1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 __s64 send_fd; /* in */
90 __u64 clone_sources_count; /* in */
91 compat_uptr_t clone_sources; /* in */
92 __u64 parent_root; /* in */
93 __u64 flags; /* in */
94 __u32 version; /* in */
95 __u8 reserved[28]; /* in */
96 } __attribute__ ((__packed__));
97
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 struct btrfs_ioctl_send_args_32)
100
101 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_uptr_t iov;
103 compat_ulong_t iovcnt;
104 __s64 offset;
105 __u64 flags;
106 __u64 len;
107 __u64 unencoded_len;
108 __u64 unencoded_offset;
109 __u32 compression;
110 __u32 encryption;
111 __u8 reserved[64];
112 };
113
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(const struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 unsigned int flags)
123 {
124 if (S_ISDIR(inode->i_mode))
125 return flags;
126 else if (S_ISREG(inode->i_mode))
127 return flags & ~FS_DIRSYNC_FL;
128 else
129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131
132 /*
133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134 * ioctl.
135 */
btrfs_inode_flags_to_fsflags(const struct btrfs_inode * inode)136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 unsigned int iflags = 0;
139 u32 flags = inode->flags;
140 u32 ro_flags = inode->ro_flags;
141
142 if (flags & BTRFS_INODE_SYNC)
143 iflags |= FS_SYNC_FL;
144 if (flags & BTRFS_INODE_IMMUTABLE)
145 iflags |= FS_IMMUTABLE_FL;
146 if (flags & BTRFS_INODE_APPEND)
147 iflags |= FS_APPEND_FL;
148 if (flags & BTRFS_INODE_NODUMP)
149 iflags |= FS_NODUMP_FL;
150 if (flags & BTRFS_INODE_NOATIME)
151 iflags |= FS_NOATIME_FL;
152 if (flags & BTRFS_INODE_DIRSYNC)
153 iflags |= FS_DIRSYNC_FL;
154 if (flags & BTRFS_INODE_NODATACOW)
155 iflags |= FS_NOCOW_FL;
156 if (ro_flags & BTRFS_INODE_RO_VERITY)
157 iflags |= FS_VERITY_FL;
158
159 if (flags & BTRFS_INODE_NOCOMPRESS)
160 iflags |= FS_NOCOMP_FL;
161 else if (flags & BTRFS_INODE_COMPRESS)
162 iflags |= FS_COMPR_FL;
163
164 return iflags;
165 }
166
167 /*
168 * Update inode->i_flags based on the btrfs internal flags.
169 */
btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 unsigned int new_fl = 0;
173
174 if (inode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (inode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (inode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (inode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->vfs_inode.i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190 }
191
192 /*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219 }
220
check_fsflags_compatible(const struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223 {
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228 }
229
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235 }
236
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242 }
243
244 /*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 return 0;
254 }
255
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258 {
259 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 struct btrfs_root *root = inode->root;
261 struct btrfs_fs_info *fs_info = root->fs_info;
262 struct btrfs_trans_handle *trans;
263 unsigned int fsflags, old_fsflags;
264 int ret;
265 const char *comp = NULL;
266 u32 inode_flags;
267
268 if (btrfs_root_readonly(root))
269 return -EROFS;
270
271 if (fileattr_has_fsx(fa))
272 return -EOPNOTSUPP;
273
274 fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 ret = check_fsflags(old_fsflags, fsflags);
277 if (ret)
278 return ret;
279
280 ret = check_fsflags_compatible(fs_info, fsflags);
281 if (ret)
282 return ret;
283
284 inode_flags = inode->flags;
285 if (fsflags & FS_SYNC_FL)
286 inode_flags |= BTRFS_INODE_SYNC;
287 else
288 inode_flags &= ~BTRFS_INODE_SYNC;
289 if (fsflags & FS_IMMUTABLE_FL)
290 inode_flags |= BTRFS_INODE_IMMUTABLE;
291 else
292 inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 if (fsflags & FS_APPEND_FL)
294 inode_flags |= BTRFS_INODE_APPEND;
295 else
296 inode_flags &= ~BTRFS_INODE_APPEND;
297 if (fsflags & FS_NODUMP_FL)
298 inode_flags |= BTRFS_INODE_NODUMP;
299 else
300 inode_flags &= ~BTRFS_INODE_NODUMP;
301 if (fsflags & FS_NOATIME_FL)
302 inode_flags |= BTRFS_INODE_NOATIME;
303 else
304 inode_flags &= ~BTRFS_INODE_NOATIME;
305
306 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 if (!fa->flags_valid) {
308 /* 1 item for the inode */
309 trans = btrfs_start_transaction(root, 1);
310 if (IS_ERR(trans))
311 return PTR_ERR(trans);
312 goto update_flags;
313 }
314
315 if (fsflags & FS_DIRSYNC_FL)
316 inode_flags |= BTRFS_INODE_DIRSYNC;
317 else
318 inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 if (fsflags & FS_NOCOW_FL) {
320 if (S_ISREG(inode->vfs_inode.i_mode)) {
321 /*
322 * It's safe to turn csums off here, no extents exist.
323 * Otherwise we want the flag to reflect the real COW
324 * status of the file and will not set it.
325 */
326 if (inode->vfs_inode.i_size == 0)
327 inode_flags |= BTRFS_INODE_NODATACOW |
328 BTRFS_INODE_NODATASUM;
329 } else {
330 inode_flags |= BTRFS_INODE_NODATACOW;
331 }
332 } else {
333 /*
334 * Revert back under same assumptions as above
335 */
336 if (S_ISREG(inode->vfs_inode.i_mode)) {
337 if (inode->vfs_inode.i_size == 0)
338 inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 BTRFS_INODE_NODATASUM);
340 } else {
341 inode_flags &= ~BTRFS_INODE_NODATACOW;
342 }
343 }
344
345 /*
346 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 * flag may be changed automatically if compression code won't make
348 * things smaller.
349 */
350 if (fsflags & FS_NOCOMP_FL) {
351 inode_flags &= ~BTRFS_INODE_COMPRESS;
352 inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 } else if (fsflags & FS_COMPR_FL) {
354
355 if (IS_SWAPFILE(&inode->vfs_inode))
356 return -ETXTBSY;
357
358 inode_flags |= BTRFS_INODE_COMPRESS;
359 inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360
361 comp = btrfs_compress_type2str(fs_info->compress_type);
362 if (!comp || comp[0] == 0)
363 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 } else {
365 inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 }
367
368 /*
369 * 1 for inode item
370 * 2 for properties
371 */
372 trans = btrfs_start_transaction(root, 3);
373 if (IS_ERR(trans))
374 return PTR_ERR(trans);
375
376 if (comp) {
377 ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 comp, strlen(comp), 0);
379 if (ret) {
380 btrfs_abort_transaction(trans, ret);
381 goto out_end_trans;
382 }
383 } else {
384 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 if (ret && ret != -ENODATA) {
386 btrfs_abort_transaction(trans, ret);
387 goto out_end_trans;
388 }
389 }
390
391 update_flags:
392 inode->flags = inode_flags;
393 btrfs_update_inode_mapping_flags(inode);
394 btrfs_sync_inode_flags_to_i_flags(inode);
395 inode_inc_iversion(&inode->vfs_inode);
396 inode_set_ctime_current(&inode->vfs_inode);
397 ret = btrfs_update_inode(trans, inode);
398
399 out_end_trans:
400 btrfs_end_transaction(trans);
401 return ret;
402 }
403
btrfs_ioctl_getversion(const struct inode * inode,int __user * arg)404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 return put_user(inode->i_generation, arg);
407 }
408
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 void __user *arg)
411 {
412 struct btrfs_device *device;
413 struct fstrim_range range;
414 u64 minlen = ULLONG_MAX;
415 u64 num_devices = 0;
416 int ret;
417
418 if (!capable(CAP_SYS_ADMIN))
419 return -EPERM;
420
421 /*
422 * btrfs_trim_block_group() depends on space cache, which is not
423 * available in zoned filesystem. So, disallow fitrim on a zoned
424 * filesystem for now.
425 */
426 if (btrfs_is_zoned(fs_info))
427 return -EOPNOTSUPP;
428
429 /*
430 * If the fs is mounted with nologreplay, which requires it to be
431 * mounted in RO mode as well, we can not allow discard on free space
432 * inside block groups, because log trees refer to extents that are not
433 * pinned in a block group's free space cache (pinning the extents is
434 * precisely the first phase of replaying a log tree).
435 */
436 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 return -EROFS;
438
439 rcu_read_lock();
440 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 dev_list) {
442 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 continue;
444 num_devices++;
445 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 minlen);
447 }
448 rcu_read_unlock();
449
450 if (!num_devices)
451 return -EOPNOTSUPP;
452 if (copy_from_user(&range, arg, sizeof(range)))
453 return -EFAULT;
454
455 /*
456 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
457 * block group is in the logical address space, which can be any
458 * sectorsize aligned bytenr in the range [0, U64_MAX].
459 */
460 if (range.len < fs_info->sectorsize)
461 return -EINVAL;
462
463 range.minlen = max(range.minlen, minlen);
464 ret = btrfs_trim_fs(fs_info, &range);
465
466 if (copy_to_user(arg, &range, sizeof(range)))
467 return -EFAULT;
468
469 return ret;
470 }
471
472 /*
473 * Calculate the number of transaction items to reserve for creating a subvolume
474 * or snapshot, not including the inode, directory entries, or parent directory.
475 */
create_subvol_num_items(const struct btrfs_qgroup_inherit * inherit)476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 /*
479 * 1 to add root block
480 * 1 to add root item
481 * 1 to add root ref
482 * 1 to add root backref
483 * 1 to add UUID item
484 * 1 to add qgroup info
485 * 1 to add qgroup limit
486 *
487 * Ideally the last two would only be accounted if qgroups are enabled,
488 * but that can change between now and the time we would insert them.
489 */
490 unsigned int num_items = 7;
491
492 if (inherit) {
493 /* 2 to add qgroup relations for each inherited qgroup */
494 num_items += 2 * inherit->num_qgroups;
495 }
496 return num_items;
497 }
498
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 struct inode *dir, struct dentry *dentry,
501 struct btrfs_qgroup_inherit *inherit)
502 {
503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 struct btrfs_trans_handle *trans;
505 struct btrfs_key key;
506 struct btrfs_root_item *root_item;
507 struct btrfs_inode_item *inode_item;
508 struct extent_buffer *leaf;
509 struct btrfs_root *root = BTRFS_I(dir)->root;
510 struct btrfs_root *new_root;
511 struct btrfs_block_rsv block_rsv;
512 struct timespec64 cur_time = current_time(dir);
513 struct btrfs_new_inode_args new_inode_args = {
514 .dir = dir,
515 .dentry = dentry,
516 .subvol = true,
517 };
518 unsigned int trans_num_items;
519 int ret;
520 dev_t anon_dev;
521 u64 objectid;
522 u64 qgroup_reserved = 0;
523
524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 if (!root_item)
526 return -ENOMEM;
527
528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 if (ret)
530 goto out_root_item;
531
532 /*
533 * Don't create subvolume whose level is not zero. Or qgroup will be
534 * screwed up since it assumes subvolume qgroup's level to be 0.
535 */
536 if (btrfs_qgroup_level(objectid)) {
537 ret = -ENOSPC;
538 goto out_root_item;
539 }
540
541 ret = get_anon_bdev(&anon_dev);
542 if (ret < 0)
543 goto out_root_item;
544
545 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 if (!new_inode_args.inode) {
547 ret = -ENOMEM;
548 goto out_anon_dev;
549 }
550 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 if (ret)
552 goto out_inode;
553 trans_num_items += create_subvol_num_items(inherit);
554
555 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 trans_num_items, false);
558 if (ret)
559 goto out_new_inode_args;
560 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561
562 trans = btrfs_start_transaction(root, 0);
563 if (IS_ERR(trans)) {
564 ret = PTR_ERR(trans);
565 goto out_release_rsv;
566 }
567 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 qgroup_reserved = 0;
569 trans->block_rsv = &block_rsv;
570 trans->bytes_reserved = block_rsv.size;
571
572 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 if (ret)
574 goto out;
575
576 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 0, BTRFS_NESTING_NORMAL);
578 if (IS_ERR(leaf)) {
579 ret = PTR_ERR(leaf);
580 goto out;
581 }
582
583 btrfs_mark_buffer_dirty(trans, leaf);
584
585 inode_item = &root_item->inode;
586 btrfs_set_stack_inode_generation(inode_item, 1);
587 btrfs_set_stack_inode_size(inode_item, 3);
588 btrfs_set_stack_inode_nlink(inode_item, 1);
589 btrfs_set_stack_inode_nbytes(inode_item,
590 fs_info->nodesize);
591 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592
593 btrfs_set_root_flags(root_item, 0);
594 btrfs_set_root_limit(root_item, 0);
595 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596
597 btrfs_set_root_bytenr(root_item, leaf->start);
598 btrfs_set_root_generation(root_item, trans->transid);
599 btrfs_set_root_level(root_item, 0);
600 btrfs_set_root_refs(root_item, 1);
601 btrfs_set_root_used(root_item, leaf->len);
602 btrfs_set_root_last_snapshot(root_item, 0);
603
604 btrfs_set_root_generation_v2(root_item,
605 btrfs_root_generation(root_item));
606 generate_random_guid(root_item->uuid);
607 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 root_item->ctime = root_item->otime;
610 btrfs_set_root_ctransid(root_item, trans->transid);
611 btrfs_set_root_otransid(root_item, trans->transid);
612
613 btrfs_tree_unlock(leaf);
614
615 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616
617 key.objectid = objectid;
618 key.type = BTRFS_ROOT_ITEM_KEY;
619 key.offset = 0;
620 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 root_item);
622 if (ret) {
623 int ret2;
624
625 /*
626 * Since we don't abort the transaction in this case, free the
627 * tree block so that we don't leak space and leave the
628 * filesystem in an inconsistent state (an extent item in the
629 * extent tree with a backreference for a root that does not
630 * exists).
631 */
632 btrfs_tree_lock(leaf);
633 btrfs_clear_buffer_dirty(trans, leaf);
634 btrfs_tree_unlock(leaf);
635 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 if (ret2 < 0)
637 btrfs_abort_transaction(trans, ret2);
638 free_extent_buffer(leaf);
639 goto out;
640 }
641
642 free_extent_buffer(leaf);
643 leaf = NULL;
644
645 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 if (IS_ERR(new_root)) {
647 ret = PTR_ERR(new_root);
648 btrfs_abort_transaction(trans, ret);
649 goto out;
650 }
651 /* anon_dev is owned by new_root now. */
652 anon_dev = 0;
653 BTRFS_I(new_inode_args.inode)->root = new_root;
654 /* ... and new_root is owned by new_inode_args.inode now. */
655
656 ret = btrfs_record_root_in_trans(trans, new_root);
657 if (ret) {
658 btrfs_abort_transaction(trans, ret);
659 goto out;
660 }
661
662 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 BTRFS_UUID_KEY_SUBVOL, objectid);
664 if (ret) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 }
668
669 ret = btrfs_create_new_inode(trans, &new_inode_args);
670 if (ret) {
671 btrfs_abort_transaction(trans, ret);
672 goto out;
673 }
674
675 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
676
677 d_instantiate_new(dentry, new_inode_args.inode);
678 new_inode_args.inode = NULL;
679
680 out:
681 trans->block_rsv = NULL;
682 trans->bytes_reserved = 0;
683 btrfs_end_transaction(trans);
684 out_release_rsv:
685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 if (qgroup_reserved)
687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 iput(new_inode_args.inode);
692 out_anon_dev:
693 if (anon_dev)
694 free_anon_bdev(anon_dev);
695 out_root_item:
696 kfree(root_item);
697 return ret;
698 }
699
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 struct dentry *dentry, bool readonly,
702 struct btrfs_qgroup_inherit *inherit)
703 {
704 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 struct inode *inode;
706 struct btrfs_pending_snapshot *pending_snapshot;
707 unsigned int trans_num_items;
708 struct btrfs_trans_handle *trans;
709 struct btrfs_block_rsv *block_rsv;
710 u64 qgroup_reserved = 0;
711 int ret;
712
713 /* We do not support snapshotting right now. */
714 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 btrfs_warn(fs_info,
716 "extent tree v2 doesn't support snapshotting yet");
717 return -EOPNOTSUPP;
718 }
719
720 if (btrfs_root_refs(&root->root_item) == 0)
721 return -ENOENT;
722
723 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 return -EINVAL;
725
726 if (atomic_read(&root->nr_swapfiles)) {
727 btrfs_warn(fs_info,
728 "cannot snapshot subvolume with active swapfile");
729 return -ETXTBSY;
730 }
731
732 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 if (!pending_snapshot)
734 return -ENOMEM;
735
736 ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 if (ret < 0)
738 goto free_pending;
739 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 GFP_KERNEL);
741 pending_snapshot->path = btrfs_alloc_path();
742 if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 ret = -ENOMEM;
744 goto free_pending;
745 }
746
747 block_rsv = &pending_snapshot->block_rsv;
748 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 /*
750 * 1 to add dir item
751 * 1 to add dir index
752 * 1 to update parent inode item
753 */
754 trans_num_items = create_subvol_num_items(inherit) + 3;
755 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 trans_num_items, false);
757 if (ret)
758 goto free_pending;
759 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760
761 pending_snapshot->dentry = dentry;
762 pending_snapshot->root = root;
763 pending_snapshot->readonly = readonly;
764 pending_snapshot->dir = BTRFS_I(dir);
765 pending_snapshot->inherit = inherit;
766
767 trans = btrfs_start_transaction(root, 0);
768 if (IS_ERR(trans)) {
769 ret = PTR_ERR(trans);
770 goto fail;
771 }
772 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 if (ret) {
774 btrfs_end_transaction(trans);
775 goto fail;
776 }
777 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 qgroup_reserved = 0;
779
780 trans->pending_snapshot = pending_snapshot;
781
782 ret = btrfs_commit_transaction(trans);
783 if (ret)
784 goto fail;
785
786 ret = pending_snapshot->error;
787 if (ret)
788 goto fail;
789
790 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 if (ret)
792 goto fail;
793
794 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 if (IS_ERR(inode)) {
796 ret = PTR_ERR(inode);
797 goto fail;
798 }
799
800 d_instantiate(dentry, inode);
801 ret = 0;
802 pending_snapshot->anon_dev = 0;
803 fail:
804 /* Prevent double freeing of anon_dev */
805 if (ret && pending_snapshot->snap)
806 pending_snapshot->snap->anon_dev = 0;
807 btrfs_put_root(pending_snapshot->snap);
808 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 if (qgroup_reserved)
810 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 if (pending_snapshot->anon_dev)
813 free_anon_bdev(pending_snapshot->anon_dev);
814 kfree(pending_snapshot->root_item);
815 btrfs_free_path(pending_snapshot->path);
816 kfree(pending_snapshot);
817
818 return ret;
819 }
820
821 /* copy of may_delete in fs/namei.c()
822 * Check whether we can remove a link victim from directory dir, check
823 * whether the type of victim is right.
824 * 1. We can't do it if dir is read-only (done in permission())
825 * 2. We should have write and exec permissions on dir
826 * 3. We can't remove anything from append-only dir
827 * 4. We can't do anything with immutable dir (done in permission())
828 * 5. If the sticky bit on dir is set we should either
829 * a. be owner of dir, or
830 * b. be owner of victim, or
831 * c. have CAP_FOWNER capability
832 * 6. If the victim is append-only or immutable we can't do anything with
833 * links pointing to it.
834 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836 * 9. We can't remove a root or mountpoint.
837 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838 * nfs_async_unlink().
839 */
840
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 struct inode *dir, struct dentry *victim, int isdir)
843 {
844 int error;
845
846 if (d_really_is_negative(victim))
847 return -ENOENT;
848
849 /* The @victim is not inside @dir. */
850 if (d_inode(victim->d_parent) != dir)
851 return -EINVAL;
852 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853
854 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 if (error)
856 return error;
857 if (IS_APPEND(dir))
858 return -EPERM;
859 if (check_sticky(idmap, dir, d_inode(victim)) ||
860 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 IS_SWAPFILE(d_inode(victim)))
862 return -EPERM;
863 if (isdir) {
864 if (!d_is_dir(victim))
865 return -ENOTDIR;
866 if (IS_ROOT(victim))
867 return -EBUSY;
868 } else if (d_is_dir(victim))
869 return -EISDIR;
870 if (IS_DEADDIR(dir))
871 return -ENOENT;
872 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 return -EBUSY;
874 return 0;
875 }
876
877 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,const struct dentry * child)878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 struct inode *dir, const struct dentry *child)
880 {
881 if (d_really_is_positive(child))
882 return -EEXIST;
883 if (IS_DEADDIR(dir))
884 return -ENOENT;
885 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 return -EOVERFLOW;
887 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889
890 /*
891 * Create a new subvolume below @parent. This is largely modeled after
892 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893 * inside this filesystem so it's quite a bit simpler.
894 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)895 static noinline int btrfs_mksubvol(const struct path *parent,
896 struct mnt_idmap *idmap,
897 const char *name, int namelen,
898 struct btrfs_root *snap_src,
899 bool readonly,
900 struct btrfs_qgroup_inherit *inherit)
901 {
902 struct inode *dir = d_inode(parent->dentry);
903 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
904 struct dentry *dentry;
905 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
906 int error;
907
908 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
909 if (error == -EINTR)
910 return error;
911
912 dentry = lookup_one(idmap, &QSTR_LEN(name, namelen), parent->dentry);
913 error = PTR_ERR(dentry);
914 if (IS_ERR(dentry))
915 goto out_unlock;
916
917 error = btrfs_may_create(idmap, dir, dentry);
918 if (error)
919 goto out_dput;
920
921 /*
922 * even if this name doesn't exist, we may get hash collisions.
923 * check for them now when we can safely fail
924 */
925 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
926 dir->i_ino, &name_str);
927 if (error)
928 goto out_dput;
929
930 down_read(&fs_info->subvol_sem);
931
932 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
933 goto out_up_read;
934
935 if (snap_src)
936 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
937 else
938 error = create_subvol(idmap, dir, dentry, inherit);
939
940 if (!error)
941 fsnotify_mkdir(dir, dentry);
942 out_up_read:
943 up_read(&fs_info->subvol_sem);
944 out_dput:
945 dput(dentry);
946 out_unlock:
947 btrfs_inode_unlock(BTRFS_I(dir), 0);
948 return error;
949 }
950
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)951 static noinline int btrfs_mksnapshot(const struct path *parent,
952 struct mnt_idmap *idmap,
953 const char *name, int namelen,
954 struct btrfs_root *root,
955 bool readonly,
956 struct btrfs_qgroup_inherit *inherit)
957 {
958 int ret;
959
960 /*
961 * Force new buffered writes to reserve space even when NOCOW is
962 * possible. This is to avoid later writeback (running dealloc) to
963 * fallback to COW mode and unexpectedly fail with ENOSPC.
964 */
965 btrfs_drew_read_lock(&root->snapshot_lock);
966
967 ret = btrfs_start_delalloc_snapshot(root, false);
968 if (ret)
969 goto out;
970
971 /*
972 * All previous writes have started writeback in NOCOW mode, so now
973 * we force future writes to fallback to COW mode during snapshot
974 * creation.
975 */
976 atomic_inc(&root->snapshot_force_cow);
977
978 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
979
980 ret = btrfs_mksubvol(parent, idmap, name, namelen,
981 root, readonly, inherit);
982 atomic_dec(&root->snapshot_force_cow);
983 out:
984 btrfs_drew_read_unlock(&root->snapshot_lock);
985 return ret;
986 }
987
988 /*
989 * Try to start exclusive operation @type or cancel it if it's running.
990 *
991 * Return:
992 * 0 - normal mode, newly claimed op started
993 * >0 - normal mode, something else is running,
994 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
995 * ECANCELED - cancel mode, successful cancel
996 * ENOTCONN - cancel mode, operation not running anymore
997 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)998 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
999 enum btrfs_exclusive_operation type, bool cancel)
1000 {
1001 if (!cancel) {
1002 /* Start normal op */
1003 if (!btrfs_exclop_start(fs_info, type))
1004 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1005 /* Exclusive operation is now claimed */
1006 return 0;
1007 }
1008
1009 /* Cancel running op */
1010 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1011 /*
1012 * This blocks any exclop finish from setting it to NONE, so we
1013 * request cancellation. Either it runs and we will wait for it,
1014 * or it has finished and no waiting will happen.
1015 */
1016 atomic_inc(&fs_info->reloc_cancel_req);
1017 btrfs_exclop_start_unlock(fs_info);
1018
1019 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1020 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1021 TASK_INTERRUPTIBLE);
1022
1023 return -ECANCELED;
1024 }
1025
1026 /* Something else is running or none */
1027 return -ENOTCONN;
1028 }
1029
btrfs_ioctl_resize(struct file * file,void __user * arg)1030 static noinline int btrfs_ioctl_resize(struct file *file,
1031 void __user *arg)
1032 {
1033 BTRFS_DEV_LOOKUP_ARGS(args);
1034 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1035 struct btrfs_fs_info *fs_info = root->fs_info;
1036 u64 new_size;
1037 u64 old_size;
1038 u64 devid = 1;
1039 struct btrfs_ioctl_vol_args *vol_args;
1040 struct btrfs_device *device = NULL;
1041 char *sizestr;
1042 char *devstr = NULL;
1043 int ret = 0;
1044 int mod = 0;
1045 bool cancel;
1046
1047 if (!capable(CAP_SYS_ADMIN))
1048 return -EPERM;
1049
1050 ret = mnt_want_write_file(file);
1051 if (ret)
1052 return ret;
1053
1054 /*
1055 * Read the arguments before checking exclusivity to be able to
1056 * distinguish regular resize and cancel
1057 */
1058 vol_args = memdup_user(arg, sizeof(*vol_args));
1059 if (IS_ERR(vol_args)) {
1060 ret = PTR_ERR(vol_args);
1061 goto out_drop;
1062 }
1063 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1064 if (ret < 0)
1065 goto out_free;
1066
1067 sizestr = vol_args->name;
1068 cancel = (strcmp("cancel", sizestr) == 0);
1069 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1070 if (ret)
1071 goto out_free;
1072 /* Exclusive operation is now claimed */
1073
1074 devstr = strchr(sizestr, ':');
1075 if (devstr) {
1076 sizestr = devstr + 1;
1077 *devstr = '\0';
1078 devstr = vol_args->name;
1079 ret = kstrtoull(devstr, 10, &devid);
1080 if (ret)
1081 goto out_finish;
1082 if (!devid) {
1083 ret = -EINVAL;
1084 goto out_finish;
1085 }
1086 btrfs_info(fs_info, "resizing devid %llu", devid);
1087 }
1088
1089 args.devid = devid;
1090 device = btrfs_find_device(fs_info->fs_devices, &args);
1091 if (!device) {
1092 btrfs_info(fs_info, "resizer unable to find device %llu",
1093 devid);
1094 ret = -ENODEV;
1095 goto out_finish;
1096 }
1097
1098 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1099 btrfs_info(fs_info,
1100 "resizer unable to apply on readonly device %llu",
1101 devid);
1102 ret = -EPERM;
1103 goto out_finish;
1104 }
1105
1106 if (!strcmp(sizestr, "max"))
1107 new_size = bdev_nr_bytes(device->bdev);
1108 else {
1109 char *retptr;
1110
1111 if (sizestr[0] == '-') {
1112 mod = -1;
1113 sizestr++;
1114 } else if (sizestr[0] == '+') {
1115 mod = 1;
1116 sizestr++;
1117 }
1118 new_size = memparse(sizestr, &retptr);
1119 if (*retptr != '\0' || new_size == 0) {
1120 ret = -EINVAL;
1121 goto out_finish;
1122 }
1123 }
1124
1125 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1126 ret = -EPERM;
1127 goto out_finish;
1128 }
1129
1130 old_size = btrfs_device_get_total_bytes(device);
1131
1132 if (mod < 0) {
1133 if (new_size > old_size) {
1134 ret = -EINVAL;
1135 goto out_finish;
1136 }
1137 new_size = old_size - new_size;
1138 } else if (mod > 0) {
1139 if (new_size > ULLONG_MAX - old_size) {
1140 ret = -ERANGE;
1141 goto out_finish;
1142 }
1143 new_size = old_size + new_size;
1144 }
1145
1146 if (new_size < SZ_256M) {
1147 ret = -EINVAL;
1148 goto out_finish;
1149 }
1150 if (new_size > bdev_nr_bytes(device->bdev)) {
1151 ret = -EFBIG;
1152 goto out_finish;
1153 }
1154
1155 new_size = round_down(new_size, fs_info->sectorsize);
1156
1157 if (new_size > old_size) {
1158 struct btrfs_trans_handle *trans;
1159
1160 trans = btrfs_start_transaction(root, 0);
1161 if (IS_ERR(trans)) {
1162 ret = PTR_ERR(trans);
1163 goto out_finish;
1164 }
1165 ret = btrfs_grow_device(trans, device, new_size);
1166 btrfs_commit_transaction(trans);
1167 } else if (new_size < old_size) {
1168 ret = btrfs_shrink_device(device, new_size);
1169 } /* equal, nothing need to do */
1170
1171 if (ret == 0 && new_size != old_size)
1172 btrfs_info_in_rcu(fs_info,
1173 "resize device %s (devid %llu) from %llu to %llu",
1174 btrfs_dev_name(device), device->devid,
1175 old_size, new_size);
1176 out_finish:
1177 btrfs_exclop_finish(fs_info);
1178 out_free:
1179 kfree(vol_args);
1180 out_drop:
1181 mnt_drop_write_file(file);
1182 return ret;
1183 }
1184
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1185 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1186 struct mnt_idmap *idmap,
1187 const char *name, unsigned long fd, int subvol,
1188 bool readonly,
1189 struct btrfs_qgroup_inherit *inherit)
1190 {
1191 int namelen;
1192 int ret = 0;
1193
1194 if (!S_ISDIR(file_inode(file)->i_mode))
1195 return -ENOTDIR;
1196
1197 ret = mnt_want_write_file(file);
1198 if (ret)
1199 goto out;
1200
1201 namelen = strlen(name);
1202 if (strchr(name, '/')) {
1203 ret = -EINVAL;
1204 goto out_drop_write;
1205 }
1206
1207 if (name[0] == '.' &&
1208 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1209 ret = -EEXIST;
1210 goto out_drop_write;
1211 }
1212
1213 if (subvol) {
1214 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1215 namelen, NULL, readonly, inherit);
1216 } else {
1217 CLASS(fd, src)(fd);
1218 struct inode *src_inode;
1219 if (fd_empty(src)) {
1220 ret = -EINVAL;
1221 goto out_drop_write;
1222 }
1223
1224 src_inode = file_inode(fd_file(src));
1225 if (src_inode->i_sb != file_inode(file)->i_sb) {
1226 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1227 "Snapshot src from another FS");
1228 ret = -EXDEV;
1229 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1230 /*
1231 * Subvolume creation is not restricted, but snapshots
1232 * are limited to own subvolumes only
1233 */
1234 ret = -EPERM;
1235 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1236 /*
1237 * Snapshots must be made with the src_inode referring
1238 * to the subvolume inode, otherwise the permission
1239 * checking above is useless because we may have
1240 * permission on a lower directory but not the subvol
1241 * itself.
1242 */
1243 ret = -EINVAL;
1244 } else {
1245 ret = btrfs_mksnapshot(&file->f_path, idmap,
1246 name, namelen,
1247 BTRFS_I(src_inode)->root,
1248 readonly, inherit);
1249 }
1250 }
1251 out_drop_write:
1252 mnt_drop_write_file(file);
1253 out:
1254 return ret;
1255 }
1256
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1257 static noinline int btrfs_ioctl_snap_create(struct file *file,
1258 void __user *arg, int subvol)
1259 {
1260 struct btrfs_ioctl_vol_args *vol_args;
1261 int ret;
1262
1263 if (!S_ISDIR(file_inode(file)->i_mode))
1264 return -ENOTDIR;
1265
1266 vol_args = memdup_user(arg, sizeof(*vol_args));
1267 if (IS_ERR(vol_args))
1268 return PTR_ERR(vol_args);
1269 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1270 if (ret < 0)
1271 goto out;
1272
1273 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1274 vol_args->name, vol_args->fd, subvol,
1275 false, NULL);
1276
1277 out:
1278 kfree(vol_args);
1279 return ret;
1280 }
1281
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1282 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1283 void __user *arg, int subvol)
1284 {
1285 struct btrfs_ioctl_vol_args_v2 *vol_args;
1286 int ret;
1287 bool readonly = false;
1288 struct btrfs_qgroup_inherit *inherit = NULL;
1289
1290 if (!S_ISDIR(file_inode(file)->i_mode))
1291 return -ENOTDIR;
1292
1293 vol_args = memdup_user(arg, sizeof(*vol_args));
1294 if (IS_ERR(vol_args))
1295 return PTR_ERR(vol_args);
1296 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1297 if (ret < 0)
1298 goto free_args;
1299
1300 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1301 ret = -EOPNOTSUPP;
1302 goto free_args;
1303 }
1304
1305 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1306 readonly = true;
1307 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1308 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1309
1310 if (vol_args->size < sizeof(*inherit) ||
1311 vol_args->size > PAGE_SIZE) {
1312 ret = -EINVAL;
1313 goto free_args;
1314 }
1315 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1316 if (IS_ERR(inherit)) {
1317 ret = PTR_ERR(inherit);
1318 goto free_args;
1319 }
1320
1321 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1322 if (ret < 0)
1323 goto free_inherit;
1324 }
1325
1326 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1327 vol_args->name, vol_args->fd, subvol,
1328 readonly, inherit);
1329 if (ret)
1330 goto free_inherit;
1331 free_inherit:
1332 kfree(inherit);
1333 free_args:
1334 kfree(vol_args);
1335 return ret;
1336 }
1337
btrfs_ioctl_subvol_getflags(struct btrfs_inode * inode,void __user * arg)1338 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1339 void __user *arg)
1340 {
1341 struct btrfs_root *root = inode->root;
1342 struct btrfs_fs_info *fs_info = root->fs_info;
1343 int ret = 0;
1344 u64 flags = 0;
1345
1346 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1347 return -EINVAL;
1348
1349 down_read(&fs_info->subvol_sem);
1350 if (btrfs_root_readonly(root))
1351 flags |= BTRFS_SUBVOL_RDONLY;
1352 up_read(&fs_info->subvol_sem);
1353
1354 if (copy_to_user(arg, &flags, sizeof(flags)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1360 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1361 void __user *arg)
1362 {
1363 struct inode *inode = file_inode(file);
1364 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1365 struct btrfs_root *root = BTRFS_I(inode)->root;
1366 struct btrfs_trans_handle *trans;
1367 u64 root_flags;
1368 u64 flags;
1369 int ret = 0;
1370
1371 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1372 return -EPERM;
1373
1374 ret = mnt_want_write_file(file);
1375 if (ret)
1376 goto out;
1377
1378 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1379 ret = -EINVAL;
1380 goto out_drop_write;
1381 }
1382
1383 if (copy_from_user(&flags, arg, sizeof(flags))) {
1384 ret = -EFAULT;
1385 goto out_drop_write;
1386 }
1387
1388 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1389 ret = -EOPNOTSUPP;
1390 goto out_drop_write;
1391 }
1392
1393 down_write(&fs_info->subvol_sem);
1394
1395 /* nothing to do */
1396 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1397 goto out_drop_sem;
1398
1399 root_flags = btrfs_root_flags(&root->root_item);
1400 if (flags & BTRFS_SUBVOL_RDONLY) {
1401 btrfs_set_root_flags(&root->root_item,
1402 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1403 } else {
1404 /*
1405 * Block RO -> RW transition if this subvolume is involved in
1406 * send
1407 */
1408 spin_lock(&root->root_item_lock);
1409 if (root->send_in_progress == 0) {
1410 btrfs_set_root_flags(&root->root_item,
1411 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1412 spin_unlock(&root->root_item_lock);
1413 } else {
1414 spin_unlock(&root->root_item_lock);
1415 btrfs_warn(fs_info,
1416 "Attempt to set subvolume %llu read-write during send",
1417 btrfs_root_id(root));
1418 ret = -EPERM;
1419 goto out_drop_sem;
1420 }
1421 }
1422
1423 trans = btrfs_start_transaction(root, 1);
1424 if (IS_ERR(trans)) {
1425 ret = PTR_ERR(trans);
1426 goto out_reset;
1427 }
1428
1429 ret = btrfs_update_root(trans, fs_info->tree_root,
1430 &root->root_key, &root->root_item);
1431 if (ret < 0) {
1432 btrfs_end_transaction(trans);
1433 goto out_reset;
1434 }
1435
1436 ret = btrfs_commit_transaction(trans);
1437
1438 out_reset:
1439 if (ret)
1440 btrfs_set_root_flags(&root->root_item, root_flags);
1441 out_drop_sem:
1442 up_write(&fs_info->subvol_sem);
1443 out_drop_write:
1444 mnt_drop_write_file(file);
1445 out:
1446 return ret;
1447 }
1448
key_in_sk(const struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk)1449 static noinline bool key_in_sk(const struct btrfs_key *key,
1450 const struct btrfs_ioctl_search_key *sk)
1451 {
1452 struct btrfs_key test;
1453 int ret;
1454
1455 test.objectid = sk->min_objectid;
1456 test.type = sk->min_type;
1457 test.offset = sk->min_offset;
1458
1459 ret = btrfs_comp_cpu_keys(key, &test);
1460 if (ret < 0)
1461 return false;
1462
1463 test.objectid = sk->max_objectid;
1464 test.type = sk->max_type;
1465 test.offset = sk->max_offset;
1466
1467 ret = btrfs_comp_cpu_keys(key, &test);
1468 if (ret > 0)
1469 return false;
1470 return true;
1471 }
1472
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1473 static noinline int copy_to_sk(struct btrfs_path *path,
1474 struct btrfs_key *key,
1475 const struct btrfs_ioctl_search_key *sk,
1476 u64 *buf_size,
1477 char __user *ubuf,
1478 unsigned long *sk_offset,
1479 int *num_found)
1480 {
1481 u64 found_transid;
1482 struct extent_buffer *leaf;
1483 struct btrfs_ioctl_search_header sh;
1484 struct btrfs_key test;
1485 unsigned long item_off;
1486 unsigned long item_len;
1487 int nritems;
1488 int i;
1489 int slot;
1490 int ret = 0;
1491
1492 leaf = path->nodes[0];
1493 slot = path->slots[0];
1494 nritems = btrfs_header_nritems(leaf);
1495
1496 if (btrfs_header_generation(leaf) > sk->max_transid) {
1497 i = nritems;
1498 goto advance_key;
1499 }
1500 found_transid = btrfs_header_generation(leaf);
1501
1502 for (i = slot; i < nritems; i++) {
1503 item_off = btrfs_item_ptr_offset(leaf, i);
1504 item_len = btrfs_item_size(leaf, i);
1505
1506 btrfs_item_key_to_cpu(leaf, key, i);
1507 if (!key_in_sk(key, sk))
1508 continue;
1509
1510 if (sizeof(sh) + item_len > *buf_size) {
1511 if (*num_found) {
1512 ret = 1;
1513 goto out;
1514 }
1515
1516 /*
1517 * return one empty item back for v1, which does not
1518 * handle -EOVERFLOW
1519 */
1520
1521 *buf_size = sizeof(sh) + item_len;
1522 item_len = 0;
1523 ret = -EOVERFLOW;
1524 }
1525
1526 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1527 ret = 1;
1528 goto out;
1529 }
1530
1531 sh.objectid = key->objectid;
1532 sh.type = key->type;
1533 sh.offset = key->offset;
1534 sh.len = item_len;
1535 sh.transid = found_transid;
1536
1537 /*
1538 * Copy search result header. If we fault then loop again so we
1539 * can fault in the pages and -EFAULT there if there's a
1540 * problem. Otherwise we'll fault and then copy the buffer in
1541 * properly this next time through
1542 */
1543 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1544 ret = 0;
1545 goto out;
1546 }
1547
1548 *sk_offset += sizeof(sh);
1549
1550 if (item_len) {
1551 char __user *up = ubuf + *sk_offset;
1552 /*
1553 * Copy the item, same behavior as above, but reset the
1554 * * sk_offset so we copy the full thing again.
1555 */
1556 if (read_extent_buffer_to_user_nofault(leaf, up,
1557 item_off, item_len)) {
1558 ret = 0;
1559 *sk_offset -= sizeof(sh);
1560 goto out;
1561 }
1562
1563 *sk_offset += item_len;
1564 }
1565 (*num_found)++;
1566
1567 if (ret) /* -EOVERFLOW from above */
1568 goto out;
1569
1570 if (*num_found >= sk->nr_items) {
1571 ret = 1;
1572 goto out;
1573 }
1574 }
1575 advance_key:
1576 ret = 0;
1577 test.objectid = sk->max_objectid;
1578 test.type = sk->max_type;
1579 test.offset = sk->max_offset;
1580 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1581 ret = 1;
1582 else if (key->offset < (u64)-1)
1583 key->offset++;
1584 else if (key->type < (u8)-1) {
1585 key->offset = 0;
1586 key->type++;
1587 } else if (key->objectid < (u64)-1) {
1588 key->offset = 0;
1589 key->type = 0;
1590 key->objectid++;
1591 } else
1592 ret = 1;
1593 out:
1594 /*
1595 * 0: all items from this leaf copied, continue with next
1596 * 1: * more items can be copied, but unused buffer is too small
1597 * * all items were found
1598 * Either way, it will stops the loop which iterates to the next
1599 * leaf
1600 * -EOVERFLOW: item was to large for buffer
1601 * -EFAULT: could not copy extent buffer back to userspace
1602 */
1603 return ret;
1604 }
1605
search_ioctl(struct btrfs_root * root,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1606 static noinline int search_ioctl(struct btrfs_root *root,
1607 struct btrfs_ioctl_search_key *sk,
1608 u64 *buf_size,
1609 char __user *ubuf)
1610 {
1611 struct btrfs_fs_info *info = root->fs_info;
1612 struct btrfs_key key;
1613 struct btrfs_path *path;
1614 int ret;
1615 int num_found = 0;
1616 unsigned long sk_offset = 0;
1617
1618 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1619 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1620 return -EOVERFLOW;
1621 }
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 if (sk->tree_id == 0) {
1628 /* Search the root that we got passed. */
1629 root = btrfs_grab_root(root);
1630 } else {
1631 /* Look up the root from the arguments. */
1632 root = btrfs_get_fs_root(info, sk->tree_id, true);
1633 if (IS_ERR(root)) {
1634 btrfs_free_path(path);
1635 return PTR_ERR(root);
1636 }
1637 }
1638
1639 key.objectid = sk->min_objectid;
1640 key.type = sk->min_type;
1641 key.offset = sk->min_offset;
1642
1643 while (1) {
1644 /*
1645 * Ensure that the whole user buffer is faulted in at sub-page
1646 * granularity, otherwise the loop may live-lock.
1647 */
1648 if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1649 ret = -EFAULT;
1650 break;
1651 }
1652
1653 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1654 if (ret)
1655 break;
1656
1657 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1658 &sk_offset, &num_found);
1659 btrfs_release_path(path);
1660 if (ret)
1661 break;
1662
1663 }
1664 /* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1665 if (ret > 0)
1666 ret = 0;
1667
1668 sk->nr_items = num_found;
1669 btrfs_put_root(root);
1670 btrfs_free_path(path);
1671 return ret;
1672 }
1673
btrfs_ioctl_tree_search(struct btrfs_root * root,void __user * argp)1674 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1675 void __user *argp)
1676 {
1677 struct btrfs_ioctl_search_args __user *uargs = argp;
1678 struct btrfs_ioctl_search_key sk;
1679 int ret;
1680 u64 buf_size;
1681
1682 if (!capable(CAP_SYS_ADMIN))
1683 return -EPERM;
1684
1685 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1686 return -EFAULT;
1687
1688 buf_size = sizeof(uargs->buf);
1689
1690 ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1691
1692 /*
1693 * In the origin implementation an overflow is handled by returning a
1694 * search header with a len of zero, so reset ret.
1695 */
1696 if (ret == -EOVERFLOW)
1697 ret = 0;
1698
1699 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1700 ret = -EFAULT;
1701 return ret;
1702 }
1703
btrfs_ioctl_tree_search_v2(struct btrfs_root * root,void __user * argp)1704 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1705 void __user *argp)
1706 {
1707 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1708 struct btrfs_ioctl_search_args_v2 args;
1709 int ret;
1710 u64 buf_size;
1711 const u64 buf_limit = SZ_16M;
1712
1713 if (!capable(CAP_SYS_ADMIN))
1714 return -EPERM;
1715
1716 /* copy search header and buffer size */
1717 if (copy_from_user(&args, uarg, sizeof(args)))
1718 return -EFAULT;
1719
1720 buf_size = args.buf_size;
1721
1722 /* limit result size to 16MB */
1723 if (buf_size > buf_limit)
1724 buf_size = buf_limit;
1725
1726 ret = search_ioctl(root, &args.key, &buf_size,
1727 (char __user *)(&uarg->buf[0]));
1728 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1729 ret = -EFAULT;
1730 else if (ret == -EOVERFLOW &&
1731 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1732 ret = -EFAULT;
1733
1734 return ret;
1735 }
1736
1737 /*
1738 * Search INODE_REFs to identify path name of 'dirid' directory
1739 * in a 'tree_id' tree. and sets path name to 'name'.
1740 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1741 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1742 u64 tree_id, u64 dirid, char *name)
1743 {
1744 struct btrfs_root *root;
1745 struct btrfs_key key;
1746 char *ptr;
1747 int ret = -1;
1748 int slot;
1749 int len;
1750 int total_len = 0;
1751 struct btrfs_inode_ref *iref;
1752 struct extent_buffer *l;
1753 struct btrfs_path *path;
1754
1755 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1756 name[0]='\0';
1757 return 0;
1758 }
1759
1760 path = btrfs_alloc_path();
1761 if (!path)
1762 return -ENOMEM;
1763
1764 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1765
1766 root = btrfs_get_fs_root(info, tree_id, true);
1767 if (IS_ERR(root)) {
1768 ret = PTR_ERR(root);
1769 root = NULL;
1770 goto out;
1771 }
1772
1773 key.objectid = dirid;
1774 key.type = BTRFS_INODE_REF_KEY;
1775 key.offset = (u64)-1;
1776
1777 while (1) {
1778 ret = btrfs_search_backwards(root, &key, path);
1779 if (ret < 0)
1780 goto out;
1781 else if (ret > 0) {
1782 ret = -ENOENT;
1783 goto out;
1784 }
1785
1786 l = path->nodes[0];
1787 slot = path->slots[0];
1788
1789 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1790 len = btrfs_inode_ref_name_len(l, iref);
1791 ptr -= len + 1;
1792 total_len += len + 1;
1793 if (ptr < name) {
1794 ret = -ENAMETOOLONG;
1795 goto out;
1796 }
1797
1798 *(ptr + len) = '/';
1799 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1800
1801 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1802 break;
1803
1804 btrfs_release_path(path);
1805 key.objectid = key.offset;
1806 key.offset = (u64)-1;
1807 dirid = key.objectid;
1808 }
1809 memmove(name, ptr, total_len);
1810 name[total_len] = '\0';
1811 ret = 0;
1812 out:
1813 btrfs_put_root(root);
1814 btrfs_free_path(path);
1815 return ret;
1816 }
1817
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1818 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1819 struct inode *inode,
1820 struct btrfs_ioctl_ino_lookup_user_args *args)
1821 {
1822 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1823 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1824 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1825 u64 dirid = args->dirid;
1826 unsigned long item_off;
1827 unsigned long item_len;
1828 struct btrfs_inode_ref *iref;
1829 struct btrfs_root_ref *rref;
1830 struct btrfs_root *root = NULL;
1831 struct btrfs_path *path;
1832 struct btrfs_key key, key2;
1833 struct extent_buffer *leaf;
1834 char *ptr;
1835 int slot;
1836 int len;
1837 int total_len = 0;
1838 int ret;
1839
1840 path = btrfs_alloc_path();
1841 if (!path)
1842 return -ENOMEM;
1843
1844 /*
1845 * If the bottom subvolume does not exist directly under upper_limit,
1846 * construct the path in from the bottom up.
1847 */
1848 if (dirid != upper_limit) {
1849 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1850
1851 root = btrfs_get_fs_root(fs_info, treeid, true);
1852 if (IS_ERR(root)) {
1853 ret = PTR_ERR(root);
1854 goto out;
1855 }
1856
1857 key.objectid = dirid;
1858 key.type = BTRFS_INODE_REF_KEY;
1859 key.offset = (u64)-1;
1860 while (1) {
1861 struct btrfs_inode *temp_inode;
1862
1863 ret = btrfs_search_backwards(root, &key, path);
1864 if (ret < 0)
1865 goto out_put;
1866 else if (ret > 0) {
1867 ret = -ENOENT;
1868 goto out_put;
1869 }
1870
1871 leaf = path->nodes[0];
1872 slot = path->slots[0];
1873
1874 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1875 len = btrfs_inode_ref_name_len(leaf, iref);
1876 ptr -= len + 1;
1877 total_len += len + 1;
1878 if (ptr < args->path) {
1879 ret = -ENAMETOOLONG;
1880 goto out_put;
1881 }
1882
1883 *(ptr + len) = '/';
1884 read_extent_buffer(leaf, ptr,
1885 (unsigned long)(iref + 1), len);
1886
1887 /* Check the read+exec permission of this directory */
1888 ret = btrfs_previous_item(root, path, dirid,
1889 BTRFS_INODE_ITEM_KEY);
1890 if (ret < 0) {
1891 goto out_put;
1892 } else if (ret > 0) {
1893 ret = -ENOENT;
1894 goto out_put;
1895 }
1896
1897 leaf = path->nodes[0];
1898 slot = path->slots[0];
1899 btrfs_item_key_to_cpu(leaf, &key2, slot);
1900 if (key2.objectid != dirid) {
1901 ret = -ENOENT;
1902 goto out_put;
1903 }
1904
1905 /*
1906 * We don't need the path anymore, so release it and
1907 * avoid deadlocks and lockdep warnings in case
1908 * btrfs_iget() needs to lookup the inode from its root
1909 * btree and lock the same leaf.
1910 */
1911 btrfs_release_path(path);
1912 temp_inode = btrfs_iget(key2.objectid, root);
1913 if (IS_ERR(temp_inode)) {
1914 ret = PTR_ERR(temp_inode);
1915 goto out_put;
1916 }
1917 ret = inode_permission(idmap, &temp_inode->vfs_inode,
1918 MAY_READ | MAY_EXEC);
1919 iput(&temp_inode->vfs_inode);
1920 if (ret) {
1921 ret = -EACCES;
1922 goto out_put;
1923 }
1924
1925 if (key.offset == upper_limit)
1926 break;
1927 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1928 ret = -EACCES;
1929 goto out_put;
1930 }
1931
1932 key.objectid = key.offset;
1933 key.offset = (u64)-1;
1934 dirid = key.objectid;
1935 }
1936
1937 memmove(args->path, ptr, total_len);
1938 args->path[total_len] = '\0';
1939 btrfs_put_root(root);
1940 root = NULL;
1941 btrfs_release_path(path);
1942 }
1943
1944 /* Get the bottom subvolume's name from ROOT_REF */
1945 key.objectid = treeid;
1946 key.type = BTRFS_ROOT_REF_KEY;
1947 key.offset = args->treeid;
1948 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1949 if (ret < 0) {
1950 goto out;
1951 } else if (ret > 0) {
1952 ret = -ENOENT;
1953 goto out;
1954 }
1955
1956 leaf = path->nodes[0];
1957 slot = path->slots[0];
1958 btrfs_item_key_to_cpu(leaf, &key, slot);
1959
1960 item_off = btrfs_item_ptr_offset(leaf, slot);
1961 item_len = btrfs_item_size(leaf, slot);
1962 /* Check if dirid in ROOT_REF corresponds to passed dirid */
1963 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1964 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1965 ret = -EINVAL;
1966 goto out;
1967 }
1968
1969 /* Copy subvolume's name */
1970 item_off += sizeof(struct btrfs_root_ref);
1971 item_len -= sizeof(struct btrfs_root_ref);
1972 read_extent_buffer(leaf, args->name, item_off, item_len);
1973 args->name[item_len] = 0;
1974
1975 out_put:
1976 btrfs_put_root(root);
1977 out:
1978 btrfs_free_path(path);
1979 return ret;
1980 }
1981
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1982 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1983 void __user *argp)
1984 {
1985 struct btrfs_ioctl_ino_lookup_args *args;
1986 int ret = 0;
1987
1988 args = memdup_user(argp, sizeof(*args));
1989 if (IS_ERR(args))
1990 return PTR_ERR(args);
1991
1992 /*
1993 * Unprivileged query to obtain the containing subvolume root id. The
1994 * path is reset so it's consistent with btrfs_search_path_in_tree.
1995 */
1996 if (args->treeid == 0)
1997 args->treeid = btrfs_root_id(root);
1998
1999 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2000 args->name[0] = 0;
2001 goto out;
2002 }
2003
2004 if (!capable(CAP_SYS_ADMIN)) {
2005 ret = -EPERM;
2006 goto out;
2007 }
2008
2009 ret = btrfs_search_path_in_tree(root->fs_info,
2010 args->treeid, args->objectid,
2011 args->name);
2012
2013 out:
2014 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2015 ret = -EFAULT;
2016
2017 kfree(args);
2018 return ret;
2019 }
2020
2021 /*
2022 * Version of ino_lookup ioctl (unprivileged)
2023 *
2024 * The main differences from ino_lookup ioctl are:
2025 *
2026 * 1. Read + Exec permission will be checked using inode_permission() during
2027 * path construction. -EACCES will be returned in case of failure.
2028 * 2. Path construction will be stopped at the inode number which corresponds
2029 * to the fd with which this ioctl is called. If constructed path does not
2030 * exist under fd's inode, -EACCES will be returned.
2031 * 3. The name of bottom subvolume is also searched and filled.
2032 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2033 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2034 {
2035 struct btrfs_ioctl_ino_lookup_user_args *args;
2036 struct inode *inode;
2037 int ret;
2038
2039 args = memdup_user(argp, sizeof(*args));
2040 if (IS_ERR(args))
2041 return PTR_ERR(args);
2042
2043 inode = file_inode(file);
2044
2045 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2046 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2047 /*
2048 * The subvolume does not exist under fd with which this is
2049 * called
2050 */
2051 kfree(args);
2052 return -EACCES;
2053 }
2054
2055 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2056
2057 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2058 ret = -EFAULT;
2059
2060 kfree(args);
2061 return ret;
2062 }
2063
2064 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2065 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2066 {
2067 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2068 struct btrfs_fs_info *fs_info;
2069 struct btrfs_root *root;
2070 struct btrfs_path *path;
2071 struct btrfs_key key;
2072 struct btrfs_root_item *root_item;
2073 struct btrfs_root_ref *rref;
2074 struct extent_buffer *leaf;
2075 unsigned long item_off;
2076 unsigned long item_len;
2077 int slot;
2078 int ret = 0;
2079
2080 path = btrfs_alloc_path();
2081 if (!path)
2082 return -ENOMEM;
2083
2084 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2085 if (!subvol_info) {
2086 btrfs_free_path(path);
2087 return -ENOMEM;
2088 }
2089
2090 fs_info = BTRFS_I(inode)->root->fs_info;
2091
2092 /* Get root_item of inode's subvolume */
2093 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2094 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2095 if (IS_ERR(root)) {
2096 ret = PTR_ERR(root);
2097 goto out_free;
2098 }
2099 root_item = &root->root_item;
2100
2101 subvol_info->treeid = key.objectid;
2102
2103 subvol_info->generation = btrfs_root_generation(root_item);
2104 subvol_info->flags = btrfs_root_flags(root_item);
2105
2106 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2107 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2108 BTRFS_UUID_SIZE);
2109 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2110 BTRFS_UUID_SIZE);
2111
2112 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2113 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2114 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2115
2116 subvol_info->otransid = btrfs_root_otransid(root_item);
2117 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2118 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2119
2120 subvol_info->stransid = btrfs_root_stransid(root_item);
2121 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2122 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2123
2124 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2125 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2126 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2127
2128 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2129 /* Search root tree for ROOT_BACKREF of this subvolume */
2130 key.type = BTRFS_ROOT_BACKREF_KEY;
2131 key.offset = 0;
2132 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2133 if (ret < 0) {
2134 goto out;
2135 } else if (path->slots[0] >=
2136 btrfs_header_nritems(path->nodes[0])) {
2137 ret = btrfs_next_leaf(fs_info->tree_root, path);
2138 if (ret < 0) {
2139 goto out;
2140 } else if (ret > 0) {
2141 ret = -EUCLEAN;
2142 goto out;
2143 }
2144 }
2145
2146 leaf = path->nodes[0];
2147 slot = path->slots[0];
2148 btrfs_item_key_to_cpu(leaf, &key, slot);
2149 if (key.objectid == subvol_info->treeid &&
2150 key.type == BTRFS_ROOT_BACKREF_KEY) {
2151 subvol_info->parent_id = key.offset;
2152
2153 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2154 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2155
2156 item_off = btrfs_item_ptr_offset(leaf, slot)
2157 + sizeof(struct btrfs_root_ref);
2158 item_len = btrfs_item_size(leaf, slot)
2159 - sizeof(struct btrfs_root_ref);
2160 read_extent_buffer(leaf, subvol_info->name,
2161 item_off, item_len);
2162 } else {
2163 ret = -ENOENT;
2164 goto out;
2165 }
2166 }
2167
2168 btrfs_free_path(path);
2169 path = NULL;
2170 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2171 ret = -EFAULT;
2172
2173 out:
2174 btrfs_put_root(root);
2175 out_free:
2176 btrfs_free_path(path);
2177 kfree(subvol_info);
2178 return ret;
2179 }
2180
2181 /*
2182 * Return ROOT_REF information of the subvolume containing this inode
2183 * except the subvolume name.
2184 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2185 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2186 void __user *argp)
2187 {
2188 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2189 struct btrfs_root_ref *rref;
2190 struct btrfs_path *path;
2191 struct btrfs_key key;
2192 struct extent_buffer *leaf;
2193 u64 objectid;
2194 int slot;
2195 int ret;
2196 u8 found;
2197
2198 path = btrfs_alloc_path();
2199 if (!path)
2200 return -ENOMEM;
2201
2202 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2203 if (IS_ERR(rootrefs)) {
2204 btrfs_free_path(path);
2205 return PTR_ERR(rootrefs);
2206 }
2207
2208 objectid = btrfs_root_id(root);
2209 key.objectid = objectid;
2210 key.type = BTRFS_ROOT_REF_KEY;
2211 key.offset = rootrefs->min_treeid;
2212 found = 0;
2213
2214 root = root->fs_info->tree_root;
2215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2216 if (ret < 0) {
2217 goto out;
2218 } else if (path->slots[0] >=
2219 btrfs_header_nritems(path->nodes[0])) {
2220 ret = btrfs_next_leaf(root, path);
2221 if (ret < 0) {
2222 goto out;
2223 } else if (ret > 0) {
2224 ret = -EUCLEAN;
2225 goto out;
2226 }
2227 }
2228 while (1) {
2229 leaf = path->nodes[0];
2230 slot = path->slots[0];
2231
2232 btrfs_item_key_to_cpu(leaf, &key, slot);
2233 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2234 ret = 0;
2235 goto out;
2236 }
2237
2238 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2239 ret = -EOVERFLOW;
2240 goto out;
2241 }
2242
2243 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2244 rootrefs->rootref[found].treeid = key.offset;
2245 rootrefs->rootref[found].dirid =
2246 btrfs_root_ref_dirid(leaf, rref);
2247 found++;
2248
2249 ret = btrfs_next_item(root, path);
2250 if (ret < 0) {
2251 goto out;
2252 } else if (ret > 0) {
2253 ret = -EUCLEAN;
2254 goto out;
2255 }
2256 }
2257
2258 out:
2259 btrfs_free_path(path);
2260
2261 if (!ret || ret == -EOVERFLOW) {
2262 rootrefs->num_items = found;
2263 /* update min_treeid for next search */
2264 if (found)
2265 rootrefs->min_treeid =
2266 rootrefs->rootref[found - 1].treeid + 1;
2267 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2268 ret = -EFAULT;
2269 }
2270
2271 kfree(rootrefs);
2272
2273 return ret;
2274 }
2275
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2276 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2277 void __user *arg,
2278 bool destroy_v2)
2279 {
2280 struct dentry *parent = file->f_path.dentry;
2281 struct dentry *dentry;
2282 struct inode *dir = d_inode(parent);
2283 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2284 struct inode *inode;
2285 struct btrfs_root *root = BTRFS_I(dir)->root;
2286 struct btrfs_root *dest = NULL;
2287 struct btrfs_ioctl_vol_args *vol_args = NULL;
2288 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2289 struct mnt_idmap *idmap = file_mnt_idmap(file);
2290 char *subvol_name, *subvol_name_ptr = NULL;
2291 int ret = 0;
2292 bool destroy_parent = false;
2293
2294 /* We don't support snapshots with extent tree v2 yet. */
2295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2296 btrfs_err(fs_info,
2297 "extent tree v2 doesn't support snapshot deletion yet");
2298 return -EOPNOTSUPP;
2299 }
2300
2301 if (destroy_v2) {
2302 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2303 if (IS_ERR(vol_args2))
2304 return PTR_ERR(vol_args2);
2305
2306 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2307 ret = -EOPNOTSUPP;
2308 goto out;
2309 }
2310
2311 /*
2312 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2313 * name, same as v1 currently does.
2314 */
2315 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2316 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2317 if (ret < 0)
2318 goto out;
2319 subvol_name = vol_args2->name;
2320
2321 ret = mnt_want_write_file(file);
2322 if (ret)
2323 goto out;
2324 } else {
2325 struct inode *old_dir;
2326
2327 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2328 ret = -EINVAL;
2329 goto out;
2330 }
2331
2332 ret = mnt_want_write_file(file);
2333 if (ret)
2334 goto out;
2335
2336 dentry = btrfs_get_dentry(fs_info->sb,
2337 BTRFS_FIRST_FREE_OBJECTID,
2338 vol_args2->subvolid, 0);
2339 if (IS_ERR(dentry)) {
2340 ret = PTR_ERR(dentry);
2341 goto out_drop_write;
2342 }
2343
2344 /*
2345 * Change the default parent since the subvolume being
2346 * deleted can be outside of the current mount point.
2347 */
2348 parent = btrfs_get_parent(dentry);
2349
2350 /*
2351 * At this point dentry->d_name can point to '/' if the
2352 * subvolume we want to destroy is outsite of the
2353 * current mount point, so we need to release the
2354 * current dentry and execute the lookup to return a new
2355 * one with ->d_name pointing to the
2356 * <mount point>/subvol_name.
2357 */
2358 dput(dentry);
2359 if (IS_ERR(parent)) {
2360 ret = PTR_ERR(parent);
2361 goto out_drop_write;
2362 }
2363 old_dir = dir;
2364 dir = d_inode(parent);
2365
2366 /*
2367 * If v2 was used with SPEC_BY_ID, a new parent was
2368 * allocated since the subvolume can be outside of the
2369 * current mount point. Later on we need to release this
2370 * new parent dentry.
2371 */
2372 destroy_parent = true;
2373
2374 /*
2375 * On idmapped mounts, deletion via subvolid is
2376 * restricted to subvolumes that are immediate
2377 * ancestors of the inode referenced by the file
2378 * descriptor in the ioctl. Otherwise the idmapping
2379 * could potentially be abused to delete subvolumes
2380 * anywhere in the filesystem the user wouldn't be able
2381 * to delete without an idmapped mount.
2382 */
2383 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2384 ret = -EOPNOTSUPP;
2385 goto free_parent;
2386 }
2387
2388 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2389 fs_info, vol_args2->subvolid);
2390 if (IS_ERR(subvol_name_ptr)) {
2391 ret = PTR_ERR(subvol_name_ptr);
2392 goto free_parent;
2393 }
2394 /* subvol_name_ptr is already nul terminated */
2395 subvol_name = (char *)kbasename(subvol_name_ptr);
2396 }
2397 } else {
2398 vol_args = memdup_user(arg, sizeof(*vol_args));
2399 if (IS_ERR(vol_args))
2400 return PTR_ERR(vol_args);
2401
2402 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2403 if (ret < 0)
2404 goto out;
2405
2406 subvol_name = vol_args->name;
2407
2408 ret = mnt_want_write_file(file);
2409 if (ret)
2410 goto out;
2411 }
2412
2413 if (strchr(subvol_name, '/') ||
2414 strcmp(subvol_name, "..") == 0) {
2415 ret = -EINVAL;
2416 goto free_subvol_name;
2417 }
2418
2419 if (!S_ISDIR(dir->i_mode)) {
2420 ret = -ENOTDIR;
2421 goto free_subvol_name;
2422 }
2423
2424 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2425 if (ret == -EINTR)
2426 goto free_subvol_name;
2427 dentry = lookup_one(idmap, &QSTR(subvol_name), parent);
2428 if (IS_ERR(dentry)) {
2429 ret = PTR_ERR(dentry);
2430 goto out_unlock_dir;
2431 }
2432
2433 if (d_really_is_negative(dentry)) {
2434 ret = -ENOENT;
2435 goto out_dput;
2436 }
2437
2438 inode = d_inode(dentry);
2439 dest = BTRFS_I(inode)->root;
2440 if (!capable(CAP_SYS_ADMIN)) {
2441 /*
2442 * Regular user. Only allow this with a special mount
2443 * option, when the user has write+exec access to the
2444 * subvol root, and when rmdir(2) would have been
2445 * allowed.
2446 *
2447 * Note that this is _not_ check that the subvol is
2448 * empty or doesn't contain data that we wouldn't
2449 * otherwise be able to delete.
2450 *
2451 * Users who want to delete empty subvols should try
2452 * rmdir(2).
2453 */
2454 ret = -EPERM;
2455 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2456 goto out_dput;
2457
2458 /*
2459 * Do not allow deletion if the parent dir is the same
2460 * as the dir to be deleted. That means the ioctl
2461 * must be called on the dentry referencing the root
2462 * of the subvol, not a random directory contained
2463 * within it.
2464 */
2465 ret = -EINVAL;
2466 if (root == dest)
2467 goto out_dput;
2468
2469 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2470 if (ret)
2471 goto out_dput;
2472 }
2473
2474 /* check if subvolume may be deleted by a user */
2475 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2476 if (ret)
2477 goto out_dput;
2478
2479 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2480 ret = -EINVAL;
2481 goto out_dput;
2482 }
2483
2484 btrfs_inode_lock(BTRFS_I(inode), 0);
2485 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2486 btrfs_inode_unlock(BTRFS_I(inode), 0);
2487 if (!ret)
2488 d_delete_notify(dir, dentry);
2489
2490 out_dput:
2491 dput(dentry);
2492 out_unlock_dir:
2493 btrfs_inode_unlock(BTRFS_I(dir), 0);
2494 free_subvol_name:
2495 kfree(subvol_name_ptr);
2496 free_parent:
2497 if (destroy_parent)
2498 dput(parent);
2499 out_drop_write:
2500 mnt_drop_write_file(file);
2501 out:
2502 kfree(vol_args2);
2503 kfree(vol_args);
2504 return ret;
2505 }
2506
btrfs_ioctl_defrag(struct file * file,void __user * argp)2507 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2508 {
2509 struct inode *inode = file_inode(file);
2510 struct btrfs_root *root = BTRFS_I(inode)->root;
2511 struct btrfs_ioctl_defrag_range_args range = {0};
2512 int ret;
2513
2514 ret = mnt_want_write_file(file);
2515 if (ret)
2516 return ret;
2517
2518 if (btrfs_root_readonly(root)) {
2519 ret = -EROFS;
2520 goto out;
2521 }
2522
2523 switch (inode->i_mode & S_IFMT) {
2524 case S_IFDIR:
2525 if (!capable(CAP_SYS_ADMIN)) {
2526 ret = -EPERM;
2527 goto out;
2528 }
2529 ret = btrfs_defrag_root(root);
2530 break;
2531 case S_IFREG:
2532 /*
2533 * Note that this does not check the file descriptor for write
2534 * access. This prevents defragmenting executables that are
2535 * running and allows defrag on files open in read-only mode.
2536 */
2537 if (!capable(CAP_SYS_ADMIN) &&
2538 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2539 ret = -EPERM;
2540 goto out;
2541 }
2542
2543 /*
2544 * Don't allow defrag on pre-content watched files, as it could
2545 * populate the page cache with 0's via readahead.
2546 */
2547 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2548 ret = -EINVAL;
2549 goto out;
2550 }
2551
2552 if (argp) {
2553 if (copy_from_user(&range, argp, sizeof(range))) {
2554 ret = -EFAULT;
2555 goto out;
2556 }
2557 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2558 ret = -EOPNOTSUPP;
2559 goto out;
2560 }
2561 /* compression requires us to start the IO */
2562 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2563 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2564 range.extent_thresh = (u32)-1;
2565 }
2566 } else {
2567 /* the rest are all set to zero by kzalloc */
2568 range.len = (u64)-1;
2569 }
2570 ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2571 &range, BTRFS_OLDEST_GENERATION, 0);
2572 if (ret > 0)
2573 ret = 0;
2574 break;
2575 default:
2576 ret = -EINVAL;
2577 }
2578 out:
2579 mnt_drop_write_file(file);
2580 return ret;
2581 }
2582
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2583 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2584 {
2585 struct btrfs_ioctl_vol_args *vol_args;
2586 bool restore_op = false;
2587 int ret;
2588
2589 if (!capable(CAP_SYS_ADMIN))
2590 return -EPERM;
2591
2592 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2593 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2594 return -EINVAL;
2595 }
2596
2597 if (fs_info->fs_devices->temp_fsid) {
2598 btrfs_err(fs_info,
2599 "device add not supported on cloned temp-fsid mount");
2600 return -EINVAL;
2601 }
2602
2603 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2604 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2605 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2606
2607 /*
2608 * We can do the device add because we have a paused balanced,
2609 * change the exclusive op type and remember we should bring
2610 * back the paused balance
2611 */
2612 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2613 btrfs_exclop_start_unlock(fs_info);
2614 restore_op = true;
2615 }
2616
2617 vol_args = memdup_user(arg, sizeof(*vol_args));
2618 if (IS_ERR(vol_args)) {
2619 ret = PTR_ERR(vol_args);
2620 goto out;
2621 }
2622
2623 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2624 if (ret < 0)
2625 goto out_free;
2626
2627 ret = btrfs_init_new_device(fs_info, vol_args->name);
2628
2629 if (!ret)
2630 btrfs_info(fs_info, "disk added %s", vol_args->name);
2631
2632 out_free:
2633 kfree(vol_args);
2634 out:
2635 if (restore_op)
2636 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2637 else
2638 btrfs_exclop_finish(fs_info);
2639 return ret;
2640 }
2641
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2642 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2643 {
2644 BTRFS_DEV_LOOKUP_ARGS(args);
2645 struct inode *inode = file_inode(file);
2646 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2647 struct btrfs_ioctl_vol_args_v2 *vol_args;
2648 struct file *bdev_file = NULL;
2649 int ret;
2650 bool cancel = false;
2651
2652 if (!capable(CAP_SYS_ADMIN))
2653 return -EPERM;
2654
2655 vol_args = memdup_user(arg, sizeof(*vol_args));
2656 if (IS_ERR(vol_args))
2657 return PTR_ERR(vol_args);
2658
2659 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2660 ret = -EOPNOTSUPP;
2661 goto out;
2662 }
2663
2664 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2665 if (ret < 0)
2666 goto out;
2667
2668 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2669 args.devid = vol_args->devid;
2670 } else if (!strcmp("cancel", vol_args->name)) {
2671 cancel = true;
2672 } else {
2673 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2674 if (ret)
2675 goto out;
2676 }
2677
2678 ret = mnt_want_write_file(file);
2679 if (ret)
2680 goto out;
2681
2682 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2683 cancel);
2684 if (ret)
2685 goto err_drop;
2686
2687 /* Exclusive operation is now claimed */
2688 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2689
2690 btrfs_exclop_finish(fs_info);
2691
2692 if (!ret) {
2693 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2694 btrfs_info(fs_info, "device deleted: id %llu",
2695 vol_args->devid);
2696 else
2697 btrfs_info(fs_info, "device deleted: %s",
2698 vol_args->name);
2699 }
2700 err_drop:
2701 mnt_drop_write_file(file);
2702 if (bdev_file)
2703 fput(bdev_file);
2704 out:
2705 btrfs_put_dev_args_from_path(&args);
2706 kfree(vol_args);
2707 return ret;
2708 }
2709
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2710 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2711 {
2712 BTRFS_DEV_LOOKUP_ARGS(args);
2713 struct inode *inode = file_inode(file);
2714 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2715 struct btrfs_ioctl_vol_args *vol_args;
2716 struct file *bdev_file = NULL;
2717 int ret;
2718 bool cancel = false;
2719
2720 if (!capable(CAP_SYS_ADMIN))
2721 return -EPERM;
2722
2723 vol_args = memdup_user(arg, sizeof(*vol_args));
2724 if (IS_ERR(vol_args))
2725 return PTR_ERR(vol_args);
2726
2727 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2728 if (ret < 0)
2729 goto out_free;
2730
2731 if (!strcmp("cancel", vol_args->name)) {
2732 cancel = true;
2733 } else {
2734 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2735 if (ret)
2736 goto out;
2737 }
2738
2739 ret = mnt_want_write_file(file);
2740 if (ret)
2741 goto out;
2742
2743 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2744 cancel);
2745 if (ret == 0) {
2746 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2747 if (!ret)
2748 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2749 btrfs_exclop_finish(fs_info);
2750 }
2751
2752 mnt_drop_write_file(file);
2753 if (bdev_file)
2754 fput(bdev_file);
2755 out:
2756 btrfs_put_dev_args_from_path(&args);
2757 out_free:
2758 kfree(vol_args);
2759 return ret;
2760 }
2761
btrfs_ioctl_fs_info(const struct btrfs_fs_info * fs_info,void __user * arg)2762 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2763 void __user *arg)
2764 {
2765 struct btrfs_ioctl_fs_info_args *fi_args;
2766 struct btrfs_device *device;
2767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2768 u64 flags_in;
2769 int ret = 0;
2770
2771 fi_args = memdup_user(arg, sizeof(*fi_args));
2772 if (IS_ERR(fi_args))
2773 return PTR_ERR(fi_args);
2774
2775 flags_in = fi_args->flags;
2776 memset(fi_args, 0, sizeof(*fi_args));
2777
2778 rcu_read_lock();
2779 fi_args->num_devices = fs_devices->num_devices;
2780
2781 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2782 if (device->devid > fi_args->max_id)
2783 fi_args->max_id = device->devid;
2784 }
2785 rcu_read_unlock();
2786
2787 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2788 fi_args->nodesize = fs_info->nodesize;
2789 fi_args->sectorsize = fs_info->sectorsize;
2790 fi_args->clone_alignment = fs_info->sectorsize;
2791
2792 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2793 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2794 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2795 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2796 }
2797
2798 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2799 fi_args->generation = btrfs_get_fs_generation(fs_info);
2800 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2801 }
2802
2803 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2804 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2805 sizeof(fi_args->metadata_uuid));
2806 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2807 }
2808
2809 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2810 ret = -EFAULT;
2811
2812 kfree(fi_args);
2813 return ret;
2814 }
2815
btrfs_ioctl_dev_info(const struct btrfs_fs_info * fs_info,void __user * arg)2816 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2817 void __user *arg)
2818 {
2819 BTRFS_DEV_LOOKUP_ARGS(args);
2820 struct btrfs_ioctl_dev_info_args *di_args;
2821 struct btrfs_device *dev;
2822 int ret = 0;
2823
2824 di_args = memdup_user(arg, sizeof(*di_args));
2825 if (IS_ERR(di_args))
2826 return PTR_ERR(di_args);
2827
2828 args.devid = di_args->devid;
2829 if (!btrfs_is_empty_uuid(di_args->uuid))
2830 args.uuid = di_args->uuid;
2831
2832 rcu_read_lock();
2833 dev = btrfs_find_device(fs_info->fs_devices, &args);
2834 if (!dev) {
2835 ret = -ENODEV;
2836 goto out;
2837 }
2838
2839 di_args->devid = dev->devid;
2840 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2841 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2842 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2843 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2844 if (dev->name)
2845 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2846 else
2847 di_args->path[0] = '\0';
2848
2849 out:
2850 rcu_read_unlock();
2851 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2852 ret = -EFAULT;
2853
2854 kfree(di_args);
2855 return ret;
2856 }
2857
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2858 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2859 {
2860 struct inode *inode = file_inode(file);
2861 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2862 struct btrfs_root *root = BTRFS_I(inode)->root;
2863 struct btrfs_root *new_root;
2864 struct btrfs_dir_item *di;
2865 struct btrfs_trans_handle *trans;
2866 struct btrfs_path *path = NULL;
2867 struct btrfs_disk_key disk_key;
2868 struct fscrypt_str name = FSTR_INIT("default", 7);
2869 u64 objectid = 0;
2870 u64 dir_id;
2871 int ret;
2872
2873 if (!capable(CAP_SYS_ADMIN))
2874 return -EPERM;
2875
2876 ret = mnt_want_write_file(file);
2877 if (ret)
2878 return ret;
2879
2880 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2881 ret = -EFAULT;
2882 goto out;
2883 }
2884
2885 if (!objectid)
2886 objectid = BTRFS_FS_TREE_OBJECTID;
2887
2888 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2889 if (IS_ERR(new_root)) {
2890 ret = PTR_ERR(new_root);
2891 goto out;
2892 }
2893 if (!is_fstree(btrfs_root_id(new_root))) {
2894 ret = -ENOENT;
2895 goto out_free;
2896 }
2897
2898 path = btrfs_alloc_path();
2899 if (!path) {
2900 ret = -ENOMEM;
2901 goto out_free;
2902 }
2903
2904 trans = btrfs_start_transaction(root, 1);
2905 if (IS_ERR(trans)) {
2906 ret = PTR_ERR(trans);
2907 goto out_free;
2908 }
2909
2910 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2911 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2912 dir_id, &name, 1);
2913 if (IS_ERR_OR_NULL(di)) {
2914 btrfs_release_path(path);
2915 btrfs_end_transaction(trans);
2916 btrfs_err(fs_info,
2917 "Umm, you don't have the default diritem, this isn't going to work");
2918 ret = -ENOENT;
2919 goto out_free;
2920 }
2921
2922 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2923 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2924 btrfs_release_path(path);
2925
2926 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2927 btrfs_end_transaction(trans);
2928 out_free:
2929 btrfs_put_root(new_root);
2930 btrfs_free_path(path);
2931 out:
2932 mnt_drop_write_file(file);
2933 return ret;
2934 }
2935
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2936 static void get_block_group_info(struct list_head *groups_list,
2937 struct btrfs_ioctl_space_info *space)
2938 {
2939 struct btrfs_block_group *block_group;
2940
2941 space->total_bytes = 0;
2942 space->used_bytes = 0;
2943 space->flags = 0;
2944 list_for_each_entry(block_group, groups_list, list) {
2945 space->flags = block_group->flags;
2946 space->total_bytes += block_group->length;
2947 space->used_bytes += block_group->used;
2948 }
2949 }
2950
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2951 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2952 void __user *arg)
2953 {
2954 struct btrfs_ioctl_space_args space_args = { 0 };
2955 struct btrfs_ioctl_space_info space;
2956 struct btrfs_ioctl_space_info *dest;
2957 struct btrfs_ioctl_space_info *dest_orig;
2958 struct btrfs_ioctl_space_info __user *user_dest;
2959 struct btrfs_space_info *info;
2960 static const u64 types[] = {
2961 BTRFS_BLOCK_GROUP_DATA,
2962 BTRFS_BLOCK_GROUP_SYSTEM,
2963 BTRFS_BLOCK_GROUP_METADATA,
2964 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2965 };
2966 int num_types = 4;
2967 int alloc_size;
2968 int ret = 0;
2969 u64 slot_count = 0;
2970 int i, c;
2971
2972 if (copy_from_user(&space_args,
2973 (struct btrfs_ioctl_space_args __user *)arg,
2974 sizeof(space_args)))
2975 return -EFAULT;
2976
2977 for (i = 0; i < num_types; i++) {
2978 struct btrfs_space_info *tmp;
2979
2980 info = NULL;
2981 list_for_each_entry(tmp, &fs_info->space_info, list) {
2982 if (tmp->flags == types[i]) {
2983 info = tmp;
2984 break;
2985 }
2986 }
2987
2988 if (!info)
2989 continue;
2990
2991 down_read(&info->groups_sem);
2992 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2993 if (!list_empty(&info->block_groups[c]))
2994 slot_count++;
2995 }
2996 up_read(&info->groups_sem);
2997 }
2998
2999 /*
3000 * Global block reserve, exported as a space_info
3001 */
3002 slot_count++;
3003
3004 /* space_slots == 0 means they are asking for a count */
3005 if (space_args.space_slots == 0) {
3006 space_args.total_spaces = slot_count;
3007 goto out;
3008 }
3009
3010 slot_count = min_t(u64, space_args.space_slots, slot_count);
3011
3012 alloc_size = sizeof(*dest) * slot_count;
3013
3014 /* we generally have at most 6 or so space infos, one for each raid
3015 * level. So, a whole page should be more than enough for everyone
3016 */
3017 if (alloc_size > PAGE_SIZE)
3018 return -ENOMEM;
3019
3020 space_args.total_spaces = 0;
3021 dest = kmalloc(alloc_size, GFP_KERNEL);
3022 if (!dest)
3023 return -ENOMEM;
3024 dest_orig = dest;
3025
3026 /* now we have a buffer to copy into */
3027 for (i = 0; i < num_types; i++) {
3028 struct btrfs_space_info *tmp;
3029
3030 if (!slot_count)
3031 break;
3032
3033 info = NULL;
3034 list_for_each_entry(tmp, &fs_info->space_info, list) {
3035 if (tmp->flags == types[i]) {
3036 info = tmp;
3037 break;
3038 }
3039 }
3040
3041 if (!info)
3042 continue;
3043 down_read(&info->groups_sem);
3044 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3045 if (!list_empty(&info->block_groups[c])) {
3046 get_block_group_info(&info->block_groups[c],
3047 &space);
3048 memcpy(dest, &space, sizeof(space));
3049 dest++;
3050 space_args.total_spaces++;
3051 slot_count--;
3052 }
3053 if (!slot_count)
3054 break;
3055 }
3056 up_read(&info->groups_sem);
3057 }
3058
3059 /*
3060 * Add global block reserve
3061 */
3062 if (slot_count) {
3063 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3064
3065 spin_lock(&block_rsv->lock);
3066 space.total_bytes = block_rsv->size;
3067 space.used_bytes = block_rsv->size - block_rsv->reserved;
3068 spin_unlock(&block_rsv->lock);
3069 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3070 memcpy(dest, &space, sizeof(space));
3071 space_args.total_spaces++;
3072 }
3073
3074 user_dest = (struct btrfs_ioctl_space_info __user *)
3075 (arg + sizeof(struct btrfs_ioctl_space_args));
3076
3077 if (copy_to_user(user_dest, dest_orig, alloc_size))
3078 ret = -EFAULT;
3079
3080 kfree(dest_orig);
3081 out:
3082 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3083 ret = -EFAULT;
3084
3085 return ret;
3086 }
3087
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3088 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3089 void __user *argp)
3090 {
3091 struct btrfs_trans_handle *trans;
3092 u64 transid;
3093
3094 /*
3095 * Start orphan cleanup here for the given root in case it hasn't been
3096 * started already by other means. Errors are handled in the other
3097 * functions during transaction commit.
3098 */
3099 btrfs_orphan_cleanup(root);
3100
3101 trans = btrfs_attach_transaction_barrier(root);
3102 if (IS_ERR(trans)) {
3103 if (PTR_ERR(trans) != -ENOENT)
3104 return PTR_ERR(trans);
3105
3106 /* No running transaction, don't bother */
3107 transid = btrfs_get_last_trans_committed(root->fs_info);
3108 goto out;
3109 }
3110 transid = trans->transid;
3111 btrfs_commit_transaction_async(trans);
3112 out:
3113 if (argp)
3114 if (copy_to_user(argp, &transid, sizeof(transid)))
3115 return -EFAULT;
3116 return 0;
3117 }
3118
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3119 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3120 void __user *argp)
3121 {
3122 /* By default wait for the current transaction. */
3123 u64 transid = 0;
3124
3125 if (argp)
3126 if (copy_from_user(&transid, argp, sizeof(transid)))
3127 return -EFAULT;
3128
3129 return btrfs_wait_for_commit(fs_info, transid);
3130 }
3131
btrfs_ioctl_scrub(struct file * file,void __user * arg)3132 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3133 {
3134 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3135 struct btrfs_ioctl_scrub_args *sa;
3136 int ret;
3137
3138 if (!capable(CAP_SYS_ADMIN))
3139 return -EPERM;
3140
3141 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3142 btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3143 return -EINVAL;
3144 }
3145
3146 sa = memdup_user(arg, sizeof(*sa));
3147 if (IS_ERR(sa))
3148 return PTR_ERR(sa);
3149
3150 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3151 ret = -EOPNOTSUPP;
3152 goto out;
3153 }
3154
3155 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3156 ret = mnt_want_write_file(file);
3157 if (ret)
3158 goto out;
3159 }
3160
3161 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3162 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3163 0);
3164
3165 /*
3166 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3167 * error. This is important as it allows user space to know how much
3168 * progress scrub has done. For example, if scrub is canceled we get
3169 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3170 * space. Later user space can inspect the progress from the structure
3171 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3172 * previously (btrfs-progs does this).
3173 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3174 * then return -EFAULT to signal the structure was not copied or it may
3175 * be corrupt and unreliable due to a partial copy.
3176 */
3177 if (copy_to_user(arg, sa, sizeof(*sa)))
3178 ret = -EFAULT;
3179
3180 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3181 mnt_drop_write_file(file);
3182 out:
3183 kfree(sa);
3184 return ret;
3185 }
3186
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3187 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3188 {
3189 if (!capable(CAP_SYS_ADMIN))
3190 return -EPERM;
3191
3192 return btrfs_scrub_cancel(fs_info);
3193 }
3194
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3195 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3196 void __user *arg)
3197 {
3198 struct btrfs_ioctl_scrub_args *sa;
3199 int ret;
3200
3201 if (!capable(CAP_SYS_ADMIN))
3202 return -EPERM;
3203
3204 sa = memdup_user(arg, sizeof(*sa));
3205 if (IS_ERR(sa))
3206 return PTR_ERR(sa);
3207
3208 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3209
3210 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3211 ret = -EFAULT;
3212
3213 kfree(sa);
3214 return ret;
3215 }
3216
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3217 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3218 void __user *arg)
3219 {
3220 struct btrfs_ioctl_get_dev_stats *sa;
3221 int ret;
3222
3223 sa = memdup_user(arg, sizeof(*sa));
3224 if (IS_ERR(sa))
3225 return PTR_ERR(sa);
3226
3227 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3228 kfree(sa);
3229 return -EPERM;
3230 }
3231
3232 ret = btrfs_get_dev_stats(fs_info, sa);
3233
3234 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3235 ret = -EFAULT;
3236
3237 kfree(sa);
3238 return ret;
3239 }
3240
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3241 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3242 void __user *arg)
3243 {
3244 struct btrfs_ioctl_dev_replace_args *p;
3245 int ret;
3246
3247 if (!capable(CAP_SYS_ADMIN))
3248 return -EPERM;
3249
3250 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3251 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3252 return -EINVAL;
3253 }
3254
3255 p = memdup_user(arg, sizeof(*p));
3256 if (IS_ERR(p))
3257 return PTR_ERR(p);
3258
3259 switch (p->cmd) {
3260 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3261 if (sb_rdonly(fs_info->sb)) {
3262 ret = -EROFS;
3263 goto out;
3264 }
3265 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3266 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3267 } else {
3268 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3269 btrfs_exclop_finish(fs_info);
3270 }
3271 break;
3272 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3273 btrfs_dev_replace_status(fs_info, p);
3274 ret = 0;
3275 break;
3276 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3277 p->result = btrfs_dev_replace_cancel(fs_info);
3278 ret = 0;
3279 break;
3280 default:
3281 ret = -EINVAL;
3282 break;
3283 }
3284
3285 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3286 ret = -EFAULT;
3287 out:
3288 kfree(p);
3289 return ret;
3290 }
3291
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3292 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3293 {
3294 int ret = 0;
3295 int i;
3296 u64 rel_ptr;
3297 int size;
3298 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3299 struct inode_fs_paths *ipath = NULL;
3300 struct btrfs_path *path;
3301
3302 if (!capable(CAP_DAC_READ_SEARCH))
3303 return -EPERM;
3304
3305 path = btrfs_alloc_path();
3306 if (!path) {
3307 ret = -ENOMEM;
3308 goto out;
3309 }
3310
3311 ipa = memdup_user(arg, sizeof(*ipa));
3312 if (IS_ERR(ipa)) {
3313 ret = PTR_ERR(ipa);
3314 ipa = NULL;
3315 goto out;
3316 }
3317
3318 size = min_t(u32, ipa->size, 4096);
3319 ipath = init_ipath(size, root, path);
3320 if (IS_ERR(ipath)) {
3321 ret = PTR_ERR(ipath);
3322 ipath = NULL;
3323 goto out;
3324 }
3325
3326 ret = paths_from_inode(ipa->inum, ipath);
3327 if (ret < 0)
3328 goto out;
3329
3330 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3331 rel_ptr = ipath->fspath->val[i] -
3332 (u64)(unsigned long)ipath->fspath->val;
3333 ipath->fspath->val[i] = rel_ptr;
3334 }
3335
3336 btrfs_free_path(path);
3337 path = NULL;
3338 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3339 ipath->fspath, size);
3340 if (ret) {
3341 ret = -EFAULT;
3342 goto out;
3343 }
3344
3345 out:
3346 btrfs_free_path(path);
3347 free_ipath(ipath);
3348 kfree(ipa);
3349
3350 return ret;
3351 }
3352
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3353 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3354 void __user *arg, int version)
3355 {
3356 int ret = 0;
3357 int size;
3358 struct btrfs_ioctl_logical_ino_args *loi;
3359 struct btrfs_data_container *inodes = NULL;
3360 struct btrfs_path *path = NULL;
3361 bool ignore_offset;
3362
3363 if (!capable(CAP_SYS_ADMIN))
3364 return -EPERM;
3365
3366 loi = memdup_user(arg, sizeof(*loi));
3367 if (IS_ERR(loi))
3368 return PTR_ERR(loi);
3369
3370 if (version == 1) {
3371 ignore_offset = false;
3372 size = min_t(u32, loi->size, SZ_64K);
3373 } else {
3374 /* All reserved bits must be 0 for now */
3375 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3376 ret = -EINVAL;
3377 goto out_loi;
3378 }
3379 /* Only accept flags we have defined so far */
3380 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3381 ret = -EINVAL;
3382 goto out_loi;
3383 }
3384 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3385 size = min_t(u32, loi->size, SZ_16M);
3386 }
3387
3388 inodes = init_data_container(size);
3389 if (IS_ERR(inodes)) {
3390 ret = PTR_ERR(inodes);
3391 goto out_loi;
3392 }
3393
3394 path = btrfs_alloc_path();
3395 if (!path) {
3396 ret = -ENOMEM;
3397 goto out;
3398 }
3399 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3400 inodes, ignore_offset);
3401 btrfs_free_path(path);
3402 if (ret == -EINVAL)
3403 ret = -ENOENT;
3404 if (ret < 0)
3405 goto out;
3406
3407 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3408 size);
3409 if (ret)
3410 ret = -EFAULT;
3411
3412 out:
3413 kvfree(inodes);
3414 out_loi:
3415 kfree(loi);
3416
3417 return ret;
3418 }
3419
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3420 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3421 struct btrfs_ioctl_balance_args *bargs)
3422 {
3423 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3424
3425 bargs->flags = bctl->flags;
3426
3427 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3428 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3429 if (atomic_read(&fs_info->balance_pause_req))
3430 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3431 if (atomic_read(&fs_info->balance_cancel_req))
3432 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3433
3434 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3435 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3436 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3437
3438 spin_lock(&fs_info->balance_lock);
3439 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3440 spin_unlock(&fs_info->balance_lock);
3441 }
3442
3443 /*
3444 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3445 * required.
3446 *
3447 * @fs_info: the filesystem
3448 * @excl_acquired: ptr to boolean value which is set to false in case balance
3449 * is being resumed
3450 *
3451 * Return 0 on success in which case both fs_info::balance is acquired as well
3452 * as exclusive ops are blocked. In case of failure return an error code.
3453 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3454 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3455 {
3456 int ret;
3457
3458 /*
3459 * Exclusive operation is locked. Three possibilities:
3460 * (1) some other op is running
3461 * (2) balance is running
3462 * (3) balance is paused -- special case (think resume)
3463 */
3464 while (1) {
3465 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3466 *excl_acquired = true;
3467 mutex_lock(&fs_info->balance_mutex);
3468 return 0;
3469 }
3470
3471 mutex_lock(&fs_info->balance_mutex);
3472 if (fs_info->balance_ctl) {
3473 /* This is either (2) or (3) */
3474 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3475 /* This is (2) */
3476 ret = -EINPROGRESS;
3477 goto out_failure;
3478
3479 } else {
3480 mutex_unlock(&fs_info->balance_mutex);
3481 /*
3482 * Lock released to allow other waiters to
3483 * continue, we'll reexamine the status again.
3484 */
3485 mutex_lock(&fs_info->balance_mutex);
3486
3487 if (fs_info->balance_ctl &&
3488 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3489 /* This is (3) */
3490 *excl_acquired = false;
3491 return 0;
3492 }
3493 }
3494 } else {
3495 /* This is (1) */
3496 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3497 goto out_failure;
3498 }
3499
3500 mutex_unlock(&fs_info->balance_mutex);
3501 }
3502
3503 out_failure:
3504 mutex_unlock(&fs_info->balance_mutex);
3505 *excl_acquired = false;
3506 return ret;
3507 }
3508
btrfs_ioctl_balance(struct file * file,void __user * arg)3509 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3510 {
3511 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3512 struct btrfs_fs_info *fs_info = root->fs_info;
3513 struct btrfs_ioctl_balance_args *bargs;
3514 struct btrfs_balance_control *bctl;
3515 bool need_unlock = true;
3516 int ret;
3517
3518 if (!capable(CAP_SYS_ADMIN))
3519 return -EPERM;
3520
3521 ret = mnt_want_write_file(file);
3522 if (ret)
3523 return ret;
3524
3525 bargs = memdup_user(arg, sizeof(*bargs));
3526 if (IS_ERR(bargs)) {
3527 ret = PTR_ERR(bargs);
3528 bargs = NULL;
3529 goto out;
3530 }
3531
3532 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3533 if (ret)
3534 goto out;
3535
3536 lockdep_assert_held(&fs_info->balance_mutex);
3537
3538 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3539 if (!fs_info->balance_ctl) {
3540 ret = -ENOTCONN;
3541 goto out_unlock;
3542 }
3543
3544 bctl = fs_info->balance_ctl;
3545 spin_lock(&fs_info->balance_lock);
3546 bctl->flags |= BTRFS_BALANCE_RESUME;
3547 spin_unlock(&fs_info->balance_lock);
3548 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3549
3550 goto do_balance;
3551 }
3552
3553 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3554 ret = -EINVAL;
3555 goto out_unlock;
3556 }
3557
3558 if (fs_info->balance_ctl) {
3559 ret = -EINPROGRESS;
3560 goto out_unlock;
3561 }
3562
3563 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3564 if (!bctl) {
3565 ret = -ENOMEM;
3566 goto out_unlock;
3567 }
3568
3569 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3570 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3571 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3572
3573 bctl->flags = bargs->flags;
3574 do_balance:
3575 /*
3576 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3577 * bctl is freed in reset_balance_state, or, if restriper was paused
3578 * all the way until unmount, in free_fs_info. The flag should be
3579 * cleared after reset_balance_state.
3580 */
3581 need_unlock = false;
3582
3583 ret = btrfs_balance(fs_info, bctl, bargs);
3584 bctl = NULL;
3585
3586 if (ret == 0 || ret == -ECANCELED) {
3587 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3588 ret = -EFAULT;
3589 }
3590
3591 kfree(bctl);
3592 out_unlock:
3593 mutex_unlock(&fs_info->balance_mutex);
3594 if (need_unlock)
3595 btrfs_exclop_finish(fs_info);
3596 out:
3597 mnt_drop_write_file(file);
3598 kfree(bargs);
3599 return ret;
3600 }
3601
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3602 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3603 {
3604 if (!capable(CAP_SYS_ADMIN))
3605 return -EPERM;
3606
3607 switch (cmd) {
3608 case BTRFS_BALANCE_CTL_PAUSE:
3609 return btrfs_pause_balance(fs_info);
3610 case BTRFS_BALANCE_CTL_CANCEL:
3611 return btrfs_cancel_balance(fs_info);
3612 }
3613
3614 return -EINVAL;
3615 }
3616
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3617 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3618 void __user *arg)
3619 {
3620 struct btrfs_ioctl_balance_args *bargs;
3621 int ret = 0;
3622
3623 if (!capable(CAP_SYS_ADMIN))
3624 return -EPERM;
3625
3626 mutex_lock(&fs_info->balance_mutex);
3627 if (!fs_info->balance_ctl) {
3628 ret = -ENOTCONN;
3629 goto out;
3630 }
3631
3632 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3633 if (!bargs) {
3634 ret = -ENOMEM;
3635 goto out;
3636 }
3637
3638 btrfs_update_ioctl_balance_args(fs_info, bargs);
3639
3640 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3641 ret = -EFAULT;
3642
3643 kfree(bargs);
3644 out:
3645 mutex_unlock(&fs_info->balance_mutex);
3646 return ret;
3647 }
3648
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3649 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3650 {
3651 struct inode *inode = file_inode(file);
3652 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3653 struct btrfs_ioctl_quota_ctl_args *sa;
3654 int ret;
3655
3656 if (!capable(CAP_SYS_ADMIN))
3657 return -EPERM;
3658
3659 ret = mnt_want_write_file(file);
3660 if (ret)
3661 return ret;
3662
3663 sa = memdup_user(arg, sizeof(*sa));
3664 if (IS_ERR(sa)) {
3665 ret = PTR_ERR(sa);
3666 goto drop_write;
3667 }
3668
3669 switch (sa->cmd) {
3670 case BTRFS_QUOTA_CTL_ENABLE:
3671 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3672 down_write(&fs_info->subvol_sem);
3673 ret = btrfs_quota_enable(fs_info, sa);
3674 up_write(&fs_info->subvol_sem);
3675 break;
3676 case BTRFS_QUOTA_CTL_DISABLE:
3677 /*
3678 * Lock the cleaner mutex to prevent races with concurrent
3679 * relocation, because relocation may be building backrefs for
3680 * blocks of the quota root while we are deleting the root. This
3681 * is like dropping fs roots of deleted snapshots/subvolumes, we
3682 * need the same protection.
3683 *
3684 * This also prevents races between concurrent tasks trying to
3685 * disable quotas, because we will unlock and relock
3686 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3687 *
3688 * We take this here because we have the dependency of
3689 *
3690 * inode_lock -> subvol_sem
3691 *
3692 * because of rename. With relocation we can prealloc extents,
3693 * so that makes the dependency chain
3694 *
3695 * cleaner_mutex -> inode_lock -> subvol_sem
3696 *
3697 * so we must take the cleaner_mutex here before we take the
3698 * subvol_sem. The deadlock can't actually happen, but this
3699 * quiets lockdep.
3700 */
3701 mutex_lock(&fs_info->cleaner_mutex);
3702 down_write(&fs_info->subvol_sem);
3703 ret = btrfs_quota_disable(fs_info);
3704 up_write(&fs_info->subvol_sem);
3705 mutex_unlock(&fs_info->cleaner_mutex);
3706 break;
3707 default:
3708 ret = -EINVAL;
3709 break;
3710 }
3711
3712 kfree(sa);
3713 drop_write:
3714 mnt_drop_write_file(file);
3715 return ret;
3716 }
3717
3718 /*
3719 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3720 * done before any operations.
3721 */
qgroup_enabled(struct btrfs_fs_info * fs_info)3722 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3723 {
3724 bool ret = true;
3725
3726 mutex_lock(&fs_info->qgroup_ioctl_lock);
3727 if (!fs_info->quota_root)
3728 ret = false;
3729 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3730
3731 return ret;
3732 }
3733
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3734 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3735 {
3736 struct inode *inode = file_inode(file);
3737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3738 struct btrfs_root *root = BTRFS_I(inode)->root;
3739 struct btrfs_ioctl_qgroup_assign_args *sa;
3740 struct btrfs_qgroup_list *prealloc = NULL;
3741 struct btrfs_trans_handle *trans;
3742 int ret;
3743 int err;
3744
3745 if (!capable(CAP_SYS_ADMIN))
3746 return -EPERM;
3747
3748 if (!qgroup_enabled(root->fs_info))
3749 return -ENOTCONN;
3750
3751 ret = mnt_want_write_file(file);
3752 if (ret)
3753 return ret;
3754
3755 sa = memdup_user(arg, sizeof(*sa));
3756 if (IS_ERR(sa)) {
3757 ret = PTR_ERR(sa);
3758 goto drop_write;
3759 }
3760
3761 if (sa->assign) {
3762 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3763 if (!prealloc) {
3764 ret = -ENOMEM;
3765 goto drop_write;
3766 }
3767 }
3768
3769 trans = btrfs_join_transaction(root);
3770 if (IS_ERR(trans)) {
3771 ret = PTR_ERR(trans);
3772 goto out;
3773 }
3774
3775 /*
3776 * Prealloc ownership is moved to the relation handler, there it's used
3777 * or freed on error.
3778 */
3779 if (sa->assign) {
3780 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3781 prealloc = NULL;
3782 } else {
3783 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3784 }
3785
3786 /* update qgroup status and info */
3787 mutex_lock(&fs_info->qgroup_ioctl_lock);
3788 err = btrfs_run_qgroups(trans);
3789 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3790 if (err < 0)
3791 btrfs_warn(fs_info,
3792 "qgroup status update failed after %s relation, marked as inconsistent",
3793 sa->assign ? "adding" : "deleting");
3794 err = btrfs_end_transaction(trans);
3795 if (err && !ret)
3796 ret = err;
3797
3798 out:
3799 kfree(prealloc);
3800 kfree(sa);
3801 drop_write:
3802 mnt_drop_write_file(file);
3803 return ret;
3804 }
3805
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3806 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3807 {
3808 struct inode *inode = file_inode(file);
3809 struct btrfs_root *root = BTRFS_I(inode)->root;
3810 struct btrfs_ioctl_qgroup_create_args *sa;
3811 struct btrfs_trans_handle *trans;
3812 int ret;
3813 int err;
3814
3815 if (!capable(CAP_SYS_ADMIN))
3816 return -EPERM;
3817
3818 if (!qgroup_enabled(root->fs_info))
3819 return -ENOTCONN;
3820
3821 ret = mnt_want_write_file(file);
3822 if (ret)
3823 return ret;
3824
3825 sa = memdup_user(arg, sizeof(*sa));
3826 if (IS_ERR(sa)) {
3827 ret = PTR_ERR(sa);
3828 goto drop_write;
3829 }
3830
3831 if (!sa->qgroupid) {
3832 ret = -EINVAL;
3833 goto out;
3834 }
3835
3836 if (sa->create && is_fstree(sa->qgroupid)) {
3837 ret = -EINVAL;
3838 goto out;
3839 }
3840
3841 trans = btrfs_join_transaction(root);
3842 if (IS_ERR(trans)) {
3843 ret = PTR_ERR(trans);
3844 goto out;
3845 }
3846
3847 if (sa->create) {
3848 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3849 } else {
3850 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3851 }
3852
3853 err = btrfs_end_transaction(trans);
3854 if (err && !ret)
3855 ret = err;
3856
3857 out:
3858 kfree(sa);
3859 drop_write:
3860 mnt_drop_write_file(file);
3861 return ret;
3862 }
3863
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3864 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3865 {
3866 struct inode *inode = file_inode(file);
3867 struct btrfs_root *root = BTRFS_I(inode)->root;
3868 struct btrfs_ioctl_qgroup_limit_args *sa;
3869 struct btrfs_trans_handle *trans;
3870 int ret;
3871 int err;
3872 u64 qgroupid;
3873
3874 if (!capable(CAP_SYS_ADMIN))
3875 return -EPERM;
3876
3877 if (!qgroup_enabled(root->fs_info))
3878 return -ENOTCONN;
3879
3880 ret = mnt_want_write_file(file);
3881 if (ret)
3882 return ret;
3883
3884 sa = memdup_user(arg, sizeof(*sa));
3885 if (IS_ERR(sa)) {
3886 ret = PTR_ERR(sa);
3887 goto drop_write;
3888 }
3889
3890 trans = btrfs_join_transaction(root);
3891 if (IS_ERR(trans)) {
3892 ret = PTR_ERR(trans);
3893 goto out;
3894 }
3895
3896 qgroupid = sa->qgroupid;
3897 if (!qgroupid) {
3898 /* take the current subvol as qgroup */
3899 qgroupid = btrfs_root_id(root);
3900 }
3901
3902 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3903
3904 err = btrfs_end_transaction(trans);
3905 if (err && !ret)
3906 ret = err;
3907
3908 out:
3909 kfree(sa);
3910 drop_write:
3911 mnt_drop_write_file(file);
3912 return ret;
3913 }
3914
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3915 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3916 {
3917 struct inode *inode = file_inode(file);
3918 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3919 struct btrfs_ioctl_quota_rescan_args *qsa;
3920 int ret;
3921
3922 if (!capable(CAP_SYS_ADMIN))
3923 return -EPERM;
3924
3925 if (!qgroup_enabled(fs_info))
3926 return -ENOTCONN;
3927
3928 ret = mnt_want_write_file(file);
3929 if (ret)
3930 return ret;
3931
3932 qsa = memdup_user(arg, sizeof(*qsa));
3933 if (IS_ERR(qsa)) {
3934 ret = PTR_ERR(qsa);
3935 goto drop_write;
3936 }
3937
3938 if (qsa->flags) {
3939 ret = -EINVAL;
3940 goto out;
3941 }
3942
3943 ret = btrfs_qgroup_rescan(fs_info);
3944
3945 out:
3946 kfree(qsa);
3947 drop_write:
3948 mnt_drop_write_file(file);
3949 return ret;
3950 }
3951
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3952 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3953 void __user *arg)
3954 {
3955 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3956
3957 if (!capable(CAP_SYS_ADMIN))
3958 return -EPERM;
3959
3960 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3961 qsa.flags = 1;
3962 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3963 }
3964
3965 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3966 return -EFAULT;
3967
3968 return 0;
3969 }
3970
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3971 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3972 {
3973 if (!capable(CAP_SYS_ADMIN))
3974 return -EPERM;
3975
3976 return btrfs_qgroup_wait_for_completion(fs_info, true);
3977 }
3978
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3979 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3980 struct mnt_idmap *idmap,
3981 struct btrfs_ioctl_received_subvol_args *sa)
3982 {
3983 struct inode *inode = file_inode(file);
3984 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3985 struct btrfs_root *root = BTRFS_I(inode)->root;
3986 struct btrfs_root_item *root_item = &root->root_item;
3987 struct btrfs_trans_handle *trans;
3988 struct timespec64 ct = current_time(inode);
3989 int ret = 0;
3990 int received_uuid_changed;
3991
3992 if (!inode_owner_or_capable(idmap, inode))
3993 return -EPERM;
3994
3995 ret = mnt_want_write_file(file);
3996 if (ret < 0)
3997 return ret;
3998
3999 down_write(&fs_info->subvol_sem);
4000
4001 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4002 ret = -EINVAL;
4003 goto out;
4004 }
4005
4006 if (btrfs_root_readonly(root)) {
4007 ret = -EROFS;
4008 goto out;
4009 }
4010
4011 /*
4012 * 1 - root item
4013 * 2 - uuid items (received uuid + subvol uuid)
4014 */
4015 trans = btrfs_start_transaction(root, 3);
4016 if (IS_ERR(trans)) {
4017 ret = PTR_ERR(trans);
4018 trans = NULL;
4019 goto out;
4020 }
4021
4022 sa->rtransid = trans->transid;
4023 sa->rtime.sec = ct.tv_sec;
4024 sa->rtime.nsec = ct.tv_nsec;
4025
4026 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4027 BTRFS_UUID_SIZE);
4028 if (received_uuid_changed &&
4029 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4030 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4031 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4032 btrfs_root_id(root));
4033 if (ret && ret != -ENOENT) {
4034 btrfs_abort_transaction(trans, ret);
4035 btrfs_end_transaction(trans);
4036 goto out;
4037 }
4038 }
4039 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4040 btrfs_set_root_stransid(root_item, sa->stransid);
4041 btrfs_set_root_rtransid(root_item, sa->rtransid);
4042 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4043 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4044 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4045 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4046
4047 ret = btrfs_update_root(trans, fs_info->tree_root,
4048 &root->root_key, &root->root_item);
4049 if (ret < 0) {
4050 btrfs_end_transaction(trans);
4051 goto out;
4052 }
4053 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4054 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4055 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4056 btrfs_root_id(root));
4057 if (ret < 0 && ret != -EEXIST) {
4058 btrfs_abort_transaction(trans, ret);
4059 btrfs_end_transaction(trans);
4060 goto out;
4061 }
4062 }
4063 ret = btrfs_commit_transaction(trans);
4064 out:
4065 up_write(&fs_info->subvol_sem);
4066 mnt_drop_write_file(file);
4067 return ret;
4068 }
4069
4070 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4071 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4072 void __user *arg)
4073 {
4074 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4075 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4076 int ret = 0;
4077
4078 args32 = memdup_user(arg, sizeof(*args32));
4079 if (IS_ERR(args32))
4080 return PTR_ERR(args32);
4081
4082 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4083 if (!args64) {
4084 ret = -ENOMEM;
4085 goto out;
4086 }
4087
4088 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4089 args64->stransid = args32->stransid;
4090 args64->rtransid = args32->rtransid;
4091 args64->stime.sec = args32->stime.sec;
4092 args64->stime.nsec = args32->stime.nsec;
4093 args64->rtime.sec = args32->rtime.sec;
4094 args64->rtime.nsec = args32->rtime.nsec;
4095 args64->flags = args32->flags;
4096
4097 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4098 if (ret)
4099 goto out;
4100
4101 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4102 args32->stransid = args64->stransid;
4103 args32->rtransid = args64->rtransid;
4104 args32->stime.sec = args64->stime.sec;
4105 args32->stime.nsec = args64->stime.nsec;
4106 args32->rtime.sec = args64->rtime.sec;
4107 args32->rtime.nsec = args64->rtime.nsec;
4108 args32->flags = args64->flags;
4109
4110 ret = copy_to_user(arg, args32, sizeof(*args32));
4111 if (ret)
4112 ret = -EFAULT;
4113
4114 out:
4115 kfree(args32);
4116 kfree(args64);
4117 return ret;
4118 }
4119 #endif
4120
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4121 static long btrfs_ioctl_set_received_subvol(struct file *file,
4122 void __user *arg)
4123 {
4124 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4125 int ret = 0;
4126
4127 sa = memdup_user(arg, sizeof(*sa));
4128 if (IS_ERR(sa))
4129 return PTR_ERR(sa);
4130
4131 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4132
4133 if (ret)
4134 goto out;
4135
4136 ret = copy_to_user(arg, sa, sizeof(*sa));
4137 if (ret)
4138 ret = -EFAULT;
4139
4140 out:
4141 kfree(sa);
4142 return ret;
4143 }
4144
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4145 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4146 void __user *arg)
4147 {
4148 size_t len;
4149 int ret;
4150 char label[BTRFS_LABEL_SIZE];
4151
4152 spin_lock(&fs_info->super_lock);
4153 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4154 spin_unlock(&fs_info->super_lock);
4155
4156 len = strnlen(label, BTRFS_LABEL_SIZE);
4157
4158 if (len == BTRFS_LABEL_SIZE) {
4159 btrfs_warn(fs_info,
4160 "label is too long, return the first %zu bytes",
4161 --len);
4162 }
4163
4164 ret = copy_to_user(arg, label, len);
4165
4166 return ret ? -EFAULT : 0;
4167 }
4168
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4169 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4170 {
4171 struct inode *inode = file_inode(file);
4172 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4173 struct btrfs_root *root = BTRFS_I(inode)->root;
4174 struct btrfs_super_block *super_block = fs_info->super_copy;
4175 struct btrfs_trans_handle *trans;
4176 char label[BTRFS_LABEL_SIZE];
4177 int ret;
4178
4179 if (!capable(CAP_SYS_ADMIN))
4180 return -EPERM;
4181
4182 if (copy_from_user(label, arg, sizeof(label)))
4183 return -EFAULT;
4184
4185 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4186 btrfs_err(fs_info,
4187 "unable to set label with more than %d bytes",
4188 BTRFS_LABEL_SIZE - 1);
4189 return -EINVAL;
4190 }
4191
4192 ret = mnt_want_write_file(file);
4193 if (ret)
4194 return ret;
4195
4196 trans = btrfs_start_transaction(root, 0);
4197 if (IS_ERR(trans)) {
4198 ret = PTR_ERR(trans);
4199 goto out_unlock;
4200 }
4201
4202 spin_lock(&fs_info->super_lock);
4203 strcpy(super_block->label, label);
4204 spin_unlock(&fs_info->super_lock);
4205 ret = btrfs_commit_transaction(trans);
4206
4207 out_unlock:
4208 mnt_drop_write_file(file);
4209 return ret;
4210 }
4211
4212 #define INIT_FEATURE_FLAGS(suffix) \
4213 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4214 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4215 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4216
btrfs_ioctl_get_supported_features(void __user * arg)4217 int btrfs_ioctl_get_supported_features(void __user *arg)
4218 {
4219 static const struct btrfs_ioctl_feature_flags features[3] = {
4220 INIT_FEATURE_FLAGS(SUPP),
4221 INIT_FEATURE_FLAGS(SAFE_SET),
4222 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4223 };
4224
4225 if (copy_to_user(arg, &features, sizeof(features)))
4226 return -EFAULT;
4227
4228 return 0;
4229 }
4230
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4231 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4232 void __user *arg)
4233 {
4234 struct btrfs_super_block *super_block = fs_info->super_copy;
4235 struct btrfs_ioctl_feature_flags features;
4236
4237 features.compat_flags = btrfs_super_compat_flags(super_block);
4238 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4239 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4240
4241 if (copy_to_user(arg, &features, sizeof(features)))
4242 return -EFAULT;
4243
4244 return 0;
4245 }
4246
check_feature_bits(const struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4247 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4248 enum btrfs_feature_set set,
4249 u64 change_mask, u64 flags, u64 supported_flags,
4250 u64 safe_set, u64 safe_clear)
4251 {
4252 const char *type = btrfs_feature_set_name(set);
4253 char *names;
4254 u64 disallowed, unsupported;
4255 u64 set_mask = flags & change_mask;
4256 u64 clear_mask = ~flags & change_mask;
4257
4258 unsupported = set_mask & ~supported_flags;
4259 if (unsupported) {
4260 names = btrfs_printable_features(set, unsupported);
4261 if (names) {
4262 btrfs_warn(fs_info,
4263 "this kernel does not support the %s feature bit%s",
4264 names, strchr(names, ',') ? "s" : "");
4265 kfree(names);
4266 } else
4267 btrfs_warn(fs_info,
4268 "this kernel does not support %s bits 0x%llx",
4269 type, unsupported);
4270 return -EOPNOTSUPP;
4271 }
4272
4273 disallowed = set_mask & ~safe_set;
4274 if (disallowed) {
4275 names = btrfs_printable_features(set, disallowed);
4276 if (names) {
4277 btrfs_warn(fs_info,
4278 "can't set the %s feature bit%s while mounted",
4279 names, strchr(names, ',') ? "s" : "");
4280 kfree(names);
4281 } else
4282 btrfs_warn(fs_info,
4283 "can't set %s bits 0x%llx while mounted",
4284 type, disallowed);
4285 return -EPERM;
4286 }
4287
4288 disallowed = clear_mask & ~safe_clear;
4289 if (disallowed) {
4290 names = btrfs_printable_features(set, disallowed);
4291 if (names) {
4292 btrfs_warn(fs_info,
4293 "can't clear the %s feature bit%s while mounted",
4294 names, strchr(names, ',') ? "s" : "");
4295 kfree(names);
4296 } else
4297 btrfs_warn(fs_info,
4298 "can't clear %s bits 0x%llx while mounted",
4299 type, disallowed);
4300 return -EPERM;
4301 }
4302
4303 return 0;
4304 }
4305
4306 #define check_feature(fs_info, change_mask, flags, mask_base) \
4307 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4308 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4309 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4310 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4311
btrfs_ioctl_set_features(struct file * file,void __user * arg)4312 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4313 {
4314 struct inode *inode = file_inode(file);
4315 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4316 struct btrfs_root *root = BTRFS_I(inode)->root;
4317 struct btrfs_super_block *super_block = fs_info->super_copy;
4318 struct btrfs_ioctl_feature_flags flags[2];
4319 struct btrfs_trans_handle *trans;
4320 u64 newflags;
4321 int ret;
4322
4323 if (!capable(CAP_SYS_ADMIN))
4324 return -EPERM;
4325
4326 if (copy_from_user(flags, arg, sizeof(flags)))
4327 return -EFAULT;
4328
4329 /* Nothing to do */
4330 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4331 !flags[0].incompat_flags)
4332 return 0;
4333
4334 ret = check_feature(fs_info, flags[0].compat_flags,
4335 flags[1].compat_flags, COMPAT);
4336 if (ret)
4337 return ret;
4338
4339 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4340 flags[1].compat_ro_flags, COMPAT_RO);
4341 if (ret)
4342 return ret;
4343
4344 ret = check_feature(fs_info, flags[0].incompat_flags,
4345 flags[1].incompat_flags, INCOMPAT);
4346 if (ret)
4347 return ret;
4348
4349 ret = mnt_want_write_file(file);
4350 if (ret)
4351 return ret;
4352
4353 trans = btrfs_start_transaction(root, 0);
4354 if (IS_ERR(trans)) {
4355 ret = PTR_ERR(trans);
4356 goto out_drop_write;
4357 }
4358
4359 spin_lock(&fs_info->super_lock);
4360 newflags = btrfs_super_compat_flags(super_block);
4361 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4362 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4363 btrfs_set_super_compat_flags(super_block, newflags);
4364
4365 newflags = btrfs_super_compat_ro_flags(super_block);
4366 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4367 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4368 btrfs_set_super_compat_ro_flags(super_block, newflags);
4369
4370 newflags = btrfs_super_incompat_flags(super_block);
4371 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4372 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4373 btrfs_set_super_incompat_flags(super_block, newflags);
4374 spin_unlock(&fs_info->super_lock);
4375
4376 ret = btrfs_commit_transaction(trans);
4377 out_drop_write:
4378 mnt_drop_write_file(file);
4379
4380 return ret;
4381 }
4382
_btrfs_ioctl_send(struct btrfs_root * root,void __user * argp,bool compat)4383 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4384 {
4385 struct btrfs_ioctl_send_args *arg;
4386 int ret;
4387
4388 if (compat) {
4389 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4390 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4391
4392 ret = copy_from_user(&args32, argp, sizeof(args32));
4393 if (ret)
4394 return -EFAULT;
4395 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4396 if (!arg)
4397 return -ENOMEM;
4398 arg->send_fd = args32.send_fd;
4399 arg->clone_sources_count = args32.clone_sources_count;
4400 arg->clone_sources = compat_ptr(args32.clone_sources);
4401 arg->parent_root = args32.parent_root;
4402 arg->flags = args32.flags;
4403 arg->version = args32.version;
4404 memcpy(arg->reserved, args32.reserved,
4405 sizeof(args32.reserved));
4406 #else
4407 return -ENOTTY;
4408 #endif
4409 } else {
4410 arg = memdup_user(argp, sizeof(*arg));
4411 if (IS_ERR(arg))
4412 return PTR_ERR(arg);
4413 }
4414 ret = btrfs_ioctl_send(root, arg);
4415 kfree(arg);
4416 return ret;
4417 }
4418
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4419 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4420 bool compat)
4421 {
4422 struct btrfs_ioctl_encoded_io_args args = { 0 };
4423 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4424 flags);
4425 size_t copy_end;
4426 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4427 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4428 struct extent_io_tree *io_tree = &inode->io_tree;
4429 struct iovec iovstack[UIO_FASTIOV];
4430 struct iovec *iov = iovstack;
4431 struct iov_iter iter;
4432 loff_t pos;
4433 struct kiocb kiocb;
4434 ssize_t ret;
4435 u64 disk_bytenr, disk_io_size;
4436 struct extent_state *cached_state = NULL;
4437
4438 if (!capable(CAP_SYS_ADMIN)) {
4439 ret = -EPERM;
4440 goto out_acct;
4441 }
4442
4443 if (compat) {
4444 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4445 struct btrfs_ioctl_encoded_io_args_32 args32;
4446
4447 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4448 flags);
4449 if (copy_from_user(&args32, argp, copy_end)) {
4450 ret = -EFAULT;
4451 goto out_acct;
4452 }
4453 args.iov = compat_ptr(args32.iov);
4454 args.iovcnt = args32.iovcnt;
4455 args.offset = args32.offset;
4456 args.flags = args32.flags;
4457 #else
4458 return -ENOTTY;
4459 #endif
4460 } else {
4461 copy_end = copy_end_kernel;
4462 if (copy_from_user(&args, argp, copy_end)) {
4463 ret = -EFAULT;
4464 goto out_acct;
4465 }
4466 }
4467 if (args.flags != 0) {
4468 ret = -EINVAL;
4469 goto out_acct;
4470 }
4471
4472 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4473 &iov, &iter);
4474 if (ret < 0)
4475 goto out_acct;
4476
4477 if (iov_iter_count(&iter) == 0) {
4478 ret = 0;
4479 goto out_iov;
4480 }
4481 pos = args.offset;
4482 ret = rw_verify_area(READ, file, &pos, args.len);
4483 if (ret < 0)
4484 goto out_iov;
4485
4486 init_sync_kiocb(&kiocb, file);
4487 kiocb.ki_pos = pos;
4488
4489 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4490 &disk_bytenr, &disk_io_size);
4491
4492 if (ret == -EIOCBQUEUED) {
4493 bool unlocked = false;
4494 u64 start, lockend, count;
4495
4496 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4497 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4498
4499 if (args.compression)
4500 count = disk_io_size;
4501 else
4502 count = args.len;
4503
4504 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4505 &cached_state, disk_bytenr,
4506 disk_io_size, count,
4507 args.compression, &unlocked);
4508
4509 if (!unlocked) {
4510 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4511 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4512 }
4513 }
4514
4515 if (ret >= 0) {
4516 fsnotify_access(file);
4517 if (copy_to_user(argp + copy_end,
4518 (char *)&args + copy_end_kernel,
4519 sizeof(args) - copy_end_kernel))
4520 ret = -EFAULT;
4521 }
4522
4523 out_iov:
4524 kfree(iov);
4525 out_acct:
4526 if (ret > 0)
4527 add_rchar(current, ret);
4528 inc_syscr(current);
4529 return ret;
4530 }
4531
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4532 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4533 {
4534 struct btrfs_ioctl_encoded_io_args args;
4535 struct iovec iovstack[UIO_FASTIOV];
4536 struct iovec *iov = iovstack;
4537 struct iov_iter iter;
4538 loff_t pos;
4539 struct kiocb kiocb;
4540 ssize_t ret;
4541
4542 if (!capable(CAP_SYS_ADMIN)) {
4543 ret = -EPERM;
4544 goto out_acct;
4545 }
4546
4547 if (!(file->f_mode & FMODE_WRITE)) {
4548 ret = -EBADF;
4549 goto out_acct;
4550 }
4551
4552 if (compat) {
4553 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4554 struct btrfs_ioctl_encoded_io_args_32 args32;
4555
4556 if (copy_from_user(&args32, argp, sizeof(args32))) {
4557 ret = -EFAULT;
4558 goto out_acct;
4559 }
4560 args.iov = compat_ptr(args32.iov);
4561 args.iovcnt = args32.iovcnt;
4562 args.offset = args32.offset;
4563 args.flags = args32.flags;
4564 args.len = args32.len;
4565 args.unencoded_len = args32.unencoded_len;
4566 args.unencoded_offset = args32.unencoded_offset;
4567 args.compression = args32.compression;
4568 args.encryption = args32.encryption;
4569 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4570 #else
4571 return -ENOTTY;
4572 #endif
4573 } else {
4574 if (copy_from_user(&args, argp, sizeof(args))) {
4575 ret = -EFAULT;
4576 goto out_acct;
4577 }
4578 }
4579
4580 ret = -EINVAL;
4581 if (args.flags != 0)
4582 goto out_acct;
4583 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4584 goto out_acct;
4585 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4586 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4587 goto out_acct;
4588 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4589 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4590 goto out_acct;
4591 if (args.unencoded_offset > args.unencoded_len)
4592 goto out_acct;
4593 if (args.len > args.unencoded_len - args.unencoded_offset)
4594 goto out_acct;
4595
4596 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4597 &iov, &iter);
4598 if (ret < 0)
4599 goto out_acct;
4600
4601 if (iov_iter_count(&iter) == 0) {
4602 ret = 0;
4603 goto out_iov;
4604 }
4605 pos = args.offset;
4606 ret = rw_verify_area(WRITE, file, &pos, args.len);
4607 if (ret < 0)
4608 goto out_iov;
4609
4610 init_sync_kiocb(&kiocb, file);
4611 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4612 if (ret)
4613 goto out_iov;
4614 kiocb.ki_pos = pos;
4615
4616 file_start_write(file);
4617
4618 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4619 if (ret > 0)
4620 fsnotify_modify(file);
4621
4622 file_end_write(file);
4623 out_iov:
4624 kfree(iov);
4625 out_acct:
4626 if (ret > 0)
4627 add_wchar(current, ret);
4628 inc_syscw(current);
4629 return ret;
4630 }
4631
4632 /*
4633 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4634 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4635 * off and cleanup the I/O in btrfs_uring_read_finished.
4636 */
4637 struct btrfs_uring_priv {
4638 struct io_uring_cmd *cmd;
4639 struct page **pages;
4640 unsigned long nr_pages;
4641 struct kiocb iocb;
4642 struct iovec *iov;
4643 struct iov_iter iter;
4644 struct extent_state *cached_state;
4645 u64 count;
4646 u64 start;
4647 u64 lockend;
4648 int err;
4649 bool compressed;
4650 };
4651
4652 struct io_btrfs_cmd {
4653 struct btrfs_uring_priv *priv;
4654 };
4655
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4656 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4657 {
4658 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4659 struct btrfs_uring_priv *priv = bc->priv;
4660 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4661 struct extent_io_tree *io_tree = &inode->io_tree;
4662 unsigned long index;
4663 u64 cur;
4664 size_t page_offset;
4665 ssize_t ret;
4666
4667 /* The inode lock has already been acquired in btrfs_uring_read_extent. */
4668 btrfs_lockdep_inode_acquire(inode, i_rwsem);
4669
4670 if (priv->err) {
4671 ret = priv->err;
4672 goto out;
4673 }
4674
4675 if (priv->compressed) {
4676 index = 0;
4677 page_offset = 0;
4678 } else {
4679 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4680 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4681 }
4682 cur = 0;
4683 while (cur < priv->count) {
4684 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4685
4686 if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4687 &priv->iter) != bytes) {
4688 ret = -EFAULT;
4689 goto out;
4690 }
4691
4692 index++;
4693 cur += bytes;
4694 page_offset = 0;
4695 }
4696 ret = priv->count;
4697
4698 out:
4699 btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4700 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4701
4702 io_uring_cmd_done(cmd, ret, 0, issue_flags);
4703 add_rchar(current, ret);
4704
4705 for (index = 0; index < priv->nr_pages; index++)
4706 __free_page(priv->pages[index]);
4707
4708 kfree(priv->pages);
4709 kfree(priv->iov);
4710 kfree(priv);
4711 }
4712
btrfs_uring_read_extent_endio(void * ctx,int err)4713 void btrfs_uring_read_extent_endio(void *ctx, int err)
4714 {
4715 struct btrfs_uring_priv *priv = ctx;
4716 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4717
4718 priv->err = err;
4719 bc->priv = priv;
4720
4721 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4722 }
4723
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4724 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4725 u64 start, u64 lockend,
4726 struct extent_state *cached_state,
4727 u64 disk_bytenr, u64 disk_io_size,
4728 size_t count, bool compressed,
4729 struct iovec *iov, struct io_uring_cmd *cmd)
4730 {
4731 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4732 struct extent_io_tree *io_tree = &inode->io_tree;
4733 struct page **pages;
4734 struct btrfs_uring_priv *priv = NULL;
4735 unsigned long nr_pages;
4736 int ret;
4737
4738 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4739 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4740 if (!pages)
4741 return -ENOMEM;
4742 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4743 if (ret) {
4744 ret = -ENOMEM;
4745 goto out_fail;
4746 }
4747
4748 priv = kmalloc(sizeof(*priv), GFP_NOFS);
4749 if (!priv) {
4750 ret = -ENOMEM;
4751 goto out_fail;
4752 }
4753
4754 priv->iocb = *iocb;
4755 priv->iov = iov;
4756 priv->iter = *iter;
4757 priv->count = count;
4758 priv->cmd = cmd;
4759 priv->cached_state = cached_state;
4760 priv->compressed = compressed;
4761 priv->nr_pages = nr_pages;
4762 priv->pages = pages;
4763 priv->start = start;
4764 priv->lockend = lockend;
4765 priv->err = 0;
4766
4767 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4768 disk_io_size, pages, priv);
4769 if (ret && ret != -EIOCBQUEUED)
4770 goto out_fail;
4771
4772 /*
4773 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4774 * btrfs_uring_read_finished(), which will handle unlocking the extent
4775 * and inode and freeing the allocations.
4776 */
4777
4778 /*
4779 * We're returning to userspace with the inode lock held, and that's
4780 * okay - it'll get unlocked in a worker thread. Call
4781 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4782 */
4783 btrfs_lockdep_inode_release(inode, i_rwsem);
4784
4785 return -EIOCBQUEUED;
4786
4787 out_fail:
4788 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4789 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4790 kfree(priv);
4791 return ret;
4792 }
4793
4794 struct btrfs_uring_encoded_data {
4795 struct btrfs_ioctl_encoded_io_args args;
4796 struct iovec iovstack[UIO_FASTIOV];
4797 struct iovec *iov;
4798 struct iov_iter iter;
4799 };
4800
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4801 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4802 {
4803 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4804 size_t copy_end;
4805 int ret;
4806 u64 disk_bytenr, disk_io_size;
4807 struct file *file;
4808 struct btrfs_inode *inode;
4809 struct btrfs_fs_info *fs_info;
4810 struct extent_io_tree *io_tree;
4811 loff_t pos;
4812 struct kiocb kiocb;
4813 struct extent_state *cached_state = NULL;
4814 u64 start, lockend;
4815 void __user *sqe_addr;
4816 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4817
4818 if (!capable(CAP_SYS_ADMIN)) {
4819 ret = -EPERM;
4820 goto out_acct;
4821 }
4822 file = cmd->file;
4823 inode = BTRFS_I(file->f_inode);
4824 fs_info = inode->root->fs_info;
4825 io_tree = &inode->io_tree;
4826 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4827
4828 if (issue_flags & IO_URING_F_COMPAT) {
4829 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4830 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4831 #else
4832 return -ENOTTY;
4833 #endif
4834 } else {
4835 copy_end = copy_end_kernel;
4836 }
4837
4838 if (!data) {
4839 data = kzalloc(sizeof(*data), GFP_NOFS);
4840 if (!data) {
4841 ret = -ENOMEM;
4842 goto out_acct;
4843 }
4844
4845 io_uring_cmd_get_async_data(cmd)->op_data = data;
4846
4847 if (issue_flags & IO_URING_F_COMPAT) {
4848 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4849 struct btrfs_ioctl_encoded_io_args_32 args32;
4850
4851 if (copy_from_user(&args32, sqe_addr, copy_end)) {
4852 ret = -EFAULT;
4853 goto out_acct;
4854 }
4855
4856 data->args.iov = compat_ptr(args32.iov);
4857 data->args.iovcnt = args32.iovcnt;
4858 data->args.offset = args32.offset;
4859 data->args.flags = args32.flags;
4860 #endif
4861 } else {
4862 if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4863 ret = -EFAULT;
4864 goto out_acct;
4865 }
4866 }
4867
4868 if (data->args.flags != 0) {
4869 ret = -EINVAL;
4870 goto out_acct;
4871 }
4872
4873 data->iov = data->iovstack;
4874 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4875 ARRAY_SIZE(data->iovstack), &data->iov,
4876 &data->iter);
4877 if (ret < 0)
4878 goto out_acct;
4879
4880 if (iov_iter_count(&data->iter) == 0) {
4881 ret = 0;
4882 goto out_free;
4883 }
4884 }
4885
4886 pos = data->args.offset;
4887 ret = rw_verify_area(READ, file, &pos, data->args.len);
4888 if (ret < 0)
4889 goto out_free;
4890
4891 init_sync_kiocb(&kiocb, file);
4892 kiocb.ki_pos = pos;
4893
4894 if (issue_flags & IO_URING_F_NONBLOCK)
4895 kiocb.ki_flags |= IOCB_NOWAIT;
4896
4897 start = ALIGN_DOWN(pos, fs_info->sectorsize);
4898 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4899
4900 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4901 &disk_bytenr, &disk_io_size);
4902 if (ret == -EAGAIN)
4903 goto out_acct;
4904 if (ret < 0 && ret != -EIOCBQUEUED)
4905 goto out_free;
4906
4907 file_accessed(file);
4908
4909 if (copy_to_user(sqe_addr + copy_end,
4910 (const char *)&data->args + copy_end_kernel,
4911 sizeof(data->args) - copy_end_kernel)) {
4912 if (ret == -EIOCBQUEUED) {
4913 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4914 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4915 }
4916 ret = -EFAULT;
4917 goto out_free;
4918 }
4919
4920 if (ret == -EIOCBQUEUED) {
4921 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4922
4923 /* Match ioctl by not returning past EOF if uncompressed. */
4924 if (!data->args.compression)
4925 count = min_t(u64, count, data->args.len);
4926
4927 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4928 cached_state, disk_bytenr, disk_io_size,
4929 count, data->args.compression,
4930 data->iov, cmd);
4931
4932 goto out_acct;
4933 }
4934
4935 out_free:
4936 kfree(data->iov);
4937
4938 out_acct:
4939 if (ret > 0)
4940 add_rchar(current, ret);
4941 inc_syscr(current);
4942
4943 return ret;
4944 }
4945
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4946 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4947 {
4948 loff_t pos;
4949 struct kiocb kiocb;
4950 struct file *file;
4951 ssize_t ret;
4952 void __user *sqe_addr;
4953 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4954
4955 if (!capable(CAP_SYS_ADMIN)) {
4956 ret = -EPERM;
4957 goto out_acct;
4958 }
4959
4960 file = cmd->file;
4961 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4962
4963 if (!(file->f_mode & FMODE_WRITE)) {
4964 ret = -EBADF;
4965 goto out_acct;
4966 }
4967
4968 if (!data) {
4969 data = kzalloc(sizeof(*data), GFP_NOFS);
4970 if (!data) {
4971 ret = -ENOMEM;
4972 goto out_acct;
4973 }
4974
4975 io_uring_cmd_get_async_data(cmd)->op_data = data;
4976
4977 if (issue_flags & IO_URING_F_COMPAT) {
4978 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4979 struct btrfs_ioctl_encoded_io_args_32 args32;
4980
4981 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4982 ret = -EFAULT;
4983 goto out_acct;
4984 }
4985 data->args.iov = compat_ptr(args32.iov);
4986 data->args.iovcnt = args32.iovcnt;
4987 data->args.offset = args32.offset;
4988 data->args.flags = args32.flags;
4989 data->args.len = args32.len;
4990 data->args.unencoded_len = args32.unencoded_len;
4991 data->args.unencoded_offset = args32.unencoded_offset;
4992 data->args.compression = args32.compression;
4993 data->args.encryption = args32.encryption;
4994 memcpy(data->args.reserved, args32.reserved,
4995 sizeof(data->args.reserved));
4996 #else
4997 ret = -ENOTTY;
4998 goto out_acct;
4999 #endif
5000 } else {
5001 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
5002 ret = -EFAULT;
5003 goto out_acct;
5004 }
5005 }
5006
5007 ret = -EINVAL;
5008 if (data->args.flags != 0)
5009 goto out_acct;
5010 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5011 goto out_acct;
5012 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5013 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5014 goto out_acct;
5015 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5016 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5017 goto out_acct;
5018 if (data->args.unencoded_offset > data->args.unencoded_len)
5019 goto out_acct;
5020 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5021 goto out_acct;
5022
5023 data->iov = data->iovstack;
5024 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5025 ARRAY_SIZE(data->iovstack), &data->iov,
5026 &data->iter);
5027 if (ret < 0)
5028 goto out_acct;
5029
5030 if (iov_iter_count(&data->iter) == 0) {
5031 ret = 0;
5032 goto out_iov;
5033 }
5034 }
5035
5036 if (issue_flags & IO_URING_F_NONBLOCK) {
5037 ret = -EAGAIN;
5038 goto out_acct;
5039 }
5040
5041 pos = data->args.offset;
5042 ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5043 if (ret < 0)
5044 goto out_iov;
5045
5046 init_sync_kiocb(&kiocb, file);
5047 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5048 if (ret)
5049 goto out_iov;
5050 kiocb.ki_pos = pos;
5051
5052 file_start_write(file);
5053
5054 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5055 if (ret > 0)
5056 fsnotify_modify(file);
5057
5058 file_end_write(file);
5059 out_iov:
5060 kfree(data->iov);
5061 out_acct:
5062 if (ret > 0)
5063 add_wchar(current, ret);
5064 inc_syscw(current);
5065 return ret;
5066 }
5067
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5068 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5069 {
5070 switch (cmd->cmd_op) {
5071 case BTRFS_IOC_ENCODED_READ:
5072 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5073 case BTRFS_IOC_ENCODED_READ_32:
5074 #endif
5075 return btrfs_uring_encoded_read(cmd, issue_flags);
5076
5077 case BTRFS_IOC_ENCODED_WRITE:
5078 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5079 case BTRFS_IOC_ENCODED_WRITE_32:
5080 #endif
5081 return btrfs_uring_encoded_write(cmd, issue_flags);
5082 }
5083
5084 return -EINVAL;
5085 }
5086
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5087 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5088 {
5089 struct btrfs_root *root;
5090 struct btrfs_ioctl_subvol_wait args = { 0 };
5091 signed long sched_ret;
5092 int refs;
5093 u64 root_flags;
5094 bool wait_for_deletion = false;
5095 bool found = false;
5096
5097 if (copy_from_user(&args, argp, sizeof(args)))
5098 return -EFAULT;
5099
5100 switch (args.mode) {
5101 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5102 /*
5103 * Wait for the first one deleted that waits until all previous
5104 * are cleaned.
5105 */
5106 spin_lock(&fs_info->trans_lock);
5107 if (!list_empty(&fs_info->dead_roots)) {
5108 root = list_last_entry(&fs_info->dead_roots,
5109 struct btrfs_root, root_list);
5110 args.subvolid = btrfs_root_id(root);
5111 found = true;
5112 }
5113 spin_unlock(&fs_info->trans_lock);
5114 if (!found)
5115 return -ENOENT;
5116
5117 fallthrough;
5118 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5119 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5120 BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5121 return -EINVAL;
5122 break;
5123 case BTRFS_SUBVOL_SYNC_COUNT:
5124 spin_lock(&fs_info->trans_lock);
5125 args.count = list_count_nodes(&fs_info->dead_roots);
5126 spin_unlock(&fs_info->trans_lock);
5127 if (copy_to_user(argp, &args, sizeof(args)))
5128 return -EFAULT;
5129 return 0;
5130 case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5131 spin_lock(&fs_info->trans_lock);
5132 /* Last in the list was deleted first. */
5133 if (!list_empty(&fs_info->dead_roots)) {
5134 root = list_last_entry(&fs_info->dead_roots,
5135 struct btrfs_root, root_list);
5136 args.subvolid = btrfs_root_id(root);
5137 } else {
5138 args.subvolid = 0;
5139 }
5140 spin_unlock(&fs_info->trans_lock);
5141 if (copy_to_user(argp, &args, sizeof(args)))
5142 return -EFAULT;
5143 return 0;
5144 case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5145 spin_lock(&fs_info->trans_lock);
5146 /* First in the list was deleted last. */
5147 if (!list_empty(&fs_info->dead_roots)) {
5148 root = list_first_entry(&fs_info->dead_roots,
5149 struct btrfs_root, root_list);
5150 args.subvolid = btrfs_root_id(root);
5151 } else {
5152 args.subvolid = 0;
5153 }
5154 spin_unlock(&fs_info->trans_lock);
5155 if (copy_to_user(argp, &args, sizeof(args)))
5156 return -EFAULT;
5157 return 0;
5158 default:
5159 return -EINVAL;
5160 }
5161
5162 /* 32bit limitation: fs_roots_radix key is not wide enough. */
5163 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5164 return -EOVERFLOW;
5165
5166 while (1) {
5167 /* Wait for the specific one. */
5168 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5169 return -EINTR;
5170 refs = -1;
5171 spin_lock(&fs_info->fs_roots_radix_lock);
5172 root = radix_tree_lookup(&fs_info->fs_roots_radix,
5173 (unsigned long)args.subvolid);
5174 if (root) {
5175 spin_lock(&root->root_item_lock);
5176 refs = btrfs_root_refs(&root->root_item);
5177 root_flags = btrfs_root_flags(&root->root_item);
5178 spin_unlock(&root->root_item_lock);
5179 }
5180 spin_unlock(&fs_info->fs_roots_radix_lock);
5181 up_read(&fs_info->subvol_sem);
5182
5183 /* Subvolume does not exist. */
5184 if (!root)
5185 return -ENOENT;
5186
5187 /* Subvolume not deleted at all. */
5188 if (refs > 0)
5189 return -EEXIST;
5190 /* We've waited and now the subvolume is gone. */
5191 if (wait_for_deletion && refs == -1) {
5192 /* Return the one we waited for as the last one. */
5193 if (copy_to_user(argp, &args, sizeof(args)))
5194 return -EFAULT;
5195 return 0;
5196 }
5197
5198 /* Subvolume not found on the first try (deleted or never existed). */
5199 if (refs == -1)
5200 return -ENOENT;
5201
5202 wait_for_deletion = true;
5203 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5204 sched_ret = schedule_timeout_interruptible(HZ);
5205 /* Early wake up or error. */
5206 if (sched_ret != 0)
5207 return -EINTR;
5208 }
5209
5210 return 0;
5211 }
5212
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5213 long btrfs_ioctl(struct file *file, unsigned int
5214 cmd, unsigned long arg)
5215 {
5216 struct inode *inode = file_inode(file);
5217 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5218 struct btrfs_root *root = BTRFS_I(inode)->root;
5219 void __user *argp = (void __user *)arg;
5220
5221 switch (cmd) {
5222 case FS_IOC_GETVERSION:
5223 return btrfs_ioctl_getversion(inode, argp);
5224 case FS_IOC_GETFSLABEL:
5225 return btrfs_ioctl_get_fslabel(fs_info, argp);
5226 case FS_IOC_SETFSLABEL:
5227 return btrfs_ioctl_set_fslabel(file, argp);
5228 case FITRIM:
5229 return btrfs_ioctl_fitrim(fs_info, argp);
5230 case BTRFS_IOC_SNAP_CREATE:
5231 return btrfs_ioctl_snap_create(file, argp, 0);
5232 case BTRFS_IOC_SNAP_CREATE_V2:
5233 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5234 case BTRFS_IOC_SUBVOL_CREATE:
5235 return btrfs_ioctl_snap_create(file, argp, 1);
5236 case BTRFS_IOC_SUBVOL_CREATE_V2:
5237 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5238 case BTRFS_IOC_SNAP_DESTROY:
5239 return btrfs_ioctl_snap_destroy(file, argp, false);
5240 case BTRFS_IOC_SNAP_DESTROY_V2:
5241 return btrfs_ioctl_snap_destroy(file, argp, true);
5242 case BTRFS_IOC_SUBVOL_GETFLAGS:
5243 return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5244 case BTRFS_IOC_SUBVOL_SETFLAGS:
5245 return btrfs_ioctl_subvol_setflags(file, argp);
5246 case BTRFS_IOC_DEFAULT_SUBVOL:
5247 return btrfs_ioctl_default_subvol(file, argp);
5248 case BTRFS_IOC_DEFRAG:
5249 return btrfs_ioctl_defrag(file, NULL);
5250 case BTRFS_IOC_DEFRAG_RANGE:
5251 return btrfs_ioctl_defrag(file, argp);
5252 case BTRFS_IOC_RESIZE:
5253 return btrfs_ioctl_resize(file, argp);
5254 case BTRFS_IOC_ADD_DEV:
5255 return btrfs_ioctl_add_dev(fs_info, argp);
5256 case BTRFS_IOC_RM_DEV:
5257 return btrfs_ioctl_rm_dev(file, argp);
5258 case BTRFS_IOC_RM_DEV_V2:
5259 return btrfs_ioctl_rm_dev_v2(file, argp);
5260 case BTRFS_IOC_FS_INFO:
5261 return btrfs_ioctl_fs_info(fs_info, argp);
5262 case BTRFS_IOC_DEV_INFO:
5263 return btrfs_ioctl_dev_info(fs_info, argp);
5264 case BTRFS_IOC_TREE_SEARCH:
5265 return btrfs_ioctl_tree_search(root, argp);
5266 case BTRFS_IOC_TREE_SEARCH_V2:
5267 return btrfs_ioctl_tree_search_v2(root, argp);
5268 case BTRFS_IOC_INO_LOOKUP:
5269 return btrfs_ioctl_ino_lookup(root, argp);
5270 case BTRFS_IOC_INO_PATHS:
5271 return btrfs_ioctl_ino_to_path(root, argp);
5272 case BTRFS_IOC_LOGICAL_INO:
5273 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5274 case BTRFS_IOC_LOGICAL_INO_V2:
5275 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5276 case BTRFS_IOC_SPACE_INFO:
5277 return btrfs_ioctl_space_info(fs_info, argp);
5278 case BTRFS_IOC_SYNC: {
5279 int ret;
5280
5281 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5282 if (ret)
5283 return ret;
5284 ret = btrfs_sync_fs(inode->i_sb, 1);
5285 /*
5286 * There may be work for the cleaner kthread to do (subvolume
5287 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5288 */
5289 wake_up_process(fs_info->cleaner_kthread);
5290 return ret;
5291 }
5292 case BTRFS_IOC_START_SYNC:
5293 return btrfs_ioctl_start_sync(root, argp);
5294 case BTRFS_IOC_WAIT_SYNC:
5295 return btrfs_ioctl_wait_sync(fs_info, argp);
5296 case BTRFS_IOC_SCRUB:
5297 return btrfs_ioctl_scrub(file, argp);
5298 case BTRFS_IOC_SCRUB_CANCEL:
5299 return btrfs_ioctl_scrub_cancel(fs_info);
5300 case BTRFS_IOC_SCRUB_PROGRESS:
5301 return btrfs_ioctl_scrub_progress(fs_info, argp);
5302 case BTRFS_IOC_BALANCE_V2:
5303 return btrfs_ioctl_balance(file, argp);
5304 case BTRFS_IOC_BALANCE_CTL:
5305 return btrfs_ioctl_balance_ctl(fs_info, arg);
5306 case BTRFS_IOC_BALANCE_PROGRESS:
5307 return btrfs_ioctl_balance_progress(fs_info, argp);
5308 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5309 return btrfs_ioctl_set_received_subvol(file, argp);
5310 #ifdef CONFIG_64BIT
5311 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5312 return btrfs_ioctl_set_received_subvol_32(file, argp);
5313 #endif
5314 case BTRFS_IOC_SEND:
5315 return _btrfs_ioctl_send(root, argp, false);
5316 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5317 case BTRFS_IOC_SEND_32:
5318 return _btrfs_ioctl_send(root, argp, true);
5319 #endif
5320 case BTRFS_IOC_GET_DEV_STATS:
5321 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5322 case BTRFS_IOC_QUOTA_CTL:
5323 return btrfs_ioctl_quota_ctl(file, argp);
5324 case BTRFS_IOC_QGROUP_ASSIGN:
5325 return btrfs_ioctl_qgroup_assign(file, argp);
5326 case BTRFS_IOC_QGROUP_CREATE:
5327 return btrfs_ioctl_qgroup_create(file, argp);
5328 case BTRFS_IOC_QGROUP_LIMIT:
5329 return btrfs_ioctl_qgroup_limit(file, argp);
5330 case BTRFS_IOC_QUOTA_RESCAN:
5331 return btrfs_ioctl_quota_rescan(file, argp);
5332 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5333 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5334 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5335 return btrfs_ioctl_quota_rescan_wait(fs_info);
5336 case BTRFS_IOC_DEV_REPLACE:
5337 return btrfs_ioctl_dev_replace(fs_info, argp);
5338 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5339 return btrfs_ioctl_get_supported_features(argp);
5340 case BTRFS_IOC_GET_FEATURES:
5341 return btrfs_ioctl_get_features(fs_info, argp);
5342 case BTRFS_IOC_SET_FEATURES:
5343 return btrfs_ioctl_set_features(file, argp);
5344 case BTRFS_IOC_GET_SUBVOL_INFO:
5345 return btrfs_ioctl_get_subvol_info(inode, argp);
5346 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5347 return btrfs_ioctl_get_subvol_rootref(root, argp);
5348 case BTRFS_IOC_INO_LOOKUP_USER:
5349 return btrfs_ioctl_ino_lookup_user(file, argp);
5350 case FS_IOC_ENABLE_VERITY:
5351 return fsverity_ioctl_enable(file, (const void __user *)argp);
5352 case FS_IOC_MEASURE_VERITY:
5353 return fsverity_ioctl_measure(file, argp);
5354 case FS_IOC_READ_VERITY_METADATA:
5355 return fsverity_ioctl_read_metadata(file, argp);
5356 case BTRFS_IOC_ENCODED_READ:
5357 return btrfs_ioctl_encoded_read(file, argp, false);
5358 case BTRFS_IOC_ENCODED_WRITE:
5359 return btrfs_ioctl_encoded_write(file, argp, false);
5360 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5361 case BTRFS_IOC_ENCODED_READ_32:
5362 return btrfs_ioctl_encoded_read(file, argp, true);
5363 case BTRFS_IOC_ENCODED_WRITE_32:
5364 return btrfs_ioctl_encoded_write(file, argp, true);
5365 #endif
5366 case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5367 return btrfs_ioctl_subvol_sync(fs_info, argp);
5368 }
5369
5370 return -ENOTTY;
5371 }
5372
5373 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5374 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5375 {
5376 /*
5377 * These all access 32-bit values anyway so no further
5378 * handling is necessary.
5379 */
5380 switch (cmd) {
5381 case FS_IOC32_GETVERSION:
5382 cmd = FS_IOC_GETVERSION;
5383 break;
5384 }
5385
5386 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5387 }
5388 #endif
5389