xref: /linux/arch/x86/kernel/cpu/common.c (revision 284922f4c563aa3a8558a00f2a05722133237fe8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 #include <linux/efi.h>
30 
31 #include <asm/alternative.h>
32 #include <asm/cmdline.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/perf_event.h>
35 #include <asm/mmu_context.h>
36 #include <asm/doublefault.h>
37 #include <asm/archrandom.h>
38 #include <asm/hypervisor.h>
39 #include <asm/processor.h>
40 #include <asm/tlbflush.h>
41 #include <asm/debugreg.h>
42 #include <asm/sections.h>
43 #include <asm/vsyscall.h>
44 #include <linux/topology.h>
45 #include <linux/cpumask.h>
46 #include <linux/atomic.h>
47 #include <asm/proto.h>
48 #include <asm/setup.h>
49 #include <asm/apic.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/hwcap2.h>
54 #include <linux/numa.h>
55 #include <asm/numa.h>
56 #include <asm/asm.h>
57 #include <asm/bugs.h>
58 #include <asm/cpu.h>
59 #include <asm/mce.h>
60 #include <asm/msr.h>
61 #include <asm/cacheinfo.h>
62 #include <asm/memtype.h>
63 #include <asm/microcode.h>
64 #include <asm/intel-family.h>
65 #include <asm/cpu_device_id.h>
66 #include <asm/fred.h>
67 #include <asm/uv/uv.h>
68 #include <asm/ia32.h>
69 #include <asm/set_memory.h>
70 #include <asm/traps.h>
71 #include <asm/sev.h>
72 #include <asm/tdx.h>
73 #include <asm/posted_intr.h>
74 #include <asm/runtime-const.h>
75 
76 #include "cpu.h"
77 
78 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
79 EXPORT_PER_CPU_SYMBOL(cpu_info);
80 
81 /* Used for modules: built-in code uses runtime constants */
82 unsigned long USER_PTR_MAX;
83 EXPORT_SYMBOL(USER_PTR_MAX);
84 
85 u32 elf_hwcap2 __read_mostly;
86 
87 /* Number of siblings per CPU package */
88 unsigned int __max_threads_per_core __ro_after_init = 1;
89 EXPORT_SYMBOL(__max_threads_per_core);
90 
91 unsigned int __max_dies_per_package __ro_after_init = 1;
92 EXPORT_SYMBOL(__max_dies_per_package);
93 
94 unsigned int __max_logical_packages __ro_after_init = 1;
95 EXPORT_SYMBOL(__max_logical_packages);
96 
97 unsigned int __num_cores_per_package __ro_after_init = 1;
98 EXPORT_SYMBOL(__num_cores_per_package);
99 
100 unsigned int __num_threads_per_package __ro_after_init = 1;
101 EXPORT_SYMBOL(__num_threads_per_package);
102 
103 static struct ppin_info {
104 	int	feature;
105 	int	msr_ppin_ctl;
106 	int	msr_ppin;
107 } ppin_info[] = {
108 	[X86_VENDOR_INTEL] = {
109 		.feature = X86_FEATURE_INTEL_PPIN,
110 		.msr_ppin_ctl = MSR_PPIN_CTL,
111 		.msr_ppin = MSR_PPIN
112 	},
113 	[X86_VENDOR_AMD] = {
114 		.feature = X86_FEATURE_AMD_PPIN,
115 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
116 		.msr_ppin = MSR_AMD_PPIN
117 	},
118 };
119 
120 static const struct x86_cpu_id ppin_cpuids[] = {
121 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
122 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
123 
124 	/* Legacy models without CPUID enumeration */
125 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
126 	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
127 	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
128 	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
129 	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
130 	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
131 	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
132 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
133 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
134 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
135 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
136 
137 	{}
138 };
139 
ppin_init(struct cpuinfo_x86 * c)140 static void ppin_init(struct cpuinfo_x86 *c)
141 {
142 	const struct x86_cpu_id *id;
143 	unsigned long long val;
144 	struct ppin_info *info;
145 
146 	id = x86_match_cpu(ppin_cpuids);
147 	if (!id)
148 		return;
149 
150 	/*
151 	 * Testing the presence of the MSR is not enough. Need to check
152 	 * that the PPIN_CTL allows reading of the PPIN.
153 	 */
154 	info = (struct ppin_info *)id->driver_data;
155 
156 	if (rdmsrq_safe(info->msr_ppin_ctl, &val))
157 		goto clear_ppin;
158 
159 	if ((val & 3UL) == 1UL) {
160 		/* PPIN locked in disabled mode */
161 		goto clear_ppin;
162 	}
163 
164 	/* If PPIN is disabled, try to enable */
165 	if (!(val & 2UL)) {
166 		wrmsrq_safe(info->msr_ppin_ctl,  val | 2UL);
167 		rdmsrq_safe(info->msr_ppin_ctl, &val);
168 	}
169 
170 	/* Is the enable bit set? */
171 	if (val & 2UL) {
172 		c->ppin = native_rdmsrq(info->msr_ppin);
173 		set_cpu_cap(c, info->feature);
174 		return;
175 	}
176 
177 clear_ppin:
178 	setup_clear_cpu_cap(info->feature);
179 }
180 
default_init(struct cpuinfo_x86 * c)181 static void default_init(struct cpuinfo_x86 *c)
182 {
183 #ifdef CONFIG_X86_64
184 	cpu_detect_cache_sizes(c);
185 #else
186 	/* Not much we can do here... */
187 	/* Check if at least it has cpuid */
188 	if (c->cpuid_level == -1) {
189 		/* No cpuid. It must be an ancient CPU */
190 		if (c->x86 == 4)
191 			strcpy(c->x86_model_id, "486");
192 		else if (c->x86 == 3)
193 			strcpy(c->x86_model_id, "386");
194 	}
195 #endif
196 }
197 
198 static const struct cpu_dev default_cpu = {
199 	.c_init		= default_init,
200 	.c_vendor	= "Unknown",
201 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
202 };
203 
204 static const struct cpu_dev *this_cpu = &default_cpu;
205 
206 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
207 #ifdef CONFIG_X86_64
208 	/*
209 	 * We need valid kernel segments for data and code in long mode too
210 	 * IRET will check the segment types  kkeil 2000/10/28
211 	 * Also sysret mandates a special GDT layout
212 	 *
213 	 * TLS descriptors are currently at a different place compared to i386.
214 	 * Hopefully nobody expects them at a fixed place (Wine?)
215 	 */
216 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
217 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
218 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
219 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
220 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
221 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
222 #else
223 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
224 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
225 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
226 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
227 	/*
228 	 * Segments used for calling PnP BIOS have byte granularity.
229 	 * They code segments and data segments have fixed 64k limits,
230 	 * the transfer segment sizes are set at run time.
231 	 */
232 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
233 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
234 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
235 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
236 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
237 	/*
238 	 * The APM segments have byte granularity and their bases
239 	 * are set at run time.  All have 64k limits.
240 	 */
241 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
242 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
243 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
244 
245 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
246 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
247 #endif
248 } };
249 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
250 SYM_PIC_ALIAS(gdt_page);
251 
252 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)253 static int __init x86_nopcid_setup(char *s)
254 {
255 	/* nopcid doesn't accept parameters */
256 	if (s)
257 		return -EINVAL;
258 
259 	/* do not emit a message if the feature is not present */
260 	if (!boot_cpu_has(X86_FEATURE_PCID))
261 		return 0;
262 
263 	setup_clear_cpu_cap(X86_FEATURE_PCID);
264 	pr_info("nopcid: PCID feature disabled\n");
265 	return 0;
266 }
267 early_param("nopcid", x86_nopcid_setup);
268 #endif
269 
x86_noinvpcid_setup(char * s)270 static int __init x86_noinvpcid_setup(char *s)
271 {
272 	/* noinvpcid doesn't accept parameters */
273 	if (s)
274 		return -EINVAL;
275 
276 	/* do not emit a message if the feature is not present */
277 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
278 		return 0;
279 
280 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
281 	pr_info("noinvpcid: INVPCID feature disabled\n");
282 	return 0;
283 }
284 early_param("noinvpcid", x86_noinvpcid_setup);
285 
286 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)287 static inline bool flag_is_changeable_p(unsigned long flag)
288 {
289 	unsigned long f1, f2;
290 
291 	if (!IS_ENABLED(CONFIG_X86_32))
292 		return true;
293 
294 	/*
295 	 * Cyrix and IDT cpus allow disabling of CPUID
296 	 * so the code below may return different results
297 	 * when it is executed before and after enabling
298 	 * the CPUID. Add "volatile" to not allow gcc to
299 	 * optimize the subsequent calls to this function.
300 	 */
301 	asm volatile ("pushfl		\n\t"
302 		      "pushfl		\n\t"
303 		      "popl %0		\n\t"
304 		      "movl %0, %1	\n\t"
305 		      "xorl %2, %0	\n\t"
306 		      "pushl %0		\n\t"
307 		      "popfl		\n\t"
308 		      "pushfl		\n\t"
309 		      "popl %0		\n\t"
310 		      "popfl		\n\t"
311 
312 		      : "=&r" (f1), "=&r" (f2)
313 		      : "ir" (flag));
314 
315 	return (f1 ^ f2) & flag;
316 }
317 
318 #ifdef CONFIG_X86_32
319 static int cachesize_override = -1;
320 static int disable_x86_serial_nr = 1;
321 
cachesize_setup(char * str)322 static int __init cachesize_setup(char *str)
323 {
324 	get_option(&str, &cachesize_override);
325 	return 1;
326 }
327 __setup("cachesize=", cachesize_setup);
328 
329 /* Probe for the CPUID instruction */
cpuid_feature(void)330 bool cpuid_feature(void)
331 {
332 	return flag_is_changeable_p(X86_EFLAGS_ID);
333 }
334 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)335 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
336 {
337 	unsigned long lo, hi;
338 
339 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
340 		return;
341 
342 	/* Disable processor serial number: */
343 
344 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
345 	lo |= 0x200000;
346 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
347 
348 	pr_notice("CPU serial number disabled.\n");
349 	clear_cpu_cap(c, X86_FEATURE_PN);
350 
351 	/* Disabling the serial number may affect the cpuid level */
352 	c->cpuid_level = cpuid_eax(0);
353 }
354 
x86_serial_nr_setup(char * s)355 static int __init x86_serial_nr_setup(char *s)
356 {
357 	disable_x86_serial_nr = 0;
358 	return 1;
359 }
360 __setup("serialnumber", x86_serial_nr_setup);
361 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)362 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
363 {
364 }
365 #endif
366 
setup_smep(struct cpuinfo_x86 * c)367 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
368 {
369 	if (cpu_has(c, X86_FEATURE_SMEP))
370 		cr4_set_bits(X86_CR4_SMEP);
371 }
372 
setup_smap(struct cpuinfo_x86 * c)373 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
374 {
375 	unsigned long eflags = native_save_fl();
376 
377 	/* This should have been cleared long ago */
378 	BUG_ON(eflags & X86_EFLAGS_AC);
379 
380 	if (cpu_has(c, X86_FEATURE_SMAP))
381 		cr4_set_bits(X86_CR4_SMAP);
382 }
383 
setup_umip(struct cpuinfo_x86 * c)384 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
385 {
386 	/* Check the boot processor, plus build option for UMIP. */
387 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
388 		goto out;
389 
390 	/* Check the current processor's cpuid bits. */
391 	if (!cpu_has(c, X86_FEATURE_UMIP))
392 		goto out;
393 
394 	cr4_set_bits(X86_CR4_UMIP);
395 
396 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
397 
398 	return;
399 
400 out:
401 	/*
402 	 * Make sure UMIP is disabled in case it was enabled in a
403 	 * previous boot (e.g., via kexec).
404 	 */
405 	cr4_clear_bits(X86_CR4_UMIP);
406 }
407 
408 /* These bits should not change their value after CPU init is finished. */
409 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
410 					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
411 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
412 static unsigned long cr4_pinned_bits __ro_after_init;
413 
native_write_cr0(unsigned long val)414 void native_write_cr0(unsigned long val)
415 {
416 	unsigned long bits_missing = 0;
417 
418 set_register:
419 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
420 
421 	if (static_branch_likely(&cr_pinning)) {
422 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
423 			bits_missing = X86_CR0_WP;
424 			val |= bits_missing;
425 			goto set_register;
426 		}
427 		/* Warn after we've set the missing bits. */
428 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
429 	}
430 }
431 EXPORT_SYMBOL(native_write_cr0);
432 
native_write_cr4(unsigned long val)433 void __no_profile native_write_cr4(unsigned long val)
434 {
435 	unsigned long bits_changed = 0;
436 
437 set_register:
438 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
439 
440 	if (static_branch_likely(&cr_pinning)) {
441 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
442 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
443 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
444 			goto set_register;
445 		}
446 		/* Warn after we've corrected the changed bits. */
447 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
448 			  bits_changed);
449 	}
450 }
451 #if IS_MODULE(CONFIG_LKDTM)
452 EXPORT_SYMBOL_GPL(native_write_cr4);
453 #endif
454 
cr4_update_irqsoff(unsigned long set,unsigned long clear)455 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
456 {
457 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
458 
459 	lockdep_assert_irqs_disabled();
460 
461 	newval = (cr4 & ~clear) | set;
462 	if (newval != cr4) {
463 		this_cpu_write(cpu_tlbstate.cr4, newval);
464 		__write_cr4(newval);
465 	}
466 }
467 EXPORT_SYMBOL(cr4_update_irqsoff);
468 
469 /* Read the CR4 shadow. */
cr4_read_shadow(void)470 unsigned long cr4_read_shadow(void)
471 {
472 	return this_cpu_read(cpu_tlbstate.cr4);
473 }
474 EXPORT_SYMBOL_GPL(cr4_read_shadow);
475 
cr4_init(void)476 void cr4_init(void)
477 {
478 	unsigned long cr4 = __read_cr4();
479 
480 	if (boot_cpu_has(X86_FEATURE_PCID))
481 		cr4 |= X86_CR4_PCIDE;
482 	if (static_branch_likely(&cr_pinning))
483 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
484 
485 	__write_cr4(cr4);
486 
487 	/* Initialize cr4 shadow for this CPU. */
488 	this_cpu_write(cpu_tlbstate.cr4, cr4);
489 }
490 
491 /*
492  * Once CPU feature detection is finished (and boot params have been
493  * parsed), record any of the sensitive CR bits that are set, and
494  * enable CR pinning.
495  */
setup_cr_pinning(void)496 static void __init setup_cr_pinning(void)
497 {
498 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
499 	static_key_enable(&cr_pinning.key);
500 }
501 
x86_nofsgsbase_setup(char * arg)502 static __init int x86_nofsgsbase_setup(char *arg)
503 {
504 	/* Require an exact match without trailing characters. */
505 	if (strlen(arg))
506 		return 0;
507 
508 	/* Do not emit a message if the feature is not present. */
509 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
510 		return 1;
511 
512 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
513 	pr_info("FSGSBASE disabled via kernel command line\n");
514 	return 1;
515 }
516 __setup("nofsgsbase", x86_nofsgsbase_setup);
517 
518 /*
519  * Protection Keys are not available in 32-bit mode.
520  */
521 static bool pku_disabled;
522 
setup_pku(struct cpuinfo_x86 * c)523 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
524 {
525 	if (c == &boot_cpu_data) {
526 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
527 			return;
528 		/*
529 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
530 		 * bit to be set.  Enforce it.
531 		 */
532 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
533 
534 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
535 		return;
536 	}
537 
538 	cr4_set_bits(X86_CR4_PKE);
539 	/* Load the default PKRU value */
540 	pkru_write_default();
541 }
542 
543 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)544 static __init int setup_disable_pku(char *arg)
545 {
546 	/*
547 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
548 	 * runtime checks are against OSPKE so clearing the
549 	 * bit does nothing.
550 	 *
551 	 * This way, we will see "pku" in cpuinfo, but not
552 	 * "ospke", which is exactly what we want.  It shows
553 	 * that the CPU has PKU, but the OS has not enabled it.
554 	 * This happens to be exactly how a system would look
555 	 * if we disabled the config option.
556 	 */
557 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
558 	pku_disabled = true;
559 	return 1;
560 }
561 __setup("nopku", setup_disable_pku);
562 #endif
563 
564 #ifdef CONFIG_X86_KERNEL_IBT
565 
ibt_save(bool disable)566 __noendbr u64 ibt_save(bool disable)
567 {
568 	u64 msr = 0;
569 
570 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
571 		rdmsrq(MSR_IA32_S_CET, msr);
572 		if (disable)
573 			wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
574 	}
575 
576 	return msr;
577 }
578 
ibt_restore(u64 save)579 __noendbr void ibt_restore(u64 save)
580 {
581 	u64 msr;
582 
583 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
584 		rdmsrq(MSR_IA32_S_CET, msr);
585 		msr &= ~CET_ENDBR_EN;
586 		msr |= (save & CET_ENDBR_EN);
587 		wrmsrq(MSR_IA32_S_CET, msr);
588 	}
589 }
590 
591 #endif
592 
setup_cet(struct cpuinfo_x86 * c)593 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
594 {
595 	bool user_shstk, kernel_ibt;
596 
597 	if (!IS_ENABLED(CONFIG_X86_CET))
598 		return;
599 
600 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
601 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
602 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
603 
604 	if (!kernel_ibt && !user_shstk)
605 		return;
606 
607 	if (user_shstk)
608 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
609 
610 	if (kernel_ibt)
611 		wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
612 	else
613 		wrmsrq(MSR_IA32_S_CET, 0);
614 
615 	cr4_set_bits(X86_CR4_CET);
616 
617 	if (kernel_ibt && ibt_selftest()) {
618 		pr_err("IBT selftest: Failed!\n");
619 		wrmsrq(MSR_IA32_S_CET, 0);
620 		setup_clear_cpu_cap(X86_FEATURE_IBT);
621 	}
622 }
623 
cet_disable(void)624 __noendbr void cet_disable(void)
625 {
626 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
627 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
628 		return;
629 
630 	wrmsrq(MSR_IA32_S_CET, 0);
631 	wrmsrq(MSR_IA32_U_CET, 0);
632 }
633 
634 /*
635  * Some CPU features depend on higher CPUID levels, which may not always
636  * be available due to CPUID level capping or broken virtualization
637  * software.  Add those features to this table to auto-disable them.
638  */
639 struct cpuid_dependent_feature {
640 	u32 feature;
641 	u32 level;
642 };
643 
644 static const struct cpuid_dependent_feature
645 cpuid_dependent_features[] = {
646 	{ X86_FEATURE_MWAIT,		CPUID_LEAF_MWAIT },
647 	{ X86_FEATURE_DCA,		CPUID_LEAF_DCA },
648 	{ X86_FEATURE_XSAVE,		CPUID_LEAF_XSTATE },
649 	{ 0, 0 }
650 };
651 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)652 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
653 {
654 	const struct cpuid_dependent_feature *df;
655 
656 	for (df = cpuid_dependent_features; df->feature; df++) {
657 
658 		if (!cpu_has(c, df->feature))
659 			continue;
660 		/*
661 		 * Note: cpuid_level is set to -1 if unavailable, but
662 		 * extended_extended_level is set to 0 if unavailable
663 		 * and the legitimate extended levels are all negative
664 		 * when signed; hence the weird messing around with
665 		 * signs here...
666 		 */
667 		if (!((s32)df->level < 0 ?
668 		     (u32)df->level > (u32)c->extended_cpuid_level :
669 		     (s32)df->level > (s32)c->cpuid_level))
670 			continue;
671 
672 		clear_cpu_cap(c, df->feature);
673 		if (!warn)
674 			continue;
675 
676 		pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
677 			x86_cap_flags[df->feature], df->level);
678 	}
679 }
680 
681 /*
682  * Naming convention should be: <Name> [(<Codename>)]
683  * This table only is used unless init_<vendor>() below doesn't set it;
684  * in particular, if CPUID levels 0x80000002..4 are supported, this
685  * isn't used
686  */
687 
688 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)689 static const char *table_lookup_model(struct cpuinfo_x86 *c)
690 {
691 #ifdef CONFIG_X86_32
692 	const struct legacy_cpu_model_info *info;
693 
694 	if (c->x86_model >= 16)
695 		return NULL;	/* Range check */
696 
697 	if (!this_cpu)
698 		return NULL;
699 
700 	info = this_cpu->legacy_models;
701 
702 	while (info->family) {
703 		if (info->family == c->x86)
704 			return info->model_names[c->x86_model];
705 		info++;
706 	}
707 #endif
708 	return NULL;		/* Not found */
709 }
710 
711 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
712 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
713 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
714 
715 #ifdef CONFIG_X86_32
716 /* The 32-bit entry code needs to find cpu_entry_area. */
717 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
718 #endif
719 
720 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)721 void load_direct_gdt(int cpu)
722 {
723 	struct desc_ptr gdt_descr;
724 
725 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
726 	gdt_descr.size = GDT_SIZE - 1;
727 	load_gdt(&gdt_descr);
728 }
729 EXPORT_SYMBOL_GPL(load_direct_gdt);
730 
731 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)732 void load_fixmap_gdt(int cpu)
733 {
734 	struct desc_ptr gdt_descr;
735 
736 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
737 	gdt_descr.size = GDT_SIZE - 1;
738 	load_gdt(&gdt_descr);
739 }
740 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
741 
742 /**
743  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
744  * @cpu:	The CPU number for which this is invoked
745  *
746  * Invoked during early boot to switch from early GDT and early per CPU to
747  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
748  * switch is implicit by loading the direct GDT. On 64bit this requires
749  * to update GSBASE.
750  */
switch_gdt_and_percpu_base(int cpu)751 void __init switch_gdt_and_percpu_base(int cpu)
752 {
753 	load_direct_gdt(cpu);
754 
755 #ifdef CONFIG_X86_64
756 	/*
757 	 * No need to load %gs. It is already correct.
758 	 *
759 	 * Writing %gs on 64bit would zero GSBASE which would make any per
760 	 * CPU operation up to the point of the wrmsrq() fault.
761 	 *
762 	 * Set GSBASE to the new offset. Until the wrmsrq() happens the
763 	 * early mapping is still valid. That means the GSBASE update will
764 	 * lose any prior per CPU data which was not copied over in
765 	 * setup_per_cpu_areas().
766 	 *
767 	 * This works even with stackprotector enabled because the
768 	 * per CPU stack canary is 0 in both per CPU areas.
769 	 */
770 	wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
771 #else
772 	/*
773 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
774 	 * it is required to load FS again so that the 'hidden' part is
775 	 * updated from the new GDT. Up to this point the early per CPU
776 	 * translation is active. Any content of the early per CPU data
777 	 * which was not copied over in setup_per_cpu_areas() is lost.
778 	 */
779 	loadsegment(fs, __KERNEL_PERCPU);
780 #endif
781 }
782 
783 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
784 
get_model_name(struct cpuinfo_x86 * c)785 static void get_model_name(struct cpuinfo_x86 *c)
786 {
787 	unsigned int *v;
788 	char *p, *q, *s;
789 
790 	if (c->extended_cpuid_level < 0x80000004)
791 		return;
792 
793 	v = (unsigned int *)c->x86_model_id;
794 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
795 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
796 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
797 	c->x86_model_id[48] = 0;
798 
799 	/* Trim whitespace */
800 	p = q = s = &c->x86_model_id[0];
801 
802 	while (*p == ' ')
803 		p++;
804 
805 	while (*p) {
806 		/* Note the last non-whitespace index */
807 		if (!isspace(*p))
808 			s = q;
809 
810 		*q++ = *p++;
811 	}
812 
813 	*(s + 1) = '\0';
814 }
815 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)816 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
817 {
818 	unsigned int n, dummy, ebx, ecx, edx, l2size;
819 
820 	n = c->extended_cpuid_level;
821 
822 	if (n >= 0x80000005) {
823 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
824 		c->x86_cache_size = (ecx>>24) + (edx>>24);
825 #ifdef CONFIG_X86_64
826 		/* On K8 L1 TLB is inclusive, so don't count it */
827 		c->x86_tlbsize = 0;
828 #endif
829 	}
830 
831 	if (n < 0x80000006)	/* Some chips just has a large L1. */
832 		return;
833 
834 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
835 	l2size = ecx >> 16;
836 
837 #ifdef CONFIG_X86_64
838 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
839 #else
840 	/* do processor-specific cache resizing */
841 	if (this_cpu->legacy_cache_size)
842 		l2size = this_cpu->legacy_cache_size(c, l2size);
843 
844 	/* Allow user to override all this if necessary. */
845 	if (cachesize_override != -1)
846 		l2size = cachesize_override;
847 
848 	if (l2size == 0)
849 		return;		/* Again, no L2 cache is possible */
850 #endif
851 
852 	c->x86_cache_size = l2size;
853 }
854 
855 u16 __read_mostly tlb_lli_4k;
856 u16 __read_mostly tlb_lli_2m;
857 u16 __read_mostly tlb_lli_4m;
858 u16 __read_mostly tlb_lld_4k;
859 u16 __read_mostly tlb_lld_2m;
860 u16 __read_mostly tlb_lld_4m;
861 u16 __read_mostly tlb_lld_1g;
862 
cpu_detect_tlb(struct cpuinfo_x86 * c)863 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
864 {
865 	if (this_cpu->c_detect_tlb)
866 		this_cpu->c_detect_tlb(c);
867 
868 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
869 		tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
870 
871 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
872 		tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
873 }
874 
get_cpu_vendor(struct cpuinfo_x86 * c)875 void get_cpu_vendor(struct cpuinfo_x86 *c)
876 {
877 	char *v = c->x86_vendor_id;
878 	int i;
879 
880 	for (i = 0; i < X86_VENDOR_NUM; i++) {
881 		if (!cpu_devs[i])
882 			break;
883 
884 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
885 		    (cpu_devs[i]->c_ident[1] &&
886 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
887 
888 			this_cpu = cpu_devs[i];
889 			c->x86_vendor = this_cpu->c_x86_vendor;
890 			return;
891 		}
892 	}
893 
894 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
895 		    "CPU: Your system may be unstable.\n", v);
896 
897 	c->x86_vendor = X86_VENDOR_UNKNOWN;
898 	this_cpu = &default_cpu;
899 }
900 
cpu_detect(struct cpuinfo_x86 * c)901 void cpu_detect(struct cpuinfo_x86 *c)
902 {
903 	/* Get vendor name */
904 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
905 	      (unsigned int *)&c->x86_vendor_id[0],
906 	      (unsigned int *)&c->x86_vendor_id[8],
907 	      (unsigned int *)&c->x86_vendor_id[4]);
908 
909 	c->x86 = 4;
910 	/* Intel-defined flags: level 0x00000001 */
911 	if (c->cpuid_level >= 0x00000001) {
912 		u32 junk, tfms, cap0, misc;
913 
914 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
915 		c->x86		= x86_family(tfms);
916 		c->x86_model	= x86_model(tfms);
917 		c->x86_stepping	= x86_stepping(tfms);
918 
919 		if (cap0 & (1<<19)) {
920 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
921 			c->x86_cache_alignment = c->x86_clflush_size;
922 		}
923 	}
924 }
925 
apply_forced_caps(struct cpuinfo_x86 * c)926 static void apply_forced_caps(struct cpuinfo_x86 *c)
927 {
928 	int i;
929 
930 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
931 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
932 		c->x86_capability[i] |= cpu_caps_set[i];
933 	}
934 }
935 
init_speculation_control(struct cpuinfo_x86 * c)936 static void init_speculation_control(struct cpuinfo_x86 *c)
937 {
938 	/*
939 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
940 	 * and they also have a different bit for STIBP support. Also,
941 	 * a hypervisor might have set the individual AMD bits even on
942 	 * Intel CPUs, for finer-grained selection of what's available.
943 	 */
944 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
945 		set_cpu_cap(c, X86_FEATURE_IBRS);
946 		set_cpu_cap(c, X86_FEATURE_IBPB);
947 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
948 	}
949 
950 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
951 		set_cpu_cap(c, X86_FEATURE_STIBP);
952 
953 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
954 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
955 		set_cpu_cap(c, X86_FEATURE_SSBD);
956 
957 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
958 		set_cpu_cap(c, X86_FEATURE_IBRS);
959 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
960 	}
961 
962 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
963 		set_cpu_cap(c, X86_FEATURE_IBPB);
964 
965 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
966 		set_cpu_cap(c, X86_FEATURE_STIBP);
967 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 	}
969 
970 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
971 		set_cpu_cap(c, X86_FEATURE_SSBD);
972 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
973 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
974 	}
975 }
976 
get_cpu_cap(struct cpuinfo_x86 * c)977 void get_cpu_cap(struct cpuinfo_x86 *c)
978 {
979 	u32 eax, ebx, ecx, edx;
980 
981 	/* Intel-defined flags: level 0x00000001 */
982 	if (c->cpuid_level >= 0x00000001) {
983 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
984 
985 		c->x86_capability[CPUID_1_ECX] = ecx;
986 		c->x86_capability[CPUID_1_EDX] = edx;
987 	}
988 
989 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
990 	if (c->cpuid_level >= 0x00000006)
991 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
992 
993 	/* Additional Intel-defined flags: level 0x00000007 */
994 	if (c->cpuid_level >= 0x00000007) {
995 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
996 		c->x86_capability[CPUID_7_0_EBX] = ebx;
997 		c->x86_capability[CPUID_7_ECX] = ecx;
998 		c->x86_capability[CPUID_7_EDX] = edx;
999 
1000 		/* Check valid sub-leaf index before accessing it */
1001 		if (eax >= 1) {
1002 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1003 			c->x86_capability[CPUID_7_1_EAX] = eax;
1004 		}
1005 	}
1006 
1007 	/* Extended state features: level 0x0000000d */
1008 	if (c->cpuid_level >= 0x0000000d) {
1009 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1010 
1011 		c->x86_capability[CPUID_D_1_EAX] = eax;
1012 	}
1013 
1014 	/*
1015 	 * Check if extended CPUID leaves are implemented: Max extended
1016 	 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
1017 	 */
1018 	eax = cpuid_eax(0x80000000);
1019 	c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
1020 
1021 	if (c->extended_cpuid_level >= 0x80000001) {
1022 		cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1023 
1024 		c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1025 		c->x86_capability[CPUID_8000_0001_EDX] = edx;
1026 	}
1027 
1028 	if (c->extended_cpuid_level >= 0x80000007) {
1029 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1030 
1031 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1032 		c->x86_power = edx;
1033 	}
1034 
1035 	if (c->extended_cpuid_level >= 0x80000008) {
1036 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1037 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1038 	}
1039 
1040 	if (c->extended_cpuid_level >= 0x8000000a)
1041 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1042 
1043 	if (c->extended_cpuid_level >= 0x8000001f)
1044 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1045 
1046 	if (c->extended_cpuid_level >= 0x80000021)
1047 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1048 
1049 	init_scattered_cpuid_features(c);
1050 	init_speculation_control(c);
1051 
1052 	/*
1053 	 * Clear/Set all flags overridden by options, after probe.
1054 	 * This needs to happen each time we re-probe, which may happen
1055 	 * several times during CPU initialization.
1056 	 */
1057 	apply_forced_caps(c);
1058 }
1059 
get_cpu_address_sizes(struct cpuinfo_x86 * c)1060 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1061 {
1062 	u32 eax, ebx, ecx, edx;
1063 
1064 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1065 	    (c->extended_cpuid_level < 0x80000008)) {
1066 		if (IS_ENABLED(CONFIG_X86_64)) {
1067 			c->x86_clflush_size = 64;
1068 			c->x86_phys_bits = 36;
1069 			c->x86_virt_bits = 48;
1070 		} else {
1071 			c->x86_clflush_size = 32;
1072 			c->x86_virt_bits = 32;
1073 			c->x86_phys_bits = 32;
1074 
1075 			if (cpu_has(c, X86_FEATURE_PAE) ||
1076 			    cpu_has(c, X86_FEATURE_PSE36))
1077 				c->x86_phys_bits = 36;
1078 		}
1079 	} else {
1080 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1081 
1082 		c->x86_virt_bits = (eax >> 8) & 0xff;
1083 		c->x86_phys_bits = eax & 0xff;
1084 
1085 		/* Provide a sane default if not enumerated: */
1086 		if (!c->x86_clflush_size)
1087 			c->x86_clflush_size = 32;
1088 	}
1089 
1090 	c->x86_cache_bits = c->x86_phys_bits;
1091 	c->x86_cache_alignment = c->x86_clflush_size;
1092 }
1093 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1094 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1095 {
1096 	int i;
1097 
1098 	/*
1099 	 * First of all, decide if this is a 486 or higher
1100 	 * It's a 486 if we can modify the AC flag
1101 	 */
1102 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1103 		c->x86 = 4;
1104 	else
1105 		c->x86 = 3;
1106 
1107 	for (i = 0; i < X86_VENDOR_NUM; i++)
1108 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1109 			c->x86_vendor_id[0] = 0;
1110 			cpu_devs[i]->c_identify(c);
1111 			if (c->x86_vendor_id[0]) {
1112 				get_cpu_vendor(c);
1113 				break;
1114 			}
1115 		}
1116 }
1117 
1118 #define NO_SPECULATION		BIT(0)
1119 #define NO_MELTDOWN		BIT(1)
1120 #define NO_SSB			BIT(2)
1121 #define NO_L1TF			BIT(3)
1122 #define NO_MDS			BIT(4)
1123 #define MSBDS_ONLY		BIT(5)
1124 #define NO_SWAPGS		BIT(6)
1125 #define NO_ITLB_MULTIHIT	BIT(7)
1126 #define NO_SPECTRE_V2		BIT(8)
1127 #define NO_MMIO			BIT(9)
1128 #define NO_EIBRS_PBRSB		BIT(10)
1129 #define NO_BHI			BIT(11)
1130 
1131 #define VULNWL(vendor, family, model, whitelist)	\
1132 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1133 
1134 #define VULNWL_INTEL(vfm, whitelist)		\
1135 	X86_MATCH_VFM(vfm, whitelist)
1136 
1137 #define VULNWL_AMD(family, whitelist)		\
1138 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1139 
1140 #define VULNWL_HYGON(family, whitelist)		\
1141 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1142 
1143 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1144 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1145 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1146 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1147 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1148 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1149 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1150 
1151 	/* Intel Family 6 */
1152 	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
1153 	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
1154 	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
1155 	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
1156 
1157 	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1158 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1159 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1160 	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1161 	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1162 
1163 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1166 	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167 	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1168 	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1169 
1170 	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
1171 
1172 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1173 	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1174 
1175 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1176 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1177 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1178 
1179 	/*
1180 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1181 	 * being documented as such in the APM).  But according to AMD, %gs is
1182 	 * updated non-speculatively, and the issuing of %gs-relative memory
1183 	 * operands will be blocked until the %gs update completes, which is
1184 	 * good enough for our purposes.
1185 	 */
1186 
1187 	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
1188 	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
1189 	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1190 
1191 	/* AMD Family 0xf - 0x12 */
1192 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1193 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1194 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1195 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1196 
1197 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1198 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1199 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1200 
1201 	/* Zhaoxin Family 7 */
1202 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1203 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1204 	{}
1205 };
1206 
1207 #define VULNBL(vendor, family, model, blacklist)	\
1208 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1209 
1210 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues)		   \
1211 	X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1212 
1213 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues)	\
1214 	X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1215 
1216 #define VULNBL_AMD(family, blacklist)		\
1217 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1218 
1219 #define VULNBL_HYGON(family, blacklist)		\
1220 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1221 
1222 #define SRBDS		BIT(0)
1223 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1224 #define MMIO		BIT(1)
1225 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1226 #define MMIO_SBDS	BIT(2)
1227 /* CPU is affected by RETbleed, speculating where you would not expect it */
1228 #define RETBLEED	BIT(3)
1229 /* CPU is affected by SMT (cross-thread) return predictions */
1230 #define SMT_RSB		BIT(4)
1231 /* CPU is affected by SRSO */
1232 #define SRSO		BIT(5)
1233 /* CPU is affected by GDS */
1234 #define GDS		BIT(6)
1235 /* CPU is affected by Register File Data Sampling */
1236 #define RFDS		BIT(7)
1237 /* CPU is affected by Indirect Target Selection */
1238 #define ITS		BIT(8)
1239 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1240 #define ITS_NATIVE_ONLY	BIT(9)
1241 /* CPU is affected by Transient Scheduler Attacks */
1242 #define TSA		BIT(10)
1243 /* CPU is affected by VMSCAPE */
1244 #define VMSCAPE		BIT(11)
1245 
1246 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1247 	VULNBL_INTEL_STEPS(INTEL_SANDYBRIDGE_X,	     X86_STEP_MAX,	VMSCAPE),
1248 	VULNBL_INTEL_STEPS(INTEL_SANDYBRIDGE,	     X86_STEP_MAX,	VMSCAPE),
1249 	VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE_X,	     X86_STEP_MAX,	VMSCAPE),
1250 	VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1251 	VULNBL_INTEL_STEPS(INTEL_HASWELL,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1252 	VULNBL_INTEL_STEPS(INTEL_HASWELL_L,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1253 	VULNBL_INTEL_STEPS(INTEL_HASWELL_G,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1254 	VULNBL_INTEL_STEPS(INTEL_HASWELL_X,	     X86_STEP_MAX,	MMIO | VMSCAPE),
1255 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_D,	     X86_STEP_MAX,	MMIO | VMSCAPE),
1256 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_X,	     X86_STEP_MAX,	MMIO | VMSCAPE),
1257 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_G,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1258 	VULNBL_INTEL_STEPS(INTEL_BROADWELL,	     X86_STEP_MAX,	SRBDS | VMSCAPE),
1259 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,		      0x5,	MMIO | RETBLEED | GDS | VMSCAPE),
1260 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS | VMSCAPE),
1261 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | VMSCAPE),
1262 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | VMSCAPE),
1263 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,		      0xb,	MMIO | RETBLEED | GDS | SRBDS | VMSCAPE),
1264 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS | VMSCAPE),
1265 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,		      0xc,	MMIO | RETBLEED | GDS | SRBDS | VMSCAPE),
1266 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS | VMSCAPE),
1267 	VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L,	     X86_STEP_MAX,	RETBLEED | VMSCAPE),
1268 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1269 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_D,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1270 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_X,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1271 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | VMSCAPE),
1272 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,		      0x0,	MMIO | RETBLEED | ITS | VMSCAPE),
1273 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | VMSCAPE),
1274 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1275 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1276 	VULNBL_INTEL_STEPS(INTEL_LAKEFIELD,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED),
1277 	VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1278 	VULNBL_INTEL_TYPE(INTEL_ALDERLAKE,		     ATOM,	RFDS | VMSCAPE),
1279 	VULNBL_INTEL_STEPS(INTEL_ALDERLAKE,	     X86_STEP_MAX,	VMSCAPE),
1280 	VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L,	     X86_STEP_MAX,	RFDS | VMSCAPE),
1281 	VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE,		     ATOM,	RFDS | VMSCAPE),
1282 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE,	     X86_STEP_MAX,	VMSCAPE),
1283 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P,	     X86_STEP_MAX,	RFDS | VMSCAPE),
1284 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S,	     X86_STEP_MAX,	RFDS | VMSCAPE),
1285 	VULNBL_INTEL_STEPS(INTEL_METEORLAKE_L,	     X86_STEP_MAX,	VMSCAPE),
1286 	VULNBL_INTEL_STEPS(INTEL_ARROWLAKE_H,	     X86_STEP_MAX,	VMSCAPE),
1287 	VULNBL_INTEL_STEPS(INTEL_ARROWLAKE,	     X86_STEP_MAX,	VMSCAPE),
1288 	VULNBL_INTEL_STEPS(INTEL_ARROWLAKE_U,	     X86_STEP_MAX,	VMSCAPE),
1289 	VULNBL_INTEL_STEPS(INTEL_LUNARLAKE_M,	     X86_STEP_MAX,	VMSCAPE),
1290 	VULNBL_INTEL_STEPS(INTEL_SAPPHIRERAPIDS_X,   X86_STEP_MAX,	VMSCAPE),
1291 	VULNBL_INTEL_STEPS(INTEL_GRANITERAPIDS_X,    X86_STEP_MAX,	VMSCAPE),
1292 	VULNBL_INTEL_STEPS(INTEL_EMERALDRAPIDS_X,    X86_STEP_MAX,	VMSCAPE),
1293 	VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT,     X86_STEP_MAX,	RFDS | VMSCAPE),
1294 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1295 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D,     X86_STEP_MAX,	MMIO | RFDS),
1296 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L,     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1297 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT,      X86_STEP_MAX,	RFDS),
1298 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D,    X86_STEP_MAX,	RFDS),
1299 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX,	RFDS),
1300 	VULNBL_INTEL_STEPS(INTEL_ATOM_CRESTMONT_X,   X86_STEP_MAX,	VMSCAPE),
1301 
1302 	VULNBL_AMD(0x15, RETBLEED),
1303 	VULNBL_AMD(0x16, RETBLEED),
1304 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO | VMSCAPE),
1305 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO | VMSCAPE),
1306 	VULNBL_AMD(0x19, SRSO | TSA | VMSCAPE),
1307 	VULNBL_AMD(0x1a, SRSO | VMSCAPE),
1308 	{}
1309 };
1310 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1311 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1312 {
1313 	const struct x86_cpu_id *m = x86_match_cpu(table);
1314 
1315 	return m && !!(m->driver_data & which);
1316 }
1317 
x86_read_arch_cap_msr(void)1318 u64 x86_read_arch_cap_msr(void)
1319 {
1320 	u64 x86_arch_cap_msr = 0;
1321 
1322 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1323 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1324 
1325 	return x86_arch_cap_msr;
1326 }
1327 
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1328 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1329 {
1330 	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1331 		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1332 		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1333 }
1334 
vulnerable_to_rfds(u64 x86_arch_cap_msr)1335 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1336 {
1337 	/* The "immunity" bit trumps everything else: */
1338 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1339 		return false;
1340 
1341 	/*
1342 	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1343 	 * indicate that mitigation is needed because guest is running on a
1344 	 * vulnerable hardware or may migrate to such hardware:
1345 	 */
1346 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1347 		return true;
1348 
1349 	/* Only consult the blacklist when there is no enumeration: */
1350 	return cpu_matches(cpu_vuln_blacklist, RFDS);
1351 }
1352 
vulnerable_to_its(u64 x86_arch_cap_msr)1353 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1354 {
1355 	/* The "immunity" bit trumps everything else: */
1356 	if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1357 		return false;
1358 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1359 		return false;
1360 
1361 	/* None of the affected CPUs have BHI_CTRL */
1362 	if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1363 		return false;
1364 
1365 	/*
1366 	 * If a VMM did not expose ITS_NO, assume that a guest could
1367 	 * be running on a vulnerable hardware or may migrate to such
1368 	 * hardware.
1369 	 */
1370 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1371 		return true;
1372 
1373 	if (cpu_matches(cpu_vuln_blacklist, ITS))
1374 		return true;
1375 
1376 	return false;
1377 }
1378 
1379 static struct x86_cpu_id cpu_latest_microcode[] = {
1380 #include "microcode/intel-ucode-defs.h"
1381 	{}
1382 };
1383 
cpu_has_old_microcode(void)1384 static bool __init cpu_has_old_microcode(void)
1385 {
1386 	const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
1387 
1388 	/* Give unknown CPUs a pass: */
1389 	if (!m) {
1390 		/* Intel CPUs should be in the list. Warn if not: */
1391 		if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1392 			pr_info("x86/CPU: Model not found in latest microcode list\n");
1393 		return false;
1394 	}
1395 
1396 	/*
1397 	 * Hosts usually lie to guests with a super high microcode
1398 	 * version. Just ignore what hosts tell guests:
1399 	 */
1400 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1401 		return false;
1402 
1403 	/* Consider all debug microcode to be old: */
1404 	if (boot_cpu_data.microcode & BIT(31))
1405 		return true;
1406 
1407 	/* Give new microcode a pass: */
1408 	if (boot_cpu_data.microcode >= m->driver_data)
1409 		return false;
1410 
1411 	/* Uh oh, too old: */
1412 	return true;
1413 }
1414 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1415 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1416 {
1417 	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1418 
1419 	if (cpu_has_old_microcode()) {
1420 		pr_warn("x86/CPU: Running old microcode\n");
1421 		setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
1422 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1423 	}
1424 
1425 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1426 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1427 	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1428 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1429 
1430 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1431 		return;
1432 
1433 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1434 
1435 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1436 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1437 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1438 	}
1439 
1440 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1441 	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1442 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1443 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1444 
1445 	/*
1446 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1447 	 * flag and protect from vendor-specific bugs via the whitelist.
1448 	 *
1449 	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1450 	 * userspace indirect branch performance.
1451 	 */
1452 	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1453 	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1454 	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1455 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1456 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1457 		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1458 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1459 	}
1460 
1461 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1462 	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1463 		setup_force_cpu_bug(X86_BUG_MDS);
1464 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1465 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1466 	}
1467 
1468 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1469 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1470 
1471 	/*
1472 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1473 	 *	- TSX is supported or
1474 	 *	- TSX_CTRL is present
1475 	 *
1476 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1477 	 * the kernel boot e.g. kexec.
1478 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1479 	 * update is not present or running as guest that don't get TSX_CTRL.
1480 	 */
1481 	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1482 	    (cpu_has(c, X86_FEATURE_RTM) ||
1483 	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1484 		setup_force_cpu_bug(X86_BUG_TAA);
1485 
1486 	/*
1487 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1488 	 * in the vulnerability blacklist.
1489 	 *
1490 	 * Some of the implications and mitigation of Shared Buffers Data
1491 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1492 	 * SRBDS.
1493 	 */
1494 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1495 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1496 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1497 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1498 
1499 	/*
1500 	 * Processor MMIO Stale Data bug enumeration
1501 	 *
1502 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1503 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1504 	 * not want the guest to enumerate the bug.
1505 	 */
1506 	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1507 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1508 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1509 	}
1510 
1511 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1512 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1513 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1514 	}
1515 
1516 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1517 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1518 
1519 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1520 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1521 			setup_force_cpu_bug(X86_BUG_SRSO);
1522 	}
1523 
1524 	/*
1525 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1526 	 * an affected processor, the VMM may have disabled the use of GATHER by
1527 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1528 	 * which means that AVX will be disabled.
1529 	 */
1530 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1531 	    boot_cpu_has(X86_FEATURE_AVX))
1532 		setup_force_cpu_bug(X86_BUG_GDS);
1533 
1534 	if (vulnerable_to_rfds(x86_arch_cap_msr))
1535 		setup_force_cpu_bug(X86_BUG_RFDS);
1536 
1537 	/*
1538 	 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1539 	 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1540 	 * attacks.  When virtualized, eIBRS could be hidden, assume vulnerable.
1541 	 */
1542 	if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1543 	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1544 	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1545 		setup_force_cpu_bug(X86_BUG_BHI);
1546 
1547 	if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1548 		setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1549 
1550 	if (vulnerable_to_its(x86_arch_cap_msr)) {
1551 		setup_force_cpu_bug(X86_BUG_ITS);
1552 		if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1553 			setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1554 	}
1555 
1556 	if (c->x86_vendor == X86_VENDOR_AMD) {
1557 		if (!cpu_has(c, X86_FEATURE_TSA_SQ_NO) ||
1558 		    !cpu_has(c, X86_FEATURE_TSA_L1_NO)) {
1559 			if (cpu_matches(cpu_vuln_blacklist, TSA) ||
1560 			    /* Enable bug on Zen guests to allow for live migration. */
1561 			    (cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_ZEN)))
1562 				setup_force_cpu_bug(X86_BUG_TSA);
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * Set the bug only on bare-metal. A nested hypervisor should already be
1568 	 * deploying IBPB to isolate itself from nested guests.
1569 	 */
1570 	if (cpu_matches(cpu_vuln_blacklist, VMSCAPE) &&
1571 	    !boot_cpu_has(X86_FEATURE_HYPERVISOR))
1572 		setup_force_cpu_bug(X86_BUG_VMSCAPE);
1573 
1574 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1575 		return;
1576 
1577 	/* Rogue Data Cache Load? No! */
1578 	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1579 		return;
1580 
1581 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1582 
1583 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1584 		return;
1585 
1586 	setup_force_cpu_bug(X86_BUG_L1TF);
1587 }
1588 
1589 /*
1590  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1591  * unfortunately, that's not true in practice because of early VIA
1592  * chips and (more importantly) broken virtualizers that are not easy
1593  * to detect. In the latter case it doesn't even *fail* reliably, so
1594  * probing for it doesn't even work. Disable it completely on 32-bit
1595  * unless we can find a reliable way to detect all the broken cases.
1596  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1597  */
detect_nopl(void)1598 static void detect_nopl(void)
1599 {
1600 #ifdef CONFIG_X86_32
1601 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1602 #else
1603 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1604 #endif
1605 }
1606 
parse_set_clear_cpuid(char * arg,bool set)1607 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1608 {
1609 	char *opt;
1610 	int taint = 0;
1611 
1612 	while (arg) {
1613 		bool found __maybe_unused = false;
1614 		unsigned int bit;
1615 
1616 		opt = strsep(&arg, ",");
1617 
1618 		/*
1619 		 * Handle naked numbers first for feature flags which don't
1620 		 * have names. It doesn't make sense for a bug not to have a
1621 		 * name so don't handle bug flags here.
1622 		 */
1623 		if (!kstrtouint(opt, 10, &bit)) {
1624 			if (bit < NCAPINTS * 32) {
1625 
1626 				if (set) {
1627 					pr_warn("setcpuid: force-enabling CPU feature flag:");
1628 					setup_force_cpu_cap(bit);
1629 				} else {
1630 					pr_warn("clearcpuid: force-disabling CPU feature flag:");
1631 					setup_clear_cpu_cap(bit);
1632 				}
1633 				/* empty-string, i.e., ""-defined feature flags */
1634 				if (!x86_cap_flags[bit])
1635 					pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1636 				else
1637 					pr_cont(" %s\n", x86_cap_flags[bit]);
1638 
1639 				taint++;
1640 			}
1641 			/*
1642 			 * The assumption is that there are no feature names with only
1643 			 * numbers in the name thus go to the next argument.
1644 			 */
1645 			continue;
1646 		}
1647 
1648 		for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1649 			const char *flag;
1650 			const char *kind;
1651 
1652 			if (bit < 32 * NCAPINTS) {
1653 				flag = x86_cap_flags[bit];
1654 				kind = "feature";
1655 			} else {
1656 				kind = "bug";
1657 				flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1658 			}
1659 
1660 			if (!flag)
1661 				continue;
1662 
1663 			if (strcmp(flag, opt))
1664 				continue;
1665 
1666 			if (set) {
1667 				pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1668 					kind, flag);
1669 				setup_force_cpu_cap(bit);
1670 			} else {
1671 				pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1672 					kind, flag);
1673 				setup_clear_cpu_cap(bit);
1674 			}
1675 			taint++;
1676 			found = true;
1677 			break;
1678 		}
1679 
1680 		if (!found)
1681 			pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1682 	}
1683 
1684 	return taint;
1685 }
1686 
1687 
1688 /*
1689  * We parse cpu parameters early because fpu__init_system() is executed
1690  * before parse_early_param().
1691  */
cpu_parse_early_param(void)1692 static void __init cpu_parse_early_param(void)
1693 {
1694 	bool cpuid_taint = false;
1695 	char arg[128];
1696 	int arglen;
1697 
1698 #ifdef CONFIG_X86_32
1699 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1700 #ifdef CONFIG_MATH_EMULATION
1701 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1702 #else
1703 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1704 #endif
1705 
1706 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1707 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1708 #endif
1709 
1710 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1711 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1712 
1713 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1714 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1715 
1716 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1717 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1718 
1719 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1720 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1721 
1722 	/* Minimize the gap between FRED is available and available but disabled. */
1723 	arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1724 	if (arglen != 2 || strncmp(arg, "on", 2))
1725 		setup_clear_cpu_cap(X86_FEATURE_FRED);
1726 
1727 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1728 	if (arglen > 0)
1729 		cpuid_taint |= parse_set_clear_cpuid(arg, false);
1730 
1731 	arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1732 	if (arglen > 0)
1733 		cpuid_taint |= parse_set_clear_cpuid(arg, true);
1734 
1735 	if (cpuid_taint) {
1736 		pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1737 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1738 	}
1739 }
1740 
1741 /*
1742  * Do minimum CPU detection early.
1743  * Fields really needed: vendor, cpuid_level, family, model, mask,
1744  * cache alignment.
1745  * The others are not touched to avoid unwanted side effects.
1746  *
1747  * WARNING: this function is only called on the boot CPU.  Don't add code
1748  * here that is supposed to run on all CPUs.
1749  */
early_identify_cpu(struct cpuinfo_x86 * c)1750 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1751 {
1752 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1753 	c->extended_cpuid_level = 0;
1754 
1755 	if (!cpuid_feature())
1756 		identify_cpu_without_cpuid(c);
1757 
1758 	/* cyrix could have cpuid enabled via c_identify()*/
1759 	if (cpuid_feature()) {
1760 		cpu_detect(c);
1761 		get_cpu_vendor(c);
1762 		intel_unlock_cpuid_leafs(c);
1763 		get_cpu_cap(c);
1764 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1765 		get_cpu_address_sizes(c);
1766 		cpu_parse_early_param();
1767 
1768 		cpu_init_topology(c);
1769 
1770 		if (this_cpu->c_early_init)
1771 			this_cpu->c_early_init(c);
1772 
1773 		c->cpu_index = 0;
1774 		filter_cpuid_features(c, false);
1775 		check_cpufeature_deps(c);
1776 
1777 		if (this_cpu->c_bsp_init)
1778 			this_cpu->c_bsp_init(c);
1779 	} else {
1780 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1781 		get_cpu_address_sizes(c);
1782 		cpu_init_topology(c);
1783 	}
1784 
1785 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1786 
1787 	cpu_set_bug_bits(c);
1788 
1789 	sld_setup(c);
1790 
1791 #ifdef CONFIG_X86_32
1792 	/*
1793 	 * Regardless of whether PCID is enumerated, the SDM says
1794 	 * that it can't be enabled in 32-bit mode.
1795 	 */
1796 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1797 #endif
1798 
1799 	/*
1800 	 * Later in the boot process pgtable_l5_enabled() relies on
1801 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1802 	 * enabled by this point we need to clear the feature bit to avoid
1803 	 * false-positives at the later stage.
1804 	 *
1805 	 * pgtable_l5_enabled() can be false here for several reasons:
1806 	 *  - 5-level paging is disabled compile-time;
1807 	 *  - it's 32-bit kernel;
1808 	 *  - machine doesn't support 5-level paging;
1809 	 *  - user specified 'no5lvl' in kernel command line.
1810 	 */
1811 	if (!pgtable_l5_enabled())
1812 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1813 
1814 	detect_nopl();
1815 	mca_bsp_init(c);
1816 }
1817 
init_cpu_devs(void)1818 void __init init_cpu_devs(void)
1819 {
1820 	const struct cpu_dev *const *cdev;
1821 	int count = 0;
1822 
1823 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1824 		const struct cpu_dev *cpudev = *cdev;
1825 
1826 		if (count >= X86_VENDOR_NUM)
1827 			break;
1828 		cpu_devs[count] = cpudev;
1829 		count++;
1830 	}
1831 }
1832 
early_cpu_init(void)1833 void __init early_cpu_init(void)
1834 {
1835 #ifdef CONFIG_PROCESSOR_SELECT
1836 	unsigned int i, j;
1837 
1838 	pr_info("KERNEL supported cpus:\n");
1839 #endif
1840 
1841 	init_cpu_devs();
1842 
1843 #ifdef CONFIG_PROCESSOR_SELECT
1844 	for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1845 		for (j = 0; j < 2; j++) {
1846 			if (!cpu_devs[i]->c_ident[j])
1847 				continue;
1848 			pr_info("  %s %s\n", cpu_devs[i]->c_vendor,
1849 				cpu_devs[i]->c_ident[j]);
1850 		}
1851 	}
1852 #endif
1853 
1854 	early_identify_cpu(&boot_cpu_data);
1855 }
1856 
detect_null_seg_behavior(void)1857 static bool detect_null_seg_behavior(void)
1858 {
1859 	/*
1860 	 * Empirically, writing zero to a segment selector on AMD does
1861 	 * not clear the base, whereas writing zero to a segment
1862 	 * selector on Intel does clear the base.  Intel's behavior
1863 	 * allows slightly faster context switches in the common case
1864 	 * where GS is unused by the prev and next threads.
1865 	 *
1866 	 * Since neither vendor documents this anywhere that I can see,
1867 	 * detect it directly instead of hard-coding the choice by
1868 	 * vendor.
1869 	 *
1870 	 * I've designated AMD's behavior as the "bug" because it's
1871 	 * counterintuitive and less friendly.
1872 	 */
1873 
1874 	unsigned long old_base, tmp;
1875 	rdmsrq(MSR_FS_BASE, old_base);
1876 	wrmsrq(MSR_FS_BASE, 1);
1877 	loadsegment(fs, 0);
1878 	rdmsrq(MSR_FS_BASE, tmp);
1879 	wrmsrq(MSR_FS_BASE, old_base);
1880 	return tmp == 0;
1881 }
1882 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1883 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1884 {
1885 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1886 	if (!IS_ENABLED(CONFIG_X86_64))
1887 		return;
1888 
1889 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1890 		return;
1891 
1892 	/*
1893 	 * CPUID bit above wasn't set. If this kernel is still running
1894 	 * as a HV guest, then the HV has decided not to advertize
1895 	 * that CPUID bit for whatever reason.	For example, one
1896 	 * member of the migration pool might be vulnerable.  Which
1897 	 * means, the bug is present: set the BUG flag and return.
1898 	 */
1899 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1900 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1906 	 * 0x18 is the respective family for Hygon.
1907 	 */
1908 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1909 	    detect_null_seg_behavior())
1910 		return;
1911 
1912 	/* All the remaining ones are affected */
1913 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1914 }
1915 
generic_identify(struct cpuinfo_x86 * c)1916 static void generic_identify(struct cpuinfo_x86 *c)
1917 {
1918 	c->extended_cpuid_level = 0;
1919 
1920 	if (!cpuid_feature())
1921 		identify_cpu_without_cpuid(c);
1922 
1923 	/* cyrix could have cpuid enabled via c_identify()*/
1924 	if (!cpuid_feature())
1925 		return;
1926 
1927 	cpu_detect(c);
1928 
1929 	get_cpu_vendor(c);
1930 	intel_unlock_cpuid_leafs(c);
1931 	get_cpu_cap(c);
1932 
1933 	get_cpu_address_sizes(c);
1934 
1935 	get_model_name(c); /* Default name */
1936 
1937 	/*
1938 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1939 	 * systems that run Linux at CPL > 0 may or may not have the
1940 	 * issue, but, even if they have the issue, there's absolutely
1941 	 * nothing we can do about it because we can't use the real IRET
1942 	 * instruction.
1943 	 *
1944 	 * NB: For the time being, only 32-bit kernels support
1945 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1946 	 * whether to apply espfix using paravirt hooks.  If any
1947 	 * non-paravirt system ever shows up that does *not* have the
1948 	 * ESPFIX issue, we can change this.
1949 	 */
1950 #ifdef CONFIG_X86_32
1951 	set_cpu_bug(c, X86_BUG_ESPFIX);
1952 #endif
1953 }
1954 
1955 /*
1956  * This does the hard work of actually picking apart the CPU stuff...
1957  */
identify_cpu(struct cpuinfo_x86 * c)1958 static void identify_cpu(struct cpuinfo_x86 *c)
1959 {
1960 	int i;
1961 
1962 	c->loops_per_jiffy = loops_per_jiffy;
1963 	c->x86_cache_size = 0;
1964 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1965 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1966 	c->x86_vendor_id[0] = '\0'; /* Unset */
1967 	c->x86_model_id[0] = '\0';  /* Unset */
1968 #ifdef CONFIG_X86_64
1969 	c->x86_clflush_size = 64;
1970 	c->x86_phys_bits = 36;
1971 	c->x86_virt_bits = 48;
1972 #else
1973 	c->cpuid_level = -1;	/* CPUID not detected */
1974 	c->x86_clflush_size = 32;
1975 	c->x86_phys_bits = 32;
1976 	c->x86_virt_bits = 32;
1977 #endif
1978 	c->x86_cache_alignment = c->x86_clflush_size;
1979 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1980 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1981 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1982 #endif
1983 
1984 	generic_identify(c);
1985 
1986 	cpu_parse_topology(c);
1987 
1988 	if (this_cpu->c_identify)
1989 		this_cpu->c_identify(c);
1990 
1991 	/* Clear/Set all flags overridden by options, after probe */
1992 	apply_forced_caps(c);
1993 
1994 	/*
1995 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1996 	 * Hygon will clear it in ->c_init() below.
1997 	 */
1998 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1999 
2000 	/*
2001 	 * Vendor-specific initialization.  In this section we
2002 	 * canonicalize the feature flags, meaning if there are
2003 	 * features a certain CPU supports which CPUID doesn't
2004 	 * tell us, CPUID claiming incorrect flags, or other bugs,
2005 	 * we handle them here.
2006 	 *
2007 	 * At the end of this section, c->x86_capability better
2008 	 * indicate the features this CPU genuinely supports!
2009 	 */
2010 	if (this_cpu->c_init)
2011 		this_cpu->c_init(c);
2012 
2013 	bus_lock_init();
2014 
2015 	/* Disable the PN if appropriate */
2016 	squash_the_stupid_serial_number(c);
2017 
2018 	/* Set up SMEP/SMAP/UMIP */
2019 	setup_smep(c);
2020 	setup_smap(c);
2021 	setup_umip(c);
2022 
2023 	/* Enable FSGSBASE instructions if available. */
2024 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
2025 		cr4_set_bits(X86_CR4_FSGSBASE);
2026 		elf_hwcap2 |= HWCAP2_FSGSBASE;
2027 	}
2028 
2029 	/*
2030 	 * The vendor-specific functions might have changed features.
2031 	 * Now we do "generic changes."
2032 	 */
2033 
2034 	/* Filter out anything that depends on CPUID levels we don't have */
2035 	filter_cpuid_features(c, true);
2036 
2037 	/* Check for unmet dependencies based on the CPUID dependency table */
2038 	check_cpufeature_deps(c);
2039 
2040 	/* If the model name is still unset, do table lookup. */
2041 	if (!c->x86_model_id[0]) {
2042 		const char *p;
2043 		p = table_lookup_model(c);
2044 		if (p)
2045 			strcpy(c->x86_model_id, p);
2046 		else
2047 			/* Last resort... */
2048 			sprintf(c->x86_model_id, "%02x/%02x",
2049 				c->x86, c->x86_model);
2050 	}
2051 
2052 	x86_init_rdrand(c);
2053 	setup_pku(c);
2054 	setup_cet(c);
2055 
2056 	/*
2057 	 * Clear/Set all flags overridden by options, need do it
2058 	 * before following smp all cpus cap AND.
2059 	 */
2060 	apply_forced_caps(c);
2061 
2062 	/*
2063 	 * On SMP, boot_cpu_data holds the common feature set between
2064 	 * all CPUs; so make sure that we indicate which features are
2065 	 * common between the CPUs.  The first time this routine gets
2066 	 * executed, c == &boot_cpu_data.
2067 	 */
2068 	if (c != &boot_cpu_data) {
2069 		/* AND the already accumulated flags with these */
2070 		for (i = 0; i < NCAPINTS; i++)
2071 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
2072 
2073 		/* OR, i.e. replicate the bug flags */
2074 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
2075 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
2076 	}
2077 
2078 	ppin_init(c);
2079 
2080 	/* Init Machine Check Exception if available. */
2081 	mcheck_cpu_init(c);
2082 
2083 	numa_add_cpu(smp_processor_id());
2084 }
2085 
2086 /*
2087  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2088  * on 32-bit kernels:
2089  */
2090 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2091 void enable_sep_cpu(void)
2092 {
2093 	struct tss_struct *tss;
2094 	int cpu;
2095 
2096 	if (!boot_cpu_has(X86_FEATURE_SEP))
2097 		return;
2098 
2099 	cpu = get_cpu();
2100 	tss = &per_cpu(cpu_tss_rw, cpu);
2101 
2102 	/*
2103 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2104 	 * see the big comment in struct x86_hw_tss's definition.
2105 	 */
2106 
2107 	tss->x86_tss.ss1 = __KERNEL_CS;
2108 	wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
2109 	wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
2110 	wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
2111 
2112 	put_cpu();
2113 }
2114 #endif
2115 
identify_boot_cpu(void)2116 static __init void identify_boot_cpu(void)
2117 {
2118 	identify_cpu(&boot_cpu_data);
2119 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2120 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
2121 #ifdef CONFIG_X86_32
2122 	enable_sep_cpu();
2123 #endif
2124 	cpu_detect_tlb(&boot_cpu_data);
2125 	setup_cr_pinning();
2126 
2127 	tsx_init();
2128 	tdx_init();
2129 	lkgs_init();
2130 }
2131 
identify_secondary_cpu(unsigned int cpu)2132 void identify_secondary_cpu(unsigned int cpu)
2133 {
2134 	struct cpuinfo_x86 *c = &cpu_data(cpu);
2135 
2136 	/* Copy boot_cpu_data only on the first bringup */
2137 	if (!c->initialized)
2138 		*c = boot_cpu_data;
2139 	c->cpu_index = cpu;
2140 
2141 	identify_cpu(c);
2142 #ifdef CONFIG_X86_32
2143 	enable_sep_cpu();
2144 #endif
2145 	x86_spec_ctrl_setup_ap();
2146 	update_srbds_msr();
2147 	if (boot_cpu_has_bug(X86_BUG_GDS))
2148 		update_gds_msr();
2149 
2150 	tsx_ap_init();
2151 	c->initialized = true;
2152 }
2153 
print_cpu_info(struct cpuinfo_x86 * c)2154 void print_cpu_info(struct cpuinfo_x86 *c)
2155 {
2156 	const char *vendor = NULL;
2157 
2158 	if (c->x86_vendor < X86_VENDOR_NUM) {
2159 		vendor = this_cpu->c_vendor;
2160 	} else {
2161 		if (c->cpuid_level >= 0)
2162 			vendor = c->x86_vendor_id;
2163 	}
2164 
2165 	if (vendor && !strstr(c->x86_model_id, vendor))
2166 		pr_cont("%s ", vendor);
2167 
2168 	if (c->x86_model_id[0])
2169 		pr_cont("%s", c->x86_model_id);
2170 	else
2171 		pr_cont("%d86", c->x86);
2172 
2173 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2174 
2175 	if (c->x86_stepping || c->cpuid_level >= 0)
2176 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2177 	else
2178 		pr_cont(")\n");
2179 }
2180 
2181 /*
2182  * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2183  * These dummy functions prevent them from becoming an environment variable for
2184  * init.
2185  */
2186 
setup_clearcpuid(char * arg)2187 static __init int setup_clearcpuid(char *arg)
2188 {
2189 	return 1;
2190 }
2191 __setup("clearcpuid=", setup_clearcpuid);
2192 
setup_setcpuid(char * arg)2193 static __init int setup_setcpuid(char *arg)
2194 {
2195 	return 1;
2196 }
2197 __setup("setcpuid=", setup_setcpuid);
2198 
2199 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2200 EXPORT_PER_CPU_SYMBOL(current_task);
2201 EXPORT_PER_CPU_SYMBOL(const_current_task);
2202 
2203 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2204 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2205 
2206 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2207 
2208 #ifdef CONFIG_X86_64
2209 /*
2210  * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2211  * so that this space is reserved in the hot cache section even when the
2212  * mitigation is disabled.
2213  */
2214 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2215 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2216 
wrmsrq_cstar(unsigned long val)2217 static void wrmsrq_cstar(unsigned long val)
2218 {
2219 	/*
2220 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2221 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2222 	 * guest. Avoid the pointless write on all Intel CPUs.
2223 	 */
2224 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2225 		wrmsrq(MSR_CSTAR, val);
2226 }
2227 
idt_syscall_init(void)2228 static inline void idt_syscall_init(void)
2229 {
2230 	wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2231 
2232 	if (ia32_enabled()) {
2233 		wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
2234 		/*
2235 		 * This only works on Intel CPUs.
2236 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2237 		 * This does not cause SYSENTER to jump to the wrong location, because
2238 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2239 		 */
2240 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2241 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
2242 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2243 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2244 	} else {
2245 		wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
2246 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2247 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2248 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2249 	}
2250 
2251 	/*
2252 	 * Flags to clear on syscall; clear as much as possible
2253 	 * to minimize user space-kernel interference.
2254 	 */
2255 	wrmsrq(MSR_SYSCALL_MASK,
2256 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2257 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2258 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2259 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2260 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2261 }
2262 
2263 /* May not be marked __init: used by software suspend */
syscall_init(void)2264 void syscall_init(void)
2265 {
2266 	/* The default user and kernel segments */
2267 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2268 
2269 	/*
2270 	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2271 	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2272 	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2273 	 * instruction to return to ring 3 (both sysexit and sysret cause
2274 	 * #UD when FRED is enabled).
2275 	 */
2276 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2277 		idt_syscall_init();
2278 }
2279 #endif /* CONFIG_X86_64 */
2280 
2281 #ifdef CONFIG_STACKPROTECTOR
2282 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2283 #ifndef CONFIG_SMP
2284 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2285 #endif
2286 #endif
2287 
initialize_debug_regs(void)2288 static void initialize_debug_regs(void)
2289 {
2290 	/* Control register first -- to make sure everything is disabled. */
2291 	set_debugreg(DR7_FIXED_1, 7);
2292 	set_debugreg(DR6_RESERVED, 6);
2293 	/* dr5 and dr4 don't exist */
2294 	set_debugreg(0, 3);
2295 	set_debugreg(0, 2);
2296 	set_debugreg(0, 1);
2297 	set_debugreg(0, 0);
2298 }
2299 
2300 #ifdef CONFIG_KGDB
2301 /*
2302  * Restore debug regs if using kgdbwait and you have a kernel debugger
2303  * connection established.
2304  */
dbg_restore_debug_regs(void)2305 static void dbg_restore_debug_regs(void)
2306 {
2307 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2308 		arch_kgdb_ops.correct_hw_break();
2309 }
2310 #else /* ! CONFIG_KGDB */
2311 #define dbg_restore_debug_regs()
2312 #endif /* ! CONFIG_KGDB */
2313 
setup_getcpu(int cpu)2314 static inline void setup_getcpu(int cpu)
2315 {
2316 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2317 	struct desc_struct d = { };
2318 
2319 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2320 		wrmsrq(MSR_TSC_AUX, cpudata);
2321 
2322 	/* Store CPU and node number in limit. */
2323 	d.limit0 = cpudata;
2324 	d.limit1 = cpudata >> 16;
2325 
2326 	d.type = 5;		/* RO data, expand down, accessed */
2327 	d.dpl = 3;		/* Visible to user code */
2328 	d.s = 1;		/* Not a system segment */
2329 	d.p = 1;		/* Present */
2330 	d.d = 1;		/* 32-bit */
2331 
2332 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2333 }
2334 
2335 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2336 static inline void tss_setup_ist(struct tss_struct *tss)
2337 {
2338 	/* Set up the per-CPU TSS IST stacks */
2339 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2340 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2341 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2342 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2343 	/* Only mapped when SEV-ES is active */
2344 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2345 }
2346 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2347 static inline void tss_setup_ist(struct tss_struct *tss) { }
2348 #endif /* !CONFIG_X86_64 */
2349 
tss_setup_io_bitmap(struct tss_struct * tss)2350 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2351 {
2352 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2353 
2354 #ifdef CONFIG_X86_IOPL_IOPERM
2355 	tss->io_bitmap.prev_max = 0;
2356 	tss->io_bitmap.prev_sequence = 0;
2357 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2358 	/*
2359 	 * Invalidate the extra array entry past the end of the all
2360 	 * permission bitmap as required by the hardware.
2361 	 */
2362 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2363 #endif
2364 }
2365 
2366 /*
2367  * Setup everything needed to handle exceptions from the IDT, including the IST
2368  * exceptions which use paranoid_entry().
2369  */
cpu_init_exception_handling(bool boot_cpu)2370 void cpu_init_exception_handling(bool boot_cpu)
2371 {
2372 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2373 	int cpu = raw_smp_processor_id();
2374 
2375 	/* paranoid_entry() gets the CPU number from the GDT */
2376 	setup_getcpu(cpu);
2377 
2378 	/* For IDT mode, IST vectors need to be set in TSS. */
2379 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2380 		tss_setup_ist(tss);
2381 	tss_setup_io_bitmap(tss);
2382 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2383 
2384 	load_TR_desc();
2385 
2386 	/* GHCB needs to be setup to handle #VC. */
2387 	setup_ghcb();
2388 
2389 	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2390 		/* The boot CPU has enabled FRED during early boot */
2391 		if (!boot_cpu)
2392 			cpu_init_fred_exceptions();
2393 
2394 		cpu_init_fred_rsps();
2395 	} else {
2396 		load_current_idt();
2397 	}
2398 }
2399 
cpu_init_replace_early_idt(void)2400 void __init cpu_init_replace_early_idt(void)
2401 {
2402 	if (cpu_feature_enabled(X86_FEATURE_FRED))
2403 		cpu_init_fred_exceptions();
2404 	else
2405 		idt_setup_early_pf();
2406 }
2407 
2408 /*
2409  * cpu_init() initializes state that is per-CPU. Some data is already
2410  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2411  * reload it nevertheless, this function acts as a 'CPU state barrier',
2412  * nothing should get across.
2413  */
cpu_init(void)2414 void cpu_init(void)
2415 {
2416 	struct task_struct *cur = current;
2417 	int cpu = raw_smp_processor_id();
2418 
2419 #ifdef CONFIG_NUMA
2420 	if (this_cpu_read(numa_node) == 0 &&
2421 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2422 		set_numa_node(early_cpu_to_node(cpu));
2423 #endif
2424 	pr_debug("Initializing CPU#%d\n", cpu);
2425 
2426 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2427 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2428 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2429 
2430 	if (IS_ENABLED(CONFIG_X86_64)) {
2431 		loadsegment(fs, 0);
2432 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2433 		syscall_init();
2434 
2435 		wrmsrq(MSR_FS_BASE, 0);
2436 		wrmsrq(MSR_KERNEL_GS_BASE, 0);
2437 		barrier();
2438 
2439 		x2apic_setup();
2440 
2441 		intel_posted_msi_init();
2442 	}
2443 
2444 	mmgrab(&init_mm);
2445 	cur->active_mm = &init_mm;
2446 	BUG_ON(cur->mm);
2447 	initialize_tlbstate_and_flush();
2448 	enter_lazy_tlb(&init_mm, cur);
2449 
2450 	/*
2451 	 * sp0 points to the entry trampoline stack regardless of what task
2452 	 * is running.
2453 	 */
2454 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2455 
2456 	load_mm_ldt(&init_mm);
2457 
2458 	initialize_debug_regs();
2459 	dbg_restore_debug_regs();
2460 
2461 	doublefault_init_cpu_tss();
2462 
2463 	if (is_uv_system())
2464 		uv_cpu_init();
2465 
2466 	load_fixmap_gdt(cpu);
2467 }
2468 
2469 #ifdef CONFIG_MICROCODE_LATE_LOADING
2470 /**
2471  * store_cpu_caps() - Store a snapshot of CPU capabilities
2472  * @curr_info: Pointer where to store it
2473  *
2474  * Returns: None
2475  */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2476 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2477 {
2478 	/* Reload CPUID max function as it might've changed. */
2479 	curr_info->cpuid_level = cpuid_eax(0);
2480 
2481 	/* Copy all capability leafs and pick up the synthetic ones. */
2482 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2483 	       sizeof(curr_info->x86_capability));
2484 
2485 	/* Get the hardware CPUID leafs */
2486 	get_cpu_cap(curr_info);
2487 }
2488 
2489 /**
2490  * microcode_check() - Check if any CPU capabilities changed after an update.
2491  * @prev_info:	CPU capabilities stored before an update.
2492  *
2493  * The microcode loader calls this upon late microcode load to recheck features,
2494  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2495  *
2496  * Return: None
2497  */
microcode_check(struct cpuinfo_x86 * prev_info)2498 void microcode_check(struct cpuinfo_x86 *prev_info)
2499 {
2500 	struct cpuinfo_x86 curr_info;
2501 
2502 	perf_check_microcode();
2503 
2504 	amd_check_microcode();
2505 
2506 	store_cpu_caps(&curr_info);
2507 
2508 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2509 		    sizeof(prev_info->x86_capability)))
2510 		return;
2511 
2512 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2513 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2514 }
2515 #endif
2516 
2517 /*
2518  * Invoked from core CPU hotplug code after hotplug operations
2519  */
arch_smt_update(void)2520 void arch_smt_update(void)
2521 {
2522 	/* Handle the speculative execution misfeatures */
2523 	cpu_bugs_smt_update();
2524 	/* Check whether IPI broadcasting can be enabled */
2525 	apic_smt_update();
2526 }
2527 
arch_cpu_finalize_init(void)2528 void __init arch_cpu_finalize_init(void)
2529 {
2530 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2531 
2532 	identify_boot_cpu();
2533 
2534 	select_idle_routine();
2535 
2536 	/*
2537 	 * identify_boot_cpu() initialized SMT support information, let the
2538 	 * core code know.
2539 	 */
2540 	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2541 
2542 	if (!IS_ENABLED(CONFIG_SMP)) {
2543 		pr_info("CPU: ");
2544 		print_cpu_info(&boot_cpu_data);
2545 	}
2546 
2547 	cpu_select_mitigations();
2548 
2549 	arch_smt_update();
2550 
2551 	if (IS_ENABLED(CONFIG_X86_32)) {
2552 		/*
2553 		 * Check whether this is a real i386 which is not longer
2554 		 * supported and fixup the utsname.
2555 		 */
2556 		if (boot_cpu_data.x86 < 4)
2557 			panic("Kernel requires i486+ for 'invlpg' and other features");
2558 
2559 		init_utsname()->machine[1] =
2560 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2561 	}
2562 
2563 	/*
2564 	 * Must be before alternatives because it might set or clear
2565 	 * feature bits.
2566 	 */
2567 	fpu__init_system();
2568 	fpu__init_cpu();
2569 
2570 	/*
2571 	 * This needs to follow the FPU initializtion, since EFI depends on it.
2572 	 */
2573 	if (efi_enabled(EFI_RUNTIME_SERVICES))
2574 		efi_enter_virtual_mode();
2575 
2576 	/*
2577 	 * Ensure that access to the per CPU representation has the initial
2578 	 * boot CPU configuration.
2579 	 */
2580 	*c = boot_cpu_data;
2581 	c->initialized = true;
2582 
2583 	alternative_instructions();
2584 
2585 	if (IS_ENABLED(CONFIG_X86_64)) {
2586 		USER_PTR_MAX = TASK_SIZE_MAX;
2587 
2588 		/*
2589 		 * Enable this when LAM is gated on LASS support
2590 		if (cpu_feature_enabled(X86_FEATURE_LAM))
2591 			USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2592 		 */
2593 		runtime_const_init(ptr, USER_PTR_MAX);
2594 
2595 		/*
2596 		 * Make sure the first 2MB area is not mapped by huge pages
2597 		 * There are typically fixed size MTRRs in there and overlapping
2598 		 * MTRRs into large pages causes slow downs.
2599 		 *
2600 		 * Right now we don't do that with gbpages because there seems
2601 		 * very little benefit for that case.
2602 		 */
2603 		if (!direct_gbpages)
2604 			set_memory_4k((unsigned long)__va(0), 1);
2605 	} else {
2606 		fpu__init_check_bugs();
2607 	}
2608 
2609 	/*
2610 	 * This needs to be called before any devices perform DMA
2611 	 * operations that might use the SWIOTLB bounce buffers. It will
2612 	 * mark the bounce buffers as decrypted so that their usage will
2613 	 * not cause "plain-text" data to be decrypted when accessed. It
2614 	 * must be called after late_time_init() so that Hyper-V x86/x64
2615 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2616 	 */
2617 	mem_encrypt_init();
2618 }
2619