xref: /linux/drivers/base/cacheinfo.c (revision 84262262177b98cf4e57e8c010119576d3c6bc2b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * cacheinfo support - processor cache information via sysfs
4   *
5   * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6   * Author: Sudeep Holla <sudeep.holla@arm.com>
7   */
8  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9  
10  #include <linux/acpi.h>
11  #include <linux/bitops.h>
12  #include <linux/cacheinfo.h>
13  #include <linux/compiler.h>
14  #include <linux/cpu.h>
15  #include <linux/device.h>
16  #include <linux/init.h>
17  #include <linux/of.h>
18  #include <linux/sched.h>
19  #include <linux/slab.h>
20  #include <linux/smp.h>
21  #include <linux/sysfs.h>
22  
23  /* pointer to per cpu cacheinfo */
24  static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25  #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26  #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27  #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28  #define per_cpu_cacheinfo_idx(cpu, idx)		\
29  				(per_cpu_cacheinfo(cpu) + (idx))
30  
31  /* Set if no cache information is found in DT/ACPI. */
32  static bool use_arch_info;
33  
get_cpu_cacheinfo(unsigned int cpu)34  struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35  {
36  	return ci_cacheinfo(cpu);
37  }
38  
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)39  static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40  					   struct cacheinfo *sib_leaf)
41  {
42  	/*
43  	 * For non DT/ACPI systems, assume unique level 1 caches,
44  	 * system-wide shared caches for all other levels.
45  	 */
46  	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47  	    use_arch_info)
48  		return (this_leaf->level != 1) && (sib_leaf->level != 1);
49  
50  	if ((sib_leaf->attributes & CACHE_ID) &&
51  	    (this_leaf->attributes & CACHE_ID))
52  		return sib_leaf->id == this_leaf->id;
53  
54  	return sib_leaf->fw_token == this_leaf->fw_token;
55  }
56  
last_level_cache_is_valid(unsigned int cpu)57  bool last_level_cache_is_valid(unsigned int cpu)
58  {
59  	struct cacheinfo *llc;
60  
61  	if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu))
62  		return false;
63  
64  	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65  
66  	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67  
68  }
69  
last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)70  bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71  {
72  	struct cacheinfo *llc_x, *llc_y;
73  
74  	if (!last_level_cache_is_valid(cpu_x) ||
75  	    !last_level_cache_is_valid(cpu_y))
76  		return false;
77  
78  	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79  	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80  
81  	return cache_leaves_are_shared(llc_x, llc_y);
82  }
83  
84  #ifdef CONFIG_OF
85  
86  static bool of_check_cache_nodes(struct device_node *np);
87  
88  /* OF properties to query for a given cache type */
89  struct cache_type_info {
90  	const char *size_prop;
91  	const char *line_size_props[2];
92  	const char *nr_sets_prop;
93  };
94  
95  static const struct cache_type_info cache_type_info[] = {
96  	{
97  		.size_prop       = "cache-size",
98  		.line_size_props = { "cache-line-size",
99  				     "cache-block-size", },
100  		.nr_sets_prop    = "cache-sets",
101  	}, {
102  		.size_prop       = "i-cache-size",
103  		.line_size_props = { "i-cache-line-size",
104  				     "i-cache-block-size", },
105  		.nr_sets_prop    = "i-cache-sets",
106  	}, {
107  		.size_prop       = "d-cache-size",
108  		.line_size_props = { "d-cache-line-size",
109  				     "d-cache-block-size", },
110  		.nr_sets_prop    = "d-cache-sets",
111  	},
112  };
113  
get_cacheinfo_idx(enum cache_type type)114  static inline int get_cacheinfo_idx(enum cache_type type)
115  {
116  	if (type == CACHE_TYPE_UNIFIED)
117  		return 0;
118  	return type;
119  }
120  
cache_size(struct cacheinfo * this_leaf,struct device_node * np)121  static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122  {
123  	const char *propname;
124  	int ct_idx;
125  
126  	ct_idx = get_cacheinfo_idx(this_leaf->type);
127  	propname = cache_type_info[ct_idx].size_prop;
128  
129  	of_property_read_u32(np, propname, &this_leaf->size);
130  }
131  
132  /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)133  static void cache_get_line_size(struct cacheinfo *this_leaf,
134  				struct device_node *np)
135  {
136  	int i, lim, ct_idx;
137  
138  	ct_idx = get_cacheinfo_idx(this_leaf->type);
139  	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140  
141  	for (i = 0; i < lim; i++) {
142  		int ret;
143  		u32 line_size;
144  		const char *propname;
145  
146  		propname = cache_type_info[ct_idx].line_size_props[i];
147  		ret = of_property_read_u32(np, propname, &line_size);
148  		if (!ret) {
149  			this_leaf->coherency_line_size = line_size;
150  			break;
151  		}
152  	}
153  }
154  
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)155  static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156  {
157  	const char *propname;
158  	int ct_idx;
159  
160  	ct_idx = get_cacheinfo_idx(this_leaf->type);
161  	propname = cache_type_info[ct_idx].nr_sets_prop;
162  
163  	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164  }
165  
cache_associativity(struct cacheinfo * this_leaf)166  static void cache_associativity(struct cacheinfo *this_leaf)
167  {
168  	unsigned int line_size = this_leaf->coherency_line_size;
169  	unsigned int nr_sets = this_leaf->number_of_sets;
170  	unsigned int size = this_leaf->size;
171  
172  	/*
173  	 * If the cache is fully associative, there is no need to
174  	 * check the other properties.
175  	 */
176  	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177  		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178  }
179  
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)180  static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181  				  struct device_node *np)
182  {
183  	return of_property_read_bool(np, "cache-unified");
184  }
185  
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)186  static void cache_of_set_props(struct cacheinfo *this_leaf,
187  			       struct device_node *np)
188  {
189  	/*
190  	 * init_cache_level must setup the cache level correctly
191  	 * overriding the architecturally specified levels, so
192  	 * if type is NONE at this stage, it should be unified
193  	 */
194  	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195  	    cache_node_is_unified(this_leaf, np))
196  		this_leaf->type = CACHE_TYPE_UNIFIED;
197  	cache_size(this_leaf, np);
198  	cache_get_line_size(this_leaf, np);
199  	cache_nr_sets(this_leaf, np);
200  	cache_associativity(this_leaf);
201  }
202  
cache_setup_of_node(unsigned int cpu)203  static int cache_setup_of_node(unsigned int cpu)
204  {
205  	struct cacheinfo *this_leaf;
206  	unsigned int index = 0;
207  
208  	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
209  	if (!np) {
210  		pr_err("Failed to find cpu%d device node\n", cpu);
211  		return -ENOENT;
212  	}
213  
214  	if (!of_check_cache_nodes(np)) {
215  		return -ENOENT;
216  	}
217  
218  	while (index < cache_leaves(cpu)) {
219  		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220  		if (this_leaf->level != 1) {
221  			struct device_node *prev __free(device_node) = np;
222  			np = of_find_next_cache_node(np);
223  			if (!np)
224  				break;
225  		}
226  		cache_of_set_props(this_leaf, np);
227  		this_leaf->fw_token = np;
228  		index++;
229  	}
230  
231  	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
232  		return -ENOENT;
233  
234  	return 0;
235  }
236  
of_check_cache_nodes(struct device_node * np)237  static bool of_check_cache_nodes(struct device_node *np)
238  {
239  	if (of_property_present(np, "cache-size")   ||
240  	    of_property_present(np, "i-cache-size") ||
241  	    of_property_present(np, "d-cache-size") ||
242  	    of_property_present(np, "cache-unified"))
243  		return true;
244  
245  	struct device_node *next __free(device_node) = of_find_next_cache_node(np);
246  	if (next) {
247  		return true;
248  	}
249  
250  	return false;
251  }
252  
of_count_cache_leaves(struct device_node * np)253  static int of_count_cache_leaves(struct device_node *np)
254  {
255  	unsigned int leaves = 0;
256  
257  	if (of_property_present(np, "cache-size"))
258  		++leaves;
259  	if (of_property_present(np, "i-cache-size"))
260  		++leaves;
261  	if (of_property_present(np, "d-cache-size"))
262  		++leaves;
263  
264  	if (!leaves) {
265  		/* The '[i-|d-|]cache-size' property is required, but
266  		 * if absent, fallback on the 'cache-unified' property.
267  		 */
268  		if (of_property_read_bool(np, "cache-unified"))
269  			return 1;
270  		else
271  			return 2;
272  	}
273  
274  	return leaves;
275  }
276  
init_of_cache_level(unsigned int cpu)277  int init_of_cache_level(unsigned int cpu)
278  {
279  	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
280  	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
281  	unsigned int levels = 0, leaves, level;
282  
283  	if (!of_check_cache_nodes(np)) {
284  		return -ENOENT;
285  	}
286  
287  	leaves = of_count_cache_leaves(np);
288  	if (leaves > 0)
289  		levels = 1;
290  
291  	while (1) {
292  		struct device_node *prev __free(device_node) = np;
293  		np = of_find_next_cache_node(np);
294  		if (!np)
295  			break;
296  
297  		if (!of_device_is_compatible(np, "cache"))
298  			return -EINVAL;
299  		if (of_property_read_u32(np, "cache-level", &level))
300  			return -EINVAL;
301  		if (level <= levels)
302  			return -EINVAL;
303  
304  		leaves += of_count_cache_leaves(np);
305  		levels = level;
306  	}
307  
308  	this_cpu_ci->num_levels = levels;
309  	this_cpu_ci->num_leaves = leaves;
310  
311  	return 0;
312  }
313  
314  #else
cache_setup_of_node(unsigned int cpu)315  static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
init_of_cache_level(unsigned int cpu)316  int init_of_cache_level(unsigned int cpu) { return 0; }
317  #endif
318  
cache_setup_acpi(unsigned int cpu)319  int __weak cache_setup_acpi(unsigned int cpu)
320  {
321  	return -ENOTSUPP;
322  }
323  
324  unsigned int coherency_max_size;
325  
cache_setup_properties(unsigned int cpu)326  static int cache_setup_properties(unsigned int cpu)
327  {
328  	int ret = 0;
329  
330  	if (of_have_populated_dt())
331  		ret = cache_setup_of_node(cpu);
332  	else if (!acpi_disabled)
333  		ret = cache_setup_acpi(cpu);
334  
335  	// Assume there is no cache information available in DT/ACPI from now.
336  	if (ret && use_arch_cache_info())
337  		use_arch_info = true;
338  
339  	return ret;
340  }
341  
cache_shared_cpu_map_setup(unsigned int cpu)342  static int cache_shared_cpu_map_setup(unsigned int cpu)
343  {
344  	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
345  	struct cacheinfo *this_leaf, *sib_leaf;
346  	unsigned int index, sib_index;
347  	int ret = 0;
348  
349  	if (this_cpu_ci->cpu_map_populated)
350  		return 0;
351  
352  	/*
353  	 * skip setting up cache properties if LLC is valid, just need
354  	 * to update the shared cpu_map if the cache attributes were
355  	 * populated early before all the cpus are brought online
356  	 */
357  	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
358  		ret = cache_setup_properties(cpu);
359  		if (ret)
360  			return ret;
361  	}
362  
363  	for (index = 0; index < cache_leaves(cpu); index++) {
364  		unsigned int i;
365  
366  		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
367  
368  		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
369  		for_each_online_cpu(i) {
370  			if (i == cpu || !per_cpu_cacheinfo(i))
371  				continue;/* skip if itself or no cacheinfo */
372  			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
373  				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
374  
375  				/*
376  				 * Comparing cache IDs only makes sense if the leaves
377  				 * belong to the same cache level of same type. Skip
378  				 * the check if level and type do not match.
379  				 */
380  				if (sib_leaf->level != this_leaf->level ||
381  				    sib_leaf->type != this_leaf->type)
382  					continue;
383  
384  				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
385  					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
386  					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
387  					break;
388  				}
389  			}
390  		}
391  		/* record the maximum cache line size */
392  		if (this_leaf->coherency_line_size > coherency_max_size)
393  			coherency_max_size = this_leaf->coherency_line_size;
394  	}
395  
396  	/* shared_cpu_map is now populated for the cpu */
397  	this_cpu_ci->cpu_map_populated = true;
398  	return 0;
399  }
400  
cache_shared_cpu_map_remove(unsigned int cpu)401  static void cache_shared_cpu_map_remove(unsigned int cpu)
402  {
403  	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
404  	struct cacheinfo *this_leaf, *sib_leaf;
405  	unsigned int sibling, index, sib_index;
406  
407  	for (index = 0; index < cache_leaves(cpu); index++) {
408  		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
409  		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
410  			if (sibling == cpu || !per_cpu_cacheinfo(sibling))
411  				continue;/* skip if itself or no cacheinfo */
412  
413  			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
414  				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
415  
416  				/*
417  				 * Comparing cache IDs only makes sense if the leaves
418  				 * belong to the same cache level of same type. Skip
419  				 * the check if level and type do not match.
420  				 */
421  				if (sib_leaf->level != this_leaf->level ||
422  				    sib_leaf->type != this_leaf->type)
423  					continue;
424  
425  				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
426  					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
427  					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
428  					break;
429  				}
430  			}
431  		}
432  	}
433  
434  	/* cpu is no longer populated in the shared map */
435  	this_cpu_ci->cpu_map_populated = false;
436  }
437  
free_cache_attributes(unsigned int cpu)438  static void free_cache_attributes(unsigned int cpu)
439  {
440  	if (!per_cpu_cacheinfo(cpu))
441  		return;
442  
443  	cache_shared_cpu_map_remove(cpu);
444  }
445  
early_cache_level(unsigned int cpu)446  int __weak early_cache_level(unsigned int cpu)
447  {
448  	return -ENOENT;
449  }
450  
init_cache_level(unsigned int cpu)451  int __weak init_cache_level(unsigned int cpu)
452  {
453  	return -ENOENT;
454  }
455  
populate_cache_leaves(unsigned int cpu)456  int __weak populate_cache_leaves(unsigned int cpu)
457  {
458  	return -ENOENT;
459  }
460  
allocate_cache_info(int cpu)461  static inline int allocate_cache_info(int cpu)
462  {
463  	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC);
464  	if (!per_cpu_cacheinfo(cpu)) {
465  		cache_leaves(cpu) = 0;
466  		return -ENOMEM;
467  	}
468  
469  	return 0;
470  }
471  
fetch_cache_info(unsigned int cpu)472  int fetch_cache_info(unsigned int cpu)
473  {
474  	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
475  	unsigned int levels = 0, split_levels = 0;
476  	int ret;
477  
478  	if (acpi_disabled) {
479  		ret = init_of_cache_level(cpu);
480  	} else {
481  		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
482  		if (!ret) {
483  			this_cpu_ci->num_levels = levels;
484  			/*
485  			 * This assumes that:
486  			 * - there cannot be any split caches (data/instruction)
487  			 *   above a unified cache
488  			 * - data/instruction caches come by pair
489  			 */
490  			this_cpu_ci->num_leaves = levels + split_levels;
491  		}
492  	}
493  
494  	if (ret || !cache_leaves(cpu)) {
495  		ret = early_cache_level(cpu);
496  		if (ret)
497  			return ret;
498  
499  		if (!cache_leaves(cpu))
500  			return -ENOENT;
501  
502  		this_cpu_ci->early_ci_levels = true;
503  	}
504  
505  	return allocate_cache_info(cpu);
506  }
507  
init_level_allocate_ci(unsigned int cpu)508  static inline int init_level_allocate_ci(unsigned int cpu)
509  {
510  	unsigned int early_leaves = cache_leaves(cpu);
511  
512  	/* Since early initialization/allocation of the cacheinfo is allowed
513  	 * via fetch_cache_info() and this also gets called as CPU hotplug
514  	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
515  	 * as it will happen only once (the cacheinfo memory is never freed).
516  	 * Just populate the cacheinfo. However, if the cacheinfo has been
517  	 * allocated early through the arch-specific early_cache_level() call,
518  	 * there is a chance the info is wrong (this can happen on arm64). In
519  	 * that case, call init_cache_level() anyway to give the arch-specific
520  	 * code a chance to make things right.
521  	 */
522  	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
523  		return 0;
524  
525  	if (init_cache_level(cpu) || !cache_leaves(cpu))
526  		return -ENOENT;
527  
528  	/*
529  	 * Now that we have properly initialized the cache level info, make
530  	 * sure we don't try to do that again the next time we are called
531  	 * (e.g. as CPU hotplug callbacks).
532  	 */
533  	ci_cacheinfo(cpu)->early_ci_levels = false;
534  
535  	/*
536  	 * Some architectures (e.g., x86) do not use early initialization.
537  	 * Allocate memory now in such case.
538  	 */
539  	if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu))
540  		return 0;
541  
542  	kfree(per_cpu_cacheinfo(cpu));
543  	return allocate_cache_info(cpu);
544  }
545  
detect_cache_attributes(unsigned int cpu)546  int detect_cache_attributes(unsigned int cpu)
547  {
548  	int ret;
549  
550  	ret = init_level_allocate_ci(cpu);
551  	if (ret)
552  		return ret;
553  
554  	/*
555  	 * If LLC is valid the cache leaves were already populated so just go to
556  	 * update the cpu map.
557  	 */
558  	if (!last_level_cache_is_valid(cpu)) {
559  		/*
560  		 * populate_cache_leaves() may completely setup the cache leaves and
561  		 * shared_cpu_map or it may leave it partially setup.
562  		 */
563  		ret = populate_cache_leaves(cpu);
564  		if (ret)
565  			goto free_ci;
566  	}
567  
568  	/*
569  	 * For systems using DT for cache hierarchy, fw_token
570  	 * and shared_cpu_map will be set up here only if they are
571  	 * not populated already
572  	 */
573  	ret = cache_shared_cpu_map_setup(cpu);
574  	if (ret) {
575  		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
576  		goto free_ci;
577  	}
578  
579  	return 0;
580  
581  free_ci:
582  	free_cache_attributes(cpu);
583  	return ret;
584  }
585  
586  /* pointer to cpuX/cache device */
587  static DEFINE_PER_CPU(struct device *, ci_cache_dev);
588  #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
589  
590  static cpumask_t cache_dev_map;
591  
592  /* pointer to array of devices for cpuX/cache/indexY */
593  static DEFINE_PER_CPU(struct device **, ci_index_dev);
594  #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
595  #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
596  
597  #define show_one(file_name, object)				\
598  static ssize_t file_name##_show(struct device *dev,		\
599  		struct device_attribute *attr, char *buf)	\
600  {								\
601  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
602  	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
603  }
604  
605  show_one(id, id);
606  show_one(level, level);
607  show_one(coherency_line_size, coherency_line_size);
608  show_one(number_of_sets, number_of_sets);
609  show_one(physical_line_partition, physical_line_partition);
610  show_one(ways_of_associativity, ways_of_associativity);
611  
size_show(struct device * dev,struct device_attribute * attr,char * buf)612  static ssize_t size_show(struct device *dev,
613  			 struct device_attribute *attr, char *buf)
614  {
615  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
616  
617  	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
618  }
619  
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)620  static ssize_t shared_cpu_map_show(struct device *dev,
621  				   struct device_attribute *attr, char *buf)
622  {
623  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
624  	const struct cpumask *mask = &this_leaf->shared_cpu_map;
625  
626  	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
627  }
628  
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)629  static ssize_t shared_cpu_list_show(struct device *dev,
630  				    struct device_attribute *attr, char *buf)
631  {
632  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
633  	const struct cpumask *mask = &this_leaf->shared_cpu_map;
634  
635  	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
636  }
637  
type_show(struct device * dev,struct device_attribute * attr,char * buf)638  static ssize_t type_show(struct device *dev,
639  			 struct device_attribute *attr, char *buf)
640  {
641  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
642  	const char *output;
643  
644  	switch (this_leaf->type) {
645  	case CACHE_TYPE_DATA:
646  		output = "Data";
647  		break;
648  	case CACHE_TYPE_INST:
649  		output = "Instruction";
650  		break;
651  	case CACHE_TYPE_UNIFIED:
652  		output = "Unified";
653  		break;
654  	default:
655  		return -EINVAL;
656  	}
657  
658  	return sysfs_emit(buf, "%s\n", output);
659  }
660  
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)661  static ssize_t allocation_policy_show(struct device *dev,
662  				      struct device_attribute *attr, char *buf)
663  {
664  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
665  	unsigned int ci_attr = this_leaf->attributes;
666  	const char *output;
667  
668  	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
669  		output = "ReadWriteAllocate";
670  	else if (ci_attr & CACHE_READ_ALLOCATE)
671  		output = "ReadAllocate";
672  	else if (ci_attr & CACHE_WRITE_ALLOCATE)
673  		output = "WriteAllocate";
674  	else
675  		return 0;
676  
677  	return sysfs_emit(buf, "%s\n", output);
678  }
679  
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)680  static ssize_t write_policy_show(struct device *dev,
681  				 struct device_attribute *attr, char *buf)
682  {
683  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
684  	unsigned int ci_attr = this_leaf->attributes;
685  	int n = 0;
686  
687  	if (ci_attr & CACHE_WRITE_THROUGH)
688  		n = sysfs_emit(buf, "WriteThrough\n");
689  	else if (ci_attr & CACHE_WRITE_BACK)
690  		n = sysfs_emit(buf, "WriteBack\n");
691  	return n;
692  }
693  
694  static DEVICE_ATTR_RO(id);
695  static DEVICE_ATTR_RO(level);
696  static DEVICE_ATTR_RO(type);
697  static DEVICE_ATTR_RO(coherency_line_size);
698  static DEVICE_ATTR_RO(ways_of_associativity);
699  static DEVICE_ATTR_RO(number_of_sets);
700  static DEVICE_ATTR_RO(size);
701  static DEVICE_ATTR_RO(allocation_policy);
702  static DEVICE_ATTR_RO(write_policy);
703  static DEVICE_ATTR_RO(shared_cpu_map);
704  static DEVICE_ATTR_RO(shared_cpu_list);
705  static DEVICE_ATTR_RO(physical_line_partition);
706  
707  static struct attribute *cache_default_attrs[] = {
708  	&dev_attr_id.attr,
709  	&dev_attr_type.attr,
710  	&dev_attr_level.attr,
711  	&dev_attr_shared_cpu_map.attr,
712  	&dev_attr_shared_cpu_list.attr,
713  	&dev_attr_coherency_line_size.attr,
714  	&dev_attr_ways_of_associativity.attr,
715  	&dev_attr_number_of_sets.attr,
716  	&dev_attr_size.attr,
717  	&dev_attr_allocation_policy.attr,
718  	&dev_attr_write_policy.attr,
719  	&dev_attr_physical_line_partition.attr,
720  	NULL
721  };
722  
723  static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)724  cache_default_attrs_is_visible(struct kobject *kobj,
725  			       struct attribute *attr, int unused)
726  {
727  	struct device *dev = kobj_to_dev(kobj);
728  	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
729  	const struct cpumask *mask = &this_leaf->shared_cpu_map;
730  	umode_t mode = attr->mode;
731  
732  	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
733  		return mode;
734  	if ((attr == &dev_attr_type.attr) && this_leaf->type)
735  		return mode;
736  	if ((attr == &dev_attr_level.attr) && this_leaf->level)
737  		return mode;
738  	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
739  		return mode;
740  	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
741  		return mode;
742  	if ((attr == &dev_attr_coherency_line_size.attr) &&
743  	    this_leaf->coherency_line_size)
744  		return mode;
745  	if ((attr == &dev_attr_ways_of_associativity.attr) &&
746  	    this_leaf->size) /* allow 0 = full associativity */
747  		return mode;
748  	if ((attr == &dev_attr_number_of_sets.attr) &&
749  	    this_leaf->number_of_sets)
750  		return mode;
751  	if ((attr == &dev_attr_size.attr) && this_leaf->size)
752  		return mode;
753  	if ((attr == &dev_attr_write_policy.attr) &&
754  	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
755  		return mode;
756  	if ((attr == &dev_attr_allocation_policy.attr) &&
757  	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
758  		return mode;
759  	if ((attr == &dev_attr_physical_line_partition.attr) &&
760  	    this_leaf->physical_line_partition)
761  		return mode;
762  
763  	return 0;
764  }
765  
766  static const struct attribute_group cache_default_group = {
767  	.attrs = cache_default_attrs,
768  	.is_visible = cache_default_attrs_is_visible,
769  };
770  
771  static const struct attribute_group *cache_default_groups[] = {
772  	&cache_default_group,
773  	NULL,
774  };
775  
776  static const struct attribute_group *cache_private_groups[] = {
777  	&cache_default_group,
778  	NULL, /* Place holder for private group */
779  	NULL,
780  };
781  
782  const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)783  __weak cache_get_priv_group(struct cacheinfo *this_leaf)
784  {
785  	return NULL;
786  }
787  
788  static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)789  cache_get_attribute_groups(struct cacheinfo *this_leaf)
790  {
791  	const struct attribute_group *priv_group =
792  			cache_get_priv_group(this_leaf);
793  
794  	if (!priv_group)
795  		return cache_default_groups;
796  
797  	if (!cache_private_groups[1])
798  		cache_private_groups[1] = priv_group;
799  
800  	return cache_private_groups;
801  }
802  
803  /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)804  static void cpu_cache_sysfs_exit(unsigned int cpu)
805  {
806  	int i;
807  	struct device *ci_dev;
808  
809  	if (per_cpu_index_dev(cpu)) {
810  		for (i = 0; i < cache_leaves(cpu); i++) {
811  			ci_dev = per_cache_index_dev(cpu, i);
812  			if (!ci_dev)
813  				continue;
814  			device_unregister(ci_dev);
815  		}
816  		kfree(per_cpu_index_dev(cpu));
817  		per_cpu_index_dev(cpu) = NULL;
818  	}
819  	device_unregister(per_cpu_cache_dev(cpu));
820  	per_cpu_cache_dev(cpu) = NULL;
821  }
822  
cpu_cache_sysfs_init(unsigned int cpu)823  static int cpu_cache_sysfs_init(unsigned int cpu)
824  {
825  	struct device *dev = get_cpu_device(cpu);
826  
827  	if (per_cpu_cacheinfo(cpu) == NULL)
828  		return -ENOENT;
829  
830  	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
831  	if (IS_ERR(per_cpu_cache_dev(cpu)))
832  		return PTR_ERR(per_cpu_cache_dev(cpu));
833  
834  	/* Allocate all required memory */
835  	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
836  					 sizeof(struct device *), GFP_KERNEL);
837  	if (unlikely(per_cpu_index_dev(cpu) == NULL))
838  		goto err_out;
839  
840  	return 0;
841  
842  err_out:
843  	cpu_cache_sysfs_exit(cpu);
844  	return -ENOMEM;
845  }
846  
cache_add_dev(unsigned int cpu)847  static int cache_add_dev(unsigned int cpu)
848  {
849  	unsigned int i;
850  	int rc;
851  	struct device *ci_dev, *parent;
852  	struct cacheinfo *this_leaf;
853  	const struct attribute_group **cache_groups;
854  
855  	rc = cpu_cache_sysfs_init(cpu);
856  	if (unlikely(rc < 0))
857  		return rc;
858  
859  	parent = per_cpu_cache_dev(cpu);
860  	for (i = 0; i < cache_leaves(cpu); i++) {
861  		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
862  		if (this_leaf->disable_sysfs)
863  			continue;
864  		if (this_leaf->type == CACHE_TYPE_NOCACHE)
865  			break;
866  		cache_groups = cache_get_attribute_groups(this_leaf);
867  		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
868  					   "index%1u", i);
869  		if (IS_ERR(ci_dev)) {
870  			rc = PTR_ERR(ci_dev);
871  			goto err;
872  		}
873  		per_cache_index_dev(cpu, i) = ci_dev;
874  	}
875  	cpumask_set_cpu(cpu, &cache_dev_map);
876  
877  	return 0;
878  err:
879  	cpu_cache_sysfs_exit(cpu);
880  	return rc;
881  }
882  
cpu_map_shared_cache(bool online,unsigned int cpu,cpumask_t ** map)883  static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
884  					 cpumask_t **map)
885  {
886  	struct cacheinfo *llc, *sib_llc;
887  	unsigned int sibling;
888  
889  	if (!last_level_cache_is_valid(cpu))
890  		return 0;
891  
892  	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
893  
894  	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
895  		return 0;
896  
897  	if (online) {
898  		*map = &llc->shared_cpu_map;
899  		return cpumask_weight(*map);
900  	}
901  
902  	/* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
903  	for_each_cpu(sibling, &llc->shared_cpu_map) {
904  		if (sibling == cpu || !last_level_cache_is_valid(sibling))
905  			continue;
906  		sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
907  		*map = &sib_llc->shared_cpu_map;
908  		return cpumask_weight(*map);
909  	}
910  
911  	return 0;
912  }
913  
914  /*
915   * Calculate the size of the per-CPU data cache slice.  This can be
916   * used to estimate the size of the data cache slice that can be used
917   * by one CPU under ideal circumstances.  UNIFIED caches are counted
918   * in addition to DATA caches.  So, please consider code cache usage
919   * when use the result.
920   *
921   * Because the cache inclusive/non-inclusive information isn't
922   * available, we just use the size of the per-CPU slice of LLC to make
923   * the result more predictable across architectures.
924   */
update_per_cpu_data_slice_size_cpu(unsigned int cpu)925  static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
926  {
927  	struct cpu_cacheinfo *ci;
928  	struct cacheinfo *llc;
929  	unsigned int nr_shared;
930  
931  	if (!last_level_cache_is_valid(cpu))
932  		return;
933  
934  	ci = ci_cacheinfo(cpu);
935  	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
936  
937  	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
938  		return;
939  
940  	nr_shared = cpumask_weight(&llc->shared_cpu_map);
941  	if (nr_shared)
942  		ci->per_cpu_data_slice_size = llc->size / nr_shared;
943  }
944  
update_per_cpu_data_slice_size(bool cpu_online,unsigned int cpu,cpumask_t * cpu_map)945  static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
946  					   cpumask_t *cpu_map)
947  {
948  	unsigned int icpu;
949  
950  	for_each_cpu(icpu, cpu_map) {
951  		if (!cpu_online && icpu == cpu)
952  			continue;
953  		update_per_cpu_data_slice_size_cpu(icpu);
954  		setup_pcp_cacheinfo(icpu);
955  	}
956  }
957  
cacheinfo_cpu_online(unsigned int cpu)958  static int cacheinfo_cpu_online(unsigned int cpu)
959  {
960  	int rc = detect_cache_attributes(cpu);
961  	cpumask_t *cpu_map;
962  
963  	if (rc)
964  		return rc;
965  	rc = cache_add_dev(cpu);
966  	if (rc)
967  		goto err;
968  	if (cpu_map_shared_cache(true, cpu, &cpu_map))
969  		update_per_cpu_data_slice_size(true, cpu, cpu_map);
970  	return 0;
971  err:
972  	free_cache_attributes(cpu);
973  	return rc;
974  }
975  
cacheinfo_cpu_pre_down(unsigned int cpu)976  static int cacheinfo_cpu_pre_down(unsigned int cpu)
977  {
978  	cpumask_t *cpu_map;
979  	unsigned int nr_shared;
980  
981  	nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
982  	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
983  		cpu_cache_sysfs_exit(cpu);
984  
985  	free_cache_attributes(cpu);
986  	if (nr_shared > 1)
987  		update_per_cpu_data_slice_size(false, cpu, cpu_map);
988  	return 0;
989  }
990  
cacheinfo_sysfs_init(void)991  static int __init cacheinfo_sysfs_init(void)
992  {
993  	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
994  				 "base/cacheinfo:online",
995  				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
996  }
997  device_initcall(cacheinfo_sysfs_init);
998