xref: /linux/arch/arm64/include/asm/pgtable.h (revision d79f9c9cf703d873849253f82fb9d6e1bd2b36f1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLER__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 static inline void emit_pte_barriers(void)
44 {
45 	/*
46 	 * These barriers are emitted under certain conditions after a pte entry
47 	 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 	 * visible to the table walker. The isb ensures that any previous
49 	 * speculative "invalid translation" marker that is in the CPU's
50 	 * pipeline gets cleared, so that any access to that address after
51 	 * setting the pte to valid won't cause a spurious fault. If the thread
52 	 * gets preempted after storing to the pgtable but before emitting these
53 	 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 	 * see the store. There is no guarantee of an isb being issued though.
55 	 * This is safe because it will still get issued (albeit on a
56 	 * potentially different CPU) when the thread starts running again,
57 	 * before any access to the address.
58 	 */
59 	dsb(ishst);
60 	isb();
61 }
62 
63 static inline void queue_pte_barriers(void)
64 {
65 	if (is_lazy_mmu_mode_active()) {
66 		/* Avoid the atomic op if already set. */
67 		if (!test_thread_flag(TIF_LAZY_MMU_PENDING))
68 			set_thread_flag(TIF_LAZY_MMU_PENDING);
69 	} else {
70 		emit_pte_barriers();
71 	}
72 }
73 
74 static inline void arch_enter_lazy_mmu_mode(void) {}
75 
76 static inline void arch_flush_lazy_mmu_mode(void)
77 {
78 	if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
79 		emit_pte_barriers();
80 }
81 
82 static inline void arch_leave_lazy_mmu_mode(void)
83 {
84 	arch_flush_lazy_mmu_mode();
85 }
86 
87 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
88 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
89 
90 /* Set stride and tlb_level in flush_*_tlb_range */
91 #define flush_pmd_tlb_range(vma, addr, end)	\
92 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
93 #define flush_pud_tlb_range(vma, addr, end)	\
94 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
95 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
96 
97 /*
98  * We use local TLB invalidation instruction when reusing page in
99  * write protection fault handler to avoid TLBI broadcast in the hot
100  * path.  This will cause spurious page faults if stale read-only TLB
101  * entries exist.
102  */
103 #define flush_tlb_fix_spurious_fault(vma, address, ptep)	\
104 	local_flush_tlb_page_nonotify(vma, address)
105 
106 #define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp)	\
107 	local_flush_tlb_page_nonotify(vma, address)
108 
109 /*
110  * ZERO_PAGE is a global shared page that is always zero: used
111  * for zero-mapped memory areas etc..
112  */
113 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
114 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
115 
116 #define pte_ERROR(e)	\
117 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
118 
119 #ifdef CONFIG_ARM64_PA_BITS_52
120 static inline phys_addr_t __pte_to_phys(pte_t pte)
121 {
122 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
123 	return (pte_val(pte) & PTE_ADDR_LOW) |
124 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
125 }
126 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
127 {
128 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
129 }
130 #else
131 static inline phys_addr_t __pte_to_phys(pte_t pte)
132 {
133 	return pte_val(pte) & PTE_ADDR_LOW;
134 }
135 
136 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
137 {
138 	return phys;
139 }
140 #endif
141 
142 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
143 #define pfn_pte(pfn,prot)	\
144 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
145 
146 #define pte_none(pte)		(!pte_val(pte))
147 #define __pte_clear(mm, addr, ptep) \
148 				__set_pte(ptep, __pte(0))
149 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
150 
151 /*
152  * The following only work if pte_present(). Undefined behaviour otherwise.
153  */
154 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
155 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
156 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
157 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
158 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
159 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
160 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
161 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
162 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
163 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
164 
165 #define pte_cont_addr_end(addr, end)						\
166 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
167 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
168 })
169 
170 #define pmd_cont_addr_end(addr, end)						\
171 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
172 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
173 })
174 
175 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
176 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
177 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
178 
179 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
180 #define pte_present_invalid(pte) \
181 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
182 /*
183  * Execute-only user mappings do not have the PTE_USER bit set. All valid
184  * kernel mappings have the PTE_UXN bit set.
185  */
186 #define pte_valid_not_user(pte) \
187 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
188 /*
189  * Returns true if the pte is valid and has the contiguous bit set.
190  */
191 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
192 /*
193  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
194  * so that we don't erroneously return false for pages that have been
195  * remapped as PROT_NONE but are yet to be flushed from the TLB.
196  * Note that we can't make any assumptions based on the state of the access
197  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
198  * TLB.
199  */
200 #define pte_accessible(mm, pte)	\
201 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
202 
203 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
204 {
205 	u64 por;
206 
207 	if (!system_supports_poe())
208 		return true;
209 
210 	por = read_sysreg_s(SYS_POR_EL0);
211 
212 	if (write)
213 		return por_elx_allows_write(por, pkey);
214 
215 	if (execute)
216 		return por_elx_allows_exec(por, pkey);
217 
218 	return por_elx_allows_read(por, pkey);
219 }
220 
221 /*
222  * p??_access_permitted() is true for valid user mappings (PTE_USER
223  * bit set, subject to the write permission check). For execute-only
224  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
225  * not set) must return false. PROT_NONE mappings do not have the
226  * PTE_VALID bit set.
227  */
228 #define pte_access_permitted_no_overlay(pte, write) \
229 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
230 #define pte_access_permitted(pte, write) \
231 	(pte_access_permitted_no_overlay(pte, write) && \
232 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
233 #define pmd_access_permitted(pmd, write) \
234 	(pte_access_permitted(pmd_pte(pmd), (write)))
235 #define pud_access_permitted(pud, write) \
236 	(pte_access_permitted(pud_pte(pud), (write)))
237 
238 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
239 {
240 	pte_val(pte) &= ~pgprot_val(prot);
241 	return pte;
242 }
243 
244 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
245 {
246 	pte_val(pte) |= pgprot_val(prot);
247 	return pte;
248 }
249 
250 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
251 {
252 	pmd_val(pmd) &= ~pgprot_val(prot);
253 	return pmd;
254 }
255 
256 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
257 {
258 	pmd_val(pmd) |= pgprot_val(prot);
259 	return pmd;
260 }
261 
262 static inline pte_t pte_mkwrite_novma(pte_t pte)
263 {
264 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
265 	if (pte_sw_dirty(pte))
266 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
267 	return pte;
268 }
269 
270 static inline pte_t pte_mkclean(pte_t pte)
271 {
272 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
273 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
274 
275 	return pte;
276 }
277 
278 static inline pte_t pte_mkdirty(pte_t pte)
279 {
280 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
281 
282 	if (pte_write(pte))
283 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
284 
285 	return pte;
286 }
287 
288 static inline pte_t pte_wrprotect(pte_t pte)
289 {
290 	/*
291 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
292 	 * clear), set the PTE_DIRTY bit.
293 	 */
294 	if (pte_hw_dirty(pte))
295 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
296 
297 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
298 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
299 	return pte;
300 }
301 
302 static inline pte_t pte_mkold(pte_t pte)
303 {
304 	return clear_pte_bit(pte, __pgprot(PTE_AF));
305 }
306 
307 static inline pte_t pte_mkyoung(pte_t pte)
308 {
309 	return set_pte_bit(pte, __pgprot(PTE_AF));
310 }
311 
312 static inline pte_t pte_mkspecial(pte_t pte)
313 {
314 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
315 }
316 
317 static inline pte_t pte_mkcont(pte_t pte)
318 {
319 	return set_pte_bit(pte, __pgprot(PTE_CONT));
320 }
321 
322 static inline pte_t pte_mknoncont(pte_t pte)
323 {
324 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
325 }
326 
327 static inline pte_t pte_mkvalid(pte_t pte)
328 {
329 	return set_pte_bit(pte, __pgprot(PTE_VALID));
330 }
331 
332 static inline pte_t pte_mkinvalid(pte_t pte)
333 {
334 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
335 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
336 	return pte;
337 }
338 
339 static inline pmd_t pmd_mkcont(pmd_t pmd)
340 {
341 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
342 }
343 
344 static inline pmd_t pmd_mknoncont(pmd_t pmd)
345 {
346 	return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
347 }
348 
349 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
350 static inline int pte_uffd_wp(pte_t pte)
351 {
352 	return !!(pte_val(pte) & PTE_UFFD_WP);
353 }
354 
355 static inline pte_t pte_mkuffd_wp(pte_t pte)
356 {
357 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
358 }
359 
360 static inline pte_t pte_clear_uffd_wp(pte_t pte)
361 {
362 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
363 }
364 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
365 
366 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
367 {
368 	WRITE_ONCE(*ptep, pte);
369 }
370 
371 static inline void __set_pte_complete(pte_t pte)
372 {
373 	/*
374 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
375 	 * has the necessary barriers.
376 	 */
377 	if (pte_valid_not_user(pte))
378 		queue_pte_barriers();
379 }
380 
381 static inline void __set_pte(pte_t *ptep, pte_t pte)
382 {
383 	__set_pte_nosync(ptep, pte);
384 	__set_pte_complete(pte);
385 }
386 
387 static inline pte_t __ptep_get(pte_t *ptep)
388 {
389 	return READ_ONCE(*ptep);
390 }
391 
392 extern void __sync_icache_dcache(pte_t pteval);
393 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
394 
395 /*
396  * PTE bits configuration in the presence of hardware Dirty Bit Management
397  * (PTE_WRITE == PTE_DBM):
398  *
399  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
400  *   0      0      |   1           0          0
401  *   0      1      |   1           1          0
402  *   1      0      |   1           0          1
403  *   1      1      |   0           1          x
404  *
405  * When hardware DBM is not present, the software PTE_DIRTY bit is updated via
406  * the page fault mechanism. Checking the dirty status of a pte becomes:
407  *
408  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
409  */
410 
411 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
412 					   pte_t pte)
413 {
414 	pte_t old_pte;
415 
416 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
417 		return;
418 
419 	old_pte = __ptep_get(ptep);
420 
421 	if (!pte_valid(old_pte) || !pte_valid(pte))
422 		return;
423 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
424 		return;
425 
426 	/*
427 	 * Check for potential race with hardware updates of the pte
428 	 * (__ptep_set_access_flags safely changes valid ptes without going
429 	 * through an invalid entry).
430 	 */
431 	VM_WARN_ONCE(!pte_young(pte),
432 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
433 		     __func__, pte_val(old_pte), pte_val(pte));
434 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
435 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
436 		     __func__, pte_val(old_pte), pte_val(pte));
437 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
438 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
439 		     __func__, pte_val(old_pte), pte_val(pte));
440 }
441 
442 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
443 {
444 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
445 		__sync_icache_dcache(pte);
446 
447 	/*
448 	 * If the PTE would provide user space access to the tags associated
449 	 * with it then ensure that the MTE tags are synchronised.  Although
450 	 * pte_access_permitted_no_overlay() returns false for exec only
451 	 * mappings, they don't expose tags (instruction fetches don't check
452 	 * tags).
453 	 */
454 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
455 	    !pte_special(pte) && pte_tagged(pte))
456 		mte_sync_tags(pte, nr_pages);
457 }
458 
459 /*
460  * Select all bits except the pfn
461  */
462 #define pte_pgprot pte_pgprot
463 static inline pgprot_t pte_pgprot(pte_t pte)
464 {
465 	unsigned long pfn = pte_pfn(pte);
466 
467 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
468 }
469 
470 #define pte_advance_pfn pte_advance_pfn
471 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
472 {
473 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
474 }
475 
476 /*
477  * Hugetlb definitions.
478  */
479 #define HUGE_MAX_HSTATE		4
480 #define HPAGE_SHIFT		PMD_SHIFT
481 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
482 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
483 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
484 
485 static inline pte_t pgd_pte(pgd_t pgd)
486 {
487 	return __pte(pgd_val(pgd));
488 }
489 
490 static inline pte_t p4d_pte(p4d_t p4d)
491 {
492 	return __pte(p4d_val(p4d));
493 }
494 
495 static inline pte_t pud_pte(pud_t pud)
496 {
497 	return __pte(pud_val(pud));
498 }
499 
500 static inline pud_t pte_pud(pte_t pte)
501 {
502 	return __pud(pte_val(pte));
503 }
504 
505 static inline pmd_t pud_pmd(pud_t pud)
506 {
507 	return __pmd(pud_val(pud));
508 }
509 
510 static inline pte_t pmd_pte(pmd_t pmd)
511 {
512 	return __pte(pmd_val(pmd));
513 }
514 
515 static inline pmd_t pte_pmd(pte_t pte)
516 {
517 	return __pmd(pte_val(pte));
518 }
519 
520 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
521 {
522 	return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
523 }
524 
525 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
526 {
527 	return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
528 }
529 
530 static inline pte_t pte_swp_mkexclusive(pte_t pte)
531 {
532 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
533 }
534 
535 static inline bool pte_swp_exclusive(pte_t pte)
536 {
537 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
538 }
539 
540 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
541 {
542 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
543 }
544 
545 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
546 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
547 {
548 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
549 }
550 
551 static inline int pte_swp_uffd_wp(pte_t pte)
552 {
553 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
554 }
555 
556 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
557 {
558 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
559 }
560 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
561 
562 #ifdef CONFIG_NUMA_BALANCING
563 /*
564  * See the comment in include/linux/pgtable.h
565  */
566 static inline int pte_protnone(pte_t pte)
567 {
568 	/*
569 	 * pte_present_invalid() tells us that the pte is invalid from HW
570 	 * perspective but present from SW perspective, so the fields are to be
571 	 * interpreted as per the HW layout. The second 2 checks are the unique
572 	 * encoding that we use for PROT_NONE. It is insufficient to only use
573 	 * the first check because we share the same encoding scheme with pmds
574 	 * which support pmd_mkinvalid(), so can be present-invalid without
575 	 * being PROT_NONE.
576 	 */
577 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
578 }
579 
580 static inline int pmd_protnone(pmd_t pmd)
581 {
582 	return pte_protnone(pmd_pte(pmd));
583 }
584 #endif
585 
586 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
587 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
588 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
589 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
590 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
591 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
592 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
593 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
594 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
595 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
596 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
597 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
598 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
599 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
600 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
601 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
602 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
603 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
604 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
605 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
606 #define pmd_swp_clear_uffd_wp(pmd) \
607 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
608 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
609 
610 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
611 
612 static inline pmd_t pmd_mkhuge(pmd_t pmd)
613 {
614 	/*
615 	 * It's possible that the pmd is present-invalid on entry
616 	 * and in that case it needs to remain present-invalid on
617 	 * exit. So ensure the VALID bit does not get modified.
618 	 */
619 	pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
620 	pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
621 
622 	return __pmd((pmd_val(pmd) & ~mask) | val);
623 }
624 
625 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
626 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
627 static inline pmd_t pmd_mkspecial(pmd_t pmd)
628 {
629 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
630 }
631 #endif
632 
633 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
634 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
635 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
636 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
637 
638 #define pud_young(pud)		pte_young(pud_pte(pud))
639 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
640 #define pud_write(pud)		pte_write(pud_pte(pud))
641 
642 static inline pud_t pud_mkhuge(pud_t pud)
643 {
644 	/*
645 	 * It's possible that the pud is present-invalid on entry
646 	 * and in that case it needs to remain present-invalid on
647 	 * exit. So ensure the VALID bit does not get modified.
648 	 */
649 	pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
650 	pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
651 
652 	return __pud((pud_val(pud) & ~mask) | val);
653 }
654 
655 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
656 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
657 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
658 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
659 
660 #define pmd_pgprot pmd_pgprot
661 static inline pgprot_t pmd_pgprot(pmd_t pmd)
662 {
663 	unsigned long pfn = pmd_pfn(pmd);
664 
665 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
666 }
667 
668 #define pud_pgprot pud_pgprot
669 static inline pgprot_t pud_pgprot(pud_t pud)
670 {
671 	unsigned long pfn = pud_pfn(pud);
672 
673 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
674 }
675 
676 static inline void __set_ptes_anysz(struct mm_struct *mm, unsigned long addr,
677 				    pte_t *ptep, pte_t pte, unsigned int nr,
678 				    unsigned long pgsize)
679 {
680 	unsigned long stride = pgsize >> PAGE_SHIFT;
681 
682 	switch (pgsize) {
683 	case PAGE_SIZE:
684 		page_table_check_ptes_set(mm, addr, ptep, pte, nr);
685 		break;
686 	case PMD_SIZE:
687 		page_table_check_pmds_set(mm, addr, (pmd_t *)ptep,
688 					  pte_pmd(pte), nr);
689 		break;
690 #ifndef __PAGETABLE_PMD_FOLDED
691 	case PUD_SIZE:
692 		page_table_check_puds_set(mm, addr, (pud_t *)ptep,
693 					  pte_pud(pte), nr);
694 		break;
695 #endif
696 	default:
697 		VM_WARN_ON(1);
698 	}
699 
700 	__sync_cache_and_tags(pte, nr * stride);
701 
702 	for (;;) {
703 		__check_safe_pte_update(mm, ptep, pte);
704 		__set_pte_nosync(ptep, pte);
705 		if (--nr == 0)
706 			break;
707 		ptep++;
708 		pte = pte_advance_pfn(pte, stride);
709 	}
710 
711 	__set_pte_complete(pte);
712 }
713 
714 static inline void __set_ptes(struct mm_struct *mm, unsigned long addr,
715 			      pte_t *ptep, pte_t pte, unsigned int nr)
716 {
717 	__set_ptes_anysz(mm, addr, ptep, pte, nr, PAGE_SIZE);
718 }
719 
720 static inline void __set_pmds(struct mm_struct *mm, unsigned long addr,
721 			      pmd_t *pmdp, pmd_t pmd, unsigned int nr)
722 {
723 	__set_ptes_anysz(mm, addr, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
724 }
725 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
726 
727 static inline void __set_puds(struct mm_struct *mm, unsigned long addr,
728 			      pud_t *pudp, pud_t pud, unsigned int nr)
729 {
730 	__set_ptes_anysz(mm, addr, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
731 }
732 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
733 
734 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
735 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
736 
737 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
738 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
739 
740 #define __pgprot_modify(prot,mask,bits) \
741 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
742 
743 #define pgprot_nx(prot) \
744 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
745 
746 #define pgprot_decrypted(prot) \
747 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
748 #define pgprot_encrypted(prot) \
749 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
750 
751 /*
752  * Mark the prot value as uncacheable and unbufferable.
753  */
754 #define pgprot_noncached(prot) \
755 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
756 #define pgprot_writecombine(prot) \
757 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
758 #define pgprot_device(prot) \
759 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
760 #define pgprot_tagged(prot) \
761 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
762 #define pgprot_mhp	pgprot_tagged
763 /*
764  * DMA allocations for non-coherent devices use what the Arm architecture calls
765  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
766  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
767  * is intended for MMIO and thus forbids speculation, preserves access size,
768  * requires strict alignment and can also force write responses to come from the
769  * endpoint.
770  */
771 #define pgprot_dmacoherent(prot) \
772 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
773 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
774 
775 #define __HAVE_PHYS_MEM_ACCESS_PROT
776 struct file;
777 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
778 				     unsigned long size, pgprot_t vma_prot);
779 
780 #define pmd_none(pmd)		(!pmd_val(pmd))
781 
782 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
783 				 PMD_TYPE_TABLE)
784 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
785 				 PMD_TYPE_SECT)
786 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
787 #define pmd_bad(pmd)		(!pmd_table(pmd))
788 
789 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
790 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
791 
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
793 static inline int pmd_trans_huge(pmd_t pmd)
794 {
795 	/*
796 	 * If pmd is present-invalid, pmd_table() won't detect it
797 	 * as a table, so force the valid bit for the comparison.
798 	 */
799 	return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
800 }
801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
802 
803 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
804 static inline bool pud_sect(pud_t pud) { return false; }
805 static inline bool pud_table(pud_t pud) { return true; }
806 #else
807 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
808 				 PUD_TYPE_SECT)
809 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
810 				 PUD_TYPE_TABLE)
811 #endif
812 
813 extern pgd_t swapper_pg_dir[];
814 extern pgd_t idmap_pg_dir[];
815 extern pgd_t tramp_pg_dir[];
816 extern pgd_t reserved_pg_dir[];
817 
818 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
819 
820 static inline bool in_swapper_pgdir(void *addr)
821 {
822 	return ((unsigned long)addr & PAGE_MASK) ==
823 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
824 }
825 
826 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
827 {
828 #ifdef __PAGETABLE_PMD_FOLDED
829 	if (in_swapper_pgdir(pmdp)) {
830 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
831 		return;
832 	}
833 #endif /* __PAGETABLE_PMD_FOLDED */
834 
835 	WRITE_ONCE(*pmdp, pmd);
836 
837 	if (pmd_valid(pmd))
838 		queue_pte_barriers();
839 }
840 
841 static inline void pmd_clear(pmd_t *pmdp)
842 {
843 	set_pmd(pmdp, __pmd(0));
844 }
845 
846 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
847 {
848 	return __pmd_to_phys(pmd);
849 }
850 
851 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
852 {
853 	return (unsigned long)__va(pmd_page_paddr(pmd));
854 }
855 
856 /* Find an entry in the third-level page table. */
857 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
858 
859 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
860 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
861 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
862 
863 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
864 
865 /* use ONLY for statically allocated translation tables */
866 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
867 
868 #if CONFIG_PGTABLE_LEVELS > 2
869 
870 #define pmd_ERROR(e)	\
871 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
872 
873 #define pud_none(pud)		(!pud_val(pud))
874 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
875 				 PUD_TYPE_TABLE)
876 #define pud_present(pud)	pte_present(pud_pte(pud))
877 #ifndef __PAGETABLE_PMD_FOLDED
878 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
879 #else
880 #define pud_leaf(pud)		false
881 #endif
882 #define pud_valid(pud)		pte_valid(pud_pte(pud))
883 #define pud_user(pud)		pte_user(pud_pte(pud))
884 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
885 
886 static inline bool pgtable_l4_enabled(void);
887 
888 static inline void set_pud(pud_t *pudp, pud_t pud)
889 {
890 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
891 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
892 		return;
893 	}
894 
895 	WRITE_ONCE(*pudp, pud);
896 
897 	if (pud_valid(pud))
898 		queue_pte_barriers();
899 }
900 
901 static inline void pud_clear(pud_t *pudp)
902 {
903 	set_pud(pudp, __pud(0));
904 }
905 
906 static inline phys_addr_t pud_page_paddr(pud_t pud)
907 {
908 	return __pud_to_phys(pud);
909 }
910 
911 static inline pmd_t *pud_pgtable(pud_t pud)
912 {
913 	return (pmd_t *)__va(pud_page_paddr(pud));
914 }
915 
916 /* Find an entry in the second-level page table. */
917 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
918 
919 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
920 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
921 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
922 
923 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
924 
925 /* use ONLY for statically allocated translation tables */
926 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
927 
928 #else
929 
930 #define pud_valid(pud)		false
931 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
932 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
933 
934 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
935 #define pmd_set_fixmap(addr)		NULL
936 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
937 #define pmd_clear_fixmap()
938 
939 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
940 
941 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
942 
943 #if CONFIG_PGTABLE_LEVELS > 3
944 
945 static __always_inline bool pgtable_l4_enabled(void)
946 {
947 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
948 		return true;
949 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
950 		return vabits_actual == VA_BITS;
951 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
952 }
953 
954 static inline bool mm_pud_folded(const struct mm_struct *mm)
955 {
956 	return !pgtable_l4_enabled();
957 }
958 #define mm_pud_folded  mm_pud_folded
959 
960 #define pud_ERROR(e)	\
961 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
962 
963 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
964 #define p4d_bad(p4d)		(pgtable_l4_enabled() && \
965 				((p4d_val(p4d) & P4D_TYPE_MASK) != \
966 				 P4D_TYPE_TABLE))
967 #define p4d_present(p4d)	(!p4d_none(p4d))
968 
969 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
970 {
971 	if (in_swapper_pgdir(p4dp)) {
972 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
973 		return;
974 	}
975 
976 	WRITE_ONCE(*p4dp, p4d);
977 	queue_pte_barriers();
978 }
979 
980 static inline void p4d_clear(p4d_t *p4dp)
981 {
982 	if (pgtable_l4_enabled())
983 		set_p4d(p4dp, __p4d(0));
984 }
985 
986 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
987 {
988 	return __p4d_to_phys(p4d);
989 }
990 
991 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
992 
993 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
994 {
995 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
996 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
997 
998 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
999 }
1000 
1001 static inline pud_t *p4d_pgtable(p4d_t p4d)
1002 {
1003 	return (pud_t *)__va(p4d_page_paddr(p4d));
1004 }
1005 
1006 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1007 {
1008 	BUG_ON(!pgtable_l4_enabled());
1009 
1010 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1011 }
1012 
1013 static inline
1014 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1015 {
1016 	if (!pgtable_l4_enabled())
1017 		return p4d_to_folded_pud(p4dp, addr);
1018 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1019 }
1020 #define pud_offset_lockless pud_offset_lockless
1021 
1022 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1023 {
1024 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1025 }
1026 #define pud_offset	pud_offset
1027 
1028 static inline pud_t *pud_set_fixmap(unsigned long addr)
1029 {
1030 	if (!pgtable_l4_enabled())
1031 		return NULL;
1032 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1033 }
1034 
1035 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1036 {
1037 	if (!pgtable_l4_enabled())
1038 		return p4d_to_folded_pud(p4dp, addr);
1039 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1040 }
1041 
1042 static inline void pud_clear_fixmap(void)
1043 {
1044 	if (pgtable_l4_enabled())
1045 		clear_fixmap(FIX_PUD);
1046 }
1047 
1048 /* use ONLY for statically allocated translation tables */
1049 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1050 {
1051 	if (!pgtable_l4_enabled())
1052 		return p4d_to_folded_pud(p4dp, addr);
1053 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1054 }
1055 
1056 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1057 
1058 #else
1059 
1060 static inline bool pgtable_l4_enabled(void) { return false; }
1061 
1062 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
1063 
1064 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1065 #define pud_set_fixmap(addr)		NULL
1066 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1067 #define pud_clear_fixmap()
1068 
1069 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1070 
1071 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1072 
1073 #if CONFIG_PGTABLE_LEVELS > 4
1074 
1075 static __always_inline bool pgtable_l5_enabled(void)
1076 {
1077 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1078 		return vabits_actual == VA_BITS;
1079 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1080 }
1081 
1082 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1083 {
1084 	return !pgtable_l5_enabled();
1085 }
1086 #define mm_p4d_folded  mm_p4d_folded
1087 
1088 #define p4d_ERROR(e)	\
1089 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1090 
1091 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1092 #define pgd_bad(pgd)		(pgtable_l5_enabled() && \
1093 				((pgd_val(pgd) & PGD_TYPE_MASK) != \
1094 				 PGD_TYPE_TABLE))
1095 #define pgd_present(pgd)	(!pgd_none(pgd))
1096 
1097 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1098 {
1099 	if (in_swapper_pgdir(pgdp)) {
1100 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1101 		return;
1102 	}
1103 
1104 	WRITE_ONCE(*pgdp, pgd);
1105 	queue_pte_barriers();
1106 }
1107 
1108 static inline void pgd_clear(pgd_t *pgdp)
1109 {
1110 	if (pgtable_l5_enabled())
1111 		set_pgd(pgdp, __pgd(0));
1112 }
1113 
1114 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1115 {
1116 	return __pgd_to_phys(pgd);
1117 }
1118 
1119 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1120 
1121 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1122 {
1123 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1124 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1125 
1126 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1127 }
1128 
1129 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1130 {
1131 	BUG_ON(!pgtable_l5_enabled());
1132 
1133 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1134 }
1135 
1136 static inline
1137 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1138 {
1139 	if (!pgtable_l5_enabled())
1140 		return pgd_to_folded_p4d(pgdp, addr);
1141 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1142 }
1143 #define p4d_offset_lockless p4d_offset_lockless
1144 
1145 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1146 {
1147 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1148 }
1149 
1150 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1151 {
1152 	if (!pgtable_l5_enabled())
1153 		return NULL;
1154 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1155 }
1156 
1157 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1158 {
1159 	if (!pgtable_l5_enabled())
1160 		return pgd_to_folded_p4d(pgdp, addr);
1161 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1162 }
1163 
1164 static inline void p4d_clear_fixmap(void)
1165 {
1166 	if (pgtable_l5_enabled())
1167 		clear_fixmap(FIX_P4D);
1168 }
1169 
1170 /* use ONLY for statically allocated translation tables */
1171 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1172 {
1173 	if (!pgtable_l5_enabled())
1174 		return pgd_to_folded_p4d(pgdp, addr);
1175 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1176 }
1177 
1178 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1179 
1180 #else
1181 
1182 static inline bool pgtable_l5_enabled(void) { return false; }
1183 
1184 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1185 
1186 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1187 #define p4d_set_fixmap(addr)		NULL
1188 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1189 #define p4d_clear_fixmap()
1190 
1191 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1192 
1193 static inline
1194 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1195 {
1196 	/*
1197 	 * With runtime folding of the pud, pud_offset_lockless() passes
1198 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1199 	 * will offset the pointer assuming that it points into
1200 	 * a page-table page. However, the fast GUP path passes us a
1201 	 * pgd_t allocated on the stack and so we must use the original
1202 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1203 	 * using the generic p4d_offset_lockless() implementation.
1204 	 *
1205 	 * Note: reusing the original pointer means that we may
1206 	 * dereference the same (live) page-table entry multiple times.
1207 	 * This is safe because it is still only loaded once in the
1208 	 * context of each level and the CPU guarantees same-address
1209 	 * read-after-read ordering.
1210 	 */
1211 	return p4d_offset(pgdp, addr);
1212 }
1213 #define p4d_offset_lockless p4d_offset_lockless_folded
1214 
1215 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1216 
1217 #define pgd_ERROR(e)	\
1218 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1219 
1220 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1221 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1222 
1223 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1224 {
1225 	/*
1226 	 * Normal and Normal-Tagged are two different memory types and indices
1227 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1228 	 */
1229 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1230 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1231 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1232 
1233 	/* preserve the hardware dirty information */
1234 	if (pte_hw_dirty(pte))
1235 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1236 
1237 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1238 	/*
1239 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1240 	 * dirtiness again.
1241 	 */
1242 	if (pte_sw_dirty(pte))
1243 		pte = pte_mkdirty(pte);
1244 	return pte;
1245 }
1246 
1247 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1248 {
1249 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1250 }
1251 
1252 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1253 				 unsigned long address, pte_t *ptep,
1254 				 pte_t entry, int dirty);
1255 
1256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1257 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1258 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1259 					unsigned long address, pmd_t *pmdp,
1260 					pmd_t entry, int dirty)
1261 {
1262 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1263 							pmd_pte(entry), dirty);
1264 }
1265 #endif
1266 
1267 #ifdef CONFIG_PAGE_TABLE_CHECK
1268 static inline bool pte_user_accessible_page(pte_t pte, unsigned long addr)
1269 {
1270 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1271 }
1272 
1273 static inline bool pmd_user_accessible_page(pmd_t pmd, unsigned long addr)
1274 {
1275 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1276 }
1277 
1278 static inline bool pud_user_accessible_page(pud_t pud, unsigned long addr)
1279 {
1280 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1281 }
1282 #endif
1283 
1284 /*
1285  * Atomic pte/pmd modifications.
1286  */
1287 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1288 					      unsigned long address,
1289 					      pte_t *ptep)
1290 {
1291 	pte_t old_pte, pte;
1292 
1293 	pte = __ptep_get(ptep);
1294 	do {
1295 		old_pte = pte;
1296 		pte = pte_mkold(pte);
1297 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1298 					       pte_val(old_pte), pte_val(pte));
1299 	} while (pte_val(pte) != pte_val(old_pte));
1300 
1301 	return pte_young(pte);
1302 }
1303 
1304 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1305 					 unsigned long address, pte_t *ptep)
1306 {
1307 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1308 
1309 	if (young) {
1310 		/*
1311 		 * We can elide the trailing DSB here since the worst that can
1312 		 * happen is that a CPU continues to use the young entry in its
1313 		 * TLB and we mistakenly reclaim the associated page. The
1314 		 * window for such an event is bounded by the next
1315 		 * context-switch, which provides a DSB to complete the TLB
1316 		 * invalidation.
1317 		 */
1318 		flush_tlb_page_nosync(vma, address);
1319 	}
1320 
1321 	return young;
1322 }
1323 
1324 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1325 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1326 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1327 					    unsigned long address,
1328 					    pmd_t *pmdp)
1329 {
1330 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1331 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1332 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1333 }
1334 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1335 
1336 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1337 					       unsigned long address,
1338 					       pte_t *ptep,
1339 					       unsigned long pgsize)
1340 {
1341 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1342 
1343 	switch (pgsize) {
1344 	case PAGE_SIZE:
1345 		page_table_check_pte_clear(mm, address, pte);
1346 		break;
1347 	case PMD_SIZE:
1348 		page_table_check_pmd_clear(mm, address, pte_pmd(pte));
1349 		break;
1350 #ifndef __PAGETABLE_PMD_FOLDED
1351 	case PUD_SIZE:
1352 		page_table_check_pud_clear(mm, address, pte_pud(pte));
1353 		break;
1354 #endif
1355 	default:
1356 		VM_WARN_ON(1);
1357 	}
1358 
1359 	return pte;
1360 }
1361 
1362 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1363 				       unsigned long address, pte_t *ptep)
1364 {
1365 	return __ptep_get_and_clear_anysz(mm, address, ptep, PAGE_SIZE);
1366 }
1367 
1368 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1369 				pte_t *ptep, unsigned int nr, int full)
1370 {
1371 	for (;;) {
1372 		__ptep_get_and_clear(mm, addr, ptep);
1373 		if (--nr == 0)
1374 			break;
1375 		ptep++;
1376 		addr += PAGE_SIZE;
1377 	}
1378 }
1379 
1380 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1381 				unsigned long addr, pte_t *ptep,
1382 				unsigned int nr, int full)
1383 {
1384 	pte_t pte, tmp_pte;
1385 
1386 	pte = __ptep_get_and_clear(mm, addr, ptep);
1387 	while (--nr) {
1388 		ptep++;
1389 		addr += PAGE_SIZE;
1390 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1391 		if (pte_dirty(tmp_pte))
1392 			pte = pte_mkdirty(pte);
1393 		if (pte_young(tmp_pte))
1394 			pte = pte_mkyoung(pte);
1395 	}
1396 	return pte;
1397 }
1398 
1399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1400 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1401 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1402 					    unsigned long address, pmd_t *pmdp)
1403 {
1404 	return pte_pmd(__ptep_get_and_clear_anysz(mm, address, (pte_t *)pmdp, PMD_SIZE));
1405 }
1406 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1407 
1408 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1409 					unsigned long address, pte_t *ptep,
1410 					pte_t pte)
1411 {
1412 	pte_t old_pte;
1413 
1414 	do {
1415 		old_pte = pte;
1416 		pte = pte_wrprotect(pte);
1417 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1418 					       pte_val(old_pte), pte_val(pte));
1419 	} while (pte_val(pte) != pte_val(old_pte));
1420 }
1421 
1422 /*
1423  * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1424  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1425  */
1426 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1427 					unsigned long address, pte_t *ptep)
1428 {
1429 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1430 }
1431 
1432 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1433 				pte_t *ptep, unsigned int nr)
1434 {
1435 	unsigned int i;
1436 
1437 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1438 		__ptep_set_wrprotect(mm, address, ptep);
1439 }
1440 
1441 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1442 					   unsigned long addr, pte_t *ptep,
1443 					   pte_t pte, cydp_t flags)
1444 {
1445 	pte_t old_pte;
1446 
1447 	do {
1448 		old_pte = pte;
1449 
1450 		if (flags & CYDP_CLEAR_YOUNG)
1451 			pte = pte_mkold(pte);
1452 		if (flags & CYDP_CLEAR_DIRTY)
1453 			pte = pte_mkclean(pte);
1454 
1455 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1456 					       pte_val(old_pte), pte_val(pte));
1457 	} while (pte_val(pte) != pte_val(old_pte));
1458 }
1459 
1460 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1461 					    unsigned long addr, pte_t *ptep,
1462 					    unsigned int nr, cydp_t flags)
1463 {
1464 	pte_t pte;
1465 
1466 	for (;;) {
1467 		pte = __ptep_get(ptep);
1468 
1469 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1470 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1471 		else
1472 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1473 
1474 		if (--nr == 0)
1475 			break;
1476 		ptep++;
1477 		addr += PAGE_SIZE;
1478 	}
1479 }
1480 
1481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1483 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1484 				      unsigned long address, pmd_t *pmdp)
1485 {
1486 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1487 }
1488 
1489 #define pmdp_establish pmdp_establish
1490 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1491 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1492 {
1493 	page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
1494 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1495 }
1496 #endif
1497 
1498 /*
1499  * Encode and decode a swap entry:
1500  *	bits 0-1:	present (must be zero)
1501  *	bits 2:		remember PG_anon_exclusive
1502  *	bit  3:		remember uffd-wp state
1503  *	bits 6-10:	swap type
1504  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1505  *	bits 12-61:	swap offset
1506  */
1507 #define __SWP_TYPE_SHIFT	6
1508 #define __SWP_TYPE_BITS		5
1509 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1510 #define __SWP_OFFSET_SHIFT	12
1511 #define __SWP_OFFSET_BITS	50
1512 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1513 
1514 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1515 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1516 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1517 
1518 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1519 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1520 
1521 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1522 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1523 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1524 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1525 
1526 /*
1527  * Ensure that there are not more swap files than can be encoded in the kernel
1528  * PTEs.
1529  */
1530 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1531 
1532 #ifdef CONFIG_ARM64_MTE
1533 
1534 #define __HAVE_ARCH_PREPARE_TO_SWAP
1535 extern int arch_prepare_to_swap(struct folio *folio);
1536 
1537 #define __HAVE_ARCH_SWAP_INVALIDATE
1538 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1539 {
1540 	if (system_supports_mte())
1541 		mte_invalidate_tags(type, offset);
1542 }
1543 
1544 static inline void arch_swap_invalidate_area(int type)
1545 {
1546 	if (system_supports_mte())
1547 		mte_invalidate_tags_area(type);
1548 }
1549 
1550 #define __HAVE_ARCH_SWAP_RESTORE
1551 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1552 
1553 #endif /* CONFIG_ARM64_MTE */
1554 
1555 /*
1556  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1557  */
1558 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1559 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1560 		unsigned int nr)
1561 {
1562 	/*
1563 	 * We don't do anything here, so there's a very small chance of
1564 	 * us retaking a user fault which we just fixed up. The alternative
1565 	 * is doing a dsb(ishst), but that penalises the fastpath.
1566 	 */
1567 }
1568 
1569 #define update_mmu_cache(vma, addr, ptep) \
1570 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1571 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1572 
1573 #ifdef CONFIG_ARM64_PA_BITS_52
1574 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1575 #else
1576 #define phys_to_ttbr(addr)	(addr)
1577 #endif
1578 
1579 /*
1580  * On arm64 without hardware Access Flag, copying from user will fail because
1581  * the pte is old and cannot be marked young. So we always end up with zeroed
1582  * page after fork() + CoW for pfn mappings. We don't always have a
1583  * hardware-managed access flag on arm64.
1584  */
1585 #define arch_has_hw_pte_young		cpu_has_hw_af
1586 
1587 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1588 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1589 #endif
1590 
1591 /*
1592  * Experimentally, it's cheap to set the access flag in hardware and we
1593  * benefit from prefaulting mappings as 'old' to start with.
1594  */
1595 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1596 
1597 /*
1598  * Request exec memory is read into pagecache in at least 64K folios. This size
1599  * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1600  * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1601  * pages are in use.
1602  */
1603 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1604 
1605 static inline bool pud_sect_supported(void)
1606 {
1607 	return PAGE_SIZE == SZ_4K;
1608 }
1609 
1610 
1611 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1612 #define ptep_modify_prot_start ptep_modify_prot_start
1613 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1614 				    unsigned long addr, pte_t *ptep);
1615 
1616 #define ptep_modify_prot_commit ptep_modify_prot_commit
1617 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1618 				    unsigned long addr, pte_t *ptep,
1619 				    pte_t old_pte, pte_t new_pte);
1620 
1621 #define modify_prot_start_ptes modify_prot_start_ptes
1622 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1623 				    unsigned long addr, pte_t *ptep,
1624 				    unsigned int nr);
1625 
1626 #define modify_prot_commit_ptes modify_prot_commit_ptes
1627 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1628 				    pte_t *ptep, pte_t old_pte, pte_t pte,
1629 				    unsigned int nr);
1630 
1631 #ifdef CONFIG_ARM64_CONTPTE
1632 
1633 /*
1634  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1635  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1636  * a private implementation detail of the public ptep API (see below).
1637  */
1638 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1639 				pte_t *ptep, pte_t pte);
1640 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1641 				pte_t *ptep, pte_t pte);
1642 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1643 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1644 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1645 				pte_t *ptep, pte_t pte, unsigned int nr);
1646 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1647 				pte_t *ptep, unsigned int nr, int full);
1648 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1649 				unsigned long addr, pte_t *ptep,
1650 				unsigned int nr, int full);
1651 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1652 				unsigned long addr, pte_t *ptep);
1653 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1654 				unsigned long addr, pte_t *ptep);
1655 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1656 				pte_t *ptep, unsigned int nr);
1657 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1658 				unsigned long addr, pte_t *ptep,
1659 				pte_t entry, int dirty);
1660 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1661 				unsigned long addr, pte_t *ptep,
1662 				unsigned int nr, cydp_t flags);
1663 
1664 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1665 				unsigned long addr, pte_t *ptep, pte_t pte)
1666 {
1667 	/*
1668 	 * Only bother trying if both the virtual and physical addresses are
1669 	 * aligned and correspond to the last entry in a contig range. The core
1670 	 * code mostly modifies ranges from low to high, so this is the likely
1671 	 * the last modification in the contig range, so a good time to fold.
1672 	 * We can't fold special mappings, because there is no associated folio.
1673 	 */
1674 
1675 	const unsigned long contmask = CONT_PTES - 1;
1676 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1677 
1678 	if (unlikely(valign)) {
1679 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1680 
1681 		if (unlikely(palign &&
1682 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1683 			__contpte_try_fold(mm, addr, ptep, pte);
1684 	}
1685 }
1686 
1687 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1688 				unsigned long addr, pte_t *ptep, pte_t pte)
1689 {
1690 	if (unlikely(pte_valid_cont(pte)))
1691 		__contpte_try_unfold(mm, addr, ptep, pte);
1692 }
1693 
1694 #define pte_batch_hint pte_batch_hint
1695 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1696 {
1697 	if (!pte_valid_cont(pte))
1698 		return 1;
1699 
1700 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1701 }
1702 
1703 /*
1704  * The below functions constitute the public API that arm64 presents to the
1705  * core-mm to manipulate PTE entries within their page tables (or at least this
1706  * is the subset of the API that arm64 needs to implement). These public
1707  * versions will automatically and transparently apply the contiguous bit where
1708  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1709  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1710  * private versions, which are prefixed with double underscore. All of these
1711  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1712  * held. Although the contiguous bit is considered private to the
1713  * implementation, it is deliberately allowed to leak through the getters (e.g.
1714  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1715  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1716  * its possible a pte will be passed to a setter with the contiguous bit set, so
1717  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1718  * setting it in the pgtable.
1719  */
1720 
1721 #define ptep_get ptep_get
1722 static inline pte_t ptep_get(pte_t *ptep)
1723 {
1724 	pte_t pte = __ptep_get(ptep);
1725 
1726 	if (likely(!pte_valid_cont(pte)))
1727 		return pte;
1728 
1729 	return contpte_ptep_get(ptep, pte);
1730 }
1731 
1732 #define ptep_get_lockless ptep_get_lockless
1733 static inline pte_t ptep_get_lockless(pte_t *ptep)
1734 {
1735 	pte_t pte = __ptep_get(ptep);
1736 
1737 	if (likely(!pte_valid_cont(pte)))
1738 		return pte;
1739 
1740 	return contpte_ptep_get_lockless(ptep);
1741 }
1742 
1743 static inline void set_pte(pte_t *ptep, pte_t pte)
1744 {
1745 	/*
1746 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1747 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1748 	 * this should never even be called. Regardless do our best to service
1749 	 * any call and emit a warning if there is any attempt to set a pte on
1750 	 * top of an existing contig range.
1751 	 */
1752 	pte_t orig_pte = __ptep_get(ptep);
1753 
1754 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1755 	__set_pte(ptep, pte_mknoncont(pte));
1756 }
1757 
1758 #define set_ptes set_ptes
1759 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1760 				pte_t *ptep, pte_t pte, unsigned int nr)
1761 {
1762 	pte = pte_mknoncont(pte);
1763 
1764 	if (likely(nr == 1)) {
1765 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1766 		__set_ptes(mm, addr, ptep, pte, 1);
1767 		contpte_try_fold(mm, addr, ptep, pte);
1768 	} else {
1769 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1770 	}
1771 }
1772 
1773 static inline void pte_clear(struct mm_struct *mm,
1774 				unsigned long addr, pte_t *ptep)
1775 {
1776 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1777 	__pte_clear(mm, addr, ptep);
1778 }
1779 
1780 #define clear_full_ptes clear_full_ptes
1781 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1782 				pte_t *ptep, unsigned int nr, int full)
1783 {
1784 	if (likely(nr == 1)) {
1785 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1786 		__clear_full_ptes(mm, addr, ptep, nr, full);
1787 	} else {
1788 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1789 	}
1790 }
1791 
1792 #define get_and_clear_full_ptes get_and_clear_full_ptes
1793 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1794 				unsigned long addr, pte_t *ptep,
1795 				unsigned int nr, int full)
1796 {
1797 	pte_t pte;
1798 
1799 	if (likely(nr == 1)) {
1800 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1801 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1802 	} else {
1803 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1804 	}
1805 
1806 	return pte;
1807 }
1808 
1809 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1810 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1811 				unsigned long addr, pte_t *ptep)
1812 {
1813 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1814 	return __ptep_get_and_clear(mm, addr, ptep);
1815 }
1816 
1817 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1818 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1819 				unsigned long addr, pte_t *ptep)
1820 {
1821 	pte_t orig_pte = __ptep_get(ptep);
1822 
1823 	if (likely(!pte_valid_cont(orig_pte)))
1824 		return __ptep_test_and_clear_young(vma, addr, ptep);
1825 
1826 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1827 }
1828 
1829 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1830 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1831 				unsigned long addr, pte_t *ptep)
1832 {
1833 	pte_t orig_pte = __ptep_get(ptep);
1834 
1835 	if (likely(!pte_valid_cont(orig_pte)))
1836 		return __ptep_clear_flush_young(vma, addr, ptep);
1837 
1838 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1839 }
1840 
1841 #define wrprotect_ptes wrprotect_ptes
1842 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1843 				unsigned long addr, pte_t *ptep, unsigned int nr)
1844 {
1845 	if (likely(nr == 1)) {
1846 		/*
1847 		 * Optimization: wrprotect_ptes() can only be called for present
1848 		 * ptes so we only need to check contig bit as condition for
1849 		 * unfold, and we can remove the contig bit from the pte we read
1850 		 * to avoid re-reading. This speeds up fork() which is sensitive
1851 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1852 		 */
1853 		pte_t orig_pte = __ptep_get(ptep);
1854 
1855 		if (unlikely(pte_cont(orig_pte))) {
1856 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1857 			orig_pte = pte_mknoncont(orig_pte);
1858 		}
1859 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1860 	} else {
1861 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1862 	}
1863 }
1864 
1865 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1866 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1867 				unsigned long addr, pte_t *ptep)
1868 {
1869 	wrprotect_ptes(mm, addr, ptep, 1);
1870 }
1871 
1872 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1873 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1874 				unsigned long addr, pte_t *ptep,
1875 				pte_t entry, int dirty)
1876 {
1877 	pte_t orig_pte = __ptep_get(ptep);
1878 
1879 	entry = pte_mknoncont(entry);
1880 
1881 	if (likely(!pte_valid_cont(orig_pte)))
1882 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1883 
1884 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1885 }
1886 
1887 #define clear_young_dirty_ptes clear_young_dirty_ptes
1888 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1889 					  unsigned long addr, pte_t *ptep,
1890 					  unsigned int nr, cydp_t flags)
1891 {
1892 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1893 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1894 	else
1895 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1896 }
1897 
1898 #else /* CONFIG_ARM64_CONTPTE */
1899 
1900 #define ptep_get				__ptep_get
1901 #define set_pte					__set_pte
1902 #define set_ptes				__set_ptes
1903 #define pte_clear				__pte_clear
1904 #define clear_full_ptes				__clear_full_ptes
1905 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1906 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1907 #define ptep_get_and_clear			__ptep_get_and_clear
1908 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1909 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1910 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1911 #define ptep_clear_flush_young			__ptep_clear_flush_young
1912 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1913 #define ptep_set_wrprotect			__ptep_set_wrprotect
1914 #define wrprotect_ptes				__wrprotect_ptes
1915 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1916 #define ptep_set_access_flags			__ptep_set_access_flags
1917 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1918 
1919 #endif /* CONFIG_ARM64_CONTPTE */
1920 
1921 #endif /* !__ASSEMBLER__ */
1922 
1923 #endif /* __ASM_PGTABLE_H */
1924