1 // SPDX-License-Identifier: GPL-2.0 2 #include <api/fs/fs.h> 3 #include "cpumap.h" 4 #include "debug.h" 5 #include "event.h" 6 #include <assert.h> 7 #include <dirent.h> 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include <linux/bitmap.h> 11 #include "asm/bug.h" 12 13 #include <linux/ctype.h> 14 #include <linux/zalloc.h> 15 #include <internal/cpumap.h> 16 17 static struct perf_cpu max_cpu_num; 18 static struct perf_cpu max_present_cpu_num; 19 static int max_node_num; 20 /** 21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the 22 * CPU number. 23 */ 24 static int *cpunode_map; 25 26 bool perf_record_cpu_map_data__test_bit(int i, 27 const struct perf_record_cpu_map_data *data) 28 { 29 int bit_word32 = i / 32; 30 __u32 bit_mask32 = 1U << (i & 31); 31 int bit_word64 = i / 64; 32 __u64 bit_mask64 = ((__u64)1) << (i & 63); 33 34 return (data->mask32_data.long_size == 4) 35 ? (bit_word32 < data->mask32_data.nr) && 36 (data->mask32_data.mask[bit_word32] & bit_mask32) != 0 37 : (bit_word64 < data->mask64_data.nr) && 38 (data->mask64_data.mask[bit_word64] & bit_mask64) != 0; 39 } 40 41 /* Read ith mask value from data into the given 64-bit sized bitmap */ 42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data, 43 int i, unsigned long *bitmap) 44 { 45 #if __SIZEOF_LONG__ == 8 46 if (data->mask32_data.long_size == 4) 47 bitmap[0] = data->mask32_data.mask[i]; 48 else 49 bitmap[0] = data->mask64_data.mask[i]; 50 #else 51 if (data->mask32_data.long_size == 4) { 52 bitmap[0] = data->mask32_data.mask[i]; 53 bitmap[1] = 0; 54 } else { 55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 56 bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32); 57 bitmap[1] = (unsigned long)data->mask64_data.mask[i]; 58 #else 59 bitmap[0] = (unsigned long)data->mask64_data.mask[i]; 60 bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32); 61 #endif 62 } 63 #endif 64 } 65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data) 66 { 67 struct perf_cpu_map *map; 68 69 map = perf_cpu_map__empty_new(data->cpus_data.nr); 70 if (!map) 71 return NULL; 72 73 for (unsigned int i = 0; i < data->cpus_data.nr; i++) { 74 /* 75 * Special treatment for -1, which is not real cpu number, 76 * and we need to use (int) -1 to initialize map[i], 77 * otherwise it would become 65535. 78 */ 79 if (data->cpus_data.cpu[i] == (u16) -1) { 80 RC_CHK_ACCESS(map)->map[i].cpu = -1; 81 } else if (data->cpus_data.cpu[i] < INT16_MAX) { 82 RC_CHK_ACCESS(map)->map[i].cpu = (int16_t) data->cpus_data.cpu[i]; 83 } else { 84 pr_err("Invalid cpumap entry %u\n", data->cpus_data.cpu[i]); 85 perf_cpu_map__put(map); 86 return NULL; 87 } 88 } 89 90 return map; 91 } 92 93 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data) 94 { 95 DECLARE_BITMAP(local_copy, 64); 96 int weight = 0, mask_nr = data->mask32_data.nr; 97 struct perf_cpu_map *map; 98 99 for (int i = 0; i < mask_nr; i++) { 100 perf_record_cpu_map_data__read_one_mask(data, i, local_copy); 101 weight += bitmap_weight(local_copy, 64); 102 } 103 104 map = perf_cpu_map__empty_new(weight); 105 if (!map) 106 return NULL; 107 108 for (int i = 0, j = 0; i < mask_nr; i++) { 109 int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE); 110 int cpu; 111 112 perf_record_cpu_map_data__read_one_mask(data, i, local_copy); 113 for_each_set_bit(cpu, local_copy, 64) { 114 if (cpu + cpus_per_i < INT16_MAX) { 115 RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i; 116 } else { 117 pr_err("Invalid cpumap entry %d\n", cpu + cpus_per_i); 118 perf_cpu_map__put(map); 119 return NULL; 120 } 121 } 122 } 123 return map; 124 125 } 126 127 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data) 128 { 129 struct perf_cpu_map *map; 130 unsigned int i = 0; 131 132 map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu - 133 data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu); 134 if (!map) 135 return NULL; 136 137 if (data->range_cpu_data.any_cpu) 138 RC_CHK_ACCESS(map)->map[i++].cpu = -1; 139 140 for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu; 141 i++, cpu++) { 142 if (cpu < INT16_MAX) { 143 RC_CHK_ACCESS(map)->map[i].cpu = cpu; 144 } else { 145 pr_err("Invalid cpumap entry %d\n", cpu); 146 perf_cpu_map__put(map); 147 return NULL; 148 } 149 } 150 151 return map; 152 } 153 154 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data) 155 { 156 switch (data->type) { 157 case PERF_CPU_MAP__CPUS: 158 return cpu_map__from_entries(data); 159 case PERF_CPU_MAP__MASK: 160 return cpu_map__from_mask(data); 161 case PERF_CPU_MAP__RANGE_CPUS: 162 return cpu_map__from_range(data); 163 default: 164 pr_err("cpu_map__new_data unknown type %d\n", data->type); 165 return NULL; 166 } 167 } 168 169 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) 170 { 171 #define BUFSIZE 1024 172 char buf[BUFSIZE]; 173 174 cpu_map__snprint(map, buf, sizeof(buf)); 175 return fprintf(fp, "%s\n", buf); 176 #undef BUFSIZE 177 } 178 179 struct perf_cpu_map *perf_cpu_map__empty_new(int nr) 180 { 181 struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr); 182 183 if (cpus != NULL) { 184 for (int i = 0; i < nr; i++) 185 RC_CHK_ACCESS(cpus)->map[i].cpu = -1; 186 } 187 188 return cpus; 189 } 190 191 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) 192 { 193 struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); 194 195 if (cpus != NULL) { 196 int i; 197 198 cpus->nr = nr; 199 for (i = 0; i < nr; i++) 200 cpus->map[i] = aggr_cpu_id__empty(); 201 } 202 203 return cpus; 204 } 205 206 static int cpu__get_topology_int(int cpu, const char *name, int *value) 207 { 208 char path[PATH_MAX]; 209 210 snprintf(path, PATH_MAX, 211 "devices/system/cpu/cpu%d/topology/%s", cpu, name); 212 213 return sysfs__read_int(path, value); 214 } 215 216 int cpu__get_socket_id(struct perf_cpu cpu) 217 { 218 int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value); 219 return ret ?: value; 220 } 221 222 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused) 223 { 224 struct aggr_cpu_id id = aggr_cpu_id__empty(); 225 226 id.socket = cpu__get_socket_id(cpu); 227 return id; 228 } 229 230 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) 231 { 232 struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; 233 struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; 234 235 if (a->node != b->node) 236 return a->node - b->node; 237 else if (a->socket != b->socket) 238 return a->socket - b->socket; 239 else if (a->die != b->die) 240 return a->die - b->die; 241 else if (a->cluster != b->cluster) 242 return a->cluster - b->cluster; 243 else if (a->cache_lvl != b->cache_lvl) 244 return a->cache_lvl - b->cache_lvl; 245 else if (a->cache != b->cache) 246 return a->cache - b->cache; 247 else if (a->core != b->core) 248 return a->core - b->core; 249 else 250 return a->thread_idx - b->thread_idx; 251 } 252 253 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, 254 aggr_cpu_id_get_t get_id, 255 void *data, bool needs_sort) 256 { 257 int idx; 258 struct perf_cpu cpu; 259 struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus)); 260 261 if (!c) 262 return NULL; 263 264 /* Reset size as it may only be partially filled */ 265 c->nr = 0; 266 267 perf_cpu_map__for_each_cpu(cpu, idx, cpus) { 268 bool duplicate = false; 269 struct aggr_cpu_id cpu_id = get_id(cpu, data); 270 271 for (int j = 0; j < c->nr; j++) { 272 if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { 273 duplicate = true; 274 break; 275 } 276 } 277 if (!duplicate) { 278 c->map[c->nr] = cpu_id; 279 c->nr++; 280 } 281 } 282 /* Trim. */ 283 if (c->nr != perf_cpu_map__nr(cpus)) { 284 struct cpu_aggr_map *trimmed_c = 285 realloc(c, 286 sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr); 287 288 if (trimmed_c) 289 c = trimmed_c; 290 } 291 292 /* ensure we process id in increasing order */ 293 if (needs_sort) 294 qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); 295 296 return c; 297 298 } 299 300 int cpu__get_die_id(struct perf_cpu cpu) 301 { 302 int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value); 303 304 return ret ?: value; 305 } 306 307 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data) 308 { 309 struct aggr_cpu_id id; 310 int die; 311 312 die = cpu__get_die_id(cpu); 313 /* There is no die_id on legacy system. */ 314 if (die < 0) 315 die = 0; 316 317 /* 318 * die_id is relative to socket, so start 319 * with the socket ID and then add die to 320 * make a unique ID. 321 */ 322 id = aggr_cpu_id__socket(cpu, data); 323 if (aggr_cpu_id__is_empty(&id)) 324 return id; 325 326 id.die = die; 327 return id; 328 } 329 330 int cpu__get_cluster_id(struct perf_cpu cpu) 331 { 332 int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value); 333 334 return ret ?: value; 335 } 336 337 struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data) 338 { 339 int cluster = cpu__get_cluster_id(cpu); 340 struct aggr_cpu_id id; 341 342 /* There is no cluster_id on legacy system. */ 343 if (cluster < 0) 344 cluster = 0; 345 346 id = aggr_cpu_id__die(cpu, data); 347 if (aggr_cpu_id__is_empty(&id)) 348 return id; 349 350 id.cluster = cluster; 351 return id; 352 } 353 354 int cpu__get_core_id(struct perf_cpu cpu) 355 { 356 int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value); 357 return ret ?: value; 358 } 359 360 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data) 361 { 362 struct aggr_cpu_id id; 363 int core = cpu__get_core_id(cpu); 364 365 /* aggr_cpu_id__die returns a struct with socket die, and cluster set. */ 366 id = aggr_cpu_id__cluster(cpu, data); 367 if (aggr_cpu_id__is_empty(&id)) 368 return id; 369 370 /* 371 * core_id is relative to socket and die, we need a global id. 372 * So we combine the result from cpu_map__get_die with the core id 373 */ 374 id.core = core; 375 return id; 376 377 } 378 379 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data) 380 { 381 struct aggr_cpu_id id; 382 383 /* aggr_cpu_id__core returns a struct with socket, die and core set. */ 384 id = aggr_cpu_id__core(cpu, data); 385 if (aggr_cpu_id__is_empty(&id)) 386 return id; 387 388 id.cpu = cpu; 389 return id; 390 391 } 392 393 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused) 394 { 395 struct aggr_cpu_id id = aggr_cpu_id__empty(); 396 397 id.node = cpu__get_node(cpu); 398 return id; 399 } 400 401 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused) 402 { 403 struct aggr_cpu_id id = aggr_cpu_id__empty(); 404 405 /* it always aggregates to the cpu 0 */ 406 cpu.cpu = 0; 407 id.cpu = cpu; 408 return id; 409 } 410 411 /* setup simple routines to easily access node numbers given a cpu number */ 412 static int get_max_num(char *path, int *max) 413 { 414 size_t num; 415 char *buf; 416 int err = 0; 417 418 if (filename__read_str(path, &buf, &num)) 419 return -1; 420 421 buf[num] = '\0'; 422 423 /* start on the right, to find highest node num */ 424 while (--num) { 425 if ((buf[num] == ',') || (buf[num] == '-')) { 426 num++; 427 break; 428 } 429 } 430 if (sscanf(&buf[num], "%d", max) < 1) { 431 err = -1; 432 goto out; 433 } 434 435 /* convert from 0-based to 1-based */ 436 (*max)++; 437 438 out: 439 free(buf); 440 return err; 441 } 442 443 /* Determine highest possible cpu in the system for sparse allocation */ 444 static void set_max_cpu_num(void) 445 { 446 const char *mnt; 447 char path[PATH_MAX]; 448 int max, ret = -1; 449 450 /* set up default */ 451 max_cpu_num.cpu = 4096; 452 max_present_cpu_num.cpu = 4096; 453 454 mnt = sysfs__mountpoint(); 455 if (!mnt) 456 goto out; 457 458 /* get the highest possible cpu number for a sparse allocation */ 459 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); 460 if (ret >= PATH_MAX) { 461 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 462 goto out; 463 } 464 465 ret = get_max_num(path, &max); 466 if (ret) 467 goto out; 468 469 max_cpu_num.cpu = max; 470 471 /* get the highest present cpu number for a sparse allocation */ 472 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); 473 if (ret >= PATH_MAX) { 474 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 475 goto out; 476 } 477 478 ret = get_max_num(path, &max); 479 480 if (!ret && max > INT16_MAX) { 481 pr_err("Read out of bounds max cpus of %d\n", max); 482 ret = -1; 483 } 484 if (!ret) 485 max_present_cpu_num.cpu = (int16_t)max; 486 out: 487 if (ret) 488 pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu); 489 } 490 491 /* Determine highest possible node in the system for sparse allocation */ 492 static void set_max_node_num(void) 493 { 494 const char *mnt; 495 char path[PATH_MAX]; 496 int ret = -1; 497 498 /* set up default */ 499 max_node_num = 8; 500 501 mnt = sysfs__mountpoint(); 502 if (!mnt) 503 goto out; 504 505 /* get the highest possible cpu number for a sparse allocation */ 506 ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); 507 if (ret >= PATH_MAX) { 508 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 509 goto out; 510 } 511 512 ret = get_max_num(path, &max_node_num); 513 514 out: 515 if (ret) 516 pr_err("Failed to read max nodes, using default of %d\n", max_node_num); 517 } 518 519 int cpu__max_node(void) 520 { 521 if (unlikely(!max_node_num)) 522 set_max_node_num(); 523 524 return max_node_num; 525 } 526 527 struct perf_cpu cpu__max_cpu(void) 528 { 529 if (unlikely(!max_cpu_num.cpu)) 530 set_max_cpu_num(); 531 532 return max_cpu_num; 533 } 534 535 struct perf_cpu cpu__max_present_cpu(void) 536 { 537 if (unlikely(!max_present_cpu_num.cpu)) 538 set_max_cpu_num(); 539 540 return max_present_cpu_num; 541 } 542 543 544 int cpu__get_node(struct perf_cpu cpu) 545 { 546 if (unlikely(cpunode_map == NULL)) { 547 pr_debug("cpu_map not initialized\n"); 548 return -1; 549 } 550 551 return cpunode_map[cpu.cpu]; 552 } 553 554 static int init_cpunode_map(void) 555 { 556 int i; 557 558 set_max_cpu_num(); 559 set_max_node_num(); 560 561 cpunode_map = calloc(max_cpu_num.cpu, sizeof(int)); 562 if (!cpunode_map) { 563 pr_err("%s: calloc failed\n", __func__); 564 return -1; 565 } 566 567 for (i = 0; i < max_cpu_num.cpu; i++) 568 cpunode_map[i] = -1; 569 570 return 0; 571 } 572 573 int cpu__setup_cpunode_map(void) 574 { 575 struct dirent *dent1, *dent2; 576 DIR *dir1, *dir2; 577 unsigned int cpu, mem; 578 char buf[PATH_MAX]; 579 char path[PATH_MAX]; 580 const char *mnt; 581 int n; 582 583 /* initialize globals */ 584 if (init_cpunode_map()) 585 return -1; 586 587 mnt = sysfs__mountpoint(); 588 if (!mnt) 589 return 0; 590 591 n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); 592 if (n >= PATH_MAX) { 593 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 594 return -1; 595 } 596 597 dir1 = opendir(path); 598 if (!dir1) 599 return 0; 600 601 /* walk tree and setup map */ 602 while ((dent1 = readdir(dir1)) != NULL) { 603 if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) 604 continue; 605 606 n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); 607 if (n >= PATH_MAX) { 608 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 609 continue; 610 } 611 612 dir2 = opendir(buf); 613 if (!dir2) 614 continue; 615 while ((dent2 = readdir(dir2)) != NULL) { 616 if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) 617 continue; 618 cpunode_map[cpu] = mem; 619 } 620 closedir(dir2); 621 } 622 closedir(dir1); 623 return 0; 624 } 625 626 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) 627 { 628 int i, start = -1; 629 bool first = true; 630 size_t ret = 0; 631 632 #define COMMA first ? "" : "," 633 634 for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) { 635 struct perf_cpu cpu = { .cpu = INT16_MAX }; 636 bool last = i == perf_cpu_map__nr(map); 637 638 if (!last) 639 cpu = perf_cpu_map__cpu(map, i); 640 641 if (start == -1) { 642 start = i; 643 if (last) { 644 ret += snprintf(buf + ret, size - ret, 645 "%s%d", COMMA, 646 perf_cpu_map__cpu(map, i).cpu); 647 } 648 } else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) { 649 int end = i - 1; 650 651 if (start == end) { 652 ret += snprintf(buf + ret, size - ret, 653 "%s%d", COMMA, 654 perf_cpu_map__cpu(map, start).cpu); 655 } else { 656 ret += snprintf(buf + ret, size - ret, 657 "%s%d-%d", COMMA, 658 perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu); 659 } 660 first = false; 661 start = i; 662 } 663 } 664 665 #undef COMMA 666 667 pr_debug2("cpumask list: %s\n", buf); 668 return ret; 669 } 670 671 static char hex_char(unsigned char val) 672 { 673 if (val < 10) 674 return val + '0'; 675 if (val < 16) 676 return val - 10 + 'a'; 677 return '?'; 678 } 679 680 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) 681 { 682 int idx; 683 char *ptr = buf; 684 unsigned char *bitmap; 685 struct perf_cpu c, last_cpu = perf_cpu_map__max(map); 686 687 if (buf == NULL) 688 return 0; 689 690 bitmap = zalloc(last_cpu.cpu / 8 + 1); 691 if (bitmap == NULL) { 692 buf[0] = '\0'; 693 return 0; 694 } 695 696 perf_cpu_map__for_each_cpu(c, idx, map) 697 bitmap[c.cpu / 8] |= 1 << (c.cpu % 8); 698 699 for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) { 700 unsigned char bits = bitmap[cpu / 8]; 701 702 if (cpu % 8) 703 bits >>= 4; 704 else 705 bits &= 0xf; 706 707 *ptr++ = hex_char(bits); 708 if ((cpu % 32) == 0 && cpu > 0) 709 *ptr++ = ','; 710 } 711 *ptr = '\0'; 712 free(bitmap); 713 714 buf[size - 1] = '\0'; 715 return ptr - buf; 716 } 717 718 struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ 719 { 720 static struct perf_cpu_map *online; 721 722 if (!online) 723 online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */ 724 725 return perf_cpu_map__get(online); 726 } 727 728 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) 729 { 730 return a->thread_idx == b->thread_idx && 731 a->node == b->node && 732 a->socket == b->socket && 733 a->die == b->die && 734 a->cluster == b->cluster && 735 a->cache_lvl == b->cache_lvl && 736 a->cache == b->cache && 737 a->core == b->core && 738 a->cpu.cpu == b->cpu.cpu; 739 } 740 741 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) 742 { 743 return a->thread_idx == -1 && 744 a->node == -1 && 745 a->socket == -1 && 746 a->die == -1 && 747 a->cluster == -1 && 748 a->cache_lvl == -1 && 749 a->cache == -1 && 750 a->core == -1 && 751 a->cpu.cpu == -1; 752 } 753 754 struct aggr_cpu_id aggr_cpu_id__empty(void) 755 { 756 struct aggr_cpu_id ret = { 757 .thread_idx = -1, 758 .node = -1, 759 .socket = -1, 760 .die = -1, 761 .cluster = -1, 762 .cache_lvl = -1, 763 .cache = -1, 764 .core = -1, 765 .cpu = (struct perf_cpu){ .cpu = -1 }, 766 }; 767 return ret; 768 } 769