xref: /linux/fs/btrfs/ioctl.c (revision 8883957b3c9de2087fb6cf9691c1188cccf1ac9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
122 		unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = binode->flags;
140 	u32 ro_flags = binode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 {
172 	struct btrfs_inode *binode = BTRFS_I(inode);
173 	unsigned int new_fl = 0;
174 
175 	if (binode->flags & BTRFS_INODE_SYNC)
176 		new_fl |= S_SYNC;
177 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
178 		new_fl |= S_IMMUTABLE;
179 	if (binode->flags & BTRFS_INODE_APPEND)
180 		new_fl |= S_APPEND;
181 	if (binode->flags & BTRFS_INODE_NOATIME)
182 		new_fl |= S_NOATIME;
183 	if (binode->flags & BTRFS_INODE_DIRSYNC)
184 		new_fl |= S_DIRSYNC;
185 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
186 		new_fl |= S_VERITY;
187 
188 	set_mask_bits(&inode->i_flags,
189 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
190 		      S_VERITY, new_fl);
191 }
192 
193 /*
194  * Check if @flags are a supported and valid set of FS_*_FL flags and that
195  * the old and new flags are not conflicting
196  */
check_fsflags(unsigned int old_flags,unsigned int flags)197 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 {
199 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
200 		      FS_NOATIME_FL | FS_NODUMP_FL | \
201 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
202 		      FS_NOCOMP_FL | FS_COMPR_FL |
203 		      FS_NOCOW_FL))
204 		return -EOPNOTSUPP;
205 
206 	/* COMPR and NOCOMP on new/old are valid */
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
211 		return -EINVAL;
212 
213 	/* NOCOW and compression options are mutually exclusive */
214 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 		return -EINVAL;
216 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
217 		return -EINVAL;
218 
219 	return 0;
220 }
221 
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
223 				    unsigned int flags)
224 {
225 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
226 		return -EPERM;
227 
228 	return 0;
229 }
230 
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 {
233 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
234 		return -ENAMETOOLONG;
235 	return 0;
236 }
237 
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 {
240 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
241 		return -ENAMETOOLONG;
242 	return 0;
243 }
244 
245 /*
246  * Set flags/xflags from the internal inode flags. The remaining items of
247  * fsxattr are zeroed.
248  */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 {
251 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252 
253 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
254 	return 0;
255 }
256 
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)257 int btrfs_fileattr_set(struct mnt_idmap *idmap,
258 		       struct dentry *dentry, struct fileattr *fa)
259 {
260 	struct inode *inode = d_inode(dentry);
261 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
262 	struct btrfs_inode *binode = BTRFS_I(inode);
263 	struct btrfs_root *root = binode->root;
264 	struct btrfs_trans_handle *trans;
265 	unsigned int fsflags, old_fsflags;
266 	int ret;
267 	const char *comp = NULL;
268 	u32 binode_flags;
269 
270 	if (btrfs_root_readonly(root))
271 		return -EROFS;
272 
273 	if (fileattr_has_fsx(fa))
274 		return -EOPNOTSUPP;
275 
276 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
277 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
278 	ret = check_fsflags(old_fsflags, fsflags);
279 	if (ret)
280 		return ret;
281 
282 	ret = check_fsflags_compatible(fs_info, fsflags);
283 	if (ret)
284 		return ret;
285 
286 	binode_flags = binode->flags;
287 	if (fsflags & FS_SYNC_FL)
288 		binode_flags |= BTRFS_INODE_SYNC;
289 	else
290 		binode_flags &= ~BTRFS_INODE_SYNC;
291 	if (fsflags & FS_IMMUTABLE_FL)
292 		binode_flags |= BTRFS_INODE_IMMUTABLE;
293 	else
294 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
295 	if (fsflags & FS_APPEND_FL)
296 		binode_flags |= BTRFS_INODE_APPEND;
297 	else
298 		binode_flags &= ~BTRFS_INODE_APPEND;
299 	if (fsflags & FS_NODUMP_FL)
300 		binode_flags |= BTRFS_INODE_NODUMP;
301 	else
302 		binode_flags &= ~BTRFS_INODE_NODUMP;
303 	if (fsflags & FS_NOATIME_FL)
304 		binode_flags |= BTRFS_INODE_NOATIME;
305 	else
306 		binode_flags &= ~BTRFS_INODE_NOATIME;
307 
308 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
309 	if (!fa->flags_valid) {
310 		/* 1 item for the inode */
311 		trans = btrfs_start_transaction(root, 1);
312 		if (IS_ERR(trans))
313 			return PTR_ERR(trans);
314 		goto update_flags;
315 	}
316 
317 	if (fsflags & FS_DIRSYNC_FL)
318 		binode_flags |= BTRFS_INODE_DIRSYNC;
319 	else
320 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
321 	if (fsflags & FS_NOCOW_FL) {
322 		if (S_ISREG(inode->i_mode)) {
323 			/*
324 			 * It's safe to turn csums off here, no extents exist.
325 			 * Otherwise we want the flag to reflect the real COW
326 			 * status of the file and will not set it.
327 			 */
328 			if (inode->i_size == 0)
329 				binode_flags |= BTRFS_INODE_NODATACOW |
330 						BTRFS_INODE_NODATASUM;
331 		} else {
332 			binode_flags |= BTRFS_INODE_NODATACOW;
333 		}
334 	} else {
335 		/*
336 		 * Revert back under same assumptions as above
337 		 */
338 		if (S_ISREG(inode->i_mode)) {
339 			if (inode->i_size == 0)
340 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
341 						  BTRFS_INODE_NODATASUM);
342 		} else {
343 			binode_flags &= ~BTRFS_INODE_NODATACOW;
344 		}
345 	}
346 
347 	/*
348 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
349 	 * flag may be changed automatically if compression code won't make
350 	 * things smaller.
351 	 */
352 	if (fsflags & FS_NOCOMP_FL) {
353 		binode_flags &= ~BTRFS_INODE_COMPRESS;
354 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
355 	} else if (fsflags & FS_COMPR_FL) {
356 
357 		if (IS_SWAPFILE(inode))
358 			return -ETXTBSY;
359 
360 		binode_flags |= BTRFS_INODE_COMPRESS;
361 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362 
363 		comp = btrfs_compress_type2str(fs_info->compress_type);
364 		if (!comp || comp[0] == 0)
365 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 	} else {
367 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
368 	}
369 
370 	/*
371 	 * 1 for inode item
372 	 * 2 for properties
373 	 */
374 	trans = btrfs_start_transaction(root, 3);
375 	if (IS_ERR(trans))
376 		return PTR_ERR(trans);
377 
378 	if (comp) {
379 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
380 				     comp, strlen(comp), 0);
381 		if (ret) {
382 			btrfs_abort_transaction(trans, ret);
383 			goto out_end_trans;
384 		}
385 	} else {
386 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 				     NULL, 0, 0);
388 		if (ret && ret != -ENODATA) {
389 			btrfs_abort_transaction(trans, ret);
390 			goto out_end_trans;
391 		}
392 	}
393 
394 update_flags:
395 	binode->flags = binode_flags;
396 	btrfs_sync_inode_flags_to_i_flags(inode);
397 	inode_inc_iversion(inode);
398 	inode_set_ctime_current(inode);
399 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
400 
401  out_end_trans:
402 	btrfs_end_transaction(trans);
403 	return ret;
404 }
405 
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)406 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
407 {
408 	return put_user(inode->i_generation, arg);
409 }
410 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)411 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
412 					void __user *arg)
413 {
414 	struct btrfs_device *device;
415 	struct fstrim_range range;
416 	u64 minlen = ULLONG_MAX;
417 	u64 num_devices = 0;
418 	int ret;
419 
420 	if (!capable(CAP_SYS_ADMIN))
421 		return -EPERM;
422 
423 	/*
424 	 * btrfs_trim_block_group() depends on space cache, which is not
425 	 * available in zoned filesystem. So, disallow fitrim on a zoned
426 	 * filesystem for now.
427 	 */
428 	if (btrfs_is_zoned(fs_info))
429 		return -EOPNOTSUPP;
430 
431 	/*
432 	 * If the fs is mounted with nologreplay, which requires it to be
433 	 * mounted in RO mode as well, we can not allow discard on free space
434 	 * inside block groups, because log trees refer to extents that are not
435 	 * pinned in a block group's free space cache (pinning the extents is
436 	 * precisely the first phase of replaying a log tree).
437 	 */
438 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
439 		return -EROFS;
440 
441 	rcu_read_lock();
442 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
443 				dev_list) {
444 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
445 			continue;
446 		num_devices++;
447 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
448 				    minlen);
449 	}
450 	rcu_read_unlock();
451 
452 	if (!num_devices)
453 		return -EOPNOTSUPP;
454 	if (copy_from_user(&range, arg, sizeof(range)))
455 		return -EFAULT;
456 
457 	/*
458 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
459 	 * block group is in the logical address space, which can be any
460 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
461 	 */
462 	if (range.len < fs_info->sectorsize)
463 		return -EINVAL;
464 
465 	range.minlen = max(range.minlen, minlen);
466 	ret = btrfs_trim_fs(fs_info, &range);
467 
468 	if (copy_to_user(arg, &range, sizeof(range)))
469 		return -EFAULT;
470 
471 	return ret;
472 }
473 
474 /*
475  * Calculate the number of transaction items to reserve for creating a subvolume
476  * or snapshot, not including the inode, directory entries, or parent directory.
477  */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)478 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
479 {
480 	/*
481 	 * 1 to add root block
482 	 * 1 to add root item
483 	 * 1 to add root ref
484 	 * 1 to add root backref
485 	 * 1 to add UUID item
486 	 * 1 to add qgroup info
487 	 * 1 to add qgroup limit
488 	 *
489 	 * Ideally the last two would only be accounted if qgroups are enabled,
490 	 * but that can change between now and the time we would insert them.
491 	 */
492 	unsigned int num_items = 7;
493 
494 	if (inherit) {
495 		/* 2 to add qgroup relations for each inherited qgroup */
496 		num_items += 2 * inherit->num_qgroups;
497 	}
498 	return num_items;
499 }
500 
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)501 static noinline int create_subvol(struct mnt_idmap *idmap,
502 				  struct inode *dir, struct dentry *dentry,
503 				  struct btrfs_qgroup_inherit *inherit)
504 {
505 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
506 	struct btrfs_trans_handle *trans;
507 	struct btrfs_key key;
508 	struct btrfs_root_item *root_item;
509 	struct btrfs_inode_item *inode_item;
510 	struct extent_buffer *leaf;
511 	struct btrfs_root *root = BTRFS_I(dir)->root;
512 	struct btrfs_root *new_root;
513 	struct btrfs_block_rsv block_rsv;
514 	struct timespec64 cur_time = current_time(dir);
515 	struct btrfs_new_inode_args new_inode_args = {
516 		.dir = dir,
517 		.dentry = dentry,
518 		.subvol = true,
519 	};
520 	unsigned int trans_num_items;
521 	int ret;
522 	dev_t anon_dev;
523 	u64 objectid;
524 	u64 qgroup_reserved = 0;
525 
526 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
527 	if (!root_item)
528 		return -ENOMEM;
529 
530 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
531 	if (ret)
532 		goto out_root_item;
533 
534 	/*
535 	 * Don't create subvolume whose level is not zero. Or qgroup will be
536 	 * screwed up since it assumes subvolume qgroup's level to be 0.
537 	 */
538 	if (btrfs_qgroup_level(objectid)) {
539 		ret = -ENOSPC;
540 		goto out_root_item;
541 	}
542 
543 	ret = get_anon_bdev(&anon_dev);
544 	if (ret < 0)
545 		goto out_root_item;
546 
547 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
548 	if (!new_inode_args.inode) {
549 		ret = -ENOMEM;
550 		goto out_anon_dev;
551 	}
552 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
553 	if (ret)
554 		goto out_inode;
555 	trans_num_items += create_subvol_num_items(inherit);
556 
557 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
558 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
559 					       trans_num_items, false);
560 	if (ret)
561 		goto out_new_inode_args;
562 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
563 
564 	trans = btrfs_start_transaction(root, 0);
565 	if (IS_ERR(trans)) {
566 		ret = PTR_ERR(trans);
567 		goto out_release_rsv;
568 	}
569 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
570 	qgroup_reserved = 0;
571 	trans->block_rsv = &block_rsv;
572 	trans->bytes_reserved = block_rsv.size;
573 
574 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
575 	if (ret)
576 		goto out;
577 
578 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
579 				      0, BTRFS_NESTING_NORMAL);
580 	if (IS_ERR(leaf)) {
581 		ret = PTR_ERR(leaf);
582 		goto out;
583 	}
584 
585 	btrfs_mark_buffer_dirty(trans, leaf);
586 
587 	inode_item = &root_item->inode;
588 	btrfs_set_stack_inode_generation(inode_item, 1);
589 	btrfs_set_stack_inode_size(inode_item, 3);
590 	btrfs_set_stack_inode_nlink(inode_item, 1);
591 	btrfs_set_stack_inode_nbytes(inode_item,
592 				     fs_info->nodesize);
593 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
594 
595 	btrfs_set_root_flags(root_item, 0);
596 	btrfs_set_root_limit(root_item, 0);
597 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
598 
599 	btrfs_set_root_bytenr(root_item, leaf->start);
600 	btrfs_set_root_generation(root_item, trans->transid);
601 	btrfs_set_root_level(root_item, 0);
602 	btrfs_set_root_refs(root_item, 1);
603 	btrfs_set_root_used(root_item, leaf->len);
604 	btrfs_set_root_last_snapshot(root_item, 0);
605 
606 	btrfs_set_root_generation_v2(root_item,
607 			btrfs_root_generation(root_item));
608 	generate_random_guid(root_item->uuid);
609 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
610 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
611 	root_item->ctime = root_item->otime;
612 	btrfs_set_root_ctransid(root_item, trans->transid);
613 	btrfs_set_root_otransid(root_item, trans->transid);
614 
615 	btrfs_tree_unlock(leaf);
616 
617 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
618 
619 	key.objectid = objectid;
620 	key.offset = 0;
621 	key.type = BTRFS_ROOT_ITEM_KEY;
622 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
623 				root_item);
624 	if (ret) {
625 		int ret2;
626 
627 		/*
628 		 * Since we don't abort the transaction in this case, free the
629 		 * tree block so that we don't leak space and leave the
630 		 * filesystem in an inconsistent state (an extent item in the
631 		 * extent tree with a backreference for a root that does not
632 		 * exists).
633 		 */
634 		btrfs_tree_lock(leaf);
635 		btrfs_clear_buffer_dirty(trans, leaf);
636 		btrfs_tree_unlock(leaf);
637 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
638 		if (ret2 < 0)
639 			btrfs_abort_transaction(trans, ret2);
640 		free_extent_buffer(leaf);
641 		goto out;
642 	}
643 
644 	free_extent_buffer(leaf);
645 	leaf = NULL;
646 
647 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
648 	if (IS_ERR(new_root)) {
649 		ret = PTR_ERR(new_root);
650 		btrfs_abort_transaction(trans, ret);
651 		goto out;
652 	}
653 	/* anon_dev is owned by new_root now. */
654 	anon_dev = 0;
655 	BTRFS_I(new_inode_args.inode)->root = new_root;
656 	/* ... and new_root is owned by new_inode_args.inode now. */
657 
658 	ret = btrfs_record_root_in_trans(trans, new_root);
659 	if (ret) {
660 		btrfs_abort_transaction(trans, ret);
661 		goto out;
662 	}
663 
664 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
665 				  BTRFS_UUID_KEY_SUBVOL, objectid);
666 	if (ret) {
667 		btrfs_abort_transaction(trans, ret);
668 		goto out;
669 	}
670 
671 	ret = btrfs_create_new_inode(trans, &new_inode_args);
672 	if (ret) {
673 		btrfs_abort_transaction(trans, ret);
674 		goto out;
675 	}
676 
677 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
678 
679 	d_instantiate_new(dentry, new_inode_args.inode);
680 	new_inode_args.inode = NULL;
681 
682 out:
683 	trans->block_rsv = NULL;
684 	trans->bytes_reserved = 0;
685 	btrfs_end_transaction(trans);
686 out_release_rsv:
687 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
688 	if (qgroup_reserved)
689 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
690 out_new_inode_args:
691 	btrfs_new_inode_args_destroy(&new_inode_args);
692 out_inode:
693 	iput(new_inode_args.inode);
694 out_anon_dev:
695 	if (anon_dev)
696 		free_anon_bdev(anon_dev);
697 out_root_item:
698 	kfree(root_item);
699 	return ret;
700 }
701 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)702 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
703 			   struct dentry *dentry, bool readonly,
704 			   struct btrfs_qgroup_inherit *inherit)
705 {
706 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
707 	struct inode *inode;
708 	struct btrfs_pending_snapshot *pending_snapshot;
709 	unsigned int trans_num_items;
710 	struct btrfs_trans_handle *trans;
711 	struct btrfs_block_rsv *block_rsv;
712 	u64 qgroup_reserved = 0;
713 	int ret;
714 
715 	/* We do not support snapshotting right now. */
716 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
717 		btrfs_warn(fs_info,
718 			   "extent tree v2 doesn't support snapshotting yet");
719 		return -EOPNOTSUPP;
720 	}
721 
722 	if (btrfs_root_refs(&root->root_item) == 0)
723 		return -ENOENT;
724 
725 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
726 		return -EINVAL;
727 
728 	if (atomic_read(&root->nr_swapfiles)) {
729 		btrfs_warn(fs_info,
730 			   "cannot snapshot subvolume with active swapfile");
731 		return -ETXTBSY;
732 	}
733 
734 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
735 	if (!pending_snapshot)
736 		return -ENOMEM;
737 
738 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
739 	if (ret < 0)
740 		goto free_pending;
741 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
742 			GFP_KERNEL);
743 	pending_snapshot->path = btrfs_alloc_path();
744 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
745 		ret = -ENOMEM;
746 		goto free_pending;
747 	}
748 
749 	block_rsv = &pending_snapshot->block_rsv;
750 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
751 	/*
752 	 * 1 to add dir item
753 	 * 1 to add dir index
754 	 * 1 to update parent inode item
755 	 */
756 	trans_num_items = create_subvol_num_items(inherit) + 3;
757 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
758 					       trans_num_items, false);
759 	if (ret)
760 		goto free_pending;
761 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
762 
763 	pending_snapshot->dentry = dentry;
764 	pending_snapshot->root = root;
765 	pending_snapshot->readonly = readonly;
766 	pending_snapshot->dir = BTRFS_I(dir);
767 	pending_snapshot->inherit = inherit;
768 
769 	trans = btrfs_start_transaction(root, 0);
770 	if (IS_ERR(trans)) {
771 		ret = PTR_ERR(trans);
772 		goto fail;
773 	}
774 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
775 	if (ret) {
776 		btrfs_end_transaction(trans);
777 		goto fail;
778 	}
779 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
780 	qgroup_reserved = 0;
781 
782 	trans->pending_snapshot = pending_snapshot;
783 
784 	ret = btrfs_commit_transaction(trans);
785 	if (ret)
786 		goto fail;
787 
788 	ret = pending_snapshot->error;
789 	if (ret)
790 		goto fail;
791 
792 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
793 	if (ret)
794 		goto fail;
795 
796 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
797 	if (IS_ERR(inode)) {
798 		ret = PTR_ERR(inode);
799 		goto fail;
800 	}
801 
802 	d_instantiate(dentry, inode);
803 	ret = 0;
804 	pending_snapshot->anon_dev = 0;
805 fail:
806 	/* Prevent double freeing of anon_dev */
807 	if (ret && pending_snapshot->snap)
808 		pending_snapshot->snap->anon_dev = 0;
809 	btrfs_put_root(pending_snapshot->snap);
810 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
811 	if (qgroup_reserved)
812 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
813 free_pending:
814 	if (pending_snapshot->anon_dev)
815 		free_anon_bdev(pending_snapshot->anon_dev);
816 	kfree(pending_snapshot->root_item);
817 	btrfs_free_path(pending_snapshot->path);
818 	kfree(pending_snapshot);
819 
820 	return ret;
821 }
822 
823 /*  copy of may_delete in fs/namei.c()
824  *	Check whether we can remove a link victim from directory dir, check
825  *  whether the type of victim is right.
826  *  1. We can't do it if dir is read-only (done in permission())
827  *  2. We should have write and exec permissions on dir
828  *  3. We can't remove anything from append-only dir
829  *  4. We can't do anything with immutable dir (done in permission())
830  *  5. If the sticky bit on dir is set we should either
831  *	a. be owner of dir, or
832  *	b. be owner of victim, or
833  *	c. have CAP_FOWNER capability
834  *  6. If the victim is append-only or immutable we can't do anything with
835  *     links pointing to it.
836  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
837  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
838  *  9. We can't remove a root or mountpoint.
839  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
840  *     nfs_async_unlink().
841  */
842 
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)843 static int btrfs_may_delete(struct mnt_idmap *idmap,
844 			    struct inode *dir, struct dentry *victim, int isdir)
845 {
846 	int error;
847 
848 	if (d_really_is_negative(victim))
849 		return -ENOENT;
850 
851 	/* The @victim is not inside @dir. */
852 	if (d_inode(victim->d_parent) != dir)
853 		return -EINVAL;
854 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
855 
856 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
857 	if (error)
858 		return error;
859 	if (IS_APPEND(dir))
860 		return -EPERM;
861 	if (check_sticky(idmap, dir, d_inode(victim)) ||
862 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
863 	    IS_SWAPFILE(d_inode(victim)))
864 		return -EPERM;
865 	if (isdir) {
866 		if (!d_is_dir(victim))
867 			return -ENOTDIR;
868 		if (IS_ROOT(victim))
869 			return -EBUSY;
870 	} else if (d_is_dir(victim))
871 		return -EISDIR;
872 	if (IS_DEADDIR(dir))
873 		return -ENOENT;
874 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
875 		return -EBUSY;
876 	return 0;
877 }
878 
879 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)880 static inline int btrfs_may_create(struct mnt_idmap *idmap,
881 				   struct inode *dir, struct dentry *child)
882 {
883 	if (d_really_is_positive(child))
884 		return -EEXIST;
885 	if (IS_DEADDIR(dir))
886 		return -ENOENT;
887 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
888 		return -EOVERFLOW;
889 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
890 }
891 
892 /*
893  * Create a new subvolume below @parent.  This is largely modeled after
894  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
895  * inside this filesystem so it's quite a bit simpler.
896  */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)897 static noinline int btrfs_mksubvol(const struct path *parent,
898 				   struct mnt_idmap *idmap,
899 				   const char *name, int namelen,
900 				   struct btrfs_root *snap_src,
901 				   bool readonly,
902 				   struct btrfs_qgroup_inherit *inherit)
903 {
904 	struct inode *dir = d_inode(parent->dentry);
905 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
906 	struct dentry *dentry;
907 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
908 	int error;
909 
910 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
911 	if (error == -EINTR)
912 		return error;
913 
914 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
915 	error = PTR_ERR(dentry);
916 	if (IS_ERR(dentry))
917 		goto out_unlock;
918 
919 	error = btrfs_may_create(idmap, dir, dentry);
920 	if (error)
921 		goto out_dput;
922 
923 	/*
924 	 * even if this name doesn't exist, we may get hash collisions.
925 	 * check for them now when we can safely fail
926 	 */
927 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
928 					       dir->i_ino, &name_str);
929 	if (error)
930 		goto out_dput;
931 
932 	down_read(&fs_info->subvol_sem);
933 
934 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
935 		goto out_up_read;
936 
937 	if (snap_src)
938 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
939 	else
940 		error = create_subvol(idmap, dir, dentry, inherit);
941 
942 	if (!error)
943 		fsnotify_mkdir(dir, dentry);
944 out_up_read:
945 	up_read(&fs_info->subvol_sem);
946 out_dput:
947 	dput(dentry);
948 out_unlock:
949 	btrfs_inode_unlock(BTRFS_I(dir), 0);
950 	return error;
951 }
952 
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)953 static noinline int btrfs_mksnapshot(const struct path *parent,
954 				   struct mnt_idmap *idmap,
955 				   const char *name, int namelen,
956 				   struct btrfs_root *root,
957 				   bool readonly,
958 				   struct btrfs_qgroup_inherit *inherit)
959 {
960 	int ret;
961 
962 	/*
963 	 * Force new buffered writes to reserve space even when NOCOW is
964 	 * possible. This is to avoid later writeback (running dealloc) to
965 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
966 	 */
967 	btrfs_drew_read_lock(&root->snapshot_lock);
968 
969 	ret = btrfs_start_delalloc_snapshot(root, false);
970 	if (ret)
971 		goto out;
972 
973 	/*
974 	 * All previous writes have started writeback in NOCOW mode, so now
975 	 * we force future writes to fallback to COW mode during snapshot
976 	 * creation.
977 	 */
978 	atomic_inc(&root->snapshot_force_cow);
979 
980 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
981 
982 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
983 			     root, readonly, inherit);
984 	atomic_dec(&root->snapshot_force_cow);
985 out:
986 	btrfs_drew_read_unlock(&root->snapshot_lock);
987 	return ret;
988 }
989 
990 /*
991  * Try to start exclusive operation @type or cancel it if it's running.
992  *
993  * Return:
994  *   0        - normal mode, newly claimed op started
995  *  >0        - normal mode, something else is running,
996  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
997  * ECANCELED  - cancel mode, successful cancel
998  * ENOTCONN   - cancel mode, operation not running anymore
999  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1000 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1001 			enum btrfs_exclusive_operation type, bool cancel)
1002 {
1003 	if (!cancel) {
1004 		/* Start normal op */
1005 		if (!btrfs_exclop_start(fs_info, type))
1006 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1007 		/* Exclusive operation is now claimed */
1008 		return 0;
1009 	}
1010 
1011 	/* Cancel running op */
1012 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1013 		/*
1014 		 * This blocks any exclop finish from setting it to NONE, so we
1015 		 * request cancellation. Either it runs and we will wait for it,
1016 		 * or it has finished and no waiting will happen.
1017 		 */
1018 		atomic_inc(&fs_info->reloc_cancel_req);
1019 		btrfs_exclop_start_unlock(fs_info);
1020 
1021 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1022 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1023 				    TASK_INTERRUPTIBLE);
1024 
1025 		return -ECANCELED;
1026 	}
1027 
1028 	/* Something else is running or none */
1029 	return -ENOTCONN;
1030 }
1031 
btrfs_ioctl_resize(struct file * file,void __user * arg)1032 static noinline int btrfs_ioctl_resize(struct file *file,
1033 					void __user *arg)
1034 {
1035 	BTRFS_DEV_LOOKUP_ARGS(args);
1036 	struct inode *inode = file_inode(file);
1037 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1038 	u64 new_size;
1039 	u64 old_size;
1040 	u64 devid = 1;
1041 	struct btrfs_root *root = BTRFS_I(inode)->root;
1042 	struct btrfs_ioctl_vol_args *vol_args;
1043 	struct btrfs_trans_handle *trans;
1044 	struct btrfs_device *device = NULL;
1045 	char *sizestr;
1046 	char *retptr;
1047 	char *devstr = NULL;
1048 	int ret = 0;
1049 	int mod = 0;
1050 	bool cancel;
1051 
1052 	if (!capable(CAP_SYS_ADMIN))
1053 		return -EPERM;
1054 
1055 	ret = mnt_want_write_file(file);
1056 	if (ret)
1057 		return ret;
1058 
1059 	/*
1060 	 * Read the arguments before checking exclusivity to be able to
1061 	 * distinguish regular resize and cancel
1062 	 */
1063 	vol_args = memdup_user(arg, sizeof(*vol_args));
1064 	if (IS_ERR(vol_args)) {
1065 		ret = PTR_ERR(vol_args);
1066 		goto out_drop;
1067 	}
1068 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1069 	if (ret < 0)
1070 		goto out_free;
1071 
1072 	sizestr = vol_args->name;
1073 	cancel = (strcmp("cancel", sizestr) == 0);
1074 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1075 	if (ret)
1076 		goto out_free;
1077 	/* Exclusive operation is now claimed */
1078 
1079 	devstr = strchr(sizestr, ':');
1080 	if (devstr) {
1081 		sizestr = devstr + 1;
1082 		*devstr = '\0';
1083 		devstr = vol_args->name;
1084 		ret = kstrtoull(devstr, 10, &devid);
1085 		if (ret)
1086 			goto out_finish;
1087 		if (!devid) {
1088 			ret = -EINVAL;
1089 			goto out_finish;
1090 		}
1091 		btrfs_info(fs_info, "resizing devid %llu", devid);
1092 	}
1093 
1094 	args.devid = devid;
1095 	device = btrfs_find_device(fs_info->fs_devices, &args);
1096 	if (!device) {
1097 		btrfs_info(fs_info, "resizer unable to find device %llu",
1098 			   devid);
1099 		ret = -ENODEV;
1100 		goto out_finish;
1101 	}
1102 
1103 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1104 		btrfs_info(fs_info,
1105 			   "resizer unable to apply on readonly device %llu",
1106 		       devid);
1107 		ret = -EPERM;
1108 		goto out_finish;
1109 	}
1110 
1111 	if (!strcmp(sizestr, "max"))
1112 		new_size = bdev_nr_bytes(device->bdev);
1113 	else {
1114 		if (sizestr[0] == '-') {
1115 			mod = -1;
1116 			sizestr++;
1117 		} else if (sizestr[0] == '+') {
1118 			mod = 1;
1119 			sizestr++;
1120 		}
1121 		new_size = memparse(sizestr, &retptr);
1122 		if (*retptr != '\0' || new_size == 0) {
1123 			ret = -EINVAL;
1124 			goto out_finish;
1125 		}
1126 	}
1127 
1128 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1129 		ret = -EPERM;
1130 		goto out_finish;
1131 	}
1132 
1133 	old_size = btrfs_device_get_total_bytes(device);
1134 
1135 	if (mod < 0) {
1136 		if (new_size > old_size) {
1137 			ret = -EINVAL;
1138 			goto out_finish;
1139 		}
1140 		new_size = old_size - new_size;
1141 	} else if (mod > 0) {
1142 		if (new_size > ULLONG_MAX - old_size) {
1143 			ret = -ERANGE;
1144 			goto out_finish;
1145 		}
1146 		new_size = old_size + new_size;
1147 	}
1148 
1149 	if (new_size < SZ_256M) {
1150 		ret = -EINVAL;
1151 		goto out_finish;
1152 	}
1153 	if (new_size > bdev_nr_bytes(device->bdev)) {
1154 		ret = -EFBIG;
1155 		goto out_finish;
1156 	}
1157 
1158 	new_size = round_down(new_size, fs_info->sectorsize);
1159 
1160 	if (new_size > old_size) {
1161 		trans = btrfs_start_transaction(root, 0);
1162 		if (IS_ERR(trans)) {
1163 			ret = PTR_ERR(trans);
1164 			goto out_finish;
1165 		}
1166 		ret = btrfs_grow_device(trans, device, new_size);
1167 		btrfs_commit_transaction(trans);
1168 	} else if (new_size < old_size) {
1169 		ret = btrfs_shrink_device(device, new_size);
1170 	} /* equal, nothing need to do */
1171 
1172 	if (ret == 0 && new_size != old_size)
1173 		btrfs_info_in_rcu(fs_info,
1174 			"resize device %s (devid %llu) from %llu to %llu",
1175 			btrfs_dev_name(device), device->devid,
1176 			old_size, new_size);
1177 out_finish:
1178 	btrfs_exclop_finish(fs_info);
1179 out_free:
1180 	kfree(vol_args);
1181 out_drop:
1182 	mnt_drop_write_file(file);
1183 	return ret;
1184 }
1185 
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1186 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1187 				struct mnt_idmap *idmap,
1188 				const char *name, unsigned long fd, int subvol,
1189 				bool readonly,
1190 				struct btrfs_qgroup_inherit *inherit)
1191 {
1192 	int namelen;
1193 	int ret = 0;
1194 
1195 	if (!S_ISDIR(file_inode(file)->i_mode))
1196 		return -ENOTDIR;
1197 
1198 	ret = mnt_want_write_file(file);
1199 	if (ret)
1200 		goto out;
1201 
1202 	namelen = strlen(name);
1203 	if (strchr(name, '/')) {
1204 		ret = -EINVAL;
1205 		goto out_drop_write;
1206 	}
1207 
1208 	if (name[0] == '.' &&
1209 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1210 		ret = -EEXIST;
1211 		goto out_drop_write;
1212 	}
1213 
1214 	if (subvol) {
1215 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1216 				     namelen, NULL, readonly, inherit);
1217 	} else {
1218 		CLASS(fd, src)(fd);
1219 		struct inode *src_inode;
1220 		if (fd_empty(src)) {
1221 			ret = -EINVAL;
1222 			goto out_drop_write;
1223 		}
1224 
1225 		src_inode = file_inode(fd_file(src));
1226 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1227 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1228 				   "Snapshot src from another FS");
1229 			ret = -EXDEV;
1230 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1231 			/*
1232 			 * Subvolume creation is not restricted, but snapshots
1233 			 * are limited to own subvolumes only
1234 			 */
1235 			ret = -EPERM;
1236 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1237 			/*
1238 			 * Snapshots must be made with the src_inode referring
1239 			 * to the subvolume inode, otherwise the permission
1240 			 * checking above is useless because we may have
1241 			 * permission on a lower directory but not the subvol
1242 			 * itself.
1243 			 */
1244 			ret = -EINVAL;
1245 		} else {
1246 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1247 					       name, namelen,
1248 					       BTRFS_I(src_inode)->root,
1249 					       readonly, inherit);
1250 		}
1251 	}
1252 out_drop_write:
1253 	mnt_drop_write_file(file);
1254 out:
1255 	return ret;
1256 }
1257 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1258 static noinline int btrfs_ioctl_snap_create(struct file *file,
1259 					    void __user *arg, int subvol)
1260 {
1261 	struct btrfs_ioctl_vol_args *vol_args;
1262 	int ret;
1263 
1264 	if (!S_ISDIR(file_inode(file)->i_mode))
1265 		return -ENOTDIR;
1266 
1267 	vol_args = memdup_user(arg, sizeof(*vol_args));
1268 	if (IS_ERR(vol_args))
1269 		return PTR_ERR(vol_args);
1270 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1271 	if (ret < 0)
1272 		goto out;
1273 
1274 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1275 					vol_args->name, vol_args->fd, subvol,
1276 					false, NULL);
1277 
1278 out:
1279 	kfree(vol_args);
1280 	return ret;
1281 }
1282 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1283 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1284 					       void __user *arg, int subvol)
1285 {
1286 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1287 	int ret;
1288 	bool readonly = false;
1289 	struct btrfs_qgroup_inherit *inherit = NULL;
1290 
1291 	if (!S_ISDIR(file_inode(file)->i_mode))
1292 		return -ENOTDIR;
1293 
1294 	vol_args = memdup_user(arg, sizeof(*vol_args));
1295 	if (IS_ERR(vol_args))
1296 		return PTR_ERR(vol_args);
1297 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1298 	if (ret < 0)
1299 		goto free_args;
1300 
1301 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1302 		ret = -EOPNOTSUPP;
1303 		goto free_args;
1304 	}
1305 
1306 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1307 		readonly = true;
1308 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1309 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1310 
1311 		if (vol_args->size < sizeof(*inherit) ||
1312 		    vol_args->size > PAGE_SIZE) {
1313 			ret = -EINVAL;
1314 			goto free_args;
1315 		}
1316 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1317 		if (IS_ERR(inherit)) {
1318 			ret = PTR_ERR(inherit);
1319 			goto free_args;
1320 		}
1321 
1322 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1323 		if (ret < 0)
1324 			goto free_inherit;
1325 	}
1326 
1327 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1328 					vol_args->name, vol_args->fd, subvol,
1329 					readonly, inherit);
1330 	if (ret)
1331 		goto free_inherit;
1332 free_inherit:
1333 	kfree(inherit);
1334 free_args:
1335 	kfree(vol_args);
1336 	return ret;
1337 }
1338 
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1339 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1340 						void __user *arg)
1341 {
1342 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1343 	struct btrfs_root *root = BTRFS_I(inode)->root;
1344 	int ret = 0;
1345 	u64 flags = 0;
1346 
1347 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1348 		return -EINVAL;
1349 
1350 	down_read(&fs_info->subvol_sem);
1351 	if (btrfs_root_readonly(root))
1352 		flags |= BTRFS_SUBVOL_RDONLY;
1353 	up_read(&fs_info->subvol_sem);
1354 
1355 	if (copy_to_user(arg, &flags, sizeof(flags)))
1356 		ret = -EFAULT;
1357 
1358 	return ret;
1359 }
1360 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1361 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1362 					      void __user *arg)
1363 {
1364 	struct inode *inode = file_inode(file);
1365 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1366 	struct btrfs_root *root = BTRFS_I(inode)->root;
1367 	struct btrfs_trans_handle *trans;
1368 	u64 root_flags;
1369 	u64 flags;
1370 	int ret = 0;
1371 
1372 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1373 		return -EPERM;
1374 
1375 	ret = mnt_want_write_file(file);
1376 	if (ret)
1377 		goto out;
1378 
1379 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1380 		ret = -EINVAL;
1381 		goto out_drop_write;
1382 	}
1383 
1384 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1385 		ret = -EFAULT;
1386 		goto out_drop_write;
1387 	}
1388 
1389 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1390 		ret = -EOPNOTSUPP;
1391 		goto out_drop_write;
1392 	}
1393 
1394 	down_write(&fs_info->subvol_sem);
1395 
1396 	/* nothing to do */
1397 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1398 		goto out_drop_sem;
1399 
1400 	root_flags = btrfs_root_flags(&root->root_item);
1401 	if (flags & BTRFS_SUBVOL_RDONLY) {
1402 		btrfs_set_root_flags(&root->root_item,
1403 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1404 	} else {
1405 		/*
1406 		 * Block RO -> RW transition if this subvolume is involved in
1407 		 * send
1408 		 */
1409 		spin_lock(&root->root_item_lock);
1410 		if (root->send_in_progress == 0) {
1411 			btrfs_set_root_flags(&root->root_item,
1412 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1413 			spin_unlock(&root->root_item_lock);
1414 		} else {
1415 			spin_unlock(&root->root_item_lock);
1416 			btrfs_warn(fs_info,
1417 				   "Attempt to set subvolume %llu read-write during send",
1418 				   btrfs_root_id(root));
1419 			ret = -EPERM;
1420 			goto out_drop_sem;
1421 		}
1422 	}
1423 
1424 	trans = btrfs_start_transaction(root, 1);
1425 	if (IS_ERR(trans)) {
1426 		ret = PTR_ERR(trans);
1427 		goto out_reset;
1428 	}
1429 
1430 	ret = btrfs_update_root(trans, fs_info->tree_root,
1431 				&root->root_key, &root->root_item);
1432 	if (ret < 0) {
1433 		btrfs_end_transaction(trans);
1434 		goto out_reset;
1435 	}
1436 
1437 	ret = btrfs_commit_transaction(trans);
1438 
1439 out_reset:
1440 	if (ret)
1441 		btrfs_set_root_flags(&root->root_item, root_flags);
1442 out_drop_sem:
1443 	up_write(&fs_info->subvol_sem);
1444 out_drop_write:
1445 	mnt_drop_write_file(file);
1446 out:
1447 	return ret;
1448 }
1449 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1450 static noinline int key_in_sk(struct btrfs_key *key,
1451 			      struct btrfs_ioctl_search_key *sk)
1452 {
1453 	struct btrfs_key test;
1454 	int ret;
1455 
1456 	test.objectid = sk->min_objectid;
1457 	test.type = sk->min_type;
1458 	test.offset = sk->min_offset;
1459 
1460 	ret = btrfs_comp_cpu_keys(key, &test);
1461 	if (ret < 0)
1462 		return 0;
1463 
1464 	test.objectid = sk->max_objectid;
1465 	test.type = sk->max_type;
1466 	test.offset = sk->max_offset;
1467 
1468 	ret = btrfs_comp_cpu_keys(key, &test);
1469 	if (ret > 0)
1470 		return 0;
1471 	return 1;
1472 }
1473 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1474 static noinline int copy_to_sk(struct btrfs_path *path,
1475 			       struct btrfs_key *key,
1476 			       struct btrfs_ioctl_search_key *sk,
1477 			       u64 *buf_size,
1478 			       char __user *ubuf,
1479 			       unsigned long *sk_offset,
1480 			       int *num_found)
1481 {
1482 	u64 found_transid;
1483 	struct extent_buffer *leaf;
1484 	struct btrfs_ioctl_search_header sh;
1485 	struct btrfs_key test;
1486 	unsigned long item_off;
1487 	unsigned long item_len;
1488 	int nritems;
1489 	int i;
1490 	int slot;
1491 	int ret = 0;
1492 
1493 	leaf = path->nodes[0];
1494 	slot = path->slots[0];
1495 	nritems = btrfs_header_nritems(leaf);
1496 
1497 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1498 		i = nritems;
1499 		goto advance_key;
1500 	}
1501 	found_transid = btrfs_header_generation(leaf);
1502 
1503 	for (i = slot; i < nritems; i++) {
1504 		item_off = btrfs_item_ptr_offset(leaf, i);
1505 		item_len = btrfs_item_size(leaf, i);
1506 
1507 		btrfs_item_key_to_cpu(leaf, key, i);
1508 		if (!key_in_sk(key, sk))
1509 			continue;
1510 
1511 		if (sizeof(sh) + item_len > *buf_size) {
1512 			if (*num_found) {
1513 				ret = 1;
1514 				goto out;
1515 			}
1516 
1517 			/*
1518 			 * return one empty item back for v1, which does not
1519 			 * handle -EOVERFLOW
1520 			 */
1521 
1522 			*buf_size = sizeof(sh) + item_len;
1523 			item_len = 0;
1524 			ret = -EOVERFLOW;
1525 		}
1526 
1527 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1528 			ret = 1;
1529 			goto out;
1530 		}
1531 
1532 		sh.objectid = key->objectid;
1533 		sh.offset = key->offset;
1534 		sh.type = key->type;
1535 		sh.len = item_len;
1536 		sh.transid = found_transid;
1537 
1538 		/*
1539 		 * Copy search result header. If we fault then loop again so we
1540 		 * can fault in the pages and -EFAULT there if there's a
1541 		 * problem. Otherwise we'll fault and then copy the buffer in
1542 		 * properly this next time through
1543 		 */
1544 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1545 			ret = 0;
1546 			goto out;
1547 		}
1548 
1549 		*sk_offset += sizeof(sh);
1550 
1551 		if (item_len) {
1552 			char __user *up = ubuf + *sk_offset;
1553 			/*
1554 			 * Copy the item, same behavior as above, but reset the
1555 			 * * sk_offset so we copy the full thing again.
1556 			 */
1557 			if (read_extent_buffer_to_user_nofault(leaf, up,
1558 						item_off, item_len)) {
1559 				ret = 0;
1560 				*sk_offset -= sizeof(sh);
1561 				goto out;
1562 			}
1563 
1564 			*sk_offset += item_len;
1565 		}
1566 		(*num_found)++;
1567 
1568 		if (ret) /* -EOVERFLOW from above */
1569 			goto out;
1570 
1571 		if (*num_found >= sk->nr_items) {
1572 			ret = 1;
1573 			goto out;
1574 		}
1575 	}
1576 advance_key:
1577 	ret = 0;
1578 	test.objectid = sk->max_objectid;
1579 	test.type = sk->max_type;
1580 	test.offset = sk->max_offset;
1581 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1582 		ret = 1;
1583 	else if (key->offset < (u64)-1)
1584 		key->offset++;
1585 	else if (key->type < (u8)-1) {
1586 		key->offset = 0;
1587 		key->type++;
1588 	} else if (key->objectid < (u64)-1) {
1589 		key->offset = 0;
1590 		key->type = 0;
1591 		key->objectid++;
1592 	} else
1593 		ret = 1;
1594 out:
1595 	/*
1596 	 *  0: all items from this leaf copied, continue with next
1597 	 *  1: * more items can be copied, but unused buffer is too small
1598 	 *     * all items were found
1599 	 *     Either way, it will stops the loop which iterates to the next
1600 	 *     leaf
1601 	 *  -EOVERFLOW: item was to large for buffer
1602 	 *  -EFAULT: could not copy extent buffer back to userspace
1603 	 */
1604 	return ret;
1605 }
1606 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1607 static noinline int search_ioctl(struct inode *inode,
1608 				 struct btrfs_ioctl_search_key *sk,
1609 				 u64 *buf_size,
1610 				 char __user *ubuf)
1611 {
1612 	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1613 	struct btrfs_root *root;
1614 	struct btrfs_key key;
1615 	struct btrfs_path *path;
1616 	int ret;
1617 	int num_found = 0;
1618 	unsigned long sk_offset = 0;
1619 
1620 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1621 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1622 		return -EOVERFLOW;
1623 	}
1624 
1625 	path = btrfs_alloc_path();
1626 	if (!path)
1627 		return -ENOMEM;
1628 
1629 	if (sk->tree_id == 0) {
1630 		/* search the root of the inode that was passed */
1631 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1632 	} else {
1633 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1634 		if (IS_ERR(root)) {
1635 			btrfs_free_path(path);
1636 			return PTR_ERR(root);
1637 		}
1638 	}
1639 
1640 	key.objectid = sk->min_objectid;
1641 	key.type = sk->min_type;
1642 	key.offset = sk->min_offset;
1643 
1644 	while (1) {
1645 		ret = -EFAULT;
1646 		/*
1647 		 * Ensure that the whole user buffer is faulted in at sub-page
1648 		 * granularity, otherwise the loop may live-lock.
1649 		 */
1650 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1651 					       *buf_size - sk_offset))
1652 			break;
1653 
1654 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1655 		if (ret != 0) {
1656 			if (ret > 0)
1657 				ret = 0;
1658 			goto err;
1659 		}
1660 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1661 				 &sk_offset, &num_found);
1662 		btrfs_release_path(path);
1663 		if (ret)
1664 			break;
1665 
1666 	}
1667 	if (ret > 0)
1668 		ret = 0;
1669 err:
1670 	sk->nr_items = num_found;
1671 	btrfs_put_root(root);
1672 	btrfs_free_path(path);
1673 	return ret;
1674 }
1675 
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1676 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1677 					    void __user *argp)
1678 {
1679 	struct btrfs_ioctl_search_args __user *uargs = argp;
1680 	struct btrfs_ioctl_search_key sk;
1681 	int ret;
1682 	u64 buf_size;
1683 
1684 	if (!capable(CAP_SYS_ADMIN))
1685 		return -EPERM;
1686 
1687 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1688 		return -EFAULT;
1689 
1690 	buf_size = sizeof(uargs->buf);
1691 
1692 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1693 
1694 	/*
1695 	 * In the origin implementation an overflow is handled by returning a
1696 	 * search header with a len of zero, so reset ret.
1697 	 */
1698 	if (ret == -EOVERFLOW)
1699 		ret = 0;
1700 
1701 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1702 		ret = -EFAULT;
1703 	return ret;
1704 }
1705 
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1706 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1707 					       void __user *argp)
1708 {
1709 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1710 	struct btrfs_ioctl_search_args_v2 args;
1711 	int ret;
1712 	u64 buf_size;
1713 	const u64 buf_limit = SZ_16M;
1714 
1715 	if (!capable(CAP_SYS_ADMIN))
1716 		return -EPERM;
1717 
1718 	/* copy search header and buffer size */
1719 	if (copy_from_user(&args, uarg, sizeof(args)))
1720 		return -EFAULT;
1721 
1722 	buf_size = args.buf_size;
1723 
1724 	/* limit result size to 16MB */
1725 	if (buf_size > buf_limit)
1726 		buf_size = buf_limit;
1727 
1728 	ret = search_ioctl(inode, &args.key, &buf_size,
1729 			   (char __user *)(&uarg->buf[0]));
1730 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1731 		ret = -EFAULT;
1732 	else if (ret == -EOVERFLOW &&
1733 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1734 		ret = -EFAULT;
1735 
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Search INODE_REFs to identify path name of 'dirid' directory
1741  * in a 'tree_id' tree. and sets path name to 'name'.
1742  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1743 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1744 				u64 tree_id, u64 dirid, char *name)
1745 {
1746 	struct btrfs_root *root;
1747 	struct btrfs_key key;
1748 	char *ptr;
1749 	int ret = -1;
1750 	int slot;
1751 	int len;
1752 	int total_len = 0;
1753 	struct btrfs_inode_ref *iref;
1754 	struct extent_buffer *l;
1755 	struct btrfs_path *path;
1756 
1757 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1758 		name[0]='\0';
1759 		return 0;
1760 	}
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1767 
1768 	root = btrfs_get_fs_root(info, tree_id, true);
1769 	if (IS_ERR(root)) {
1770 		ret = PTR_ERR(root);
1771 		root = NULL;
1772 		goto out;
1773 	}
1774 
1775 	key.objectid = dirid;
1776 	key.type = BTRFS_INODE_REF_KEY;
1777 	key.offset = (u64)-1;
1778 
1779 	while (1) {
1780 		ret = btrfs_search_backwards(root, &key, path);
1781 		if (ret < 0)
1782 			goto out;
1783 		else if (ret > 0) {
1784 			ret = -ENOENT;
1785 			goto out;
1786 		}
1787 
1788 		l = path->nodes[0];
1789 		slot = path->slots[0];
1790 
1791 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1792 		len = btrfs_inode_ref_name_len(l, iref);
1793 		ptr -= len + 1;
1794 		total_len += len + 1;
1795 		if (ptr < name) {
1796 			ret = -ENAMETOOLONG;
1797 			goto out;
1798 		}
1799 
1800 		*(ptr + len) = '/';
1801 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1802 
1803 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1804 			break;
1805 
1806 		btrfs_release_path(path);
1807 		key.objectid = key.offset;
1808 		key.offset = (u64)-1;
1809 		dirid = key.objectid;
1810 	}
1811 	memmove(name, ptr, total_len);
1812 	name[total_len] = '\0';
1813 	ret = 0;
1814 out:
1815 	btrfs_put_root(root);
1816 	btrfs_free_path(path);
1817 	return ret;
1818 }
1819 
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1820 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1821 				struct inode *inode,
1822 				struct btrfs_ioctl_ino_lookup_user_args *args)
1823 {
1824 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1825 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1826 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1827 	u64 dirid = args->dirid;
1828 	unsigned long item_off;
1829 	unsigned long item_len;
1830 	struct btrfs_inode_ref *iref;
1831 	struct btrfs_root_ref *rref;
1832 	struct btrfs_root *root = NULL;
1833 	struct btrfs_path *path;
1834 	struct btrfs_key key, key2;
1835 	struct extent_buffer *leaf;
1836 	struct inode *temp_inode;
1837 	char *ptr;
1838 	int slot;
1839 	int len;
1840 	int total_len = 0;
1841 	int ret;
1842 
1843 	path = btrfs_alloc_path();
1844 	if (!path)
1845 		return -ENOMEM;
1846 
1847 	/*
1848 	 * If the bottom subvolume does not exist directly under upper_limit,
1849 	 * construct the path in from the bottom up.
1850 	 */
1851 	if (dirid != upper_limit) {
1852 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1853 
1854 		root = btrfs_get_fs_root(fs_info, treeid, true);
1855 		if (IS_ERR(root)) {
1856 			ret = PTR_ERR(root);
1857 			goto out;
1858 		}
1859 
1860 		key.objectid = dirid;
1861 		key.type = BTRFS_INODE_REF_KEY;
1862 		key.offset = (u64)-1;
1863 		while (1) {
1864 			ret = btrfs_search_backwards(root, &key, path);
1865 			if (ret < 0)
1866 				goto out_put;
1867 			else if (ret > 0) {
1868 				ret = -ENOENT;
1869 				goto out_put;
1870 			}
1871 
1872 			leaf = path->nodes[0];
1873 			slot = path->slots[0];
1874 
1875 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1876 			len = btrfs_inode_ref_name_len(leaf, iref);
1877 			ptr -= len + 1;
1878 			total_len += len + 1;
1879 			if (ptr < args->path) {
1880 				ret = -ENAMETOOLONG;
1881 				goto out_put;
1882 			}
1883 
1884 			*(ptr + len) = '/';
1885 			read_extent_buffer(leaf, ptr,
1886 					(unsigned long)(iref + 1), len);
1887 
1888 			/* Check the read+exec permission of this directory */
1889 			ret = btrfs_previous_item(root, path, dirid,
1890 						  BTRFS_INODE_ITEM_KEY);
1891 			if (ret < 0) {
1892 				goto out_put;
1893 			} else if (ret > 0) {
1894 				ret = -ENOENT;
1895 				goto out_put;
1896 			}
1897 
1898 			leaf = path->nodes[0];
1899 			slot = path->slots[0];
1900 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1901 			if (key2.objectid != dirid) {
1902 				ret = -ENOENT;
1903 				goto out_put;
1904 			}
1905 
1906 			/*
1907 			 * We don't need the path anymore, so release it and
1908 			 * avoid deadlocks and lockdep warnings in case
1909 			 * btrfs_iget() needs to lookup the inode from its root
1910 			 * btree and lock the same leaf.
1911 			 */
1912 			btrfs_release_path(path);
1913 			temp_inode = btrfs_iget(key2.objectid, root);
1914 			if (IS_ERR(temp_inode)) {
1915 				ret = PTR_ERR(temp_inode);
1916 				goto out_put;
1917 			}
1918 			ret = inode_permission(idmap, temp_inode,
1919 					       MAY_READ | MAY_EXEC);
1920 			iput(temp_inode);
1921 			if (ret) {
1922 				ret = -EACCES;
1923 				goto out_put;
1924 			}
1925 
1926 			if (key.offset == upper_limit)
1927 				break;
1928 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1929 				ret = -EACCES;
1930 				goto out_put;
1931 			}
1932 
1933 			key.objectid = key.offset;
1934 			key.offset = (u64)-1;
1935 			dirid = key.objectid;
1936 		}
1937 
1938 		memmove(args->path, ptr, total_len);
1939 		args->path[total_len] = '\0';
1940 		btrfs_put_root(root);
1941 		root = NULL;
1942 		btrfs_release_path(path);
1943 	}
1944 
1945 	/* Get the bottom subvolume's name from ROOT_REF */
1946 	key.objectid = treeid;
1947 	key.type = BTRFS_ROOT_REF_KEY;
1948 	key.offset = args->treeid;
1949 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1950 	if (ret < 0) {
1951 		goto out;
1952 	} else if (ret > 0) {
1953 		ret = -ENOENT;
1954 		goto out;
1955 	}
1956 
1957 	leaf = path->nodes[0];
1958 	slot = path->slots[0];
1959 	btrfs_item_key_to_cpu(leaf, &key, slot);
1960 
1961 	item_off = btrfs_item_ptr_offset(leaf, slot);
1962 	item_len = btrfs_item_size(leaf, slot);
1963 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1964 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1965 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1966 		ret = -EINVAL;
1967 		goto out;
1968 	}
1969 
1970 	/* Copy subvolume's name */
1971 	item_off += sizeof(struct btrfs_root_ref);
1972 	item_len -= sizeof(struct btrfs_root_ref);
1973 	read_extent_buffer(leaf, args->name, item_off, item_len);
1974 	args->name[item_len] = 0;
1975 
1976 out_put:
1977 	btrfs_put_root(root);
1978 out:
1979 	btrfs_free_path(path);
1980 	return ret;
1981 }
1982 
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1983 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1984 					   void __user *argp)
1985 {
1986 	struct btrfs_ioctl_ino_lookup_args *args;
1987 	int ret = 0;
1988 
1989 	args = memdup_user(argp, sizeof(*args));
1990 	if (IS_ERR(args))
1991 		return PTR_ERR(args);
1992 
1993 	/*
1994 	 * Unprivileged query to obtain the containing subvolume root id. The
1995 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1996 	 */
1997 	if (args->treeid == 0)
1998 		args->treeid = btrfs_root_id(root);
1999 
2000 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2001 		args->name[0] = 0;
2002 		goto out;
2003 	}
2004 
2005 	if (!capable(CAP_SYS_ADMIN)) {
2006 		ret = -EPERM;
2007 		goto out;
2008 	}
2009 
2010 	ret = btrfs_search_path_in_tree(root->fs_info,
2011 					args->treeid, args->objectid,
2012 					args->name);
2013 
2014 out:
2015 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2016 		ret = -EFAULT;
2017 
2018 	kfree(args);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * Version of ino_lookup ioctl (unprivileged)
2024  *
2025  * The main differences from ino_lookup ioctl are:
2026  *
2027  *   1. Read + Exec permission will be checked using inode_permission() during
2028  *      path construction. -EACCES will be returned in case of failure.
2029  *   2. Path construction will be stopped at the inode number which corresponds
2030  *      to the fd with which this ioctl is called. If constructed path does not
2031  *      exist under fd's inode, -EACCES will be returned.
2032  *   3. The name of bottom subvolume is also searched and filled.
2033  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2034 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2035 {
2036 	struct btrfs_ioctl_ino_lookup_user_args *args;
2037 	struct inode *inode;
2038 	int ret;
2039 
2040 	args = memdup_user(argp, sizeof(*args));
2041 	if (IS_ERR(args))
2042 		return PTR_ERR(args);
2043 
2044 	inode = file_inode(file);
2045 
2046 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2047 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2048 		/*
2049 		 * The subvolume does not exist under fd with which this is
2050 		 * called
2051 		 */
2052 		kfree(args);
2053 		return -EACCES;
2054 	}
2055 
2056 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2057 
2058 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2059 		ret = -EFAULT;
2060 
2061 	kfree(args);
2062 	return ret;
2063 }
2064 
2065 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2066 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2067 {
2068 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2069 	struct btrfs_fs_info *fs_info;
2070 	struct btrfs_root *root;
2071 	struct btrfs_path *path;
2072 	struct btrfs_key key;
2073 	struct btrfs_root_item *root_item;
2074 	struct btrfs_root_ref *rref;
2075 	struct extent_buffer *leaf;
2076 	unsigned long item_off;
2077 	unsigned long item_len;
2078 	int slot;
2079 	int ret = 0;
2080 
2081 	path = btrfs_alloc_path();
2082 	if (!path)
2083 		return -ENOMEM;
2084 
2085 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2086 	if (!subvol_info) {
2087 		btrfs_free_path(path);
2088 		return -ENOMEM;
2089 	}
2090 
2091 	fs_info = BTRFS_I(inode)->root->fs_info;
2092 
2093 	/* Get root_item of inode's subvolume */
2094 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2095 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2096 	if (IS_ERR(root)) {
2097 		ret = PTR_ERR(root);
2098 		goto out_free;
2099 	}
2100 	root_item = &root->root_item;
2101 
2102 	subvol_info->treeid = key.objectid;
2103 
2104 	subvol_info->generation = btrfs_root_generation(root_item);
2105 	subvol_info->flags = btrfs_root_flags(root_item);
2106 
2107 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2108 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2109 						    BTRFS_UUID_SIZE);
2110 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2111 						    BTRFS_UUID_SIZE);
2112 
2113 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2114 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2115 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2116 
2117 	subvol_info->otransid = btrfs_root_otransid(root_item);
2118 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2119 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2120 
2121 	subvol_info->stransid = btrfs_root_stransid(root_item);
2122 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2123 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2124 
2125 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2126 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2127 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2128 
2129 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2130 		/* Search root tree for ROOT_BACKREF of this subvolume */
2131 		key.type = BTRFS_ROOT_BACKREF_KEY;
2132 		key.offset = 0;
2133 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2134 		if (ret < 0) {
2135 			goto out;
2136 		} else if (path->slots[0] >=
2137 			   btrfs_header_nritems(path->nodes[0])) {
2138 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2139 			if (ret < 0) {
2140 				goto out;
2141 			} else if (ret > 0) {
2142 				ret = -EUCLEAN;
2143 				goto out;
2144 			}
2145 		}
2146 
2147 		leaf = path->nodes[0];
2148 		slot = path->slots[0];
2149 		btrfs_item_key_to_cpu(leaf, &key, slot);
2150 		if (key.objectid == subvol_info->treeid &&
2151 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2152 			subvol_info->parent_id = key.offset;
2153 
2154 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2155 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2156 
2157 			item_off = btrfs_item_ptr_offset(leaf, slot)
2158 					+ sizeof(struct btrfs_root_ref);
2159 			item_len = btrfs_item_size(leaf, slot)
2160 					- sizeof(struct btrfs_root_ref);
2161 			read_extent_buffer(leaf, subvol_info->name,
2162 					   item_off, item_len);
2163 		} else {
2164 			ret = -ENOENT;
2165 			goto out;
2166 		}
2167 	}
2168 
2169 	btrfs_free_path(path);
2170 	path = NULL;
2171 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2172 		ret = -EFAULT;
2173 
2174 out:
2175 	btrfs_put_root(root);
2176 out_free:
2177 	btrfs_free_path(path);
2178 	kfree(subvol_info);
2179 	return ret;
2180 }
2181 
2182 /*
2183  * Return ROOT_REF information of the subvolume containing this inode
2184  * except the subvolume name.
2185  */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2186 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2187 					  void __user *argp)
2188 {
2189 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2190 	struct btrfs_root_ref *rref;
2191 	struct btrfs_path *path;
2192 	struct btrfs_key key;
2193 	struct extent_buffer *leaf;
2194 	u64 objectid;
2195 	int slot;
2196 	int ret;
2197 	u8 found;
2198 
2199 	path = btrfs_alloc_path();
2200 	if (!path)
2201 		return -ENOMEM;
2202 
2203 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2204 	if (IS_ERR(rootrefs)) {
2205 		btrfs_free_path(path);
2206 		return PTR_ERR(rootrefs);
2207 	}
2208 
2209 	objectid = btrfs_root_id(root);
2210 	key.objectid = objectid;
2211 	key.type = BTRFS_ROOT_REF_KEY;
2212 	key.offset = rootrefs->min_treeid;
2213 	found = 0;
2214 
2215 	root = root->fs_info->tree_root;
2216 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2217 	if (ret < 0) {
2218 		goto out;
2219 	} else if (path->slots[0] >=
2220 		   btrfs_header_nritems(path->nodes[0])) {
2221 		ret = btrfs_next_leaf(root, path);
2222 		if (ret < 0) {
2223 			goto out;
2224 		} else if (ret > 0) {
2225 			ret = -EUCLEAN;
2226 			goto out;
2227 		}
2228 	}
2229 	while (1) {
2230 		leaf = path->nodes[0];
2231 		slot = path->slots[0];
2232 
2233 		btrfs_item_key_to_cpu(leaf, &key, slot);
2234 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2235 			ret = 0;
2236 			goto out;
2237 		}
2238 
2239 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2240 			ret = -EOVERFLOW;
2241 			goto out;
2242 		}
2243 
2244 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2245 		rootrefs->rootref[found].treeid = key.offset;
2246 		rootrefs->rootref[found].dirid =
2247 				  btrfs_root_ref_dirid(leaf, rref);
2248 		found++;
2249 
2250 		ret = btrfs_next_item(root, path);
2251 		if (ret < 0) {
2252 			goto out;
2253 		} else if (ret > 0) {
2254 			ret = -EUCLEAN;
2255 			goto out;
2256 		}
2257 	}
2258 
2259 out:
2260 	btrfs_free_path(path);
2261 
2262 	if (!ret || ret == -EOVERFLOW) {
2263 		rootrefs->num_items = found;
2264 		/* update min_treeid for next search */
2265 		if (found)
2266 			rootrefs->min_treeid =
2267 				rootrefs->rootref[found - 1].treeid + 1;
2268 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2269 			ret = -EFAULT;
2270 	}
2271 
2272 	kfree(rootrefs);
2273 
2274 	return ret;
2275 }
2276 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2277 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2278 					     void __user *arg,
2279 					     bool destroy_v2)
2280 {
2281 	struct dentry *parent = file->f_path.dentry;
2282 	struct dentry *dentry;
2283 	struct inode *dir = d_inode(parent);
2284 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2285 	struct inode *inode;
2286 	struct btrfs_root *root = BTRFS_I(dir)->root;
2287 	struct btrfs_root *dest = NULL;
2288 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2289 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2290 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2291 	char *subvol_name, *subvol_name_ptr = NULL;
2292 	int subvol_namelen;
2293 	int ret = 0;
2294 	bool destroy_parent = false;
2295 
2296 	/* We don't support snapshots with extent tree v2 yet. */
2297 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2298 		btrfs_err(fs_info,
2299 			  "extent tree v2 doesn't support snapshot deletion yet");
2300 		return -EOPNOTSUPP;
2301 	}
2302 
2303 	if (destroy_v2) {
2304 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2305 		if (IS_ERR(vol_args2))
2306 			return PTR_ERR(vol_args2);
2307 
2308 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2309 			ret = -EOPNOTSUPP;
2310 			goto out;
2311 		}
2312 
2313 		/*
2314 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2315 		 * name, same as v1 currently does.
2316 		 */
2317 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2318 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2319 			if (ret < 0)
2320 				goto out;
2321 			subvol_name = vol_args2->name;
2322 
2323 			ret = mnt_want_write_file(file);
2324 			if (ret)
2325 				goto out;
2326 		} else {
2327 			struct inode *old_dir;
2328 
2329 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2330 				ret = -EINVAL;
2331 				goto out;
2332 			}
2333 
2334 			ret = mnt_want_write_file(file);
2335 			if (ret)
2336 				goto out;
2337 
2338 			dentry = btrfs_get_dentry(fs_info->sb,
2339 					BTRFS_FIRST_FREE_OBJECTID,
2340 					vol_args2->subvolid, 0);
2341 			if (IS_ERR(dentry)) {
2342 				ret = PTR_ERR(dentry);
2343 				goto out_drop_write;
2344 			}
2345 
2346 			/*
2347 			 * Change the default parent since the subvolume being
2348 			 * deleted can be outside of the current mount point.
2349 			 */
2350 			parent = btrfs_get_parent(dentry);
2351 
2352 			/*
2353 			 * At this point dentry->d_name can point to '/' if the
2354 			 * subvolume we want to destroy is outsite of the
2355 			 * current mount point, so we need to release the
2356 			 * current dentry and execute the lookup to return a new
2357 			 * one with ->d_name pointing to the
2358 			 * <mount point>/subvol_name.
2359 			 */
2360 			dput(dentry);
2361 			if (IS_ERR(parent)) {
2362 				ret = PTR_ERR(parent);
2363 				goto out_drop_write;
2364 			}
2365 			old_dir = dir;
2366 			dir = d_inode(parent);
2367 
2368 			/*
2369 			 * If v2 was used with SPEC_BY_ID, a new parent was
2370 			 * allocated since the subvolume can be outside of the
2371 			 * current mount point. Later on we need to release this
2372 			 * new parent dentry.
2373 			 */
2374 			destroy_parent = true;
2375 
2376 			/*
2377 			 * On idmapped mounts, deletion via subvolid is
2378 			 * restricted to subvolumes that are immediate
2379 			 * ancestors of the inode referenced by the file
2380 			 * descriptor in the ioctl. Otherwise the idmapping
2381 			 * could potentially be abused to delete subvolumes
2382 			 * anywhere in the filesystem the user wouldn't be able
2383 			 * to delete without an idmapped mount.
2384 			 */
2385 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2386 				ret = -EOPNOTSUPP;
2387 				goto free_parent;
2388 			}
2389 
2390 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2391 						fs_info, vol_args2->subvolid);
2392 			if (IS_ERR(subvol_name_ptr)) {
2393 				ret = PTR_ERR(subvol_name_ptr);
2394 				goto free_parent;
2395 			}
2396 			/* subvol_name_ptr is already nul terminated */
2397 			subvol_name = (char *)kbasename(subvol_name_ptr);
2398 		}
2399 	} else {
2400 		vol_args = memdup_user(arg, sizeof(*vol_args));
2401 		if (IS_ERR(vol_args))
2402 			return PTR_ERR(vol_args);
2403 
2404 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2405 		if (ret < 0)
2406 			goto out;
2407 
2408 		subvol_name = vol_args->name;
2409 
2410 		ret = mnt_want_write_file(file);
2411 		if (ret)
2412 			goto out;
2413 	}
2414 
2415 	subvol_namelen = strlen(subvol_name);
2416 
2417 	if (strchr(subvol_name, '/') ||
2418 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2419 		ret = -EINVAL;
2420 		goto free_subvol_name;
2421 	}
2422 
2423 	if (!S_ISDIR(dir->i_mode)) {
2424 		ret = -ENOTDIR;
2425 		goto free_subvol_name;
2426 	}
2427 
2428 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2429 	if (ret == -EINTR)
2430 		goto free_subvol_name;
2431 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2432 	if (IS_ERR(dentry)) {
2433 		ret = PTR_ERR(dentry);
2434 		goto out_unlock_dir;
2435 	}
2436 
2437 	if (d_really_is_negative(dentry)) {
2438 		ret = -ENOENT;
2439 		goto out_dput;
2440 	}
2441 
2442 	inode = d_inode(dentry);
2443 	dest = BTRFS_I(inode)->root;
2444 	if (!capable(CAP_SYS_ADMIN)) {
2445 		/*
2446 		 * Regular user.  Only allow this with a special mount
2447 		 * option, when the user has write+exec access to the
2448 		 * subvol root, and when rmdir(2) would have been
2449 		 * allowed.
2450 		 *
2451 		 * Note that this is _not_ check that the subvol is
2452 		 * empty or doesn't contain data that we wouldn't
2453 		 * otherwise be able to delete.
2454 		 *
2455 		 * Users who want to delete empty subvols should try
2456 		 * rmdir(2).
2457 		 */
2458 		ret = -EPERM;
2459 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2460 			goto out_dput;
2461 
2462 		/*
2463 		 * Do not allow deletion if the parent dir is the same
2464 		 * as the dir to be deleted.  That means the ioctl
2465 		 * must be called on the dentry referencing the root
2466 		 * of the subvol, not a random directory contained
2467 		 * within it.
2468 		 */
2469 		ret = -EINVAL;
2470 		if (root == dest)
2471 			goto out_dput;
2472 
2473 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2474 		if (ret)
2475 			goto out_dput;
2476 	}
2477 
2478 	/* check if subvolume may be deleted by a user */
2479 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2480 	if (ret)
2481 		goto out_dput;
2482 
2483 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2484 		ret = -EINVAL;
2485 		goto out_dput;
2486 	}
2487 
2488 	btrfs_inode_lock(BTRFS_I(inode), 0);
2489 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2490 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2491 	if (!ret)
2492 		d_delete_notify(dir, dentry);
2493 
2494 out_dput:
2495 	dput(dentry);
2496 out_unlock_dir:
2497 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2498 free_subvol_name:
2499 	kfree(subvol_name_ptr);
2500 free_parent:
2501 	if (destroy_parent)
2502 		dput(parent);
2503 out_drop_write:
2504 	mnt_drop_write_file(file);
2505 out:
2506 	kfree(vol_args2);
2507 	kfree(vol_args);
2508 	return ret;
2509 }
2510 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2511 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2512 {
2513 	struct inode *inode = file_inode(file);
2514 	struct btrfs_root *root = BTRFS_I(inode)->root;
2515 	struct btrfs_ioctl_defrag_range_args range = {0};
2516 	int ret;
2517 
2518 	ret = mnt_want_write_file(file);
2519 	if (ret)
2520 		return ret;
2521 
2522 	if (btrfs_root_readonly(root)) {
2523 		ret = -EROFS;
2524 		goto out;
2525 	}
2526 
2527 	switch (inode->i_mode & S_IFMT) {
2528 	case S_IFDIR:
2529 		if (!capable(CAP_SYS_ADMIN)) {
2530 			ret = -EPERM;
2531 			goto out;
2532 		}
2533 		ret = btrfs_defrag_root(root);
2534 		break;
2535 	case S_IFREG:
2536 		/*
2537 		 * Note that this does not check the file descriptor for write
2538 		 * access. This prevents defragmenting executables that are
2539 		 * running and allows defrag on files open in read-only mode.
2540 		 */
2541 		if (!capable(CAP_SYS_ADMIN) &&
2542 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2543 			ret = -EPERM;
2544 			goto out;
2545 		}
2546 
2547 		/*
2548 		 * Don't allow defrag on pre-content watched files, as it could
2549 		 * populate the page cache with 0's via readahead.
2550 		 */
2551 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2552 			ret = -EINVAL;
2553 			goto out;
2554 		}
2555 
2556 		if (argp) {
2557 			if (copy_from_user(&range, argp, sizeof(range))) {
2558 				ret = -EFAULT;
2559 				goto out;
2560 			}
2561 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2562 				ret = -EOPNOTSUPP;
2563 				goto out;
2564 			}
2565 			/* compression requires us to start the IO */
2566 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2567 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2568 				range.extent_thresh = (u32)-1;
2569 			}
2570 		} else {
2571 			/* the rest are all set to zero by kzalloc */
2572 			range.len = (u64)-1;
2573 		}
2574 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2575 					&range, BTRFS_OLDEST_GENERATION, 0);
2576 		if (ret > 0)
2577 			ret = 0;
2578 		break;
2579 	default:
2580 		ret = -EINVAL;
2581 	}
2582 out:
2583 	mnt_drop_write_file(file);
2584 	return ret;
2585 }
2586 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2587 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2588 {
2589 	struct btrfs_ioctl_vol_args *vol_args;
2590 	bool restore_op = false;
2591 	int ret;
2592 
2593 	if (!capable(CAP_SYS_ADMIN))
2594 		return -EPERM;
2595 
2596 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2597 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2598 		return -EINVAL;
2599 	}
2600 
2601 	if (fs_info->fs_devices->temp_fsid) {
2602 		btrfs_err(fs_info,
2603 			  "device add not supported on cloned temp-fsid mount");
2604 		return -EINVAL;
2605 	}
2606 
2607 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2608 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2609 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2610 
2611 		/*
2612 		 * We can do the device add because we have a paused balanced,
2613 		 * change the exclusive op type and remember we should bring
2614 		 * back the paused balance
2615 		 */
2616 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2617 		btrfs_exclop_start_unlock(fs_info);
2618 		restore_op = true;
2619 	}
2620 
2621 	vol_args = memdup_user(arg, sizeof(*vol_args));
2622 	if (IS_ERR(vol_args)) {
2623 		ret = PTR_ERR(vol_args);
2624 		goto out;
2625 	}
2626 
2627 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2628 	if (ret < 0)
2629 		goto out_free;
2630 
2631 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2632 
2633 	if (!ret)
2634 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2635 
2636 out_free:
2637 	kfree(vol_args);
2638 out:
2639 	if (restore_op)
2640 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2641 	else
2642 		btrfs_exclop_finish(fs_info);
2643 	return ret;
2644 }
2645 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2646 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2647 {
2648 	BTRFS_DEV_LOOKUP_ARGS(args);
2649 	struct inode *inode = file_inode(file);
2650 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2651 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2652 	struct file *bdev_file = NULL;
2653 	int ret;
2654 	bool cancel = false;
2655 
2656 	if (!capable(CAP_SYS_ADMIN))
2657 		return -EPERM;
2658 
2659 	vol_args = memdup_user(arg, sizeof(*vol_args));
2660 	if (IS_ERR(vol_args))
2661 		return PTR_ERR(vol_args);
2662 
2663 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2664 		ret = -EOPNOTSUPP;
2665 		goto out;
2666 	}
2667 
2668 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2669 	if (ret < 0)
2670 		goto out;
2671 
2672 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2673 		args.devid = vol_args->devid;
2674 	} else if (!strcmp("cancel", vol_args->name)) {
2675 		cancel = true;
2676 	} else {
2677 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2678 		if (ret)
2679 			goto out;
2680 	}
2681 
2682 	ret = mnt_want_write_file(file);
2683 	if (ret)
2684 		goto out;
2685 
2686 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2687 					   cancel);
2688 	if (ret)
2689 		goto err_drop;
2690 
2691 	/* Exclusive operation is now claimed */
2692 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2693 
2694 	btrfs_exclop_finish(fs_info);
2695 
2696 	if (!ret) {
2697 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2698 			btrfs_info(fs_info, "device deleted: id %llu",
2699 					vol_args->devid);
2700 		else
2701 			btrfs_info(fs_info, "device deleted: %s",
2702 					vol_args->name);
2703 	}
2704 err_drop:
2705 	mnt_drop_write_file(file);
2706 	if (bdev_file)
2707 		fput(bdev_file);
2708 out:
2709 	btrfs_put_dev_args_from_path(&args);
2710 	kfree(vol_args);
2711 	return ret;
2712 }
2713 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2714 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2715 {
2716 	BTRFS_DEV_LOOKUP_ARGS(args);
2717 	struct inode *inode = file_inode(file);
2718 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2719 	struct btrfs_ioctl_vol_args *vol_args;
2720 	struct file *bdev_file = NULL;
2721 	int ret;
2722 	bool cancel = false;
2723 
2724 	if (!capable(CAP_SYS_ADMIN))
2725 		return -EPERM;
2726 
2727 	vol_args = memdup_user(arg, sizeof(*vol_args));
2728 	if (IS_ERR(vol_args))
2729 		return PTR_ERR(vol_args);
2730 
2731 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2732 	if (ret < 0)
2733 		goto out_free;
2734 
2735 	if (!strcmp("cancel", vol_args->name)) {
2736 		cancel = true;
2737 	} else {
2738 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2739 		if (ret)
2740 			goto out;
2741 	}
2742 
2743 	ret = mnt_want_write_file(file);
2744 	if (ret)
2745 		goto out;
2746 
2747 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2748 					   cancel);
2749 	if (ret == 0) {
2750 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2751 		if (!ret)
2752 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2753 		btrfs_exclop_finish(fs_info);
2754 	}
2755 
2756 	mnt_drop_write_file(file);
2757 	if (bdev_file)
2758 		fput(bdev_file);
2759 out:
2760 	btrfs_put_dev_args_from_path(&args);
2761 out_free:
2762 	kfree(vol_args);
2763 	return ret;
2764 }
2765 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2766 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2767 				void __user *arg)
2768 {
2769 	struct btrfs_ioctl_fs_info_args *fi_args;
2770 	struct btrfs_device *device;
2771 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2772 	u64 flags_in;
2773 	int ret = 0;
2774 
2775 	fi_args = memdup_user(arg, sizeof(*fi_args));
2776 	if (IS_ERR(fi_args))
2777 		return PTR_ERR(fi_args);
2778 
2779 	flags_in = fi_args->flags;
2780 	memset(fi_args, 0, sizeof(*fi_args));
2781 
2782 	rcu_read_lock();
2783 	fi_args->num_devices = fs_devices->num_devices;
2784 
2785 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2786 		if (device->devid > fi_args->max_id)
2787 			fi_args->max_id = device->devid;
2788 	}
2789 	rcu_read_unlock();
2790 
2791 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2792 	fi_args->nodesize = fs_info->nodesize;
2793 	fi_args->sectorsize = fs_info->sectorsize;
2794 	fi_args->clone_alignment = fs_info->sectorsize;
2795 
2796 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2797 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2798 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2799 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2800 	}
2801 
2802 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2803 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2804 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2805 	}
2806 
2807 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2808 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2809 		       sizeof(fi_args->metadata_uuid));
2810 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2811 	}
2812 
2813 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2814 		ret = -EFAULT;
2815 
2816 	kfree(fi_args);
2817 	return ret;
2818 }
2819 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2820 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2821 				 void __user *arg)
2822 {
2823 	BTRFS_DEV_LOOKUP_ARGS(args);
2824 	struct btrfs_ioctl_dev_info_args *di_args;
2825 	struct btrfs_device *dev;
2826 	int ret = 0;
2827 
2828 	di_args = memdup_user(arg, sizeof(*di_args));
2829 	if (IS_ERR(di_args))
2830 		return PTR_ERR(di_args);
2831 
2832 	args.devid = di_args->devid;
2833 	if (!btrfs_is_empty_uuid(di_args->uuid))
2834 		args.uuid = di_args->uuid;
2835 
2836 	rcu_read_lock();
2837 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2838 	if (!dev) {
2839 		ret = -ENODEV;
2840 		goto out;
2841 	}
2842 
2843 	di_args->devid = dev->devid;
2844 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2845 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2846 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2847 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2848 	if (dev->name)
2849 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2850 	else
2851 		di_args->path[0] = '\0';
2852 
2853 out:
2854 	rcu_read_unlock();
2855 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2856 		ret = -EFAULT;
2857 
2858 	kfree(di_args);
2859 	return ret;
2860 }
2861 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2862 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2863 {
2864 	struct inode *inode = file_inode(file);
2865 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2866 	struct btrfs_root *root = BTRFS_I(inode)->root;
2867 	struct btrfs_root *new_root;
2868 	struct btrfs_dir_item *di;
2869 	struct btrfs_trans_handle *trans;
2870 	struct btrfs_path *path = NULL;
2871 	struct btrfs_disk_key disk_key;
2872 	struct fscrypt_str name = FSTR_INIT("default", 7);
2873 	u64 objectid = 0;
2874 	u64 dir_id;
2875 	int ret;
2876 
2877 	if (!capable(CAP_SYS_ADMIN))
2878 		return -EPERM;
2879 
2880 	ret = mnt_want_write_file(file);
2881 	if (ret)
2882 		return ret;
2883 
2884 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2885 		ret = -EFAULT;
2886 		goto out;
2887 	}
2888 
2889 	if (!objectid)
2890 		objectid = BTRFS_FS_TREE_OBJECTID;
2891 
2892 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2893 	if (IS_ERR(new_root)) {
2894 		ret = PTR_ERR(new_root);
2895 		goto out;
2896 	}
2897 	if (!is_fstree(btrfs_root_id(new_root))) {
2898 		ret = -ENOENT;
2899 		goto out_free;
2900 	}
2901 
2902 	path = btrfs_alloc_path();
2903 	if (!path) {
2904 		ret = -ENOMEM;
2905 		goto out_free;
2906 	}
2907 
2908 	trans = btrfs_start_transaction(root, 1);
2909 	if (IS_ERR(trans)) {
2910 		ret = PTR_ERR(trans);
2911 		goto out_free;
2912 	}
2913 
2914 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2915 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2916 				   dir_id, &name, 1);
2917 	if (IS_ERR_OR_NULL(di)) {
2918 		btrfs_release_path(path);
2919 		btrfs_end_transaction(trans);
2920 		btrfs_err(fs_info,
2921 			  "Umm, you don't have the default diritem, this isn't going to work");
2922 		ret = -ENOENT;
2923 		goto out_free;
2924 	}
2925 
2926 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2927 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2928 	btrfs_release_path(path);
2929 
2930 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2931 	btrfs_end_transaction(trans);
2932 out_free:
2933 	btrfs_put_root(new_root);
2934 	btrfs_free_path(path);
2935 out:
2936 	mnt_drop_write_file(file);
2937 	return ret;
2938 }
2939 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2940 static void get_block_group_info(struct list_head *groups_list,
2941 				 struct btrfs_ioctl_space_info *space)
2942 {
2943 	struct btrfs_block_group *block_group;
2944 
2945 	space->total_bytes = 0;
2946 	space->used_bytes = 0;
2947 	space->flags = 0;
2948 	list_for_each_entry(block_group, groups_list, list) {
2949 		space->flags = block_group->flags;
2950 		space->total_bytes += block_group->length;
2951 		space->used_bytes += block_group->used;
2952 	}
2953 }
2954 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2955 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2956 				   void __user *arg)
2957 {
2958 	struct btrfs_ioctl_space_args space_args = { 0 };
2959 	struct btrfs_ioctl_space_info space;
2960 	struct btrfs_ioctl_space_info *dest;
2961 	struct btrfs_ioctl_space_info *dest_orig;
2962 	struct btrfs_ioctl_space_info __user *user_dest;
2963 	struct btrfs_space_info *info;
2964 	static const u64 types[] = {
2965 		BTRFS_BLOCK_GROUP_DATA,
2966 		BTRFS_BLOCK_GROUP_SYSTEM,
2967 		BTRFS_BLOCK_GROUP_METADATA,
2968 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2969 	};
2970 	int num_types = 4;
2971 	int alloc_size;
2972 	int ret = 0;
2973 	u64 slot_count = 0;
2974 	int i, c;
2975 
2976 	if (copy_from_user(&space_args,
2977 			   (struct btrfs_ioctl_space_args __user *)arg,
2978 			   sizeof(space_args)))
2979 		return -EFAULT;
2980 
2981 	for (i = 0; i < num_types; i++) {
2982 		struct btrfs_space_info *tmp;
2983 
2984 		info = NULL;
2985 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2986 			if (tmp->flags == types[i]) {
2987 				info = tmp;
2988 				break;
2989 			}
2990 		}
2991 
2992 		if (!info)
2993 			continue;
2994 
2995 		down_read(&info->groups_sem);
2996 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2997 			if (!list_empty(&info->block_groups[c]))
2998 				slot_count++;
2999 		}
3000 		up_read(&info->groups_sem);
3001 	}
3002 
3003 	/*
3004 	 * Global block reserve, exported as a space_info
3005 	 */
3006 	slot_count++;
3007 
3008 	/* space_slots == 0 means they are asking for a count */
3009 	if (space_args.space_slots == 0) {
3010 		space_args.total_spaces = slot_count;
3011 		goto out;
3012 	}
3013 
3014 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3015 
3016 	alloc_size = sizeof(*dest) * slot_count;
3017 
3018 	/* we generally have at most 6 or so space infos, one for each raid
3019 	 * level.  So, a whole page should be more than enough for everyone
3020 	 */
3021 	if (alloc_size > PAGE_SIZE)
3022 		return -ENOMEM;
3023 
3024 	space_args.total_spaces = 0;
3025 	dest = kmalloc(alloc_size, GFP_KERNEL);
3026 	if (!dest)
3027 		return -ENOMEM;
3028 	dest_orig = dest;
3029 
3030 	/* now we have a buffer to copy into */
3031 	for (i = 0; i < num_types; i++) {
3032 		struct btrfs_space_info *tmp;
3033 
3034 		if (!slot_count)
3035 			break;
3036 
3037 		info = NULL;
3038 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3039 			if (tmp->flags == types[i]) {
3040 				info = tmp;
3041 				break;
3042 			}
3043 		}
3044 
3045 		if (!info)
3046 			continue;
3047 		down_read(&info->groups_sem);
3048 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3049 			if (!list_empty(&info->block_groups[c])) {
3050 				get_block_group_info(&info->block_groups[c],
3051 						     &space);
3052 				memcpy(dest, &space, sizeof(space));
3053 				dest++;
3054 				space_args.total_spaces++;
3055 				slot_count--;
3056 			}
3057 			if (!slot_count)
3058 				break;
3059 		}
3060 		up_read(&info->groups_sem);
3061 	}
3062 
3063 	/*
3064 	 * Add global block reserve
3065 	 */
3066 	if (slot_count) {
3067 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3068 
3069 		spin_lock(&block_rsv->lock);
3070 		space.total_bytes = block_rsv->size;
3071 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3072 		spin_unlock(&block_rsv->lock);
3073 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3074 		memcpy(dest, &space, sizeof(space));
3075 		space_args.total_spaces++;
3076 	}
3077 
3078 	user_dest = (struct btrfs_ioctl_space_info __user *)
3079 		(arg + sizeof(struct btrfs_ioctl_space_args));
3080 
3081 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3082 		ret = -EFAULT;
3083 
3084 	kfree(dest_orig);
3085 out:
3086 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3087 		ret = -EFAULT;
3088 
3089 	return ret;
3090 }
3091 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3092 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3093 					    void __user *argp)
3094 {
3095 	struct btrfs_trans_handle *trans;
3096 	u64 transid;
3097 
3098 	/*
3099 	 * Start orphan cleanup here for the given root in case it hasn't been
3100 	 * started already by other means. Errors are handled in the other
3101 	 * functions during transaction commit.
3102 	 */
3103 	btrfs_orphan_cleanup(root);
3104 
3105 	trans = btrfs_attach_transaction_barrier(root);
3106 	if (IS_ERR(trans)) {
3107 		if (PTR_ERR(trans) != -ENOENT)
3108 			return PTR_ERR(trans);
3109 
3110 		/* No running transaction, don't bother */
3111 		transid = btrfs_get_last_trans_committed(root->fs_info);
3112 		goto out;
3113 	}
3114 	transid = trans->transid;
3115 	btrfs_commit_transaction_async(trans);
3116 out:
3117 	if (argp)
3118 		if (copy_to_user(argp, &transid, sizeof(transid)))
3119 			return -EFAULT;
3120 	return 0;
3121 }
3122 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3123 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3124 					   void __user *argp)
3125 {
3126 	/* By default wait for the current transaction. */
3127 	u64 transid = 0;
3128 
3129 	if (argp)
3130 		if (copy_from_user(&transid, argp, sizeof(transid)))
3131 			return -EFAULT;
3132 
3133 	return btrfs_wait_for_commit(fs_info, transid);
3134 }
3135 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3136 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3137 {
3138 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3139 	struct btrfs_ioctl_scrub_args *sa;
3140 	int ret;
3141 
3142 	if (!capable(CAP_SYS_ADMIN))
3143 		return -EPERM;
3144 
3145 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3146 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3147 		return -EINVAL;
3148 	}
3149 
3150 	sa = memdup_user(arg, sizeof(*sa));
3151 	if (IS_ERR(sa))
3152 		return PTR_ERR(sa);
3153 
3154 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3155 		ret = -EOPNOTSUPP;
3156 		goto out;
3157 	}
3158 
3159 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3160 		ret = mnt_want_write_file(file);
3161 		if (ret)
3162 			goto out;
3163 	}
3164 
3165 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3166 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3167 			      0);
3168 
3169 	/*
3170 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3171 	 * error. This is important as it allows user space to know how much
3172 	 * progress scrub has done. For example, if scrub is canceled we get
3173 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3174 	 * space. Later user space can inspect the progress from the structure
3175 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3176 	 * previously (btrfs-progs does this).
3177 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3178 	 * then return -EFAULT to signal the structure was not copied or it may
3179 	 * be corrupt and unreliable due to a partial copy.
3180 	 */
3181 	if (copy_to_user(arg, sa, sizeof(*sa)))
3182 		ret = -EFAULT;
3183 
3184 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3185 		mnt_drop_write_file(file);
3186 out:
3187 	kfree(sa);
3188 	return ret;
3189 }
3190 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3191 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3192 {
3193 	if (!capable(CAP_SYS_ADMIN))
3194 		return -EPERM;
3195 
3196 	return btrfs_scrub_cancel(fs_info);
3197 }
3198 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3199 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3200 				       void __user *arg)
3201 {
3202 	struct btrfs_ioctl_scrub_args *sa;
3203 	int ret;
3204 
3205 	if (!capable(CAP_SYS_ADMIN))
3206 		return -EPERM;
3207 
3208 	sa = memdup_user(arg, sizeof(*sa));
3209 	if (IS_ERR(sa))
3210 		return PTR_ERR(sa);
3211 
3212 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3213 
3214 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3215 		ret = -EFAULT;
3216 
3217 	kfree(sa);
3218 	return ret;
3219 }
3220 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3221 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3222 				      void __user *arg)
3223 {
3224 	struct btrfs_ioctl_get_dev_stats *sa;
3225 	int ret;
3226 
3227 	sa = memdup_user(arg, sizeof(*sa));
3228 	if (IS_ERR(sa))
3229 		return PTR_ERR(sa);
3230 
3231 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3232 		kfree(sa);
3233 		return -EPERM;
3234 	}
3235 
3236 	ret = btrfs_get_dev_stats(fs_info, sa);
3237 
3238 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3239 		ret = -EFAULT;
3240 
3241 	kfree(sa);
3242 	return ret;
3243 }
3244 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3245 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3246 				    void __user *arg)
3247 {
3248 	struct btrfs_ioctl_dev_replace_args *p;
3249 	int ret;
3250 
3251 	if (!capable(CAP_SYS_ADMIN))
3252 		return -EPERM;
3253 
3254 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3256 		return -EINVAL;
3257 	}
3258 
3259 	p = memdup_user(arg, sizeof(*p));
3260 	if (IS_ERR(p))
3261 		return PTR_ERR(p);
3262 
3263 	switch (p->cmd) {
3264 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3265 		if (sb_rdonly(fs_info->sb)) {
3266 			ret = -EROFS;
3267 			goto out;
3268 		}
3269 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3270 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3271 		} else {
3272 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3273 			btrfs_exclop_finish(fs_info);
3274 		}
3275 		break;
3276 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3277 		btrfs_dev_replace_status(fs_info, p);
3278 		ret = 0;
3279 		break;
3280 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3281 		p->result = btrfs_dev_replace_cancel(fs_info);
3282 		ret = 0;
3283 		break;
3284 	default:
3285 		ret = -EINVAL;
3286 		break;
3287 	}
3288 
3289 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3290 		ret = -EFAULT;
3291 out:
3292 	kfree(p);
3293 	return ret;
3294 }
3295 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3296 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3297 {
3298 	int ret = 0;
3299 	int i;
3300 	u64 rel_ptr;
3301 	int size;
3302 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3303 	struct inode_fs_paths *ipath = NULL;
3304 	struct btrfs_path *path;
3305 
3306 	if (!capable(CAP_DAC_READ_SEARCH))
3307 		return -EPERM;
3308 
3309 	path = btrfs_alloc_path();
3310 	if (!path) {
3311 		ret = -ENOMEM;
3312 		goto out;
3313 	}
3314 
3315 	ipa = memdup_user(arg, sizeof(*ipa));
3316 	if (IS_ERR(ipa)) {
3317 		ret = PTR_ERR(ipa);
3318 		ipa = NULL;
3319 		goto out;
3320 	}
3321 
3322 	size = min_t(u32, ipa->size, 4096);
3323 	ipath = init_ipath(size, root, path);
3324 	if (IS_ERR(ipath)) {
3325 		ret = PTR_ERR(ipath);
3326 		ipath = NULL;
3327 		goto out;
3328 	}
3329 
3330 	ret = paths_from_inode(ipa->inum, ipath);
3331 	if (ret < 0)
3332 		goto out;
3333 
3334 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3335 		rel_ptr = ipath->fspath->val[i] -
3336 			  (u64)(unsigned long)ipath->fspath->val;
3337 		ipath->fspath->val[i] = rel_ptr;
3338 	}
3339 
3340 	btrfs_free_path(path);
3341 	path = NULL;
3342 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3343 			   ipath->fspath, size);
3344 	if (ret) {
3345 		ret = -EFAULT;
3346 		goto out;
3347 	}
3348 
3349 out:
3350 	btrfs_free_path(path);
3351 	free_ipath(ipath);
3352 	kfree(ipa);
3353 
3354 	return ret;
3355 }
3356 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3357 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3358 					void __user *arg, int version)
3359 {
3360 	int ret = 0;
3361 	int size;
3362 	struct btrfs_ioctl_logical_ino_args *loi;
3363 	struct btrfs_data_container *inodes = NULL;
3364 	struct btrfs_path *path = NULL;
3365 	bool ignore_offset;
3366 
3367 	if (!capable(CAP_SYS_ADMIN))
3368 		return -EPERM;
3369 
3370 	loi = memdup_user(arg, sizeof(*loi));
3371 	if (IS_ERR(loi))
3372 		return PTR_ERR(loi);
3373 
3374 	if (version == 1) {
3375 		ignore_offset = false;
3376 		size = min_t(u32, loi->size, SZ_64K);
3377 	} else {
3378 		/* All reserved bits must be 0 for now */
3379 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3380 			ret = -EINVAL;
3381 			goto out_loi;
3382 		}
3383 		/* Only accept flags we have defined so far */
3384 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3385 			ret = -EINVAL;
3386 			goto out_loi;
3387 		}
3388 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3389 		size = min_t(u32, loi->size, SZ_16M);
3390 	}
3391 
3392 	inodes = init_data_container(size);
3393 	if (IS_ERR(inodes)) {
3394 		ret = PTR_ERR(inodes);
3395 		goto out_loi;
3396 	}
3397 
3398 	path = btrfs_alloc_path();
3399 	if (!path) {
3400 		ret = -ENOMEM;
3401 		goto out;
3402 	}
3403 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3404 					  inodes, ignore_offset);
3405 	btrfs_free_path(path);
3406 	if (ret == -EINVAL)
3407 		ret = -ENOENT;
3408 	if (ret < 0)
3409 		goto out;
3410 
3411 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3412 			   size);
3413 	if (ret)
3414 		ret = -EFAULT;
3415 
3416 out:
3417 	kvfree(inodes);
3418 out_loi:
3419 	kfree(loi);
3420 
3421 	return ret;
3422 }
3423 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3424 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3425 			       struct btrfs_ioctl_balance_args *bargs)
3426 {
3427 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3428 
3429 	bargs->flags = bctl->flags;
3430 
3431 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3432 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3433 	if (atomic_read(&fs_info->balance_pause_req))
3434 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3435 	if (atomic_read(&fs_info->balance_cancel_req))
3436 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3437 
3438 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3439 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3440 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3441 
3442 	spin_lock(&fs_info->balance_lock);
3443 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3444 	spin_unlock(&fs_info->balance_lock);
3445 }
3446 
3447 /*
3448  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3449  * required.
3450  *
3451  * @fs_info:       the filesystem
3452  * @excl_acquired: ptr to boolean value which is set to false in case balance
3453  *                 is being resumed
3454  *
3455  * Return 0 on success in which case both fs_info::balance is acquired as well
3456  * as exclusive ops are blocked. In case of failure return an error code.
3457  */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3458 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3459 {
3460 	int ret;
3461 
3462 	/*
3463 	 * Exclusive operation is locked. Three possibilities:
3464 	 *   (1) some other op is running
3465 	 *   (2) balance is running
3466 	 *   (3) balance is paused -- special case (think resume)
3467 	 */
3468 	while (1) {
3469 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3470 			*excl_acquired = true;
3471 			mutex_lock(&fs_info->balance_mutex);
3472 			return 0;
3473 		}
3474 
3475 		mutex_lock(&fs_info->balance_mutex);
3476 		if (fs_info->balance_ctl) {
3477 			/* This is either (2) or (3) */
3478 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3479 				/* This is (2) */
3480 				ret = -EINPROGRESS;
3481 				goto out_failure;
3482 
3483 			} else {
3484 				mutex_unlock(&fs_info->balance_mutex);
3485 				/*
3486 				 * Lock released to allow other waiters to
3487 				 * continue, we'll reexamine the status again.
3488 				 */
3489 				mutex_lock(&fs_info->balance_mutex);
3490 
3491 				if (fs_info->balance_ctl &&
3492 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3493 					/* This is (3) */
3494 					*excl_acquired = false;
3495 					return 0;
3496 				}
3497 			}
3498 		} else {
3499 			/* This is (1) */
3500 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3501 			goto out_failure;
3502 		}
3503 
3504 		mutex_unlock(&fs_info->balance_mutex);
3505 	}
3506 
3507 out_failure:
3508 	mutex_unlock(&fs_info->balance_mutex);
3509 	*excl_acquired = false;
3510 	return ret;
3511 }
3512 
btrfs_ioctl_balance(struct file * file,void __user * arg)3513 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3514 {
3515 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3516 	struct btrfs_fs_info *fs_info = root->fs_info;
3517 	struct btrfs_ioctl_balance_args *bargs;
3518 	struct btrfs_balance_control *bctl;
3519 	bool need_unlock = true;
3520 	int ret;
3521 
3522 	if (!capable(CAP_SYS_ADMIN))
3523 		return -EPERM;
3524 
3525 	ret = mnt_want_write_file(file);
3526 	if (ret)
3527 		return ret;
3528 
3529 	bargs = memdup_user(arg, sizeof(*bargs));
3530 	if (IS_ERR(bargs)) {
3531 		ret = PTR_ERR(bargs);
3532 		bargs = NULL;
3533 		goto out;
3534 	}
3535 
3536 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3537 	if (ret)
3538 		goto out;
3539 
3540 	lockdep_assert_held(&fs_info->balance_mutex);
3541 
3542 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3543 		if (!fs_info->balance_ctl) {
3544 			ret = -ENOTCONN;
3545 			goto out_unlock;
3546 		}
3547 
3548 		bctl = fs_info->balance_ctl;
3549 		spin_lock(&fs_info->balance_lock);
3550 		bctl->flags |= BTRFS_BALANCE_RESUME;
3551 		spin_unlock(&fs_info->balance_lock);
3552 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3553 
3554 		goto do_balance;
3555 	}
3556 
3557 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3558 		ret = -EINVAL;
3559 		goto out_unlock;
3560 	}
3561 
3562 	if (fs_info->balance_ctl) {
3563 		ret = -EINPROGRESS;
3564 		goto out_unlock;
3565 	}
3566 
3567 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3568 	if (!bctl) {
3569 		ret = -ENOMEM;
3570 		goto out_unlock;
3571 	}
3572 
3573 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3574 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3575 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3576 
3577 	bctl->flags = bargs->flags;
3578 do_balance:
3579 	/*
3580 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3581 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3582 	 * all the way until unmount, in free_fs_info.  The flag should be
3583 	 * cleared after reset_balance_state.
3584 	 */
3585 	need_unlock = false;
3586 
3587 	ret = btrfs_balance(fs_info, bctl, bargs);
3588 	bctl = NULL;
3589 
3590 	if (ret == 0 || ret == -ECANCELED) {
3591 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3592 			ret = -EFAULT;
3593 	}
3594 
3595 	kfree(bctl);
3596 out_unlock:
3597 	mutex_unlock(&fs_info->balance_mutex);
3598 	if (need_unlock)
3599 		btrfs_exclop_finish(fs_info);
3600 out:
3601 	mnt_drop_write_file(file);
3602 	kfree(bargs);
3603 	return ret;
3604 }
3605 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3606 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3607 {
3608 	if (!capable(CAP_SYS_ADMIN))
3609 		return -EPERM;
3610 
3611 	switch (cmd) {
3612 	case BTRFS_BALANCE_CTL_PAUSE:
3613 		return btrfs_pause_balance(fs_info);
3614 	case BTRFS_BALANCE_CTL_CANCEL:
3615 		return btrfs_cancel_balance(fs_info);
3616 	}
3617 
3618 	return -EINVAL;
3619 }
3620 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3621 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3622 					 void __user *arg)
3623 {
3624 	struct btrfs_ioctl_balance_args *bargs;
3625 	int ret = 0;
3626 
3627 	if (!capable(CAP_SYS_ADMIN))
3628 		return -EPERM;
3629 
3630 	mutex_lock(&fs_info->balance_mutex);
3631 	if (!fs_info->balance_ctl) {
3632 		ret = -ENOTCONN;
3633 		goto out;
3634 	}
3635 
3636 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3637 	if (!bargs) {
3638 		ret = -ENOMEM;
3639 		goto out;
3640 	}
3641 
3642 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3643 
3644 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3645 		ret = -EFAULT;
3646 
3647 	kfree(bargs);
3648 out:
3649 	mutex_unlock(&fs_info->balance_mutex);
3650 	return ret;
3651 }
3652 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3653 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3654 {
3655 	struct inode *inode = file_inode(file);
3656 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3657 	struct btrfs_ioctl_quota_ctl_args *sa;
3658 	int ret;
3659 
3660 	if (!capable(CAP_SYS_ADMIN))
3661 		return -EPERM;
3662 
3663 	ret = mnt_want_write_file(file);
3664 	if (ret)
3665 		return ret;
3666 
3667 	sa = memdup_user(arg, sizeof(*sa));
3668 	if (IS_ERR(sa)) {
3669 		ret = PTR_ERR(sa);
3670 		goto drop_write;
3671 	}
3672 
3673 	switch (sa->cmd) {
3674 	case BTRFS_QUOTA_CTL_ENABLE:
3675 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3676 		down_write(&fs_info->subvol_sem);
3677 		ret = btrfs_quota_enable(fs_info, sa);
3678 		up_write(&fs_info->subvol_sem);
3679 		break;
3680 	case BTRFS_QUOTA_CTL_DISABLE:
3681 		/*
3682 		 * Lock the cleaner mutex to prevent races with concurrent
3683 		 * relocation, because relocation may be building backrefs for
3684 		 * blocks of the quota root while we are deleting the root. This
3685 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3686 		 * need the same protection.
3687 		 *
3688 		 * This also prevents races between concurrent tasks trying to
3689 		 * disable quotas, because we will unlock and relock
3690 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3691 		 *
3692 		 * We take this here because we have the dependency of
3693 		 *
3694 		 * inode_lock -> subvol_sem
3695 		 *
3696 		 * because of rename.  With relocation we can prealloc extents,
3697 		 * so that makes the dependency chain
3698 		 *
3699 		 * cleaner_mutex -> inode_lock -> subvol_sem
3700 		 *
3701 		 * so we must take the cleaner_mutex here before we take the
3702 		 * subvol_sem.  The deadlock can't actually happen, but this
3703 		 * quiets lockdep.
3704 		 */
3705 		mutex_lock(&fs_info->cleaner_mutex);
3706 		down_write(&fs_info->subvol_sem);
3707 		ret = btrfs_quota_disable(fs_info);
3708 		up_write(&fs_info->subvol_sem);
3709 		mutex_unlock(&fs_info->cleaner_mutex);
3710 		break;
3711 	default:
3712 		ret = -EINVAL;
3713 		break;
3714 	}
3715 
3716 	kfree(sa);
3717 drop_write:
3718 	mnt_drop_write_file(file);
3719 	return ret;
3720 }
3721 
3722 /*
3723  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3724  * done before any operations.
3725  */
qgroup_enabled(struct btrfs_fs_info * fs_info)3726 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3727 {
3728 	bool ret = true;
3729 
3730 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3731 	if (!fs_info->quota_root)
3732 		ret = false;
3733 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3734 
3735 	return ret;
3736 }
3737 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3738 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3739 {
3740 	struct inode *inode = file_inode(file);
3741 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3742 	struct btrfs_root *root = BTRFS_I(inode)->root;
3743 	struct btrfs_ioctl_qgroup_assign_args *sa;
3744 	struct btrfs_qgroup_list *prealloc = NULL;
3745 	struct btrfs_trans_handle *trans;
3746 	int ret;
3747 	int err;
3748 
3749 	if (!capable(CAP_SYS_ADMIN))
3750 		return -EPERM;
3751 
3752 	if (!qgroup_enabled(root->fs_info))
3753 		return -ENOTCONN;
3754 
3755 	ret = mnt_want_write_file(file);
3756 	if (ret)
3757 		return ret;
3758 
3759 	sa = memdup_user(arg, sizeof(*sa));
3760 	if (IS_ERR(sa)) {
3761 		ret = PTR_ERR(sa);
3762 		goto drop_write;
3763 	}
3764 
3765 	if (sa->assign) {
3766 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3767 		if (!prealloc) {
3768 			ret = -ENOMEM;
3769 			goto drop_write;
3770 		}
3771 	}
3772 
3773 	trans = btrfs_join_transaction(root);
3774 	if (IS_ERR(trans)) {
3775 		ret = PTR_ERR(trans);
3776 		goto out;
3777 	}
3778 
3779 	/*
3780 	 * Prealloc ownership is moved to the relation handler, there it's used
3781 	 * or freed on error.
3782 	 */
3783 	if (sa->assign) {
3784 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3785 		prealloc = NULL;
3786 	} else {
3787 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3788 	}
3789 
3790 	/* update qgroup status and info */
3791 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3792 	err = btrfs_run_qgroups(trans);
3793 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3794 	if (err < 0)
3795 		btrfs_warn(fs_info,
3796 			   "qgroup status update failed after %s relation, marked as inconsistent",
3797 			   sa->assign ? "adding" : "deleting");
3798 	err = btrfs_end_transaction(trans);
3799 	if (err && !ret)
3800 		ret = err;
3801 
3802 out:
3803 	kfree(prealloc);
3804 	kfree(sa);
3805 drop_write:
3806 	mnt_drop_write_file(file);
3807 	return ret;
3808 }
3809 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3810 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3811 {
3812 	struct inode *inode = file_inode(file);
3813 	struct btrfs_root *root = BTRFS_I(inode)->root;
3814 	struct btrfs_ioctl_qgroup_create_args *sa;
3815 	struct btrfs_trans_handle *trans;
3816 	int ret;
3817 	int err;
3818 
3819 	if (!capable(CAP_SYS_ADMIN))
3820 		return -EPERM;
3821 
3822 	if (!qgroup_enabled(root->fs_info))
3823 		return -ENOTCONN;
3824 
3825 	ret = mnt_want_write_file(file);
3826 	if (ret)
3827 		return ret;
3828 
3829 	sa = memdup_user(arg, sizeof(*sa));
3830 	if (IS_ERR(sa)) {
3831 		ret = PTR_ERR(sa);
3832 		goto drop_write;
3833 	}
3834 
3835 	if (!sa->qgroupid) {
3836 		ret = -EINVAL;
3837 		goto out;
3838 	}
3839 
3840 	if (sa->create && is_fstree(sa->qgroupid)) {
3841 		ret = -EINVAL;
3842 		goto out;
3843 	}
3844 
3845 	trans = btrfs_join_transaction(root);
3846 	if (IS_ERR(trans)) {
3847 		ret = PTR_ERR(trans);
3848 		goto out;
3849 	}
3850 
3851 	if (sa->create) {
3852 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3853 	} else {
3854 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3855 	}
3856 
3857 	err = btrfs_end_transaction(trans);
3858 	if (err && !ret)
3859 		ret = err;
3860 
3861 out:
3862 	kfree(sa);
3863 drop_write:
3864 	mnt_drop_write_file(file);
3865 	return ret;
3866 }
3867 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3868 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3869 {
3870 	struct inode *inode = file_inode(file);
3871 	struct btrfs_root *root = BTRFS_I(inode)->root;
3872 	struct btrfs_ioctl_qgroup_limit_args *sa;
3873 	struct btrfs_trans_handle *trans;
3874 	int ret;
3875 	int err;
3876 	u64 qgroupid;
3877 
3878 	if (!capable(CAP_SYS_ADMIN))
3879 		return -EPERM;
3880 
3881 	if (!qgroup_enabled(root->fs_info))
3882 		return -ENOTCONN;
3883 
3884 	ret = mnt_want_write_file(file);
3885 	if (ret)
3886 		return ret;
3887 
3888 	sa = memdup_user(arg, sizeof(*sa));
3889 	if (IS_ERR(sa)) {
3890 		ret = PTR_ERR(sa);
3891 		goto drop_write;
3892 	}
3893 
3894 	trans = btrfs_join_transaction(root);
3895 	if (IS_ERR(trans)) {
3896 		ret = PTR_ERR(trans);
3897 		goto out;
3898 	}
3899 
3900 	qgroupid = sa->qgroupid;
3901 	if (!qgroupid) {
3902 		/* take the current subvol as qgroup */
3903 		qgroupid = btrfs_root_id(root);
3904 	}
3905 
3906 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3907 
3908 	err = btrfs_end_transaction(trans);
3909 	if (err && !ret)
3910 		ret = err;
3911 
3912 out:
3913 	kfree(sa);
3914 drop_write:
3915 	mnt_drop_write_file(file);
3916 	return ret;
3917 }
3918 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3919 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3920 {
3921 	struct inode *inode = file_inode(file);
3922 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3923 	struct btrfs_ioctl_quota_rescan_args *qsa;
3924 	int ret;
3925 
3926 	if (!capable(CAP_SYS_ADMIN))
3927 		return -EPERM;
3928 
3929 	if (!qgroup_enabled(fs_info))
3930 		return -ENOTCONN;
3931 
3932 	ret = mnt_want_write_file(file);
3933 	if (ret)
3934 		return ret;
3935 
3936 	qsa = memdup_user(arg, sizeof(*qsa));
3937 	if (IS_ERR(qsa)) {
3938 		ret = PTR_ERR(qsa);
3939 		goto drop_write;
3940 	}
3941 
3942 	if (qsa->flags) {
3943 		ret = -EINVAL;
3944 		goto out;
3945 	}
3946 
3947 	ret = btrfs_qgroup_rescan(fs_info);
3948 
3949 out:
3950 	kfree(qsa);
3951 drop_write:
3952 	mnt_drop_write_file(file);
3953 	return ret;
3954 }
3955 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3956 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3957 						void __user *arg)
3958 {
3959 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3960 
3961 	if (!capable(CAP_SYS_ADMIN))
3962 		return -EPERM;
3963 
3964 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3965 		qsa.flags = 1;
3966 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3967 	}
3968 
3969 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3970 		return -EFAULT;
3971 
3972 	return 0;
3973 }
3974 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3975 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3976 {
3977 	if (!capable(CAP_SYS_ADMIN))
3978 		return -EPERM;
3979 
3980 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3981 }
3982 
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3983 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3984 					    struct mnt_idmap *idmap,
3985 					    struct btrfs_ioctl_received_subvol_args *sa)
3986 {
3987 	struct inode *inode = file_inode(file);
3988 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3989 	struct btrfs_root *root = BTRFS_I(inode)->root;
3990 	struct btrfs_root_item *root_item = &root->root_item;
3991 	struct btrfs_trans_handle *trans;
3992 	struct timespec64 ct = current_time(inode);
3993 	int ret = 0;
3994 	int received_uuid_changed;
3995 
3996 	if (!inode_owner_or_capable(idmap, inode))
3997 		return -EPERM;
3998 
3999 	ret = mnt_want_write_file(file);
4000 	if (ret < 0)
4001 		return ret;
4002 
4003 	down_write(&fs_info->subvol_sem);
4004 
4005 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4006 		ret = -EINVAL;
4007 		goto out;
4008 	}
4009 
4010 	if (btrfs_root_readonly(root)) {
4011 		ret = -EROFS;
4012 		goto out;
4013 	}
4014 
4015 	/*
4016 	 * 1 - root item
4017 	 * 2 - uuid items (received uuid + subvol uuid)
4018 	 */
4019 	trans = btrfs_start_transaction(root, 3);
4020 	if (IS_ERR(trans)) {
4021 		ret = PTR_ERR(trans);
4022 		trans = NULL;
4023 		goto out;
4024 	}
4025 
4026 	sa->rtransid = trans->transid;
4027 	sa->rtime.sec = ct.tv_sec;
4028 	sa->rtime.nsec = ct.tv_nsec;
4029 
4030 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4031 				       BTRFS_UUID_SIZE);
4032 	if (received_uuid_changed &&
4033 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4034 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4035 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 					  btrfs_root_id(root));
4037 		if (ret && ret != -ENOENT) {
4038 		        btrfs_abort_transaction(trans, ret);
4039 		        btrfs_end_transaction(trans);
4040 		        goto out;
4041 		}
4042 	}
4043 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4044 	btrfs_set_root_stransid(root_item, sa->stransid);
4045 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4046 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4047 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4048 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4049 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4050 
4051 	ret = btrfs_update_root(trans, fs_info->tree_root,
4052 				&root->root_key, &root->root_item);
4053 	if (ret < 0) {
4054 		btrfs_end_transaction(trans);
4055 		goto out;
4056 	}
4057 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4058 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4059 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4060 					  btrfs_root_id(root));
4061 		if (ret < 0 && ret != -EEXIST) {
4062 			btrfs_abort_transaction(trans, ret);
4063 			btrfs_end_transaction(trans);
4064 			goto out;
4065 		}
4066 	}
4067 	ret = btrfs_commit_transaction(trans);
4068 out:
4069 	up_write(&fs_info->subvol_sem);
4070 	mnt_drop_write_file(file);
4071 	return ret;
4072 }
4073 
4074 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4075 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4076 						void __user *arg)
4077 {
4078 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4079 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4080 	int ret = 0;
4081 
4082 	args32 = memdup_user(arg, sizeof(*args32));
4083 	if (IS_ERR(args32))
4084 		return PTR_ERR(args32);
4085 
4086 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4087 	if (!args64) {
4088 		ret = -ENOMEM;
4089 		goto out;
4090 	}
4091 
4092 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4093 	args64->stransid = args32->stransid;
4094 	args64->rtransid = args32->rtransid;
4095 	args64->stime.sec = args32->stime.sec;
4096 	args64->stime.nsec = args32->stime.nsec;
4097 	args64->rtime.sec = args32->rtime.sec;
4098 	args64->rtime.nsec = args32->rtime.nsec;
4099 	args64->flags = args32->flags;
4100 
4101 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4102 	if (ret)
4103 		goto out;
4104 
4105 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4106 	args32->stransid = args64->stransid;
4107 	args32->rtransid = args64->rtransid;
4108 	args32->stime.sec = args64->stime.sec;
4109 	args32->stime.nsec = args64->stime.nsec;
4110 	args32->rtime.sec = args64->rtime.sec;
4111 	args32->rtime.nsec = args64->rtime.nsec;
4112 	args32->flags = args64->flags;
4113 
4114 	ret = copy_to_user(arg, args32, sizeof(*args32));
4115 	if (ret)
4116 		ret = -EFAULT;
4117 
4118 out:
4119 	kfree(args32);
4120 	kfree(args64);
4121 	return ret;
4122 }
4123 #endif
4124 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4125 static long btrfs_ioctl_set_received_subvol(struct file *file,
4126 					    void __user *arg)
4127 {
4128 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4129 	int ret = 0;
4130 
4131 	sa = memdup_user(arg, sizeof(*sa));
4132 	if (IS_ERR(sa))
4133 		return PTR_ERR(sa);
4134 
4135 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4136 
4137 	if (ret)
4138 		goto out;
4139 
4140 	ret = copy_to_user(arg, sa, sizeof(*sa));
4141 	if (ret)
4142 		ret = -EFAULT;
4143 
4144 out:
4145 	kfree(sa);
4146 	return ret;
4147 }
4148 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4149 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4150 					void __user *arg)
4151 {
4152 	size_t len;
4153 	int ret;
4154 	char label[BTRFS_LABEL_SIZE];
4155 
4156 	spin_lock(&fs_info->super_lock);
4157 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4158 	spin_unlock(&fs_info->super_lock);
4159 
4160 	len = strnlen(label, BTRFS_LABEL_SIZE);
4161 
4162 	if (len == BTRFS_LABEL_SIZE) {
4163 		btrfs_warn(fs_info,
4164 			   "label is too long, return the first %zu bytes",
4165 			   --len);
4166 	}
4167 
4168 	ret = copy_to_user(arg, label, len);
4169 
4170 	return ret ? -EFAULT : 0;
4171 }
4172 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4173 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4174 {
4175 	struct inode *inode = file_inode(file);
4176 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4177 	struct btrfs_root *root = BTRFS_I(inode)->root;
4178 	struct btrfs_super_block *super_block = fs_info->super_copy;
4179 	struct btrfs_trans_handle *trans;
4180 	char label[BTRFS_LABEL_SIZE];
4181 	int ret;
4182 
4183 	if (!capable(CAP_SYS_ADMIN))
4184 		return -EPERM;
4185 
4186 	if (copy_from_user(label, arg, sizeof(label)))
4187 		return -EFAULT;
4188 
4189 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4190 		btrfs_err(fs_info,
4191 			  "unable to set label with more than %d bytes",
4192 			  BTRFS_LABEL_SIZE - 1);
4193 		return -EINVAL;
4194 	}
4195 
4196 	ret = mnt_want_write_file(file);
4197 	if (ret)
4198 		return ret;
4199 
4200 	trans = btrfs_start_transaction(root, 0);
4201 	if (IS_ERR(trans)) {
4202 		ret = PTR_ERR(trans);
4203 		goto out_unlock;
4204 	}
4205 
4206 	spin_lock(&fs_info->super_lock);
4207 	strcpy(super_block->label, label);
4208 	spin_unlock(&fs_info->super_lock);
4209 	ret = btrfs_commit_transaction(trans);
4210 
4211 out_unlock:
4212 	mnt_drop_write_file(file);
4213 	return ret;
4214 }
4215 
4216 #define INIT_FEATURE_FLAGS(suffix) \
4217 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4218 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4219 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4220 
btrfs_ioctl_get_supported_features(void __user * arg)4221 int btrfs_ioctl_get_supported_features(void __user *arg)
4222 {
4223 	static const struct btrfs_ioctl_feature_flags features[3] = {
4224 		INIT_FEATURE_FLAGS(SUPP),
4225 		INIT_FEATURE_FLAGS(SAFE_SET),
4226 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4227 	};
4228 
4229 	if (copy_to_user(arg, &features, sizeof(features)))
4230 		return -EFAULT;
4231 
4232 	return 0;
4233 }
4234 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4235 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4236 					void __user *arg)
4237 {
4238 	struct btrfs_super_block *super_block = fs_info->super_copy;
4239 	struct btrfs_ioctl_feature_flags features;
4240 
4241 	features.compat_flags = btrfs_super_compat_flags(super_block);
4242 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4243 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4244 
4245 	if (copy_to_user(arg, &features, sizeof(features)))
4246 		return -EFAULT;
4247 
4248 	return 0;
4249 }
4250 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4251 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4252 			      enum btrfs_feature_set set,
4253 			      u64 change_mask, u64 flags, u64 supported_flags,
4254 			      u64 safe_set, u64 safe_clear)
4255 {
4256 	const char *type = btrfs_feature_set_name(set);
4257 	char *names;
4258 	u64 disallowed, unsupported;
4259 	u64 set_mask = flags & change_mask;
4260 	u64 clear_mask = ~flags & change_mask;
4261 
4262 	unsupported = set_mask & ~supported_flags;
4263 	if (unsupported) {
4264 		names = btrfs_printable_features(set, unsupported);
4265 		if (names) {
4266 			btrfs_warn(fs_info,
4267 				   "this kernel does not support the %s feature bit%s",
4268 				   names, strchr(names, ',') ? "s" : "");
4269 			kfree(names);
4270 		} else
4271 			btrfs_warn(fs_info,
4272 				   "this kernel does not support %s bits 0x%llx",
4273 				   type, unsupported);
4274 		return -EOPNOTSUPP;
4275 	}
4276 
4277 	disallowed = set_mask & ~safe_set;
4278 	if (disallowed) {
4279 		names = btrfs_printable_features(set, disallowed);
4280 		if (names) {
4281 			btrfs_warn(fs_info,
4282 				   "can't set the %s feature bit%s while mounted",
4283 				   names, strchr(names, ',') ? "s" : "");
4284 			kfree(names);
4285 		} else
4286 			btrfs_warn(fs_info,
4287 				   "can't set %s bits 0x%llx while mounted",
4288 				   type, disallowed);
4289 		return -EPERM;
4290 	}
4291 
4292 	disallowed = clear_mask & ~safe_clear;
4293 	if (disallowed) {
4294 		names = btrfs_printable_features(set, disallowed);
4295 		if (names) {
4296 			btrfs_warn(fs_info,
4297 				   "can't clear the %s feature bit%s while mounted",
4298 				   names, strchr(names, ',') ? "s" : "");
4299 			kfree(names);
4300 		} else
4301 			btrfs_warn(fs_info,
4302 				   "can't clear %s bits 0x%llx while mounted",
4303 				   type, disallowed);
4304 		return -EPERM;
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4311 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4312 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4313 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4314 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4315 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4316 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4317 {
4318 	struct inode *inode = file_inode(file);
4319 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4320 	struct btrfs_root *root = BTRFS_I(inode)->root;
4321 	struct btrfs_super_block *super_block = fs_info->super_copy;
4322 	struct btrfs_ioctl_feature_flags flags[2];
4323 	struct btrfs_trans_handle *trans;
4324 	u64 newflags;
4325 	int ret;
4326 
4327 	if (!capable(CAP_SYS_ADMIN))
4328 		return -EPERM;
4329 
4330 	if (copy_from_user(flags, arg, sizeof(flags)))
4331 		return -EFAULT;
4332 
4333 	/* Nothing to do */
4334 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4335 	    !flags[0].incompat_flags)
4336 		return 0;
4337 
4338 	ret = check_feature(fs_info, flags[0].compat_flags,
4339 			    flags[1].compat_flags, COMPAT);
4340 	if (ret)
4341 		return ret;
4342 
4343 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4344 			    flags[1].compat_ro_flags, COMPAT_RO);
4345 	if (ret)
4346 		return ret;
4347 
4348 	ret = check_feature(fs_info, flags[0].incompat_flags,
4349 			    flags[1].incompat_flags, INCOMPAT);
4350 	if (ret)
4351 		return ret;
4352 
4353 	ret = mnt_want_write_file(file);
4354 	if (ret)
4355 		return ret;
4356 
4357 	trans = btrfs_start_transaction(root, 0);
4358 	if (IS_ERR(trans)) {
4359 		ret = PTR_ERR(trans);
4360 		goto out_drop_write;
4361 	}
4362 
4363 	spin_lock(&fs_info->super_lock);
4364 	newflags = btrfs_super_compat_flags(super_block);
4365 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4366 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4367 	btrfs_set_super_compat_flags(super_block, newflags);
4368 
4369 	newflags = btrfs_super_compat_ro_flags(super_block);
4370 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4371 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4372 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4373 
4374 	newflags = btrfs_super_incompat_flags(super_block);
4375 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4376 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4377 	btrfs_set_super_incompat_flags(super_block, newflags);
4378 	spin_unlock(&fs_info->super_lock);
4379 
4380 	ret = btrfs_commit_transaction(trans);
4381 out_drop_write:
4382 	mnt_drop_write_file(file);
4383 
4384 	return ret;
4385 }
4386 
_btrfs_ioctl_send(struct btrfs_inode * inode,void __user * argp,bool compat)4387 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4388 {
4389 	struct btrfs_ioctl_send_args *arg;
4390 	int ret;
4391 
4392 	if (compat) {
4393 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4394 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4395 
4396 		ret = copy_from_user(&args32, argp, sizeof(args32));
4397 		if (ret)
4398 			return -EFAULT;
4399 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4400 		if (!arg)
4401 			return -ENOMEM;
4402 		arg->send_fd = args32.send_fd;
4403 		arg->clone_sources_count = args32.clone_sources_count;
4404 		arg->clone_sources = compat_ptr(args32.clone_sources);
4405 		arg->parent_root = args32.parent_root;
4406 		arg->flags = args32.flags;
4407 		arg->version = args32.version;
4408 		memcpy(arg->reserved, args32.reserved,
4409 		       sizeof(args32.reserved));
4410 #else
4411 		return -ENOTTY;
4412 #endif
4413 	} else {
4414 		arg = memdup_user(argp, sizeof(*arg));
4415 		if (IS_ERR(arg))
4416 			return PTR_ERR(arg);
4417 	}
4418 	ret = btrfs_ioctl_send(inode, arg);
4419 	kfree(arg);
4420 	return ret;
4421 }
4422 
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4423 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4424 				    bool compat)
4425 {
4426 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4427 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4428 					     flags);
4429 	size_t copy_end;
4430 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4431 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4432 	struct extent_io_tree *io_tree = &inode->io_tree;
4433 	struct iovec iovstack[UIO_FASTIOV];
4434 	struct iovec *iov = iovstack;
4435 	struct iov_iter iter;
4436 	loff_t pos;
4437 	struct kiocb kiocb;
4438 	ssize_t ret;
4439 	u64 disk_bytenr, disk_io_size;
4440 	struct extent_state *cached_state = NULL;
4441 
4442 	if (!capable(CAP_SYS_ADMIN)) {
4443 		ret = -EPERM;
4444 		goto out_acct;
4445 	}
4446 
4447 	if (compat) {
4448 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4449 		struct btrfs_ioctl_encoded_io_args_32 args32;
4450 
4451 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4452 				       flags);
4453 		if (copy_from_user(&args32, argp, copy_end)) {
4454 			ret = -EFAULT;
4455 			goto out_acct;
4456 		}
4457 		args.iov = compat_ptr(args32.iov);
4458 		args.iovcnt = args32.iovcnt;
4459 		args.offset = args32.offset;
4460 		args.flags = args32.flags;
4461 #else
4462 		return -ENOTTY;
4463 #endif
4464 	} else {
4465 		copy_end = copy_end_kernel;
4466 		if (copy_from_user(&args, argp, copy_end)) {
4467 			ret = -EFAULT;
4468 			goto out_acct;
4469 		}
4470 	}
4471 	if (args.flags != 0) {
4472 		ret = -EINVAL;
4473 		goto out_acct;
4474 	}
4475 
4476 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4477 			   &iov, &iter);
4478 	if (ret < 0)
4479 		goto out_acct;
4480 
4481 	if (iov_iter_count(&iter) == 0) {
4482 		ret = 0;
4483 		goto out_iov;
4484 	}
4485 	pos = args.offset;
4486 	ret = rw_verify_area(READ, file, &pos, args.len);
4487 	if (ret < 0)
4488 		goto out_iov;
4489 
4490 	init_sync_kiocb(&kiocb, file);
4491 	kiocb.ki_pos = pos;
4492 
4493 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4494 				 &disk_bytenr, &disk_io_size);
4495 
4496 	if (ret == -EIOCBQUEUED) {
4497 		bool unlocked = false;
4498 		u64 start, lockend, count;
4499 
4500 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4501 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4502 
4503 		if (args.compression)
4504 			count = disk_io_size;
4505 		else
4506 			count = args.len;
4507 
4508 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4509 						 &cached_state, disk_bytenr,
4510 						 disk_io_size, count,
4511 						 args.compression, &unlocked);
4512 
4513 		if (!unlocked) {
4514 			unlock_extent(io_tree, start, lockend, &cached_state);
4515 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4516 		}
4517 	}
4518 
4519 	if (ret >= 0) {
4520 		fsnotify_access(file);
4521 		if (copy_to_user(argp + copy_end,
4522 				 (char *)&args + copy_end_kernel,
4523 				 sizeof(args) - copy_end_kernel))
4524 			ret = -EFAULT;
4525 	}
4526 
4527 out_iov:
4528 	kfree(iov);
4529 out_acct:
4530 	if (ret > 0)
4531 		add_rchar(current, ret);
4532 	inc_syscr(current);
4533 	return ret;
4534 }
4535 
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4536 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4537 {
4538 	struct btrfs_ioctl_encoded_io_args args;
4539 	struct iovec iovstack[UIO_FASTIOV];
4540 	struct iovec *iov = iovstack;
4541 	struct iov_iter iter;
4542 	loff_t pos;
4543 	struct kiocb kiocb;
4544 	ssize_t ret;
4545 
4546 	if (!capable(CAP_SYS_ADMIN)) {
4547 		ret = -EPERM;
4548 		goto out_acct;
4549 	}
4550 
4551 	if (!(file->f_mode & FMODE_WRITE)) {
4552 		ret = -EBADF;
4553 		goto out_acct;
4554 	}
4555 
4556 	if (compat) {
4557 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4558 		struct btrfs_ioctl_encoded_io_args_32 args32;
4559 
4560 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4561 			ret = -EFAULT;
4562 			goto out_acct;
4563 		}
4564 		args.iov = compat_ptr(args32.iov);
4565 		args.iovcnt = args32.iovcnt;
4566 		args.offset = args32.offset;
4567 		args.flags = args32.flags;
4568 		args.len = args32.len;
4569 		args.unencoded_len = args32.unencoded_len;
4570 		args.unencoded_offset = args32.unencoded_offset;
4571 		args.compression = args32.compression;
4572 		args.encryption = args32.encryption;
4573 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4574 #else
4575 		return -ENOTTY;
4576 #endif
4577 	} else {
4578 		if (copy_from_user(&args, argp, sizeof(args))) {
4579 			ret = -EFAULT;
4580 			goto out_acct;
4581 		}
4582 	}
4583 
4584 	ret = -EINVAL;
4585 	if (args.flags != 0)
4586 		goto out_acct;
4587 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4588 		goto out_acct;
4589 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4590 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4591 		goto out_acct;
4592 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4593 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4594 		goto out_acct;
4595 	if (args.unencoded_offset > args.unencoded_len)
4596 		goto out_acct;
4597 	if (args.len > args.unencoded_len - args.unencoded_offset)
4598 		goto out_acct;
4599 
4600 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4601 			   &iov, &iter);
4602 	if (ret < 0)
4603 		goto out_acct;
4604 
4605 	if (iov_iter_count(&iter) == 0) {
4606 		ret = 0;
4607 		goto out_iov;
4608 	}
4609 	pos = args.offset;
4610 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4611 	if (ret < 0)
4612 		goto out_iov;
4613 
4614 	init_sync_kiocb(&kiocb, file);
4615 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4616 	if (ret)
4617 		goto out_iov;
4618 	kiocb.ki_pos = pos;
4619 
4620 	file_start_write(file);
4621 
4622 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4623 	if (ret > 0)
4624 		fsnotify_modify(file);
4625 
4626 	file_end_write(file);
4627 out_iov:
4628 	kfree(iov);
4629 out_acct:
4630 	if (ret > 0)
4631 		add_wchar(current, ret);
4632 	inc_syscw(current);
4633 	return ret;
4634 }
4635 
4636 /*
4637  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4638  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4639  * off and cleanup the I/O in btrfs_uring_read_finished.
4640  */
4641 struct btrfs_uring_priv {
4642 	struct io_uring_cmd *cmd;
4643 	struct page **pages;
4644 	unsigned long nr_pages;
4645 	struct kiocb iocb;
4646 	struct iovec *iov;
4647 	struct iov_iter iter;
4648 	struct extent_state *cached_state;
4649 	u64 count;
4650 	u64 start;
4651 	u64 lockend;
4652 	int err;
4653 	bool compressed;
4654 };
4655 
4656 struct io_btrfs_cmd {
4657 	struct btrfs_uring_priv *priv;
4658 };
4659 
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4660 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4661 {
4662 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4663 	struct btrfs_uring_priv *priv = bc->priv;
4664 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4665 	struct extent_io_tree *io_tree = &inode->io_tree;
4666 	unsigned long index;
4667 	u64 cur;
4668 	size_t page_offset;
4669 	ssize_t ret;
4670 
4671 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4672 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4673 
4674 	if (priv->err) {
4675 		ret = priv->err;
4676 		goto out;
4677 	}
4678 
4679 	if (priv->compressed) {
4680 		index = 0;
4681 		page_offset = 0;
4682 	} else {
4683 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4684 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4685 	}
4686 	cur = 0;
4687 	while (cur < priv->count) {
4688 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4689 
4690 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4691 				      &priv->iter) != bytes) {
4692 			ret = -EFAULT;
4693 			goto out;
4694 		}
4695 
4696 		index++;
4697 		cur += bytes;
4698 		page_offset = 0;
4699 	}
4700 	ret = priv->count;
4701 
4702 out:
4703 	unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4704 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4705 
4706 	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4707 	add_rchar(current, ret);
4708 
4709 	for (index = 0; index < priv->nr_pages; index++)
4710 		__free_page(priv->pages[index]);
4711 
4712 	kfree(priv->pages);
4713 	kfree(priv->iov);
4714 	kfree(priv);
4715 }
4716 
btrfs_uring_read_extent_endio(void * ctx,int err)4717 void btrfs_uring_read_extent_endio(void *ctx, int err)
4718 {
4719 	struct btrfs_uring_priv *priv = ctx;
4720 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4721 
4722 	priv->err = err;
4723 	bc->priv = priv;
4724 
4725 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4726 }
4727 
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4728 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4729 				   u64 start, u64 lockend,
4730 				   struct extent_state *cached_state,
4731 				   u64 disk_bytenr, u64 disk_io_size,
4732 				   size_t count, bool compressed,
4733 				   struct iovec *iov, struct io_uring_cmd *cmd)
4734 {
4735 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4736 	struct extent_io_tree *io_tree = &inode->io_tree;
4737 	struct page **pages;
4738 	struct btrfs_uring_priv *priv = NULL;
4739 	unsigned long nr_pages;
4740 	int ret;
4741 
4742 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4743 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4744 	if (!pages)
4745 		return -ENOMEM;
4746 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4747 	if (ret) {
4748 		ret = -ENOMEM;
4749 		goto out_fail;
4750 	}
4751 
4752 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4753 	if (!priv) {
4754 		ret = -ENOMEM;
4755 		goto out_fail;
4756 	}
4757 
4758 	priv->iocb = *iocb;
4759 	priv->iov = iov;
4760 	priv->iter = *iter;
4761 	priv->count = count;
4762 	priv->cmd = cmd;
4763 	priv->cached_state = cached_state;
4764 	priv->compressed = compressed;
4765 	priv->nr_pages = nr_pages;
4766 	priv->pages = pages;
4767 	priv->start = start;
4768 	priv->lockend = lockend;
4769 	priv->err = 0;
4770 
4771 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4772 						    disk_io_size, pages, priv);
4773 	if (ret && ret != -EIOCBQUEUED)
4774 		goto out_fail;
4775 
4776 	/*
4777 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4778 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4779 	 * and inode and freeing the allocations.
4780 	 */
4781 
4782 	/*
4783 	 * We're returning to userspace with the inode lock held, and that's
4784 	 * okay - it'll get unlocked in a worker thread.  Call
4785 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4786 	 */
4787 	btrfs_lockdep_inode_release(inode, i_rwsem);
4788 
4789 	return -EIOCBQUEUED;
4790 
4791 out_fail:
4792 	unlock_extent(io_tree, start, lockend, &cached_state);
4793 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4794 	kfree(priv);
4795 	return ret;
4796 }
4797 
4798 struct btrfs_uring_encoded_data {
4799 	struct btrfs_ioctl_encoded_io_args args;
4800 	struct iovec iovstack[UIO_FASTIOV];
4801 	struct iovec *iov;
4802 	struct iov_iter iter;
4803 };
4804 
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4805 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4806 {
4807 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4808 	size_t copy_end;
4809 	int ret;
4810 	u64 disk_bytenr, disk_io_size;
4811 	struct file *file;
4812 	struct btrfs_inode *inode;
4813 	struct btrfs_fs_info *fs_info;
4814 	struct extent_io_tree *io_tree;
4815 	loff_t pos;
4816 	struct kiocb kiocb;
4817 	struct extent_state *cached_state = NULL;
4818 	u64 start, lockend;
4819 	void __user *sqe_addr;
4820 	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4821 
4822 	if (!capable(CAP_SYS_ADMIN)) {
4823 		ret = -EPERM;
4824 		goto out_acct;
4825 	}
4826 	file = cmd->file;
4827 	inode = BTRFS_I(file->f_inode);
4828 	fs_info = inode->root->fs_info;
4829 	io_tree = &inode->io_tree;
4830 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4831 
4832 	if (issue_flags & IO_URING_F_COMPAT) {
4833 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4834 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4835 #else
4836 		return -ENOTTY;
4837 #endif
4838 	} else {
4839 		copy_end = copy_end_kernel;
4840 	}
4841 
4842 	if (!data) {
4843 		data = kzalloc(sizeof(*data), GFP_NOFS);
4844 		if (!data) {
4845 			ret = -ENOMEM;
4846 			goto out_acct;
4847 		}
4848 
4849 		io_uring_cmd_get_async_data(cmd)->op_data = data;
4850 
4851 		if (issue_flags & IO_URING_F_COMPAT) {
4852 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4853 			struct btrfs_ioctl_encoded_io_args_32 args32;
4854 
4855 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4856 				ret = -EFAULT;
4857 				goto out_acct;
4858 			}
4859 
4860 			data->args.iov = compat_ptr(args32.iov);
4861 			data->args.iovcnt = args32.iovcnt;
4862 			data->args.offset = args32.offset;
4863 			data->args.flags = args32.flags;
4864 #endif
4865 		} else {
4866 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4867 				ret = -EFAULT;
4868 				goto out_acct;
4869 			}
4870 		}
4871 
4872 		if (data->args.flags != 0) {
4873 			ret = -EINVAL;
4874 			goto out_acct;
4875 		}
4876 
4877 		data->iov = data->iovstack;
4878 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4879 				   ARRAY_SIZE(data->iovstack), &data->iov,
4880 				   &data->iter);
4881 		if (ret < 0)
4882 			goto out_acct;
4883 
4884 		if (iov_iter_count(&data->iter) == 0) {
4885 			ret = 0;
4886 			goto out_free;
4887 		}
4888 	}
4889 
4890 	pos = data->args.offset;
4891 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4892 	if (ret < 0)
4893 		goto out_free;
4894 
4895 	init_sync_kiocb(&kiocb, file);
4896 	kiocb.ki_pos = pos;
4897 
4898 	if (issue_flags & IO_URING_F_NONBLOCK)
4899 		kiocb.ki_flags |= IOCB_NOWAIT;
4900 
4901 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4902 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4903 
4904 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4905 				 &disk_bytenr, &disk_io_size);
4906 	if (ret < 0 && ret != -EIOCBQUEUED)
4907 		goto out_free;
4908 
4909 	file_accessed(file);
4910 
4911 	if (copy_to_user(sqe_addr + copy_end,
4912 			 (const char *)&data->args + copy_end_kernel,
4913 			 sizeof(data->args) - copy_end_kernel)) {
4914 		if (ret == -EIOCBQUEUED) {
4915 			unlock_extent(io_tree, start, lockend, &cached_state);
4916 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4917 		}
4918 		ret = -EFAULT;
4919 		goto out_free;
4920 	}
4921 
4922 	if (ret == -EIOCBQUEUED) {
4923 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4924 
4925 		/* Match ioctl by not returning past EOF if uncompressed. */
4926 		if (!data->args.compression)
4927 			count = min_t(u64, count, data->args.len);
4928 
4929 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4930 					      cached_state, disk_bytenr, disk_io_size,
4931 					      count, data->args.compression,
4932 					      data->iov, cmd);
4933 
4934 		goto out_acct;
4935 	}
4936 
4937 out_free:
4938 	kfree(data->iov);
4939 
4940 out_acct:
4941 	if (ret > 0)
4942 		add_rchar(current, ret);
4943 	inc_syscr(current);
4944 
4945 	return ret;
4946 }
4947 
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4948 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4949 {
4950 	loff_t pos;
4951 	struct kiocb kiocb;
4952 	struct file *file;
4953 	ssize_t ret;
4954 	void __user *sqe_addr;
4955 	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4956 
4957 	if (!capable(CAP_SYS_ADMIN)) {
4958 		ret = -EPERM;
4959 		goto out_acct;
4960 	}
4961 
4962 	file = cmd->file;
4963 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4964 
4965 	if (!(file->f_mode & FMODE_WRITE)) {
4966 		ret = -EBADF;
4967 		goto out_acct;
4968 	}
4969 
4970 	if (!data) {
4971 		data = kzalloc(sizeof(*data), GFP_NOFS);
4972 		if (!data) {
4973 			ret = -ENOMEM;
4974 			goto out_acct;
4975 		}
4976 
4977 		io_uring_cmd_get_async_data(cmd)->op_data = data;
4978 
4979 		if (issue_flags & IO_URING_F_COMPAT) {
4980 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4981 			struct btrfs_ioctl_encoded_io_args_32 args32;
4982 
4983 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4984 				ret = -EFAULT;
4985 				goto out_acct;
4986 			}
4987 			data->args.iov = compat_ptr(args32.iov);
4988 			data->args.iovcnt = args32.iovcnt;
4989 			data->args.offset = args32.offset;
4990 			data->args.flags = args32.flags;
4991 			data->args.len = args32.len;
4992 			data->args.unencoded_len = args32.unencoded_len;
4993 			data->args.unencoded_offset = args32.unencoded_offset;
4994 			data->args.compression = args32.compression;
4995 			data->args.encryption = args32.encryption;
4996 			memcpy(data->args.reserved, args32.reserved,
4997 			       sizeof(data->args.reserved));
4998 #else
4999 			ret = -ENOTTY;
5000 			goto out_acct;
5001 #endif
5002 		} else {
5003 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
5004 				ret = -EFAULT;
5005 				goto out_acct;
5006 			}
5007 		}
5008 
5009 		ret = -EINVAL;
5010 		if (data->args.flags != 0)
5011 			goto out_acct;
5012 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5013 			goto out_acct;
5014 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5015 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5016 			goto out_acct;
5017 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5018 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5019 			goto out_acct;
5020 		if (data->args.unencoded_offset > data->args.unencoded_len)
5021 			goto out_acct;
5022 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5023 			goto out_acct;
5024 
5025 		data->iov = data->iovstack;
5026 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5027 				   ARRAY_SIZE(data->iovstack), &data->iov,
5028 				   &data->iter);
5029 		if (ret < 0)
5030 			goto out_acct;
5031 
5032 		if (iov_iter_count(&data->iter) == 0) {
5033 			ret = 0;
5034 			goto out_iov;
5035 		}
5036 	}
5037 
5038 	if (issue_flags & IO_URING_F_NONBLOCK) {
5039 		ret = -EAGAIN;
5040 		goto out_acct;
5041 	}
5042 
5043 	pos = data->args.offset;
5044 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5045 	if (ret < 0)
5046 		goto out_iov;
5047 
5048 	init_sync_kiocb(&kiocb, file);
5049 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5050 	if (ret)
5051 		goto out_iov;
5052 	kiocb.ki_pos = pos;
5053 
5054 	file_start_write(file);
5055 
5056 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5057 	if (ret > 0)
5058 		fsnotify_modify(file);
5059 
5060 	file_end_write(file);
5061 out_iov:
5062 	kfree(data->iov);
5063 out_acct:
5064 	if (ret > 0)
5065 		add_wchar(current, ret);
5066 	inc_syscw(current);
5067 	return ret;
5068 }
5069 
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5070 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5071 {
5072 	switch (cmd->cmd_op) {
5073 	case BTRFS_IOC_ENCODED_READ:
5074 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5075 	case BTRFS_IOC_ENCODED_READ_32:
5076 #endif
5077 		return btrfs_uring_encoded_read(cmd, issue_flags);
5078 
5079 	case BTRFS_IOC_ENCODED_WRITE:
5080 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5081 	case BTRFS_IOC_ENCODED_WRITE_32:
5082 #endif
5083 		return btrfs_uring_encoded_write(cmd, issue_flags);
5084 	}
5085 
5086 	return -EINVAL;
5087 }
5088 
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5089 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5090 {
5091 	struct btrfs_root *root;
5092 	struct btrfs_ioctl_subvol_wait args = { 0 };
5093 	signed long sched_ret;
5094 	int refs;
5095 	u64 root_flags;
5096 	bool wait_for_deletion = false;
5097 	bool found = false;
5098 
5099 	if (copy_from_user(&args, argp, sizeof(args)))
5100 		return -EFAULT;
5101 
5102 	switch (args.mode) {
5103 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5104 		/*
5105 		 * Wait for the first one deleted that waits until all previous
5106 		 * are cleaned.
5107 		 */
5108 		spin_lock(&fs_info->trans_lock);
5109 		if (!list_empty(&fs_info->dead_roots)) {
5110 			root = list_last_entry(&fs_info->dead_roots,
5111 					       struct btrfs_root, root_list);
5112 			args.subvolid = btrfs_root_id(root);
5113 			found = true;
5114 		}
5115 		spin_unlock(&fs_info->trans_lock);
5116 		if (!found)
5117 			return -ENOENT;
5118 
5119 		fallthrough;
5120 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5121 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5122 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5123 			return -EINVAL;
5124 		break;
5125 	case BTRFS_SUBVOL_SYNC_COUNT:
5126 		spin_lock(&fs_info->trans_lock);
5127 		args.count = list_count_nodes(&fs_info->dead_roots);
5128 		spin_unlock(&fs_info->trans_lock);
5129 		if (copy_to_user(argp, &args, sizeof(args)))
5130 			return -EFAULT;
5131 		return 0;
5132 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5133 		spin_lock(&fs_info->trans_lock);
5134 		/* Last in the list was deleted first. */
5135 		if (!list_empty(&fs_info->dead_roots)) {
5136 			root = list_last_entry(&fs_info->dead_roots,
5137 					       struct btrfs_root, root_list);
5138 			args.subvolid = btrfs_root_id(root);
5139 		} else {
5140 			args.subvolid = 0;
5141 		}
5142 		spin_unlock(&fs_info->trans_lock);
5143 		if (copy_to_user(argp, &args, sizeof(args)))
5144 			return -EFAULT;
5145 		return 0;
5146 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5147 		spin_lock(&fs_info->trans_lock);
5148 		/* First in the list was deleted last. */
5149 		if (!list_empty(&fs_info->dead_roots)) {
5150 			root = list_first_entry(&fs_info->dead_roots,
5151 						struct btrfs_root, root_list);
5152 			args.subvolid = btrfs_root_id(root);
5153 		} else {
5154 			args.subvolid = 0;
5155 		}
5156 		spin_unlock(&fs_info->trans_lock);
5157 		if (copy_to_user(argp, &args, sizeof(args)))
5158 			return -EFAULT;
5159 		return 0;
5160 	default:
5161 		return -EINVAL;
5162 	}
5163 
5164 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5165 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5166 		return -EOVERFLOW;
5167 
5168 	while (1) {
5169 		/* Wait for the specific one. */
5170 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5171 			return -EINTR;
5172 		refs = -1;
5173 		spin_lock(&fs_info->fs_roots_radix_lock);
5174 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5175 					 (unsigned long)args.subvolid);
5176 		if (root) {
5177 			spin_lock(&root->root_item_lock);
5178 			refs = btrfs_root_refs(&root->root_item);
5179 			root_flags = btrfs_root_flags(&root->root_item);
5180 			spin_unlock(&root->root_item_lock);
5181 		}
5182 		spin_unlock(&fs_info->fs_roots_radix_lock);
5183 		up_read(&fs_info->subvol_sem);
5184 
5185 		/* Subvolume does not exist. */
5186 		if (!root)
5187 			return -ENOENT;
5188 
5189 		/* Subvolume not deleted at all. */
5190 		if (refs > 0)
5191 			return -EEXIST;
5192 		/* We've waited and now the subvolume is gone. */
5193 		if (wait_for_deletion && refs == -1) {
5194 			/* Return the one we waited for as the last one. */
5195 			if (copy_to_user(argp, &args, sizeof(args)))
5196 				return -EFAULT;
5197 			return 0;
5198 		}
5199 
5200 		/* Subvolume not found on the first try (deleted or never existed). */
5201 		if (refs == -1)
5202 			return -ENOENT;
5203 
5204 		wait_for_deletion = true;
5205 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5206 		sched_ret = schedule_timeout_interruptible(HZ);
5207 		/* Early wake up or error. */
5208 		if (sched_ret != 0)
5209 			return -EINTR;
5210 	}
5211 
5212 	return 0;
5213 }
5214 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5215 long btrfs_ioctl(struct file *file, unsigned int
5216 		cmd, unsigned long arg)
5217 {
5218 	struct inode *inode = file_inode(file);
5219 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5220 	struct btrfs_root *root = BTRFS_I(inode)->root;
5221 	void __user *argp = (void __user *)arg;
5222 
5223 	switch (cmd) {
5224 	case FS_IOC_GETVERSION:
5225 		return btrfs_ioctl_getversion(inode, argp);
5226 	case FS_IOC_GETFSLABEL:
5227 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5228 	case FS_IOC_SETFSLABEL:
5229 		return btrfs_ioctl_set_fslabel(file, argp);
5230 	case FITRIM:
5231 		return btrfs_ioctl_fitrim(fs_info, argp);
5232 	case BTRFS_IOC_SNAP_CREATE:
5233 		return btrfs_ioctl_snap_create(file, argp, 0);
5234 	case BTRFS_IOC_SNAP_CREATE_V2:
5235 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5236 	case BTRFS_IOC_SUBVOL_CREATE:
5237 		return btrfs_ioctl_snap_create(file, argp, 1);
5238 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5239 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5240 	case BTRFS_IOC_SNAP_DESTROY:
5241 		return btrfs_ioctl_snap_destroy(file, argp, false);
5242 	case BTRFS_IOC_SNAP_DESTROY_V2:
5243 		return btrfs_ioctl_snap_destroy(file, argp, true);
5244 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5245 		return btrfs_ioctl_subvol_getflags(inode, argp);
5246 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5247 		return btrfs_ioctl_subvol_setflags(file, argp);
5248 	case BTRFS_IOC_DEFAULT_SUBVOL:
5249 		return btrfs_ioctl_default_subvol(file, argp);
5250 	case BTRFS_IOC_DEFRAG:
5251 		return btrfs_ioctl_defrag(file, NULL);
5252 	case BTRFS_IOC_DEFRAG_RANGE:
5253 		return btrfs_ioctl_defrag(file, argp);
5254 	case BTRFS_IOC_RESIZE:
5255 		return btrfs_ioctl_resize(file, argp);
5256 	case BTRFS_IOC_ADD_DEV:
5257 		return btrfs_ioctl_add_dev(fs_info, argp);
5258 	case BTRFS_IOC_RM_DEV:
5259 		return btrfs_ioctl_rm_dev(file, argp);
5260 	case BTRFS_IOC_RM_DEV_V2:
5261 		return btrfs_ioctl_rm_dev_v2(file, argp);
5262 	case BTRFS_IOC_FS_INFO:
5263 		return btrfs_ioctl_fs_info(fs_info, argp);
5264 	case BTRFS_IOC_DEV_INFO:
5265 		return btrfs_ioctl_dev_info(fs_info, argp);
5266 	case BTRFS_IOC_TREE_SEARCH:
5267 		return btrfs_ioctl_tree_search(inode, argp);
5268 	case BTRFS_IOC_TREE_SEARCH_V2:
5269 		return btrfs_ioctl_tree_search_v2(inode, argp);
5270 	case BTRFS_IOC_INO_LOOKUP:
5271 		return btrfs_ioctl_ino_lookup(root, argp);
5272 	case BTRFS_IOC_INO_PATHS:
5273 		return btrfs_ioctl_ino_to_path(root, argp);
5274 	case BTRFS_IOC_LOGICAL_INO:
5275 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5276 	case BTRFS_IOC_LOGICAL_INO_V2:
5277 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5278 	case BTRFS_IOC_SPACE_INFO:
5279 		return btrfs_ioctl_space_info(fs_info, argp);
5280 	case BTRFS_IOC_SYNC: {
5281 		int ret;
5282 
5283 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5284 		if (ret)
5285 			return ret;
5286 		ret = btrfs_sync_fs(inode->i_sb, 1);
5287 		/*
5288 		 * There may be work for the cleaner kthread to do (subvolume
5289 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5290 		 */
5291 		wake_up_process(fs_info->cleaner_kthread);
5292 		return ret;
5293 	}
5294 	case BTRFS_IOC_START_SYNC:
5295 		return btrfs_ioctl_start_sync(root, argp);
5296 	case BTRFS_IOC_WAIT_SYNC:
5297 		return btrfs_ioctl_wait_sync(fs_info, argp);
5298 	case BTRFS_IOC_SCRUB:
5299 		return btrfs_ioctl_scrub(file, argp);
5300 	case BTRFS_IOC_SCRUB_CANCEL:
5301 		return btrfs_ioctl_scrub_cancel(fs_info);
5302 	case BTRFS_IOC_SCRUB_PROGRESS:
5303 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5304 	case BTRFS_IOC_BALANCE_V2:
5305 		return btrfs_ioctl_balance(file, argp);
5306 	case BTRFS_IOC_BALANCE_CTL:
5307 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5308 	case BTRFS_IOC_BALANCE_PROGRESS:
5309 		return btrfs_ioctl_balance_progress(fs_info, argp);
5310 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5311 		return btrfs_ioctl_set_received_subvol(file, argp);
5312 #ifdef CONFIG_64BIT
5313 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5314 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5315 #endif
5316 	case BTRFS_IOC_SEND:
5317 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5318 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5319 	case BTRFS_IOC_SEND_32:
5320 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5321 #endif
5322 	case BTRFS_IOC_GET_DEV_STATS:
5323 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5324 	case BTRFS_IOC_QUOTA_CTL:
5325 		return btrfs_ioctl_quota_ctl(file, argp);
5326 	case BTRFS_IOC_QGROUP_ASSIGN:
5327 		return btrfs_ioctl_qgroup_assign(file, argp);
5328 	case BTRFS_IOC_QGROUP_CREATE:
5329 		return btrfs_ioctl_qgroup_create(file, argp);
5330 	case BTRFS_IOC_QGROUP_LIMIT:
5331 		return btrfs_ioctl_qgroup_limit(file, argp);
5332 	case BTRFS_IOC_QUOTA_RESCAN:
5333 		return btrfs_ioctl_quota_rescan(file, argp);
5334 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5335 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5336 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5337 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5338 	case BTRFS_IOC_DEV_REPLACE:
5339 		return btrfs_ioctl_dev_replace(fs_info, argp);
5340 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5341 		return btrfs_ioctl_get_supported_features(argp);
5342 	case BTRFS_IOC_GET_FEATURES:
5343 		return btrfs_ioctl_get_features(fs_info, argp);
5344 	case BTRFS_IOC_SET_FEATURES:
5345 		return btrfs_ioctl_set_features(file, argp);
5346 	case BTRFS_IOC_GET_SUBVOL_INFO:
5347 		return btrfs_ioctl_get_subvol_info(inode, argp);
5348 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5349 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5350 	case BTRFS_IOC_INO_LOOKUP_USER:
5351 		return btrfs_ioctl_ino_lookup_user(file, argp);
5352 	case FS_IOC_ENABLE_VERITY:
5353 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5354 	case FS_IOC_MEASURE_VERITY:
5355 		return fsverity_ioctl_measure(file, argp);
5356 	case FS_IOC_READ_VERITY_METADATA:
5357 		return fsverity_ioctl_read_metadata(file, argp);
5358 	case BTRFS_IOC_ENCODED_READ:
5359 		return btrfs_ioctl_encoded_read(file, argp, false);
5360 	case BTRFS_IOC_ENCODED_WRITE:
5361 		return btrfs_ioctl_encoded_write(file, argp, false);
5362 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5363 	case BTRFS_IOC_ENCODED_READ_32:
5364 		return btrfs_ioctl_encoded_read(file, argp, true);
5365 	case BTRFS_IOC_ENCODED_WRITE_32:
5366 		return btrfs_ioctl_encoded_write(file, argp, true);
5367 #endif
5368 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5369 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5370 	}
5371 
5372 	return -ENOTTY;
5373 }
5374 
5375 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5376 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5377 {
5378 	/*
5379 	 * These all access 32-bit values anyway so no further
5380 	 * handling is necessary.
5381 	 */
5382 	switch (cmd) {
5383 	case FS_IOC32_GETVERSION:
5384 		cmd = FS_IOC_GETVERSION;
5385 		break;
5386 	}
5387 
5388 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5389 }
5390 #endif
5391