1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <net/addrconf.h>
63 #include <net/bonding.h>
64 #include <linux/uaccess.h>
65 #include <linux/crash_dump.h>
66 #include <net/udp_tunnel.h>
67 #include <net/xfrm.h>
68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69 #include <net/tls.h>
70 #endif
71
72 #include "cxgb4.h"
73 #include "cxgb4_filter.h"
74 #include "t4_regs.h"
75 #include "t4_values.h"
76 #include "t4_msg.h"
77 #include "t4fw_api.h"
78 #include "t4fw_version.h"
79 #include "cxgb4_dcb.h"
80 #include "srq.h"
81 #include "cxgb4_debugfs.h"
82 #include "clip_tbl.h"
83 #include "l2t.h"
84 #include "smt.h"
85 #include "sched.h"
86 #include "cxgb4_tc_u32.h"
87 #include "cxgb4_tc_flower.h"
88 #include "cxgb4_tc_mqprio.h"
89 #include "cxgb4_tc_matchall.h"
90 #include "cxgb4_ptp.h"
91 #include "cxgb4_cudbg.h"
92
93 char cxgb4_driver_name[] = KBUILD_MODNAME;
94
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102 */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 { 0, } \
119 }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138 MODULE_FIRMWARE(FW4_FNAME);
139 MODULE_FIRMWARE(FW5_FNAME);
140 MODULE_FIRMWARE(FW6_FNAME);
141
142 /*
143 * The driver uses the best interrupt scheme available on a platform in the
144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
145 * of these schemes the driver may consider as follows:
146 *
147 * msi = 2: choose from among all three options
148 * msi = 1: only consider MSI and INTx interrupts
149 * msi = 0: force INTx interrupts
150 */
151 static int msi = 2;
152
153 module_param(msi, int, 0644);
154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155
156 /*
157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158 * offset by 2 bytes in order to have the IP headers line up on 4-byte
159 * boundaries. This is a requirement for many architectures which will throw
160 * a machine check fault if an attempt is made to access one of the 4-byte IP
161 * header fields on a non-4-byte boundary. And it's a major performance issue
162 * even on some architectures which allow it like some implementations of the
163 * x86 ISA. However, some architectures don't mind this and for some very
164 * edge-case performance sensitive applications (like forwarding large volumes
165 * of small packets), setting this DMA offset to 0 will decrease the number of
166 * PCI-E Bus transfers enough to measurably affect performance.
167 */
168 static int rx_dma_offset = 2;
169
170 /* TX Queue select used to determine what algorithm to use for selecting TX
171 * queue. Select between the kernel provided function (select_queue=0) or user
172 * cxgb_select_queue function (select_queue=1)
173 *
174 * Default: select_queue=0
175 */
176 static int select_queue;
177 module_param(select_queue, int, 0644);
178 MODULE_PARM_DESC(select_queue,
179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180
181 static struct dentry *cxgb4_debugfs_root;
182
183 LIST_HEAD(adapter_list);
184 DEFINE_MUTEX(uld_mutex);
185 LIST_HEAD(uld_list);
186
187 static int cfg_queues(struct adapter *adap);
188
link_report(struct net_device * dev)189 static void link_report(struct net_device *dev)
190 {
191 if (!netif_carrier_ok(dev))
192 netdev_info(dev, "link down\n");
193 else {
194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195
196 const char *s;
197 const struct port_info *p = netdev_priv(dev);
198
199 switch (p->link_cfg.speed) {
200 case 100:
201 s = "100Mbps";
202 break;
203 case 1000:
204 s = "1Gbps";
205 break;
206 case 10000:
207 s = "10Gbps";
208 break;
209 case 25000:
210 s = "25Gbps";
211 break;
212 case 40000:
213 s = "40Gbps";
214 break;
215 case 50000:
216 s = "50Gbps";
217 break;
218 case 100000:
219 s = "100Gbps";
220 break;
221 default:
222 pr_info("%s: unsupported speed: %d\n",
223 dev->name, p->link_cfg.speed);
224 return;
225 }
226
227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228 fc[p->link_cfg.fc]);
229 }
230 }
231
232 #ifdef CONFIG_CHELSIO_T4_DCB
233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235 {
236 struct port_info *pi = netdev_priv(dev);
237 struct adapter *adap = pi->adapter;
238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 int i;
240
241 /* We use a simple mapping of Port TX Queue Index to DCB
242 * Priority when we're enabling DCB.
243 */
244 for (i = 0; i < pi->nqsets; i++, txq++) {
245 u32 name, value;
246 int err;
247
248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249 FW_PARAMS_PARAM_X_V(
250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252 value = enable ? i : 0xffffffff;
253
254 /* Since we can be called while atomic (from "interrupt
255 * level") we need to issue the Set Parameters Commannd
256 * without sleeping (timeout < 0).
257 */
258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259 &name, &value,
260 -FW_CMD_MAX_TIMEOUT);
261
262 if (err)
263 dev_err(adap->pdev_dev,
264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265 enable ? "set" : "unset", pi->port_id, i, -err);
266 else
267 txq->dcb_prio = enable ? value : 0;
268 }
269 }
270
cxgb4_dcb_enabled(const struct net_device * dev)271 int cxgb4_dcb_enabled(const struct net_device *dev)
272 {
273 struct port_info *pi = netdev_priv(dev);
274
275 if (!pi->dcb.enabled)
276 return 0;
277
278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
280 }
281 #endif /* CONFIG_CHELSIO_T4_DCB */
282
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284 {
285 struct net_device *dev = adapter->port[port_id];
286
287 /* Skip changes from disabled ports. */
288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289 if (link_stat)
290 netif_carrier_on(dev);
291 else {
292 #ifdef CONFIG_CHELSIO_T4_DCB
293 if (cxgb4_dcb_enabled(dev)) {
294 cxgb4_dcb_reset(dev);
295 dcb_tx_queue_prio_enable(dev, false);
296 }
297 #endif /* CONFIG_CHELSIO_T4_DCB */
298 netif_carrier_off(dev);
299 }
300
301 link_report(dev);
302 }
303 }
304
t4_os_portmod_changed(struct adapter * adap,int port_id)305 void t4_os_portmod_changed(struct adapter *adap, int port_id)
306 {
307 static const char *mod_str[] = {
308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 };
310
311 struct net_device *dev = adap->port[port_id];
312 struct port_info *pi = netdev_priv(dev);
313
314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315 netdev_info(dev, "port module unplugged\n");
316 else if (pi->mod_type < ARRAY_SIZE(mod_str))
317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319 netdev_info(dev, "%s: unsupported port module inserted\n",
320 dev->name);
321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322 netdev_info(dev, "%s: unknown port module inserted\n",
323 dev->name);
324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325 netdev_info(dev, "%s: transceiver module error\n", dev->name);
326 else
327 netdev_info(dev, "%s: unknown module type %d inserted\n",
328 dev->name, pi->mod_type);
329
330 /* If the interface is running, then we'll need any "sticky" Link
331 * Parameters redone with a new Transceiver Module.
332 */
333 pi->link_cfg.redo_l1cfg = netif_running(dev);
334 }
335
336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337 module_param(dbfifo_int_thresh, int, 0644);
338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339
340 /*
341 * usecs to sleep while draining the dbfifo
342 */
343 static int dbfifo_drain_delay = 1000;
344 module_param(dbfifo_drain_delay, int, 0644);
345 MODULE_PARM_DESC(dbfifo_drain_delay,
346 "usecs to sleep while draining the dbfifo");
347
cxgb4_set_addr_hash(struct port_info * pi)348 static inline int cxgb4_set_addr_hash(struct port_info *pi)
349 {
350 struct adapter *adap = pi->adapter;
351 u64 vec = 0;
352 bool ucast = false;
353 struct hash_mac_addr *entry;
354
355 /* Calculate the hash vector for the updated list and program it */
356 list_for_each_entry(entry, &adap->mac_hlist, list) {
357 ucast |= is_unicast_ether_addr(entry->addr);
358 vec |= (1ULL << hash_mac_addr(entry->addr));
359 }
360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361 vec, false);
362 }
363
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365 {
366 struct port_info *pi = netdev_priv(netdev);
367 struct adapter *adap = pi->adapter;
368 int ret;
369 u64 mhash = 0;
370 u64 uhash = 0;
371 /* idx stores the index of allocated filters,
372 * its size should be modified based on the number of
373 * MAC addresses that we allocate filters for
374 */
375
376 u16 idx[1] = {};
377 bool free = false;
378 bool ucast = is_unicast_ether_addr(mac_addr);
379 const u8 *maclist[1] = {mac_addr};
380 struct hash_mac_addr *new_entry;
381
382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383 idx, ucast ? &uhash : &mhash, false);
384 if (ret < 0)
385 goto out;
386 /* if hash != 0, then add the addr to hash addr list
387 * so on the end we will calculate the hash for the
388 * list and program it
389 */
390 if (uhash || mhash) {
391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392 if (!new_entry)
393 return -ENOMEM;
394 ether_addr_copy(new_entry->addr, mac_addr);
395 list_add_tail(&new_entry->list, &adap->mac_hlist);
396 ret = cxgb4_set_addr_hash(pi);
397 }
398 out:
399 return ret < 0 ? ret : 0;
400 }
401
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403 {
404 struct port_info *pi = netdev_priv(netdev);
405 struct adapter *adap = pi->adapter;
406 int ret;
407 const u8 *maclist[1] = {mac_addr};
408 struct hash_mac_addr *entry, *tmp;
409
410 /* If the MAC address to be removed is in the hash addr
411 * list, delete it from the list and update hash vector
412 */
413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414 if (ether_addr_equal(entry->addr, mac_addr)) {
415 list_del(&entry->list);
416 kfree(entry);
417 return cxgb4_set_addr_hash(pi);
418 }
419 }
420
421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422 return ret < 0 ? -EINVAL : 0;
423 }
424
425 /*
426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427 * If @mtu is -1 it is left unchanged.
428 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430 {
431 struct port_info *pi = netdev_priv(dev);
432 struct adapter *adapter = pi->adapter;
433
434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436
437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440 sleep_ok);
441 }
442
443 /**
444 * cxgb4_change_mac - Update match filter for a MAC address.
445 * @pi: the port_info
446 * @viid: the VI id
447 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
448 * or -1
449 * @addr: the new MAC address value
450 * @persist: whether a new MAC allocation should be persistent
451 * @smt_idx: the destination to store the new SMT index.
452 *
453 * Modifies an MPS filter and sets it to the new MAC address if
454 * @tcam_idx >= 0, or adds the MAC address to a new filter if
455 * @tcam_idx < 0. In the latter case the address is added persistently
456 * if @persist is %true.
457 * Addresses are programmed to hash region, if tcam runs out of entries.
458 *
459 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461 int *tcam_idx, const u8 *addr, bool persist,
462 u8 *smt_idx)
463 {
464 struct adapter *adapter = pi->adapter;
465 struct hash_mac_addr *entry, *new_entry;
466 int ret;
467
468 ret = t4_change_mac(adapter, adapter->mbox, viid,
469 *tcam_idx, addr, persist, smt_idx);
470 /* We ran out of TCAM entries. try programming hash region. */
471 if (ret == -ENOMEM) {
472 /* If the MAC address to be updated is in the hash addr
473 * list, update it from the list
474 */
475 list_for_each_entry(entry, &adapter->mac_hlist, list) {
476 if (entry->iface_mac) {
477 ether_addr_copy(entry->addr, addr);
478 goto set_hash;
479 }
480 }
481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482 if (!new_entry)
483 return -ENOMEM;
484 ether_addr_copy(new_entry->addr, addr);
485 new_entry->iface_mac = true;
486 list_add_tail(&new_entry->list, &adapter->mac_hlist);
487 set_hash:
488 ret = cxgb4_set_addr_hash(pi);
489 } else if (ret >= 0) {
490 *tcam_idx = ret;
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 /*
498 * link_start - enable a port
499 * @dev: the port to enable
500 *
501 * Performs the MAC and PHY actions needed to enable a port.
502 */
link_start(struct net_device * dev)503 static int link_start(struct net_device *dev)
504 {
505 struct port_info *pi = netdev_priv(dev);
506 unsigned int mb = pi->adapter->mbox;
507 int ret;
508
509 /*
510 * We do not set address filters and promiscuity here, the stack does
511 * that step explicitly.
512 */
513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514 dev->mtu, -1, -1, -1,
515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516 if (ret == 0)
517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518 dev->dev_addr, true, &pi->smt_idx);
519 if (ret == 0)
520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521 &pi->link_cfg);
522 if (ret == 0) {
523 local_bh_disable();
524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525 true, CXGB4_DCB_ENABLED);
526 local_bh_enable();
527 }
528
529 return ret;
530 }
531
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537 struct net_device *dev = adap->port[adap->chan_map[port]];
538 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539 int new_dcb_enabled;
540
541 cxgb4_dcb_handle_fw_update(adap, pcmd);
542 new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544 /* If the DCB has become enabled or disabled on the port then we're
545 * going to need to set up/tear down DCB Priority parameters for the
546 * TX Queues associated with the port.
547 */
548 if (new_dcb_enabled != old_dcb_enabled)
549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552
553 /* Response queue handler for the FW event queue.
554 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556 const struct pkt_gl *gl)
557 {
558 u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560 rsp++; /* skip RSS header */
561
562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563 */
564 if (unlikely(opcode == CPL_FW4_MSG &&
565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566 rsp++;
567 opcode = ((const struct rss_header *)rsp)->opcode;
568 rsp++;
569 if (opcode != CPL_SGE_EGR_UPDATE) {
570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571 , opcode);
572 goto out;
573 }
574 }
575
576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577 const struct cpl_sge_egr_update *p = (void *)rsp;
578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579 struct sge_txq *txq;
580
581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582 txq->restarts++;
583 if (txq->q_type == CXGB4_TXQ_ETH) {
584 struct sge_eth_txq *eq;
585
586 eq = container_of(txq, struct sge_eth_txq, q);
587 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588 } else {
589 struct sge_uld_txq *oq;
590
591 oq = container_of(txq, struct sge_uld_txq, q);
592 tasklet_schedule(&oq->qresume_tsk);
593 }
594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595 const struct cpl_fw6_msg *p = (void *)rsp;
596
597 #ifdef CONFIG_CHELSIO_T4_DCB
598 const struct fw_port_cmd *pcmd = (const void *)p->data;
599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600 unsigned int action =
601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603 if (cmd == FW_PORT_CMD &&
604 (action == FW_PORT_ACTION_GET_PORT_INFO ||
605 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606 int port = FW_PORT_CMD_PORTID_G(
607 be32_to_cpu(pcmd->op_to_portid));
608 struct net_device *dev;
609 int dcbxdis, state_input;
610
611 dev = q->adap->port[q->adap->chan_map[port]];
612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615 & FW_PORT_CMD_DCBXDIS32_F));
616 state_input = (dcbxdis
617 ? CXGB4_DCB_INPUT_FW_DISABLED
618 : CXGB4_DCB_INPUT_FW_ENABLED);
619
620 cxgb4_dcb_state_fsm(dev, state_input);
621 }
622
623 if (cmd == FW_PORT_CMD &&
624 action == FW_PORT_ACTION_L2_DCB_CFG)
625 dcb_rpl(q->adap, pcmd);
626 else
627 #endif
628 if (p->type == 0)
629 t4_handle_fw_rpl(q->adap, p->data);
630 } else if (opcode == CPL_L2T_WRITE_RPL) {
631 const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633 do_l2t_write_rpl(q->adap, p);
634 } else if (opcode == CPL_SMT_WRITE_RPL) {
635 const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637 do_smt_write_rpl(q->adap, p);
638 } else if (opcode == CPL_SET_TCB_RPL) {
639 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641 filter_rpl(q->adap, p);
642 } else if (opcode == CPL_ACT_OPEN_RPL) {
643 const struct cpl_act_open_rpl *p = (void *)rsp;
644
645 hash_filter_rpl(q->adap, p);
646 } else if (opcode == CPL_ABORT_RPL_RSS) {
647 const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649 hash_del_filter_rpl(q->adap, p);
650 } else if (opcode == CPL_SRQ_TABLE_RPL) {
651 const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653 do_srq_table_rpl(q->adap, p);
654 } else
655 dev_err(q->adap->pdev_dev,
656 "unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658 return 0;
659 }
660
disable_msi(struct adapter * adapter)661 static void disable_msi(struct adapter *adapter)
662 {
663 if (adapter->flags & CXGB4_USING_MSIX) {
664 pci_disable_msix(adapter->pdev);
665 adapter->flags &= ~CXGB4_USING_MSIX;
666 } else if (adapter->flags & CXGB4_USING_MSI) {
667 pci_disable_msi(adapter->pdev);
668 adapter->flags &= ~CXGB4_USING_MSI;
669 }
670 }
671
672 /*
673 * Interrupt handler for non-data events used with MSI-X.
674 */
t4_nondata_intr(int irq,void * cookie)675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677 struct adapter *adap = cookie;
678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680 if (v & PFSW_F) {
681 adap->swintr = 1;
682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683 }
684 if (adap->flags & CXGB4_MASTER_PF)
685 t4_slow_intr_handler(adap);
686 return IRQ_HANDLED;
687 }
688
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690 cpumask_var_t *aff_mask, int idx)
691 {
692 int rv;
693
694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696 return -ENOMEM;
697 }
698
699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700 *aff_mask);
701
702 rv = irq_set_affinity_hint(vec, *aff_mask);
703 if (rv)
704 dev_warn(adap->pdev_dev,
705 "irq_set_affinity_hint %u failed %d\n",
706 vec, rv);
707
708 return 0;
709 }
710
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713 irq_set_affinity_hint(vec, NULL);
714 free_cpumask_var(aff_mask);
715 }
716
request_msix_queue_irqs(struct adapter * adap)717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719 struct sge *s = &adap->sge;
720 struct msix_info *minfo;
721 int err, ethqidx;
722
723 if (s->fwevtq_msix_idx < 0)
724 return -ENOMEM;
725
726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727 t4_sge_intr_msix, 0,
728 adap->msix_info[s->fwevtq_msix_idx].desc,
729 &s->fw_evtq);
730 if (err)
731 return err;
732
733 for_each_ethrxq(s, ethqidx) {
734 minfo = s->ethrxq[ethqidx].msix;
735 err = request_irq(minfo->vec,
736 t4_sge_intr_msix, 0,
737 minfo->desc,
738 &s->ethrxq[ethqidx].rspq);
739 if (err)
740 goto unwind;
741
742 cxgb4_set_msix_aff(adap, minfo->vec,
743 &minfo->aff_mask, ethqidx);
744 }
745 return 0;
746
747 unwind:
748 while (--ethqidx >= 0) {
749 minfo = s->ethrxq[ethqidx].msix;
750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752 }
753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754 return err;
755 }
756
free_msix_queue_irqs(struct adapter * adap)757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759 struct sge *s = &adap->sge;
760 struct msix_info *minfo;
761 int i;
762
763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764 for_each_ethrxq(s, i) {
765 minfo = s->ethrxq[i].msix;
766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767 free_irq(minfo->vec, &s->ethrxq[i].rspq);
768 }
769 }
770
setup_ppod_edram(struct adapter * adap)771 static int setup_ppod_edram(struct adapter *adap)
772 {
773 unsigned int param, val;
774 int ret;
775
776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777 * if firmware supports ppod edram feature or not. If firmware
778 * returns 1, then driver can enable this feature by sending
779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780 * enable ppod edram feature.
781 */
782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
786 if (ret < 0) {
787 dev_warn(adap->pdev_dev,
788 "querying PPOD_EDRAM support failed: %d\n",
789 ret);
790 return -1;
791 }
792
793 if (val != 1)
794 return -1;
795
796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
797 if (ret < 0) {
798 dev_err(adap->pdev_dev,
799 "setting PPOD_EDRAM failed: %d\n", ret);
800 return -1;
801 }
802 return 0;
803 }
804
adap_config_hpfilter(struct adapter * adapter)805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807 u32 param, val = 0;
808 int ret;
809
810 /* Enable HP filter region. Older fw will fail this request and
811 * it is fine.
812 */
813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815 1, ¶m, &val);
816
817 /* An error means FW doesn't know about HP filter support,
818 * it's not a problem, don't return an error.
819 */
820 if (ret < 0)
821 dev_err(adapter->pdev_dev,
822 "HP filter region isn't supported by FW\n");
823 }
824
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826 u16 rss_size, u16 viid)
827 {
828 struct adapter *adap = pi->adapter;
829 int ret;
830
831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832 rss_size);
833 if (ret)
834 return ret;
835
836 /* If Tunnel All Lookup isn't specified in the global RSS
837 * Configuration, then we need to specify a default Ingress
838 * Queue for any ingress packets which aren't hashed. We'll
839 * use our first ingress queue ...
840 */
841 return t4_config_vi_rss(adap, adap->mbox, viid,
842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847 rss[0]);
848 }
849
850 /**
851 * cxgb4_write_rss - write the RSS table for a given port
852 * @pi: the port
853 * @queues: array of queue indices for RSS
854 *
855 * Sets up the portion of the HW RSS table for the port's VI to distribute
856 * packets to the Rx queues in @queues.
857 * Should never be called before setting up sge eth rx queues
858 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861 struct adapter *adapter = pi->adapter;
862 const struct sge_eth_rxq *rxq;
863 int i, err;
864 u16 *rss;
865
866 rxq = &adapter->sge.ethrxq[pi->first_qset];
867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868 if (!rss)
869 return -ENOMEM;
870
871 /* map the queue indices to queue ids */
872 for (i = 0; i < pi->rss_size; i++, queues++)
873 rss[i] = rxq[*queues].rspq.abs_id;
874
875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876 kfree(rss);
877 return err;
878 }
879
880 /**
881 * setup_rss - configure RSS
882 * @adap: the adapter
883 *
884 * Sets up RSS for each port.
885 */
setup_rss(struct adapter * adap)886 static int setup_rss(struct adapter *adap)
887 {
888 int i, j, err;
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
892
893 /* Fill default values with equal distribution */
894 for (j = 0; j < pi->rss_size; j++)
895 pi->rss[j] = j % pi->nqsets;
896
897 err = cxgb4_write_rss(pi, pi->rss);
898 if (err)
899 return err;
900 }
901 return 0;
902 }
903
904 /*
905 * Return the channel of the ingress queue with the given qid.
906 */
rxq_to_chan(const struct sge * p,unsigned int qid)907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908 {
909 qid -= p->ingr_start;
910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911 }
912
cxgb4_quiesce_rx(struct sge_rspq * q)913 void cxgb4_quiesce_rx(struct sge_rspq *q)
914 {
915 if (q->handler)
916 napi_disable(&q->napi);
917 }
918
919 /*
920 * Wait until all NAPI handlers are descheduled.
921 */
quiesce_rx(struct adapter * adap)922 static void quiesce_rx(struct adapter *adap)
923 {
924 int i;
925
926 for (i = 0; i < adap->sge.ingr_sz; i++) {
927 struct sge_rspq *q = adap->sge.ingr_map[i];
928
929 if (!q)
930 continue;
931
932 cxgb4_quiesce_rx(q);
933 }
934 }
935
936 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)937 static void disable_interrupts(struct adapter *adap)
938 {
939 struct sge *s = &adap->sge;
940
941 if (adap->flags & CXGB4_FULL_INIT_DONE) {
942 t4_intr_disable(adap);
943 if (adap->flags & CXGB4_USING_MSIX) {
944 free_msix_queue_irqs(adap);
945 free_irq(adap->msix_info[s->nd_msix_idx].vec,
946 adap);
947 } else {
948 free_irq(adap->pdev->irq, adap);
949 }
950 quiesce_rx(adap);
951 }
952 }
953
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955 {
956 if (q->handler)
957 napi_enable(&q->napi);
958
959 /* 0-increment GTS to start the timer and enable interrupts */
960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961 SEINTARM_V(q->intr_params) |
962 INGRESSQID_V(q->cntxt_id));
963 }
964
965 /*
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
967 */
enable_rx(struct adapter * adap)968 static void enable_rx(struct adapter *adap)
969 {
970 int i;
971
972 for (i = 0; i < adap->sge.ingr_sz; i++) {
973 struct sge_rspq *q = adap->sge.ingr_map[i];
974
975 if (!q)
976 continue;
977
978 cxgb4_enable_rx(adap, q);
979 }
980 }
981
setup_non_data_intr(struct adapter * adap)982 static int setup_non_data_intr(struct adapter *adap)
983 {
984 int msix;
985
986 adap->sge.nd_msix_idx = -1;
987 if (!(adap->flags & CXGB4_USING_MSIX))
988 return 0;
989
990 /* Request MSI-X vector for non-data interrupt */
991 msix = cxgb4_get_msix_idx_from_bmap(adap);
992 if (msix < 0)
993 return -ENOMEM;
994
995 snprintf(adap->msix_info[msix].desc,
996 sizeof(adap->msix_info[msix].desc),
997 "%s", adap->port[0]->name);
998
999 adap->sge.nd_msix_idx = msix;
1000 return 0;
1001 }
1002
setup_fw_sge_queues(struct adapter * adap)1003 static int setup_fw_sge_queues(struct adapter *adap)
1004 {
1005 struct sge *s = &adap->sge;
1006 int msix, err = 0;
1007
1008 bitmap_zero(s->starving_fl, s->egr_sz);
1009 bitmap_zero(s->txq_maperr, s->egr_sz);
1010
1011 if (adap->flags & CXGB4_USING_MSIX) {
1012 s->fwevtq_msix_idx = -1;
1013 msix = cxgb4_get_msix_idx_from_bmap(adap);
1014 if (msix < 0)
1015 return -ENOMEM;
1016
1017 snprintf(adap->msix_info[msix].desc,
1018 sizeof(adap->msix_info[msix].desc),
1019 "%s-FWeventq", adap->port[0]->name);
1020 } else {
1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 NULL, NULL, NULL, -1);
1023 if (err)
1024 return err;
1025 msix = -((int)s->intrq.abs_id + 1);
1026 }
1027
1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 msix, NULL, fwevtq_handler, NULL, -1);
1030 if (err && msix >= 0)
1031 cxgb4_free_msix_idx_in_bmap(adap, msix);
1032
1033 s->fwevtq_msix_idx = msix;
1034 return err;
1035 }
1036
1037 /**
1038 * setup_sge_queues - configure SGE Tx/Rx/response queues
1039 * @adap: the adapter
1040 *
1041 * Determines how many sets of SGE queues to use and initializes them.
1042 * We support multiple queue sets per port if we have MSI-X, otherwise
1043 * just one queue set per port.
1044 */
setup_sge_queues(struct adapter * adap)1045 static int setup_sge_queues(struct adapter *adap)
1046 {
1047 struct sge_uld_rxq_info *rxq_info = NULL;
1048 struct sge *s = &adap->sge;
1049 unsigned int cmplqid = 0;
1050 int err, i, j, msix = 0;
1051
1052 if (is_uld(adap))
1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054
1055 if (!(adap->flags & CXGB4_USING_MSIX))
1056 msix = -((int)s->intrq.abs_id + 1);
1057
1058 for_each_port(adap, i) {
1059 struct net_device *dev = adap->port[i];
1060 struct port_info *pi = netdev_priv(dev);
1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063
1064 for (j = 0; j < pi->nqsets; j++, q++) {
1065 if (msix >= 0) {
1066 msix = cxgb4_get_msix_idx_from_bmap(adap);
1067 if (msix < 0) {
1068 err = msix;
1069 goto freeout;
1070 }
1071
1072 snprintf(adap->msix_info[msix].desc,
1073 sizeof(adap->msix_info[msix].desc),
1074 "%s-Rx%d", dev->name, j);
1075 q->msix = &adap->msix_info[msix];
1076 }
1077
1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 msix, &q->fl,
1080 t4_ethrx_handler,
1081 NULL,
1082 t4_get_tp_ch_map(adap,
1083 pi->tx_chan));
1084 if (err)
1085 goto freeout;
1086 q->rspq.idx = j;
1087 memset(&q->stats, 0, sizeof(q->stats));
1088 }
1089
1090 q = &s->ethrxq[pi->first_qset];
1091 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092 err = t4_sge_alloc_eth_txq(adap, t, dev,
1093 netdev_get_tx_queue(dev, j),
1094 q->rspq.cntxt_id,
1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096 if (err)
1097 goto freeout;
1098 }
1099 }
1100
1101 for_each_port(adap, i) {
1102 /* Note that cmplqid below is 0 if we don't
1103 * have RDMA queues, and that's the right value.
1104 */
1105 if (rxq_info)
1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1107
1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109 s->fw_evtq.cntxt_id, cmplqid);
1110 if (err)
1111 goto freeout;
1112 }
1113
1114 if (!is_t4(adap->params.chip)) {
1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116 netdev_get_tx_queue(adap->port[0], 0)
1117 , s->fw_evtq.cntxt_id, false);
1118 if (err)
1119 goto freeout;
1120 }
1121
1122 t4_write_reg(adap, is_t4(adap->params.chip) ?
1123 MPS_TRC_RSS_CONTROL_A :
1124 MPS_T5_TRC_RSS_CONTROL_A,
1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127 return 0;
1128 freeout:
1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130 t4_free_sge_resources(adap);
1131 return err;
1132 }
1133
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135 struct net_device *sb_dev)
1136 {
1137 int txq;
1138
1139 #ifdef CONFIG_CHELSIO_T4_DCB
1140 /* If a Data Center Bridging has been successfully negotiated on this
1141 * link then we'll use the skb's priority to map it to a TX Queue.
1142 * The skb's priority is determined via the VLAN Tag Priority Code
1143 * Point field.
1144 */
1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146 u16 vlan_tci;
1147 int err;
1148
1149 err = vlan_get_tag(skb, &vlan_tci);
1150 if (unlikely(err)) {
1151 if (net_ratelimit())
1152 netdev_warn(dev,
1153 "TX Packet without VLAN Tag on DCB Link\n");
1154 txq = 0;
1155 } else {
1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157 #ifdef CONFIG_CHELSIO_T4_FCOE
1158 if (skb->protocol == htons(ETH_P_FCOE))
1159 txq = skb->priority & 0x7;
1160 #endif /* CONFIG_CHELSIO_T4_FCOE */
1161 }
1162 return txq;
1163 }
1164 #endif /* CONFIG_CHELSIO_T4_DCB */
1165
1166 if (dev->num_tc) {
1167 struct port_info *pi = netdev2pinfo(dev);
1168 u8 ver, proto;
1169
1170 ver = ip_hdr(skb)->version;
1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172 ip_hdr(skb)->protocol;
1173
1174 /* Send unsupported traffic pattern to normal NIC queues. */
1175 txq = netdev_pick_tx(dev, skb, sb_dev);
1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177 skb->encapsulation ||
1178 tls_is_skb_tx_device_offloaded(skb) ||
1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 txq = txq % pi->nqsets;
1181
1182 return txq;
1183 }
1184
1185 if (select_queue) {
1186 txq = (skb_rx_queue_recorded(skb)
1187 ? skb_get_rx_queue(skb)
1188 : smp_processor_id());
1189
1190 while (unlikely(txq >= dev->real_num_tx_queues))
1191 txq -= dev->real_num_tx_queues;
1192
1193 return txq;
1194 }
1195
1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198
closest_timer(const struct sge * s,int time)1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 int i, delta, match = 0, min_delta = INT_MAX;
1202
1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 delta = time - s->timer_val[i];
1205 if (delta < 0)
1206 delta = -delta;
1207 if (delta < min_delta) {
1208 min_delta = delta;
1209 match = i;
1210 }
1211 }
1212 return match;
1213 }
1214
closest_thres(const struct sge * s,int thres)1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 int i, delta, match = 0, min_delta = INT_MAX;
1218
1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 delta = thres - s->counter_val[i];
1221 if (delta < 0)
1222 delta = -delta;
1223 if (delta < min_delta) {
1224 min_delta = delta;
1225 match = i;
1226 }
1227 }
1228 return match;
1229 }
1230
1231 /**
1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 * @q: the Rx queue
1234 * @us: the hold-off time in us, or 0 to disable timer
1235 * @cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1238 * one of the two needs to be enabled for the queue to generate interrupts.
1239 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 unsigned int us, unsigned int cnt)
1242 {
1243 struct adapter *adap = q->adap;
1244
1245 if ((us | cnt) == 0)
1246 cnt = 1;
1247
1248 if (cnt) {
1249 int err;
1250 u32 v, new_idx;
1251
1252 new_idx = closest_thres(&adap->sge, cnt);
1253 if (q->desc && q->pktcnt_idx != new_idx) {
1254 /* the queue has already been created, update it */
1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 FW_PARAMS_PARAM_X_V(
1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 &v, &new_idx);
1261 if (err)
1262 return err;
1263 }
1264 q->pktcnt_idx = new_idx;
1265 }
1266
1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 return 0;
1270 }
1271
cxgb_set_features(struct net_device * dev,netdev_features_t features)1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 netdev_features_t changed = dev->features ^ features;
1275 const struct port_info *pi = netdev_priv(dev);
1276 int err;
1277
1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 return 0;
1280
1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 pi->viid_mirror, -1, -1, -1, -1,
1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 if (unlikely(err))
1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 return err;
1287 }
1288
setup_debugfs(struct adapter * adap)1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 return -1;
1293
1294 #ifdef CONFIG_DEBUG_FS
1295 t4_setup_debugfs(adap);
1296 #endif
1297 return 0;
1298 }
1299
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 struct sge_eth_rxq *mirror_rxq)
1302 {
1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307 if (adap->flags & CXGB4_USING_MSIX) {
1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 mirror_rxq->msix->aff_mask);
1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 }
1313
1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 struct port_info *pi = netdev2pinfo(dev);
1320 struct adapter *adap = netdev2adap(dev);
1321 struct sge_eth_rxq *mirror_rxq;
1322 struct sge *s = &adap->sge;
1323 int ret = 0, msix = 0;
1324 u16 i, rxqid;
1325 u16 *rss;
1326
1327 if (!pi->vi_mirror_count)
1328 return 0;
1329
1330 if (s->mirror_rxq[pi->port_id])
1331 return 0;
1332
1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 if (!mirror_rxq)
1335 return -ENOMEM;
1336
1337 s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339 if (!(adap->flags & CXGB4_USING_MSIX))
1340 msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345 /* Allocate Mirror Rxqs */
1346 if (msix >= 0) {
1347 msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 if (msix < 0) {
1349 ret = msix;
1350 goto out_free_queues;
1351 }
1352
1353 mirror_rxq->msix = &adap->msix_info[msix];
1354 snprintf(mirror_rxq->msix->desc,
1355 sizeof(mirror_rxq->msix->desc),
1356 "%s-mirrorrxq%d", dev->name, i);
1357 }
1358
1359 init_rspq(adap, &mirror_rxq->rspq,
1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 dev, msix, &mirror_rxq->fl,
1369 t4_ethrx_handler, NULL, 0);
1370 if (ret)
1371 goto out_free_msix_idx;
1372
1373 /* Setup MSI-X vectors for Mirror Rxqs */
1374 if (adap->flags & CXGB4_USING_MSIX) {
1375 ret = request_irq(mirror_rxq->msix->vec,
1376 t4_sge_intr_msix, 0,
1377 mirror_rxq->msix->desc,
1378 &mirror_rxq->rspq);
1379 if (ret)
1380 goto out_free_rxq;
1381
1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 &mirror_rxq->msix->aff_mask, i);
1384 }
1385
1386 /* Start NAPI for Mirror Rxqs */
1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 }
1389
1390 /* Setup RSS for Mirror Rxqs */
1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 if (!rss) {
1393 ret = -ENOMEM;
1394 goto out_free_queues;
1395 }
1396
1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 for (i = 0; i < pi->rss_size; i++)
1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 kfree(rss);
1403 if (ret)
1404 goto out_free_queues;
1405
1406 return 0;
1407
1408 out_free_rxq:
1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411 out_free_msix_idx:
1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414 out_free_queues:
1415 while (rxqid-- > 0)
1416 cxgb4_port_mirror_free_rxq(adap,
1417 &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419 kfree(s->mirror_rxq[pi->port_id]);
1420 s->mirror_rxq[pi->port_id] = NULL;
1421 return ret;
1422 }
1423
cxgb4_port_mirror_free_queues(struct net_device * dev)1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 struct port_info *pi = netdev2pinfo(dev);
1427 struct adapter *adap = netdev2adap(dev);
1428 struct sge *s = &adap->sge;
1429 u16 i;
1430
1431 if (!pi->vi_mirror_count)
1432 return;
1433
1434 if (!s->mirror_rxq[pi->port_id])
1435 return;
1436
1437 for (i = 0; i < pi->nmirrorqsets; i++)
1438 cxgb4_port_mirror_free_rxq(adap,
1439 &s->mirror_rxq[pi->port_id][i]);
1440
1441 kfree(s->mirror_rxq[pi->port_id]);
1442 s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444
cxgb4_port_mirror_start(struct net_device * dev)1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 struct port_info *pi = netdev2pinfo(dev);
1448 struct adapter *adap = netdev2adap(dev);
1449 int ret, idx = -1;
1450
1451 if (!pi->vi_mirror_count)
1452 return 0;
1453
1454 /* Mirror VIs can be created dynamically after stack had
1455 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 * on main VI. So, parse what the stack had setup on the
1457 * main VI and update the same on the mirror VI.
1458 */
1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 if (ret) {
1464 dev_err(adap->pdev_dev,
1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 pi->viid_mirror, ret);
1467 return ret;
1468 }
1469
1470 /* Enable replication bit for the device's MAC address
1471 * in MPS TCAM, so that the packets for the main VI are
1472 * replicated to mirror VI.
1473 */
1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 dev->dev_addr, true, NULL);
1476 if (ret) {
1477 dev_err(adap->pdev_dev,
1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 pi->viid_mirror, ret);
1480 return ret;
1481 }
1482
1483 /* Enabling a Virtual Interface can result in an interrupt
1484 * during the processing of the VI Enable command and, in some
1485 * paths, result in an attempt to issue another command in the
1486 * interrupt context. Thus, we disable interrupts during the
1487 * course of the VI Enable command ...
1488 */
1489 local_bh_disable();
1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 false);
1492 local_bh_enable();
1493 if (ret)
1494 dev_err(adap->pdev_dev,
1495 "Failed starting Mirror VI 0x%x, ret: %d\n",
1496 pi->viid_mirror, ret);
1497
1498 return ret;
1499 }
1500
cxgb4_port_mirror_stop(struct net_device * dev)1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 struct port_info *pi = netdev2pinfo(dev);
1504 struct adapter *adap = netdev2adap(dev);
1505
1506 if (!pi->vi_mirror_count)
1507 return;
1508
1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 false);
1511 }
1512
cxgb4_port_mirror_alloc(struct net_device * dev)1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 struct port_info *pi = netdev2pinfo(dev);
1516 struct adapter *adap = netdev2adap(dev);
1517 int ret = 0;
1518
1519 if (!pi->nmirrorqsets)
1520 return -EOPNOTSUPP;
1521
1522 mutex_lock(&pi->vi_mirror_mutex);
1523 if (pi->viid_mirror) {
1524 pi->vi_mirror_count++;
1525 goto out_unlock;
1526 }
1527
1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 &pi->viid_mirror);
1530 if (ret)
1531 goto out_unlock;
1532
1533 pi->vi_mirror_count = 1;
1534
1535 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 ret = cxgb4_port_mirror_alloc_queues(dev);
1537 if (ret)
1538 goto out_free_vi;
1539
1540 ret = cxgb4_port_mirror_start(dev);
1541 if (ret)
1542 goto out_free_queues;
1543 }
1544
1545 mutex_unlock(&pi->vi_mirror_mutex);
1546 return 0;
1547
1548 out_free_queues:
1549 cxgb4_port_mirror_free_queues(dev);
1550
1551 out_free_vi:
1552 pi->vi_mirror_count = 0;
1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 pi->viid_mirror = 0;
1555
1556 out_unlock:
1557 mutex_unlock(&pi->vi_mirror_mutex);
1558 return ret;
1559 }
1560
cxgb4_port_mirror_free(struct net_device * dev)1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 struct port_info *pi = netdev2pinfo(dev);
1564 struct adapter *adap = netdev2adap(dev);
1565
1566 mutex_lock(&pi->vi_mirror_mutex);
1567 if (!pi->viid_mirror)
1568 goto out_unlock;
1569
1570 if (pi->vi_mirror_count > 1) {
1571 pi->vi_mirror_count--;
1572 goto out_unlock;
1573 }
1574
1575 cxgb4_port_mirror_stop(dev);
1576 cxgb4_port_mirror_free_queues(dev);
1577
1578 pi->vi_mirror_count = 0;
1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 pi->viid_mirror = 0;
1581
1582 out_unlock:
1583 mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585
1586 /*
1587 * upper-layer driver support
1588 */
1589
1590 /*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 int atid = -1;
1596
1597 spin_lock_bh(&t->atid_lock);
1598 if (t->afree) {
1599 union aopen_entry *p = t->afree;
1600
1601 atid = (p - t->atid_tab) + t->atid_base;
1602 t->afree = p->next;
1603 p->data = data;
1604 t->atids_in_use++;
1605 }
1606 spin_unlock_bh(&t->atid_lock);
1607 return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611 /*
1612 * Release an active-open TID.
1613 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618 spin_lock_bh(&t->atid_lock);
1619 p->next = t->afree;
1620 t->afree = p;
1621 t->atids_in_use--;
1622 spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626 /*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 int stid;
1632
1633 spin_lock_bh(&t->stid_lock);
1634 if (family == PF_INET) {
1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 if (stid < t->nstids)
1637 __set_bit(stid, t->stid_bmap);
1638 else
1639 stid = -1;
1640 } else {
1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 if (stid < 0)
1643 stid = -1;
1644 }
1645 if (stid >= 0) {
1646 t->stid_tab[stid].data = data;
1647 stid += t->stid_base;
1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 * needs 2 TIDs.
1651 */
1652 if (family == PF_INET6) {
1653 t->stids_in_use += 2;
1654 t->v6_stids_in_use += 2;
1655 } else {
1656 t->stids_in_use++;
1657 }
1658 }
1659 spin_unlock_bh(&t->stid_lock);
1660 return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664 /* Allocate a server filter TID and set it to the supplied value.
1665 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 int stid;
1669
1670 spin_lock_bh(&t->stid_lock);
1671 if (family == PF_INET) {
1672 stid = find_next_zero_bit(t->stid_bmap,
1673 t->nstids + t->nsftids, t->nstids);
1674 if (stid < (t->nstids + t->nsftids))
1675 __set_bit(stid, t->stid_bmap);
1676 else
1677 stid = -1;
1678 } else {
1679 stid = -1;
1680 }
1681 if (stid >= 0) {
1682 t->stid_tab[stid].data = data;
1683 stid -= t->nstids;
1684 stid += t->sftid_base;
1685 t->sftids_in_use++;
1686 }
1687 spin_unlock_bh(&t->stid_lock);
1688 return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692 /* Release a server TID.
1693 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 /* Is it a server filter TID? */
1697 if (t->nsftids && (stid >= t->sftid_base)) {
1698 stid -= t->sftid_base;
1699 stid += t->nstids;
1700 } else {
1701 stid -= t->stid_base;
1702 }
1703
1704 spin_lock_bh(&t->stid_lock);
1705 if (family == PF_INET)
1706 __clear_bit(stid, t->stid_bmap);
1707 else
1708 bitmap_release_region(t->stid_bmap, stid, 1);
1709 t->stid_tab[stid].data = NULL;
1710 if (stid < t->nstids) {
1711 if (family == PF_INET6) {
1712 t->stids_in_use -= 2;
1713 t->v6_stids_in_use -= 2;
1714 } else {
1715 t->stids_in_use--;
1716 }
1717 } else {
1718 t->sftids_in_use--;
1719 }
1720
1721 spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725 /*
1726 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1727 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 unsigned int tid)
1730 {
1731 struct cpl_tid_release *req;
1732
1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 req = __skb_put(skb, sizeof(*req));
1735 INIT_TP_WR(req, tid);
1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738
1739 /*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 unsigned int tid)
1745 {
1746 struct adapter *adap = container_of(t, struct adapter, tids);
1747 void **p = &t->tid_tab[tid - t->tid_base];
1748
1749 spin_lock_bh(&adap->tid_release_lock);
1750 *p = adap->tid_release_head;
1751 /* Low 2 bits encode the Tx channel number */
1752 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 if (!adap->tid_release_task_busy) {
1754 adap->tid_release_task_busy = true;
1755 queue_work(adap->workq, &adap->tid_release_task);
1756 }
1757 spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759
1760 /*
1761 * Process the list of pending TID release requests.
1762 */
process_tid_release_list(struct work_struct * work)1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 struct sk_buff *skb;
1766 struct adapter *adap;
1767
1768 adap = container_of(work, struct adapter, tid_release_task);
1769
1770 spin_lock_bh(&adap->tid_release_lock);
1771 while (adap->tid_release_head) {
1772 void **p = adap->tid_release_head;
1773 unsigned int chan = (uintptr_t)p & 3;
1774 p = (void *)p - chan;
1775
1776 adap->tid_release_head = *p;
1777 *p = NULL;
1778 spin_unlock_bh(&adap->tid_release_lock);
1779
1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 GFP_KERNEL)))
1782 schedule_timeout_uninterruptible(1);
1783
1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 t4_ofld_send(adap, skb);
1786 spin_lock_bh(&adap->tid_release_lock);
1787 }
1788 adap->tid_release_task_busy = false;
1789 spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791
1792 /*
1793 * Release a TID and inform HW. If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 unsigned short family)
1798 {
1799 struct adapter *adap = container_of(t, struct adapter, tids);
1800 struct sk_buff *skb;
1801
1802 WARN_ON(tid_out_of_range(&adap->tids, tid));
1803
1804 if (t->tid_tab[tid - adap->tids.tid_base]) {
1805 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806 atomic_dec(&t->conns_in_use);
1807 if (t->hash_base && (tid >= t->hash_base)) {
1808 if (family == AF_INET6)
1809 atomic_sub(2, &t->hash_tids_in_use);
1810 else
1811 atomic_dec(&t->hash_tids_in_use);
1812 } else {
1813 if (family == AF_INET6)
1814 atomic_sub(2, &t->tids_in_use);
1815 else
1816 atomic_dec(&t->tids_in_use);
1817 }
1818 }
1819
1820 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821 if (likely(skb)) {
1822 mk_tid_release(skb, chan, tid);
1823 t4_ofld_send(adap, skb);
1824 } else
1825 cxgb4_queue_tid_release(t, chan, tid);
1826 }
1827 EXPORT_SYMBOL(cxgb4_remove_tid);
1828
1829 /*
1830 * Allocate and initialize the TID tables. Returns 0 on success.
1831 */
tid_init(struct tid_info * t)1832 static int tid_init(struct tid_info *t)
1833 {
1834 struct adapter *adap = container_of(t, struct adapter, tids);
1835 unsigned int max_ftids = t->nftids + t->nsftids;
1836 unsigned int natids = t->natids;
1837 unsigned int hpftid_bmap_size;
1838 unsigned int eotid_bmap_size;
1839 unsigned int stid_bmap_size;
1840 unsigned int ftid_bmap_size;
1841 size_t size;
1842
1843 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846 eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847 size = t->ntids * sizeof(*t->tid_tab) +
1848 natids * sizeof(*t->atid_tab) +
1849 t->nstids * sizeof(*t->stid_tab) +
1850 t->nsftids * sizeof(*t->stid_tab) +
1851 stid_bmap_size * sizeof(long) +
1852 t->nhpftids * sizeof(*t->hpftid_tab) +
1853 hpftid_bmap_size * sizeof(long) +
1854 max_ftids * sizeof(*t->ftid_tab) +
1855 ftid_bmap_size * sizeof(long) +
1856 t->neotids * sizeof(*t->eotid_tab) +
1857 eotid_bmap_size * sizeof(long);
1858
1859 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860 if (!t->tid_tab)
1861 return -ENOMEM;
1862
1863 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872 spin_lock_init(&t->stid_lock);
1873 spin_lock_init(&t->atid_lock);
1874 spin_lock_init(&t->ftid_lock);
1875
1876 t->stids_in_use = 0;
1877 t->v6_stids_in_use = 0;
1878 t->sftids_in_use = 0;
1879 t->afree = NULL;
1880 t->atids_in_use = 0;
1881 atomic_set(&t->tids_in_use, 0);
1882 atomic_set(&t->conns_in_use, 0);
1883 atomic_set(&t->hash_tids_in_use, 0);
1884 atomic_set(&t->eotids_in_use, 0);
1885
1886 /* Setup the free list for atid_tab and clear the stid bitmap. */
1887 if (natids) {
1888 while (--natids)
1889 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890 t->afree = t->atid_tab;
1891 }
1892
1893 if (is_offload(adap)) {
1894 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895 /* Reserve stid 0 for T4/T5 adapters */
1896 if (!t->stid_base &&
1897 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898 __set_bit(0, t->stid_bmap);
1899
1900 if (t->neotids)
1901 bitmap_zero(t->eotid_bmap, t->neotids);
1902 }
1903
1904 if (t->nhpftids)
1905 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906 bitmap_zero(t->ftid_bmap, t->nftids);
1907 return 0;
1908 }
1909
1910 /**
1911 * cxgb4_create_server - create an IP server
1912 * @dev: the device
1913 * @stid: the server TID
1914 * @sip: local IP address to bind server to
1915 * @sport: the server's TCP port
1916 * @vlan: the VLAN header information
1917 * @queue: queue to direct messages from this server to
1918 *
1919 * Create an IP server for the given port and address.
1920 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1921 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923 __be32 sip, __be16 sport, __be16 vlan,
1924 unsigned int queue)
1925 {
1926 unsigned int chan;
1927 struct sk_buff *skb;
1928 struct adapter *adap;
1929 struct cpl_pass_open_req *req;
1930 int ret;
1931
1932 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933 if (!skb)
1934 return -ENOMEM;
1935
1936 adap = netdev2adap(dev);
1937 req = __skb_put(skb, sizeof(*req));
1938 INIT_TP_WR(req, 0);
1939 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940 req->local_port = sport;
1941 req->peer_port = htons(0);
1942 req->local_ip = sip;
1943 req->peer_ip = htonl(0);
1944 chan = rxq_to_chan(&adap->sge, queue);
1945 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948 ret = t4_mgmt_tx(adap, skb);
1949 return net_xmit_eval(ret);
1950 }
1951 EXPORT_SYMBOL(cxgb4_create_server);
1952
1953 /* cxgb4_create_server6 - create an IPv6 server
1954 * @dev: the device
1955 * @stid: the server TID
1956 * @sip: local IPv6 address to bind server to
1957 * @sport: the server's TCP port
1958 * @queue: queue to direct messages from this server to
1959 *
1960 * Create an IPv6 server for the given port and address.
1961 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1962 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964 const struct in6_addr *sip, __be16 sport,
1965 unsigned int queue)
1966 {
1967 unsigned int chan;
1968 struct sk_buff *skb;
1969 struct adapter *adap;
1970 struct cpl_pass_open_req6 *req;
1971 int ret;
1972
1973 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974 if (!skb)
1975 return -ENOMEM;
1976
1977 adap = netdev2adap(dev);
1978 req = __skb_put(skb, sizeof(*req));
1979 INIT_TP_WR(req, 0);
1980 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981 req->local_port = sport;
1982 req->peer_port = htons(0);
1983 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985 req->peer_ip_hi = cpu_to_be64(0);
1986 req->peer_ip_lo = cpu_to_be64(0);
1987 chan = rxq_to_chan(&adap->sge, queue);
1988 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991 ret = t4_mgmt_tx(adap, skb);
1992 return net_xmit_eval(ret);
1993 }
1994 EXPORT_SYMBOL(cxgb4_create_server6);
1995
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997 unsigned int queue, bool ipv6)
1998 {
1999 struct sk_buff *skb;
2000 struct adapter *adap;
2001 struct cpl_close_listsvr_req *req;
2002 int ret;
2003
2004 adap = netdev2adap(dev);
2005
2006 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007 if (!skb)
2008 return -ENOMEM;
2009
2010 req = __skb_put(skb, sizeof(*req));
2011 INIT_TP_WR(req, 0);
2012 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015 ret = t4_mgmt_tx(adap, skb);
2016 return net_xmit_eval(ret);
2017 }
2018 EXPORT_SYMBOL(cxgb4_remove_server);
2019
2020 /**
2021 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022 * @mtus: the HW MTU table
2023 * @mtu: the target MTU
2024 * @idx: index of selected entry in the MTU table
2025 *
2026 * Returns the index and the value in the HW MTU table that is closest to
2027 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2028 * table, in which case that smallest available value is selected.
2029 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031 unsigned int *idx)
2032 {
2033 unsigned int i = 0;
2034
2035 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036 ++i;
2037 if (idx)
2038 *idx = i;
2039 return mtus[i];
2040 }
2041 EXPORT_SYMBOL(cxgb4_best_mtu);
2042
2043 /**
2044 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045 * @mtus: the HW MTU table
2046 * @header_size: Header Size
2047 * @data_size_max: maximum Data Segment Size
2048 * @data_size_align: desired Data Segment Size Alignment (2^N)
2049 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050 *
2051 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052 * MTU Table based solely on a Maximum MTU parameter, we break that
2053 * parameter up into a Header Size and Maximum Data Segment Size, and
2054 * provide a desired Data Segment Size Alignment. If we find an MTU in
2055 * the Hardware MTU Table which will result in a Data Segment Size with
2056 * the requested alignment _and_ that MTU isn't "too far" from the
2057 * closest MTU, then we'll return that rather than the closest MTU.
2058 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060 unsigned short header_size,
2061 unsigned short data_size_max,
2062 unsigned short data_size_align,
2063 unsigned int *mtu_idxp)
2064 {
2065 unsigned short max_mtu = header_size + data_size_max;
2066 unsigned short data_size_align_mask = data_size_align - 1;
2067 int mtu_idx, aligned_mtu_idx;
2068
2069 /* Scan the MTU Table till we find an MTU which is larger than our
2070 * Maximum MTU or we reach the end of the table. Along the way,
2071 * record the last MTU found, if any, which will result in a Data
2072 * Segment Length matching the requested alignment.
2073 */
2074 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075 unsigned short data_size = mtus[mtu_idx] - header_size;
2076
2077 /* If this MTU minus the Header Size would result in a
2078 * Data Segment Size of the desired alignment, remember it.
2079 */
2080 if ((data_size & data_size_align_mask) == 0)
2081 aligned_mtu_idx = mtu_idx;
2082
2083 /* If we're not at the end of the Hardware MTU Table and the
2084 * next element is larger than our Maximum MTU, drop out of
2085 * the loop.
2086 */
2087 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088 break;
2089 }
2090
2091 /* If we fell out of the loop because we ran to the end of the table,
2092 * then we just have to use the last [largest] entry.
2093 */
2094 if (mtu_idx == NMTUS)
2095 mtu_idx--;
2096
2097 /* If we found an MTU which resulted in the requested Data Segment
2098 * Length alignment and that's "not far" from the largest MTU which is
2099 * less than or equal to the maximum MTU, then use that.
2100 */
2101 if (aligned_mtu_idx >= 0 &&
2102 mtu_idx - aligned_mtu_idx <= 1)
2103 mtu_idx = aligned_mtu_idx;
2104
2105 /* If the caller has passed in an MTU Index pointer, pass the
2106 * MTU Index back. Return the MTU value.
2107 */
2108 if (mtu_idxp)
2109 *mtu_idxp = mtu_idx;
2110 return mtus[mtu_idx];
2111 }
2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113
2114 /**
2115 * cxgb4_port_chan - get the HW channel of a port
2116 * @dev: the net device for the port
2117 *
2118 * Return the HW Tx channel of the given port.
2119 */
cxgb4_port_chan(const struct net_device * dev)2120 unsigned int cxgb4_port_chan(const struct net_device *dev)
2121 {
2122 return netdev2pinfo(dev)->tx_chan;
2123 }
2124 EXPORT_SYMBOL(cxgb4_port_chan);
2125
2126 /**
2127 * cxgb4_port_e2cchan - get the HW c-channel of a port
2128 * @dev: the net device for the port
2129 *
2130 * Return the HW RX c-channel of the given port.
2131 */
cxgb4_port_e2cchan(const struct net_device * dev)2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133 {
2134 return netdev2pinfo(dev)->rx_cchan;
2135 }
2136 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139 {
2140 struct adapter *adap = netdev2adap(dev);
2141 u32 v1, v2, lp_count, hp_count;
2142
2143 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145 if (is_t4(adap->params.chip)) {
2146 lp_count = LP_COUNT_G(v1);
2147 hp_count = HP_COUNT_G(v1);
2148 } else {
2149 lp_count = LP_COUNT_T5_G(v1);
2150 hp_count = HP_COUNT_T5_G(v2);
2151 }
2152 return lpfifo ? lp_count : hp_count;
2153 }
2154 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155
2156 /**
2157 * cxgb4_port_viid - get the VI id of a port
2158 * @dev: the net device for the port
2159 *
2160 * Return the VI id of the given port.
2161 */
cxgb4_port_viid(const struct net_device * dev)2162 unsigned int cxgb4_port_viid(const struct net_device *dev)
2163 {
2164 return netdev2pinfo(dev)->viid;
2165 }
2166 EXPORT_SYMBOL(cxgb4_port_viid);
2167
2168 /**
2169 * cxgb4_port_idx - get the index of a port
2170 * @dev: the net device for the port
2171 *
2172 * Return the index of the given port.
2173 */
cxgb4_port_idx(const struct net_device * dev)2174 unsigned int cxgb4_port_idx(const struct net_device *dev)
2175 {
2176 return netdev2pinfo(dev)->port_id;
2177 }
2178 EXPORT_SYMBOL(cxgb4_port_idx);
2179
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181 struct tp_tcp_stats *v6)
2182 {
2183 struct adapter *adap = pci_get_drvdata(pdev);
2184
2185 spin_lock(&adap->stats_lock);
2186 t4_tp_get_tcp_stats(adap, v4, v6, false);
2187 spin_unlock(&adap->stats_lock);
2188 }
2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190
cxgb4_flush_eq_cache(struct net_device * dev)2191 int cxgb4_flush_eq_cache(struct net_device *dev)
2192 {
2193 struct adapter *adap = netdev2adap(dev);
2194
2195 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2196 }
2197 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2198
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2199 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2200 {
2201 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2202 __be64 indices;
2203 int ret;
2204
2205 spin_lock(&adap->win0_lock);
2206 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2207 sizeof(indices), (__be32 *)&indices,
2208 T4_MEMORY_READ);
2209 spin_unlock(&adap->win0_lock);
2210 if (!ret) {
2211 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2212 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2213 }
2214 return ret;
2215 }
2216
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2217 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2218 u16 size)
2219 {
2220 struct adapter *adap = netdev2adap(dev);
2221 u16 hw_pidx, hw_cidx;
2222 int ret;
2223
2224 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2225 if (ret)
2226 goto out;
2227
2228 if (pidx != hw_pidx) {
2229 u16 delta;
2230 u32 val;
2231
2232 if (pidx >= hw_pidx)
2233 delta = pidx - hw_pidx;
2234 else
2235 delta = size - hw_pidx + pidx;
2236
2237 if (is_t4(adap->params.chip))
2238 val = PIDX_V(delta);
2239 else
2240 val = PIDX_T5_V(delta);
2241 wmb();
2242 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2243 QID_V(qid) | val);
2244 }
2245 out:
2246 return ret;
2247 }
2248 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2249
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2250 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2251 {
2252 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2253 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2254 u32 offset, memtype, memaddr;
2255 struct adapter *adap;
2256 u32 hma_size = 0;
2257 int ret;
2258
2259 adap = netdev2adap(dev);
2260
2261 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2262
2263 /* Figure out where the offset lands in the Memory Type/Address scheme.
2264 * This code assumes that the memory is laid out starting at offset 0
2265 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2266 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2267 * MC0, and some have both MC0 and MC1.
2268 */
2269 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2270 edc0_size = EDRAM0_SIZE_G(size) << 20;
2271 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2272 edc1_size = EDRAM1_SIZE_G(size) << 20;
2273 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2274 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2275
2276 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2277 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2278 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2279 }
2280 edc0_end = edc0_size;
2281 edc1_end = edc0_end + edc1_size;
2282 mc0_end = edc1_end + mc0_size;
2283
2284 if (offset < edc0_end) {
2285 memtype = MEM_EDC0;
2286 memaddr = offset;
2287 } else if (offset < edc1_end) {
2288 memtype = MEM_EDC1;
2289 memaddr = offset - edc0_end;
2290 } else {
2291 if (hma_size && (offset < (edc1_end + hma_size))) {
2292 memtype = MEM_HMA;
2293 memaddr = offset - edc1_end;
2294 } else if (offset < mc0_end) {
2295 memtype = MEM_MC0;
2296 memaddr = offset - edc1_end;
2297 } else if (is_t5(adap->params.chip)) {
2298 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2299 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2300 mc1_end = mc0_end + mc1_size;
2301 if (offset < mc1_end) {
2302 memtype = MEM_MC1;
2303 memaddr = offset - mc0_end;
2304 } else {
2305 /* offset beyond the end of any memory */
2306 goto err;
2307 }
2308 } else {
2309 /* T4/T6 only has a single memory channel */
2310 goto err;
2311 }
2312 }
2313
2314 spin_lock(&adap->win0_lock);
2315 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2316 spin_unlock(&adap->win0_lock);
2317 return ret;
2318
2319 err:
2320 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2321 stag, offset);
2322 return -EINVAL;
2323 }
2324 EXPORT_SYMBOL(cxgb4_read_tpte);
2325
cxgb4_read_sge_timestamp(struct net_device * dev)2326 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2327 {
2328 u32 hi, lo;
2329 struct adapter *adap;
2330
2331 adap = netdev2adap(dev);
2332 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2333 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2334
2335 return ((u64)hi << 32) | (u64)lo;
2336 }
2337 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2338
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2339 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2340 unsigned int qid,
2341 enum cxgb4_bar2_qtype qtype,
2342 int user,
2343 u64 *pbar2_qoffset,
2344 unsigned int *pbar2_qid)
2345 {
2346 return t4_bar2_sge_qregs(netdev2adap(dev),
2347 qid,
2348 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2349 ? T4_BAR2_QTYPE_EGRESS
2350 : T4_BAR2_QTYPE_INGRESS),
2351 user,
2352 pbar2_qoffset,
2353 pbar2_qid);
2354 }
2355 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2356
2357 static struct pci_driver cxgb4_driver;
2358
check_neigh_update(struct neighbour * neigh)2359 static void check_neigh_update(struct neighbour *neigh)
2360 {
2361 const struct device *parent;
2362 const struct net_device *netdev = neigh->dev;
2363
2364 if (is_vlan_dev(netdev))
2365 netdev = vlan_dev_real_dev(netdev);
2366 parent = netdev->dev.parent;
2367 if (parent && parent->driver == &cxgb4_driver.driver)
2368 t4_l2t_update(dev_get_drvdata(parent), neigh);
2369 }
2370
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2371 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2372 void *data)
2373 {
2374 switch (event) {
2375 case NETEVENT_NEIGH_UPDATE:
2376 check_neigh_update(data);
2377 break;
2378 case NETEVENT_REDIRECT:
2379 default:
2380 break;
2381 }
2382 return 0;
2383 }
2384
2385 static bool netevent_registered;
2386 static struct notifier_block cxgb4_netevent_nb = {
2387 .notifier_call = netevent_cb
2388 };
2389
drain_db_fifo(struct adapter * adap,int usecs)2390 static void drain_db_fifo(struct adapter *adap, int usecs)
2391 {
2392 u32 v1, v2, lp_count, hp_count;
2393
2394 do {
2395 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2396 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2397 if (is_t4(adap->params.chip)) {
2398 lp_count = LP_COUNT_G(v1);
2399 hp_count = HP_COUNT_G(v1);
2400 } else {
2401 lp_count = LP_COUNT_T5_G(v1);
2402 hp_count = HP_COUNT_T5_G(v2);
2403 }
2404
2405 if (lp_count == 0 && hp_count == 0)
2406 break;
2407 set_current_state(TASK_UNINTERRUPTIBLE);
2408 schedule_timeout(usecs_to_jiffies(usecs));
2409 } while (1);
2410 }
2411
disable_txq_db(struct sge_txq * q)2412 static void disable_txq_db(struct sge_txq *q)
2413 {
2414 unsigned long flags;
2415
2416 spin_lock_irqsave(&q->db_lock, flags);
2417 q->db_disabled = 1;
2418 spin_unlock_irqrestore(&q->db_lock, flags);
2419 }
2420
enable_txq_db(struct adapter * adap,struct sge_txq * q)2421 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2422 {
2423 spin_lock_irq(&q->db_lock);
2424 if (q->db_pidx_inc) {
2425 /* Make sure that all writes to the TX descriptors
2426 * are committed before we tell HW about them.
2427 */
2428 wmb();
2429 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2430 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2431 q->db_pidx_inc = 0;
2432 }
2433 q->db_disabled = 0;
2434 spin_unlock_irq(&q->db_lock);
2435 }
2436
disable_dbs(struct adapter * adap)2437 static void disable_dbs(struct adapter *adap)
2438 {
2439 int i;
2440
2441 for_each_ethrxq(&adap->sge, i)
2442 disable_txq_db(&adap->sge.ethtxq[i].q);
2443 if (is_offload(adap)) {
2444 struct sge_uld_txq_info *txq_info =
2445 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2446
2447 if (txq_info) {
2448 for_each_ofldtxq(&adap->sge, i) {
2449 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2450
2451 disable_txq_db(&txq->q);
2452 }
2453 }
2454 }
2455 for_each_port(adap, i)
2456 disable_txq_db(&adap->sge.ctrlq[i].q);
2457 }
2458
enable_dbs(struct adapter * adap)2459 static void enable_dbs(struct adapter *adap)
2460 {
2461 int i;
2462
2463 for_each_ethrxq(&adap->sge, i)
2464 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2465 if (is_offload(adap)) {
2466 struct sge_uld_txq_info *txq_info =
2467 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2468
2469 if (txq_info) {
2470 for_each_ofldtxq(&adap->sge, i) {
2471 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2472
2473 enable_txq_db(adap, &txq->q);
2474 }
2475 }
2476 }
2477 for_each_port(adap, i)
2478 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2479 }
2480
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2481 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2482 {
2483 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2484
2485 if (adap->uld && adap->uld[type].handle)
2486 adap->uld[type].control(adap->uld[type].handle, cmd);
2487 }
2488
process_db_full(struct work_struct * work)2489 static void process_db_full(struct work_struct *work)
2490 {
2491 struct adapter *adap;
2492
2493 adap = container_of(work, struct adapter, db_full_task);
2494
2495 drain_db_fifo(adap, dbfifo_drain_delay);
2496 enable_dbs(adap);
2497 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2498 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2499 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2500 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2501 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2502 else
2503 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2504 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2505 }
2506
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2507 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2508 {
2509 u16 hw_pidx, hw_cidx;
2510 int ret;
2511
2512 spin_lock_irq(&q->db_lock);
2513 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2514 if (ret)
2515 goto out;
2516 if (q->db_pidx != hw_pidx) {
2517 u16 delta;
2518 u32 val;
2519
2520 if (q->db_pidx >= hw_pidx)
2521 delta = q->db_pidx - hw_pidx;
2522 else
2523 delta = q->size - hw_pidx + q->db_pidx;
2524
2525 if (is_t4(adap->params.chip))
2526 val = PIDX_V(delta);
2527 else
2528 val = PIDX_T5_V(delta);
2529 wmb();
2530 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2531 QID_V(q->cntxt_id) | val);
2532 }
2533 out:
2534 q->db_disabled = 0;
2535 q->db_pidx_inc = 0;
2536 spin_unlock_irq(&q->db_lock);
2537 if (ret)
2538 CH_WARN(adap, "DB drop recovery failed.\n");
2539 }
2540
recover_all_queues(struct adapter * adap)2541 static void recover_all_queues(struct adapter *adap)
2542 {
2543 int i;
2544
2545 for_each_ethrxq(&adap->sge, i)
2546 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2547 if (is_offload(adap)) {
2548 struct sge_uld_txq_info *txq_info =
2549 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2550 if (txq_info) {
2551 for_each_ofldtxq(&adap->sge, i) {
2552 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2553
2554 sync_txq_pidx(adap, &txq->q);
2555 }
2556 }
2557 }
2558 for_each_port(adap, i)
2559 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2560 }
2561
process_db_drop(struct work_struct * work)2562 static void process_db_drop(struct work_struct *work)
2563 {
2564 struct adapter *adap;
2565
2566 adap = container_of(work, struct adapter, db_drop_task);
2567
2568 if (is_t4(adap->params.chip)) {
2569 drain_db_fifo(adap, dbfifo_drain_delay);
2570 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2571 drain_db_fifo(adap, dbfifo_drain_delay);
2572 recover_all_queues(adap);
2573 drain_db_fifo(adap, dbfifo_drain_delay);
2574 enable_dbs(adap);
2575 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2576 } else if (is_t5(adap->params.chip)) {
2577 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2578 u16 qid = (dropped_db >> 15) & 0x1ffff;
2579 u16 pidx_inc = dropped_db & 0x1fff;
2580 u64 bar2_qoffset;
2581 unsigned int bar2_qid;
2582 int ret;
2583
2584 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2585 0, &bar2_qoffset, &bar2_qid);
2586 if (ret)
2587 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2588 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2589 else
2590 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2591 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2592
2593 /* Re-enable BAR2 WC */
2594 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2595 }
2596
2597 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2598 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2599 }
2600
t4_db_full(struct adapter * adap)2601 void t4_db_full(struct adapter *adap)
2602 {
2603 if (is_t4(adap->params.chip)) {
2604 disable_dbs(adap);
2605 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2606 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2607 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2608 queue_work(adap->workq, &adap->db_full_task);
2609 }
2610 }
2611
t4_db_dropped(struct adapter * adap)2612 void t4_db_dropped(struct adapter *adap)
2613 {
2614 if (is_t4(adap->params.chip)) {
2615 disable_dbs(adap);
2616 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2617 }
2618 queue_work(adap->workq, &adap->db_drop_task);
2619 }
2620
t4_register_netevent_notifier(void)2621 void t4_register_netevent_notifier(void)
2622 {
2623 if (!netevent_registered) {
2624 register_netevent_notifier(&cxgb4_netevent_nb);
2625 netevent_registered = true;
2626 }
2627 }
2628
detach_ulds(struct adapter * adap)2629 static void detach_ulds(struct adapter *adap)
2630 {
2631 unsigned int i;
2632
2633 if (!is_uld(adap))
2634 return;
2635
2636 mutex_lock(&uld_mutex);
2637 list_del(&adap->list_node);
2638
2639 for (i = 0; i < CXGB4_ULD_MAX; i++)
2640 if (adap->uld && adap->uld[i].handle)
2641 adap->uld[i].state_change(adap->uld[i].handle,
2642 CXGB4_STATE_DETACH);
2643
2644 if (netevent_registered && list_empty(&adapter_list)) {
2645 unregister_netevent_notifier(&cxgb4_netevent_nb);
2646 netevent_registered = false;
2647 }
2648 mutex_unlock(&uld_mutex);
2649 }
2650
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2651 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2652 {
2653 unsigned int i;
2654
2655 mutex_lock(&uld_mutex);
2656 for (i = 0; i < CXGB4_ULD_MAX; i++)
2657 if (adap->uld && adap->uld[i].handle)
2658 adap->uld[i].state_change(adap->uld[i].handle,
2659 new_state);
2660 mutex_unlock(&uld_mutex);
2661 }
2662
2663 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2664 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2665 unsigned long event, void *data)
2666 {
2667 struct inet6_ifaddr *ifa = data;
2668 struct net_device *event_dev = ifa->idev->dev;
2669 const struct device *parent = NULL;
2670 #if IS_ENABLED(CONFIG_BONDING)
2671 struct adapter *adap;
2672 #endif
2673 if (is_vlan_dev(event_dev))
2674 event_dev = vlan_dev_real_dev(event_dev);
2675 #if IS_ENABLED(CONFIG_BONDING)
2676 if (event_dev->flags & IFF_MASTER) {
2677 list_for_each_entry(adap, &adapter_list, list_node) {
2678 switch (event) {
2679 case NETDEV_UP:
2680 cxgb4_clip_get(adap->port[0],
2681 (const u32 *)ifa, 1);
2682 break;
2683 case NETDEV_DOWN:
2684 cxgb4_clip_release(adap->port[0],
2685 (const u32 *)ifa, 1);
2686 break;
2687 default:
2688 break;
2689 }
2690 }
2691 return NOTIFY_OK;
2692 }
2693 #endif
2694
2695 if (event_dev)
2696 parent = event_dev->dev.parent;
2697
2698 if (parent && parent->driver == &cxgb4_driver.driver) {
2699 switch (event) {
2700 case NETDEV_UP:
2701 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2702 break;
2703 case NETDEV_DOWN:
2704 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2705 break;
2706 default:
2707 break;
2708 }
2709 }
2710 return NOTIFY_OK;
2711 }
2712
2713 static bool inet6addr_registered;
2714 static struct notifier_block cxgb4_inet6addr_notifier = {
2715 .notifier_call = cxgb4_inet6addr_handler
2716 };
2717
update_clip(const struct adapter * adap)2718 static void update_clip(const struct adapter *adap)
2719 {
2720 int i;
2721 struct net_device *dev;
2722 int ret;
2723
2724 rcu_read_lock();
2725
2726 for (i = 0; i < MAX_NPORTS; i++) {
2727 dev = adap->port[i];
2728 ret = 0;
2729
2730 if (dev)
2731 ret = cxgb4_update_root_dev_clip(dev);
2732
2733 if (ret < 0)
2734 break;
2735 }
2736 rcu_read_unlock();
2737 }
2738 #endif /* IS_ENABLED(CONFIG_IPV6) */
2739
2740 /**
2741 * cxgb_up - enable the adapter
2742 * @adap: adapter being enabled
2743 *
2744 * Called when the first port is enabled, this function performs the
2745 * actions necessary to make an adapter operational, such as completing
2746 * the initialization of HW modules, and enabling interrupts.
2747 *
2748 * Must be called with the rtnl lock held.
2749 */
cxgb_up(struct adapter * adap)2750 static int cxgb_up(struct adapter *adap)
2751 {
2752 struct sge *s = &adap->sge;
2753 int err;
2754
2755 mutex_lock(&uld_mutex);
2756 err = setup_sge_queues(adap);
2757 if (err)
2758 goto rel_lock;
2759 err = setup_rss(adap);
2760 if (err)
2761 goto freeq;
2762
2763 if (adap->flags & CXGB4_USING_MSIX) {
2764 if (s->nd_msix_idx < 0) {
2765 err = -ENOMEM;
2766 goto irq_err;
2767 }
2768
2769 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2770 t4_nondata_intr, 0,
2771 adap->msix_info[s->nd_msix_idx].desc, adap);
2772 if (err)
2773 goto irq_err;
2774
2775 err = request_msix_queue_irqs(adap);
2776 if (err)
2777 goto irq_err_free_nd_msix;
2778 } else {
2779 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2780 (adap->flags & CXGB4_USING_MSI) ? 0
2781 : IRQF_SHARED,
2782 adap->port[0]->name, adap);
2783 if (err)
2784 goto irq_err;
2785 }
2786
2787 enable_rx(adap);
2788 t4_sge_start(adap);
2789 t4_intr_enable(adap);
2790 adap->flags |= CXGB4_FULL_INIT_DONE;
2791 mutex_unlock(&uld_mutex);
2792
2793 notify_ulds(adap, CXGB4_STATE_UP);
2794 #if IS_ENABLED(CONFIG_IPV6)
2795 update_clip(adap);
2796 #endif
2797 return err;
2798
2799 irq_err_free_nd_msix:
2800 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2801 irq_err:
2802 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2803 freeq:
2804 t4_free_sge_resources(adap);
2805 rel_lock:
2806 mutex_unlock(&uld_mutex);
2807 return err;
2808 }
2809
cxgb_down(struct adapter * adapter)2810 static void cxgb_down(struct adapter *adapter)
2811 {
2812 cancel_work_sync(&adapter->tid_release_task);
2813 cancel_work_sync(&adapter->db_full_task);
2814 cancel_work_sync(&adapter->db_drop_task);
2815 adapter->tid_release_task_busy = false;
2816 adapter->tid_release_head = NULL;
2817
2818 t4_sge_stop(adapter);
2819 t4_free_sge_resources(adapter);
2820
2821 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2822 }
2823
2824 /*
2825 * net_device operations
2826 */
cxgb_open(struct net_device * dev)2827 static int cxgb_open(struct net_device *dev)
2828 {
2829 struct port_info *pi = netdev_priv(dev);
2830 struct adapter *adapter = pi->adapter;
2831 int err;
2832
2833 netif_carrier_off(dev);
2834
2835 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2836 err = cxgb_up(adapter);
2837 if (err < 0)
2838 return err;
2839 }
2840
2841 /* It's possible that the basic port information could have
2842 * changed since we first read it.
2843 */
2844 err = t4_update_port_info(pi);
2845 if (err < 0)
2846 return err;
2847
2848 err = link_start(dev);
2849 if (err)
2850 return err;
2851
2852 if (pi->nmirrorqsets) {
2853 mutex_lock(&pi->vi_mirror_mutex);
2854 err = cxgb4_port_mirror_alloc_queues(dev);
2855 if (err)
2856 goto out_unlock;
2857
2858 err = cxgb4_port_mirror_start(dev);
2859 if (err)
2860 goto out_free_queues;
2861 mutex_unlock(&pi->vi_mirror_mutex);
2862 }
2863
2864 netif_tx_start_all_queues(dev);
2865 return 0;
2866
2867 out_free_queues:
2868 cxgb4_port_mirror_free_queues(dev);
2869
2870 out_unlock:
2871 mutex_unlock(&pi->vi_mirror_mutex);
2872 return err;
2873 }
2874
cxgb_close(struct net_device * dev)2875 static int cxgb_close(struct net_device *dev)
2876 {
2877 struct port_info *pi = netdev_priv(dev);
2878 struct adapter *adapter = pi->adapter;
2879 int ret;
2880
2881 netif_tx_stop_all_queues(dev);
2882 netif_carrier_off(dev);
2883 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2884 false, false, false);
2885 #ifdef CONFIG_CHELSIO_T4_DCB
2886 cxgb4_dcb_reset(dev);
2887 dcb_tx_queue_prio_enable(dev, false);
2888 #endif
2889 if (ret)
2890 return ret;
2891
2892 if (pi->nmirrorqsets) {
2893 mutex_lock(&pi->vi_mirror_mutex);
2894 cxgb4_port_mirror_stop(dev);
2895 cxgb4_port_mirror_free_queues(dev);
2896 mutex_unlock(&pi->vi_mirror_mutex);
2897 }
2898
2899 return 0;
2900 }
2901
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2902 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2903 __be32 sip, __be16 sport, __be16 vlan,
2904 unsigned int queue, unsigned char port, unsigned char mask)
2905 {
2906 int ret;
2907 struct filter_entry *f;
2908 struct adapter *adap;
2909 int i;
2910 u8 *val;
2911
2912 adap = netdev2adap(dev);
2913
2914 /* Adjust stid to correct filter index */
2915 stid -= adap->tids.sftid_base;
2916 stid += adap->tids.nftids;
2917
2918 /* Check to make sure the filter requested is writable ...
2919 */
2920 f = &adap->tids.ftid_tab[stid];
2921 ret = writable_filter(f);
2922 if (ret)
2923 return ret;
2924
2925 /* Clear out any old resources being used by the filter before
2926 * we start constructing the new filter.
2927 */
2928 if (f->valid)
2929 clear_filter(adap, f);
2930
2931 /* Clear out filter specifications */
2932 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2933 f->fs.val.lport = be16_to_cpu(sport);
2934 f->fs.mask.lport = ~0;
2935 val = (u8 *)&sip;
2936 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2937 for (i = 0; i < 4; i++) {
2938 f->fs.val.lip[i] = val[i];
2939 f->fs.mask.lip[i] = ~0;
2940 }
2941 if (adap->params.tp.vlan_pri_map & PORT_F) {
2942 f->fs.val.iport = port;
2943 f->fs.mask.iport = mask;
2944 }
2945 }
2946
2947 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2948 f->fs.val.proto = IPPROTO_TCP;
2949 f->fs.mask.proto = ~0;
2950 }
2951
2952 f->fs.dirsteer = 1;
2953 f->fs.iq = queue;
2954 /* Mark filter as locked */
2955 f->locked = 1;
2956 f->fs.rpttid = 1;
2957
2958 /* Save the actual tid. We need this to get the corresponding
2959 * filter entry structure in filter_rpl.
2960 */
2961 f->tid = stid + adap->tids.ftid_base;
2962 ret = set_filter_wr(adap, stid);
2963 if (ret) {
2964 clear_filter(adap, f);
2965 return ret;
2966 }
2967
2968 return 0;
2969 }
2970 EXPORT_SYMBOL(cxgb4_create_server_filter);
2971
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2972 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2973 unsigned int queue, bool ipv6)
2974 {
2975 struct filter_entry *f;
2976 struct adapter *adap;
2977
2978 adap = netdev2adap(dev);
2979
2980 /* Adjust stid to correct filter index */
2981 stid -= adap->tids.sftid_base;
2982 stid += adap->tids.nftids;
2983
2984 f = &adap->tids.ftid_tab[stid];
2985 /* Unlock the filter */
2986 f->locked = 0;
2987
2988 return delete_filter(adap, stid);
2989 }
2990 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2991
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2992 static void cxgb_get_stats(struct net_device *dev,
2993 struct rtnl_link_stats64 *ns)
2994 {
2995 struct port_stats stats;
2996 struct port_info *p = netdev_priv(dev);
2997 struct adapter *adapter = p->adapter;
2998
2999 /* Block retrieving statistics during EEH error
3000 * recovery. Otherwise, the recovery might fail
3001 * and the PCI device will be removed permanently
3002 */
3003 spin_lock(&adapter->stats_lock);
3004 if (!netif_device_present(dev)) {
3005 spin_unlock(&adapter->stats_lock);
3006 return;
3007 }
3008 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3009 &p->stats_base);
3010 spin_unlock(&adapter->stats_lock);
3011
3012 ns->tx_bytes = stats.tx_octets;
3013 ns->tx_packets = stats.tx_frames;
3014 ns->rx_bytes = stats.rx_octets;
3015 ns->rx_packets = stats.rx_frames;
3016 ns->multicast = stats.rx_mcast_frames;
3017
3018 /* detailed rx_errors */
3019 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3020 stats.rx_runt;
3021 ns->rx_over_errors = 0;
3022 ns->rx_crc_errors = stats.rx_fcs_err;
3023 ns->rx_frame_errors = stats.rx_symbol_err;
3024 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
3025 stats.rx_ovflow2 + stats.rx_ovflow3 +
3026 stats.rx_trunc0 + stats.rx_trunc1 +
3027 stats.rx_trunc2 + stats.rx_trunc3;
3028 ns->rx_missed_errors = 0;
3029
3030 /* detailed tx_errors */
3031 ns->tx_aborted_errors = 0;
3032 ns->tx_carrier_errors = 0;
3033 ns->tx_fifo_errors = 0;
3034 ns->tx_heartbeat_errors = 0;
3035 ns->tx_window_errors = 0;
3036
3037 ns->tx_errors = stats.tx_error_frames;
3038 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3039 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3040 }
3041
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3042 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3043 {
3044 unsigned int mbox;
3045 int ret = 0, prtad, devad;
3046 struct port_info *pi = netdev_priv(dev);
3047 struct adapter *adapter = pi->adapter;
3048 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3049
3050 switch (cmd) {
3051 case SIOCGMIIPHY:
3052 if (pi->mdio_addr < 0)
3053 return -EOPNOTSUPP;
3054 data->phy_id = pi->mdio_addr;
3055 break;
3056 case SIOCGMIIREG:
3057 case SIOCSMIIREG:
3058 if (mdio_phy_id_is_c45(data->phy_id)) {
3059 prtad = mdio_phy_id_prtad(data->phy_id);
3060 devad = mdio_phy_id_devad(data->phy_id);
3061 } else if (data->phy_id < 32) {
3062 prtad = data->phy_id;
3063 devad = 0;
3064 data->reg_num &= 0x1f;
3065 } else
3066 return -EINVAL;
3067
3068 mbox = pi->adapter->pf;
3069 if (cmd == SIOCGMIIREG)
3070 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3071 data->reg_num, &data->val_out);
3072 else
3073 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3074 data->reg_num, data->val_in);
3075 break;
3076 case SIOCGHWTSTAMP:
3077 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3078 sizeof(pi->tstamp_config)) ?
3079 -EFAULT : 0;
3080 case SIOCSHWTSTAMP:
3081 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3082 sizeof(pi->tstamp_config)))
3083 return -EFAULT;
3084
3085 if (!is_t4(adapter->params.chip)) {
3086 switch (pi->tstamp_config.tx_type) {
3087 case HWTSTAMP_TX_OFF:
3088 case HWTSTAMP_TX_ON:
3089 break;
3090 default:
3091 return -ERANGE;
3092 }
3093
3094 switch (pi->tstamp_config.rx_filter) {
3095 case HWTSTAMP_FILTER_NONE:
3096 pi->rxtstamp = false;
3097 break;
3098 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3099 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3100 cxgb4_ptprx_timestamping(pi, pi->port_id,
3101 PTP_TS_L4);
3102 break;
3103 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3104 cxgb4_ptprx_timestamping(pi, pi->port_id,
3105 PTP_TS_L2_L4);
3106 break;
3107 case HWTSTAMP_FILTER_ALL:
3108 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3109 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3110 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3111 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3112 pi->rxtstamp = true;
3113 break;
3114 default:
3115 pi->tstamp_config.rx_filter =
3116 HWTSTAMP_FILTER_NONE;
3117 return -ERANGE;
3118 }
3119
3120 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3121 (pi->tstamp_config.rx_filter ==
3122 HWTSTAMP_FILTER_NONE)) {
3123 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3124 pi->ptp_enable = false;
3125 }
3126
3127 if (pi->tstamp_config.rx_filter !=
3128 HWTSTAMP_FILTER_NONE) {
3129 if (cxgb4_ptp_redirect_rx_packet(adapter,
3130 pi) >= 0)
3131 pi->ptp_enable = true;
3132 }
3133 } else {
3134 /* For T4 Adapters */
3135 switch (pi->tstamp_config.rx_filter) {
3136 case HWTSTAMP_FILTER_NONE:
3137 pi->rxtstamp = false;
3138 break;
3139 case HWTSTAMP_FILTER_ALL:
3140 pi->rxtstamp = true;
3141 break;
3142 default:
3143 pi->tstamp_config.rx_filter =
3144 HWTSTAMP_FILTER_NONE;
3145 return -ERANGE;
3146 }
3147 }
3148 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3149 sizeof(pi->tstamp_config)) ?
3150 -EFAULT : 0;
3151 default:
3152 return -EOPNOTSUPP;
3153 }
3154 return ret;
3155 }
3156
cxgb_set_rxmode(struct net_device * dev)3157 static void cxgb_set_rxmode(struct net_device *dev)
3158 {
3159 /* unfortunately we can't return errors to the stack */
3160 set_rxmode(dev, -1, false);
3161 }
3162
cxgb_change_mtu(struct net_device * dev,int new_mtu)3163 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3164 {
3165 struct port_info *pi = netdev_priv(dev);
3166 int ret;
3167
3168 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3169 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3170 if (!ret)
3171 WRITE_ONCE(dev->mtu, new_mtu);
3172 return ret;
3173 }
3174
3175 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3176 static int cxgb4_mgmt_open(struct net_device *dev)
3177 {
3178 /* Turn carrier off since we don't have to transmit anything on this
3179 * interface.
3180 */
3181 netif_carrier_off(dev);
3182 return 0;
3183 }
3184
3185 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3186 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3187 {
3188 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3189 unsigned int i, vf, nvfs;
3190 u16 a, b;
3191 int err;
3192 u8 *na;
3193
3194 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3195 if (err)
3196 return;
3197
3198 na = adap->params.vpd.na;
3199 for (i = 0; i < ETH_ALEN; i++)
3200 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3201 hex2val(na[2 * i + 1]));
3202
3203 a = (hw_addr[0] << 8) | hw_addr[1];
3204 b = (hw_addr[1] << 8) | hw_addr[2];
3205 a ^= b;
3206 a |= 0x0200; /* locally assigned Ethernet MAC address */
3207 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3208 macaddr[0] = a >> 8;
3209 macaddr[1] = a & 0xff;
3210
3211 for (i = 2; i < 5; i++)
3212 macaddr[i] = hw_addr[i + 1];
3213
3214 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3215 vf < nvfs; vf++) {
3216 macaddr[5] = adap->pf * nvfs + vf;
3217 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3218 }
3219 }
3220
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3221 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3222 {
3223 struct port_info *pi = netdev_priv(dev);
3224 struct adapter *adap = pi->adapter;
3225 int ret;
3226
3227 /* verify MAC addr is valid */
3228 if (!is_valid_ether_addr(mac)) {
3229 dev_err(pi->adapter->pdev_dev,
3230 "Invalid Ethernet address %pM for VF %d\n",
3231 mac, vf);
3232 return -EINVAL;
3233 }
3234
3235 dev_info(pi->adapter->pdev_dev,
3236 "Setting MAC %pM on VF %d\n", mac, vf);
3237 ret = t4_set_vf_mac_acl(adap, vf + 1, pi->lport, 1, mac);
3238 if (!ret)
3239 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3240 return ret;
3241 }
3242
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3243 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3244 int vf, struct ifla_vf_info *ivi)
3245 {
3246 struct port_info *pi = netdev_priv(dev);
3247 struct adapter *adap = pi->adapter;
3248 struct vf_info *vfinfo;
3249
3250 if (vf >= adap->num_vfs)
3251 return -EINVAL;
3252 vfinfo = &adap->vfinfo[vf];
3253
3254 ivi->vf = vf;
3255 ivi->max_tx_rate = vfinfo->tx_rate;
3256 ivi->min_tx_rate = 0;
3257 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3258 ivi->vlan = vfinfo->vlan;
3259 ivi->linkstate = vfinfo->link_state;
3260 return 0;
3261 }
3262
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3263 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3264 struct netdev_phys_item_id *ppid)
3265 {
3266 struct port_info *pi = netdev_priv(dev);
3267 unsigned int phy_port_id;
3268
3269 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3270 ppid->id_len = sizeof(phy_port_id);
3271 memcpy(ppid->id, &phy_port_id, ppid->id_len);
3272 return 0;
3273 }
3274
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3275 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3276 int min_tx_rate, int max_tx_rate)
3277 {
3278 struct port_info *pi = netdev_priv(dev);
3279 struct adapter *adap = pi->adapter;
3280 unsigned int link_ok, speed, mtu;
3281 u32 fw_pfvf, fw_class;
3282 int class_id = vf;
3283 int ret;
3284 u16 pktsize;
3285
3286 if (vf >= adap->num_vfs)
3287 return -EINVAL;
3288
3289 if (min_tx_rate) {
3290 dev_err(adap->pdev_dev,
3291 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3292 min_tx_rate, vf);
3293 return -EINVAL;
3294 }
3295
3296 if (max_tx_rate == 0) {
3297 /* unbind VF to to any Traffic Class */
3298 fw_pfvf =
3299 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3300 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3301 fw_class = 0xffffffff;
3302 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3303 &fw_pfvf, &fw_class);
3304 if (ret) {
3305 dev_err(adap->pdev_dev,
3306 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3307 ret, adap->pf, vf);
3308 return -EINVAL;
3309 }
3310 dev_info(adap->pdev_dev,
3311 "PF %d VF %d is unbound from TX Rate Limiting\n",
3312 adap->pf, vf);
3313 adap->vfinfo[vf].tx_rate = 0;
3314 return 0;
3315 }
3316
3317 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3318 if (ret != FW_SUCCESS) {
3319 dev_err(adap->pdev_dev,
3320 "Failed to get link information for VF %d\n", vf);
3321 return -EINVAL;
3322 }
3323
3324 if (!link_ok) {
3325 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3326 return -EINVAL;
3327 }
3328
3329 if (max_tx_rate > speed) {
3330 dev_err(adap->pdev_dev,
3331 "Max tx rate %d for VF %d can't be > link-speed %u",
3332 max_tx_rate, vf, speed);
3333 return -EINVAL;
3334 }
3335
3336 pktsize = mtu;
3337 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3338 pktsize = pktsize - sizeof(struct ethhdr) - 4;
3339 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3340 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3341 /* configure Traffic Class for rate-limiting */
3342 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3343 SCHED_CLASS_LEVEL_CL_RL,
3344 SCHED_CLASS_MODE_CLASS,
3345 SCHED_CLASS_RATEUNIT_BITS,
3346 SCHED_CLASS_RATEMODE_ABS,
3347 pi->tx_chan, class_id, 0,
3348 max_tx_rate * 1000, 0, pktsize, 0);
3349 if (ret) {
3350 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3351 ret);
3352 return -EINVAL;
3353 }
3354 dev_info(adap->pdev_dev,
3355 "Class %d with MSS %u configured with rate %u\n",
3356 class_id, pktsize, max_tx_rate);
3357
3358 /* bind VF to configured Traffic Class */
3359 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3360 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3361 fw_class = class_id;
3362 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3363 &fw_class);
3364 if (ret) {
3365 dev_err(adap->pdev_dev,
3366 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3367 ret, adap->pf, vf, class_id);
3368 return -EINVAL;
3369 }
3370 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3371 adap->pf, vf, class_id);
3372 adap->vfinfo[vf].tx_rate = max_tx_rate;
3373 return 0;
3374 }
3375
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3376 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3377 u16 vlan, u8 qos, __be16 vlan_proto)
3378 {
3379 struct port_info *pi = netdev_priv(dev);
3380 struct adapter *adap = pi->adapter;
3381 int ret;
3382
3383 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3384 return -EINVAL;
3385
3386 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3387 return -EPROTONOSUPPORT;
3388
3389 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3390 if (!ret) {
3391 adap->vfinfo[vf].vlan = vlan;
3392 return 0;
3393 }
3394
3395 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3396 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3397 return ret;
3398 }
3399
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3400 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3401 int link)
3402 {
3403 struct port_info *pi = netdev_priv(dev);
3404 struct adapter *adap = pi->adapter;
3405 u32 param, val;
3406 int ret = 0;
3407
3408 if (vf >= adap->num_vfs)
3409 return -EINVAL;
3410
3411 switch (link) {
3412 case IFLA_VF_LINK_STATE_AUTO:
3413 val = FW_VF_LINK_STATE_AUTO;
3414 break;
3415
3416 case IFLA_VF_LINK_STATE_ENABLE:
3417 val = FW_VF_LINK_STATE_ENABLE;
3418 break;
3419
3420 case IFLA_VF_LINK_STATE_DISABLE:
3421 val = FW_VF_LINK_STATE_DISABLE;
3422 break;
3423
3424 default:
3425 return -EINVAL;
3426 }
3427
3428 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3429 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3430 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3431 ¶m, &val);
3432 if (ret) {
3433 dev_err(adap->pdev_dev,
3434 "Error %d in setting PF %d VF %d link state\n",
3435 ret, adap->pf, vf);
3436 return -EINVAL;
3437 }
3438
3439 adap->vfinfo[vf].link_state = link;
3440 return ret;
3441 }
3442 #endif /* CONFIG_PCI_IOV */
3443
cxgb_set_mac_addr(struct net_device * dev,void * p)3444 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3445 {
3446 int ret;
3447 struct sockaddr *addr = p;
3448 struct port_info *pi = netdev_priv(dev);
3449
3450 if (!is_valid_ether_addr(addr->sa_data))
3451 return -EADDRNOTAVAIL;
3452
3453 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3454 addr->sa_data, true, &pi->smt_idx);
3455 if (ret < 0)
3456 return ret;
3457
3458 eth_hw_addr_set(dev, addr->sa_data);
3459 return 0;
3460 }
3461
3462 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3463 static void cxgb_netpoll(struct net_device *dev)
3464 {
3465 struct port_info *pi = netdev_priv(dev);
3466 struct adapter *adap = pi->adapter;
3467
3468 if (adap->flags & CXGB4_USING_MSIX) {
3469 int i;
3470 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3471
3472 for (i = pi->nqsets; i; i--, rx++)
3473 t4_sge_intr_msix(0, &rx->rspq);
3474 } else
3475 t4_intr_handler(adap)(0, adap);
3476 }
3477 #endif
3478
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3479 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3480 {
3481 struct port_info *pi = netdev_priv(dev);
3482 struct adapter *adap = pi->adapter;
3483 struct ch_sched_queue qe = { 0 };
3484 struct ch_sched_params p = { 0 };
3485 struct sched_class *e;
3486 u32 req_rate;
3487 int err = 0;
3488
3489 if (!can_sched(dev))
3490 return -ENOTSUPP;
3491
3492 if (index < 0 || index > pi->nqsets - 1)
3493 return -EINVAL;
3494
3495 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3496 dev_err(adap->pdev_dev,
3497 "Failed to rate limit on queue %d. Link Down?\n",
3498 index);
3499 return -EINVAL;
3500 }
3501
3502 qe.queue = index;
3503 e = cxgb4_sched_queue_lookup(dev, &qe);
3504 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3505 dev_err(adap->pdev_dev,
3506 "Queue %u already bound to class %u of type: %u\n",
3507 index, e->idx, e->info.u.params.level);
3508 return -EBUSY;
3509 }
3510
3511 /* Convert from Mbps to Kbps */
3512 req_rate = rate * 1000;
3513
3514 /* Max rate is 100 Gbps */
3515 if (req_rate > SCHED_MAX_RATE_KBPS) {
3516 dev_err(adap->pdev_dev,
3517 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3518 rate, SCHED_MAX_RATE_KBPS / 1000);
3519 return -ERANGE;
3520 }
3521
3522 /* First unbind the queue from any existing class */
3523 memset(&qe, 0, sizeof(qe));
3524 qe.queue = index;
3525 qe.class = SCHED_CLS_NONE;
3526
3527 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3528 if (err) {
3529 dev_err(adap->pdev_dev,
3530 "Unbinding Queue %d on port %d fail. Err: %d\n",
3531 index, pi->port_id, err);
3532 return err;
3533 }
3534
3535 /* Queue already unbound */
3536 if (!req_rate)
3537 return 0;
3538
3539 /* Fetch any available unused or matching scheduling class */
3540 p.type = SCHED_CLASS_TYPE_PACKET;
3541 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3542 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3543 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3544 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3545 p.u.params.channel = pi->tx_chan;
3546 p.u.params.class = SCHED_CLS_NONE;
3547 p.u.params.minrate = 0;
3548 p.u.params.maxrate = req_rate;
3549 p.u.params.weight = 0;
3550 p.u.params.pktsize = dev->mtu;
3551
3552 e = cxgb4_sched_class_alloc(dev, &p);
3553 if (!e)
3554 return -ENOMEM;
3555
3556 /* Bind the queue to a scheduling class */
3557 memset(&qe, 0, sizeof(qe));
3558 qe.queue = index;
3559 qe.class = e->idx;
3560
3561 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3562 if (err)
3563 dev_err(adap->pdev_dev,
3564 "Queue rate limiting failed. Err: %d\n", err);
3565 return err;
3566 }
3567
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3568 static int cxgb_setup_tc_flower(struct net_device *dev,
3569 struct flow_cls_offload *cls_flower)
3570 {
3571 switch (cls_flower->command) {
3572 case FLOW_CLS_REPLACE:
3573 return cxgb4_tc_flower_replace(dev, cls_flower);
3574 case FLOW_CLS_DESTROY:
3575 return cxgb4_tc_flower_destroy(dev, cls_flower);
3576 case FLOW_CLS_STATS:
3577 return cxgb4_tc_flower_stats(dev, cls_flower);
3578 default:
3579 return -EOPNOTSUPP;
3580 }
3581 }
3582
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3583 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3584 struct tc_cls_u32_offload *cls_u32)
3585 {
3586 switch (cls_u32->command) {
3587 case TC_CLSU32_NEW_KNODE:
3588 case TC_CLSU32_REPLACE_KNODE:
3589 return cxgb4_config_knode(dev, cls_u32);
3590 case TC_CLSU32_DELETE_KNODE:
3591 return cxgb4_delete_knode(dev, cls_u32);
3592 default:
3593 return -EOPNOTSUPP;
3594 }
3595 }
3596
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3597 static int cxgb_setup_tc_matchall(struct net_device *dev,
3598 struct tc_cls_matchall_offload *cls_matchall,
3599 bool ingress)
3600 {
3601 struct adapter *adap = netdev2adap(dev);
3602
3603 if (!adap->tc_matchall)
3604 return -ENOMEM;
3605
3606 switch (cls_matchall->command) {
3607 case TC_CLSMATCHALL_REPLACE:
3608 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3609 case TC_CLSMATCHALL_DESTROY:
3610 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3611 case TC_CLSMATCHALL_STATS:
3612 if (ingress)
3613 return cxgb4_tc_matchall_stats(dev, cls_matchall);
3614 break;
3615 default:
3616 break;
3617 }
3618
3619 return -EOPNOTSUPP;
3620 }
3621
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3622 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3623 void *type_data, void *cb_priv)
3624 {
3625 struct net_device *dev = cb_priv;
3626 struct port_info *pi = netdev2pinfo(dev);
3627 struct adapter *adap = netdev2adap(dev);
3628
3629 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3630 dev_err(adap->pdev_dev,
3631 "Failed to setup tc on port %d. Link Down?\n",
3632 pi->port_id);
3633 return -EINVAL;
3634 }
3635
3636 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3637 return -EOPNOTSUPP;
3638
3639 switch (type) {
3640 case TC_SETUP_CLSU32:
3641 return cxgb_setup_tc_cls_u32(dev, type_data);
3642 case TC_SETUP_CLSFLOWER:
3643 return cxgb_setup_tc_flower(dev, type_data);
3644 case TC_SETUP_CLSMATCHALL:
3645 return cxgb_setup_tc_matchall(dev, type_data, true);
3646 default:
3647 return -EOPNOTSUPP;
3648 }
3649 }
3650
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3651 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3652 void *type_data, void *cb_priv)
3653 {
3654 struct net_device *dev = cb_priv;
3655 struct port_info *pi = netdev2pinfo(dev);
3656 struct adapter *adap = netdev2adap(dev);
3657
3658 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3659 dev_err(adap->pdev_dev,
3660 "Failed to setup tc on port %d. Link Down?\n",
3661 pi->port_id);
3662 return -EINVAL;
3663 }
3664
3665 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3666 return -EOPNOTSUPP;
3667
3668 switch (type) {
3669 case TC_SETUP_CLSMATCHALL:
3670 return cxgb_setup_tc_matchall(dev, type_data, false);
3671 default:
3672 break;
3673 }
3674
3675 return -EOPNOTSUPP;
3676 }
3677
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3678 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3679 struct tc_mqprio_qopt_offload *mqprio)
3680 {
3681 struct adapter *adap = netdev2adap(dev);
3682
3683 if (!is_ethofld(adap) || !adap->tc_mqprio)
3684 return -ENOMEM;
3685
3686 return cxgb4_setup_tc_mqprio(dev, mqprio);
3687 }
3688
3689 static LIST_HEAD(cxgb_block_cb_list);
3690
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3691 static int cxgb_setup_tc_block(struct net_device *dev,
3692 struct flow_block_offload *f)
3693 {
3694 struct port_info *pi = netdev_priv(dev);
3695 flow_setup_cb_t *cb;
3696 bool ingress_only;
3697
3698 pi->tc_block_shared = f->block_shared;
3699 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3700 cb = cxgb_setup_tc_block_egress_cb;
3701 ingress_only = false;
3702 } else {
3703 cb = cxgb_setup_tc_block_ingress_cb;
3704 ingress_only = true;
3705 }
3706
3707 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3708 cb, pi, dev, ingress_only);
3709 }
3710
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3711 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3712 void *type_data)
3713 {
3714 switch (type) {
3715 case TC_SETUP_QDISC_MQPRIO:
3716 return cxgb_setup_tc_mqprio(dev, type_data);
3717 case TC_SETUP_BLOCK:
3718 return cxgb_setup_tc_block(dev, type_data);
3719 default:
3720 return -EOPNOTSUPP;
3721 }
3722 }
3723
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3724 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3725 unsigned int table, unsigned int entry,
3726 struct udp_tunnel_info *ti)
3727 {
3728 struct port_info *pi = netdev_priv(netdev);
3729 struct adapter *adapter = pi->adapter;
3730 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3731 int ret = 0, i;
3732
3733 switch (ti->type) {
3734 case UDP_TUNNEL_TYPE_VXLAN:
3735 adapter->vxlan_port = 0;
3736 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3737 break;
3738 case UDP_TUNNEL_TYPE_GENEVE:
3739 adapter->geneve_port = 0;
3740 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3741 break;
3742 default:
3743 return -EINVAL;
3744 }
3745
3746 /* Matchall mac entries can be deleted only after all tunnel ports
3747 * are brought down or removed.
3748 */
3749 if (!adapter->rawf_cnt)
3750 return 0;
3751 for_each_port(adapter, i) {
3752 pi = adap2pinfo(adapter, i);
3753 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3754 match_all_mac, match_all_mac,
3755 adapter->rawf_start + pi->port_id,
3756 1, pi->port_id, false);
3757 if (ret < 0) {
3758 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3759 i);
3760 return ret;
3761 }
3762 }
3763
3764 return 0;
3765 }
3766
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3767 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3768 unsigned int table, unsigned int entry,
3769 struct udp_tunnel_info *ti)
3770 {
3771 struct port_info *pi = netdev_priv(netdev);
3772 struct adapter *adapter = pi->adapter;
3773 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3774 int i, ret;
3775
3776 switch (ti->type) {
3777 case UDP_TUNNEL_TYPE_VXLAN:
3778 adapter->vxlan_port = ti->port;
3779 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3780 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3781 break;
3782 case UDP_TUNNEL_TYPE_GENEVE:
3783 adapter->geneve_port = ti->port;
3784 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3785 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3786 break;
3787 default:
3788 return -EINVAL;
3789 }
3790
3791 /* Create a 'match all' mac filter entry for inner mac,
3792 * if raw mac interface is supported. Once the linux kernel provides
3793 * driver entry points for adding/deleting the inner mac addresses,
3794 * we will remove this 'match all' entry and fallback to adding
3795 * exact match filters.
3796 */
3797 for_each_port(adapter, i) {
3798 pi = adap2pinfo(adapter, i);
3799
3800 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3801 match_all_mac,
3802 match_all_mac,
3803 adapter->rawf_start + pi->port_id,
3804 1, pi->port_id, false);
3805 if (ret < 0) {
3806 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3807 be16_to_cpu(ti->port));
3808 return ret;
3809 }
3810 }
3811
3812 return 0;
3813 }
3814
3815 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3816 .set_port = cxgb_udp_tunnel_set_port,
3817 .unset_port = cxgb_udp_tunnel_unset_port,
3818 .tables = {
3819 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
3820 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3821 },
3822 };
3823
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3824 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3825 struct net_device *dev,
3826 netdev_features_t features)
3827 {
3828 struct port_info *pi = netdev_priv(dev);
3829 struct adapter *adapter = pi->adapter;
3830
3831 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3832 return features;
3833
3834 /* Check if hw supports offload for this packet */
3835 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3836 return features;
3837
3838 /* Offload is not supported for this encapsulated packet */
3839 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3840 }
3841
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3842 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3843 netdev_features_t features)
3844 {
3845 /* Disable GRO, if RX_CSUM is disabled */
3846 if (!(features & NETIF_F_RXCSUM))
3847 features &= ~NETIF_F_GRO;
3848
3849 return features;
3850 }
3851
3852 static const struct net_device_ops cxgb4_netdev_ops = {
3853 .ndo_open = cxgb_open,
3854 .ndo_stop = cxgb_close,
3855 .ndo_start_xmit = t4_start_xmit,
3856 .ndo_select_queue = cxgb_select_queue,
3857 .ndo_get_stats64 = cxgb_get_stats,
3858 .ndo_set_rx_mode = cxgb_set_rxmode,
3859 .ndo_set_mac_address = cxgb_set_mac_addr,
3860 .ndo_set_features = cxgb_set_features,
3861 .ndo_validate_addr = eth_validate_addr,
3862 .ndo_eth_ioctl = cxgb_ioctl,
3863 .ndo_change_mtu = cxgb_change_mtu,
3864 #ifdef CONFIG_NET_POLL_CONTROLLER
3865 .ndo_poll_controller = cxgb_netpoll,
3866 #endif
3867 #ifdef CONFIG_CHELSIO_T4_FCOE
3868 .ndo_fcoe_enable = cxgb_fcoe_enable,
3869 .ndo_fcoe_disable = cxgb_fcoe_disable,
3870 #endif /* CONFIG_CHELSIO_T4_FCOE */
3871 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3872 .ndo_setup_tc = cxgb_setup_tc,
3873 .ndo_features_check = cxgb_features_check,
3874 .ndo_fix_features = cxgb_fix_features,
3875 };
3876
3877 #ifdef CONFIG_PCI_IOV
3878 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3879 .ndo_open = cxgb4_mgmt_open,
3880 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3881 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3882 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3883 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3884 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3885 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3886 };
3887
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3888 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3889 struct ethtool_drvinfo *info)
3890 {
3891 struct adapter *adapter = netdev2adap(dev);
3892
3893 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3894 strscpy(info->bus_info, pci_name(adapter->pdev),
3895 sizeof(info->bus_info));
3896 }
3897
3898 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3899 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3900 };
3901 #endif
3902
notify_fatal_err(struct work_struct * work)3903 static void notify_fatal_err(struct work_struct *work)
3904 {
3905 struct adapter *adap;
3906
3907 adap = container_of(work, struct adapter, fatal_err_notify_task);
3908 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3909 }
3910
t4_fatal_err(struct adapter * adap)3911 void t4_fatal_err(struct adapter *adap)
3912 {
3913 int port;
3914
3915 if (pci_channel_offline(adap->pdev))
3916 return;
3917
3918 /* Disable the SGE since ULDs are going to free resources that
3919 * could be exposed to the adapter. RDMA MWs for example...
3920 */
3921 t4_shutdown_adapter(adap);
3922 for_each_port(adap, port) {
3923 struct net_device *dev = adap->port[port];
3924
3925 /* If we get here in very early initialization the network
3926 * devices may not have been set up yet.
3927 */
3928 if (!dev)
3929 continue;
3930
3931 netif_tx_stop_all_queues(dev);
3932 netif_carrier_off(dev);
3933 }
3934 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3935 queue_work(adap->workq, &adap->fatal_err_notify_task);
3936 }
3937
setup_memwin(struct adapter * adap)3938 static void setup_memwin(struct adapter *adap)
3939 {
3940 u32 nic_win_base = t4_get_util_window(adap);
3941
3942 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3943 }
3944
setup_memwin_rdma(struct adapter * adap)3945 static void setup_memwin_rdma(struct adapter *adap)
3946 {
3947 if (adap->vres.ocq.size) {
3948 u32 start;
3949 unsigned int sz_kb;
3950
3951 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3952 start &= PCI_BASE_ADDRESS_MEM_MASK;
3953 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3954 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3955 t4_write_reg(adap,
3956 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3957 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3958 t4_write_reg(adap,
3959 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3960 adap->vres.ocq.start);
3961 t4_read_reg(adap,
3962 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3963 }
3964 }
3965
3966 /* HMA Definitions */
3967
3968 /* The maximum number of address that can be send in a single FW cmd */
3969 #define HMA_MAX_ADDR_IN_CMD 5
3970
3971 #define HMA_PAGE_SIZE PAGE_SIZE
3972
3973 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3974
3975 #define HMA_PAGE_ORDER \
3976 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3977 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3978
3979 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3980 * configuration(in units of MB).
3981 */
3982 #define HMA_MIN_TOTAL_SIZE 1
3983 #define HMA_MAX_TOTAL_SIZE \
3984 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3985 HMA_MAX_NO_FW_ADDRESS) >> 20)
3986
adap_free_hma_mem(struct adapter * adapter)3987 static void adap_free_hma_mem(struct adapter *adapter)
3988 {
3989 struct scatterlist *iter;
3990 struct page *page;
3991 int i;
3992
3993 if (!adapter->hma.sgt)
3994 return;
3995
3996 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3997 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3998 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
3999 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4000 }
4001
4002 for_each_sg(adapter->hma.sgt->sgl, iter,
4003 adapter->hma.sgt->orig_nents, i) {
4004 page = sg_page(iter);
4005 if (page)
4006 __free_pages(page, HMA_PAGE_ORDER);
4007 }
4008
4009 kfree(adapter->hma.phy_addr);
4010 sg_free_table(adapter->hma.sgt);
4011 kfree(adapter->hma.sgt);
4012 adapter->hma.sgt = NULL;
4013 }
4014
adap_config_hma(struct adapter * adapter)4015 static int adap_config_hma(struct adapter *adapter)
4016 {
4017 struct scatterlist *sgl, *iter;
4018 struct sg_table *sgt;
4019 struct page *newpage;
4020 unsigned int i, j, k;
4021 u32 param, hma_size;
4022 unsigned int ncmds;
4023 size_t page_size;
4024 u32 page_order;
4025 int node, ret;
4026
4027 /* HMA is supported only for T6+ cards.
4028 * Avoid initializing HMA in kdump kernels.
4029 */
4030 if (is_kdump_kernel() ||
4031 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4032 return 0;
4033
4034 /* Get the HMA region size required by fw */
4035 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4036 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4037 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4038 1, ¶m, &hma_size);
4039 /* An error means card has its own memory or HMA is not supported by
4040 * the firmware. Return without any errors.
4041 */
4042 if (ret || !hma_size)
4043 return 0;
4044
4045 if (hma_size < HMA_MIN_TOTAL_SIZE ||
4046 hma_size > HMA_MAX_TOTAL_SIZE) {
4047 dev_err(adapter->pdev_dev,
4048 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4049 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4050 return -EINVAL;
4051 }
4052
4053 page_size = HMA_PAGE_SIZE;
4054 page_order = HMA_PAGE_ORDER;
4055 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4056 if (unlikely(!adapter->hma.sgt)) {
4057 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4058 return -ENOMEM;
4059 }
4060 sgt = adapter->hma.sgt;
4061 /* FW returned value will be in MB's
4062 */
4063 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4064 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4065 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4066 kfree(adapter->hma.sgt);
4067 adapter->hma.sgt = NULL;
4068 return -ENOMEM;
4069 }
4070
4071 sgl = adapter->hma.sgt->sgl;
4072 node = dev_to_node(adapter->pdev_dev);
4073 for_each_sg(sgl, iter, sgt->orig_nents, i) {
4074 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4075 __GFP_ZERO, page_order);
4076 if (!newpage) {
4077 dev_err(adapter->pdev_dev,
4078 "Not enough memory for HMA page allocation\n");
4079 ret = -ENOMEM;
4080 goto free_hma;
4081 }
4082 sg_set_page(iter, newpage, page_size << page_order, 0);
4083 }
4084
4085 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4086 DMA_BIDIRECTIONAL);
4087 if (!sgt->nents) {
4088 dev_err(adapter->pdev_dev,
4089 "Not enough memory for HMA DMA mapping");
4090 ret = -ENOMEM;
4091 goto free_hma;
4092 }
4093 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4094
4095 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4096 GFP_KERNEL);
4097 if (unlikely(!adapter->hma.phy_addr))
4098 goto free_hma;
4099
4100 for_each_sg(sgl, iter, sgt->nents, i) {
4101 newpage = sg_page(iter);
4102 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4103 }
4104
4105 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4106 /* Pass on the addresses to firmware */
4107 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4108 struct fw_hma_cmd hma_cmd;
4109 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4110 u8 soc = 0, eoc = 0;
4111 u8 hma_mode = 1; /* Presently we support only Page table mode */
4112
4113 soc = (i == 0) ? 1 : 0;
4114 eoc = (i == ncmds - 1) ? 1 : 0;
4115
4116 /* For last cmd, set naddr corresponding to remaining
4117 * addresses
4118 */
4119 if (i == ncmds - 1) {
4120 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4121 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4122 }
4123 memset(&hma_cmd, 0, sizeof(hma_cmd));
4124 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4125 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4126 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4127
4128 hma_cmd.mode_to_pcie_params =
4129 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4130 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4131
4132 /* HMA cmd size specified in MB's */
4133 hma_cmd.naddr_size =
4134 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4135 FW_HMA_CMD_NADDR_V(naddr));
4136
4137 /* Total Page size specified in units of 4K */
4138 hma_cmd.addr_size_pkd =
4139 htonl(FW_HMA_CMD_ADDR_SIZE_V
4140 ((page_size << page_order) >> 12));
4141
4142 /* Fill the 5 addresses */
4143 for (j = 0; j < naddr; j++) {
4144 hma_cmd.phy_address[j] =
4145 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4146 }
4147 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4148 sizeof(hma_cmd), &hma_cmd);
4149 if (ret) {
4150 dev_err(adapter->pdev_dev,
4151 "HMA FW command failed with err %d\n", ret);
4152 goto free_hma;
4153 }
4154 }
4155
4156 if (!ret)
4157 dev_info(adapter->pdev_dev,
4158 "Reserved %uMB host memory for HMA\n", hma_size);
4159 return ret;
4160
4161 free_hma:
4162 adap_free_hma_mem(adapter);
4163 return ret;
4164 }
4165
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4166 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4167 {
4168 u32 v;
4169 int ret;
4170
4171 /* Now that we've successfully configured and initialized the adapter
4172 * can ask the Firmware what resources it has provisioned for us.
4173 */
4174 ret = t4_get_pfres(adap);
4175 if (ret) {
4176 dev_err(adap->pdev_dev,
4177 "Unable to retrieve resource provisioning information\n");
4178 return ret;
4179 }
4180
4181 /* get device capabilities */
4182 memset(c, 0, sizeof(*c));
4183 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4184 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4185 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4186 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4187 if (ret < 0)
4188 return ret;
4189
4190 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4191 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4192 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4193 if (ret < 0)
4194 return ret;
4195
4196 ret = t4_config_glbl_rss(adap, adap->pf,
4197 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4198 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4199 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4200 if (ret < 0)
4201 return ret;
4202
4203 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4204 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4205 FW_CMD_CAP_PF);
4206 if (ret < 0)
4207 return ret;
4208
4209 t4_sge_init(adap);
4210
4211 /* tweak some settings */
4212 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4213 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4214 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4215 v = t4_read_reg(adap, TP_PIO_DATA_A);
4216 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4217
4218 /* first 4 Tx modulation queues point to consecutive Tx channels */
4219 adap->params.tp.tx_modq_map = 0xE4;
4220 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4221 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4222
4223 /* associate each Tx modulation queue with consecutive Tx channels */
4224 v = 0x84218421;
4225 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4226 &v, 1, TP_TX_SCHED_HDR_A);
4227 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4228 &v, 1, TP_TX_SCHED_FIFO_A);
4229 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4230 &v, 1, TP_TX_SCHED_PCMD_A);
4231
4232 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4233 if (is_offload(adap)) {
4234 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4235 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4236 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4237 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4238 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4239 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4240 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4241 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4242 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4243 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4244 }
4245
4246 /* get basic stuff going */
4247 return t4_early_init(adap, adap->pf);
4248 }
4249
4250 /*
4251 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4252 */
4253 #define MAX_ATIDS 8192U
4254
4255 /*
4256 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4257 *
4258 * If the firmware we're dealing with has Configuration File support, then
4259 * we use that to perform all configuration
4260 */
4261
4262 /*
4263 * Tweak configuration based on module parameters, etc. Most of these have
4264 * defaults assigned to them by Firmware Configuration Files (if we're using
4265 * them) but need to be explicitly set if we're using hard-coded
4266 * initialization. But even in the case of using Firmware Configuration
4267 * Files, we'd like to expose the ability to change these via module
4268 * parameters so these are essentially common tweaks/settings for
4269 * Configuration Files and hard-coded initialization ...
4270 */
adap_init0_tweaks(struct adapter * adapter)4271 static int adap_init0_tweaks(struct adapter *adapter)
4272 {
4273 /*
4274 * Fix up various Host-Dependent Parameters like Page Size, Cache
4275 * Line Size, etc. The firmware default is for a 4KB Page Size and
4276 * 64B Cache Line Size ...
4277 */
4278 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4279
4280 /*
4281 * Process module parameters which affect early initialization.
4282 */
4283 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4284 dev_err(&adapter->pdev->dev,
4285 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4286 rx_dma_offset);
4287 rx_dma_offset = 2;
4288 }
4289 t4_set_reg_field(adapter, SGE_CONTROL_A,
4290 PKTSHIFT_V(PKTSHIFT_M),
4291 PKTSHIFT_V(rx_dma_offset));
4292
4293 /*
4294 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4295 * adds the pseudo header itself.
4296 */
4297 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4298 CSUM_HAS_PSEUDO_HDR_F, 0);
4299
4300 return 0;
4301 }
4302
4303 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4304 * unto themselves and they contain their own firmware to perform their
4305 * tasks ...
4306 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4307 static int phy_aq1202_version(const u8 *phy_fw_data,
4308 size_t phy_fw_size)
4309 {
4310 int offset;
4311
4312 /* At offset 0x8 you're looking for the primary image's
4313 * starting offset which is 3 Bytes wide
4314 *
4315 * At offset 0xa of the primary image, you look for the offset
4316 * of the DRAM segment which is 3 Bytes wide.
4317 *
4318 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4319 * wide
4320 */
4321 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4322 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4323 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4324
4325 offset = le24(phy_fw_data + 0x8) << 12;
4326 offset = le24(phy_fw_data + offset + 0xa);
4327 return be16(phy_fw_data + offset + 0x27e);
4328
4329 #undef be16
4330 #undef le16
4331 #undef le24
4332 }
4333
4334 static struct info_10gbt_phy_fw {
4335 unsigned int phy_fw_id; /* PCI Device ID */
4336 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
4337 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4338 int phy_flash; /* Has FLASH for PHY Firmware */
4339 } phy_info_array[] = {
4340 {
4341 PHY_AQ1202_DEVICEID,
4342 PHY_AQ1202_FIRMWARE,
4343 phy_aq1202_version,
4344 1,
4345 },
4346 {
4347 PHY_BCM84834_DEVICEID,
4348 PHY_BCM84834_FIRMWARE,
4349 NULL,
4350 0,
4351 },
4352 { 0, NULL, NULL },
4353 };
4354
find_phy_info(int devid)4355 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4356 {
4357 int i;
4358
4359 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4360 if (phy_info_array[i].phy_fw_id == devid)
4361 return &phy_info_array[i];
4362 }
4363 return NULL;
4364 }
4365
4366 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4367 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4368 * we return a negative error number. If we transfer new firmware we return 1
4369 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4370 */
adap_init0_phy(struct adapter * adap)4371 static int adap_init0_phy(struct adapter *adap)
4372 {
4373 const struct firmware *phyf;
4374 int ret;
4375 struct info_10gbt_phy_fw *phy_info;
4376
4377 /* Use the device ID to determine which PHY file to flash.
4378 */
4379 phy_info = find_phy_info(adap->pdev->device);
4380 if (!phy_info) {
4381 dev_warn(adap->pdev_dev,
4382 "No PHY Firmware file found for this PHY\n");
4383 return -EOPNOTSUPP;
4384 }
4385
4386 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4387 * use that. The adapter firmware provides us with a memory buffer
4388 * where we can load a PHY firmware file from the host if we want to
4389 * override the PHY firmware File in flash.
4390 */
4391 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4392 adap->pdev_dev);
4393 if (ret < 0) {
4394 /* For adapters without FLASH attached to PHY for their
4395 * firmware, it's obviously a fatal error if we can't get the
4396 * firmware to the adapter. For adapters with PHY firmware
4397 * FLASH storage, it's worth a warning if we can't find the
4398 * PHY Firmware but we'll neuter the error ...
4399 */
4400 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4401 "/lib/firmware/%s, error %d\n",
4402 phy_info->phy_fw_file, -ret);
4403 if (phy_info->phy_flash) {
4404 int cur_phy_fw_ver = 0;
4405
4406 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4407 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4408 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4409 ret = 0;
4410 }
4411
4412 return ret;
4413 }
4414
4415 /* Load PHY Firmware onto adapter.
4416 */
4417 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4418 (u8 *)phyf->data, phyf->size);
4419 if (ret < 0)
4420 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4421 -ret);
4422 else if (ret > 0) {
4423 int new_phy_fw_ver = 0;
4424
4425 if (phy_info->phy_fw_version)
4426 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4427 phyf->size);
4428 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4429 "Firmware /lib/firmware/%s, version %#x\n",
4430 phy_info->phy_fw_file, new_phy_fw_ver);
4431 }
4432
4433 release_firmware(phyf);
4434
4435 return ret;
4436 }
4437
4438 /*
4439 * Attempt to initialize the adapter via a Firmware Configuration File.
4440 */
adap_init0_config(struct adapter * adapter,int reset)4441 static int adap_init0_config(struct adapter *adapter, int reset)
4442 {
4443 char *fw_config_file, fw_config_file_path[256];
4444 u32 finiver, finicsum, cfcsum, param, val;
4445 struct fw_caps_config_cmd caps_cmd;
4446 unsigned long mtype = 0, maddr = 0;
4447 const struct firmware *cf;
4448 char *config_name = NULL;
4449 int config_issued = 0;
4450 int ret;
4451
4452 /*
4453 * Reset device if necessary.
4454 */
4455 if (reset) {
4456 ret = t4_fw_reset(adapter, adapter->mbox,
4457 PIORSTMODE_F | PIORST_F);
4458 if (ret < 0)
4459 goto bye;
4460 }
4461
4462 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4463 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4464 * to be performed after any global adapter RESET above since some
4465 * PHYs only have local RAM copies of the PHY firmware.
4466 */
4467 if (is_10gbt_device(adapter->pdev->device)) {
4468 ret = adap_init0_phy(adapter);
4469 if (ret < 0)
4470 goto bye;
4471 }
4472 /*
4473 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4474 * then use that. Otherwise, use the configuration file stored
4475 * in the adapter flash ...
4476 */
4477 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4478 case CHELSIO_T4:
4479 fw_config_file = FW4_CFNAME;
4480 break;
4481 case CHELSIO_T5:
4482 fw_config_file = FW5_CFNAME;
4483 break;
4484 case CHELSIO_T6:
4485 fw_config_file = FW6_CFNAME;
4486 break;
4487 default:
4488 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4489 adapter->pdev->device);
4490 ret = -EINVAL;
4491 goto bye;
4492 }
4493
4494 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4495 if (ret < 0) {
4496 config_name = "On FLASH";
4497 mtype = FW_MEMTYPE_CF_FLASH;
4498 maddr = t4_flash_cfg_addr(adapter);
4499 } else {
4500 u32 params[7], val[7];
4501
4502 sprintf(fw_config_file_path,
4503 "/lib/firmware/%s", fw_config_file);
4504 config_name = fw_config_file_path;
4505
4506 if (cf->size >= FLASH_CFG_MAX_SIZE)
4507 ret = -ENOMEM;
4508 else {
4509 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4510 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4511 ret = t4_query_params(adapter, adapter->mbox,
4512 adapter->pf, 0, 1, params, val);
4513 if (ret == 0) {
4514 /*
4515 * For t4_memory_rw() below addresses and
4516 * sizes have to be in terms of multiples of 4
4517 * bytes. So, if the Configuration File isn't
4518 * a multiple of 4 bytes in length we'll have
4519 * to write that out separately since we can't
4520 * guarantee that the bytes following the
4521 * residual byte in the buffer returned by
4522 * request_firmware() are zeroed out ...
4523 */
4524 size_t resid = cf->size & 0x3;
4525 size_t size = cf->size & ~0x3;
4526 __be32 *data = (__be32 *)cf->data;
4527
4528 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4529 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4530
4531 spin_lock(&adapter->win0_lock);
4532 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4533 size, data, T4_MEMORY_WRITE);
4534 if (ret == 0 && resid != 0) {
4535 union {
4536 __be32 word;
4537 char buf[4];
4538 } last;
4539 int i;
4540
4541 last.word = data[size >> 2];
4542 for (i = resid; i < 4; i++)
4543 last.buf[i] = 0;
4544 ret = t4_memory_rw(adapter, 0, mtype,
4545 maddr + size,
4546 4, &last.word,
4547 T4_MEMORY_WRITE);
4548 }
4549 spin_unlock(&adapter->win0_lock);
4550 }
4551 }
4552
4553 release_firmware(cf);
4554 if (ret)
4555 goto bye;
4556 }
4557
4558 val = 0;
4559
4560 /* Ofld + Hash filter is supported. Older fw will fail this request and
4561 * it is fine.
4562 */
4563 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4564 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4565 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4566 1, ¶m, &val);
4567
4568 /* FW doesn't know about Hash filter + ofld support,
4569 * it's not a problem, don't return an error.
4570 */
4571 if (ret < 0) {
4572 dev_warn(adapter->pdev_dev,
4573 "Hash filter with ofld is not supported by FW\n");
4574 }
4575
4576 /*
4577 * Issue a Capability Configuration command to the firmware to get it
4578 * to parse the Configuration File. We don't use t4_fw_config_file()
4579 * because we want the ability to modify various features after we've
4580 * processed the configuration file ...
4581 */
4582 memset(&caps_cmd, 0, sizeof(caps_cmd));
4583 caps_cmd.op_to_write =
4584 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4585 FW_CMD_REQUEST_F |
4586 FW_CMD_READ_F);
4587 caps_cmd.cfvalid_to_len16 =
4588 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4589 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4590 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4591 FW_LEN16(caps_cmd));
4592 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4593 &caps_cmd);
4594
4595 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4596 * Configuration File in FLASH), our last gasp effort is to use the
4597 * Firmware Configuration File which is embedded in the firmware. A
4598 * very few early versions of the firmware didn't have one embedded
4599 * but we can ignore those.
4600 */
4601 if (ret == -ENOENT) {
4602 memset(&caps_cmd, 0, sizeof(caps_cmd));
4603 caps_cmd.op_to_write =
4604 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4605 FW_CMD_REQUEST_F |
4606 FW_CMD_READ_F);
4607 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4608 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4609 sizeof(caps_cmd), &caps_cmd);
4610 config_name = "Firmware Default";
4611 }
4612
4613 config_issued = 1;
4614 if (ret < 0)
4615 goto bye;
4616
4617 finiver = ntohl(caps_cmd.finiver);
4618 finicsum = ntohl(caps_cmd.finicsum);
4619 cfcsum = ntohl(caps_cmd.cfcsum);
4620 if (finicsum != cfcsum)
4621 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4622 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4623 finicsum, cfcsum);
4624
4625 /*
4626 * And now tell the firmware to use the configuration we just loaded.
4627 */
4628 caps_cmd.op_to_write =
4629 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4630 FW_CMD_REQUEST_F |
4631 FW_CMD_WRITE_F);
4632 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4633 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4634 NULL);
4635 if (ret < 0)
4636 goto bye;
4637
4638 /*
4639 * Tweak configuration based on system architecture, module
4640 * parameters, etc.
4641 */
4642 ret = adap_init0_tweaks(adapter);
4643 if (ret < 0)
4644 goto bye;
4645
4646 /* We will proceed even if HMA init fails. */
4647 ret = adap_config_hma(adapter);
4648 if (ret)
4649 dev_err(adapter->pdev_dev,
4650 "HMA configuration failed with error %d\n", ret);
4651
4652 if (is_t6(adapter->params.chip)) {
4653 adap_config_hpfilter(adapter);
4654 ret = setup_ppod_edram(adapter);
4655 if (!ret)
4656 dev_info(adapter->pdev_dev, "Successfully enabled "
4657 "ppod edram feature\n");
4658 }
4659
4660 /*
4661 * And finally tell the firmware to initialize itself using the
4662 * parameters from the Configuration File.
4663 */
4664 ret = t4_fw_initialize(adapter, adapter->mbox);
4665 if (ret < 0)
4666 goto bye;
4667
4668 /* Emit Firmware Configuration File information and return
4669 * successfully.
4670 */
4671 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4672 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4673 config_name, finiver, cfcsum);
4674 return 0;
4675
4676 /*
4677 * Something bad happened. Return the error ... (If the "error"
4678 * is that there's no Configuration File on the adapter we don't
4679 * want to issue a warning since this is fairly common.)
4680 */
4681 bye:
4682 if (config_issued && ret != -ENOENT)
4683 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4684 config_name, -ret);
4685 return ret;
4686 }
4687
4688 static struct fw_info fw_info_array[] = {
4689 {
4690 .chip = CHELSIO_T4,
4691 .fs_name = FW4_CFNAME,
4692 .fw_mod_name = FW4_FNAME,
4693 .fw_hdr = {
4694 .chip = FW_HDR_CHIP_T4,
4695 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4696 .intfver_nic = FW_INTFVER(T4, NIC),
4697 .intfver_vnic = FW_INTFVER(T4, VNIC),
4698 .intfver_ri = FW_INTFVER(T4, RI),
4699 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4700 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4701 },
4702 }, {
4703 .chip = CHELSIO_T5,
4704 .fs_name = FW5_CFNAME,
4705 .fw_mod_name = FW5_FNAME,
4706 .fw_hdr = {
4707 .chip = FW_HDR_CHIP_T5,
4708 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4709 .intfver_nic = FW_INTFVER(T5, NIC),
4710 .intfver_vnic = FW_INTFVER(T5, VNIC),
4711 .intfver_ri = FW_INTFVER(T5, RI),
4712 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4713 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4714 },
4715 }, {
4716 .chip = CHELSIO_T6,
4717 .fs_name = FW6_CFNAME,
4718 .fw_mod_name = FW6_FNAME,
4719 .fw_hdr = {
4720 .chip = FW_HDR_CHIP_T6,
4721 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4722 .intfver_nic = FW_INTFVER(T6, NIC),
4723 .intfver_vnic = FW_INTFVER(T6, VNIC),
4724 .intfver_ofld = FW_INTFVER(T6, OFLD),
4725 .intfver_ri = FW_INTFVER(T6, RI),
4726 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4727 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4728 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4729 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4730 },
4731 }
4732
4733 };
4734
find_fw_info(int chip)4735 static struct fw_info *find_fw_info(int chip)
4736 {
4737 int i;
4738
4739 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4740 if (fw_info_array[i].chip == chip)
4741 return &fw_info_array[i];
4742 }
4743 return NULL;
4744 }
4745
4746 /*
4747 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4748 */
adap_init0(struct adapter * adap,int vpd_skip)4749 static int adap_init0(struct adapter *adap, int vpd_skip)
4750 {
4751 struct fw_caps_config_cmd caps_cmd;
4752 u32 params[7], val[7];
4753 enum dev_state state;
4754 u32 v, port_vec;
4755 int reset = 1;
4756 int ret;
4757
4758 /* Grab Firmware Device Log parameters as early as possible so we have
4759 * access to it for debugging, etc.
4760 */
4761 ret = t4_init_devlog_params(adap);
4762 if (ret < 0)
4763 return ret;
4764
4765 /* Contact FW, advertising Master capability */
4766 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4767 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4768 if (ret < 0) {
4769 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4770 ret);
4771 return ret;
4772 }
4773 if (ret == adap->mbox)
4774 adap->flags |= CXGB4_MASTER_PF;
4775
4776 /*
4777 * If we're the Master PF Driver and the device is uninitialized,
4778 * then let's consider upgrading the firmware ... (We always want
4779 * to check the firmware version number in order to A. get it for
4780 * later reporting and B. to warn if the currently loaded firmware
4781 * is excessively mismatched relative to the driver.)
4782 */
4783
4784 t4_get_version_info(adap);
4785 ret = t4_check_fw_version(adap);
4786 /* If firmware is too old (not supported by driver) force an update. */
4787 if (ret)
4788 state = DEV_STATE_UNINIT;
4789 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4790 struct fw_info *fw_info;
4791 struct fw_hdr *card_fw;
4792 const struct firmware *fw;
4793 const u8 *fw_data = NULL;
4794 unsigned int fw_size = 0;
4795
4796 /* This is the firmware whose headers the driver was compiled
4797 * against
4798 */
4799 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4800 if (fw_info == NULL) {
4801 dev_err(adap->pdev_dev,
4802 "unable to get firmware info for chip %d.\n",
4803 CHELSIO_CHIP_VERSION(adap->params.chip));
4804 return -EINVAL;
4805 }
4806
4807 /* allocate memory to read the header of the firmware on the
4808 * card
4809 */
4810 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4811 if (!card_fw) {
4812 ret = -ENOMEM;
4813 goto bye;
4814 }
4815
4816 /* Get FW from from /lib/firmware/ */
4817 ret = request_firmware(&fw, fw_info->fw_mod_name,
4818 adap->pdev_dev);
4819 if (ret < 0) {
4820 dev_err(adap->pdev_dev,
4821 "unable to load firmware image %s, error %d\n",
4822 fw_info->fw_mod_name, ret);
4823 } else {
4824 fw_data = fw->data;
4825 fw_size = fw->size;
4826 }
4827
4828 /* upgrade FW logic */
4829 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4830 state, &reset);
4831
4832 /* Cleaning up */
4833 release_firmware(fw);
4834 kvfree(card_fw);
4835
4836 if (ret < 0)
4837 goto bye;
4838 }
4839
4840 /* If the firmware is initialized already, emit a simply note to that
4841 * effect. Otherwise, it's time to try initializing the adapter.
4842 */
4843 if (state == DEV_STATE_INIT) {
4844 ret = adap_config_hma(adap);
4845 if (ret)
4846 dev_err(adap->pdev_dev,
4847 "HMA configuration failed with error %d\n",
4848 ret);
4849 dev_info(adap->pdev_dev, "Coming up as %s: "\
4850 "Adapter already initialized\n",
4851 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4852 } else {
4853 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4854 "Initializing adapter\n");
4855
4856 /* Find out whether we're dealing with a version of the
4857 * firmware which has configuration file support.
4858 */
4859 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4860 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4861 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4862 params, val);
4863
4864 /* If the firmware doesn't support Configuration Files,
4865 * return an error.
4866 */
4867 if (ret < 0) {
4868 dev_err(adap->pdev_dev, "firmware doesn't support "
4869 "Firmware Configuration Files\n");
4870 goto bye;
4871 }
4872
4873 /* The firmware provides us with a memory buffer where we can
4874 * load a Configuration File from the host if we want to
4875 * override the Configuration File in flash.
4876 */
4877 ret = adap_init0_config(adap, reset);
4878 if (ret == -ENOENT) {
4879 dev_err(adap->pdev_dev, "no Configuration File "
4880 "present on adapter.\n");
4881 goto bye;
4882 }
4883 if (ret < 0) {
4884 dev_err(adap->pdev_dev, "could not initialize "
4885 "adapter, error %d\n", -ret);
4886 goto bye;
4887 }
4888 }
4889
4890 /* Now that we've successfully configured and initialized the adapter
4891 * (or found it already initialized), we can ask the Firmware what
4892 * resources it has provisioned for us.
4893 */
4894 ret = t4_get_pfres(adap);
4895 if (ret) {
4896 dev_err(adap->pdev_dev,
4897 "Unable to retrieve resource provisioning information\n");
4898 goto bye;
4899 }
4900
4901 /* Grab VPD parameters. This should be done after we establish a
4902 * connection to the firmware since some of the VPD parameters
4903 * (notably the Core Clock frequency) are retrieved via requests to
4904 * the firmware. On the other hand, we need these fairly early on
4905 * so we do this right after getting ahold of the firmware.
4906 *
4907 * We need to do this after initializing the adapter because someone
4908 * could have FLASHed a new VPD which won't be read by the firmware
4909 * until we do the RESET ...
4910 */
4911 if (!vpd_skip) {
4912 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4913 if (ret < 0)
4914 goto bye;
4915 }
4916
4917 /* Find out what ports are available to us. Note that we need to do
4918 * this before calling adap_init0_no_config() since it needs nports
4919 * and portvec ...
4920 */
4921 v =
4922 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4923 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4924 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4925 if (ret < 0)
4926 goto bye;
4927
4928 adap->params.nports = hweight32(port_vec);
4929 adap->params.portvec = port_vec;
4930
4931 /* Give the SGE code a chance to pull in anything that it needs ...
4932 * Note that this must be called after we retrieve our VPD parameters
4933 * in order to know how to convert core ticks to seconds, etc.
4934 */
4935 ret = t4_sge_init(adap);
4936 if (ret < 0)
4937 goto bye;
4938
4939 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4940 * indicates that the Firmware and Hardware support this.
4941 */
4942 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4943 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4944 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4945 1, params, val);
4946
4947 if (!ret) {
4948 adap->sge.dbqtimer_tick = val[0];
4949 ret = t4_read_sge_dbqtimers(adap,
4950 ARRAY_SIZE(adap->sge.dbqtimer_val),
4951 adap->sge.dbqtimer_val);
4952 }
4953
4954 if (!ret)
4955 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4956
4957 if (is_bypass_device(adap->pdev->device))
4958 adap->params.bypass = 1;
4959
4960 /*
4961 * Grab some of our basic fundamental operating parameters.
4962 */
4963 params[0] = FW_PARAM_PFVF(EQ_START);
4964 params[1] = FW_PARAM_PFVF(L2T_START);
4965 params[2] = FW_PARAM_PFVF(L2T_END);
4966 params[3] = FW_PARAM_PFVF(FILTER_START);
4967 params[4] = FW_PARAM_PFVF(FILTER_END);
4968 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4969 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4970 if (ret < 0)
4971 goto bye;
4972 adap->sge.egr_start = val[0];
4973 adap->l2t_start = val[1];
4974 adap->l2t_end = val[2];
4975 adap->tids.ftid_base = val[3];
4976 adap->tids.nftids = val[4] - val[3] + 1;
4977 adap->sge.ingr_start = val[5];
4978
4979 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4980 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4981 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4982 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4983 params, val);
4984 if (ret < 0)
4985 goto bye;
4986
4987 adap->tids.hpftid_base = val[0];
4988 adap->tids.nhpftids = val[1] - val[0] + 1;
4989
4990 /* Read the raw mps entries. In T6, the last 2 tcam entries
4991 * are reserved for raw mac addresses (rawf = 2, one per port).
4992 */
4993 params[0] = FW_PARAM_PFVF(RAWF_START);
4994 params[1] = FW_PARAM_PFVF(RAWF_END);
4995 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4996 params, val);
4997 if (ret == 0) {
4998 adap->rawf_start = val[0];
4999 adap->rawf_cnt = val[1] - val[0] + 1;
5000 }
5001
5002 adap->tids.tid_base =
5003 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5004 }
5005
5006 /* qids (ingress/egress) returned from firmware can be anywhere
5007 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5008 * Hence driver needs to allocate memory for this range to
5009 * store the queue info. Get the highest IQFLINT/EQ index returned
5010 * in FW_EQ_*_CMD.alloc command.
5011 */
5012 params[0] = FW_PARAM_PFVF(EQ_END);
5013 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5014 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5015 if (ret < 0)
5016 goto bye;
5017 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5018 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5019
5020 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5021 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5022 if (!adap->sge.egr_map) {
5023 ret = -ENOMEM;
5024 goto bye;
5025 }
5026
5027 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5028 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5029 if (!adap->sge.ingr_map) {
5030 ret = -ENOMEM;
5031 goto bye;
5032 }
5033
5034 /* Allocate the memory for the vaious egress queue bitmaps
5035 * ie starving_fl, txq_maperr and blocked_fl.
5036 */
5037 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5038 if (!adap->sge.starving_fl) {
5039 ret = -ENOMEM;
5040 goto bye;
5041 }
5042
5043 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5044 if (!adap->sge.txq_maperr) {
5045 ret = -ENOMEM;
5046 goto bye;
5047 }
5048
5049 #ifdef CONFIG_DEBUG_FS
5050 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5051 if (!adap->sge.blocked_fl) {
5052 ret = -ENOMEM;
5053 goto bye;
5054 }
5055 #endif
5056
5057 params[0] = FW_PARAM_PFVF(CLIP_START);
5058 params[1] = FW_PARAM_PFVF(CLIP_END);
5059 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5060 if (ret < 0)
5061 goto bye;
5062 adap->clipt_start = val[0];
5063 adap->clipt_end = val[1];
5064
5065 /* Get the supported number of traffic classes */
5066 params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5067 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5068 if (ret < 0) {
5069 /* We couldn't retrieve the number of Traffic Classes
5070 * supported by the hardware/firmware. So we hard
5071 * code it here.
5072 */
5073 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5074 } else {
5075 adap->params.nsched_cls = val[0];
5076 }
5077
5078 /* query params related to active filter region */
5079 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5080 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5081 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5082 /* If Active filter size is set we enable establishing
5083 * offload connection through firmware work request
5084 */
5085 if ((val[0] != val[1]) && (ret >= 0)) {
5086 adap->flags |= CXGB4_FW_OFLD_CONN;
5087 adap->tids.aftid_base = val[0];
5088 adap->tids.aftid_end = val[1];
5089 }
5090
5091 /* If we're running on newer firmware, let it know that we're
5092 * prepared to deal with encapsulated CPL messages. Older
5093 * firmware won't understand this and we'll just get
5094 * unencapsulated messages ...
5095 */
5096 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5097 val[0] = 1;
5098 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5099
5100 /*
5101 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5102 * capability. Earlier versions of the firmware didn't have the
5103 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5104 * permission to use ULPTX MEMWRITE DSGL.
5105 */
5106 if (is_t4(adap->params.chip)) {
5107 adap->params.ulptx_memwrite_dsgl = false;
5108 } else {
5109 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5110 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5111 1, params, val);
5112 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5113 }
5114
5115 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5116 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5117 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5118 1, params, val);
5119 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5120
5121 /* See if FW supports FW_FILTER2 work request */
5122 if (is_t4(adap->params.chip)) {
5123 adap->params.filter2_wr_support = false;
5124 } else {
5125 params[0] = FW_PARAM_DEV(FILTER2_WR);
5126 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5127 1, params, val);
5128 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5129 }
5130
5131 /* Check if FW supports returning vin and smt index.
5132 * If this is not supported, driver will interpret
5133 * these values from viid.
5134 */
5135 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5136 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5137 1, params, val);
5138 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5139
5140 /*
5141 * Get device capabilities so we can determine what resources we need
5142 * to manage.
5143 */
5144 memset(&caps_cmd, 0, sizeof(caps_cmd));
5145 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5146 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5147 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5148 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5149 &caps_cmd);
5150 if (ret < 0)
5151 goto bye;
5152
5153 /* hash filter has some mandatory register settings to be tested and for
5154 * that it needs to test whether offload is enabled or not, hence
5155 * checking and setting it here.
5156 */
5157 if (caps_cmd.ofldcaps)
5158 adap->params.offload = 1;
5159
5160 if (caps_cmd.ofldcaps ||
5161 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5162 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5163 /* query offload-related parameters */
5164 params[0] = FW_PARAM_DEV(NTID);
5165 params[1] = FW_PARAM_PFVF(SERVER_START);
5166 params[2] = FW_PARAM_PFVF(SERVER_END);
5167 params[3] = FW_PARAM_PFVF(TDDP_START);
5168 params[4] = FW_PARAM_PFVF(TDDP_END);
5169 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5170 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5171 params, val);
5172 if (ret < 0)
5173 goto bye;
5174 adap->tids.ntids = val[0];
5175 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5176 adap->tids.stid_base = val[1];
5177 adap->tids.nstids = val[2] - val[1] + 1;
5178 /*
5179 * Setup server filter region. Divide the available filter
5180 * region into two parts. Regular filters get 1/3rd and server
5181 * filters get 2/3rd part. This is only enabled if workarond
5182 * path is enabled.
5183 * 1. For regular filters.
5184 * 2. Server filter: This are special filters which are used
5185 * to redirect SYN packets to offload queue.
5186 */
5187 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5188 adap->tids.sftid_base = adap->tids.ftid_base +
5189 DIV_ROUND_UP(adap->tids.nftids, 3);
5190 adap->tids.nsftids = adap->tids.nftids -
5191 DIV_ROUND_UP(adap->tids.nftids, 3);
5192 adap->tids.nftids = adap->tids.sftid_base -
5193 adap->tids.ftid_base;
5194 }
5195 adap->vres.ddp.start = val[3];
5196 adap->vres.ddp.size = val[4] - val[3] + 1;
5197 adap->params.ofldq_wr_cred = val[5];
5198
5199 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5200 init_hash_filter(adap);
5201 } else {
5202 adap->num_ofld_uld += 1;
5203 }
5204
5205 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5206 params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5207 params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5208 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5209 params, val);
5210 if (!ret) {
5211 adap->tids.eotid_base = val[0];
5212 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5213 val[1] - val[0] + 1);
5214 adap->params.ethofld = 1;
5215 }
5216 }
5217 }
5218 if (caps_cmd.rdmacaps) {
5219 params[0] = FW_PARAM_PFVF(STAG_START);
5220 params[1] = FW_PARAM_PFVF(STAG_END);
5221 params[2] = FW_PARAM_PFVF(RQ_START);
5222 params[3] = FW_PARAM_PFVF(RQ_END);
5223 params[4] = FW_PARAM_PFVF(PBL_START);
5224 params[5] = FW_PARAM_PFVF(PBL_END);
5225 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5226 params, val);
5227 if (ret < 0)
5228 goto bye;
5229 adap->vres.stag.start = val[0];
5230 adap->vres.stag.size = val[1] - val[0] + 1;
5231 adap->vres.rq.start = val[2];
5232 adap->vres.rq.size = val[3] - val[2] + 1;
5233 adap->vres.pbl.start = val[4];
5234 adap->vres.pbl.size = val[5] - val[4] + 1;
5235
5236 params[0] = FW_PARAM_PFVF(SRQ_START);
5237 params[1] = FW_PARAM_PFVF(SRQ_END);
5238 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5239 params, val);
5240 if (!ret) {
5241 adap->vres.srq.start = val[0];
5242 adap->vres.srq.size = val[1] - val[0] + 1;
5243 }
5244 if (adap->vres.srq.size) {
5245 adap->srq = t4_init_srq(adap->vres.srq.size);
5246 if (!adap->srq)
5247 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5248 }
5249
5250 params[0] = FW_PARAM_PFVF(SQRQ_START);
5251 params[1] = FW_PARAM_PFVF(SQRQ_END);
5252 params[2] = FW_PARAM_PFVF(CQ_START);
5253 params[3] = FW_PARAM_PFVF(CQ_END);
5254 params[4] = FW_PARAM_PFVF(OCQ_START);
5255 params[5] = FW_PARAM_PFVF(OCQ_END);
5256 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5257 val);
5258 if (ret < 0)
5259 goto bye;
5260 adap->vres.qp.start = val[0];
5261 adap->vres.qp.size = val[1] - val[0] + 1;
5262 adap->vres.cq.start = val[2];
5263 adap->vres.cq.size = val[3] - val[2] + 1;
5264 adap->vres.ocq.start = val[4];
5265 adap->vres.ocq.size = val[5] - val[4] + 1;
5266
5267 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5268 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5269 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5270 val);
5271 if (ret < 0) {
5272 adap->params.max_ordird_qp = 8;
5273 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5274 ret = 0;
5275 } else {
5276 adap->params.max_ordird_qp = val[0];
5277 adap->params.max_ird_adapter = val[1];
5278 }
5279 dev_info(adap->pdev_dev,
5280 "max_ordird_qp %d max_ird_adapter %d\n",
5281 adap->params.max_ordird_qp,
5282 adap->params.max_ird_adapter);
5283
5284 /* Enable write_with_immediate if FW supports it */
5285 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5286 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5287 val);
5288 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5289
5290 /* Enable write_cmpl if FW supports it */
5291 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5292 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5293 val);
5294 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5295 adap->num_ofld_uld += 2;
5296 }
5297 if (caps_cmd.iscsicaps) {
5298 params[0] = FW_PARAM_PFVF(ISCSI_START);
5299 params[1] = FW_PARAM_PFVF(ISCSI_END);
5300 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5301 params, val);
5302 if (ret < 0)
5303 goto bye;
5304 adap->vres.iscsi.start = val[0];
5305 adap->vres.iscsi.size = val[1] - val[0] + 1;
5306 if (is_t6(adap->params.chip)) {
5307 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5308 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5309 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5310 params, val);
5311 if (!ret) {
5312 adap->vres.ppod_edram.start = val[0];
5313 adap->vres.ppod_edram.size =
5314 val[1] - val[0] + 1;
5315
5316 dev_info(adap->pdev_dev,
5317 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5318 val[0], val[1],
5319 adap->vres.ppod_edram.size);
5320 }
5321 }
5322 /* LIO target and cxgb4i initiaitor */
5323 adap->num_ofld_uld += 2;
5324 }
5325 if (caps_cmd.cryptocaps) {
5326 if (ntohs(caps_cmd.cryptocaps) &
5327 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5328 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5329 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5330 2, params, val);
5331 if (ret < 0) {
5332 if (ret != -EINVAL)
5333 goto bye;
5334 } else {
5335 adap->vres.ncrypto_fc = val[0];
5336 }
5337 adap->num_ofld_uld += 1;
5338 }
5339 if (ntohs(caps_cmd.cryptocaps) &
5340 FW_CAPS_CONFIG_TLS_INLINE) {
5341 params[0] = FW_PARAM_PFVF(TLS_START);
5342 params[1] = FW_PARAM_PFVF(TLS_END);
5343 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5344 2, params, val);
5345 if (ret < 0)
5346 goto bye;
5347 adap->vres.key.start = val[0];
5348 adap->vres.key.size = val[1] - val[0] + 1;
5349 adap->num_uld += 1;
5350 }
5351 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5352 }
5353
5354 /* The MTU/MSS Table is initialized by now, so load their values. If
5355 * we're initializing the adapter, then we'll make any modifications
5356 * we want to the MTU/MSS Table and also initialize the congestion
5357 * parameters.
5358 */
5359 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5360 if (state != DEV_STATE_INIT) {
5361 int i;
5362
5363 /* The default MTU Table contains values 1492 and 1500.
5364 * However, for TCP, it's better to have two values which are
5365 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5366 * This allows us to have a TCP Data Payload which is a
5367 * multiple of 8 regardless of what combination of TCP Options
5368 * are in use (always a multiple of 4 bytes) which is
5369 * important for performance reasons. For instance, if no
5370 * options are in use, then we have a 20-byte IP header and a
5371 * 20-byte TCP header. In this case, a 1500-byte MSS would
5372 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5373 * which is not a multiple of 8. So using an MSS of 1488 in
5374 * this case results in a TCP Data Payload of 1448 bytes which
5375 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5376 * Stamps have been negotiated, then an MTU of 1500 bytes
5377 * results in a TCP Data Payload of 1448 bytes which, as
5378 * above, is a multiple of 8 bytes ...
5379 */
5380 for (i = 0; i < NMTUS; i++)
5381 if (adap->params.mtus[i] == 1492) {
5382 adap->params.mtus[i] = 1488;
5383 break;
5384 }
5385
5386 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5387 adap->params.b_wnd);
5388 }
5389 t4_init_sge_params(adap);
5390 adap->flags |= CXGB4_FW_OK;
5391 t4_init_tp_params(adap, true);
5392 return 0;
5393
5394 /*
5395 * Something bad happened. If a command timed out or failed with EIO
5396 * FW does not operate within its spec or something catastrophic
5397 * happened to HW/FW, stop issuing commands.
5398 */
5399 bye:
5400 adap_free_hma_mem(adap);
5401 kfree(adap->sge.egr_map);
5402 kfree(adap->sge.ingr_map);
5403 bitmap_free(adap->sge.starving_fl);
5404 bitmap_free(adap->sge.txq_maperr);
5405 #ifdef CONFIG_DEBUG_FS
5406 bitmap_free(adap->sge.blocked_fl);
5407 #endif
5408 if (ret != -ETIMEDOUT && ret != -EIO)
5409 t4_fw_bye(adap, adap->mbox);
5410 return ret;
5411 }
5412
5413 /* EEH callbacks */
5414
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5415 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5416 pci_channel_state_t state)
5417 {
5418 int i;
5419 struct adapter *adap = pci_get_drvdata(pdev);
5420
5421 if (!adap)
5422 goto out;
5423
5424 rtnl_lock();
5425 adap->flags &= ~CXGB4_FW_OK;
5426 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5427 spin_lock(&adap->stats_lock);
5428 for_each_port(adap, i) {
5429 struct net_device *dev = adap->port[i];
5430 if (dev) {
5431 netif_device_detach(dev);
5432 netif_carrier_off(dev);
5433 }
5434 }
5435 spin_unlock(&adap->stats_lock);
5436 disable_interrupts(adap);
5437 if (adap->flags & CXGB4_FULL_INIT_DONE)
5438 cxgb_down(adap);
5439 rtnl_unlock();
5440 if ((adap->flags & CXGB4_DEV_ENABLED)) {
5441 pci_disable_device(pdev);
5442 adap->flags &= ~CXGB4_DEV_ENABLED;
5443 }
5444 out: return state == pci_channel_io_perm_failure ?
5445 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5446 }
5447
eeh_slot_reset(struct pci_dev * pdev)5448 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5449 {
5450 int i, ret;
5451 struct fw_caps_config_cmd c;
5452 struct adapter *adap = pci_get_drvdata(pdev);
5453
5454 if (!adap) {
5455 pci_restore_state(pdev);
5456 pci_save_state(pdev);
5457 return PCI_ERS_RESULT_RECOVERED;
5458 }
5459
5460 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5461 if (pci_enable_device(pdev)) {
5462 dev_err(&pdev->dev, "Cannot reenable PCI "
5463 "device after reset\n");
5464 return PCI_ERS_RESULT_DISCONNECT;
5465 }
5466 adap->flags |= CXGB4_DEV_ENABLED;
5467 }
5468
5469 pci_set_master(pdev);
5470 pci_restore_state(pdev);
5471 pci_save_state(pdev);
5472
5473 if (t4_wait_dev_ready(adap->regs) < 0)
5474 return PCI_ERS_RESULT_DISCONNECT;
5475 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5476 return PCI_ERS_RESULT_DISCONNECT;
5477 adap->flags |= CXGB4_FW_OK;
5478 if (adap_init1(adap, &c))
5479 return PCI_ERS_RESULT_DISCONNECT;
5480
5481 for_each_port(adap, i) {
5482 struct port_info *pi = adap2pinfo(adap, i);
5483 u8 vivld = 0, vin = 0;
5484
5485 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5486 NULL, NULL, &vivld, &vin);
5487 if (ret < 0)
5488 return PCI_ERS_RESULT_DISCONNECT;
5489 pi->viid = ret;
5490 pi->xact_addr_filt = -1;
5491 /* If fw supports returning the VIN as part of FW_VI_CMD,
5492 * save the returned values.
5493 */
5494 if (adap->params.viid_smt_extn_support) {
5495 pi->vivld = vivld;
5496 pi->vin = vin;
5497 } else {
5498 /* Retrieve the values from VIID */
5499 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5500 pi->vin = FW_VIID_VIN_G(pi->viid);
5501 }
5502 }
5503
5504 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5505 adap->params.b_wnd);
5506 setup_memwin(adap);
5507 if (cxgb_up(adap))
5508 return PCI_ERS_RESULT_DISCONNECT;
5509 return PCI_ERS_RESULT_RECOVERED;
5510 }
5511
eeh_resume(struct pci_dev * pdev)5512 static void eeh_resume(struct pci_dev *pdev)
5513 {
5514 int i;
5515 struct adapter *adap = pci_get_drvdata(pdev);
5516
5517 if (!adap)
5518 return;
5519
5520 rtnl_lock();
5521 for_each_port(adap, i) {
5522 struct net_device *dev = adap->port[i];
5523 if (dev) {
5524 if (netif_running(dev)) {
5525 link_start(dev);
5526 cxgb_set_rxmode(dev);
5527 }
5528 netif_device_attach(dev);
5529 }
5530 }
5531 rtnl_unlock();
5532 }
5533
eeh_reset_prepare(struct pci_dev * pdev)5534 static void eeh_reset_prepare(struct pci_dev *pdev)
5535 {
5536 struct adapter *adapter = pci_get_drvdata(pdev);
5537 int i;
5538
5539 if (adapter->pf != 4)
5540 return;
5541
5542 adapter->flags &= ~CXGB4_FW_OK;
5543
5544 notify_ulds(adapter, CXGB4_STATE_DOWN);
5545
5546 for_each_port(adapter, i)
5547 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5548 cxgb_close(adapter->port[i]);
5549
5550 disable_interrupts(adapter);
5551 cxgb4_free_mps_ref_entries(adapter);
5552
5553 adap_free_hma_mem(adapter);
5554
5555 if (adapter->flags & CXGB4_FULL_INIT_DONE)
5556 cxgb_down(adapter);
5557 }
5558
eeh_reset_done(struct pci_dev * pdev)5559 static void eeh_reset_done(struct pci_dev *pdev)
5560 {
5561 struct adapter *adapter = pci_get_drvdata(pdev);
5562 int err, i;
5563
5564 if (adapter->pf != 4)
5565 return;
5566
5567 err = t4_wait_dev_ready(adapter->regs);
5568 if (err < 0) {
5569 dev_err(adapter->pdev_dev,
5570 "Device not ready, err %d", err);
5571 return;
5572 }
5573
5574 setup_memwin(adapter);
5575
5576 err = adap_init0(adapter, 1);
5577 if (err) {
5578 dev_err(adapter->pdev_dev,
5579 "Adapter init failed, err %d", err);
5580 return;
5581 }
5582
5583 setup_memwin_rdma(adapter);
5584
5585 if (adapter->flags & CXGB4_FW_OK) {
5586 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5587 if (err) {
5588 dev_err(adapter->pdev_dev,
5589 "Port init failed, err %d", err);
5590 return;
5591 }
5592 }
5593
5594 err = cfg_queues(adapter);
5595 if (err) {
5596 dev_err(adapter->pdev_dev,
5597 "Config queues failed, err %d", err);
5598 return;
5599 }
5600
5601 cxgb4_init_mps_ref_entries(adapter);
5602
5603 err = setup_fw_sge_queues(adapter);
5604 if (err) {
5605 dev_err(adapter->pdev_dev,
5606 "FW sge queue allocation failed, err %d", err);
5607 return;
5608 }
5609
5610 for_each_port(adapter, i)
5611 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5612 cxgb_open(adapter->port[i]);
5613 }
5614
5615 static const struct pci_error_handlers cxgb4_eeh = {
5616 .error_detected = eeh_err_detected,
5617 .slot_reset = eeh_slot_reset,
5618 .resume = eeh_resume,
5619 .reset_prepare = eeh_reset_prepare,
5620 .reset_done = eeh_reset_done,
5621 };
5622
5623 /* Return true if the Link Configuration supports "High Speeds" (those greater
5624 * than 1Gb/s).
5625 */
is_x_10g_port(const struct link_config * lc)5626 static inline bool is_x_10g_port(const struct link_config *lc)
5627 {
5628 unsigned int speeds, high_speeds;
5629
5630 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5631 high_speeds = speeds &
5632 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5633
5634 return high_speeds != 0;
5635 }
5636
5637 /* Perform default configuration of DMA queues depending on the number and type
5638 * of ports we found and the number of available CPUs. Most settings can be
5639 * modified by the admin prior to actual use.
5640 */
cfg_queues(struct adapter * adap)5641 static int cfg_queues(struct adapter *adap)
5642 {
5643 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5644 u32 ncpus = num_online_cpus();
5645 u32 niqflint, neq, num_ulds;
5646 struct sge *s = &adap->sge;
5647 u32 i, n10g = 0, qidx = 0;
5648 u32 q10g = 0, q1g;
5649
5650 /* Reduce memory usage in kdump environment, disable all offload. */
5651 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5652 adap->params.offload = 0;
5653 adap->params.crypto = 0;
5654 adap->params.ethofld = 0;
5655 }
5656
5657 /* Calculate the number of Ethernet Queue Sets available based on
5658 * resources provisioned for us. We always have an Asynchronous
5659 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5660 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5661 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5662 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5663 *
5664 * Note that we should also take into account all of the various
5665 * Offload Queues. But, in any situation where we're operating in
5666 * a Resource Constrained Provisioning environment, doing any Offload
5667 * at all is problematic ...
5668 */
5669 niqflint = adap->params.pfres.niqflint - 1;
5670 if (!(adap->flags & CXGB4_USING_MSIX))
5671 niqflint--;
5672 neq = adap->params.pfres.neq / 2;
5673 avail_qsets = min(niqflint, neq);
5674
5675 if (avail_qsets < adap->params.nports) {
5676 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5677 avail_qsets, adap->params.nports);
5678 return -ENOMEM;
5679 }
5680
5681 /* Count the number of 10Gb/s or better ports */
5682 for_each_port(adap, i)
5683 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5684
5685 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5686
5687 /* We default to 1 queue per non-10G port and up to # of cores queues
5688 * per 10G port.
5689 */
5690 if (n10g)
5691 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5692
5693 #ifdef CONFIG_CHELSIO_T4_DCB
5694 /* For Data Center Bridging support we need to be able to support up
5695 * to 8 Traffic Priorities; each of which will be assigned to its
5696 * own TX Queue in order to prevent Head-Of-Line Blocking.
5697 */
5698 q1g = 8;
5699 if (adap->params.nports * 8 > avail_eth_qsets) {
5700 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5701 avail_eth_qsets, adap->params.nports * 8);
5702 return -ENOMEM;
5703 }
5704
5705 if (adap->params.nports * ncpus < avail_eth_qsets)
5706 q10g = max(8U, ncpus);
5707 else
5708 q10g = max(8U, q10g);
5709
5710 while ((q10g * n10g) >
5711 (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5712 q10g--;
5713
5714 #else /* !CONFIG_CHELSIO_T4_DCB */
5715 q1g = 1;
5716 q10g = min(q10g, ncpus);
5717 #endif /* !CONFIG_CHELSIO_T4_DCB */
5718 if (is_kdump_kernel()) {
5719 q10g = 1;
5720 q1g = 1;
5721 }
5722
5723 for_each_port(adap, i) {
5724 struct port_info *pi = adap2pinfo(adap, i);
5725
5726 pi->first_qset = qidx;
5727 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5728 qidx += pi->nqsets;
5729 }
5730
5731 s->ethqsets = qidx;
5732 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5733 avail_qsets -= qidx;
5734
5735 if (is_uld(adap)) {
5736 /* For offload we use 1 queue/channel if all ports are up to 1G,
5737 * otherwise we divide all available queues amongst the channels
5738 * capped by the number of available cores.
5739 */
5740 num_ulds = adap->num_uld + adap->num_ofld_uld;
5741 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5742 avail_uld_qsets = roundup(i, adap->params.nports);
5743 if (avail_qsets < num_ulds * adap->params.nports) {
5744 adap->params.offload = 0;
5745 adap->params.crypto = 0;
5746 s->ofldqsets = 0;
5747 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5748 s->ofldqsets = adap->params.nports;
5749 } else {
5750 s->ofldqsets = avail_uld_qsets;
5751 }
5752
5753 avail_qsets -= num_ulds * s->ofldqsets;
5754 }
5755
5756 /* ETHOFLD Queues used for QoS offload should follow same
5757 * allocation scheme as normal Ethernet Queues.
5758 */
5759 if (is_ethofld(adap)) {
5760 if (avail_qsets < s->max_ethqsets) {
5761 adap->params.ethofld = 0;
5762 s->eoqsets = 0;
5763 } else {
5764 s->eoqsets = s->max_ethqsets;
5765 }
5766 avail_qsets -= s->eoqsets;
5767 }
5768
5769 /* Mirror queues must follow same scheme as normal Ethernet
5770 * Queues, when there are enough queues available. Otherwise,
5771 * allocate at least 1 queue per port. If even 1 queue is not
5772 * available, then disable mirror queues support.
5773 */
5774 if (avail_qsets >= s->max_ethqsets)
5775 s->mirrorqsets = s->max_ethqsets;
5776 else if (avail_qsets >= adap->params.nports)
5777 s->mirrorqsets = adap->params.nports;
5778 else
5779 s->mirrorqsets = 0;
5780 avail_qsets -= s->mirrorqsets;
5781
5782 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5783 struct sge_eth_rxq *r = &s->ethrxq[i];
5784
5785 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5786 r->fl.size = 72;
5787 }
5788
5789 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5790 s->ethtxq[i].q.size = 1024;
5791
5792 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5793 s->ctrlq[i].q.size = 512;
5794
5795 if (!is_t4(adap->params.chip))
5796 s->ptptxq.q.size = 8;
5797
5798 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5799 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5800
5801 return 0;
5802 }
5803
5804 /*
5805 * Reduce the number of Ethernet queues across all ports to at most n.
5806 * n provides at least one queue per port.
5807 */
reduce_ethqs(struct adapter * adap,int n)5808 static void reduce_ethqs(struct adapter *adap, int n)
5809 {
5810 int i;
5811 struct port_info *pi;
5812
5813 while (n < adap->sge.ethqsets)
5814 for_each_port(adap, i) {
5815 pi = adap2pinfo(adap, i);
5816 if (pi->nqsets > 1) {
5817 pi->nqsets--;
5818 adap->sge.ethqsets--;
5819 if (adap->sge.ethqsets <= n)
5820 break;
5821 }
5822 }
5823
5824 n = 0;
5825 for_each_port(adap, i) {
5826 pi = adap2pinfo(adap, i);
5827 pi->first_qset = n;
5828 n += pi->nqsets;
5829 }
5830 }
5831
alloc_msix_info(struct adapter * adap,u32 num_vec)5832 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5833 {
5834 struct msix_info *msix_info;
5835
5836 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5837 if (!msix_info)
5838 return -ENOMEM;
5839
5840 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5841 if (!adap->msix_bmap.msix_bmap) {
5842 kfree(msix_info);
5843 return -ENOMEM;
5844 }
5845
5846 spin_lock_init(&adap->msix_bmap.lock);
5847 adap->msix_bmap.mapsize = num_vec;
5848
5849 adap->msix_info = msix_info;
5850 return 0;
5851 }
5852
free_msix_info(struct adapter * adap)5853 static void free_msix_info(struct adapter *adap)
5854 {
5855 bitmap_free(adap->msix_bmap.msix_bmap);
5856 kfree(adap->msix_info);
5857 }
5858
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5859 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5860 {
5861 struct msix_bmap *bmap = &adap->msix_bmap;
5862 unsigned int msix_idx;
5863 unsigned long flags;
5864
5865 spin_lock_irqsave(&bmap->lock, flags);
5866 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5867 if (msix_idx < bmap->mapsize) {
5868 __set_bit(msix_idx, bmap->msix_bmap);
5869 } else {
5870 spin_unlock_irqrestore(&bmap->lock, flags);
5871 return -ENOSPC;
5872 }
5873
5874 spin_unlock_irqrestore(&bmap->lock, flags);
5875 return msix_idx;
5876 }
5877
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5878 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5879 unsigned int msix_idx)
5880 {
5881 struct msix_bmap *bmap = &adap->msix_bmap;
5882 unsigned long flags;
5883
5884 spin_lock_irqsave(&bmap->lock, flags);
5885 __clear_bit(msix_idx, bmap->msix_bmap);
5886 spin_unlock_irqrestore(&bmap->lock, flags);
5887 }
5888
5889 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5890 #define EXTRA_VECS 2
5891
enable_msix(struct adapter * adap)5892 static int enable_msix(struct adapter *adap)
5893 {
5894 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5895 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5896 u8 num_uld = 0, nchan = adap->params.nports;
5897 u32 i, want, need, num_vec;
5898 struct sge *s = &adap->sge;
5899 struct msix_entry *entries;
5900 struct port_info *pi;
5901 int allocated, ret;
5902
5903 want = s->max_ethqsets;
5904 #ifdef CONFIG_CHELSIO_T4_DCB
5905 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5906 * each port.
5907 */
5908 need = 8 * nchan;
5909 #else
5910 need = nchan;
5911 #endif
5912 eth_need = need;
5913 if (is_uld(adap)) {
5914 num_uld = adap->num_ofld_uld + adap->num_uld;
5915 want += num_uld * s->ofldqsets;
5916 uld_need = num_uld * nchan;
5917 need += uld_need;
5918 }
5919
5920 if (is_ethofld(adap)) {
5921 want += s->eoqsets;
5922 ethofld_need = eth_need;
5923 need += ethofld_need;
5924 }
5925
5926 if (s->mirrorqsets) {
5927 want += s->mirrorqsets;
5928 mirror_need = nchan;
5929 need += mirror_need;
5930 }
5931
5932 want += EXTRA_VECS;
5933 need += EXTRA_VECS;
5934
5935 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5936 if (!entries)
5937 return -ENOMEM;
5938
5939 for (i = 0; i < want; i++)
5940 entries[i].entry = i;
5941
5942 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5943 if (allocated < 0) {
5944 /* Disable offload and attempt to get vectors for NIC
5945 * only mode.
5946 */
5947 want = s->max_ethqsets + EXTRA_VECS;
5948 need = eth_need + EXTRA_VECS;
5949 allocated = pci_enable_msix_range(adap->pdev, entries,
5950 need, want);
5951 if (allocated < 0) {
5952 dev_info(adap->pdev_dev,
5953 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5954 ret = allocated;
5955 goto out_free;
5956 }
5957
5958 dev_info(adap->pdev_dev,
5959 "Disabling offload due to insufficient MSI-X vectors\n");
5960 adap->params.offload = 0;
5961 adap->params.crypto = 0;
5962 adap->params.ethofld = 0;
5963 s->ofldqsets = 0;
5964 s->eoqsets = 0;
5965 s->mirrorqsets = 0;
5966 uld_need = 0;
5967 ethofld_need = 0;
5968 mirror_need = 0;
5969 }
5970
5971 num_vec = allocated;
5972 if (num_vec < want) {
5973 /* Distribute available vectors to the various queue groups.
5974 * Every group gets its minimum requirement and NIC gets top
5975 * priority for leftovers.
5976 */
5977 ethqsets = eth_need;
5978 if (is_uld(adap))
5979 ofldqsets = nchan;
5980 if (is_ethofld(adap))
5981 eoqsets = ethofld_need;
5982 if (s->mirrorqsets)
5983 mirrorqsets = mirror_need;
5984
5985 num_vec -= need;
5986 while (num_vec) {
5987 if (num_vec < eth_need + ethofld_need ||
5988 ethqsets > s->max_ethqsets)
5989 break;
5990
5991 for_each_port(adap, i) {
5992 pi = adap2pinfo(adap, i);
5993 if (pi->nqsets < 2)
5994 continue;
5995
5996 ethqsets++;
5997 num_vec--;
5998 if (ethofld_need) {
5999 eoqsets++;
6000 num_vec--;
6001 }
6002 }
6003 }
6004
6005 if (is_uld(adap)) {
6006 while (num_vec) {
6007 if (num_vec < uld_need ||
6008 ofldqsets > s->ofldqsets)
6009 break;
6010
6011 ofldqsets++;
6012 num_vec -= uld_need;
6013 }
6014 }
6015
6016 if (s->mirrorqsets) {
6017 while (num_vec) {
6018 if (num_vec < mirror_need ||
6019 mirrorqsets > s->mirrorqsets)
6020 break;
6021
6022 mirrorqsets++;
6023 num_vec -= mirror_need;
6024 }
6025 }
6026 } else {
6027 ethqsets = s->max_ethqsets;
6028 if (is_uld(adap))
6029 ofldqsets = s->ofldqsets;
6030 if (is_ethofld(adap))
6031 eoqsets = s->eoqsets;
6032 if (s->mirrorqsets)
6033 mirrorqsets = s->mirrorqsets;
6034 }
6035
6036 if (ethqsets < s->max_ethqsets) {
6037 s->max_ethqsets = ethqsets;
6038 reduce_ethqs(adap, ethqsets);
6039 }
6040
6041 if (is_uld(adap)) {
6042 s->ofldqsets = ofldqsets;
6043 s->nqs_per_uld = s->ofldqsets;
6044 }
6045
6046 if (is_ethofld(adap))
6047 s->eoqsets = eoqsets;
6048
6049 if (s->mirrorqsets) {
6050 s->mirrorqsets = mirrorqsets;
6051 for_each_port(adap, i) {
6052 pi = adap2pinfo(adap, i);
6053 pi->nmirrorqsets = s->mirrorqsets / nchan;
6054 mutex_init(&pi->vi_mirror_mutex);
6055 }
6056 }
6057
6058 /* map for msix */
6059 ret = alloc_msix_info(adap, allocated);
6060 if (ret)
6061 goto out_disable_msix;
6062
6063 for (i = 0; i < allocated; i++) {
6064 adap->msix_info[i].vec = entries[i].vector;
6065 adap->msix_info[i].idx = i;
6066 }
6067
6068 dev_info(adap->pdev_dev,
6069 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6070 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6071 s->mirrorqsets);
6072
6073 kfree(entries);
6074 return 0;
6075
6076 out_disable_msix:
6077 pci_disable_msix(adap->pdev);
6078
6079 out_free:
6080 kfree(entries);
6081 return ret;
6082 }
6083
6084 #undef EXTRA_VECS
6085
init_rss(struct adapter * adap)6086 static int init_rss(struct adapter *adap)
6087 {
6088 unsigned int i;
6089 int err;
6090
6091 err = t4_init_rss_mode(adap, adap->mbox);
6092 if (err)
6093 return err;
6094
6095 for_each_port(adap, i) {
6096 struct port_info *pi = adap2pinfo(adap, i);
6097
6098 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6099 if (!pi->rss)
6100 return -ENOMEM;
6101 }
6102 return 0;
6103 }
6104
6105 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6106 static void print_adapter_info(struct adapter *adapter)
6107 {
6108 /* Hardware/Firmware/etc. Version/Revision IDs */
6109 t4_dump_version_info(adapter);
6110
6111 /* Software/Hardware configuration */
6112 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6113 is_offload(adapter) ? "R" : "",
6114 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6115 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6116 is_offload(adapter) ? "Offload" : "non-Offload");
6117 }
6118
print_port_info(const struct net_device * dev)6119 static void print_port_info(const struct net_device *dev)
6120 {
6121 char buf[80];
6122 char *bufp = buf;
6123 const struct port_info *pi = netdev_priv(dev);
6124 const struct adapter *adap = pi->adapter;
6125
6126 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6127 bufp += sprintf(bufp, "100M/");
6128 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6129 bufp += sprintf(bufp, "1G/");
6130 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6131 bufp += sprintf(bufp, "10G/");
6132 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6133 bufp += sprintf(bufp, "25G/");
6134 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6135 bufp += sprintf(bufp, "40G/");
6136 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6137 bufp += sprintf(bufp, "50G/");
6138 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6139 bufp += sprintf(bufp, "100G/");
6140 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6141 bufp += sprintf(bufp, "200G/");
6142 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6143 bufp += sprintf(bufp, "400G/");
6144 if (bufp != buf)
6145 --bufp;
6146 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6147
6148 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6149 }
6150
6151 /*
6152 * Free the following resources:
6153 * - memory used for tables
6154 * - MSI/MSI-X
6155 * - net devices
6156 * - resources FW is holding for us
6157 */
free_some_resources(struct adapter * adapter)6158 static void free_some_resources(struct adapter *adapter)
6159 {
6160 unsigned int i;
6161
6162 kvfree(adapter->smt);
6163 kvfree(adapter->l2t);
6164 kvfree(adapter->srq);
6165 t4_cleanup_sched(adapter);
6166 kvfree(adapter->tids.tid_tab);
6167 cxgb4_cleanup_tc_matchall(adapter);
6168 cxgb4_cleanup_tc_mqprio(adapter);
6169 cxgb4_cleanup_tc_flower(adapter);
6170 cxgb4_cleanup_tc_u32(adapter);
6171 cxgb4_cleanup_ethtool_filters(adapter);
6172 kfree(adapter->sge.egr_map);
6173 kfree(adapter->sge.ingr_map);
6174 bitmap_free(adapter->sge.starving_fl);
6175 bitmap_free(adapter->sge.txq_maperr);
6176 #ifdef CONFIG_DEBUG_FS
6177 bitmap_free(adapter->sge.blocked_fl);
6178 #endif
6179 disable_msi(adapter);
6180
6181 for_each_port(adapter, i)
6182 if (adapter->port[i]) {
6183 struct port_info *pi = adap2pinfo(adapter, i);
6184
6185 if (pi->viid != 0)
6186 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6187 0, pi->viid);
6188 kfree(adap2pinfo(adapter, i)->rss);
6189 free_netdev(adapter->port[i]);
6190 }
6191 if (adapter->flags & CXGB4_FW_OK)
6192 t4_fw_bye(adapter, adapter->pf);
6193 }
6194
6195 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6196 NETIF_F_GSO_UDP_L4)
6197 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6198 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6199 #define SEGMENT_SIZE 128
6200
t4_get_chip_type(struct adapter * adap,int ver)6201 static int t4_get_chip_type(struct adapter *adap, int ver)
6202 {
6203 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6204
6205 switch (ver) {
6206 case CHELSIO_T4:
6207 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6208 case CHELSIO_T5:
6209 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6210 case CHELSIO_T6:
6211 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6212 default:
6213 break;
6214 }
6215 return -EINVAL;
6216 }
6217
6218 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6219 static void cxgb4_mgmt_setup(struct net_device *dev)
6220 {
6221 dev->type = ARPHRD_NONE;
6222 dev->mtu = 0;
6223 dev->hard_header_len = 0;
6224 dev->addr_len = 0;
6225 dev->tx_queue_len = 0;
6226 dev->flags |= IFF_NOARP;
6227 dev->priv_flags |= IFF_NO_QUEUE;
6228
6229 /* Initialize the device structure. */
6230 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6231 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6232 }
6233
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6234 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6235 {
6236 struct adapter *adap = pci_get_drvdata(pdev);
6237 int err = 0;
6238 int current_vfs = pci_num_vf(pdev);
6239 u32 pcie_fw;
6240
6241 pcie_fw = readl(adap->regs + PCIE_FW_A);
6242 /* Check if fw is initialized */
6243 if (!(pcie_fw & PCIE_FW_INIT_F)) {
6244 dev_warn(&pdev->dev, "Device not initialized\n");
6245 return -EOPNOTSUPP;
6246 }
6247
6248 /* If any of the VF's is already assigned to Guest OS, then
6249 * SRIOV for the same cannot be modified
6250 */
6251 if (current_vfs && pci_vfs_assigned(pdev)) {
6252 dev_err(&pdev->dev,
6253 "Cannot modify SR-IOV while VFs are assigned\n");
6254 return current_vfs;
6255 }
6256 /* Note that the upper-level code ensures that we're never called with
6257 * a non-zero "num_vfs" when we already have VFs instantiated. But
6258 * it never hurts to code defensively.
6259 */
6260 if (num_vfs != 0 && current_vfs != 0)
6261 return -EBUSY;
6262
6263 /* Nothing to do for no change. */
6264 if (num_vfs == current_vfs)
6265 return num_vfs;
6266
6267 /* Disable SRIOV when zero is passed. */
6268 if (!num_vfs) {
6269 pci_disable_sriov(pdev);
6270 /* free VF Management Interface */
6271 unregister_netdev(adap->port[0]);
6272 free_netdev(adap->port[0]);
6273 adap->port[0] = NULL;
6274
6275 /* free VF resources */
6276 adap->num_vfs = 0;
6277 kfree(adap->vfinfo);
6278 adap->vfinfo = NULL;
6279 return 0;
6280 }
6281
6282 if (!current_vfs) {
6283 struct fw_pfvf_cmd port_cmd, port_rpl;
6284 struct net_device *netdev;
6285 unsigned int pmask, port;
6286 struct pci_dev *pbridge;
6287 struct port_info *pi;
6288 char name[IFNAMSIZ];
6289 u32 devcap2;
6290 u16 flags;
6291
6292 /* If we want to instantiate Virtual Functions, then our
6293 * parent bridge's PCI-E needs to support Alternative Routing
6294 * ID (ARI) because our VFs will show up at function offset 8
6295 * and above.
6296 */
6297 pbridge = pdev->bus->self;
6298 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6299 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6300
6301 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6302 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6303 /* Our parent bridge does not support ARI so issue a
6304 * warning and skip instantiating the VFs. They
6305 * won't be reachable.
6306 */
6307 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6308 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6309 PCI_FUNC(pbridge->devfn));
6310 return -ENOTSUPP;
6311 }
6312 memset(&port_cmd, 0, sizeof(port_cmd));
6313 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6314 FW_CMD_REQUEST_F |
6315 FW_CMD_READ_F |
6316 FW_PFVF_CMD_PFN_V(adap->pf) |
6317 FW_PFVF_CMD_VFN_V(0));
6318 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6319 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6320 &port_rpl);
6321 if (err)
6322 return err;
6323 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6324 port = ffs(pmask) - 1;
6325 /* Allocate VF Management Interface. */
6326 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6327 adap->pf);
6328 netdev = alloc_netdev(sizeof(struct port_info),
6329 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6330 if (!netdev)
6331 return -ENOMEM;
6332
6333 pi = netdev_priv(netdev);
6334 pi->adapter = adap;
6335 pi->lport = port;
6336 pi->tx_chan = port;
6337 SET_NETDEV_DEV(netdev, &pdev->dev);
6338
6339 adap->port[0] = netdev;
6340 pi->port_id = 0;
6341
6342 err = register_netdev(adap->port[0]);
6343 if (err) {
6344 pr_info("Unable to register VF mgmt netdev %s\n", name);
6345 free_netdev(adap->port[0]);
6346 adap->port[0] = NULL;
6347 return err;
6348 }
6349 /* Allocate and set up VF Information. */
6350 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6351 sizeof(struct vf_info), GFP_KERNEL);
6352 if (!adap->vfinfo) {
6353 unregister_netdev(adap->port[0]);
6354 free_netdev(adap->port[0]);
6355 adap->port[0] = NULL;
6356 return -ENOMEM;
6357 }
6358 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6359 }
6360 /* Instantiate the requested number of VFs. */
6361 err = pci_enable_sriov(pdev, num_vfs);
6362 if (err) {
6363 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6364 if (!current_vfs) {
6365 unregister_netdev(adap->port[0]);
6366 free_netdev(adap->port[0]);
6367 adap->port[0] = NULL;
6368 kfree(adap->vfinfo);
6369 adap->vfinfo = NULL;
6370 }
6371 return err;
6372 }
6373
6374 adap->num_vfs = num_vfs;
6375 return num_vfs;
6376 }
6377 #endif /* CONFIG_PCI_IOV */
6378
6379 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6380
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6381 static int chcr_offload_state(struct adapter *adap,
6382 enum cxgb4_netdev_tls_ops op_val)
6383 {
6384 switch (op_val) {
6385 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6386 case CXGB4_TLSDEV_OPS:
6387 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6388 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6389 return -EOPNOTSUPP;
6390 }
6391 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6392 dev_dbg(adap->pdev_dev,
6393 "ch_ktls driver has no registered tlsdev_ops\n");
6394 return -EOPNOTSUPP;
6395 }
6396 break;
6397 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6398 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6399 case CXGB4_XFRMDEV_OPS:
6400 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6401 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6402 return -EOPNOTSUPP;
6403 }
6404 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6405 dev_dbg(adap->pdev_dev,
6406 "chipsec driver has no registered xfrmdev_ops\n");
6407 return -EOPNOTSUPP;
6408 }
6409 break;
6410 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6411 default:
6412 dev_dbg(adap->pdev_dev,
6413 "driver has no support for offload %d\n", op_val);
6414 return -EOPNOTSUPP;
6415 }
6416
6417 return 0;
6418 }
6419
6420 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6421
6422 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6423
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6424 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6425 enum tls_offload_ctx_dir direction,
6426 struct tls_crypto_info *crypto_info,
6427 u32 tcp_sn)
6428 {
6429 struct adapter *adap = netdev2adap(netdev);
6430 int ret;
6431
6432 mutex_lock(&uld_mutex);
6433 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6434 if (ret)
6435 goto out_unlock;
6436
6437 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6438 if (ret)
6439 goto out_unlock;
6440
6441 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6442 direction,
6443 crypto_info,
6444 tcp_sn);
6445 /* if there is a failure, clear the refcount */
6446 if (ret)
6447 cxgb4_set_ktls_feature(adap,
6448 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6449 out_unlock:
6450 mutex_unlock(&uld_mutex);
6451 return ret;
6452 }
6453
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6454 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6455 struct tls_context *tls_ctx,
6456 enum tls_offload_ctx_dir direction)
6457 {
6458 struct adapter *adap = netdev2adap(netdev);
6459
6460 mutex_lock(&uld_mutex);
6461 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6462 goto out_unlock;
6463
6464 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6465 direction);
6466
6467 out_unlock:
6468 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6469 mutex_unlock(&uld_mutex);
6470 }
6471
6472 static const struct tlsdev_ops cxgb4_ktls_ops = {
6473 .tls_dev_add = cxgb4_ktls_dev_add,
6474 .tls_dev_del = cxgb4_ktls_dev_del,
6475 };
6476 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6477
6478 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6479
cxgb4_xfrm_add_state(struct xfrm_state * x,struct netlink_ext_ack * extack)6480 static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6481 struct netlink_ext_ack *extack)
6482 {
6483 struct adapter *adap = netdev2adap(x->xso.dev);
6484 int ret;
6485
6486 if (!mutex_trylock(&uld_mutex)) {
6487 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6488 return -EBUSY;
6489 }
6490 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6491 if (ret)
6492 goto out_unlock;
6493
6494 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6495
6496 out_unlock:
6497 mutex_unlock(&uld_mutex);
6498
6499 return ret;
6500 }
6501
cxgb4_xfrm_del_state(struct xfrm_state * x)6502 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6503 {
6504 struct adapter *adap = netdev2adap(x->xso.dev);
6505
6506 if (!mutex_trylock(&uld_mutex)) {
6507 dev_dbg(adap->pdev_dev,
6508 "crypto uld critical resource is under use\n");
6509 return;
6510 }
6511 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6512 goto out_unlock;
6513
6514 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6515
6516 out_unlock:
6517 mutex_unlock(&uld_mutex);
6518 }
6519
cxgb4_xfrm_free_state(struct xfrm_state * x)6520 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6521 {
6522 struct adapter *adap = netdev2adap(x->xso.dev);
6523
6524 if (!mutex_trylock(&uld_mutex)) {
6525 dev_dbg(adap->pdev_dev,
6526 "crypto uld critical resource is under use\n");
6527 return;
6528 }
6529 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6530 goto out_unlock;
6531
6532 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6533
6534 out_unlock:
6535 mutex_unlock(&uld_mutex);
6536 }
6537
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6538 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6539 {
6540 struct adapter *adap = netdev2adap(x->xso.dev);
6541 bool ret = false;
6542
6543 if (!mutex_trylock(&uld_mutex)) {
6544 dev_dbg(adap->pdev_dev,
6545 "crypto uld critical resource is under use\n");
6546 return ret;
6547 }
6548 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6549 goto out_unlock;
6550
6551 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6552
6553 out_unlock:
6554 mutex_unlock(&uld_mutex);
6555 return ret;
6556 }
6557
cxgb4_advance_esn_state(struct xfrm_state * x)6558 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6559 {
6560 struct adapter *adap = netdev2adap(x->xso.dev);
6561
6562 if (!mutex_trylock(&uld_mutex)) {
6563 dev_dbg(adap->pdev_dev,
6564 "crypto uld critical resource is under use\n");
6565 return;
6566 }
6567 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6568 goto out_unlock;
6569
6570 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6571
6572 out_unlock:
6573 mutex_unlock(&uld_mutex);
6574 }
6575
6576 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6577 .xdo_dev_state_add = cxgb4_xfrm_add_state,
6578 .xdo_dev_state_delete = cxgb4_xfrm_del_state,
6579 .xdo_dev_state_free = cxgb4_xfrm_free_state,
6580 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
6581 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6582 };
6583
6584 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6585
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6586 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6587 {
6588 struct net_device *netdev;
6589 struct adapter *adapter;
6590 static int adap_idx = 1;
6591 int s_qpp, qpp, num_seg;
6592 struct port_info *pi;
6593 enum chip_type chip;
6594 void __iomem *regs;
6595 int func, chip_ver;
6596 u16 device_id;
6597 int i, err;
6598 u32 whoami;
6599
6600 err = pci_request_regions(pdev, KBUILD_MODNAME);
6601 if (err) {
6602 /* Just info, some other driver may have claimed the device. */
6603 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6604 return err;
6605 }
6606
6607 err = pci_enable_device(pdev);
6608 if (err) {
6609 dev_err(&pdev->dev, "cannot enable PCI device\n");
6610 goto out_release_regions;
6611 }
6612
6613 regs = pci_ioremap_bar(pdev, 0);
6614 if (!regs) {
6615 dev_err(&pdev->dev, "cannot map device registers\n");
6616 err = -ENOMEM;
6617 goto out_disable_device;
6618 }
6619
6620 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6621 if (!adapter) {
6622 err = -ENOMEM;
6623 goto out_unmap_bar0;
6624 }
6625
6626 adapter->regs = regs;
6627 err = t4_wait_dev_ready(regs);
6628 if (err < 0)
6629 goto out_free_adapter;
6630
6631 /* We control everything through one PF */
6632 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6633 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6634 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6635 if ((int)chip < 0) {
6636 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6637 err = chip;
6638 goto out_free_adapter;
6639 }
6640 chip_ver = CHELSIO_CHIP_VERSION(chip);
6641 func = chip_ver <= CHELSIO_T5 ?
6642 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6643
6644 adapter->pdev = pdev;
6645 adapter->pdev_dev = &pdev->dev;
6646 adapter->name = pci_name(pdev);
6647 adapter->mbox = func;
6648 adapter->pf = func;
6649 adapter->params.chip = chip;
6650 adapter->adap_idx = adap_idx;
6651 adapter->msg_enable = DFLT_MSG_ENABLE;
6652 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6653 (sizeof(struct mbox_cmd) *
6654 T4_OS_LOG_MBOX_CMDS),
6655 GFP_KERNEL);
6656 if (!adapter->mbox_log) {
6657 err = -ENOMEM;
6658 goto out_free_adapter;
6659 }
6660 spin_lock_init(&adapter->mbox_lock);
6661 INIT_LIST_HEAD(&adapter->mlist.list);
6662 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6663 pci_set_drvdata(pdev, adapter);
6664
6665 if (func != ent->driver_data) {
6666 pci_disable_device(pdev);
6667 pci_save_state(pdev); /* to restore SR-IOV later */
6668 return 0;
6669 }
6670
6671 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6672 if (err) {
6673 dev_err(&pdev->dev, "no usable DMA configuration\n");
6674 goto out_free_adapter;
6675 }
6676
6677 pci_set_master(pdev);
6678 pci_save_state(pdev);
6679 adap_idx++;
6680 adapter->workq = create_singlethread_workqueue("cxgb4");
6681 if (!adapter->workq) {
6682 err = -ENOMEM;
6683 goto out_free_adapter;
6684 }
6685
6686 /* PCI device has been enabled */
6687 adapter->flags |= CXGB4_DEV_ENABLED;
6688 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6689
6690 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6691 * Ingress Packet Data to Free List Buffers in order to allow for
6692 * chipset performance optimizations between the Root Complex and
6693 * Memory Controllers. (Messages to the associated Ingress Queue
6694 * notifying new Packet Placement in the Free Lists Buffers will be
6695 * send without the Relaxed Ordering Attribute thus guaranteeing that
6696 * all preceding PCIe Transaction Layer Packets will be processed
6697 * first.) But some Root Complexes have various issues with Upstream
6698 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6699 * The PCIe devices which under the Root Complexes will be cleared the
6700 * Relaxed Ordering bit in the configuration space, So we check our
6701 * PCIe configuration space to see if it's flagged with advice against
6702 * using Relaxed Ordering.
6703 */
6704 if (!pcie_relaxed_ordering_enabled(pdev))
6705 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6706
6707 spin_lock_init(&adapter->stats_lock);
6708 spin_lock_init(&adapter->tid_release_lock);
6709 spin_lock_init(&adapter->win0_lock);
6710
6711 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6712 INIT_WORK(&adapter->db_full_task, process_db_full);
6713 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6714 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6715
6716 err = t4_prep_adapter(adapter);
6717 if (err)
6718 goto out_free_adapter;
6719
6720 if (is_kdump_kernel()) {
6721 /* Collect hardware state and append to /proc/vmcore */
6722 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6723 if (err) {
6724 dev_warn(adapter->pdev_dev,
6725 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6726 err);
6727 err = 0;
6728 }
6729 }
6730
6731 if (!is_t4(adapter->params.chip)) {
6732 s_qpp = (QUEUESPERPAGEPF0_S +
6733 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6734 adapter->pf);
6735 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6736 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6737 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6738
6739 /* Each segment size is 128B. Write coalescing is enabled only
6740 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6741 * queue is less no of segments that can be accommodated in
6742 * a page size.
6743 */
6744 if (qpp > num_seg) {
6745 dev_err(&pdev->dev,
6746 "Incorrect number of egress queues per page\n");
6747 err = -EINVAL;
6748 goto out_free_adapter;
6749 }
6750 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6751 pci_resource_len(pdev, 2));
6752 if (!adapter->bar2) {
6753 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6754 err = -ENOMEM;
6755 goto out_free_adapter;
6756 }
6757 }
6758
6759 setup_memwin(adapter);
6760 err = adap_init0(adapter, 0);
6761 if (err)
6762 goto out_unmap_bar;
6763
6764 setup_memwin_rdma(adapter);
6765
6766 /* configure SGE_STAT_CFG_A to read WC stats */
6767 if (!is_t4(adapter->params.chip))
6768 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6769 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6770 T6_STATMODE_V(0)));
6771
6772 /* Initialize hash mac addr list */
6773 INIT_LIST_HEAD(&adapter->mac_hlist);
6774
6775 for_each_port(adapter, i) {
6776 /* For supporting MQPRIO Offload, need some extra
6777 * queues for each ETHOFLD TIDs. Keep it equal to
6778 * MAX_ATIDs for now. Once we connect to firmware
6779 * later and query the EOTID params, we'll come to
6780 * know the actual # of EOTIDs supported.
6781 */
6782 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6783 MAX_ETH_QSETS + MAX_ATIDS);
6784 if (!netdev) {
6785 err = -ENOMEM;
6786 goto out_free_dev;
6787 }
6788
6789 SET_NETDEV_DEV(netdev, &pdev->dev);
6790
6791 adapter->port[i] = netdev;
6792 pi = netdev_priv(netdev);
6793 pi->adapter = adapter;
6794 pi->xact_addr_filt = -1;
6795 pi->port_id = i;
6796 netdev->irq = pdev->irq;
6797
6798 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6799 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6800 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6801 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6802 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6803
6804 if (chip_ver > CHELSIO_T5) {
6805 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6806 NETIF_F_IPV6_CSUM |
6807 NETIF_F_RXCSUM |
6808 NETIF_F_GSO_UDP_TUNNEL |
6809 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6810 NETIF_F_TSO | NETIF_F_TSO6;
6811
6812 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6813 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6814 NETIF_F_HW_TLS_RECORD;
6815
6816 if (adapter->rawf_cnt)
6817 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6818 }
6819
6820 netdev->features |= netdev->hw_features;
6821 netdev->vlan_features = netdev->features & VLAN_FEAT;
6822 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6823 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6824 netdev->hw_features |= NETIF_F_HW_TLS_TX;
6825 netdev->tlsdev_ops = &cxgb4_ktls_ops;
6826 /* initialize the refcount */
6827 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6828 }
6829 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6830 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6831 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6832 netdev->hw_enc_features |= NETIF_F_HW_ESP;
6833 netdev->features |= NETIF_F_HW_ESP;
6834 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6835 }
6836 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6837
6838 netdev->priv_flags |= IFF_UNICAST_FLT;
6839
6840 /* MTU range: 81 - 9600 */
6841 netdev->min_mtu = 81; /* accommodate SACK */
6842 netdev->max_mtu = MAX_MTU;
6843
6844 netdev->netdev_ops = &cxgb4_netdev_ops;
6845 #ifdef CONFIG_CHELSIO_T4_DCB
6846 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6847 cxgb4_dcb_state_init(netdev);
6848 cxgb4_dcb_version_init(netdev);
6849 #endif
6850 cxgb4_set_ethtool_ops(netdev);
6851 }
6852
6853 cxgb4_init_ethtool_dump(adapter);
6854
6855 pci_set_drvdata(pdev, adapter);
6856
6857 if (adapter->flags & CXGB4_FW_OK) {
6858 err = t4_port_init(adapter, func, func, 0);
6859 if (err)
6860 goto out_free_dev;
6861 } else if (adapter->params.nports == 1) {
6862 /* If we don't have a connection to the firmware -- possibly
6863 * because of an error -- grab the raw VPD parameters so we
6864 * can set the proper MAC Address on the debug network
6865 * interface that we've created.
6866 */
6867 u8 hw_addr[ETH_ALEN];
6868 u8 *na = adapter->params.vpd.na;
6869
6870 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6871 if (!err) {
6872 for (i = 0; i < ETH_ALEN; i++)
6873 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6874 hex2val(na[2 * i + 1]));
6875 t4_set_hw_addr(adapter, 0, hw_addr);
6876 }
6877 }
6878
6879 if (!(adapter->flags & CXGB4_FW_OK))
6880 goto fw_attach_fail;
6881
6882 /* Configure queues and allocate tables now, they can be needed as
6883 * soon as the first register_netdev completes.
6884 */
6885 err = cfg_queues(adapter);
6886 if (err)
6887 goto out_free_dev;
6888
6889 adapter->smt = t4_init_smt();
6890 if (!adapter->smt) {
6891 /* We tolerate a lack of SMT, giving up some functionality */
6892 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6893 }
6894
6895 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6896 if (!adapter->l2t) {
6897 /* We tolerate a lack of L2T, giving up some functionality */
6898 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6899 adapter->params.offload = 0;
6900 }
6901
6902 #if IS_ENABLED(CONFIG_IPV6)
6903 if (chip_ver <= CHELSIO_T5 &&
6904 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6905 /* CLIP functionality is not present in hardware,
6906 * hence disable all offload features
6907 */
6908 dev_warn(&pdev->dev,
6909 "CLIP not enabled in hardware, continuing\n");
6910 adapter->params.offload = 0;
6911 } else {
6912 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6913 adapter->clipt_end);
6914 if (!adapter->clipt) {
6915 /* We tolerate a lack of clip_table, giving up
6916 * some functionality
6917 */
6918 dev_warn(&pdev->dev,
6919 "could not allocate Clip table, continuing\n");
6920 adapter->params.offload = 0;
6921 }
6922 }
6923 #endif
6924
6925 for_each_port(adapter, i) {
6926 pi = adap2pinfo(adapter, i);
6927 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6928 if (!pi->sched_tbl)
6929 dev_warn(&pdev->dev,
6930 "could not activate scheduling on port %d\n",
6931 i);
6932 }
6933
6934 if (is_offload(adapter) || is_hashfilter(adapter)) {
6935 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6936 u32 v;
6937
6938 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6939 if (chip_ver <= CHELSIO_T5) {
6940 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6941 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6942 adapter->tids.hash_base = v / 4;
6943 } else {
6944 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6945 v = t4_read_reg(adapter,
6946 T6_LE_DB_HASH_TID_BASE_A);
6947 adapter->tids.hash_base = v;
6948 }
6949 }
6950 }
6951
6952 if (tid_init(&adapter->tids) < 0) {
6953 dev_warn(&pdev->dev, "could not allocate TID table, "
6954 "continuing\n");
6955 adapter->params.offload = 0;
6956 } else {
6957 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6958 if (!adapter->tc_u32)
6959 dev_warn(&pdev->dev,
6960 "could not offload tc u32, continuing\n");
6961
6962 if (cxgb4_init_tc_flower(adapter))
6963 dev_warn(&pdev->dev,
6964 "could not offload tc flower, continuing\n");
6965
6966 if (cxgb4_init_tc_mqprio(adapter))
6967 dev_warn(&pdev->dev,
6968 "could not offload tc mqprio, continuing\n");
6969
6970 if (cxgb4_init_tc_matchall(adapter))
6971 dev_warn(&pdev->dev,
6972 "could not offload tc matchall, continuing\n");
6973 if (cxgb4_init_ethtool_filters(adapter))
6974 dev_warn(&pdev->dev,
6975 "could not initialize ethtool filters, continuing\n");
6976 }
6977
6978 /* See what interrupts we'll be using */
6979 if (msi > 1 && enable_msix(adapter) == 0)
6980 adapter->flags |= CXGB4_USING_MSIX;
6981 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6982 adapter->flags |= CXGB4_USING_MSI;
6983 if (msi > 1)
6984 free_msix_info(adapter);
6985 }
6986
6987 /* check for PCI Express bandwidth capabiltites */
6988 pcie_print_link_status(pdev);
6989
6990 cxgb4_init_mps_ref_entries(adapter);
6991
6992 err = init_rss(adapter);
6993 if (err)
6994 goto out_free_dev;
6995
6996 err = setup_non_data_intr(adapter);
6997 if (err) {
6998 dev_err(adapter->pdev_dev,
6999 "Non Data interrupt allocation failed, err: %d\n", err);
7000 goto out_free_dev;
7001 }
7002
7003 err = setup_fw_sge_queues(adapter);
7004 if (err) {
7005 dev_err(adapter->pdev_dev,
7006 "FW sge queue allocation failed, err %d", err);
7007 goto out_free_dev;
7008 }
7009
7010 fw_attach_fail:
7011 /*
7012 * The card is now ready to go. If any errors occur during device
7013 * registration we do not fail the whole card but rather proceed only
7014 * with the ports we manage to register successfully. However we must
7015 * register at least one net device.
7016 */
7017 for_each_port(adapter, i) {
7018 pi = adap2pinfo(adapter, i);
7019 adapter->port[i]->dev_port = pi->lport;
7020 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7021 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7022
7023 netif_carrier_off(adapter->port[i]);
7024
7025 err = register_netdev(adapter->port[i]);
7026 if (err)
7027 break;
7028 adapter->chan_map[pi->tx_chan] = i;
7029 print_port_info(adapter->port[i]);
7030 }
7031 if (i == 0) {
7032 dev_err(&pdev->dev, "could not register any net devices\n");
7033 goto out_free_dev;
7034 }
7035 if (err) {
7036 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7037 err = 0;
7038 }
7039
7040 if (cxgb4_debugfs_root) {
7041 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7042 cxgb4_debugfs_root);
7043 setup_debugfs(adapter);
7044 }
7045
7046 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7047 pdev->needs_freset = 1;
7048
7049 if (is_uld(adapter))
7050 cxgb4_uld_enable(adapter);
7051
7052 if (!is_t4(adapter->params.chip))
7053 cxgb4_ptp_init(adapter);
7054
7055 if (IS_REACHABLE(CONFIG_THERMAL) &&
7056 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7057 cxgb4_thermal_init(adapter);
7058
7059 print_adapter_info(adapter);
7060 return 0;
7061
7062 out_free_dev:
7063 t4_free_sge_resources(adapter);
7064 free_some_resources(adapter);
7065 if (adapter->flags & CXGB4_USING_MSIX)
7066 free_msix_info(adapter);
7067 if (adapter->num_uld || adapter->num_ofld_uld)
7068 t4_uld_mem_free(adapter);
7069 out_unmap_bar:
7070 if (!is_t4(adapter->params.chip))
7071 iounmap(adapter->bar2);
7072 out_free_adapter:
7073 if (adapter->workq)
7074 destroy_workqueue(adapter->workq);
7075
7076 kfree(adapter->mbox_log);
7077 kfree(adapter);
7078 out_unmap_bar0:
7079 iounmap(regs);
7080 out_disable_device:
7081 pci_disable_device(pdev);
7082 out_release_regions:
7083 pci_release_regions(pdev);
7084 return err;
7085 }
7086
remove_one(struct pci_dev * pdev)7087 static void remove_one(struct pci_dev *pdev)
7088 {
7089 struct adapter *adapter = pci_get_drvdata(pdev);
7090 struct hash_mac_addr *entry, *tmp;
7091
7092 if (!adapter) {
7093 pci_release_regions(pdev);
7094 return;
7095 }
7096
7097 /* If we allocated filters, free up state associated with any
7098 * valid filters ...
7099 */
7100 clear_all_filters(adapter);
7101
7102 adapter->flags |= CXGB4_SHUTTING_DOWN;
7103
7104 if (adapter->pf == 4) {
7105 int i;
7106
7107 /* Tear down per-adapter Work Queue first since it can contain
7108 * references to our adapter data structure.
7109 */
7110 destroy_workqueue(adapter->workq);
7111
7112 detach_ulds(adapter);
7113
7114 for_each_port(adapter, i)
7115 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7116 unregister_netdev(adapter->port[i]);
7117
7118 t4_uld_clean_up(adapter);
7119
7120 adap_free_hma_mem(adapter);
7121
7122 disable_interrupts(adapter);
7123
7124 cxgb4_free_mps_ref_entries(adapter);
7125
7126 debugfs_remove_recursive(adapter->debugfs_root);
7127
7128 if (!is_t4(adapter->params.chip))
7129 cxgb4_ptp_stop(adapter);
7130 if (IS_REACHABLE(CONFIG_THERMAL))
7131 cxgb4_thermal_remove(adapter);
7132
7133 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7134 cxgb_down(adapter);
7135
7136 if (adapter->flags & CXGB4_USING_MSIX)
7137 free_msix_info(adapter);
7138 if (adapter->num_uld || adapter->num_ofld_uld)
7139 t4_uld_mem_free(adapter);
7140 free_some_resources(adapter);
7141 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7142 list) {
7143 list_del(&entry->list);
7144 kfree(entry);
7145 }
7146
7147 #if IS_ENABLED(CONFIG_IPV6)
7148 t4_cleanup_clip_tbl(adapter);
7149 #endif
7150 if (!is_t4(adapter->params.chip))
7151 iounmap(adapter->bar2);
7152 }
7153 #ifdef CONFIG_PCI_IOV
7154 else {
7155 cxgb4_iov_configure(adapter->pdev, 0);
7156 }
7157 #endif
7158 iounmap(adapter->regs);
7159 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7160 pci_disable_device(pdev);
7161 adapter->flags &= ~CXGB4_DEV_ENABLED;
7162 }
7163 pci_release_regions(pdev);
7164 kfree(adapter->mbox_log);
7165 synchronize_rcu();
7166 kfree(adapter);
7167 }
7168
7169 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7170 * delivery. This is essentially a stripped down version of the PCI remove()
7171 * function where we do the minimal amount of work necessary to shutdown any
7172 * further activity.
7173 */
shutdown_one(struct pci_dev * pdev)7174 static void shutdown_one(struct pci_dev *pdev)
7175 {
7176 struct adapter *adapter = pci_get_drvdata(pdev);
7177
7178 /* As with remove_one() above (see extended comment), we only want do
7179 * do cleanup on PCI Devices which went all the way through init_one()
7180 * ...
7181 */
7182 if (!adapter) {
7183 pci_release_regions(pdev);
7184 return;
7185 }
7186
7187 adapter->flags |= CXGB4_SHUTTING_DOWN;
7188
7189 if (adapter->pf == 4) {
7190 int i;
7191
7192 for_each_port(adapter, i)
7193 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7194 cxgb_close(adapter->port[i]);
7195
7196 rtnl_lock();
7197 cxgb4_mqprio_stop_offload(adapter);
7198 rtnl_unlock();
7199
7200 if (is_uld(adapter)) {
7201 detach_ulds(adapter);
7202 t4_uld_clean_up(adapter);
7203 }
7204
7205 disable_interrupts(adapter);
7206 disable_msi(adapter);
7207
7208 t4_sge_stop(adapter);
7209 if (adapter->flags & CXGB4_FW_OK)
7210 t4_fw_bye(adapter, adapter->mbox);
7211 }
7212 }
7213
7214 static struct pci_driver cxgb4_driver = {
7215 .name = KBUILD_MODNAME,
7216 .id_table = cxgb4_pci_tbl,
7217 .probe = init_one,
7218 .remove = remove_one,
7219 .shutdown = shutdown_one,
7220 #ifdef CONFIG_PCI_IOV
7221 .sriov_configure = cxgb4_iov_configure,
7222 #endif
7223 .err_handler = &cxgb4_eeh,
7224 };
7225
cxgb4_init_module(void)7226 static int __init cxgb4_init_module(void)
7227 {
7228 int ret;
7229
7230 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7231
7232 ret = pci_register_driver(&cxgb4_driver);
7233 if (ret < 0)
7234 goto err_pci;
7235
7236 #if IS_ENABLED(CONFIG_IPV6)
7237 if (!inet6addr_registered) {
7238 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7239 if (ret)
7240 pci_unregister_driver(&cxgb4_driver);
7241 else
7242 inet6addr_registered = true;
7243 }
7244 #endif
7245
7246 if (ret == 0)
7247 return ret;
7248
7249 err_pci:
7250 debugfs_remove(cxgb4_debugfs_root);
7251
7252 return ret;
7253 }
7254
cxgb4_cleanup_module(void)7255 static void __exit cxgb4_cleanup_module(void)
7256 {
7257 #if IS_ENABLED(CONFIG_IPV6)
7258 if (inet6addr_registered) {
7259 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7260 inet6addr_registered = false;
7261 }
7262 #endif
7263 pci_unregister_driver(&cxgb4_driver);
7264 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
7265 }
7266
7267 module_init(cxgb4_init_module);
7268 module_exit(cxgb4_cleanup_module);
7269