xref: /linux/net/core/dev.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1167 
1168 /**
1169  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1170  *	@net: network namespace
1171  *	@name: a pointer to the buffer where the name will be stored.
1172  *	@ifindex: the ifindex of the interface to get the name from.
1173  */
1174 int netdev_get_name(struct net *net, char *name, int ifindex)
1175 {
1176 	struct net_device *dev;
1177 	int ret;
1178 
1179 	rcu_read_lock();
1180 
1181 	dev = dev_get_by_index_rcu(net, ifindex);
1182 	if (!dev) {
1183 		ret = -ENODEV;
1184 		goto out;
1185 	}
1186 
1187 	netdev_copy_name(dev, name);
1188 
1189 	ret = 0;
1190 out:
1191 	rcu_read_unlock();
1192 	return ret;
1193 }
1194 
1195 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1196 			 const char *ha)
1197 {
1198 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1199 }
1200 
1201 /**
1202  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1203  *	@net: the applicable net namespace
1204  *	@type: media type of device
1205  *	@ha: hardware address
1206  *
1207  *	Search for an interface by MAC address. Returns NULL if the device
1208  *	is not found or a pointer to the device.
1209  *	The caller must hold RCU.
1210  *	The returned device has not had its ref count increased
1211  *	and the caller must therefore be careful about locking
1212  *
1213  */
1214 
1215 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1216 				       const char *ha)
1217 {
1218 	struct net_device *dev;
1219 
1220 	for_each_netdev_rcu(net, dev)
1221 		if (dev_addr_cmp(dev, type, ha))
1222 			return dev;
1223 
1224 	return NULL;
1225 }
1226 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1227 
1228 /**
1229  * dev_getbyhwaddr() - find a device by its hardware address
1230  * @net: the applicable net namespace
1231  * @type: media type of device
1232  * @ha: hardware address
1233  *
1234  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1235  * rtnl_lock.
1236  *
1237  * Context: rtnl_lock() must be held.
1238  * Return: pointer to the net_device, or NULL if not found
1239  */
1240 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1241 				   const char *ha)
1242 {
1243 	struct net_device *dev;
1244 
1245 	ASSERT_RTNL();
1246 	for_each_netdev(net, dev)
1247 		if (dev_addr_cmp(dev, type, ha))
1248 			return dev;
1249 
1250 	return NULL;
1251 }
1252 EXPORT_SYMBOL(dev_getbyhwaddr);
1253 
1254 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1255 {
1256 	struct net_device *dev, *ret = NULL;
1257 
1258 	rcu_read_lock();
1259 	for_each_netdev_rcu(net, dev)
1260 		if (dev->type == type) {
1261 			dev_hold(dev);
1262 			ret = dev;
1263 			break;
1264 		}
1265 	rcu_read_unlock();
1266 	return ret;
1267 }
1268 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1269 
1270 /**
1271  * netdev_get_by_flags_rcu - find any device with given flags
1272  * @net: the applicable net namespace
1273  * @tracker: tracking object for the acquired reference
1274  * @if_flags: IFF_* values
1275  * @mask: bitmask of bits in if_flags to check
1276  *
1277  * Search for any interface with the given flags.
1278  *
1279  * Context: rcu_read_lock() must be held.
1280  * Returns: NULL if a device is not found or a pointer to the device.
1281  */
1282 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1283 					   unsigned short if_flags, unsigned short mask)
1284 {
1285 	struct net_device *dev;
1286 
1287 	for_each_netdev_rcu(net, dev) {
1288 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1289 			netdev_hold(dev, tracker, GFP_ATOMIC);
1290 			return dev;
1291 		}
1292 	}
1293 
1294 	return NULL;
1295 }
1296 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1297 
1298 /**
1299  *	dev_valid_name - check if name is okay for network device
1300  *	@name: name string
1301  *
1302  *	Network device names need to be valid file names to
1303  *	allow sysfs to work.  We also disallow any kind of
1304  *	whitespace.
1305  */
1306 bool dev_valid_name(const char *name)
1307 {
1308 	if (*name == '\0')
1309 		return false;
1310 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1311 		return false;
1312 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1313 		return false;
1314 
1315 	while (*name) {
1316 		if (*name == '/' || *name == ':' || isspace(*name))
1317 			return false;
1318 		name++;
1319 	}
1320 	return true;
1321 }
1322 EXPORT_SYMBOL(dev_valid_name);
1323 
1324 /**
1325  *	__dev_alloc_name - allocate a name for a device
1326  *	@net: network namespace to allocate the device name in
1327  *	@name: name format string
1328  *	@res: result name string
1329  *
1330  *	Passed a format string - eg "lt%d" it will try and find a suitable
1331  *	id. It scans list of devices to build up a free map, then chooses
1332  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1333  *	while allocating the name and adding the device in order to avoid
1334  *	duplicates.
1335  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1336  *	Returns the number of the unit assigned or a negative errno code.
1337  */
1338 
1339 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1340 {
1341 	int i = 0;
1342 	const char *p;
1343 	const int max_netdevices = 8*PAGE_SIZE;
1344 	unsigned long *inuse;
1345 	struct net_device *d;
1346 	char buf[IFNAMSIZ];
1347 
1348 	/* Verify the string as this thing may have come from the user.
1349 	 * There must be one "%d" and no other "%" characters.
1350 	 */
1351 	p = strchr(name, '%');
1352 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1353 		return -EINVAL;
1354 
1355 	/* Use one page as a bit array of possible slots */
1356 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1357 	if (!inuse)
1358 		return -ENOMEM;
1359 
1360 	for_each_netdev(net, d) {
1361 		struct netdev_name_node *name_node;
1362 
1363 		netdev_for_each_altname(d, name_node) {
1364 			if (!sscanf(name_node->name, name, &i))
1365 				continue;
1366 			if (i < 0 || i >= max_netdevices)
1367 				continue;
1368 
1369 			/* avoid cases where sscanf is not exact inverse of printf */
1370 			snprintf(buf, IFNAMSIZ, name, i);
1371 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1372 				__set_bit(i, inuse);
1373 		}
1374 		if (!sscanf(d->name, name, &i))
1375 			continue;
1376 		if (i < 0 || i >= max_netdevices)
1377 			continue;
1378 
1379 		/* avoid cases where sscanf is not exact inverse of printf */
1380 		snprintf(buf, IFNAMSIZ, name, i);
1381 		if (!strncmp(buf, d->name, IFNAMSIZ))
1382 			__set_bit(i, inuse);
1383 	}
1384 
1385 	i = find_first_zero_bit(inuse, max_netdevices);
1386 	bitmap_free(inuse);
1387 	if (i == max_netdevices)
1388 		return -ENFILE;
1389 
1390 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1391 	strscpy(buf, name, IFNAMSIZ);
1392 	snprintf(res, IFNAMSIZ, buf, i);
1393 	return i;
1394 }
1395 
1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1398 			       const char *want_name, char *out_name,
1399 			       int dup_errno)
1400 {
1401 	if (!dev_valid_name(want_name))
1402 		return -EINVAL;
1403 
1404 	if (strchr(want_name, '%'))
1405 		return __dev_alloc_name(net, want_name, out_name);
1406 
1407 	if (netdev_name_in_use(net, want_name))
1408 		return -dup_errno;
1409 	if (out_name != want_name)
1410 		strscpy(out_name, want_name, IFNAMSIZ);
1411 	return 0;
1412 }
1413 
1414 /**
1415  *	dev_alloc_name - allocate a name for a device
1416  *	@dev: device
1417  *	@name: name format string
1418  *
1419  *	Passed a format string - eg "lt%d" it will try and find a suitable
1420  *	id. It scans list of devices to build up a free map, then chooses
1421  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1422  *	while allocating the name and adding the device in order to avoid
1423  *	duplicates.
1424  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1425  *	Returns the number of the unit assigned or a negative errno code.
1426  */
1427 
1428 int dev_alloc_name(struct net_device *dev, const char *name)
1429 {
1430 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1431 }
1432 EXPORT_SYMBOL(dev_alloc_name);
1433 
1434 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1435 			      const char *name)
1436 {
1437 	int ret;
1438 
1439 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1440 	return ret < 0 ? ret : 0;
1441 }
1442 
1443 int netif_change_name(struct net_device *dev, const char *newname)
1444 {
1445 	struct net *net = dev_net(dev);
1446 	unsigned char old_assign_type;
1447 	char oldname[IFNAMSIZ];
1448 	int err = 0;
1449 	int ret;
1450 
1451 	ASSERT_RTNL_NET(net);
1452 
1453 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1454 		return 0;
1455 
1456 	memcpy(oldname, dev->name, IFNAMSIZ);
1457 
1458 	write_seqlock_bh(&netdev_rename_lock);
1459 	err = dev_get_valid_name(net, dev, newname);
1460 	write_sequnlock_bh(&netdev_rename_lock);
1461 
1462 	if (err < 0)
1463 		return err;
1464 
1465 	if (oldname[0] && !strchr(oldname, '%'))
1466 		netdev_info(dev, "renamed from %s%s\n", oldname,
1467 			    dev->flags & IFF_UP ? " (while UP)" : "");
1468 
1469 	old_assign_type = dev->name_assign_type;
1470 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1471 
1472 rollback:
1473 	ret = device_rename(&dev->dev, dev->name);
1474 	if (ret) {
1475 		write_seqlock_bh(&netdev_rename_lock);
1476 		memcpy(dev->name, oldname, IFNAMSIZ);
1477 		write_sequnlock_bh(&netdev_rename_lock);
1478 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1479 		return ret;
1480 	}
1481 
1482 	netdev_adjacent_rename_links(dev, oldname);
1483 
1484 	netdev_name_node_del(dev->name_node);
1485 
1486 	synchronize_net();
1487 
1488 	netdev_name_node_add(net, dev->name_node);
1489 
1490 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1491 	ret = notifier_to_errno(ret);
1492 
1493 	if (ret) {
1494 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1495 		if (err >= 0) {
1496 			err = ret;
1497 			write_seqlock_bh(&netdev_rename_lock);
1498 			memcpy(dev->name, oldname, IFNAMSIZ);
1499 			write_sequnlock_bh(&netdev_rename_lock);
1500 			memcpy(oldname, newname, IFNAMSIZ);
1501 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1502 			old_assign_type = NET_NAME_RENAMED;
1503 			goto rollback;
1504 		} else {
1505 			netdev_err(dev, "name change rollback failed: %d\n",
1506 				   ret);
1507 		}
1508 	}
1509 
1510 	return err;
1511 }
1512 
1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1514 {
1515 	struct dev_ifalias *new_alias = NULL;
1516 
1517 	if (len >= IFALIASZ)
1518 		return -EINVAL;
1519 
1520 	if (len) {
1521 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1522 		if (!new_alias)
1523 			return -ENOMEM;
1524 
1525 		memcpy(new_alias->ifalias, alias, len);
1526 		new_alias->ifalias[len] = 0;
1527 	}
1528 
1529 	mutex_lock(&ifalias_mutex);
1530 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1531 					mutex_is_locked(&ifalias_mutex));
1532 	mutex_unlock(&ifalias_mutex);
1533 
1534 	if (new_alias)
1535 		kfree_rcu(new_alias, rcuhead);
1536 
1537 	return len;
1538 }
1539 
1540 /**
1541  *	dev_get_alias - get ifalias of a device
1542  *	@dev: device
1543  *	@name: buffer to store name of ifalias
1544  *	@len: size of buffer
1545  *
1546  *	get ifalias for a device.  Caller must make sure dev cannot go
1547  *	away,  e.g. rcu read lock or own a reference count to device.
1548  */
1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1550 {
1551 	const struct dev_ifalias *alias;
1552 	int ret = 0;
1553 
1554 	rcu_read_lock();
1555 	alias = rcu_dereference(dev->ifalias);
1556 	if (alias)
1557 		ret = snprintf(name, len, "%s", alias->ifalias);
1558 	rcu_read_unlock();
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  *	netdev_features_change - device changes features
1565  *	@dev: device to cause notification
1566  *
1567  *	Called to indicate a device has changed features.
1568  */
1569 void netdev_features_change(struct net_device *dev)
1570 {
1571 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1572 }
1573 EXPORT_SYMBOL(netdev_features_change);
1574 
1575 void netif_state_change(struct net_device *dev)
1576 {
1577 	netdev_ops_assert_locked_or_invisible(dev);
1578 
1579 	if (dev->flags & IFF_UP) {
1580 		struct netdev_notifier_change_info change_info = {
1581 			.info.dev = dev,
1582 		};
1583 
1584 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1585 					      &change_info.info);
1586 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1587 	}
1588 }
1589 
1590 /**
1591  * __netdev_notify_peers - notify network peers about existence of @dev,
1592  * to be called when rtnl lock is already held.
1593  * @dev: network device
1594  *
1595  * Generate traffic such that interested network peers are aware of
1596  * @dev, such as by generating a gratuitous ARP. This may be used when
1597  * a device wants to inform the rest of the network about some sort of
1598  * reconfiguration such as a failover event or virtual machine
1599  * migration.
1600  */
1601 void __netdev_notify_peers(struct net_device *dev)
1602 {
1603 	ASSERT_RTNL();
1604 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1605 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1606 }
1607 EXPORT_SYMBOL(__netdev_notify_peers);
1608 
1609 /**
1610  * netdev_notify_peers - notify network peers about existence of @dev
1611  * @dev: network device
1612  *
1613  * Generate traffic such that interested network peers are aware of
1614  * @dev, such as by generating a gratuitous ARP. This may be used when
1615  * a device wants to inform the rest of the network about some sort of
1616  * reconfiguration such as a failover event or virtual machine
1617  * migration.
1618  */
1619 void netdev_notify_peers(struct net_device *dev)
1620 {
1621 	rtnl_lock();
1622 	__netdev_notify_peers(dev);
1623 	rtnl_unlock();
1624 }
1625 EXPORT_SYMBOL(netdev_notify_peers);
1626 
1627 static int napi_threaded_poll(void *data);
1628 
1629 static int napi_kthread_create(struct napi_struct *n)
1630 {
1631 	int err = 0;
1632 
1633 	/* Create and wake up the kthread once to put it in
1634 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1635 	 * warning and work with loadavg.
1636 	 */
1637 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1638 				n->dev->name, n->napi_id);
1639 	if (IS_ERR(n->thread)) {
1640 		err = PTR_ERR(n->thread);
1641 		pr_err("kthread_run failed with err %d\n", err);
1642 		n->thread = NULL;
1643 	}
1644 
1645 	return err;
1646 }
1647 
1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1649 {
1650 	const struct net_device_ops *ops = dev->netdev_ops;
1651 	int ret;
1652 
1653 	ASSERT_RTNL();
1654 	dev_addr_check(dev);
1655 
1656 	if (!netif_device_present(dev)) {
1657 		/* may be detached because parent is runtime-suspended */
1658 		if (dev->dev.parent)
1659 			pm_runtime_resume(dev->dev.parent);
1660 		if (!netif_device_present(dev))
1661 			return -ENODEV;
1662 	}
1663 
1664 	/* Block netpoll from trying to do any rx path servicing.
1665 	 * If we don't do this there is a chance ndo_poll_controller
1666 	 * or ndo_poll may be running while we open the device
1667 	 */
1668 	netpoll_poll_disable(dev);
1669 
1670 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1671 	ret = notifier_to_errno(ret);
1672 	if (ret)
1673 		return ret;
1674 
1675 	set_bit(__LINK_STATE_START, &dev->state);
1676 
1677 	netdev_ops_assert_locked(dev);
1678 
1679 	if (ops->ndo_validate_addr)
1680 		ret = ops->ndo_validate_addr(dev);
1681 
1682 	if (!ret && ops->ndo_open)
1683 		ret = ops->ndo_open(dev);
1684 
1685 	netpoll_poll_enable(dev);
1686 
1687 	if (ret)
1688 		clear_bit(__LINK_STATE_START, &dev->state);
1689 	else {
1690 		netif_set_up(dev, true);
1691 		dev_set_rx_mode(dev);
1692 		dev_activate(dev);
1693 		add_device_randomness(dev->dev_addr, dev->addr_len);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1700 {
1701 	int ret;
1702 
1703 	if (dev->flags & IFF_UP)
1704 		return 0;
1705 
1706 	ret = __dev_open(dev, extack);
1707 	if (ret < 0)
1708 		return ret;
1709 
1710 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1711 	call_netdevice_notifiers(NETDEV_UP, dev);
1712 
1713 	return ret;
1714 }
1715 
1716 static void __dev_close_many(struct list_head *head)
1717 {
1718 	struct net_device *dev;
1719 
1720 	ASSERT_RTNL();
1721 	might_sleep();
1722 
1723 	list_for_each_entry(dev, head, close_list) {
1724 		/* Temporarily disable netpoll until the interface is down */
1725 		netpoll_poll_disable(dev);
1726 
1727 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1728 
1729 		clear_bit(__LINK_STATE_START, &dev->state);
1730 
1731 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1732 		 * can be even on different cpu. So just clear netif_running().
1733 		 *
1734 		 * dev->stop() will invoke napi_disable() on all of it's
1735 		 * napi_struct instances on this device.
1736 		 */
1737 		smp_mb__after_atomic(); /* Commit netif_running(). */
1738 	}
1739 
1740 	dev_deactivate_many(head);
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		const struct net_device_ops *ops = dev->netdev_ops;
1744 
1745 		/*
1746 		 *	Call the device specific close. This cannot fail.
1747 		 *	Only if device is UP
1748 		 *
1749 		 *	We allow it to be called even after a DETACH hot-plug
1750 		 *	event.
1751 		 */
1752 
1753 		netdev_ops_assert_locked(dev);
1754 
1755 		if (ops->ndo_stop)
1756 			ops->ndo_stop(dev);
1757 
1758 		netif_set_up(dev, false);
1759 		netpoll_poll_enable(dev);
1760 	}
1761 }
1762 
1763 static void __dev_close(struct net_device *dev)
1764 {
1765 	LIST_HEAD(single);
1766 
1767 	list_add(&dev->close_list, &single);
1768 	__dev_close_many(&single);
1769 	list_del(&single);
1770 }
1771 
1772 void netif_close_many(struct list_head *head, bool unlink)
1773 {
1774 	struct net_device *dev, *tmp;
1775 
1776 	/* Remove the devices that don't need to be closed */
1777 	list_for_each_entry_safe(dev, tmp, head, close_list)
1778 		if (!(dev->flags & IFF_UP))
1779 			list_del_init(&dev->close_list);
1780 
1781 	__dev_close_many(head);
1782 
1783 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1784 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1785 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1786 		if (unlink)
1787 			list_del_init(&dev->close_list);
1788 	}
1789 }
1790 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1791 
1792 void netif_close(struct net_device *dev)
1793 {
1794 	if (dev->flags & IFF_UP) {
1795 		LIST_HEAD(single);
1796 
1797 		list_add(&dev->close_list, &single);
1798 		netif_close_many(&single, true);
1799 		list_del(&single);
1800 	}
1801 }
1802 EXPORT_SYMBOL(netif_close);
1803 
1804 void netif_disable_lro(struct net_device *dev)
1805 {
1806 	struct net_device *lower_dev;
1807 	struct list_head *iter;
1808 
1809 	dev->wanted_features &= ~NETIF_F_LRO;
1810 	netdev_update_features(dev);
1811 
1812 	if (unlikely(dev->features & NETIF_F_LRO))
1813 		netdev_WARN(dev, "failed to disable LRO!\n");
1814 
1815 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1816 		netdev_lock_ops(lower_dev);
1817 		netif_disable_lro(lower_dev);
1818 		netdev_unlock_ops(lower_dev);
1819 	}
1820 }
1821 EXPORT_IPV6_MOD(netif_disable_lro);
1822 
1823 /**
1824  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1825  *	@dev: device
1826  *
1827  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1828  *	called under RTNL.  This is needed if Generic XDP is installed on
1829  *	the device.
1830  */
1831 static void dev_disable_gro_hw(struct net_device *dev)
1832 {
1833 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1834 	netdev_update_features(dev);
1835 
1836 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1837 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1838 }
1839 
1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1841 {
1842 #define N(val) 						\
1843 	case NETDEV_##val:				\
1844 		return "NETDEV_" __stringify(val);
1845 	switch (cmd) {
1846 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1847 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1848 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1849 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1850 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1851 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1852 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1853 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1854 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1855 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1856 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1857 	N(XDP_FEAT_CHANGE)
1858 	}
1859 #undef N
1860 	return "UNKNOWN_NETDEV_EVENT";
1861 }
1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1863 
1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1865 				   struct net_device *dev)
1866 {
1867 	struct netdev_notifier_info info = {
1868 		.dev = dev,
1869 	};
1870 
1871 	return nb->notifier_call(nb, val, &info);
1872 }
1873 
1874 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1875 					     struct net_device *dev)
1876 {
1877 	int err;
1878 
1879 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1880 	err = notifier_to_errno(err);
1881 	if (err)
1882 		return err;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return 0;
1886 
1887 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1888 	return 0;
1889 }
1890 
1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1892 						struct net_device *dev)
1893 {
1894 	if (dev->flags & IFF_UP) {
1895 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1896 					dev);
1897 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1898 	}
1899 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1900 }
1901 
1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1903 						 struct net *net)
1904 {
1905 	struct net_device *dev;
1906 	int err;
1907 
1908 	for_each_netdev(net, dev) {
1909 		netdev_lock_ops(dev);
1910 		err = call_netdevice_register_notifiers(nb, dev);
1911 		netdev_unlock_ops(dev);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 	return 0;
1916 
1917 rollback:
1918 	for_each_netdev_continue_reverse(net, dev)
1919 		call_netdevice_unregister_notifiers(nb, dev);
1920 	return err;
1921 }
1922 
1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1924 						    struct net *net)
1925 {
1926 	struct net_device *dev;
1927 
1928 	for_each_netdev(net, dev)
1929 		call_netdevice_unregister_notifiers(nb, dev);
1930 }
1931 
1932 static int dev_boot_phase = 1;
1933 
1934 /**
1935  * register_netdevice_notifier - register a network notifier block
1936  * @nb: notifier
1937  *
1938  * Register a notifier to be called when network device events occur.
1939  * The notifier passed is linked into the kernel structures and must
1940  * not be reused until it has been unregistered. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * When registered all registration and up events are replayed
1944  * to the new notifier to allow device to have a race free
1945  * view of the network device list.
1946  */
1947 
1948 int register_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 
1956 	/* When RTNL is removed, we need protection for netdev_chain. */
1957 	rtnl_lock();
1958 
1959 	err = raw_notifier_chain_register(&netdev_chain, nb);
1960 	if (err)
1961 		goto unlock;
1962 	if (dev_boot_phase)
1963 		goto unlock;
1964 	for_each_net(net) {
1965 		__rtnl_net_lock(net);
1966 		err = call_netdevice_register_net_notifiers(nb, net);
1967 		__rtnl_net_unlock(net);
1968 		if (err)
1969 			goto rollback;
1970 	}
1971 
1972 unlock:
1973 	rtnl_unlock();
1974 	up_write(&pernet_ops_rwsem);
1975 	return err;
1976 
1977 rollback:
1978 	for_each_net_continue_reverse(net) {
1979 		__rtnl_net_lock(net);
1980 		call_netdevice_unregister_net_notifiers(nb, net);
1981 		__rtnl_net_unlock(net);
1982 	}
1983 
1984 	raw_notifier_chain_unregister(&netdev_chain, nb);
1985 	goto unlock;
1986 }
1987 EXPORT_SYMBOL(register_netdevice_notifier);
1988 
1989 /**
1990  * unregister_netdevice_notifier - unregister a network notifier block
1991  * @nb: notifier
1992  *
1993  * Unregister a notifier previously registered by
1994  * register_netdevice_notifier(). The notifier is unlinked into the
1995  * kernel structures and may then be reused. A negative errno code
1996  * is returned on a failure.
1997  *
1998  * After unregistering unregister and down device events are synthesized
1999  * for all devices on the device list to the removed notifier to remove
2000  * the need for special case cleanup code.
2001  */
2002 
2003 int unregister_netdevice_notifier(struct notifier_block *nb)
2004 {
2005 	struct net *net;
2006 	int err;
2007 
2008 	/* Close race with setup_net() and cleanup_net() */
2009 	down_write(&pernet_ops_rwsem);
2010 	rtnl_lock();
2011 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2012 	if (err)
2013 		goto unlock;
2014 
2015 	for_each_net(net) {
2016 		__rtnl_net_lock(net);
2017 		call_netdevice_unregister_net_notifiers(nb, net);
2018 		__rtnl_net_unlock(net);
2019 	}
2020 
2021 unlock:
2022 	rtnl_unlock();
2023 	up_write(&pernet_ops_rwsem);
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier);
2027 
2028 static int __register_netdevice_notifier_net(struct net *net,
2029 					     struct notifier_block *nb,
2030 					     bool ignore_call_fail)
2031 {
2032 	int err;
2033 
2034 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2035 	if (err)
2036 		return err;
2037 	if (dev_boot_phase)
2038 		return 0;
2039 
2040 	err = call_netdevice_register_net_notifiers(nb, net);
2041 	if (err && !ignore_call_fail)
2042 		goto chain_unregister;
2043 
2044 	return 0;
2045 
2046 chain_unregister:
2047 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2048 	return err;
2049 }
2050 
2051 static int __unregister_netdevice_notifier_net(struct net *net,
2052 					       struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2057 	if (err)
2058 		return err;
2059 
2060 	call_netdevice_unregister_net_notifiers(nb, net);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * register_netdevice_notifier_net - register a per-netns network notifier block
2066  * @net: network namespace
2067  * @nb: notifier
2068  *
2069  * Register a notifier to be called when network device events occur.
2070  * The notifier passed is linked into the kernel structures and must
2071  * not be reused until it has been unregistered. A negative errno code
2072  * is returned on a failure.
2073  *
2074  * When registered all registration and up events are replayed
2075  * to the new notifier to allow device to have a race free
2076  * view of the network device list.
2077  */
2078 
2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2080 {
2081 	int err;
2082 
2083 	rtnl_net_lock(net);
2084 	err = __register_netdevice_notifier_net(net, nb, false);
2085 	rtnl_net_unlock(net);
2086 
2087 	return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_net);
2090 
2091 /**
2092  * unregister_netdevice_notifier_net - unregister a per-netns
2093  *                                     network notifier block
2094  * @net: network namespace
2095  * @nb: notifier
2096  *
2097  * Unregister a notifier previously registered by
2098  * register_netdevice_notifier_net(). The notifier is unlinked from the
2099  * kernel structures and may then be reused. A negative errno code
2100  * is returned on a failure.
2101  *
2102  * After unregistering unregister and down device events are synthesized
2103  * for all devices on the device list to the removed notifier to remove
2104  * the need for special case cleanup code.
2105  */
2106 
2107 int unregister_netdevice_notifier_net(struct net *net,
2108 				      struct notifier_block *nb)
2109 {
2110 	int err;
2111 
2112 	rtnl_net_lock(net);
2113 	err = __unregister_netdevice_notifier_net(net, nb);
2114 	rtnl_net_unlock(net);
2115 
2116 	return err;
2117 }
2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2119 
2120 static void __move_netdevice_notifier_net(struct net *src_net,
2121 					  struct net *dst_net,
2122 					  struct notifier_block *nb)
2123 {
2124 	__unregister_netdevice_notifier_net(src_net, nb);
2125 	__register_netdevice_notifier_net(dst_net, nb, true);
2126 }
2127 
2128 static void rtnl_net_dev_lock(struct net_device *dev)
2129 {
2130 	bool again;
2131 
2132 	do {
2133 		struct net *net;
2134 
2135 		again = false;
2136 
2137 		/* netns might be being dismantled. */
2138 		rcu_read_lock();
2139 		net = dev_net_rcu(dev);
2140 		net_passive_inc(net);
2141 		rcu_read_unlock();
2142 
2143 		rtnl_net_lock(net);
2144 
2145 #ifdef CONFIG_NET_NS
2146 		/* dev might have been moved to another netns. */
2147 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2148 			rtnl_net_unlock(net);
2149 			net_passive_dec(net);
2150 			again = true;
2151 		}
2152 #endif
2153 	} while (again);
2154 }
2155 
2156 static void rtnl_net_dev_unlock(struct net_device *dev)
2157 {
2158 	struct net *net = dev_net(dev);
2159 
2160 	rtnl_net_unlock(net);
2161 	net_passive_dec(net);
2162 }
2163 
2164 int register_netdevice_notifier_dev_net(struct net_device *dev,
2165 					struct notifier_block *nb,
2166 					struct netdev_net_notifier *nn)
2167 {
2168 	int err;
2169 
2170 	rtnl_net_dev_lock(dev);
2171 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2172 	if (!err) {
2173 		nn->nb = nb;
2174 		list_add(&nn->list, &dev->net_notifier_list);
2175 	}
2176 	rtnl_net_dev_unlock(dev);
2177 
2178 	return err;
2179 }
2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2181 
2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2183 					  struct notifier_block *nb,
2184 					  struct netdev_net_notifier *nn)
2185 {
2186 	int err;
2187 
2188 	rtnl_net_dev_lock(dev);
2189 	list_del(&nn->list);
2190 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2191 	rtnl_net_dev_unlock(dev);
2192 
2193 	return err;
2194 }
2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2196 
2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2198 					     struct net *net)
2199 {
2200 	struct netdev_net_notifier *nn;
2201 
2202 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2203 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2204 }
2205 
2206 /**
2207  *	call_netdevice_notifiers_info - call all network notifier blocks
2208  *	@val: value passed unmodified to notifier function
2209  *	@info: notifier information data
2210  *
2211  *	Call all network notifier blocks.  Parameters and return value
2212  *	are as for raw_notifier_call_chain().
2213  */
2214 
2215 int call_netdevice_notifiers_info(unsigned long val,
2216 				  struct netdev_notifier_info *info)
2217 {
2218 	struct net *net = dev_net(info->dev);
2219 	int ret;
2220 
2221 	ASSERT_RTNL();
2222 
2223 	/* Run per-netns notifier block chain first, then run the global one.
2224 	 * Hopefully, one day, the global one is going to be removed after
2225 	 * all notifier block registrators get converted to be per-netns.
2226 	 */
2227 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2228 	if (ret & NOTIFY_STOP_MASK)
2229 		return ret;
2230 	return raw_notifier_call_chain(&netdev_chain, val, info);
2231 }
2232 
2233 /**
2234  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2235  *	                                       for and rollback on error
2236  *	@val_up: value passed unmodified to notifier function
2237  *	@val_down: value passed unmodified to the notifier function when
2238  *	           recovering from an error on @val_up
2239  *	@info: notifier information data
2240  *
2241  *	Call all per-netns network notifier blocks, but not notifier blocks on
2242  *	the global notifier chain. Parameters and return value are as for
2243  *	raw_notifier_call_chain_robust().
2244  */
2245 
2246 static int
2247 call_netdevice_notifiers_info_robust(unsigned long val_up,
2248 				     unsigned long val_down,
2249 				     struct netdev_notifier_info *info)
2250 {
2251 	struct net *net = dev_net(info->dev);
2252 
2253 	ASSERT_RTNL();
2254 
2255 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2256 					      val_up, val_down, info);
2257 }
2258 
2259 static int call_netdevice_notifiers_extack(unsigned long val,
2260 					   struct net_device *dev,
2261 					   struct netlink_ext_ack *extack)
2262 {
2263 	struct netdev_notifier_info info = {
2264 		.dev = dev,
2265 		.extack = extack,
2266 	};
2267 
2268 	return call_netdevice_notifiers_info(val, &info);
2269 }
2270 
2271 /**
2272  *	call_netdevice_notifiers - call all network notifier blocks
2273  *      @val: value passed unmodified to notifier function
2274  *      @dev: net_device pointer passed unmodified to notifier function
2275  *
2276  *	Call all network notifier blocks.  Parameters and return value
2277  *	are as for raw_notifier_call_chain().
2278  */
2279 
2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2281 {
2282 	return call_netdevice_notifiers_extack(val, dev, NULL);
2283 }
2284 EXPORT_SYMBOL(call_netdevice_notifiers);
2285 
2286 /**
2287  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2288  *	@val: value passed unmodified to notifier function
2289  *	@dev: net_device pointer passed unmodified to notifier function
2290  *	@arg: additional u32 argument passed to the notifier function
2291  *
2292  *	Call all network notifier blocks.  Parameters and return value
2293  *	are as for raw_notifier_call_chain().
2294  */
2295 static int call_netdevice_notifiers_mtu(unsigned long val,
2296 					struct net_device *dev, u32 arg)
2297 {
2298 	struct netdev_notifier_info_ext info = {
2299 		.info.dev = dev,
2300 		.ext.mtu = arg,
2301 	};
2302 
2303 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2304 
2305 	return call_netdevice_notifiers_info(val, &info.info);
2306 }
2307 
2308 #ifdef CONFIG_NET_INGRESS
2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2310 
2311 void net_inc_ingress_queue(void)
2312 {
2313 	static_branch_inc(&ingress_needed_key);
2314 }
2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2316 
2317 void net_dec_ingress_queue(void)
2318 {
2319 	static_branch_dec(&ingress_needed_key);
2320 }
2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2322 #endif
2323 
2324 #ifdef CONFIG_NET_EGRESS
2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2326 
2327 void net_inc_egress_queue(void)
2328 {
2329 	static_branch_inc(&egress_needed_key);
2330 }
2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2332 
2333 void net_dec_egress_queue(void)
2334 {
2335 	static_branch_dec(&egress_needed_key);
2336 }
2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2338 #endif
2339 
2340 #ifdef CONFIG_NET_CLS_ACT
2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2342 EXPORT_SYMBOL(tcf_sw_enabled_key);
2343 #endif
2344 
2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2346 EXPORT_SYMBOL(netstamp_needed_key);
2347 #ifdef CONFIG_JUMP_LABEL
2348 static atomic_t netstamp_needed_deferred;
2349 static atomic_t netstamp_wanted;
2350 static void netstamp_clear(struct work_struct *work)
2351 {
2352 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2353 	int wanted;
2354 
2355 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2356 	if (wanted > 0)
2357 		static_branch_enable(&netstamp_needed_key);
2358 	else
2359 		static_branch_disable(&netstamp_needed_key);
2360 }
2361 static DECLARE_WORK(netstamp_work, netstamp_clear);
2362 #endif
2363 
2364 void net_enable_timestamp(void)
2365 {
2366 #ifdef CONFIG_JUMP_LABEL
2367 	int wanted = atomic_read(&netstamp_wanted);
2368 
2369 	while (wanted > 0) {
2370 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2371 			return;
2372 	}
2373 	atomic_inc(&netstamp_needed_deferred);
2374 	schedule_work(&netstamp_work);
2375 #else
2376 	static_branch_inc(&netstamp_needed_key);
2377 #endif
2378 }
2379 EXPORT_SYMBOL(net_enable_timestamp);
2380 
2381 void net_disable_timestamp(void)
2382 {
2383 #ifdef CONFIG_JUMP_LABEL
2384 	int wanted = atomic_read(&netstamp_wanted);
2385 
2386 	while (wanted > 1) {
2387 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2388 			return;
2389 	}
2390 	atomic_dec(&netstamp_needed_deferred);
2391 	schedule_work(&netstamp_work);
2392 #else
2393 	static_branch_dec(&netstamp_needed_key);
2394 #endif
2395 }
2396 EXPORT_SYMBOL(net_disable_timestamp);
2397 
2398 static inline void net_timestamp_set(struct sk_buff *skb)
2399 {
2400 	skb->tstamp = 0;
2401 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2402 	if (static_branch_unlikely(&netstamp_needed_key))
2403 		skb->tstamp = ktime_get_real();
2404 }
2405 
2406 #define net_timestamp_check(COND, SKB)				\
2407 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2408 		if ((COND) && !(SKB)->tstamp)			\
2409 			(SKB)->tstamp = ktime_get_real();	\
2410 	}							\
2411 
2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2413 {
2414 	return __is_skb_forwardable(dev, skb, true);
2415 }
2416 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2417 
2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2419 			      bool check_mtu)
2420 {
2421 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2422 
2423 	if (likely(!ret)) {
2424 		skb->protocol = eth_type_trans(skb, dev);
2425 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2426 	}
2427 
2428 	return ret;
2429 }
2430 
2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 	return __dev_forward_skb2(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2436 
2437 /**
2438  * dev_forward_skb - loopback an skb to another netif
2439  *
2440  * @dev: destination network device
2441  * @skb: buffer to forward
2442  *
2443  * return values:
2444  *	NET_RX_SUCCESS	(no congestion)
2445  *	NET_RX_DROP     (packet was dropped, but freed)
2446  *
2447  * dev_forward_skb can be used for injecting an skb from the
2448  * start_xmit function of one device into the receive queue
2449  * of another device.
2450  *
2451  * The receiving device may be in another namespace, so
2452  * we have to clear all information in the skb that could
2453  * impact namespace isolation.
2454  */
2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2456 {
2457 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_forward_skb);
2460 
2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2462 {
2463 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2464 }
2465 
2466 static int deliver_skb(struct sk_buff *skb,
2467 		       struct packet_type *pt_prev,
2468 		       struct net_device *orig_dev)
2469 {
2470 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2471 		return -ENOMEM;
2472 	refcount_inc(&skb->users);
2473 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2474 }
2475 
2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2477 					  struct packet_type **pt,
2478 					  struct net_device *orig_dev,
2479 					  __be16 type,
2480 					  struct list_head *ptype_list)
2481 {
2482 	struct packet_type *ptype, *pt_prev = *pt;
2483 
2484 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 		if (ptype->type != type)
2486 			continue;
2487 		if (unlikely(pt_prev))
2488 			deliver_skb(skb, pt_prev, orig_dev);
2489 		pt_prev = ptype;
2490 	}
2491 	*pt = pt_prev;
2492 }
2493 
2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2495 {
2496 	if (!ptype->af_packet_priv || !skb->sk)
2497 		return false;
2498 
2499 	if (ptype->id_match)
2500 		return ptype->id_match(ptype, skb->sk);
2501 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2502 		return true;
2503 
2504 	return false;
2505 }
2506 
2507 /**
2508  * dev_nit_active_rcu - return true if any network interface taps are in use
2509  *
2510  * The caller must hold the RCU lock
2511  *
2512  * @dev: network device to check for the presence of taps
2513  */
2514 bool dev_nit_active_rcu(const struct net_device *dev)
2515 {
2516 	/* Callers may hold either RCU or RCU BH lock */
2517 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2518 
2519 	return !list_empty(&dev_net(dev)->ptype_all) ||
2520 	       !list_empty(&dev->ptype_all);
2521 }
2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2523 
2524 /*
2525  *	Support routine. Sends outgoing frames to any network
2526  *	taps currently in use.
2527  */
2528 
2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2530 {
2531 	struct packet_type *ptype, *pt_prev = NULL;
2532 	struct list_head *ptype_list;
2533 	struct sk_buff *skb2 = NULL;
2534 
2535 	rcu_read_lock();
2536 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2537 again:
2538 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2539 		if (READ_ONCE(ptype->ignore_outgoing))
2540 			continue;
2541 
2542 		/* Never send packets back to the socket
2543 		 * they originated from - MvS (miquels@drinkel.ow.org)
2544 		 */
2545 		if (skb_loop_sk(ptype, skb))
2546 			continue;
2547 
2548 		if (unlikely(pt_prev)) {
2549 			deliver_skb(skb2, pt_prev, skb->dev);
2550 			pt_prev = ptype;
2551 			continue;
2552 		}
2553 
2554 		/* need to clone skb, done only once */
2555 		skb2 = skb_clone(skb, GFP_ATOMIC);
2556 		if (!skb2)
2557 			goto out_unlock;
2558 
2559 		net_timestamp_set(skb2);
2560 
2561 		/* skb->nh should be correctly
2562 		 * set by sender, so that the second statement is
2563 		 * just protection against buggy protocols.
2564 		 */
2565 		skb_reset_mac_header(skb2);
2566 
2567 		if (skb_network_header(skb2) < skb2->data ||
2568 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2569 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2570 					     ntohs(skb2->protocol),
2571 					     dev->name);
2572 			skb_reset_network_header(skb2);
2573 		}
2574 
2575 		skb2->transport_header = skb2->network_header;
2576 		skb2->pkt_type = PACKET_OUTGOING;
2577 		pt_prev = ptype;
2578 	}
2579 
2580 	if (ptype_list != &dev->ptype_all) {
2581 		ptype_list = &dev->ptype_all;
2582 		goto again;
2583 	}
2584 out_unlock:
2585 	if (pt_prev) {
2586 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2587 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2588 		else
2589 			kfree_skb(skb2);
2590 	}
2591 	rcu_read_unlock();
2592 }
2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2594 
2595 /**
2596  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2597  * @dev: Network device
2598  * @txq: number of queues available
2599  *
2600  * If real_num_tx_queues is changed the tc mappings may no longer be
2601  * valid. To resolve this verify the tc mapping remains valid and if
2602  * not NULL the mapping. With no priorities mapping to this
2603  * offset/count pair it will no longer be used. In the worst case TC0
2604  * is invalid nothing can be done so disable priority mappings. If is
2605  * expected that drivers will fix this mapping if they can before
2606  * calling netif_set_real_num_tx_queues.
2607  */
2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2609 {
2610 	int i;
2611 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2612 
2613 	/* If TC0 is invalidated disable TC mapping */
2614 	if (tc->offset + tc->count > txq) {
2615 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2616 		dev->num_tc = 0;
2617 		return;
2618 	}
2619 
2620 	/* Invalidated prio to tc mappings set to TC0 */
2621 	for (i = 1; i < TC_BITMASK + 1; i++) {
2622 		int q = netdev_get_prio_tc_map(dev, i);
2623 
2624 		tc = &dev->tc_to_txq[q];
2625 		if (tc->offset + tc->count > txq) {
2626 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2627 				    i, q);
2628 			netdev_set_prio_tc_map(dev, i, 0);
2629 		}
2630 	}
2631 }
2632 
2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2634 {
2635 	if (dev->num_tc) {
2636 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2637 		int i;
2638 
2639 		/* walk through the TCs and see if it falls into any of them */
2640 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2641 			if ((txq - tc->offset) < tc->count)
2642 				return i;
2643 		}
2644 
2645 		/* didn't find it, just return -1 to indicate no match */
2646 		return -1;
2647 	}
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_txq_to_tc);
2652 
2653 #ifdef CONFIG_XPS
2654 static struct static_key xps_needed __read_mostly;
2655 static struct static_key xps_rxqs_needed __read_mostly;
2656 static DEFINE_MUTEX(xps_map_mutex);
2657 #define xmap_dereference(P)		\
2658 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2659 
2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2661 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2662 {
2663 	struct xps_map *map = NULL;
2664 	int pos;
2665 
2666 	map = xmap_dereference(dev_maps->attr_map[tci]);
2667 	if (!map)
2668 		return false;
2669 
2670 	for (pos = map->len; pos--;) {
2671 		if (map->queues[pos] != index)
2672 			continue;
2673 
2674 		if (map->len > 1) {
2675 			map->queues[pos] = map->queues[--map->len];
2676 			break;
2677 		}
2678 
2679 		if (old_maps)
2680 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2681 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2682 		kfree_rcu(map, rcu);
2683 		return false;
2684 	}
2685 
2686 	return true;
2687 }
2688 
2689 static bool remove_xps_queue_cpu(struct net_device *dev,
2690 				 struct xps_dev_maps *dev_maps,
2691 				 int cpu, u16 offset, u16 count)
2692 {
2693 	int num_tc = dev_maps->num_tc;
2694 	bool active = false;
2695 	int tci;
2696 
2697 	for (tci = cpu * num_tc; num_tc--; tci++) {
2698 		int i, j;
2699 
2700 		for (i = count, j = offset; i--; j++) {
2701 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2702 				break;
2703 		}
2704 
2705 		active |= i < 0;
2706 	}
2707 
2708 	return active;
2709 }
2710 
2711 static void reset_xps_maps(struct net_device *dev,
2712 			   struct xps_dev_maps *dev_maps,
2713 			   enum xps_map_type type)
2714 {
2715 	static_key_slow_dec_cpuslocked(&xps_needed);
2716 	if (type == XPS_RXQS)
2717 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2718 
2719 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2720 
2721 	kfree_rcu(dev_maps, rcu);
2722 }
2723 
2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2725 			   u16 offset, u16 count)
2726 {
2727 	struct xps_dev_maps *dev_maps;
2728 	bool active = false;
2729 	int i, j;
2730 
2731 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2732 	if (!dev_maps)
2733 		return;
2734 
2735 	for (j = 0; j < dev_maps->nr_ids; j++)
2736 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2737 	if (!active)
2738 		reset_xps_maps(dev, dev_maps, type);
2739 
2740 	if (type == XPS_CPUS) {
2741 		for (i = offset + (count - 1); count--; i--)
2742 			netdev_queue_numa_node_write(
2743 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2744 	}
2745 }
2746 
2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2748 				   u16 count)
2749 {
2750 	if (!static_key_false(&xps_needed))
2751 		return;
2752 
2753 	cpus_read_lock();
2754 	mutex_lock(&xps_map_mutex);
2755 
2756 	if (static_key_false(&xps_rxqs_needed))
2757 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2758 
2759 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2760 
2761 	mutex_unlock(&xps_map_mutex);
2762 	cpus_read_unlock();
2763 }
2764 
2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2766 {
2767 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2768 }
2769 
2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2771 				      u16 index, bool is_rxqs_map)
2772 {
2773 	struct xps_map *new_map;
2774 	int alloc_len = XPS_MIN_MAP_ALLOC;
2775 	int i, pos;
2776 
2777 	for (pos = 0; map && pos < map->len; pos++) {
2778 		if (map->queues[pos] != index)
2779 			continue;
2780 		return map;
2781 	}
2782 
2783 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2784 	if (map) {
2785 		if (pos < map->alloc_len)
2786 			return map;
2787 
2788 		alloc_len = map->alloc_len * 2;
2789 	}
2790 
2791 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2792 	 *  map
2793 	 */
2794 	if (is_rxqs_map)
2795 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2796 	else
2797 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2798 				       cpu_to_node(attr_index));
2799 	if (!new_map)
2800 		return NULL;
2801 
2802 	for (i = 0; i < pos; i++)
2803 		new_map->queues[i] = map->queues[i];
2804 	new_map->alloc_len = alloc_len;
2805 	new_map->len = pos;
2806 
2807 	return new_map;
2808 }
2809 
2810 /* Copy xps maps at a given index */
2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2812 			      struct xps_dev_maps *new_dev_maps, int index,
2813 			      int tc, bool skip_tc)
2814 {
2815 	int i, tci = index * dev_maps->num_tc;
2816 	struct xps_map *map;
2817 
2818 	/* copy maps belonging to foreign traffic classes */
2819 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2820 		if (i == tc && skip_tc)
2821 			continue;
2822 
2823 		/* fill in the new device map from the old device map */
2824 		map = xmap_dereference(dev_maps->attr_map[tci]);
2825 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2826 	}
2827 }
2828 
2829 /* Must be called under cpus_read_lock */
2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2831 			  u16 index, enum xps_map_type type)
2832 {
2833 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2834 	const unsigned long *online_mask = NULL;
2835 	bool active = false, copy = false;
2836 	int i, j, tci, numa_node_id = -2;
2837 	int maps_sz, num_tc = 1, tc = 0;
2838 	struct xps_map *map, *new_map;
2839 	unsigned int nr_ids;
2840 
2841 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2842 
2843 	if (dev->num_tc) {
2844 		/* Do not allow XPS on subordinate device directly */
2845 		num_tc = dev->num_tc;
2846 		if (num_tc < 0)
2847 			return -EINVAL;
2848 
2849 		/* If queue belongs to subordinate dev use its map */
2850 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2851 
2852 		tc = netdev_txq_to_tc(dev, index);
2853 		if (tc < 0)
2854 			return -EINVAL;
2855 	}
2856 
2857 	mutex_lock(&xps_map_mutex);
2858 
2859 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2860 	if (type == XPS_RXQS) {
2861 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2862 		nr_ids = dev->num_rx_queues;
2863 	} else {
2864 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2865 		if (num_possible_cpus() > 1)
2866 			online_mask = cpumask_bits(cpu_online_mask);
2867 		nr_ids = nr_cpu_ids;
2868 	}
2869 
2870 	if (maps_sz < L1_CACHE_BYTES)
2871 		maps_sz = L1_CACHE_BYTES;
2872 
2873 	/* The old dev_maps could be larger or smaller than the one we're
2874 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2875 	 * between. We could try to be smart, but let's be safe instead and only
2876 	 * copy foreign traffic classes if the two map sizes match.
2877 	 */
2878 	if (dev_maps &&
2879 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2880 		copy = true;
2881 
2882 	/* allocate memory for queue storage */
2883 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2884 	     j < nr_ids;) {
2885 		if (!new_dev_maps) {
2886 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2887 			if (!new_dev_maps) {
2888 				mutex_unlock(&xps_map_mutex);
2889 				return -ENOMEM;
2890 			}
2891 
2892 			new_dev_maps->nr_ids = nr_ids;
2893 			new_dev_maps->num_tc = num_tc;
2894 		}
2895 
2896 		tci = j * num_tc + tc;
2897 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2898 
2899 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2900 		if (!map)
2901 			goto error;
2902 
2903 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2904 	}
2905 
2906 	if (!new_dev_maps)
2907 		goto out_no_new_maps;
2908 
2909 	if (!dev_maps) {
2910 		/* Increment static keys at most once per type */
2911 		static_key_slow_inc_cpuslocked(&xps_needed);
2912 		if (type == XPS_RXQS)
2913 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2914 	}
2915 
2916 	for (j = 0; j < nr_ids; j++) {
2917 		bool skip_tc = false;
2918 
2919 		tci = j * num_tc + tc;
2920 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2921 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2922 			/* add tx-queue to CPU/rx-queue maps */
2923 			int pos = 0;
2924 
2925 			skip_tc = true;
2926 
2927 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2928 			while ((pos < map->len) && (map->queues[pos] != index))
2929 				pos++;
2930 
2931 			if (pos == map->len)
2932 				map->queues[map->len++] = index;
2933 #ifdef CONFIG_NUMA
2934 			if (type == XPS_CPUS) {
2935 				if (numa_node_id == -2)
2936 					numa_node_id = cpu_to_node(j);
2937 				else if (numa_node_id != cpu_to_node(j))
2938 					numa_node_id = -1;
2939 			}
2940 #endif
2941 		}
2942 
2943 		if (copy)
2944 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2945 					  skip_tc);
2946 	}
2947 
2948 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2949 
2950 	/* Cleanup old maps */
2951 	if (!dev_maps)
2952 		goto out_no_old_maps;
2953 
2954 	for (j = 0; j < dev_maps->nr_ids; j++) {
2955 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2956 			map = xmap_dereference(dev_maps->attr_map[tci]);
2957 			if (!map)
2958 				continue;
2959 
2960 			if (copy) {
2961 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2962 				if (map == new_map)
2963 					continue;
2964 			}
2965 
2966 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2967 			kfree_rcu(map, rcu);
2968 		}
2969 	}
2970 
2971 	old_dev_maps = dev_maps;
2972 
2973 out_no_old_maps:
2974 	dev_maps = new_dev_maps;
2975 	active = true;
2976 
2977 out_no_new_maps:
2978 	if (type == XPS_CPUS)
2979 		/* update Tx queue numa node */
2980 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2981 					     (numa_node_id >= 0) ?
2982 					     numa_node_id : NUMA_NO_NODE);
2983 
2984 	if (!dev_maps)
2985 		goto out_no_maps;
2986 
2987 	/* removes tx-queue from unused CPUs/rx-queues */
2988 	for (j = 0; j < dev_maps->nr_ids; j++) {
2989 		tci = j * dev_maps->num_tc;
2990 
2991 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2992 			if (i == tc &&
2993 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2994 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2995 				continue;
2996 
2997 			active |= remove_xps_queue(dev_maps,
2998 						   copy ? old_dev_maps : NULL,
2999 						   tci, index);
3000 		}
3001 	}
3002 
3003 	if (old_dev_maps)
3004 		kfree_rcu(old_dev_maps, rcu);
3005 
3006 	/* free map if not active */
3007 	if (!active)
3008 		reset_xps_maps(dev, dev_maps, type);
3009 
3010 out_no_maps:
3011 	mutex_unlock(&xps_map_mutex);
3012 
3013 	return 0;
3014 error:
3015 	/* remove any maps that we added */
3016 	for (j = 0; j < nr_ids; j++) {
3017 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3018 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3019 			map = copy ?
3020 			      xmap_dereference(dev_maps->attr_map[tci]) :
3021 			      NULL;
3022 			if (new_map && new_map != map)
3023 				kfree(new_map);
3024 		}
3025 	}
3026 
3027 	mutex_unlock(&xps_map_mutex);
3028 
3029 	kfree(new_dev_maps);
3030 	return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3033 
3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 			u16 index)
3036 {
3037 	int ret;
3038 
3039 	cpus_read_lock();
3040 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3041 	cpus_read_unlock();
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL(netif_set_xps_queue);
3046 
3047 #endif
3048 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3049 {
3050 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051 
3052 	/* Unbind any subordinate channels */
3053 	while (txq-- != &dev->_tx[0]) {
3054 		if (txq->sb_dev)
3055 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3056 	}
3057 }
3058 
3059 void netdev_reset_tc(struct net_device *dev)
3060 {
3061 #ifdef CONFIG_XPS
3062 	netif_reset_xps_queues_gt(dev, 0);
3063 #endif
3064 	netdev_unbind_all_sb_channels(dev);
3065 
3066 	/* Reset TC configuration of device */
3067 	dev->num_tc = 0;
3068 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3069 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3070 }
3071 EXPORT_SYMBOL(netdev_reset_tc);
3072 
3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3074 {
3075 	if (tc >= dev->num_tc)
3076 		return -EINVAL;
3077 
3078 #ifdef CONFIG_XPS
3079 	netif_reset_xps_queues(dev, offset, count);
3080 #endif
3081 	dev->tc_to_txq[tc].count = count;
3082 	dev->tc_to_txq[tc].offset = offset;
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(netdev_set_tc_queue);
3086 
3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3088 {
3089 	if (num_tc > TC_MAX_QUEUE)
3090 		return -EINVAL;
3091 
3092 #ifdef CONFIG_XPS
3093 	netif_reset_xps_queues_gt(dev, 0);
3094 #endif
3095 	netdev_unbind_all_sb_channels(dev);
3096 
3097 	dev->num_tc = num_tc;
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(netdev_set_num_tc);
3101 
3102 void netdev_unbind_sb_channel(struct net_device *dev,
3103 			      struct net_device *sb_dev)
3104 {
3105 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3106 
3107 #ifdef CONFIG_XPS
3108 	netif_reset_xps_queues_gt(sb_dev, 0);
3109 #endif
3110 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3111 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3112 
3113 	while (txq-- != &dev->_tx[0]) {
3114 		if (txq->sb_dev == sb_dev)
3115 			txq->sb_dev = NULL;
3116 	}
3117 }
3118 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3119 
3120 int netdev_bind_sb_channel_queue(struct net_device *dev,
3121 				 struct net_device *sb_dev,
3122 				 u8 tc, u16 count, u16 offset)
3123 {
3124 	/* Make certain the sb_dev and dev are already configured */
3125 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3126 		return -EINVAL;
3127 
3128 	/* We cannot hand out queues we don't have */
3129 	if ((offset + count) > dev->real_num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	/* Record the mapping */
3133 	sb_dev->tc_to_txq[tc].count = count;
3134 	sb_dev->tc_to_txq[tc].offset = offset;
3135 
3136 	/* Provide a way for Tx queue to find the tc_to_txq map or
3137 	 * XPS map for itself.
3138 	 */
3139 	while (count--)
3140 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3141 
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3145 
3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3147 {
3148 	/* Do not use a multiqueue device to represent a subordinate channel */
3149 	if (netif_is_multiqueue(dev))
3150 		return -ENODEV;
3151 
3152 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3153 	 * Channel 0 is meant to be "native" mode and used only to represent
3154 	 * the main root device. We allow writing 0 to reset the device back
3155 	 * to normal mode after being used as a subordinate channel.
3156 	 */
3157 	if (channel > S16_MAX)
3158 		return -EINVAL;
3159 
3160 	dev->num_tc = -channel;
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netdev_set_sb_channel);
3165 
3166 /*
3167  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3168  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3169  */
3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3171 {
3172 	bool disabling;
3173 	int rc;
3174 
3175 	disabling = txq < dev->real_num_tx_queues;
3176 
3177 	if (txq < 1 || txq > dev->num_tx_queues)
3178 		return -EINVAL;
3179 
3180 	if (dev->reg_state == NETREG_REGISTERED ||
3181 	    dev->reg_state == NETREG_UNREGISTERING) {
3182 		netdev_ops_assert_locked(dev);
3183 
3184 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3185 						  txq);
3186 		if (rc)
3187 			return rc;
3188 
3189 		if (dev->num_tc)
3190 			netif_setup_tc(dev, txq);
3191 
3192 		net_shaper_set_real_num_tx_queues(dev, txq);
3193 
3194 		dev_qdisc_change_real_num_tx(dev, txq);
3195 
3196 		dev->real_num_tx_queues = txq;
3197 
3198 		if (disabling) {
3199 			synchronize_net();
3200 			qdisc_reset_all_tx_gt(dev, txq);
3201 #ifdef CONFIG_XPS
3202 			netif_reset_xps_queues_gt(dev, txq);
3203 #endif
3204 		}
3205 	} else {
3206 		dev->real_num_tx_queues = txq;
3207 	}
3208 
3209 	return 0;
3210 }
3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3212 
3213 /**
3214  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3215  *	@dev: Network device
3216  *	@rxq: Actual number of RX queues
3217  *
3218  *	This must be called either with the rtnl_lock held or before
3219  *	registration of the net device.  Returns 0 on success, or a
3220  *	negative error code.  If called before registration, it always
3221  *	succeeds.
3222  */
3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3224 {
3225 	int rc;
3226 
3227 	if (rxq < 1 || rxq > dev->num_rx_queues)
3228 		return -EINVAL;
3229 
3230 	if (dev->reg_state == NETREG_REGISTERED) {
3231 		netdev_ops_assert_locked(dev);
3232 
3233 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3234 						  rxq);
3235 		if (rc)
3236 			return rc;
3237 	}
3238 
3239 	dev->real_num_rx_queues = rxq;
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3243 
3244 /**
3245  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3246  *	@dev: Network device
3247  *	@txq: Actual number of TX queues
3248  *	@rxq: Actual number of RX queues
3249  *
3250  *	Set the real number of both TX and RX queues.
3251  *	Does nothing if the number of queues is already correct.
3252  */
3253 int netif_set_real_num_queues(struct net_device *dev,
3254 			      unsigned int txq, unsigned int rxq)
3255 {
3256 	unsigned int old_rxq = dev->real_num_rx_queues;
3257 	int err;
3258 
3259 	if (txq < 1 || txq > dev->num_tx_queues ||
3260 	    rxq < 1 || rxq > dev->num_rx_queues)
3261 		return -EINVAL;
3262 
3263 	/* Start from increases, so the error path only does decreases -
3264 	 * decreases can't fail.
3265 	 */
3266 	if (rxq > dev->real_num_rx_queues) {
3267 		err = netif_set_real_num_rx_queues(dev, rxq);
3268 		if (err)
3269 			return err;
3270 	}
3271 	if (txq > dev->real_num_tx_queues) {
3272 		err = netif_set_real_num_tx_queues(dev, txq);
3273 		if (err)
3274 			goto undo_rx;
3275 	}
3276 	if (rxq < dev->real_num_rx_queues)
3277 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3278 	if (txq < dev->real_num_tx_queues)
3279 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3280 
3281 	return 0;
3282 undo_rx:
3283 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3284 	return err;
3285 }
3286 EXPORT_SYMBOL(netif_set_real_num_queues);
3287 
3288 /**
3289  * netif_set_tso_max_size() - set the max size of TSO frames supported
3290  * @dev:	netdev to update
3291  * @size:	max skb->len of a TSO frame
3292  *
3293  * Set the limit on the size of TSO super-frames the device can handle.
3294  * Unless explicitly set the stack will assume the value of
3295  * %GSO_LEGACY_MAX_SIZE.
3296  */
3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3298 {
3299 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3300 	if (size < READ_ONCE(dev->gso_max_size))
3301 		netif_set_gso_max_size(dev, size);
3302 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3303 		netif_set_gso_ipv4_max_size(dev, size);
3304 }
3305 EXPORT_SYMBOL(netif_set_tso_max_size);
3306 
3307 /**
3308  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3309  * @dev:	netdev to update
3310  * @segs:	max number of TCP segments
3311  *
3312  * Set the limit on the number of TCP segments the device can generate from
3313  * a single TSO super-frame.
3314  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3315  */
3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3317 {
3318 	dev->tso_max_segs = segs;
3319 	if (segs < READ_ONCE(dev->gso_max_segs))
3320 		netif_set_gso_max_segs(dev, segs);
3321 }
3322 EXPORT_SYMBOL(netif_set_tso_max_segs);
3323 
3324 /**
3325  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3326  * @to:		netdev to update
3327  * @from:	netdev from which to copy the limits
3328  */
3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3330 {
3331 	netif_set_tso_max_size(to, from->tso_max_size);
3332 	netif_set_tso_max_segs(to, from->tso_max_segs);
3333 }
3334 EXPORT_SYMBOL(netif_inherit_tso_max);
3335 
3336 /**
3337  * netif_get_num_default_rss_queues - default number of RSS queues
3338  *
3339  * Default value is the number of physical cores if there are only 1 or 2, or
3340  * divided by 2 if there are more.
3341  */
3342 int netif_get_num_default_rss_queues(void)
3343 {
3344 	cpumask_var_t cpus;
3345 	int cpu, count = 0;
3346 
3347 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3348 		return 1;
3349 
3350 	cpumask_copy(cpus, cpu_online_mask);
3351 	for_each_cpu(cpu, cpus) {
3352 		++count;
3353 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3354 	}
3355 	free_cpumask_var(cpus);
3356 
3357 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3358 }
3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3360 
3361 static void __netif_reschedule(struct Qdisc *q)
3362 {
3363 	struct softnet_data *sd;
3364 	unsigned long flags;
3365 
3366 	local_irq_save(flags);
3367 	sd = this_cpu_ptr(&softnet_data);
3368 	q->next_sched = NULL;
3369 	*sd->output_queue_tailp = q;
3370 	sd->output_queue_tailp = &q->next_sched;
3371 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3372 	local_irq_restore(flags);
3373 }
3374 
3375 void __netif_schedule(struct Qdisc *q)
3376 {
3377 	/* If q->defer_list is not empty, at least one thread is
3378 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3379 	 * This thread will attempt to run the queue.
3380 	 */
3381 	if (!llist_empty(&q->defer_list))
3382 		return;
3383 
3384 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3385 		__netif_reschedule(q);
3386 }
3387 EXPORT_SYMBOL(__netif_schedule);
3388 
3389 struct dev_kfree_skb_cb {
3390 	enum skb_drop_reason reason;
3391 };
3392 
3393 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3394 {
3395 	return (struct dev_kfree_skb_cb *)skb->cb;
3396 }
3397 
3398 void netif_schedule_queue(struct netdev_queue *txq)
3399 {
3400 	rcu_read_lock();
3401 	if (!netif_xmit_stopped(txq)) {
3402 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3403 
3404 		__netif_schedule(q);
3405 	}
3406 	rcu_read_unlock();
3407 }
3408 EXPORT_SYMBOL(netif_schedule_queue);
3409 
3410 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3411 {
3412 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3413 		struct Qdisc *q;
3414 
3415 		rcu_read_lock();
3416 		q = rcu_dereference(dev_queue->qdisc);
3417 		__netif_schedule(q);
3418 		rcu_read_unlock();
3419 	}
3420 }
3421 EXPORT_SYMBOL(netif_tx_wake_queue);
3422 
3423 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3424 {
3425 	unsigned long flags;
3426 
3427 	if (unlikely(!skb))
3428 		return;
3429 
3430 	if (likely(refcount_read(&skb->users) == 1)) {
3431 		smp_rmb();
3432 		refcount_set(&skb->users, 0);
3433 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3434 		return;
3435 	}
3436 	get_kfree_skb_cb(skb)->reason = reason;
3437 	local_irq_save(flags);
3438 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3439 	__this_cpu_write(softnet_data.completion_queue, skb);
3440 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3441 	local_irq_restore(flags);
3442 }
3443 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3444 
3445 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3446 {
3447 	if (in_hardirq() || irqs_disabled())
3448 		dev_kfree_skb_irq_reason(skb, reason);
3449 	else
3450 		kfree_skb_reason(skb, reason);
3451 }
3452 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3453 
3454 
3455 /**
3456  * netif_device_detach - mark device as removed
3457  * @dev: network device
3458  *
3459  * Mark device as removed from system and therefore no longer available.
3460  */
3461 void netif_device_detach(struct net_device *dev)
3462 {
3463 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3464 	    netif_running(dev)) {
3465 		netif_tx_stop_all_queues(dev);
3466 	}
3467 }
3468 EXPORT_SYMBOL(netif_device_detach);
3469 
3470 /**
3471  * netif_device_attach - mark device as attached
3472  * @dev: network device
3473  *
3474  * Mark device as attached from system and restart if needed.
3475  */
3476 void netif_device_attach(struct net_device *dev)
3477 {
3478 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3479 	    netif_running(dev)) {
3480 		netif_tx_wake_all_queues(dev);
3481 		netdev_watchdog_up(dev);
3482 	}
3483 }
3484 EXPORT_SYMBOL(netif_device_attach);
3485 
3486 /*
3487  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3488  * to be used as a distribution range.
3489  */
3490 static u16 skb_tx_hash(const struct net_device *dev,
3491 		       const struct net_device *sb_dev,
3492 		       struct sk_buff *skb)
3493 {
3494 	u32 hash;
3495 	u16 qoffset = 0;
3496 	u16 qcount = dev->real_num_tx_queues;
3497 
3498 	if (dev->num_tc) {
3499 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3500 
3501 		qoffset = sb_dev->tc_to_txq[tc].offset;
3502 		qcount = sb_dev->tc_to_txq[tc].count;
3503 		if (unlikely(!qcount)) {
3504 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3505 					     sb_dev->name, qoffset, tc);
3506 			qoffset = 0;
3507 			qcount = dev->real_num_tx_queues;
3508 		}
3509 	}
3510 
3511 	if (skb_rx_queue_recorded(skb)) {
3512 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3513 		hash = skb_get_rx_queue(skb);
3514 		if (hash >= qoffset)
3515 			hash -= qoffset;
3516 		while (unlikely(hash >= qcount))
3517 			hash -= qcount;
3518 		return hash + qoffset;
3519 	}
3520 
3521 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3522 }
3523 
3524 void skb_warn_bad_offload(const struct sk_buff *skb)
3525 {
3526 	static const netdev_features_t null_features;
3527 	struct net_device *dev = skb->dev;
3528 	const char *name = "";
3529 
3530 	if (!net_ratelimit())
3531 		return;
3532 
3533 	if (dev) {
3534 		if (dev->dev.parent)
3535 			name = dev_driver_string(dev->dev.parent);
3536 		else
3537 			name = netdev_name(dev);
3538 	}
3539 	skb_dump(KERN_WARNING, skb, false);
3540 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3541 	     name, dev ? &dev->features : &null_features,
3542 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3543 }
3544 
3545 /*
3546  * Invalidate hardware checksum when packet is to be mangled, and
3547  * complete checksum manually on outgoing path.
3548  */
3549 int skb_checksum_help(struct sk_buff *skb)
3550 {
3551 	__wsum csum;
3552 	int ret = 0, offset;
3553 
3554 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3555 		goto out_set_summed;
3556 
3557 	if (unlikely(skb_is_gso(skb))) {
3558 		skb_warn_bad_offload(skb);
3559 		return -EINVAL;
3560 	}
3561 
3562 	if (!skb_frags_readable(skb)) {
3563 		return -EFAULT;
3564 	}
3565 
3566 	/* Before computing a checksum, we should make sure no frag could
3567 	 * be modified by an external entity : checksum could be wrong.
3568 	 */
3569 	if (skb_has_shared_frag(skb)) {
3570 		ret = __skb_linearize(skb);
3571 		if (ret)
3572 			goto out;
3573 	}
3574 
3575 	offset = skb_checksum_start_offset(skb);
3576 	ret = -EINVAL;
3577 	if (unlikely(offset >= skb_headlen(skb))) {
3578 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3579 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3580 			  offset, skb_headlen(skb));
3581 		goto out;
3582 	}
3583 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3584 
3585 	offset += skb->csum_offset;
3586 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3587 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3588 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3589 			  offset + sizeof(__sum16), skb_headlen(skb));
3590 		goto out;
3591 	}
3592 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3593 	if (ret)
3594 		goto out;
3595 
3596 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3597 out_set_summed:
3598 	skb->ip_summed = CHECKSUM_NONE;
3599 out:
3600 	return ret;
3601 }
3602 EXPORT_SYMBOL(skb_checksum_help);
3603 
3604 #ifdef CONFIG_NET_CRC32C
3605 int skb_crc32c_csum_help(struct sk_buff *skb)
3606 {
3607 	u32 crc;
3608 	int ret = 0, offset, start;
3609 
3610 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3611 		goto out;
3612 
3613 	if (unlikely(skb_is_gso(skb)))
3614 		goto out;
3615 
3616 	/* Before computing a checksum, we should make sure no frag could
3617 	 * be modified by an external entity : checksum could be wrong.
3618 	 */
3619 	if (unlikely(skb_has_shared_frag(skb))) {
3620 		ret = __skb_linearize(skb);
3621 		if (ret)
3622 			goto out;
3623 	}
3624 	start = skb_checksum_start_offset(skb);
3625 	offset = start + offsetof(struct sctphdr, checksum);
3626 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3632 	if (ret)
3633 		goto out;
3634 
3635 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3636 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3637 	skb_reset_csum_not_inet(skb);
3638 out:
3639 	return ret;
3640 }
3641 EXPORT_SYMBOL(skb_crc32c_csum_help);
3642 #endif /* CONFIG_NET_CRC32C */
3643 
3644 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3645 {
3646 	__be16 type = skb->protocol;
3647 
3648 	/* Tunnel gso handlers can set protocol to ethernet. */
3649 	if (type == htons(ETH_P_TEB)) {
3650 		struct ethhdr *eth;
3651 
3652 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3653 			return 0;
3654 
3655 		eth = (struct ethhdr *)skb->data;
3656 		type = eth->h_proto;
3657 	}
3658 
3659 	return vlan_get_protocol_and_depth(skb, type, depth);
3660 }
3661 
3662 
3663 /* Take action when hardware reception checksum errors are detected. */
3664 #ifdef CONFIG_BUG
3665 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3666 {
3667 	netdev_err(dev, "hw csum failure\n");
3668 	skb_dump(KERN_ERR, skb, true);
3669 	dump_stack();
3670 }
3671 
3672 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3675 }
3676 EXPORT_SYMBOL(netdev_rx_csum_fault);
3677 #endif
3678 
3679 /* XXX: check that highmem exists at all on the given machine. */
3680 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3681 {
3682 #ifdef CONFIG_HIGHMEM
3683 	int i;
3684 
3685 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3686 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3687 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3688 			struct page *page = skb_frag_page(frag);
3689 
3690 			if (page && PageHighMem(page))
3691 				return 1;
3692 		}
3693 	}
3694 #endif
3695 	return 0;
3696 }
3697 
3698 /* If MPLS offload request, verify we are testing hardware MPLS features
3699  * instead of standard features for the netdev.
3700  */
3701 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3702 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3703 					   netdev_features_t features,
3704 					   __be16 type)
3705 {
3706 	if (eth_p_mpls(type))
3707 		features &= skb->dev->mpls_features;
3708 
3709 	return features;
3710 }
3711 #else
3712 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3713 					   netdev_features_t features,
3714 					   __be16 type)
3715 {
3716 	return features;
3717 }
3718 #endif
3719 
3720 static netdev_features_t harmonize_features(struct sk_buff *skb,
3721 	netdev_features_t features)
3722 {
3723 	__be16 type;
3724 
3725 	type = skb_network_protocol(skb, NULL);
3726 	features = net_mpls_features(skb, features, type);
3727 
3728 	if (skb->ip_summed != CHECKSUM_NONE &&
3729 	    !can_checksum_protocol(features, type)) {
3730 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3731 	}
3732 	if (illegal_highdma(skb->dev, skb))
3733 		features &= ~NETIF_F_SG;
3734 
3735 	return features;
3736 }
3737 
3738 netdev_features_t passthru_features_check(struct sk_buff *skb,
3739 					  struct net_device *dev,
3740 					  netdev_features_t features)
3741 {
3742 	return features;
3743 }
3744 EXPORT_SYMBOL(passthru_features_check);
3745 
3746 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3747 					     struct net_device *dev,
3748 					     netdev_features_t features)
3749 {
3750 	return vlan_features_check(skb, features);
3751 }
3752 
3753 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3754 					    struct net_device *dev,
3755 					    netdev_features_t features)
3756 {
3757 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3758 
3759 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3760 		return features & ~NETIF_F_GSO_MASK;
3761 
3762 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3763 		return features & ~NETIF_F_GSO_MASK;
3764 
3765 	if (!skb_shinfo(skb)->gso_type) {
3766 		skb_warn_bad_offload(skb);
3767 		return features & ~NETIF_F_GSO_MASK;
3768 	}
3769 
3770 	/* Support for GSO partial features requires software
3771 	 * intervention before we can actually process the packets
3772 	 * so we need to strip support for any partial features now
3773 	 * and we can pull them back in after we have partially
3774 	 * segmented the frame.
3775 	 */
3776 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3777 		features &= ~dev->gso_partial_features;
3778 
3779 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3780 	 * has the potential to be fragmented so that TSO does not generate
3781 	 * segments with the same ID. For encapsulated packets, the ID mangling
3782 	 * feature is guaranteed not to use the same ID for the outer IPv4
3783 	 * headers of the generated segments if the headers have the potential
3784 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3785 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3786 	 * segmentation-offloads.rst).
3787 	 */
3788 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3789 		struct iphdr *iph = skb->encapsulation ?
3790 				    inner_ip_hdr(skb) : ip_hdr(skb);
3791 
3792 		if (!(iph->frag_off & htons(IP_DF)))
3793 			features &= ~NETIF_F_TSO_MANGLEID;
3794 	}
3795 
3796 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3797 	 * so neither does TSO that depends on it.
3798 	 */
3799 	if (features & NETIF_F_IPV6_CSUM &&
3800 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3801 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3802 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3803 	    skb_transport_header_was_set(skb) &&
3804 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3805 	    !ipv6_has_hopopt_jumbo(skb))
3806 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3807 
3808 	return features;
3809 }
3810 
3811 netdev_features_t netif_skb_features(struct sk_buff *skb)
3812 {
3813 	struct net_device *dev = skb->dev;
3814 	netdev_features_t features = dev->features;
3815 
3816 	if (skb_is_gso(skb))
3817 		features = gso_features_check(skb, dev, features);
3818 
3819 	/* If encapsulation offload request, verify we are testing
3820 	 * hardware encapsulation features instead of standard
3821 	 * features for the netdev
3822 	 */
3823 	if (skb->encapsulation)
3824 		features &= dev->hw_enc_features;
3825 
3826 	if (skb_vlan_tagged(skb))
3827 		features = netdev_intersect_features(features,
3828 						     dev->vlan_features |
3829 						     NETIF_F_HW_VLAN_CTAG_TX |
3830 						     NETIF_F_HW_VLAN_STAG_TX);
3831 
3832 	if (dev->netdev_ops->ndo_features_check)
3833 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3834 								features);
3835 	else
3836 		features &= dflt_features_check(skb, dev, features);
3837 
3838 	return harmonize_features(skb, features);
3839 }
3840 EXPORT_SYMBOL(netif_skb_features);
3841 
3842 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3843 		    struct netdev_queue *txq, bool more)
3844 {
3845 	unsigned int len;
3846 	int rc;
3847 
3848 	if (dev_nit_active_rcu(dev))
3849 		dev_queue_xmit_nit(skb, dev);
3850 
3851 	len = skb->len;
3852 	trace_net_dev_start_xmit(skb, dev);
3853 	rc = netdev_start_xmit(skb, dev, txq, more);
3854 	trace_net_dev_xmit(skb, rc, dev, len);
3855 
3856 	return rc;
3857 }
3858 
3859 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3860 				    struct netdev_queue *txq, int *ret)
3861 {
3862 	struct sk_buff *skb = first;
3863 	int rc = NETDEV_TX_OK;
3864 
3865 	while (skb) {
3866 		struct sk_buff *next = skb->next;
3867 
3868 		skb_mark_not_on_list(skb);
3869 		rc = xmit_one(skb, dev, txq, next != NULL);
3870 		if (unlikely(!dev_xmit_complete(rc))) {
3871 			skb->next = next;
3872 			goto out;
3873 		}
3874 
3875 		skb = next;
3876 		if (netif_tx_queue_stopped(txq) && skb) {
3877 			rc = NETDEV_TX_BUSY;
3878 			break;
3879 		}
3880 	}
3881 
3882 out:
3883 	*ret = rc;
3884 	return skb;
3885 }
3886 
3887 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3888 					  netdev_features_t features)
3889 {
3890 	if (skb_vlan_tag_present(skb) &&
3891 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3892 		skb = __vlan_hwaccel_push_inside(skb);
3893 	return skb;
3894 }
3895 
3896 int skb_csum_hwoffload_help(struct sk_buff *skb,
3897 			    const netdev_features_t features)
3898 {
3899 	if (unlikely(skb_csum_is_sctp(skb)))
3900 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3901 			skb_crc32c_csum_help(skb);
3902 
3903 	if (features & NETIF_F_HW_CSUM)
3904 		return 0;
3905 
3906 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3907 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3908 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3909 		    !ipv6_has_hopopt_jumbo(skb))
3910 			goto sw_checksum;
3911 
3912 		switch (skb->csum_offset) {
3913 		case offsetof(struct tcphdr, check):
3914 		case offsetof(struct udphdr, check):
3915 			return 0;
3916 		}
3917 	}
3918 
3919 sw_checksum:
3920 	return skb_checksum_help(skb);
3921 }
3922 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3923 
3924 /* Checks if this SKB belongs to an HW offloaded socket
3925  * and whether any SW fallbacks are required based on dev.
3926  * Check decrypted mark in case skb_orphan() cleared socket.
3927  */
3928 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3929 					    struct net_device *dev)
3930 {
3931 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3932 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3933 				       struct sk_buff *skb);
3934 	struct sock *sk = skb->sk;
3935 
3936 	sk_validate = NULL;
3937 	if (sk) {
3938 		if (sk_fullsock(sk))
3939 			sk_validate = sk->sk_validate_xmit_skb;
3940 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3941 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3942 	}
3943 
3944 	if (sk_validate) {
3945 		skb = sk_validate(sk, dev, skb);
3946 	} else if (unlikely(skb_is_decrypted(skb))) {
3947 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3948 		kfree_skb(skb);
3949 		skb = NULL;
3950 	}
3951 #endif
3952 
3953 	return skb;
3954 }
3955 
3956 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3957 						    struct net_device *dev)
3958 {
3959 	struct skb_shared_info *shinfo;
3960 	struct net_iov *niov;
3961 
3962 	if (likely(skb_frags_readable(skb)))
3963 		goto out;
3964 
3965 	if (!dev->netmem_tx)
3966 		goto out_free;
3967 
3968 	shinfo = skb_shinfo(skb);
3969 
3970 	if (shinfo->nr_frags > 0) {
3971 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3972 		if (net_is_devmem_iov(niov) &&
3973 		    net_devmem_iov_binding(niov)->dev != dev)
3974 			goto out_free;
3975 	}
3976 
3977 out:
3978 	return skb;
3979 
3980 out_free:
3981 	kfree_skb(skb);
3982 	return NULL;
3983 }
3984 
3985 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3986 {
3987 	netdev_features_t features;
3988 
3989 	skb = validate_xmit_unreadable_skb(skb, dev);
3990 	if (unlikely(!skb))
3991 		goto out_null;
3992 
3993 	features = netif_skb_features(skb);
3994 	skb = validate_xmit_vlan(skb, features);
3995 	if (unlikely(!skb))
3996 		goto out_null;
3997 
3998 	skb = sk_validate_xmit_skb(skb, dev);
3999 	if (unlikely(!skb))
4000 		goto out_null;
4001 
4002 	if (netif_needs_gso(skb, features)) {
4003 		struct sk_buff *segs;
4004 
4005 		segs = skb_gso_segment(skb, features);
4006 		if (IS_ERR(segs)) {
4007 			goto out_kfree_skb;
4008 		} else if (segs) {
4009 			consume_skb(skb);
4010 			skb = segs;
4011 		}
4012 	} else {
4013 		if (skb_needs_linearize(skb, features) &&
4014 		    __skb_linearize(skb))
4015 			goto out_kfree_skb;
4016 
4017 		/* If packet is not checksummed and device does not
4018 		 * support checksumming for this protocol, complete
4019 		 * checksumming here.
4020 		 */
4021 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4022 			if (skb->encapsulation)
4023 				skb_set_inner_transport_header(skb,
4024 							       skb_checksum_start_offset(skb));
4025 			else
4026 				skb_set_transport_header(skb,
4027 							 skb_checksum_start_offset(skb));
4028 			if (skb_csum_hwoffload_help(skb, features))
4029 				goto out_kfree_skb;
4030 		}
4031 	}
4032 
4033 	skb = validate_xmit_xfrm(skb, features, again);
4034 
4035 	return skb;
4036 
4037 out_kfree_skb:
4038 	kfree_skb(skb);
4039 out_null:
4040 	dev_core_stats_tx_dropped_inc(dev);
4041 	return NULL;
4042 }
4043 
4044 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4045 {
4046 	struct sk_buff *next, *head = NULL, *tail;
4047 
4048 	for (; skb != NULL; skb = next) {
4049 		next = skb->next;
4050 		skb_mark_not_on_list(skb);
4051 
4052 		/* in case skb won't be segmented, point to itself */
4053 		skb->prev = skb;
4054 
4055 		skb = validate_xmit_skb(skb, dev, again);
4056 		if (!skb)
4057 			continue;
4058 
4059 		if (!head)
4060 			head = skb;
4061 		else
4062 			tail->next = skb;
4063 		/* If skb was segmented, skb->prev points to
4064 		 * the last segment. If not, it still contains skb.
4065 		 */
4066 		tail = skb->prev;
4067 	}
4068 	return head;
4069 }
4070 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4071 
4072 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4073 {
4074 	struct skb_shared_info *shinfo = skb_shinfo(skb);
4075 	u16 gso_segs;
4076 
4077 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4078 	if (!shinfo->gso_size) {
4079 		qdisc_skb_cb(skb)->pkt_segs = 1;
4080 		return;
4081 	}
4082 
4083 	qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4084 
4085 	/* To get more precise estimation of bytes sent on wire,
4086 	 * we add to pkt_len the headers size of all segments
4087 	 */
4088 	if (skb_transport_header_was_set(skb)) {
4089 		unsigned int hdr_len;
4090 
4091 		/* mac layer + network layer */
4092 		if (!skb->encapsulation)
4093 			hdr_len = skb_transport_offset(skb);
4094 		else
4095 			hdr_len = skb_inner_transport_offset(skb);
4096 
4097 		/* + transport layer */
4098 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4099 			const struct tcphdr *th;
4100 			struct tcphdr _tcphdr;
4101 
4102 			th = skb_header_pointer(skb, hdr_len,
4103 						sizeof(_tcphdr), &_tcphdr);
4104 			if (likely(th))
4105 				hdr_len += __tcp_hdrlen(th);
4106 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4107 			struct udphdr _udphdr;
4108 
4109 			if (skb_header_pointer(skb, hdr_len,
4110 					       sizeof(_udphdr), &_udphdr))
4111 				hdr_len += sizeof(struct udphdr);
4112 		}
4113 
4114 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4115 			int payload = skb->len - hdr_len;
4116 
4117 			/* Malicious packet. */
4118 			if (payload <= 0)
4119 				return;
4120 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4121 			shinfo->gso_segs = gso_segs;
4122 			qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4123 		}
4124 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4125 	}
4126 }
4127 
4128 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4129 			     struct sk_buff **to_free,
4130 			     struct netdev_queue *txq)
4131 {
4132 	int rc;
4133 
4134 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4135 	if (rc == NET_XMIT_SUCCESS)
4136 		trace_qdisc_enqueue(q, txq, skb);
4137 	return rc;
4138 }
4139 
4140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4141 				 struct net_device *dev,
4142 				 struct netdev_queue *txq)
4143 {
4144 	struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4145 	spinlock_t *root_lock = qdisc_lock(q);
4146 	struct llist_node *ll_list, *first_n;
4147 	unsigned long defer_count = 0;
4148 	int rc;
4149 
4150 	qdisc_calculate_pkt_len(skb, q);
4151 
4152 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4153 
4154 	if (q->flags & TCQ_F_NOLOCK) {
4155 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4156 		    qdisc_run_begin(q)) {
4157 			/* Retest nolock_qdisc_is_empty() within the protection
4158 			 * of q->seqlock to protect from racing with requeuing.
4159 			 */
4160 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4161 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4162 				__qdisc_run(q);
4163 				to_free2 = qdisc_run_end(q);
4164 
4165 				goto free_skbs;
4166 			}
4167 
4168 			qdisc_bstats_cpu_update(q, skb);
4169 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4170 			    !nolock_qdisc_is_empty(q))
4171 				__qdisc_run(q);
4172 
4173 			to_free2 = qdisc_run_end(q);
4174 			rc = NET_XMIT_SUCCESS;
4175 			goto free_skbs;
4176 		}
4177 
4178 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 		to_free2 = qdisc_run(q);
4180 		goto free_skbs;
4181 	}
4182 
4183 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4184 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4185 	 * at most once to limit the number of skbs in defer_list.
4186 	 * We perform the defer_count increment only if the list is not empty,
4187 	 * because some arches have slow atomic_long_inc_return().
4188 	 */
4189 	first_n = READ_ONCE(q->defer_list.first);
4190 	do {
4191 		if (first_n && !defer_count) {
4192 			defer_count = atomic_long_inc_return(&q->defer_count);
4193 			if (unlikely(defer_count > READ_ONCE(q->limit))) {
4194 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4195 				return NET_XMIT_DROP;
4196 			}
4197 		}
4198 		skb->ll_node.next = first_n;
4199 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4200 
4201 	/* If defer_list was not empty, we know the cpu which queued
4202 	 * the first skb will process the whole list for us.
4203 	 */
4204 	if (first_n)
4205 		return NET_XMIT_SUCCESS;
4206 
4207 	spin_lock(root_lock);
4208 
4209 	ll_list = llist_del_all(&q->defer_list);
4210 	/* There is a small race because we clear defer_count not atomically
4211 	 * with the prior llist_del_all(). This means defer_list could grow
4212 	 * over q->limit.
4213 	 */
4214 	atomic_long_set(&q->defer_count, 0);
4215 
4216 	ll_list = llist_reverse_order(ll_list);
4217 
4218 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4219 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4220 			__qdisc_drop(skb, &to_free);
4221 		rc = NET_XMIT_DROP;
4222 		goto unlock;
4223 	}
4224 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4225 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4226 		/*
4227 		 * This is a work-conserving queue; there are no old skbs
4228 		 * waiting to be sent out; and the qdisc is not running -
4229 		 * xmit the skb directly.
4230 		 */
4231 
4232 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4233 							  struct sk_buff,
4234 							  ll_node));
4235 		qdisc_bstats_update(q, skb);
4236 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4237 			__qdisc_run(q);
4238 		to_free2 = qdisc_run_end(q);
4239 		rc = NET_XMIT_SUCCESS;
4240 	} else {
4241 		int count = 0;
4242 
4243 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4244 			prefetch(next);
4245 			prefetch(&next->priority);
4246 			skb_mark_not_on_list(skb);
4247 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4248 			count++;
4249 		}
4250 		to_free2 = qdisc_run(q);
4251 		if (count != 1)
4252 			rc = NET_XMIT_SUCCESS;
4253 	}
4254 unlock:
4255 	spin_unlock(root_lock);
4256 
4257 free_skbs:
4258 	tcf_kfree_skb_list(to_free);
4259 	tcf_kfree_skb_list(to_free2);
4260 	return rc;
4261 }
4262 
4263 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4264 static void skb_update_prio(struct sk_buff *skb)
4265 {
4266 	const struct netprio_map *map;
4267 	const struct sock *sk;
4268 	unsigned int prioidx;
4269 
4270 	if (skb->priority)
4271 		return;
4272 	map = rcu_dereference_bh(skb->dev->priomap);
4273 	if (!map)
4274 		return;
4275 	sk = skb_to_full_sk(skb);
4276 	if (!sk)
4277 		return;
4278 
4279 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4280 
4281 	if (prioidx < map->priomap_len)
4282 		skb->priority = map->priomap[prioidx];
4283 }
4284 #else
4285 #define skb_update_prio(skb)
4286 #endif
4287 
4288 /**
4289  *	dev_loopback_xmit - loop back @skb
4290  *	@net: network namespace this loopback is happening in
4291  *	@sk:  sk needed to be a netfilter okfn
4292  *	@skb: buffer to transmit
4293  */
4294 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4295 {
4296 	skb_reset_mac_header(skb);
4297 	__skb_pull(skb, skb_network_offset(skb));
4298 	skb->pkt_type = PACKET_LOOPBACK;
4299 	if (skb->ip_summed == CHECKSUM_NONE)
4300 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4301 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4302 	skb_dst_force(skb);
4303 	netif_rx(skb);
4304 	return 0;
4305 }
4306 EXPORT_SYMBOL(dev_loopback_xmit);
4307 
4308 #ifdef CONFIG_NET_EGRESS
4309 static struct netdev_queue *
4310 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4311 {
4312 	int qm = skb_get_queue_mapping(skb);
4313 
4314 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4315 }
4316 
4317 #ifndef CONFIG_PREEMPT_RT
4318 static bool netdev_xmit_txqueue_skipped(void)
4319 {
4320 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4321 }
4322 
4323 void netdev_xmit_skip_txqueue(bool skip)
4324 {
4325 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4326 }
4327 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4328 
4329 #else
4330 static bool netdev_xmit_txqueue_skipped(void)
4331 {
4332 	return current->net_xmit.skip_txqueue;
4333 }
4334 
4335 void netdev_xmit_skip_txqueue(bool skip)
4336 {
4337 	current->net_xmit.skip_txqueue = skip;
4338 }
4339 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4340 #endif
4341 #endif /* CONFIG_NET_EGRESS */
4342 
4343 #ifdef CONFIG_NET_XGRESS
4344 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4345 		  enum skb_drop_reason *drop_reason)
4346 {
4347 	int ret = TC_ACT_UNSPEC;
4348 #ifdef CONFIG_NET_CLS_ACT
4349 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4350 	struct tcf_result res;
4351 
4352 	if (!miniq)
4353 		return ret;
4354 
4355 	/* Global bypass */
4356 	if (!static_branch_likely(&tcf_sw_enabled_key))
4357 		return ret;
4358 
4359 	/* Block-wise bypass */
4360 	if (tcf_block_bypass_sw(miniq->block))
4361 		return ret;
4362 
4363 	tc_skb_cb(skb)->mru = 0;
4364 	qdisc_skb_cb(skb)->post_ct = false;
4365 	tcf_set_drop_reason(skb, *drop_reason);
4366 
4367 	mini_qdisc_bstats_cpu_update(miniq, skb);
4368 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4369 	/* Only tcf related quirks below. */
4370 	switch (ret) {
4371 	case TC_ACT_SHOT:
4372 		*drop_reason = tcf_get_drop_reason(skb);
4373 		mini_qdisc_qstats_cpu_drop(miniq);
4374 		break;
4375 	case TC_ACT_OK:
4376 	case TC_ACT_RECLASSIFY:
4377 		skb->tc_index = TC_H_MIN(res.classid);
4378 		break;
4379 	}
4380 #endif /* CONFIG_NET_CLS_ACT */
4381 	return ret;
4382 }
4383 
4384 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4385 
4386 void tcx_inc(void)
4387 {
4388 	static_branch_inc(&tcx_needed_key);
4389 }
4390 
4391 void tcx_dec(void)
4392 {
4393 	static_branch_dec(&tcx_needed_key);
4394 }
4395 
4396 static __always_inline enum tcx_action_base
4397 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4398 	const bool needs_mac)
4399 {
4400 	const struct bpf_mprog_fp *fp;
4401 	const struct bpf_prog *prog;
4402 	int ret = TCX_NEXT;
4403 
4404 	if (needs_mac)
4405 		__skb_push(skb, skb->mac_len);
4406 	bpf_mprog_foreach_prog(entry, fp, prog) {
4407 		bpf_compute_data_pointers(skb);
4408 		ret = bpf_prog_run(prog, skb);
4409 		if (ret != TCX_NEXT)
4410 			break;
4411 	}
4412 	if (needs_mac)
4413 		__skb_pull(skb, skb->mac_len);
4414 	return tcx_action_code(skb, ret);
4415 }
4416 
4417 static __always_inline struct sk_buff *
4418 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4419 		   struct net_device *orig_dev, bool *another)
4420 {
4421 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4422 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4423 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4424 	int sch_ret;
4425 
4426 	if (!entry)
4427 		return skb;
4428 
4429 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4430 	if (unlikely(*pt_prev)) {
4431 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4432 		*pt_prev = NULL;
4433 	}
4434 
4435 	qdisc_pkt_len_segs_init(skb);
4436 	tcx_set_ingress(skb, true);
4437 
4438 	if (static_branch_unlikely(&tcx_needed_key)) {
4439 		sch_ret = tcx_run(entry, skb, true);
4440 		if (sch_ret != TC_ACT_UNSPEC)
4441 			goto ingress_verdict;
4442 	}
4443 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4444 ingress_verdict:
4445 	switch (sch_ret) {
4446 	case TC_ACT_REDIRECT:
4447 		/* skb_mac_header check was done by BPF, so we can safely
4448 		 * push the L2 header back before redirecting to another
4449 		 * netdev.
4450 		 */
4451 		__skb_push(skb, skb->mac_len);
4452 		if (skb_do_redirect(skb) == -EAGAIN) {
4453 			__skb_pull(skb, skb->mac_len);
4454 			*another = true;
4455 			break;
4456 		}
4457 		*ret = NET_RX_SUCCESS;
4458 		bpf_net_ctx_clear(bpf_net_ctx);
4459 		return NULL;
4460 	case TC_ACT_SHOT:
4461 		kfree_skb_reason(skb, drop_reason);
4462 		*ret = NET_RX_DROP;
4463 		bpf_net_ctx_clear(bpf_net_ctx);
4464 		return NULL;
4465 	/* used by tc_run */
4466 	case TC_ACT_STOLEN:
4467 	case TC_ACT_QUEUED:
4468 	case TC_ACT_TRAP:
4469 		consume_skb(skb);
4470 		fallthrough;
4471 	case TC_ACT_CONSUMED:
4472 		*ret = NET_RX_SUCCESS;
4473 		bpf_net_ctx_clear(bpf_net_ctx);
4474 		return NULL;
4475 	}
4476 	bpf_net_ctx_clear(bpf_net_ctx);
4477 
4478 	return skb;
4479 }
4480 
4481 static __always_inline struct sk_buff *
4482 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4483 {
4484 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4485 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4486 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4487 	int sch_ret;
4488 
4489 	if (!entry)
4490 		return skb;
4491 
4492 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4493 
4494 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4495 	 * already set by the caller.
4496 	 */
4497 	if (static_branch_unlikely(&tcx_needed_key)) {
4498 		sch_ret = tcx_run(entry, skb, false);
4499 		if (sch_ret != TC_ACT_UNSPEC)
4500 			goto egress_verdict;
4501 	}
4502 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4503 egress_verdict:
4504 	switch (sch_ret) {
4505 	case TC_ACT_REDIRECT:
4506 		/* No need to push/pop skb's mac_header here on egress! */
4507 		skb_do_redirect(skb);
4508 		*ret = NET_XMIT_SUCCESS;
4509 		bpf_net_ctx_clear(bpf_net_ctx);
4510 		return NULL;
4511 	case TC_ACT_SHOT:
4512 		kfree_skb_reason(skb, drop_reason);
4513 		*ret = NET_XMIT_DROP;
4514 		bpf_net_ctx_clear(bpf_net_ctx);
4515 		return NULL;
4516 	/* used by tc_run */
4517 	case TC_ACT_STOLEN:
4518 	case TC_ACT_QUEUED:
4519 	case TC_ACT_TRAP:
4520 		consume_skb(skb);
4521 		fallthrough;
4522 	case TC_ACT_CONSUMED:
4523 		*ret = NET_XMIT_SUCCESS;
4524 		bpf_net_ctx_clear(bpf_net_ctx);
4525 		return NULL;
4526 	}
4527 	bpf_net_ctx_clear(bpf_net_ctx);
4528 
4529 	return skb;
4530 }
4531 #else
4532 static __always_inline struct sk_buff *
4533 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4534 		   struct net_device *orig_dev, bool *another)
4535 {
4536 	return skb;
4537 }
4538 
4539 static __always_inline struct sk_buff *
4540 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4541 {
4542 	return skb;
4543 }
4544 #endif /* CONFIG_NET_XGRESS */
4545 
4546 #ifdef CONFIG_XPS
4547 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4548 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4549 {
4550 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4551 	struct xps_map *map;
4552 	int queue_index = -1;
4553 
4554 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4555 		return queue_index;
4556 
4557 	tci *= dev_maps->num_tc;
4558 	tci += tc;
4559 
4560 	map = rcu_dereference(dev_maps->attr_map[tci]);
4561 	if (map) {
4562 		if (map->len == 1)
4563 			queue_index = map->queues[0];
4564 		else
4565 			queue_index = map->queues[reciprocal_scale(
4566 						skb_get_hash(skb), map->len)];
4567 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4568 			queue_index = -1;
4569 	}
4570 	return queue_index;
4571 }
4572 #endif
4573 
4574 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4575 			 struct sk_buff *skb)
4576 {
4577 #ifdef CONFIG_XPS
4578 	struct xps_dev_maps *dev_maps;
4579 	struct sock *sk = skb->sk;
4580 	int queue_index = -1;
4581 
4582 	if (!static_key_false(&xps_needed))
4583 		return -1;
4584 
4585 	rcu_read_lock();
4586 	if (!static_key_false(&xps_rxqs_needed))
4587 		goto get_cpus_map;
4588 
4589 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4590 	if (dev_maps) {
4591 		int tci = sk_rx_queue_get(sk);
4592 
4593 		if (tci >= 0)
4594 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4595 							  tci);
4596 	}
4597 
4598 get_cpus_map:
4599 	if (queue_index < 0) {
4600 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4601 		if (dev_maps) {
4602 			unsigned int tci = skb->sender_cpu - 1;
4603 
4604 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4605 							  tci);
4606 		}
4607 	}
4608 	rcu_read_unlock();
4609 
4610 	return queue_index;
4611 #else
4612 	return -1;
4613 #endif
4614 }
4615 
4616 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4617 		     struct net_device *sb_dev)
4618 {
4619 	return 0;
4620 }
4621 EXPORT_SYMBOL(dev_pick_tx_zero);
4622 
4623 int sk_tx_queue_get(const struct sock *sk)
4624 {
4625 	int resel, val;
4626 
4627 	if (!sk)
4628 		return -1;
4629 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4630 	 * and sk_tx_queue_set().
4631 	 */
4632 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4633 
4634 	if (val == NO_QUEUE_MAPPING)
4635 		return -1;
4636 
4637 	if (!sk_fullsock(sk))
4638 		return val;
4639 
4640 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4641 	if (resel && time_is_before_jiffies(
4642 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4643 		return -1;
4644 
4645 	return val;
4646 }
4647 EXPORT_SYMBOL(sk_tx_queue_get);
4648 
4649 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4650 		     struct net_device *sb_dev)
4651 {
4652 	struct sock *sk = skb->sk;
4653 	int queue_index = sk_tx_queue_get(sk);
4654 
4655 	sb_dev = sb_dev ? : dev;
4656 
4657 	if (queue_index < 0 || skb->ooo_okay ||
4658 	    queue_index >= dev->real_num_tx_queues) {
4659 		int new_index = get_xps_queue(dev, sb_dev, skb);
4660 
4661 		if (new_index < 0)
4662 			new_index = skb_tx_hash(dev, sb_dev, skb);
4663 
4664 		if (sk && sk_fullsock(sk) &&
4665 		    rcu_access_pointer(sk->sk_dst_cache))
4666 			sk_tx_queue_set(sk, new_index);
4667 
4668 		queue_index = new_index;
4669 	}
4670 
4671 	return queue_index;
4672 }
4673 EXPORT_SYMBOL(netdev_pick_tx);
4674 
4675 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4676 					 struct sk_buff *skb,
4677 					 struct net_device *sb_dev)
4678 {
4679 	int queue_index = 0;
4680 
4681 #ifdef CONFIG_XPS
4682 	u32 sender_cpu = skb->sender_cpu - 1;
4683 
4684 	if (sender_cpu >= (u32)NR_CPUS)
4685 		skb->sender_cpu = raw_smp_processor_id() + 1;
4686 #endif
4687 
4688 	if (dev->real_num_tx_queues != 1) {
4689 		const struct net_device_ops *ops = dev->netdev_ops;
4690 
4691 		if (ops->ndo_select_queue)
4692 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4693 		else
4694 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4695 
4696 		queue_index = netdev_cap_txqueue(dev, queue_index);
4697 	}
4698 
4699 	skb_set_queue_mapping(skb, queue_index);
4700 	return netdev_get_tx_queue(dev, queue_index);
4701 }
4702 
4703 /**
4704  * __dev_queue_xmit() - transmit a buffer
4705  * @skb:	buffer to transmit
4706  * @sb_dev:	suboordinate device used for L2 forwarding offload
4707  *
4708  * Queue a buffer for transmission to a network device. The caller must
4709  * have set the device and priority and built the buffer before calling
4710  * this function. The function can be called from an interrupt.
4711  *
4712  * When calling this method, interrupts MUST be enabled. This is because
4713  * the BH enable code must have IRQs enabled so that it will not deadlock.
4714  *
4715  * Regardless of the return value, the skb is consumed, so it is currently
4716  * difficult to retry a send to this method. (You can bump the ref count
4717  * before sending to hold a reference for retry if you are careful.)
4718  *
4719  * Return:
4720  * * 0				- buffer successfully transmitted
4721  * * positive qdisc return code	- NET_XMIT_DROP etc.
4722  * * negative errno		- other errors
4723  */
4724 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4725 {
4726 	struct net_device *dev = skb->dev;
4727 	struct netdev_queue *txq = NULL;
4728 	struct Qdisc *q;
4729 	int rc = -ENOMEM;
4730 	bool again = false;
4731 
4732 	skb_reset_mac_header(skb);
4733 	skb_assert_len(skb);
4734 
4735 	if (unlikely(skb_shinfo(skb)->tx_flags &
4736 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4737 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4738 
4739 	/* Disable soft irqs for various locks below. Also
4740 	 * stops preemption for RCU.
4741 	 */
4742 	rcu_read_lock_bh();
4743 
4744 	skb_update_prio(skb);
4745 
4746 	qdisc_pkt_len_segs_init(skb);
4747 	tcx_set_ingress(skb, false);
4748 #ifdef CONFIG_NET_EGRESS
4749 	if (static_branch_unlikely(&egress_needed_key)) {
4750 		if (nf_hook_egress_active()) {
4751 			skb = nf_hook_egress(skb, &rc, dev);
4752 			if (!skb)
4753 				goto out;
4754 		}
4755 
4756 		netdev_xmit_skip_txqueue(false);
4757 
4758 		nf_skip_egress(skb, true);
4759 		skb = sch_handle_egress(skb, &rc, dev);
4760 		if (!skb)
4761 			goto out;
4762 		nf_skip_egress(skb, false);
4763 
4764 		if (netdev_xmit_txqueue_skipped())
4765 			txq = netdev_tx_queue_mapping(dev, skb);
4766 	}
4767 #endif
4768 	/* If device/qdisc don't need skb->dst, release it right now while
4769 	 * its hot in this cpu cache.
4770 	 */
4771 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4772 		skb_dst_drop(skb);
4773 	else
4774 		skb_dst_force(skb);
4775 
4776 	if (!txq)
4777 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4778 
4779 	q = rcu_dereference_bh(txq->qdisc);
4780 
4781 	trace_net_dev_queue(skb);
4782 	if (q->enqueue) {
4783 		rc = __dev_xmit_skb(skb, q, dev, txq);
4784 		goto out;
4785 	}
4786 
4787 	/* The device has no queue. Common case for software devices:
4788 	 * loopback, all the sorts of tunnels...
4789 
4790 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4791 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4792 	 * counters.)
4793 	 * However, it is possible, that they rely on protection
4794 	 * made by us here.
4795 
4796 	 * Check this and shot the lock. It is not prone from deadlocks.
4797 	 *Either shot noqueue qdisc, it is even simpler 8)
4798 	 */
4799 	if (dev->flags & IFF_UP) {
4800 		int cpu = smp_processor_id(); /* ok because BHs are off */
4801 
4802 		/* Other cpus might concurrently change txq->xmit_lock_owner
4803 		 * to -1 or to their cpu id, but not to our id.
4804 		 */
4805 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4806 			if (dev_xmit_recursion())
4807 				goto recursion_alert;
4808 
4809 			skb = validate_xmit_skb(skb, dev, &again);
4810 			if (!skb)
4811 				goto out;
4812 
4813 			HARD_TX_LOCK(dev, txq, cpu);
4814 
4815 			if (!netif_xmit_stopped(txq)) {
4816 				dev_xmit_recursion_inc();
4817 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4818 				dev_xmit_recursion_dec();
4819 				if (dev_xmit_complete(rc)) {
4820 					HARD_TX_UNLOCK(dev, txq);
4821 					goto out;
4822 				}
4823 			}
4824 			HARD_TX_UNLOCK(dev, txq);
4825 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4826 					     dev->name);
4827 		} else {
4828 			/* Recursion is detected! It is possible,
4829 			 * unfortunately
4830 			 */
4831 recursion_alert:
4832 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4833 					     dev->name);
4834 		}
4835 	}
4836 
4837 	rc = -ENETDOWN;
4838 	rcu_read_unlock_bh();
4839 
4840 	dev_core_stats_tx_dropped_inc(dev);
4841 	kfree_skb_list(skb);
4842 	return rc;
4843 out:
4844 	rcu_read_unlock_bh();
4845 	return rc;
4846 }
4847 EXPORT_SYMBOL(__dev_queue_xmit);
4848 
4849 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4850 {
4851 	struct net_device *dev = skb->dev;
4852 	struct sk_buff *orig_skb = skb;
4853 	struct netdev_queue *txq;
4854 	int ret = NETDEV_TX_BUSY;
4855 	bool again = false;
4856 
4857 	if (unlikely(!netif_running(dev) ||
4858 		     !netif_carrier_ok(dev)))
4859 		goto drop;
4860 
4861 	skb = validate_xmit_skb_list(skb, dev, &again);
4862 	if (skb != orig_skb)
4863 		goto drop;
4864 
4865 	skb_set_queue_mapping(skb, queue_id);
4866 	txq = skb_get_tx_queue(dev, skb);
4867 
4868 	local_bh_disable();
4869 
4870 	dev_xmit_recursion_inc();
4871 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4872 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4873 		ret = netdev_start_xmit(skb, dev, txq, false);
4874 	HARD_TX_UNLOCK(dev, txq);
4875 	dev_xmit_recursion_dec();
4876 
4877 	local_bh_enable();
4878 	return ret;
4879 drop:
4880 	dev_core_stats_tx_dropped_inc(dev);
4881 	kfree_skb_list(skb);
4882 	return NET_XMIT_DROP;
4883 }
4884 EXPORT_SYMBOL(__dev_direct_xmit);
4885 
4886 /*************************************************************************
4887  *			Receiver routines
4888  *************************************************************************/
4889 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4890 
4891 int weight_p __read_mostly = 64;           /* old backlog weight */
4892 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4893 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4894 
4895 /* Called with irq disabled */
4896 static inline void ____napi_schedule(struct softnet_data *sd,
4897 				     struct napi_struct *napi)
4898 {
4899 	struct task_struct *thread;
4900 
4901 	lockdep_assert_irqs_disabled();
4902 
4903 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4904 		/* Paired with smp_mb__before_atomic() in
4905 		 * napi_enable()/netif_set_threaded().
4906 		 * Use READ_ONCE() to guarantee a complete
4907 		 * read on napi->thread. Only call
4908 		 * wake_up_process() when it's not NULL.
4909 		 */
4910 		thread = READ_ONCE(napi->thread);
4911 		if (thread) {
4912 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4913 				goto use_local_napi;
4914 
4915 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4916 			wake_up_process(thread);
4917 			return;
4918 		}
4919 	}
4920 
4921 use_local_napi:
4922 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4923 	list_add_tail(&napi->poll_list, &sd->poll_list);
4924 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4925 	/* If not called from net_rx_action()
4926 	 * we have to raise NET_RX_SOFTIRQ.
4927 	 */
4928 	if (!sd->in_net_rx_action)
4929 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4930 }
4931 
4932 #ifdef CONFIG_RPS
4933 
4934 struct static_key_false rps_needed __read_mostly;
4935 EXPORT_SYMBOL(rps_needed);
4936 struct static_key_false rfs_needed __read_mostly;
4937 EXPORT_SYMBOL(rfs_needed);
4938 
4939 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4940 {
4941 	return hash_32(hash, flow_table->log);
4942 }
4943 
4944 #ifdef CONFIG_RFS_ACCEL
4945 /**
4946  * rps_flow_is_active - check whether the flow is recently active.
4947  * @rflow: Specific flow to check activity.
4948  * @flow_table: per-queue flowtable that @rflow belongs to.
4949  * @cpu: CPU saved in @rflow.
4950  *
4951  * If the CPU has processed many packets since the flow's last activity
4952  * (beyond 10 times the table size), the flow is considered stale.
4953  *
4954  * Return: true if flow was recently active.
4955  */
4956 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4957 			       struct rps_dev_flow_table *flow_table,
4958 			       unsigned int cpu)
4959 {
4960 	unsigned int flow_last_active;
4961 	unsigned int sd_input_head;
4962 
4963 	if (cpu >= nr_cpu_ids)
4964 		return false;
4965 
4966 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4967 	flow_last_active = READ_ONCE(rflow->last_qtail);
4968 
4969 	return (int)(sd_input_head - flow_last_active) <
4970 		(int)(10 << flow_table->log);
4971 }
4972 #endif
4973 
4974 static struct rps_dev_flow *
4975 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4976 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4977 	    u32 flow_id)
4978 {
4979 	if (next_cpu < nr_cpu_ids) {
4980 		u32 head;
4981 #ifdef CONFIG_RFS_ACCEL
4982 		struct netdev_rx_queue *rxqueue;
4983 		struct rps_dev_flow_table *flow_table;
4984 		struct rps_dev_flow *old_rflow;
4985 		struct rps_dev_flow *tmp_rflow;
4986 		unsigned int tmp_cpu;
4987 		u16 rxq_index;
4988 		int rc;
4989 
4990 		/* Should we steer this flow to a different hardware queue? */
4991 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4992 		    !(dev->features & NETIF_F_NTUPLE))
4993 			goto out;
4994 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4995 		if (rxq_index == skb_get_rx_queue(skb))
4996 			goto out;
4997 
4998 		rxqueue = dev->_rx + rxq_index;
4999 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
5000 		if (!flow_table)
5001 			goto out;
5002 
5003 		tmp_rflow = &flow_table->flows[flow_id];
5004 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5005 
5006 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5007 			if (rps_flow_is_active(tmp_rflow, flow_table,
5008 					       tmp_cpu)) {
5009 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5010 				    next_cpu == tmp_cpu)
5011 					goto out;
5012 			}
5013 		}
5014 
5015 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5016 							rxq_index, flow_id);
5017 		if (rc < 0)
5018 			goto out;
5019 
5020 		old_rflow = rflow;
5021 		rflow = tmp_rflow;
5022 		WRITE_ONCE(rflow->filter, rc);
5023 		WRITE_ONCE(rflow->hash, hash);
5024 
5025 		if (old_rflow->filter == rc)
5026 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5027 	out:
5028 #endif
5029 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5030 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5031 	}
5032 
5033 	WRITE_ONCE(rflow->cpu, next_cpu);
5034 	return rflow;
5035 }
5036 
5037 /*
5038  * get_rps_cpu is called from netif_receive_skb and returns the target
5039  * CPU from the RPS map of the receiving queue for a given skb.
5040  * rcu_read_lock must be held on entry.
5041  */
5042 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5043 		       struct rps_dev_flow **rflowp)
5044 {
5045 	const struct rps_sock_flow_table *sock_flow_table;
5046 	struct netdev_rx_queue *rxqueue = dev->_rx;
5047 	struct rps_dev_flow_table *flow_table;
5048 	struct rps_map *map;
5049 	int cpu = -1;
5050 	u32 flow_id;
5051 	u32 tcpu;
5052 	u32 hash;
5053 
5054 	if (skb_rx_queue_recorded(skb)) {
5055 		u16 index = skb_get_rx_queue(skb);
5056 
5057 		if (unlikely(index >= dev->real_num_rx_queues)) {
5058 			WARN_ONCE(dev->real_num_rx_queues > 1,
5059 				  "%s received packet on queue %u, but number "
5060 				  "of RX queues is %u\n",
5061 				  dev->name, index, dev->real_num_rx_queues);
5062 			goto done;
5063 		}
5064 		rxqueue += index;
5065 	}
5066 
5067 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5068 
5069 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5070 	map = rcu_dereference(rxqueue->rps_map);
5071 	if (!flow_table && !map)
5072 		goto done;
5073 
5074 	skb_reset_network_header(skb);
5075 	hash = skb_get_hash(skb);
5076 	if (!hash)
5077 		goto done;
5078 
5079 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5080 	if (flow_table && sock_flow_table) {
5081 		struct rps_dev_flow *rflow;
5082 		u32 next_cpu;
5083 		u32 ident;
5084 
5085 		/* First check into global flow table if there is a match.
5086 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5087 		 */
5088 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5089 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5090 			goto try_rps;
5091 
5092 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5093 
5094 		/* OK, now we know there is a match,
5095 		 * we can look at the local (per receive queue) flow table
5096 		 */
5097 		flow_id = rfs_slot(hash, flow_table);
5098 		rflow = &flow_table->flows[flow_id];
5099 		tcpu = rflow->cpu;
5100 
5101 		/*
5102 		 * If the desired CPU (where last recvmsg was done) is
5103 		 * different from current CPU (one in the rx-queue flow
5104 		 * table entry), switch if one of the following holds:
5105 		 *   - Current CPU is unset (>= nr_cpu_ids).
5106 		 *   - Current CPU is offline.
5107 		 *   - The current CPU's queue tail has advanced beyond the
5108 		 *     last packet that was enqueued using this table entry.
5109 		 *     This guarantees that all previous packets for the flow
5110 		 *     have been dequeued, thus preserving in order delivery.
5111 		 */
5112 		if (unlikely(tcpu != next_cpu) &&
5113 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5114 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5115 		      rflow->last_qtail)) >= 0)) {
5116 			tcpu = next_cpu;
5117 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5118 					    flow_id);
5119 		}
5120 
5121 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5122 			*rflowp = rflow;
5123 			cpu = tcpu;
5124 			goto done;
5125 		}
5126 	}
5127 
5128 try_rps:
5129 
5130 	if (map) {
5131 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5132 		if (cpu_online(tcpu)) {
5133 			cpu = tcpu;
5134 			goto done;
5135 		}
5136 	}
5137 
5138 done:
5139 	return cpu;
5140 }
5141 
5142 #ifdef CONFIG_RFS_ACCEL
5143 
5144 /**
5145  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5146  * @dev: Device on which the filter was set
5147  * @rxq_index: RX queue index
5148  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5149  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5150  *
5151  * Drivers that implement ndo_rx_flow_steer() should periodically call
5152  * this function for each installed filter and remove the filters for
5153  * which it returns %true.
5154  */
5155 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5156 			 u32 flow_id, u16 filter_id)
5157 {
5158 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5159 	struct rps_dev_flow_table *flow_table;
5160 	struct rps_dev_flow *rflow;
5161 	bool expire = true;
5162 
5163 	rcu_read_lock();
5164 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5165 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5166 		unsigned int cpu;
5167 
5168 		rflow = &flow_table->flows[flow_id];
5169 		cpu = READ_ONCE(rflow->cpu);
5170 		if (READ_ONCE(rflow->filter) == filter_id &&
5171 		    rps_flow_is_active(rflow, flow_table, cpu))
5172 			expire = false;
5173 	}
5174 	rcu_read_unlock();
5175 	return expire;
5176 }
5177 EXPORT_SYMBOL(rps_may_expire_flow);
5178 
5179 #endif /* CONFIG_RFS_ACCEL */
5180 
5181 /* Called from hardirq (IPI) context */
5182 static void rps_trigger_softirq(void *data)
5183 {
5184 	struct softnet_data *sd = data;
5185 
5186 	____napi_schedule(sd, &sd->backlog);
5187 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5188 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5189 }
5190 
5191 #endif /* CONFIG_RPS */
5192 
5193 /* Called from hardirq (IPI) context */
5194 static void trigger_rx_softirq(void *data)
5195 {
5196 	struct softnet_data *sd = data;
5197 
5198 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5199 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5200 }
5201 
5202 /*
5203  * After we queued a packet into sd->input_pkt_queue,
5204  * we need to make sure this queue is serviced soon.
5205  *
5206  * - If this is another cpu queue, link it to our rps_ipi_list,
5207  *   and make sure we will process rps_ipi_list from net_rx_action().
5208  *
5209  * - If this is our own queue, NAPI schedule our backlog.
5210  *   Note that this also raises NET_RX_SOFTIRQ.
5211  */
5212 static void napi_schedule_rps(struct softnet_data *sd)
5213 {
5214 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5215 
5216 #ifdef CONFIG_RPS
5217 	if (sd != mysd) {
5218 		if (use_backlog_threads()) {
5219 			__napi_schedule_irqoff(&sd->backlog);
5220 			return;
5221 		}
5222 
5223 		sd->rps_ipi_next = mysd->rps_ipi_list;
5224 		mysd->rps_ipi_list = sd;
5225 
5226 		/* If not called from net_rx_action() or napi_threaded_poll()
5227 		 * we have to raise NET_RX_SOFTIRQ.
5228 		 */
5229 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5230 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5231 		return;
5232 	}
5233 #endif /* CONFIG_RPS */
5234 	__napi_schedule_irqoff(&mysd->backlog);
5235 }
5236 
5237 void kick_defer_list_purge(unsigned int cpu)
5238 {
5239 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5240 	unsigned long flags;
5241 
5242 	if (use_backlog_threads()) {
5243 		backlog_lock_irq_save(sd, &flags);
5244 
5245 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5246 			__napi_schedule_irqoff(&sd->backlog);
5247 
5248 		backlog_unlock_irq_restore(sd, &flags);
5249 
5250 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5251 		smp_call_function_single_async(cpu, &sd->defer_csd);
5252 	}
5253 }
5254 
5255 #ifdef CONFIG_NET_FLOW_LIMIT
5256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5257 #endif
5258 
5259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5260 			   int max_backlog)
5261 {
5262 #ifdef CONFIG_NET_FLOW_LIMIT
5263 	unsigned int old_flow, new_flow;
5264 	const struct softnet_data *sd;
5265 	struct sd_flow_limit *fl;
5266 
5267 	if (likely(qlen < (max_backlog >> 1)))
5268 		return false;
5269 
5270 	sd = this_cpu_ptr(&softnet_data);
5271 
5272 	rcu_read_lock();
5273 	fl = rcu_dereference(sd->flow_limit);
5274 	if (fl) {
5275 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5276 		old_flow = fl->history[fl->history_head];
5277 		fl->history[fl->history_head] = new_flow;
5278 
5279 		fl->history_head++;
5280 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5281 
5282 		if (likely(fl->buckets[old_flow]))
5283 			fl->buckets[old_flow]--;
5284 
5285 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5286 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5287 			WRITE_ONCE(fl->count, fl->count + 1);
5288 			rcu_read_unlock();
5289 			return true;
5290 		}
5291 	}
5292 	rcu_read_unlock();
5293 #endif
5294 	return false;
5295 }
5296 
5297 /*
5298  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5299  * queue (may be a remote CPU queue).
5300  */
5301 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5302 			      unsigned int *qtail)
5303 {
5304 	enum skb_drop_reason reason;
5305 	struct softnet_data *sd;
5306 	unsigned long flags;
5307 	unsigned int qlen;
5308 	int max_backlog;
5309 	u32 tail;
5310 
5311 	reason = SKB_DROP_REASON_DEV_READY;
5312 	if (unlikely(!netif_running(skb->dev)))
5313 		goto bad_dev;
5314 
5315 	sd = &per_cpu(softnet_data, cpu);
5316 
5317 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5318 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5319 	if (unlikely(qlen > max_backlog) ||
5320 	    skb_flow_limit(skb, qlen, max_backlog))
5321 		goto cpu_backlog_drop;
5322 	backlog_lock_irq_save(sd, &flags);
5323 	qlen = skb_queue_len(&sd->input_pkt_queue);
5324 	if (likely(qlen <= max_backlog)) {
5325 		if (!qlen) {
5326 			/* Schedule NAPI for backlog device. We can use
5327 			 * non atomic operation as we own the queue lock.
5328 			 */
5329 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5330 						&sd->backlog.state))
5331 				napi_schedule_rps(sd);
5332 		}
5333 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5334 		tail = rps_input_queue_tail_incr(sd);
5335 		backlog_unlock_irq_restore(sd, &flags);
5336 
5337 		/* save the tail outside of the critical section */
5338 		rps_input_queue_tail_save(qtail, tail);
5339 		return NET_RX_SUCCESS;
5340 	}
5341 
5342 	backlog_unlock_irq_restore(sd, &flags);
5343 
5344 cpu_backlog_drop:
5345 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5346 	numa_drop_add(&sd->drop_counters, 1);
5347 bad_dev:
5348 	dev_core_stats_rx_dropped_inc(skb->dev);
5349 	kfree_skb_reason(skb, reason);
5350 	return NET_RX_DROP;
5351 }
5352 
5353 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5354 {
5355 	struct net_device *dev = skb->dev;
5356 	struct netdev_rx_queue *rxqueue;
5357 
5358 	rxqueue = dev->_rx;
5359 
5360 	if (skb_rx_queue_recorded(skb)) {
5361 		u16 index = skb_get_rx_queue(skb);
5362 
5363 		if (unlikely(index >= dev->real_num_rx_queues)) {
5364 			WARN_ONCE(dev->real_num_rx_queues > 1,
5365 				  "%s received packet on queue %u, but number "
5366 				  "of RX queues is %u\n",
5367 				  dev->name, index, dev->real_num_rx_queues);
5368 
5369 			return rxqueue; /* Return first rxqueue */
5370 		}
5371 		rxqueue += index;
5372 	}
5373 	return rxqueue;
5374 }
5375 
5376 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5377 			     const struct bpf_prog *xdp_prog)
5378 {
5379 	void *orig_data, *orig_data_end, *hard_start;
5380 	struct netdev_rx_queue *rxqueue;
5381 	bool orig_bcast, orig_host;
5382 	u32 mac_len, frame_sz;
5383 	__be16 orig_eth_type;
5384 	struct ethhdr *eth;
5385 	u32 metalen, act;
5386 	int off;
5387 
5388 	/* The XDP program wants to see the packet starting at the MAC
5389 	 * header.
5390 	 */
5391 	mac_len = skb->data - skb_mac_header(skb);
5392 	hard_start = skb->data - skb_headroom(skb);
5393 
5394 	/* SKB "head" area always have tailroom for skb_shared_info */
5395 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5396 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5397 
5398 	rxqueue = netif_get_rxqueue(skb);
5399 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5400 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5401 			 skb_headlen(skb) + mac_len, true);
5402 	if (skb_is_nonlinear(skb)) {
5403 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5404 		xdp_buff_set_frags_flag(xdp);
5405 	} else {
5406 		xdp_buff_clear_frags_flag(xdp);
5407 	}
5408 
5409 	orig_data_end = xdp->data_end;
5410 	orig_data = xdp->data;
5411 	eth = (struct ethhdr *)xdp->data;
5412 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5413 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5414 	orig_eth_type = eth->h_proto;
5415 
5416 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5417 
5418 	/* check if bpf_xdp_adjust_head was used */
5419 	off = xdp->data - orig_data;
5420 	if (off) {
5421 		if (off > 0)
5422 			__skb_pull(skb, off);
5423 		else if (off < 0)
5424 			__skb_push(skb, -off);
5425 
5426 		skb->mac_header += off;
5427 		skb_reset_network_header(skb);
5428 	}
5429 
5430 	/* check if bpf_xdp_adjust_tail was used */
5431 	off = xdp->data_end - orig_data_end;
5432 	if (off != 0) {
5433 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5434 		skb->len += off; /* positive on grow, negative on shrink */
5435 	}
5436 
5437 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5438 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5439 	 */
5440 	if (xdp_buff_has_frags(xdp))
5441 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5442 	else
5443 		skb->data_len = 0;
5444 
5445 	/* check if XDP changed eth hdr such SKB needs update */
5446 	eth = (struct ethhdr *)xdp->data;
5447 	if ((orig_eth_type != eth->h_proto) ||
5448 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5449 						  skb->dev->dev_addr)) ||
5450 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5451 		__skb_push(skb, ETH_HLEN);
5452 		skb->pkt_type = PACKET_HOST;
5453 		skb->protocol = eth_type_trans(skb, skb->dev);
5454 	}
5455 
5456 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5457 	 * before calling us again on redirect path. We do not call do_redirect
5458 	 * as we leave that up to the caller.
5459 	 *
5460 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5461 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5462 	 */
5463 	switch (act) {
5464 	case XDP_REDIRECT:
5465 	case XDP_TX:
5466 		__skb_push(skb, mac_len);
5467 		break;
5468 	case XDP_PASS:
5469 		metalen = xdp->data - xdp->data_meta;
5470 		if (metalen)
5471 			skb_metadata_set(skb, metalen);
5472 		break;
5473 	}
5474 
5475 	return act;
5476 }
5477 
5478 static int
5479 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5480 {
5481 	struct sk_buff *skb = *pskb;
5482 	int err, hroom, troom;
5483 
5484 	local_lock_nested_bh(&system_page_pool.bh_lock);
5485 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5486 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5487 	if (!err)
5488 		return 0;
5489 
5490 	/* In case we have to go down the path and also linearize,
5491 	 * then lets do the pskb_expand_head() work just once here.
5492 	 */
5493 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5494 	troom = skb->tail + skb->data_len - skb->end;
5495 	err = pskb_expand_head(skb,
5496 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5497 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5498 	if (err)
5499 		return err;
5500 
5501 	return skb_linearize(skb);
5502 }
5503 
5504 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5505 				     struct xdp_buff *xdp,
5506 				     const struct bpf_prog *xdp_prog)
5507 {
5508 	struct sk_buff *skb = *pskb;
5509 	u32 mac_len, act = XDP_DROP;
5510 
5511 	/* Reinjected packets coming from act_mirred or similar should
5512 	 * not get XDP generic processing.
5513 	 */
5514 	if (skb_is_redirected(skb))
5515 		return XDP_PASS;
5516 
5517 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5518 	 * bytes. This is the guarantee that also native XDP provides,
5519 	 * thus we need to do it here as well.
5520 	 */
5521 	mac_len = skb->data - skb_mac_header(skb);
5522 	__skb_push(skb, mac_len);
5523 
5524 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5525 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5526 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5527 			goto do_drop;
5528 	}
5529 
5530 	__skb_pull(*pskb, mac_len);
5531 
5532 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5533 	switch (act) {
5534 	case XDP_REDIRECT:
5535 	case XDP_TX:
5536 	case XDP_PASS:
5537 		break;
5538 	default:
5539 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5540 		fallthrough;
5541 	case XDP_ABORTED:
5542 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5543 		fallthrough;
5544 	case XDP_DROP:
5545 	do_drop:
5546 		kfree_skb(*pskb);
5547 		break;
5548 	}
5549 
5550 	return act;
5551 }
5552 
5553 /* When doing generic XDP we have to bypass the qdisc layer and the
5554  * network taps in order to match in-driver-XDP behavior. This also means
5555  * that XDP packets are able to starve other packets going through a qdisc,
5556  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5557  * queues, so they do not have this starvation issue.
5558  */
5559 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5560 {
5561 	struct net_device *dev = skb->dev;
5562 	struct netdev_queue *txq;
5563 	bool free_skb = true;
5564 	int cpu, rc;
5565 
5566 	txq = netdev_core_pick_tx(dev, skb, NULL);
5567 	cpu = smp_processor_id();
5568 	HARD_TX_LOCK(dev, txq, cpu);
5569 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5570 		rc = netdev_start_xmit(skb, dev, txq, 0);
5571 		if (dev_xmit_complete(rc))
5572 			free_skb = false;
5573 	}
5574 	HARD_TX_UNLOCK(dev, txq);
5575 	if (free_skb) {
5576 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5577 		dev_core_stats_tx_dropped_inc(dev);
5578 		kfree_skb(skb);
5579 	}
5580 }
5581 
5582 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5583 
5584 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5585 {
5586 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5587 
5588 	if (xdp_prog) {
5589 		struct xdp_buff xdp;
5590 		u32 act;
5591 		int err;
5592 
5593 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5594 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5595 		if (act != XDP_PASS) {
5596 			switch (act) {
5597 			case XDP_REDIRECT:
5598 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5599 							      &xdp, xdp_prog);
5600 				if (err)
5601 					goto out_redir;
5602 				break;
5603 			case XDP_TX:
5604 				generic_xdp_tx(*pskb, xdp_prog);
5605 				break;
5606 			}
5607 			bpf_net_ctx_clear(bpf_net_ctx);
5608 			return XDP_DROP;
5609 		}
5610 		bpf_net_ctx_clear(bpf_net_ctx);
5611 	}
5612 	return XDP_PASS;
5613 out_redir:
5614 	bpf_net_ctx_clear(bpf_net_ctx);
5615 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5616 	return XDP_DROP;
5617 }
5618 EXPORT_SYMBOL_GPL(do_xdp_generic);
5619 
5620 static int netif_rx_internal(struct sk_buff *skb)
5621 {
5622 	int ret;
5623 
5624 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5625 
5626 	trace_netif_rx(skb);
5627 
5628 #ifdef CONFIG_RPS
5629 	if (static_branch_unlikely(&rps_needed)) {
5630 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5631 		int cpu;
5632 
5633 		rcu_read_lock();
5634 
5635 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5636 		if (cpu < 0)
5637 			cpu = smp_processor_id();
5638 
5639 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5640 
5641 		rcu_read_unlock();
5642 	} else
5643 #endif
5644 	{
5645 		unsigned int qtail;
5646 
5647 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5648 	}
5649 	return ret;
5650 }
5651 
5652 /**
5653  *	__netif_rx	-	Slightly optimized version of netif_rx
5654  *	@skb: buffer to post
5655  *
5656  *	This behaves as netif_rx except that it does not disable bottom halves.
5657  *	As a result this function may only be invoked from the interrupt context
5658  *	(either hard or soft interrupt).
5659  */
5660 int __netif_rx(struct sk_buff *skb)
5661 {
5662 	int ret;
5663 
5664 	lockdep_assert_once(hardirq_count() | softirq_count());
5665 
5666 	trace_netif_rx_entry(skb);
5667 	ret = netif_rx_internal(skb);
5668 	trace_netif_rx_exit(ret);
5669 	return ret;
5670 }
5671 EXPORT_SYMBOL(__netif_rx);
5672 
5673 /**
5674  *	netif_rx	-	post buffer to the network code
5675  *	@skb: buffer to post
5676  *
5677  *	This function receives a packet from a device driver and queues it for
5678  *	the upper (protocol) levels to process via the backlog NAPI device. It
5679  *	always succeeds. The buffer may be dropped during processing for
5680  *	congestion control or by the protocol layers.
5681  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5682  *	driver should use NAPI and GRO.
5683  *	This function can used from interrupt and from process context. The
5684  *	caller from process context must not disable interrupts before invoking
5685  *	this function.
5686  *
5687  *	return values:
5688  *	NET_RX_SUCCESS	(no congestion)
5689  *	NET_RX_DROP     (packet was dropped)
5690  *
5691  */
5692 int netif_rx(struct sk_buff *skb)
5693 {
5694 	bool need_bh_off = !(hardirq_count() | softirq_count());
5695 	int ret;
5696 
5697 	if (need_bh_off)
5698 		local_bh_disable();
5699 	trace_netif_rx_entry(skb);
5700 	ret = netif_rx_internal(skb);
5701 	trace_netif_rx_exit(ret);
5702 	if (need_bh_off)
5703 		local_bh_enable();
5704 	return ret;
5705 }
5706 EXPORT_SYMBOL(netif_rx);
5707 
5708 static __latent_entropy void net_tx_action(void)
5709 {
5710 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5711 
5712 	if (sd->completion_queue) {
5713 		struct sk_buff *clist;
5714 
5715 		local_irq_disable();
5716 		clist = sd->completion_queue;
5717 		sd->completion_queue = NULL;
5718 		local_irq_enable();
5719 
5720 		while (clist) {
5721 			struct sk_buff *skb = clist;
5722 
5723 			clist = clist->next;
5724 
5725 			WARN_ON(refcount_read(&skb->users));
5726 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5727 				trace_consume_skb(skb, net_tx_action);
5728 			else
5729 				trace_kfree_skb(skb, net_tx_action,
5730 						get_kfree_skb_cb(skb)->reason, NULL);
5731 
5732 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5733 				__kfree_skb(skb);
5734 			else
5735 				__napi_kfree_skb(skb,
5736 						 get_kfree_skb_cb(skb)->reason);
5737 		}
5738 	}
5739 
5740 	if (sd->output_queue) {
5741 		struct Qdisc *head;
5742 
5743 		local_irq_disable();
5744 		head = sd->output_queue;
5745 		sd->output_queue = NULL;
5746 		sd->output_queue_tailp = &sd->output_queue;
5747 		local_irq_enable();
5748 
5749 		rcu_read_lock();
5750 
5751 		while (head) {
5752 			spinlock_t *root_lock = NULL;
5753 			struct sk_buff *to_free;
5754 			struct Qdisc *q = head;
5755 
5756 			head = head->next_sched;
5757 
5758 			/* We need to make sure head->next_sched is read
5759 			 * before clearing __QDISC_STATE_SCHED
5760 			 */
5761 			smp_mb__before_atomic();
5762 
5763 			if (!(q->flags & TCQ_F_NOLOCK)) {
5764 				root_lock = qdisc_lock(q);
5765 				spin_lock(root_lock);
5766 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5767 						     &q->state))) {
5768 				/* There is a synchronize_net() between
5769 				 * STATE_DEACTIVATED flag being set and
5770 				 * qdisc_reset()/some_qdisc_is_busy() in
5771 				 * dev_deactivate(), so we can safely bail out
5772 				 * early here to avoid data race between
5773 				 * qdisc_deactivate() and some_qdisc_is_busy()
5774 				 * for lockless qdisc.
5775 				 */
5776 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5777 				continue;
5778 			}
5779 
5780 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5781 			to_free = qdisc_run(q);
5782 			if (root_lock)
5783 				spin_unlock(root_lock);
5784 			tcf_kfree_skb_list(to_free);
5785 		}
5786 
5787 		rcu_read_unlock();
5788 	}
5789 
5790 	xfrm_dev_backlog(sd);
5791 }
5792 
5793 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5794 /* This hook is defined here for ATM LANE */
5795 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5796 			     unsigned char *addr) __read_mostly;
5797 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5798 #endif
5799 
5800 /**
5801  *	netdev_is_rx_handler_busy - check if receive handler is registered
5802  *	@dev: device to check
5803  *
5804  *	Check if a receive handler is already registered for a given device.
5805  *	Return true if there one.
5806  *
5807  *	The caller must hold the rtnl_mutex.
5808  */
5809 bool netdev_is_rx_handler_busy(struct net_device *dev)
5810 {
5811 	ASSERT_RTNL();
5812 	return dev && rtnl_dereference(dev->rx_handler);
5813 }
5814 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5815 
5816 /**
5817  *	netdev_rx_handler_register - register receive handler
5818  *	@dev: device to register a handler for
5819  *	@rx_handler: receive handler to register
5820  *	@rx_handler_data: data pointer that is used by rx handler
5821  *
5822  *	Register a receive handler for a device. This handler will then be
5823  *	called from __netif_receive_skb. A negative errno code is returned
5824  *	on a failure.
5825  *
5826  *	The caller must hold the rtnl_mutex.
5827  *
5828  *	For a general description of rx_handler, see enum rx_handler_result.
5829  */
5830 int netdev_rx_handler_register(struct net_device *dev,
5831 			       rx_handler_func_t *rx_handler,
5832 			       void *rx_handler_data)
5833 {
5834 	if (netdev_is_rx_handler_busy(dev))
5835 		return -EBUSY;
5836 
5837 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5838 		return -EINVAL;
5839 
5840 	/* Note: rx_handler_data must be set before rx_handler */
5841 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5842 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5843 
5844 	return 0;
5845 }
5846 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5847 
5848 /**
5849  *	netdev_rx_handler_unregister - unregister receive handler
5850  *	@dev: device to unregister a handler from
5851  *
5852  *	Unregister a receive handler from a device.
5853  *
5854  *	The caller must hold the rtnl_mutex.
5855  */
5856 void netdev_rx_handler_unregister(struct net_device *dev)
5857 {
5858 
5859 	ASSERT_RTNL();
5860 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5861 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5862 	 * section has a guarantee to see a non NULL rx_handler_data
5863 	 * as well.
5864 	 */
5865 	synchronize_net();
5866 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5867 }
5868 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5869 
5870 /*
5871  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5872  * the special handling of PFMEMALLOC skbs.
5873  */
5874 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5875 {
5876 	switch (skb->protocol) {
5877 	case htons(ETH_P_ARP):
5878 	case htons(ETH_P_IP):
5879 	case htons(ETH_P_IPV6):
5880 	case htons(ETH_P_8021Q):
5881 	case htons(ETH_P_8021AD):
5882 		return true;
5883 	default:
5884 		return false;
5885 	}
5886 }
5887 
5888 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5889 			     int *ret, struct net_device *orig_dev)
5890 {
5891 	if (nf_hook_ingress_active(skb)) {
5892 		int ingress_retval;
5893 
5894 		if (unlikely(*pt_prev)) {
5895 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5896 			*pt_prev = NULL;
5897 		}
5898 
5899 		rcu_read_lock();
5900 		ingress_retval = nf_hook_ingress(skb);
5901 		rcu_read_unlock();
5902 		return ingress_retval;
5903 	}
5904 	return 0;
5905 }
5906 
5907 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5908 				    struct packet_type **ppt_prev)
5909 {
5910 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5911 	struct packet_type *ptype, *pt_prev;
5912 	rx_handler_func_t *rx_handler;
5913 	struct sk_buff *skb = *pskb;
5914 	struct net_device *orig_dev;
5915 	bool deliver_exact = false;
5916 	int ret = NET_RX_DROP;
5917 	__be16 type;
5918 
5919 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5920 
5921 	trace_netif_receive_skb(skb);
5922 
5923 	orig_dev = skb->dev;
5924 
5925 	skb_reset_network_header(skb);
5926 #if !defined(CONFIG_DEBUG_NET)
5927 	/* We plan to no longer reset the transport header here.
5928 	 * Give some time to fuzzers and dev build to catch bugs
5929 	 * in network stacks.
5930 	 */
5931 	if (!skb_transport_header_was_set(skb))
5932 		skb_reset_transport_header(skb);
5933 #endif
5934 	skb_reset_mac_len(skb);
5935 
5936 	pt_prev = NULL;
5937 
5938 another_round:
5939 	skb->skb_iif = skb->dev->ifindex;
5940 
5941 	__this_cpu_inc(softnet_data.processed);
5942 
5943 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5944 		int ret2;
5945 
5946 		migrate_disable();
5947 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5948 				      &skb);
5949 		migrate_enable();
5950 
5951 		if (ret2 != XDP_PASS) {
5952 			ret = NET_RX_DROP;
5953 			goto out;
5954 		}
5955 	}
5956 
5957 	if (eth_type_vlan(skb->protocol)) {
5958 		skb = skb_vlan_untag(skb);
5959 		if (unlikely(!skb))
5960 			goto out;
5961 	}
5962 
5963 	if (skb_skip_tc_classify(skb))
5964 		goto skip_classify;
5965 
5966 	if (pfmemalloc)
5967 		goto skip_taps;
5968 
5969 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5970 				list) {
5971 		if (unlikely(pt_prev))
5972 			ret = deliver_skb(skb, pt_prev, orig_dev);
5973 		pt_prev = ptype;
5974 	}
5975 
5976 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5977 		if (unlikely(pt_prev))
5978 			ret = deliver_skb(skb, pt_prev, orig_dev);
5979 		pt_prev = ptype;
5980 	}
5981 
5982 skip_taps:
5983 #ifdef CONFIG_NET_INGRESS
5984 	if (static_branch_unlikely(&ingress_needed_key)) {
5985 		bool another = false;
5986 
5987 		nf_skip_egress(skb, true);
5988 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5989 					 &another);
5990 		if (another)
5991 			goto another_round;
5992 		if (!skb)
5993 			goto out;
5994 
5995 		nf_skip_egress(skb, false);
5996 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5997 			goto out;
5998 	}
5999 #endif
6000 	skb_reset_redirect(skb);
6001 skip_classify:
6002 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6003 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6004 		goto drop;
6005 	}
6006 
6007 	if (skb_vlan_tag_present(skb)) {
6008 		if (unlikely(pt_prev)) {
6009 			ret = deliver_skb(skb, pt_prev, orig_dev);
6010 			pt_prev = NULL;
6011 		}
6012 		if (vlan_do_receive(&skb))
6013 			goto another_round;
6014 		else if (unlikely(!skb))
6015 			goto out;
6016 	}
6017 
6018 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6019 	if (rx_handler) {
6020 		if (unlikely(pt_prev)) {
6021 			ret = deliver_skb(skb, pt_prev, orig_dev);
6022 			pt_prev = NULL;
6023 		}
6024 		switch (rx_handler(&skb)) {
6025 		case RX_HANDLER_CONSUMED:
6026 			ret = NET_RX_SUCCESS;
6027 			goto out;
6028 		case RX_HANDLER_ANOTHER:
6029 			goto another_round;
6030 		case RX_HANDLER_EXACT:
6031 			deliver_exact = true;
6032 			break;
6033 		case RX_HANDLER_PASS:
6034 			break;
6035 		default:
6036 			BUG();
6037 		}
6038 	}
6039 
6040 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6041 check_vlan_id:
6042 		if (skb_vlan_tag_get_id(skb)) {
6043 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6044 			 * find vlan device.
6045 			 */
6046 			skb->pkt_type = PACKET_OTHERHOST;
6047 		} else if (eth_type_vlan(skb->protocol)) {
6048 			/* Outer header is 802.1P with vlan 0, inner header is
6049 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6050 			 * not find vlan dev for vlan id 0.
6051 			 */
6052 			__vlan_hwaccel_clear_tag(skb);
6053 			skb = skb_vlan_untag(skb);
6054 			if (unlikely(!skb))
6055 				goto out;
6056 			if (vlan_do_receive(&skb))
6057 				/* After stripping off 802.1P header with vlan 0
6058 				 * vlan dev is found for inner header.
6059 				 */
6060 				goto another_round;
6061 			else if (unlikely(!skb))
6062 				goto out;
6063 			else
6064 				/* We have stripped outer 802.1P vlan 0 header.
6065 				 * But could not find vlan dev.
6066 				 * check again for vlan id to set OTHERHOST.
6067 				 */
6068 				goto check_vlan_id;
6069 		}
6070 		/* Note: we might in the future use prio bits
6071 		 * and set skb->priority like in vlan_do_receive()
6072 		 * For the time being, just ignore Priority Code Point
6073 		 */
6074 		__vlan_hwaccel_clear_tag(skb);
6075 	}
6076 
6077 	type = skb->protocol;
6078 
6079 	/* deliver only exact match when indicated */
6080 	if (likely(!deliver_exact)) {
6081 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6082 				       &ptype_base[ntohs(type) &
6083 						   PTYPE_HASH_MASK]);
6084 
6085 		/* orig_dev and skb->dev could belong to different netns;
6086 		 * Even in such case we need to traverse only the list
6087 		 * coming from skb->dev, as the ptype owner (packet socket)
6088 		 * will use dev_net(skb->dev) to do namespace filtering.
6089 		 */
6090 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6091 				       &dev_net_rcu(skb->dev)->ptype_specific);
6092 	}
6093 
6094 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6095 			       &orig_dev->ptype_specific);
6096 
6097 	if (unlikely(skb->dev != orig_dev)) {
6098 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6099 				       &skb->dev->ptype_specific);
6100 	}
6101 
6102 	if (pt_prev) {
6103 		*ppt_prev = pt_prev;
6104 	} else {
6105 drop:
6106 		if (!deliver_exact)
6107 			dev_core_stats_rx_dropped_inc(skb->dev);
6108 		else
6109 			dev_core_stats_rx_nohandler_inc(skb->dev);
6110 
6111 		kfree_skb_reason(skb, drop_reason);
6112 		/* Jamal, now you will not able to escape explaining
6113 		 * me how you were going to use this. :-)
6114 		 */
6115 		ret = NET_RX_DROP;
6116 	}
6117 
6118 out:
6119 	/* The invariant here is that if *ppt_prev is not NULL
6120 	 * then skb should also be non-NULL.
6121 	 *
6122 	 * Apparently *ppt_prev assignment above holds this invariant due to
6123 	 * skb dereferencing near it.
6124 	 */
6125 	*pskb = skb;
6126 	return ret;
6127 }
6128 
6129 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6130 {
6131 	struct net_device *orig_dev = skb->dev;
6132 	struct packet_type *pt_prev = NULL;
6133 	int ret;
6134 
6135 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6136 	if (pt_prev)
6137 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6138 					 skb->dev, pt_prev, orig_dev);
6139 	return ret;
6140 }
6141 
6142 /**
6143  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6144  *	@skb: buffer to process
6145  *
6146  *	More direct receive version of netif_receive_skb().  It should
6147  *	only be used by callers that have a need to skip RPS and Generic XDP.
6148  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6149  *
6150  *	This function may only be called from softirq context and interrupts
6151  *	should be enabled.
6152  *
6153  *	Return values (usually ignored):
6154  *	NET_RX_SUCCESS: no congestion
6155  *	NET_RX_DROP: packet was dropped
6156  */
6157 int netif_receive_skb_core(struct sk_buff *skb)
6158 {
6159 	int ret;
6160 
6161 	rcu_read_lock();
6162 	ret = __netif_receive_skb_one_core(skb, false);
6163 	rcu_read_unlock();
6164 
6165 	return ret;
6166 }
6167 EXPORT_SYMBOL(netif_receive_skb_core);
6168 
6169 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6170 						  struct packet_type *pt_prev,
6171 						  struct net_device *orig_dev)
6172 {
6173 	struct sk_buff *skb, *next;
6174 
6175 	if (!pt_prev)
6176 		return;
6177 	if (list_empty(head))
6178 		return;
6179 	if (pt_prev->list_func != NULL)
6180 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6181 				   ip_list_rcv, head, pt_prev, orig_dev);
6182 	else
6183 		list_for_each_entry_safe(skb, next, head, list) {
6184 			skb_list_del_init(skb);
6185 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6186 		}
6187 }
6188 
6189 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6190 {
6191 	/* Fast-path assumptions:
6192 	 * - There is no RX handler.
6193 	 * - Only one packet_type matches.
6194 	 * If either of these fails, we will end up doing some per-packet
6195 	 * processing in-line, then handling the 'last ptype' for the whole
6196 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6197 	 * because the 'last ptype' must be constant across the sublist, and all
6198 	 * other ptypes are handled per-packet.
6199 	 */
6200 	/* Current (common) ptype of sublist */
6201 	struct packet_type *pt_curr = NULL;
6202 	/* Current (common) orig_dev of sublist */
6203 	struct net_device *od_curr = NULL;
6204 	struct sk_buff *skb, *next;
6205 	LIST_HEAD(sublist);
6206 
6207 	list_for_each_entry_safe(skb, next, head, list) {
6208 		struct net_device *orig_dev = skb->dev;
6209 		struct packet_type *pt_prev = NULL;
6210 
6211 		skb_list_del_init(skb);
6212 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6213 		if (!pt_prev)
6214 			continue;
6215 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6216 			/* dispatch old sublist */
6217 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6218 			/* start new sublist */
6219 			INIT_LIST_HEAD(&sublist);
6220 			pt_curr = pt_prev;
6221 			od_curr = orig_dev;
6222 		}
6223 		list_add_tail(&skb->list, &sublist);
6224 	}
6225 
6226 	/* dispatch final sublist */
6227 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6228 }
6229 
6230 static int __netif_receive_skb(struct sk_buff *skb)
6231 {
6232 	int ret;
6233 
6234 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6235 		unsigned int noreclaim_flag;
6236 
6237 		/*
6238 		 * PFMEMALLOC skbs are special, they should
6239 		 * - be delivered to SOCK_MEMALLOC sockets only
6240 		 * - stay away from userspace
6241 		 * - have bounded memory usage
6242 		 *
6243 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6244 		 * context down to all allocation sites.
6245 		 */
6246 		noreclaim_flag = memalloc_noreclaim_save();
6247 		ret = __netif_receive_skb_one_core(skb, true);
6248 		memalloc_noreclaim_restore(noreclaim_flag);
6249 	} else
6250 		ret = __netif_receive_skb_one_core(skb, false);
6251 
6252 	return ret;
6253 }
6254 
6255 static void __netif_receive_skb_list(struct list_head *head)
6256 {
6257 	unsigned long noreclaim_flag = 0;
6258 	struct sk_buff *skb, *next;
6259 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6260 
6261 	list_for_each_entry_safe(skb, next, head, list) {
6262 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6263 			struct list_head sublist;
6264 
6265 			/* Handle the previous sublist */
6266 			list_cut_before(&sublist, head, &skb->list);
6267 			if (!list_empty(&sublist))
6268 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6269 			pfmemalloc = !pfmemalloc;
6270 			/* See comments in __netif_receive_skb */
6271 			if (pfmemalloc)
6272 				noreclaim_flag = memalloc_noreclaim_save();
6273 			else
6274 				memalloc_noreclaim_restore(noreclaim_flag);
6275 		}
6276 	}
6277 	/* Handle the remaining sublist */
6278 	if (!list_empty(head))
6279 		__netif_receive_skb_list_core(head, pfmemalloc);
6280 	/* Restore pflags */
6281 	if (pfmemalloc)
6282 		memalloc_noreclaim_restore(noreclaim_flag);
6283 }
6284 
6285 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6286 {
6287 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6288 	struct bpf_prog *new = xdp->prog;
6289 	int ret = 0;
6290 
6291 	switch (xdp->command) {
6292 	case XDP_SETUP_PROG:
6293 		rcu_assign_pointer(dev->xdp_prog, new);
6294 		if (old)
6295 			bpf_prog_put(old);
6296 
6297 		if (old && !new) {
6298 			static_branch_dec(&generic_xdp_needed_key);
6299 		} else if (new && !old) {
6300 			static_branch_inc(&generic_xdp_needed_key);
6301 			netif_disable_lro(dev);
6302 			dev_disable_gro_hw(dev);
6303 		}
6304 		break;
6305 
6306 	default:
6307 		ret = -EINVAL;
6308 		break;
6309 	}
6310 
6311 	return ret;
6312 }
6313 
6314 static int netif_receive_skb_internal(struct sk_buff *skb)
6315 {
6316 	int ret;
6317 
6318 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6319 
6320 	if (skb_defer_rx_timestamp(skb))
6321 		return NET_RX_SUCCESS;
6322 
6323 	rcu_read_lock();
6324 #ifdef CONFIG_RPS
6325 	if (static_branch_unlikely(&rps_needed)) {
6326 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6327 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6328 
6329 		if (cpu >= 0) {
6330 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6331 			rcu_read_unlock();
6332 			return ret;
6333 		}
6334 	}
6335 #endif
6336 	ret = __netif_receive_skb(skb);
6337 	rcu_read_unlock();
6338 	return ret;
6339 }
6340 
6341 void netif_receive_skb_list_internal(struct list_head *head)
6342 {
6343 	struct sk_buff *skb, *next;
6344 	LIST_HEAD(sublist);
6345 
6346 	list_for_each_entry_safe(skb, next, head, list) {
6347 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6348 				    skb);
6349 		skb_list_del_init(skb);
6350 		if (!skb_defer_rx_timestamp(skb))
6351 			list_add_tail(&skb->list, &sublist);
6352 	}
6353 	list_splice_init(&sublist, head);
6354 
6355 	rcu_read_lock();
6356 #ifdef CONFIG_RPS
6357 	if (static_branch_unlikely(&rps_needed)) {
6358 		list_for_each_entry_safe(skb, next, head, list) {
6359 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6360 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6361 
6362 			if (cpu >= 0) {
6363 				/* Will be handled, remove from list */
6364 				skb_list_del_init(skb);
6365 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6366 			}
6367 		}
6368 	}
6369 #endif
6370 	__netif_receive_skb_list(head);
6371 	rcu_read_unlock();
6372 }
6373 
6374 /**
6375  *	netif_receive_skb - process receive buffer from network
6376  *	@skb: buffer to process
6377  *
6378  *	netif_receive_skb() is the main receive data processing function.
6379  *	It always succeeds. The buffer may be dropped during processing
6380  *	for congestion control or by the protocol layers.
6381  *
6382  *	This function may only be called from softirq context and interrupts
6383  *	should be enabled.
6384  *
6385  *	Return values (usually ignored):
6386  *	NET_RX_SUCCESS: no congestion
6387  *	NET_RX_DROP: packet was dropped
6388  */
6389 int netif_receive_skb(struct sk_buff *skb)
6390 {
6391 	int ret;
6392 
6393 	trace_netif_receive_skb_entry(skb);
6394 
6395 	ret = netif_receive_skb_internal(skb);
6396 	trace_netif_receive_skb_exit(ret);
6397 
6398 	return ret;
6399 }
6400 EXPORT_SYMBOL(netif_receive_skb);
6401 
6402 /**
6403  *	netif_receive_skb_list - process many receive buffers from network
6404  *	@head: list of skbs to process.
6405  *
6406  *	Since return value of netif_receive_skb() is normally ignored, and
6407  *	wouldn't be meaningful for a list, this function returns void.
6408  *
6409  *	This function may only be called from softirq context and interrupts
6410  *	should be enabled.
6411  */
6412 void netif_receive_skb_list(struct list_head *head)
6413 {
6414 	struct sk_buff *skb;
6415 
6416 	if (list_empty(head))
6417 		return;
6418 	if (trace_netif_receive_skb_list_entry_enabled()) {
6419 		list_for_each_entry(skb, head, list)
6420 			trace_netif_receive_skb_list_entry(skb);
6421 	}
6422 	netif_receive_skb_list_internal(head);
6423 	trace_netif_receive_skb_list_exit(0);
6424 }
6425 EXPORT_SYMBOL(netif_receive_skb_list);
6426 
6427 /* Network device is going away, flush any packets still pending */
6428 static void flush_backlog(struct work_struct *work)
6429 {
6430 	struct sk_buff *skb, *tmp;
6431 	struct sk_buff_head list;
6432 	struct softnet_data *sd;
6433 
6434 	__skb_queue_head_init(&list);
6435 	local_bh_disable();
6436 	sd = this_cpu_ptr(&softnet_data);
6437 
6438 	backlog_lock_irq_disable(sd);
6439 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6440 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6441 			__skb_unlink(skb, &sd->input_pkt_queue);
6442 			__skb_queue_tail(&list, skb);
6443 			rps_input_queue_head_incr(sd);
6444 		}
6445 	}
6446 	backlog_unlock_irq_enable(sd);
6447 
6448 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6449 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6450 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6451 			__skb_unlink(skb, &sd->process_queue);
6452 			__skb_queue_tail(&list, skb);
6453 			rps_input_queue_head_incr(sd);
6454 		}
6455 	}
6456 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6457 	local_bh_enable();
6458 
6459 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6460 }
6461 
6462 static bool flush_required(int cpu)
6463 {
6464 #if IS_ENABLED(CONFIG_RPS)
6465 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6466 	bool do_flush;
6467 
6468 	backlog_lock_irq_disable(sd);
6469 
6470 	/* as insertion into process_queue happens with the rps lock held,
6471 	 * process_queue access may race only with dequeue
6472 	 */
6473 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6474 		   !skb_queue_empty_lockless(&sd->process_queue);
6475 	backlog_unlock_irq_enable(sd);
6476 
6477 	return do_flush;
6478 #endif
6479 	/* without RPS we can't safely check input_pkt_queue: during a
6480 	 * concurrent remote skb_queue_splice() we can detect as empty both
6481 	 * input_pkt_queue and process_queue even if the latter could end-up
6482 	 * containing a lot of packets.
6483 	 */
6484 	return true;
6485 }
6486 
6487 struct flush_backlogs {
6488 	cpumask_t		flush_cpus;
6489 	struct work_struct	w[];
6490 };
6491 
6492 static struct flush_backlogs *flush_backlogs_alloc(void)
6493 {
6494 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6495 		       GFP_KERNEL);
6496 }
6497 
6498 static struct flush_backlogs *flush_backlogs_fallback;
6499 static DEFINE_MUTEX(flush_backlogs_mutex);
6500 
6501 static void flush_all_backlogs(void)
6502 {
6503 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6504 	unsigned int cpu;
6505 
6506 	if (!ptr) {
6507 		mutex_lock(&flush_backlogs_mutex);
6508 		ptr = flush_backlogs_fallback;
6509 	}
6510 	cpumask_clear(&ptr->flush_cpus);
6511 
6512 	cpus_read_lock();
6513 
6514 	for_each_online_cpu(cpu) {
6515 		if (flush_required(cpu)) {
6516 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6517 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6518 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6519 		}
6520 	}
6521 
6522 	/* we can have in flight packet[s] on the cpus we are not flushing,
6523 	 * synchronize_net() in unregister_netdevice_many() will take care of
6524 	 * them.
6525 	 */
6526 	for_each_cpu(cpu, &ptr->flush_cpus)
6527 		flush_work(&ptr->w[cpu]);
6528 
6529 	cpus_read_unlock();
6530 
6531 	if (ptr != flush_backlogs_fallback)
6532 		kfree(ptr);
6533 	else
6534 		mutex_unlock(&flush_backlogs_mutex);
6535 }
6536 
6537 static void net_rps_send_ipi(struct softnet_data *remsd)
6538 {
6539 #ifdef CONFIG_RPS
6540 	while (remsd) {
6541 		struct softnet_data *next = remsd->rps_ipi_next;
6542 
6543 		if (cpu_online(remsd->cpu))
6544 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6545 		remsd = next;
6546 	}
6547 #endif
6548 }
6549 
6550 /*
6551  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6552  * Note: called with local irq disabled, but exits with local irq enabled.
6553  */
6554 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6555 {
6556 #ifdef CONFIG_RPS
6557 	struct softnet_data *remsd = sd->rps_ipi_list;
6558 
6559 	if (!use_backlog_threads() && remsd) {
6560 		sd->rps_ipi_list = NULL;
6561 
6562 		local_irq_enable();
6563 
6564 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6565 		net_rps_send_ipi(remsd);
6566 	} else
6567 #endif
6568 		local_irq_enable();
6569 }
6570 
6571 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6572 {
6573 #ifdef CONFIG_RPS
6574 	return !use_backlog_threads() && sd->rps_ipi_list;
6575 #else
6576 	return false;
6577 #endif
6578 }
6579 
6580 static int process_backlog(struct napi_struct *napi, int quota)
6581 {
6582 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6583 	bool again = true;
6584 	int work = 0;
6585 
6586 	/* Check if we have pending ipi, its better to send them now,
6587 	 * not waiting net_rx_action() end.
6588 	 */
6589 	if (sd_has_rps_ipi_waiting(sd)) {
6590 		local_irq_disable();
6591 		net_rps_action_and_irq_enable(sd);
6592 	}
6593 
6594 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6595 	while (again) {
6596 		struct sk_buff *skb;
6597 
6598 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6599 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6600 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6601 			rcu_read_lock();
6602 			__netif_receive_skb(skb);
6603 			rcu_read_unlock();
6604 			if (++work >= quota) {
6605 				rps_input_queue_head_add(sd, work);
6606 				return work;
6607 			}
6608 
6609 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6610 		}
6611 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6612 
6613 		backlog_lock_irq_disable(sd);
6614 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6615 			/*
6616 			 * Inline a custom version of __napi_complete().
6617 			 * only current cpu owns and manipulates this napi,
6618 			 * and NAPI_STATE_SCHED is the only possible flag set
6619 			 * on backlog.
6620 			 * We can use a plain write instead of clear_bit(),
6621 			 * and we dont need an smp_mb() memory barrier.
6622 			 */
6623 			napi->state &= NAPIF_STATE_THREADED;
6624 			again = false;
6625 		} else {
6626 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6627 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6628 						   &sd->process_queue);
6629 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6630 		}
6631 		backlog_unlock_irq_enable(sd);
6632 	}
6633 
6634 	if (work)
6635 		rps_input_queue_head_add(sd, work);
6636 	return work;
6637 }
6638 
6639 /**
6640  * __napi_schedule - schedule for receive
6641  * @n: entry to schedule
6642  *
6643  * The entry's receive function will be scheduled to run.
6644  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6645  */
6646 void __napi_schedule(struct napi_struct *n)
6647 {
6648 	unsigned long flags;
6649 
6650 	local_irq_save(flags);
6651 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6652 	local_irq_restore(flags);
6653 }
6654 EXPORT_SYMBOL(__napi_schedule);
6655 
6656 /**
6657  *	napi_schedule_prep - check if napi can be scheduled
6658  *	@n: napi context
6659  *
6660  * Test if NAPI routine is already running, and if not mark
6661  * it as running.  This is used as a condition variable to
6662  * insure only one NAPI poll instance runs.  We also make
6663  * sure there is no pending NAPI disable.
6664  */
6665 bool napi_schedule_prep(struct napi_struct *n)
6666 {
6667 	unsigned long new, val = READ_ONCE(n->state);
6668 
6669 	do {
6670 		if (unlikely(val & NAPIF_STATE_DISABLE))
6671 			return false;
6672 		new = val | NAPIF_STATE_SCHED;
6673 
6674 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6675 		 * This was suggested by Alexander Duyck, as compiler
6676 		 * emits better code than :
6677 		 * if (val & NAPIF_STATE_SCHED)
6678 		 *     new |= NAPIF_STATE_MISSED;
6679 		 */
6680 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6681 						   NAPIF_STATE_MISSED;
6682 	} while (!try_cmpxchg(&n->state, &val, new));
6683 
6684 	return !(val & NAPIF_STATE_SCHED);
6685 }
6686 EXPORT_SYMBOL(napi_schedule_prep);
6687 
6688 /**
6689  * __napi_schedule_irqoff - schedule for receive
6690  * @n: entry to schedule
6691  *
6692  * Variant of __napi_schedule() assuming hard irqs are masked.
6693  *
6694  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6695  * because the interrupt disabled assumption might not be true
6696  * due to force-threaded interrupts and spinlock substitution.
6697  */
6698 void __napi_schedule_irqoff(struct napi_struct *n)
6699 {
6700 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6701 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6702 	else
6703 		__napi_schedule(n);
6704 }
6705 EXPORT_SYMBOL(__napi_schedule_irqoff);
6706 
6707 bool napi_complete_done(struct napi_struct *n, int work_done)
6708 {
6709 	unsigned long flags, val, new, timeout = 0;
6710 	bool ret = true;
6711 
6712 	/*
6713 	 * 1) Don't let napi dequeue from the cpu poll list
6714 	 *    just in case its running on a different cpu.
6715 	 * 2) If we are busy polling, do nothing here, we have
6716 	 *    the guarantee we will be called later.
6717 	 */
6718 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6719 				 NAPIF_STATE_IN_BUSY_POLL)))
6720 		return false;
6721 
6722 	if (work_done) {
6723 		if (n->gro.bitmask)
6724 			timeout = napi_get_gro_flush_timeout(n);
6725 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6726 	}
6727 	if (n->defer_hard_irqs_count > 0) {
6728 		n->defer_hard_irqs_count--;
6729 		timeout = napi_get_gro_flush_timeout(n);
6730 		if (timeout)
6731 			ret = false;
6732 	}
6733 
6734 	/*
6735 	 * When the NAPI instance uses a timeout and keeps postponing
6736 	 * it, we need to bound somehow the time packets are kept in
6737 	 * the GRO layer.
6738 	 */
6739 	gro_flush_normal(&n->gro, !!timeout);
6740 
6741 	if (unlikely(!list_empty(&n->poll_list))) {
6742 		/* If n->poll_list is not empty, we need to mask irqs */
6743 		local_irq_save(flags);
6744 		list_del_init(&n->poll_list);
6745 		local_irq_restore(flags);
6746 	}
6747 	WRITE_ONCE(n->list_owner, -1);
6748 
6749 	val = READ_ONCE(n->state);
6750 	do {
6751 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6752 
6753 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6754 			      NAPIF_STATE_SCHED_THREADED |
6755 			      NAPIF_STATE_PREFER_BUSY_POLL);
6756 
6757 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6758 		 * because we will call napi->poll() one more time.
6759 		 * This C code was suggested by Alexander Duyck to help gcc.
6760 		 */
6761 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6762 						    NAPIF_STATE_SCHED;
6763 	} while (!try_cmpxchg(&n->state, &val, new));
6764 
6765 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6766 		__napi_schedule(n);
6767 		return false;
6768 	}
6769 
6770 	if (timeout)
6771 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6772 			      HRTIMER_MODE_REL_PINNED);
6773 	return ret;
6774 }
6775 EXPORT_SYMBOL(napi_complete_done);
6776 
6777 static void skb_defer_free_flush(void)
6778 {
6779 	struct llist_node *free_list;
6780 	struct sk_buff *skb, *next;
6781 	struct skb_defer_node *sdn;
6782 	int node;
6783 
6784 	for_each_node(node) {
6785 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6786 
6787 		if (llist_empty(&sdn->defer_list))
6788 			continue;
6789 		atomic_long_set(&sdn->defer_count, 0);
6790 		free_list = llist_del_all(&sdn->defer_list);
6791 
6792 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6793 			prefetch(next);
6794 			napi_consume_skb(skb, 1);
6795 		}
6796 	}
6797 }
6798 
6799 #if defined(CONFIG_NET_RX_BUSY_POLL)
6800 
6801 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6802 {
6803 	if (!skip_schedule) {
6804 		gro_normal_list(&napi->gro);
6805 		__napi_schedule(napi);
6806 		return;
6807 	}
6808 
6809 	/* Flush too old packets. If HZ < 1000, flush all packets */
6810 	gro_flush_normal(&napi->gro, HZ >= 1000);
6811 
6812 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6813 }
6814 
6815 enum {
6816 	NAPI_F_PREFER_BUSY_POLL	= 1,
6817 	NAPI_F_END_ON_RESCHED	= 2,
6818 };
6819 
6820 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6821 			   unsigned flags, u16 budget)
6822 {
6823 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6824 	bool skip_schedule = false;
6825 	unsigned long timeout;
6826 	int rc;
6827 
6828 	/* Busy polling means there is a high chance device driver hard irq
6829 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6830 	 * set in napi_schedule_prep().
6831 	 * Since we are about to call napi->poll() once more, we can safely
6832 	 * clear NAPI_STATE_MISSED.
6833 	 *
6834 	 * Note: x86 could use a single "lock and ..." instruction
6835 	 * to perform these two clear_bit()
6836 	 */
6837 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6838 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6839 
6840 	local_bh_disable();
6841 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6842 
6843 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6844 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6845 		timeout = napi_get_gro_flush_timeout(napi);
6846 		if (napi->defer_hard_irqs_count && timeout) {
6847 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6848 			skip_schedule = true;
6849 		}
6850 	}
6851 
6852 	/* All we really want here is to re-enable device interrupts.
6853 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6854 	 */
6855 	rc = napi->poll(napi, budget);
6856 	/* We can't gro_normal_list() here, because napi->poll() might have
6857 	 * rearmed the napi (napi_complete_done()) in which case it could
6858 	 * already be running on another CPU.
6859 	 */
6860 	trace_napi_poll(napi, rc, budget);
6861 	netpoll_poll_unlock(have_poll_lock);
6862 	if (rc == budget)
6863 		__busy_poll_stop(napi, skip_schedule);
6864 	bpf_net_ctx_clear(bpf_net_ctx);
6865 	local_bh_enable();
6866 }
6867 
6868 static void __napi_busy_loop(unsigned int napi_id,
6869 		      bool (*loop_end)(void *, unsigned long),
6870 		      void *loop_end_arg, unsigned flags, u16 budget)
6871 {
6872 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6873 	int (*napi_poll)(struct napi_struct *napi, int budget);
6874 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6875 	void *have_poll_lock = NULL;
6876 	struct napi_struct *napi;
6877 
6878 	WARN_ON_ONCE(!rcu_read_lock_held());
6879 
6880 restart:
6881 	napi_poll = NULL;
6882 
6883 	napi = napi_by_id(napi_id);
6884 	if (!napi)
6885 		return;
6886 
6887 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6888 		preempt_disable();
6889 	for (;;) {
6890 		int work = 0;
6891 
6892 		local_bh_disable();
6893 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6894 		if (!napi_poll) {
6895 			unsigned long val = READ_ONCE(napi->state);
6896 
6897 			/* If multiple threads are competing for this napi,
6898 			 * we avoid dirtying napi->state as much as we can.
6899 			 */
6900 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6901 				   NAPIF_STATE_IN_BUSY_POLL)) {
6902 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6903 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6904 				goto count;
6905 			}
6906 			if (cmpxchg(&napi->state, val,
6907 				    val | NAPIF_STATE_IN_BUSY_POLL |
6908 					  NAPIF_STATE_SCHED) != val) {
6909 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6910 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6911 				goto count;
6912 			}
6913 			have_poll_lock = netpoll_poll_lock(napi);
6914 			napi_poll = napi->poll;
6915 		}
6916 		work = napi_poll(napi, budget);
6917 		trace_napi_poll(napi, work, budget);
6918 		gro_normal_list(&napi->gro);
6919 count:
6920 		if (work > 0)
6921 			__NET_ADD_STATS(dev_net(napi->dev),
6922 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6923 		skb_defer_free_flush();
6924 		bpf_net_ctx_clear(bpf_net_ctx);
6925 		local_bh_enable();
6926 
6927 		if (!loop_end || loop_end(loop_end_arg, start_time))
6928 			break;
6929 
6930 		if (unlikely(need_resched())) {
6931 			if (flags & NAPI_F_END_ON_RESCHED)
6932 				break;
6933 			if (napi_poll)
6934 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6935 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6936 				preempt_enable();
6937 			rcu_read_unlock();
6938 			cond_resched();
6939 			rcu_read_lock();
6940 			if (loop_end(loop_end_arg, start_time))
6941 				return;
6942 			goto restart;
6943 		}
6944 		cpu_relax();
6945 	}
6946 	if (napi_poll)
6947 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6948 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6949 		preempt_enable();
6950 }
6951 
6952 void napi_busy_loop_rcu(unsigned int napi_id,
6953 			bool (*loop_end)(void *, unsigned long),
6954 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6955 {
6956 	unsigned flags = NAPI_F_END_ON_RESCHED;
6957 
6958 	if (prefer_busy_poll)
6959 		flags |= NAPI_F_PREFER_BUSY_POLL;
6960 
6961 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6962 }
6963 
6964 void napi_busy_loop(unsigned int napi_id,
6965 		    bool (*loop_end)(void *, unsigned long),
6966 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6967 {
6968 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6969 
6970 	rcu_read_lock();
6971 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6972 	rcu_read_unlock();
6973 }
6974 EXPORT_SYMBOL(napi_busy_loop);
6975 
6976 void napi_suspend_irqs(unsigned int napi_id)
6977 {
6978 	struct napi_struct *napi;
6979 
6980 	rcu_read_lock();
6981 	napi = napi_by_id(napi_id);
6982 	if (napi) {
6983 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6984 
6985 		if (timeout)
6986 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6987 				      HRTIMER_MODE_REL_PINNED);
6988 	}
6989 	rcu_read_unlock();
6990 }
6991 
6992 void napi_resume_irqs(unsigned int napi_id)
6993 {
6994 	struct napi_struct *napi;
6995 
6996 	rcu_read_lock();
6997 	napi = napi_by_id(napi_id);
6998 	if (napi) {
6999 		/* If irq_suspend_timeout is set to 0 between the call to
7000 		 * napi_suspend_irqs and now, the original value still
7001 		 * determines the safety timeout as intended and napi_watchdog
7002 		 * will resume irq processing.
7003 		 */
7004 		if (napi_get_irq_suspend_timeout(napi)) {
7005 			local_bh_disable();
7006 			napi_schedule(napi);
7007 			local_bh_enable();
7008 		}
7009 	}
7010 	rcu_read_unlock();
7011 }
7012 
7013 #endif /* CONFIG_NET_RX_BUSY_POLL */
7014 
7015 static void __napi_hash_add_with_id(struct napi_struct *napi,
7016 				    unsigned int napi_id)
7017 {
7018 	napi->gro.cached_napi_id = napi_id;
7019 
7020 	WRITE_ONCE(napi->napi_id, napi_id);
7021 	hlist_add_head_rcu(&napi->napi_hash_node,
7022 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7023 }
7024 
7025 static void napi_hash_add_with_id(struct napi_struct *napi,
7026 				  unsigned int napi_id)
7027 {
7028 	unsigned long flags;
7029 
7030 	spin_lock_irqsave(&napi_hash_lock, flags);
7031 	WARN_ON_ONCE(napi_by_id(napi_id));
7032 	__napi_hash_add_with_id(napi, napi_id);
7033 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7034 }
7035 
7036 static void napi_hash_add(struct napi_struct *napi)
7037 {
7038 	unsigned long flags;
7039 
7040 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7041 		return;
7042 
7043 	spin_lock_irqsave(&napi_hash_lock, flags);
7044 
7045 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7046 	do {
7047 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7048 			napi_gen_id = MIN_NAPI_ID;
7049 	} while (napi_by_id(napi_gen_id));
7050 
7051 	__napi_hash_add_with_id(napi, napi_gen_id);
7052 
7053 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7054 }
7055 
7056 /* Warning : caller is responsible to make sure rcu grace period
7057  * is respected before freeing memory containing @napi
7058  */
7059 static void napi_hash_del(struct napi_struct *napi)
7060 {
7061 	unsigned long flags;
7062 
7063 	spin_lock_irqsave(&napi_hash_lock, flags);
7064 
7065 	hlist_del_init_rcu(&napi->napi_hash_node);
7066 
7067 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7068 }
7069 
7070 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7071 {
7072 	struct napi_struct *napi;
7073 
7074 	napi = container_of(timer, struct napi_struct, timer);
7075 
7076 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7077 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7078 	 */
7079 	if (!napi_disable_pending(napi) &&
7080 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7081 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7082 		__napi_schedule_irqoff(napi);
7083 	}
7084 
7085 	return HRTIMER_NORESTART;
7086 }
7087 
7088 static void napi_stop_kthread(struct napi_struct *napi)
7089 {
7090 	unsigned long val, new;
7091 
7092 	/* Wait until the napi STATE_THREADED is unset. */
7093 	while (true) {
7094 		val = READ_ONCE(napi->state);
7095 
7096 		/* If napi kthread own this napi or the napi is idle,
7097 		 * STATE_THREADED can be unset here.
7098 		 */
7099 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7100 		    !(val & NAPIF_STATE_SCHED)) {
7101 			new = val & (~(NAPIF_STATE_THREADED |
7102 				       NAPIF_STATE_THREADED_BUSY_POLL));
7103 		} else {
7104 			msleep(20);
7105 			continue;
7106 		}
7107 
7108 		if (try_cmpxchg(&napi->state, &val, new))
7109 			break;
7110 	}
7111 
7112 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7113 	 * the kthread.
7114 	 */
7115 	while (true) {
7116 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7117 			break;
7118 
7119 		msleep(20);
7120 	}
7121 
7122 	kthread_stop(napi->thread);
7123 	napi->thread = NULL;
7124 }
7125 
7126 static void napi_set_threaded_state(struct napi_struct *napi,
7127 				    enum netdev_napi_threaded threaded_mode)
7128 {
7129 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7130 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7131 
7132 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7133 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7134 }
7135 
7136 int napi_set_threaded(struct napi_struct *napi,
7137 		      enum netdev_napi_threaded threaded)
7138 {
7139 	if (threaded) {
7140 		if (!napi->thread) {
7141 			int err = napi_kthread_create(napi);
7142 
7143 			if (err)
7144 				return err;
7145 		}
7146 	}
7147 
7148 	if (napi->config)
7149 		napi->config->threaded = threaded;
7150 
7151 	/* Setting/unsetting threaded mode on a napi might not immediately
7152 	 * take effect, if the current napi instance is actively being
7153 	 * polled. In this case, the switch between threaded mode and
7154 	 * softirq mode will happen in the next round of napi_schedule().
7155 	 * This should not cause hiccups/stalls to the live traffic.
7156 	 */
7157 	if (!threaded && napi->thread) {
7158 		napi_stop_kthread(napi);
7159 	} else {
7160 		/* Make sure kthread is created before THREADED bit is set. */
7161 		smp_mb__before_atomic();
7162 		napi_set_threaded_state(napi, threaded);
7163 	}
7164 
7165 	return 0;
7166 }
7167 
7168 int netif_set_threaded(struct net_device *dev,
7169 		       enum netdev_napi_threaded threaded)
7170 {
7171 	struct napi_struct *napi;
7172 	int i, err = 0;
7173 
7174 	netdev_assert_locked_or_invisible(dev);
7175 
7176 	if (threaded) {
7177 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7178 			if (!napi->thread) {
7179 				err = napi_kthread_create(napi);
7180 				if (err) {
7181 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7182 					break;
7183 				}
7184 			}
7185 		}
7186 	}
7187 
7188 	WRITE_ONCE(dev->threaded, threaded);
7189 
7190 	/* The error should not occur as the kthreads are already created. */
7191 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7192 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7193 
7194 	/* Override the config for all NAPIs even if currently not listed */
7195 	for (i = 0; i < dev->num_napi_configs; i++)
7196 		dev->napi_config[i].threaded = threaded;
7197 
7198 	return err;
7199 }
7200 
7201 /**
7202  * netif_threaded_enable() - enable threaded NAPIs
7203  * @dev: net_device instance
7204  *
7205  * Enable threaded mode for the NAPI instances of the device. This may be useful
7206  * for devices where multiple NAPI instances get scheduled by a single
7207  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7208  * than the core where IRQ is mapped.
7209  *
7210  * This function should be called before @dev is registered.
7211  */
7212 void netif_threaded_enable(struct net_device *dev)
7213 {
7214 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7215 }
7216 EXPORT_SYMBOL(netif_threaded_enable);
7217 
7218 /**
7219  * netif_queue_set_napi - Associate queue with the napi
7220  * @dev: device to which NAPI and queue belong
7221  * @queue_index: Index of queue
7222  * @type: queue type as RX or TX
7223  * @napi: NAPI context, pass NULL to clear previously set NAPI
7224  *
7225  * Set queue with its corresponding napi context. This should be done after
7226  * registering the NAPI handler for the queue-vector and the queues have been
7227  * mapped to the corresponding interrupt vector.
7228  */
7229 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7230 			  enum netdev_queue_type type, struct napi_struct *napi)
7231 {
7232 	struct netdev_rx_queue *rxq;
7233 	struct netdev_queue *txq;
7234 
7235 	if (WARN_ON_ONCE(napi && !napi->dev))
7236 		return;
7237 	netdev_ops_assert_locked_or_invisible(dev);
7238 
7239 	switch (type) {
7240 	case NETDEV_QUEUE_TYPE_RX:
7241 		rxq = __netif_get_rx_queue(dev, queue_index);
7242 		rxq->napi = napi;
7243 		return;
7244 	case NETDEV_QUEUE_TYPE_TX:
7245 		txq = netdev_get_tx_queue(dev, queue_index);
7246 		txq->napi = napi;
7247 		return;
7248 	default:
7249 		return;
7250 	}
7251 }
7252 EXPORT_SYMBOL(netif_queue_set_napi);
7253 
7254 static void
7255 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7256 		      const cpumask_t *mask)
7257 {
7258 	struct napi_struct *napi =
7259 		container_of(notify, struct napi_struct, notify);
7260 #ifdef CONFIG_RFS_ACCEL
7261 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7262 	int err;
7263 #endif
7264 
7265 	if (napi->config && napi->dev->irq_affinity_auto)
7266 		cpumask_copy(&napi->config->affinity_mask, mask);
7267 
7268 #ifdef CONFIG_RFS_ACCEL
7269 	if (napi->dev->rx_cpu_rmap_auto) {
7270 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7271 		if (err)
7272 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7273 				    err);
7274 	}
7275 #endif
7276 }
7277 
7278 #ifdef CONFIG_RFS_ACCEL
7279 static void netif_napi_affinity_release(struct kref *ref)
7280 {
7281 	struct napi_struct *napi =
7282 		container_of(ref, struct napi_struct, notify.kref);
7283 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7284 
7285 	netdev_assert_locked(napi->dev);
7286 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7287 				   &napi->state));
7288 
7289 	if (!napi->dev->rx_cpu_rmap_auto)
7290 		return;
7291 	rmap->obj[napi->napi_rmap_idx] = NULL;
7292 	napi->napi_rmap_idx = -1;
7293 	cpu_rmap_put(rmap);
7294 }
7295 
7296 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7297 {
7298 	if (dev->rx_cpu_rmap_auto)
7299 		return 0;
7300 
7301 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7302 	if (!dev->rx_cpu_rmap)
7303 		return -ENOMEM;
7304 
7305 	dev->rx_cpu_rmap_auto = true;
7306 	return 0;
7307 }
7308 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7309 
7310 static void netif_del_cpu_rmap(struct net_device *dev)
7311 {
7312 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7313 
7314 	if (!dev->rx_cpu_rmap_auto)
7315 		return;
7316 
7317 	/* Free the rmap */
7318 	cpu_rmap_put(rmap);
7319 	dev->rx_cpu_rmap = NULL;
7320 	dev->rx_cpu_rmap_auto = false;
7321 }
7322 
7323 #else
7324 static void netif_napi_affinity_release(struct kref *ref)
7325 {
7326 }
7327 
7328 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7329 {
7330 	return 0;
7331 }
7332 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7333 
7334 static void netif_del_cpu_rmap(struct net_device *dev)
7335 {
7336 }
7337 #endif
7338 
7339 void netif_set_affinity_auto(struct net_device *dev)
7340 {
7341 	unsigned int i, maxqs, numa;
7342 
7343 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7344 	numa = dev_to_node(&dev->dev);
7345 
7346 	for (i = 0; i < maxqs; i++)
7347 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7348 				&dev->napi_config[i].affinity_mask);
7349 
7350 	dev->irq_affinity_auto = true;
7351 }
7352 EXPORT_SYMBOL(netif_set_affinity_auto);
7353 
7354 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7355 {
7356 	int rc;
7357 
7358 	netdev_assert_locked_or_invisible(napi->dev);
7359 
7360 	if (napi->irq == irq)
7361 		return;
7362 
7363 	/* Remove existing resources */
7364 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7365 		irq_set_affinity_notifier(napi->irq, NULL);
7366 
7367 	napi->irq = irq;
7368 	if (irq < 0 ||
7369 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7370 		return;
7371 
7372 	/* Abort for buggy drivers */
7373 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7374 		return;
7375 
7376 #ifdef CONFIG_RFS_ACCEL
7377 	if (napi->dev->rx_cpu_rmap_auto) {
7378 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7379 		if (rc < 0)
7380 			return;
7381 
7382 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7383 		napi->napi_rmap_idx = rc;
7384 	}
7385 #endif
7386 
7387 	/* Use core IRQ notifier */
7388 	napi->notify.notify = netif_napi_irq_notify;
7389 	napi->notify.release = netif_napi_affinity_release;
7390 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7391 	if (rc) {
7392 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7393 			    rc);
7394 		goto put_rmap;
7395 	}
7396 
7397 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7398 	return;
7399 
7400 put_rmap:
7401 #ifdef CONFIG_RFS_ACCEL
7402 	if (napi->dev->rx_cpu_rmap_auto) {
7403 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7404 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7405 		napi->napi_rmap_idx = -1;
7406 	}
7407 #endif
7408 	napi->notify.notify = NULL;
7409 	napi->notify.release = NULL;
7410 }
7411 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7412 
7413 static void napi_restore_config(struct napi_struct *n)
7414 {
7415 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7416 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7417 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7418 
7419 	if (n->dev->irq_affinity_auto &&
7420 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7421 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7422 
7423 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7424 	 * napi_hash_add to generate one for us.
7425 	 */
7426 	if (n->config->napi_id) {
7427 		napi_hash_add_with_id(n, n->config->napi_id);
7428 	} else {
7429 		napi_hash_add(n);
7430 		n->config->napi_id = n->napi_id;
7431 	}
7432 
7433 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7434 }
7435 
7436 static void napi_save_config(struct napi_struct *n)
7437 {
7438 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7439 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7440 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7441 	napi_hash_del(n);
7442 }
7443 
7444 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7445  * inherit an existing ID try to insert it at the right position.
7446  */
7447 static void
7448 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7449 {
7450 	unsigned int new_id, pos_id;
7451 	struct list_head *higher;
7452 	struct napi_struct *pos;
7453 
7454 	new_id = UINT_MAX;
7455 	if (napi->config && napi->config->napi_id)
7456 		new_id = napi->config->napi_id;
7457 
7458 	higher = &dev->napi_list;
7459 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7460 		if (napi_id_valid(pos->napi_id))
7461 			pos_id = pos->napi_id;
7462 		else if (pos->config)
7463 			pos_id = pos->config->napi_id;
7464 		else
7465 			pos_id = UINT_MAX;
7466 
7467 		if (pos_id <= new_id)
7468 			break;
7469 		higher = &pos->dev_list;
7470 	}
7471 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7472 }
7473 
7474 /* Double check that napi_get_frags() allocates skbs with
7475  * skb->head being backed by slab, not a page fragment.
7476  * This is to make sure bug fixed in 3226b158e67c
7477  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7478  * does not accidentally come back.
7479  */
7480 static void napi_get_frags_check(struct napi_struct *napi)
7481 {
7482 	struct sk_buff *skb;
7483 
7484 	local_bh_disable();
7485 	skb = napi_get_frags(napi);
7486 	WARN_ON_ONCE(skb && skb->head_frag);
7487 	napi_free_frags(napi);
7488 	local_bh_enable();
7489 }
7490 
7491 void netif_napi_add_weight_locked(struct net_device *dev,
7492 				  struct napi_struct *napi,
7493 				  int (*poll)(struct napi_struct *, int),
7494 				  int weight)
7495 {
7496 	netdev_assert_locked(dev);
7497 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7498 		return;
7499 
7500 	INIT_LIST_HEAD(&napi->poll_list);
7501 	INIT_HLIST_NODE(&napi->napi_hash_node);
7502 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7503 	gro_init(&napi->gro);
7504 	napi->skb = NULL;
7505 	napi->poll = poll;
7506 	if (weight > NAPI_POLL_WEIGHT)
7507 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7508 				weight);
7509 	napi->weight = weight;
7510 	napi->dev = dev;
7511 #ifdef CONFIG_NETPOLL
7512 	napi->poll_owner = -1;
7513 #endif
7514 	napi->list_owner = -1;
7515 	set_bit(NAPI_STATE_SCHED, &napi->state);
7516 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7517 	netif_napi_dev_list_add(dev, napi);
7518 
7519 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7520 	 * configuration will be loaded in napi_enable
7521 	 */
7522 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7523 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7524 
7525 	napi_get_frags_check(napi);
7526 	/* Create kthread for this napi if dev->threaded is set.
7527 	 * Clear dev->threaded if kthread creation failed so that
7528 	 * threaded mode will not be enabled in napi_enable().
7529 	 */
7530 	if (napi_get_threaded_config(dev, napi))
7531 		if (napi_kthread_create(napi))
7532 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7533 	netif_napi_set_irq_locked(napi, -1);
7534 }
7535 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7536 
7537 void napi_disable_locked(struct napi_struct *n)
7538 {
7539 	unsigned long val, new;
7540 
7541 	might_sleep();
7542 	netdev_assert_locked(n->dev);
7543 
7544 	set_bit(NAPI_STATE_DISABLE, &n->state);
7545 
7546 	val = READ_ONCE(n->state);
7547 	do {
7548 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7549 			usleep_range(20, 200);
7550 			val = READ_ONCE(n->state);
7551 		}
7552 
7553 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7554 		new &= ~(NAPIF_STATE_THREADED |
7555 			 NAPIF_STATE_THREADED_BUSY_POLL |
7556 			 NAPIF_STATE_PREFER_BUSY_POLL);
7557 	} while (!try_cmpxchg(&n->state, &val, new));
7558 
7559 	hrtimer_cancel(&n->timer);
7560 
7561 	if (n->config)
7562 		napi_save_config(n);
7563 	else
7564 		napi_hash_del(n);
7565 
7566 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7567 }
7568 EXPORT_SYMBOL(napi_disable_locked);
7569 
7570 /**
7571  * napi_disable() - prevent NAPI from scheduling
7572  * @n: NAPI context
7573  *
7574  * Stop NAPI from being scheduled on this context.
7575  * Waits till any outstanding processing completes.
7576  * Takes netdev_lock() for associated net_device.
7577  */
7578 void napi_disable(struct napi_struct *n)
7579 {
7580 	netdev_lock(n->dev);
7581 	napi_disable_locked(n);
7582 	netdev_unlock(n->dev);
7583 }
7584 EXPORT_SYMBOL(napi_disable);
7585 
7586 void napi_enable_locked(struct napi_struct *n)
7587 {
7588 	unsigned long new, val = READ_ONCE(n->state);
7589 
7590 	if (n->config)
7591 		napi_restore_config(n);
7592 	else
7593 		napi_hash_add(n);
7594 
7595 	do {
7596 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7597 
7598 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7599 		if (n->dev->threaded && n->thread)
7600 			new |= NAPIF_STATE_THREADED;
7601 	} while (!try_cmpxchg(&n->state, &val, new));
7602 }
7603 EXPORT_SYMBOL(napi_enable_locked);
7604 
7605 /**
7606  * napi_enable() - enable NAPI scheduling
7607  * @n: NAPI context
7608  *
7609  * Enable scheduling of a NAPI instance.
7610  * Must be paired with napi_disable().
7611  * Takes netdev_lock() for associated net_device.
7612  */
7613 void napi_enable(struct napi_struct *n)
7614 {
7615 	netdev_lock(n->dev);
7616 	napi_enable_locked(n);
7617 	netdev_unlock(n->dev);
7618 }
7619 EXPORT_SYMBOL(napi_enable);
7620 
7621 /* Must be called in process context */
7622 void __netif_napi_del_locked(struct napi_struct *napi)
7623 {
7624 	netdev_assert_locked(napi->dev);
7625 
7626 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7627 		return;
7628 
7629 	/* Make sure NAPI is disabled (or was never enabled). */
7630 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7631 
7632 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7633 		irq_set_affinity_notifier(napi->irq, NULL);
7634 
7635 	if (napi->config) {
7636 		napi->index = -1;
7637 		napi->config = NULL;
7638 	}
7639 
7640 	list_del_rcu(&napi->dev_list);
7641 	napi_free_frags(napi);
7642 
7643 	gro_cleanup(&napi->gro);
7644 
7645 	if (napi->thread) {
7646 		kthread_stop(napi->thread);
7647 		napi->thread = NULL;
7648 	}
7649 }
7650 EXPORT_SYMBOL(__netif_napi_del_locked);
7651 
7652 static int __napi_poll(struct napi_struct *n, bool *repoll)
7653 {
7654 	int work, weight;
7655 
7656 	weight = n->weight;
7657 
7658 	/* This NAPI_STATE_SCHED test is for avoiding a race
7659 	 * with netpoll's poll_napi().  Only the entity which
7660 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7661 	 * actually make the ->poll() call.  Therefore we avoid
7662 	 * accidentally calling ->poll() when NAPI is not scheduled.
7663 	 */
7664 	work = 0;
7665 	if (napi_is_scheduled(n)) {
7666 		work = n->poll(n, weight);
7667 		trace_napi_poll(n, work, weight);
7668 
7669 		xdp_do_check_flushed(n);
7670 	}
7671 
7672 	if (unlikely(work > weight))
7673 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7674 				n->poll, work, weight);
7675 
7676 	if (likely(work < weight))
7677 		return work;
7678 
7679 	/* Drivers must not modify the NAPI state if they
7680 	 * consume the entire weight.  In such cases this code
7681 	 * still "owns" the NAPI instance and therefore can
7682 	 * move the instance around on the list at-will.
7683 	 */
7684 	if (unlikely(napi_disable_pending(n))) {
7685 		napi_complete(n);
7686 		return work;
7687 	}
7688 
7689 	/* The NAPI context has more processing work, but busy-polling
7690 	 * is preferred. Exit early.
7691 	 */
7692 	if (napi_prefer_busy_poll(n)) {
7693 		if (napi_complete_done(n, work)) {
7694 			/* If timeout is not set, we need to make sure
7695 			 * that the NAPI is re-scheduled.
7696 			 */
7697 			napi_schedule(n);
7698 		}
7699 		return work;
7700 	}
7701 
7702 	/* Flush too old packets. If HZ < 1000, flush all packets */
7703 	gro_flush_normal(&n->gro, HZ >= 1000);
7704 
7705 	/* Some drivers may have called napi_schedule
7706 	 * prior to exhausting their budget.
7707 	 */
7708 	if (unlikely(!list_empty(&n->poll_list))) {
7709 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7710 			     n->dev ? n->dev->name : "backlog");
7711 		return work;
7712 	}
7713 
7714 	*repoll = true;
7715 
7716 	return work;
7717 }
7718 
7719 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7720 {
7721 	bool do_repoll = false;
7722 	void *have;
7723 	int work;
7724 
7725 	list_del_init(&n->poll_list);
7726 
7727 	have = netpoll_poll_lock(n);
7728 
7729 	work = __napi_poll(n, &do_repoll);
7730 
7731 	if (do_repoll) {
7732 #if defined(CONFIG_DEBUG_NET)
7733 		if (unlikely(!napi_is_scheduled(n)))
7734 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7735 				n->dev->name, n->poll);
7736 #endif
7737 		list_add_tail(&n->poll_list, repoll);
7738 	}
7739 	netpoll_poll_unlock(have);
7740 
7741 	return work;
7742 }
7743 
7744 static int napi_thread_wait(struct napi_struct *napi)
7745 {
7746 	set_current_state(TASK_INTERRUPTIBLE);
7747 
7748 	while (!kthread_should_stop()) {
7749 		/* Testing SCHED_THREADED bit here to make sure the current
7750 		 * kthread owns this napi and could poll on this napi.
7751 		 * Testing SCHED bit is not enough because SCHED bit might be
7752 		 * set by some other busy poll thread or by napi_disable().
7753 		 */
7754 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7755 			WARN_ON(!list_empty(&napi->poll_list));
7756 			__set_current_state(TASK_RUNNING);
7757 			return 0;
7758 		}
7759 
7760 		schedule();
7761 		set_current_state(TASK_INTERRUPTIBLE);
7762 	}
7763 	__set_current_state(TASK_RUNNING);
7764 
7765 	return -1;
7766 }
7767 
7768 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7769 {
7770 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7771 	struct softnet_data *sd;
7772 	unsigned long last_qs = jiffies;
7773 
7774 	for (;;) {
7775 		bool repoll = false;
7776 		void *have;
7777 
7778 		local_bh_disable();
7779 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7780 
7781 		sd = this_cpu_ptr(&softnet_data);
7782 		sd->in_napi_threaded_poll = true;
7783 
7784 		have = netpoll_poll_lock(napi);
7785 		__napi_poll(napi, &repoll);
7786 		netpoll_poll_unlock(have);
7787 
7788 		sd->in_napi_threaded_poll = false;
7789 		barrier();
7790 
7791 		if (sd_has_rps_ipi_waiting(sd)) {
7792 			local_irq_disable();
7793 			net_rps_action_and_irq_enable(sd);
7794 		}
7795 		skb_defer_free_flush();
7796 		bpf_net_ctx_clear(bpf_net_ctx);
7797 
7798 		/* When busy poll is enabled, the old packets are not flushed in
7799 		 * napi_complete_done. So flush them here.
7800 		 */
7801 		if (busy_poll)
7802 			gro_flush_normal(&napi->gro, HZ >= 1000);
7803 		local_bh_enable();
7804 
7805 		/* Call cond_resched here to avoid watchdog warnings. */
7806 		if (repoll || busy_poll) {
7807 			rcu_softirq_qs_periodic(last_qs);
7808 			cond_resched();
7809 		}
7810 
7811 		if (!repoll)
7812 			break;
7813 	}
7814 }
7815 
7816 static int napi_threaded_poll(void *data)
7817 {
7818 	struct napi_struct *napi = data;
7819 	bool want_busy_poll;
7820 	bool in_busy_poll;
7821 	unsigned long val;
7822 
7823 	while (!napi_thread_wait(napi)) {
7824 		val = READ_ONCE(napi->state);
7825 
7826 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7827 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7828 
7829 		if (unlikely(val & NAPIF_STATE_DISABLE))
7830 			want_busy_poll = false;
7831 
7832 		if (want_busy_poll != in_busy_poll)
7833 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7834 				   want_busy_poll);
7835 
7836 		napi_threaded_poll_loop(napi, want_busy_poll);
7837 	}
7838 
7839 	return 0;
7840 }
7841 
7842 static __latent_entropy void net_rx_action(void)
7843 {
7844 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7845 	unsigned long time_limit = jiffies +
7846 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7847 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7848 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7849 	LIST_HEAD(list);
7850 	LIST_HEAD(repoll);
7851 
7852 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7853 start:
7854 	sd->in_net_rx_action = true;
7855 	local_irq_disable();
7856 	list_splice_init(&sd->poll_list, &list);
7857 	local_irq_enable();
7858 
7859 	for (;;) {
7860 		struct napi_struct *n;
7861 
7862 		skb_defer_free_flush();
7863 
7864 		if (list_empty(&list)) {
7865 			if (list_empty(&repoll)) {
7866 				sd->in_net_rx_action = false;
7867 				barrier();
7868 				/* We need to check if ____napi_schedule()
7869 				 * had refilled poll_list while
7870 				 * sd->in_net_rx_action was true.
7871 				 */
7872 				if (!list_empty(&sd->poll_list))
7873 					goto start;
7874 				if (!sd_has_rps_ipi_waiting(sd))
7875 					goto end;
7876 			}
7877 			break;
7878 		}
7879 
7880 		n = list_first_entry(&list, struct napi_struct, poll_list);
7881 		budget -= napi_poll(n, &repoll);
7882 
7883 		/* If softirq window is exhausted then punt.
7884 		 * Allow this to run for 2 jiffies since which will allow
7885 		 * an average latency of 1.5/HZ.
7886 		 */
7887 		if (unlikely(budget <= 0 ||
7888 			     time_after_eq(jiffies, time_limit))) {
7889 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7890 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7891 			break;
7892 		}
7893 	}
7894 
7895 	local_irq_disable();
7896 
7897 	list_splice_tail_init(&sd->poll_list, &list);
7898 	list_splice_tail(&repoll, &list);
7899 	list_splice(&list, &sd->poll_list);
7900 	if (!list_empty(&sd->poll_list))
7901 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7902 	else
7903 		sd->in_net_rx_action = false;
7904 
7905 	net_rps_action_and_irq_enable(sd);
7906 end:
7907 	bpf_net_ctx_clear(bpf_net_ctx);
7908 }
7909 
7910 struct netdev_adjacent {
7911 	struct net_device *dev;
7912 	netdevice_tracker dev_tracker;
7913 
7914 	/* upper master flag, there can only be one master device per list */
7915 	bool master;
7916 
7917 	/* lookup ignore flag */
7918 	bool ignore;
7919 
7920 	/* counter for the number of times this device was added to us */
7921 	u16 ref_nr;
7922 
7923 	/* private field for the users */
7924 	void *private;
7925 
7926 	struct list_head list;
7927 	struct rcu_head rcu;
7928 };
7929 
7930 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7931 						 struct list_head *adj_list)
7932 {
7933 	struct netdev_adjacent *adj;
7934 
7935 	list_for_each_entry(adj, adj_list, list) {
7936 		if (adj->dev == adj_dev)
7937 			return adj;
7938 	}
7939 	return NULL;
7940 }
7941 
7942 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7943 				    struct netdev_nested_priv *priv)
7944 {
7945 	struct net_device *dev = (struct net_device *)priv->data;
7946 
7947 	return upper_dev == dev;
7948 }
7949 
7950 /**
7951  * netdev_has_upper_dev - Check if device is linked to an upper device
7952  * @dev: device
7953  * @upper_dev: upper device to check
7954  *
7955  * Find out if a device is linked to specified upper device and return true
7956  * in case it is. Note that this checks only immediate upper device,
7957  * not through a complete stack of devices. The caller must hold the RTNL lock.
7958  */
7959 bool netdev_has_upper_dev(struct net_device *dev,
7960 			  struct net_device *upper_dev)
7961 {
7962 	struct netdev_nested_priv priv = {
7963 		.data = (void *)upper_dev,
7964 	};
7965 
7966 	ASSERT_RTNL();
7967 
7968 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7969 					     &priv);
7970 }
7971 EXPORT_SYMBOL(netdev_has_upper_dev);
7972 
7973 /**
7974  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7975  * @dev: device
7976  * @upper_dev: upper device to check
7977  *
7978  * Find out if a device is linked to specified upper device and return true
7979  * in case it is. Note that this checks the entire upper device chain.
7980  * The caller must hold rcu lock.
7981  */
7982 
7983 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7984 				  struct net_device *upper_dev)
7985 {
7986 	struct netdev_nested_priv priv = {
7987 		.data = (void *)upper_dev,
7988 	};
7989 
7990 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7991 					       &priv);
7992 }
7993 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7994 
7995 /**
7996  * netdev_has_any_upper_dev - Check if device is linked to some device
7997  * @dev: device
7998  *
7999  * Find out if a device is linked to an upper device and return true in case
8000  * it is. The caller must hold the RTNL lock.
8001  */
8002 bool netdev_has_any_upper_dev(struct net_device *dev)
8003 {
8004 	ASSERT_RTNL();
8005 
8006 	return !list_empty(&dev->adj_list.upper);
8007 }
8008 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8009 
8010 /**
8011  * netdev_master_upper_dev_get - Get master upper device
8012  * @dev: device
8013  *
8014  * Find a master upper device and return pointer to it or NULL in case
8015  * it's not there. The caller must hold the RTNL lock.
8016  */
8017 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8018 {
8019 	struct netdev_adjacent *upper;
8020 
8021 	ASSERT_RTNL();
8022 
8023 	if (list_empty(&dev->adj_list.upper))
8024 		return NULL;
8025 
8026 	upper = list_first_entry(&dev->adj_list.upper,
8027 				 struct netdev_adjacent, list);
8028 	if (likely(upper->master))
8029 		return upper->dev;
8030 	return NULL;
8031 }
8032 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8033 
8034 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8035 {
8036 	struct netdev_adjacent *upper;
8037 
8038 	ASSERT_RTNL();
8039 
8040 	if (list_empty(&dev->adj_list.upper))
8041 		return NULL;
8042 
8043 	upper = list_first_entry(&dev->adj_list.upper,
8044 				 struct netdev_adjacent, list);
8045 	if (likely(upper->master) && !upper->ignore)
8046 		return upper->dev;
8047 	return NULL;
8048 }
8049 
8050 /**
8051  * netdev_has_any_lower_dev - Check if device is linked to some device
8052  * @dev: device
8053  *
8054  * Find out if a device is linked to a lower device and return true in case
8055  * it is. The caller must hold the RTNL lock.
8056  */
8057 static bool netdev_has_any_lower_dev(struct net_device *dev)
8058 {
8059 	ASSERT_RTNL();
8060 
8061 	return !list_empty(&dev->adj_list.lower);
8062 }
8063 
8064 void *netdev_adjacent_get_private(struct list_head *adj_list)
8065 {
8066 	struct netdev_adjacent *adj;
8067 
8068 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8069 
8070 	return adj->private;
8071 }
8072 EXPORT_SYMBOL(netdev_adjacent_get_private);
8073 
8074 /**
8075  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8076  * @dev: device
8077  * @iter: list_head ** of the current position
8078  *
8079  * Gets the next device from the dev's upper list, starting from iter
8080  * position. The caller must hold RCU read lock.
8081  */
8082 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8083 						 struct list_head **iter)
8084 {
8085 	struct netdev_adjacent *upper;
8086 
8087 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8088 
8089 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8090 
8091 	if (&upper->list == &dev->adj_list.upper)
8092 		return NULL;
8093 
8094 	*iter = &upper->list;
8095 
8096 	return upper->dev;
8097 }
8098 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8099 
8100 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8101 						  struct list_head **iter,
8102 						  bool *ignore)
8103 {
8104 	struct netdev_adjacent *upper;
8105 
8106 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8107 
8108 	if (&upper->list == &dev->adj_list.upper)
8109 		return NULL;
8110 
8111 	*iter = &upper->list;
8112 	*ignore = upper->ignore;
8113 
8114 	return upper->dev;
8115 }
8116 
8117 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8118 						    struct list_head **iter)
8119 {
8120 	struct netdev_adjacent *upper;
8121 
8122 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8123 
8124 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8125 
8126 	if (&upper->list == &dev->adj_list.upper)
8127 		return NULL;
8128 
8129 	*iter = &upper->list;
8130 
8131 	return upper->dev;
8132 }
8133 
8134 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8135 				       int (*fn)(struct net_device *dev,
8136 					 struct netdev_nested_priv *priv),
8137 				       struct netdev_nested_priv *priv)
8138 {
8139 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8140 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8141 	int ret, cur = 0;
8142 	bool ignore;
8143 
8144 	now = dev;
8145 	iter = &dev->adj_list.upper;
8146 
8147 	while (1) {
8148 		if (now != dev) {
8149 			ret = fn(now, priv);
8150 			if (ret)
8151 				return ret;
8152 		}
8153 
8154 		next = NULL;
8155 		while (1) {
8156 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8157 			if (!udev)
8158 				break;
8159 			if (ignore)
8160 				continue;
8161 
8162 			next = udev;
8163 			niter = &udev->adj_list.upper;
8164 			dev_stack[cur] = now;
8165 			iter_stack[cur++] = iter;
8166 			break;
8167 		}
8168 
8169 		if (!next) {
8170 			if (!cur)
8171 				return 0;
8172 			next = dev_stack[--cur];
8173 			niter = iter_stack[cur];
8174 		}
8175 
8176 		now = next;
8177 		iter = niter;
8178 	}
8179 
8180 	return 0;
8181 }
8182 
8183 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8184 				  int (*fn)(struct net_device *dev,
8185 					    struct netdev_nested_priv *priv),
8186 				  struct netdev_nested_priv *priv)
8187 {
8188 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8189 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8190 	int ret, cur = 0;
8191 
8192 	now = dev;
8193 	iter = &dev->adj_list.upper;
8194 
8195 	while (1) {
8196 		if (now != dev) {
8197 			ret = fn(now, priv);
8198 			if (ret)
8199 				return ret;
8200 		}
8201 
8202 		next = NULL;
8203 		while (1) {
8204 			udev = netdev_next_upper_dev_rcu(now, &iter);
8205 			if (!udev)
8206 				break;
8207 
8208 			next = udev;
8209 			niter = &udev->adj_list.upper;
8210 			dev_stack[cur] = now;
8211 			iter_stack[cur++] = iter;
8212 			break;
8213 		}
8214 
8215 		if (!next) {
8216 			if (!cur)
8217 				return 0;
8218 			next = dev_stack[--cur];
8219 			niter = iter_stack[cur];
8220 		}
8221 
8222 		now = next;
8223 		iter = niter;
8224 	}
8225 
8226 	return 0;
8227 }
8228 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8229 
8230 static bool __netdev_has_upper_dev(struct net_device *dev,
8231 				   struct net_device *upper_dev)
8232 {
8233 	struct netdev_nested_priv priv = {
8234 		.flags = 0,
8235 		.data = (void *)upper_dev,
8236 	};
8237 
8238 	ASSERT_RTNL();
8239 
8240 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8241 					   &priv);
8242 }
8243 
8244 /**
8245  * netdev_lower_get_next_private - Get the next ->private from the
8246  *				   lower neighbour list
8247  * @dev: device
8248  * @iter: list_head ** of the current position
8249  *
8250  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8251  * list, starting from iter position. The caller must hold either hold the
8252  * RTNL lock or its own locking that guarantees that the neighbour lower
8253  * list will remain unchanged.
8254  */
8255 void *netdev_lower_get_next_private(struct net_device *dev,
8256 				    struct list_head **iter)
8257 {
8258 	struct netdev_adjacent *lower;
8259 
8260 	lower = list_entry(*iter, struct netdev_adjacent, list);
8261 
8262 	if (&lower->list == &dev->adj_list.lower)
8263 		return NULL;
8264 
8265 	*iter = lower->list.next;
8266 
8267 	return lower->private;
8268 }
8269 EXPORT_SYMBOL(netdev_lower_get_next_private);
8270 
8271 /**
8272  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8273  *				       lower neighbour list, RCU
8274  *				       variant
8275  * @dev: device
8276  * @iter: list_head ** of the current position
8277  *
8278  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8279  * list, starting from iter position. The caller must hold RCU read lock.
8280  */
8281 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8282 					struct list_head **iter)
8283 {
8284 	struct netdev_adjacent *lower;
8285 
8286 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8287 
8288 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8289 
8290 	if (&lower->list == &dev->adj_list.lower)
8291 		return NULL;
8292 
8293 	*iter = &lower->list;
8294 
8295 	return lower->private;
8296 }
8297 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8298 
8299 /**
8300  * netdev_lower_get_next - Get the next device from the lower neighbour
8301  *                         list
8302  * @dev: device
8303  * @iter: list_head ** of the current position
8304  *
8305  * Gets the next netdev_adjacent from the dev's lower neighbour
8306  * list, starting from iter position. The caller must hold RTNL lock or
8307  * its own locking that guarantees that the neighbour lower
8308  * list will remain unchanged.
8309  */
8310 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8311 {
8312 	struct netdev_adjacent *lower;
8313 
8314 	lower = list_entry(*iter, struct netdev_adjacent, list);
8315 
8316 	if (&lower->list == &dev->adj_list.lower)
8317 		return NULL;
8318 
8319 	*iter = lower->list.next;
8320 
8321 	return lower->dev;
8322 }
8323 EXPORT_SYMBOL(netdev_lower_get_next);
8324 
8325 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8326 						struct list_head **iter)
8327 {
8328 	struct netdev_adjacent *lower;
8329 
8330 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8331 
8332 	if (&lower->list == &dev->adj_list.lower)
8333 		return NULL;
8334 
8335 	*iter = &lower->list;
8336 
8337 	return lower->dev;
8338 }
8339 
8340 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8341 						  struct list_head **iter,
8342 						  bool *ignore)
8343 {
8344 	struct netdev_adjacent *lower;
8345 
8346 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8347 
8348 	if (&lower->list == &dev->adj_list.lower)
8349 		return NULL;
8350 
8351 	*iter = &lower->list;
8352 	*ignore = lower->ignore;
8353 
8354 	return lower->dev;
8355 }
8356 
8357 int netdev_walk_all_lower_dev(struct net_device *dev,
8358 			      int (*fn)(struct net_device *dev,
8359 					struct netdev_nested_priv *priv),
8360 			      struct netdev_nested_priv *priv)
8361 {
8362 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8363 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8364 	int ret, cur = 0;
8365 
8366 	now = dev;
8367 	iter = &dev->adj_list.lower;
8368 
8369 	while (1) {
8370 		if (now != dev) {
8371 			ret = fn(now, priv);
8372 			if (ret)
8373 				return ret;
8374 		}
8375 
8376 		next = NULL;
8377 		while (1) {
8378 			ldev = netdev_next_lower_dev(now, &iter);
8379 			if (!ldev)
8380 				break;
8381 
8382 			next = ldev;
8383 			niter = &ldev->adj_list.lower;
8384 			dev_stack[cur] = now;
8385 			iter_stack[cur++] = iter;
8386 			break;
8387 		}
8388 
8389 		if (!next) {
8390 			if (!cur)
8391 				return 0;
8392 			next = dev_stack[--cur];
8393 			niter = iter_stack[cur];
8394 		}
8395 
8396 		now = next;
8397 		iter = niter;
8398 	}
8399 
8400 	return 0;
8401 }
8402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8403 
8404 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8405 				       int (*fn)(struct net_device *dev,
8406 					 struct netdev_nested_priv *priv),
8407 				       struct netdev_nested_priv *priv)
8408 {
8409 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8410 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8411 	int ret, cur = 0;
8412 	bool ignore;
8413 
8414 	now = dev;
8415 	iter = &dev->adj_list.lower;
8416 
8417 	while (1) {
8418 		if (now != dev) {
8419 			ret = fn(now, priv);
8420 			if (ret)
8421 				return ret;
8422 		}
8423 
8424 		next = NULL;
8425 		while (1) {
8426 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8427 			if (!ldev)
8428 				break;
8429 			if (ignore)
8430 				continue;
8431 
8432 			next = ldev;
8433 			niter = &ldev->adj_list.lower;
8434 			dev_stack[cur] = now;
8435 			iter_stack[cur++] = iter;
8436 			break;
8437 		}
8438 
8439 		if (!next) {
8440 			if (!cur)
8441 				return 0;
8442 			next = dev_stack[--cur];
8443 			niter = iter_stack[cur];
8444 		}
8445 
8446 		now = next;
8447 		iter = niter;
8448 	}
8449 
8450 	return 0;
8451 }
8452 
8453 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8454 					     struct list_head **iter)
8455 {
8456 	struct netdev_adjacent *lower;
8457 
8458 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8459 	if (&lower->list == &dev->adj_list.lower)
8460 		return NULL;
8461 
8462 	*iter = &lower->list;
8463 
8464 	return lower->dev;
8465 }
8466 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8467 
8468 static u8 __netdev_upper_depth(struct net_device *dev)
8469 {
8470 	struct net_device *udev;
8471 	struct list_head *iter;
8472 	u8 max_depth = 0;
8473 	bool ignore;
8474 
8475 	for (iter = &dev->adj_list.upper,
8476 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8477 	     udev;
8478 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8479 		if (ignore)
8480 			continue;
8481 		if (max_depth < udev->upper_level)
8482 			max_depth = udev->upper_level;
8483 	}
8484 
8485 	return max_depth;
8486 }
8487 
8488 static u8 __netdev_lower_depth(struct net_device *dev)
8489 {
8490 	struct net_device *ldev;
8491 	struct list_head *iter;
8492 	u8 max_depth = 0;
8493 	bool ignore;
8494 
8495 	for (iter = &dev->adj_list.lower,
8496 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8497 	     ldev;
8498 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8499 		if (ignore)
8500 			continue;
8501 		if (max_depth < ldev->lower_level)
8502 			max_depth = ldev->lower_level;
8503 	}
8504 
8505 	return max_depth;
8506 }
8507 
8508 static int __netdev_update_upper_level(struct net_device *dev,
8509 				       struct netdev_nested_priv *__unused)
8510 {
8511 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8512 	return 0;
8513 }
8514 
8515 #ifdef CONFIG_LOCKDEP
8516 static LIST_HEAD(net_unlink_list);
8517 
8518 static void net_unlink_todo(struct net_device *dev)
8519 {
8520 	if (list_empty(&dev->unlink_list))
8521 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8522 }
8523 #endif
8524 
8525 static int __netdev_update_lower_level(struct net_device *dev,
8526 				       struct netdev_nested_priv *priv)
8527 {
8528 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8529 
8530 #ifdef CONFIG_LOCKDEP
8531 	if (!priv)
8532 		return 0;
8533 
8534 	if (priv->flags & NESTED_SYNC_IMM)
8535 		dev->nested_level = dev->lower_level - 1;
8536 	if (priv->flags & NESTED_SYNC_TODO)
8537 		net_unlink_todo(dev);
8538 #endif
8539 	return 0;
8540 }
8541 
8542 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8543 				  int (*fn)(struct net_device *dev,
8544 					    struct netdev_nested_priv *priv),
8545 				  struct netdev_nested_priv *priv)
8546 {
8547 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8548 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8549 	int ret, cur = 0;
8550 
8551 	now = dev;
8552 	iter = &dev->adj_list.lower;
8553 
8554 	while (1) {
8555 		if (now != dev) {
8556 			ret = fn(now, priv);
8557 			if (ret)
8558 				return ret;
8559 		}
8560 
8561 		next = NULL;
8562 		while (1) {
8563 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8564 			if (!ldev)
8565 				break;
8566 
8567 			next = ldev;
8568 			niter = &ldev->adj_list.lower;
8569 			dev_stack[cur] = now;
8570 			iter_stack[cur++] = iter;
8571 			break;
8572 		}
8573 
8574 		if (!next) {
8575 			if (!cur)
8576 				return 0;
8577 			next = dev_stack[--cur];
8578 			niter = iter_stack[cur];
8579 		}
8580 
8581 		now = next;
8582 		iter = niter;
8583 	}
8584 
8585 	return 0;
8586 }
8587 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8588 
8589 /**
8590  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8591  *				       lower neighbour list, RCU
8592  *				       variant
8593  * @dev: device
8594  *
8595  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8596  * list. The caller must hold RCU read lock.
8597  */
8598 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8599 {
8600 	struct netdev_adjacent *lower;
8601 
8602 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8603 			struct netdev_adjacent, list);
8604 	if (lower)
8605 		return lower->private;
8606 	return NULL;
8607 }
8608 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8609 
8610 /**
8611  * netdev_master_upper_dev_get_rcu - Get master upper device
8612  * @dev: device
8613  *
8614  * Find a master upper device and return pointer to it or NULL in case
8615  * it's not there. The caller must hold the RCU read lock.
8616  */
8617 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8618 {
8619 	struct netdev_adjacent *upper;
8620 
8621 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8622 				       struct netdev_adjacent, list);
8623 	if (upper && likely(upper->master))
8624 		return upper->dev;
8625 	return NULL;
8626 }
8627 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8628 
8629 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8630 			      struct net_device *adj_dev,
8631 			      struct list_head *dev_list)
8632 {
8633 	char linkname[IFNAMSIZ+7];
8634 
8635 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8636 		"upper_%s" : "lower_%s", adj_dev->name);
8637 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8638 				 linkname);
8639 }
8640 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8641 			       char *name,
8642 			       struct list_head *dev_list)
8643 {
8644 	char linkname[IFNAMSIZ+7];
8645 
8646 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8647 		"upper_%s" : "lower_%s", name);
8648 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8649 }
8650 
8651 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8652 						 struct net_device *adj_dev,
8653 						 struct list_head *dev_list)
8654 {
8655 	return (dev_list == &dev->adj_list.upper ||
8656 		dev_list == &dev->adj_list.lower) &&
8657 		net_eq(dev_net(dev), dev_net(adj_dev));
8658 }
8659 
8660 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8661 					struct net_device *adj_dev,
8662 					struct list_head *dev_list,
8663 					void *private, bool master)
8664 {
8665 	struct netdev_adjacent *adj;
8666 	int ret;
8667 
8668 	adj = __netdev_find_adj(adj_dev, dev_list);
8669 
8670 	if (adj) {
8671 		adj->ref_nr += 1;
8672 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8673 			 dev->name, adj_dev->name, adj->ref_nr);
8674 
8675 		return 0;
8676 	}
8677 
8678 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8679 	if (!adj)
8680 		return -ENOMEM;
8681 
8682 	adj->dev = adj_dev;
8683 	adj->master = master;
8684 	adj->ref_nr = 1;
8685 	adj->private = private;
8686 	adj->ignore = false;
8687 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8688 
8689 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8690 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8691 
8692 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8693 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8694 		if (ret)
8695 			goto free_adj;
8696 	}
8697 
8698 	/* Ensure that master link is always the first item in list. */
8699 	if (master) {
8700 		ret = sysfs_create_link(&(dev->dev.kobj),
8701 					&(adj_dev->dev.kobj), "master");
8702 		if (ret)
8703 			goto remove_symlinks;
8704 
8705 		list_add_rcu(&adj->list, dev_list);
8706 	} else {
8707 		list_add_tail_rcu(&adj->list, dev_list);
8708 	}
8709 
8710 	return 0;
8711 
8712 remove_symlinks:
8713 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8714 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8715 free_adj:
8716 	netdev_put(adj_dev, &adj->dev_tracker);
8717 	kfree(adj);
8718 
8719 	return ret;
8720 }
8721 
8722 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8723 					 struct net_device *adj_dev,
8724 					 u16 ref_nr,
8725 					 struct list_head *dev_list)
8726 {
8727 	struct netdev_adjacent *adj;
8728 
8729 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8730 		 dev->name, adj_dev->name, ref_nr);
8731 
8732 	adj = __netdev_find_adj(adj_dev, dev_list);
8733 
8734 	if (!adj) {
8735 		pr_err("Adjacency does not exist for device %s from %s\n",
8736 		       dev->name, adj_dev->name);
8737 		WARN_ON(1);
8738 		return;
8739 	}
8740 
8741 	if (adj->ref_nr > ref_nr) {
8742 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8743 			 dev->name, adj_dev->name, ref_nr,
8744 			 adj->ref_nr - ref_nr);
8745 		adj->ref_nr -= ref_nr;
8746 		return;
8747 	}
8748 
8749 	if (adj->master)
8750 		sysfs_remove_link(&(dev->dev.kobj), "master");
8751 
8752 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8753 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8754 
8755 	list_del_rcu(&adj->list);
8756 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8757 		 adj_dev->name, dev->name, adj_dev->name);
8758 	netdev_put(adj_dev, &adj->dev_tracker);
8759 	kfree_rcu(adj, rcu);
8760 }
8761 
8762 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8763 					    struct net_device *upper_dev,
8764 					    struct list_head *up_list,
8765 					    struct list_head *down_list,
8766 					    void *private, bool master)
8767 {
8768 	int ret;
8769 
8770 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8771 					   private, master);
8772 	if (ret)
8773 		return ret;
8774 
8775 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8776 					   private, false);
8777 	if (ret) {
8778 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8779 		return ret;
8780 	}
8781 
8782 	return 0;
8783 }
8784 
8785 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8786 					       struct net_device *upper_dev,
8787 					       u16 ref_nr,
8788 					       struct list_head *up_list,
8789 					       struct list_head *down_list)
8790 {
8791 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8792 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8793 }
8794 
8795 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8796 						struct net_device *upper_dev,
8797 						void *private, bool master)
8798 {
8799 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8800 						&dev->adj_list.upper,
8801 						&upper_dev->adj_list.lower,
8802 						private, master);
8803 }
8804 
8805 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8806 						   struct net_device *upper_dev)
8807 {
8808 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8809 					   &dev->adj_list.upper,
8810 					   &upper_dev->adj_list.lower);
8811 }
8812 
8813 static int __netdev_upper_dev_link(struct net_device *dev,
8814 				   struct net_device *upper_dev, bool master,
8815 				   void *upper_priv, void *upper_info,
8816 				   struct netdev_nested_priv *priv,
8817 				   struct netlink_ext_ack *extack)
8818 {
8819 	struct netdev_notifier_changeupper_info changeupper_info = {
8820 		.info = {
8821 			.dev = dev,
8822 			.extack = extack,
8823 		},
8824 		.upper_dev = upper_dev,
8825 		.master = master,
8826 		.linking = true,
8827 		.upper_info = upper_info,
8828 	};
8829 	struct net_device *master_dev;
8830 	int ret = 0;
8831 
8832 	ASSERT_RTNL();
8833 
8834 	if (dev == upper_dev)
8835 		return -EBUSY;
8836 
8837 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8838 	if (__netdev_has_upper_dev(upper_dev, dev))
8839 		return -EBUSY;
8840 
8841 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8842 		return -EMLINK;
8843 
8844 	if (!master) {
8845 		if (__netdev_has_upper_dev(dev, upper_dev))
8846 			return -EEXIST;
8847 	} else {
8848 		master_dev = __netdev_master_upper_dev_get(dev);
8849 		if (master_dev)
8850 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8851 	}
8852 
8853 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8854 					    &changeupper_info.info);
8855 	ret = notifier_to_errno(ret);
8856 	if (ret)
8857 		return ret;
8858 
8859 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8860 						   master);
8861 	if (ret)
8862 		return ret;
8863 
8864 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8865 					    &changeupper_info.info);
8866 	ret = notifier_to_errno(ret);
8867 	if (ret)
8868 		goto rollback;
8869 
8870 	__netdev_update_upper_level(dev, NULL);
8871 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8872 
8873 	__netdev_update_lower_level(upper_dev, priv);
8874 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8875 				    priv);
8876 
8877 	return 0;
8878 
8879 rollback:
8880 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8881 
8882 	return ret;
8883 }
8884 
8885 /**
8886  * netdev_upper_dev_link - Add a link to the upper device
8887  * @dev: device
8888  * @upper_dev: new upper device
8889  * @extack: netlink extended ack
8890  *
8891  * Adds a link to device which is upper to this one. The caller must hold
8892  * the RTNL lock. On a failure a negative errno code is returned.
8893  * On success the reference counts are adjusted and the function
8894  * returns zero.
8895  */
8896 int netdev_upper_dev_link(struct net_device *dev,
8897 			  struct net_device *upper_dev,
8898 			  struct netlink_ext_ack *extack)
8899 {
8900 	struct netdev_nested_priv priv = {
8901 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8902 		.data = NULL,
8903 	};
8904 
8905 	return __netdev_upper_dev_link(dev, upper_dev, false,
8906 				       NULL, NULL, &priv, extack);
8907 }
8908 EXPORT_SYMBOL(netdev_upper_dev_link);
8909 
8910 /**
8911  * netdev_master_upper_dev_link - Add a master link to the upper device
8912  * @dev: device
8913  * @upper_dev: new upper device
8914  * @upper_priv: upper device private
8915  * @upper_info: upper info to be passed down via notifier
8916  * @extack: netlink extended ack
8917  *
8918  * Adds a link to device which is upper to this one. In this case, only
8919  * one master upper device can be linked, although other non-master devices
8920  * might be linked as well. The caller must hold the RTNL lock.
8921  * On a failure a negative errno code is returned. On success the reference
8922  * counts are adjusted and the function returns zero.
8923  */
8924 int netdev_master_upper_dev_link(struct net_device *dev,
8925 				 struct net_device *upper_dev,
8926 				 void *upper_priv, void *upper_info,
8927 				 struct netlink_ext_ack *extack)
8928 {
8929 	struct netdev_nested_priv priv = {
8930 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8931 		.data = NULL,
8932 	};
8933 
8934 	return __netdev_upper_dev_link(dev, upper_dev, true,
8935 				       upper_priv, upper_info, &priv, extack);
8936 }
8937 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8938 
8939 static void __netdev_upper_dev_unlink(struct net_device *dev,
8940 				      struct net_device *upper_dev,
8941 				      struct netdev_nested_priv *priv)
8942 {
8943 	struct netdev_notifier_changeupper_info changeupper_info = {
8944 		.info = {
8945 			.dev = dev,
8946 		},
8947 		.upper_dev = upper_dev,
8948 		.linking = false,
8949 	};
8950 
8951 	ASSERT_RTNL();
8952 
8953 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8954 
8955 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8956 				      &changeupper_info.info);
8957 
8958 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8959 
8960 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8961 				      &changeupper_info.info);
8962 
8963 	__netdev_update_upper_level(dev, NULL);
8964 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8965 
8966 	__netdev_update_lower_level(upper_dev, priv);
8967 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8968 				    priv);
8969 }
8970 
8971 /**
8972  * netdev_upper_dev_unlink - Removes a link to upper device
8973  * @dev: device
8974  * @upper_dev: new upper device
8975  *
8976  * Removes a link to device which is upper to this one. The caller must hold
8977  * the RTNL lock.
8978  */
8979 void netdev_upper_dev_unlink(struct net_device *dev,
8980 			     struct net_device *upper_dev)
8981 {
8982 	struct netdev_nested_priv priv = {
8983 		.flags = NESTED_SYNC_TODO,
8984 		.data = NULL,
8985 	};
8986 
8987 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8988 }
8989 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8990 
8991 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8992 				      struct net_device *lower_dev,
8993 				      bool val)
8994 {
8995 	struct netdev_adjacent *adj;
8996 
8997 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8998 	if (adj)
8999 		adj->ignore = val;
9000 
9001 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9002 	if (adj)
9003 		adj->ignore = val;
9004 }
9005 
9006 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9007 					struct net_device *lower_dev)
9008 {
9009 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9010 }
9011 
9012 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9013 				       struct net_device *lower_dev)
9014 {
9015 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9016 }
9017 
9018 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9019 				   struct net_device *new_dev,
9020 				   struct net_device *dev,
9021 				   struct netlink_ext_ack *extack)
9022 {
9023 	struct netdev_nested_priv priv = {
9024 		.flags = 0,
9025 		.data = NULL,
9026 	};
9027 	int err;
9028 
9029 	if (!new_dev)
9030 		return 0;
9031 
9032 	if (old_dev && new_dev != old_dev)
9033 		netdev_adjacent_dev_disable(dev, old_dev);
9034 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9035 				      extack);
9036 	if (err) {
9037 		if (old_dev && new_dev != old_dev)
9038 			netdev_adjacent_dev_enable(dev, old_dev);
9039 		return err;
9040 	}
9041 
9042 	return 0;
9043 }
9044 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9045 
9046 void netdev_adjacent_change_commit(struct net_device *old_dev,
9047 				   struct net_device *new_dev,
9048 				   struct net_device *dev)
9049 {
9050 	struct netdev_nested_priv priv = {
9051 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9052 		.data = NULL,
9053 	};
9054 
9055 	if (!new_dev || !old_dev)
9056 		return;
9057 
9058 	if (new_dev == old_dev)
9059 		return;
9060 
9061 	netdev_adjacent_dev_enable(dev, old_dev);
9062 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9063 }
9064 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9065 
9066 void netdev_adjacent_change_abort(struct net_device *old_dev,
9067 				  struct net_device *new_dev,
9068 				  struct net_device *dev)
9069 {
9070 	struct netdev_nested_priv priv = {
9071 		.flags = 0,
9072 		.data = NULL,
9073 	};
9074 
9075 	if (!new_dev)
9076 		return;
9077 
9078 	if (old_dev && new_dev != old_dev)
9079 		netdev_adjacent_dev_enable(dev, old_dev);
9080 
9081 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9082 }
9083 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9084 
9085 /**
9086  * netdev_bonding_info_change - Dispatch event about slave change
9087  * @dev: device
9088  * @bonding_info: info to dispatch
9089  *
9090  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9091  * The caller must hold the RTNL lock.
9092  */
9093 void netdev_bonding_info_change(struct net_device *dev,
9094 				struct netdev_bonding_info *bonding_info)
9095 {
9096 	struct netdev_notifier_bonding_info info = {
9097 		.info.dev = dev,
9098 	};
9099 
9100 	memcpy(&info.bonding_info, bonding_info,
9101 	       sizeof(struct netdev_bonding_info));
9102 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9103 				      &info.info);
9104 }
9105 EXPORT_SYMBOL(netdev_bonding_info_change);
9106 
9107 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9108 					   struct netlink_ext_ack *extack)
9109 {
9110 	struct netdev_notifier_offload_xstats_info info = {
9111 		.info.dev = dev,
9112 		.info.extack = extack,
9113 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9114 	};
9115 	int err;
9116 	int rc;
9117 
9118 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9119 					 GFP_KERNEL);
9120 	if (!dev->offload_xstats_l3)
9121 		return -ENOMEM;
9122 
9123 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9124 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9125 						  &info.info);
9126 	err = notifier_to_errno(rc);
9127 	if (err)
9128 		goto free_stats;
9129 
9130 	return 0;
9131 
9132 free_stats:
9133 	kfree(dev->offload_xstats_l3);
9134 	dev->offload_xstats_l3 = NULL;
9135 	return err;
9136 }
9137 
9138 int netdev_offload_xstats_enable(struct net_device *dev,
9139 				 enum netdev_offload_xstats_type type,
9140 				 struct netlink_ext_ack *extack)
9141 {
9142 	ASSERT_RTNL();
9143 
9144 	if (netdev_offload_xstats_enabled(dev, type))
9145 		return -EALREADY;
9146 
9147 	switch (type) {
9148 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9149 		return netdev_offload_xstats_enable_l3(dev, extack);
9150 	}
9151 
9152 	WARN_ON(1);
9153 	return -EINVAL;
9154 }
9155 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9156 
9157 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9158 {
9159 	struct netdev_notifier_offload_xstats_info info = {
9160 		.info.dev = dev,
9161 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9162 	};
9163 
9164 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9165 				      &info.info);
9166 	kfree(dev->offload_xstats_l3);
9167 	dev->offload_xstats_l3 = NULL;
9168 }
9169 
9170 int netdev_offload_xstats_disable(struct net_device *dev,
9171 				  enum netdev_offload_xstats_type type)
9172 {
9173 	ASSERT_RTNL();
9174 
9175 	if (!netdev_offload_xstats_enabled(dev, type))
9176 		return -EALREADY;
9177 
9178 	switch (type) {
9179 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9180 		netdev_offload_xstats_disable_l3(dev);
9181 		return 0;
9182 	}
9183 
9184 	WARN_ON(1);
9185 	return -EINVAL;
9186 }
9187 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9188 
9189 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9190 {
9191 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9192 }
9193 
9194 static struct rtnl_hw_stats64 *
9195 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9196 			      enum netdev_offload_xstats_type type)
9197 {
9198 	switch (type) {
9199 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9200 		return dev->offload_xstats_l3;
9201 	}
9202 
9203 	WARN_ON(1);
9204 	return NULL;
9205 }
9206 
9207 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9208 				   enum netdev_offload_xstats_type type)
9209 {
9210 	ASSERT_RTNL();
9211 
9212 	return netdev_offload_xstats_get_ptr(dev, type);
9213 }
9214 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9215 
9216 struct netdev_notifier_offload_xstats_ru {
9217 	bool used;
9218 };
9219 
9220 struct netdev_notifier_offload_xstats_rd {
9221 	struct rtnl_hw_stats64 stats;
9222 	bool used;
9223 };
9224 
9225 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9226 				  const struct rtnl_hw_stats64 *src)
9227 {
9228 	dest->rx_packets	  += src->rx_packets;
9229 	dest->tx_packets	  += src->tx_packets;
9230 	dest->rx_bytes		  += src->rx_bytes;
9231 	dest->tx_bytes		  += src->tx_bytes;
9232 	dest->rx_errors		  += src->rx_errors;
9233 	dest->tx_errors		  += src->tx_errors;
9234 	dest->rx_dropped	  += src->rx_dropped;
9235 	dest->tx_dropped	  += src->tx_dropped;
9236 	dest->multicast		  += src->multicast;
9237 }
9238 
9239 static int netdev_offload_xstats_get_used(struct net_device *dev,
9240 					  enum netdev_offload_xstats_type type,
9241 					  bool *p_used,
9242 					  struct netlink_ext_ack *extack)
9243 {
9244 	struct netdev_notifier_offload_xstats_ru report_used = {};
9245 	struct netdev_notifier_offload_xstats_info info = {
9246 		.info.dev = dev,
9247 		.info.extack = extack,
9248 		.type = type,
9249 		.report_used = &report_used,
9250 	};
9251 	int rc;
9252 
9253 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9254 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9255 					   &info.info);
9256 	*p_used = report_used.used;
9257 	return notifier_to_errno(rc);
9258 }
9259 
9260 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9261 					   enum netdev_offload_xstats_type type,
9262 					   struct rtnl_hw_stats64 *p_stats,
9263 					   bool *p_used,
9264 					   struct netlink_ext_ack *extack)
9265 {
9266 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9267 	struct netdev_notifier_offload_xstats_info info = {
9268 		.info.dev = dev,
9269 		.info.extack = extack,
9270 		.type = type,
9271 		.report_delta = &report_delta,
9272 	};
9273 	struct rtnl_hw_stats64 *stats;
9274 	int rc;
9275 
9276 	stats = netdev_offload_xstats_get_ptr(dev, type);
9277 	if (WARN_ON(!stats))
9278 		return -EINVAL;
9279 
9280 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9281 					   &info.info);
9282 
9283 	/* Cache whatever we got, even if there was an error, otherwise the
9284 	 * successful stats retrievals would get lost.
9285 	 */
9286 	netdev_hw_stats64_add(stats, &report_delta.stats);
9287 
9288 	if (p_stats)
9289 		*p_stats = *stats;
9290 	*p_used = report_delta.used;
9291 
9292 	return notifier_to_errno(rc);
9293 }
9294 
9295 int netdev_offload_xstats_get(struct net_device *dev,
9296 			      enum netdev_offload_xstats_type type,
9297 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9298 			      struct netlink_ext_ack *extack)
9299 {
9300 	ASSERT_RTNL();
9301 
9302 	if (p_stats)
9303 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9304 						       p_used, extack);
9305 	else
9306 		return netdev_offload_xstats_get_used(dev, type, p_used,
9307 						      extack);
9308 }
9309 EXPORT_SYMBOL(netdev_offload_xstats_get);
9310 
9311 void
9312 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9313 				   const struct rtnl_hw_stats64 *stats)
9314 {
9315 	report_delta->used = true;
9316 	netdev_hw_stats64_add(&report_delta->stats, stats);
9317 }
9318 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9319 
9320 void
9321 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9322 {
9323 	report_used->used = true;
9324 }
9325 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9326 
9327 void netdev_offload_xstats_push_delta(struct net_device *dev,
9328 				      enum netdev_offload_xstats_type type,
9329 				      const struct rtnl_hw_stats64 *p_stats)
9330 {
9331 	struct rtnl_hw_stats64 *stats;
9332 
9333 	ASSERT_RTNL();
9334 
9335 	stats = netdev_offload_xstats_get_ptr(dev, type);
9336 	if (WARN_ON(!stats))
9337 		return;
9338 
9339 	netdev_hw_stats64_add(stats, p_stats);
9340 }
9341 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9342 
9343 /**
9344  * netdev_get_xmit_slave - Get the xmit slave of master device
9345  * @dev: device
9346  * @skb: The packet
9347  * @all_slaves: assume all the slaves are active
9348  *
9349  * The reference counters are not incremented so the caller must be
9350  * careful with locks. The caller must hold RCU lock.
9351  * %NULL is returned if no slave is found.
9352  */
9353 
9354 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9355 					 struct sk_buff *skb,
9356 					 bool all_slaves)
9357 {
9358 	const struct net_device_ops *ops = dev->netdev_ops;
9359 
9360 	if (!ops->ndo_get_xmit_slave)
9361 		return NULL;
9362 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9363 }
9364 EXPORT_SYMBOL(netdev_get_xmit_slave);
9365 
9366 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9367 						  struct sock *sk)
9368 {
9369 	const struct net_device_ops *ops = dev->netdev_ops;
9370 
9371 	if (!ops->ndo_sk_get_lower_dev)
9372 		return NULL;
9373 	return ops->ndo_sk_get_lower_dev(dev, sk);
9374 }
9375 
9376 /**
9377  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9378  * @dev: device
9379  * @sk: the socket
9380  *
9381  * %NULL is returned if no lower device is found.
9382  */
9383 
9384 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9385 					    struct sock *sk)
9386 {
9387 	struct net_device *lower;
9388 
9389 	lower = netdev_sk_get_lower_dev(dev, sk);
9390 	while (lower) {
9391 		dev = lower;
9392 		lower = netdev_sk_get_lower_dev(dev, sk);
9393 	}
9394 
9395 	return dev;
9396 }
9397 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9398 
9399 static void netdev_adjacent_add_links(struct net_device *dev)
9400 {
9401 	struct netdev_adjacent *iter;
9402 
9403 	struct net *net = dev_net(dev);
9404 
9405 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9406 		if (!net_eq(net, dev_net(iter->dev)))
9407 			continue;
9408 		netdev_adjacent_sysfs_add(iter->dev, dev,
9409 					  &iter->dev->adj_list.lower);
9410 		netdev_adjacent_sysfs_add(dev, iter->dev,
9411 					  &dev->adj_list.upper);
9412 	}
9413 
9414 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9415 		if (!net_eq(net, dev_net(iter->dev)))
9416 			continue;
9417 		netdev_adjacent_sysfs_add(iter->dev, dev,
9418 					  &iter->dev->adj_list.upper);
9419 		netdev_adjacent_sysfs_add(dev, iter->dev,
9420 					  &dev->adj_list.lower);
9421 	}
9422 }
9423 
9424 static void netdev_adjacent_del_links(struct net_device *dev)
9425 {
9426 	struct netdev_adjacent *iter;
9427 
9428 	struct net *net = dev_net(dev);
9429 
9430 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9431 		if (!net_eq(net, dev_net(iter->dev)))
9432 			continue;
9433 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9434 					  &iter->dev->adj_list.lower);
9435 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9436 					  &dev->adj_list.upper);
9437 	}
9438 
9439 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9440 		if (!net_eq(net, dev_net(iter->dev)))
9441 			continue;
9442 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9443 					  &iter->dev->adj_list.upper);
9444 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9445 					  &dev->adj_list.lower);
9446 	}
9447 }
9448 
9449 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9450 {
9451 	struct netdev_adjacent *iter;
9452 
9453 	struct net *net = dev_net(dev);
9454 
9455 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9456 		if (!net_eq(net, dev_net(iter->dev)))
9457 			continue;
9458 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9459 					  &iter->dev->adj_list.lower);
9460 		netdev_adjacent_sysfs_add(iter->dev, dev,
9461 					  &iter->dev->adj_list.lower);
9462 	}
9463 
9464 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9465 		if (!net_eq(net, dev_net(iter->dev)))
9466 			continue;
9467 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9468 					  &iter->dev->adj_list.upper);
9469 		netdev_adjacent_sysfs_add(iter->dev, dev,
9470 					  &iter->dev->adj_list.upper);
9471 	}
9472 }
9473 
9474 void *netdev_lower_dev_get_private(struct net_device *dev,
9475 				   struct net_device *lower_dev)
9476 {
9477 	struct netdev_adjacent *lower;
9478 
9479 	if (!lower_dev)
9480 		return NULL;
9481 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9482 	if (!lower)
9483 		return NULL;
9484 
9485 	return lower->private;
9486 }
9487 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9488 
9489 
9490 /**
9491  * netdev_lower_state_changed - Dispatch event about lower device state change
9492  * @lower_dev: device
9493  * @lower_state_info: state to dispatch
9494  *
9495  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9496  * The caller must hold the RTNL lock.
9497  */
9498 void netdev_lower_state_changed(struct net_device *lower_dev,
9499 				void *lower_state_info)
9500 {
9501 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9502 		.info.dev = lower_dev,
9503 	};
9504 
9505 	ASSERT_RTNL();
9506 	changelowerstate_info.lower_state_info = lower_state_info;
9507 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9508 				      &changelowerstate_info.info);
9509 }
9510 EXPORT_SYMBOL(netdev_lower_state_changed);
9511 
9512 static void dev_change_rx_flags(struct net_device *dev, int flags)
9513 {
9514 	const struct net_device_ops *ops = dev->netdev_ops;
9515 
9516 	if (ops->ndo_change_rx_flags)
9517 		ops->ndo_change_rx_flags(dev, flags);
9518 }
9519 
9520 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9521 {
9522 	unsigned int old_flags = dev->flags;
9523 	unsigned int promiscuity, flags;
9524 	kuid_t uid;
9525 	kgid_t gid;
9526 
9527 	ASSERT_RTNL();
9528 
9529 	promiscuity = dev->promiscuity + inc;
9530 	if (promiscuity == 0) {
9531 		/*
9532 		 * Avoid overflow.
9533 		 * If inc causes overflow, untouch promisc and return error.
9534 		 */
9535 		if (unlikely(inc > 0)) {
9536 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9537 			return -EOVERFLOW;
9538 		}
9539 		flags = old_flags & ~IFF_PROMISC;
9540 	} else {
9541 		flags = old_flags | IFF_PROMISC;
9542 	}
9543 	WRITE_ONCE(dev->promiscuity, promiscuity);
9544 	if (flags != old_flags) {
9545 		WRITE_ONCE(dev->flags, flags);
9546 		netdev_info(dev, "%s promiscuous mode\n",
9547 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9548 		if (audit_enabled) {
9549 			current_uid_gid(&uid, &gid);
9550 			audit_log(audit_context(), GFP_ATOMIC,
9551 				  AUDIT_ANOM_PROMISCUOUS,
9552 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9553 				  dev->name, (dev->flags & IFF_PROMISC),
9554 				  (old_flags & IFF_PROMISC),
9555 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9556 				  from_kuid(&init_user_ns, uid),
9557 				  from_kgid(&init_user_ns, gid),
9558 				  audit_get_sessionid(current));
9559 		}
9560 
9561 		dev_change_rx_flags(dev, IFF_PROMISC);
9562 	}
9563 	if (notify) {
9564 		/* The ops lock is only required to ensure consistent locking
9565 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9566 		 * called without the lock, even for devices that are ops
9567 		 * locked, such as in `dev_uc_sync_multiple` when using
9568 		 * bonding or teaming.
9569 		 */
9570 		netdev_ops_assert_locked(dev);
9571 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9572 	}
9573 	return 0;
9574 }
9575 
9576 int netif_set_promiscuity(struct net_device *dev, int inc)
9577 {
9578 	unsigned int old_flags = dev->flags;
9579 	int err;
9580 
9581 	err = __dev_set_promiscuity(dev, inc, true);
9582 	if (err < 0)
9583 		return err;
9584 	if (dev->flags != old_flags)
9585 		dev_set_rx_mode(dev);
9586 	return err;
9587 }
9588 
9589 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9590 {
9591 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9592 	unsigned int allmulti, flags;
9593 
9594 	ASSERT_RTNL();
9595 
9596 	allmulti = dev->allmulti + inc;
9597 	if (allmulti == 0) {
9598 		/*
9599 		 * Avoid overflow.
9600 		 * If inc causes overflow, untouch allmulti and return error.
9601 		 */
9602 		if (unlikely(inc > 0)) {
9603 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9604 			return -EOVERFLOW;
9605 		}
9606 		flags = old_flags & ~IFF_ALLMULTI;
9607 	} else {
9608 		flags = old_flags | IFF_ALLMULTI;
9609 	}
9610 	WRITE_ONCE(dev->allmulti, allmulti);
9611 	if (flags != old_flags) {
9612 		WRITE_ONCE(dev->flags, flags);
9613 		netdev_info(dev, "%s allmulticast mode\n",
9614 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9615 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9616 		dev_set_rx_mode(dev);
9617 		if (notify)
9618 			__dev_notify_flags(dev, old_flags,
9619 					   dev->gflags ^ old_gflags, 0, NULL);
9620 	}
9621 	return 0;
9622 }
9623 
9624 /*
9625  *	Upload unicast and multicast address lists to device and
9626  *	configure RX filtering. When the device doesn't support unicast
9627  *	filtering it is put in promiscuous mode while unicast addresses
9628  *	are present.
9629  */
9630 void __dev_set_rx_mode(struct net_device *dev)
9631 {
9632 	const struct net_device_ops *ops = dev->netdev_ops;
9633 
9634 	/* dev_open will call this function so the list will stay sane. */
9635 	if (!(dev->flags&IFF_UP))
9636 		return;
9637 
9638 	if (!netif_device_present(dev))
9639 		return;
9640 
9641 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9642 		/* Unicast addresses changes may only happen under the rtnl,
9643 		 * therefore calling __dev_set_promiscuity here is safe.
9644 		 */
9645 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9646 			__dev_set_promiscuity(dev, 1, false);
9647 			dev->uc_promisc = true;
9648 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9649 			__dev_set_promiscuity(dev, -1, false);
9650 			dev->uc_promisc = false;
9651 		}
9652 	}
9653 
9654 	if (ops->ndo_set_rx_mode)
9655 		ops->ndo_set_rx_mode(dev);
9656 }
9657 
9658 void dev_set_rx_mode(struct net_device *dev)
9659 {
9660 	netif_addr_lock_bh(dev);
9661 	__dev_set_rx_mode(dev);
9662 	netif_addr_unlock_bh(dev);
9663 }
9664 
9665 /**
9666  * netif_get_flags() - get flags reported to userspace
9667  * @dev: device
9668  *
9669  * Get the combination of flag bits exported through APIs to userspace.
9670  */
9671 unsigned int netif_get_flags(const struct net_device *dev)
9672 {
9673 	unsigned int flags;
9674 
9675 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9676 				IFF_ALLMULTI |
9677 				IFF_RUNNING |
9678 				IFF_LOWER_UP |
9679 				IFF_DORMANT)) |
9680 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9681 				IFF_ALLMULTI));
9682 
9683 	if (netif_running(dev)) {
9684 		if (netif_oper_up(dev))
9685 			flags |= IFF_RUNNING;
9686 		if (netif_carrier_ok(dev))
9687 			flags |= IFF_LOWER_UP;
9688 		if (netif_dormant(dev))
9689 			flags |= IFF_DORMANT;
9690 	}
9691 
9692 	return flags;
9693 }
9694 EXPORT_SYMBOL(netif_get_flags);
9695 
9696 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9697 		       struct netlink_ext_ack *extack)
9698 {
9699 	unsigned int old_flags = dev->flags;
9700 	int ret;
9701 
9702 	ASSERT_RTNL();
9703 
9704 	/*
9705 	 *	Set the flags on our device.
9706 	 */
9707 
9708 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9709 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9710 			       IFF_AUTOMEDIA)) |
9711 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9712 				    IFF_ALLMULTI));
9713 
9714 	/*
9715 	 *	Load in the correct multicast list now the flags have changed.
9716 	 */
9717 
9718 	if ((old_flags ^ flags) & IFF_MULTICAST)
9719 		dev_change_rx_flags(dev, IFF_MULTICAST);
9720 
9721 	dev_set_rx_mode(dev);
9722 
9723 	/*
9724 	 *	Have we downed the interface. We handle IFF_UP ourselves
9725 	 *	according to user attempts to set it, rather than blindly
9726 	 *	setting it.
9727 	 */
9728 
9729 	ret = 0;
9730 	if ((old_flags ^ flags) & IFF_UP) {
9731 		if (old_flags & IFF_UP)
9732 			__dev_close(dev);
9733 		else
9734 			ret = __dev_open(dev, extack);
9735 	}
9736 
9737 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9738 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9739 		old_flags = dev->flags;
9740 
9741 		dev->gflags ^= IFF_PROMISC;
9742 
9743 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9744 			if (dev->flags != old_flags)
9745 				dev_set_rx_mode(dev);
9746 	}
9747 
9748 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9749 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9750 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9751 	 */
9752 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9753 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9754 
9755 		dev->gflags ^= IFF_ALLMULTI;
9756 		netif_set_allmulti(dev, inc, false);
9757 	}
9758 
9759 	return ret;
9760 }
9761 
9762 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9763 			unsigned int gchanges, u32 portid,
9764 			const struct nlmsghdr *nlh)
9765 {
9766 	unsigned int changes = dev->flags ^ old_flags;
9767 
9768 	if (gchanges)
9769 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9770 
9771 	if (changes & IFF_UP) {
9772 		if (dev->flags & IFF_UP)
9773 			call_netdevice_notifiers(NETDEV_UP, dev);
9774 		else
9775 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9776 	}
9777 
9778 	if (dev->flags & IFF_UP &&
9779 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9780 		struct netdev_notifier_change_info change_info = {
9781 			.info = {
9782 				.dev = dev,
9783 			},
9784 			.flags_changed = changes,
9785 		};
9786 
9787 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9788 	}
9789 }
9790 
9791 int netif_change_flags(struct net_device *dev, unsigned int flags,
9792 		       struct netlink_ext_ack *extack)
9793 {
9794 	int ret;
9795 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9796 
9797 	ret = __dev_change_flags(dev, flags, extack);
9798 	if (ret < 0)
9799 		return ret;
9800 
9801 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9802 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9803 	return ret;
9804 }
9805 
9806 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9807 {
9808 	const struct net_device_ops *ops = dev->netdev_ops;
9809 
9810 	if (ops->ndo_change_mtu)
9811 		return ops->ndo_change_mtu(dev, new_mtu);
9812 
9813 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9814 	WRITE_ONCE(dev->mtu, new_mtu);
9815 	return 0;
9816 }
9817 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9818 
9819 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9820 		     struct netlink_ext_ack *extack)
9821 {
9822 	/* MTU must be positive, and in range */
9823 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9824 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9825 		return -EINVAL;
9826 	}
9827 
9828 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9829 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9830 		return -EINVAL;
9831 	}
9832 	return 0;
9833 }
9834 
9835 /**
9836  * netif_set_mtu_ext() - Change maximum transfer unit
9837  * @dev: device
9838  * @new_mtu: new transfer unit
9839  * @extack: netlink extended ack
9840  *
9841  * Change the maximum transfer size of the network device.
9842  *
9843  * Return: 0 on success, -errno on failure.
9844  */
9845 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9846 		      struct netlink_ext_ack *extack)
9847 {
9848 	int err, orig_mtu;
9849 
9850 	netdev_ops_assert_locked(dev);
9851 
9852 	if (new_mtu == dev->mtu)
9853 		return 0;
9854 
9855 	err = dev_validate_mtu(dev, new_mtu, extack);
9856 	if (err)
9857 		return err;
9858 
9859 	if (!netif_device_present(dev))
9860 		return -ENODEV;
9861 
9862 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9863 	err = notifier_to_errno(err);
9864 	if (err)
9865 		return err;
9866 
9867 	orig_mtu = dev->mtu;
9868 	err = __netif_set_mtu(dev, new_mtu);
9869 
9870 	if (!err) {
9871 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9872 						   orig_mtu);
9873 		err = notifier_to_errno(err);
9874 		if (err) {
9875 			/* setting mtu back and notifying everyone again,
9876 			 * so that they have a chance to revert changes.
9877 			 */
9878 			__netif_set_mtu(dev, orig_mtu);
9879 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9880 						     new_mtu);
9881 		}
9882 	}
9883 	return err;
9884 }
9885 
9886 int netif_set_mtu(struct net_device *dev, int new_mtu)
9887 {
9888 	struct netlink_ext_ack extack;
9889 	int err;
9890 
9891 	memset(&extack, 0, sizeof(extack));
9892 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9893 	if (err && extack._msg)
9894 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9895 	return err;
9896 }
9897 EXPORT_SYMBOL(netif_set_mtu);
9898 
9899 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9900 {
9901 	unsigned int orig_len = dev->tx_queue_len;
9902 	int res;
9903 
9904 	if (new_len != (unsigned int)new_len)
9905 		return -ERANGE;
9906 
9907 	if (new_len != orig_len) {
9908 		WRITE_ONCE(dev->tx_queue_len, new_len);
9909 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9910 		res = notifier_to_errno(res);
9911 		if (res)
9912 			goto err_rollback;
9913 		res = dev_qdisc_change_tx_queue_len(dev);
9914 		if (res)
9915 			goto err_rollback;
9916 	}
9917 
9918 	return 0;
9919 
9920 err_rollback:
9921 	netdev_err(dev, "refused to change device tx_queue_len\n");
9922 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9923 	return res;
9924 }
9925 
9926 void netif_set_group(struct net_device *dev, int new_group)
9927 {
9928 	dev->group = new_group;
9929 }
9930 
9931 /**
9932  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9933  * @dev: device
9934  * @addr: new address
9935  * @extack: netlink extended ack
9936  *
9937  * Return: 0 on success, -errno on failure.
9938  */
9939 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9940 				struct netlink_ext_ack *extack)
9941 {
9942 	struct netdev_notifier_pre_changeaddr_info info = {
9943 		.info.dev = dev,
9944 		.info.extack = extack,
9945 		.dev_addr = addr,
9946 	};
9947 	int rc;
9948 
9949 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9950 	return notifier_to_errno(rc);
9951 }
9952 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9953 
9954 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9955 			  struct netlink_ext_ack *extack)
9956 {
9957 	const struct net_device_ops *ops = dev->netdev_ops;
9958 	int err;
9959 
9960 	if (!ops->ndo_set_mac_address)
9961 		return -EOPNOTSUPP;
9962 	if (ss->ss_family != dev->type)
9963 		return -EINVAL;
9964 	if (!netif_device_present(dev))
9965 		return -ENODEV;
9966 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9967 	if (err)
9968 		return err;
9969 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9970 		err = ops->ndo_set_mac_address(dev, ss);
9971 		if (err)
9972 			return err;
9973 	}
9974 	dev->addr_assign_type = NET_ADDR_SET;
9975 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9976 	add_device_randomness(dev->dev_addr, dev->addr_len);
9977 	return 0;
9978 }
9979 
9980 DECLARE_RWSEM(dev_addr_sem);
9981 
9982 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9983 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9984 {
9985 	size_t size = sizeof(sa->sa_data);
9986 	struct net_device *dev;
9987 	int ret = 0;
9988 
9989 	down_read(&dev_addr_sem);
9990 	rcu_read_lock();
9991 
9992 	dev = dev_get_by_name_rcu(net, dev_name);
9993 	if (!dev) {
9994 		ret = -ENODEV;
9995 		goto unlock;
9996 	}
9997 	if (!dev->addr_len)
9998 		memset(sa->sa_data, 0, size);
9999 	else
10000 		memcpy(sa->sa_data, dev->dev_addr,
10001 		       min_t(size_t, size, dev->addr_len));
10002 	sa->sa_family = dev->type;
10003 
10004 unlock:
10005 	rcu_read_unlock();
10006 	up_read(&dev_addr_sem);
10007 	return ret;
10008 }
10009 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10010 
10011 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10012 {
10013 	const struct net_device_ops *ops = dev->netdev_ops;
10014 
10015 	if (!ops->ndo_change_carrier)
10016 		return -EOPNOTSUPP;
10017 	if (!netif_device_present(dev))
10018 		return -ENODEV;
10019 	return ops->ndo_change_carrier(dev, new_carrier);
10020 }
10021 
10022 /**
10023  *	dev_get_phys_port_id - Get device physical port ID
10024  *	@dev: device
10025  *	@ppid: port ID
10026  *
10027  *	Get device physical port ID
10028  */
10029 int dev_get_phys_port_id(struct net_device *dev,
10030 			 struct netdev_phys_item_id *ppid)
10031 {
10032 	const struct net_device_ops *ops = dev->netdev_ops;
10033 
10034 	if (!ops->ndo_get_phys_port_id)
10035 		return -EOPNOTSUPP;
10036 	return ops->ndo_get_phys_port_id(dev, ppid);
10037 }
10038 
10039 /**
10040  *	dev_get_phys_port_name - Get device physical port name
10041  *	@dev: device
10042  *	@name: port name
10043  *	@len: limit of bytes to copy to name
10044  *
10045  *	Get device physical port name
10046  */
10047 int dev_get_phys_port_name(struct net_device *dev,
10048 			   char *name, size_t len)
10049 {
10050 	const struct net_device_ops *ops = dev->netdev_ops;
10051 	int err;
10052 
10053 	if (ops->ndo_get_phys_port_name) {
10054 		err = ops->ndo_get_phys_port_name(dev, name, len);
10055 		if (err != -EOPNOTSUPP)
10056 			return err;
10057 	}
10058 	return devlink_compat_phys_port_name_get(dev, name, len);
10059 }
10060 
10061 /**
10062  * netif_get_port_parent_id() - Get the device's port parent identifier
10063  * @dev: network device
10064  * @ppid: pointer to a storage for the port's parent identifier
10065  * @recurse: allow/disallow recursion to lower devices
10066  *
10067  * Get the devices's port parent identifier.
10068  *
10069  * Return: 0 on success, -errno on failure.
10070  */
10071 int netif_get_port_parent_id(struct net_device *dev,
10072 			     struct netdev_phys_item_id *ppid, bool recurse)
10073 {
10074 	const struct net_device_ops *ops = dev->netdev_ops;
10075 	struct netdev_phys_item_id first = { };
10076 	struct net_device *lower_dev;
10077 	struct list_head *iter;
10078 	int err;
10079 
10080 	if (ops->ndo_get_port_parent_id) {
10081 		err = ops->ndo_get_port_parent_id(dev, ppid);
10082 		if (err != -EOPNOTSUPP)
10083 			return err;
10084 	}
10085 
10086 	err = devlink_compat_switch_id_get(dev, ppid);
10087 	if (!recurse || err != -EOPNOTSUPP)
10088 		return err;
10089 
10090 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10091 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10092 		if (err)
10093 			break;
10094 		if (!first.id_len)
10095 			first = *ppid;
10096 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10097 			return -EOPNOTSUPP;
10098 	}
10099 
10100 	return err;
10101 }
10102 EXPORT_SYMBOL(netif_get_port_parent_id);
10103 
10104 /**
10105  *	netdev_port_same_parent_id - Indicate if two network devices have
10106  *	the same port parent identifier
10107  *	@a: first network device
10108  *	@b: second network device
10109  */
10110 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10111 {
10112 	struct netdev_phys_item_id a_id = { };
10113 	struct netdev_phys_item_id b_id = { };
10114 
10115 	if (netif_get_port_parent_id(a, &a_id, true) ||
10116 	    netif_get_port_parent_id(b, &b_id, true))
10117 		return false;
10118 
10119 	return netdev_phys_item_id_same(&a_id, &b_id);
10120 }
10121 EXPORT_SYMBOL(netdev_port_same_parent_id);
10122 
10123 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10124 {
10125 	if (!dev->change_proto_down)
10126 		return -EOPNOTSUPP;
10127 	if (!netif_device_present(dev))
10128 		return -ENODEV;
10129 	if (proto_down)
10130 		netif_carrier_off(dev);
10131 	else
10132 		netif_carrier_on(dev);
10133 	WRITE_ONCE(dev->proto_down, proto_down);
10134 	return 0;
10135 }
10136 
10137 /**
10138  *	netdev_change_proto_down_reason_locked - proto down reason
10139  *
10140  *	@dev: device
10141  *	@mask: proto down mask
10142  *	@value: proto down value
10143  */
10144 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10145 					    unsigned long mask, u32 value)
10146 {
10147 	u32 proto_down_reason;
10148 	int b;
10149 
10150 	if (!mask) {
10151 		proto_down_reason = value;
10152 	} else {
10153 		proto_down_reason = dev->proto_down_reason;
10154 		for_each_set_bit(b, &mask, 32) {
10155 			if (value & (1 << b))
10156 				proto_down_reason |= BIT(b);
10157 			else
10158 				proto_down_reason &= ~BIT(b);
10159 		}
10160 	}
10161 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10162 }
10163 
10164 struct bpf_xdp_link {
10165 	struct bpf_link link;
10166 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10167 	int flags;
10168 };
10169 
10170 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10171 {
10172 	if (flags & XDP_FLAGS_HW_MODE)
10173 		return XDP_MODE_HW;
10174 	if (flags & XDP_FLAGS_DRV_MODE)
10175 		return XDP_MODE_DRV;
10176 	if (flags & XDP_FLAGS_SKB_MODE)
10177 		return XDP_MODE_SKB;
10178 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10179 }
10180 
10181 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10182 {
10183 	switch (mode) {
10184 	case XDP_MODE_SKB:
10185 		return generic_xdp_install;
10186 	case XDP_MODE_DRV:
10187 	case XDP_MODE_HW:
10188 		return dev->netdev_ops->ndo_bpf;
10189 	default:
10190 		return NULL;
10191 	}
10192 }
10193 
10194 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10195 					 enum bpf_xdp_mode mode)
10196 {
10197 	return dev->xdp_state[mode].link;
10198 }
10199 
10200 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10201 				     enum bpf_xdp_mode mode)
10202 {
10203 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10204 
10205 	if (link)
10206 		return link->link.prog;
10207 	return dev->xdp_state[mode].prog;
10208 }
10209 
10210 u8 dev_xdp_prog_count(struct net_device *dev)
10211 {
10212 	u8 count = 0;
10213 	int i;
10214 
10215 	for (i = 0; i < __MAX_XDP_MODE; i++)
10216 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10217 			count++;
10218 	return count;
10219 }
10220 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10221 
10222 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10223 {
10224 	u8 count = 0;
10225 	int i;
10226 
10227 	for (i = 0; i < __MAX_XDP_MODE; i++)
10228 		if (dev->xdp_state[i].prog &&
10229 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10230 			count++;
10231 	return count;
10232 }
10233 
10234 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10235 {
10236 	if (!dev->netdev_ops->ndo_bpf)
10237 		return -EOPNOTSUPP;
10238 
10239 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10240 	    bpf->command == XDP_SETUP_PROG &&
10241 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10242 		NL_SET_ERR_MSG(bpf->extack,
10243 			       "unable to propagate XDP to device using tcp-data-split");
10244 		return -EBUSY;
10245 	}
10246 
10247 	if (dev_get_min_mp_channel_count(dev)) {
10248 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10249 		return -EBUSY;
10250 	}
10251 
10252 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10253 }
10254 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10255 
10256 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10257 {
10258 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10259 
10260 	return prog ? prog->aux->id : 0;
10261 }
10262 
10263 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10264 			     struct bpf_xdp_link *link)
10265 {
10266 	dev->xdp_state[mode].link = link;
10267 	dev->xdp_state[mode].prog = NULL;
10268 }
10269 
10270 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10271 			     struct bpf_prog *prog)
10272 {
10273 	dev->xdp_state[mode].link = NULL;
10274 	dev->xdp_state[mode].prog = prog;
10275 }
10276 
10277 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10278 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10279 			   u32 flags, struct bpf_prog *prog)
10280 {
10281 	struct netdev_bpf xdp;
10282 	int err;
10283 
10284 	netdev_ops_assert_locked(dev);
10285 
10286 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10287 	    prog && !prog->aux->xdp_has_frags) {
10288 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10289 		return -EBUSY;
10290 	}
10291 
10292 	if (dev_get_min_mp_channel_count(dev)) {
10293 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10294 		return -EBUSY;
10295 	}
10296 
10297 	memset(&xdp, 0, sizeof(xdp));
10298 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10299 	xdp.extack = extack;
10300 	xdp.flags = flags;
10301 	xdp.prog = prog;
10302 
10303 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10304 	 * "moved" into driver), so they don't increment it on their own, but
10305 	 * they do decrement refcnt when program is detached or replaced.
10306 	 * Given net_device also owns link/prog, we need to bump refcnt here
10307 	 * to prevent drivers from underflowing it.
10308 	 */
10309 	if (prog)
10310 		bpf_prog_inc(prog);
10311 	err = bpf_op(dev, &xdp);
10312 	if (err) {
10313 		if (prog)
10314 			bpf_prog_put(prog);
10315 		return err;
10316 	}
10317 
10318 	if (mode != XDP_MODE_HW)
10319 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10320 
10321 	return 0;
10322 }
10323 
10324 static void dev_xdp_uninstall(struct net_device *dev)
10325 {
10326 	struct bpf_xdp_link *link;
10327 	struct bpf_prog *prog;
10328 	enum bpf_xdp_mode mode;
10329 	bpf_op_t bpf_op;
10330 
10331 	ASSERT_RTNL();
10332 
10333 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10334 		prog = dev_xdp_prog(dev, mode);
10335 		if (!prog)
10336 			continue;
10337 
10338 		bpf_op = dev_xdp_bpf_op(dev, mode);
10339 		if (!bpf_op)
10340 			continue;
10341 
10342 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10343 
10344 		/* auto-detach link from net device */
10345 		link = dev_xdp_link(dev, mode);
10346 		if (link)
10347 			link->dev = NULL;
10348 		else
10349 			bpf_prog_put(prog);
10350 
10351 		dev_xdp_set_link(dev, mode, NULL);
10352 	}
10353 }
10354 
10355 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10356 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10357 			  struct bpf_prog *old_prog, u32 flags)
10358 {
10359 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10360 	struct bpf_prog *cur_prog;
10361 	struct net_device *upper;
10362 	struct list_head *iter;
10363 	enum bpf_xdp_mode mode;
10364 	bpf_op_t bpf_op;
10365 	int err;
10366 
10367 	ASSERT_RTNL();
10368 
10369 	/* either link or prog attachment, never both */
10370 	if (link && (new_prog || old_prog))
10371 		return -EINVAL;
10372 	/* link supports only XDP mode flags */
10373 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10374 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10375 		return -EINVAL;
10376 	}
10377 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10378 	if (num_modes > 1) {
10379 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10380 		return -EINVAL;
10381 	}
10382 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10383 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10384 		NL_SET_ERR_MSG(extack,
10385 			       "More than one program loaded, unset mode is ambiguous");
10386 		return -EINVAL;
10387 	}
10388 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10389 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10390 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10391 		return -EINVAL;
10392 	}
10393 
10394 	mode = dev_xdp_mode(dev, flags);
10395 	/* can't replace attached link */
10396 	if (dev_xdp_link(dev, mode)) {
10397 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10398 		return -EBUSY;
10399 	}
10400 
10401 	/* don't allow if an upper device already has a program */
10402 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10403 		if (dev_xdp_prog_count(upper) > 0) {
10404 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10405 			return -EEXIST;
10406 		}
10407 	}
10408 
10409 	cur_prog = dev_xdp_prog(dev, mode);
10410 	/* can't replace attached prog with link */
10411 	if (link && cur_prog) {
10412 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10413 		return -EBUSY;
10414 	}
10415 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10416 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10417 		return -EEXIST;
10418 	}
10419 
10420 	/* put effective new program into new_prog */
10421 	if (link)
10422 		new_prog = link->link.prog;
10423 
10424 	if (new_prog) {
10425 		bool offload = mode == XDP_MODE_HW;
10426 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10427 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10428 
10429 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10430 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10431 			return -EBUSY;
10432 		}
10433 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10434 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10435 			return -EEXIST;
10436 		}
10437 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10438 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10439 			return -EINVAL;
10440 		}
10441 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10442 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10443 			return -EINVAL;
10444 		}
10445 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10446 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10447 			return -EINVAL;
10448 		}
10449 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10450 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10451 			return -EINVAL;
10452 		}
10453 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10454 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10455 			return -EINVAL;
10456 		}
10457 	}
10458 
10459 	/* don't call drivers if the effective program didn't change */
10460 	if (new_prog != cur_prog) {
10461 		bpf_op = dev_xdp_bpf_op(dev, mode);
10462 		if (!bpf_op) {
10463 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10464 			return -EOPNOTSUPP;
10465 		}
10466 
10467 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10468 		if (err)
10469 			return err;
10470 	}
10471 
10472 	if (link)
10473 		dev_xdp_set_link(dev, mode, link);
10474 	else
10475 		dev_xdp_set_prog(dev, mode, new_prog);
10476 	if (cur_prog)
10477 		bpf_prog_put(cur_prog);
10478 
10479 	return 0;
10480 }
10481 
10482 static int dev_xdp_attach_link(struct net_device *dev,
10483 			       struct netlink_ext_ack *extack,
10484 			       struct bpf_xdp_link *link)
10485 {
10486 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10487 }
10488 
10489 static int dev_xdp_detach_link(struct net_device *dev,
10490 			       struct netlink_ext_ack *extack,
10491 			       struct bpf_xdp_link *link)
10492 {
10493 	enum bpf_xdp_mode mode;
10494 	bpf_op_t bpf_op;
10495 
10496 	ASSERT_RTNL();
10497 
10498 	mode = dev_xdp_mode(dev, link->flags);
10499 	if (dev_xdp_link(dev, mode) != link)
10500 		return -EINVAL;
10501 
10502 	bpf_op = dev_xdp_bpf_op(dev, mode);
10503 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10504 	dev_xdp_set_link(dev, mode, NULL);
10505 	return 0;
10506 }
10507 
10508 static void bpf_xdp_link_release(struct bpf_link *link)
10509 {
10510 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10511 
10512 	rtnl_lock();
10513 
10514 	/* if racing with net_device's tear down, xdp_link->dev might be
10515 	 * already NULL, in which case link was already auto-detached
10516 	 */
10517 	if (xdp_link->dev) {
10518 		netdev_lock_ops(xdp_link->dev);
10519 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10520 		netdev_unlock_ops(xdp_link->dev);
10521 		xdp_link->dev = NULL;
10522 	}
10523 
10524 	rtnl_unlock();
10525 }
10526 
10527 static int bpf_xdp_link_detach(struct bpf_link *link)
10528 {
10529 	bpf_xdp_link_release(link);
10530 	return 0;
10531 }
10532 
10533 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10534 {
10535 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10536 
10537 	kfree(xdp_link);
10538 }
10539 
10540 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10541 				     struct seq_file *seq)
10542 {
10543 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10544 	u32 ifindex = 0;
10545 
10546 	rtnl_lock();
10547 	if (xdp_link->dev)
10548 		ifindex = xdp_link->dev->ifindex;
10549 	rtnl_unlock();
10550 
10551 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10552 }
10553 
10554 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10555 				       struct bpf_link_info *info)
10556 {
10557 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10558 	u32 ifindex = 0;
10559 
10560 	rtnl_lock();
10561 	if (xdp_link->dev)
10562 		ifindex = xdp_link->dev->ifindex;
10563 	rtnl_unlock();
10564 
10565 	info->xdp.ifindex = ifindex;
10566 	return 0;
10567 }
10568 
10569 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10570 			       struct bpf_prog *old_prog)
10571 {
10572 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10573 	enum bpf_xdp_mode mode;
10574 	bpf_op_t bpf_op;
10575 	int err = 0;
10576 
10577 	rtnl_lock();
10578 
10579 	/* link might have been auto-released already, so fail */
10580 	if (!xdp_link->dev) {
10581 		err = -ENOLINK;
10582 		goto out_unlock;
10583 	}
10584 
10585 	if (old_prog && link->prog != old_prog) {
10586 		err = -EPERM;
10587 		goto out_unlock;
10588 	}
10589 	old_prog = link->prog;
10590 	if (old_prog->type != new_prog->type ||
10591 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10592 		err = -EINVAL;
10593 		goto out_unlock;
10594 	}
10595 
10596 	if (old_prog == new_prog) {
10597 		/* no-op, don't disturb drivers */
10598 		bpf_prog_put(new_prog);
10599 		goto out_unlock;
10600 	}
10601 
10602 	netdev_lock_ops(xdp_link->dev);
10603 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10604 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10605 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10606 			      xdp_link->flags, new_prog);
10607 	netdev_unlock_ops(xdp_link->dev);
10608 	if (err)
10609 		goto out_unlock;
10610 
10611 	old_prog = xchg(&link->prog, new_prog);
10612 	bpf_prog_put(old_prog);
10613 
10614 out_unlock:
10615 	rtnl_unlock();
10616 	return err;
10617 }
10618 
10619 static const struct bpf_link_ops bpf_xdp_link_lops = {
10620 	.release = bpf_xdp_link_release,
10621 	.dealloc = bpf_xdp_link_dealloc,
10622 	.detach = bpf_xdp_link_detach,
10623 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10624 	.fill_link_info = bpf_xdp_link_fill_link_info,
10625 	.update_prog = bpf_xdp_link_update,
10626 };
10627 
10628 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10629 {
10630 	struct net *net = current->nsproxy->net_ns;
10631 	struct bpf_link_primer link_primer;
10632 	struct netlink_ext_ack extack = {};
10633 	struct bpf_xdp_link *link;
10634 	struct net_device *dev;
10635 	int err, fd;
10636 
10637 	rtnl_lock();
10638 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10639 	if (!dev) {
10640 		rtnl_unlock();
10641 		return -EINVAL;
10642 	}
10643 
10644 	link = kzalloc(sizeof(*link), GFP_USER);
10645 	if (!link) {
10646 		err = -ENOMEM;
10647 		goto unlock;
10648 	}
10649 
10650 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10651 		      attr->link_create.attach_type);
10652 	link->dev = dev;
10653 	link->flags = attr->link_create.flags;
10654 
10655 	err = bpf_link_prime(&link->link, &link_primer);
10656 	if (err) {
10657 		kfree(link);
10658 		goto unlock;
10659 	}
10660 
10661 	netdev_lock_ops(dev);
10662 	err = dev_xdp_attach_link(dev, &extack, link);
10663 	netdev_unlock_ops(dev);
10664 	rtnl_unlock();
10665 
10666 	if (err) {
10667 		link->dev = NULL;
10668 		bpf_link_cleanup(&link_primer);
10669 		trace_bpf_xdp_link_attach_failed(extack._msg);
10670 		goto out_put_dev;
10671 	}
10672 
10673 	fd = bpf_link_settle(&link_primer);
10674 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10675 	dev_put(dev);
10676 	return fd;
10677 
10678 unlock:
10679 	rtnl_unlock();
10680 
10681 out_put_dev:
10682 	dev_put(dev);
10683 	return err;
10684 }
10685 
10686 /**
10687  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10688  *	@dev: device
10689  *	@extack: netlink extended ack
10690  *	@fd: new program fd or negative value to clear
10691  *	@expected_fd: old program fd that userspace expects to replace or clear
10692  *	@flags: xdp-related flags
10693  *
10694  *	Set or clear a bpf program for a device
10695  */
10696 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10697 		      int fd, int expected_fd, u32 flags)
10698 {
10699 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10700 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10701 	int err;
10702 
10703 	ASSERT_RTNL();
10704 
10705 	if (fd >= 0) {
10706 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10707 						 mode != XDP_MODE_SKB);
10708 		if (IS_ERR(new_prog))
10709 			return PTR_ERR(new_prog);
10710 	}
10711 
10712 	if (expected_fd >= 0) {
10713 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10714 						 mode != XDP_MODE_SKB);
10715 		if (IS_ERR(old_prog)) {
10716 			err = PTR_ERR(old_prog);
10717 			old_prog = NULL;
10718 			goto err_out;
10719 		}
10720 	}
10721 
10722 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10723 
10724 err_out:
10725 	if (err && new_prog)
10726 		bpf_prog_put(new_prog);
10727 	if (old_prog)
10728 		bpf_prog_put(old_prog);
10729 	return err;
10730 }
10731 
10732 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10733 {
10734 	int i;
10735 
10736 	netdev_ops_assert_locked(dev);
10737 
10738 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10739 		if (dev->_rx[i].mp_params.mp_priv)
10740 			/* The channel count is the idx plus 1. */
10741 			return i + 1;
10742 
10743 	return 0;
10744 }
10745 
10746 /**
10747  * dev_index_reserve() - allocate an ifindex in a namespace
10748  * @net: the applicable net namespace
10749  * @ifindex: requested ifindex, pass %0 to get one allocated
10750  *
10751  * Allocate a ifindex for a new device. Caller must either use the ifindex
10752  * to store the device (via list_netdevice()) or call dev_index_release()
10753  * to give the index up.
10754  *
10755  * Return: a suitable unique value for a new device interface number or -errno.
10756  */
10757 static int dev_index_reserve(struct net *net, u32 ifindex)
10758 {
10759 	int err;
10760 
10761 	if (ifindex > INT_MAX) {
10762 		DEBUG_NET_WARN_ON_ONCE(1);
10763 		return -EINVAL;
10764 	}
10765 
10766 	if (!ifindex)
10767 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10768 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10769 	else
10770 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10771 	if (err < 0)
10772 		return err;
10773 
10774 	return ifindex;
10775 }
10776 
10777 static void dev_index_release(struct net *net, int ifindex)
10778 {
10779 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10780 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10781 }
10782 
10783 static bool from_cleanup_net(void)
10784 {
10785 #ifdef CONFIG_NET_NS
10786 	return current == READ_ONCE(cleanup_net_task);
10787 #else
10788 	return false;
10789 #endif
10790 }
10791 
10792 /* Delayed registration/unregisteration */
10793 LIST_HEAD(net_todo_list);
10794 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10795 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10796 
10797 static void net_set_todo(struct net_device *dev)
10798 {
10799 	list_add_tail(&dev->todo_list, &net_todo_list);
10800 }
10801 
10802 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10803 	struct net_device *upper, netdev_features_t features)
10804 {
10805 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10806 	netdev_features_t feature;
10807 	int feature_bit;
10808 
10809 	for_each_netdev_feature(upper_disables, feature_bit) {
10810 		feature = __NETIF_F_BIT(feature_bit);
10811 		if (!(upper->wanted_features & feature)
10812 		    && (features & feature)) {
10813 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10814 				   &feature, upper->name);
10815 			features &= ~feature;
10816 		}
10817 	}
10818 
10819 	return features;
10820 }
10821 
10822 static void netdev_sync_lower_features(struct net_device *upper,
10823 	struct net_device *lower, netdev_features_t features)
10824 {
10825 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10826 	netdev_features_t feature;
10827 	int feature_bit;
10828 
10829 	for_each_netdev_feature(upper_disables, feature_bit) {
10830 		feature = __NETIF_F_BIT(feature_bit);
10831 		if (!(features & feature) && (lower->features & feature)) {
10832 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10833 				   &feature, lower->name);
10834 			netdev_lock_ops(lower);
10835 			lower->wanted_features &= ~feature;
10836 			__netdev_update_features(lower);
10837 
10838 			if (unlikely(lower->features & feature))
10839 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10840 					    &feature, lower->name);
10841 			else
10842 				netdev_features_change(lower);
10843 			netdev_unlock_ops(lower);
10844 		}
10845 	}
10846 }
10847 
10848 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10849 {
10850 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10851 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10852 	bool hw_csum = features & NETIF_F_HW_CSUM;
10853 
10854 	return ip_csum || hw_csum;
10855 }
10856 
10857 static netdev_features_t netdev_fix_features(struct net_device *dev,
10858 	netdev_features_t features)
10859 {
10860 	/* Fix illegal checksum combinations */
10861 	if ((features & NETIF_F_HW_CSUM) &&
10862 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10863 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10864 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10865 	}
10866 
10867 	/* TSO requires that SG is present as well. */
10868 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10869 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10870 		features &= ~NETIF_F_ALL_TSO;
10871 	}
10872 
10873 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10874 					!(features & NETIF_F_IP_CSUM)) {
10875 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10876 		features &= ~NETIF_F_TSO;
10877 		features &= ~NETIF_F_TSO_ECN;
10878 	}
10879 
10880 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10881 					 !(features & NETIF_F_IPV6_CSUM)) {
10882 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10883 		features &= ~NETIF_F_TSO6;
10884 	}
10885 
10886 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10887 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10888 		features &= ~NETIF_F_TSO_MANGLEID;
10889 
10890 	/* TSO ECN requires that TSO is present as well. */
10891 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10892 		features &= ~NETIF_F_TSO_ECN;
10893 
10894 	/* Software GSO depends on SG. */
10895 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10896 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10897 		features &= ~NETIF_F_GSO;
10898 	}
10899 
10900 	/* GSO partial features require GSO partial be set */
10901 	if ((features & dev->gso_partial_features) &&
10902 	    !(features & NETIF_F_GSO_PARTIAL)) {
10903 		netdev_dbg(dev,
10904 			   "Dropping partially supported GSO features since no GSO partial.\n");
10905 		features &= ~dev->gso_partial_features;
10906 	}
10907 
10908 	if (!(features & NETIF_F_RXCSUM)) {
10909 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10910 		 * successfully merged by hardware must also have the
10911 		 * checksum verified by hardware.  If the user does not
10912 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10913 		 */
10914 		if (features & NETIF_F_GRO_HW) {
10915 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10916 			features &= ~NETIF_F_GRO_HW;
10917 		}
10918 	}
10919 
10920 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10921 	if (features & NETIF_F_RXFCS) {
10922 		if (features & NETIF_F_LRO) {
10923 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10924 			features &= ~NETIF_F_LRO;
10925 		}
10926 
10927 		if (features & NETIF_F_GRO_HW) {
10928 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10929 			features &= ~NETIF_F_GRO_HW;
10930 		}
10931 	}
10932 
10933 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10934 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10935 		features &= ~NETIF_F_LRO;
10936 	}
10937 
10938 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10939 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10940 		features &= ~NETIF_F_HW_TLS_TX;
10941 	}
10942 
10943 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10944 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10945 		features &= ~NETIF_F_HW_TLS_RX;
10946 	}
10947 
10948 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10949 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10950 		features &= ~NETIF_F_GSO_UDP_L4;
10951 	}
10952 
10953 	return features;
10954 }
10955 
10956 int __netdev_update_features(struct net_device *dev)
10957 {
10958 	struct net_device *upper, *lower;
10959 	netdev_features_t features;
10960 	struct list_head *iter;
10961 	int err = -1;
10962 
10963 	ASSERT_RTNL();
10964 	netdev_ops_assert_locked(dev);
10965 
10966 	features = netdev_get_wanted_features(dev);
10967 
10968 	if (dev->netdev_ops->ndo_fix_features)
10969 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10970 
10971 	/* driver might be less strict about feature dependencies */
10972 	features = netdev_fix_features(dev, features);
10973 
10974 	/* some features can't be enabled if they're off on an upper device */
10975 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10976 		features = netdev_sync_upper_features(dev, upper, features);
10977 
10978 	if (dev->features == features)
10979 		goto sync_lower;
10980 
10981 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10982 		&dev->features, &features);
10983 
10984 	if (dev->netdev_ops->ndo_set_features)
10985 		err = dev->netdev_ops->ndo_set_features(dev, features);
10986 	else
10987 		err = 0;
10988 
10989 	if (unlikely(err < 0)) {
10990 		netdev_err(dev,
10991 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10992 			err, &features, &dev->features);
10993 		/* return non-0 since some features might have changed and
10994 		 * it's better to fire a spurious notification than miss it
10995 		 */
10996 		return -1;
10997 	}
10998 
10999 sync_lower:
11000 	/* some features must be disabled on lower devices when disabled
11001 	 * on an upper device (think: bonding master or bridge)
11002 	 */
11003 	netdev_for_each_lower_dev(dev, lower, iter)
11004 		netdev_sync_lower_features(dev, lower, features);
11005 
11006 	if (!err) {
11007 		netdev_features_t diff = features ^ dev->features;
11008 
11009 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11010 			/* udp_tunnel_{get,drop}_rx_info both need
11011 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11012 			 * device, or they won't do anything.
11013 			 * Thus we need to update dev->features
11014 			 * *before* calling udp_tunnel_get_rx_info,
11015 			 * but *after* calling udp_tunnel_drop_rx_info.
11016 			 */
11017 			udp_tunnel_nic_lock(dev);
11018 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11019 				dev->features = features;
11020 				udp_tunnel_get_rx_info(dev);
11021 			} else {
11022 				udp_tunnel_drop_rx_info(dev);
11023 			}
11024 			udp_tunnel_nic_unlock(dev);
11025 		}
11026 
11027 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11028 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11029 				dev->features = features;
11030 				err |= vlan_get_rx_ctag_filter_info(dev);
11031 			} else {
11032 				vlan_drop_rx_ctag_filter_info(dev);
11033 			}
11034 		}
11035 
11036 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11037 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11038 				dev->features = features;
11039 				err |= vlan_get_rx_stag_filter_info(dev);
11040 			} else {
11041 				vlan_drop_rx_stag_filter_info(dev);
11042 			}
11043 		}
11044 
11045 		dev->features = features;
11046 	}
11047 
11048 	return err < 0 ? 0 : 1;
11049 }
11050 
11051 /**
11052  *	netdev_update_features - recalculate device features
11053  *	@dev: the device to check
11054  *
11055  *	Recalculate dev->features set and send notifications if it
11056  *	has changed. Should be called after driver or hardware dependent
11057  *	conditions might have changed that influence the features.
11058  */
11059 void netdev_update_features(struct net_device *dev)
11060 {
11061 	if (__netdev_update_features(dev))
11062 		netdev_features_change(dev);
11063 }
11064 EXPORT_SYMBOL(netdev_update_features);
11065 
11066 /**
11067  *	netdev_change_features - recalculate device features
11068  *	@dev: the device to check
11069  *
11070  *	Recalculate dev->features set and send notifications even
11071  *	if they have not changed. Should be called instead of
11072  *	netdev_update_features() if also dev->vlan_features might
11073  *	have changed to allow the changes to be propagated to stacked
11074  *	VLAN devices.
11075  */
11076 void netdev_change_features(struct net_device *dev)
11077 {
11078 	__netdev_update_features(dev);
11079 	netdev_features_change(dev);
11080 }
11081 EXPORT_SYMBOL(netdev_change_features);
11082 
11083 /**
11084  *	netif_stacked_transfer_operstate -	transfer operstate
11085  *	@rootdev: the root or lower level device to transfer state from
11086  *	@dev: the device to transfer operstate to
11087  *
11088  *	Transfer operational state from root to device. This is normally
11089  *	called when a stacking relationship exists between the root
11090  *	device and the device(a leaf device).
11091  */
11092 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11093 					struct net_device *dev)
11094 {
11095 	if (rootdev->operstate == IF_OPER_DORMANT)
11096 		netif_dormant_on(dev);
11097 	else
11098 		netif_dormant_off(dev);
11099 
11100 	if (rootdev->operstate == IF_OPER_TESTING)
11101 		netif_testing_on(dev);
11102 	else
11103 		netif_testing_off(dev);
11104 
11105 	if (netif_carrier_ok(rootdev))
11106 		netif_carrier_on(dev);
11107 	else
11108 		netif_carrier_off(dev);
11109 }
11110 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11111 
11112 static int netif_alloc_rx_queues(struct net_device *dev)
11113 {
11114 	unsigned int i, count = dev->num_rx_queues;
11115 	struct netdev_rx_queue *rx;
11116 	size_t sz = count * sizeof(*rx);
11117 	int err = 0;
11118 
11119 	BUG_ON(count < 1);
11120 
11121 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11122 	if (!rx)
11123 		return -ENOMEM;
11124 
11125 	dev->_rx = rx;
11126 
11127 	for (i = 0; i < count; i++) {
11128 		rx[i].dev = dev;
11129 
11130 		/* XDP RX-queue setup */
11131 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11132 		if (err < 0)
11133 			goto err_rxq_info;
11134 	}
11135 	return 0;
11136 
11137 err_rxq_info:
11138 	/* Rollback successful reg's and free other resources */
11139 	while (i--)
11140 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11141 	kvfree(dev->_rx);
11142 	dev->_rx = NULL;
11143 	return err;
11144 }
11145 
11146 static void netif_free_rx_queues(struct net_device *dev)
11147 {
11148 	unsigned int i, count = dev->num_rx_queues;
11149 
11150 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11151 	if (!dev->_rx)
11152 		return;
11153 
11154 	for (i = 0; i < count; i++)
11155 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11156 
11157 	kvfree(dev->_rx);
11158 }
11159 
11160 static void netdev_init_one_queue(struct net_device *dev,
11161 				  struct netdev_queue *queue, void *_unused)
11162 {
11163 	/* Initialize queue lock */
11164 	spin_lock_init(&queue->_xmit_lock);
11165 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11166 	queue->xmit_lock_owner = -1;
11167 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11168 	queue->dev = dev;
11169 #ifdef CONFIG_BQL
11170 	dql_init(&queue->dql, HZ);
11171 #endif
11172 }
11173 
11174 static void netif_free_tx_queues(struct net_device *dev)
11175 {
11176 	kvfree(dev->_tx);
11177 }
11178 
11179 static int netif_alloc_netdev_queues(struct net_device *dev)
11180 {
11181 	unsigned int count = dev->num_tx_queues;
11182 	struct netdev_queue *tx;
11183 	size_t sz = count * sizeof(*tx);
11184 
11185 	if (count < 1 || count > 0xffff)
11186 		return -EINVAL;
11187 
11188 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11189 	if (!tx)
11190 		return -ENOMEM;
11191 
11192 	dev->_tx = tx;
11193 
11194 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11195 	spin_lock_init(&dev->tx_global_lock);
11196 
11197 	return 0;
11198 }
11199 
11200 void netif_tx_stop_all_queues(struct net_device *dev)
11201 {
11202 	unsigned int i;
11203 
11204 	for (i = 0; i < dev->num_tx_queues; i++) {
11205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11206 
11207 		netif_tx_stop_queue(txq);
11208 	}
11209 }
11210 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11211 
11212 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11213 {
11214 	void __percpu *v;
11215 
11216 	/* Drivers implementing ndo_get_peer_dev must support tstat
11217 	 * accounting, so that skb_do_redirect() can bump the dev's
11218 	 * RX stats upon network namespace switch.
11219 	 */
11220 	if (dev->netdev_ops->ndo_get_peer_dev &&
11221 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11222 		return -EOPNOTSUPP;
11223 
11224 	switch (dev->pcpu_stat_type) {
11225 	case NETDEV_PCPU_STAT_NONE:
11226 		return 0;
11227 	case NETDEV_PCPU_STAT_LSTATS:
11228 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11229 		break;
11230 	case NETDEV_PCPU_STAT_TSTATS:
11231 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11232 		break;
11233 	case NETDEV_PCPU_STAT_DSTATS:
11234 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11235 		break;
11236 	default:
11237 		return -EINVAL;
11238 	}
11239 
11240 	return v ? 0 : -ENOMEM;
11241 }
11242 
11243 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11244 {
11245 	switch (dev->pcpu_stat_type) {
11246 	case NETDEV_PCPU_STAT_NONE:
11247 		return;
11248 	case NETDEV_PCPU_STAT_LSTATS:
11249 		free_percpu(dev->lstats);
11250 		break;
11251 	case NETDEV_PCPU_STAT_TSTATS:
11252 		free_percpu(dev->tstats);
11253 		break;
11254 	case NETDEV_PCPU_STAT_DSTATS:
11255 		free_percpu(dev->dstats);
11256 		break;
11257 	}
11258 }
11259 
11260 static void netdev_free_phy_link_topology(struct net_device *dev)
11261 {
11262 	struct phy_link_topology *topo = dev->link_topo;
11263 
11264 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11265 		xa_destroy(&topo->phys);
11266 		kfree(topo);
11267 		dev->link_topo = NULL;
11268 	}
11269 }
11270 
11271 /**
11272  * register_netdevice() - register a network device
11273  * @dev: device to register
11274  *
11275  * Take a prepared network device structure and make it externally accessible.
11276  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11277  * Callers must hold the rtnl lock - you may want register_netdev()
11278  * instead of this.
11279  */
11280 int register_netdevice(struct net_device *dev)
11281 {
11282 	int ret;
11283 	struct net *net = dev_net(dev);
11284 
11285 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11286 		     NETDEV_FEATURE_COUNT);
11287 	BUG_ON(dev_boot_phase);
11288 	ASSERT_RTNL();
11289 
11290 	might_sleep();
11291 
11292 	/* When net_device's are persistent, this will be fatal. */
11293 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11294 	BUG_ON(!net);
11295 
11296 	ret = ethtool_check_ops(dev->ethtool_ops);
11297 	if (ret)
11298 		return ret;
11299 
11300 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11301 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11302 	mutex_init(&dev->ethtool->rss_lock);
11303 
11304 	spin_lock_init(&dev->addr_list_lock);
11305 	netdev_set_addr_lockdep_class(dev);
11306 
11307 	ret = dev_get_valid_name(net, dev, dev->name);
11308 	if (ret < 0)
11309 		goto out;
11310 
11311 	ret = -ENOMEM;
11312 	dev->name_node = netdev_name_node_head_alloc(dev);
11313 	if (!dev->name_node)
11314 		goto out;
11315 
11316 	/* Init, if this function is available */
11317 	if (dev->netdev_ops->ndo_init) {
11318 		ret = dev->netdev_ops->ndo_init(dev);
11319 		if (ret) {
11320 			if (ret > 0)
11321 				ret = -EIO;
11322 			goto err_free_name;
11323 		}
11324 	}
11325 
11326 	if (((dev->hw_features | dev->features) &
11327 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11328 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11329 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11330 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11331 		ret = -EINVAL;
11332 		goto err_uninit;
11333 	}
11334 
11335 	ret = netdev_do_alloc_pcpu_stats(dev);
11336 	if (ret)
11337 		goto err_uninit;
11338 
11339 	ret = dev_index_reserve(net, dev->ifindex);
11340 	if (ret < 0)
11341 		goto err_free_pcpu;
11342 	dev->ifindex = ret;
11343 
11344 	/* Transfer changeable features to wanted_features and enable
11345 	 * software offloads (GSO and GRO).
11346 	 */
11347 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11348 	dev->features |= NETIF_F_SOFT_FEATURES;
11349 
11350 	if (dev->udp_tunnel_nic_info) {
11351 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11352 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11353 	}
11354 
11355 	dev->wanted_features = dev->features & dev->hw_features;
11356 
11357 	if (!(dev->flags & IFF_LOOPBACK))
11358 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11359 
11360 	/* If IPv4 TCP segmentation offload is supported we should also
11361 	 * allow the device to enable segmenting the frame with the option
11362 	 * of ignoring a static IP ID value.  This doesn't enable the
11363 	 * feature itself but allows the user to enable it later.
11364 	 */
11365 	if (dev->hw_features & NETIF_F_TSO)
11366 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11367 	if (dev->vlan_features & NETIF_F_TSO)
11368 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11369 	if (dev->mpls_features & NETIF_F_TSO)
11370 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11371 	if (dev->hw_enc_features & NETIF_F_TSO)
11372 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11373 
11374 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11375 	 */
11376 	dev->vlan_features |= NETIF_F_HIGHDMA;
11377 
11378 	/* Make NETIF_F_SG inheritable to tunnel devices.
11379 	 */
11380 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11381 
11382 	/* Make NETIF_F_SG inheritable to MPLS.
11383 	 */
11384 	dev->mpls_features |= NETIF_F_SG;
11385 
11386 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11387 	ret = notifier_to_errno(ret);
11388 	if (ret)
11389 		goto err_ifindex_release;
11390 
11391 	ret = netdev_register_kobject(dev);
11392 
11393 	netdev_lock(dev);
11394 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11395 	netdev_unlock(dev);
11396 
11397 	if (ret)
11398 		goto err_uninit_notify;
11399 
11400 	netdev_lock_ops(dev);
11401 	__netdev_update_features(dev);
11402 	netdev_unlock_ops(dev);
11403 
11404 	/*
11405 	 *	Default initial state at registry is that the
11406 	 *	device is present.
11407 	 */
11408 
11409 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11410 
11411 	linkwatch_init_dev(dev);
11412 
11413 	dev_init_scheduler(dev);
11414 
11415 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11416 	list_netdevice(dev);
11417 
11418 	add_device_randomness(dev->dev_addr, dev->addr_len);
11419 
11420 	/* If the device has permanent device address, driver should
11421 	 * set dev_addr and also addr_assign_type should be set to
11422 	 * NET_ADDR_PERM (default value).
11423 	 */
11424 	if (dev->addr_assign_type == NET_ADDR_PERM)
11425 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11426 
11427 	/* Notify protocols, that a new device appeared. */
11428 	netdev_lock_ops(dev);
11429 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11430 	netdev_unlock_ops(dev);
11431 	ret = notifier_to_errno(ret);
11432 	if (ret) {
11433 		/* Expect explicit free_netdev() on failure */
11434 		dev->needs_free_netdev = false;
11435 		unregister_netdevice_queue(dev, NULL);
11436 		goto out;
11437 	}
11438 	/*
11439 	 *	Prevent userspace races by waiting until the network
11440 	 *	device is fully setup before sending notifications.
11441 	 */
11442 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11443 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11444 
11445 out:
11446 	return ret;
11447 
11448 err_uninit_notify:
11449 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11450 err_ifindex_release:
11451 	dev_index_release(net, dev->ifindex);
11452 err_free_pcpu:
11453 	netdev_do_free_pcpu_stats(dev);
11454 err_uninit:
11455 	if (dev->netdev_ops->ndo_uninit)
11456 		dev->netdev_ops->ndo_uninit(dev);
11457 	if (dev->priv_destructor)
11458 		dev->priv_destructor(dev);
11459 err_free_name:
11460 	netdev_name_node_free(dev->name_node);
11461 	goto out;
11462 }
11463 EXPORT_SYMBOL(register_netdevice);
11464 
11465 /* Initialize the core of a dummy net device.
11466  * The setup steps dummy netdevs need which normal netdevs get by going
11467  * through register_netdevice().
11468  */
11469 static void init_dummy_netdev(struct net_device *dev)
11470 {
11471 	/* make sure we BUG if trying to hit standard
11472 	 * register/unregister code path
11473 	 */
11474 	dev->reg_state = NETREG_DUMMY;
11475 
11476 	/* a dummy interface is started by default */
11477 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11478 	set_bit(__LINK_STATE_START, &dev->state);
11479 
11480 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11481 	 * because users of this 'device' dont need to change
11482 	 * its refcount.
11483 	 */
11484 }
11485 
11486 /**
11487  *	register_netdev	- register a network device
11488  *	@dev: device to register
11489  *
11490  *	Take a completed network device structure and add it to the kernel
11491  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11492  *	chain. 0 is returned on success. A negative errno code is returned
11493  *	on a failure to set up the device, or if the name is a duplicate.
11494  *
11495  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11496  *	and expands the device name if you passed a format string to
11497  *	alloc_netdev.
11498  */
11499 int register_netdev(struct net_device *dev)
11500 {
11501 	struct net *net = dev_net(dev);
11502 	int err;
11503 
11504 	if (rtnl_net_lock_killable(net))
11505 		return -EINTR;
11506 
11507 	err = register_netdevice(dev);
11508 
11509 	rtnl_net_unlock(net);
11510 
11511 	return err;
11512 }
11513 EXPORT_SYMBOL(register_netdev);
11514 
11515 int netdev_refcnt_read(const struct net_device *dev)
11516 {
11517 #ifdef CONFIG_PCPU_DEV_REFCNT
11518 	int i, refcnt = 0;
11519 
11520 	for_each_possible_cpu(i)
11521 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11522 	return refcnt;
11523 #else
11524 	return refcount_read(&dev->dev_refcnt);
11525 #endif
11526 }
11527 EXPORT_SYMBOL(netdev_refcnt_read);
11528 
11529 int netdev_unregister_timeout_secs __read_mostly = 10;
11530 
11531 #define WAIT_REFS_MIN_MSECS 1
11532 #define WAIT_REFS_MAX_MSECS 250
11533 /**
11534  * netdev_wait_allrefs_any - wait until all references are gone.
11535  * @list: list of net_devices to wait on
11536  *
11537  * This is called when unregistering network devices.
11538  *
11539  * Any protocol or device that holds a reference should register
11540  * for netdevice notification, and cleanup and put back the
11541  * reference if they receive an UNREGISTER event.
11542  * We can get stuck here if buggy protocols don't correctly
11543  * call dev_put.
11544  */
11545 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11546 {
11547 	unsigned long rebroadcast_time, warning_time;
11548 	struct net_device *dev;
11549 	int wait = 0;
11550 
11551 	rebroadcast_time = warning_time = jiffies;
11552 
11553 	list_for_each_entry(dev, list, todo_list)
11554 		if (netdev_refcnt_read(dev) == 1)
11555 			return dev;
11556 
11557 	while (true) {
11558 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11559 			rtnl_lock();
11560 
11561 			/* Rebroadcast unregister notification */
11562 			list_for_each_entry(dev, list, todo_list)
11563 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11564 
11565 			__rtnl_unlock();
11566 			rcu_barrier();
11567 			rtnl_lock();
11568 
11569 			list_for_each_entry(dev, list, todo_list)
11570 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11571 					     &dev->state)) {
11572 					/* We must not have linkwatch events
11573 					 * pending on unregister. If this
11574 					 * happens, we simply run the queue
11575 					 * unscheduled, resulting in a noop
11576 					 * for this device.
11577 					 */
11578 					linkwatch_run_queue();
11579 					break;
11580 				}
11581 
11582 			__rtnl_unlock();
11583 
11584 			rebroadcast_time = jiffies;
11585 		}
11586 
11587 		rcu_barrier();
11588 
11589 		if (!wait) {
11590 			wait = WAIT_REFS_MIN_MSECS;
11591 		} else {
11592 			msleep(wait);
11593 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11594 		}
11595 
11596 		list_for_each_entry(dev, list, todo_list)
11597 			if (netdev_refcnt_read(dev) == 1)
11598 				return dev;
11599 
11600 		if (time_after(jiffies, warning_time +
11601 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11602 			list_for_each_entry(dev, list, todo_list) {
11603 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11604 					 dev->name, netdev_refcnt_read(dev));
11605 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11606 			}
11607 
11608 			warning_time = jiffies;
11609 		}
11610 	}
11611 }
11612 
11613 /* The sequence is:
11614  *
11615  *	rtnl_lock();
11616  *	...
11617  *	register_netdevice(x1);
11618  *	register_netdevice(x2);
11619  *	...
11620  *	unregister_netdevice(y1);
11621  *	unregister_netdevice(y2);
11622  *      ...
11623  *	rtnl_unlock();
11624  *	free_netdev(y1);
11625  *	free_netdev(y2);
11626  *
11627  * We are invoked by rtnl_unlock().
11628  * This allows us to deal with problems:
11629  * 1) We can delete sysfs objects which invoke hotplug
11630  *    without deadlocking with linkwatch via keventd.
11631  * 2) Since we run with the RTNL semaphore not held, we can sleep
11632  *    safely in order to wait for the netdev refcnt to drop to zero.
11633  *
11634  * We must not return until all unregister events added during
11635  * the interval the lock was held have been completed.
11636  */
11637 void netdev_run_todo(void)
11638 {
11639 	struct net_device *dev, *tmp;
11640 	struct list_head list;
11641 	int cnt;
11642 #ifdef CONFIG_LOCKDEP
11643 	struct list_head unlink_list;
11644 
11645 	list_replace_init(&net_unlink_list, &unlink_list);
11646 
11647 	while (!list_empty(&unlink_list)) {
11648 		dev = list_first_entry(&unlink_list, struct net_device,
11649 				       unlink_list);
11650 		list_del_init(&dev->unlink_list);
11651 		dev->nested_level = dev->lower_level - 1;
11652 	}
11653 #endif
11654 
11655 	/* Snapshot list, allow later requests */
11656 	list_replace_init(&net_todo_list, &list);
11657 
11658 	__rtnl_unlock();
11659 
11660 	/* Wait for rcu callbacks to finish before next phase */
11661 	if (!list_empty(&list))
11662 		rcu_barrier();
11663 
11664 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11665 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11666 			netdev_WARN(dev, "run_todo but not unregistering\n");
11667 			list_del(&dev->todo_list);
11668 			continue;
11669 		}
11670 
11671 		netdev_lock(dev);
11672 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11673 		netdev_unlock(dev);
11674 		linkwatch_sync_dev(dev);
11675 	}
11676 
11677 	cnt = 0;
11678 	while (!list_empty(&list)) {
11679 		dev = netdev_wait_allrefs_any(&list);
11680 		list_del(&dev->todo_list);
11681 
11682 		/* paranoia */
11683 		BUG_ON(netdev_refcnt_read(dev) != 1);
11684 		BUG_ON(!list_empty(&dev->ptype_all));
11685 		BUG_ON(!list_empty(&dev->ptype_specific));
11686 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11687 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11688 
11689 		netdev_do_free_pcpu_stats(dev);
11690 		if (dev->priv_destructor)
11691 			dev->priv_destructor(dev);
11692 		if (dev->needs_free_netdev)
11693 			free_netdev(dev);
11694 
11695 		cnt++;
11696 
11697 		/* Free network device */
11698 		kobject_put(&dev->dev.kobj);
11699 	}
11700 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11701 		wake_up(&netdev_unregistering_wq);
11702 }
11703 
11704 /* Collate per-cpu network dstats statistics
11705  *
11706  * Read per-cpu network statistics from dev->dstats and populate the related
11707  * fields in @s.
11708  */
11709 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11710 			     const struct pcpu_dstats __percpu *dstats)
11711 {
11712 	int cpu;
11713 
11714 	for_each_possible_cpu(cpu) {
11715 		u64 rx_packets, rx_bytes, rx_drops;
11716 		u64 tx_packets, tx_bytes, tx_drops;
11717 		const struct pcpu_dstats *stats;
11718 		unsigned int start;
11719 
11720 		stats = per_cpu_ptr(dstats, cpu);
11721 		do {
11722 			start = u64_stats_fetch_begin(&stats->syncp);
11723 			rx_packets = u64_stats_read(&stats->rx_packets);
11724 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11725 			rx_drops   = u64_stats_read(&stats->rx_drops);
11726 			tx_packets = u64_stats_read(&stats->tx_packets);
11727 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11728 			tx_drops   = u64_stats_read(&stats->tx_drops);
11729 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11730 
11731 		s->rx_packets += rx_packets;
11732 		s->rx_bytes   += rx_bytes;
11733 		s->rx_dropped += rx_drops;
11734 		s->tx_packets += tx_packets;
11735 		s->tx_bytes   += tx_bytes;
11736 		s->tx_dropped += tx_drops;
11737 	}
11738 }
11739 
11740 /* ndo_get_stats64 implementation for dtstats-based accounting.
11741  *
11742  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11743  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11744  */
11745 static void dev_get_dstats64(const struct net_device *dev,
11746 			     struct rtnl_link_stats64 *s)
11747 {
11748 	netdev_stats_to_stats64(s, &dev->stats);
11749 	dev_fetch_dstats(s, dev->dstats);
11750 }
11751 
11752 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11753  * all the same fields in the same order as net_device_stats, with only
11754  * the type differing, but rtnl_link_stats64 may have additional fields
11755  * at the end for newer counters.
11756  */
11757 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11758 			     const struct net_device_stats *netdev_stats)
11759 {
11760 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11761 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11762 	u64 *dst = (u64 *)stats64;
11763 
11764 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11765 	for (i = 0; i < n; i++)
11766 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11767 	/* zero out counters that only exist in rtnl_link_stats64 */
11768 	memset((char *)stats64 + n * sizeof(u64), 0,
11769 	       sizeof(*stats64) - n * sizeof(u64));
11770 }
11771 EXPORT_SYMBOL(netdev_stats_to_stats64);
11772 
11773 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11774 		struct net_device *dev)
11775 {
11776 	struct net_device_core_stats __percpu *p;
11777 
11778 	p = alloc_percpu_gfp(struct net_device_core_stats,
11779 			     GFP_ATOMIC | __GFP_NOWARN);
11780 
11781 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11782 		free_percpu(p);
11783 
11784 	/* This READ_ONCE() pairs with the cmpxchg() above */
11785 	return READ_ONCE(dev->core_stats);
11786 }
11787 
11788 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11789 {
11790 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11791 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11792 	unsigned long __percpu *field;
11793 
11794 	if (unlikely(!p)) {
11795 		p = netdev_core_stats_alloc(dev);
11796 		if (!p)
11797 			return;
11798 	}
11799 
11800 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11801 	this_cpu_inc(*field);
11802 }
11803 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11804 
11805 /**
11806  *	dev_get_stats	- get network device statistics
11807  *	@dev: device to get statistics from
11808  *	@storage: place to store stats
11809  *
11810  *	Get network statistics from device. Return @storage.
11811  *	The device driver may provide its own method by setting
11812  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11813  *	otherwise the internal statistics structure is used.
11814  */
11815 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11816 					struct rtnl_link_stats64 *storage)
11817 {
11818 	const struct net_device_ops *ops = dev->netdev_ops;
11819 	const struct net_device_core_stats __percpu *p;
11820 
11821 	/*
11822 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11823 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11824 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11825 	 */
11826 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11827 		     offsetof(struct pcpu_dstats, rx_bytes));
11828 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11829 		     offsetof(struct pcpu_dstats, rx_packets));
11830 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11831 		     offsetof(struct pcpu_dstats, tx_bytes));
11832 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11833 		     offsetof(struct pcpu_dstats, tx_packets));
11834 
11835 	if (ops->ndo_get_stats64) {
11836 		memset(storage, 0, sizeof(*storage));
11837 		ops->ndo_get_stats64(dev, storage);
11838 	} else if (ops->ndo_get_stats) {
11839 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11840 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11841 		dev_get_tstats64(dev, storage);
11842 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11843 		dev_get_dstats64(dev, storage);
11844 	} else {
11845 		netdev_stats_to_stats64(storage, &dev->stats);
11846 	}
11847 
11848 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11849 	p = READ_ONCE(dev->core_stats);
11850 	if (p) {
11851 		const struct net_device_core_stats *core_stats;
11852 		int i;
11853 
11854 		for_each_possible_cpu(i) {
11855 			core_stats = per_cpu_ptr(p, i);
11856 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11857 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11858 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11859 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11860 		}
11861 	}
11862 	return storage;
11863 }
11864 EXPORT_SYMBOL(dev_get_stats);
11865 
11866 /**
11867  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11868  *	@s: place to store stats
11869  *	@netstats: per-cpu network stats to read from
11870  *
11871  *	Read per-cpu network statistics and populate the related fields in @s.
11872  */
11873 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11874 			   const struct pcpu_sw_netstats __percpu *netstats)
11875 {
11876 	int cpu;
11877 
11878 	for_each_possible_cpu(cpu) {
11879 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11880 		const struct pcpu_sw_netstats *stats;
11881 		unsigned int start;
11882 
11883 		stats = per_cpu_ptr(netstats, cpu);
11884 		do {
11885 			start = u64_stats_fetch_begin(&stats->syncp);
11886 			rx_packets = u64_stats_read(&stats->rx_packets);
11887 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11888 			tx_packets = u64_stats_read(&stats->tx_packets);
11889 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11890 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11891 
11892 		s->rx_packets += rx_packets;
11893 		s->rx_bytes   += rx_bytes;
11894 		s->tx_packets += tx_packets;
11895 		s->tx_bytes   += tx_bytes;
11896 	}
11897 }
11898 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11899 
11900 /**
11901  *	dev_get_tstats64 - ndo_get_stats64 implementation
11902  *	@dev: device to get statistics from
11903  *	@s: place to store stats
11904  *
11905  *	Populate @s from dev->stats and dev->tstats. Can be used as
11906  *	ndo_get_stats64() callback.
11907  */
11908 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11909 {
11910 	netdev_stats_to_stats64(s, &dev->stats);
11911 	dev_fetch_sw_netstats(s, dev->tstats);
11912 }
11913 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11914 
11915 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11916 {
11917 	struct netdev_queue *queue = dev_ingress_queue(dev);
11918 
11919 #ifdef CONFIG_NET_CLS_ACT
11920 	if (queue)
11921 		return queue;
11922 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11923 	if (!queue)
11924 		return NULL;
11925 	netdev_init_one_queue(dev, queue, NULL);
11926 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11927 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11928 	rcu_assign_pointer(dev->ingress_queue, queue);
11929 #endif
11930 	return queue;
11931 }
11932 
11933 static const struct ethtool_ops default_ethtool_ops;
11934 
11935 void netdev_set_default_ethtool_ops(struct net_device *dev,
11936 				    const struct ethtool_ops *ops)
11937 {
11938 	if (dev->ethtool_ops == &default_ethtool_ops)
11939 		dev->ethtool_ops = ops;
11940 }
11941 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11942 
11943 /**
11944  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11945  * @dev: netdev to enable the IRQ coalescing on
11946  *
11947  * Sets a conservative default for SW IRQ coalescing. Users can use
11948  * sysfs attributes to override the default values.
11949  */
11950 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11951 {
11952 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11953 
11954 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11955 		netdev_set_gro_flush_timeout(dev, 20000);
11956 		netdev_set_defer_hard_irqs(dev, 1);
11957 	}
11958 }
11959 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11960 
11961 /**
11962  * alloc_netdev_mqs - allocate network device
11963  * @sizeof_priv: size of private data to allocate space for
11964  * @name: device name format string
11965  * @name_assign_type: origin of device name
11966  * @setup: callback to initialize device
11967  * @txqs: the number of TX subqueues to allocate
11968  * @rxqs: the number of RX subqueues to allocate
11969  *
11970  * Allocates a struct net_device with private data area for driver use
11971  * and performs basic initialization.  Also allocates subqueue structs
11972  * for each queue on the device.
11973  */
11974 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11975 		unsigned char name_assign_type,
11976 		void (*setup)(struct net_device *),
11977 		unsigned int txqs, unsigned int rxqs)
11978 {
11979 	struct net_device *dev;
11980 	size_t napi_config_sz;
11981 	unsigned int maxqs;
11982 
11983 	BUG_ON(strlen(name) >= sizeof(dev->name));
11984 
11985 	if (txqs < 1) {
11986 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11987 		return NULL;
11988 	}
11989 
11990 	if (rxqs < 1) {
11991 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11992 		return NULL;
11993 	}
11994 
11995 	maxqs = max(txqs, rxqs);
11996 
11997 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11998 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11999 	if (!dev)
12000 		return NULL;
12001 
12002 	dev->priv_len = sizeof_priv;
12003 
12004 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12005 #ifdef CONFIG_PCPU_DEV_REFCNT
12006 	dev->pcpu_refcnt = alloc_percpu(int);
12007 	if (!dev->pcpu_refcnt)
12008 		goto free_dev;
12009 	__dev_hold(dev);
12010 #else
12011 	refcount_set(&dev->dev_refcnt, 1);
12012 #endif
12013 
12014 	if (dev_addr_init(dev))
12015 		goto free_pcpu;
12016 
12017 	dev_mc_init(dev);
12018 	dev_uc_init(dev);
12019 
12020 	dev_net_set(dev, &init_net);
12021 
12022 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12023 	dev->xdp_zc_max_segs = 1;
12024 	dev->gso_max_segs = GSO_MAX_SEGS;
12025 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12026 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12027 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12028 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12029 	dev->tso_max_segs = TSO_MAX_SEGS;
12030 	dev->upper_level = 1;
12031 	dev->lower_level = 1;
12032 #ifdef CONFIG_LOCKDEP
12033 	dev->nested_level = 0;
12034 	INIT_LIST_HEAD(&dev->unlink_list);
12035 #endif
12036 
12037 	INIT_LIST_HEAD(&dev->napi_list);
12038 	INIT_LIST_HEAD(&dev->unreg_list);
12039 	INIT_LIST_HEAD(&dev->close_list);
12040 	INIT_LIST_HEAD(&dev->link_watch_list);
12041 	INIT_LIST_HEAD(&dev->adj_list.upper);
12042 	INIT_LIST_HEAD(&dev->adj_list.lower);
12043 	INIT_LIST_HEAD(&dev->ptype_all);
12044 	INIT_LIST_HEAD(&dev->ptype_specific);
12045 	INIT_LIST_HEAD(&dev->net_notifier_list);
12046 #ifdef CONFIG_NET_SCHED
12047 	hash_init(dev->qdisc_hash);
12048 #endif
12049 
12050 	mutex_init(&dev->lock);
12051 
12052 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12053 	setup(dev);
12054 
12055 	if (!dev->tx_queue_len) {
12056 		dev->priv_flags |= IFF_NO_QUEUE;
12057 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12058 	}
12059 
12060 	dev->num_tx_queues = txqs;
12061 	dev->real_num_tx_queues = txqs;
12062 	if (netif_alloc_netdev_queues(dev))
12063 		goto free_all;
12064 
12065 	dev->num_rx_queues = rxqs;
12066 	dev->real_num_rx_queues = rxqs;
12067 	if (netif_alloc_rx_queues(dev))
12068 		goto free_all;
12069 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12070 	if (!dev->ethtool)
12071 		goto free_all;
12072 
12073 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12074 	if (!dev->cfg)
12075 		goto free_all;
12076 	dev->cfg_pending = dev->cfg;
12077 
12078 	dev->num_napi_configs = maxqs;
12079 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12080 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12081 	if (!dev->napi_config)
12082 		goto free_all;
12083 
12084 	strscpy(dev->name, name);
12085 	dev->name_assign_type = name_assign_type;
12086 	dev->group = INIT_NETDEV_GROUP;
12087 	if (!dev->ethtool_ops)
12088 		dev->ethtool_ops = &default_ethtool_ops;
12089 
12090 	nf_hook_netdev_init(dev);
12091 
12092 	return dev;
12093 
12094 free_all:
12095 	free_netdev(dev);
12096 	return NULL;
12097 
12098 free_pcpu:
12099 #ifdef CONFIG_PCPU_DEV_REFCNT
12100 	free_percpu(dev->pcpu_refcnt);
12101 free_dev:
12102 #endif
12103 	kvfree(dev);
12104 	return NULL;
12105 }
12106 EXPORT_SYMBOL(alloc_netdev_mqs);
12107 
12108 static void netdev_napi_exit(struct net_device *dev)
12109 {
12110 	if (!list_empty(&dev->napi_list)) {
12111 		struct napi_struct *p, *n;
12112 
12113 		netdev_lock(dev);
12114 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12115 			__netif_napi_del_locked(p);
12116 		netdev_unlock(dev);
12117 
12118 		synchronize_net();
12119 	}
12120 
12121 	kvfree(dev->napi_config);
12122 }
12123 
12124 /**
12125  * free_netdev - free network device
12126  * @dev: device
12127  *
12128  * This function does the last stage of destroying an allocated device
12129  * interface. The reference to the device object is released. If this
12130  * is the last reference then it will be freed.Must be called in process
12131  * context.
12132  */
12133 void free_netdev(struct net_device *dev)
12134 {
12135 	might_sleep();
12136 
12137 	/* When called immediately after register_netdevice() failed the unwind
12138 	 * handling may still be dismantling the device. Handle that case by
12139 	 * deferring the free.
12140 	 */
12141 	if (dev->reg_state == NETREG_UNREGISTERING) {
12142 		ASSERT_RTNL();
12143 		dev->needs_free_netdev = true;
12144 		return;
12145 	}
12146 
12147 	WARN_ON(dev->cfg != dev->cfg_pending);
12148 	kfree(dev->cfg);
12149 	kfree(dev->ethtool);
12150 	netif_free_tx_queues(dev);
12151 	netif_free_rx_queues(dev);
12152 
12153 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12154 
12155 	/* Flush device addresses */
12156 	dev_addr_flush(dev);
12157 
12158 	netdev_napi_exit(dev);
12159 
12160 	netif_del_cpu_rmap(dev);
12161 
12162 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12163 #ifdef CONFIG_PCPU_DEV_REFCNT
12164 	free_percpu(dev->pcpu_refcnt);
12165 	dev->pcpu_refcnt = NULL;
12166 #endif
12167 	free_percpu(dev->core_stats);
12168 	dev->core_stats = NULL;
12169 	free_percpu(dev->xdp_bulkq);
12170 	dev->xdp_bulkq = NULL;
12171 
12172 	netdev_free_phy_link_topology(dev);
12173 
12174 	mutex_destroy(&dev->lock);
12175 
12176 	/*  Compatibility with error handling in drivers */
12177 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12178 	    dev->reg_state == NETREG_DUMMY) {
12179 		kvfree(dev);
12180 		return;
12181 	}
12182 
12183 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12184 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12185 
12186 	/* will free via device release */
12187 	put_device(&dev->dev);
12188 }
12189 EXPORT_SYMBOL(free_netdev);
12190 
12191 /**
12192  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12193  * @sizeof_priv: size of private data to allocate space for
12194  *
12195  * Return: the allocated net_device on success, NULL otherwise
12196  */
12197 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12198 {
12199 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12200 			    init_dummy_netdev);
12201 }
12202 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12203 
12204 /**
12205  *	synchronize_net -  Synchronize with packet receive processing
12206  *
12207  *	Wait for packets currently being received to be done.
12208  *	Does not block later packets from starting.
12209  */
12210 void synchronize_net(void)
12211 {
12212 	might_sleep();
12213 	if (from_cleanup_net() || rtnl_is_locked())
12214 		synchronize_rcu_expedited();
12215 	else
12216 		synchronize_rcu();
12217 }
12218 EXPORT_SYMBOL(synchronize_net);
12219 
12220 static void netdev_rss_contexts_free(struct net_device *dev)
12221 {
12222 	struct ethtool_rxfh_context *ctx;
12223 	unsigned long context;
12224 
12225 	mutex_lock(&dev->ethtool->rss_lock);
12226 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12227 		xa_erase(&dev->ethtool->rss_ctx, context);
12228 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12229 		kfree(ctx);
12230 	}
12231 	xa_destroy(&dev->ethtool->rss_ctx);
12232 	mutex_unlock(&dev->ethtool->rss_lock);
12233 }
12234 
12235 /**
12236  *	unregister_netdevice_queue - remove device from the kernel
12237  *	@dev: device
12238  *	@head: list
12239  *
12240  *	This function shuts down a device interface and removes it
12241  *	from the kernel tables.
12242  *	If head not NULL, device is queued to be unregistered later.
12243  *
12244  *	Callers must hold the rtnl semaphore.  You may want
12245  *	unregister_netdev() instead of this.
12246  */
12247 
12248 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12249 {
12250 	ASSERT_RTNL();
12251 
12252 	if (head) {
12253 		list_move_tail(&dev->unreg_list, head);
12254 	} else {
12255 		LIST_HEAD(single);
12256 
12257 		list_add(&dev->unreg_list, &single);
12258 		unregister_netdevice_many(&single);
12259 	}
12260 }
12261 EXPORT_SYMBOL(unregister_netdevice_queue);
12262 
12263 static void dev_memory_provider_uninstall(struct net_device *dev)
12264 {
12265 	unsigned int i;
12266 
12267 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12268 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12269 		struct pp_memory_provider_params *p = &rxq->mp_params;
12270 
12271 		if (p->mp_ops && p->mp_ops->uninstall)
12272 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12273 	}
12274 }
12275 
12276 /* devices must be UP and netdev_lock()'d */
12277 static void netif_close_many_and_unlock(struct list_head *close_head)
12278 {
12279 	struct net_device *dev, *tmp;
12280 
12281 	netif_close_many(close_head, false);
12282 
12283 	/* ... now unlock them */
12284 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12285 		netdev_unlock(dev);
12286 		list_del_init(&dev->close_list);
12287 	}
12288 }
12289 
12290 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12291 {
12292 #ifdef CONFIG_LOCKDEP
12293 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12294 	 *
12295 	 * Reserve half the available slots for additional locks possibly
12296 	 * taken by notifiers and (soft)irqs.
12297 	 */
12298 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12299 
12300 	if (lockdep_depth(current) > limit)
12301 		netif_close_many_and_unlock(close_head);
12302 #endif
12303 }
12304 
12305 void unregister_netdevice_many_notify(struct list_head *head,
12306 				      u32 portid, const struct nlmsghdr *nlh)
12307 {
12308 	struct net_device *dev, *tmp;
12309 	LIST_HEAD(close_head);
12310 	int cnt = 0;
12311 
12312 	BUG_ON(dev_boot_phase);
12313 	ASSERT_RTNL();
12314 
12315 	if (list_empty(head))
12316 		return;
12317 
12318 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12319 		/* Some devices call without registering
12320 		 * for initialization unwind. Remove those
12321 		 * devices and proceed with the remaining.
12322 		 */
12323 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12324 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12325 				 dev->name, dev);
12326 
12327 			WARN_ON(1);
12328 			list_del(&dev->unreg_list);
12329 			continue;
12330 		}
12331 		dev->dismantle = true;
12332 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12333 	}
12334 
12335 	/* If device is running, close it first. Start with ops locked... */
12336 	list_for_each_entry(dev, head, unreg_list) {
12337 		if (!(dev->flags & IFF_UP))
12338 			continue;
12339 		if (netdev_need_ops_lock(dev)) {
12340 			list_add_tail(&dev->close_list, &close_head);
12341 			netdev_lock(dev);
12342 		}
12343 		netif_close_many_and_unlock_cond(&close_head);
12344 	}
12345 	netif_close_many_and_unlock(&close_head);
12346 	/* ... now go over the rest. */
12347 	list_for_each_entry(dev, head, unreg_list) {
12348 		if (!netdev_need_ops_lock(dev))
12349 			list_add_tail(&dev->close_list, &close_head);
12350 	}
12351 	netif_close_many(&close_head, true);
12352 
12353 	list_for_each_entry(dev, head, unreg_list) {
12354 		/* And unlink it from device chain. */
12355 		unlist_netdevice(dev);
12356 		netdev_lock(dev);
12357 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12358 		netdev_unlock(dev);
12359 	}
12360 	flush_all_backlogs();
12361 
12362 	synchronize_net();
12363 
12364 	list_for_each_entry(dev, head, unreg_list) {
12365 		struct sk_buff *skb = NULL;
12366 
12367 		/* Shutdown queueing discipline. */
12368 		netdev_lock_ops(dev);
12369 		dev_shutdown(dev);
12370 		dev_tcx_uninstall(dev);
12371 		dev_xdp_uninstall(dev);
12372 		dev_memory_provider_uninstall(dev);
12373 		netdev_unlock_ops(dev);
12374 		bpf_dev_bound_netdev_unregister(dev);
12375 
12376 		netdev_offload_xstats_disable_all(dev);
12377 
12378 		/* Notify protocols, that we are about to destroy
12379 		 * this device. They should clean all the things.
12380 		 */
12381 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12382 
12383 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12384 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12385 						     GFP_KERNEL, NULL, 0,
12386 						     portid, nlh);
12387 
12388 		/*
12389 		 *	Flush the unicast and multicast chains
12390 		 */
12391 		dev_uc_flush(dev);
12392 		dev_mc_flush(dev);
12393 
12394 		netdev_name_node_alt_flush(dev);
12395 		netdev_name_node_free(dev->name_node);
12396 
12397 		netdev_rss_contexts_free(dev);
12398 
12399 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12400 
12401 		if (dev->netdev_ops->ndo_uninit)
12402 			dev->netdev_ops->ndo_uninit(dev);
12403 
12404 		mutex_destroy(&dev->ethtool->rss_lock);
12405 
12406 		net_shaper_flush_netdev(dev);
12407 
12408 		if (skb)
12409 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12410 
12411 		/* Notifier chain MUST detach us all upper devices. */
12412 		WARN_ON(netdev_has_any_upper_dev(dev));
12413 		WARN_ON(netdev_has_any_lower_dev(dev));
12414 
12415 		/* Remove entries from kobject tree */
12416 		netdev_unregister_kobject(dev);
12417 #ifdef CONFIG_XPS
12418 		/* Remove XPS queueing entries */
12419 		netif_reset_xps_queues_gt(dev, 0);
12420 #endif
12421 	}
12422 
12423 	synchronize_net();
12424 
12425 	list_for_each_entry(dev, head, unreg_list) {
12426 		netdev_put(dev, &dev->dev_registered_tracker);
12427 		net_set_todo(dev);
12428 		cnt++;
12429 	}
12430 	atomic_add(cnt, &dev_unreg_count);
12431 
12432 	list_del(head);
12433 }
12434 
12435 /**
12436  *	unregister_netdevice_many - unregister many devices
12437  *	@head: list of devices
12438  *
12439  *  Note: As most callers use a stack allocated list_head,
12440  *  we force a list_del() to make sure stack won't be corrupted later.
12441  */
12442 void unregister_netdevice_many(struct list_head *head)
12443 {
12444 	unregister_netdevice_many_notify(head, 0, NULL);
12445 }
12446 EXPORT_SYMBOL(unregister_netdevice_many);
12447 
12448 /**
12449  *	unregister_netdev - remove device from the kernel
12450  *	@dev: device
12451  *
12452  *	This function shuts down a device interface and removes it
12453  *	from the kernel tables.
12454  *
12455  *	This is just a wrapper for unregister_netdevice that takes
12456  *	the rtnl semaphore.  In general you want to use this and not
12457  *	unregister_netdevice.
12458  */
12459 void unregister_netdev(struct net_device *dev)
12460 {
12461 	rtnl_net_dev_lock(dev);
12462 	unregister_netdevice(dev);
12463 	rtnl_net_dev_unlock(dev);
12464 }
12465 EXPORT_SYMBOL(unregister_netdev);
12466 
12467 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12468 			       const char *pat, int new_ifindex,
12469 			       struct netlink_ext_ack *extack)
12470 {
12471 	struct netdev_name_node *name_node;
12472 	struct net *net_old = dev_net(dev);
12473 	char new_name[IFNAMSIZ] = {};
12474 	int err, new_nsid;
12475 
12476 	ASSERT_RTNL();
12477 
12478 	/* Don't allow namespace local devices to be moved. */
12479 	err = -EINVAL;
12480 	if (dev->netns_immutable) {
12481 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12482 		goto out;
12483 	}
12484 
12485 	/* Ensure the device has been registered */
12486 	if (dev->reg_state != NETREG_REGISTERED) {
12487 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12488 		goto out;
12489 	}
12490 
12491 	/* Get out if there is nothing todo */
12492 	err = 0;
12493 	if (net_eq(net_old, net))
12494 		goto out;
12495 
12496 	/* Pick the destination device name, and ensure
12497 	 * we can use it in the destination network namespace.
12498 	 */
12499 	err = -EEXIST;
12500 	if (netdev_name_in_use(net, dev->name)) {
12501 		/* We get here if we can't use the current device name */
12502 		if (!pat) {
12503 			NL_SET_ERR_MSG(extack,
12504 				       "An interface with the same name exists in the target netns");
12505 			goto out;
12506 		}
12507 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12508 		if (err < 0) {
12509 			NL_SET_ERR_MSG_FMT(extack,
12510 					   "Unable to use '%s' for the new interface name in the target netns",
12511 					   pat);
12512 			goto out;
12513 		}
12514 	}
12515 	/* Check that none of the altnames conflicts. */
12516 	err = -EEXIST;
12517 	netdev_for_each_altname(dev, name_node) {
12518 		if (netdev_name_in_use(net, name_node->name)) {
12519 			NL_SET_ERR_MSG_FMT(extack,
12520 					   "An interface with the altname %s exists in the target netns",
12521 					   name_node->name);
12522 			goto out;
12523 		}
12524 	}
12525 
12526 	/* Check that new_ifindex isn't used yet. */
12527 	if (new_ifindex) {
12528 		err = dev_index_reserve(net, new_ifindex);
12529 		if (err < 0) {
12530 			NL_SET_ERR_MSG_FMT(extack,
12531 					   "The ifindex %d is not available in the target netns",
12532 					   new_ifindex);
12533 			goto out;
12534 		}
12535 	} else {
12536 		/* If there is an ifindex conflict assign a new one */
12537 		err = dev_index_reserve(net, dev->ifindex);
12538 		if (err == -EBUSY)
12539 			err = dev_index_reserve(net, 0);
12540 		if (err < 0) {
12541 			NL_SET_ERR_MSG(extack,
12542 				       "Unable to allocate a new ifindex in the target netns");
12543 			goto out;
12544 		}
12545 		new_ifindex = err;
12546 	}
12547 
12548 	/*
12549 	 * And now a mini version of register_netdevice unregister_netdevice.
12550 	 */
12551 
12552 	netdev_lock_ops(dev);
12553 	/* If device is running close it first. */
12554 	netif_close(dev);
12555 	/* And unlink it from device chain */
12556 	unlist_netdevice(dev);
12557 
12558 	if (!netdev_need_ops_lock(dev))
12559 		netdev_lock(dev);
12560 	dev->moving_ns = true;
12561 	netdev_unlock(dev);
12562 
12563 	synchronize_net();
12564 
12565 	/* Shutdown queueing discipline. */
12566 	netdev_lock_ops(dev);
12567 	dev_shutdown(dev);
12568 	netdev_unlock_ops(dev);
12569 
12570 	/* Notify protocols, that we are about to destroy
12571 	 * this device. They should clean all the things.
12572 	 *
12573 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12574 	 * This is wanted because this way 8021q and macvlan know
12575 	 * the device is just moving and can keep their slaves up.
12576 	 */
12577 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12578 	rcu_barrier();
12579 
12580 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12581 
12582 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12583 			    new_ifindex);
12584 
12585 	/*
12586 	 *	Flush the unicast and multicast chains
12587 	 */
12588 	dev_uc_flush(dev);
12589 	dev_mc_flush(dev);
12590 
12591 	/* Send a netdev-removed uevent to the old namespace */
12592 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12593 	netdev_adjacent_del_links(dev);
12594 
12595 	/* Move per-net netdevice notifiers that are following the netdevice */
12596 	move_netdevice_notifiers_dev_net(dev, net);
12597 
12598 	/* Actually switch the network namespace */
12599 	netdev_lock(dev);
12600 	dev_net_set(dev, net);
12601 	netdev_unlock(dev);
12602 	dev->ifindex = new_ifindex;
12603 
12604 	if (new_name[0]) {
12605 		/* Rename the netdev to prepared name */
12606 		write_seqlock_bh(&netdev_rename_lock);
12607 		strscpy(dev->name, new_name, IFNAMSIZ);
12608 		write_sequnlock_bh(&netdev_rename_lock);
12609 	}
12610 
12611 	/* Fixup kobjects */
12612 	dev_set_uevent_suppress(&dev->dev, 1);
12613 	err = device_rename(&dev->dev, dev->name);
12614 	dev_set_uevent_suppress(&dev->dev, 0);
12615 	WARN_ON(err);
12616 
12617 	/* Send a netdev-add uevent to the new namespace */
12618 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12619 	netdev_adjacent_add_links(dev);
12620 
12621 	/* Adapt owner in case owning user namespace of target network
12622 	 * namespace is different from the original one.
12623 	 */
12624 	err = netdev_change_owner(dev, net_old, net);
12625 	WARN_ON(err);
12626 
12627 	netdev_lock(dev);
12628 	dev->moving_ns = false;
12629 	if (!netdev_need_ops_lock(dev))
12630 		netdev_unlock(dev);
12631 
12632 	/* Add the device back in the hashes */
12633 	list_netdevice(dev);
12634 	/* Notify protocols, that a new device appeared. */
12635 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12636 	netdev_unlock_ops(dev);
12637 
12638 	/*
12639 	 *	Prevent userspace races by waiting until the network
12640 	 *	device is fully setup before sending notifications.
12641 	 */
12642 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12643 
12644 	synchronize_net();
12645 	err = 0;
12646 out:
12647 	return err;
12648 }
12649 
12650 static int dev_cpu_dead(unsigned int oldcpu)
12651 {
12652 	struct sk_buff **list_skb;
12653 	struct sk_buff *skb;
12654 	unsigned int cpu;
12655 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12656 
12657 	local_irq_disable();
12658 	cpu = smp_processor_id();
12659 	sd = &per_cpu(softnet_data, cpu);
12660 	oldsd = &per_cpu(softnet_data, oldcpu);
12661 
12662 	/* Find end of our completion_queue. */
12663 	list_skb = &sd->completion_queue;
12664 	while (*list_skb)
12665 		list_skb = &(*list_skb)->next;
12666 	/* Append completion queue from offline CPU. */
12667 	*list_skb = oldsd->completion_queue;
12668 	oldsd->completion_queue = NULL;
12669 
12670 	/* Append output queue from offline CPU. */
12671 	if (oldsd->output_queue) {
12672 		*sd->output_queue_tailp = oldsd->output_queue;
12673 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12674 		oldsd->output_queue = NULL;
12675 		oldsd->output_queue_tailp = &oldsd->output_queue;
12676 	}
12677 	/* Append NAPI poll list from offline CPU, with one exception :
12678 	 * process_backlog() must be called by cpu owning percpu backlog.
12679 	 * We properly handle process_queue & input_pkt_queue later.
12680 	 */
12681 	while (!list_empty(&oldsd->poll_list)) {
12682 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12683 							    struct napi_struct,
12684 							    poll_list);
12685 
12686 		list_del_init(&napi->poll_list);
12687 		if (napi->poll == process_backlog)
12688 			napi->state &= NAPIF_STATE_THREADED;
12689 		else
12690 			____napi_schedule(sd, napi);
12691 	}
12692 
12693 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12694 	local_irq_enable();
12695 
12696 	if (!use_backlog_threads()) {
12697 #ifdef CONFIG_RPS
12698 		remsd = oldsd->rps_ipi_list;
12699 		oldsd->rps_ipi_list = NULL;
12700 #endif
12701 		/* send out pending IPI's on offline CPU */
12702 		net_rps_send_ipi(remsd);
12703 	}
12704 
12705 	/* Process offline CPU's input_pkt_queue */
12706 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12707 		netif_rx(skb);
12708 		rps_input_queue_head_incr(oldsd);
12709 	}
12710 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12711 		netif_rx(skb);
12712 		rps_input_queue_head_incr(oldsd);
12713 	}
12714 
12715 	return 0;
12716 }
12717 
12718 /**
12719  *	netdev_increment_features - increment feature set by one
12720  *	@all: current feature set
12721  *	@one: new feature set
12722  *	@mask: mask feature set
12723  *
12724  *	Computes a new feature set after adding a device with feature set
12725  *	@one to the master device with current feature set @all.  Will not
12726  *	enable anything that is off in @mask. Returns the new feature set.
12727  */
12728 netdev_features_t netdev_increment_features(netdev_features_t all,
12729 	netdev_features_t one, netdev_features_t mask)
12730 {
12731 	if (mask & NETIF_F_HW_CSUM)
12732 		mask |= NETIF_F_CSUM_MASK;
12733 	mask |= NETIF_F_VLAN_CHALLENGED;
12734 
12735 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12736 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12737 
12738 	/* If one device supports hw checksumming, set for all. */
12739 	if (all & NETIF_F_HW_CSUM)
12740 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12741 
12742 	return all;
12743 }
12744 EXPORT_SYMBOL(netdev_increment_features);
12745 
12746 /**
12747  *	netdev_compute_master_upper_features - compute feature from lowers
12748  *	@dev: the upper device
12749  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12750  *
12751  *	Recompute the upper device's feature based on all lower devices.
12752  */
12753 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12754 {
12755 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12756 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12757 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12758 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12759 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12760 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12761 	unsigned short max_header_len = ETH_HLEN;
12762 	unsigned int tso_max_size = TSO_MAX_SIZE;
12763 	unsigned short max_headroom = 0;
12764 	unsigned short max_tailroom = 0;
12765 	u16 tso_max_segs = TSO_MAX_SEGS;
12766 	struct net_device *lower_dev;
12767 	struct list_head *iter;
12768 
12769 	mpls_features = netdev_base_features(mpls_features);
12770 	vlan_features = netdev_base_features(vlan_features);
12771 	enc_features = netdev_base_features(enc_features);
12772 
12773 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12774 		gso_partial_features = netdev_increment_features(gso_partial_features,
12775 								 lower_dev->gso_partial_features,
12776 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12777 
12778 		vlan_features = netdev_increment_features(vlan_features,
12779 							  lower_dev->vlan_features,
12780 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12781 
12782 		enc_features = netdev_increment_features(enc_features,
12783 							 lower_dev->hw_enc_features,
12784 							 MASTER_UPPER_DEV_ENC_FEATURES);
12785 
12786 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12787 			xfrm_features = netdev_increment_features(xfrm_features,
12788 								  lower_dev->hw_enc_features,
12789 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12790 
12791 		mpls_features = netdev_increment_features(mpls_features,
12792 							  lower_dev->mpls_features,
12793 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12794 
12795 		dst_release_flag &= lower_dev->priv_flags;
12796 
12797 		if (update_header) {
12798 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12799 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12800 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12801 		}
12802 
12803 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12804 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12805 	}
12806 
12807 	dev->gso_partial_features = gso_partial_features;
12808 	dev->vlan_features = vlan_features;
12809 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12810 			       NETIF_F_HW_VLAN_CTAG_TX |
12811 			       NETIF_F_HW_VLAN_STAG_TX;
12812 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12813 		dev->hw_enc_features |= xfrm_features;
12814 	dev->mpls_features = mpls_features;
12815 
12816 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12817 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12818 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12819 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12820 
12821 	if (update_header) {
12822 		dev->hard_header_len = max_header_len;
12823 		dev->needed_headroom = max_headroom;
12824 		dev->needed_tailroom = max_tailroom;
12825 	}
12826 
12827 	netif_set_tso_max_segs(dev, tso_max_segs);
12828 	netif_set_tso_max_size(dev, tso_max_size);
12829 
12830 	netdev_change_features(dev);
12831 }
12832 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12833 
12834 static struct hlist_head * __net_init netdev_create_hash(void)
12835 {
12836 	int i;
12837 	struct hlist_head *hash;
12838 
12839 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12840 	if (hash != NULL)
12841 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12842 			INIT_HLIST_HEAD(&hash[i]);
12843 
12844 	return hash;
12845 }
12846 
12847 /* Initialize per network namespace state */
12848 static int __net_init netdev_init(struct net *net)
12849 {
12850 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12851 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12852 
12853 	INIT_LIST_HEAD(&net->dev_base_head);
12854 
12855 	net->dev_name_head = netdev_create_hash();
12856 	if (net->dev_name_head == NULL)
12857 		goto err_name;
12858 
12859 	net->dev_index_head = netdev_create_hash();
12860 	if (net->dev_index_head == NULL)
12861 		goto err_idx;
12862 
12863 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12864 
12865 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12866 
12867 	return 0;
12868 
12869 err_idx:
12870 	kfree(net->dev_name_head);
12871 err_name:
12872 	return -ENOMEM;
12873 }
12874 
12875 /**
12876  *	netdev_drivername - network driver for the device
12877  *	@dev: network device
12878  *
12879  *	Determine network driver for device.
12880  */
12881 const char *netdev_drivername(const struct net_device *dev)
12882 {
12883 	const struct device_driver *driver;
12884 	const struct device *parent;
12885 	const char *empty = "";
12886 
12887 	parent = dev->dev.parent;
12888 	if (!parent)
12889 		return empty;
12890 
12891 	driver = parent->driver;
12892 	if (driver && driver->name)
12893 		return driver->name;
12894 	return empty;
12895 }
12896 
12897 static void __netdev_printk(const char *level, const struct net_device *dev,
12898 			    struct va_format *vaf)
12899 {
12900 	if (dev && dev->dev.parent) {
12901 		dev_printk_emit(level[1] - '0',
12902 				dev->dev.parent,
12903 				"%s %s %s%s: %pV",
12904 				dev_driver_string(dev->dev.parent),
12905 				dev_name(dev->dev.parent),
12906 				netdev_name(dev), netdev_reg_state(dev),
12907 				vaf);
12908 	} else if (dev) {
12909 		printk("%s%s%s: %pV",
12910 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12911 	} else {
12912 		printk("%s(NULL net_device): %pV", level, vaf);
12913 	}
12914 }
12915 
12916 void netdev_printk(const char *level, const struct net_device *dev,
12917 		   const char *format, ...)
12918 {
12919 	struct va_format vaf;
12920 	va_list args;
12921 
12922 	va_start(args, format);
12923 
12924 	vaf.fmt = format;
12925 	vaf.va = &args;
12926 
12927 	__netdev_printk(level, dev, &vaf);
12928 
12929 	va_end(args);
12930 }
12931 EXPORT_SYMBOL(netdev_printk);
12932 
12933 #define define_netdev_printk_level(func, level)			\
12934 void func(const struct net_device *dev, const char *fmt, ...)	\
12935 {								\
12936 	struct va_format vaf;					\
12937 	va_list args;						\
12938 								\
12939 	va_start(args, fmt);					\
12940 								\
12941 	vaf.fmt = fmt;						\
12942 	vaf.va = &args;						\
12943 								\
12944 	__netdev_printk(level, dev, &vaf);			\
12945 								\
12946 	va_end(args);						\
12947 }								\
12948 EXPORT_SYMBOL(func);
12949 
12950 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12951 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12952 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12953 define_netdev_printk_level(netdev_err, KERN_ERR);
12954 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12955 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12956 define_netdev_printk_level(netdev_info, KERN_INFO);
12957 
12958 static void __net_exit netdev_exit(struct net *net)
12959 {
12960 	kfree(net->dev_name_head);
12961 	kfree(net->dev_index_head);
12962 	xa_destroy(&net->dev_by_index);
12963 	if (net != &init_net)
12964 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12965 }
12966 
12967 static struct pernet_operations __net_initdata netdev_net_ops = {
12968 	.init = netdev_init,
12969 	.exit = netdev_exit,
12970 };
12971 
12972 static void __net_exit default_device_exit_net(struct net *net)
12973 {
12974 	struct netdev_name_node *name_node, *tmp;
12975 	struct net_device *dev, *aux;
12976 	/*
12977 	 * Push all migratable network devices back to the
12978 	 * initial network namespace
12979 	 */
12980 	ASSERT_RTNL();
12981 	for_each_netdev_safe(net, dev, aux) {
12982 		int err;
12983 		char fb_name[IFNAMSIZ];
12984 
12985 		/* Ignore unmoveable devices (i.e. loopback) */
12986 		if (dev->netns_immutable)
12987 			continue;
12988 
12989 		/* Leave virtual devices for the generic cleanup */
12990 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12991 			continue;
12992 
12993 		/* Push remaining network devices to init_net */
12994 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12995 		if (netdev_name_in_use(&init_net, fb_name))
12996 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12997 
12998 		netdev_for_each_altname_safe(dev, name_node, tmp)
12999 			if (netdev_name_in_use(&init_net, name_node->name))
13000 				__netdev_name_node_alt_destroy(name_node);
13001 
13002 		err = dev_change_net_namespace(dev, &init_net, fb_name);
13003 		if (err) {
13004 			pr_emerg("%s: failed to move %s to init_net: %d\n",
13005 				 __func__, dev->name, err);
13006 			BUG();
13007 		}
13008 	}
13009 }
13010 
13011 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13012 {
13013 	/* At exit all network devices most be removed from a network
13014 	 * namespace.  Do this in the reverse order of registration.
13015 	 * Do this across as many network namespaces as possible to
13016 	 * improve batching efficiency.
13017 	 */
13018 	struct net_device *dev;
13019 	struct net *net;
13020 	LIST_HEAD(dev_kill_list);
13021 
13022 	rtnl_lock();
13023 	list_for_each_entry(net, net_list, exit_list) {
13024 		default_device_exit_net(net);
13025 		cond_resched();
13026 	}
13027 
13028 	list_for_each_entry(net, net_list, exit_list) {
13029 		for_each_netdev_reverse(net, dev) {
13030 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13031 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13032 			else
13033 				unregister_netdevice_queue(dev, &dev_kill_list);
13034 		}
13035 	}
13036 	unregister_netdevice_many(&dev_kill_list);
13037 	rtnl_unlock();
13038 }
13039 
13040 static struct pernet_operations __net_initdata default_device_ops = {
13041 	.exit_batch = default_device_exit_batch,
13042 };
13043 
13044 static void __init net_dev_struct_check(void)
13045 {
13046 	/* TX read-mostly hotpath */
13047 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13048 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13049 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13050 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13051 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13052 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13053 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13054 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13055 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13056 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13057 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13058 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13059 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13060 #ifdef CONFIG_XPS
13061 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13062 #endif
13063 #ifdef CONFIG_NETFILTER_EGRESS
13064 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13065 #endif
13066 #ifdef CONFIG_NET_XGRESS
13067 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13068 #endif
13069 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13070 
13071 	/* TXRX read-mostly hotpath */
13072 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13073 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13075 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13078 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13079 
13080 	/* RX read-mostly hotpath */
13081 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13082 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13084 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13085 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13090 #ifdef CONFIG_NETPOLL
13091 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13092 #endif
13093 #ifdef CONFIG_NET_XGRESS
13094 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13095 #endif
13096 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13097 }
13098 
13099 /*
13100  *	Initialize the DEV module. At boot time this walks the device list and
13101  *	unhooks any devices that fail to initialise (normally hardware not
13102  *	present) and leaves us with a valid list of present and active devices.
13103  *
13104  */
13105 
13106 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13107 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13108 
13109 static int net_page_pool_create(int cpuid)
13110 {
13111 #if IS_ENABLED(CONFIG_PAGE_POOL)
13112 	struct page_pool_params page_pool_params = {
13113 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13114 		.flags = PP_FLAG_SYSTEM_POOL,
13115 		.nid = cpu_to_mem(cpuid),
13116 	};
13117 	struct page_pool *pp_ptr;
13118 	int err;
13119 
13120 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13121 	if (IS_ERR(pp_ptr))
13122 		return -ENOMEM;
13123 
13124 	err = xdp_reg_page_pool(pp_ptr);
13125 	if (err) {
13126 		page_pool_destroy(pp_ptr);
13127 		return err;
13128 	}
13129 
13130 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13131 #endif
13132 	return 0;
13133 }
13134 
13135 static int backlog_napi_should_run(unsigned int cpu)
13136 {
13137 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13138 	struct napi_struct *napi = &sd->backlog;
13139 
13140 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13141 }
13142 
13143 static void run_backlog_napi(unsigned int cpu)
13144 {
13145 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13146 
13147 	napi_threaded_poll_loop(&sd->backlog, false);
13148 }
13149 
13150 static void backlog_napi_setup(unsigned int cpu)
13151 {
13152 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13153 	struct napi_struct *napi = &sd->backlog;
13154 
13155 	napi->thread = this_cpu_read(backlog_napi);
13156 	set_bit(NAPI_STATE_THREADED, &napi->state);
13157 }
13158 
13159 static struct smp_hotplug_thread backlog_threads = {
13160 	.store			= &backlog_napi,
13161 	.thread_should_run	= backlog_napi_should_run,
13162 	.thread_fn		= run_backlog_napi,
13163 	.thread_comm		= "backlog_napi/%u",
13164 	.setup			= backlog_napi_setup,
13165 };
13166 
13167 /*
13168  *       This is called single threaded during boot, so no need
13169  *       to take the rtnl semaphore.
13170  */
13171 static int __init net_dev_init(void)
13172 {
13173 	int i, rc = -ENOMEM;
13174 
13175 	BUG_ON(!dev_boot_phase);
13176 
13177 	net_dev_struct_check();
13178 
13179 	if (dev_proc_init())
13180 		goto out;
13181 
13182 	if (netdev_kobject_init())
13183 		goto out;
13184 
13185 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13186 		INIT_LIST_HEAD(&ptype_base[i]);
13187 
13188 	if (register_pernet_subsys(&netdev_net_ops))
13189 		goto out;
13190 
13191 	/*
13192 	 *	Initialise the packet receive queues.
13193 	 */
13194 
13195 	flush_backlogs_fallback = flush_backlogs_alloc();
13196 	if (!flush_backlogs_fallback)
13197 		goto out;
13198 
13199 	for_each_possible_cpu(i) {
13200 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13201 
13202 		skb_queue_head_init(&sd->input_pkt_queue);
13203 		skb_queue_head_init(&sd->process_queue);
13204 #ifdef CONFIG_XFRM_OFFLOAD
13205 		skb_queue_head_init(&sd->xfrm_backlog);
13206 #endif
13207 		INIT_LIST_HEAD(&sd->poll_list);
13208 		sd->output_queue_tailp = &sd->output_queue;
13209 #ifdef CONFIG_RPS
13210 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13211 		sd->cpu = i;
13212 #endif
13213 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13214 
13215 		gro_init(&sd->backlog.gro);
13216 		sd->backlog.poll = process_backlog;
13217 		sd->backlog.weight = weight_p;
13218 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13219 
13220 		if (net_page_pool_create(i))
13221 			goto out;
13222 	}
13223 	net_hotdata.skb_defer_nodes =
13224 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13225 				__alignof__(struct skb_defer_node));
13226 	if (!net_hotdata.skb_defer_nodes)
13227 		goto out;
13228 	if (use_backlog_threads())
13229 		smpboot_register_percpu_thread(&backlog_threads);
13230 
13231 	dev_boot_phase = 0;
13232 
13233 	/* The loopback device is special if any other network devices
13234 	 * is present in a network namespace the loopback device must
13235 	 * be present. Since we now dynamically allocate and free the
13236 	 * loopback device ensure this invariant is maintained by
13237 	 * keeping the loopback device as the first device on the
13238 	 * list of network devices.  Ensuring the loopback devices
13239 	 * is the first device that appears and the last network device
13240 	 * that disappears.
13241 	 */
13242 	if (register_pernet_device(&loopback_net_ops))
13243 		goto out;
13244 
13245 	if (register_pernet_device(&default_device_ops))
13246 		goto out;
13247 
13248 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13249 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13250 
13251 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13252 				       NULL, dev_cpu_dead);
13253 	WARN_ON(rc < 0);
13254 	rc = 0;
13255 
13256 	/* avoid static key IPIs to isolated CPUs */
13257 	if (housekeeping_enabled(HK_TYPE_MISC))
13258 		net_enable_timestamp();
13259 out:
13260 	if (rc < 0) {
13261 		for_each_possible_cpu(i) {
13262 			struct page_pool *pp_ptr;
13263 
13264 			pp_ptr = per_cpu(system_page_pool.pool, i);
13265 			if (!pp_ptr)
13266 				continue;
13267 
13268 			xdp_unreg_page_pool(pp_ptr);
13269 			page_pool_destroy(pp_ptr);
13270 			per_cpu(system_page_pool.pool, i) = NULL;
13271 		}
13272 	}
13273 
13274 	return rc;
13275 }
13276 
13277 subsys_initcall(net_dev_init);
13278