xref: /linux/fs/btrfs/ioctl.c (revision 5ca7fe213ba3113dde19c4cd46347c16d9e69f81)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(const struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 						unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
btrfs_inode_flags_to_fsflags(const struct btrfs_inode * inode)136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = inode->flags;
140 	u32 ro_flags = inode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 	unsigned int new_fl = 0;
173 
174 	if (inode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (inode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (inode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (inode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->vfs_inode.i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
check_fsflags_compatible(const struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 	const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 	return 0;
254 }
255 
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct fileattr *fa)
258 {
259 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 	struct btrfs_root *root = inode->root;
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 	struct btrfs_trans_handle *trans;
263 	unsigned int fsflags, old_fsflags;
264 	int ret;
265 	const char *comp = NULL;
266 	u32 inode_flags;
267 
268 	if (btrfs_root_readonly(root))
269 		return -EROFS;
270 
271 	if (fileattr_has_fsx(fa))
272 		return -EOPNOTSUPP;
273 
274 	fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 	old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 	ret = check_fsflags(old_fsflags, fsflags);
277 	if (ret)
278 		return ret;
279 
280 	ret = check_fsflags_compatible(fs_info, fsflags);
281 	if (ret)
282 		return ret;
283 
284 	inode_flags = inode->flags;
285 	if (fsflags & FS_SYNC_FL)
286 		inode_flags |= BTRFS_INODE_SYNC;
287 	else
288 		inode_flags &= ~BTRFS_INODE_SYNC;
289 	if (fsflags & FS_IMMUTABLE_FL)
290 		inode_flags |= BTRFS_INODE_IMMUTABLE;
291 	else
292 		inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 	if (fsflags & FS_APPEND_FL)
294 		inode_flags |= BTRFS_INODE_APPEND;
295 	else
296 		inode_flags &= ~BTRFS_INODE_APPEND;
297 	if (fsflags & FS_NODUMP_FL)
298 		inode_flags |= BTRFS_INODE_NODUMP;
299 	else
300 		inode_flags &= ~BTRFS_INODE_NODUMP;
301 	if (fsflags & FS_NOATIME_FL)
302 		inode_flags |= BTRFS_INODE_NOATIME;
303 	else
304 		inode_flags &= ~BTRFS_INODE_NOATIME;
305 
306 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 	if (!fa->flags_valid) {
308 		/* 1 item for the inode */
309 		trans = btrfs_start_transaction(root, 1);
310 		if (IS_ERR(trans))
311 			return PTR_ERR(trans);
312 		goto update_flags;
313 	}
314 
315 	if (fsflags & FS_DIRSYNC_FL)
316 		inode_flags |= BTRFS_INODE_DIRSYNC;
317 	else
318 		inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 	if (fsflags & FS_NOCOW_FL) {
320 		if (S_ISREG(inode->vfs_inode.i_mode)) {
321 			/*
322 			 * It's safe to turn csums off here, no extents exist.
323 			 * Otherwise we want the flag to reflect the real COW
324 			 * status of the file and will not set it.
325 			 */
326 			if (inode->vfs_inode.i_size == 0)
327 				inode_flags |= BTRFS_INODE_NODATACOW |
328 					       BTRFS_INODE_NODATASUM;
329 		} else {
330 			inode_flags |= BTRFS_INODE_NODATACOW;
331 		}
332 	} else {
333 		/*
334 		 * Revert back under same assumptions as above
335 		 */
336 		if (S_ISREG(inode->vfs_inode.i_mode)) {
337 			if (inode->vfs_inode.i_size == 0)
338 				inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 						 BTRFS_INODE_NODATASUM);
340 		} else {
341 			inode_flags &= ~BTRFS_INODE_NODATACOW;
342 		}
343 	}
344 
345 	/*
346 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 	 * flag may be changed automatically if compression code won't make
348 	 * things smaller.
349 	 */
350 	if (fsflags & FS_NOCOMP_FL) {
351 		inode_flags &= ~BTRFS_INODE_COMPRESS;
352 		inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 	} else if (fsflags & FS_COMPR_FL) {
354 
355 		if (IS_SWAPFILE(&inode->vfs_inode))
356 			return -ETXTBSY;
357 
358 		inode_flags |= BTRFS_INODE_COMPRESS;
359 		inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360 
361 		comp = btrfs_compress_type2str(fs_info->compress_type);
362 		if (!comp || comp[0] == 0)
363 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 	} else {
365 		inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 	}
367 
368 	/*
369 	 * 1 for inode item
370 	 * 2 for properties
371 	 */
372 	trans = btrfs_start_transaction(root, 3);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	if (comp) {
377 		ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 				     comp, strlen(comp), 0);
379 		if (ret) {
380 			btrfs_abort_transaction(trans, ret);
381 			goto out_end_trans;
382 		}
383 	} else {
384 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 		if (ret && ret != -ENODATA) {
386 			btrfs_abort_transaction(trans, ret);
387 			goto out_end_trans;
388 		}
389 	}
390 
391 update_flags:
392 	inode->flags = inode_flags;
393 	btrfs_update_inode_mapping_flags(inode);
394 	btrfs_sync_inode_flags_to_i_flags(inode);
395 	inode_inc_iversion(&inode->vfs_inode);
396 	inode_set_ctime_current(&inode->vfs_inode);
397 	ret = btrfs_update_inode(trans, inode);
398 
399  out_end_trans:
400 	btrfs_end_transaction(trans);
401 	return ret;
402 }
403 
btrfs_ioctl_getversion(const struct inode * inode,int __user * arg)404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 	return put_user(inode->i_generation, arg);
407 }
408 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 					void __user *arg)
411 {
412 	struct btrfs_device *device;
413 	struct fstrim_range range;
414 	u64 minlen = ULLONG_MAX;
415 	u64 num_devices = 0;
416 	int ret;
417 
418 	if (!capable(CAP_SYS_ADMIN))
419 		return -EPERM;
420 
421 	/*
422 	 * btrfs_trim_block_group() depends on space cache, which is not
423 	 * available in zoned filesystem. So, disallow fitrim on a zoned
424 	 * filesystem for now.
425 	 */
426 	if (btrfs_is_zoned(fs_info))
427 		return -EOPNOTSUPP;
428 
429 	/*
430 	 * If the fs is mounted with nologreplay, which requires it to be
431 	 * mounted in RO mode as well, we can not allow discard on free space
432 	 * inside block groups, because log trees refer to extents that are not
433 	 * pinned in a block group's free space cache (pinning the extents is
434 	 * precisely the first phase of replaying a log tree).
435 	 */
436 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 		return -EROFS;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 				dev_list) {
442 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 			continue;
444 		num_devices++;
445 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 				    minlen);
447 	}
448 	rcu_read_unlock();
449 
450 	if (!num_devices)
451 		return -EOPNOTSUPP;
452 	if (copy_from_user(&range, arg, sizeof(range)))
453 		return -EFAULT;
454 
455 	/*
456 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
457 	 * block group is in the logical address space, which can be any
458 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
459 	 */
460 	if (range.len < fs_info->sectorsize)
461 		return -EINVAL;
462 
463 	range.minlen = max(range.minlen, minlen);
464 	ret = btrfs_trim_fs(fs_info, &range);
465 
466 	if (copy_to_user(arg, &range, sizeof(range)))
467 		return -EFAULT;
468 
469 	return ret;
470 }
471 
472 /*
473  * Calculate the number of transaction items to reserve for creating a subvolume
474  * or snapshot, not including the inode, directory entries, or parent directory.
475  */
create_subvol_num_items(const struct btrfs_qgroup_inherit * inherit)476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 	/*
479 	 * 1 to add root block
480 	 * 1 to add root item
481 	 * 1 to add root ref
482 	 * 1 to add root backref
483 	 * 1 to add UUID item
484 	 * 1 to add qgroup info
485 	 * 1 to add qgroup limit
486 	 *
487 	 * Ideally the last two would only be accounted if qgroups are enabled,
488 	 * but that can change between now and the time we would insert them.
489 	 */
490 	unsigned int num_items = 7;
491 
492 	if (inherit) {
493 		/* 2 to add qgroup relations for each inherited qgroup */
494 		num_items += 2 * inherit->num_qgroups;
495 	}
496 	return num_items;
497 }
498 
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 				  struct inode *dir, struct dentry *dentry,
501 				  struct btrfs_qgroup_inherit *inherit)
502 {
503 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 	struct btrfs_trans_handle *trans;
505 	struct btrfs_key key;
506 	struct btrfs_root_item *root_item;
507 	struct btrfs_inode_item *inode_item;
508 	struct extent_buffer *leaf;
509 	struct btrfs_root *root = BTRFS_I(dir)->root;
510 	struct btrfs_root *new_root;
511 	struct btrfs_block_rsv block_rsv;
512 	struct timespec64 cur_time = current_time(dir);
513 	struct btrfs_new_inode_args new_inode_args = {
514 		.dir = dir,
515 		.dentry = dentry,
516 		.subvol = true,
517 	};
518 	unsigned int trans_num_items;
519 	int ret;
520 	dev_t anon_dev;
521 	u64 objectid;
522 	u64 qgroup_reserved = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto out_root_item;
531 
532 	/*
533 	 * Don't create subvolume whose level is not zero. Or qgroup will be
534 	 * screwed up since it assumes subvolume qgroup's level to be 0.
535 	 */
536 	if (btrfs_qgroup_level(objectid)) {
537 		ret = -ENOSPC;
538 		goto out_root_item;
539 	}
540 
541 	ret = get_anon_bdev(&anon_dev);
542 	if (ret < 0)
543 		goto out_root_item;
544 
545 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 	if (!new_inode_args.inode) {
547 		ret = -ENOMEM;
548 		goto out_anon_dev;
549 	}
550 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 	if (ret)
552 		goto out_inode;
553 	trans_num_items += create_subvol_num_items(inherit);
554 
555 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 					       trans_num_items, false);
558 	if (ret)
559 		goto out_new_inode_args;
560 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561 
562 	trans = btrfs_start_transaction(root, 0);
563 	if (IS_ERR(trans)) {
564 		ret = PTR_ERR(trans);
565 		goto out_release_rsv;
566 	}
567 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 	qgroup_reserved = 0;
569 	trans->block_rsv = &block_rsv;
570 	trans->bytes_reserved = block_rsv.size;
571 
572 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 	if (ret)
574 		goto out;
575 
576 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 				      0, BTRFS_NESTING_NORMAL);
578 	if (IS_ERR(leaf)) {
579 		ret = PTR_ERR(leaf);
580 		goto out;
581 	}
582 
583 	btrfs_mark_buffer_dirty(trans, leaf);
584 
585 	inode_item = &root_item->inode;
586 	btrfs_set_stack_inode_generation(inode_item, 1);
587 	btrfs_set_stack_inode_size(inode_item, 3);
588 	btrfs_set_stack_inode_nlink(inode_item, 1);
589 	btrfs_set_stack_inode_nbytes(inode_item,
590 				     fs_info->nodesize);
591 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592 
593 	btrfs_set_root_flags(root_item, 0);
594 	btrfs_set_root_limit(root_item, 0);
595 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596 
597 	btrfs_set_root_bytenr(root_item, leaf->start);
598 	btrfs_set_root_generation(root_item, trans->transid);
599 	btrfs_set_root_level(root_item, 0);
600 	btrfs_set_root_refs(root_item, 1);
601 	btrfs_set_root_used(root_item, leaf->len);
602 	btrfs_set_root_last_snapshot(root_item, 0);
603 
604 	btrfs_set_root_generation_v2(root_item,
605 			btrfs_root_generation(root_item));
606 	generate_random_guid(root_item->uuid);
607 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 	root_item->ctime = root_item->otime;
610 	btrfs_set_root_ctransid(root_item, trans->transid);
611 	btrfs_set_root_otransid(root_item, trans->transid);
612 
613 	btrfs_tree_unlock(leaf);
614 
615 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616 
617 	key.objectid = objectid;
618 	key.type = BTRFS_ROOT_ITEM_KEY;
619 	key.offset = 0;
620 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 				root_item);
622 	if (ret) {
623 		int ret2;
624 
625 		/*
626 		 * Since we don't abort the transaction in this case, free the
627 		 * tree block so that we don't leak space and leave the
628 		 * filesystem in an inconsistent state (an extent item in the
629 		 * extent tree with a backreference for a root that does not
630 		 * exists).
631 		 */
632 		btrfs_tree_lock(leaf);
633 		btrfs_clear_buffer_dirty(trans, leaf);
634 		btrfs_tree_unlock(leaf);
635 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 		if (ret2 < 0)
637 			btrfs_abort_transaction(trans, ret2);
638 		free_extent_buffer(leaf);
639 		goto out;
640 	}
641 
642 	free_extent_buffer(leaf);
643 	leaf = NULL;
644 
645 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 	if (IS_ERR(new_root)) {
647 		ret = PTR_ERR(new_root);
648 		btrfs_abort_transaction(trans, ret);
649 		goto out;
650 	}
651 	/* anon_dev is owned by new_root now. */
652 	anon_dev = 0;
653 	BTRFS_I(new_inode_args.inode)->root = new_root;
654 	/* ... and new_root is owned by new_inode_args.inode now. */
655 
656 	ret = btrfs_record_root_in_trans(trans, new_root);
657 	if (ret) {
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 				  BTRFS_UUID_KEY_SUBVOL, objectid);
664 	if (ret) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	}
668 
669 	ret = btrfs_create_new_inode(trans, &new_inode_args);
670 	if (ret) {
671 		btrfs_abort_transaction(trans, ret);
672 		goto out;
673 	}
674 
675 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
676 
677 	d_instantiate_new(dentry, new_inode_args.inode);
678 	new_inode_args.inode = NULL;
679 
680 out:
681 	trans->block_rsv = NULL;
682 	trans->bytes_reserved = 0;
683 	btrfs_end_transaction(trans);
684 out_release_rsv:
685 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 	if (qgroup_reserved)
687 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 	btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 	iput(new_inode_args.inode);
692 out_anon_dev:
693 	if (anon_dev)
694 		free_anon_bdev(anon_dev);
695 out_root_item:
696 	kfree(root_item);
697 	return ret;
698 }
699 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 			   struct dentry *dentry, bool readonly,
702 			   struct btrfs_qgroup_inherit *inherit)
703 {
704 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 	struct inode *inode;
706 	struct btrfs_pending_snapshot *pending_snapshot;
707 	unsigned int trans_num_items;
708 	struct btrfs_trans_handle *trans;
709 	struct btrfs_block_rsv *block_rsv;
710 	u64 qgroup_reserved = 0;
711 	int ret;
712 
713 	/* We do not support snapshotting right now. */
714 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 		btrfs_warn(fs_info,
716 			   "extent tree v2 doesn't support snapshotting yet");
717 		return -EOPNOTSUPP;
718 	}
719 
720 	if (btrfs_root_refs(&root->root_item) == 0)
721 		return -ENOENT;
722 
723 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 		return -EINVAL;
725 
726 	if (atomic_read(&root->nr_swapfiles)) {
727 		btrfs_warn(fs_info,
728 			   "cannot snapshot subvolume with active swapfile");
729 		return -ETXTBSY;
730 	}
731 
732 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 	if (!pending_snapshot)
734 		return -ENOMEM;
735 
736 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 	if (ret < 0)
738 		goto free_pending;
739 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 			GFP_KERNEL);
741 	pending_snapshot->path = btrfs_alloc_path();
742 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 		ret = -ENOMEM;
744 		goto free_pending;
745 	}
746 
747 	block_rsv = &pending_snapshot->block_rsv;
748 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 	/*
750 	 * 1 to add dir item
751 	 * 1 to add dir index
752 	 * 1 to update parent inode item
753 	 */
754 	trans_num_items = create_subvol_num_items(inherit) + 3;
755 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 					       trans_num_items, false);
757 	if (ret)
758 		goto free_pending;
759 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760 
761 	pending_snapshot->dentry = dentry;
762 	pending_snapshot->root = root;
763 	pending_snapshot->readonly = readonly;
764 	pending_snapshot->dir = BTRFS_I(dir);
765 	pending_snapshot->inherit = inherit;
766 
767 	trans = btrfs_start_transaction(root, 0);
768 	if (IS_ERR(trans)) {
769 		ret = PTR_ERR(trans);
770 		goto fail;
771 	}
772 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 	if (ret) {
774 		btrfs_end_transaction(trans);
775 		goto fail;
776 	}
777 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 	qgroup_reserved = 0;
779 
780 	trans->pending_snapshot = pending_snapshot;
781 
782 	ret = btrfs_commit_transaction(trans);
783 	if (ret)
784 		goto fail;
785 
786 	ret = pending_snapshot->error;
787 	if (ret)
788 		goto fail;
789 
790 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 	if (ret)
792 		goto fail;
793 
794 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 	if (IS_ERR(inode)) {
796 		ret = PTR_ERR(inode);
797 		goto fail;
798 	}
799 
800 	d_instantiate(dentry, inode);
801 	ret = 0;
802 	pending_snapshot->anon_dev = 0;
803 fail:
804 	/* Prevent double freeing of anon_dev */
805 	if (ret && pending_snapshot->snap)
806 		pending_snapshot->snap->anon_dev = 0;
807 	btrfs_put_root(pending_snapshot->snap);
808 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 	if (qgroup_reserved)
810 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 	if (pending_snapshot->anon_dev)
813 		free_anon_bdev(pending_snapshot->anon_dev);
814 	kfree(pending_snapshot->root_item);
815 	btrfs_free_path(pending_snapshot->path);
816 	kfree(pending_snapshot);
817 
818 	return ret;
819 }
820 
821 /*  copy of may_delete in fs/namei.c()
822  *	Check whether we can remove a link victim from directory dir, check
823  *  whether the type of victim is right.
824  *  1. We can't do it if dir is read-only (done in permission())
825  *  2. We should have write and exec permissions on dir
826  *  3. We can't remove anything from append-only dir
827  *  4. We can't do anything with immutable dir (done in permission())
828  *  5. If the sticky bit on dir is set we should either
829  *	a. be owner of dir, or
830  *	b. be owner of victim, or
831  *	c. have CAP_FOWNER capability
832  *  6. If the victim is append-only or immutable we can't do anything with
833  *     links pointing to it.
834  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836  *  9. We can't remove a root or mountpoint.
837  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838  *     nfs_async_unlink().
839  */
840 
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 			    struct inode *dir, struct dentry *victim, int isdir)
843 {
844 	int error;
845 
846 	if (d_really_is_negative(victim))
847 		return -ENOENT;
848 
849 	/* The @victim is not inside @dir. */
850 	if (d_inode(victim->d_parent) != dir)
851 		return -EINVAL;
852 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853 
854 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 	if (error)
856 		return error;
857 	if (IS_APPEND(dir))
858 		return -EPERM;
859 	if (check_sticky(idmap, dir, d_inode(victim)) ||
860 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 	    IS_SWAPFILE(d_inode(victim)))
862 		return -EPERM;
863 	if (isdir) {
864 		if (!d_is_dir(victim))
865 			return -ENOTDIR;
866 		if (IS_ROOT(victim))
867 			return -EBUSY;
868 	} else if (d_is_dir(victim))
869 		return -EISDIR;
870 	if (IS_DEADDIR(dir))
871 		return -ENOENT;
872 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 		return -EBUSY;
874 	return 0;
875 }
876 
877 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,const struct dentry * child)878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 				   struct inode *dir, const struct dentry *child)
880 {
881 	if (d_really_is_positive(child))
882 		return -EEXIST;
883 	if (IS_DEADDIR(dir))
884 		return -ENOENT;
885 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 		return -EOVERFLOW;
887 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889 
890 /*
891  * Create a new subvolume below @parent.  This is largely modeled after
892  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893  * inside this filesystem so it's quite a bit simpler.
894  */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)895 static noinline int btrfs_mksubvol(const struct path *parent,
896 				   struct mnt_idmap *idmap,
897 				   const char *name, int namelen,
898 				   struct btrfs_root *snap_src,
899 				   bool readonly,
900 				   struct btrfs_qgroup_inherit *inherit)
901 {
902 	struct inode *dir = d_inode(parent->dentry);
903 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
904 	struct dentry *dentry;
905 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
906 	int error;
907 
908 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
909 	if (error == -EINTR)
910 		return error;
911 
912 	dentry = lookup_one(idmap, &QSTR_LEN(name, namelen), parent->dentry);
913 	error = PTR_ERR(dentry);
914 	if (IS_ERR(dentry))
915 		goto out_unlock;
916 
917 	error = btrfs_may_create(idmap, dir, dentry);
918 	if (error)
919 		goto out_dput;
920 
921 	/*
922 	 * even if this name doesn't exist, we may get hash collisions.
923 	 * check for them now when we can safely fail
924 	 */
925 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
926 					       dir->i_ino, &name_str);
927 	if (error)
928 		goto out_dput;
929 
930 	down_read(&fs_info->subvol_sem);
931 
932 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
933 		goto out_up_read;
934 
935 	if (snap_src)
936 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
937 	else
938 		error = create_subvol(idmap, dir, dentry, inherit);
939 
940 	if (!error)
941 		fsnotify_mkdir(dir, dentry);
942 out_up_read:
943 	up_read(&fs_info->subvol_sem);
944 out_dput:
945 	dput(dentry);
946 out_unlock:
947 	btrfs_inode_unlock(BTRFS_I(dir), 0);
948 	return error;
949 }
950 
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)951 static noinline int btrfs_mksnapshot(const struct path *parent,
952 				   struct mnt_idmap *idmap,
953 				   const char *name, int namelen,
954 				   struct btrfs_root *root,
955 				   bool readonly,
956 				   struct btrfs_qgroup_inherit *inherit)
957 {
958 	int ret;
959 
960 	/*
961 	 * Force new buffered writes to reserve space even when NOCOW is
962 	 * possible. This is to avoid later writeback (running dealloc) to
963 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
964 	 */
965 	btrfs_drew_read_lock(&root->snapshot_lock);
966 
967 	ret = btrfs_start_delalloc_snapshot(root, false);
968 	if (ret)
969 		goto out;
970 
971 	/*
972 	 * All previous writes have started writeback in NOCOW mode, so now
973 	 * we force future writes to fallback to COW mode during snapshot
974 	 * creation.
975 	 */
976 	atomic_inc(&root->snapshot_force_cow);
977 
978 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
979 
980 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
981 			     root, readonly, inherit);
982 	atomic_dec(&root->snapshot_force_cow);
983 out:
984 	btrfs_drew_read_unlock(&root->snapshot_lock);
985 	return ret;
986 }
987 
988 /*
989  * Try to start exclusive operation @type or cancel it if it's running.
990  *
991  * Return:
992  *   0        - normal mode, newly claimed op started
993  *  >0        - normal mode, something else is running,
994  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
995  * ECANCELED  - cancel mode, successful cancel
996  * ENOTCONN   - cancel mode, operation not running anymore
997  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)998 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
999 			enum btrfs_exclusive_operation type, bool cancel)
1000 {
1001 	if (!cancel) {
1002 		/* Start normal op */
1003 		if (!btrfs_exclop_start(fs_info, type))
1004 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1005 		/* Exclusive operation is now claimed */
1006 		return 0;
1007 	}
1008 
1009 	/* Cancel running op */
1010 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1011 		/*
1012 		 * This blocks any exclop finish from setting it to NONE, so we
1013 		 * request cancellation. Either it runs and we will wait for it,
1014 		 * or it has finished and no waiting will happen.
1015 		 */
1016 		atomic_inc(&fs_info->reloc_cancel_req);
1017 		btrfs_exclop_start_unlock(fs_info);
1018 
1019 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1020 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1021 				    TASK_INTERRUPTIBLE);
1022 
1023 		return -ECANCELED;
1024 	}
1025 
1026 	/* Something else is running or none */
1027 	return -ENOTCONN;
1028 }
1029 
btrfs_ioctl_resize(struct file * file,void __user * arg)1030 static noinline int btrfs_ioctl_resize(struct file *file,
1031 					void __user *arg)
1032 {
1033 	BTRFS_DEV_LOOKUP_ARGS(args);
1034 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1035 	struct btrfs_fs_info *fs_info = root->fs_info;
1036 	u64 new_size;
1037 	u64 old_size;
1038 	u64 devid = 1;
1039 	struct btrfs_ioctl_vol_args *vol_args;
1040 	struct btrfs_device *device = NULL;
1041 	char *sizestr;
1042 	char *devstr = NULL;
1043 	int ret = 0;
1044 	int mod = 0;
1045 	bool cancel;
1046 
1047 	if (!capable(CAP_SYS_ADMIN))
1048 		return -EPERM;
1049 
1050 	ret = mnt_want_write_file(file);
1051 	if (ret)
1052 		return ret;
1053 
1054 	/*
1055 	 * Read the arguments before checking exclusivity to be able to
1056 	 * distinguish regular resize and cancel
1057 	 */
1058 	vol_args = memdup_user(arg, sizeof(*vol_args));
1059 	if (IS_ERR(vol_args)) {
1060 		ret = PTR_ERR(vol_args);
1061 		goto out_drop;
1062 	}
1063 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1064 	if (ret < 0)
1065 		goto out_free;
1066 
1067 	sizestr = vol_args->name;
1068 	cancel = (strcmp("cancel", sizestr) == 0);
1069 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1070 	if (ret)
1071 		goto out_free;
1072 	/* Exclusive operation is now claimed */
1073 
1074 	devstr = strchr(sizestr, ':');
1075 	if (devstr) {
1076 		sizestr = devstr + 1;
1077 		*devstr = '\0';
1078 		devstr = vol_args->name;
1079 		ret = kstrtoull(devstr, 10, &devid);
1080 		if (ret)
1081 			goto out_finish;
1082 		if (!devid) {
1083 			ret = -EINVAL;
1084 			goto out_finish;
1085 		}
1086 		btrfs_info(fs_info, "resizing devid %llu", devid);
1087 	}
1088 
1089 	args.devid = devid;
1090 	device = btrfs_find_device(fs_info->fs_devices, &args);
1091 	if (!device) {
1092 		btrfs_info(fs_info, "resizer unable to find device %llu",
1093 			   devid);
1094 		ret = -ENODEV;
1095 		goto out_finish;
1096 	}
1097 
1098 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1099 		btrfs_info(fs_info,
1100 			   "resizer unable to apply on readonly device %llu",
1101 		       devid);
1102 		ret = -EPERM;
1103 		goto out_finish;
1104 	}
1105 
1106 	if (!strcmp(sizestr, "max"))
1107 		new_size = bdev_nr_bytes(device->bdev);
1108 	else {
1109 		char *retptr;
1110 
1111 		if (sizestr[0] == '-') {
1112 			mod = -1;
1113 			sizestr++;
1114 		} else if (sizestr[0] == '+') {
1115 			mod = 1;
1116 			sizestr++;
1117 		}
1118 		new_size = memparse(sizestr, &retptr);
1119 		if (*retptr != '\0' || new_size == 0) {
1120 			ret = -EINVAL;
1121 			goto out_finish;
1122 		}
1123 	}
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1126 		ret = -EPERM;
1127 		goto out_finish;
1128 	}
1129 
1130 	old_size = btrfs_device_get_total_bytes(device);
1131 
1132 	if (mod < 0) {
1133 		if (new_size > old_size) {
1134 			ret = -EINVAL;
1135 			goto out_finish;
1136 		}
1137 		new_size = old_size - new_size;
1138 	} else if (mod > 0) {
1139 		if (new_size > ULLONG_MAX - old_size) {
1140 			ret = -ERANGE;
1141 			goto out_finish;
1142 		}
1143 		new_size = old_size + new_size;
1144 	}
1145 
1146 	if (new_size < SZ_256M) {
1147 		ret = -EINVAL;
1148 		goto out_finish;
1149 	}
1150 	if (new_size > bdev_nr_bytes(device->bdev)) {
1151 		ret = -EFBIG;
1152 		goto out_finish;
1153 	}
1154 
1155 	new_size = round_down(new_size, fs_info->sectorsize);
1156 
1157 	if (new_size > old_size) {
1158 		struct btrfs_trans_handle *trans;
1159 
1160 		trans = btrfs_start_transaction(root, 0);
1161 		if (IS_ERR(trans)) {
1162 			ret = PTR_ERR(trans);
1163 			goto out_finish;
1164 		}
1165 		ret = btrfs_grow_device(trans, device, new_size);
1166 		btrfs_commit_transaction(trans);
1167 	} else if (new_size < old_size) {
1168 		ret = btrfs_shrink_device(device, new_size);
1169 	} /* equal, nothing need to do */
1170 
1171 	if (ret == 0 && new_size != old_size)
1172 		btrfs_info_in_rcu(fs_info,
1173 			"resize device %s (devid %llu) from %llu to %llu",
1174 			btrfs_dev_name(device), device->devid,
1175 			old_size, new_size);
1176 out_finish:
1177 	btrfs_exclop_finish(fs_info);
1178 out_free:
1179 	kfree(vol_args);
1180 out_drop:
1181 	mnt_drop_write_file(file);
1182 	return ret;
1183 }
1184 
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1185 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1186 				struct mnt_idmap *idmap,
1187 				const char *name, unsigned long fd, int subvol,
1188 				bool readonly,
1189 				struct btrfs_qgroup_inherit *inherit)
1190 {
1191 	int namelen;
1192 	int ret = 0;
1193 
1194 	if (!S_ISDIR(file_inode(file)->i_mode))
1195 		return -ENOTDIR;
1196 
1197 	ret = mnt_want_write_file(file);
1198 	if (ret)
1199 		goto out;
1200 
1201 	namelen = strlen(name);
1202 	if (strchr(name, '/')) {
1203 		ret = -EINVAL;
1204 		goto out_drop_write;
1205 	}
1206 
1207 	if (name[0] == '.' &&
1208 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1209 		ret = -EEXIST;
1210 		goto out_drop_write;
1211 	}
1212 
1213 	if (subvol) {
1214 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1215 				     namelen, NULL, readonly, inherit);
1216 	} else {
1217 		CLASS(fd, src)(fd);
1218 		struct inode *src_inode;
1219 		if (fd_empty(src)) {
1220 			ret = -EINVAL;
1221 			goto out_drop_write;
1222 		}
1223 
1224 		src_inode = file_inode(fd_file(src));
1225 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1226 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1227 				   "Snapshot src from another FS");
1228 			ret = -EXDEV;
1229 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1230 			/*
1231 			 * Subvolume creation is not restricted, but snapshots
1232 			 * are limited to own subvolumes only
1233 			 */
1234 			ret = -EPERM;
1235 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1236 			/*
1237 			 * Snapshots must be made with the src_inode referring
1238 			 * to the subvolume inode, otherwise the permission
1239 			 * checking above is useless because we may have
1240 			 * permission on a lower directory but not the subvol
1241 			 * itself.
1242 			 */
1243 			ret = -EINVAL;
1244 		} else {
1245 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1246 					       name, namelen,
1247 					       BTRFS_I(src_inode)->root,
1248 					       readonly, inherit);
1249 		}
1250 	}
1251 out_drop_write:
1252 	mnt_drop_write_file(file);
1253 out:
1254 	return ret;
1255 }
1256 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1257 static noinline int btrfs_ioctl_snap_create(struct file *file,
1258 					    void __user *arg, int subvol)
1259 {
1260 	struct btrfs_ioctl_vol_args *vol_args;
1261 	int ret;
1262 
1263 	if (!S_ISDIR(file_inode(file)->i_mode))
1264 		return -ENOTDIR;
1265 
1266 	vol_args = memdup_user(arg, sizeof(*vol_args));
1267 	if (IS_ERR(vol_args))
1268 		return PTR_ERR(vol_args);
1269 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1270 	if (ret < 0)
1271 		goto out;
1272 
1273 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1274 					vol_args->name, vol_args->fd, subvol,
1275 					false, NULL);
1276 
1277 out:
1278 	kfree(vol_args);
1279 	return ret;
1280 }
1281 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1282 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1283 					       void __user *arg, int subvol)
1284 {
1285 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1286 	int ret;
1287 	bool readonly = false;
1288 	struct btrfs_qgroup_inherit *inherit = NULL;
1289 
1290 	if (!S_ISDIR(file_inode(file)->i_mode))
1291 		return -ENOTDIR;
1292 
1293 	vol_args = memdup_user(arg, sizeof(*vol_args));
1294 	if (IS_ERR(vol_args))
1295 		return PTR_ERR(vol_args);
1296 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1297 	if (ret < 0)
1298 		goto free_args;
1299 
1300 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1301 		ret = -EOPNOTSUPP;
1302 		goto free_args;
1303 	}
1304 
1305 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1306 		readonly = true;
1307 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1308 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1309 
1310 		if (vol_args->size < sizeof(*inherit) ||
1311 		    vol_args->size > PAGE_SIZE) {
1312 			ret = -EINVAL;
1313 			goto free_args;
1314 		}
1315 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1316 		if (IS_ERR(inherit)) {
1317 			ret = PTR_ERR(inherit);
1318 			goto free_args;
1319 		}
1320 
1321 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1322 		if (ret < 0)
1323 			goto free_inherit;
1324 	}
1325 
1326 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1327 					vol_args->name, vol_args->fd, subvol,
1328 					readonly, inherit);
1329 	if (ret)
1330 		goto free_inherit;
1331 free_inherit:
1332 	kfree(inherit);
1333 free_args:
1334 	kfree(vol_args);
1335 	return ret;
1336 }
1337 
btrfs_ioctl_subvol_getflags(struct btrfs_inode * inode,void __user * arg)1338 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1339 						void __user *arg)
1340 {
1341 	struct btrfs_root *root = inode->root;
1342 	struct btrfs_fs_info *fs_info = root->fs_info;
1343 	int ret = 0;
1344 	u64 flags = 0;
1345 
1346 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1347 		return -EINVAL;
1348 
1349 	down_read(&fs_info->subvol_sem);
1350 	if (btrfs_root_readonly(root))
1351 		flags |= BTRFS_SUBVOL_RDONLY;
1352 	up_read(&fs_info->subvol_sem);
1353 
1354 	if (copy_to_user(arg, &flags, sizeof(flags)))
1355 		ret = -EFAULT;
1356 
1357 	return ret;
1358 }
1359 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1360 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1361 					      void __user *arg)
1362 {
1363 	struct inode *inode = file_inode(file);
1364 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1365 	struct btrfs_root *root = BTRFS_I(inode)->root;
1366 	struct btrfs_trans_handle *trans;
1367 	u64 root_flags;
1368 	u64 flags;
1369 	int ret = 0;
1370 
1371 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1372 		return -EPERM;
1373 
1374 	ret = mnt_want_write_file(file);
1375 	if (ret)
1376 		goto out;
1377 
1378 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1379 		ret = -EINVAL;
1380 		goto out_drop_write;
1381 	}
1382 
1383 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1384 		ret = -EFAULT;
1385 		goto out_drop_write;
1386 	}
1387 
1388 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1389 		ret = -EOPNOTSUPP;
1390 		goto out_drop_write;
1391 	}
1392 
1393 	down_write(&fs_info->subvol_sem);
1394 
1395 	/* nothing to do */
1396 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1397 		goto out_drop_sem;
1398 
1399 	root_flags = btrfs_root_flags(&root->root_item);
1400 	if (flags & BTRFS_SUBVOL_RDONLY) {
1401 		btrfs_set_root_flags(&root->root_item,
1402 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1403 	} else {
1404 		/*
1405 		 * Block RO -> RW transition if this subvolume is involved in
1406 		 * send
1407 		 */
1408 		spin_lock(&root->root_item_lock);
1409 		if (root->send_in_progress == 0) {
1410 			btrfs_set_root_flags(&root->root_item,
1411 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1412 			spin_unlock(&root->root_item_lock);
1413 		} else {
1414 			spin_unlock(&root->root_item_lock);
1415 			btrfs_warn(fs_info,
1416 				   "Attempt to set subvolume %llu read-write during send",
1417 				   btrfs_root_id(root));
1418 			ret = -EPERM;
1419 			goto out_drop_sem;
1420 		}
1421 	}
1422 
1423 	trans = btrfs_start_transaction(root, 1);
1424 	if (IS_ERR(trans)) {
1425 		ret = PTR_ERR(trans);
1426 		goto out_reset;
1427 	}
1428 
1429 	ret = btrfs_update_root(trans, fs_info->tree_root,
1430 				&root->root_key, &root->root_item);
1431 	if (ret < 0) {
1432 		btrfs_end_transaction(trans);
1433 		goto out_reset;
1434 	}
1435 
1436 	ret = btrfs_commit_transaction(trans);
1437 
1438 out_reset:
1439 	if (ret)
1440 		btrfs_set_root_flags(&root->root_item, root_flags);
1441 out_drop_sem:
1442 	up_write(&fs_info->subvol_sem);
1443 out_drop_write:
1444 	mnt_drop_write_file(file);
1445 out:
1446 	return ret;
1447 }
1448 
key_in_sk(const struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk)1449 static noinline bool key_in_sk(const struct btrfs_key *key,
1450 			       const struct btrfs_ioctl_search_key *sk)
1451 {
1452 	struct btrfs_key test;
1453 	int ret;
1454 
1455 	test.objectid = sk->min_objectid;
1456 	test.type = sk->min_type;
1457 	test.offset = sk->min_offset;
1458 
1459 	ret = btrfs_comp_cpu_keys(key, &test);
1460 	if (ret < 0)
1461 		return false;
1462 
1463 	test.objectid = sk->max_objectid;
1464 	test.type = sk->max_type;
1465 	test.offset = sk->max_offset;
1466 
1467 	ret = btrfs_comp_cpu_keys(key, &test);
1468 	if (ret > 0)
1469 		return false;
1470 	return true;
1471 }
1472 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1473 static noinline int copy_to_sk(struct btrfs_path *path,
1474 			       struct btrfs_key *key,
1475 			       const struct btrfs_ioctl_search_key *sk,
1476 			       u64 *buf_size,
1477 			       char __user *ubuf,
1478 			       unsigned long *sk_offset,
1479 			       int *num_found)
1480 {
1481 	u64 found_transid;
1482 	struct extent_buffer *leaf;
1483 	struct btrfs_ioctl_search_header sh;
1484 	struct btrfs_key test;
1485 	unsigned long item_off;
1486 	unsigned long item_len;
1487 	int nritems;
1488 	int i;
1489 	int slot;
1490 	int ret = 0;
1491 
1492 	leaf = path->nodes[0];
1493 	slot = path->slots[0];
1494 	nritems = btrfs_header_nritems(leaf);
1495 
1496 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1497 		i = nritems;
1498 		goto advance_key;
1499 	}
1500 	found_transid = btrfs_header_generation(leaf);
1501 
1502 	for (i = slot; i < nritems; i++) {
1503 		item_off = btrfs_item_ptr_offset(leaf, i);
1504 		item_len = btrfs_item_size(leaf, i);
1505 
1506 		btrfs_item_key_to_cpu(leaf, key, i);
1507 		if (!key_in_sk(key, sk))
1508 			continue;
1509 
1510 		if (sizeof(sh) + item_len > *buf_size) {
1511 			if (*num_found) {
1512 				ret = 1;
1513 				goto out;
1514 			}
1515 
1516 			/*
1517 			 * return one empty item back for v1, which does not
1518 			 * handle -EOVERFLOW
1519 			 */
1520 
1521 			*buf_size = sizeof(sh) + item_len;
1522 			item_len = 0;
1523 			ret = -EOVERFLOW;
1524 		}
1525 
1526 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1527 			ret = 1;
1528 			goto out;
1529 		}
1530 
1531 		sh.objectid = key->objectid;
1532 		sh.type = key->type;
1533 		sh.offset = key->offset;
1534 		sh.len = item_len;
1535 		sh.transid = found_transid;
1536 
1537 		/*
1538 		 * Copy search result header. If we fault then loop again so we
1539 		 * can fault in the pages and -EFAULT there if there's a
1540 		 * problem. Otherwise we'll fault and then copy the buffer in
1541 		 * properly this next time through
1542 		 */
1543 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1544 			ret = 0;
1545 			goto out;
1546 		}
1547 
1548 		*sk_offset += sizeof(sh);
1549 
1550 		if (item_len) {
1551 			char __user *up = ubuf + *sk_offset;
1552 			/*
1553 			 * Copy the item, same behavior as above, but reset the
1554 			 * * sk_offset so we copy the full thing again.
1555 			 */
1556 			if (read_extent_buffer_to_user_nofault(leaf, up,
1557 						item_off, item_len)) {
1558 				ret = 0;
1559 				*sk_offset -= sizeof(sh);
1560 				goto out;
1561 			}
1562 
1563 			*sk_offset += item_len;
1564 		}
1565 		(*num_found)++;
1566 
1567 		if (ret) /* -EOVERFLOW from above */
1568 			goto out;
1569 
1570 		if (*num_found >= sk->nr_items) {
1571 			ret = 1;
1572 			goto out;
1573 		}
1574 	}
1575 advance_key:
1576 	ret = 0;
1577 	test.objectid = sk->max_objectid;
1578 	test.type = sk->max_type;
1579 	test.offset = sk->max_offset;
1580 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1581 		ret = 1;
1582 	else if (key->offset < (u64)-1)
1583 		key->offset++;
1584 	else if (key->type < (u8)-1) {
1585 		key->offset = 0;
1586 		key->type++;
1587 	} else if (key->objectid < (u64)-1) {
1588 		key->offset = 0;
1589 		key->type = 0;
1590 		key->objectid++;
1591 	} else
1592 		ret = 1;
1593 out:
1594 	/*
1595 	 *  0: all items from this leaf copied, continue with next
1596 	 *  1: * more items can be copied, but unused buffer is too small
1597 	 *     * all items were found
1598 	 *     Either way, it will stops the loop which iterates to the next
1599 	 *     leaf
1600 	 *  -EOVERFLOW: item was to large for buffer
1601 	 *  -EFAULT: could not copy extent buffer back to userspace
1602 	 */
1603 	return ret;
1604 }
1605 
search_ioctl(struct btrfs_root * root,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1606 static noinline int search_ioctl(struct btrfs_root *root,
1607 				 struct btrfs_ioctl_search_key *sk,
1608 				 u64 *buf_size,
1609 				 char __user *ubuf)
1610 {
1611 	struct btrfs_fs_info *info = root->fs_info;
1612 	struct btrfs_key key;
1613 	struct btrfs_path *path;
1614 	int ret;
1615 	int num_found = 0;
1616 	unsigned long sk_offset = 0;
1617 
1618 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1619 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1620 		return -EOVERFLOW;
1621 	}
1622 
1623 	path = btrfs_alloc_path();
1624 	if (!path)
1625 		return -ENOMEM;
1626 
1627 	if (sk->tree_id == 0) {
1628 		/* Search the root that we got passed. */
1629 		root = btrfs_grab_root(root);
1630 	} else {
1631 		/* Look up the root from the arguments. */
1632 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1633 		if (IS_ERR(root)) {
1634 			btrfs_free_path(path);
1635 			return PTR_ERR(root);
1636 		}
1637 	}
1638 
1639 	key.objectid = sk->min_objectid;
1640 	key.type = sk->min_type;
1641 	key.offset = sk->min_offset;
1642 
1643 	while (1) {
1644 		/*
1645 		 * Ensure that the whole user buffer is faulted in at sub-page
1646 		 * granularity, otherwise the loop may live-lock.
1647 		 */
1648 		if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1649 			ret = -EFAULT;
1650 			break;
1651 		}
1652 
1653 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1654 		if (ret)
1655 			break;
1656 
1657 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1658 				 &sk_offset, &num_found);
1659 		btrfs_release_path(path);
1660 		if (ret)
1661 			break;
1662 
1663 	}
1664 	/* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1665 	if (ret > 0)
1666 		ret = 0;
1667 
1668 	sk->nr_items = num_found;
1669 	btrfs_put_root(root);
1670 	btrfs_free_path(path);
1671 	return ret;
1672 }
1673 
btrfs_ioctl_tree_search(struct btrfs_root * root,void __user * argp)1674 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1675 					    void __user *argp)
1676 {
1677 	struct btrfs_ioctl_search_args __user *uargs = argp;
1678 	struct btrfs_ioctl_search_key sk;
1679 	int ret;
1680 	u64 buf_size;
1681 
1682 	if (!capable(CAP_SYS_ADMIN))
1683 		return -EPERM;
1684 
1685 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1686 		return -EFAULT;
1687 
1688 	buf_size = sizeof(uargs->buf);
1689 
1690 	ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1691 
1692 	/*
1693 	 * In the origin implementation an overflow is handled by returning a
1694 	 * search header with a len of zero, so reset ret.
1695 	 */
1696 	if (ret == -EOVERFLOW)
1697 		ret = 0;
1698 
1699 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1700 		ret = -EFAULT;
1701 	return ret;
1702 }
1703 
btrfs_ioctl_tree_search_v2(struct btrfs_root * root,void __user * argp)1704 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1705 					       void __user *argp)
1706 {
1707 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1708 	struct btrfs_ioctl_search_args_v2 args;
1709 	int ret;
1710 	u64 buf_size;
1711 	const u64 buf_limit = SZ_16M;
1712 
1713 	if (!capable(CAP_SYS_ADMIN))
1714 		return -EPERM;
1715 
1716 	/* copy search header and buffer size */
1717 	if (copy_from_user(&args, uarg, sizeof(args)))
1718 		return -EFAULT;
1719 
1720 	buf_size = args.buf_size;
1721 
1722 	/* limit result size to 16MB */
1723 	if (buf_size > buf_limit)
1724 		buf_size = buf_limit;
1725 
1726 	ret = search_ioctl(root, &args.key, &buf_size,
1727 			   (char __user *)(&uarg->buf[0]));
1728 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1729 		ret = -EFAULT;
1730 	else if (ret == -EOVERFLOW &&
1731 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1732 		ret = -EFAULT;
1733 
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Search INODE_REFs to identify path name of 'dirid' directory
1739  * in a 'tree_id' tree. and sets path name to 'name'.
1740  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1741 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1742 				u64 tree_id, u64 dirid, char *name)
1743 {
1744 	struct btrfs_root *root;
1745 	struct btrfs_key key;
1746 	char *ptr;
1747 	int ret = -1;
1748 	int slot;
1749 	int len;
1750 	int total_len = 0;
1751 	struct btrfs_inode_ref *iref;
1752 	struct extent_buffer *l;
1753 	struct btrfs_path *path;
1754 
1755 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1756 		name[0]='\0';
1757 		return 0;
1758 	}
1759 
1760 	path = btrfs_alloc_path();
1761 	if (!path)
1762 		return -ENOMEM;
1763 
1764 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1765 
1766 	root = btrfs_get_fs_root(info, tree_id, true);
1767 	if (IS_ERR(root)) {
1768 		ret = PTR_ERR(root);
1769 		root = NULL;
1770 		goto out;
1771 	}
1772 
1773 	key.objectid = dirid;
1774 	key.type = BTRFS_INODE_REF_KEY;
1775 	key.offset = (u64)-1;
1776 
1777 	while (1) {
1778 		ret = btrfs_search_backwards(root, &key, path);
1779 		if (ret < 0)
1780 			goto out;
1781 		else if (ret > 0) {
1782 			ret = -ENOENT;
1783 			goto out;
1784 		}
1785 
1786 		l = path->nodes[0];
1787 		slot = path->slots[0];
1788 
1789 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1790 		len = btrfs_inode_ref_name_len(l, iref);
1791 		ptr -= len + 1;
1792 		total_len += len + 1;
1793 		if (ptr < name) {
1794 			ret = -ENAMETOOLONG;
1795 			goto out;
1796 		}
1797 
1798 		*(ptr + len) = '/';
1799 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1800 
1801 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1802 			break;
1803 
1804 		btrfs_release_path(path);
1805 		key.objectid = key.offset;
1806 		key.offset = (u64)-1;
1807 		dirid = key.objectid;
1808 	}
1809 	memmove(name, ptr, total_len);
1810 	name[total_len] = '\0';
1811 	ret = 0;
1812 out:
1813 	btrfs_put_root(root);
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1818 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1819 				struct inode *inode,
1820 				struct btrfs_ioctl_ino_lookup_user_args *args)
1821 {
1822 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1823 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1824 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1825 	u64 dirid = args->dirid;
1826 	unsigned long item_off;
1827 	unsigned long item_len;
1828 	struct btrfs_inode_ref *iref;
1829 	struct btrfs_root_ref *rref;
1830 	struct btrfs_root *root = NULL;
1831 	struct btrfs_path *path;
1832 	struct btrfs_key key, key2;
1833 	struct extent_buffer *leaf;
1834 	char *ptr;
1835 	int slot;
1836 	int len;
1837 	int total_len = 0;
1838 	int ret;
1839 
1840 	path = btrfs_alloc_path();
1841 	if (!path)
1842 		return -ENOMEM;
1843 
1844 	/*
1845 	 * If the bottom subvolume does not exist directly under upper_limit,
1846 	 * construct the path in from the bottom up.
1847 	 */
1848 	if (dirid != upper_limit) {
1849 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1850 
1851 		root = btrfs_get_fs_root(fs_info, treeid, true);
1852 		if (IS_ERR(root)) {
1853 			ret = PTR_ERR(root);
1854 			goto out;
1855 		}
1856 
1857 		key.objectid = dirid;
1858 		key.type = BTRFS_INODE_REF_KEY;
1859 		key.offset = (u64)-1;
1860 		while (1) {
1861 			struct btrfs_inode *temp_inode;
1862 
1863 			ret = btrfs_search_backwards(root, &key, path);
1864 			if (ret < 0)
1865 				goto out_put;
1866 			else if (ret > 0) {
1867 				ret = -ENOENT;
1868 				goto out_put;
1869 			}
1870 
1871 			leaf = path->nodes[0];
1872 			slot = path->slots[0];
1873 
1874 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1875 			len = btrfs_inode_ref_name_len(leaf, iref);
1876 			ptr -= len + 1;
1877 			total_len += len + 1;
1878 			if (ptr < args->path) {
1879 				ret = -ENAMETOOLONG;
1880 				goto out_put;
1881 			}
1882 
1883 			*(ptr + len) = '/';
1884 			read_extent_buffer(leaf, ptr,
1885 					(unsigned long)(iref + 1), len);
1886 
1887 			/* Check the read+exec permission of this directory */
1888 			ret = btrfs_previous_item(root, path, dirid,
1889 						  BTRFS_INODE_ITEM_KEY);
1890 			if (ret < 0) {
1891 				goto out_put;
1892 			} else if (ret > 0) {
1893 				ret = -ENOENT;
1894 				goto out_put;
1895 			}
1896 
1897 			leaf = path->nodes[0];
1898 			slot = path->slots[0];
1899 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1900 			if (key2.objectid != dirid) {
1901 				ret = -ENOENT;
1902 				goto out_put;
1903 			}
1904 
1905 			/*
1906 			 * We don't need the path anymore, so release it and
1907 			 * avoid deadlocks and lockdep warnings in case
1908 			 * btrfs_iget() needs to lookup the inode from its root
1909 			 * btree and lock the same leaf.
1910 			 */
1911 			btrfs_release_path(path);
1912 			temp_inode = btrfs_iget(key2.objectid, root);
1913 			if (IS_ERR(temp_inode)) {
1914 				ret = PTR_ERR(temp_inode);
1915 				goto out_put;
1916 			}
1917 			ret = inode_permission(idmap, &temp_inode->vfs_inode,
1918 					       MAY_READ | MAY_EXEC);
1919 			iput(&temp_inode->vfs_inode);
1920 			if (ret) {
1921 				ret = -EACCES;
1922 				goto out_put;
1923 			}
1924 
1925 			if (key.offset == upper_limit)
1926 				break;
1927 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1928 				ret = -EACCES;
1929 				goto out_put;
1930 			}
1931 
1932 			key.objectid = key.offset;
1933 			key.offset = (u64)-1;
1934 			dirid = key.objectid;
1935 		}
1936 
1937 		memmove(args->path, ptr, total_len);
1938 		args->path[total_len] = '\0';
1939 		btrfs_put_root(root);
1940 		root = NULL;
1941 		btrfs_release_path(path);
1942 	}
1943 
1944 	/* Get the bottom subvolume's name from ROOT_REF */
1945 	key.objectid = treeid;
1946 	key.type = BTRFS_ROOT_REF_KEY;
1947 	key.offset = args->treeid;
1948 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1949 	if (ret < 0) {
1950 		goto out;
1951 	} else if (ret > 0) {
1952 		ret = -ENOENT;
1953 		goto out;
1954 	}
1955 
1956 	leaf = path->nodes[0];
1957 	slot = path->slots[0];
1958 	btrfs_item_key_to_cpu(leaf, &key, slot);
1959 
1960 	item_off = btrfs_item_ptr_offset(leaf, slot);
1961 	item_len = btrfs_item_size(leaf, slot);
1962 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1963 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1964 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1965 		ret = -EINVAL;
1966 		goto out;
1967 	}
1968 
1969 	/* Copy subvolume's name */
1970 	item_off += sizeof(struct btrfs_root_ref);
1971 	item_len -= sizeof(struct btrfs_root_ref);
1972 	read_extent_buffer(leaf, args->name, item_off, item_len);
1973 	args->name[item_len] = 0;
1974 
1975 out_put:
1976 	btrfs_put_root(root);
1977 out:
1978 	btrfs_free_path(path);
1979 	return ret;
1980 }
1981 
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1982 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1983 					   void __user *argp)
1984 {
1985 	struct btrfs_ioctl_ino_lookup_args *args;
1986 	int ret = 0;
1987 
1988 	args = memdup_user(argp, sizeof(*args));
1989 	if (IS_ERR(args))
1990 		return PTR_ERR(args);
1991 
1992 	/*
1993 	 * Unprivileged query to obtain the containing subvolume root id. The
1994 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1995 	 */
1996 	if (args->treeid == 0)
1997 		args->treeid = btrfs_root_id(root);
1998 
1999 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2000 		args->name[0] = 0;
2001 		goto out;
2002 	}
2003 
2004 	if (!capable(CAP_SYS_ADMIN)) {
2005 		ret = -EPERM;
2006 		goto out;
2007 	}
2008 
2009 	ret = btrfs_search_path_in_tree(root->fs_info,
2010 					args->treeid, args->objectid,
2011 					args->name);
2012 
2013 out:
2014 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2015 		ret = -EFAULT;
2016 
2017 	kfree(args);
2018 	return ret;
2019 }
2020 
2021 /*
2022  * Version of ino_lookup ioctl (unprivileged)
2023  *
2024  * The main differences from ino_lookup ioctl are:
2025  *
2026  *   1. Read + Exec permission will be checked using inode_permission() during
2027  *      path construction. -EACCES will be returned in case of failure.
2028  *   2. Path construction will be stopped at the inode number which corresponds
2029  *      to the fd with which this ioctl is called. If constructed path does not
2030  *      exist under fd's inode, -EACCES will be returned.
2031  *   3. The name of bottom subvolume is also searched and filled.
2032  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2033 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2034 {
2035 	struct btrfs_ioctl_ino_lookup_user_args *args;
2036 	struct inode *inode;
2037 	int ret;
2038 
2039 	args = memdup_user(argp, sizeof(*args));
2040 	if (IS_ERR(args))
2041 		return PTR_ERR(args);
2042 
2043 	inode = file_inode(file);
2044 
2045 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2046 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2047 		/*
2048 		 * The subvolume does not exist under fd with which this is
2049 		 * called
2050 		 */
2051 		kfree(args);
2052 		return -EACCES;
2053 	}
2054 
2055 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2056 
2057 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2058 		ret = -EFAULT;
2059 
2060 	kfree(args);
2061 	return ret;
2062 }
2063 
2064 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2065 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2066 {
2067 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2068 	struct btrfs_fs_info *fs_info;
2069 	struct btrfs_root *root;
2070 	struct btrfs_path *path;
2071 	struct btrfs_key key;
2072 	struct btrfs_root_item *root_item;
2073 	struct btrfs_root_ref *rref;
2074 	struct extent_buffer *leaf;
2075 	unsigned long item_off;
2076 	unsigned long item_len;
2077 	int slot;
2078 	int ret = 0;
2079 
2080 	path = btrfs_alloc_path();
2081 	if (!path)
2082 		return -ENOMEM;
2083 
2084 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2085 	if (!subvol_info) {
2086 		btrfs_free_path(path);
2087 		return -ENOMEM;
2088 	}
2089 
2090 	fs_info = BTRFS_I(inode)->root->fs_info;
2091 
2092 	/* Get root_item of inode's subvolume */
2093 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2094 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2095 	if (IS_ERR(root)) {
2096 		ret = PTR_ERR(root);
2097 		goto out_free;
2098 	}
2099 	root_item = &root->root_item;
2100 
2101 	subvol_info->treeid = key.objectid;
2102 
2103 	subvol_info->generation = btrfs_root_generation(root_item);
2104 	subvol_info->flags = btrfs_root_flags(root_item);
2105 
2106 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2107 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2108 						    BTRFS_UUID_SIZE);
2109 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2110 						    BTRFS_UUID_SIZE);
2111 
2112 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2113 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2114 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2115 
2116 	subvol_info->otransid = btrfs_root_otransid(root_item);
2117 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2118 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2119 
2120 	subvol_info->stransid = btrfs_root_stransid(root_item);
2121 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2122 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2123 
2124 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2125 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2126 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2127 
2128 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2129 		/* Search root tree for ROOT_BACKREF of this subvolume */
2130 		key.type = BTRFS_ROOT_BACKREF_KEY;
2131 		key.offset = 0;
2132 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2133 		if (ret < 0) {
2134 			goto out;
2135 		} else if (path->slots[0] >=
2136 			   btrfs_header_nritems(path->nodes[0])) {
2137 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2138 			if (ret < 0) {
2139 				goto out;
2140 			} else if (ret > 0) {
2141 				ret = -EUCLEAN;
2142 				goto out;
2143 			}
2144 		}
2145 
2146 		leaf = path->nodes[0];
2147 		slot = path->slots[0];
2148 		btrfs_item_key_to_cpu(leaf, &key, slot);
2149 		if (key.objectid == subvol_info->treeid &&
2150 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2151 			subvol_info->parent_id = key.offset;
2152 
2153 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2154 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2155 
2156 			item_off = btrfs_item_ptr_offset(leaf, slot)
2157 					+ sizeof(struct btrfs_root_ref);
2158 			item_len = btrfs_item_size(leaf, slot)
2159 					- sizeof(struct btrfs_root_ref);
2160 			read_extent_buffer(leaf, subvol_info->name,
2161 					   item_off, item_len);
2162 		} else {
2163 			ret = -ENOENT;
2164 			goto out;
2165 		}
2166 	}
2167 
2168 	btrfs_free_path(path);
2169 	path = NULL;
2170 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2171 		ret = -EFAULT;
2172 
2173 out:
2174 	btrfs_put_root(root);
2175 out_free:
2176 	btrfs_free_path(path);
2177 	kfree(subvol_info);
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Return ROOT_REF information of the subvolume containing this inode
2183  * except the subvolume name.
2184  */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2185 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2186 					  void __user *argp)
2187 {
2188 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2189 	struct btrfs_root_ref *rref;
2190 	struct btrfs_path *path;
2191 	struct btrfs_key key;
2192 	struct extent_buffer *leaf;
2193 	u64 objectid;
2194 	int slot;
2195 	int ret;
2196 	u8 found;
2197 
2198 	path = btrfs_alloc_path();
2199 	if (!path)
2200 		return -ENOMEM;
2201 
2202 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2203 	if (IS_ERR(rootrefs)) {
2204 		btrfs_free_path(path);
2205 		return PTR_ERR(rootrefs);
2206 	}
2207 
2208 	objectid = btrfs_root_id(root);
2209 	key.objectid = objectid;
2210 	key.type = BTRFS_ROOT_REF_KEY;
2211 	key.offset = rootrefs->min_treeid;
2212 	found = 0;
2213 
2214 	root = root->fs_info->tree_root;
2215 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2216 	if (ret < 0) {
2217 		goto out;
2218 	} else if (path->slots[0] >=
2219 		   btrfs_header_nritems(path->nodes[0])) {
2220 		ret = btrfs_next_leaf(root, path);
2221 		if (ret < 0) {
2222 			goto out;
2223 		} else if (ret > 0) {
2224 			ret = -EUCLEAN;
2225 			goto out;
2226 		}
2227 	}
2228 	while (1) {
2229 		leaf = path->nodes[0];
2230 		slot = path->slots[0];
2231 
2232 		btrfs_item_key_to_cpu(leaf, &key, slot);
2233 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2234 			ret = 0;
2235 			goto out;
2236 		}
2237 
2238 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2239 			ret = -EOVERFLOW;
2240 			goto out;
2241 		}
2242 
2243 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2244 		rootrefs->rootref[found].treeid = key.offset;
2245 		rootrefs->rootref[found].dirid =
2246 				  btrfs_root_ref_dirid(leaf, rref);
2247 		found++;
2248 
2249 		ret = btrfs_next_item(root, path);
2250 		if (ret < 0) {
2251 			goto out;
2252 		} else if (ret > 0) {
2253 			ret = -EUCLEAN;
2254 			goto out;
2255 		}
2256 	}
2257 
2258 out:
2259 	btrfs_free_path(path);
2260 
2261 	if (!ret || ret == -EOVERFLOW) {
2262 		rootrefs->num_items = found;
2263 		/* update min_treeid for next search */
2264 		if (found)
2265 			rootrefs->min_treeid =
2266 				rootrefs->rootref[found - 1].treeid + 1;
2267 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2268 			ret = -EFAULT;
2269 	}
2270 
2271 	kfree(rootrefs);
2272 
2273 	return ret;
2274 }
2275 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2276 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2277 					     void __user *arg,
2278 					     bool destroy_v2)
2279 {
2280 	struct dentry *parent = file->f_path.dentry;
2281 	struct dentry *dentry;
2282 	struct inode *dir = d_inode(parent);
2283 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2284 	struct inode *inode;
2285 	struct btrfs_root *root = BTRFS_I(dir)->root;
2286 	struct btrfs_root *dest = NULL;
2287 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2288 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2289 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2290 	char *subvol_name, *subvol_name_ptr = NULL;
2291 	int ret = 0;
2292 	bool destroy_parent = false;
2293 
2294 	/* We don't support snapshots with extent tree v2 yet. */
2295 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2296 		btrfs_err(fs_info,
2297 			  "extent tree v2 doesn't support snapshot deletion yet");
2298 		return -EOPNOTSUPP;
2299 	}
2300 
2301 	if (destroy_v2) {
2302 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2303 		if (IS_ERR(vol_args2))
2304 			return PTR_ERR(vol_args2);
2305 
2306 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2307 			ret = -EOPNOTSUPP;
2308 			goto out;
2309 		}
2310 
2311 		/*
2312 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2313 		 * name, same as v1 currently does.
2314 		 */
2315 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2316 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2317 			if (ret < 0)
2318 				goto out;
2319 			subvol_name = vol_args2->name;
2320 
2321 			ret = mnt_want_write_file(file);
2322 			if (ret)
2323 				goto out;
2324 		} else {
2325 			struct inode *old_dir;
2326 
2327 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2328 				ret = -EINVAL;
2329 				goto out;
2330 			}
2331 
2332 			ret = mnt_want_write_file(file);
2333 			if (ret)
2334 				goto out;
2335 
2336 			dentry = btrfs_get_dentry(fs_info->sb,
2337 					BTRFS_FIRST_FREE_OBJECTID,
2338 					vol_args2->subvolid, 0);
2339 			if (IS_ERR(dentry)) {
2340 				ret = PTR_ERR(dentry);
2341 				goto out_drop_write;
2342 			}
2343 
2344 			/*
2345 			 * Change the default parent since the subvolume being
2346 			 * deleted can be outside of the current mount point.
2347 			 */
2348 			parent = btrfs_get_parent(dentry);
2349 
2350 			/*
2351 			 * At this point dentry->d_name can point to '/' if the
2352 			 * subvolume we want to destroy is outsite of the
2353 			 * current mount point, so we need to release the
2354 			 * current dentry and execute the lookup to return a new
2355 			 * one with ->d_name pointing to the
2356 			 * <mount point>/subvol_name.
2357 			 */
2358 			dput(dentry);
2359 			if (IS_ERR(parent)) {
2360 				ret = PTR_ERR(parent);
2361 				goto out_drop_write;
2362 			}
2363 			old_dir = dir;
2364 			dir = d_inode(parent);
2365 
2366 			/*
2367 			 * If v2 was used with SPEC_BY_ID, a new parent was
2368 			 * allocated since the subvolume can be outside of the
2369 			 * current mount point. Later on we need to release this
2370 			 * new parent dentry.
2371 			 */
2372 			destroy_parent = true;
2373 
2374 			/*
2375 			 * On idmapped mounts, deletion via subvolid is
2376 			 * restricted to subvolumes that are immediate
2377 			 * ancestors of the inode referenced by the file
2378 			 * descriptor in the ioctl. Otherwise the idmapping
2379 			 * could potentially be abused to delete subvolumes
2380 			 * anywhere in the filesystem the user wouldn't be able
2381 			 * to delete without an idmapped mount.
2382 			 */
2383 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2384 				ret = -EOPNOTSUPP;
2385 				goto free_parent;
2386 			}
2387 
2388 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2389 						fs_info, vol_args2->subvolid);
2390 			if (IS_ERR(subvol_name_ptr)) {
2391 				ret = PTR_ERR(subvol_name_ptr);
2392 				goto free_parent;
2393 			}
2394 			/* subvol_name_ptr is already nul terminated */
2395 			subvol_name = (char *)kbasename(subvol_name_ptr);
2396 		}
2397 	} else {
2398 		vol_args = memdup_user(arg, sizeof(*vol_args));
2399 		if (IS_ERR(vol_args))
2400 			return PTR_ERR(vol_args);
2401 
2402 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2403 		if (ret < 0)
2404 			goto out;
2405 
2406 		subvol_name = vol_args->name;
2407 
2408 		ret = mnt_want_write_file(file);
2409 		if (ret)
2410 			goto out;
2411 	}
2412 
2413 	if (strchr(subvol_name, '/') ||
2414 	    strcmp(subvol_name, "..") == 0) {
2415 		ret = -EINVAL;
2416 		goto free_subvol_name;
2417 	}
2418 
2419 	if (!S_ISDIR(dir->i_mode)) {
2420 		ret = -ENOTDIR;
2421 		goto free_subvol_name;
2422 	}
2423 
2424 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2425 	if (ret == -EINTR)
2426 		goto free_subvol_name;
2427 	dentry = lookup_one(idmap, &QSTR(subvol_name), parent);
2428 	if (IS_ERR(dentry)) {
2429 		ret = PTR_ERR(dentry);
2430 		goto out_unlock_dir;
2431 	}
2432 
2433 	if (d_really_is_negative(dentry)) {
2434 		ret = -ENOENT;
2435 		goto out_dput;
2436 	}
2437 
2438 	inode = d_inode(dentry);
2439 	dest = BTRFS_I(inode)->root;
2440 	if (!capable(CAP_SYS_ADMIN)) {
2441 		/*
2442 		 * Regular user.  Only allow this with a special mount
2443 		 * option, when the user has write+exec access to the
2444 		 * subvol root, and when rmdir(2) would have been
2445 		 * allowed.
2446 		 *
2447 		 * Note that this is _not_ check that the subvol is
2448 		 * empty or doesn't contain data that we wouldn't
2449 		 * otherwise be able to delete.
2450 		 *
2451 		 * Users who want to delete empty subvols should try
2452 		 * rmdir(2).
2453 		 */
2454 		ret = -EPERM;
2455 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2456 			goto out_dput;
2457 
2458 		/*
2459 		 * Do not allow deletion if the parent dir is the same
2460 		 * as the dir to be deleted.  That means the ioctl
2461 		 * must be called on the dentry referencing the root
2462 		 * of the subvol, not a random directory contained
2463 		 * within it.
2464 		 */
2465 		ret = -EINVAL;
2466 		if (root == dest)
2467 			goto out_dput;
2468 
2469 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2470 		if (ret)
2471 			goto out_dput;
2472 	}
2473 
2474 	/* check if subvolume may be deleted by a user */
2475 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2476 	if (ret)
2477 		goto out_dput;
2478 
2479 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2480 		ret = -EINVAL;
2481 		goto out_dput;
2482 	}
2483 
2484 	btrfs_inode_lock(BTRFS_I(inode), 0);
2485 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2486 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2487 	if (!ret)
2488 		d_delete_notify(dir, dentry);
2489 
2490 out_dput:
2491 	dput(dentry);
2492 out_unlock_dir:
2493 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2494 free_subvol_name:
2495 	kfree(subvol_name_ptr);
2496 free_parent:
2497 	if (destroy_parent)
2498 		dput(parent);
2499 out_drop_write:
2500 	mnt_drop_write_file(file);
2501 out:
2502 	kfree(vol_args2);
2503 	kfree(vol_args);
2504 	return ret;
2505 }
2506 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2507 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2508 {
2509 	struct inode *inode = file_inode(file);
2510 	struct btrfs_root *root = BTRFS_I(inode)->root;
2511 	struct btrfs_ioctl_defrag_range_args range = {0};
2512 	int ret;
2513 
2514 	ret = mnt_want_write_file(file);
2515 	if (ret)
2516 		return ret;
2517 
2518 	if (btrfs_root_readonly(root)) {
2519 		ret = -EROFS;
2520 		goto out;
2521 	}
2522 
2523 	switch (inode->i_mode & S_IFMT) {
2524 	case S_IFDIR:
2525 		if (!capable(CAP_SYS_ADMIN)) {
2526 			ret = -EPERM;
2527 			goto out;
2528 		}
2529 		ret = btrfs_defrag_root(root);
2530 		break;
2531 	case S_IFREG:
2532 		/*
2533 		 * Note that this does not check the file descriptor for write
2534 		 * access. This prevents defragmenting executables that are
2535 		 * running and allows defrag on files open in read-only mode.
2536 		 */
2537 		if (!capable(CAP_SYS_ADMIN) &&
2538 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2539 			ret = -EPERM;
2540 			goto out;
2541 		}
2542 
2543 		/*
2544 		 * Don't allow defrag on pre-content watched files, as it could
2545 		 * populate the page cache with 0's via readahead.
2546 		 */
2547 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2548 			ret = -EINVAL;
2549 			goto out;
2550 		}
2551 
2552 		if (argp) {
2553 			if (copy_from_user(&range, argp, sizeof(range))) {
2554 				ret = -EFAULT;
2555 				goto out;
2556 			}
2557 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2558 				ret = -EOPNOTSUPP;
2559 				goto out;
2560 			}
2561 			/* compression requires us to start the IO */
2562 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2563 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2564 				range.extent_thresh = (u32)-1;
2565 			}
2566 		} else {
2567 			/* the rest are all set to zero by kzalloc */
2568 			range.len = (u64)-1;
2569 		}
2570 		ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2571 					&range, BTRFS_OLDEST_GENERATION, 0);
2572 		if (ret > 0)
2573 			ret = 0;
2574 		break;
2575 	default:
2576 		ret = -EINVAL;
2577 	}
2578 out:
2579 	mnt_drop_write_file(file);
2580 	return ret;
2581 }
2582 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2583 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2584 {
2585 	struct btrfs_ioctl_vol_args *vol_args;
2586 	bool restore_op = false;
2587 	int ret;
2588 
2589 	if (!capable(CAP_SYS_ADMIN))
2590 		return -EPERM;
2591 
2592 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2593 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2594 		return -EINVAL;
2595 	}
2596 
2597 	if (fs_info->fs_devices->temp_fsid) {
2598 		btrfs_err(fs_info,
2599 			  "device add not supported on cloned temp-fsid mount");
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2604 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2605 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2606 
2607 		/*
2608 		 * We can do the device add because we have a paused balanced,
2609 		 * change the exclusive op type and remember we should bring
2610 		 * back the paused balance
2611 		 */
2612 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2613 		btrfs_exclop_start_unlock(fs_info);
2614 		restore_op = true;
2615 	}
2616 
2617 	vol_args = memdup_user(arg, sizeof(*vol_args));
2618 	if (IS_ERR(vol_args)) {
2619 		ret = PTR_ERR(vol_args);
2620 		goto out;
2621 	}
2622 
2623 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2624 	if (ret < 0)
2625 		goto out_free;
2626 
2627 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2628 
2629 	if (!ret)
2630 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2631 
2632 out_free:
2633 	kfree(vol_args);
2634 out:
2635 	if (restore_op)
2636 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2637 	else
2638 		btrfs_exclop_finish(fs_info);
2639 	return ret;
2640 }
2641 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2642 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2643 {
2644 	BTRFS_DEV_LOOKUP_ARGS(args);
2645 	struct inode *inode = file_inode(file);
2646 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2647 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2648 	struct file *bdev_file = NULL;
2649 	int ret;
2650 	bool cancel = false;
2651 
2652 	if (!capable(CAP_SYS_ADMIN))
2653 		return -EPERM;
2654 
2655 	vol_args = memdup_user(arg, sizeof(*vol_args));
2656 	if (IS_ERR(vol_args))
2657 		return PTR_ERR(vol_args);
2658 
2659 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2660 		ret = -EOPNOTSUPP;
2661 		goto out;
2662 	}
2663 
2664 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2665 	if (ret < 0)
2666 		goto out;
2667 
2668 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2669 		args.devid = vol_args->devid;
2670 	} else if (!strcmp("cancel", vol_args->name)) {
2671 		cancel = true;
2672 	} else {
2673 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2674 		if (ret)
2675 			goto out;
2676 	}
2677 
2678 	ret = mnt_want_write_file(file);
2679 	if (ret)
2680 		goto out;
2681 
2682 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2683 					   cancel);
2684 	if (ret)
2685 		goto err_drop;
2686 
2687 	/* Exclusive operation is now claimed */
2688 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2689 
2690 	btrfs_exclop_finish(fs_info);
2691 
2692 	if (!ret) {
2693 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2694 			btrfs_info(fs_info, "device deleted: id %llu",
2695 					vol_args->devid);
2696 		else
2697 			btrfs_info(fs_info, "device deleted: %s",
2698 					vol_args->name);
2699 	}
2700 err_drop:
2701 	mnt_drop_write_file(file);
2702 	if (bdev_file)
2703 		fput(bdev_file);
2704 out:
2705 	btrfs_put_dev_args_from_path(&args);
2706 	kfree(vol_args);
2707 	return ret;
2708 }
2709 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2710 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2711 {
2712 	BTRFS_DEV_LOOKUP_ARGS(args);
2713 	struct inode *inode = file_inode(file);
2714 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2715 	struct btrfs_ioctl_vol_args *vol_args;
2716 	struct file *bdev_file = NULL;
2717 	int ret;
2718 	bool cancel = false;
2719 
2720 	if (!capable(CAP_SYS_ADMIN))
2721 		return -EPERM;
2722 
2723 	vol_args = memdup_user(arg, sizeof(*vol_args));
2724 	if (IS_ERR(vol_args))
2725 		return PTR_ERR(vol_args);
2726 
2727 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2728 	if (ret < 0)
2729 		goto out_free;
2730 
2731 	if (!strcmp("cancel", vol_args->name)) {
2732 		cancel = true;
2733 	} else {
2734 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2735 		if (ret)
2736 			goto out;
2737 	}
2738 
2739 	ret = mnt_want_write_file(file);
2740 	if (ret)
2741 		goto out;
2742 
2743 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2744 					   cancel);
2745 	if (ret == 0) {
2746 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2747 		if (!ret)
2748 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2749 		btrfs_exclop_finish(fs_info);
2750 	}
2751 
2752 	mnt_drop_write_file(file);
2753 	if (bdev_file)
2754 		fput(bdev_file);
2755 out:
2756 	btrfs_put_dev_args_from_path(&args);
2757 out_free:
2758 	kfree(vol_args);
2759 	return ret;
2760 }
2761 
btrfs_ioctl_fs_info(const struct btrfs_fs_info * fs_info,void __user * arg)2762 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2763 				void __user *arg)
2764 {
2765 	struct btrfs_ioctl_fs_info_args *fi_args;
2766 	struct btrfs_device *device;
2767 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2768 	u64 flags_in;
2769 	int ret = 0;
2770 
2771 	fi_args = memdup_user(arg, sizeof(*fi_args));
2772 	if (IS_ERR(fi_args))
2773 		return PTR_ERR(fi_args);
2774 
2775 	flags_in = fi_args->flags;
2776 	memset(fi_args, 0, sizeof(*fi_args));
2777 
2778 	rcu_read_lock();
2779 	fi_args->num_devices = fs_devices->num_devices;
2780 
2781 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2782 		if (device->devid > fi_args->max_id)
2783 			fi_args->max_id = device->devid;
2784 	}
2785 	rcu_read_unlock();
2786 
2787 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2788 	fi_args->nodesize = fs_info->nodesize;
2789 	fi_args->sectorsize = fs_info->sectorsize;
2790 	fi_args->clone_alignment = fs_info->sectorsize;
2791 
2792 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2793 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2794 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2795 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2796 	}
2797 
2798 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2799 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2800 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2801 	}
2802 
2803 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2804 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2805 		       sizeof(fi_args->metadata_uuid));
2806 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2807 	}
2808 
2809 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2810 		ret = -EFAULT;
2811 
2812 	kfree(fi_args);
2813 	return ret;
2814 }
2815 
btrfs_ioctl_dev_info(const struct btrfs_fs_info * fs_info,void __user * arg)2816 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2817 				 void __user *arg)
2818 {
2819 	BTRFS_DEV_LOOKUP_ARGS(args);
2820 	struct btrfs_ioctl_dev_info_args *di_args;
2821 	struct btrfs_device *dev;
2822 	int ret = 0;
2823 
2824 	di_args = memdup_user(arg, sizeof(*di_args));
2825 	if (IS_ERR(di_args))
2826 		return PTR_ERR(di_args);
2827 
2828 	args.devid = di_args->devid;
2829 	if (!btrfs_is_empty_uuid(di_args->uuid))
2830 		args.uuid = di_args->uuid;
2831 
2832 	rcu_read_lock();
2833 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2834 	if (!dev) {
2835 		ret = -ENODEV;
2836 		goto out;
2837 	}
2838 
2839 	di_args->devid = dev->devid;
2840 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2841 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2842 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2843 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2844 	if (dev->name)
2845 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2846 	else
2847 		di_args->path[0] = '\0';
2848 
2849 out:
2850 	rcu_read_unlock();
2851 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2852 		ret = -EFAULT;
2853 
2854 	kfree(di_args);
2855 	return ret;
2856 }
2857 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2858 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2859 {
2860 	struct inode *inode = file_inode(file);
2861 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2862 	struct btrfs_root *root = BTRFS_I(inode)->root;
2863 	struct btrfs_root *new_root;
2864 	struct btrfs_dir_item *di;
2865 	struct btrfs_trans_handle *trans;
2866 	struct btrfs_path *path = NULL;
2867 	struct btrfs_disk_key disk_key;
2868 	struct fscrypt_str name = FSTR_INIT("default", 7);
2869 	u64 objectid = 0;
2870 	u64 dir_id;
2871 	int ret;
2872 
2873 	if (!capable(CAP_SYS_ADMIN))
2874 		return -EPERM;
2875 
2876 	ret = mnt_want_write_file(file);
2877 	if (ret)
2878 		return ret;
2879 
2880 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2881 		ret = -EFAULT;
2882 		goto out;
2883 	}
2884 
2885 	if (!objectid)
2886 		objectid = BTRFS_FS_TREE_OBJECTID;
2887 
2888 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2889 	if (IS_ERR(new_root)) {
2890 		ret = PTR_ERR(new_root);
2891 		goto out;
2892 	}
2893 	if (!is_fstree(btrfs_root_id(new_root))) {
2894 		ret = -ENOENT;
2895 		goto out_free;
2896 	}
2897 
2898 	path = btrfs_alloc_path();
2899 	if (!path) {
2900 		ret = -ENOMEM;
2901 		goto out_free;
2902 	}
2903 
2904 	trans = btrfs_start_transaction(root, 1);
2905 	if (IS_ERR(trans)) {
2906 		ret = PTR_ERR(trans);
2907 		goto out_free;
2908 	}
2909 
2910 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2911 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2912 				   dir_id, &name, 1);
2913 	if (IS_ERR_OR_NULL(di)) {
2914 		btrfs_release_path(path);
2915 		btrfs_end_transaction(trans);
2916 		btrfs_err(fs_info,
2917 			  "Umm, you don't have the default diritem, this isn't going to work");
2918 		ret = -ENOENT;
2919 		goto out_free;
2920 	}
2921 
2922 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2923 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2924 	btrfs_release_path(path);
2925 
2926 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2927 	btrfs_end_transaction(trans);
2928 out_free:
2929 	btrfs_put_root(new_root);
2930 	btrfs_free_path(path);
2931 out:
2932 	mnt_drop_write_file(file);
2933 	return ret;
2934 }
2935 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2936 static void get_block_group_info(struct list_head *groups_list,
2937 				 struct btrfs_ioctl_space_info *space)
2938 {
2939 	struct btrfs_block_group *block_group;
2940 
2941 	space->total_bytes = 0;
2942 	space->used_bytes = 0;
2943 	space->flags = 0;
2944 	list_for_each_entry(block_group, groups_list, list) {
2945 		space->flags = block_group->flags;
2946 		space->total_bytes += block_group->length;
2947 		space->used_bytes += block_group->used;
2948 	}
2949 }
2950 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2951 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2952 				   void __user *arg)
2953 {
2954 	struct btrfs_ioctl_space_args space_args = { 0 };
2955 	struct btrfs_ioctl_space_info space;
2956 	struct btrfs_ioctl_space_info *dest;
2957 	struct btrfs_ioctl_space_info *dest_orig;
2958 	struct btrfs_ioctl_space_info __user *user_dest;
2959 	struct btrfs_space_info *info;
2960 	static const u64 types[] = {
2961 		BTRFS_BLOCK_GROUP_DATA,
2962 		BTRFS_BLOCK_GROUP_SYSTEM,
2963 		BTRFS_BLOCK_GROUP_METADATA,
2964 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2965 	};
2966 	int num_types = 4;
2967 	int alloc_size;
2968 	int ret = 0;
2969 	u64 slot_count = 0;
2970 	int i, c;
2971 
2972 	if (copy_from_user(&space_args,
2973 			   (struct btrfs_ioctl_space_args __user *)arg,
2974 			   sizeof(space_args)))
2975 		return -EFAULT;
2976 
2977 	for (i = 0; i < num_types; i++) {
2978 		struct btrfs_space_info *tmp;
2979 
2980 		info = NULL;
2981 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2982 			if (tmp->flags == types[i]) {
2983 				info = tmp;
2984 				break;
2985 			}
2986 		}
2987 
2988 		if (!info)
2989 			continue;
2990 
2991 		down_read(&info->groups_sem);
2992 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2993 			if (!list_empty(&info->block_groups[c]))
2994 				slot_count++;
2995 		}
2996 		up_read(&info->groups_sem);
2997 	}
2998 
2999 	/*
3000 	 * Global block reserve, exported as a space_info
3001 	 */
3002 	slot_count++;
3003 
3004 	/* space_slots == 0 means they are asking for a count */
3005 	if (space_args.space_slots == 0) {
3006 		space_args.total_spaces = slot_count;
3007 		goto out;
3008 	}
3009 
3010 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3011 
3012 	alloc_size = sizeof(*dest) * slot_count;
3013 
3014 	/* we generally have at most 6 or so space infos, one for each raid
3015 	 * level.  So, a whole page should be more than enough for everyone
3016 	 */
3017 	if (alloc_size > PAGE_SIZE)
3018 		return -ENOMEM;
3019 
3020 	space_args.total_spaces = 0;
3021 	dest = kmalloc(alloc_size, GFP_KERNEL);
3022 	if (!dest)
3023 		return -ENOMEM;
3024 	dest_orig = dest;
3025 
3026 	/* now we have a buffer to copy into */
3027 	for (i = 0; i < num_types; i++) {
3028 		struct btrfs_space_info *tmp;
3029 
3030 		if (!slot_count)
3031 			break;
3032 
3033 		info = NULL;
3034 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3035 			if (tmp->flags == types[i]) {
3036 				info = tmp;
3037 				break;
3038 			}
3039 		}
3040 
3041 		if (!info)
3042 			continue;
3043 		down_read(&info->groups_sem);
3044 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3045 			if (!list_empty(&info->block_groups[c])) {
3046 				get_block_group_info(&info->block_groups[c],
3047 						     &space);
3048 				memcpy(dest, &space, sizeof(space));
3049 				dest++;
3050 				space_args.total_spaces++;
3051 				slot_count--;
3052 			}
3053 			if (!slot_count)
3054 				break;
3055 		}
3056 		up_read(&info->groups_sem);
3057 	}
3058 
3059 	/*
3060 	 * Add global block reserve
3061 	 */
3062 	if (slot_count) {
3063 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3064 
3065 		spin_lock(&block_rsv->lock);
3066 		space.total_bytes = block_rsv->size;
3067 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3068 		spin_unlock(&block_rsv->lock);
3069 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3070 		memcpy(dest, &space, sizeof(space));
3071 		space_args.total_spaces++;
3072 	}
3073 
3074 	user_dest = (struct btrfs_ioctl_space_info __user *)
3075 		(arg + sizeof(struct btrfs_ioctl_space_args));
3076 
3077 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3078 		ret = -EFAULT;
3079 
3080 	kfree(dest_orig);
3081 out:
3082 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3083 		ret = -EFAULT;
3084 
3085 	return ret;
3086 }
3087 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3088 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3089 					    void __user *argp)
3090 {
3091 	struct btrfs_trans_handle *trans;
3092 	u64 transid;
3093 
3094 	/*
3095 	 * Start orphan cleanup here for the given root in case it hasn't been
3096 	 * started already by other means. Errors are handled in the other
3097 	 * functions during transaction commit.
3098 	 */
3099 	btrfs_orphan_cleanup(root);
3100 
3101 	trans = btrfs_attach_transaction_barrier(root);
3102 	if (IS_ERR(trans)) {
3103 		if (PTR_ERR(trans) != -ENOENT)
3104 			return PTR_ERR(trans);
3105 
3106 		/* No running transaction, don't bother */
3107 		transid = btrfs_get_last_trans_committed(root->fs_info);
3108 		goto out;
3109 	}
3110 	transid = trans->transid;
3111 	btrfs_commit_transaction_async(trans);
3112 out:
3113 	if (argp)
3114 		if (copy_to_user(argp, &transid, sizeof(transid)))
3115 			return -EFAULT;
3116 	return 0;
3117 }
3118 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3119 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3120 					   void __user *argp)
3121 {
3122 	/* By default wait for the current transaction. */
3123 	u64 transid = 0;
3124 
3125 	if (argp)
3126 		if (copy_from_user(&transid, argp, sizeof(transid)))
3127 			return -EFAULT;
3128 
3129 	return btrfs_wait_for_commit(fs_info, transid);
3130 }
3131 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3132 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3133 {
3134 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3135 	struct btrfs_ioctl_scrub_args *sa;
3136 	int ret;
3137 
3138 	if (!capable(CAP_SYS_ADMIN))
3139 		return -EPERM;
3140 
3141 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3142 		btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3143 		return -EINVAL;
3144 	}
3145 
3146 	sa = memdup_user(arg, sizeof(*sa));
3147 	if (IS_ERR(sa))
3148 		return PTR_ERR(sa);
3149 
3150 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3151 		ret = -EOPNOTSUPP;
3152 		goto out;
3153 	}
3154 
3155 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3156 		ret = mnt_want_write_file(file);
3157 		if (ret)
3158 			goto out;
3159 	}
3160 
3161 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3162 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3163 			      0);
3164 
3165 	/*
3166 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3167 	 * error. This is important as it allows user space to know how much
3168 	 * progress scrub has done. For example, if scrub is canceled we get
3169 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3170 	 * space. Later user space can inspect the progress from the structure
3171 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3172 	 * previously (btrfs-progs does this).
3173 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3174 	 * then return -EFAULT to signal the structure was not copied or it may
3175 	 * be corrupt and unreliable due to a partial copy.
3176 	 */
3177 	if (copy_to_user(arg, sa, sizeof(*sa)))
3178 		ret = -EFAULT;
3179 
3180 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3181 		mnt_drop_write_file(file);
3182 out:
3183 	kfree(sa);
3184 	return ret;
3185 }
3186 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3187 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3188 {
3189 	if (!capable(CAP_SYS_ADMIN))
3190 		return -EPERM;
3191 
3192 	return btrfs_scrub_cancel(fs_info);
3193 }
3194 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3195 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3196 				       void __user *arg)
3197 {
3198 	struct btrfs_ioctl_scrub_args *sa;
3199 	int ret;
3200 
3201 	if (!capable(CAP_SYS_ADMIN))
3202 		return -EPERM;
3203 
3204 	sa = memdup_user(arg, sizeof(*sa));
3205 	if (IS_ERR(sa))
3206 		return PTR_ERR(sa);
3207 
3208 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3209 
3210 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3211 		ret = -EFAULT;
3212 
3213 	kfree(sa);
3214 	return ret;
3215 }
3216 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3217 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3218 				      void __user *arg)
3219 {
3220 	struct btrfs_ioctl_get_dev_stats *sa;
3221 	int ret;
3222 
3223 	sa = memdup_user(arg, sizeof(*sa));
3224 	if (IS_ERR(sa))
3225 		return PTR_ERR(sa);
3226 
3227 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3228 		kfree(sa);
3229 		return -EPERM;
3230 	}
3231 
3232 	ret = btrfs_get_dev_stats(fs_info, sa);
3233 
3234 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3235 		ret = -EFAULT;
3236 
3237 	kfree(sa);
3238 	return ret;
3239 }
3240 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3241 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3242 				    void __user *arg)
3243 {
3244 	struct btrfs_ioctl_dev_replace_args *p;
3245 	int ret;
3246 
3247 	if (!capable(CAP_SYS_ADMIN))
3248 		return -EPERM;
3249 
3250 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3251 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3252 		return -EINVAL;
3253 	}
3254 
3255 	p = memdup_user(arg, sizeof(*p));
3256 	if (IS_ERR(p))
3257 		return PTR_ERR(p);
3258 
3259 	switch (p->cmd) {
3260 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3261 		if (sb_rdonly(fs_info->sb)) {
3262 			ret = -EROFS;
3263 			goto out;
3264 		}
3265 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3266 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3267 		} else {
3268 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3269 			btrfs_exclop_finish(fs_info);
3270 		}
3271 		break;
3272 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3273 		btrfs_dev_replace_status(fs_info, p);
3274 		ret = 0;
3275 		break;
3276 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3277 		p->result = btrfs_dev_replace_cancel(fs_info);
3278 		ret = 0;
3279 		break;
3280 	default:
3281 		ret = -EINVAL;
3282 		break;
3283 	}
3284 
3285 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3286 		ret = -EFAULT;
3287 out:
3288 	kfree(p);
3289 	return ret;
3290 }
3291 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3292 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3293 {
3294 	int ret = 0;
3295 	int i;
3296 	u64 rel_ptr;
3297 	int size;
3298 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3299 	struct inode_fs_paths *ipath = NULL;
3300 	struct btrfs_path *path;
3301 
3302 	if (!capable(CAP_DAC_READ_SEARCH))
3303 		return -EPERM;
3304 
3305 	path = btrfs_alloc_path();
3306 	if (!path) {
3307 		ret = -ENOMEM;
3308 		goto out;
3309 	}
3310 
3311 	ipa = memdup_user(arg, sizeof(*ipa));
3312 	if (IS_ERR(ipa)) {
3313 		ret = PTR_ERR(ipa);
3314 		ipa = NULL;
3315 		goto out;
3316 	}
3317 
3318 	size = min_t(u32, ipa->size, 4096);
3319 	ipath = init_ipath(size, root, path);
3320 	if (IS_ERR(ipath)) {
3321 		ret = PTR_ERR(ipath);
3322 		ipath = NULL;
3323 		goto out;
3324 	}
3325 
3326 	ret = paths_from_inode(ipa->inum, ipath);
3327 	if (ret < 0)
3328 		goto out;
3329 
3330 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3331 		rel_ptr = ipath->fspath->val[i] -
3332 			  (u64)(unsigned long)ipath->fspath->val;
3333 		ipath->fspath->val[i] = rel_ptr;
3334 	}
3335 
3336 	btrfs_free_path(path);
3337 	path = NULL;
3338 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3339 			   ipath->fspath, size);
3340 	if (ret) {
3341 		ret = -EFAULT;
3342 		goto out;
3343 	}
3344 
3345 out:
3346 	btrfs_free_path(path);
3347 	free_ipath(ipath);
3348 	kfree(ipa);
3349 
3350 	return ret;
3351 }
3352 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3353 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3354 					void __user *arg, int version)
3355 {
3356 	int ret = 0;
3357 	int size;
3358 	struct btrfs_ioctl_logical_ino_args *loi;
3359 	struct btrfs_data_container *inodes = NULL;
3360 	struct btrfs_path *path = NULL;
3361 	bool ignore_offset;
3362 
3363 	if (!capable(CAP_SYS_ADMIN))
3364 		return -EPERM;
3365 
3366 	loi = memdup_user(arg, sizeof(*loi));
3367 	if (IS_ERR(loi))
3368 		return PTR_ERR(loi);
3369 
3370 	if (version == 1) {
3371 		ignore_offset = false;
3372 		size = min_t(u32, loi->size, SZ_64K);
3373 	} else {
3374 		/* All reserved bits must be 0 for now */
3375 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3376 			ret = -EINVAL;
3377 			goto out_loi;
3378 		}
3379 		/* Only accept flags we have defined so far */
3380 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3381 			ret = -EINVAL;
3382 			goto out_loi;
3383 		}
3384 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3385 		size = min_t(u32, loi->size, SZ_16M);
3386 	}
3387 
3388 	inodes = init_data_container(size);
3389 	if (IS_ERR(inodes)) {
3390 		ret = PTR_ERR(inodes);
3391 		goto out_loi;
3392 	}
3393 
3394 	path = btrfs_alloc_path();
3395 	if (!path) {
3396 		ret = -ENOMEM;
3397 		goto out;
3398 	}
3399 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3400 					  inodes, ignore_offset);
3401 	btrfs_free_path(path);
3402 	if (ret == -EINVAL)
3403 		ret = -ENOENT;
3404 	if (ret < 0)
3405 		goto out;
3406 
3407 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3408 			   size);
3409 	if (ret)
3410 		ret = -EFAULT;
3411 
3412 out:
3413 	kvfree(inodes);
3414 out_loi:
3415 	kfree(loi);
3416 
3417 	return ret;
3418 }
3419 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3420 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3421 			       struct btrfs_ioctl_balance_args *bargs)
3422 {
3423 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3424 
3425 	bargs->flags = bctl->flags;
3426 
3427 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3428 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3429 	if (atomic_read(&fs_info->balance_pause_req))
3430 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3431 	if (atomic_read(&fs_info->balance_cancel_req))
3432 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3433 
3434 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3435 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3436 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3437 
3438 	spin_lock(&fs_info->balance_lock);
3439 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3440 	spin_unlock(&fs_info->balance_lock);
3441 }
3442 
3443 /*
3444  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3445  * required.
3446  *
3447  * @fs_info:       the filesystem
3448  * @excl_acquired: ptr to boolean value which is set to false in case balance
3449  *                 is being resumed
3450  *
3451  * Return 0 on success in which case both fs_info::balance is acquired as well
3452  * as exclusive ops are blocked. In case of failure return an error code.
3453  */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3454 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3455 {
3456 	int ret;
3457 
3458 	/*
3459 	 * Exclusive operation is locked. Three possibilities:
3460 	 *   (1) some other op is running
3461 	 *   (2) balance is running
3462 	 *   (3) balance is paused -- special case (think resume)
3463 	 */
3464 	while (1) {
3465 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3466 			*excl_acquired = true;
3467 			mutex_lock(&fs_info->balance_mutex);
3468 			return 0;
3469 		}
3470 
3471 		mutex_lock(&fs_info->balance_mutex);
3472 		if (fs_info->balance_ctl) {
3473 			/* This is either (2) or (3) */
3474 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3475 				/* This is (2) */
3476 				ret = -EINPROGRESS;
3477 				goto out_failure;
3478 
3479 			} else {
3480 				mutex_unlock(&fs_info->balance_mutex);
3481 				/*
3482 				 * Lock released to allow other waiters to
3483 				 * continue, we'll reexamine the status again.
3484 				 */
3485 				mutex_lock(&fs_info->balance_mutex);
3486 
3487 				if (fs_info->balance_ctl &&
3488 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3489 					/* This is (3) */
3490 					*excl_acquired = false;
3491 					return 0;
3492 				}
3493 			}
3494 		} else {
3495 			/* This is (1) */
3496 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3497 			goto out_failure;
3498 		}
3499 
3500 		mutex_unlock(&fs_info->balance_mutex);
3501 	}
3502 
3503 out_failure:
3504 	mutex_unlock(&fs_info->balance_mutex);
3505 	*excl_acquired = false;
3506 	return ret;
3507 }
3508 
btrfs_ioctl_balance(struct file * file,void __user * arg)3509 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3510 {
3511 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3512 	struct btrfs_fs_info *fs_info = root->fs_info;
3513 	struct btrfs_ioctl_balance_args *bargs;
3514 	struct btrfs_balance_control *bctl;
3515 	bool need_unlock = true;
3516 	int ret;
3517 
3518 	if (!capable(CAP_SYS_ADMIN))
3519 		return -EPERM;
3520 
3521 	ret = mnt_want_write_file(file);
3522 	if (ret)
3523 		return ret;
3524 
3525 	bargs = memdup_user(arg, sizeof(*bargs));
3526 	if (IS_ERR(bargs)) {
3527 		ret = PTR_ERR(bargs);
3528 		bargs = NULL;
3529 		goto out;
3530 	}
3531 
3532 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3533 	if (ret)
3534 		goto out;
3535 
3536 	lockdep_assert_held(&fs_info->balance_mutex);
3537 
3538 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3539 		if (!fs_info->balance_ctl) {
3540 			ret = -ENOTCONN;
3541 			goto out_unlock;
3542 		}
3543 
3544 		bctl = fs_info->balance_ctl;
3545 		spin_lock(&fs_info->balance_lock);
3546 		bctl->flags |= BTRFS_BALANCE_RESUME;
3547 		spin_unlock(&fs_info->balance_lock);
3548 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3549 
3550 		goto do_balance;
3551 	}
3552 
3553 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3554 		ret = -EINVAL;
3555 		goto out_unlock;
3556 	}
3557 
3558 	if (fs_info->balance_ctl) {
3559 		ret = -EINPROGRESS;
3560 		goto out_unlock;
3561 	}
3562 
3563 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3564 	if (!bctl) {
3565 		ret = -ENOMEM;
3566 		goto out_unlock;
3567 	}
3568 
3569 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3570 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3571 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3572 
3573 	bctl->flags = bargs->flags;
3574 do_balance:
3575 	/*
3576 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3577 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3578 	 * all the way until unmount, in free_fs_info.  The flag should be
3579 	 * cleared after reset_balance_state.
3580 	 */
3581 	need_unlock = false;
3582 
3583 	ret = btrfs_balance(fs_info, bctl, bargs);
3584 	bctl = NULL;
3585 
3586 	if (ret == 0 || ret == -ECANCELED) {
3587 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3588 			ret = -EFAULT;
3589 	}
3590 
3591 	kfree(bctl);
3592 out_unlock:
3593 	mutex_unlock(&fs_info->balance_mutex);
3594 	if (need_unlock)
3595 		btrfs_exclop_finish(fs_info);
3596 out:
3597 	mnt_drop_write_file(file);
3598 	kfree(bargs);
3599 	return ret;
3600 }
3601 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3602 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3603 {
3604 	if (!capable(CAP_SYS_ADMIN))
3605 		return -EPERM;
3606 
3607 	switch (cmd) {
3608 	case BTRFS_BALANCE_CTL_PAUSE:
3609 		return btrfs_pause_balance(fs_info);
3610 	case BTRFS_BALANCE_CTL_CANCEL:
3611 		return btrfs_cancel_balance(fs_info);
3612 	}
3613 
3614 	return -EINVAL;
3615 }
3616 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3617 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3618 					 void __user *arg)
3619 {
3620 	struct btrfs_ioctl_balance_args *bargs;
3621 	int ret = 0;
3622 
3623 	if (!capable(CAP_SYS_ADMIN))
3624 		return -EPERM;
3625 
3626 	mutex_lock(&fs_info->balance_mutex);
3627 	if (!fs_info->balance_ctl) {
3628 		ret = -ENOTCONN;
3629 		goto out;
3630 	}
3631 
3632 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3633 	if (!bargs) {
3634 		ret = -ENOMEM;
3635 		goto out;
3636 	}
3637 
3638 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3639 
3640 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3641 		ret = -EFAULT;
3642 
3643 	kfree(bargs);
3644 out:
3645 	mutex_unlock(&fs_info->balance_mutex);
3646 	return ret;
3647 }
3648 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3649 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3650 {
3651 	struct inode *inode = file_inode(file);
3652 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3653 	struct btrfs_ioctl_quota_ctl_args *sa;
3654 	int ret;
3655 
3656 	if (!capable(CAP_SYS_ADMIN))
3657 		return -EPERM;
3658 
3659 	ret = mnt_want_write_file(file);
3660 	if (ret)
3661 		return ret;
3662 
3663 	sa = memdup_user(arg, sizeof(*sa));
3664 	if (IS_ERR(sa)) {
3665 		ret = PTR_ERR(sa);
3666 		goto drop_write;
3667 	}
3668 
3669 	switch (sa->cmd) {
3670 	case BTRFS_QUOTA_CTL_ENABLE:
3671 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3672 		down_write(&fs_info->subvol_sem);
3673 		ret = btrfs_quota_enable(fs_info, sa);
3674 		up_write(&fs_info->subvol_sem);
3675 		break;
3676 	case BTRFS_QUOTA_CTL_DISABLE:
3677 		/*
3678 		 * Lock the cleaner mutex to prevent races with concurrent
3679 		 * relocation, because relocation may be building backrefs for
3680 		 * blocks of the quota root while we are deleting the root. This
3681 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3682 		 * need the same protection.
3683 		 *
3684 		 * This also prevents races between concurrent tasks trying to
3685 		 * disable quotas, because we will unlock and relock
3686 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3687 		 *
3688 		 * We take this here because we have the dependency of
3689 		 *
3690 		 * inode_lock -> subvol_sem
3691 		 *
3692 		 * because of rename.  With relocation we can prealloc extents,
3693 		 * so that makes the dependency chain
3694 		 *
3695 		 * cleaner_mutex -> inode_lock -> subvol_sem
3696 		 *
3697 		 * so we must take the cleaner_mutex here before we take the
3698 		 * subvol_sem.  The deadlock can't actually happen, but this
3699 		 * quiets lockdep.
3700 		 */
3701 		mutex_lock(&fs_info->cleaner_mutex);
3702 		down_write(&fs_info->subvol_sem);
3703 		ret = btrfs_quota_disable(fs_info);
3704 		up_write(&fs_info->subvol_sem);
3705 		mutex_unlock(&fs_info->cleaner_mutex);
3706 		break;
3707 	default:
3708 		ret = -EINVAL;
3709 		break;
3710 	}
3711 
3712 	kfree(sa);
3713 drop_write:
3714 	mnt_drop_write_file(file);
3715 	return ret;
3716 }
3717 
3718 /*
3719  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3720  * done before any operations.
3721  */
qgroup_enabled(struct btrfs_fs_info * fs_info)3722 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3723 {
3724 	bool ret = true;
3725 
3726 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3727 	if (!fs_info->quota_root)
3728 		ret = false;
3729 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3730 
3731 	return ret;
3732 }
3733 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3734 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3735 {
3736 	struct inode *inode = file_inode(file);
3737 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3738 	struct btrfs_root *root = BTRFS_I(inode)->root;
3739 	struct btrfs_ioctl_qgroup_assign_args *sa;
3740 	struct btrfs_qgroup_list *prealloc = NULL;
3741 	struct btrfs_trans_handle *trans;
3742 	int ret;
3743 	int err;
3744 
3745 	if (!capable(CAP_SYS_ADMIN))
3746 		return -EPERM;
3747 
3748 	if (!qgroup_enabled(root->fs_info))
3749 		return -ENOTCONN;
3750 
3751 	ret = mnt_want_write_file(file);
3752 	if (ret)
3753 		return ret;
3754 
3755 	sa = memdup_user(arg, sizeof(*sa));
3756 	if (IS_ERR(sa)) {
3757 		ret = PTR_ERR(sa);
3758 		goto drop_write;
3759 	}
3760 
3761 	if (sa->assign) {
3762 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3763 		if (!prealloc) {
3764 			ret = -ENOMEM;
3765 			goto drop_write;
3766 		}
3767 	}
3768 
3769 	trans = btrfs_join_transaction(root);
3770 	if (IS_ERR(trans)) {
3771 		ret = PTR_ERR(trans);
3772 		goto out;
3773 	}
3774 
3775 	/*
3776 	 * Prealloc ownership is moved to the relation handler, there it's used
3777 	 * or freed on error.
3778 	 */
3779 	if (sa->assign) {
3780 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3781 		prealloc = NULL;
3782 	} else {
3783 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3784 	}
3785 
3786 	/* update qgroup status and info */
3787 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3788 	err = btrfs_run_qgroups(trans);
3789 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3790 	if (err < 0)
3791 		btrfs_warn(fs_info,
3792 			   "qgroup status update failed after %s relation, marked as inconsistent",
3793 			   sa->assign ? "adding" : "deleting");
3794 	err = btrfs_end_transaction(trans);
3795 	if (err && !ret)
3796 		ret = err;
3797 
3798 out:
3799 	kfree(prealloc);
3800 	kfree(sa);
3801 drop_write:
3802 	mnt_drop_write_file(file);
3803 	return ret;
3804 }
3805 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3806 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3807 {
3808 	struct inode *inode = file_inode(file);
3809 	struct btrfs_root *root = BTRFS_I(inode)->root;
3810 	struct btrfs_ioctl_qgroup_create_args *sa;
3811 	struct btrfs_trans_handle *trans;
3812 	int ret;
3813 	int err;
3814 
3815 	if (!capable(CAP_SYS_ADMIN))
3816 		return -EPERM;
3817 
3818 	if (!qgroup_enabled(root->fs_info))
3819 		return -ENOTCONN;
3820 
3821 	ret = mnt_want_write_file(file);
3822 	if (ret)
3823 		return ret;
3824 
3825 	sa = memdup_user(arg, sizeof(*sa));
3826 	if (IS_ERR(sa)) {
3827 		ret = PTR_ERR(sa);
3828 		goto drop_write;
3829 	}
3830 
3831 	if (!sa->qgroupid) {
3832 		ret = -EINVAL;
3833 		goto out;
3834 	}
3835 
3836 	if (sa->create && is_fstree(sa->qgroupid)) {
3837 		ret = -EINVAL;
3838 		goto out;
3839 	}
3840 
3841 	trans = btrfs_join_transaction(root);
3842 	if (IS_ERR(trans)) {
3843 		ret = PTR_ERR(trans);
3844 		goto out;
3845 	}
3846 
3847 	if (sa->create) {
3848 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3849 	} else {
3850 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3851 	}
3852 
3853 	err = btrfs_end_transaction(trans);
3854 	if (err && !ret)
3855 		ret = err;
3856 
3857 out:
3858 	kfree(sa);
3859 drop_write:
3860 	mnt_drop_write_file(file);
3861 	return ret;
3862 }
3863 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3864 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3865 {
3866 	struct inode *inode = file_inode(file);
3867 	struct btrfs_root *root = BTRFS_I(inode)->root;
3868 	struct btrfs_ioctl_qgroup_limit_args *sa;
3869 	struct btrfs_trans_handle *trans;
3870 	int ret;
3871 	int err;
3872 	u64 qgroupid;
3873 
3874 	if (!capable(CAP_SYS_ADMIN))
3875 		return -EPERM;
3876 
3877 	if (!qgroup_enabled(root->fs_info))
3878 		return -ENOTCONN;
3879 
3880 	ret = mnt_want_write_file(file);
3881 	if (ret)
3882 		return ret;
3883 
3884 	sa = memdup_user(arg, sizeof(*sa));
3885 	if (IS_ERR(sa)) {
3886 		ret = PTR_ERR(sa);
3887 		goto drop_write;
3888 	}
3889 
3890 	trans = btrfs_join_transaction(root);
3891 	if (IS_ERR(trans)) {
3892 		ret = PTR_ERR(trans);
3893 		goto out;
3894 	}
3895 
3896 	qgroupid = sa->qgroupid;
3897 	if (!qgroupid) {
3898 		/* take the current subvol as qgroup */
3899 		qgroupid = btrfs_root_id(root);
3900 	}
3901 
3902 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3903 
3904 	err = btrfs_end_transaction(trans);
3905 	if (err && !ret)
3906 		ret = err;
3907 
3908 out:
3909 	kfree(sa);
3910 drop_write:
3911 	mnt_drop_write_file(file);
3912 	return ret;
3913 }
3914 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3915 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3916 {
3917 	struct inode *inode = file_inode(file);
3918 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3919 	struct btrfs_ioctl_quota_rescan_args *qsa;
3920 	int ret;
3921 
3922 	if (!capable(CAP_SYS_ADMIN))
3923 		return -EPERM;
3924 
3925 	if (!qgroup_enabled(fs_info))
3926 		return -ENOTCONN;
3927 
3928 	ret = mnt_want_write_file(file);
3929 	if (ret)
3930 		return ret;
3931 
3932 	qsa = memdup_user(arg, sizeof(*qsa));
3933 	if (IS_ERR(qsa)) {
3934 		ret = PTR_ERR(qsa);
3935 		goto drop_write;
3936 	}
3937 
3938 	if (qsa->flags) {
3939 		ret = -EINVAL;
3940 		goto out;
3941 	}
3942 
3943 	ret = btrfs_qgroup_rescan(fs_info);
3944 
3945 out:
3946 	kfree(qsa);
3947 drop_write:
3948 	mnt_drop_write_file(file);
3949 	return ret;
3950 }
3951 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3952 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3953 						void __user *arg)
3954 {
3955 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3956 
3957 	if (!capable(CAP_SYS_ADMIN))
3958 		return -EPERM;
3959 
3960 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3961 		qsa.flags = 1;
3962 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3963 	}
3964 
3965 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3966 		return -EFAULT;
3967 
3968 	return 0;
3969 }
3970 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3971 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3972 {
3973 	if (!capable(CAP_SYS_ADMIN))
3974 		return -EPERM;
3975 
3976 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3977 }
3978 
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3979 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3980 					    struct mnt_idmap *idmap,
3981 					    struct btrfs_ioctl_received_subvol_args *sa)
3982 {
3983 	struct inode *inode = file_inode(file);
3984 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3985 	struct btrfs_root *root = BTRFS_I(inode)->root;
3986 	struct btrfs_root_item *root_item = &root->root_item;
3987 	struct btrfs_trans_handle *trans;
3988 	struct timespec64 ct = current_time(inode);
3989 	int ret = 0;
3990 	int received_uuid_changed;
3991 
3992 	if (!inode_owner_or_capable(idmap, inode))
3993 		return -EPERM;
3994 
3995 	ret = mnt_want_write_file(file);
3996 	if (ret < 0)
3997 		return ret;
3998 
3999 	down_write(&fs_info->subvol_sem);
4000 
4001 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4002 		ret = -EINVAL;
4003 		goto out;
4004 	}
4005 
4006 	if (btrfs_root_readonly(root)) {
4007 		ret = -EROFS;
4008 		goto out;
4009 	}
4010 
4011 	/*
4012 	 * 1 - root item
4013 	 * 2 - uuid items (received uuid + subvol uuid)
4014 	 */
4015 	trans = btrfs_start_transaction(root, 3);
4016 	if (IS_ERR(trans)) {
4017 		ret = PTR_ERR(trans);
4018 		trans = NULL;
4019 		goto out;
4020 	}
4021 
4022 	sa->rtransid = trans->transid;
4023 	sa->rtime.sec = ct.tv_sec;
4024 	sa->rtime.nsec = ct.tv_nsec;
4025 
4026 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4027 				       BTRFS_UUID_SIZE);
4028 	if (received_uuid_changed &&
4029 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4030 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4031 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4032 					  btrfs_root_id(root));
4033 		if (ret && ret != -ENOENT) {
4034 		        btrfs_abort_transaction(trans, ret);
4035 		        btrfs_end_transaction(trans);
4036 		        goto out;
4037 		}
4038 	}
4039 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4040 	btrfs_set_root_stransid(root_item, sa->stransid);
4041 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4042 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4043 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4044 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4045 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4046 
4047 	ret = btrfs_update_root(trans, fs_info->tree_root,
4048 				&root->root_key, &root->root_item);
4049 	if (ret < 0) {
4050 		btrfs_end_transaction(trans);
4051 		goto out;
4052 	}
4053 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4054 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4055 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4056 					  btrfs_root_id(root));
4057 		if (ret < 0 && ret != -EEXIST) {
4058 			btrfs_abort_transaction(trans, ret);
4059 			btrfs_end_transaction(trans);
4060 			goto out;
4061 		}
4062 	}
4063 	ret = btrfs_commit_transaction(trans);
4064 out:
4065 	up_write(&fs_info->subvol_sem);
4066 	mnt_drop_write_file(file);
4067 	return ret;
4068 }
4069 
4070 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4071 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4072 						void __user *arg)
4073 {
4074 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4075 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4076 	int ret = 0;
4077 
4078 	args32 = memdup_user(arg, sizeof(*args32));
4079 	if (IS_ERR(args32))
4080 		return PTR_ERR(args32);
4081 
4082 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4083 	if (!args64) {
4084 		ret = -ENOMEM;
4085 		goto out;
4086 	}
4087 
4088 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4089 	args64->stransid = args32->stransid;
4090 	args64->rtransid = args32->rtransid;
4091 	args64->stime.sec = args32->stime.sec;
4092 	args64->stime.nsec = args32->stime.nsec;
4093 	args64->rtime.sec = args32->rtime.sec;
4094 	args64->rtime.nsec = args32->rtime.nsec;
4095 	args64->flags = args32->flags;
4096 
4097 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4098 	if (ret)
4099 		goto out;
4100 
4101 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4102 	args32->stransid = args64->stransid;
4103 	args32->rtransid = args64->rtransid;
4104 	args32->stime.sec = args64->stime.sec;
4105 	args32->stime.nsec = args64->stime.nsec;
4106 	args32->rtime.sec = args64->rtime.sec;
4107 	args32->rtime.nsec = args64->rtime.nsec;
4108 	args32->flags = args64->flags;
4109 
4110 	ret = copy_to_user(arg, args32, sizeof(*args32));
4111 	if (ret)
4112 		ret = -EFAULT;
4113 
4114 out:
4115 	kfree(args32);
4116 	kfree(args64);
4117 	return ret;
4118 }
4119 #endif
4120 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4121 static long btrfs_ioctl_set_received_subvol(struct file *file,
4122 					    void __user *arg)
4123 {
4124 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4125 	int ret = 0;
4126 
4127 	sa = memdup_user(arg, sizeof(*sa));
4128 	if (IS_ERR(sa))
4129 		return PTR_ERR(sa);
4130 
4131 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4132 
4133 	if (ret)
4134 		goto out;
4135 
4136 	ret = copy_to_user(arg, sa, sizeof(*sa));
4137 	if (ret)
4138 		ret = -EFAULT;
4139 
4140 out:
4141 	kfree(sa);
4142 	return ret;
4143 }
4144 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4145 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4146 					void __user *arg)
4147 {
4148 	size_t len;
4149 	int ret;
4150 	char label[BTRFS_LABEL_SIZE];
4151 
4152 	spin_lock(&fs_info->super_lock);
4153 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4154 	spin_unlock(&fs_info->super_lock);
4155 
4156 	len = strnlen(label, BTRFS_LABEL_SIZE);
4157 
4158 	if (len == BTRFS_LABEL_SIZE) {
4159 		btrfs_warn(fs_info,
4160 			   "label is too long, return the first %zu bytes",
4161 			   --len);
4162 	}
4163 
4164 	ret = copy_to_user(arg, label, len);
4165 
4166 	return ret ? -EFAULT : 0;
4167 }
4168 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4169 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4170 {
4171 	struct inode *inode = file_inode(file);
4172 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4173 	struct btrfs_root *root = BTRFS_I(inode)->root;
4174 	struct btrfs_super_block *super_block = fs_info->super_copy;
4175 	struct btrfs_trans_handle *trans;
4176 	char label[BTRFS_LABEL_SIZE];
4177 	int ret;
4178 
4179 	if (!capable(CAP_SYS_ADMIN))
4180 		return -EPERM;
4181 
4182 	if (copy_from_user(label, arg, sizeof(label)))
4183 		return -EFAULT;
4184 
4185 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4186 		btrfs_err(fs_info,
4187 			  "unable to set label with more than %d bytes",
4188 			  BTRFS_LABEL_SIZE - 1);
4189 		return -EINVAL;
4190 	}
4191 
4192 	ret = mnt_want_write_file(file);
4193 	if (ret)
4194 		return ret;
4195 
4196 	trans = btrfs_start_transaction(root, 0);
4197 	if (IS_ERR(trans)) {
4198 		ret = PTR_ERR(trans);
4199 		goto out_unlock;
4200 	}
4201 
4202 	spin_lock(&fs_info->super_lock);
4203 	strcpy(super_block->label, label);
4204 	spin_unlock(&fs_info->super_lock);
4205 	ret = btrfs_commit_transaction(trans);
4206 
4207 out_unlock:
4208 	mnt_drop_write_file(file);
4209 	return ret;
4210 }
4211 
4212 #define INIT_FEATURE_FLAGS(suffix) \
4213 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4214 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4215 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4216 
btrfs_ioctl_get_supported_features(void __user * arg)4217 int btrfs_ioctl_get_supported_features(void __user *arg)
4218 {
4219 	static const struct btrfs_ioctl_feature_flags features[3] = {
4220 		INIT_FEATURE_FLAGS(SUPP),
4221 		INIT_FEATURE_FLAGS(SAFE_SET),
4222 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4223 	};
4224 
4225 	if (copy_to_user(arg, &features, sizeof(features)))
4226 		return -EFAULT;
4227 
4228 	return 0;
4229 }
4230 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4231 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4232 					void __user *arg)
4233 {
4234 	struct btrfs_super_block *super_block = fs_info->super_copy;
4235 	struct btrfs_ioctl_feature_flags features;
4236 
4237 	features.compat_flags = btrfs_super_compat_flags(super_block);
4238 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4239 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4240 
4241 	if (copy_to_user(arg, &features, sizeof(features)))
4242 		return -EFAULT;
4243 
4244 	return 0;
4245 }
4246 
check_feature_bits(const struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4247 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4248 			      enum btrfs_feature_set set,
4249 			      u64 change_mask, u64 flags, u64 supported_flags,
4250 			      u64 safe_set, u64 safe_clear)
4251 {
4252 	const char *type = btrfs_feature_set_name(set);
4253 	char *names;
4254 	u64 disallowed, unsupported;
4255 	u64 set_mask = flags & change_mask;
4256 	u64 clear_mask = ~flags & change_mask;
4257 
4258 	unsupported = set_mask & ~supported_flags;
4259 	if (unsupported) {
4260 		names = btrfs_printable_features(set, unsupported);
4261 		if (names) {
4262 			btrfs_warn(fs_info,
4263 				   "this kernel does not support the %s feature bit%s",
4264 				   names, strchr(names, ',') ? "s" : "");
4265 			kfree(names);
4266 		} else
4267 			btrfs_warn(fs_info,
4268 				   "this kernel does not support %s bits 0x%llx",
4269 				   type, unsupported);
4270 		return -EOPNOTSUPP;
4271 	}
4272 
4273 	disallowed = set_mask & ~safe_set;
4274 	if (disallowed) {
4275 		names = btrfs_printable_features(set, disallowed);
4276 		if (names) {
4277 			btrfs_warn(fs_info,
4278 				   "can't set the %s feature bit%s while mounted",
4279 				   names, strchr(names, ',') ? "s" : "");
4280 			kfree(names);
4281 		} else
4282 			btrfs_warn(fs_info,
4283 				   "can't set %s bits 0x%llx while mounted",
4284 				   type, disallowed);
4285 		return -EPERM;
4286 	}
4287 
4288 	disallowed = clear_mask & ~safe_clear;
4289 	if (disallowed) {
4290 		names = btrfs_printable_features(set, disallowed);
4291 		if (names) {
4292 			btrfs_warn(fs_info,
4293 				   "can't clear the %s feature bit%s while mounted",
4294 				   names, strchr(names, ',') ? "s" : "");
4295 			kfree(names);
4296 		} else
4297 			btrfs_warn(fs_info,
4298 				   "can't clear %s bits 0x%llx while mounted",
4299 				   type, disallowed);
4300 		return -EPERM;
4301 	}
4302 
4303 	return 0;
4304 }
4305 
4306 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4307 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4308 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4309 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4310 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4311 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4312 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4313 {
4314 	struct inode *inode = file_inode(file);
4315 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4316 	struct btrfs_root *root = BTRFS_I(inode)->root;
4317 	struct btrfs_super_block *super_block = fs_info->super_copy;
4318 	struct btrfs_ioctl_feature_flags flags[2];
4319 	struct btrfs_trans_handle *trans;
4320 	u64 newflags;
4321 	int ret;
4322 
4323 	if (!capable(CAP_SYS_ADMIN))
4324 		return -EPERM;
4325 
4326 	if (copy_from_user(flags, arg, sizeof(flags)))
4327 		return -EFAULT;
4328 
4329 	/* Nothing to do */
4330 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4331 	    !flags[0].incompat_flags)
4332 		return 0;
4333 
4334 	ret = check_feature(fs_info, flags[0].compat_flags,
4335 			    flags[1].compat_flags, COMPAT);
4336 	if (ret)
4337 		return ret;
4338 
4339 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4340 			    flags[1].compat_ro_flags, COMPAT_RO);
4341 	if (ret)
4342 		return ret;
4343 
4344 	ret = check_feature(fs_info, flags[0].incompat_flags,
4345 			    flags[1].incompat_flags, INCOMPAT);
4346 	if (ret)
4347 		return ret;
4348 
4349 	ret = mnt_want_write_file(file);
4350 	if (ret)
4351 		return ret;
4352 
4353 	trans = btrfs_start_transaction(root, 0);
4354 	if (IS_ERR(trans)) {
4355 		ret = PTR_ERR(trans);
4356 		goto out_drop_write;
4357 	}
4358 
4359 	spin_lock(&fs_info->super_lock);
4360 	newflags = btrfs_super_compat_flags(super_block);
4361 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4362 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4363 	btrfs_set_super_compat_flags(super_block, newflags);
4364 
4365 	newflags = btrfs_super_compat_ro_flags(super_block);
4366 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4367 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4368 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4369 
4370 	newflags = btrfs_super_incompat_flags(super_block);
4371 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4372 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4373 	btrfs_set_super_incompat_flags(super_block, newflags);
4374 	spin_unlock(&fs_info->super_lock);
4375 
4376 	ret = btrfs_commit_transaction(trans);
4377 out_drop_write:
4378 	mnt_drop_write_file(file);
4379 
4380 	return ret;
4381 }
4382 
_btrfs_ioctl_send(struct btrfs_root * root,void __user * argp,bool compat)4383 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4384 {
4385 	struct btrfs_ioctl_send_args *arg;
4386 	int ret;
4387 
4388 	if (compat) {
4389 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4390 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4391 
4392 		ret = copy_from_user(&args32, argp, sizeof(args32));
4393 		if (ret)
4394 			return -EFAULT;
4395 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4396 		if (!arg)
4397 			return -ENOMEM;
4398 		arg->send_fd = args32.send_fd;
4399 		arg->clone_sources_count = args32.clone_sources_count;
4400 		arg->clone_sources = compat_ptr(args32.clone_sources);
4401 		arg->parent_root = args32.parent_root;
4402 		arg->flags = args32.flags;
4403 		arg->version = args32.version;
4404 		memcpy(arg->reserved, args32.reserved,
4405 		       sizeof(args32.reserved));
4406 #else
4407 		return -ENOTTY;
4408 #endif
4409 	} else {
4410 		arg = memdup_user(argp, sizeof(*arg));
4411 		if (IS_ERR(arg))
4412 			return PTR_ERR(arg);
4413 	}
4414 	ret = btrfs_ioctl_send(root, arg);
4415 	kfree(arg);
4416 	return ret;
4417 }
4418 
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4419 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4420 				    bool compat)
4421 {
4422 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4423 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4424 					     flags);
4425 	size_t copy_end;
4426 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4427 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4428 	struct extent_io_tree *io_tree = &inode->io_tree;
4429 	struct iovec iovstack[UIO_FASTIOV];
4430 	struct iovec *iov = iovstack;
4431 	struct iov_iter iter;
4432 	loff_t pos;
4433 	struct kiocb kiocb;
4434 	ssize_t ret;
4435 	u64 disk_bytenr, disk_io_size;
4436 	struct extent_state *cached_state = NULL;
4437 
4438 	if (!capable(CAP_SYS_ADMIN)) {
4439 		ret = -EPERM;
4440 		goto out_acct;
4441 	}
4442 
4443 	if (compat) {
4444 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4445 		struct btrfs_ioctl_encoded_io_args_32 args32;
4446 
4447 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4448 				       flags);
4449 		if (copy_from_user(&args32, argp, copy_end)) {
4450 			ret = -EFAULT;
4451 			goto out_acct;
4452 		}
4453 		args.iov = compat_ptr(args32.iov);
4454 		args.iovcnt = args32.iovcnt;
4455 		args.offset = args32.offset;
4456 		args.flags = args32.flags;
4457 #else
4458 		return -ENOTTY;
4459 #endif
4460 	} else {
4461 		copy_end = copy_end_kernel;
4462 		if (copy_from_user(&args, argp, copy_end)) {
4463 			ret = -EFAULT;
4464 			goto out_acct;
4465 		}
4466 	}
4467 	if (args.flags != 0) {
4468 		ret = -EINVAL;
4469 		goto out_acct;
4470 	}
4471 
4472 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4473 			   &iov, &iter);
4474 	if (ret < 0)
4475 		goto out_acct;
4476 
4477 	if (iov_iter_count(&iter) == 0) {
4478 		ret = 0;
4479 		goto out_iov;
4480 	}
4481 	pos = args.offset;
4482 	ret = rw_verify_area(READ, file, &pos, args.len);
4483 	if (ret < 0)
4484 		goto out_iov;
4485 
4486 	init_sync_kiocb(&kiocb, file);
4487 	kiocb.ki_pos = pos;
4488 
4489 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4490 				 &disk_bytenr, &disk_io_size);
4491 
4492 	if (ret == -EIOCBQUEUED) {
4493 		bool unlocked = false;
4494 		u64 start, lockend, count;
4495 
4496 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4497 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4498 
4499 		if (args.compression)
4500 			count = disk_io_size;
4501 		else
4502 			count = args.len;
4503 
4504 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4505 						 &cached_state, disk_bytenr,
4506 						 disk_io_size, count,
4507 						 args.compression, &unlocked);
4508 
4509 		if (!unlocked) {
4510 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4511 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4512 		}
4513 	}
4514 
4515 	if (ret >= 0) {
4516 		fsnotify_access(file);
4517 		if (copy_to_user(argp + copy_end,
4518 				 (char *)&args + copy_end_kernel,
4519 				 sizeof(args) - copy_end_kernel))
4520 			ret = -EFAULT;
4521 	}
4522 
4523 out_iov:
4524 	kfree(iov);
4525 out_acct:
4526 	if (ret > 0)
4527 		add_rchar(current, ret);
4528 	inc_syscr(current);
4529 	return ret;
4530 }
4531 
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4532 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4533 {
4534 	struct btrfs_ioctl_encoded_io_args args;
4535 	struct iovec iovstack[UIO_FASTIOV];
4536 	struct iovec *iov = iovstack;
4537 	struct iov_iter iter;
4538 	loff_t pos;
4539 	struct kiocb kiocb;
4540 	ssize_t ret;
4541 
4542 	if (!capable(CAP_SYS_ADMIN)) {
4543 		ret = -EPERM;
4544 		goto out_acct;
4545 	}
4546 
4547 	if (!(file->f_mode & FMODE_WRITE)) {
4548 		ret = -EBADF;
4549 		goto out_acct;
4550 	}
4551 
4552 	if (compat) {
4553 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4554 		struct btrfs_ioctl_encoded_io_args_32 args32;
4555 
4556 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4557 			ret = -EFAULT;
4558 			goto out_acct;
4559 		}
4560 		args.iov = compat_ptr(args32.iov);
4561 		args.iovcnt = args32.iovcnt;
4562 		args.offset = args32.offset;
4563 		args.flags = args32.flags;
4564 		args.len = args32.len;
4565 		args.unencoded_len = args32.unencoded_len;
4566 		args.unencoded_offset = args32.unencoded_offset;
4567 		args.compression = args32.compression;
4568 		args.encryption = args32.encryption;
4569 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4570 #else
4571 		return -ENOTTY;
4572 #endif
4573 	} else {
4574 		if (copy_from_user(&args, argp, sizeof(args))) {
4575 			ret = -EFAULT;
4576 			goto out_acct;
4577 		}
4578 	}
4579 
4580 	ret = -EINVAL;
4581 	if (args.flags != 0)
4582 		goto out_acct;
4583 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4584 		goto out_acct;
4585 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4586 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4587 		goto out_acct;
4588 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4589 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4590 		goto out_acct;
4591 	if (args.unencoded_offset > args.unencoded_len)
4592 		goto out_acct;
4593 	if (args.len > args.unencoded_len - args.unencoded_offset)
4594 		goto out_acct;
4595 
4596 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4597 			   &iov, &iter);
4598 	if (ret < 0)
4599 		goto out_acct;
4600 
4601 	if (iov_iter_count(&iter) == 0) {
4602 		ret = 0;
4603 		goto out_iov;
4604 	}
4605 	pos = args.offset;
4606 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4607 	if (ret < 0)
4608 		goto out_iov;
4609 
4610 	init_sync_kiocb(&kiocb, file);
4611 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4612 	if (ret)
4613 		goto out_iov;
4614 	kiocb.ki_pos = pos;
4615 
4616 	file_start_write(file);
4617 
4618 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4619 	if (ret > 0)
4620 		fsnotify_modify(file);
4621 
4622 	file_end_write(file);
4623 out_iov:
4624 	kfree(iov);
4625 out_acct:
4626 	if (ret > 0)
4627 		add_wchar(current, ret);
4628 	inc_syscw(current);
4629 	return ret;
4630 }
4631 
4632 /*
4633  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4634  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4635  * off and cleanup the I/O in btrfs_uring_read_finished.
4636  */
4637 struct btrfs_uring_priv {
4638 	struct io_uring_cmd *cmd;
4639 	struct page **pages;
4640 	unsigned long nr_pages;
4641 	struct kiocb iocb;
4642 	struct iovec *iov;
4643 	struct iov_iter iter;
4644 	struct extent_state *cached_state;
4645 	u64 count;
4646 	u64 start;
4647 	u64 lockend;
4648 	int err;
4649 	bool compressed;
4650 };
4651 
4652 struct io_btrfs_cmd {
4653 	struct btrfs_uring_priv *priv;
4654 };
4655 
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4656 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4657 {
4658 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4659 	struct btrfs_uring_priv *priv = bc->priv;
4660 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4661 	struct extent_io_tree *io_tree = &inode->io_tree;
4662 	unsigned long index;
4663 	u64 cur;
4664 	size_t page_offset;
4665 	ssize_t ret;
4666 
4667 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4668 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4669 
4670 	if (priv->err) {
4671 		ret = priv->err;
4672 		goto out;
4673 	}
4674 
4675 	if (priv->compressed) {
4676 		index = 0;
4677 		page_offset = 0;
4678 	} else {
4679 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4680 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4681 	}
4682 	cur = 0;
4683 	while (cur < priv->count) {
4684 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4685 
4686 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4687 				      &priv->iter) != bytes) {
4688 			ret = -EFAULT;
4689 			goto out;
4690 		}
4691 
4692 		index++;
4693 		cur += bytes;
4694 		page_offset = 0;
4695 	}
4696 	ret = priv->count;
4697 
4698 out:
4699 	btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4700 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4701 
4702 	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4703 	add_rchar(current, ret);
4704 
4705 	for (index = 0; index < priv->nr_pages; index++)
4706 		__free_page(priv->pages[index]);
4707 
4708 	kfree(priv->pages);
4709 	kfree(priv->iov);
4710 	kfree(priv);
4711 }
4712 
btrfs_uring_read_extent_endio(void * ctx,int err)4713 void btrfs_uring_read_extent_endio(void *ctx, int err)
4714 {
4715 	struct btrfs_uring_priv *priv = ctx;
4716 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4717 
4718 	priv->err = err;
4719 	bc->priv = priv;
4720 
4721 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4722 }
4723 
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4724 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4725 				   u64 start, u64 lockend,
4726 				   struct extent_state *cached_state,
4727 				   u64 disk_bytenr, u64 disk_io_size,
4728 				   size_t count, bool compressed,
4729 				   struct iovec *iov, struct io_uring_cmd *cmd)
4730 {
4731 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4732 	struct extent_io_tree *io_tree = &inode->io_tree;
4733 	struct page **pages;
4734 	struct btrfs_uring_priv *priv = NULL;
4735 	unsigned long nr_pages;
4736 	int ret;
4737 
4738 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4739 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4740 	if (!pages)
4741 		return -ENOMEM;
4742 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4743 	if (ret) {
4744 		ret = -ENOMEM;
4745 		goto out_fail;
4746 	}
4747 
4748 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4749 	if (!priv) {
4750 		ret = -ENOMEM;
4751 		goto out_fail;
4752 	}
4753 
4754 	priv->iocb = *iocb;
4755 	priv->iov = iov;
4756 	priv->iter = *iter;
4757 	priv->count = count;
4758 	priv->cmd = cmd;
4759 	priv->cached_state = cached_state;
4760 	priv->compressed = compressed;
4761 	priv->nr_pages = nr_pages;
4762 	priv->pages = pages;
4763 	priv->start = start;
4764 	priv->lockend = lockend;
4765 	priv->err = 0;
4766 
4767 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4768 						    disk_io_size, pages, priv);
4769 	if (ret && ret != -EIOCBQUEUED)
4770 		goto out_fail;
4771 
4772 	/*
4773 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4774 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4775 	 * and inode and freeing the allocations.
4776 	 */
4777 
4778 	/*
4779 	 * We're returning to userspace with the inode lock held, and that's
4780 	 * okay - it'll get unlocked in a worker thread.  Call
4781 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4782 	 */
4783 	btrfs_lockdep_inode_release(inode, i_rwsem);
4784 
4785 	return -EIOCBQUEUED;
4786 
4787 out_fail:
4788 	btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4789 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4790 	kfree(priv);
4791 	return ret;
4792 }
4793 
4794 struct btrfs_uring_encoded_data {
4795 	struct btrfs_ioctl_encoded_io_args args;
4796 	struct iovec iovstack[UIO_FASTIOV];
4797 	struct iovec *iov;
4798 	struct iov_iter iter;
4799 };
4800 
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4801 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4802 {
4803 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4804 	size_t copy_end;
4805 	int ret;
4806 	u64 disk_bytenr, disk_io_size;
4807 	struct file *file;
4808 	struct btrfs_inode *inode;
4809 	struct btrfs_fs_info *fs_info;
4810 	struct extent_io_tree *io_tree;
4811 	loff_t pos;
4812 	struct kiocb kiocb;
4813 	struct extent_state *cached_state = NULL;
4814 	u64 start, lockend;
4815 	void __user *sqe_addr;
4816 	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4817 
4818 	if (!capable(CAP_SYS_ADMIN)) {
4819 		ret = -EPERM;
4820 		goto out_acct;
4821 	}
4822 	file = cmd->file;
4823 	inode = BTRFS_I(file->f_inode);
4824 	fs_info = inode->root->fs_info;
4825 	io_tree = &inode->io_tree;
4826 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4827 
4828 	if (issue_flags & IO_URING_F_COMPAT) {
4829 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4830 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4831 #else
4832 		return -ENOTTY;
4833 #endif
4834 	} else {
4835 		copy_end = copy_end_kernel;
4836 	}
4837 
4838 	if (!data) {
4839 		data = kzalloc(sizeof(*data), GFP_NOFS);
4840 		if (!data) {
4841 			ret = -ENOMEM;
4842 			goto out_acct;
4843 		}
4844 
4845 		io_uring_cmd_get_async_data(cmd)->op_data = data;
4846 
4847 		if (issue_flags & IO_URING_F_COMPAT) {
4848 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4849 			struct btrfs_ioctl_encoded_io_args_32 args32;
4850 
4851 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4852 				ret = -EFAULT;
4853 				goto out_acct;
4854 			}
4855 
4856 			data->args.iov = compat_ptr(args32.iov);
4857 			data->args.iovcnt = args32.iovcnt;
4858 			data->args.offset = args32.offset;
4859 			data->args.flags = args32.flags;
4860 #endif
4861 		} else {
4862 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4863 				ret = -EFAULT;
4864 				goto out_acct;
4865 			}
4866 		}
4867 
4868 		if (data->args.flags != 0) {
4869 			ret = -EINVAL;
4870 			goto out_acct;
4871 		}
4872 
4873 		data->iov = data->iovstack;
4874 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4875 				   ARRAY_SIZE(data->iovstack), &data->iov,
4876 				   &data->iter);
4877 		if (ret < 0)
4878 			goto out_acct;
4879 
4880 		if (iov_iter_count(&data->iter) == 0) {
4881 			ret = 0;
4882 			goto out_free;
4883 		}
4884 	}
4885 
4886 	pos = data->args.offset;
4887 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4888 	if (ret < 0)
4889 		goto out_free;
4890 
4891 	init_sync_kiocb(&kiocb, file);
4892 	kiocb.ki_pos = pos;
4893 
4894 	if (issue_flags & IO_URING_F_NONBLOCK)
4895 		kiocb.ki_flags |= IOCB_NOWAIT;
4896 
4897 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4898 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4899 
4900 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4901 				 &disk_bytenr, &disk_io_size);
4902 	if (ret == -EAGAIN)
4903 		goto out_acct;
4904 	if (ret < 0 && ret != -EIOCBQUEUED)
4905 		goto out_free;
4906 
4907 	file_accessed(file);
4908 
4909 	if (copy_to_user(sqe_addr + copy_end,
4910 			 (const char *)&data->args + copy_end_kernel,
4911 			 sizeof(data->args) - copy_end_kernel)) {
4912 		if (ret == -EIOCBQUEUED) {
4913 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4914 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4915 		}
4916 		ret = -EFAULT;
4917 		goto out_free;
4918 	}
4919 
4920 	if (ret == -EIOCBQUEUED) {
4921 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4922 
4923 		/* Match ioctl by not returning past EOF if uncompressed. */
4924 		if (!data->args.compression)
4925 			count = min_t(u64, count, data->args.len);
4926 
4927 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4928 					      cached_state, disk_bytenr, disk_io_size,
4929 					      count, data->args.compression,
4930 					      data->iov, cmd);
4931 
4932 		goto out_acct;
4933 	}
4934 
4935 out_free:
4936 	kfree(data->iov);
4937 
4938 out_acct:
4939 	if (ret > 0)
4940 		add_rchar(current, ret);
4941 	inc_syscr(current);
4942 
4943 	return ret;
4944 }
4945 
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4946 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4947 {
4948 	loff_t pos;
4949 	struct kiocb kiocb;
4950 	struct file *file;
4951 	ssize_t ret;
4952 	void __user *sqe_addr;
4953 	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4954 
4955 	if (!capable(CAP_SYS_ADMIN)) {
4956 		ret = -EPERM;
4957 		goto out_acct;
4958 	}
4959 
4960 	file = cmd->file;
4961 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4962 
4963 	if (!(file->f_mode & FMODE_WRITE)) {
4964 		ret = -EBADF;
4965 		goto out_acct;
4966 	}
4967 
4968 	if (!data) {
4969 		data = kzalloc(sizeof(*data), GFP_NOFS);
4970 		if (!data) {
4971 			ret = -ENOMEM;
4972 			goto out_acct;
4973 		}
4974 
4975 		io_uring_cmd_get_async_data(cmd)->op_data = data;
4976 
4977 		if (issue_flags & IO_URING_F_COMPAT) {
4978 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4979 			struct btrfs_ioctl_encoded_io_args_32 args32;
4980 
4981 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4982 				ret = -EFAULT;
4983 				goto out_acct;
4984 			}
4985 			data->args.iov = compat_ptr(args32.iov);
4986 			data->args.iovcnt = args32.iovcnt;
4987 			data->args.offset = args32.offset;
4988 			data->args.flags = args32.flags;
4989 			data->args.len = args32.len;
4990 			data->args.unencoded_len = args32.unencoded_len;
4991 			data->args.unencoded_offset = args32.unencoded_offset;
4992 			data->args.compression = args32.compression;
4993 			data->args.encryption = args32.encryption;
4994 			memcpy(data->args.reserved, args32.reserved,
4995 			       sizeof(data->args.reserved));
4996 #else
4997 			ret = -ENOTTY;
4998 			goto out_acct;
4999 #endif
5000 		} else {
5001 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
5002 				ret = -EFAULT;
5003 				goto out_acct;
5004 			}
5005 		}
5006 
5007 		ret = -EINVAL;
5008 		if (data->args.flags != 0)
5009 			goto out_acct;
5010 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5011 			goto out_acct;
5012 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5013 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5014 			goto out_acct;
5015 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5016 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5017 			goto out_acct;
5018 		if (data->args.unencoded_offset > data->args.unencoded_len)
5019 			goto out_acct;
5020 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5021 			goto out_acct;
5022 
5023 		data->iov = data->iovstack;
5024 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5025 				   ARRAY_SIZE(data->iovstack), &data->iov,
5026 				   &data->iter);
5027 		if (ret < 0)
5028 			goto out_acct;
5029 
5030 		if (iov_iter_count(&data->iter) == 0) {
5031 			ret = 0;
5032 			goto out_iov;
5033 		}
5034 	}
5035 
5036 	if (issue_flags & IO_URING_F_NONBLOCK) {
5037 		ret = -EAGAIN;
5038 		goto out_acct;
5039 	}
5040 
5041 	pos = data->args.offset;
5042 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5043 	if (ret < 0)
5044 		goto out_iov;
5045 
5046 	init_sync_kiocb(&kiocb, file);
5047 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5048 	if (ret)
5049 		goto out_iov;
5050 	kiocb.ki_pos = pos;
5051 
5052 	file_start_write(file);
5053 
5054 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5055 	if (ret > 0)
5056 		fsnotify_modify(file);
5057 
5058 	file_end_write(file);
5059 out_iov:
5060 	kfree(data->iov);
5061 out_acct:
5062 	if (ret > 0)
5063 		add_wchar(current, ret);
5064 	inc_syscw(current);
5065 	return ret;
5066 }
5067 
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5068 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5069 {
5070 	switch (cmd->cmd_op) {
5071 	case BTRFS_IOC_ENCODED_READ:
5072 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5073 	case BTRFS_IOC_ENCODED_READ_32:
5074 #endif
5075 		return btrfs_uring_encoded_read(cmd, issue_flags);
5076 
5077 	case BTRFS_IOC_ENCODED_WRITE:
5078 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5079 	case BTRFS_IOC_ENCODED_WRITE_32:
5080 #endif
5081 		return btrfs_uring_encoded_write(cmd, issue_flags);
5082 	}
5083 
5084 	return -EINVAL;
5085 }
5086 
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5087 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5088 {
5089 	struct btrfs_root *root;
5090 	struct btrfs_ioctl_subvol_wait args = { 0 };
5091 	signed long sched_ret;
5092 	int refs;
5093 	u64 root_flags;
5094 	bool wait_for_deletion = false;
5095 	bool found = false;
5096 
5097 	if (copy_from_user(&args, argp, sizeof(args)))
5098 		return -EFAULT;
5099 
5100 	switch (args.mode) {
5101 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5102 		/*
5103 		 * Wait for the first one deleted that waits until all previous
5104 		 * are cleaned.
5105 		 */
5106 		spin_lock(&fs_info->trans_lock);
5107 		if (!list_empty(&fs_info->dead_roots)) {
5108 			root = list_last_entry(&fs_info->dead_roots,
5109 					       struct btrfs_root, root_list);
5110 			args.subvolid = btrfs_root_id(root);
5111 			found = true;
5112 		}
5113 		spin_unlock(&fs_info->trans_lock);
5114 		if (!found)
5115 			return -ENOENT;
5116 
5117 		fallthrough;
5118 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5119 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5120 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5121 			return -EINVAL;
5122 		break;
5123 	case BTRFS_SUBVOL_SYNC_COUNT:
5124 		spin_lock(&fs_info->trans_lock);
5125 		args.count = list_count_nodes(&fs_info->dead_roots);
5126 		spin_unlock(&fs_info->trans_lock);
5127 		if (copy_to_user(argp, &args, sizeof(args)))
5128 			return -EFAULT;
5129 		return 0;
5130 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5131 		spin_lock(&fs_info->trans_lock);
5132 		/* Last in the list was deleted first. */
5133 		if (!list_empty(&fs_info->dead_roots)) {
5134 			root = list_last_entry(&fs_info->dead_roots,
5135 					       struct btrfs_root, root_list);
5136 			args.subvolid = btrfs_root_id(root);
5137 		} else {
5138 			args.subvolid = 0;
5139 		}
5140 		spin_unlock(&fs_info->trans_lock);
5141 		if (copy_to_user(argp, &args, sizeof(args)))
5142 			return -EFAULT;
5143 		return 0;
5144 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5145 		spin_lock(&fs_info->trans_lock);
5146 		/* First in the list was deleted last. */
5147 		if (!list_empty(&fs_info->dead_roots)) {
5148 			root = list_first_entry(&fs_info->dead_roots,
5149 						struct btrfs_root, root_list);
5150 			args.subvolid = btrfs_root_id(root);
5151 		} else {
5152 			args.subvolid = 0;
5153 		}
5154 		spin_unlock(&fs_info->trans_lock);
5155 		if (copy_to_user(argp, &args, sizeof(args)))
5156 			return -EFAULT;
5157 		return 0;
5158 	default:
5159 		return -EINVAL;
5160 	}
5161 
5162 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5163 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5164 		return -EOVERFLOW;
5165 
5166 	while (1) {
5167 		/* Wait for the specific one. */
5168 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5169 			return -EINTR;
5170 		refs = -1;
5171 		spin_lock(&fs_info->fs_roots_radix_lock);
5172 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5173 					 (unsigned long)args.subvolid);
5174 		if (root) {
5175 			spin_lock(&root->root_item_lock);
5176 			refs = btrfs_root_refs(&root->root_item);
5177 			root_flags = btrfs_root_flags(&root->root_item);
5178 			spin_unlock(&root->root_item_lock);
5179 		}
5180 		spin_unlock(&fs_info->fs_roots_radix_lock);
5181 		up_read(&fs_info->subvol_sem);
5182 
5183 		/* Subvolume does not exist. */
5184 		if (!root)
5185 			return -ENOENT;
5186 
5187 		/* Subvolume not deleted at all. */
5188 		if (refs > 0)
5189 			return -EEXIST;
5190 		/* We've waited and now the subvolume is gone. */
5191 		if (wait_for_deletion && refs == -1) {
5192 			/* Return the one we waited for as the last one. */
5193 			if (copy_to_user(argp, &args, sizeof(args)))
5194 				return -EFAULT;
5195 			return 0;
5196 		}
5197 
5198 		/* Subvolume not found on the first try (deleted or never existed). */
5199 		if (refs == -1)
5200 			return -ENOENT;
5201 
5202 		wait_for_deletion = true;
5203 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5204 		sched_ret = schedule_timeout_interruptible(HZ);
5205 		/* Early wake up or error. */
5206 		if (sched_ret != 0)
5207 			return -EINTR;
5208 	}
5209 
5210 	return 0;
5211 }
5212 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5213 long btrfs_ioctl(struct file *file, unsigned int
5214 		cmd, unsigned long arg)
5215 {
5216 	struct inode *inode = file_inode(file);
5217 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5218 	struct btrfs_root *root = BTRFS_I(inode)->root;
5219 	void __user *argp = (void __user *)arg;
5220 
5221 	switch (cmd) {
5222 	case FS_IOC_GETVERSION:
5223 		return btrfs_ioctl_getversion(inode, argp);
5224 	case FS_IOC_GETFSLABEL:
5225 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5226 	case FS_IOC_SETFSLABEL:
5227 		return btrfs_ioctl_set_fslabel(file, argp);
5228 	case FITRIM:
5229 		return btrfs_ioctl_fitrim(fs_info, argp);
5230 	case BTRFS_IOC_SNAP_CREATE:
5231 		return btrfs_ioctl_snap_create(file, argp, 0);
5232 	case BTRFS_IOC_SNAP_CREATE_V2:
5233 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5234 	case BTRFS_IOC_SUBVOL_CREATE:
5235 		return btrfs_ioctl_snap_create(file, argp, 1);
5236 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5237 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5238 	case BTRFS_IOC_SNAP_DESTROY:
5239 		return btrfs_ioctl_snap_destroy(file, argp, false);
5240 	case BTRFS_IOC_SNAP_DESTROY_V2:
5241 		return btrfs_ioctl_snap_destroy(file, argp, true);
5242 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5243 		return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5244 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5245 		return btrfs_ioctl_subvol_setflags(file, argp);
5246 	case BTRFS_IOC_DEFAULT_SUBVOL:
5247 		return btrfs_ioctl_default_subvol(file, argp);
5248 	case BTRFS_IOC_DEFRAG:
5249 		return btrfs_ioctl_defrag(file, NULL);
5250 	case BTRFS_IOC_DEFRAG_RANGE:
5251 		return btrfs_ioctl_defrag(file, argp);
5252 	case BTRFS_IOC_RESIZE:
5253 		return btrfs_ioctl_resize(file, argp);
5254 	case BTRFS_IOC_ADD_DEV:
5255 		return btrfs_ioctl_add_dev(fs_info, argp);
5256 	case BTRFS_IOC_RM_DEV:
5257 		return btrfs_ioctl_rm_dev(file, argp);
5258 	case BTRFS_IOC_RM_DEV_V2:
5259 		return btrfs_ioctl_rm_dev_v2(file, argp);
5260 	case BTRFS_IOC_FS_INFO:
5261 		return btrfs_ioctl_fs_info(fs_info, argp);
5262 	case BTRFS_IOC_DEV_INFO:
5263 		return btrfs_ioctl_dev_info(fs_info, argp);
5264 	case BTRFS_IOC_TREE_SEARCH:
5265 		return btrfs_ioctl_tree_search(root, argp);
5266 	case BTRFS_IOC_TREE_SEARCH_V2:
5267 		return btrfs_ioctl_tree_search_v2(root, argp);
5268 	case BTRFS_IOC_INO_LOOKUP:
5269 		return btrfs_ioctl_ino_lookup(root, argp);
5270 	case BTRFS_IOC_INO_PATHS:
5271 		return btrfs_ioctl_ino_to_path(root, argp);
5272 	case BTRFS_IOC_LOGICAL_INO:
5273 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5274 	case BTRFS_IOC_LOGICAL_INO_V2:
5275 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5276 	case BTRFS_IOC_SPACE_INFO:
5277 		return btrfs_ioctl_space_info(fs_info, argp);
5278 	case BTRFS_IOC_SYNC: {
5279 		int ret;
5280 
5281 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5282 		if (ret)
5283 			return ret;
5284 		ret = btrfs_sync_fs(inode->i_sb, 1);
5285 		/*
5286 		 * There may be work for the cleaner kthread to do (subvolume
5287 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5288 		 */
5289 		wake_up_process(fs_info->cleaner_kthread);
5290 		return ret;
5291 	}
5292 	case BTRFS_IOC_START_SYNC:
5293 		return btrfs_ioctl_start_sync(root, argp);
5294 	case BTRFS_IOC_WAIT_SYNC:
5295 		return btrfs_ioctl_wait_sync(fs_info, argp);
5296 	case BTRFS_IOC_SCRUB:
5297 		return btrfs_ioctl_scrub(file, argp);
5298 	case BTRFS_IOC_SCRUB_CANCEL:
5299 		return btrfs_ioctl_scrub_cancel(fs_info);
5300 	case BTRFS_IOC_SCRUB_PROGRESS:
5301 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5302 	case BTRFS_IOC_BALANCE_V2:
5303 		return btrfs_ioctl_balance(file, argp);
5304 	case BTRFS_IOC_BALANCE_CTL:
5305 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5306 	case BTRFS_IOC_BALANCE_PROGRESS:
5307 		return btrfs_ioctl_balance_progress(fs_info, argp);
5308 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5309 		return btrfs_ioctl_set_received_subvol(file, argp);
5310 #ifdef CONFIG_64BIT
5311 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5312 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5313 #endif
5314 	case BTRFS_IOC_SEND:
5315 		return _btrfs_ioctl_send(root, argp, false);
5316 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5317 	case BTRFS_IOC_SEND_32:
5318 		return _btrfs_ioctl_send(root, argp, true);
5319 #endif
5320 	case BTRFS_IOC_GET_DEV_STATS:
5321 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5322 	case BTRFS_IOC_QUOTA_CTL:
5323 		return btrfs_ioctl_quota_ctl(file, argp);
5324 	case BTRFS_IOC_QGROUP_ASSIGN:
5325 		return btrfs_ioctl_qgroup_assign(file, argp);
5326 	case BTRFS_IOC_QGROUP_CREATE:
5327 		return btrfs_ioctl_qgroup_create(file, argp);
5328 	case BTRFS_IOC_QGROUP_LIMIT:
5329 		return btrfs_ioctl_qgroup_limit(file, argp);
5330 	case BTRFS_IOC_QUOTA_RESCAN:
5331 		return btrfs_ioctl_quota_rescan(file, argp);
5332 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5333 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5334 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5335 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5336 	case BTRFS_IOC_DEV_REPLACE:
5337 		return btrfs_ioctl_dev_replace(fs_info, argp);
5338 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5339 		return btrfs_ioctl_get_supported_features(argp);
5340 	case BTRFS_IOC_GET_FEATURES:
5341 		return btrfs_ioctl_get_features(fs_info, argp);
5342 	case BTRFS_IOC_SET_FEATURES:
5343 		return btrfs_ioctl_set_features(file, argp);
5344 	case BTRFS_IOC_GET_SUBVOL_INFO:
5345 		return btrfs_ioctl_get_subvol_info(inode, argp);
5346 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5347 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5348 	case BTRFS_IOC_INO_LOOKUP_USER:
5349 		return btrfs_ioctl_ino_lookup_user(file, argp);
5350 	case FS_IOC_ENABLE_VERITY:
5351 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5352 	case FS_IOC_MEASURE_VERITY:
5353 		return fsverity_ioctl_measure(file, argp);
5354 	case FS_IOC_READ_VERITY_METADATA:
5355 		return fsverity_ioctl_read_metadata(file, argp);
5356 	case BTRFS_IOC_ENCODED_READ:
5357 		return btrfs_ioctl_encoded_read(file, argp, false);
5358 	case BTRFS_IOC_ENCODED_WRITE:
5359 		return btrfs_ioctl_encoded_write(file, argp, false);
5360 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5361 	case BTRFS_IOC_ENCODED_READ_32:
5362 		return btrfs_ioctl_encoded_read(file, argp, true);
5363 	case BTRFS_IOC_ENCODED_WRITE_32:
5364 		return btrfs_ioctl_encoded_write(file, argp, true);
5365 #endif
5366 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5367 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5368 	}
5369 
5370 	return -ENOTTY;
5371 }
5372 
5373 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5374 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5375 {
5376 	/*
5377 	 * These all access 32-bit values anyway so no further
5378 	 * handling is necessary.
5379 	 */
5380 	switch (cmd) {
5381 	case FS_IOC32_GETVERSION:
5382 		cmd = FS_IOC_GETVERSION;
5383 		break;
5384 	}
5385 
5386 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5387 }
5388 #endif
5389