_handler_register(struct net_device *dev,
5850 			       rx_handler_func_t *rx_handler,
5851 			       void *rx_handler_data)
5852 {
5853 	if (netdev_is_rx_handler_busy(dev))
5854 		return -EBUSY;
5855 
5856 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5857 		return -EINVAL;
5858 
5859 	/* Note: rx_handler_data must be set before rx_handler */
5860 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5861 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5862 
5863 	return 0;
5864 }
5865 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5866 
5867 /**
5868  *	netdev_rx_handler_unregister - unregister receive handler
5869  *	@dev: device to unregister a handler from
5870  *
5871  *	Unregister a receive handler from a device.
5872  *
5873  *	The caller must hold the rtnl_mutex.
5874  */
netdev_rx_handler_unregister(struct net_device * dev)5875 void netdev_rx_handler_unregister(struct net_device *dev)
5876 {
5877 
5878 	ASSERT_RTNL();
5879 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5880 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5881 	 * section has a guarantee to see a non NULL rx_handler_data
5882 	 * as well.
5883 	 */
5884 	synchronize_net();
5885 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5888 
5889 /*
5890  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5891  * the special handling of PFMEMALLOC skbs.
5892  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5893 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5894 {
5895 	switch (skb->protocol) {
5896 	case htons(ETH_P_ARP):
5897 	case htons(ETH_P_IP):
5898 	case htons(ETH_P_IPV6):
5899 	case htons(ETH_P_8021Q):
5900 	case htons(ETH_P_8021AD):
5901 		return true;
5902 	default:
5903 		return false;
5904 	}
5905 }
5906 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5907 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5908 			     int *ret, struct net_device *orig_dev)
5909 {
5910 	if (nf_hook_ingress_active(skb)) {
5911 		int ingress_retval;
5912 
5913 		if (unlikely(*pt_prev)) {
5914 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5915 			*pt_prev = NULL;
5916 		}
5917 
5918 		rcu_read_lock();
5919 		ingress_retval = nf_hook_ingress(skb);
5920 		rcu_read_unlock();
5921 		return ingress_retval;
5922 	}
5923 	return 0;
5924 }
5925 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5926 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5927 				    struct packet_type **ppt_prev)
5928 {
5929 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5930 	struct packet_type *ptype, *pt_prev;
5931 	rx_handler_func_t *rx_handler;
5932 	struct sk_buff *skb = *pskb;
5933 	struct net_device *orig_dev;
5934 	bool deliver_exact = false;
5935 	int ret = NET_RX_DROP;
5936 	__be16 type;
5937 
5938 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5939 
5940 	trace_netif_receive_skb(skb);
5941 
5942 	orig_dev = skb->dev;
5943 
5944 	skb_reset_network_header(skb);
5945 #if !defined(CONFIG_DEBUG_NET)
5946 	/* We plan to no longer reset the transport header here.
5947 	 * Give some time to fuzzers and dev build to catch bugs
5948 	 * in network stacks.
5949 	 */
5950 	if (!skb_transport_header_was_set(skb))
5951 		skb_reset_transport_header(skb);
5952 #endif
5953 	skb_reset_mac_len(skb);
5954 
5955 	pt_prev = NULL;
5956 
5957 another_round:
5958 	skb->skb_iif = skb->dev->ifindex;
5959 
5960 	__this_cpu_inc(softnet_data.processed);
5961 
5962 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5963 		int ret2;
5964 
5965 		migrate_disable();
5966 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5967 				      &skb);
5968 		migrate_enable();
5969 
5970 		if (ret2 != XDP_PASS) {
5971 			ret = NET_RX_DROP;
5972 			goto out;
5973 		}
5974 	}
5975 
5976 	if (eth_type_vlan(skb->protocol)) {
5977 		skb = skb_vlan_untag(skb);
5978 		if (unlikely(!skb))
5979 			goto out;
5980 	}
5981 
5982 	if (skb_skip_tc_classify(skb))
5983 		goto skip_classify;
5984 
5985 	if (pfmemalloc)
5986 		goto skip_taps;
5987 
5988 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5989 				list) {
5990 		if (unlikely(pt_prev))
5991 			ret = deliver_skb(skb, pt_prev, orig_dev);
5992 		pt_prev = ptype;
5993 	}
5994 
5995 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5996 		if (unlikely(pt_prev))
5997 			ret = deliver_skb(skb, pt_prev, orig_dev);
5998 		pt_prev = ptype;
5999 	}
6000 
6001 skip_taps:
6002 #ifdef CONFIG_NET_INGRESS
6003 	if (static_branch_unlikely(&ingress_needed_key)) {
6004 		bool another = false;
6005 
6006 		nf_skip_egress(skb, true);
6007 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6008 					 &another);
6009 		if (another)
6010 			goto another_round;
6011 		if (!skb)
6012 			goto out;
6013 
6014 		nf_skip_egress(skb, false);
6015 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6016 			goto out;
6017 	}
6018 #endif
6019 	skb_reset_redirect(skb);
6020 skip_classify:
6021 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6022 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6023 		goto drop;
6024 	}
6025 
6026 	if (skb_vlan_tag_present(skb)) {
6027 		if (unlikely(pt_prev)) {
6028 			ret = deliver_skb(skb, pt_prev, orig_dev);
6029 			pt_prev = NULL;
6030 		}
6031 		if (vlan_do_receive(&skb))
6032 			goto another_round;
6033 		else if (unlikely(!skb))
6034 			goto out;
6035 	}
6036 
6037 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6038 	if (rx_handler) {
6039 		if (unlikely(pt_prev)) {
6040 			ret = deliver_skb(skb, pt_prev, orig_dev);
6041 			pt_prev = NULL;
6042 		}
6043 		switch (rx_handler(&skb)) {
6044 		case RX_HANDLER_CONSUMED:
6045 			ret = NET_RX_SUCCESS;
6046 			goto out;
6047 		case RX_HANDLER_ANOTHER:
6048 			goto another_round;
6049 		case RX_HANDLER_EXACT:
6050 			deliver_exact = true;
6051 			break;
6052 		case RX_HANDLER_PASS:
6053 			break;
6054 		default:
6055 			BUG();
6056 		}
6057 	}
6058 
6059 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6060 check_vlan_id:
6061 		if (skb_vlan_tag_get_id(skb)) {
6062 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6063 			 * find vlan device.
6064 			 */
6065 			skb->pkt_type = PACKET_OTHERHOST;
6066 		} else if (eth_type_vlan(skb->protocol)) {
6067 			/* Outer header is 802.1P with vlan 0, inner header is
6068 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6069 			 * not find vlan dev for vlan id 0.
6070 			 */
6071 			__vlan_hwaccel_clear_tag(skb);
6072 			skb = skb_vlan_untag(skb);
6073 			if (unlikely(!skb))
6074 				goto out;
6075 			if (vlan_do_receive(&skb))
6076 				/* After stripping off 802.1P header with vlan 0
6077 				 * vlan dev is found for inner header.
6078 				 */
6079 				goto another_round;
6080 			else if (unlikely(!skb))
6081 				goto out;
6082 			else
6083 				/* We have stripped outer 802.1P vlan 0 header.
6084 				 * But could not find vlan dev.
6085 				 * check again for vlan id to set OTHERHOST.
6086 				 */
6087 				goto check_vlan_id;
6088 		}
6089 		/* Note: we might in the future use prio bits
6090 		 * and set skb->priority like in vlan_do_receive()
6091 		 * For the time being, just ignore Priority Code Point
6092 		 */
6093 		__vlan_hwaccel_clear_tag(skb);
6094 	}
6095 
6096 	type = skb->protocol;
6097 
6098 	/* deliver only exact match when indicated */
6099 	if (likely(!deliver_exact)) {
6100 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6101 				       &ptype_base[ntohs(type) &
6102 						   PTYPE_HASH_MASK]);
6103 
6104 		/* orig_dev and skb->dev could belong to different netns;
6105 		 * Even in such case we need to traverse only the list
6106 		 * coming from skb->dev, as the ptype owner (packet socket)
6107 		 * will use dev_net(skb->dev) to do namespace filtering.
6108 		 */
6109 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 				       &dev_net_rcu(skb->dev)->ptype_specific);
6111 	}
6112 
6113 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 			       &orig_dev->ptype_specific);
6115 
6116 	if (unlikely(skb->dev != orig_dev)) {
6117 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6118 				       &skb->dev->ptype_specific);
6119 	}
6120 
6121 	if (pt_prev) {
6122 		*ppt_prev = pt_prev;
6123 	} else {
6124 drop:
6125 		if (!deliver_exact)
6126 			dev_core_stats_rx_dropped_inc(skb->dev);
6127 		else
6128 			dev_core_stats_rx_nohandler_inc(skb->dev);
6129 
6130 		kfree_skb_reason(skb, drop_reason);
6131 		/* Jamal, now you will not able to escape explaining
6132 		 * me how you were going to use this. :-)
6133 		 */
6134 		ret = NET_RX_DROP;
6135 	}
6136 
6137 out:
6138 	/* The invariant here is that if *ppt_prev is not NULL
6139 	 * then skb should also be non-NULL.
6140 	 *
6141 	 * Apparently *ppt_prev assignment above holds this invariant due to
6142 	 * skb dereferencing near it.
6143 	 */
6144 	*pskb = skb;
6145 	return ret;
6146 }
6147 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6148 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6149 {
6150 	struct net_device *orig_dev = skb->dev;
6151 	struct packet_type *pt_prev = NULL;
6152 	int ret;
6153 
6154 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155 	if (pt_prev)
6156 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6157 					 skb->dev, pt_prev, orig_dev);
6158 	return ret;
6159 }
6160 
6161 /**
6162  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6163  *	@skb: buffer to process
6164  *
6165  *	More direct receive version of netif_receive_skb().  It should
6166  *	only be used by callers that have a need to skip RPS and Generic XDP.
6167  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6168  *
6169  *	This function may only be called from softirq context and interrupts
6170  *	should be enabled.
6171  *
6172  *	Return values (usually ignored):
6173  *	NET_RX_SUCCESS: no congestion
6174  *	NET_RX_DROP: packet was dropped
6175  */
netif_receive_skb_core(struct sk_buff * skb)6176 int netif_receive_skb_core(struct sk_buff *skb)
6177 {
6178 	int ret;
6179 
6180 	rcu_read_lock();
6181 	ret = __netif_receive_skb_one_core(skb, false);
6182 	rcu_read_unlock();
6183 
6184 	return ret;
6185 }
6186 EXPORT_SYMBOL(netif_receive_skb_core);
6187 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6188 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6189 						  struct packet_type *pt_prev,
6190 						  struct net_device *orig_dev)
6191 {
6192 	struct sk_buff *skb, *next;
6193 
6194 	if (!pt_prev)
6195 		return;
6196 	if (list_empty(head))
6197 		return;
6198 	if (pt_prev->list_func != NULL)
6199 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6200 				   ip_list_rcv, head, pt_prev, orig_dev);
6201 	else
6202 		list_for_each_entry_safe(skb, next, head, list) {
6203 			skb_list_del_init(skb);
6204 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6205 		}
6206 }
6207 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6208 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6209 {
6210 	/* Fast-path assumptions:
6211 	 * - There is no RX handler.
6212 	 * - Only one packet_type matches.
6213 	 * If either of these fails, we will end up doing some per-packet
6214 	 * processing in-line, then handling the 'last ptype' for the whole
6215 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6216 	 * because the 'last ptype' must be constant across the sublist, and all
6217 	 * other ptypes are handled per-packet.
6218 	 */
6219 	/* Current (common) ptype of sublist */
6220 	struct packet_type *pt_curr = NULL;
6221 	/* Current (common) orig_dev of sublist */
6222 	struct net_device *od_curr = NULL;
6223 	struct sk_buff *skb, *next;
6224 	LIST_HEAD(sublist);
6225 
6226 	list_for_each_entry_safe(skb, next, head, list) {
6227 		struct net_device *orig_dev = skb->dev;
6228 		struct packet_type *pt_prev = NULL;
6229 
6230 		skb_list_del_init(skb);
6231 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6232 		if (!pt_prev)
6233 			continue;
6234 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6235 			/* dispatch old sublist */
6236 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6237 			/* start new sublist */
6238 			INIT_LIST_HEAD(&sublist);
6239 			pt_curr = pt_prev;
6240 			od_curr = orig_dev;
6241 		}
6242 		list_add_tail(&skb->list, &sublist);
6243 	}
6244 
6245 	/* dispatch final sublist */
6246 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6247 }
6248 
__netif_receive_skb(struct sk_buff * skb)6249 static int __netif_receive_skb(struct sk_buff *skb)
6250 {
6251 	int ret;
6252 
6253 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6254 		unsigned int noreclaim_flag;
6255 
6256 		/*
6257 		 * PFMEMALLOC skbs are special, they should
6258 		 * - be delivered to SOCK_MEMALLOC sockets only
6259 		 * - stay away from userspace
6260 		 * - have bounded memory usage
6261 		 *
6262 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6263 		 * context down to all allocation sites.
6264 		 */
6265 		noreclaim_flag = memalloc_noreclaim_save();
6266 		ret = __netif_receive_skb_one_core(skb, true);
6267 		memalloc_noreclaim_restore(noreclaim_flag);
6268 	} else
6269 		ret = __netif_receive_skb_one_core(skb, false);
6270 
6271 	return ret;
6272 }
6273 
__netif_receive_skb_list(struct list_head * head)6274 static void __netif_receive_skb_list(struct list_head *head)
6275 {
6276 	unsigned long noreclaim_flag = 0;
6277 	struct sk_buff *skb, *next;
6278 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6279 
6280 	list_for_each_entry_safe(skb, next, head, list) {
6281 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6282 			struct list_head sublist;
6283 
6284 			/* Handle the previous sublist */
6285 			list_cut_before(&sublist, head, &skb->list);
6286 			if (!list_empty(&sublist))
6287 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6288 			pfmemalloc = !pfmemalloc;
6289 			/* See comments in __netif_receive_skb */
6290 			if (pfmemalloc)
6291 				noreclaim_flag = memalloc_noreclaim_save();
6292 			else
6293 				memalloc_noreclaim_restore(noreclaim_flag);
6294 		}
6295 	}
6296 	/* Handle the remaining sublist */
6297 	if (!list_empty(head))
6298 		__netif_receive_skb_list_core(head, pfmemalloc);
6299 	/* Restore pflags */
6300 	if (pfmemalloc)
6301 		memalloc_noreclaim_restore(noreclaim_flag);
6302 }
6303 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6304 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6305 {
6306 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6307 	struct bpf_prog *new = xdp->prog;
6308 	int ret = 0;
6309 
6310 	switch (xdp->command) {
6311 	case XDP_SETUP_PROG:
6312 		rcu_assign_pointer(dev->xdp_prog, new);
6313 		if (old)
6314 			bpf_prog_put(old);
6315 
6316 		if (old && !new) {
6317 			static_branch_dec(&generic_xdp_needed_key);
6318 		} else if (new && !old) {
6319 			static_branch_inc(&generic_xdp_needed_key);
6320 			netif_disable_lro(dev);
6321 			dev_disable_gro_hw(dev);
6322 		}
6323 		break;
6324 
6325 	default:
6326 		ret = -EINVAL;
6327 		break;
6328 	}
6329 
6330 	return ret;
6331 }
6332 
netif_receive_skb_internal(struct sk_buff * skb)6333 static int netif_receive_skb_internal(struct sk_buff *skb)
6334 {
6335 	int ret;
6336 
6337 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6338 
6339 	if (skb_defer_rx_timestamp(skb))
6340 		return NET_RX_SUCCESS;
6341 
6342 	rcu_read_lock();
6343 #ifdef CONFIG_RPS
6344 	if (static_branch_unlikely(&rps_needed)) {
6345 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6346 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6347 
6348 		if (cpu >= 0) {
6349 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6350 			rcu_read_unlock();
6351 			return ret;
6352 		}
6353 	}
6354 #endif
6355 	ret = __netif_receive_skb(skb);
6356 	rcu_read_unlock();
6357 	return ret;
6358 }
6359 
netif_receive_skb_list_internal(struct list_head * head)6360 void netif_receive_skb_list_internal(struct list_head *head)
6361 {
6362 	struct sk_buff *skb, *next;
6363 	LIST_HEAD(sublist);
6364 
6365 	list_for_each_entry_safe(skb, next, head, list) {
6366 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6367 				    skb);
6368 		skb_list_del_init(skb);
6369 		if (!skb_defer_rx_timestamp(skb))
6370 			list_add_tail(&skb->list, &sublist);
6371 	}
6372 	list_splice_init(&sublist, head);
6373 
6374 	rcu_read_lock();
6375 #ifdef CONFIG_RPS
6376 	if (static_branch_unlikely(&rps_needed)) {
6377 		list_for_each_entry_safe(skb, next, head, list) {
6378 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6379 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6380 
6381 			if (cpu >= 0) {
6382 				/* Will be handled, remove from list */
6383 				skb_list_del_init(skb);
6384 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6385 			}
6386 		}
6387 	}
6388 #endif
6389 	__netif_receive_skb_list(head);
6390 	rcu_read_unlock();
6391 }
6392 
6393 /**
6394  *	netif_receive_skb - process receive buffer from network
6395  *	@skb: buffer to process
6396  *
6397  *	netif_receive_skb() is the main receive data processing function.
6398  *	It always succeeds. The buffer may be dropped during processing
6399  *	for congestion control or by the protocol layers.
6400  *
6401  *	This function may only be called from softirq context and interrupts
6402  *	should be enabled.
6403  *
6404  *	Return values (usually ignored):
6405  *	NET_RX_SUCCESS: no congestion
6406  *	NET_RX_DROP: packet was dropped
6407  */
netif_receive_skb(struct sk_buff * skb)6408 int netif_receive_skb(struct sk_buff *skb)
6409 {
6410 	int ret;
6411 
6412 	trace_netif_receive_skb_entry(skb);
6413 
6414 	ret = netif_receive_skb_internal(skb);
6415 	trace_netif_receive_skb_exit(ret);
6416 
6417 	return ret;
6418 }
6419 EXPORT_SYMBOL(netif_receive_skb);
6420 
6421 /**
6422  *	netif_receive_skb_list - process many receive buffers from network
6423  *	@head: list of skbs to process.
6424  *
6425  *	Since return value of netif_receive_skb() is normally ignored, and
6426  *	wouldn't be meaningful for a list, this function returns void.
6427  *
6428  *	This function may only be called from softirq context and interrupts
6429  *	should be enabled.
6430  */
netif_receive_skb_list(struct list_head * head)6431 void netif_receive_skb_list(struct list_head *head)
6432 {
6433 	struct sk_buff *skb;
6434 
6435 	if (list_empty(head))
6436 		return;
6437 	if (trace_netif_receive_skb_list_entry_enabled()) {
6438 		list_for_each_entry(skb, head, list)
6439 			trace_netif_receive_skb_list_entry(skb);
6440 	}
6441 	netif_receive_skb_list_internal(head);
6442 	trace_netif_receive_skb_list_exit(0);
6443 }
6444 EXPORT_SYMBOL(netif_receive_skb_list);
6445 
6446 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6447 static void flush_backlog(struct work_struct *work)
6448 {
6449 	struct sk_buff *skb, *tmp;
6450 	struct sk_buff_head list;
6451 	struct softnet_data *sd;
6452 
6453 	__skb_queue_head_init(&list);
6454 	local_bh_disable();
6455 	sd = this_cpu_ptr(&softnet_data);
6456 
6457 	backlog_lock_irq_disable(sd);
6458 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6459 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6460 			__skb_unlink(skb, &sd->input_pkt_queue);
6461 			__skb_queue_tail(&list, skb);
6462 			rps_input_queue_head_incr(sd);
6463 		}
6464 	}
6465 	backlog_unlock_irq_enable(sd);
6466 
6467 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6468 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6469 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6470 			__skb_unlink(skb, &sd->process_queue);
6471 			__skb_queue_tail(&list, skb);
6472 			rps_input_queue_head_incr(sd);
6473 		}
6474 	}
6475 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6476 	local_bh_enable();
6477 
6478 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6479 }
6480 
flush_required(int cpu)6481 static bool flush_required(int cpu)
6482 {
6483 #if IS_ENABLED(CONFIG_RPS)
6484 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6485 	bool do_flush;
6486 
6487 	backlog_lock_irq_disable(sd);
6488 
6489 	/* as insertion into process_queue happens with the rps lock held,
6490 	 * process_queue access may race only with dequeue
6491 	 */
6492 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6493 		   !skb_queue_empty_lockless(&sd->process_queue);
6494 	backlog_unlock_irq_enable(sd);
6495 
6496 	return do_flush;
6497 #endif
6498 	/* without RPS we can't safely check input_pkt_queue: during a
6499 	 * concurrent remote skb_queue_splice() we can detect as empty both
6500 	 * input_pkt_queue and process_queue even if the latter could end-up
6501 	 * containing a lot of packets.
6502 	 */
6503 	return true;
6504 }
6505 
6506 struct flush_backlogs {
6507 	cpumask_t		flush_cpus;
6508 	struct work_struct	w[];
6509 };
6510 
flush_backlogs_alloc(void)6511 static struct flush_backlogs *flush_backlogs_alloc(void)
6512 {
6513 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6514 		       GFP_KERNEL);
6515 }
6516 
6517 static struct flush_backlogs *flush_backlogs_fallback;
6518 static DEFINE_MUTEX(flush_backlogs_mutex);
6519 
flush_all_backlogs(void)6520 static void flush_all_backlogs(void)
6521 {
6522 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6523 	unsigned int cpu;
6524 
6525 	if (!ptr) {
6526 		mutex_lock(&flush_backlogs_mutex);
6527 		ptr = flush_backlogs_fallback;
6528 	}
6529 	cpumask_clear(&ptr->flush_cpus);
6530 
6531 	cpus_read_lock();
6532 
6533 	for_each_online_cpu(cpu) {
6534 		if (flush_required(cpu)) {
6535 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6536 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6537 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6538 		}
6539 	}
6540 
6541 	/* we can have in flight packet[s] on the cpus we are not flushing,
6542 	 * synchronize_net() in unregister_netdevice_many() will take care of
6543 	 * them.
6544 	 */
6545 	for_each_cpu(cpu, &ptr->flush_cpus)
6546 		flush_work(&ptr->w[cpu]);
6547 
6548 	cpus_read_unlock();
6549 
6550 	if (ptr != flush_backlogs_fallback)
6551 		kfree(ptr);
6552 	else
6553 		mutex_unlock(&flush_backlogs_mutex);
6554 }
6555 
net_rps_send_ipi(struct softnet_data * remsd)6556 static void net_rps_send_ipi(struct softnet_data *remsd)
6557 {
6558 #ifdef CONFIG_RPS
6559 	while (remsd) {
6560 		struct softnet_data *next = remsd->rps_ipi_next;
6561 
6562 		if (cpu_online(remsd->cpu))
6563 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6564 		remsd = next;
6565 	}
6566 #endif
6567 }
6568 
6569 /*
6570  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6571  * Note: called with local irq disabled, but exits with local irq enabled.
6572  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6573 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6574 {
6575 #ifdef CONFIG_RPS
6576 	struct softnet_data *remsd = sd->rps_ipi_list;
6577 
6578 	if (!use_backlog_threads() && remsd) {
6579 		sd->rps_ipi_list = NULL;
6580 
6581 		local_irq_enable();
6582 
6583 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6584 		net_rps_send_ipi(remsd);
6585 	} else
6586 #endif
6587 		local_irq_enable();
6588 }
6589 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6590 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6591 {
6592 #ifdef CONFIG_RPS
6593 	return !use_backlog_threads() && sd->rps_ipi_list;
6594 #else
6595 	return false;
6596 #endif
6597 }
6598 
process_backlog(struct napi_struct * napi,int quota)6599 static int process_backlog(struct napi_struct *napi, int quota)
6600 {
6601 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6602 	bool again = true;
6603 	int work = 0;
6604 
6605 	/* Check if we have pending ipi, its better to send them now,
6606 	 * not waiting net_rx_action() end.
6607 	 */
6608 	if (sd_has_rps_ipi_waiting(sd)) {
6609 		local_irq_disable();
6610 		net_rps_action_and_irq_enable(sd);
6611 	}
6612 
6613 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6614 	while (again) {
6615 		struct sk_buff *skb;
6616 
6617 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6618 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6619 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6620 			rcu_read_lock();
6621 			__netif_receive_skb(skb);
6622 			rcu_read_unlock();
6623 			if (++work >= quota) {
6624 				rps_input_queue_head_add(sd, work);
6625 				return work;
6626 			}
6627 
6628 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6629 		}
6630 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6631 
6632 		backlog_lock_irq_disable(sd);
6633 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6634 			/*
6635 			 * Inline a custom version of __napi_complete().
6636 			 * only current cpu owns and manipulates this napi,
6637 			 * and NAPI_STATE_SCHED is the only possible flag set
6638 			 * on backlog.
6639 			 * We can use a plain write instead of clear_bit(),
6640 			 * and we dont need an smp_mb() memory barrier.
6641 			 */
6642 			napi->state &= NAPIF_STATE_THREADED;
6643 			again = false;
6644 		} else {
6645 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6646 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6647 						   &sd->process_queue);
6648 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6649 		}
6650 		backlog_unlock_irq_enable(sd);
6651 	}
6652 
6653 	if (work)
6654 		rps_input_queue_head_add(sd, work);
6655 	return work;
6656 }
6657 
6658 /**
6659  * __napi_schedule - schedule for receive
6660  * @n: entry to schedule
6661  *
6662  * The entry's receive function will be scheduled to run.
6663  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6664  */
__napi_schedule(struct napi_struct * n)6665 void __napi_schedule(struct napi_struct *n)
6666 {
6667 	unsigned long flags;
6668 
6669 	local_irq_save(flags);
6670 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6671 	local_irq_restore(flags);
6672 }
6673 EXPORT_SYMBOL(__napi_schedule);
6674 
6675 /**
6676  *	napi_schedule_prep - check if napi can be scheduled
6677  *	@n: napi context
6678  *
6679  * Test if NAPI routine is already running, and if not mark
6680  * it as running.  This is used as a condition variable to
6681  * insure only one NAPI poll instance runs.  We also make
6682  * sure there is no pending NAPI disable.
6683  */
napi_schedule_prep(struct napi_struct * n)6684 bool napi_schedule_prep(struct napi_struct *n)
6685 {
6686 	unsigned long new, val = READ_ONCE(n->state);
6687 
6688 	do {
6689 		if (unlikely(val & NAPIF_STATE_DISABLE))
6690 			return false;
6691 		new = val | NAPIF_STATE_SCHED;
6692 
6693 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6694 		 * This was suggested by Alexander Duyck, as compiler
6695 		 * emits better code than :
6696 		 * if (val & NAPIF_STATE_SCHED)
6697 		 *     new |= NAPIF_STATE_MISSED;
6698 		 */
6699 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6700 						   NAPIF_STATE_MISSED;
6701 	} while (!try_cmpxchg(&n->state, &val, new));
6702 
6703 	return !(val & NAPIF_STATE_SCHED);
6704 }
6705 EXPORT_SYMBOL(napi_schedule_prep);
6706 
6707 /**
6708  * __napi_schedule_irqoff - schedule for receive
6709  * @n: entry to schedule
6710  *
6711  * Variant of __napi_schedule() assuming hard irqs are masked.
6712  *
6713  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6714  * because the interrupt disabled assumption might not be true
6715  * due to force-threaded interrupts and spinlock substitution.
6716  */
__napi_schedule_irqoff(struct napi_struct * n)6717 void __napi_schedule_irqoff(struct napi_struct *n)
6718 {
6719 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6720 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6721 	else
6722 		__napi_schedule(n);
6723 }
6724 EXPORT_SYMBOL(__napi_schedule_irqoff);
6725 
napi_complete_done(struct napi_struct * n,int work_done)6726 bool napi_complete_done(struct napi_struct *n, int work_done)
6727 {
6728 	unsigned long flags, val, new, timeout = 0;
6729 	bool ret = true;
6730 
6731 	/*
6732 	 * 1) Don't let napi dequeue from the cpu poll list
6733 	 *    just in case its running on a different cpu.
6734 	 * 2) If we are busy polling, do nothing here, we have
6735 	 *    the guarantee we will be called later.
6736 	 */
6737 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6738 				 NAPIF_STATE_IN_BUSY_POLL)))
6739 		return false;
6740 
6741 	if (work_done) {
6742 		if (n->gro.bitmask)
6743 			timeout = napi_get_gro_flush_timeout(n);
6744 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6745 	}
6746 	if (n->defer_hard_irqs_count > 0) {
6747 		n->defer_hard_irqs_count--;
6748 		timeout = napi_get_gro_flush_timeout(n);
6749 		if (timeout)
6750 			ret = false;
6751 	}
6752 
6753 	/*
6754 	 * When the NAPI instance uses a timeout and keeps postponing
6755 	 * it, we need to bound somehow the time packets are kept in
6756 	 * the GRO layer.
6757 	 */
6758 	gro_flush_normal(&n->gro, !!timeout);
6759 
6760 	if (unlikely(!list_empty(&n->poll_list))) {
6761 		/* If n->poll_list is not empty, we need to mask irqs */
6762 		local_irq_save(flags);
6763 		list_del_init(&n->poll_list);
6764 		local_irq_restore(flags);
6765 	}
6766 	WRITE_ONCE(n->list_owner, -1);
6767 
6768 	val = READ_ONCE(n->state);
6769 	do {
6770 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6771 
6772 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6773 			      NAPIF_STATE_SCHED_THREADED |
6774 			      NAPIF_STATE_PREFER_BUSY_POLL);
6775 
6776 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6777 		 * because we will call napi->poll() one more time.
6778 		 * This C code was suggested by Alexander Duyck to help gcc.
6779 		 */
6780 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6781 						    NAPIF_STATE_SCHED;
6782 	} while (!try_cmpxchg(&n->state, &val, new));
6783 
6784 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6785 		__napi_schedule(n);
6786 		return false;
6787 	}
6788 
6789 	if (timeout)
6790 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6791 			      HRTIMER_MODE_REL_PINNED);
6792 	return ret;
6793 }
6794 EXPORT_SYMBOL(napi_complete_done);
6795 
skb_defer_free_flush(void)6796 static void skb_defer_free_flush(void)
6797 {
6798 	struct llist_node *free_list;
6799 	struct sk_buff *skb, *next;
6800 	struct skb_defer_node *sdn;
6801 	int node;
6802 
6803 	for_each_node(node) {
6804 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6805 
6806 		if (llist_empty(&sdn->defer_list))
6807 			continue;
6808 		atomic_long_set(&sdn->defer_count, 0);
6809 		free_list = llist_del_all(&sdn->defer_list);
6810 
6811 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6812 			prefetch(next);
6813 			napi_consume_skb(skb, 1);
6814 		}
6815 	}
6816 }
6817 
6818 #if defined(CONFIG_NET_RX_BUSY_POLL)
6819 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6820 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6821 {
6822 	if (!skip_schedule) {
6823 		gro_normal_list(&napi->gro);
6824 		__napi_schedule(napi);
6825 		return;
6826 	}
6827 
6828 	/* Flush too old packets. If HZ < 1000, flush all packets */
6829 	gro_flush_normal(&napi->gro, HZ >= 1000);
6830 
6831 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6832 }
6833 
6834 enum {
6835 	NAPI_F_PREFER_BUSY_POLL	= 1,
6836 	NAPI_F_END_ON_RESCHED	= 2,
6837 };
6838 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6839 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6840 			   unsigned flags, u16 budget)
6841 {
6842 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6843 	bool skip_schedule = false;
6844 	unsigned long timeout;
6845 	int rc;
6846 
6847 	/* Busy polling means there is a high chance device driver hard irq
6848 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6849 	 * set in napi_schedule_prep().
6850 	 * Since we are about to call napi->poll() once more, we can safely
6851 	 * clear NAPI_STATE_MISSED.
6852 	 *
6853 	 * Note: x86 could use a single "lock and ..." instruction
6854 	 * to perform these two clear_bit()
6855 	 */
6856 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6857 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6858 
6859 	local_bh_disable();
6860 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6861 
6862 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6863 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6864 		timeout = napi_get_gro_flush_timeout(napi);
6865 		if (napi->defer_hard_irqs_count && timeout) {
6866 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6867 			skip_schedule = true;
6868 		}
6869 	}
6870 
6871 	/* All we really want here is to re-enable device interrupts.
6872 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6873 	 */
6874 	rc = napi->poll(napi, budget);
6875 	/* We can't gro_normal_list() here, because napi->poll() might have
6876 	 * rearmed the napi (napi_complete_done()) in which case it could
6877 	 * already be running on another CPU.
6878 	 */
6879 	trace_napi_poll(napi, rc, budget);
6880 	netpoll_poll_unlock(have_poll_lock);
6881 	if (rc == budget)
6882 		__busy_poll_stop(napi, skip_schedule);
6883 	bpf_net_ctx_clear(bpf_net_ctx);
6884 	local_bh_enable();
6885 }
6886 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6887 static void __napi_busy_loop(unsigned int napi_id,
6888 		      bool (*loop_end)(void *, unsigned long),
6889 		      void *loop_end_arg, unsigned flags, u16 budget)
6890 {
6891 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6892 	int (*napi_poll)(struct napi_struct *napi, int budget);
6893 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6894 	void *have_poll_lock = NULL;
6895 	struct napi_struct *napi;
6896 
6897 	WARN_ON_ONCE(!rcu_read_lock_held());
6898 
6899 restart:
6900 	napi_poll = NULL;
6901 
6902 	napi = napi_by_id(napi_id);
6903 	if (!napi)
6904 		return;
6905 
6906 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6907 		preempt_disable();
6908 	for (;;) {
6909 		int work = 0;
6910 
6911 		local_bh_disable();
6912 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6913 		if (!napi_poll) {
6914 			unsigned long val = READ_ONCE(napi->state);
6915 
6916 			/* If multiple threads are competing for this napi,
6917 			 * we avoid dirtying napi->state as much as we can.
6918 			 */
6919 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6920 				   NAPIF_STATE_IN_BUSY_POLL)) {
6921 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6922 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6923 				goto count;
6924 			}
6925 			if (cmpxchg(&napi->state, val,
6926 				    val | NAPIF_STATE_IN_BUSY_POLL |
6927 					  NAPIF_STATE_SCHED) != val) {
6928 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6929 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6930 				goto count;
6931 			}
6932 			have_poll_lock = netpoll_poll_lock(napi);
6933 			napi_poll = napi->poll;
6934 		}
6935 		work = napi_poll(napi, budget);
6936 		trace_napi_poll(napi, work, budget);
6937 		gro_normal_list(&napi->gro);
6938 count:
6939 		if (work > 0)
6940 			__NET_ADD_STATS(dev_net(napi->dev),
6941 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6942 		skb_defer_free_flush();
6943 		bpf_net_ctx_clear(bpf_net_ctx);
6944 		local_bh_enable();
6945 
6946 		if (!loop_end || loop_end(loop_end_arg, start_time))
6947 			break;
6948 
6949 		if (unlikely(need_resched())) {
6950 			if (flags & NAPI_F_END_ON_RESCHED)
6951 				break;
6952 			if (napi_poll)
6953 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6954 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6955 				preempt_enable();
6956 			rcu_read_unlock();
6957 			cond_resched();
6958 			rcu_read_lock();
6959 			if (loop_end(loop_end_arg, start_time))
6960 				return;
6961 			goto restart;
6962 		}
6963 		cpu_relax();
6964 	}
6965 	if (napi_poll)
6966 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6967 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6968 		preempt_enable();
6969 }
6970 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6971 void napi_busy_loop_rcu(unsigned int napi_id,
6972 			bool (*loop_end)(void *, unsigned long),
6973 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6974 {
6975 	unsigned flags = NAPI_F_END_ON_RESCHED;
6976 
6977 	if (prefer_busy_poll)
6978 		flags |= NAPI_F_PREFER_BUSY_POLL;
6979 
6980 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6981 }
6982 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6983 void napi_busy_loop(unsigned int napi_id,
6984 		    bool (*loop_end)(void *, unsigned long),
6985 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6986 {
6987 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6988 
6989 	rcu_read_lock();
6990 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6991 	rcu_read_unlock();
6992 }
6993 EXPORT_SYMBOL(napi_busy_loop);
6994 
napi_suspend_irqs(unsigned int napi_id)6995 void napi_suspend_irqs(unsigned int napi_id)
6996 {
6997 	struct napi_struct *napi;
6998 
6999 	rcu_read_lock();
7000 	napi = napi_by_id(napi_id);
7001 	if (napi) {
7002 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
7003 
7004 		if (timeout)
7005 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7006 				      HRTIMER_MODE_REL_PINNED);
7007 	}
7008 	rcu_read_unlock();
7009 }
7010 
napi_resume_irqs(unsigned int napi_id)7011 void napi_resume_irqs(unsigned int napi_id)
7012 {
7013 	struct napi_struct *napi;
7014 
7015 	rcu_read_lock();
7016 	napi = napi_by_id(napi_id);
7017 	if (napi) {
7018 		/* If irq_suspend_timeout is set to 0 between the call to
7019 		 * napi_suspend_irqs and now, the original value still
7020 		 * determines the safety timeout as intended and napi_watchdog
7021 		 * will resume irq processing.
7022 		 */
7023 		if (napi_get_irq_suspend_timeout(napi)) {
7024 			local_bh_disable();
7025 			napi_schedule(napi);
7026 			local_bh_enable();
7027 		}
7028 	}
7029 	rcu_read_unlock();
7030 }
7031 
7032 #endif /* CONFIG_NET_RX_BUSY_POLL */
7033 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7034 static void __napi_hash_add_with_id(struct napi_struct *napi,
7035 				    unsigned int napi_id)
7036 {
7037 	napi->gro.cached_napi_id = napi_id;
7038 
7039 	WRITE_ONCE(napi->napi_id, napi_id);
7040 	hlist_add_head_rcu(&napi->napi_hash_node,
7041 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7042 }
7043 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7044 static void napi_hash_add_with_id(struct napi_struct *napi,
7045 				  unsigned int napi_id)
7046 {
7047 	unsigned long flags;
7048 
7049 	spin_lock_irqsave(&napi_hash_lock, flags);
7050 	WARN_ON_ONCE(napi_by_id(napi_id));
7051 	__napi_hash_add_with_id(napi, napi_id);
7052 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7053 }
7054 
napi_hash_add(struct napi_struct * napi)7055 static void napi_hash_add(struct napi_struct *napi)
7056 {
7057 	unsigned long flags;
7058 
7059 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7060 		return;
7061 
7062 	spin_lock_irqsave(&napi_hash_lock, flags);
7063 
7064 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7065 	do {
7066 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7067 			napi_gen_id = MIN_NAPI_ID;
7068 	} while (napi_by_id(napi_gen_id));
7069 
7070 	__napi_hash_add_with_id(napi, napi_gen_id);
7071 
7072 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7073 }
7074 
7075 /* Warning : caller is responsible to make sure rcu grace period
7076  * is respected before freeing memory containing @napi
7077  */
napi_hash_del(struct napi_struct * napi)7078 static void napi_hash_del(struct napi_struct *napi)
7079 {
7080 	unsigned long flags;
7081 
7082 	spin_lock_irqsave(&napi_hash_lock, flags);
7083 
7084 	hlist_del_init_rcu(&napi->napi_hash_node);
7085 
7086 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7087 }
7088 
napi_watchdog(struct hrtimer * timer)7089 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7090 {
7091 	struct napi_struct *napi;
7092 
7093 	napi = container_of(timer, struct napi_struct, timer);
7094 
7095 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7096 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7097 	 */
7098 	if (!napi_disable_pending(napi) &&
7099 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7100 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7101 		__napi_schedule_irqoff(napi);
7102 	}
7103 
7104 	return HRTIMER_NORESTART;
7105 }
7106 
napi_stop_kthread(struct napi_struct * napi)7107 static void napi_stop_kthread(struct napi_struct *napi)
7108 {
7109 	unsigned long val, new;
7110 
7111 	/* Wait until the napi STATE_THREADED is unset. */
7112 	while (true) {
7113 		val = READ_ONCE(napi->state);
7114 
7115 		/* If napi kthread own this napi or the napi is idle,
7116 		 * STATE_THREADED can be unset here.
7117 		 */
7118 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7119 		    !(val & NAPIF_STATE_SCHED)) {
7120 			new = val & (~(NAPIF_STATE_THREADED |
7121 				       NAPIF_STATE_THREADED_BUSY_POLL));
7122 		} else {
7123 			msleep(20);
7124 			continue;
7125 		}
7126 
7127 		if (try_cmpxchg(&napi->state, &val, new))
7128 			break;
7129 	}
7130 
7131 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7132 	 * the kthread.
7133 	 */
7134 	while (true) {
7135 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7136 			break;
7137 
7138 		msleep(20);
7139 	}
7140 
7141 	kthread_stop(napi->thread);
7142 	napi->thread = NULL;
7143 }
7144 
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7145 static void napi_set_threaded_state(struct napi_struct *napi,
7146 				    enum netdev_napi_threaded threaded_mode)
7147 {
7148 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7149 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7150 
7151 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7152 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7153 }
7154 
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7155 int napi_set_threaded(struct napi_struct *napi,
7156 		      enum netdev_napi_threaded threaded)
7157 {
7158 	if (threaded) {
7159 		if (!napi->thread) {
7160 			int err = napi_kthread_create(napi);
7161 
7162 			if (err)
7163 				return err;
7164 		}
7165 	}
7166 
7167 	if (napi->config)
7168 		napi->config->threaded = threaded;
7169 
7170 	/* Setting/unsetting threaded mode on a napi might not immediately
7171 	 * take effect, if the current napi instance is actively being
7172 	 * polled. In this case, the switch between threaded mode and
7173 	 * softirq mode will happen in the next round of napi_schedule().
7174 	 * This should not cause hiccups/stalls to the live traffic.
7175 	 */
7176 	if (!threaded && napi->thread) {
7177 		napi_stop_kthread(napi);
7178 	} else {
7179 		/* Make sure kthread is created before THREADED bit is set. */
7180 		smp_mb__before_atomic();
7181 		napi_set_threaded_state(napi, threaded);
7182 	}
7183 
7184 	return 0;
7185 }
7186 
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7187 int netif_set_threaded(struct net_device *dev,
7188 		       enum netdev_napi_threaded threaded)
7189 {
7190 	struct napi_struct *napi;
7191 	int i, err = 0;
7192 
7193 	netdev_assert_locked_or_invisible(dev);
7194 
7195 	if (threaded) {
7196 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7197 			if (!napi->thread) {
7198 				err = napi_kthread_create(napi);
7199 				if (err) {
7200 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7201 					break;
7202 				}
7203 			}
7204 		}
7205 	}
7206 
7207 	WRITE_ONCE(dev->threaded, threaded);
7208 
7209 	/* The error should not occur as the kthreads are already created. */
7210 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7211 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7212 
7213 	/* Override the config for all NAPIs even if currently not listed */
7214 	for (i = 0; i < dev->num_napi_configs; i++)
7215 		dev->napi_config[i].threaded = threaded;
7216 
7217 	return err;
7218 }
7219 
7220 /**
7221  * netif_threaded_enable() - enable threaded NAPIs
7222  * @dev: net_device instance
7223  *
7224  * Enable threaded mode for the NAPI instances of the device. This may be useful
7225  * for devices where multiple NAPI instances get scheduled by a single
7226  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7227  * than the core where IRQ is mapped.
7228  *
7229  * This function should be called before @dev is registered.
7230  */
netif_threaded_enable(struct net_device * dev)7231 void netif_threaded_enable(struct net_device *dev)
7232 {
7233 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7234 }
7235 EXPORT_SYMBOL(netif_threaded_enable);
7236 
7237 /**
7238  * netif_queue_set_napi - Associate queue with the napi
7239  * @dev: device to which NAPI and queue belong
7240  * @queue_index: Index of queue
7241  * @type: queue type as RX or TX
7242  * @napi: NAPI context, pass NULL to clear previously set NAPI
7243  *
7244  * Set queue with its corresponding napi context. This should be done after
7245  * registering the NAPI handler for the queue-vector and the queues have been
7246  * mapped to the corresponding interrupt vector.
7247  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7248 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7249 			  enum netdev_queue_type type, struct napi_struct *napi)
7250 {
7251 	struct netdev_rx_queue *rxq;
7252 	struct netdev_queue *txq;
7253 
7254 	if (WARN_ON_ONCE(napi && !napi->dev))
7255 		return;
7256 	netdev_ops_assert_locked_or_invisible(dev);
7257 
7258 	switch (type) {
7259 	case NETDEV_QUEUE_TYPE_RX:
7260 		rxq = __netif_get_rx_queue(dev, queue_index);
7261 		rxq->napi = napi;
7262 		return;
7263 	case NETDEV_QUEUE_TYPE_TX:
7264 		txq = netdev_get_tx_queue(dev, queue_index);
7265 		txq->napi = napi;
7266 		return;
7267 	default:
7268 		return;
7269 	}
7270 }
7271 EXPORT_SYMBOL(netif_queue_set_napi);
7272 
7273 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7274 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7275 		      const cpumask_t *mask)
7276 {
7277 	struct napi_struct *napi =
7278 		container_of(notify, struct napi_struct, notify);
7279 #ifdef CONFIG_RFS_ACCEL
7280 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7281 	int err;
7282 #endif
7283 
7284 	if (napi->config && napi->dev->irq_affinity_auto)
7285 		cpumask_copy(&napi->config->affinity_mask, mask);
7286 
7287 #ifdef CONFIG_RFS_ACCEL
7288 	if (napi->dev->rx_cpu_rmap_auto) {
7289 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7290 		if (err)
7291 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7292 				    err);
7293 	}
7294 #endif
7295 }
7296 
7297 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7298 static void netif_napi_affinity_release(struct kref *ref)
7299 {
7300 	struct napi_struct *napi =
7301 		container_of(ref, struct napi_struct, notify.kref);
7302 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7303 
7304 	netdev_assert_locked(napi->dev);
7305 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7306 				   &napi->state));
7307 
7308 	if (!napi->dev->rx_cpu_rmap_auto)
7309 		return;
7310 	rmap->obj[napi->napi_rmap_idx] = NULL;
7311 	napi->napi_rmap_idx = -1;
7312 	cpu_rmap_put(rmap);
7313 }
7314 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7315 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7316 {
7317 	if (dev->rx_cpu_rmap_auto)
7318 		return 0;
7319 
7320 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7321 	if (!dev->rx_cpu_rmap)
7322 		return -ENOMEM;
7323 
7324 	dev->rx_cpu_rmap_auto = true;
7325 	return 0;
7326 }
7327 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7328 
netif_del_cpu_rmap(struct net_device * dev)7329 static void netif_del_cpu_rmap(struct net_device *dev)
7330 {
7331 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7332 
7333 	if (!dev->rx_cpu_rmap_auto)
7334 		return;
7335 
7336 	/* Free the rmap */
7337 	cpu_rmap_put(rmap);
7338 	dev->rx_cpu_rmap = NULL;
7339 	dev->rx_cpu_rmap_auto = false;
7340 }
7341 
7342 #else
netif_napi_affinity_release(struct kref * ref)7343 static void netif_napi_affinity_release(struct kref *ref)
7344 {
7345 }
7346 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7347 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7348 {
7349 	return 0;
7350 }
7351 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7352 
netif_del_cpu_rmap(struct net_device * dev)7353 static void netif_del_cpu_rmap(struct net_device *dev)
7354 {
7355 }
7356 #endif
7357 
netif_set_affinity_auto(struct net_device * dev)7358 void netif_set_affinity_auto(struct net_device *dev)
7359 {
7360 	unsigned int i, maxqs, numa;
7361 
7362 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7363 	numa = dev_to_node(&dev->dev);
7364 
7365 	for (i = 0; i < maxqs; i++)
7366 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7367 				&dev->napi_config[i].affinity_mask);
7368 
7369 	dev->irq_affinity_auto = true;
7370 }
7371 EXPORT_SYMBOL(netif_set_affinity_auto);
7372 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7373 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7374 {
7375 	int rc;
7376 
7377 	netdev_assert_locked_or_invisible(napi->dev);
7378 
7379 	if (napi->irq == irq)
7380 		return;
7381 
7382 	/* Remove existing resources */
7383 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7384 		irq_set_affinity_notifier(napi->irq, NULL);
7385 
7386 	napi->irq = irq;
7387 	if (irq < 0 ||
7388 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7389 		return;
7390 
7391 	/* Abort for buggy drivers */
7392 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7393 		return;
7394 
7395 #ifdef CONFIG_RFS_ACCEL
7396 	if (napi->dev->rx_cpu_rmap_auto) {
7397 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7398 		if (rc < 0)
7399 			return;
7400 
7401 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7402 		napi->napi_rmap_idx = rc;
7403 	}
7404 #endif
7405 
7406 	/* Use core IRQ notifier */
7407 	napi->notify.notify = netif_napi_irq_notify;
7408 	napi->notify.release = netif_napi_affinity_release;
7409 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7410 	if (rc) {
7411 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7412 			    rc);
7413 		goto put_rmap;
7414 	}
7415 
7416 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7417 	return;
7418 
7419 put_rmap:
7420 #ifdef CONFIG_RFS_ACCEL
7421 	if (napi->dev->rx_cpu_rmap_auto) {
7422 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7423 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7424 		napi->napi_rmap_idx = -1;
7425 	}
7426 #endif
7427 	napi->notify.notify = NULL;
7428 	napi->notify.release = NULL;
7429 }
7430 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7431 
napi_restore_config(struct napi_struct * n)7432 static void napi_restore_config(struct napi_struct *n)
7433 {
7434 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7435 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7436 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7437 
7438 	if (n->dev->irq_affinity_auto &&
7439 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7440 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7441 
7442 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7443 	 * napi_hash_add to generate one for us.
7444 	 */
7445 	if (n->config->napi_id) {
7446 		napi_hash_add_with_id(n, n->config->napi_id);
7447 	} else {
7448 		napi_hash_add(n);
7449 		n->config->napi_id = n->napi_id;
7450 	}
7451 
7452 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7453 }
7454 
napi_save_config(struct napi_struct * n)7455 static void napi_save_config(struct napi_struct *n)
7456 {
7457 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7458 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7459 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7460 	napi_hash_del(n);
7461 }
7462 
7463 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7464  * inherit an existing ID try to insert it at the right position.
7465  */
7466 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7467 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7468 {
7469 	unsigned int new_id, pos_id;
7470 	struct list_head *higher;
7471 	struct napi_struct *pos;
7472 
7473 	new_id = UINT_MAX;
7474 	if (napi->config && napi->config->napi_id)
7475 		new_id = napi->config->napi_id;
7476 
7477 	higher = &dev->napi_list;
7478 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7479 		if (napi_id_valid(pos->napi_id))
7480 			pos_id = pos->napi_id;
7481 		else if (pos->config)
7482 			pos_id = pos->config->napi_id;
7483 		else
7484 			pos_id = UINT_MAX;
7485 
7486 		if (pos_id <= new_id)
7487 			break;
7488 		higher = &pos->dev_list;
7489 	}
7490 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7491 }
7492 
7493 /* Double check that napi_get_frags() allocates skbs with
7494  * skb->head being backed by slab, not a page fragment.
7495  * This is to make sure bug fixed in 3226b158e67c
7496  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7497  * does not accidentally come back.
7498  */
napi_get_frags_check(struct napi_struct * napi)7499 static void napi_get_frags_check(struct napi_struct *napi)
7500 {
7501 	struct sk_buff *skb;
7502 
7503 	local_bh_disable();
7504 	skb = napi_get_frags(napi);
7505 	WARN_ON_ONCE(skb && skb->head_frag);
7506 	napi_free_frags(napi);
7507 	local_bh_enable();
7508 }
7509 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7510 void netif_napi_add_weight_locked(struct net_device *dev,
7511 				  struct napi_struct *napi,
7512 				  int (*poll)(struct napi_struct *, int),
7513 				  int weight)
7514 {
7515 	netdev_assert_locked(dev);
7516 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7517 		return;
7518 
7519 	INIT_LIST_HEAD(&napi->poll_list);
7520 	INIT_HLIST_NODE(&napi->napi_hash_node);
7521 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7522 	gro_init(&napi->gro);
7523 	napi->skb = NULL;
7524 	napi->poll = poll;
7525 	if (weight > NAPI_POLL_WEIGHT)
7526 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7527 				weight);
7528 	napi->weight = weight;
7529 	napi->dev = dev;
7530 #ifdef CONFIG_NETPOLL
7531 	napi->poll_owner = -1;
7532 #endif
7533 	napi->list_owner = -1;
7534 	set_bit(NAPI_STATE_SCHED, &napi->state);
7535 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7536 	netif_napi_dev_list_add(dev, napi);
7537 
7538 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7539 	 * configuration will be loaded in napi_enable
7540 	 */
7541 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7542 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7543 
7544 	napi_get_frags_check(napi);
7545 	/* Create kthread for this napi if dev->threaded is set.
7546 	 * Clear dev->threaded if kthread creation failed so that
7547 	 * threaded mode will not be enabled in napi_enable().
7548 	 */
7549 	if (napi_get_threaded_config(dev, napi))
7550 		if (napi_kthread_create(napi))
7551 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7552 	netif_napi_set_irq_locked(napi, -1);
7553 }
7554 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7555 
napi_disable_locked(struct napi_struct * n)7556 void napi_disable_locked(struct napi_struct *n)
7557 {
7558 	unsigned long val, new;
7559 
7560 	might_sleep();
7561 	netdev_assert_locked(n->dev);
7562 
7563 	set_bit(NAPI_STATE_DISABLE, &n->state);
7564 
7565 	val = READ_ONCE(n->state);
7566 	do {
7567 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7568 			usleep_range(20, 200);
7569 			val = READ_ONCE(n->state);
7570 		}
7571 
7572 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7573 		new &= ~(NAPIF_STATE_THREADED |
7574 			 NAPIF_STATE_THREADED_BUSY_POLL |
7575 			 NAPIF_STATE_PREFER_BUSY_POLL);
7576 	} while (!try_cmpxchg(&n->state, &val, new));
7577 
7578 	hrtimer_cancel(&n->timer);
7579 
7580 	if (n->config)
7581 		napi_save_config(n);
7582 	else
7583 		napi_hash_del(n);
7584 
7585 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7586 }
7587 EXPORT_SYMBOL(napi_disable_locked);
7588 
7589 /**
7590  * napi_disable() - prevent NAPI from scheduling
7591  * @n: NAPI context
7592  *
7593  * Stop NAPI from being scheduled on this context.
7594  * Waits till any outstanding processing completes.
7595  * Takes netdev_lock() for associated net_device.
7596  */
napi_disable(struct napi_struct * n)7597 void napi_disable(struct napi_struct *n)
7598 {
7599 	netdev_lock(n->dev);
7600 	napi_disable_locked(n);
7601 	netdev_unlock(n->dev);
7602 }
7603 EXPORT_SYMBOL(napi_disable);
7604 
napi_enable_locked(struct napi_struct * n)7605 void napi_enable_locked(struct napi_struct *n)
7606 {
7607 	unsigned long new, val = READ_ONCE(n->state);
7608 
7609 	if (n->config)
7610 		napi_restore_config(n);
7611 	else
7612 		napi_hash_add(n);
7613 
7614 	do {
7615 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7616 
7617 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7618 		if (n->dev->threaded && n->thread)
7619 			new |= NAPIF_STATE_THREADED;
7620 	} while (!try_cmpxchg(&n->state, &val, new));
7621 }
7622 EXPORT_SYMBOL(napi_enable_locked);
7623 
7624 /**
7625  * napi_enable() - enable NAPI scheduling
7626  * @n: NAPI context
7627  *
7628  * Enable scheduling of a NAPI instance.
7629  * Must be paired with napi_disable().
7630  * Takes netdev_lock() for associated net_device.
7631  */
napi_enable(struct napi_struct * n)7632 void napi_enable(struct napi_struct *n)
7633 {
7634 	netdev_lock(n->dev);
7635 	napi_enable_locked(n);
7636 	netdev_unlock(n->dev);
7637 }
7638 EXPORT_SYMBOL(napi_enable);
7639 
7640 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7641 void __netif_napi_del_locked(struct napi_struct *napi)
7642 {
7643 	netdev_assert_locked(napi->dev);
7644 
7645 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7646 		return;
7647 
7648 	/* Make sure NAPI is disabled (or was never enabled). */
7649 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7650 
7651 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7652 		irq_set_affinity_notifier(napi->irq, NULL);
7653 
7654 	if (napi->config) {
7655 		napi->index = -1;
7656 		napi->config = NULL;
7657 	}
7658 
7659 	list_del_rcu(&napi->dev_list);
7660 	napi_free_frags(napi);
7661 
7662 	gro_cleanup(&napi->gro);
7663 
7664 	if (napi->thread) {
7665 		kthread_stop(napi->thread);
7666 		napi->thread = NULL;
7667 	}
7668 }
7669 EXPORT_SYMBOL(__netif_napi_del_locked);
7670 
__napi_poll(struct napi_struct * n,bool * repoll)7671 static int __napi_poll(struct napi_struct *n, bool *repoll)
7672 {
7673 	int work, weight;
7674 
7675 	weight = n->weight;
7676 
7677 	/* This NAPI_STATE_SCHED test is for avoiding a race
7678 	 * with netpoll's poll_napi().  Only the entity which
7679 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7680 	 * actually make the ->poll() call.  Therefore we avoid
7681 	 * accidentally calling ->poll() when NAPI is not scheduled.
7682 	 */
7683 	work = 0;
7684 	if (napi_is_scheduled(n)) {
7685 		work = n->poll(n, weight);
7686 		trace_napi_poll(n, work, weight);
7687 
7688 		xdp_do_check_flushed(n);
7689 	}
7690 
7691 	if (unlikely(work > weight))
7692 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7693 				n->poll, work, weight);
7694 
7695 	if (likely(work < weight))
7696 		return work;
7697 
7698 	/* Drivers must not modify the NAPI state if they
7699 	 * consume the entire weight.  In such cases this code
7700 	 * still "owns" the NAPI instance and therefore can
7701 	 * move the instance around on the list at-will.
7702 	 */
7703 	if (unlikely(napi_disable_pending(n))) {
7704 		napi_complete(n);
7705 		return work;
7706 	}
7707 
7708 	/* The NAPI context has more processing work, but busy-polling
7709 	 * is preferred. Exit early.
7710 	 */
7711 	if (napi_prefer_busy_poll(n)) {
7712 		if (napi_complete_done(n, work)) {
7713 			/* If timeout is not set, we need to make sure
7714 			 * that the NAPI is re-scheduled.
7715 			 */
7716 			napi_schedule(n);
7717 		}
7718 		return work;
7719 	}
7720 
7721 	/* Flush too old packets. If HZ < 1000, flush all packets */
7722 	gro_flush_normal(&n->gro, HZ >= 1000);
7723 
7724 	/* Some drivers may have called napi_schedule
7725 	 * prior to exhausting their budget.
7726 	 */
7727 	if (unlikely(!list_empty(&n->poll_list))) {
7728 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7729 			     n->dev ? n->dev->name : "backlog");
7730 		return work;
7731 	}
7732 
7733 	*repoll = true;
7734 
7735 	return work;
7736 }
7737 
napi_poll(struct napi_struct * n,struct list_head * repoll)7738 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7739 {
7740 	bool do_repoll = false;
7741 	void *have;
7742 	int work;
7743 
7744 	list_del_init(&n->poll_list);
7745 
7746 	have = netpoll_poll_lock(n);
7747 
7748 	work = __napi_poll(n, &do_repoll);
7749 
7750 	if (do_repoll) {
7751 #if defined(CONFIG_DEBUG_NET)
7752 		if (unlikely(!napi_is_scheduled(n)))
7753 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7754 				n->dev->name, n->poll);
7755 #endif
7756 		list_add_tail(&n->poll_list, repoll);
7757 	}
7758 	netpoll_poll_unlock(have);
7759 
7760 	return work;
7761 }
7762 
napi_thread_wait(struct napi_struct * napi)7763 static int napi_thread_wait(struct napi_struct *napi)
7764 {
7765 	set_current_state(TASK_INTERRUPTIBLE);
7766 
7767 	while (!kthread_should_stop()) {
7768 		/* Testing SCHED_THREADED bit here to make sure the current
7769 		 * kthread owns this napi and could poll on this napi.
7770 		 * Testing SCHED bit is not enough because SCHED bit might be
7771 		 * set by some other busy poll thread or by napi_disable().
7772 		 */
7773 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7774 			WARN_ON(!list_empty(&napi->poll_list));
7775 			__set_current_state(TASK_RUNNING);
7776 			return 0;
7777 		}
7778 
7779 		schedule();
7780 		set_current_state(TASK_INTERRUPTIBLE);
7781 	}
7782 	__set_current_state(TASK_RUNNING);
7783 
7784 	return -1;
7785 }
7786 
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7787 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7788 {
7789 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7790 	struct softnet_data *sd;
7791 	unsigned long last_qs = jiffies;
7792 
7793 	for (;;) {
7794 		bool repoll = false;
7795 		void *have;
7796 
7797 		local_bh_disable();
7798 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7799 
7800 		sd = this_cpu_ptr(&softnet_data);
7801 		sd->in_napi_threaded_poll = true;
7802 
7803 		have = netpoll_poll_lock(napi);
7804 		__napi_poll(napi, &repoll);
7805 		netpoll_poll_unlock(have);
7806 
7807 		sd->in_napi_threaded_poll = false;
7808 		barrier();
7809 
7810 		if (sd_has_rps_ipi_waiting(sd)) {
7811 			local_irq_disable();
7812 			net_rps_action_and_irq_enable(sd);
7813 		}
7814 		skb_defer_free_flush();
7815 		bpf_net_ctx_clear(bpf_net_ctx);
7816 
7817 		/* When busy poll is enabled, the old packets are not flushed in
7818 		 * napi_complete_done. So flush them here.
7819 		 */
7820 		if (busy_poll)
7821 			gro_flush_normal(&napi->gro, HZ >= 1000);
7822 		local_bh_enable();
7823 
7824 		/* Call cond_resched here to avoid watchdog warnings. */
7825 		if (repoll || busy_poll) {
7826 			rcu_softirq_qs_periodic(last_qs);
7827 			cond_resched();
7828 		}
7829 
7830 		if (!repoll)
7831 			break;
7832 	}
7833 }
7834 
napi_threaded_poll(void * data)7835 static int napi_threaded_poll(void *data)
7836 {
7837 	struct napi_struct *napi = data;
7838 	bool want_busy_poll;
7839 	bool in_busy_poll;
7840 	unsigned long val;
7841 
7842 	while (!napi_thread_wait(napi)) {
7843 		val = READ_ONCE(napi->state);
7844 
7845 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7846 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7847 
7848 		if (unlikely(val & NAPIF_STATE_DISABLE))
7849 			want_busy_poll = false;
7850 
7851 		if (want_busy_poll != in_busy_poll)
7852 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7853 				   want_busy_poll);
7854 
7855 		napi_threaded_poll_loop(napi, want_busy_poll);
7856 	}
7857 
7858 	return 0;
7859 }
7860 
net_rx_action(void)7861 static __latent_entropy void net_rx_action(void)
7862 {
7863 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7864 	unsigned long time_limit = jiffies +
7865 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7866 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7867 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7868 	LIST_HEAD(list);
7869 	LIST_HEAD(repoll);
7870 
7871 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7872 start:
7873 	sd->in_net_rx_action = true;
7874 	local_irq_disable();
7875 	list_splice_init(&sd->poll_list, &list);
7876 	local_irq_enable();
7877 
7878 	for (;;) {
7879 		struct napi_struct *n;
7880 
7881 		skb_defer_free_flush();
7882 
7883 		if (list_empty(&list)) {
7884 			if (list_empty(&repoll)) {
7885 				sd->in_net_rx_action = false;
7886 				barrier();
7887 				/* We need to check if ____napi_schedule()
7888 				 * had refilled poll_list while
7889 				 * sd->in_net_rx_action was true.
7890 				 */
7891 				if (!list_empty(&sd->poll_list))
7892 					goto start;
7893 				if (!sd_has_rps_ipi_waiting(sd))
7894 					goto end;
7895 			}
7896 			break;
7897 		}
7898 
7899 		n = list_first_entry(&list, struct napi_struct, poll_list);
7900 		budget -= napi_poll(n, &repoll);
7901 
7902 		/* If softirq window is exhausted then punt.
7903 		 * Allow this to run for 2 jiffies since which will allow
7904 		 * an average latency of 1.5/HZ.
7905 		 */
7906 		if (unlikely(budget <= 0 ||
7907 			     time_after_eq(jiffies, time_limit))) {
7908 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7909 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7910 			break;
7911 		}
7912 	}
7913 
7914 	local_irq_disable();
7915 
7916 	list_splice_tail_init(&sd->poll_list, &list);
7917 	list_splice_tail(&repoll, &list);
7918 	list_splice(&list, &sd->poll_list);
7919 	if (!list_empty(&sd->poll_list))
7920 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7921 	else
7922 		sd->in_net_rx_action = false;
7923 
7924 	net_rps_action_and_irq_enable(sd);
7925 end:
7926 	bpf_net_ctx_clear(bpf_net_ctx);
7927 }
7928 
7929 struct netdev_adjacent {
7930 	struct net_device *dev;
7931 	netdevice_tracker dev_tracker;
7932 
7933 	/* upper master flag, there can only be one master device per list */
7934 	bool master;
7935 
7936 	/* lookup ignore flag */
7937 	bool ignore;
7938 
7939 	/* counter for the number of times this device was added to us */
7940 	u16 ref_nr;
7941 
7942 	/* private field for the users */
7943 	void *private;
7944 
7945 	struct list_head list;
7946 	struct rcu_head rcu;
7947 };
7948 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7949 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7950 						 struct list_head *adj_list)
7951 {
7952 	struct netdev_adjacent *adj;
7953 
7954 	list_for_each_entry(adj, adj_list, list) {
7955 		if (adj->dev == adj_dev)
7956 			return adj;
7957 	}
7958 	return NULL;
7959 }
7960 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7961 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7962 				    struct netdev_nested_priv *priv)
7963 {
7964 	struct net_device *dev = (struct net_device *)priv->data;
7965 
7966 	return upper_dev == dev;
7967 }
7968 
7969 /**
7970  * netdev_has_upper_dev - Check if device is linked to an upper device
7971  * @dev: device
7972  * @upper_dev: upper device to check
7973  *
7974  * Find out if a device is linked to specified upper device and return true
7975  * in case it is. Note that this checks only immediate upper device,
7976  * not through a complete stack of devices. The caller must hold the RTNL lock.
7977  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7978 bool netdev_has_upper_dev(struct net_device *dev,
7979 			  struct net_device *upper_dev)
7980 {
7981 	struct netdev_nested_priv priv = {
7982 		.data = (void *)upper_dev,
7983 	};
7984 
7985 	ASSERT_RTNL();
7986 
7987 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7988 					     &priv);
7989 }
7990 EXPORT_SYMBOL(netdev_has_upper_dev);
7991 
7992 /**
7993  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7994  * @dev: device
7995  * @upper_dev: upper device to check
7996  *
7997  * Find out if a device is linked to specified upper device and return true
7998  * in case it is. Note that this checks the entire upper device chain.
7999  * The caller must hold rcu lock.
8000  */
8001 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)8002 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
8003 				  struct net_device *upper_dev)
8004 {
8005 	struct netdev_nested_priv priv = {
8006 		.data = (void *)upper_dev,
8007 	};
8008 
8009 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8010 					       &priv);
8011 }
8012 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8013 
8014 /**
8015  * netdev_has_any_upper_dev - Check if device is linked to some device
8016  * @dev: device
8017  *
8018  * Find out if a device is linked to an upper device and return true in case
8019  * it is. The caller must hold the RTNL lock.
8020  */
netdev_has_any_upper_dev(struct net_device * dev)8021 bool netdev_has_any_upper_dev(struct net_device *dev)
8022 {
8023 	ASSERT_RTNL();
8024 
8025 	return !list_empty(&dev->adj_list.upper);
8026 }
8027 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8028 
8029 /**
8030  * netdev_master_upper_dev_get - Get master upper device
8031  * @dev: device
8032  *
8033  * Find a master upper device and return pointer to it or NULL in case
8034  * it's not there. The caller must hold the RTNL lock.
8035  */
netdev_master_upper_dev_get(struct net_device * dev)8036 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8037 {
8038 	struct netdev_adjacent *upper;
8039 
8040 	ASSERT_RTNL();
8041 
8042 	if (list_empty(&dev->adj_list.upper))
8043 		return NULL;
8044 
8045 	upper = list_first_entry(&dev->adj_list.upper,
8046 				 struct netdev_adjacent, list);
8047 	if (likely(upper->master))
8048 		return upper->dev;
8049 	return NULL;
8050 }
8051 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8052 
__netdev_master_upper_dev_get(struct net_device * dev)8053 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8054 {
8055 	struct netdev_adjacent *upper;
8056 
8057 	ASSERT_RTNL();
8058 
8059 	if (list_empty(&dev->adj_list.upper))
8060 		return NULL;
8061 
8062 	upper = list_first_entry(&dev->adj_list.upper,
8063 				 struct netdev_adjacent, list);
8064 	if (likely(upper->master) && !upper->ignore)
8065 		return upper->dev;
8066 	return NULL;
8067 }
8068 
8069 /**
8070  * netdev_has_any_lower_dev - Check if device is linked to some device
8071  * @dev: device
8072  *
8073  * Find out if a device is linked to a lower device and return true in case
8074  * it is. The caller must hold the RTNL lock.
8075  */
netdev_has_any_lower_dev(struct net_device * dev)8076 static bool netdev_has_any_lower_dev(struct net_device *dev)
8077 {
8078 	ASSERT_RTNL();
8079 
8080 	return !list_empty(&dev->adj_list.lower);
8081 }
8082 
netdev_adjacent_get_private(struct list_head * adj_list)8083 void *netdev_adjacent_get_private(struct list_head *adj_list)
8084 {
8085 	struct netdev_adjacent *adj;
8086 
8087 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8088 
8089 	return adj->private;
8090 }
8091 EXPORT_SYMBOL(netdev_adjacent_get_private);
8092 
8093 /**
8094  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8095  * @dev: device
8096  * @iter: list_head ** of the current position
8097  *
8098  * Gets the next device from the dev's upper list, starting from iter
8099  * position. The caller must hold RCU read lock.
8100  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8101 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8102 						 struct list_head **iter)
8103 {
8104 	struct netdev_adjacent *upper;
8105 
8106 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8107 
8108 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8109 
8110 	if (&upper->list == &dev->adj_list.upper)
8111 		return NULL;
8112 
8113 	*iter = &upper->list;
8114 
8115 	return upper->dev;
8116 }
8117 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8118 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8119 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8120 						  struct list_head **iter,
8121 						  bool *ignore)
8122 {
8123 	struct netdev_adjacent *upper;
8124 
8125 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8126 
8127 	if (&upper->list == &dev->adj_list.upper)
8128 		return NULL;
8129 
8130 	*iter = &upper->list;
8131 	*ignore = upper->ignore;
8132 
8133 	return upper->dev;
8134 }
8135 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8136 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8137 						    struct list_head **iter)
8138 {
8139 	struct netdev_adjacent *upper;
8140 
8141 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8142 
8143 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8144 
8145 	if (&upper->list == &dev->adj_list.upper)
8146 		return NULL;
8147 
8148 	*iter = &upper->list;
8149 
8150 	return upper->dev;
8151 }
8152 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8153 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8154 				       int (*fn)(struct net_device *dev,
8155 					 struct netdev_nested_priv *priv),
8156 				       struct netdev_nested_priv *priv)
8157 {
8158 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8159 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8160 	int ret, cur = 0;
8161 	bool ignore;
8162 
8163 	now = dev;
8164 	iter = &dev->adj_list.upper;
8165 
8166 	while (1) {
8167 		if (now != dev) {
8168 			ret = fn(now, priv);
8169 			if (ret)
8170 				return ret;
8171 		}
8172 
8173 		next = NULL;
8174 		while (1) {
8175 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8176 			if (!udev)
8177 				break;
8178 			if (ignore)
8179 				continue;
8180 
8181 			next = udev;
8182 			niter = &udev->adj_list.upper;
8183 			dev_stack[cur] = now;
8184 			iter_stack[cur++] = iter;
8185 			break;
8186 		}
8187 
8188 		if (!next) {
8189 			if (!cur)
8190 				return 0;
8191 			next = dev_stack[--cur];
8192 			niter = iter_stack[cur];
8193 		}
8194 
8195 		now = next;
8196 		iter = niter;
8197 	}
8198 
8199 	return 0;
8200 }
8201 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8202 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8203 				  int (*fn)(struct net_device *dev,
8204 					    struct netdev_nested_priv *priv),
8205 				  struct netdev_nested_priv *priv)
8206 {
8207 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8208 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8209 	int ret, cur = 0;
8210 
8211 	now = dev;
8212 	iter = &dev->adj_list.upper;
8213 
8214 	while (1) {
8215 		if (now != dev) {
8216 			ret = fn(now, priv);
8217 			if (ret)
8218 				return ret;
8219 		}
8220 
8221 		next = NULL;
8222 		while (1) {
8223 			udev = netdev_next_upper_dev_rcu(now, &iter);
8224 			if (!udev)
8225 				break;
8226 
8227 			next = udev;
8228 			niter = &udev->adj_list.upper;
8229 			dev_stack[cur] = now;
8230 			iter_stack[cur++] = iter;
8231 			break;
8232 		}
8233 
8234 		if (!next) {
8235 			if (!cur)
8236 				return 0;
8237 			next = dev_stack[--cur];
8238 			niter = iter_stack[cur];
8239 		}
8240 
8241 		now = next;
8242 		iter = niter;
8243 	}
8244 
8245 	return 0;
8246 }
8247 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8248 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8249 static bool __netdev_has_upper_dev(struct net_device *dev,
8250 				   struct net_device *upper_dev)
8251 {
8252 	struct netdev_nested_priv priv = {
8253 		.flags = 0,
8254 		.data = (void *)upper_dev,
8255 	};
8256 
8257 	ASSERT_RTNL();
8258 
8259 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8260 					   &priv);
8261 }
8262 
8263 /**
8264  * netdev_lower_get_next_private - Get the next ->private from the
8265  *				   lower neighbour list
8266  * @dev: device
8267  * @iter: list_head ** of the current position
8268  *
8269  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8270  * list, starting from iter position. The caller must hold either hold the
8271  * RTNL lock or its own locking that guarantees that the neighbour lower
8272  * list will remain unchanged.
8273  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8274 void *netdev_lower_get_next_private(struct net_device *dev,
8275 				    struct list_head **iter)
8276 {
8277 	struct netdev_adjacent *lower;
8278 
8279 	lower = list_entry(*iter, struct netdev_adjacent, list);
8280 
8281 	if (&lower->list == &dev->adj_list.lower)
8282 		return NULL;
8283 
8284 	*iter = lower->list.next;
8285 
8286 	return lower->private;
8287 }
8288 EXPORT_SYMBOL(netdev_lower_get_next_private);
8289 
8290 /**
8291  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8292  *				       lower neighbour list, RCU
8293  *				       variant
8294  * @dev: device
8295  * @iter: list_head ** of the current position
8296  *
8297  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8298  * list, starting from iter position. The caller must hold RCU read lock.
8299  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8300 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8301 					struct list_head **iter)
8302 {
8303 	struct netdev_adjacent *lower;
8304 
8305 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8306 
8307 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8308 
8309 	if (&lower->list == &dev->adj_list.lower)
8310 		return NULL;
8311 
8312 	*iter = &lower->list;
8313 
8314 	return lower->private;
8315 }
8316 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8317 
8318 /**
8319  * netdev_lower_get_next - Get the next device from the lower neighbour
8320  *                         list
8321  * @dev: device
8322  * @iter: list_head ** of the current position
8323  *
8324  * Gets the next netdev_adjacent from the dev's lower neighbour
8325  * list, starting from iter position. The caller must hold RTNL lock or
8326  * its own locking that guarantees that the neighbour lower
8327  * list will remain unchanged.
8328  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8329 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8330 {
8331 	struct netdev_adjacent *lower;
8332 
8333 	lower = list_entry(*iter, struct netdev_adjacent, list);
8334 
8335 	if (&lower->list == &dev->adj_list.lower)
8336 		return NULL;
8337 
8338 	*iter = lower->list.next;
8339 
8340 	return lower->dev;
8341 }
8342 EXPORT_SYMBOL(netdev_lower_get_next);
8343 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8344 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8345 						struct list_head **iter)
8346 {
8347 	struct netdev_adjacent *lower;
8348 
8349 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8350 
8351 	if (&lower->list == &dev->adj_list.lower)
8352 		return NULL;
8353 
8354 	*iter = &lower->list;
8355 
8356 	return lower->dev;
8357 }
8358 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8359 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8360 						  struct list_head **iter,
8361 						  bool *ignore)
8362 {
8363 	struct netdev_adjacent *lower;
8364 
8365 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8366 
8367 	if (&lower->list == &dev->adj_list.lower)
8368 		return NULL;
8369 
8370 	*iter = &lower->list;
8371 	*ignore = lower->ignore;
8372 
8373 	return lower->dev;
8374 }
8375 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8376 int netdev_walk_all_lower_dev(struct net_device *dev,
8377 			      int (*fn)(struct net_device *dev,
8378 					struct netdev_nested_priv *priv),
8379 			      struct netdev_nested_priv *priv)
8380 {
8381 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8382 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8383 	int ret, cur = 0;
8384 
8385 	now = dev;
8386 	iter = &dev->adj_list.lower;
8387 
8388 	while (1) {
8389 		if (now != dev) {
8390 			ret = fn(now, priv);
8391 			if (ret)
8392 				return ret;
8393 		}
8394 
8395 		next = NULL;
8396 		while (1) {
8397 			ldev = netdev_next_lower_dev(now, &iter);
8398 			if (!ldev)
8399 				break;
8400 
8401 			next = ldev;
8402 			niter = &ldev->adj_list.lower;
8403 			dev_stack[cur] = now;
8404 			iter_stack[cur++] = iter;
8405 			break;
8406 		}
8407 
8408 		if (!next) {
8409 			if (!cur)
8410 				return 0;
8411 			next = dev_stack[--cur];
8412 			niter = iter_stack[cur];
8413 		}
8414 
8415 		now = next;
8416 		iter = niter;
8417 	}
8418 
8419 	return 0;
8420 }
8421 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8422 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8423 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8424 				       int (*fn)(struct net_device *dev,
8425 					 struct netdev_nested_priv *priv),
8426 				       struct netdev_nested_priv *priv)
8427 {
8428 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8429 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8430 	int ret, cur = 0;
8431 	bool ignore;
8432 
8433 	now = dev;
8434 	iter = &dev->adj_list.lower;
8435 
8436 	while (1) {
8437 		if (now != dev) {
8438 			ret = fn(now, priv);
8439 			if (ret)
8440 				return ret;
8441 		}
8442 
8443 		next = NULL;
8444 		while (1) {
8445 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8446 			if (!ldev)
8447 				break;
8448 			if (ignore)
8449 				continue;
8450 
8451 			next = ldev;
8452 			niter = &ldev->adj_list.lower;
8453 			dev_stack[cur] = now;
8454 			iter_stack[cur++] = iter;
8455 			break;
8456 		}
8457 
8458 		if (!next) {
8459 			if (!cur)
8460 				return 0;
8461 			next = dev_stack[--cur];
8462 			niter = iter_stack[cur];
8463 		}
8464 
8465 		now = next;
8466 		iter = niter;
8467 	}
8468 
8469 	return 0;
8470 }
8471 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8472 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8473 					     struct list_head **iter)
8474 {
8475 	struct netdev_adjacent *lower;
8476 
8477 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8478 	if (&lower->list == &dev->adj_list.lower)
8479 		return NULL;
8480 
8481 	*iter = &lower->list;
8482 
8483 	return lower->dev;
8484 }
8485 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8486 
__netdev_upper_depth(struct net_device * dev)8487 static u8 __netdev_upper_depth(struct net_device *dev)
8488 {
8489 	struct net_device *udev;
8490 	struct list_head *iter;
8491 	u8 max_depth = 0;
8492 	bool ignore;
8493 
8494 	for (iter = &dev->adj_list.upper,
8495 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8496 	     udev;
8497 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8498 		if (ignore)
8499 			continue;
8500 		if (max_depth < udev->upper_level)
8501 			max_depth = udev->upper_level;
8502 	}
8503 
8504 	return max_depth;
8505 }
8506 
__netdev_lower_depth(struct net_device * dev)8507 static u8 __netdev_lower_depth(struct net_device *dev)
8508 {
8509 	struct net_device *ldev;
8510 	struct list_head *iter;
8511 	u8 max_depth = 0;
8512 	bool ignore;
8513 
8514 	for (iter = &dev->adj_list.lower,
8515 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8516 	     ldev;
8517 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8518 		if (ignore)
8519 			continue;
8520 		if (max_depth < ldev->lower_level)
8521 			max_depth = ldev->lower_level;
8522 	}
8523 
8524 	return max_depth;
8525 }
8526 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8527 static int __netdev_update_upper_level(struct net_device *dev,
8528 				       struct netdev_nested_priv *__unused)
8529 {
8530 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8531 	return 0;
8532 }
8533 
8534 #ifdef CONFIG_LOCKDEP
8535 static LIST_HEAD(net_unlink_list);
8536 
net_unlink_todo(struct net_device * dev)8537 static void net_unlink_todo(struct net_device *dev)
8538 {
8539 	if (list_empty(&dev->unlink_list))
8540 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8541 }
8542 #endif
8543 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8544 static int __netdev_update_lower_level(struct net_device *dev,
8545 				       struct netdev_nested_priv *priv)
8546 {
8547 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8548 
8549 #ifdef CONFIG_LOCKDEP
8550 	if (!priv)
8551 		return 0;
8552 
8553 	if (priv->flags & NESTED_SYNC_IMM)
8554 		dev->nested_level = dev->lower_level - 1;
8555 	if (priv->flags & NESTED_SYNC_TODO)
8556 		net_unlink_todo(dev);
8557 #endif
8558 	return 0;
8559 }
8560 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8561 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8562 				  int (*fn)(struct net_device *dev,
8563 					    struct netdev_nested_priv *priv),
8564 				  struct netdev_nested_priv *priv)
8565 {
8566 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8567 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8568 	int ret, cur = 0;
8569 
8570 	now = dev;
8571 	iter = &dev->adj_list.lower;
8572 
8573 	while (1) {
8574 		if (now != dev) {
8575 			ret = fn(now, priv);
8576 			if (ret)
8577 				return ret;
8578 		}
8579 
8580 		next = NULL;
8581 		while (1) {
8582 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8583 			if (!ldev)
8584 				break;
8585 
8586 			next = ldev;
8587 			niter = &ldev->adj_list.lower;
8588 			dev_stack[cur] = now;
8589 			iter_stack[cur++] = iter;
8590 			break;
8591 		}
8592 
8593 		if (!next) {
8594 			if (!cur)
8595 				return 0;
8596 			next = dev_stack[--cur];
8597 			niter = iter_stack[cur];
8598 		}
8599 
8600 		now = next;
8601 		iter = niter;
8602 	}
8603 
8604 	return 0;
8605 }
8606 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8607 
8608 /**
8609  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8610  *				       lower neighbour list, RCU
8611  *				       variant
8612  * @dev: device
8613  *
8614  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8615  * list. The caller must hold RCU read lock.
8616  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8617 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8618 {
8619 	struct netdev_adjacent *lower;
8620 
8621 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8622 			struct netdev_adjacent, list);
8623 	if (lower)
8624 		return lower->private;
8625 	return NULL;
8626 }
8627 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8628 
8629 /**
8630  * netdev_master_upper_dev_get_rcu - Get master upper device
8631  * @dev: device
8632  *
8633  * Find a master upper device and return pointer to it or NULL in case
8634  * it's not there. The caller must hold the RCU read lock.
8635  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8636 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8637 {
8638 	struct netdev_adjacent *upper;
8639 
8640 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8641 				       struct netdev_adjacent, list);
8642 	if (upper && likely(upper->master))
8643 		return upper->dev;
8644 	return NULL;
8645 }
8646 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8647 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8648 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8649 			      struct net_device *adj_dev,
8650 			      struct list_head *dev_list)
8651 {
8652 	char linkname[IFNAMSIZ+7];
8653 
8654 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8655 		"upper_%s" : "lower_%s", adj_dev->name);
8656 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8657 				 linkname);
8658 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8659 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8660 			       char *name,
8661 			       struct list_head *dev_list)
8662 {
8663 	char linkname[IFNAMSIZ+7];
8664 
8665 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8666 		"upper_%s" : "lower_%s", name);
8667 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8668 }
8669 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8670 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8671 						 struct net_device *adj_dev,
8672 						 struct list_head *dev_list)
8673 {
8674 	return (dev_list == &dev->adj_list.upper ||
8675 		dev_list == &dev->adj_list.lower) &&
8676 		net_eq(dev_net(dev), dev_net(adj_dev));
8677 }
8678 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8679 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8680 					struct net_device *adj_dev,
8681 					struct list_head *dev_list,
8682 					void *private, bool master)
8683 {
8684 	struct netdev_adjacent *adj;
8685 	int ret;
8686 
8687 	adj = __netdev_find_adj(adj_dev, dev_list);
8688 
8689 	if (adj) {
8690 		adj->ref_nr += 1;
8691 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8692 			 dev->name, adj_dev->name, adj->ref_nr);
8693 
8694 		return 0;
8695 	}
8696 
8697 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8698 	if (!adj)
8699 		return -ENOMEM;
8700 
8701 	adj->dev = adj_dev;
8702 	adj->master = master;
8703 	adj->ref_nr = 1;
8704 	adj->private = private;
8705 	adj->ignore = false;
8706 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8707 
8708 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8709 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8710 
8711 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8712 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8713 		if (ret)
8714 			goto free_adj;
8715 	}
8716 
8717 	/* Ensure that master link is always the first item in list. */
8718 	if (master) {
8719 		ret = sysfs_create_link(&(dev->dev.kobj),
8720 					&(adj_dev->dev.kobj), "master");
8721 		if (ret)
8722 			goto remove_symlinks;
8723 
8724 		list_add_rcu(&adj->list, dev_list);
8725 	} else {
8726 		list_add_tail_rcu(&adj->list, dev_list);
8727 	}
8728 
8729 	return 0;
8730 
8731 remove_symlinks:
8732 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8733 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8734 free_adj:
8735 	netdev_put(adj_dev, &adj->dev_tracker);
8736 	kfree(adj);
8737 
8738 	return ret;
8739 }
8740 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8741 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8742 					 struct net_device *adj_dev,
8743 					 u16 ref_nr,
8744 					 struct list_head *dev_list)
8745 {
8746 	struct netdev_adjacent *adj;
8747 
8748 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8749 		 dev->name, adj_dev->name, ref_nr);
8750 
8751 	adj = __netdev_find_adj(adj_dev, dev_list);
8752 
8753 	if (!adj) {
8754 		pr_err("Adjacency does not exist for device %s from %s\n",
8755 		       dev->name, adj_dev->name);
8756 		WARN_ON(1);
8757 		return;
8758 	}
8759 
8760 	if (adj->ref_nr > ref_nr) {
8761 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8762 			 dev->name, adj_dev->name, ref_nr,
8763 			 adj->ref_nr - ref_nr);
8764 		adj->ref_nr -= ref_nr;
8765 		return;
8766 	}
8767 
8768 	if (adj->master)
8769 		sysfs_remove_link(&(dev->dev.kobj), "master");
8770 
8771 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8772 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8773 
8774 	list_del_rcu(&adj->list);
8775 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8776 		 adj_dev->name, dev->name, adj_dev->name);
8777 	netdev_put(adj_dev, &adj->dev_tracker);
8778 	kfree_rcu(adj, rcu);
8779 }
8780 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8781 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8782 					    struct net_device *upper_dev,
8783 					    struct list_head *up_list,
8784 					    struct list_head *down_list,
8785 					    void *private, bool master)
8786 {
8787 	int ret;
8788 
8789 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8790 					   private, master);
8791 	if (ret)
8792 		return ret;
8793 
8794 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8795 					   private, false);
8796 	if (ret) {
8797 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8798 		return ret;
8799 	}
8800 
8801 	return 0;
8802 }
8803 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8804 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8805 					       struct net_device *upper_dev,
8806 					       u16 ref_nr,
8807 					       struct list_head *up_list,
8808 					       struct list_head *down_list)
8809 {
8810 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8811 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8812 }
8813 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8814 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8815 						struct net_device *upper_dev,
8816 						void *private, bool master)
8817 {
8818 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8819 						&dev->adj_list.upper,
8820 						&upper_dev->adj_list.lower,
8821 						private, master);
8822 }
8823 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8824 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8825 						   struct net_device *upper_dev)
8826 {
8827 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8828 					   &dev->adj_list.upper,
8829 					   &upper_dev->adj_list.lower);
8830 }
8831 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8832 static int __netdev_upper_dev_link(struct net_device *dev,
8833 				   struct net_device *upper_dev, bool master,
8834 				   void *upper_priv, void *upper_info,
8835 				   struct netdev_nested_priv *priv,
8836 				   struct netlink_ext_ack *extack)
8837 {
8838 	struct netdev_notifier_changeupper_info changeupper_info = {
8839 		.info = {
8840 			.dev = dev,
8841 			.extack = extack,
8842 		},
8843 		.upper_dev = upper_dev,
8844 		.master = master,
8845 		.linking = true,
8846 		.upper_info = upper_info,
8847 	};
8848 	struct net_device *master_dev;
8849 	int ret = 0;
8850 
8851 	ASSERT_RTNL();
8852 
8853 	if (dev == upper_dev)
8854 		return -EBUSY;
8855 
8856 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8857 	if (__netdev_has_upper_dev(upper_dev, dev))
8858 		return -EBUSY;
8859 
8860 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8861 		return -EMLINK;
8862 
8863 	if (!master) {
8864 		if (__netdev_has_upper_dev(dev, upper_dev))
8865 			return -EEXIST;
8866 	} else {
8867 		master_dev = __netdev_master_upper_dev_get(dev);
8868 		if (master_dev)
8869 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8870 	}
8871 
8872 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8873 					    &changeupper_info.info);
8874 	ret = notifier_to_errno(ret);
8875 	if (ret)
8876 		return ret;
8877 
8878 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8879 						   master);
8880 	if (ret)
8881 		return ret;
8882 
8883 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8884 					    &changeupper_info.info);
8885 	ret = notifier_to_errno(ret);
8886 	if (ret)
8887 		goto rollback;
8888 
8889 	__netdev_update_upper_level(dev, NULL);
8890 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8891 
8892 	__netdev_update_lower_level(upper_dev, priv);
8893 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8894 				    priv);
8895 
8896 	return 0;
8897 
8898 rollback:
8899 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8900 
8901 	return ret;
8902 }
8903 
8904 /**
8905  * netdev_upper_dev_link - Add a link to the upper device
8906  * @dev: device
8907  * @upper_dev: new upper device
8908  * @extack: netlink extended ack
8909  *
8910  * Adds a link to device which is upper to this one. The caller must hold
8911  * the RTNL lock. On a failure a negative errno code is returned.
8912  * On success the reference counts are adjusted and the function
8913  * returns zero.
8914  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8915 int netdev_upper_dev_link(struct net_device *dev,
8916 			  struct net_device *upper_dev,
8917 			  struct netlink_ext_ack *extack)
8918 {
8919 	struct netdev_nested_priv priv = {
8920 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8921 		.data = NULL,
8922 	};
8923 
8924 	return __netdev_upper_dev_link(dev, upper_dev, false,
8925 				       NULL, NULL, &priv, extack);
8926 }
8927 EXPORT_SYMBOL(netdev_upper_dev_link);
8928 
8929 /**
8930  * netdev_master_upper_dev_link - Add a master link to the upper device
8931  * @dev: device
8932  * @upper_dev: new upper device
8933  * @upper_priv: upper device private
8934  * @upper_info: upper info to be passed down via notifier
8935  * @extack: netlink extended ack
8936  *
8937  * Adds a link to device which is upper to this one. In this case, only
8938  * one master upper device can be linked, although other non-master devices
8939  * might be linked as well. The caller must hold the RTNL lock.
8940  * On a failure a negative errno code is returned. On success the reference
8941  * counts are adjusted and the function returns zero.
8942  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8943 int netdev_master_upper_dev_link(struct net_device *dev,
8944 				 struct net_device *upper_dev,
8945 				 void *upper_priv, void *upper_info,
8946 				 struct netlink_ext_ack *extack)
8947 {
8948 	struct netdev_nested_priv priv = {
8949 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8950 		.data = NULL,
8951 	};
8952 
8953 	return __netdev_upper_dev_link(dev, upper_dev, true,
8954 				       upper_priv, upper_info, &priv, extack);
8955 }
8956 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8957 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8958 static void __netdev_upper_dev_unlink(struct net_device *dev,
8959 				      struct net_device *upper_dev,
8960 				      struct netdev_nested_priv *priv)
8961 {
8962 	struct netdev_notifier_changeupper_info changeupper_info = {
8963 		.info = {
8964 			.dev = dev,
8965 		},
8966 		.upper_dev = upper_dev,
8967 		.linking = false,
8968 	};
8969 
8970 	ASSERT_RTNL();
8971 
8972 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8973 
8974 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8975 				      &changeupper_info.info);
8976 
8977 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8978 
8979 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8980 				      &changeupper_info.info);
8981 
8982 	__netdev_update_upper_level(dev, NULL);
8983 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8984 
8985 	__netdev_update_lower_level(upper_dev, priv);
8986 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8987 				    priv);
8988 }
8989 
8990 /**
8991  * netdev_upper_dev_unlink - Removes a link to upper device
8992  * @dev: device
8993  * @upper_dev: new upper device
8994  *
8995  * Removes a link to device which is upper to this one. The caller must hold
8996  * the RTNL lock.
8997  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8998 void netdev_upper_dev_unlink(struct net_device *dev,
8999 			     struct net_device *upper_dev)
9000 {
9001 	struct netdev_nested_priv priv = {
9002 		.flags = NESTED_SYNC_TODO,
9003 		.data = NULL,
9004 	};
9005 
9006 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
9007 }
9008 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9009 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9010 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9011 				      struct net_device *lower_dev,
9012 				      bool val)
9013 {
9014 	struct netdev_adjacent *adj;
9015 
9016 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9017 	if (adj)
9018 		adj->ignore = val;
9019 
9020 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9021 	if (adj)
9022 		adj->ignore = val;
9023 }
9024 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9025 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9026 					struct net_device *lower_dev)
9027 {
9028 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9029 }
9030 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9031 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9032 				       struct net_device *lower_dev)
9033 {
9034 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9035 }
9036 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9037 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9038 				   struct net_device *new_dev,
9039 				   struct net_device *dev,
9040 				   struct netlink_ext_ack *extack)
9041 {
9042 	struct netdev_nested_priv priv = {
9043 		.flags = 0,
9044 		.data = NULL,
9045 	};
9046 	int err;
9047 
9048 	if (!new_dev)
9049 		return 0;
9050 
9051 	if (old_dev && new_dev != old_dev)
9052 		netdev_adjacent_dev_disable(dev, old_dev);
9053 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9054 				      extack);
9055 	if (err) {
9056 		if (old_dev && new_dev != old_dev)
9057 			netdev_adjacent_dev_enable(dev, old_dev);
9058 		return err;
9059 	}
9060 
9061 	return 0;
9062 }
9063 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9064 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9065 void netdev_adjacent_change_commit(struct net_device *old_dev,
9066 				   struct net_device *new_dev,
9067 				   struct net_device *dev)
9068 {
9069 	struct netdev_nested_priv priv = {
9070 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9071 		.data = NULL,
9072 	};
9073 
9074 	if (!new_dev || !old_dev)
9075 		return;
9076 
9077 	if (new_dev == old_dev)
9078 		return;
9079 
9080 	netdev_adjacent_dev_enable(dev, old_dev);
9081 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9082 }
9083 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9084 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9085 void netdev_adjacent_change_abort(struct net_device *old_dev,
9086 				  struct net_device *new_dev,
9087 				  struct net_device *dev)
9088 {
9089 	struct netdev_nested_priv priv = {
9090 		.flags = 0,
9091 		.data = NULL,
9092 	};
9093 
9094 	if (!new_dev)
9095 		return;
9096 
9097 	if (old_dev && new_dev != old_dev)
9098 		netdev_adjacent_dev_enable(dev, old_dev);
9099 
9100 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9101 }
9102 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9103 
9104 /**
9105  * netdev_bonding_info_change - Dispatch event about slave change
9106  * @dev: device
9107  * @bonding_info: info to dispatch
9108  *
9109  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9110  * The caller must hold the RTNL lock.
9111  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9112 void netdev_bonding_info_change(struct net_device *dev,
9113 				struct netdev_bonding_info *bonding_info)
9114 {
9115 	struct netdev_notifier_bonding_info info = {
9116 		.info.dev = dev,
9117 	};
9118 
9119 	memcpy(&info.bonding_info, bonding_info,
9120 	       sizeof(struct netdev_bonding_info));
9121 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9122 				      &info.info);
9123 }
9124 EXPORT_SYMBOL(netdev_bonding_info_change);
9125 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9126 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9127 					   struct netlink_ext_ack *extack)
9128 {
9129 	struct netdev_notifier_offload_xstats_info info = {
9130 		.info.dev = dev,
9131 		.info.extack = extack,
9132 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9133 	};
9134 	int err;
9135 	int rc;
9136 
9137 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9138 					 GFP_KERNEL);
9139 	if (!dev->offload_xstats_l3)
9140 		return -ENOMEM;
9141 
9142 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9143 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9144 						  &info.info);
9145 	err = notifier_to_errno(rc);
9146 	if (err)
9147 		goto free_stats;
9148 
9149 	return 0;
9150 
9151 free_stats:
9152 	kfree(dev->offload_xstats_l3);
9153 	dev->offload_xstats_l3 = NULL;
9154 	return err;
9155 }
9156 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9157 int netdev_offload_xstats_enable(struct net_device *dev,
9158 				 enum netdev_offload_xstats_type type,
9159 				 struct netlink_ext_ack *extack)
9160 {
9161 	ASSERT_RTNL();
9162 
9163 	if (netdev_offload_xstats_enabled(dev, type))
9164 		return -EALREADY;
9165 
9166 	switch (type) {
9167 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9168 		return netdev_offload_xstats_enable_l3(dev, extack);
9169 	}
9170 
9171 	WARN_ON(1);
9172 	return -EINVAL;
9173 }
9174 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9175 
netdev_offload_xstats_disable_l3(struct net_device * dev)9176 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9177 {
9178 	struct netdev_notifier_offload_xstats_info info = {
9179 		.info.dev = dev,
9180 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9181 	};
9182 
9183 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9184 				      &info.info);
9185 	kfree(dev->offload_xstats_l3);
9186 	dev->offload_xstats_l3 = NULL;
9187 }
9188 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9189 int netdev_offload_xstats_disable(struct net_device *dev,
9190 				  enum netdev_offload_xstats_type type)
9191 {
9192 	ASSERT_RTNL();
9193 
9194 	if (!netdev_offload_xstats_enabled(dev, type))
9195 		return -EALREADY;
9196 
9197 	switch (type) {
9198 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9199 		netdev_offload_xstats_disable_l3(dev);
9200 		return 0;
9201 	}
9202 
9203 	WARN_ON(1);
9204 	return -EINVAL;
9205 }
9206 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9207 
netdev_offload_xstats_disable_all(struct net_device * dev)9208 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9209 {
9210 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9211 }
9212 
9213 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9214 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9215 			      enum netdev_offload_xstats_type type)
9216 {
9217 	switch (type) {
9218 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9219 		return dev->offload_xstats_l3;
9220 	}
9221 
9222 	WARN_ON(1);
9223 	return NULL;
9224 }
9225 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9226 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9227 				   enum netdev_offload_xstats_type type)
9228 {
9229 	ASSERT_RTNL();
9230 
9231 	return netdev_offload_xstats_get_ptr(dev, type);
9232 }
9233 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9234 
9235 struct netdev_notifier_offload_xstats_ru {
9236 	bool used;
9237 };
9238 
9239 struct netdev_notifier_offload_xstats_rd {
9240 	struct rtnl_hw_stats64 stats;
9241 	bool used;
9242 };
9243 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9244 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9245 				  const struct rtnl_hw_stats64 *src)
9246 {
9247 	dest->rx_packets	  += src->rx_packets;
9248 	dest->tx_packets	  += src->tx_packets;
9249 	dest->rx_bytes		  += src->rx_bytes;
9250 	dest->tx_bytes		  += src->tx_bytes;
9251 	dest->rx_errors		  += src->rx_errors;
9252 	dest->tx_errors		  += src->tx_errors;
9253 	dest->rx_dropped	  += src->rx_dropped;
9254 	dest->tx_dropped	  += src->tx_dropped;
9255 	dest->multicast		  += src->multicast;
9256 }
9257 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9258 static int netdev_offload_xstats_get_used(struct net_device *dev,
9259 					  enum netdev_offload_xstats_type type,
9260 					  bool *p_used,
9261 					  struct netlink_ext_ack *extack)
9262 {
9263 	struct netdev_notifier_offload_xstats_ru report_used = {};
9264 	struct netdev_notifier_offload_xstats_info info = {
9265 		.info.dev = dev,
9266 		.info.extack = extack,
9267 		.type = type,
9268 		.report_used = &report_used,
9269 	};
9270 	int rc;
9271 
9272 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9273 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9274 					   &info.info);
9275 	*p_used = report_used.used;
9276 	return notifier_to_errno(rc);
9277 }
9278 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9279 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9280 					   enum netdev_offload_xstats_type type,
9281 					   struct rtnl_hw_stats64 *p_stats,
9282 					   bool *p_used,
9283 					   struct netlink_ext_ack *extack)
9284 {
9285 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9286 	struct netdev_notifier_offload_xstats_info info = {
9287 		.info.dev = dev,
9288 		.info.extack = extack,
9289 		.type = type,
9290 		.report_delta = &report_delta,
9291 	};
9292 	struct rtnl_hw_stats64 *stats;
9293 	int rc;
9294 
9295 	stats = netdev_offload_xstats_get_ptr(dev, type);
9296 	if (WARN_ON(!stats))
9297 		return -EINVAL;
9298 
9299 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9300 					   &info.info);
9301 
9302 	/* Cache whatever we got, even if there was an error, otherwise the
9303 	 * successful stats retrievals would get lost.
9304 	 */
9305 	netdev_hw_stats64_add(stats, &report_delta.stats);
9306 
9307 	if (p_stats)
9308 		*p_stats = *stats;
9309 	*p_used = report_delta.used;
9310 
9311 	return notifier_to_errno(rc);
9312 }
9313 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9314 int netdev_offload_xstats_get(struct net_device *dev,
9315 			      enum netdev_offload_xstats_type type,
9316 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9317 			      struct netlink_ext_ack *extack)
9318 {
9319 	ASSERT_RTNL();
9320 
9321 	if (p_stats)
9322 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9323 						       p_used, extack);
9324 	else
9325 		return netdev_offload_xstats_get_used(dev, type, p_used,
9326 						      extack);
9327 }
9328 EXPORT_SYMBOL(netdev_offload_xstats_get);
9329 
9330 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9331 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9332 				   const struct rtnl_hw_stats64 *stats)
9333 {
9334 	report_delta->used = true;
9335 	netdev_hw_stats64_add(&report_delta->stats, stats);
9336 }
9337 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9338 
9339 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9340 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9341 {
9342 	report_used->used = true;
9343 }
9344 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9345 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9346 void netdev_offload_xstats_push_delta(struct net_device *dev,
9347 				      enum netdev_offload_xstats_type type,
9348 				      const struct rtnl_hw_stats64 *p_stats)
9349 {
9350 	struct rtnl_hw_stats64 *stats;
9351 
9352 	ASSERT_RTNL();
9353 
9354 	stats = netdev_offload_xstats_get_ptr(dev, type);
9355 	if (WARN_ON(!stats))
9356 		return;
9357 
9358 	netdev_hw_stats64_add(stats, p_stats);
9359 }
9360 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9361 
9362 /**
9363  * netdev_get_xmit_slave - Get the xmit slave of master device
9364  * @dev: device
9365  * @skb: The packet
9366  * @all_slaves: assume all the slaves are active
9367  *
9368  * The reference counters are not incremented so the caller must be
9369  * careful with locks. The caller must hold RCU lock.
9370  * %NULL is returned if no slave is found.
9371  */
9372 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9373 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9374 					 struct sk_buff *skb,
9375 					 bool all_slaves)
9376 {
9377 	const struct net_device_ops *ops = dev->netdev_ops;
9378 
9379 	if (!ops->ndo_get_xmit_slave)
9380 		return NULL;
9381 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9382 }
9383 EXPORT_SYMBOL(netdev_get_xmit_slave);
9384 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9385 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9386 						  struct sock *sk)
9387 {
9388 	const struct net_device_ops *ops = dev->netdev_ops;
9389 
9390 	if (!ops->ndo_sk_get_lower_dev)
9391 		return NULL;
9392 	return ops->ndo_sk_get_lower_dev(dev, sk);
9393 }
9394 
9395 /**
9396  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9397  * @dev: device
9398  * @sk: the socket
9399  *
9400  * %NULL is returned if no lower device is found.
9401  */
9402 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9403 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9404 					    struct sock *sk)
9405 {
9406 	struct net_device *lower;
9407 
9408 	lower = netdev_sk_get_lower_dev(dev, sk);
9409 	while (lower) {
9410 		dev = lower;
9411 		lower = netdev_sk_get_lower_dev(dev, sk);
9412 	}
9413 
9414 	return dev;
9415 }
9416 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9417 
netdev_adjacent_add_links(struct net_device * dev)9418 static void netdev_adjacent_add_links(struct net_device *dev)
9419 {
9420 	struct netdev_adjacent *iter;
9421 
9422 	struct net *net = dev_net(dev);
9423 
9424 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9425 		if (!net_eq(net, dev_net(iter->dev)))
9426 			continue;
9427 		netdev_adjacent_sysfs_add(iter->dev, dev,
9428 					  &iter->dev->adj_list.lower);
9429 		netdev_adjacent_sysfs_add(dev, iter->dev,
9430 					  &dev->adj_list.upper);
9431 	}
9432 
9433 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9434 		if (!net_eq(net, dev_net(iter->dev)))
9435 			continue;
9436 		netdev_adjacent_sysfs_add(iter->dev, dev,
9437 					  &iter->dev->adj_list.upper);
9438 		netdev_adjacent_sysfs_add(dev, iter->dev,
9439 					  &dev->adj_list.lower);
9440 	}
9441 }
9442 
netdev_adjacent_del_links(struct net_device * dev)9443 static void netdev_adjacent_del_links(struct net_device *dev)
9444 {
9445 	struct netdev_adjacent *iter;
9446 
9447 	struct net *net = dev_net(dev);
9448 
9449 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9450 		if (!net_eq(net, dev_net(iter->dev)))
9451 			continue;
9452 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9453 					  &iter->dev->adj_list.lower);
9454 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9455 					  &dev->adj_list.upper);
9456 	}
9457 
9458 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9459 		if (!net_eq(net, dev_net(iter->dev)))
9460 			continue;
9461 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9462 					  &iter->dev->adj_list.upper);
9463 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9464 					  &dev->adj_list.lower);
9465 	}
9466 }
9467 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9468 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9469 {
9470 	struct netdev_adjacent *iter;
9471 
9472 	struct net *net = dev_net(dev);
9473 
9474 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9475 		if (!net_eq(net, dev_net(iter->dev)))
9476 			continue;
9477 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9478 					  &iter->dev->adj_list.lower);
9479 		netdev_adjacent_sysfs_add(iter->dev, dev,
9480 					  &iter->dev->adj_list.lower);
9481 	}
9482 
9483 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9484 		if (!net_eq(net, dev_net(iter->dev)))
9485 			continue;
9486 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9487 					  &iter->dev->adj_list.upper);
9488 		netdev_adjacent_sysfs_add(iter->dev, dev,
9489 					  &iter->dev->adj_list.upper);
9490 	}
9491 }
9492 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9493 void *netdev_lower_dev_get_private(struct net_device *dev,
9494 				   struct net_device *lower_dev)
9495 {
9496 	struct netdev_adjacent *lower;
9497 
9498 	if (!lower_dev)
9499 		return NULL;
9500 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9501 	if (!lower)
9502 		return NULL;
9503 
9504 	return lower->private;
9505 }
9506 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9507 
9508 
9509 /**
9510  * netdev_lower_state_changed - Dispatch event about lower device state change
9511  * @lower_dev: device
9512  * @lower_state_info: state to dispatch
9513  *
9514  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9515  * The caller must hold the RTNL lock.
9516  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9517 void netdev_lower_state_changed(struct net_device *lower_dev,
9518 				void *lower_state_info)
9519 {
9520 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9521 		.info.dev = lower_dev,
9522 	};
9523 
9524 	ASSERT_RTNL();
9525 	changelowerstate_info.lower_state_info = lower_state_info;
9526 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9527 				      &changelowerstate_info.info);
9528 }
9529 EXPORT_SYMBOL(netdev_lower_state_changed);
9530 
dev_change_rx_flags(struct net_device * dev,int flags)9531 static void dev_change_rx_flags(struct net_device *dev, int flags)
9532 {
9533 	const struct net_device_ops *ops = dev->netdev_ops;
9534 
9535 	if (ops->ndo_change_rx_flags)
9536 		ops->ndo_change_rx_flags(dev, flags);
9537 }
9538 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9539 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9540 {
9541 	unsigned int old_flags = dev->flags;
9542 	unsigned int promiscuity, flags;
9543 	kuid_t uid;
9544 	kgid_t gid;
9545 
9546 	ASSERT_RTNL();
9547 
9548 	promiscuity = dev->promiscuity + inc;
9549 	if (promiscuity == 0) {
9550 		/*
9551 		 * Avoid overflow.
9552 		 * If inc causes overflow, untouch promisc and return error.
9553 		 */
9554 		if (unlikely(inc > 0)) {
9555 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9556 			return -EOVERFLOW;
9557 		}
9558 		flags = old_flags & ~IFF_PROMISC;
9559 	} else {
9560 		flags = old_flags | IFF_PROMISC;
9561 	}
9562 	WRITE_ONCE(dev->promiscuity, promiscuity);
9563 	if (flags != old_flags) {
9564 		WRITE_ONCE(dev->flags, flags);
9565 		netdev_info(dev, "%s promiscuous mode\n",
9566 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9567 		if (audit_enabled) {
9568 			current_uid_gid(&uid, &gid);
9569 			audit_log(audit_context(), GFP_ATOMIC,
9570 				  AUDIT_ANOM_PROMISCUOUS,
9571 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9572 				  dev->name, (dev->flags & IFF_PROMISC),
9573 				  (old_flags & IFF_PROMISC),
9574 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9575 				  from_kuid(&init_user_ns, uid),
9576 				  from_kgid(&init_user_ns, gid),
9577 				  audit_get_sessionid(current));
9578 		}
9579 
9580 		dev_change_rx_flags(dev, IFF_PROMISC);
9581 	}
9582 	if (notify) {
9583 		/* The ops lock is only required to ensure consistent locking
9584 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9585 		 * called without the lock, even for devices that are ops
9586 		 * locked, such as in `dev_uc_sync_multiple` when using
9587 		 * bonding or teaming.
9588 		 */
9589 		netdev_ops_assert_locked(dev);
9590 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9591 	}
9592 	return 0;
9593 }
9594 
netif_set_promiscuity(struct net_device * dev,int inc)9595 int netif_set_promiscuity(struct net_device *dev, int inc)
9596 {
9597 	unsigned int old_flags = dev->flags;
9598 	int err;
9599 
9600 	err = __dev_set_promiscuity(dev, inc, true);
9601 	if (err < 0)
9602 		return err;
9603 	if (dev->flags != old_flags)
9604 		dev_set_rx_mode(dev);
9605 	return err;
9606 }
9607 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9608 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9609 {
9610 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9611 	unsigned int allmulti, flags;
9612 
9613 	ASSERT_RTNL();
9614 
9615 	allmulti = dev->allmulti + inc;
9616 	if (allmulti == 0) {
9617 		/*
9618 		 * Avoid overflow.
9619 		 * If inc causes overflow, untouch allmulti and return error.
9620 		 */
9621 		if (unlikely(inc > 0)) {
9622 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9623 			return -EOVERFLOW;
9624 		}
9625 		flags = old_flags & ~IFF_ALLMULTI;
9626 	} else {
9627 		flags = old_flags | IFF_ALLMULTI;
9628 	}
9629 	WRITE_ONCE(dev->allmulti, allmulti);
9630 	if (flags != old_flags) {
9631 		WRITE_ONCE(dev->flags, flags);
9632 		netdev_info(dev, "%s allmulticast mode\n",
9633 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9634 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9635 		dev_set_rx_mode(dev);
9636 		if (notify)
9637 			__dev_notify_flags(dev, old_flags,
9638 					   dev->gflags ^ old_gflags, 0, NULL);
9639 	}
9640 	return 0;
9641 }
9642 
9643 /*
9644  *	Upload unicast and multicast address lists to device and
9645  *	configure RX filtering. When the device doesn't support unicast
9646  *	filtering it is put in promiscuous mode while unicast addresses
9647  *	are present.
9648  */
__dev_set_rx_mode(struct net_device * dev)9649 void __dev_set_rx_mode(struct net_device *dev)
9650 {
9651 	const struct net_device_ops *ops = dev->netdev_ops;
9652 
9653 	/* dev_open will call this function so the list will stay sane. */
9654 	if (!(dev->flags&IFF_UP))
9655 		return;
9656 
9657 	if (!netif_device_present(dev))
9658 		return;
9659 
9660 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9661 		/* Unicast addresses changes may only happen under the rtnl,
9662 		 * therefore calling __dev_set_promiscuity here is safe.
9663 		 */
9664 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9665 			__dev_set_promiscuity(dev, 1, false);
9666 			dev->uc_promisc = true;
9667 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9668 			__dev_set_promiscuity(dev, -1, false);
9669 			dev->uc_promisc = false;
9670 		}
9671 	}
9672 
9673 	if (ops->ndo_set_rx_mode)
9674 		ops->ndo_set_rx_mode(dev);
9675 }
9676 
dev_set_rx_mode(struct net_device * dev)9677 void dev_set_rx_mode(struct net_device *dev)
9678 {
9679 	netif_addr_lock_bh(dev);
9680 	__dev_set_rx_mode(dev);
9681 	netif_addr_unlock_bh(dev);
9682 }
9683 
9684 /**
9685  * netif_get_flags() - get flags reported to userspace
9686  * @dev: device
9687  *
9688  * Get the combination of flag bits exported through APIs to userspace.
9689  */
netif_get_flags(const struct net_device * dev)9690 unsigned int netif_get_flags(const struct net_device *dev)
9691 {
9692 	unsigned int flags;
9693 
9694 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9695 				IFF_ALLMULTI |
9696 				IFF_RUNNING |
9697 				IFF_LOWER_UP |
9698 				IFF_DORMANT)) |
9699 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9700 				IFF_ALLMULTI));
9701 
9702 	if (netif_running(dev)) {
9703 		if (netif_oper_up(dev))
9704 			flags |= IFF_RUNNING;
9705 		if (netif_carrier_ok(dev))
9706 			flags |= IFF_LOWER_UP;
9707 		if (netif_dormant(dev))
9708 			flags |= IFF_DORMANT;
9709 	}
9710 
9711 	return flags;
9712 }
9713 EXPORT_SYMBOL(netif_get_flags);
9714 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9715 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9716 		       struct netlink_ext_ack *extack)
9717 {
9718 	unsigned int old_flags = dev->flags;
9719 	int ret;
9720 
9721 	ASSERT_RTNL();
9722 
9723 	/*
9724 	 *	Set the flags on our device.
9725 	 */
9726 
9727 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9728 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9729 			       IFF_AUTOMEDIA)) |
9730 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9731 				    IFF_ALLMULTI));
9732 
9733 	/*
9734 	 *	Load in the correct multicast list now the flags have changed.
9735 	 */
9736 
9737 	if ((old_flags ^ flags) & IFF_MULTICAST)
9738 		dev_change_rx_flags(dev, IFF_MULTICAST);
9739 
9740 	dev_set_rx_mode(dev);
9741 
9742 	/*
9743 	 *	Have we downed the interface. We handle IFF_UP ourselves
9744 	 *	according to user attempts to set it, rather than blindly
9745 	 *	setting it.
9746 	 */
9747 
9748 	ret = 0;
9749 	if ((old_flags ^ flags) & IFF_UP) {
9750 		if (old_flags & IFF_UP)
9751 			__dev_close(dev);
9752 		else
9753 			ret = __dev_open(dev, extack);
9754 	}
9755 
9756 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9757 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9758 		old_flags = dev->flags;
9759 
9760 		dev->gflags ^= IFF_PROMISC;
9761 
9762 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9763 			if (dev->flags != old_flags)
9764 				dev_set_rx_mode(dev);
9765 	}
9766 
9767 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9768 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9769 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9770 	 */
9771 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9772 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9773 
9774 		dev->gflags ^= IFF_ALLMULTI;
9775 		netif_set_allmulti(dev, inc, false);
9776 	}
9777 
9778 	return ret;
9779 }
9780 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9781 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9782 			unsigned int gchanges, u32 portid,
9783 			const struct nlmsghdr *nlh)
9784 {
9785 	unsigned int changes = dev->flags ^ old_flags;
9786 
9787 	if (gchanges)
9788 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9789 
9790 	if (changes & IFF_UP) {
9791 		if (dev->flags & IFF_UP)
9792 			call_netdevice_notifiers(NETDEV_UP, dev);
9793 		else
9794 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9795 	}
9796 
9797 	if (dev->flags & IFF_UP &&
9798 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9799 		struct netdev_notifier_change_info change_info = {
9800 			.info = {
9801 				.dev = dev,
9802 			},
9803 			.flags_changed = changes,
9804 		};
9805 
9806 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9807 	}
9808 }
9809 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9810 int netif_change_flags(struct net_device *dev, unsigned int flags,
9811 		       struct netlink_ext_ack *extack)
9812 {
9813 	int ret;
9814 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9815 
9816 	ret = __dev_change_flags(dev, flags, extack);
9817 	if (ret < 0)
9818 		return ret;
9819 
9820 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9821 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9822 	return ret;
9823 }
9824 
__netif_set_mtu(struct net_device * dev,int new_mtu)9825 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9826 {
9827 	const struct net_device_ops *ops = dev->netdev_ops;
9828 
9829 	if (ops->ndo_change_mtu)
9830 		return ops->ndo_change_mtu(dev, new_mtu);
9831 
9832 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9833 	WRITE_ONCE(dev->mtu, new_mtu);
9834 	return 0;
9835 }
9836 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9837 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9838 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9839 		     struct netlink_ext_ack *extack)
9840 {
9841 	/* MTU must be positive, and in range */
9842 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9843 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9844 		return -EINVAL;
9845 	}
9846 
9847 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9848 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9849 		return -EINVAL;
9850 	}
9851 	return 0;
9852 }
9853 
9854 /**
9855  * netif_set_mtu_ext() - Change maximum transfer unit
9856  * @dev: device
9857  * @new_mtu: new transfer unit
9858  * @extack: netlink extended ack
9859  *
9860  * Change the maximum transfer size of the network device.
9861  *
9862  * Return: 0 on success, -errno on failure.
9863  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9864 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9865 		      struct netlink_ext_ack *extack)
9866 {
9867 	int err, orig_mtu;
9868 
9869 	netdev_ops_assert_locked(dev);
9870 
9871 	if (new_mtu == dev->mtu)
9872 		return 0;
9873 
9874 	err = dev_validate_mtu(dev, new_mtu, extack);
9875 	if (err)
9876 		return err;
9877 
9878 	if (!netif_device_present(dev))
9879 		return -ENODEV;
9880 
9881 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9882 	err = notifier_to_errno(err);
9883 	if (err)
9884 		return err;
9885 
9886 	orig_mtu = dev->mtu;
9887 	err = __netif_set_mtu(dev, new_mtu);
9888 
9889 	if (!err) {
9890 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9891 						   orig_mtu);
9892 		err = notifier_to_errno(err);
9893 		if (err) {
9894 			/* setting mtu back and notifying everyone again,
9895 			 * so that they have a chance to revert changes.
9896 			 */
9897 			__netif_set_mtu(dev, orig_mtu);
9898 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9899 						     new_mtu);
9900 		}
9901 	}
9902 	return err;
9903 }
9904 
netif_set_mtu(struct net_device * dev,int new_mtu)9905 int netif_set_mtu(struct net_device *dev, int new_mtu)
9906 {
9907 	struct netlink_ext_ack extack;
9908 	int err;
9909 
9910 	memset(&extack, 0, sizeof(extack));
9911 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9912 	if (err && extack._msg)
9913 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9914 	return err;
9915 }
9916 EXPORT_SYMBOL(netif_set_mtu);
9917 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9918 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9919 {
9920 	unsigned int orig_len = dev->tx_queue_len;
9921 	int res;
9922 
9923 	if (new_len != (unsigned int)new_len)
9924 		return -ERANGE;
9925 
9926 	if (new_len != orig_len) {
9927 		WRITE_ONCE(dev->tx_queue_len, new_len);
9928 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9929 		res = notifier_to_errno(res);
9930 		if (res)
9931 			goto err_rollback;
9932 		res = dev_qdisc_change_tx_queue_len(dev);
9933 		if (res)
9934 			goto err_rollback;
9935 	}
9936 
9937 	return 0;
9938 
9939 err_rollback:
9940 	netdev_err(dev, "refused to change device tx_queue_len\n");
9941 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9942 	return res;
9943 }
9944 
netif_set_group(struct net_device * dev,int new_group)9945 void netif_set_group(struct net_device *dev, int new_group)
9946 {
9947 	dev->group = new_group;
9948 }
9949 
9950 /**
9951  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9952  * @dev: device
9953  * @addr: new address
9954  * @extack: netlink extended ack
9955  *
9956  * Return: 0 on success, -errno on failure.
9957  */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9958 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9959 				struct netlink_ext_ack *extack)
9960 {
9961 	struct netdev_notifier_pre_changeaddr_info info = {
9962 		.info.dev = dev,
9963 		.info.extack = extack,
9964 		.dev_addr = addr,
9965 	};
9966 	int rc;
9967 
9968 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9969 	return notifier_to_errno(rc);
9970 }
9971 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9972 
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9973 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9974 			  struct netlink_ext_ack *extack)
9975 {
9976 	const struct net_device_ops *ops = dev->netdev_ops;
9977 	int err;
9978 
9979 	if (!ops->ndo_set_mac_address)
9980 		return -EOPNOTSUPP;
9981 	if (ss->ss_family != dev->type)
9982 		return -EINVAL;
9983 	if (!netif_device_present(dev))
9984 		return -ENODEV;
9985 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9986 	if (err)
9987 		return err;
9988 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9989 		err = ops->ndo_set_mac_address(dev, ss);
9990 		if (err)
9991 			return err;
9992 	}
9993 	dev->addr_assign_type = NET_ADDR_SET;
9994 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9995 	add_device_randomness(dev->dev_addr, dev->addr_len);
9996 	return 0;
9997 }
9998 
9999 DECLARE_RWSEM(dev_addr_sem);
10000 
10001 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)10002 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
10003 {
10004 	size_t size = sizeof(sa->sa_data);
10005 	struct net_device *dev;
10006 	int ret = 0;
10007 
10008 	down_read(&dev_addr_sem);
10009 	rcu_read_lock();
10010 
10011 	dev = dev_get_by_name_rcu(net, dev_name);
10012 	if (!dev) {
10013 		ret = -ENODEV;
10014 		goto unlock;
10015 	}
10016 	if (!dev->addr_len)
10017 		memset(sa->sa_data, 0, size);
10018 	else
10019 		memcpy(sa->sa_data, dev->dev_addr,
10020 		       min_t(size_t, size, dev->addr_len));
10021 	sa->sa_family = dev->type;
10022 
10023 unlock:
10024 	rcu_read_unlock();
10025 	up_read(&dev_addr_sem);
10026 	return ret;
10027 }
10028 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10029 
netif_change_carrier(struct net_device * dev,bool new_carrier)10030 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10031 {
10032 	const struct net_device_ops *ops = dev->netdev_ops;
10033 
10034 	if (!ops->ndo_change_carrier)
10035 		return -EOPNOTSUPP;
10036 	if (!netif_device_present(dev))
10037 		return -ENODEV;
10038 	return ops->ndo_change_carrier(dev, new_carrier);
10039 }
10040 
10041 /**
10042  *	dev_get_phys_port_id - Get device physical port ID
10043  *	@dev: device
10044  *	@ppid: port ID
10045  *
10046  *	Get device physical port ID
10047  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10048 int dev_get_phys_port_id(struct net_device *dev,
10049 			 struct netdev_phys_item_id *ppid)
10050 {
10051 	const struct net_device_ops *ops = dev->netdev_ops;
10052 
10053 	if (!ops->ndo_get_phys_port_id)
10054 		return -EOPNOTSUPP;
10055 	return ops->ndo_get_phys_port_id(dev, ppid);
10056 }
10057 
10058 /**
10059  *	dev_get_phys_port_name - Get device physical port name
10060  *	@dev: device
10061  *	@name: port name
10062  *	@len: limit of bytes to copy to name
10063  *
10064  *	Get device physical port name
10065  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10066 int dev_get_phys_port_name(struct net_device *dev,
10067 			   char *name, size_t len)
10068 {
10069 	const struct net_device_ops *ops = dev->netdev_ops;
10070 	int err;
10071 
10072 	if (ops->ndo_get_phys_port_name) {
10073 		err = ops->ndo_get_phys_port_name(dev, name, len);
10074 		if (err != -EOPNOTSUPP)
10075 			return err;
10076 	}
10077 	return devlink_compat_phys_port_name_get(dev, name, len);
10078 }
10079 
10080 /**
10081  * netif_get_port_parent_id() - Get the device's port parent identifier
10082  * @dev: network device
10083  * @ppid: pointer to a storage for the port's parent identifier
10084  * @recurse: allow/disallow recursion to lower devices
10085  *
10086  * Get the devices's port parent identifier.
10087  *
10088  * Return: 0 on success, -errno on failure.
10089  */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10090 int netif_get_port_parent_id(struct net_device *dev,
10091 			     struct netdev_phys_item_id *ppid, bool recurse)
10092 {
10093 	const struct net_device_ops *ops = dev->netdev_ops;
10094 	struct netdev_phys_item_id first = { };
10095 	struct net_device *lower_dev;
10096 	struct list_head *iter;
10097 	int err;
10098 
10099 	if (ops->ndo_get_port_parent_id) {
10100 		err = ops->ndo_get_port_parent_id(dev, ppid);
10101 		if (err != -EOPNOTSUPP)
10102 			return err;
10103 	}
10104 
10105 	err = devlink_compat_switch_id_get(dev, ppid);
10106 	if (!recurse || err != -EOPNOTSUPP)
10107 		return err;
10108 
10109 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10110 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10111 		if (err)
10112 			break;
10113 		if (!first.id_len)
10114 			first = *ppid;
10115 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10116 			return -EOPNOTSUPP;
10117 	}
10118 
10119 	return err;
10120 }
10121 EXPORT_SYMBOL(netif_get_port_parent_id);
10122 
10123 /**
10124  *	netdev_port_same_parent_id - Indicate if two network devices have
10125  *	the same port parent identifier
10126  *	@a: first network device
10127  *	@b: second network device
10128  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10129 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10130 {
10131 	struct netdev_phys_item_id a_id = { };
10132 	struct netdev_phys_item_id b_id = { };
10133 
10134 	if (netif_get_port_parent_id(a, &a_id, true) ||
10135 	    netif_get_port_parent_id(b, &b_id, true))
10136 		return false;
10137 
10138 	return netdev_phys_item_id_same(&a_id, &b_id);
10139 }
10140 EXPORT_SYMBOL(netdev_port_same_parent_id);
10141 
netif_change_proto_down(struct net_device * dev,bool proto_down)10142 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10143 {
10144 	if (!dev->change_proto_down)
10145 		return -EOPNOTSUPP;
10146 	if (!netif_device_present(dev))
10147 		return -ENODEV;
10148 	if (proto_down)
10149 		netif_carrier_off(dev);
10150 	else
10151 		netif_carrier_on(dev);
10152 	WRITE_ONCE(dev->proto_down, proto_down);
10153 	return 0;
10154 }
10155 
10156 /**
10157  *	netdev_change_proto_down_reason_locked - proto down reason
10158  *
10159  *	@dev: device
10160  *	@mask: proto down mask
10161  *	@value: proto down value
10162  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10163 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10164 					    unsigned long mask, u32 value)
10165 {
10166 	u32 proto_down_reason;
10167 	int b;
10168 
10169 	if (!mask) {
10170 		proto_down_reason = value;
10171 	} else {
10172 		proto_down_reason = dev->proto_down_reason;
10173 		for_each_set_bit(b, &mask, 32) {
10174 			if (value & (1 << b))
10175 				proto_down_reason |= BIT(b);
10176 			else
10177 				proto_down_reason &= ~BIT(b);
10178 		}
10179 	}
10180 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10181 }
10182 
10183 struct bpf_xdp_link {
10184 	struct bpf_link link;
10185 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10186 	int flags;
10187 };
10188 
dev_xdp_mode(struct net_device * dev,u32 flags)10189 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10190 {
10191 	if (flags & XDP_FLAGS_HW_MODE)
10192 		return XDP_MODE_HW;
10193 	if (flags & XDP_FLAGS_DRV_MODE)
10194 		return XDP_MODE_DRV;
10195 	if (flags & XDP_FLAGS_SKB_MODE)
10196 		return XDP_MODE_SKB;
10197 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10198 }
10199 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10200 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10201 {
10202 	switch (mode) {
10203 	case XDP_MODE_SKB:
10204 		return generic_xdp_install;
10205 	case XDP_MODE_DRV:
10206 	case XDP_MODE_HW:
10207 		return dev->netdev_ops->ndo_bpf;
10208 	default:
10209 		return NULL;
10210 	}
10211 }
10212 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10213 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10214 					 enum bpf_xdp_mode mode)
10215 {
10216 	return dev->xdp_state[mode].link;
10217 }
10218 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10219 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10220 				     enum bpf_xdp_mode mode)
10221 {
10222 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10223 
10224 	if (link)
10225 		return link->link.prog;
10226 	return dev->xdp_state[mode].prog;
10227 }
10228 
dev_xdp_prog_count(struct net_device * dev)10229 u8 dev_xdp_prog_count(struct net_device *dev)
10230 {
10231 	u8 count = 0;
10232 	int i;
10233 
10234 	for (i = 0; i < __MAX_XDP_MODE; i++)
10235 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10236 			count++;
10237 	return count;
10238 }
10239 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10240 
dev_xdp_sb_prog_count(struct net_device * dev)10241 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10242 {
10243 	u8 count = 0;
10244 	int i;
10245 
10246 	for (i = 0; i < __MAX_XDP_MODE; i++)
10247 		if (dev->xdp_state[i].prog &&
10248 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10249 			count++;
10250 	return count;
10251 }
10252 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10253 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10254 {
10255 	if (!dev->netdev_ops->ndo_bpf)
10256 		return -EOPNOTSUPP;
10257 
10258 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10259 	    bpf->command == XDP_SETUP_PROG &&
10260 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10261 		NL_SET_ERR_MSG(bpf->extack,
10262 			       "unable to propagate XDP to device using tcp-data-split");
10263 		return -EBUSY;
10264 	}
10265 
10266 	if (dev_get_min_mp_channel_count(dev)) {
10267 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10268 		return -EBUSY;
10269 	}
10270 
10271 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10272 }
10273 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10274 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10275 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10276 {
10277 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10278 
10279 	return prog ? prog->aux->id : 0;
10280 }
10281 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10282 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10283 			     struct bpf_xdp_link *link)
10284 {
10285 	dev->xdp_state[mode].link = link;
10286 	dev->xdp_state[mode].prog = NULL;
10287 }
10288 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10289 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10290 			     struct bpf_prog *prog)
10291 {
10292 	dev->xdp_state[mode].link = NULL;
10293 	dev->xdp_state[mode].prog = prog;
10294 }
10295 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10296 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10297 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10298 			   u32 flags, struct bpf_prog *prog)
10299 {
10300 	struct netdev_bpf xdp;
10301 	int err;
10302 
10303 	netdev_ops_assert_locked(dev);
10304 
10305 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10306 	    prog && !prog->aux->xdp_has_frags) {
10307 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10308 		return -EBUSY;
10309 	}
10310 
10311 	if (dev_get_min_mp_channel_count(dev)) {
10312 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10313 		return -EBUSY;
10314 	}
10315 
10316 	memset(&xdp, 0, sizeof(xdp));
10317 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10318 	xdp.extack = extack;
10319 	xdp.flags = flags;
10320 	xdp.prog = prog;
10321 
10322 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10323 	 * "moved" into driver), so they don't increment it on their own, but
10324 	 * they do decrement refcnt when program is detached or replaced.
10325 	 * Given net_device also owns link/prog, we need to bump refcnt here
10326 	 * to prevent drivers from underflowing it.
10327 	 */
10328 	if (prog)
10329 		bpf_prog_inc(prog);
10330 	err = bpf_op(dev, &xdp);
10331 	if (err) {
10332 		if (prog)
10333 			bpf_prog_put(prog);
10334 		return err;
10335 	}
10336 
10337 	if (mode != XDP_MODE_HW)
10338 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10339 
10340 	return 0;
10341 }
10342 
dev_xdp_uninstall(struct net_device * dev)10343 static void dev_xdp_uninstall(struct net_device *dev)
10344 {
10345 	struct bpf_xdp_link *link;
10346 	struct bpf_prog *prog;
10347 	enum bpf_xdp_mode mode;
10348 	bpf_op_t bpf_op;
10349 
10350 	ASSERT_RTNL();
10351 
10352 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10353 		prog = dev_xdp_prog(dev, mode);
10354 		if (!prog)
10355 			continue;
10356 
10357 		bpf_op = dev_xdp_bpf_op(dev, mode);
10358 		if (!bpf_op)
10359 			continue;
10360 
10361 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10362 
10363 		/* auto-detach link from net device */
10364 		link = dev_xdp_link(dev, mode);
10365 		if (link)
10366 			link->dev = NULL;
10367 		else
10368 			bpf_prog_put(prog);
10369 
10370 		dev_xdp_set_link(dev, mode, NULL);
10371 	}
10372 }
10373 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10374 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10375 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10376 			  struct bpf_prog *old_prog, u32 flags)
10377 {
10378 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10379 	struct bpf_prog *cur_prog;
10380 	struct net_device *upper;
10381 	struct list_head *iter;
10382 	enum bpf_xdp_mode mode;
10383 	bpf_op_t bpf_op;
10384 	int err;
10385 
10386 	ASSERT_RTNL();
10387 
10388 	/* either link or prog attachment, never both */
10389 	if (link && (new_prog || old_prog))
10390 		return -EINVAL;
10391 	/* link supports only XDP mode flags */
10392 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10393 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10394 		return -EINVAL;
10395 	}
10396 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10397 	if (num_modes > 1) {
10398 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10399 		return -EINVAL;
10400 	}
10401 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10402 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10403 		NL_SET_ERR_MSG(extack,
10404 			       "More than one program loaded, unset mode is ambiguous");
10405 		return -EINVAL;
10406 	}
10407 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10408 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10409 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10410 		return -EINVAL;
10411 	}
10412 
10413 	mode = dev_xdp_mode(dev, flags);
10414 	/* can't replace attached link */
10415 	if (dev_xdp_link(dev, mode)) {
10416 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10417 		return -EBUSY;
10418 	}
10419 
10420 	/* don't allow if an upper device already has a program */
10421 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10422 		if (dev_xdp_prog_count(upper) > 0) {
10423 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10424 			return -EEXIST;
10425 		}
10426 	}
10427 
10428 	cur_prog = dev_xdp_prog(dev, mode);
10429 	/* can't replace attached prog with link */
10430 	if (link && cur_prog) {
10431 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10432 		return -EBUSY;
10433 	}
10434 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10435 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10436 		return -EEXIST;
10437 	}
10438 
10439 	/* put effective new program into new_prog */
10440 	if (link)
10441 		new_prog = link->link.prog;
10442 
10443 	if (new_prog) {
10444 		bool offload = mode == XDP_MODE_HW;
10445 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10446 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10447 
10448 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10449 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10450 			return -EBUSY;
10451 		}
10452 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10453 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10454 			return -EEXIST;
10455 		}
10456 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10457 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10458 			return -EINVAL;
10459 		}
10460 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10461 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10462 			return -EINVAL;
10463 		}
10464 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10465 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10466 			return -EINVAL;
10467 		}
10468 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10469 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10470 			return -EINVAL;
10471 		}
10472 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10473 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10474 			return -EINVAL;
10475 		}
10476 	}
10477 
10478 	/* don't call drivers if the effective program didn't change */
10479 	if (new_prog != cur_prog) {
10480 		bpf_op = dev_xdp_bpf_op(dev, mode);
10481 		if (!bpf_op) {
10482 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10483 			return -EOPNOTSUPP;
10484 		}
10485 
10486 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10487 		if (err)
10488 			return err;
10489 	}
10490 
10491 	if (link)
10492 		dev_xdp_set_link(dev, mode, link);
10493 	else
10494 		dev_xdp_set_prog(dev, mode, new_prog);
10495 	if (cur_prog)
10496 		bpf_prog_put(cur_prog);
10497 
10498 	return 0;
10499 }
10500 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10501 static int dev_xdp_attach_link(struct net_device *dev,
10502 			       struct netlink_ext_ack *extack,
10503 			       struct bpf_xdp_link *link)
10504 {
10505 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10506 }
10507 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10508 static int dev_xdp_detach_link(struct net_device *dev,
10509 			       struct netlink_ext_ack *extack,
10510 			       struct bpf_xdp_link *link)
10511 {
10512 	enum bpf_xdp_mode mode;
10513 	bpf_op_t bpf_op;
10514 
10515 	ASSERT_RTNL();
10516 
10517 	mode = dev_xdp_mode(dev, link->flags);
10518 	if (dev_xdp_link(dev, mode) != link)
10519 		return -EINVAL;
10520 
10521 	bpf_op = dev_xdp_bpf_op(dev, mode);
10522 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10523 	dev_xdp_set_link(dev, mode, NULL);
10524 	return 0;
10525 }
10526 
bpf_xdp_link_release(struct bpf_link * link)10527 static void bpf_xdp_link_release(struct bpf_link *link)
10528 {
10529 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10530 
10531 	rtnl_lock();
10532 
10533 	/* if racing with net_device's tear down, xdp_link->dev might be
10534 	 * already NULL, in which case link was already auto-detached
10535 	 */
10536 	if (xdp_link->dev) {
10537 		netdev_lock_ops(xdp_link->dev);
10538 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10539 		netdev_unlock_ops(xdp_link->dev);
10540 		xdp_link->dev = NULL;
10541 	}
10542 
10543 	rtnl_unlock();
10544 }
10545 
bpf_xdp_link_detach(struct bpf_link * link)10546 static int bpf_xdp_link_detach(struct bpf_link *link)
10547 {
10548 	bpf_xdp_link_release(link);
10549 	return 0;
10550 }
10551 
bpf_xdp_link_dealloc(struct bpf_link * link)10552 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10553 {
10554 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10555 
10556 	kfree(xdp_link);
10557 }
10558 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10559 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10560 				     struct seq_file *seq)
10561 {
10562 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10563 	u32 ifindex = 0;
10564 
10565 	rtnl_lock();
10566 	if (xdp_link->dev)
10567 		ifindex = xdp_link->dev->ifindex;
10568 	rtnl_unlock();
10569 
10570 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10571 }
10572 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10573 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10574 				       struct bpf_link_info *info)
10575 {
10576 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10577 	u32 ifindex = 0;
10578 
10579 	rtnl_lock();
10580 	if (xdp_link->dev)
10581 		ifindex = xdp_link->dev->ifindex;
10582 	rtnl_unlock();
10583 
10584 	info->xdp.ifindex = ifindex;
10585 	return 0;
10586 }
10587 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10588 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10589 			       struct bpf_prog *old_prog)
10590 {
10591 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10592 	enum bpf_xdp_mode mode;
10593 	bpf_op_t bpf_op;
10594 	int err = 0;
10595 
10596 	rtnl_lock();
10597 
10598 	/* link might have been auto-released already, so fail */
10599 	if (!xdp_link->dev) {
10600 		err = -ENOLINK;
10601 		goto out_unlock;
10602 	}
10603 
10604 	if (old_prog && link->prog != old_prog) {
10605 		err = -EPERM;
10606 		goto out_unlock;
10607 	}
10608 	old_prog = link->prog;
10609 	if (old_prog->type != new_prog->type ||
10610 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10611 		err = -EINVAL;
10612 		goto out_unlock;
10613 	}
10614 
10615 	if (old_prog == new_prog) {
10616 		/* no-op, don't disturb drivers */
10617 		bpf_prog_put(new_prog);
10618 		goto out_unlock;
10619 	}
10620 
10621 	netdev_lock_ops(xdp_link->dev);
10622 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10623 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10624 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10625 			      xdp_link->flags, new_prog);
10626 	netdev_unlock_ops(xdp_link->dev);
10627 	if (err)
10628 		goto out_unlock;
10629 
10630 	old_prog = xchg(&link->prog, new_prog);
10631 	bpf_prog_put(old_prog);
10632 
10633 out_unlock:
10634 	rtnl_unlock();
10635 	return err;
10636 }
10637 
10638 static const struct bpf_link_ops bpf_xdp_link_lops = {
10639 	.release = bpf_xdp_link_release,
10640 	.dealloc = bpf_xdp_link_dealloc,
10641 	.detach = bpf_xdp_link_detach,
10642 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10643 	.fill_link_info = bpf_xdp_link_fill_link_info,
10644 	.update_prog = bpf_xdp_link_update,
10645 };
10646 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10647 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10648 {
10649 	struct net *net = current->nsproxy->net_ns;
10650 	struct bpf_link_primer link_primer;
10651 	struct netlink_ext_ack extack = {};
10652 	struct bpf_xdp_link *link;
10653 	struct net_device *dev;
10654 	int err, fd;
10655 
10656 	rtnl_lock();
10657 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10658 	if (!dev) {
10659 		rtnl_unlock();
10660 		return -EINVAL;
10661 	}
10662 
10663 	link = kzalloc(sizeof(*link), GFP_USER);
10664 	if (!link) {
10665 		err = -ENOMEM;
10666 		goto unlock;
10667 	}
10668 
10669 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10670 		      attr->link_create.attach_type);
10671 	link->dev = dev;
10672 	link->flags = attr->link_create.flags;
10673 
10674 	err = bpf_link_prime(&link->link, &link_primer);
10675 	if (err) {
10676 		kfree(link);
10677 		goto unlock;
10678 	}
10679 
10680 	netdev_lock_ops(dev);
10681 	err = dev_xdp_attach_link(dev, &extack, link);
10682 	netdev_unlock_ops(dev);
10683 	rtnl_unlock();
10684 
10685 	if (err) {
10686 		link->dev = NULL;
10687 		bpf_link_cleanup(&link_primer);
10688 		trace_bpf_xdp_link_attach_failed(extack._msg);
10689 		goto out_put_dev;
10690 	}
10691 
10692 	fd = bpf_link_settle(&link_primer);
10693 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10694 	dev_put(dev);
10695 	return fd;
10696 
10697 unlock:
10698 	rtnl_unlock();
10699 
10700 out_put_dev:
10701 	dev_put(dev);
10702 	return err;
10703 }
10704 
10705 /**
10706  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10707  *	@dev: device
10708  *	@extack: netlink extended ack
10709  *	@fd: new program fd or negative value to clear
10710  *	@expected_fd: old program fd that userspace expects to replace or clear
10711  *	@flags: xdp-related flags
10712  *
10713  *	Set or clear a bpf program for a device
10714  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10715 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10716 		      int fd, int expected_fd, u32 flags)
10717 {
10718 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10719 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10720 	int err;
10721 
10722 	ASSERT_RTNL();
10723 
10724 	if (fd >= 0) {
10725 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10726 						 mode != XDP_MODE_SKB);
10727 		if (IS_ERR(new_prog))
10728 			return PTR_ERR(new_prog);
10729 	}
10730 
10731 	if (expected_fd >= 0) {
10732 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10733 						 mode != XDP_MODE_SKB);
10734 		if (IS_ERR(old_prog)) {
10735 			err = PTR_ERR(old_prog);
10736 			old_prog = NULL;
10737 			goto err_out;
10738 		}
10739 	}
10740 
10741 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10742 
10743 err_out:
10744 	if (err && new_prog)
10745 		bpf_prog_put(new_prog);
10746 	if (old_prog)
10747 		bpf_prog_put(old_prog);
10748 	return err;
10749 }
10750 
dev_get_min_mp_channel_count(const struct net_device * dev)10751 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10752 {
10753 	int i;
10754 
10755 	netdev_ops_assert_locked(dev);
10756 
10757 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10758 		if (dev->_rx[i].mp_params.mp_priv)
10759 			/* The channel count is the idx plus 1. */
10760 			return i + 1;
10761 
10762 	return 0;
10763 }
10764 
10765 /**
10766  * dev_index_reserve() - allocate an ifindex in a namespace
10767  * @net: the applicable net namespace
10768  * @ifindex: requested ifindex, pass %0 to get one allocated
10769  *
10770  * Allocate a ifindex for a new device. Caller must either use the ifindex
10771  * to store the device (via list_netdevice()) or call dev_index_release()
10772  * to give the index up.
10773  *
10774  * Return: a suitable unique value for a new device interface number or -errno.
10775  */
dev_index_reserve(struct net * net,u32 ifindex)10776 static int dev_index_reserve(struct net *net, u32 ifindex)
10777 {
10778 	int err;
10779 
10780 	if (ifindex > INT_MAX) {
10781 		DEBUG_NET_WARN_ON_ONCE(1);
10782 		return -EINVAL;
10783 	}
10784 
10785 	if (!ifindex)
10786 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10787 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10788 	else
10789 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10790 	if (err < 0)
10791 		return err;
10792 
10793 	return ifindex;
10794 }
10795 
dev_index_release(struct net * net,int ifindex)10796 static void dev_index_release(struct net *net, int ifindex)
10797 {
10798 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10799 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10800 }
10801 
from_cleanup_net(void)10802 static bool from_cleanup_net(void)
10803 {
10804 #ifdef CONFIG_NET_NS
10805 	return current == READ_ONCE(cleanup_net_task);
10806 #else
10807 	return false;
10808 #endif
10809 }
10810 
10811 /* Delayed registration/unregisteration */
10812 LIST_HEAD(net_todo_list);
10813 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10814 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10815 
net_set_todo(struct net_device * dev)10816 static void net_set_todo(struct net_device *dev)
10817 {
10818 	list_add_tail(&dev->todo_list, &net_todo_list);
10819 }
10820 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10821 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10822 	struct net_device *upper, netdev_features_t features)
10823 {
10824 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10825 	netdev_features_t feature;
10826 	int feature_bit;
10827 
10828 	for_each_netdev_feature(upper_disables, feature_bit) {
10829 		feature = __NETIF_F_BIT(feature_bit);
10830 		if (!(upper->wanted_features & feature)
10831 		    && (features & feature)) {
10832 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10833 				   &feature, upper->name);
10834 			features &= ~feature;
10835 		}
10836 	}
10837 
10838 	return features;
10839 }
10840 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10841 static void netdev_sync_lower_features(struct net_device *upper,
10842 	struct net_device *lower, netdev_features_t features)
10843 {
10844 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10845 	netdev_features_t feature;
10846 	int feature_bit;
10847 
10848 	for_each_netdev_feature(upper_disables, feature_bit) {
10849 		feature = __NETIF_F_BIT(feature_bit);
10850 		if (!(features & feature) && (lower->features & feature)) {
10851 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10852 				   &feature, lower->name);
10853 			netdev_lock_ops(lower);
10854 			lower->wanted_features &= ~feature;
10855 			__netdev_update_features(lower);
10856 
10857 			if (unlikely(lower->features & feature))
10858 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10859 					    &feature, lower->name);
10860 			else
10861 				netdev_features_change(lower);
10862 			netdev_unlock_ops(lower);
10863 		}
10864 	}
10865 }
10866 
netdev_has_ip_or_hw_csum(netdev_features_t features)10867 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10868 {
10869 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10870 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10871 	bool hw_csum = features & NETIF_F_HW_CSUM;
10872 
10873 	return ip_csum || hw_csum;
10874 }
10875 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10876 static netdev_features_t netdev_fix_features(struct net_device *dev,
10877 	netdev_features_t features)
10878 {
10879 	/* Fix illegal checksum combinations */
10880 	if ((features & NETIF_F_HW_CSUM) &&
10881 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10882 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10883 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10884 	}
10885 
10886 	/* TSO requires that SG is present as well. */
10887 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10888 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10889 		features &= ~NETIF_F_ALL_TSO;
10890 	}
10891 
10892 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10893 					!(features & NETIF_F_IP_CSUM)) {
10894 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10895 		features &= ~NETIF_F_TSO;
10896 		features &= ~NETIF_F_TSO_ECN;
10897 	}
10898 
10899 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10900 					 !(features & NETIF_F_IPV6_CSUM)) {
10901 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10902 		features &= ~NETIF_F_TSO6;
10903 	}
10904 
10905 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10906 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10907 		features &= ~NETIF_F_TSO_MANGLEID;
10908 
10909 	/* TSO ECN requires that TSO is present as well. */
10910 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10911 		features &= ~NETIF_F_TSO_ECN;
10912 
10913 	/* Software GSO depends on SG. */
10914 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10915 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10916 		features &= ~NETIF_F_GSO;
10917 	}
10918 
10919 	/* GSO partial features require GSO partial be set */
10920 	if ((features & dev->gso_partial_features) &&
10921 	    !(features & NETIF_F_GSO_PARTIAL)) {
10922 		netdev_dbg(dev,
10923 			   "Dropping partially supported GSO features since no GSO partial.\n");
10924 		features &= ~dev->gso_partial_features;
10925 	}
10926 
10927 	if (!(features & NETIF_F_RXCSUM)) {
10928 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10929 		 * successfully merged by hardware must also have the
10930 		 * checksum verified by hardware.  If the user does not
10931 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10932 		 */
10933 		if (features & NETIF_F_GRO_HW) {
10934 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10935 			features &= ~NETIF_F_GRO_HW;
10936 		}
10937 	}
10938 
10939 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10940 	if (features & NETIF_F_RXFCS) {
10941 		if (features & NETIF_F_LRO) {
10942 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10943 			features &= ~NETIF_F_LRO;
10944 		}
10945 
10946 		if (features & NETIF_F_GRO_HW) {
10947 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10948 			features &= ~NETIF_F_GRO_HW;
10949 		}
10950 	}
10951 
10952 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10953 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10954 		features &= ~NETIF_F_LRO;
10955 	}
10956 
10957 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10958 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10959 		features &= ~NETIF_F_HW_TLS_TX;
10960 	}
10961 
10962 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10963 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10964 		features &= ~NETIF_F_HW_TLS_RX;
10965 	}
10966 
10967 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10968 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10969 		features &= ~NETIF_F_GSO_UDP_L4;
10970 	}
10971 
10972 	return features;
10973 }
10974 
__netdev_update_features(struct net_device * dev)10975 int __netdev_update_features(struct net_device *dev)
10976 {
10977 	struct net_device *upper, *lower;
10978 	netdev_features_t features;
10979 	struct list_head *iter;
10980 	int err = -1;
10981 
10982 	ASSERT_RTNL();
10983 	netdev_ops_assert_locked(dev);
10984 
10985 	features = netdev_get_wanted_features(dev);
10986 
10987 	if (dev->netdev_ops->ndo_fix_features)
10988 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10989 
10990 	/* driver might be less strict about feature dependencies */
10991 	features = netdev_fix_features(dev, features);
10992 
10993 	/* some features can't be enabled if they're off on an upper device */
10994 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10995 		features = netdev_sync_upper_features(dev, upper, features);
10996 
10997 	if (dev->features == features)
10998 		goto sync_lower;
10999 
11000 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
11001 		&dev->features, &features);
11002 
11003 	if (dev->netdev_ops->ndo_set_features)
11004 		err = dev->netdev_ops->ndo_set_features(dev, features);
11005 	else
11006 		err = 0;
11007 
11008 	if (unlikely(err < 0)) {
11009 		netdev_err(dev,
11010 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
11011 			err, &features, &dev->features);
11012 		/* return non-0 since some features might have changed and
11013 		 * it's better to fire a spurious notification than miss it
11014 		 */
11015 		return -1;
11016 	}
11017 
11018 sync_lower:
11019 	/* some features must be disabled on lower devices when disabled
11020 	 * on an upper device (think: bonding master or bridge)
11021 	 */
11022 	netdev_for_each_lower_dev(dev, lower, iter)
11023 		netdev_sync_lower_features(dev, lower, features);
11024 
11025 	if (!err) {
11026 		netdev_features_t diff = features ^ dev->features;
11027 
11028 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11029 			/* udp_tunnel_{get,drop}_rx_info both need
11030 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11031 			 * device, or they won't do anything.
11032 			 * Thus we need to update dev->features
11033 			 * *before* calling udp_tunnel_get_rx_info,
11034 			 * but *after* calling udp_tunnel_drop_rx_info.
11035 			 */
11036 			udp_tunnel_nic_lock(dev);
11037 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11038 				dev->features = features;
11039 				udp_tunnel_get_rx_info(dev);
11040 			} else {
11041 				udp_tunnel_drop_rx_info(dev);
11042 			}
11043 			udp_tunnel_nic_unlock(dev);
11044 		}
11045 
11046 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11047 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11048 				dev->features = features;
11049 				err |= vlan_get_rx_ctag_filter_info(dev);
11050 			} else {
11051 				vlan_drop_rx_ctag_filter_info(dev);
11052 			}
11053 		}
11054 
11055 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11056 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11057 				dev->features = features;
11058 				err |= vlan_get_rx_stag_filter_info(dev);
11059 			} else {
11060 				vlan_drop_rx_stag_filter_info(dev);
11061 			}
11062 		}
11063 
11064 		dev->features = features;
11065 	}
11066 
11067 	return err < 0 ? 0 : 1;
11068 }
11069 
11070 /**
11071  *	netdev_update_features - recalculate device features
11072  *	@dev: the device to check
11073  *
11074  *	Recalculate dev->features set and send notifications if it
11075  *	has changed. Should be called after driver or hardware dependent
11076  *	conditions might have changed that influence the features.
11077  */
netdev_update_features(struct net_device * dev)11078 void netdev_update_features(struct net_device *dev)
11079 {
11080 	if (__netdev_update_features(dev))
11081 		netdev_features_change(dev);
11082 }
11083 EXPORT_SYMBOL(netdev_update_features);
11084 
11085 /**
11086  *	netdev_change_features - recalculate device features
11087  *	@dev: the device to check
11088  *
11089  *	Recalculate dev->features set and send notifications even
11090  *	if they have not changed. Should be called instead of
11091  *	netdev_update_features() if also dev->vlan_features might
11092  *	have changed to allow the changes to be propagated to stacked
11093  *	VLAN devices.
11094  */
netdev_change_features(struct net_device * dev)11095 void netdev_change_features(struct net_device *dev)
11096 {
11097 	__netdev_update_features(dev);
11098 	netdev_features_change(dev);
11099 }
11100 EXPORT_SYMBOL(netdev_change_features);
11101 
11102 /**
11103  *	netif_stacked_transfer_operstate -	transfer operstate
11104  *	@rootdev: the root or lower level device to transfer state from
11105  *	@dev: the device to transfer operstate to
11106  *
11107  *	Transfer operational state from root to device. This is normally
11108  *	called when a stacking relationship exists between the root
11109  *	device and the device(a leaf device).
11110  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11111 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11112 					struct net_device *dev)
11113 {
11114 	if (rootdev->operstate == IF_OPER_DORMANT)
11115 		netif_dormant_on(dev);
11116 	else
11117 		netif_dormant_off(dev);
11118 
11119 	if (rootdev->operstate == IF_OPER_TESTING)
11120 		netif_testing_on(dev);
11121 	else
11122 		netif_testing_off(dev);
11123 
11124 	if (netif_carrier_ok(rootdev))
11125 		netif_carrier_on(dev);
11126 	else
11127 		netif_carrier_off(dev);
11128 }
11129 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11130 
netif_alloc_rx_queues(struct net_device * dev)11131 static int netif_alloc_rx_queues(struct net_device *dev)
11132 {
11133 	unsigned int i, count = dev->num_rx_queues;
11134 	struct netdev_rx_queue *rx;
11135 	size_t sz = count * sizeof(*rx);
11136 	int err = 0;
11137 
11138 	BUG_ON(count < 1);
11139 
11140 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11141 	if (!rx)
11142 		return -ENOMEM;
11143 
11144 	dev->_rx = rx;
11145 
11146 	for (i = 0; i < count; i++) {
11147 		rx[i].dev = dev;
11148 
11149 		/* XDP RX-queue setup */
11150 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11151 		if (err < 0)
11152 			goto err_rxq_info;
11153 	}
11154 	return 0;
11155 
11156 err_rxq_info:
11157 	/* Rollback successful reg's and free other resources */
11158 	while (i--)
11159 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11160 	kvfree(dev->_rx);
11161 	dev->_rx = NULL;
11162 	return err;
11163 }
11164 
netif_free_rx_queues(struct net_device * dev)11165 static void netif_free_rx_queues(struct net_device *dev)
11166 {
11167 	unsigned int i, count = dev->num_rx_queues;
11168 
11169 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11170 	if (!dev->_rx)
11171 		return;
11172 
11173 	for (i = 0; i < count; i++)
11174 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11175 
11176 	kvfree(dev->_rx);
11177 }
11178 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11179 static void netdev_init_one_queue(struct net_device *dev,
11180 				  struct netdev_queue *queue, void *_unused)
11181 {
11182 	/* Initialize queue lock */
11183 	spin_lock_init(&queue->_xmit_lock);
11184 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11185 	queue->xmit_lock_owner = -1;
11186 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11187 	queue->dev = dev;
11188 #ifdef CONFIG_BQL
11189 	dql_init(&queue->dql, HZ);
11190 #endif
11191 }
11192 
netif_free_tx_queues(struct net_device * dev)11193 static void netif_free_tx_queues(struct net_device *dev)
11194 {
11195 	kvfree(dev->_tx);
11196 }
11197 
netif_alloc_netdev_queues(struct net_device * dev)11198 static int netif_alloc_netdev_queues(struct net_device *dev)
11199 {
11200 	unsigned int count = dev->num_tx_queues;
11201 	struct netdev_queue *tx;
11202 	size_t sz = count * sizeof(*tx);
11203 
11204 	if (count < 1 || count > 0xffff)
11205 		return -EINVAL;
11206 
11207 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11208 	if (!tx)
11209 		return -ENOMEM;
11210 
11211 	dev->_tx = tx;
11212 
11213 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11214 	spin_lock_init(&dev->tx_global_lock);
11215 
11216 	return 0;
11217 }
11218 
netif_tx_stop_all_queues(struct net_device * dev)11219 void netif_tx_stop_all_queues(struct net_device *dev)
11220 {
11221 	unsigned int i;
11222 
11223 	for (i = 0; i < dev->num_tx_queues; i++) {
11224 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11225 
11226 		netif_tx_stop_queue(txq);
11227 	}
11228 }
11229 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11230 
netdev_do_alloc_pcpu_stats(struct net_device * dev)11231 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11232 {
11233 	void __percpu *v;
11234 
11235 	/* Drivers implementing ndo_get_peer_dev must support tstat
11236 	 * accounting, so that skb_do_redirect() can bump the dev's
11237 	 * RX stats upon network namespace switch.
11238 	 */
11239 	if (dev->netdev_ops->ndo_get_peer_dev &&
11240 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11241 		return -EOPNOTSUPP;
11242 
11243 	switch (dev->pcpu_stat_type) {
11244 	case NETDEV_PCPU_STAT_NONE:
11245 		return 0;
11246 	case NETDEV_PCPU_STAT_LSTATS:
11247 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11248 		break;
11249 	case NETDEV_PCPU_STAT_TSTATS:
11250 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11251 		break;
11252 	case NETDEV_PCPU_STAT_DSTATS:
11253 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11254 		break;
11255 	default:
11256 		return -EINVAL;
11257 	}
11258 
11259 	return v ? 0 : -ENOMEM;
11260 }
11261 
netdev_do_free_pcpu_stats(struct net_device * dev)11262 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11263 {
11264 	switch (dev->pcpu_stat_type) {
11265 	case NETDEV_PCPU_STAT_NONE:
11266 		return;
11267 	case NETDEV_PCPU_STAT_LSTATS:
11268 		free_percpu(dev->lstats);
11269 		break;
11270 	case NETDEV_PCPU_STAT_TSTATS:
11271 		free_percpu(dev->tstats);
11272 		break;
11273 	case NETDEV_PCPU_STAT_DSTATS:
11274 		free_percpu(dev->dstats);
11275 		break;
11276 	}
11277 }
11278 
netdev_free_phy_link_topology(struct net_device * dev)11279 static void netdev_free_phy_link_topology(struct net_device *dev)
11280 {
11281 	struct phy_link_topology *topo = dev->link_topo;
11282 
11283 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11284 		xa_destroy(&topo->phys);
11285 		kfree(topo);
11286 		dev->link_topo = NULL;
11287 	}
11288 }
11289 
11290 /**
11291  * register_netdevice() - register a network device
11292  * @dev: device to register
11293  *
11294  * Take a prepared network device structure and make it externally accessible.
11295  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11296  * Callers must hold the rtnl lock - you may want register_netdev()
11297  * instead of this.
11298  */
register_netdevice(struct net_device * dev)11299 int register_netdevice(struct net_device *dev)
11300 {
11301 	int ret;
11302 	struct net *net = dev_net(dev);
11303 
11304 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11305 		     NETDEV_FEATURE_COUNT);
11306 	BUG_ON(dev_boot_phase);
11307 	ASSERT_RTNL();
11308 
11309 	might_sleep();
11310 
11311 	/* When net_device's are persistent, this will be fatal. */
11312 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11313 	BUG_ON(!net);
11314 
11315 	ret = ethtool_check_ops(dev->ethtool_ops);
11316 	if (ret)
11317 		return ret;
11318 
11319 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11320 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11321 	mutex_init(&dev->ethtool->rss_lock);
11322 
11323 	spin_lock_init(&dev->addr_list_lock);
11324 	netdev_set_addr_lockdep_class(dev);
11325 
11326 	ret = dev_get_valid_name(net, dev, dev->name);
11327 	if (ret < 0)
11328 		goto out;
11329 
11330 	ret = -ENOMEM;
11331 	dev->name_node = netdev_name_node_head_alloc(dev);
11332 	if (!dev->name_node)
11333 		goto out;
11334 
11335 	/* Init, if this function is available */
11336 	if (dev->netdev_ops->ndo_init) {
11337 		ret = dev->netdev_ops->ndo_init(dev);
11338 		if (ret) {
11339 			if (ret > 0)
11340 				ret = -EIO;
11341 			goto err_free_name;
11342 		}
11343 	}
11344 
11345 	if (((dev->hw_features | dev->features) &
11346 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11347 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11348 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11349 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11350 		ret = -EINVAL;
11351 		goto err_uninit;
11352 	}
11353 
11354 	ret = netdev_do_alloc_pcpu_stats(dev);
11355 	if (ret)
11356 		goto err_uninit;
11357 
11358 	ret = dev_index_reserve(net, dev->ifindex);
11359 	if (ret < 0)
11360 		goto err_free_pcpu;
11361 	dev->ifindex = ret;
11362 
11363 	/* Transfer changeable features to wanted_features and enable
11364 	 * software offloads (GSO and GRO).
11365 	 */
11366 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11367 	dev->features |= NETIF_F_SOFT_FEATURES;
11368 
11369 	if (dev->udp_tunnel_nic_info) {
11370 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11371 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11372 	}
11373 
11374 	dev->wanted_features = dev->features & dev->hw_features;
11375 
11376 	if (!(dev->flags & IFF_LOOPBACK))
11377 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11378 
11379 	/* If IPv4 TCP segmentation offload is supported we should also
11380 	 * allow the device to enable segmenting the frame with the option
11381 	 * of ignoring a static IP ID value.  This doesn't enable the
11382 	 * feature itself but allows the user to enable it later.
11383 	 */
11384 	if (dev->hw_features & NETIF_F_TSO)
11385 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11386 	if (dev->vlan_features & NETIF_F_TSO)
11387 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11388 	if (dev->mpls_features & NETIF_F_TSO)
11389 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11390 	if (dev->hw_enc_features & NETIF_F_TSO)
11391 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11392 
11393 	/* TSO_MANGLEID belongs in mangleid_features by definition */
11394 	dev->mangleid_features |= NETIF_F_TSO_MANGLEID;
11395 
11396 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11397 	 */
11398 	dev->vlan_features |= NETIF_F_HIGHDMA;
11399 
11400 	/* Make NETIF_F_SG inheritable to tunnel devices.
11401 	 */
11402 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11403 
11404 	/* Make NETIF_F_SG inheritable to MPLS.
11405 	 */
11406 	dev->mpls_features |= NETIF_F_SG;
11407 
11408 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11409 	ret = notifier_to_errno(ret);
11410 	if (ret)
11411 		goto err_ifindex_release;
11412 
11413 	ret = netdev_register_kobject(dev);
11414 
11415 	netdev_lock(dev);
11416 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11417 	netdev_unlock(dev);
11418 
11419 	if (ret)
11420 		goto err_uninit_notify;
11421 
11422 	netdev_lock_ops(dev);
11423 	__netdev_update_features(dev);
11424 	netdev_unlock_ops(dev);
11425 
11426 	/*
11427 	 *	Default initial state at registry is that the
11428 	 *	device is present.
11429 	 */
11430 
11431 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11432 
11433 	linkwatch_init_dev(dev);
11434 
11435 	dev_init_scheduler(dev);
11436 
11437 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11438 	list_netdevice(dev);
11439 
11440 	add_device_randomness(dev->dev_addr, dev->addr_len);
11441 
11442 	/* If the device has permanent device address, driver should
11443 	 * set dev_addr and also addr_assign_type should be set to
11444 	 * NET_ADDR_PERM (default value).
11445 	 */
11446 	if (dev->addr_assign_type == NET_ADDR_PERM)
11447 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11448 
11449 	/* Notify protocols, that a new device appeared. */
11450 	netdev_lock_ops(dev);
11451 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11452 	netdev_unlock_ops(dev);
11453 	ret = notifier_to_errno(ret);
11454 	if (ret) {
11455 		/* Expect explicit free_netdev() on failure */
11456 		dev->needs_free_netdev = false;
11457 		unregister_netdevice_queue(dev, NULL);
11458 		goto out;
11459 	}
11460 	/*
11461 	 *	Prevent userspace races by waiting until the network
11462 	 *	device is fully setup before sending notifications.
11463 	 */
11464 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11465 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11466 
11467 out:
11468 	return ret;
11469 
11470 err_uninit_notify:
11471 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11472 err_ifindex_release:
11473 	dev_index_release(net, dev->ifindex);
11474 err_free_pcpu:
11475 	netdev_do_free_pcpu_stats(dev);
11476 err_uninit:
11477 	if (dev->netdev_ops->ndo_uninit)
11478 		dev->netdev_ops->ndo_uninit(dev);
11479 	if (dev->priv_destructor)
11480 		dev->priv_destructor(dev);
11481 err_free_name:
11482 	netdev_name_node_free(dev->name_node);
11483 	goto out;
11484 }
11485 EXPORT_SYMBOL(register_netdevice);
11486 
11487 /* Initialize the core of a dummy net device.
11488  * The setup steps dummy netdevs need which normal netdevs get by going
11489  * through register_netdevice().
11490  */
init_dummy_netdev(struct net_device * dev)11491 static void init_dummy_netdev(struct net_device *dev)
11492 {
11493 	/* make sure we BUG if trying to hit standard
11494 	 * register/unregister code path
11495 	 */
11496 	dev->reg_state = NETREG_DUMMY;
11497 
11498 	/* a dummy interface is started by default */
11499 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11500 	set_bit(__LINK_STATE_START, &dev->state);
11501 
11502 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11503 	 * because users of this 'device' dont need to change
11504 	 * its refcount.
11505 	 */
11506 }
11507 
11508 /**
11509  *	register_netdev	- register a network device
11510  *	@dev: device to register
11511  *
11512  *	Take a completed network device structure and add it to the kernel
11513  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11514  *	chain. 0 is returned on success. A negative errno code is returned
11515  *	on a failure to set up the device, or if the name is a duplicate.
11516  *
11517  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11518  *	and expands the device name if you passed a format string to
11519  *	alloc_netdev.
11520  */
register_netdev(struct net_device * dev)11521 int register_netdev(struct net_device *dev)
11522 {
11523 	struct net *net = dev_net(dev);
11524 	int err;
11525 
11526 	if (rtnl_net_lock_killable(net))
11527 		return -EINTR;
11528 
11529 	err = register_netdevice(dev);
11530 
11531 	rtnl_net_unlock(net);
11532 
11533 	return err;
11534 }
11535 EXPORT_SYMBOL(register_netdev);
11536 
netdev_refcnt_read(const struct net_device * dev)11537 int netdev_refcnt_read(const struct net_device *dev)
11538 {
11539 #ifdef CONFIG_PCPU_DEV_REFCNT
11540 	int i, refcnt = 0;
11541 
11542 	for_each_possible_cpu(i)
11543 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11544 	return refcnt;
11545 #else
11546 	return refcount_read(&dev->dev_refcnt);
11547 #endif
11548 }
11549 EXPORT_SYMBOL(netdev_refcnt_read);
11550 
11551 int netdev_unregister_timeout_secs __read_mostly = 10;
11552 
11553 #define WAIT_REFS_MIN_MSECS 1
11554 #define WAIT_REFS_MAX_MSECS 250
11555 /**
11556  * netdev_wait_allrefs_any - wait until all references are gone.
11557  * @list: list of net_devices to wait on
11558  *
11559  * This is called when unregistering network devices.
11560  *
11561  * Any protocol or device that holds a reference should register
11562  * for netdevice notification, and cleanup and put back the
11563  * reference if they receive an UNREGISTER event.
11564  * We can get stuck here if buggy protocols don't correctly
11565  * call dev_put.
11566  */
netdev_wait_allrefs_any(struct list_head * list)11567 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11568 {
11569 	unsigned long rebroadcast_time, warning_time;
11570 	struct net_device *dev;
11571 	int wait = 0;
11572 
11573 	rebroadcast_time = warning_time = jiffies;
11574 
11575 	list_for_each_entry(dev, list, todo_list)
11576 		if (netdev_refcnt_read(dev) == 1)
11577 			return dev;
11578 
11579 	while (true) {
11580 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11581 			rtnl_lock();
11582 
11583 			/* Rebroadcast unregister notification */
11584 			list_for_each_entry(dev, list, todo_list)
11585 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11586 
11587 			__rtnl_unlock();
11588 			rcu_barrier();
11589 			rtnl_lock();
11590 
11591 			list_for_each_entry(dev, list, todo_list)
11592 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11593 					     &dev->state)) {
11594 					/* We must not have linkwatch events
11595 					 * pending on unregister. If this
11596 					 * happens, we simply run the queue
11597 					 * unscheduled, resulting in a noop
11598 					 * for this device.
11599 					 */
11600 					linkwatch_run_queue();
11601 					break;
11602 				}
11603 
11604 			__rtnl_unlock();
11605 
11606 			rebroadcast_time = jiffies;
11607 		}
11608 
11609 		rcu_barrier();
11610 
11611 		if (!wait) {
11612 			wait = WAIT_REFS_MIN_MSECS;
11613 		} else {
11614 			msleep(wait);
11615 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11616 		}
11617 
11618 		list_for_each_entry(dev, list, todo_list)
11619 			if (netdev_refcnt_read(dev) == 1)
11620 				return dev;
11621 
11622 		if (time_after(jiffies, warning_time +
11623 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11624 			list_for_each_entry(dev, list, todo_list) {
11625 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11626 					 dev->name, netdev_refcnt_read(dev));
11627 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11628 			}
11629 
11630 			warning_time = jiffies;
11631 		}
11632 	}
11633 }
11634 
11635 /* The sequence is:
11636  *
11637  *	rtnl_lock();
11638  *	...
11639  *	register_netdevice(x1);
11640  *	register_netdevice(x2);
11641  *	...
11642  *	unregister_netdevice(y1);
11643  *	unregister_netdevice(y2);
11644  *      ...
11645  *	rtnl_unlock();
11646  *	free_netdev(y1);
11647  *	free_netdev(y2);
11648  *
11649  * We are invoked by rtnl_unlock().
11650  * This allows us to deal with problems:
11651  * 1) We can delete sysfs objects which invoke hotplug
11652  *    without deadlocking with linkwatch via keventd.
11653  * 2) Since we run with the RTNL semaphore not held, we can sleep
11654  *    safely in order to wait for the netdev refcnt to drop to zero.
11655  *
11656  * We must not return until all unregister events added during
11657  * the interval the lock was held have been completed.
11658  */
netdev_run_todo(void)11659 void netdev_run_todo(void)
11660 {
11661 	struct net_device *dev, *tmp;
11662 	struct list_head list;
11663 	int cnt;
11664 #ifdef CONFIG_LOCKDEP
11665 	struct list_head unlink_list;
11666 
11667 	list_replace_init(&net_unlink_list, &unlink_list);
11668 
11669 	while (!list_empty(&unlink_list)) {
11670 		dev = list_first_entry(&unlink_list, struct net_device,
11671 				       unlink_list);
11672 		list_del_init(&dev->unlink_list);
11673 		dev->nested_level = dev->lower_level - 1;
11674 	}
11675 #endif
11676 
11677 	/* Snapshot list, allow later requests */
11678 	list_replace_init(&net_todo_list, &list);
11679 
11680 	__rtnl_unlock();
11681 
11682 	/* Wait for rcu callbacks to finish before next phase */
11683 	if (!list_empty(&list))
11684 		rcu_barrier();
11685 
11686 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11687 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11688 			netdev_WARN(dev, "run_todo but not unregistering\n");
11689 			list_del(&dev->todo_list);
11690 			continue;
11691 		}
11692 
11693 		netdev_lock(dev);
11694 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11695 		netdev_unlock(dev);
11696 		linkwatch_sync_dev(dev);
11697 	}
11698 
11699 	cnt = 0;
11700 	while (!list_empty(&list)) {
11701 		dev = netdev_wait_allrefs_any(&list);
11702 		list_del(&dev->todo_list);
11703 
11704 		/* paranoia */
11705 		BUG_ON(netdev_refcnt_read(dev) != 1);
11706 		BUG_ON(!list_empty(&dev->ptype_all));
11707 		BUG_ON(!list_empty(&dev->ptype_specific));
11708 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11709 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11710 
11711 		netdev_do_free_pcpu_stats(dev);
11712 		if (dev->priv_destructor)
11713 			dev->priv_destructor(dev);
11714 		if (dev->needs_free_netdev)
11715 			free_netdev(dev);
11716 
11717 		cnt++;
11718 
11719 		/* Free network device */
11720 		kobject_put(&dev->dev.kobj);
11721 	}
11722 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11723 		wake_up(&netdev_unregistering_wq);
11724 }
11725 
11726 /* Collate per-cpu network dstats statistics
11727  *
11728  * Read per-cpu network statistics from dev->dstats and populate the related
11729  * fields in @s.
11730  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11731 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11732 			     const struct pcpu_dstats __percpu *dstats)
11733 {
11734 	int cpu;
11735 
11736 	for_each_possible_cpu(cpu) {
11737 		u64 rx_packets, rx_bytes, rx_drops;
11738 		u64 tx_packets, tx_bytes, tx_drops;
11739 		const struct pcpu_dstats *stats;
11740 		unsigned int start;
11741 
11742 		stats = per_cpu_ptr(dstats, cpu);
11743 		do {
11744 			start = u64_stats_fetch_begin(&stats->syncp);
11745 			rx_packets = u64_stats_read(&stats->rx_packets);
11746 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11747 			rx_drops   = u64_stats_read(&stats->rx_drops);
11748 			tx_packets = u64_stats_read(&stats->tx_packets);
11749 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11750 			tx_drops   = u64_stats_read(&stats->tx_drops);
11751 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11752 
11753 		s->rx_packets += rx_packets;
11754 		s->rx_bytes   += rx_bytes;
11755 		s->rx_dropped += rx_drops;
11756 		s->tx_packets += tx_packets;
11757 		s->tx_bytes   += tx_bytes;
11758 		s->tx_dropped += tx_drops;
11759 	}
11760 }
11761 
11762 /* ndo_get_stats64 implementation for dtstats-based accounting.
11763  *
11764  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11765  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11766  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11767 static void dev_get_dstats64(const struct net_device *dev,
11768 			     struct rtnl_link_stats64 *s)
11769 {
11770 	netdev_stats_to_stats64(s, &dev->stats);
11771 	dev_fetch_dstats(s, dev->dstats);
11772 }
11773 
11774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11775  * all the same fields in the same order as net_device_stats, with only
11776  * the type differing, but rtnl_link_stats64 may have additional fields
11777  * at the end for newer counters.
11778  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11780 			     const struct net_device_stats *netdev_stats)
11781 {
11782 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11783 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11784 	u64 *dst = (u64 *)stats64;
11785 
11786 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11787 	for (i = 0; i < n; i++)
11788 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11789 	/* zero out counters that only exist in rtnl_link_stats64 */
11790 	memset((char *)stats64 + n * sizeof(u64), 0,
11791 	       sizeof(*stats64) - n * sizeof(u64));
11792 }
11793 EXPORT_SYMBOL(netdev_stats_to_stats64);
11794 
netdev_core_stats_alloc(struct net_device * dev)11795 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11796 		struct net_device *dev)
11797 {
11798 	struct net_device_core_stats __percpu *p;
11799 
11800 	p = alloc_percpu_gfp(struct net_device_core_stats,
11801 			     GFP_ATOMIC | __GFP_NOWARN);
11802 
11803 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11804 		free_percpu(p);
11805 
11806 	/* This READ_ONCE() pairs with the cmpxchg() above */
11807 	return READ_ONCE(dev->core_stats);
11808 }
11809 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11810 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11811 {
11812 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11813 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11814 	unsigned long __percpu *field;
11815 
11816 	if (unlikely(!p)) {
11817 		p = netdev_core_stats_alloc(dev);
11818 		if (!p)
11819 			return;
11820 	}
11821 
11822 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11823 	this_cpu_inc(*field);
11824 }
11825 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11826 
11827 /**
11828  *	dev_get_stats	- get network device statistics
11829  *	@dev: device to get statistics from
11830  *	@storage: place to store stats
11831  *
11832  *	Get network statistics from device. Return @storage.
11833  *	The device driver may provide its own method by setting
11834  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11835  *	otherwise the internal statistics structure is used.
11836  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11837 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11838 					struct rtnl_link_stats64 *storage)
11839 {
11840 	const struct net_device_ops *ops = dev->netdev_ops;
11841 	const struct net_device_core_stats __percpu *p;
11842 
11843 	/*
11844 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11845 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11846 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11847 	 */
11848 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11849 		     offsetof(struct pcpu_dstats, rx_bytes));
11850 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11851 		     offsetof(struct pcpu_dstats, rx_packets));
11852 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11853 		     offsetof(struct pcpu_dstats, tx_bytes));
11854 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11855 		     offsetof(struct pcpu_dstats, tx_packets));
11856 
11857 	if (ops->ndo_get_stats64) {
11858 		memset(storage, 0, sizeof(*storage));
11859 		ops->ndo_get_stats64(dev, storage);
11860 	} else if (ops->ndo_get_stats) {
11861 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11862 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11863 		dev_get_tstats64(dev, storage);
11864 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11865 		dev_get_dstats64(dev, storage);
11866 	} else {
11867 		netdev_stats_to_stats64(storage, &dev->stats);
11868 	}
11869 
11870 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11871 	p = READ_ONCE(dev->core_stats);
11872 	if (p) {
11873 		const struct net_device_core_stats *core_stats;
11874 		int i;
11875 
11876 		for_each_possible_cpu(i) {
11877 			core_stats = per_cpu_ptr(p, i);
11878 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11879 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11880 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11881 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11882 		}
11883 	}
11884 	return storage;
11885 }
11886 EXPORT_SYMBOL(dev_get_stats);
11887 
11888 /**
11889  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11890  *	@s: place to store stats
11891  *	@netstats: per-cpu network stats to read from
11892  *
11893  *	Read per-cpu network statistics and populate the related fields in @s.
11894  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11895 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11896 			   const struct pcpu_sw_netstats __percpu *netstats)
11897 {
11898 	int cpu;
11899 
11900 	for_each_possible_cpu(cpu) {
11901 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11902 		const struct pcpu_sw_netstats *stats;
11903 		unsigned int start;
11904 
11905 		stats = per_cpu_ptr(netstats, cpu);
11906 		do {
11907 			start = u64_stats_fetch_begin(&stats->syncp);
11908 			rx_packets = u64_stats_read(&stats->rx_packets);
11909 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11910 			tx_packets = u64_stats_read(&stats->tx_packets);
11911 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11912 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11913 
11914 		s->rx_packets += rx_packets;
11915 		s->rx_bytes   += rx_bytes;
11916 		s->tx_packets += tx_packets;
11917 		s->tx_bytes   += tx_bytes;
11918 	}
11919 }
11920 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11921 
11922 /**
11923  *	dev_get_tstats64 - ndo_get_stats64 implementation
11924  *	@dev: device to get statistics from
11925  *	@s: place to store stats
11926  *
11927  *	Populate @s from dev->stats and dev->tstats. Can be used as
11928  *	ndo_get_stats64() callback.
11929  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11930 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11931 {
11932 	netdev_stats_to_stats64(s, &dev->stats);
11933 	dev_fetch_sw_netstats(s, dev->tstats);
11934 }
11935 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11936 
dev_ingress_queue_create(struct net_device * dev)11937 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11938 {
11939 	struct netdev_queue *queue = dev_ingress_queue(dev);
11940 
11941 #ifdef CONFIG_NET_CLS_ACT
11942 	if (queue)
11943 		return queue;
11944 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11945 	if (!queue)
11946 		return NULL;
11947 	netdev_init_one_queue(dev, queue, NULL);
11948 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11949 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11950 	rcu_assign_pointer(dev->ingress_queue, queue);
11951 #endif
11952 	return queue;
11953 }
11954 
11955 static const struct ethtool_ops default_ethtool_ops;
11956 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11957 void netdev_set_default_ethtool_ops(struct net_device *dev,
11958 				    const struct ethtool_ops *ops)
11959 {
11960 	if (dev->ethtool_ops == &default_ethtool_ops)
11961 		dev->ethtool_ops = ops;
11962 }
11963 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11964 
11965 /**
11966  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11967  * @dev: netdev to enable the IRQ coalescing on
11968  *
11969  * Sets a conservative default for SW IRQ coalescing. Users can use
11970  * sysfs attributes to override the default values.
11971  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11972 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11973 {
11974 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11975 
11976 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11977 		netdev_set_gro_flush_timeout(dev, 20000);
11978 		netdev_set_defer_hard_irqs(dev, 1);
11979 	}
11980 }
11981 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11982 
11983 /**
11984  * alloc_netdev_mqs - allocate network device
11985  * @sizeof_priv: size of private data to allocate space for
11986  * @name: device name format string
11987  * @name_assign_type: origin of device name
11988  * @setup: callback to initialize device
11989  * @txqs: the number of TX subqueues to allocate
11990  * @rxqs: the number of RX subqueues to allocate
11991  *
11992  * Allocates a struct net_device with private data area for driver use
11993  * and performs basic initialization.  Also allocates subqueue structs
11994  * for each queue on the device.
11995  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11996 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11997 		unsigned char name_assign_type,
11998 		void (*setup)(struct net_device *),
11999 		unsigned int txqs, unsigned int rxqs)
12000 {
12001 	struct net_device *dev;
12002 	size_t napi_config_sz;
12003 	unsigned int maxqs;
12004 
12005 	BUG_ON(strlen(name) >= sizeof(dev->name));
12006 
12007 	if (txqs < 1) {
12008 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12009 		return NULL;
12010 	}
12011 
12012 	if (rxqs < 1) {
12013 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12014 		return NULL;
12015 	}
12016 
12017 	maxqs = max(txqs, rxqs);
12018 
12019 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
12020 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12021 	if (!dev)
12022 		return NULL;
12023 
12024 	dev->priv_len = sizeof_priv;
12025 
12026 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12027 #ifdef CONFIG_PCPU_DEV_REFCNT
12028 	dev->pcpu_refcnt = alloc_percpu(int);
12029 	if (!dev->pcpu_refcnt)
12030 		goto free_dev;
12031 	__dev_hold(dev);
12032 #else
12033 	refcount_set(&dev->dev_refcnt, 1);
12034 #endif
12035 
12036 	if (dev_addr_init(dev))
12037 		goto free_pcpu;
12038 
12039 	dev_mc_init(dev);
12040 	dev_uc_init(dev);
12041 
12042 	dev_net_set(dev, &init_net);
12043 
12044 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12045 	dev->xdp_zc_max_segs = 1;
12046 	dev->gso_max_segs = GSO_MAX_SEGS;
12047 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12048 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12049 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12050 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12051 	dev->tso_max_segs = TSO_MAX_SEGS;
12052 	dev->upper_level = 1;
12053 	dev->lower_level = 1;
12054 #ifdef CONFIG_LOCKDEP
12055 	dev->nested_level = 0;
12056 	INIT_LIST_HEAD(&dev->unlink_list);
12057 #endif
12058 
12059 	INIT_LIST_HEAD(&dev->napi_list);
12060 	INIT_LIST_HEAD(&dev->unreg_list);
12061 	INIT_LIST_HEAD(&dev->close_list);
12062 	INIT_LIST_HEAD(&dev->link_watch_list);
12063 	INIT_LIST_HEAD(&dev->adj_list.upper);
12064 	INIT_LIST_HEAD(&dev->adj_list.lower);
12065 	INIT_LIST_HEAD(&dev->ptype_all);
12066 	INIT_LIST_HEAD(&dev->ptype_specific);
12067 	INIT_LIST_HEAD(&dev->net_notifier_list);
12068 #ifdef CONFIG_NET_SCHED
12069 	hash_init(dev->qdisc_hash);
12070 #endif
12071 
12072 	mutex_init(&dev->lock);
12073 
12074 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12075 	setup(dev);
12076 
12077 	if (!dev->tx_queue_len) {
12078 		dev->priv_flags |= IFF_NO_QUEUE;
12079 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12080 	}
12081 
12082 	dev->num_tx_queues = txqs;
12083 	dev->real_num_tx_queues = txqs;
12084 	if (netif_alloc_netdev_queues(dev))
12085 		goto free_all;
12086 
12087 	dev->num_rx_queues = rxqs;
12088 	dev->real_num_rx_queues = rxqs;
12089 	if (netif_alloc_rx_queues(dev))
12090 		goto free_all;
12091 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12092 	if (!dev->ethtool)
12093 		goto free_all;
12094 
12095 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12096 	if (!dev->cfg)
12097 		goto free_all;
12098 	dev->cfg_pending = dev->cfg;
12099 
12100 	dev->num_napi_configs = maxqs;
12101 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12102 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12103 	if (!dev->napi_config)
12104 		goto free_all;
12105 
12106 	strscpy(dev->name, name);
12107 	dev->name_assign_type = name_assign_type;
12108 	dev->group = INIT_NETDEV_GROUP;
12109 	if (!dev->ethtool_ops)
12110 		dev->ethtool_ops = &default_ethtool_ops;
12111 
12112 	nf_hook_netdev_init(dev);
12113 
12114 	return dev;
12115 
12116 free_all:
12117 	free_netdev(dev);
12118 	return NULL;
12119 
12120 free_pcpu:
12121 #ifdef CONFIG_PCPU_DEV_REFCNT
12122 	free_percpu(dev->pcpu_refcnt);
12123 free_dev:
12124 #endif
12125 	kvfree(dev);
12126 	return NULL;
12127 }
12128 EXPORT_SYMBOL(alloc_netdev_mqs);
12129 
netdev_napi_exit(struct net_device * dev)12130 static void netdev_napi_exit(struct net_device *dev)
12131 {
12132 	if (!list_empty(&dev->napi_list)) {
12133 		struct napi_struct *p, *n;
12134 
12135 		netdev_lock(dev);
12136 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12137 			__netif_napi_del_locked(p);
12138 		netdev_unlock(dev);
12139 
12140 		synchronize_net();
12141 	}
12142 
12143 	kvfree(dev->napi_config);
12144 }
12145 
12146 /**
12147  * free_netdev - free network device
12148  * @dev: device
12149  *
12150  * This function does the last stage of destroying an allocated device
12151  * interface. The reference to the device object is released. If this
12152  * is the last reference then it will be freed.Must be called in process
12153  * context.
12154  */
free_netdev(struct net_device * dev)12155 void free_netdev(struct net_device *dev)
12156 {
12157 	might_sleep();
12158 
12159 	/* When called immediately after register_netdevice() failed the unwind
12160 	 * handling may still be dismantling the device. Handle that case by
12161 	 * deferring the free.
12162 	 */
12163 	if (dev->reg_state == NETREG_UNREGISTERING) {
12164 		ASSERT_RTNL();
12165 		dev->needs_free_netdev = true;
12166 		return;
12167 	}
12168 
12169 	WARN_ON(dev->cfg != dev->cfg_pending);
12170 	kfree(dev->cfg);
12171 	kfree(dev->ethtool);
12172 	netif_free_tx_queues(dev);
12173 	netif_free_rx_queues(dev);
12174 
12175 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12176 
12177 	/* Flush device addresses */
12178 	dev_addr_flush(dev);
12179 
12180 	netdev_napi_exit(dev);
12181 
12182 	netif_del_cpu_rmap(dev);
12183 
12184 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12185 #ifdef CONFIG_PCPU_DEV_REFCNT
12186 	free_percpu(dev->pcpu_refcnt);
12187 	dev->pcpu_refcnt = NULL;
12188 #endif
12189 	free_percpu(dev->core_stats);
12190 	dev->core_stats = NULL;
12191 	free_percpu(dev->xdp_bulkq);
12192 	dev->xdp_bulkq = NULL;
12193 
12194 	netdev_free_phy_link_topology(dev);
12195 
12196 	mutex_destroy(&dev->lock);
12197 
12198 	/*  Compatibility with error handling in drivers */
12199 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12200 	    dev->reg_state == NETREG_DUMMY) {
12201 		kvfree(dev);
12202 		return;
12203 	}
12204 
12205 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12206 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12207 
12208 	/* will free via device release */
12209 	put_device(&dev->dev);
12210 }
12211 EXPORT_SYMBOL(free_netdev);
12212 
12213 /**
12214  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12215  * @sizeof_priv: size of private data to allocate space for
12216  *
12217  * Return: the allocated net_device on success, NULL otherwise
12218  */
alloc_netdev_dummy(int sizeof_priv)12219 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12220 {
12221 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12222 			    init_dummy_netdev);
12223 }
12224 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12225 
12226 /**
12227  *	synchronize_net -  Synchronize with packet receive processing
12228  *
12229  *	Wait for packets currently being received to be done.
12230  *	Does not block later packets from starting.
12231  */
synchronize_net(void)12232 void synchronize_net(void)
12233 {
12234 	might_sleep();
12235 	if (from_cleanup_net() || rtnl_is_locked())
12236 		synchronize_rcu_expedited();
12237 	else
12238 		synchronize_rcu();
12239 }
12240 EXPORT_SYMBOL(synchronize_net);
12241 
netdev_rss_contexts_free(struct net_device * dev)12242 static void netdev_rss_contexts_free(struct net_device *dev)
12243 {
12244 	struct ethtool_rxfh_context *ctx;
12245 	unsigned long context;
12246 
12247 	mutex_lock(&dev->ethtool->rss_lock);
12248 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12249 		xa_erase(&dev->ethtool->rss_ctx, context);
12250 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12251 		kfree(ctx);
12252 	}
12253 	xa_destroy(&dev->ethtool->rss_ctx);
12254 	mutex_unlock(&dev->ethtool->rss_lock);
12255 }
12256 
12257 /**
12258  *	unregister_netdevice_queue - remove device from the kernel
12259  *	@dev: device
12260  *	@head: list
12261  *
12262  *	This function shuts down a device interface and removes it
12263  *	from the kernel tables.
12264  *	If head not NULL, device is queued to be unregistered later.
12265  *
12266  *	Callers must hold the rtnl semaphore.  You may want
12267  *	unregister_netdev() instead of this.
12268  */
12269 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12270 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12271 {
12272 	ASSERT_RTNL();
12273 
12274 	if (head) {
12275 		list_move_tail(&dev->unreg_list, head);
12276 	} else {
12277 		LIST_HEAD(single);
12278 
12279 		list_add(&dev->unreg_list, &single);
12280 		unregister_netdevice_many(&single);
12281 	}
12282 }
12283 EXPORT_SYMBOL(unregister_netdevice_queue);
12284 
dev_memory_provider_uninstall(struct net_device * dev)12285 static void dev_memory_provider_uninstall(struct net_device *dev)
12286 {
12287 	unsigned int i;
12288 
12289 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12290 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12291 		struct pp_memory_provider_params *p = &rxq->mp_params;
12292 
12293 		if (p->mp_ops && p->mp_ops->uninstall)
12294 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12295 	}
12296 }
12297 
12298 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12299 static void netif_close_many_and_unlock(struct list_head *close_head)
12300 {
12301 	struct net_device *dev, *tmp;
12302 
12303 	netif_close_many(close_head, false);
12304 
12305 	/* ... now unlock them */
12306 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12307 		netdev_unlock(dev);
12308 		list_del_init(&dev->close_list);
12309 	}
12310 }
12311 
netif_close_many_and_unlock_cond(struct list_head * close_head)12312 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12313 {
12314 #ifdef CONFIG_LOCKDEP
12315 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12316 	 *
12317 	 * Reserve half the available slots for additional locks possibly
12318 	 * taken by notifiers and (soft)irqs.
12319 	 */
12320 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12321 
12322 	if (lockdep_depth(current) > limit)
12323 		netif_close_many_and_unlock(close_head);
12324 #endif
12325 }
12326 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12327 void unregister_netdevice_many_notify(struct list_head *head,
12328 				      u32 portid, const struct nlmsghdr *nlh)
12329 {
12330 	struct net_device *dev, *tmp;
12331 	LIST_HEAD(close_head);
12332 	int cnt = 0;
12333 
12334 	BUG_ON(dev_boot_phase);
12335 	ASSERT_RTNL();
12336 
12337 	if (list_empty(head))
12338 		return;
12339 
12340 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12341 		/* Some devices call without registering
12342 		 * for initialization unwind. Remove those
12343 		 * devices and proceed with the remaining.
12344 		 */
12345 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12346 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12347 				 dev->name, dev);
12348 
12349 			WARN_ON(1);
12350 			list_del(&dev->unreg_list);
12351 			continue;
12352 		}
12353 		dev->dismantle = true;
12354 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12355 	}
12356 
12357 	/* If device is running, close it first. Start with ops locked... */
12358 	list_for_each_entry(dev, head, unreg_list) {
12359 		if (!(dev->flags & IFF_UP))
12360 			continue;
12361 		if (netdev_need_ops_lock(dev)) {
12362 			list_add_tail(&dev->close_list, &close_head);
12363 			netdev_lock(dev);
12364 		}
12365 		netif_close_many_and_unlock_cond(&close_head);
12366 	}
12367 	netif_close_many_and_unlock(&close_head);
12368 	/* ... now go over the rest. */
12369 	list_for_each_entry(dev, head, unreg_list) {
12370 		if (!netdev_need_ops_lock(dev))
12371 			list_add_tail(&dev->close_list, &close_head);
12372 	}
12373 	netif_close_many(&close_head, true);
12374 
12375 	list_for_each_entry(dev, head, unreg_list) {
12376 		/* And unlink it from device chain. */
12377 		unlist_netdevice(dev);
12378 		netdev_lock(dev);
12379 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12380 		netdev_unlock(dev);
12381 	}
12382 	flush_all_backlogs();
12383 
12384 	synchronize_net();
12385 
12386 	list_for_each_entry(dev, head, unreg_list) {
12387 		struct sk_buff *skb = NULL;
12388 
12389 		/* Shutdown queueing discipline. */
12390 		netdev_lock_ops(dev);
12391 		dev_shutdown(dev);
12392 		dev_tcx_uninstall(dev);
12393 		dev_xdp_uninstall(dev);
12394 		dev_memory_provider_uninstall(dev);
12395 		netdev_unlock_ops(dev);
12396 		bpf_dev_bound_netdev_unregister(dev);
12397 
12398 		netdev_offload_xstats_disable_all(dev);
12399 
12400 		/* Notify protocols, that we are about to destroy
12401 		 * this device. They should clean all the things.
12402 		 */
12403 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12404 
12405 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12406 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12407 						     GFP_KERNEL, NULL, 0,
12408 						     portid, nlh);
12409 
12410 		/*
12411 		 *	Flush the unicast and multicast chains
12412 		 */
12413 		dev_uc_flush(dev);
12414 		dev_mc_flush(dev);
12415 
12416 		netdev_name_node_alt_flush(dev);
12417 		netdev_name_node_free(dev->name_node);
12418 
12419 		netdev_rss_contexts_free(dev);
12420 
12421 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12422 
12423 		if (dev->netdev_ops->ndo_uninit)
12424 			dev->netdev_ops->ndo_uninit(dev);
12425 
12426 		mutex_destroy(&dev->ethtool->rss_lock);
12427 
12428 		net_shaper_flush_netdev(dev);
12429 
12430 		if (skb)
12431 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12432 
12433 		/* Notifier chain MUST detach us all upper devices. */
12434 		WARN_ON(netdev_has_any_upper_dev(dev));
12435 		WARN_ON(netdev_has_any_lower_dev(dev));
12436 
12437 		/* Remove entries from kobject tree */
12438 		netdev_unregister_kobject(dev);
12439 #ifdef CONFIG_XPS
12440 		/* Remove XPS queueing entries */
12441 		netif_reset_xps_queues_gt(dev, 0);
12442 #endif
12443 	}
12444 
12445 	synchronize_net();
12446 
12447 	list_for_each_entry(dev, head, unreg_list) {
12448 		netdev_put(dev, &dev->dev_registered_tracker);
12449 		net_set_todo(dev);
12450 		cnt++;
12451 	}
12452 	atomic_add(cnt, &dev_unreg_count);
12453 
12454 	list_del(head);
12455 }
12456 
12457 /**
12458  *	unregister_netdevice_many - unregister many devices
12459  *	@head: list of devices
12460  *
12461  *  Note: As most callers use a stack allocated list_head,
12462  *  we force a list_del() to make sure stack won't be corrupted later.
12463  */
unregister_netdevice_many(struct list_head * head)12464 void unregister_netdevice_many(struct list_head *head)
12465 {
12466 	unregister_netdevice_many_notify(head, 0, NULL);
12467 }
12468 EXPORT_SYMBOL(unregister_netdevice_many);
12469 
12470 /**
12471  *	unregister_netdev - remove device from the kernel
12472  *	@dev: device
12473  *
12474  *	This function shuts down a device interface and removes it
12475  *	from the kernel tables.
12476  *
12477  *	This is just a wrapper for unregister_netdevice that takes
12478  *	the rtnl semaphore.  In general you want to use this and not
12479  *	unregister_netdevice.
12480  */
unregister_netdev(struct net_device * dev)12481 void unregister_netdev(struct net_device *dev)
12482 {
12483 	rtnl_net_dev_lock(dev);
12484 	unregister_netdevice(dev);
12485 	rtnl_net_dev_unlock(dev);
12486 }
12487 EXPORT_SYMBOL(unregister_netdev);
12488 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12489 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12490 			       const char *pat, int new_ifindex,
12491 			       struct netlink_ext_ack *extack)
12492 {
12493 	struct netdev_name_node *name_node;
12494 	struct net *net_old = dev_net(dev);
12495 	char new_name[IFNAMSIZ] = {};
12496 	int err, new_nsid;
12497 
12498 	ASSERT_RTNL();
12499 
12500 	/* Don't allow namespace local devices to be moved. */
12501 	err = -EINVAL;
12502 	if (dev->netns_immutable) {
12503 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12504 		goto out;
12505 	}
12506 
12507 	/* Ensure the device has been registered */
12508 	if (dev->reg_state != NETREG_REGISTERED) {
12509 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12510 		goto out;
12511 	}
12512 
12513 	/* Get out if there is nothing todo */
12514 	err = 0;
12515 	if (net_eq(net_old, net))
12516 		goto out;
12517 
12518 	/* Pick the destination device name, and ensure
12519 	 * we can use it in the destination network namespace.
12520 	 */
12521 	err = -EEXIST;
12522 	if (netdev_name_in_use(net, dev->name)) {
12523 		/* We get here if we can't use the current device name */
12524 		if (!pat) {
12525 			NL_SET_ERR_MSG(extack,
12526 				       "An interface with the same name exists in the target netns");
12527 			goto out;
12528 		}
12529 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12530 		if (err < 0) {
12531 			NL_SET_ERR_MSG_FMT(extack,
12532 					   "Unable to use '%s' for the new interface name in the target netns",
12533 					   pat);
12534 			goto out;
12535 		}
12536 	}
12537 	/* Check that none of the altnames conflicts. */
12538 	err = -EEXIST;
12539 	netdev_for_each_altname(dev, name_node) {
12540 		if (netdev_name_in_use(net, name_node->name)) {
12541 			NL_SET_ERR_MSG_FMT(extack,
12542 					   "An interface with the altname %s exists in the target netns",
12543 					   name_node->name);
12544 			goto out;
12545 		}
12546 	}
12547 
12548 	/* Check that new_ifindex isn't used yet. */
12549 	if (new_ifindex) {
12550 		err = dev_index_reserve(net, new_ifindex);
12551 		if (err < 0) {
12552 			NL_SET_ERR_MSG_FMT(extack,
12553 					   "The ifindex %d is not available in the target netns",
12554 					   new_ifindex);
12555 			goto out;
12556 		}
12557 	} else {
12558 		/* If there is an ifindex conflict assign a new one */
12559 		err = dev_index_reserve(net, dev->ifindex);
12560 		if (err == -EBUSY)
12561 			err = dev_index_reserve(net, 0);
12562 		if (err < 0) {
12563 			NL_SET_ERR_MSG(extack,
12564 				       "Unable to allocate a new ifindex in the target netns");
12565 			goto out;
12566 		}
12567 		new_ifindex = err;
12568 	}
12569 
12570 	/*
12571 	 * And now a mini version of register_netdevice unregister_netdevice.
12572 	 */
12573 
12574 	netdev_lock_ops(dev);
12575 	/* If device is running close it first. */
12576 	netif_close(dev);
12577 	/* And unlink it from device chain */
12578 	unlist_netdevice(dev);
12579 
12580 	if (!netdev_need_ops_lock(dev))
12581 		netdev_lock(dev);
12582 	dev->moving_ns = true;
12583 	netdev_unlock(dev);
12584 
12585 	synchronize_net();
12586 
12587 	/* Shutdown queueing discipline. */
12588 	netdev_lock_ops(dev);
12589 	dev_shutdown(dev);
12590 	netdev_unlock_ops(dev);
12591 
12592 	/* Notify protocols, that we are about to destroy
12593 	 * this device. They should clean all the things.
12594 	 *
12595 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12596 	 * This is wanted because this way 8021q and macvlan know
12597 	 * the device is just moving and can keep their slaves up.
12598 	 */
12599 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12600 	rcu_barrier();
12601 
12602 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12603 
12604 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12605 			    new_ifindex);
12606 
12607 	/*
12608 	 *	Flush the unicast and multicast chains
12609 	 */
12610 	dev_uc_flush(dev);
12611 	dev_mc_flush(dev);
12612 
12613 	/* Send a netdev-removed uevent to the old namespace */
12614 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12615 	netdev_adjacent_del_links(dev);
12616 
12617 	/* Move per-net netdevice notifiers that are following the netdevice */
12618 	move_netdevice_notifiers_dev_net(dev, net);
12619 
12620 	/* Actually switch the network namespace */
12621 	netdev_lock(dev);
12622 	dev_net_set(dev, net);
12623 	netdev_unlock(dev);
12624 	dev->ifindex = new_ifindex;
12625 
12626 	if (new_name[0]) {
12627 		/* Rename the netdev to prepared name */
12628 		write_seqlock_bh(&netdev_rename_lock);
12629 		strscpy(dev->name, new_name, IFNAMSIZ);
12630 		write_sequnlock_bh(&netdev_rename_lock);
12631 	}
12632 
12633 	/* Fixup kobjects */
12634 	dev_set_uevent_suppress(&dev->dev, 1);
12635 	err = device_rename(&dev->dev, dev->name);
12636 	dev_set_uevent_suppress(&dev->dev, 0);
12637 	WARN_ON(err);
12638 
12639 	/* Send a netdev-add uevent to the new namespace */
12640 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12641 	netdev_adjacent_add_links(dev);
12642 
12643 	/* Adapt owner in case owning user namespace of target network
12644 	 * namespace is different from the original one.
12645 	 */
12646 	err = netdev_change_owner(dev, net_old, net);
12647 	WARN_ON(err);
12648 
12649 	netdev_lock(dev);
12650 	dev->moving_ns = false;
12651 	if (!netdev_need_ops_lock(dev))
12652 		netdev_unlock(dev);
12653 
12654 	/* Add the device back in the hashes */
12655 	list_netdevice(dev);
12656 	/* Notify protocols, that a new device appeared. */
12657 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12658 	netdev_unlock_ops(dev);
12659 
12660 	/*
12661 	 *	Prevent userspace races by waiting until the network
12662 	 *	device is fully setup before sending notifications.
12663 	 */
12664 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12665 
12666 	synchronize_net();
12667 	err = 0;
12668 out:
12669 	return err;
12670 }
12671 
dev_cpu_dead(unsigned int oldcpu)12672 static int dev_cpu_dead(unsigned int oldcpu)
12673 {
12674 	struct sk_buff **list_skb;
12675 	struct sk_buff *skb;
12676 	unsigned int cpu;
12677 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12678 
12679 	local_irq_disable();
12680 	cpu = smp_processor_id();
12681 	sd = &per_cpu(softnet_data, cpu);
12682 	oldsd = &per_cpu(softnet_data, oldcpu);
12683 
12684 	/* Find end of our completion_queue. */
12685 	list_skb = &sd->completion_queue;
12686 	while (*list_skb)
12687 		list_skb = &(*list_skb)->next;
12688 	/* Append completion queue from offline CPU. */
12689 	*list_skb = oldsd->completion_queue;
12690 	oldsd->completion_queue = NULL;
12691 
12692 	/* Append output queue from offline CPU. */
12693 	if (oldsd->output_queue) {
12694 		*sd->output_queue_tailp = oldsd->output_queue;
12695 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12696 		oldsd->output_queue = NULL;
12697 		oldsd->output_queue_tailp = &oldsd->output_queue;
12698 	}
12699 	/* Append NAPI poll list from offline CPU, with one exception :
12700 	 * process_backlog() must be called by cpu owning percpu backlog.
12701 	 * We properly handle process_queue & input_pkt_queue later.
12702 	 */
12703 	while (!list_empty(&oldsd->poll_list)) {
12704 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12705 							    struct napi_struct,
12706 							    poll_list);
12707 
12708 		list_del_init(&napi->poll_list);
12709 		if (napi->poll == process_backlog)
12710 			napi->state &= NAPIF_STATE_THREADED;
12711 		else
12712 			____napi_schedule(sd, napi);
12713 	}
12714 
12715 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12716 	local_irq_enable();
12717 
12718 	if (!use_backlog_threads()) {
12719 #ifdef CONFIG_RPS
12720 		remsd = oldsd->rps_ipi_list;
12721 		oldsd->rps_ipi_list = NULL;
12722 #endif
12723 		/* send out pending IPI's on offline CPU */
12724 		net_rps_send_ipi(remsd);
12725 	}
12726 
12727 	/* Process offline CPU's input_pkt_queue */
12728 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12729 		netif_rx(skb);
12730 		rps_input_queue_head_incr(oldsd);
12731 	}
12732 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12733 		netif_rx(skb);
12734 		rps_input_queue_head_incr(oldsd);
12735 	}
12736 
12737 	return 0;
12738 }
12739 
12740 /**
12741  *	netdev_increment_features - increment feature set by one
12742  *	@all: current feature set
12743  *	@one: new feature set
12744  *	@mask: mask feature set
12745  *
12746  *	Computes a new feature set after adding a device with feature set
12747  *	@one to the master device with current feature set @all.  Will not
12748  *	enable anything that is off in @mask. Returns the new feature set.
12749  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12750 netdev_features_t netdev_increment_features(netdev_features_t all,
12751 	netdev_features_t one, netdev_features_t mask)
12752 {
12753 	if (mask & NETIF_F_HW_CSUM)
12754 		mask |= NETIF_F_CSUM_MASK;
12755 	mask |= NETIF_F_VLAN_CHALLENGED;
12756 
12757 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12758 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12759 
12760 	/* If one device supports hw checksumming, set for all. */
12761 	if (all & NETIF_F_HW_CSUM)
12762 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12763 
12764 	return all;
12765 }
12766 EXPORT_SYMBOL(netdev_increment_features);
12767 
12768 /**
12769  *	netdev_compute_master_upper_features - compute feature from lowers
12770  *	@dev: the upper device
12771  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12772  *
12773  *	Recompute the upper device's feature based on all lower devices.
12774  */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12775 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12776 {
12777 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12778 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12779 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12780 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12781 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12782 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12783 	unsigned short max_header_len = ETH_HLEN;
12784 	unsigned int tso_max_size = TSO_MAX_SIZE;
12785 	unsigned short max_headroom = 0;
12786 	unsigned short max_tailroom = 0;
12787 	u16 tso_max_segs = TSO_MAX_SEGS;
12788 	struct net_device *lower_dev;
12789 	struct list_head *iter;
12790 
12791 	mpls_features = netdev_base_features(mpls_features);
12792 	vlan_features = netdev_base_features(vlan_features);
12793 	enc_features = netdev_base_features(enc_features);
12794 
12795 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12796 		gso_partial_features = netdev_increment_features(gso_partial_features,
12797 								 lower_dev->gso_partial_features,
12798 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12799 
12800 		vlan_features = netdev_increment_features(vlan_features,
12801 							  lower_dev->vlan_features,
12802 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12803 
12804 		enc_features = netdev_increment_features(enc_features,
12805 							 lower_dev->hw_enc_features,
12806 							 MASTER_UPPER_DEV_ENC_FEATURES);
12807 
12808 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12809 			xfrm_features = netdev_increment_features(xfrm_features,
12810 								  lower_dev->hw_enc_features,
12811 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12812 
12813 		mpls_features = netdev_increment_features(mpls_features,
12814 							  lower_dev->mpls_features,
12815 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12816 
12817 		dst_release_flag &= lower_dev->priv_flags;
12818 
12819 		if (update_header) {
12820 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12821 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12822 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12823 		}
12824 
12825 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12826 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12827 	}
12828 
12829 	dev->gso_partial_features = gso_partial_features;
12830 	dev->vlan_features = vlan_features;
12831 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12832 			       NETIF_F_HW_VLAN_CTAG_TX |
12833 			       NETIF_F_HW_VLAN_STAG_TX;
12834 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12835 		dev->hw_enc_features |= xfrm_features;
12836 	dev->mpls_features = mpls_features;
12837 
12838 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12839 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12840 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12841 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12842 
12843 	if (update_header) {
12844 		dev->hard_header_len = max_header_len;
12845 		dev->needed_headroom = max_headroom;
12846 		dev->needed_tailroom = max_tailroom;
12847 	}
12848 
12849 	netif_set_tso_max_segs(dev, tso_max_segs);
12850 	netif_set_tso_max_size(dev, tso_max_size);
12851 
12852 	netdev_change_features(dev);
12853 }
12854 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12855 
netdev_create_hash(void)12856 static struct hlist_head * __net_init netdev_create_hash(void)
12857 {
12858 	int i;
12859 	struct hlist_head *hash;
12860 
12861 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12862 	if (hash != NULL)
12863 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12864 			INIT_HLIST_HEAD(&hash[i]);
12865 
12866 	return hash;
12867 }
12868 
12869 /* Initialize per network namespace state */
netdev_init(struct net * net)12870 static int __net_init netdev_init(struct net *net)
12871 {
12872 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12873 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12874 
12875 	INIT_LIST_HEAD(&net->dev_base_head);
12876 
12877 	net->dev_name_head = netdev_create_hash();
12878 	if (net->dev_name_head == NULL)
12879 		goto err_name;
12880 
12881 	net->dev_index_head = netdev_create_hash();
12882 	if (net->dev_index_head == NULL)
12883 		goto err_idx;
12884 
12885 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12886 
12887 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12888 
12889 	return 0;
12890 
12891 err_idx:
12892 	kfree(net->dev_name_head);
12893 err_name:
12894 	return -ENOMEM;
12895 }
12896 
12897 /**
12898  *	netdev_drivername - network driver for the device
12899  *	@dev: network device
12900  *
12901  *	Determine network driver for device.
12902  */
netdev_drivername(const struct net_device * dev)12903 const char *netdev_drivername(const struct net_device *dev)
12904 {
12905 	const struct device_driver *driver;
12906 	const struct device *parent;
12907 	const char *empty = "";
12908 
12909 	parent = dev->dev.parent;
12910 	if (!parent)
12911 		return empty;
12912 
12913 	driver = parent->driver;
12914 	if (driver && driver->name)
12915 		return driver->name;
12916 	return empty;
12917 }
12918 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12919 static void __netdev_printk(const char *level, const struct net_device *dev,
12920 			    struct va_format *vaf)
12921 {
12922 	if (dev && dev->dev.parent) {
12923 		dev_printk_emit(level[1] - '0',
12924 				dev->dev.parent,
12925 				"%s %s %s%s: %pV",
12926 				dev_driver_string(dev->dev.parent),
12927 				dev_name(dev->dev.parent),
12928 				netdev_name(dev), netdev_reg_state(dev),
12929 				vaf);
12930 	} else if (dev) {
12931 		printk("%s%s%s: %pV",
12932 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12933 	} else {
12934 		printk("%s(NULL net_device): %pV", level, vaf);
12935 	}
12936 }
12937 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12938 void netdev_printk(const char *level, const struct net_device *dev,
12939 		   const char *format, ...)
12940 {
12941 	struct va_format vaf;
12942 	va_list args;
12943 
12944 	va_start(args, format);
12945 
12946 	vaf.fmt = format;
12947 	vaf.va = &args;
12948 
12949 	__netdev_printk(level, dev, &vaf);
12950 
12951 	va_end(args);
12952 }
12953 EXPORT_SYMBOL(netdev_printk);
12954 
12955 #define define_netdev_printk_level(func, level)			\
12956 void func(const struct net_device *dev, const char *fmt, ...)	\
12957 {								\
12958 	struct va_format vaf;					\
12959 	va_list args;						\
12960 								\
12961 	va_start(args, fmt);					\
12962 								\
12963 	vaf.fmt = fmt;						\
12964 	vaf.va = &args;						\
12965 								\
12966 	__netdev_printk(level, dev, &vaf);			\
12967 								\
12968 	va_end(args);						\
12969 }								\
12970 EXPORT_SYMBOL(func);
12971 
12972 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12973 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12974 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12975 define_netdev_printk_level(netdev_err, KERN_ERR);
12976 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12977 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12978 define_netdev_printk_level(netdev_info, KERN_INFO);
12979 
netdev_exit(struct net * net)12980 static void __net_exit netdev_exit(struct net *net)
12981 {
12982 	kfree(net->dev_name_head);
12983 	kfree(net->dev_index_head);
12984 	xa_destroy(&net->dev_by_index);
12985 	if (net != &init_net)
12986 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12987 }
12988 
12989 static struct pernet_operations __net_initdata netdev_net_ops = {
12990 	.init = netdev_init,
12991 	.exit = netdev_exit,
12992 };
12993 
default_device_exit_net(struct net * net)12994 static void __net_exit default_device_exit_net(struct net *net)
12995 {
12996 	struct netdev_name_node *name_node, *tmp;
12997 	struct net_device *dev, *aux;
12998 	/*
12999 	 * Push all migratable network devices back to the
13000 	 * initial network namespace
13001 	 */
13002 	ASSERT_RTNL();
13003 	for_each_netdev_safe(net, dev, aux) {
13004 		int err;
13005 		char fb_name[IFNAMSIZ];
13006 
13007 		/* Ignore unmoveable devices (i.e. loopback) */
13008 		if (dev->netns_immutable)
13009 			continue;
13010 
13011 		/* Leave virtual devices for the generic cleanup */
13012 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13013 			continue;
13014 
13015 		/* Push remaining network devices to init_net */
13016 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13017 		if (netdev_name_in_use(&init_net, fb_name))
13018 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
13019 
13020 		netdev_for_each_altname_safe(dev, name_node, tmp)
13021 			if (netdev_name_in_use(&init_net, name_node->name))
13022 				__netdev_name_node_alt_destroy(name_node);
13023 
13024 		err = dev_change_net_namespace(dev, &init_net, fb_name);
13025 		if (err) {
13026 			pr_emerg("%s: failed to move %s to init_net: %d\n",
13027 				 __func__, dev->name, err);
13028 			BUG();
13029 		}
13030 	}
13031 }
13032 
default_device_exit_batch(struct list_head * net_list)13033 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13034 {
13035 	/* At exit all network devices most be removed from a network
13036 	 * namespace.  Do this in the reverse order of registration.
13037 	 * Do this across as many network namespaces as possible to
13038 	 * improve batching efficiency.
13039 	 */
13040 	struct net_device *dev;
13041 	struct net *net;
13042 	LIST_HEAD(dev_kill_list);
13043 
13044 	rtnl_lock();
13045 	list_for_each_entry(net, net_list, exit_list) {
13046 		default_device_exit_net(net);
13047 		cond_resched();
13048 	}
13049 
13050 	list_for_each_entry(net, net_list, exit_list) {
13051 		for_each_netdev_reverse(net, dev) {
13052 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13053 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13054 			else
13055 				unregister_netdevice_queue(dev, &dev_kill_list);
13056 		}
13057 	}
13058 	unregister_netdevice_many(&dev_kill_list);
13059 	rtnl_unlock();
13060 }
13061 
13062 static struct pernet_operations __net_initdata default_device_ops = {
13063 	.exit_batch = default_device_exit_batch,
13064 };
13065 
net_dev_struct_check(void)13066 static void __init net_dev_struct_check(void)
13067 {
13068 	/* TX read-mostly hotpath */
13069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13070 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13071 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13072 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13073 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13075 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13078 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13080 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13081 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13082 #ifdef CONFIG_XPS
13083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13084 #endif
13085 #ifdef CONFIG_NETFILTER_EGRESS
13086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13087 #endif
13088 #ifdef CONFIG_NET_XGRESS
13089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13090 #endif
13091 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13092 
13093 	/* TXRX read-mostly hotpath */
13094 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13095 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13097 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13099 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13100 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13101 
13102 	/* RX read-mostly hotpath */
13103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13104 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13105 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13107 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13108 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13109 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13110 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13111 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13112 #ifdef CONFIG_NETPOLL
13113 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13114 #endif
13115 #ifdef CONFIG_NET_XGRESS
13116 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13117 #endif
13118 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13119 }
13120 
13121 /*
13122  *	Initialize the DEV module. At boot time this walks the device list and
13123  *	unhooks any devices that fail to initialise (normally hardware not
13124  *	present) and leaves us with a valid list of present and active devices.
13125  *
13126  */
13127 
13128 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13129 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13130 
net_page_pool_create(int cpuid)13131 static int net_page_pool_create(int cpuid)
13132 {
13133 #if IS_ENABLED(CONFIG_PAGE_POOL)
13134 	struct page_pool_params page_pool_params = {
13135 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13136 		.flags = PP_FLAG_SYSTEM_POOL,
13137 		.nid = cpu_to_mem(cpuid),
13138 	};
13139 	struct page_pool *pp_ptr;
13140 	int err;
13141 
13142 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13143 	if (IS_ERR(pp_ptr))
13144 		return -ENOMEM;
13145 
13146 	err = xdp_reg_page_pool(pp_ptr);
13147 	if (err) {
13148 		page_pool_destroy(pp_ptr);
13149 		return err;
13150 	}
13151 
13152 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13153 #endif
13154 	return 0;
13155 }
13156 
backlog_napi_should_run(unsigned int cpu)13157 static int backlog_napi_should_run(unsigned int cpu)
13158 {
13159 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13160 	struct napi_struct *napi = &sd->backlog;
13161 
13162 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13163 }
13164 
run_backlog_napi(unsigned int cpu)13165 static void run_backlog_napi(unsigned int cpu)
13166 {
13167 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13168 
13169 	napi_threaded_poll_loop(&sd->backlog, false);
13170 }
13171 
backlog_napi_setup(unsigned int cpu)13172 static void backlog_napi_setup(unsigned int cpu)
13173 {
13174 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13175 	struct napi_struct *napi = &sd->backlog;
13176 
13177 	napi->thread = this_cpu_read(backlog_napi);
13178 	set_bit(NAPI_STATE_THREADED, &napi->state);
13179 }
13180 
13181 static struct smp_hotplug_thread backlog_threads = {
13182 	.store			= &backlog_napi,
13183 	.thread_should_run	= backlog_napi_should_run,
13184 	.thread_fn		= run_backlog_napi,
13185 	.thread_comm		= "backlog_napi/%u",
13186 	.setup			= backlog_napi_setup,
13187 };
13188 
13189 /*
13190  *       This is called single threaded during boot, so no need
13191  *       to take the rtnl semaphore.
13192  */
net_dev_init(void)13193 static int __init net_dev_init(void)
13194 {
13195 	int i, rc = -ENOMEM;
13196 
13197 	BUG_ON(!dev_boot_phase);
13198 
13199 	net_dev_struct_check();
13200 
13201 	if (dev_proc_init())
13202 		goto out;
13203 
13204 	if (netdev_kobject_init())
13205 		goto out;
13206 
13207 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13208 		INIT_LIST_HEAD(&ptype_base[i]);
13209 
13210 	if (register_pernet_subsys(&netdev_net_ops))
13211 		goto out;
13212 
13213 	/*
13214 	 *	Initialise the packet receive queues.
13215 	 */
13216 
13217 	flush_backlogs_fallback = flush_backlogs_alloc();
13218 	if (!flush_backlogs_fallback)
13219 		goto out;
13220 
13221 	for_each_possible_cpu(i) {
13222 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13223 
13224 		skb_queue_head_init(&sd->input_pkt_queue);
13225 		skb_queue_head_init(&sd->process_queue);
13226 #ifdef CONFIG_XFRM_OFFLOAD
13227 		skb_queue_head_init(&sd->xfrm_backlog);
13228 #endif
13229 		INIT_LIST_HEAD(&sd->poll_list);
13230 		sd->output_queue_tailp = &sd->output_queue;
13231 #ifdef CONFIG_RPS
13232 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13233 		sd->cpu = i;
13234 #endif
13235 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13236 
13237 		gro_init(&sd->backlog.gro);
13238 		sd->backlog.poll = process_backlog;
13239 		sd->backlog.weight = weight_p;
13240 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13241 
13242 		if (net_page_pool_create(i))
13243 			goto out;
13244 	}
13245 	net_hotdata.skb_defer_nodes =
13246 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13247 				__alignof__(struct skb_defer_node));
13248 	if (!net_hotdata.skb_defer_nodes)
13249 		goto out;
13250 	if (use_backlog_threads())
13251 		smpboot_register_percpu_thread(&backlog_threads);
13252 
13253 	dev_boot_phase = 0;
13254 
13255 	/* The loopback device is special if any other network devices
13256 	 * is present in a network namespace the loopback device must
13257 	 * be present. Since we now dynamically allocate and free the
13258 	 * loopback device ensure this invariant is maintained by
13259 	 * keeping the loopback device as the first device on the
13260 	 * list of network devices.  Ensuring the loopback devices
13261 	 * is the first device that appears and the last network device
13262 	 * that disappears.
13263 	 */
13264 	if (register_pernet_device(&loopback_net_ops))
13265 		goto out;
13266 
13267 	if (register_pernet_device(&default_device_ops))
13268 		goto out;
13269 
13270 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13271 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13272 
13273 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13274 				       NULL, dev_cpu_dead);
13275 	WARN_ON(rc < 0);
13276 	rc = 0;
13277 
13278 	/* avoid static key IPIs to isolated CPUs */
13279 	if (housekeeping_enabled(HK_TYPE_MISC))
13280 		net_enable_timestamp();
13281 out:
13282 	if (rc < 0) {
13283 		for_each_possible_cpu(i) {
13284 			struct page_pool *pp_ptr;
13285 
13286 			pp_ptr = per_cpu(system_page_pool.pool, i);
13287 			if (!pp_ptr)
13288 				continue;
13289 
13290 			xdp_unreg_page_pool(pp_ptr);
13291 			page_pool_destroy(pp_ptr);
13292 			per_cpu(system_page_pool.pool, i) = NULL;
13293 		}
13294 	}
13295 
13296 	return rc;
13297 }
13298 
13299 subsys_initcall(net_dev_init);
13300