1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include <linux/io_uring/cmd.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "export.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "block-group.h" 50 #include "fs.h" 51 #include "accessors.h" 52 #include "extent-tree.h" 53 #include "root-tree.h" 54 #include "defrag.h" 55 #include "dir-item.h" 56 #include "uuid-tree.h" 57 #include "ioctl.h" 58 #include "file.h" 59 #include "scrub.h" 60 #include "super.h" 61 62 #ifdef CONFIG_64BIT 63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 64 * structures are incorrect, as the timespec structure from userspace 65 * is 4 bytes too small. We define these alternatives here to teach 66 * the kernel about the 32-bit struct packing. 67 */ 68 struct btrfs_ioctl_timespec_32 { 69 __u64 sec; 70 __u32 nsec; 71 } __attribute__ ((__packed__)); 72 73 struct btrfs_ioctl_received_subvol_args_32 { 74 char uuid[BTRFS_UUID_SIZE]; /* in */ 75 __u64 stransid; /* in */ 76 __u64 rtransid; /* out */ 77 struct btrfs_ioctl_timespec_32 stime; /* in */ 78 struct btrfs_ioctl_timespec_32 rtime; /* out */ 79 __u64 flags; /* in */ 80 __u64 reserved[16]; /* in */ 81 } __attribute__ ((__packed__)); 82 83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 84 struct btrfs_ioctl_received_subvol_args_32) 85 #endif 86 87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 88 struct btrfs_ioctl_send_args_32 { 89 __s64 send_fd; /* in */ 90 __u64 clone_sources_count; /* in */ 91 compat_uptr_t clone_sources; /* in */ 92 __u64 parent_root; /* in */ 93 __u64 flags; /* in */ 94 __u32 version; /* in */ 95 __u8 reserved[28]; /* in */ 96 } __attribute__ ((__packed__)); 97 98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 99 struct btrfs_ioctl_send_args_32) 100 101 struct btrfs_ioctl_encoded_io_args_32 { 102 compat_uptr_t iov; 103 compat_ulong_t iovcnt; 104 __s64 offset; 105 __u64 flags; 106 __u64 len; 107 __u64 unencoded_len; 108 __u64 unencoded_offset; 109 __u32 compression; 110 __u32 encryption; 111 __u8 reserved[64]; 112 }; 113 114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 115 struct btrfs_ioctl_encoded_io_args_32) 116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 117 struct btrfs_ioctl_encoded_io_args_32) 118 #endif 119 120 /* Mask out flags that are inappropriate for the given type of inode. */ 121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode, 122 unsigned int flags) 123 { 124 if (S_ISDIR(inode->i_mode)) 125 return flags; 126 else if (S_ISREG(inode->i_mode)) 127 return flags & ~FS_DIRSYNC_FL; 128 else 129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 130 } 131 132 /* 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 134 * ioctl. 135 */ 136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode) 137 { 138 unsigned int iflags = 0; 139 u32 flags = inode->flags; 140 u32 ro_flags = inode->ro_flags; 141 142 if (flags & BTRFS_INODE_SYNC) 143 iflags |= FS_SYNC_FL; 144 if (flags & BTRFS_INODE_IMMUTABLE) 145 iflags |= FS_IMMUTABLE_FL; 146 if (flags & BTRFS_INODE_APPEND) 147 iflags |= FS_APPEND_FL; 148 if (flags & BTRFS_INODE_NODUMP) 149 iflags |= FS_NODUMP_FL; 150 if (flags & BTRFS_INODE_NOATIME) 151 iflags |= FS_NOATIME_FL; 152 if (flags & BTRFS_INODE_DIRSYNC) 153 iflags |= FS_DIRSYNC_FL; 154 if (flags & BTRFS_INODE_NODATACOW) 155 iflags |= FS_NOCOW_FL; 156 if (ro_flags & BTRFS_INODE_RO_VERITY) 157 iflags |= FS_VERITY_FL; 158 159 if (flags & BTRFS_INODE_NOCOMPRESS) 160 iflags |= FS_NOCOMP_FL; 161 else if (flags & BTRFS_INODE_COMPRESS) 162 iflags |= FS_COMPR_FL; 163 164 return iflags; 165 } 166 167 /* 168 * Update inode->i_flags based on the btrfs internal flags. 169 */ 170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode) 171 { 172 unsigned int new_fl = 0; 173 174 if (inode->flags & BTRFS_INODE_SYNC) 175 new_fl |= S_SYNC; 176 if (inode->flags & BTRFS_INODE_IMMUTABLE) 177 new_fl |= S_IMMUTABLE; 178 if (inode->flags & BTRFS_INODE_APPEND) 179 new_fl |= S_APPEND; 180 if (inode->flags & BTRFS_INODE_NOATIME) 181 new_fl |= S_NOATIME; 182 if (inode->flags & BTRFS_INODE_DIRSYNC) 183 new_fl |= S_DIRSYNC; 184 if (inode->ro_flags & BTRFS_INODE_RO_VERITY) 185 new_fl |= S_VERITY; 186 187 set_mask_bits(&inode->vfs_inode.i_flags, 188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 189 S_VERITY, new_fl); 190 } 191 192 /* 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that 194 * the old and new flags are not conflicting 195 */ 196 static int check_fsflags(unsigned int old_flags, unsigned int flags) 197 { 198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 199 FS_NOATIME_FL | FS_NODUMP_FL | \ 200 FS_SYNC_FL | FS_DIRSYNC_FL | \ 201 FS_NOCOMP_FL | FS_COMPR_FL | 202 FS_NOCOW_FL)) 203 return -EOPNOTSUPP; 204 205 /* COMPR and NOCOMP on new/old are valid */ 206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 207 return -EINVAL; 208 209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 210 return -EINVAL; 211 212 /* NOCOW and compression options are mutually exclusive */ 213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 214 return -EINVAL; 215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info, 222 unsigned int flags) 223 { 224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 225 return -EPERM; 226 227 return 0; 228 } 229 230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 231 { 232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 233 return -ENAMETOOLONG; 234 return 0; 235 } 236 237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 238 { 239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 244 /* 245 * Set flags/xflags from the internal inode flags. The remaining items of 246 * fsxattr are zeroed. 247 */ 248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 249 { 250 const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 251 252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode)); 253 return 0; 254 } 255 256 int btrfs_fileattr_set(struct mnt_idmap *idmap, 257 struct dentry *dentry, struct file_kattr *fa) 258 { 259 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 260 struct btrfs_root *root = inode->root; 261 struct btrfs_fs_info *fs_info = root->fs_info; 262 struct btrfs_trans_handle *trans; 263 unsigned int fsflags, old_fsflags; 264 int ret; 265 const char *comp = NULL; 266 u32 inode_flags; 267 268 if (btrfs_root_readonly(root)) 269 return -EROFS; 270 271 if (fileattr_has_fsx(fa)) 272 return -EOPNOTSUPP; 273 274 fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags); 275 old_fsflags = btrfs_inode_flags_to_fsflags(inode); 276 ret = check_fsflags(old_fsflags, fsflags); 277 if (ret) 278 return ret; 279 280 ret = check_fsflags_compatible(fs_info, fsflags); 281 if (ret) 282 return ret; 283 284 inode_flags = inode->flags; 285 if (fsflags & FS_SYNC_FL) 286 inode_flags |= BTRFS_INODE_SYNC; 287 else 288 inode_flags &= ~BTRFS_INODE_SYNC; 289 if (fsflags & FS_IMMUTABLE_FL) 290 inode_flags |= BTRFS_INODE_IMMUTABLE; 291 else 292 inode_flags &= ~BTRFS_INODE_IMMUTABLE; 293 if (fsflags & FS_APPEND_FL) 294 inode_flags |= BTRFS_INODE_APPEND; 295 else 296 inode_flags &= ~BTRFS_INODE_APPEND; 297 if (fsflags & FS_NODUMP_FL) 298 inode_flags |= BTRFS_INODE_NODUMP; 299 else 300 inode_flags &= ~BTRFS_INODE_NODUMP; 301 if (fsflags & FS_NOATIME_FL) 302 inode_flags |= BTRFS_INODE_NOATIME; 303 else 304 inode_flags &= ~BTRFS_INODE_NOATIME; 305 306 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 307 if (!fa->flags_valid) { 308 /* 1 item for the inode */ 309 trans = btrfs_start_transaction(root, 1); 310 if (IS_ERR(trans)) 311 return PTR_ERR(trans); 312 goto update_flags; 313 } 314 315 if (fsflags & FS_DIRSYNC_FL) 316 inode_flags |= BTRFS_INODE_DIRSYNC; 317 else 318 inode_flags &= ~BTRFS_INODE_DIRSYNC; 319 if (fsflags & FS_NOCOW_FL) { 320 if (S_ISREG(inode->vfs_inode.i_mode)) { 321 /* 322 * It's safe to turn csums off here, no extents exist. 323 * Otherwise we want the flag to reflect the real COW 324 * status of the file and will not set it. 325 */ 326 if (inode->vfs_inode.i_size == 0) 327 inode_flags |= BTRFS_INODE_NODATACOW | 328 BTRFS_INODE_NODATASUM; 329 } else { 330 inode_flags |= BTRFS_INODE_NODATACOW; 331 } 332 } else { 333 /* 334 * Revert back under same assumptions as above 335 */ 336 if (S_ISREG(inode->vfs_inode.i_mode)) { 337 if (inode->vfs_inode.i_size == 0) 338 inode_flags &= ~(BTRFS_INODE_NODATACOW | 339 BTRFS_INODE_NODATASUM); 340 } else { 341 inode_flags &= ~BTRFS_INODE_NODATACOW; 342 } 343 } 344 345 /* 346 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 347 * flag may be changed automatically if compression code won't make 348 * things smaller. 349 */ 350 if (fsflags & FS_NOCOMP_FL) { 351 inode_flags &= ~BTRFS_INODE_COMPRESS; 352 inode_flags |= BTRFS_INODE_NOCOMPRESS; 353 } else if (fsflags & FS_COMPR_FL) { 354 355 if (IS_SWAPFILE(&inode->vfs_inode)) 356 return -ETXTBSY; 357 358 inode_flags |= BTRFS_INODE_COMPRESS; 359 inode_flags &= ~BTRFS_INODE_NOCOMPRESS; 360 361 comp = btrfs_compress_type2str(fs_info->compress_type); 362 if (!comp || comp[0] == 0) 363 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 364 } else { 365 inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 366 } 367 368 /* 369 * 1 for inode item 370 * 2 for properties 371 */ 372 trans = btrfs_start_transaction(root, 3); 373 if (IS_ERR(trans)) 374 return PTR_ERR(trans); 375 376 if (comp) { 377 ret = btrfs_set_prop(trans, inode, "btrfs.compression", 378 comp, strlen(comp), 0); 379 if (unlikely(ret)) { 380 btrfs_abort_transaction(trans, ret); 381 goto out_end_trans; 382 } 383 } else { 384 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0); 385 if (unlikely(ret && ret != -ENODATA)) { 386 btrfs_abort_transaction(trans, ret); 387 goto out_end_trans; 388 } 389 } 390 391 update_flags: 392 inode->flags = inode_flags; 393 btrfs_update_inode_mapping_flags(inode); 394 btrfs_sync_inode_flags_to_i_flags(inode); 395 inode_inc_iversion(&inode->vfs_inode); 396 inode_set_ctime_current(&inode->vfs_inode); 397 ret = btrfs_update_inode(trans, inode); 398 399 out_end_trans: 400 btrfs_end_transaction(trans); 401 return ret; 402 } 403 404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg) 405 { 406 return put_user(inode->i_generation, arg); 407 } 408 409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 410 void __user *arg) 411 { 412 struct btrfs_device *device; 413 struct fstrim_range range; 414 u64 minlen = ULLONG_MAX; 415 u64 num_devices = 0; 416 int ret; 417 418 if (!capable(CAP_SYS_ADMIN)) 419 return -EPERM; 420 421 /* 422 * btrfs_trim_block_group() depends on space cache, which is not 423 * available in zoned filesystem. So, disallow fitrim on a zoned 424 * filesystem for now. 425 */ 426 if (btrfs_is_zoned(fs_info)) 427 return -EOPNOTSUPP; 428 429 /* 430 * If the fs is mounted with nologreplay, which requires it to be 431 * mounted in RO mode as well, we can not allow discard on free space 432 * inside block groups, because log trees refer to extents that are not 433 * pinned in a block group's free space cache (pinning the extents is 434 * precisely the first phase of replaying a log tree). 435 */ 436 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 437 return -EROFS; 438 439 rcu_read_lock(); 440 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 441 dev_list) { 442 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 443 continue; 444 num_devices++; 445 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 446 minlen); 447 } 448 rcu_read_unlock(); 449 450 if (!num_devices) 451 return -EOPNOTSUPP; 452 if (copy_from_user(&range, arg, sizeof(range))) 453 return -EFAULT; 454 455 /* 456 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 457 * block group is in the logical address space, which can be any 458 * sectorsize aligned bytenr in the range [0, U64_MAX]. 459 */ 460 if (range.len < fs_info->sectorsize) 461 return -EINVAL; 462 463 range.minlen = max(range.minlen, minlen); 464 ret = btrfs_trim_fs(fs_info, &range); 465 466 if (copy_to_user(arg, &range, sizeof(range))) 467 return -EFAULT; 468 469 return ret; 470 } 471 472 /* 473 * Calculate the number of transaction items to reserve for creating a subvolume 474 * or snapshot, not including the inode, directory entries, or parent directory. 475 */ 476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit) 477 { 478 /* 479 * 1 to add root block 480 * 1 to add root item 481 * 1 to add root ref 482 * 1 to add root backref 483 * 1 to add UUID item 484 * 1 to add qgroup info 485 * 1 to add qgroup limit 486 * 487 * Ideally the last two would only be accounted if qgroups are enabled, 488 * but that can change between now and the time we would insert them. 489 */ 490 unsigned int num_items = 7; 491 492 if (inherit) { 493 /* 2 to add qgroup relations for each inherited qgroup */ 494 num_items += 2 * inherit->num_qgroups; 495 } 496 return num_items; 497 } 498 499 static noinline int create_subvol(struct mnt_idmap *idmap, 500 struct inode *dir, struct dentry *dentry, 501 struct btrfs_qgroup_inherit *inherit) 502 { 503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 504 struct btrfs_trans_handle *trans; 505 struct btrfs_key key; 506 struct btrfs_root_item AUTO_KFREE(root_item); 507 struct btrfs_inode_item *inode_item; 508 struct extent_buffer *leaf; 509 struct btrfs_root *root = BTRFS_I(dir)->root; 510 struct btrfs_root *new_root; 511 struct btrfs_block_rsv block_rsv; 512 struct timespec64 cur_time = current_time(dir); 513 struct btrfs_new_inode_args new_inode_args = { 514 .dir = dir, 515 .dentry = dentry, 516 .subvol = true, 517 }; 518 unsigned int trans_num_items; 519 int ret; 520 dev_t anon_dev; 521 u64 objectid; 522 u64 qgroup_reserved = 0; 523 524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 525 if (!root_item) 526 return -ENOMEM; 527 528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 529 if (ret) 530 return ret; 531 532 /* 533 * Don't create subvolume whose level is not zero. Or qgroup will be 534 * screwed up since it assumes subvolume qgroup's level to be 0. 535 */ 536 if (btrfs_qgroup_level(objectid)) 537 return -ENOSPC; 538 539 ret = get_anon_bdev(&anon_dev); 540 if (ret < 0) 541 return ret; 542 543 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 544 if (!new_inode_args.inode) { 545 ret = -ENOMEM; 546 goto out_anon_dev; 547 } 548 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 549 if (ret) 550 goto out_inode; 551 trans_num_items += create_subvol_num_items(inherit); 552 553 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 554 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 555 trans_num_items, false); 556 if (ret) 557 goto out_new_inode_args; 558 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 559 560 trans = btrfs_start_transaction(root, 0); 561 if (IS_ERR(trans)) { 562 ret = PTR_ERR(trans); 563 goto out_release_rsv; 564 } 565 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 566 qgroup_reserved = 0; 567 trans->block_rsv = &block_rsv; 568 trans->bytes_reserved = block_rsv.size; 569 570 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 571 if (ret) 572 goto out; 573 574 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 575 0, BTRFS_NESTING_NORMAL); 576 if (IS_ERR(leaf)) { 577 ret = PTR_ERR(leaf); 578 goto out; 579 } 580 581 btrfs_mark_buffer_dirty(trans, leaf); 582 583 inode_item = &root_item->inode; 584 btrfs_set_stack_inode_generation(inode_item, 1); 585 btrfs_set_stack_inode_size(inode_item, 3); 586 btrfs_set_stack_inode_nlink(inode_item, 1); 587 btrfs_set_stack_inode_nbytes(inode_item, 588 fs_info->nodesize); 589 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 590 591 btrfs_set_root_flags(root_item, 0); 592 btrfs_set_root_limit(root_item, 0); 593 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 594 595 btrfs_set_root_bytenr(root_item, leaf->start); 596 btrfs_set_root_generation(root_item, trans->transid); 597 btrfs_set_root_level(root_item, 0); 598 btrfs_set_root_refs(root_item, 1); 599 btrfs_set_root_used(root_item, leaf->len); 600 btrfs_set_root_last_snapshot(root_item, 0); 601 602 btrfs_set_root_generation_v2(root_item, 603 btrfs_root_generation(root_item)); 604 generate_random_guid(root_item->uuid); 605 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 606 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 607 root_item->ctime = root_item->otime; 608 btrfs_set_root_ctransid(root_item, trans->transid); 609 btrfs_set_root_otransid(root_item, trans->transid); 610 611 btrfs_tree_unlock(leaf); 612 613 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 614 615 key.objectid = objectid; 616 key.type = BTRFS_ROOT_ITEM_KEY; 617 key.offset = 0; 618 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 619 root_item); 620 if (ret) { 621 int ret2; 622 623 /* 624 * Since we don't abort the transaction in this case, free the 625 * tree block so that we don't leak space and leave the 626 * filesystem in an inconsistent state (an extent item in the 627 * extent tree with a backreference for a root that does not 628 * exists). 629 */ 630 btrfs_tree_lock(leaf); 631 btrfs_clear_buffer_dirty(trans, leaf); 632 btrfs_tree_unlock(leaf); 633 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 634 if (unlikely(ret2 < 0)) 635 btrfs_abort_transaction(trans, ret2); 636 free_extent_buffer(leaf); 637 goto out; 638 } 639 640 free_extent_buffer(leaf); 641 leaf = NULL; 642 643 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 644 if (IS_ERR(new_root)) { 645 ret = PTR_ERR(new_root); 646 btrfs_abort_transaction(trans, ret); 647 goto out; 648 } 649 /* anon_dev is owned by new_root now. */ 650 anon_dev = 0; 651 BTRFS_I(new_inode_args.inode)->root = new_root; 652 /* ... and new_root is owned by new_inode_args.inode now. */ 653 654 ret = btrfs_record_root_in_trans(trans, new_root); 655 if (unlikely(ret)) { 656 btrfs_abort_transaction(trans, ret); 657 goto out; 658 } 659 660 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 661 BTRFS_UUID_KEY_SUBVOL, objectid); 662 if (unlikely(ret)) { 663 btrfs_abort_transaction(trans, ret); 664 goto out; 665 } 666 667 btrfs_record_new_subvolume(trans, BTRFS_I(dir)); 668 669 ret = btrfs_create_new_inode(trans, &new_inode_args); 670 if (unlikely(ret)) { 671 btrfs_abort_transaction(trans, ret); 672 goto out; 673 } 674 675 d_instantiate_new(dentry, new_inode_args.inode); 676 new_inode_args.inode = NULL; 677 678 out: 679 trans->block_rsv = NULL; 680 trans->bytes_reserved = 0; 681 btrfs_end_transaction(trans); 682 out_release_rsv: 683 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 684 if (qgroup_reserved) 685 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 686 out_new_inode_args: 687 btrfs_new_inode_args_destroy(&new_inode_args); 688 out_inode: 689 iput(new_inode_args.inode); 690 out_anon_dev: 691 if (anon_dev) 692 free_anon_bdev(anon_dev); 693 694 return ret; 695 } 696 697 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 698 struct dentry *dentry, bool readonly, 699 struct btrfs_qgroup_inherit *inherit) 700 { 701 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 702 struct inode *inode; 703 struct btrfs_pending_snapshot *pending_snapshot; 704 unsigned int trans_num_items; 705 struct btrfs_trans_handle *trans; 706 struct btrfs_block_rsv *block_rsv; 707 u64 qgroup_reserved = 0; 708 int ret; 709 710 /* We do not support snapshotting right now. */ 711 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 712 btrfs_warn(fs_info, 713 "extent tree v2 doesn't support snapshotting yet"); 714 return -EOPNOTSUPP; 715 } 716 717 if (btrfs_root_refs(&root->root_item) == 0) 718 return -ENOENT; 719 720 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 721 return -EINVAL; 722 723 if (atomic_read(&root->nr_swapfiles)) { 724 btrfs_warn(fs_info, 725 "cannot snapshot subvolume with active swapfile"); 726 return -ETXTBSY; 727 } 728 729 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 730 if (!pending_snapshot) 731 return -ENOMEM; 732 733 ret = get_anon_bdev(&pending_snapshot->anon_dev); 734 if (ret < 0) 735 goto free_pending; 736 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 737 GFP_KERNEL); 738 pending_snapshot->path = btrfs_alloc_path(); 739 if (!pending_snapshot->root_item || !pending_snapshot->path) { 740 ret = -ENOMEM; 741 goto free_pending; 742 } 743 744 block_rsv = &pending_snapshot->block_rsv; 745 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 746 /* 747 * 1 to add dir item 748 * 1 to add dir index 749 * 1 to update parent inode item 750 */ 751 trans_num_items = create_subvol_num_items(inherit) + 3; 752 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 753 trans_num_items, false); 754 if (ret) 755 goto free_pending; 756 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 757 758 pending_snapshot->dentry = dentry; 759 pending_snapshot->root = root; 760 pending_snapshot->readonly = readonly; 761 pending_snapshot->dir = BTRFS_I(dir); 762 pending_snapshot->inherit = inherit; 763 764 trans = btrfs_start_transaction(root, 0); 765 if (IS_ERR(trans)) { 766 ret = PTR_ERR(trans); 767 goto fail; 768 } 769 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 770 if (ret) { 771 btrfs_end_transaction(trans); 772 goto fail; 773 } 774 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 775 qgroup_reserved = 0; 776 777 trans->pending_snapshot = pending_snapshot; 778 779 ret = btrfs_commit_transaction(trans); 780 if (ret) 781 goto fail; 782 783 ret = pending_snapshot->error; 784 if (ret) 785 goto fail; 786 787 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 788 if (ret) 789 goto fail; 790 791 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 792 if (IS_ERR(inode)) { 793 ret = PTR_ERR(inode); 794 goto fail; 795 } 796 797 d_instantiate(dentry, inode); 798 ret = 0; 799 pending_snapshot->anon_dev = 0; 800 fail: 801 /* Prevent double freeing of anon_dev */ 802 if (ret && pending_snapshot->snap) 803 pending_snapshot->snap->anon_dev = 0; 804 btrfs_put_root(pending_snapshot->snap); 805 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 806 if (qgroup_reserved) 807 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 808 free_pending: 809 if (pending_snapshot->anon_dev) 810 free_anon_bdev(pending_snapshot->anon_dev); 811 kfree(pending_snapshot->root_item); 812 btrfs_free_path(pending_snapshot->path); 813 kfree(pending_snapshot); 814 815 return ret; 816 } 817 818 /* copy of may_delete in fs/namei.c() 819 * Check whether we can remove a link victim from directory dir, check 820 * whether the type of victim is right. 821 * 1. We can't do it if dir is read-only (done in permission()) 822 * 2. We should have write and exec permissions on dir 823 * 3. We can't remove anything from append-only dir 824 * 4. We can't do anything with immutable dir (done in permission()) 825 * 5. If the sticky bit on dir is set we should either 826 * a. be owner of dir, or 827 * b. be owner of victim, or 828 * c. have CAP_FOWNER capability 829 * 6. If the victim is append-only or immutable we can't do anything with 830 * links pointing to it. 831 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 832 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 833 * 9. We can't remove a root or mountpoint. 834 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 835 * nfs_async_unlink(). 836 */ 837 838 static int btrfs_may_delete(struct mnt_idmap *idmap, 839 struct inode *dir, struct dentry *victim, int isdir) 840 { 841 int ret; 842 843 if (d_really_is_negative(victim)) 844 return -ENOENT; 845 846 /* The @victim is not inside @dir. */ 847 if (d_inode(victim->d_parent) != dir) 848 return -EINVAL; 849 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 850 851 ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 852 if (ret) 853 return ret; 854 if (IS_APPEND(dir)) 855 return -EPERM; 856 if (check_sticky(idmap, dir, d_inode(victim)) || 857 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 858 IS_SWAPFILE(d_inode(victim))) 859 return -EPERM; 860 if (isdir) { 861 if (!d_is_dir(victim)) 862 return -ENOTDIR; 863 if (IS_ROOT(victim)) 864 return -EBUSY; 865 } else if (d_is_dir(victim)) 866 return -EISDIR; 867 if (IS_DEADDIR(dir)) 868 return -ENOENT; 869 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 870 return -EBUSY; 871 return 0; 872 } 873 874 /* copy of may_create in fs/namei.c() */ 875 static inline int btrfs_may_create(struct mnt_idmap *idmap, 876 struct inode *dir, const struct dentry *child) 877 { 878 if (d_really_is_positive(child)) 879 return -EEXIST; 880 if (IS_DEADDIR(dir)) 881 return -ENOENT; 882 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 883 return -EOVERFLOW; 884 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 885 } 886 887 /* 888 * Create a new subvolume below @parent. This is largely modeled after 889 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 890 * inside this filesystem so it's quite a bit simpler. 891 */ 892 static noinline int btrfs_mksubvol(struct dentry *parent, 893 struct mnt_idmap *idmap, 894 struct qstr *qname, struct btrfs_root *snap_src, 895 bool readonly, 896 struct btrfs_qgroup_inherit *inherit) 897 { 898 struct inode *dir = d_inode(parent); 899 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 900 struct dentry *dentry; 901 struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len); 902 int ret; 903 904 dentry = start_creating_killable(idmap, parent, qname); 905 if (IS_ERR(dentry)) 906 return PTR_ERR(dentry); 907 908 ret = btrfs_may_create(idmap, dir, dentry); 909 if (ret) 910 goto out_dput; 911 912 /* 913 * even if this name doesn't exist, we may get hash collisions. 914 * check for them now when we can safely fail 915 */ 916 ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str); 917 if (ret) 918 goto out_dput; 919 920 down_read(&fs_info->subvol_sem); 921 922 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 923 goto out_up_read; 924 925 if (snap_src) 926 ret = create_snapshot(snap_src, dir, dentry, readonly, inherit); 927 else 928 ret = create_subvol(idmap, dir, dentry, inherit); 929 930 if (!ret) 931 fsnotify_mkdir(dir, dentry); 932 out_up_read: 933 up_read(&fs_info->subvol_sem); 934 out_dput: 935 end_creating(dentry); 936 return ret; 937 } 938 939 static noinline int btrfs_mksnapshot(struct dentry *parent, 940 struct mnt_idmap *idmap, 941 struct qstr *qname, 942 struct btrfs_root *root, 943 bool readonly, 944 struct btrfs_qgroup_inherit *inherit) 945 { 946 int ret; 947 948 /* 949 * Force new buffered writes to reserve space even when NOCOW is 950 * possible. This is to avoid later writeback (running delalloc) to 951 * fallback to COW mode and unexpectedly fail with ENOSPC. 952 */ 953 btrfs_drew_read_lock(&root->snapshot_lock); 954 955 ret = btrfs_start_delalloc_snapshot(root, false); 956 if (ret) 957 goto out; 958 959 /* 960 * All previous writes have started writeback in NOCOW mode, so now 961 * we force future writes to fallback to COW mode during snapshot 962 * creation. 963 */ 964 atomic_inc(&root->snapshot_force_cow); 965 966 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 967 968 ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit); 969 970 atomic_dec(&root->snapshot_force_cow); 971 out: 972 btrfs_drew_read_unlock(&root->snapshot_lock); 973 return ret; 974 } 975 976 /* 977 * Try to start exclusive operation @type or cancel it if it's running. 978 * 979 * Return: 980 * 0 - normal mode, newly claimed op started 981 * >0 - normal mode, something else is running, 982 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 983 * ECANCELED - cancel mode, successful cancel 984 * ENOTCONN - cancel mode, operation not running anymore 985 */ 986 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 987 enum btrfs_exclusive_operation type, bool cancel) 988 { 989 if (!cancel) { 990 /* Start normal op */ 991 if (!btrfs_exclop_start(fs_info, type)) 992 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 993 /* Exclusive operation is now claimed */ 994 return 0; 995 } 996 997 /* Cancel running op */ 998 if (btrfs_exclop_start_try_lock(fs_info, type)) { 999 /* 1000 * This blocks any exclop finish from setting it to NONE, so we 1001 * request cancellation. Either it runs and we will wait for it, 1002 * or it has finished and no waiting will happen. 1003 */ 1004 atomic_inc(&fs_info->reloc_cancel_req); 1005 btrfs_exclop_start_unlock(fs_info); 1006 1007 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1008 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1009 TASK_INTERRUPTIBLE); 1010 1011 return -ECANCELED; 1012 } 1013 1014 /* Something else is running or none */ 1015 return -ENOTCONN; 1016 } 1017 1018 static noinline int btrfs_ioctl_resize(struct file *file, 1019 void __user *arg) 1020 { 1021 BTRFS_DEV_LOOKUP_ARGS(args); 1022 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1023 struct btrfs_fs_info *fs_info = root->fs_info; 1024 u64 new_size; 1025 u64 old_size; 1026 u64 devid = 1; 1027 struct btrfs_ioctl_vol_args *vol_args; 1028 struct btrfs_device *device = NULL; 1029 char *sizestr; 1030 char *devstr = NULL; 1031 int ret = 0; 1032 int mod = 0; 1033 bool cancel; 1034 1035 if (!capable(CAP_SYS_ADMIN)) 1036 return -EPERM; 1037 1038 ret = mnt_want_write_file(file); 1039 if (ret) 1040 return ret; 1041 1042 /* 1043 * Read the arguments before checking exclusivity to be able to 1044 * distinguish regular resize and cancel 1045 */ 1046 vol_args = memdup_user(arg, sizeof(*vol_args)); 1047 if (IS_ERR(vol_args)) { 1048 ret = PTR_ERR(vol_args); 1049 goto out_drop; 1050 } 1051 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1052 if (ret < 0) 1053 goto out_free; 1054 1055 sizestr = vol_args->name; 1056 cancel = (strcmp("cancel", sizestr) == 0); 1057 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1058 if (ret) 1059 goto out_free; 1060 /* Exclusive operation is now claimed */ 1061 1062 devstr = strchr(sizestr, ':'); 1063 if (devstr) { 1064 sizestr = devstr + 1; 1065 *devstr = '\0'; 1066 devstr = vol_args->name; 1067 ret = kstrtoull(devstr, 10, &devid); 1068 if (ret) 1069 goto out_finish; 1070 if (!devid) { 1071 ret = -EINVAL; 1072 goto out_finish; 1073 } 1074 btrfs_info(fs_info, "resizing devid %llu", devid); 1075 } 1076 1077 args.devid = devid; 1078 device = btrfs_find_device(fs_info->fs_devices, &args); 1079 if (!device) { 1080 btrfs_info(fs_info, "resizer unable to find device %llu", 1081 devid); 1082 ret = -ENODEV; 1083 goto out_finish; 1084 } 1085 1086 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1087 btrfs_info(fs_info, 1088 "resizer unable to apply on readonly device %llu", 1089 devid); 1090 ret = -EPERM; 1091 goto out_finish; 1092 } 1093 1094 if (!strcmp(sizestr, "max")) 1095 new_size = bdev_nr_bytes(device->bdev); 1096 else { 1097 char *retptr; 1098 1099 if (sizestr[0] == '-') { 1100 mod = -1; 1101 sizestr++; 1102 } else if (sizestr[0] == '+') { 1103 mod = 1; 1104 sizestr++; 1105 } 1106 new_size = memparse(sizestr, &retptr); 1107 if (*retptr != '\0' || new_size == 0) { 1108 ret = -EINVAL; 1109 goto out_finish; 1110 } 1111 } 1112 1113 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1114 ret = -EPERM; 1115 goto out_finish; 1116 } 1117 1118 old_size = btrfs_device_get_total_bytes(device); 1119 1120 if (mod < 0) { 1121 if (new_size > old_size) { 1122 ret = -EINVAL; 1123 goto out_finish; 1124 } 1125 new_size = old_size - new_size; 1126 } else if (mod > 0) { 1127 if (new_size > ULLONG_MAX - old_size) { 1128 ret = -ERANGE; 1129 goto out_finish; 1130 } 1131 new_size = old_size + new_size; 1132 } 1133 1134 if (new_size < SZ_256M) { 1135 ret = -EINVAL; 1136 goto out_finish; 1137 } 1138 if (new_size > bdev_nr_bytes(device->bdev)) { 1139 ret = -EFBIG; 1140 goto out_finish; 1141 } 1142 1143 new_size = round_down(new_size, fs_info->sectorsize); 1144 1145 if (new_size > old_size) { 1146 struct btrfs_trans_handle *trans; 1147 1148 trans = btrfs_start_transaction(root, 0); 1149 if (IS_ERR(trans)) { 1150 ret = PTR_ERR(trans); 1151 goto out_finish; 1152 } 1153 ret = btrfs_grow_device(trans, device, new_size); 1154 btrfs_commit_transaction(trans); 1155 } else if (new_size < old_size) { 1156 ret = btrfs_shrink_device(device, new_size); 1157 } /* equal, nothing need to do */ 1158 1159 if (ret == 0 && new_size != old_size) 1160 btrfs_info(fs_info, 1161 "resize device %s (devid %llu) from %llu to %llu", 1162 btrfs_dev_name(device), device->devid, 1163 old_size, new_size); 1164 out_finish: 1165 btrfs_exclop_finish(fs_info); 1166 out_free: 1167 kfree(vol_args); 1168 out_drop: 1169 mnt_drop_write_file(file); 1170 return ret; 1171 } 1172 1173 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1174 struct mnt_idmap *idmap, 1175 const char *name, unsigned long fd, bool subvol, 1176 bool readonly, 1177 struct btrfs_qgroup_inherit *inherit) 1178 { 1179 int ret = 0; 1180 struct qstr qname = QSTR_INIT(name, strlen(name)); 1181 1182 if (!S_ISDIR(file_inode(file)->i_mode)) 1183 return -ENOTDIR; 1184 1185 ret = mnt_want_write_file(file); 1186 if (ret) 1187 goto out; 1188 1189 if (strchr(name, '/')) { 1190 ret = -EINVAL; 1191 goto out_drop_write; 1192 } 1193 1194 if (qname.name[0] == '.' && 1195 (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) { 1196 ret = -EEXIST; 1197 goto out_drop_write; 1198 } 1199 1200 if (subvol) { 1201 ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL, 1202 readonly, inherit); 1203 } else { 1204 CLASS(fd, src)(fd); 1205 struct inode *src_inode; 1206 if (fd_empty(src)) { 1207 ret = -EINVAL; 1208 goto out_drop_write; 1209 } 1210 1211 src_inode = file_inode(fd_file(src)); 1212 if (src_inode->i_sb != file_inode(file)->i_sb) { 1213 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1214 "Snapshot src from another FS"); 1215 ret = -EXDEV; 1216 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1217 /* 1218 * Subvolume creation is not restricted, but snapshots 1219 * are limited to own subvolumes only 1220 */ 1221 ret = -EPERM; 1222 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1223 /* 1224 * Snapshots must be made with the src_inode referring 1225 * to the subvolume inode, otherwise the permission 1226 * checking above is useless because we may have 1227 * permission on a lower directory but not the subvol 1228 * itself. 1229 */ 1230 ret = -EINVAL; 1231 } else { 1232 ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname, 1233 BTRFS_I(src_inode)->root, 1234 readonly, inherit); 1235 } 1236 } 1237 out_drop_write: 1238 mnt_drop_write_file(file); 1239 out: 1240 return ret; 1241 } 1242 1243 static noinline int btrfs_ioctl_snap_create(struct file *file, 1244 void __user *arg, bool subvol) 1245 { 1246 struct btrfs_ioctl_vol_args *vol_args; 1247 int ret; 1248 1249 if (!S_ISDIR(file_inode(file)->i_mode)) 1250 return -ENOTDIR; 1251 1252 vol_args = memdup_user(arg, sizeof(*vol_args)); 1253 if (IS_ERR(vol_args)) 1254 return PTR_ERR(vol_args); 1255 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1256 if (ret < 0) 1257 goto out; 1258 1259 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1260 vol_args->name, vol_args->fd, subvol, 1261 false, NULL); 1262 1263 out: 1264 kfree(vol_args); 1265 return ret; 1266 } 1267 1268 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1269 void __user *arg, bool subvol) 1270 { 1271 struct btrfs_ioctl_vol_args_v2 *vol_args; 1272 int ret; 1273 bool readonly = false; 1274 struct btrfs_qgroup_inherit *inherit = NULL; 1275 1276 if (!S_ISDIR(file_inode(file)->i_mode)) 1277 return -ENOTDIR; 1278 1279 vol_args = memdup_user(arg, sizeof(*vol_args)); 1280 if (IS_ERR(vol_args)) 1281 return PTR_ERR(vol_args); 1282 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1283 if (ret < 0) 1284 goto free_args; 1285 1286 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1287 ret = -EOPNOTSUPP; 1288 goto free_args; 1289 } 1290 1291 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1292 readonly = true; 1293 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1294 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1295 1296 if (vol_args->size < sizeof(*inherit) || 1297 vol_args->size > PAGE_SIZE) { 1298 ret = -EINVAL; 1299 goto free_args; 1300 } 1301 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1302 if (IS_ERR(inherit)) { 1303 ret = PTR_ERR(inherit); 1304 goto free_args; 1305 } 1306 1307 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1308 if (ret < 0) 1309 goto free_inherit; 1310 } 1311 1312 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1313 vol_args->name, vol_args->fd, subvol, 1314 readonly, inherit); 1315 if (ret) 1316 goto free_inherit; 1317 free_inherit: 1318 kfree(inherit); 1319 free_args: 1320 kfree(vol_args); 1321 return ret; 1322 } 1323 1324 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode, 1325 void __user *arg) 1326 { 1327 struct btrfs_root *root = inode->root; 1328 struct btrfs_fs_info *fs_info = root->fs_info; 1329 int ret = 0; 1330 u64 flags = 0; 1331 1332 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1333 return -EINVAL; 1334 1335 down_read(&fs_info->subvol_sem); 1336 if (btrfs_root_readonly(root)) 1337 flags |= BTRFS_SUBVOL_RDONLY; 1338 up_read(&fs_info->subvol_sem); 1339 1340 if (copy_to_user(arg, &flags, sizeof(flags))) 1341 ret = -EFAULT; 1342 1343 return ret; 1344 } 1345 1346 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1347 void __user *arg) 1348 { 1349 struct inode *inode = file_inode(file); 1350 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1351 struct btrfs_root *root = BTRFS_I(inode)->root; 1352 struct btrfs_trans_handle *trans; 1353 u64 root_flags; 1354 u64 flags; 1355 int ret = 0; 1356 1357 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1358 return -EPERM; 1359 1360 ret = mnt_want_write_file(file); 1361 if (ret) 1362 goto out; 1363 1364 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1365 ret = -EINVAL; 1366 goto out_drop_write; 1367 } 1368 1369 if (copy_from_user(&flags, arg, sizeof(flags))) { 1370 ret = -EFAULT; 1371 goto out_drop_write; 1372 } 1373 1374 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1375 ret = -EOPNOTSUPP; 1376 goto out_drop_write; 1377 } 1378 1379 down_write(&fs_info->subvol_sem); 1380 1381 /* nothing to do */ 1382 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1383 goto out_drop_sem; 1384 1385 root_flags = btrfs_root_flags(&root->root_item); 1386 if (flags & BTRFS_SUBVOL_RDONLY) { 1387 btrfs_set_root_flags(&root->root_item, 1388 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1389 } else { 1390 /* 1391 * Block RO -> RW transition if this subvolume is involved in 1392 * send 1393 */ 1394 spin_lock(&root->root_item_lock); 1395 if (root->send_in_progress == 0) { 1396 btrfs_set_root_flags(&root->root_item, 1397 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1398 spin_unlock(&root->root_item_lock); 1399 } else { 1400 spin_unlock(&root->root_item_lock); 1401 btrfs_warn(fs_info, 1402 "Attempt to set subvolume %llu read-write during send", 1403 btrfs_root_id(root)); 1404 ret = -EPERM; 1405 goto out_drop_sem; 1406 } 1407 } 1408 1409 trans = btrfs_start_transaction(root, 1); 1410 if (IS_ERR(trans)) { 1411 ret = PTR_ERR(trans); 1412 goto out_reset; 1413 } 1414 1415 ret = btrfs_update_root(trans, fs_info->tree_root, 1416 &root->root_key, &root->root_item); 1417 if (ret < 0) { 1418 btrfs_end_transaction(trans); 1419 goto out_reset; 1420 } 1421 1422 ret = btrfs_commit_transaction(trans); 1423 1424 out_reset: 1425 if (ret) 1426 btrfs_set_root_flags(&root->root_item, root_flags); 1427 out_drop_sem: 1428 up_write(&fs_info->subvol_sem); 1429 out_drop_write: 1430 mnt_drop_write_file(file); 1431 out: 1432 return ret; 1433 } 1434 1435 static noinline bool key_in_sk(const struct btrfs_key *key, 1436 const struct btrfs_ioctl_search_key *sk) 1437 { 1438 struct btrfs_key test; 1439 int ret; 1440 1441 test.objectid = sk->min_objectid; 1442 test.type = sk->min_type; 1443 test.offset = sk->min_offset; 1444 1445 ret = btrfs_comp_cpu_keys(key, &test); 1446 if (ret < 0) 1447 return false; 1448 1449 test.objectid = sk->max_objectid; 1450 test.type = sk->max_type; 1451 test.offset = sk->max_offset; 1452 1453 ret = btrfs_comp_cpu_keys(key, &test); 1454 if (ret > 0) 1455 return false; 1456 return true; 1457 } 1458 1459 static noinline int copy_to_sk(struct btrfs_path *path, 1460 struct btrfs_key *key, 1461 const struct btrfs_ioctl_search_key *sk, 1462 u64 *buf_size, 1463 char __user *ubuf, 1464 unsigned long *sk_offset, 1465 int *num_found) 1466 { 1467 u64 found_transid; 1468 struct extent_buffer *leaf; 1469 struct btrfs_ioctl_search_header sh; 1470 struct btrfs_key test; 1471 unsigned long item_off; 1472 unsigned long item_len; 1473 int nritems; 1474 int i; 1475 int slot; 1476 int ret = 0; 1477 1478 leaf = path->nodes[0]; 1479 slot = path->slots[0]; 1480 nritems = btrfs_header_nritems(leaf); 1481 1482 if (btrfs_header_generation(leaf) > sk->max_transid) { 1483 i = nritems; 1484 goto advance_key; 1485 } 1486 found_transid = btrfs_header_generation(leaf); 1487 1488 for (i = slot; i < nritems; i++) { 1489 item_off = btrfs_item_ptr_offset(leaf, i); 1490 item_len = btrfs_item_size(leaf, i); 1491 1492 btrfs_item_key_to_cpu(leaf, key, i); 1493 if (!key_in_sk(key, sk)) 1494 continue; 1495 1496 if (sizeof(sh) + item_len > *buf_size) { 1497 if (*num_found) { 1498 ret = 1; 1499 goto out; 1500 } 1501 1502 /* 1503 * return one empty item back for v1, which does not 1504 * handle -EOVERFLOW 1505 */ 1506 1507 *buf_size = sizeof(sh) + item_len; 1508 item_len = 0; 1509 ret = -EOVERFLOW; 1510 } 1511 1512 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1513 ret = 1; 1514 goto out; 1515 } 1516 1517 sh.objectid = key->objectid; 1518 sh.type = key->type; 1519 sh.offset = key->offset; 1520 sh.len = item_len; 1521 sh.transid = found_transid; 1522 1523 /* 1524 * Copy search result header. If we fault then loop again so we 1525 * can fault in the pages and -EFAULT there if there's a 1526 * problem. Otherwise we'll fault and then copy the buffer in 1527 * properly this next time through 1528 */ 1529 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1530 ret = 0; 1531 goto out; 1532 } 1533 1534 *sk_offset += sizeof(sh); 1535 1536 if (item_len) { 1537 char __user *up = ubuf + *sk_offset; 1538 /* 1539 * Copy the item, same behavior as above, but reset the 1540 * * sk_offset so we copy the full thing again. 1541 */ 1542 if (read_extent_buffer_to_user_nofault(leaf, up, 1543 item_off, item_len)) { 1544 ret = 0; 1545 *sk_offset -= sizeof(sh); 1546 goto out; 1547 } 1548 1549 *sk_offset += item_len; 1550 } 1551 (*num_found)++; 1552 1553 if (ret) /* -EOVERFLOW from above */ 1554 goto out; 1555 1556 if (*num_found >= sk->nr_items) { 1557 ret = 1; 1558 goto out; 1559 } 1560 } 1561 advance_key: 1562 ret = 0; 1563 test.objectid = sk->max_objectid; 1564 test.type = sk->max_type; 1565 test.offset = sk->max_offset; 1566 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1567 ret = 1; 1568 else if (key->offset < (u64)-1) 1569 key->offset++; 1570 else if (key->type < (u8)-1) { 1571 key->offset = 0; 1572 key->type++; 1573 } else if (key->objectid < (u64)-1) { 1574 key->offset = 0; 1575 key->type = 0; 1576 key->objectid++; 1577 } else 1578 ret = 1; 1579 out: 1580 /* 1581 * 0: all items from this leaf copied, continue with next 1582 * 1: * more items can be copied, but unused buffer is too small 1583 * * all items were found 1584 * Either way, it will stops the loop which iterates to the next 1585 * leaf 1586 * -EOVERFLOW: item was to large for buffer 1587 * -EFAULT: could not copy extent buffer back to userspace 1588 */ 1589 return ret; 1590 } 1591 1592 static noinline int search_ioctl(struct btrfs_root *root, 1593 struct btrfs_ioctl_search_key *sk, 1594 u64 *buf_size, 1595 char __user *ubuf) 1596 { 1597 struct btrfs_fs_info *info = root->fs_info; 1598 struct btrfs_key key; 1599 BTRFS_PATH_AUTO_FREE(path); 1600 int ret; 1601 int num_found = 0; 1602 unsigned long sk_offset = 0; 1603 1604 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1605 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1606 return -EOVERFLOW; 1607 } 1608 1609 path = btrfs_alloc_path(); 1610 if (!path) 1611 return -ENOMEM; 1612 1613 if (sk->tree_id == 0) { 1614 /* Search the root that we got passed. */ 1615 root = btrfs_grab_root(root); 1616 } else { 1617 /* Look up the root from the arguments. */ 1618 root = btrfs_get_fs_root(info, sk->tree_id, true); 1619 if (IS_ERR(root)) 1620 return PTR_ERR(root); 1621 } 1622 1623 key.objectid = sk->min_objectid; 1624 key.type = sk->min_type; 1625 key.offset = sk->min_offset; 1626 1627 while (1) { 1628 /* 1629 * Ensure that the whole user buffer is faulted in at sub-page 1630 * granularity, otherwise the loop may live-lock. 1631 */ 1632 if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) { 1633 ret = -EFAULT; 1634 break; 1635 } 1636 1637 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1638 if (ret) 1639 break; 1640 1641 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1642 &sk_offset, &num_found); 1643 btrfs_release_path(path); 1644 if (ret) 1645 break; 1646 1647 } 1648 /* Normalize return values from btrfs_search_forward() and copy_to_sk(). */ 1649 if (ret > 0) 1650 ret = 0; 1651 1652 sk->nr_items = num_found; 1653 btrfs_put_root(root); 1654 return ret; 1655 } 1656 1657 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root, 1658 void __user *argp) 1659 { 1660 struct btrfs_ioctl_search_args __user *uargs = argp; 1661 struct btrfs_ioctl_search_key sk; 1662 int ret; 1663 u64 buf_size; 1664 1665 if (!capable(CAP_SYS_ADMIN)) 1666 return -EPERM; 1667 1668 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1669 return -EFAULT; 1670 1671 buf_size = sizeof(uargs->buf); 1672 1673 ret = search_ioctl(root, &sk, &buf_size, uargs->buf); 1674 1675 /* 1676 * In the origin implementation an overflow is handled by returning a 1677 * search header with a len of zero, so reset ret. 1678 */ 1679 if (ret == -EOVERFLOW) 1680 ret = 0; 1681 1682 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1683 ret = -EFAULT; 1684 return ret; 1685 } 1686 1687 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root, 1688 void __user *argp) 1689 { 1690 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1691 struct btrfs_ioctl_search_args_v2 args; 1692 int ret; 1693 u64 buf_size; 1694 const u64 buf_limit = SZ_16M; 1695 1696 if (!capable(CAP_SYS_ADMIN)) 1697 return -EPERM; 1698 1699 /* copy search header and buffer size */ 1700 if (copy_from_user(&args, uarg, sizeof(args))) 1701 return -EFAULT; 1702 1703 buf_size = args.buf_size; 1704 1705 /* limit result size to 16MB */ 1706 if (buf_size > buf_limit) 1707 buf_size = buf_limit; 1708 1709 ret = search_ioctl(root, &args.key, &buf_size, 1710 (char __user *)(&uarg->buf[0])); 1711 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1712 ret = -EFAULT; 1713 else if (ret == -EOVERFLOW && 1714 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1715 ret = -EFAULT; 1716 1717 return ret; 1718 } 1719 1720 /* 1721 * Search INODE_REFs to identify path name of 'dirid' directory 1722 * in a 'tree_id' tree. and sets path name to 'name'. 1723 */ 1724 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1725 u64 tree_id, u64 dirid, char *name) 1726 { 1727 struct btrfs_root *root; 1728 struct btrfs_key key; 1729 char *ptr; 1730 int ret = -1; 1731 int slot; 1732 int len; 1733 int total_len = 0; 1734 struct btrfs_inode_ref *iref; 1735 struct extent_buffer *l; 1736 BTRFS_PATH_AUTO_FREE(path); 1737 1738 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1739 name[0]='\0'; 1740 return 0; 1741 } 1742 1743 path = btrfs_alloc_path(); 1744 if (!path) 1745 return -ENOMEM; 1746 1747 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1748 1749 root = btrfs_get_fs_root(info, tree_id, true); 1750 if (IS_ERR(root)) { 1751 ret = PTR_ERR(root); 1752 root = NULL; 1753 goto out; 1754 } 1755 1756 key.objectid = dirid; 1757 key.type = BTRFS_INODE_REF_KEY; 1758 key.offset = (u64)-1; 1759 1760 while (1) { 1761 ret = btrfs_search_backwards(root, &key, path); 1762 if (ret < 0) 1763 goto out; 1764 else if (ret > 0) { 1765 ret = -ENOENT; 1766 goto out; 1767 } 1768 1769 l = path->nodes[0]; 1770 slot = path->slots[0]; 1771 1772 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1773 len = btrfs_inode_ref_name_len(l, iref); 1774 ptr -= len + 1; 1775 total_len += len + 1; 1776 if (ptr < name) { 1777 ret = -ENAMETOOLONG; 1778 goto out; 1779 } 1780 1781 *(ptr + len) = '/'; 1782 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1783 1784 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1785 break; 1786 1787 btrfs_release_path(path); 1788 key.objectid = key.offset; 1789 key.offset = (u64)-1; 1790 dirid = key.objectid; 1791 } 1792 memmove(name, ptr, total_len); 1793 name[total_len] = '\0'; 1794 ret = 0; 1795 out: 1796 btrfs_put_root(root); 1797 return ret; 1798 } 1799 1800 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1801 struct inode *inode, 1802 struct btrfs_ioctl_ino_lookup_user_args *args) 1803 { 1804 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1805 u64 upper_limit = btrfs_ino(BTRFS_I(inode)); 1806 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1807 u64 dirid = args->dirid; 1808 unsigned long item_off; 1809 unsigned long item_len; 1810 struct btrfs_inode_ref *iref; 1811 struct btrfs_root_ref *rref; 1812 struct btrfs_root *root = NULL; 1813 BTRFS_PATH_AUTO_FREE(path); 1814 struct btrfs_key key; 1815 struct extent_buffer *leaf; 1816 char *ptr; 1817 int slot; 1818 int len; 1819 int total_len = 0; 1820 int ret; 1821 1822 path = btrfs_alloc_path(); 1823 if (!path) 1824 return -ENOMEM; 1825 1826 /* 1827 * If the bottom subvolume does not exist directly under upper_limit, 1828 * construct the path in from the bottom up. 1829 */ 1830 if (dirid != upper_limit) { 1831 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1832 1833 root = btrfs_get_fs_root(fs_info, treeid, true); 1834 if (IS_ERR(root)) 1835 return PTR_ERR(root); 1836 1837 key.objectid = dirid; 1838 key.type = BTRFS_INODE_REF_KEY; 1839 key.offset = (u64)-1; 1840 while (1) { 1841 struct btrfs_inode *temp_inode; 1842 1843 ret = btrfs_search_backwards(root, &key, path); 1844 if (ret < 0) 1845 goto out_put; 1846 else if (ret > 0) { 1847 ret = -ENOENT; 1848 goto out_put; 1849 } 1850 1851 leaf = path->nodes[0]; 1852 slot = path->slots[0]; 1853 1854 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1855 len = btrfs_inode_ref_name_len(leaf, iref); 1856 ptr -= len + 1; 1857 total_len += len + 1; 1858 if (ptr < args->path) { 1859 ret = -ENAMETOOLONG; 1860 goto out_put; 1861 } 1862 1863 *(ptr + len) = '/'; 1864 read_extent_buffer(leaf, ptr, 1865 (unsigned long)(iref + 1), len); 1866 1867 /* 1868 * We don't need the path anymore, so release it and 1869 * avoid deadlocks and lockdep warnings in case 1870 * btrfs_iget() needs to lookup the inode from its root 1871 * btree and lock the same leaf. 1872 */ 1873 btrfs_release_path(path); 1874 temp_inode = btrfs_iget(key.offset, root); 1875 if (IS_ERR(temp_inode)) { 1876 ret = PTR_ERR(temp_inode); 1877 goto out_put; 1878 } 1879 /* Check the read+exec permission of this directory. */ 1880 ret = inode_permission(idmap, &temp_inode->vfs_inode, 1881 MAY_READ | MAY_EXEC); 1882 iput(&temp_inode->vfs_inode); 1883 if (ret) 1884 goto out_put; 1885 1886 if (key.offset == upper_limit) 1887 break; 1888 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1889 ret = -EACCES; 1890 goto out_put; 1891 } 1892 1893 key.objectid = key.offset; 1894 key.offset = (u64)-1; 1895 dirid = key.objectid; 1896 } 1897 1898 memmove(args->path, ptr, total_len); 1899 args->path[total_len] = '\0'; 1900 btrfs_put_root(root); 1901 root = NULL; 1902 btrfs_release_path(path); 1903 } 1904 1905 /* Get the bottom subvolume's name from ROOT_REF */ 1906 key.objectid = treeid; 1907 key.type = BTRFS_ROOT_REF_KEY; 1908 key.offset = args->treeid; 1909 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1910 if (ret < 0) 1911 return ret; 1912 else if (ret > 0) 1913 return -ENOENT; 1914 1915 leaf = path->nodes[0]; 1916 slot = path->slots[0]; 1917 btrfs_item_key_to_cpu(leaf, &key, slot); 1918 1919 item_off = btrfs_item_ptr_offset(leaf, slot); 1920 item_len = btrfs_item_size(leaf, slot); 1921 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 1922 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 1923 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) 1924 return -EINVAL; 1925 1926 /* Copy subvolume's name */ 1927 item_off += sizeof(struct btrfs_root_ref); 1928 item_len -= sizeof(struct btrfs_root_ref); 1929 read_extent_buffer(leaf, args->name, item_off, item_len); 1930 args->name[item_len] = 0; 1931 1932 out_put: 1933 btrfs_put_root(root); 1934 1935 return ret; 1936 } 1937 1938 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 1939 void __user *argp) 1940 { 1941 struct btrfs_ioctl_ino_lookup_args *args; 1942 int ret = 0; 1943 1944 args = memdup_user(argp, sizeof(*args)); 1945 if (IS_ERR(args)) 1946 return PTR_ERR(args); 1947 1948 /* 1949 * Unprivileged query to obtain the containing subvolume root id. The 1950 * path is reset so it's consistent with btrfs_search_path_in_tree. 1951 */ 1952 if (args->treeid == 0) 1953 args->treeid = btrfs_root_id(root); 1954 1955 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 1956 args->name[0] = 0; 1957 goto out; 1958 } 1959 1960 if (!capable(CAP_SYS_ADMIN)) { 1961 ret = -EPERM; 1962 goto out; 1963 } 1964 1965 ret = btrfs_search_path_in_tree(root->fs_info, 1966 args->treeid, args->objectid, 1967 args->name); 1968 1969 out: 1970 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1971 ret = -EFAULT; 1972 1973 kfree(args); 1974 return ret; 1975 } 1976 1977 /* 1978 * Version of ino_lookup ioctl (unprivileged) 1979 * 1980 * The main differences from ino_lookup ioctl are: 1981 * 1982 * 1. Read + Exec permission will be checked using inode_permission() during 1983 * path construction. -EACCES will be returned in case of failure. 1984 * 2. Path construction will be stopped at the inode number which corresponds 1985 * to the fd with which this ioctl is called. If constructed path does not 1986 * exist under fd's inode, -EACCES will be returned. 1987 * 3. The name of bottom subvolume is also searched and filled. 1988 */ 1989 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 1990 { 1991 struct btrfs_ioctl_ino_lookup_user_args *args; 1992 struct inode *inode; 1993 int ret; 1994 1995 args = memdup_user(argp, sizeof(*args)); 1996 if (IS_ERR(args)) 1997 return PTR_ERR(args); 1998 1999 inode = file_inode(file); 2000 2001 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2002 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2003 /* 2004 * The subvolume does not exist under fd with which this is 2005 * called 2006 */ 2007 kfree(args); 2008 return -EACCES; 2009 } 2010 2011 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2012 2013 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2014 ret = -EFAULT; 2015 2016 kfree(args); 2017 return ret; 2018 } 2019 2020 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2021 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2022 { 2023 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2024 struct btrfs_fs_info *fs_info; 2025 struct btrfs_root *root; 2026 struct btrfs_path *path; 2027 struct btrfs_key key; 2028 struct btrfs_root_item *root_item; 2029 struct btrfs_root_ref *rref; 2030 struct extent_buffer *leaf; 2031 unsigned long item_off; 2032 unsigned long item_len; 2033 int slot; 2034 int ret = 0; 2035 2036 path = btrfs_alloc_path(); 2037 if (!path) 2038 return -ENOMEM; 2039 2040 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2041 if (!subvol_info) { 2042 btrfs_free_path(path); 2043 return -ENOMEM; 2044 } 2045 2046 fs_info = BTRFS_I(inode)->root->fs_info; 2047 2048 /* Get root_item of inode's subvolume */ 2049 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2050 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2051 if (IS_ERR(root)) { 2052 ret = PTR_ERR(root); 2053 goto out_free; 2054 } 2055 root_item = &root->root_item; 2056 2057 subvol_info->treeid = key.objectid; 2058 2059 subvol_info->generation = btrfs_root_generation(root_item); 2060 subvol_info->flags = btrfs_root_flags(root_item); 2061 2062 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2063 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2064 BTRFS_UUID_SIZE); 2065 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2066 BTRFS_UUID_SIZE); 2067 2068 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2069 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2070 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2071 2072 subvol_info->otransid = btrfs_root_otransid(root_item); 2073 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2074 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2075 2076 subvol_info->stransid = btrfs_root_stransid(root_item); 2077 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2078 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2079 2080 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2081 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2082 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2083 2084 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2085 /* Search root tree for ROOT_BACKREF of this subvolume */ 2086 key.type = BTRFS_ROOT_BACKREF_KEY; 2087 key.offset = 0; 2088 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2089 if (ret < 0) { 2090 goto out; 2091 } else if (path->slots[0] >= 2092 btrfs_header_nritems(path->nodes[0])) { 2093 ret = btrfs_next_leaf(fs_info->tree_root, path); 2094 if (ret < 0) { 2095 goto out; 2096 } else if (unlikely(ret > 0)) { 2097 ret = -EUCLEAN; 2098 goto out; 2099 } 2100 } 2101 2102 leaf = path->nodes[0]; 2103 slot = path->slots[0]; 2104 btrfs_item_key_to_cpu(leaf, &key, slot); 2105 if (key.objectid == subvol_info->treeid && 2106 key.type == BTRFS_ROOT_BACKREF_KEY) { 2107 subvol_info->parent_id = key.offset; 2108 2109 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2110 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2111 2112 item_off = btrfs_item_ptr_offset(leaf, slot) 2113 + sizeof(struct btrfs_root_ref); 2114 item_len = btrfs_item_size(leaf, slot) 2115 - sizeof(struct btrfs_root_ref); 2116 read_extent_buffer(leaf, subvol_info->name, 2117 item_off, item_len); 2118 } else { 2119 ret = -ENOENT; 2120 goto out; 2121 } 2122 } 2123 2124 btrfs_free_path(path); 2125 path = NULL; 2126 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2127 ret = -EFAULT; 2128 2129 out: 2130 btrfs_put_root(root); 2131 out_free: 2132 btrfs_free_path(path); 2133 kfree(subvol_info); 2134 return ret; 2135 } 2136 2137 /* 2138 * Return ROOT_REF information of the subvolume containing this inode 2139 * except the subvolume name. 2140 */ 2141 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2142 void __user *argp) 2143 { 2144 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2145 struct btrfs_root_ref *rref; 2146 struct btrfs_path *path; 2147 struct btrfs_key key; 2148 struct extent_buffer *leaf; 2149 u64 objectid; 2150 int slot; 2151 int ret; 2152 u8 found; 2153 2154 path = btrfs_alloc_path(); 2155 if (!path) 2156 return -ENOMEM; 2157 2158 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2159 if (IS_ERR(rootrefs)) { 2160 btrfs_free_path(path); 2161 return PTR_ERR(rootrefs); 2162 } 2163 2164 objectid = btrfs_root_id(root); 2165 key.objectid = objectid; 2166 key.type = BTRFS_ROOT_REF_KEY; 2167 key.offset = rootrefs->min_treeid; 2168 found = 0; 2169 2170 root = root->fs_info->tree_root; 2171 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2172 if (ret < 0) { 2173 goto out; 2174 } else if (path->slots[0] >= 2175 btrfs_header_nritems(path->nodes[0])) { 2176 ret = btrfs_next_leaf(root, path); 2177 if (ret < 0) { 2178 goto out; 2179 } else if (unlikely(ret > 0)) { 2180 ret = -EUCLEAN; 2181 goto out; 2182 } 2183 } 2184 while (1) { 2185 leaf = path->nodes[0]; 2186 slot = path->slots[0]; 2187 2188 btrfs_item_key_to_cpu(leaf, &key, slot); 2189 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2190 ret = 0; 2191 goto out; 2192 } 2193 2194 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2195 ret = -EOVERFLOW; 2196 goto out; 2197 } 2198 2199 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2200 rootrefs->rootref[found].treeid = key.offset; 2201 rootrefs->rootref[found].dirid = 2202 btrfs_root_ref_dirid(leaf, rref); 2203 found++; 2204 2205 ret = btrfs_next_item(root, path); 2206 if (ret < 0) { 2207 goto out; 2208 } else if (unlikely(ret > 0)) { 2209 ret = -EUCLEAN; 2210 goto out; 2211 } 2212 } 2213 2214 out: 2215 btrfs_free_path(path); 2216 2217 if (!ret || ret == -EOVERFLOW) { 2218 rootrefs->num_items = found; 2219 /* update min_treeid for next search */ 2220 if (found) 2221 rootrefs->min_treeid = 2222 rootrefs->rootref[found - 1].treeid + 1; 2223 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2224 ret = -EFAULT; 2225 } 2226 2227 kfree(rootrefs); 2228 2229 return ret; 2230 } 2231 2232 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2233 void __user *arg, 2234 bool destroy_v2) 2235 { 2236 struct dentry *parent = file->f_path.dentry; 2237 struct dentry *dentry; 2238 struct inode *dir = d_inode(parent); 2239 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2240 struct inode *inode; 2241 struct btrfs_root *root = BTRFS_I(dir)->root; 2242 struct btrfs_root *dest = NULL; 2243 struct btrfs_ioctl_vol_args *vol_args = NULL; 2244 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2245 struct mnt_idmap *idmap = file_mnt_idmap(file); 2246 char *subvol_name, *subvol_name_ptr = NULL; 2247 int ret = 0; 2248 bool destroy_parent = false; 2249 2250 /* We don't support snapshots with extent tree v2 yet. */ 2251 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2252 btrfs_err(fs_info, 2253 "extent tree v2 doesn't support snapshot deletion yet"); 2254 return -EOPNOTSUPP; 2255 } 2256 2257 if (destroy_v2) { 2258 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2259 if (IS_ERR(vol_args2)) 2260 return PTR_ERR(vol_args2); 2261 2262 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2263 ret = -EOPNOTSUPP; 2264 goto out; 2265 } 2266 2267 /* 2268 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2269 * name, same as v1 currently does. 2270 */ 2271 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2272 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2273 if (ret < 0) 2274 goto out; 2275 subvol_name = vol_args2->name; 2276 2277 ret = mnt_want_write_file(file); 2278 if (ret) 2279 goto out; 2280 } else { 2281 struct inode *old_dir; 2282 2283 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2284 ret = -EINVAL; 2285 goto out; 2286 } 2287 2288 ret = mnt_want_write_file(file); 2289 if (ret) 2290 goto out; 2291 2292 dentry = btrfs_get_dentry(fs_info->sb, 2293 BTRFS_FIRST_FREE_OBJECTID, 2294 vol_args2->subvolid, 0); 2295 if (IS_ERR(dentry)) { 2296 ret = PTR_ERR(dentry); 2297 goto out_drop_write; 2298 } 2299 2300 /* 2301 * Change the default parent since the subvolume being 2302 * deleted can be outside of the current mount point. 2303 */ 2304 parent = btrfs_get_parent(dentry); 2305 2306 /* 2307 * At this point dentry->d_name can point to '/' if the 2308 * subvolume we want to destroy is outsite of the 2309 * current mount point, so we need to release the 2310 * current dentry and execute the lookup to return a new 2311 * one with ->d_name pointing to the 2312 * <mount point>/subvol_name. 2313 */ 2314 dput(dentry); 2315 if (IS_ERR(parent)) { 2316 ret = PTR_ERR(parent); 2317 goto out_drop_write; 2318 } 2319 old_dir = dir; 2320 dir = d_inode(parent); 2321 2322 /* 2323 * If v2 was used with SPEC_BY_ID, a new parent was 2324 * allocated since the subvolume can be outside of the 2325 * current mount point. Later on we need to release this 2326 * new parent dentry. 2327 */ 2328 destroy_parent = true; 2329 2330 /* 2331 * On idmapped mounts, deletion via subvolid is 2332 * restricted to subvolumes that are immediate 2333 * ancestors of the inode referenced by the file 2334 * descriptor in the ioctl. Otherwise the idmapping 2335 * could potentially be abused to delete subvolumes 2336 * anywhere in the filesystem the user wouldn't be able 2337 * to delete without an idmapped mount. 2338 */ 2339 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2340 ret = -EOPNOTSUPP; 2341 goto free_parent; 2342 } 2343 2344 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2345 fs_info, vol_args2->subvolid); 2346 if (IS_ERR(subvol_name_ptr)) { 2347 ret = PTR_ERR(subvol_name_ptr); 2348 goto free_parent; 2349 } 2350 /* subvol_name_ptr is already nul terminated */ 2351 subvol_name = (char *)kbasename(subvol_name_ptr); 2352 } 2353 } else { 2354 vol_args = memdup_user(arg, sizeof(*vol_args)); 2355 if (IS_ERR(vol_args)) 2356 return PTR_ERR(vol_args); 2357 2358 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2359 if (ret < 0) 2360 goto out; 2361 2362 subvol_name = vol_args->name; 2363 2364 ret = mnt_want_write_file(file); 2365 if (ret) 2366 goto out; 2367 } 2368 2369 if (strchr(subvol_name, '/') || 2370 strcmp(subvol_name, "..") == 0) { 2371 ret = -EINVAL; 2372 goto free_subvol_name; 2373 } 2374 2375 if (!S_ISDIR(dir->i_mode)) { 2376 ret = -ENOTDIR; 2377 goto free_subvol_name; 2378 } 2379 2380 dentry = start_removing_killable(idmap, parent, &QSTR(subvol_name)); 2381 if (IS_ERR(dentry)) { 2382 ret = PTR_ERR(dentry); 2383 goto out_end_removing; 2384 } 2385 2386 inode = d_inode(dentry); 2387 dest = BTRFS_I(inode)->root; 2388 if (!capable(CAP_SYS_ADMIN)) { 2389 /* 2390 * Regular user. Only allow this with a special mount 2391 * option, when the user has write+exec access to the 2392 * subvol root, and when rmdir(2) would have been 2393 * allowed. 2394 * 2395 * Note that this is _not_ check that the subvol is 2396 * empty or doesn't contain data that we wouldn't 2397 * otherwise be able to delete. 2398 * 2399 * Users who want to delete empty subvols should try 2400 * rmdir(2). 2401 */ 2402 ret = -EPERM; 2403 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2404 goto out_end_removing; 2405 2406 /* 2407 * Do not allow deletion if the parent dir is the same 2408 * as the dir to be deleted. That means the ioctl 2409 * must be called on the dentry referencing the root 2410 * of the subvol, not a random directory contained 2411 * within it. 2412 */ 2413 ret = -EINVAL; 2414 if (root == dest) 2415 goto out_end_removing; 2416 2417 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2418 if (ret) 2419 goto out_end_removing; 2420 } 2421 2422 /* check if subvolume may be deleted by a user */ 2423 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2424 if (ret) 2425 goto out_end_removing; 2426 2427 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2428 ret = -EINVAL; 2429 goto out_end_removing; 2430 } 2431 2432 btrfs_inode_lock(BTRFS_I(inode), 0); 2433 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2434 btrfs_inode_unlock(BTRFS_I(inode), 0); 2435 if (!ret) 2436 d_delete_notify(dir, dentry); 2437 2438 out_end_removing: 2439 end_removing(dentry); 2440 free_subvol_name: 2441 kfree(subvol_name_ptr); 2442 free_parent: 2443 if (destroy_parent) 2444 dput(parent); 2445 out_drop_write: 2446 mnt_drop_write_file(file); 2447 out: 2448 kfree(vol_args2); 2449 kfree(vol_args); 2450 return ret; 2451 } 2452 2453 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2454 { 2455 struct inode *inode = file_inode(file); 2456 struct btrfs_root *root = BTRFS_I(inode)->root; 2457 struct btrfs_ioctl_defrag_range_args range = {0}; 2458 int ret; 2459 2460 ret = mnt_want_write_file(file); 2461 if (ret) 2462 return ret; 2463 2464 if (btrfs_root_readonly(root)) { 2465 ret = -EROFS; 2466 goto out; 2467 } 2468 2469 switch (inode->i_mode & S_IFMT) { 2470 case S_IFDIR: 2471 if (!capable(CAP_SYS_ADMIN)) { 2472 ret = -EPERM; 2473 goto out; 2474 } 2475 ret = btrfs_defrag_root(root); 2476 break; 2477 case S_IFREG: 2478 /* 2479 * Note that this does not check the file descriptor for write 2480 * access. This prevents defragmenting executables that are 2481 * running and allows defrag on files open in read-only mode. 2482 */ 2483 if (!capable(CAP_SYS_ADMIN) && 2484 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2485 ret = -EPERM; 2486 goto out; 2487 } 2488 2489 /* 2490 * Don't allow defrag on pre-content watched files, as it could 2491 * populate the page cache with 0's via readahead. 2492 */ 2493 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 2494 ret = -EINVAL; 2495 goto out; 2496 } 2497 2498 if (argp) { 2499 if (copy_from_user(&range, argp, sizeof(range))) { 2500 ret = -EFAULT; 2501 goto out; 2502 } 2503 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2504 ret = -EOPNOTSUPP; 2505 goto out; 2506 } 2507 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) && 2508 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) { 2509 ret = -EINVAL; 2510 goto out; 2511 } 2512 /* Compression or no-compression require to start the IO. */ 2513 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) || 2514 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) { 2515 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2516 range.extent_thresh = (u32)-1; 2517 } 2518 } else { 2519 /* the rest are all set to zero by kzalloc */ 2520 range.len = (u64)-1; 2521 } 2522 ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra, 2523 &range, BTRFS_OLDEST_GENERATION, 0); 2524 if (ret > 0) 2525 ret = 0; 2526 break; 2527 default: 2528 ret = -EINVAL; 2529 } 2530 out: 2531 mnt_drop_write_file(file); 2532 return ret; 2533 } 2534 2535 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2536 { 2537 struct btrfs_ioctl_vol_args *vol_args; 2538 bool restore_op = false; 2539 int ret; 2540 2541 if (!capable(CAP_SYS_ADMIN)) 2542 return -EPERM; 2543 2544 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2545 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2546 return -EINVAL; 2547 } 2548 2549 if (fs_info->fs_devices->temp_fsid) { 2550 btrfs_err(fs_info, 2551 "device add not supported on cloned temp-fsid mount"); 2552 return -EINVAL; 2553 } 2554 2555 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2556 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2557 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2558 2559 /* 2560 * We can do the device add because we have a paused balanced, 2561 * change the exclusive op type and remember we should bring 2562 * back the paused balance 2563 */ 2564 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2565 btrfs_exclop_start_unlock(fs_info); 2566 restore_op = true; 2567 } 2568 2569 vol_args = memdup_user(arg, sizeof(*vol_args)); 2570 if (IS_ERR(vol_args)) { 2571 ret = PTR_ERR(vol_args); 2572 goto out; 2573 } 2574 2575 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2576 if (ret < 0) 2577 goto out_free; 2578 2579 ret = btrfs_init_new_device(fs_info, vol_args->name); 2580 2581 if (!ret) 2582 btrfs_info(fs_info, "disk added %s", vol_args->name); 2583 2584 out_free: 2585 kfree(vol_args); 2586 out: 2587 if (restore_op) 2588 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2589 else 2590 btrfs_exclop_finish(fs_info); 2591 return ret; 2592 } 2593 2594 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2595 { 2596 BTRFS_DEV_LOOKUP_ARGS(args); 2597 struct inode *inode = file_inode(file); 2598 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2599 struct btrfs_ioctl_vol_args_v2 *vol_args; 2600 struct file *bdev_file = NULL; 2601 int ret; 2602 bool cancel = false; 2603 2604 if (!capable(CAP_SYS_ADMIN)) 2605 return -EPERM; 2606 2607 vol_args = memdup_user(arg, sizeof(*vol_args)); 2608 if (IS_ERR(vol_args)) 2609 return PTR_ERR(vol_args); 2610 2611 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2612 ret = -EOPNOTSUPP; 2613 goto out; 2614 } 2615 2616 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2617 if (ret < 0) 2618 goto out; 2619 2620 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2621 args.devid = vol_args->devid; 2622 } else if (!strcmp("cancel", vol_args->name)) { 2623 cancel = true; 2624 } else { 2625 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2626 if (ret) 2627 goto out; 2628 } 2629 2630 ret = mnt_want_write_file(file); 2631 if (ret) 2632 goto out; 2633 2634 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2635 cancel); 2636 if (ret) 2637 goto err_drop; 2638 2639 /* Exclusive operation is now claimed */ 2640 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2641 2642 btrfs_exclop_finish(fs_info); 2643 2644 if (!ret) { 2645 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2646 btrfs_info(fs_info, "device deleted: id %llu", 2647 vol_args->devid); 2648 else 2649 btrfs_info(fs_info, "device deleted: %s", 2650 vol_args->name); 2651 } 2652 err_drop: 2653 mnt_drop_write_file(file); 2654 if (bdev_file) 2655 bdev_fput(bdev_file); 2656 out: 2657 btrfs_put_dev_args_from_path(&args); 2658 kfree(vol_args); 2659 return ret; 2660 } 2661 2662 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2663 { 2664 BTRFS_DEV_LOOKUP_ARGS(args); 2665 struct inode *inode = file_inode(file); 2666 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2667 struct btrfs_ioctl_vol_args *vol_args; 2668 struct file *bdev_file = NULL; 2669 int ret; 2670 bool cancel = false; 2671 2672 if (!capable(CAP_SYS_ADMIN)) 2673 return -EPERM; 2674 2675 vol_args = memdup_user(arg, sizeof(*vol_args)); 2676 if (IS_ERR(vol_args)) 2677 return PTR_ERR(vol_args); 2678 2679 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2680 if (ret < 0) 2681 goto out_free; 2682 2683 if (!strcmp("cancel", vol_args->name)) { 2684 cancel = true; 2685 } else { 2686 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2687 if (ret) 2688 goto out; 2689 } 2690 2691 ret = mnt_want_write_file(file); 2692 if (ret) 2693 goto out; 2694 2695 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2696 cancel); 2697 if (ret == 0) { 2698 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2699 if (!ret) 2700 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2701 btrfs_exclop_finish(fs_info); 2702 } 2703 2704 mnt_drop_write_file(file); 2705 if (bdev_file) 2706 bdev_fput(bdev_file); 2707 out: 2708 btrfs_put_dev_args_from_path(&args); 2709 out_free: 2710 kfree(vol_args); 2711 return ret; 2712 } 2713 2714 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info, 2715 void __user *arg) 2716 { 2717 struct btrfs_ioctl_fs_info_args *fi_args; 2718 struct btrfs_device *device; 2719 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2720 u64 flags_in; 2721 int ret = 0; 2722 2723 fi_args = memdup_user(arg, sizeof(*fi_args)); 2724 if (IS_ERR(fi_args)) 2725 return PTR_ERR(fi_args); 2726 2727 flags_in = fi_args->flags; 2728 memset(fi_args, 0, sizeof(*fi_args)); 2729 2730 rcu_read_lock(); 2731 fi_args->num_devices = fs_devices->num_devices; 2732 2733 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2734 if (device->devid > fi_args->max_id) 2735 fi_args->max_id = device->devid; 2736 } 2737 rcu_read_unlock(); 2738 2739 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2740 fi_args->nodesize = fs_info->nodesize; 2741 fi_args->sectorsize = fs_info->sectorsize; 2742 fi_args->clone_alignment = fs_info->sectorsize; 2743 2744 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2745 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2746 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2747 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2748 } 2749 2750 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2751 fi_args->generation = btrfs_get_fs_generation(fs_info); 2752 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2753 } 2754 2755 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2756 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2757 sizeof(fi_args->metadata_uuid)); 2758 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2759 } 2760 2761 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2762 ret = -EFAULT; 2763 2764 kfree(fi_args); 2765 return ret; 2766 } 2767 2768 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info, 2769 void __user *arg) 2770 { 2771 BTRFS_DEV_LOOKUP_ARGS(args); 2772 struct btrfs_ioctl_dev_info_args *di_args; 2773 struct btrfs_device *dev; 2774 int ret = 0; 2775 2776 di_args = memdup_user(arg, sizeof(*di_args)); 2777 if (IS_ERR(di_args)) 2778 return PTR_ERR(di_args); 2779 2780 args.devid = di_args->devid; 2781 if (!btrfs_is_empty_uuid(di_args->uuid)) 2782 args.uuid = di_args->uuid; 2783 2784 rcu_read_lock(); 2785 dev = btrfs_find_device(fs_info->fs_devices, &args); 2786 if (!dev) { 2787 ret = -ENODEV; 2788 goto out; 2789 } 2790 2791 di_args->devid = dev->devid; 2792 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2793 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2794 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2795 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2796 if (dev->name) 2797 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2798 else 2799 di_args->path[0] = '\0'; 2800 2801 out: 2802 rcu_read_unlock(); 2803 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2804 ret = -EFAULT; 2805 2806 kfree(di_args); 2807 return ret; 2808 } 2809 2810 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2811 { 2812 struct inode *inode = file_inode(file); 2813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2814 struct btrfs_root *root = BTRFS_I(inode)->root; 2815 struct btrfs_root *new_root; 2816 struct btrfs_dir_item *di; 2817 struct btrfs_trans_handle *trans; 2818 struct btrfs_path *path = NULL; 2819 struct btrfs_disk_key disk_key; 2820 struct fscrypt_str name = FSTR_INIT("default", 7); 2821 u64 objectid = 0; 2822 u64 dir_id; 2823 int ret; 2824 2825 if (!capable(CAP_SYS_ADMIN)) 2826 return -EPERM; 2827 2828 ret = mnt_want_write_file(file); 2829 if (ret) 2830 return ret; 2831 2832 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2833 ret = -EFAULT; 2834 goto out; 2835 } 2836 2837 if (!objectid) 2838 objectid = BTRFS_FS_TREE_OBJECTID; 2839 2840 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2841 if (IS_ERR(new_root)) { 2842 ret = PTR_ERR(new_root); 2843 goto out; 2844 } 2845 if (!btrfs_is_fstree(btrfs_root_id(new_root))) { 2846 ret = -ENOENT; 2847 goto out_free; 2848 } 2849 2850 path = btrfs_alloc_path(); 2851 if (!path) { 2852 ret = -ENOMEM; 2853 goto out_free; 2854 } 2855 2856 trans = btrfs_start_transaction(root, 1); 2857 if (IS_ERR(trans)) { 2858 ret = PTR_ERR(trans); 2859 goto out_free; 2860 } 2861 2862 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2863 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2864 dir_id, &name, 1); 2865 if (IS_ERR_OR_NULL(di)) { 2866 btrfs_release_path(path); 2867 btrfs_end_transaction(trans); 2868 btrfs_err(fs_info, 2869 "Umm, you don't have the default diritem, this isn't going to work"); 2870 ret = -ENOENT; 2871 goto out_free; 2872 } 2873 2874 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2875 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2876 btrfs_release_path(path); 2877 2878 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2879 btrfs_end_transaction(trans); 2880 out_free: 2881 btrfs_put_root(new_root); 2882 btrfs_free_path(path); 2883 out: 2884 mnt_drop_write_file(file); 2885 return ret; 2886 } 2887 2888 static void get_block_group_info(struct list_head *groups_list, 2889 struct btrfs_ioctl_space_info *space) 2890 { 2891 struct btrfs_block_group *block_group; 2892 2893 space->total_bytes = 0; 2894 space->used_bytes = 0; 2895 space->flags = 0; 2896 list_for_each_entry(block_group, groups_list, list) { 2897 space->flags = block_group->flags; 2898 space->total_bytes += block_group->length; 2899 space->used_bytes += block_group->used; 2900 } 2901 } 2902 2903 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2904 void __user *arg) 2905 { 2906 struct btrfs_ioctl_space_args space_args = { 0 }; 2907 struct btrfs_ioctl_space_info space; 2908 struct btrfs_ioctl_space_info *dest; 2909 struct btrfs_ioctl_space_info AUTO_KFREE(dest_orig); 2910 struct btrfs_ioctl_space_info __user *user_dest; 2911 struct btrfs_space_info *info; 2912 static const u64 types[] = { 2913 BTRFS_BLOCK_GROUP_DATA, 2914 BTRFS_BLOCK_GROUP_SYSTEM, 2915 BTRFS_BLOCK_GROUP_METADATA, 2916 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2917 }; 2918 int num_types = 4; 2919 int alloc_size; 2920 int ret = 0; 2921 u64 slot_count = 0; 2922 int i, c; 2923 2924 if (copy_from_user(&space_args, 2925 (struct btrfs_ioctl_space_args __user *)arg, 2926 sizeof(space_args))) 2927 return -EFAULT; 2928 2929 for (i = 0; i < num_types; i++) { 2930 struct btrfs_space_info *tmp; 2931 2932 info = NULL; 2933 list_for_each_entry(tmp, &fs_info->space_info, list) { 2934 if (tmp->flags == types[i]) { 2935 info = tmp; 2936 break; 2937 } 2938 } 2939 2940 if (!info) 2941 continue; 2942 2943 down_read(&info->groups_sem); 2944 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2945 if (!list_empty(&info->block_groups[c])) 2946 slot_count++; 2947 } 2948 up_read(&info->groups_sem); 2949 } 2950 2951 /* 2952 * Global block reserve, exported as a space_info 2953 */ 2954 slot_count++; 2955 2956 /* space_slots == 0 means they are asking for a count */ 2957 if (space_args.space_slots == 0) { 2958 space_args.total_spaces = slot_count; 2959 goto out; 2960 } 2961 2962 slot_count = min_t(u64, space_args.space_slots, slot_count); 2963 2964 alloc_size = sizeof(*dest) * slot_count; 2965 2966 /* we generally have at most 6 or so space infos, one for each raid 2967 * level. So, a whole page should be more than enough for everyone 2968 */ 2969 if (alloc_size > PAGE_SIZE) 2970 return -ENOMEM; 2971 2972 space_args.total_spaces = 0; 2973 dest = kmalloc(alloc_size, GFP_KERNEL); 2974 if (!dest) 2975 return -ENOMEM; 2976 dest_orig = dest; 2977 2978 /* now we have a buffer to copy into */ 2979 for (i = 0; i < num_types; i++) { 2980 struct btrfs_space_info *tmp; 2981 2982 if (!slot_count) 2983 break; 2984 2985 info = NULL; 2986 list_for_each_entry(tmp, &fs_info->space_info, list) { 2987 if (tmp->flags == types[i]) { 2988 info = tmp; 2989 break; 2990 } 2991 } 2992 2993 if (!info) 2994 continue; 2995 down_read(&info->groups_sem); 2996 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2997 if (!list_empty(&info->block_groups[c])) { 2998 get_block_group_info(&info->block_groups[c], 2999 &space); 3000 memcpy(dest, &space, sizeof(space)); 3001 dest++; 3002 space_args.total_spaces++; 3003 slot_count--; 3004 } 3005 if (!slot_count) 3006 break; 3007 } 3008 up_read(&info->groups_sem); 3009 } 3010 3011 /* 3012 * Add global block reserve 3013 */ 3014 if (slot_count) { 3015 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3016 3017 spin_lock(&block_rsv->lock); 3018 space.total_bytes = block_rsv->size; 3019 space.used_bytes = block_rsv->size - block_rsv->reserved; 3020 spin_unlock(&block_rsv->lock); 3021 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3022 memcpy(dest, &space, sizeof(space)); 3023 space_args.total_spaces++; 3024 } 3025 3026 user_dest = (struct btrfs_ioctl_space_info __user *) 3027 (arg + sizeof(struct btrfs_ioctl_space_args)); 3028 3029 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3030 return -EFAULT; 3031 3032 out: 3033 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3034 ret = -EFAULT; 3035 3036 return ret; 3037 } 3038 3039 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3040 void __user *argp) 3041 { 3042 struct btrfs_trans_handle *trans; 3043 u64 transid; 3044 3045 /* 3046 * Start orphan cleanup here for the given root in case it hasn't been 3047 * started already by other means. Errors are handled in the other 3048 * functions during transaction commit. 3049 */ 3050 btrfs_orphan_cleanup(root); 3051 3052 trans = btrfs_attach_transaction_barrier(root); 3053 if (IS_ERR(trans)) { 3054 if (PTR_ERR(trans) != -ENOENT) 3055 return PTR_ERR(trans); 3056 3057 /* No running transaction, don't bother */ 3058 transid = btrfs_get_last_trans_committed(root->fs_info); 3059 goto out; 3060 } 3061 transid = trans->transid; 3062 btrfs_commit_transaction_async(trans); 3063 out: 3064 if (argp) 3065 if (copy_to_user(argp, &transid, sizeof(transid))) 3066 return -EFAULT; 3067 return 0; 3068 } 3069 3070 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3071 void __user *argp) 3072 { 3073 /* By default wait for the current transaction. */ 3074 u64 transid = 0; 3075 3076 if (argp) 3077 if (copy_from_user(&transid, argp, sizeof(transid))) 3078 return -EFAULT; 3079 3080 return btrfs_wait_for_commit(fs_info, transid); 3081 } 3082 3083 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3084 { 3085 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3086 struct btrfs_ioctl_scrub_args *sa; 3087 int ret; 3088 3089 if (!capable(CAP_SYS_ADMIN)) 3090 return -EPERM; 3091 3092 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3093 btrfs_err(fs_info, "scrub: extent tree v2 not yet supported"); 3094 return -EINVAL; 3095 } 3096 3097 sa = memdup_user(arg, sizeof(*sa)); 3098 if (IS_ERR(sa)) 3099 return PTR_ERR(sa); 3100 3101 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3102 ret = -EOPNOTSUPP; 3103 goto out; 3104 } 3105 3106 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3107 ret = mnt_want_write_file(file); 3108 if (ret) 3109 goto out; 3110 } 3111 3112 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3113 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3114 0); 3115 3116 /* 3117 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3118 * error. This is important as it allows user space to know how much 3119 * progress scrub has done. For example, if scrub is canceled we get 3120 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3121 * space. Later user space can inspect the progress from the structure 3122 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3123 * previously (btrfs-progs does this). 3124 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3125 * then return -EFAULT to signal the structure was not copied or it may 3126 * be corrupt and unreliable due to a partial copy. 3127 */ 3128 if (copy_to_user(arg, sa, sizeof(*sa))) 3129 ret = -EFAULT; 3130 3131 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3132 mnt_drop_write_file(file); 3133 out: 3134 kfree(sa); 3135 return ret; 3136 } 3137 3138 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3139 { 3140 if (!capable(CAP_SYS_ADMIN)) 3141 return -EPERM; 3142 3143 return btrfs_scrub_cancel(fs_info); 3144 } 3145 3146 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3147 void __user *arg) 3148 { 3149 struct btrfs_ioctl_scrub_args *sa; 3150 int ret; 3151 3152 if (!capable(CAP_SYS_ADMIN)) 3153 return -EPERM; 3154 3155 sa = memdup_user(arg, sizeof(*sa)); 3156 if (IS_ERR(sa)) 3157 return PTR_ERR(sa); 3158 3159 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3160 3161 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3162 ret = -EFAULT; 3163 3164 kfree(sa); 3165 return ret; 3166 } 3167 3168 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3169 void __user *arg) 3170 { 3171 struct btrfs_ioctl_get_dev_stats *sa; 3172 int ret; 3173 3174 sa = memdup_user(arg, sizeof(*sa)); 3175 if (IS_ERR(sa)) 3176 return PTR_ERR(sa); 3177 3178 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3179 kfree(sa); 3180 return -EPERM; 3181 } 3182 3183 ret = btrfs_get_dev_stats(fs_info, sa); 3184 3185 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3186 ret = -EFAULT; 3187 3188 kfree(sa); 3189 return ret; 3190 } 3191 3192 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3193 void __user *arg) 3194 { 3195 struct btrfs_ioctl_dev_replace_args *p; 3196 int ret; 3197 3198 if (!capable(CAP_SYS_ADMIN)) 3199 return -EPERM; 3200 3201 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3202 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3203 return -EINVAL; 3204 } 3205 3206 p = memdup_user(arg, sizeof(*p)); 3207 if (IS_ERR(p)) 3208 return PTR_ERR(p); 3209 3210 switch (p->cmd) { 3211 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3212 if (sb_rdonly(fs_info->sb)) { 3213 ret = -EROFS; 3214 goto out; 3215 } 3216 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3217 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3218 } else { 3219 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3220 btrfs_exclop_finish(fs_info); 3221 } 3222 break; 3223 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3224 btrfs_dev_replace_status(fs_info, p); 3225 ret = 0; 3226 break; 3227 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3228 p->result = btrfs_dev_replace_cancel(fs_info); 3229 ret = 0; 3230 break; 3231 default: 3232 ret = -EINVAL; 3233 break; 3234 } 3235 3236 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3237 ret = -EFAULT; 3238 out: 3239 kfree(p); 3240 return ret; 3241 } 3242 3243 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3244 { 3245 int ret = 0; 3246 int i; 3247 u64 rel_ptr; 3248 int size; 3249 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3250 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 3251 struct btrfs_path *path; 3252 3253 if (!capable(CAP_DAC_READ_SEARCH)) 3254 return -EPERM; 3255 3256 path = btrfs_alloc_path(); 3257 if (!path) { 3258 ret = -ENOMEM; 3259 goto out; 3260 } 3261 3262 ipa = memdup_user(arg, sizeof(*ipa)); 3263 if (IS_ERR(ipa)) { 3264 ret = PTR_ERR(ipa); 3265 ipa = NULL; 3266 goto out; 3267 } 3268 3269 size = min_t(u32, ipa->size, 4096); 3270 ipath = init_ipath(size, root, path); 3271 if (IS_ERR(ipath)) { 3272 ret = PTR_ERR(ipath); 3273 ipath = NULL; 3274 goto out; 3275 } 3276 3277 ret = paths_from_inode(ipa->inum, ipath); 3278 if (ret < 0) 3279 goto out; 3280 3281 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3282 rel_ptr = ipath->fspath->val[i] - 3283 (u64)(unsigned long)ipath->fspath->val; 3284 ipath->fspath->val[i] = rel_ptr; 3285 } 3286 3287 btrfs_free_path(path); 3288 path = NULL; 3289 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3290 ipath->fspath, size); 3291 if (ret) { 3292 ret = -EFAULT; 3293 goto out; 3294 } 3295 3296 out: 3297 btrfs_free_path(path); 3298 kfree(ipa); 3299 3300 return ret; 3301 } 3302 3303 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3304 void __user *arg, int version) 3305 { 3306 int ret = 0; 3307 int size; 3308 struct btrfs_ioctl_logical_ino_args *loi; 3309 struct btrfs_data_container *inodes = NULL; 3310 bool ignore_offset; 3311 3312 if (!capable(CAP_SYS_ADMIN)) 3313 return -EPERM; 3314 3315 loi = memdup_user(arg, sizeof(*loi)); 3316 if (IS_ERR(loi)) 3317 return PTR_ERR(loi); 3318 3319 if (version == 1) { 3320 ignore_offset = false; 3321 size = min_t(u32, loi->size, SZ_64K); 3322 } else { 3323 /* All reserved bits must be 0 for now */ 3324 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3325 ret = -EINVAL; 3326 goto out_loi; 3327 } 3328 /* Only accept flags we have defined so far */ 3329 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3330 ret = -EINVAL; 3331 goto out_loi; 3332 } 3333 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3334 size = min_t(u32, loi->size, SZ_16M); 3335 } 3336 3337 inodes = init_data_container(size); 3338 if (IS_ERR(inodes)) { 3339 ret = PTR_ERR(inodes); 3340 goto out_loi; 3341 } 3342 3343 ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset); 3344 if (ret == -EINVAL) 3345 ret = -ENOENT; 3346 if (ret < 0) 3347 goto out; 3348 3349 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3350 size); 3351 if (ret) 3352 ret = -EFAULT; 3353 3354 out: 3355 kvfree(inodes); 3356 out_loi: 3357 kfree(loi); 3358 3359 return ret; 3360 } 3361 3362 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3363 struct btrfs_ioctl_balance_args *bargs) 3364 { 3365 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3366 3367 bargs->flags = bctl->flags; 3368 3369 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3370 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3371 if (atomic_read(&fs_info->balance_pause_req)) 3372 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3373 if (atomic_read(&fs_info->balance_cancel_req)) 3374 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3375 3376 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3377 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3378 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3379 3380 spin_lock(&fs_info->balance_lock); 3381 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3382 spin_unlock(&fs_info->balance_lock); 3383 } 3384 3385 /* 3386 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3387 * required. 3388 * 3389 * @fs_info: the filesystem 3390 * @excl_acquired: ptr to boolean value which is set to false in case balance 3391 * is being resumed 3392 * 3393 * Return 0 on success in which case both fs_info::balance is acquired as well 3394 * as exclusive ops are blocked. In case of failure return an error code. 3395 */ 3396 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3397 { 3398 int ret; 3399 3400 /* 3401 * Exclusive operation is locked. Three possibilities: 3402 * (1) some other op is running 3403 * (2) balance is running 3404 * (3) balance is paused -- special case (think resume) 3405 */ 3406 while (1) { 3407 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3408 *excl_acquired = true; 3409 mutex_lock(&fs_info->balance_mutex); 3410 return 0; 3411 } 3412 3413 mutex_lock(&fs_info->balance_mutex); 3414 if (fs_info->balance_ctl) { 3415 /* This is either (2) or (3) */ 3416 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3417 /* This is (2) */ 3418 ret = -EINPROGRESS; 3419 goto out_failure; 3420 3421 } else { 3422 mutex_unlock(&fs_info->balance_mutex); 3423 /* 3424 * Lock released to allow other waiters to 3425 * continue, we'll reexamine the status again. 3426 */ 3427 mutex_lock(&fs_info->balance_mutex); 3428 3429 if (fs_info->balance_ctl && 3430 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3431 /* This is (3) */ 3432 *excl_acquired = false; 3433 return 0; 3434 } 3435 } 3436 } else { 3437 /* This is (1) */ 3438 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3439 goto out_failure; 3440 } 3441 3442 mutex_unlock(&fs_info->balance_mutex); 3443 } 3444 3445 out_failure: 3446 mutex_unlock(&fs_info->balance_mutex); 3447 *excl_acquired = false; 3448 return ret; 3449 } 3450 3451 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3452 { 3453 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3454 struct btrfs_fs_info *fs_info = root->fs_info; 3455 struct btrfs_ioctl_balance_args *bargs; 3456 struct btrfs_balance_control *bctl; 3457 bool need_unlock = true; 3458 int ret; 3459 3460 if (!capable(CAP_SYS_ADMIN)) 3461 return -EPERM; 3462 3463 ret = mnt_want_write_file(file); 3464 if (ret) 3465 return ret; 3466 3467 bargs = memdup_user(arg, sizeof(*bargs)); 3468 if (IS_ERR(bargs)) { 3469 ret = PTR_ERR(bargs); 3470 bargs = NULL; 3471 goto out; 3472 } 3473 3474 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3475 if (ret) 3476 goto out; 3477 3478 lockdep_assert_held(&fs_info->balance_mutex); 3479 3480 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3481 if (!fs_info->balance_ctl) { 3482 ret = -ENOTCONN; 3483 goto out_unlock; 3484 } 3485 3486 bctl = fs_info->balance_ctl; 3487 spin_lock(&fs_info->balance_lock); 3488 bctl->flags |= BTRFS_BALANCE_RESUME; 3489 spin_unlock(&fs_info->balance_lock); 3490 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3491 3492 goto do_balance; 3493 } 3494 3495 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3496 ret = -EINVAL; 3497 goto out_unlock; 3498 } 3499 3500 if (fs_info->balance_ctl) { 3501 ret = -EINPROGRESS; 3502 goto out_unlock; 3503 } 3504 3505 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3506 if (!bctl) { 3507 ret = -ENOMEM; 3508 goto out_unlock; 3509 } 3510 3511 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3512 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3513 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3514 3515 bctl->flags = bargs->flags; 3516 do_balance: 3517 /* 3518 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3519 * bctl is freed in reset_balance_state, or, if restriper was paused 3520 * all the way until unmount, in free_fs_info. The flag should be 3521 * cleared after reset_balance_state. 3522 */ 3523 need_unlock = false; 3524 3525 ret = btrfs_balance(fs_info, bctl, bargs); 3526 bctl = NULL; 3527 3528 if (ret == 0 || ret == -ECANCELED) { 3529 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3530 ret = -EFAULT; 3531 } 3532 3533 kfree(bctl); 3534 out_unlock: 3535 mutex_unlock(&fs_info->balance_mutex); 3536 if (need_unlock) 3537 btrfs_exclop_finish(fs_info); 3538 out: 3539 mnt_drop_write_file(file); 3540 kfree(bargs); 3541 return ret; 3542 } 3543 3544 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3545 { 3546 if (!capable(CAP_SYS_ADMIN)) 3547 return -EPERM; 3548 3549 switch (cmd) { 3550 case BTRFS_BALANCE_CTL_PAUSE: 3551 return btrfs_pause_balance(fs_info); 3552 case BTRFS_BALANCE_CTL_CANCEL: 3553 return btrfs_cancel_balance(fs_info); 3554 } 3555 3556 return -EINVAL; 3557 } 3558 3559 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3560 void __user *arg) 3561 { 3562 struct btrfs_ioctl_balance_args AUTO_KFREE(bargs); 3563 int ret = 0; 3564 3565 if (!capable(CAP_SYS_ADMIN)) 3566 return -EPERM; 3567 3568 mutex_lock(&fs_info->balance_mutex); 3569 if (!fs_info->balance_ctl) { 3570 ret = -ENOTCONN; 3571 goto out; 3572 } 3573 3574 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3575 if (!bargs) { 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 3580 btrfs_update_ioctl_balance_args(fs_info, bargs); 3581 3582 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3583 ret = -EFAULT; 3584 out: 3585 mutex_unlock(&fs_info->balance_mutex); 3586 return ret; 3587 } 3588 3589 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3590 { 3591 struct inode *inode = file_inode(file); 3592 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3593 struct btrfs_ioctl_quota_ctl_args *sa; 3594 int ret; 3595 3596 if (!capable(CAP_SYS_ADMIN)) 3597 return -EPERM; 3598 3599 ret = mnt_want_write_file(file); 3600 if (ret) 3601 return ret; 3602 3603 sa = memdup_user(arg, sizeof(*sa)); 3604 if (IS_ERR(sa)) { 3605 ret = PTR_ERR(sa); 3606 goto drop_write; 3607 } 3608 3609 switch (sa->cmd) { 3610 case BTRFS_QUOTA_CTL_ENABLE: 3611 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3612 down_write(&fs_info->subvol_sem); 3613 ret = btrfs_quota_enable(fs_info, sa); 3614 up_write(&fs_info->subvol_sem); 3615 break; 3616 case BTRFS_QUOTA_CTL_DISABLE: 3617 /* 3618 * Lock the cleaner mutex to prevent races with concurrent 3619 * relocation, because relocation may be building backrefs for 3620 * blocks of the quota root while we are deleting the root. This 3621 * is like dropping fs roots of deleted snapshots/subvolumes, we 3622 * need the same protection. 3623 * 3624 * This also prevents races between concurrent tasks trying to 3625 * disable quotas, because we will unlock and relock 3626 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3627 * 3628 * We take this here because we have the dependency of 3629 * 3630 * inode_lock -> subvol_sem 3631 * 3632 * because of rename. With relocation we can prealloc extents, 3633 * so that makes the dependency chain 3634 * 3635 * cleaner_mutex -> inode_lock -> subvol_sem 3636 * 3637 * so we must take the cleaner_mutex here before we take the 3638 * subvol_sem. The deadlock can't actually happen, but this 3639 * quiets lockdep. 3640 */ 3641 mutex_lock(&fs_info->cleaner_mutex); 3642 down_write(&fs_info->subvol_sem); 3643 ret = btrfs_quota_disable(fs_info); 3644 up_write(&fs_info->subvol_sem); 3645 mutex_unlock(&fs_info->cleaner_mutex); 3646 break; 3647 default: 3648 ret = -EINVAL; 3649 break; 3650 } 3651 3652 kfree(sa); 3653 drop_write: 3654 mnt_drop_write_file(file); 3655 return ret; 3656 } 3657 3658 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3659 { 3660 struct inode *inode = file_inode(file); 3661 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3662 struct btrfs_root *root = BTRFS_I(inode)->root; 3663 struct btrfs_ioctl_qgroup_assign_args *sa; 3664 struct btrfs_qgroup_list *prealloc = NULL; 3665 struct btrfs_trans_handle *trans; 3666 int ret; 3667 int err; 3668 3669 if (!capable(CAP_SYS_ADMIN)) 3670 return -EPERM; 3671 3672 if (!btrfs_qgroup_enabled(fs_info)) 3673 return -ENOTCONN; 3674 3675 ret = mnt_want_write_file(file); 3676 if (ret) 3677 return ret; 3678 3679 sa = memdup_user(arg, sizeof(*sa)); 3680 if (IS_ERR(sa)) { 3681 ret = PTR_ERR(sa); 3682 goto drop_write; 3683 } 3684 3685 if (sa->assign) { 3686 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); 3687 if (!prealloc) { 3688 ret = -ENOMEM; 3689 goto out; 3690 } 3691 } 3692 3693 trans = btrfs_join_transaction(root); 3694 if (IS_ERR(trans)) { 3695 ret = PTR_ERR(trans); 3696 goto out; 3697 } 3698 3699 /* 3700 * Prealloc ownership is moved to the relation handler, there it's used 3701 * or freed on error. 3702 */ 3703 if (sa->assign) { 3704 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); 3705 prealloc = NULL; 3706 } else { 3707 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3708 } 3709 3710 /* update qgroup status and info */ 3711 mutex_lock(&fs_info->qgroup_ioctl_lock); 3712 err = btrfs_run_qgroups(trans); 3713 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3714 if (err < 0) 3715 btrfs_warn(fs_info, 3716 "qgroup status update failed after %s relation, marked as inconsistent", 3717 sa->assign ? "adding" : "deleting"); 3718 err = btrfs_end_transaction(trans); 3719 if (err && !ret) 3720 ret = err; 3721 3722 out: 3723 kfree(prealloc); 3724 kfree(sa); 3725 drop_write: 3726 mnt_drop_write_file(file); 3727 return ret; 3728 } 3729 3730 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3731 { 3732 struct inode *inode = file_inode(file); 3733 struct btrfs_root *root = BTRFS_I(inode)->root; 3734 struct btrfs_ioctl_qgroup_create_args *sa; 3735 struct btrfs_trans_handle *trans; 3736 int ret; 3737 int err; 3738 3739 if (!capable(CAP_SYS_ADMIN)) 3740 return -EPERM; 3741 3742 if (!btrfs_qgroup_enabled(root->fs_info)) 3743 return -ENOTCONN; 3744 3745 ret = mnt_want_write_file(file); 3746 if (ret) 3747 return ret; 3748 3749 sa = memdup_user(arg, sizeof(*sa)); 3750 if (IS_ERR(sa)) { 3751 ret = PTR_ERR(sa); 3752 goto drop_write; 3753 } 3754 3755 if (!sa->qgroupid) { 3756 ret = -EINVAL; 3757 goto out; 3758 } 3759 3760 if (sa->create && btrfs_is_fstree(sa->qgroupid)) { 3761 ret = -EINVAL; 3762 goto out; 3763 } 3764 3765 trans = btrfs_join_transaction(root); 3766 if (IS_ERR(trans)) { 3767 ret = PTR_ERR(trans); 3768 goto out; 3769 } 3770 3771 if (sa->create) { 3772 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3773 } else { 3774 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3775 } 3776 3777 err = btrfs_end_transaction(trans); 3778 if (err && !ret) 3779 ret = err; 3780 3781 out: 3782 kfree(sa); 3783 drop_write: 3784 mnt_drop_write_file(file); 3785 return ret; 3786 } 3787 3788 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3789 { 3790 struct inode *inode = file_inode(file); 3791 struct btrfs_root *root = BTRFS_I(inode)->root; 3792 struct btrfs_ioctl_qgroup_limit_args *sa; 3793 struct btrfs_trans_handle *trans; 3794 int ret; 3795 int err; 3796 u64 qgroupid; 3797 3798 if (!capable(CAP_SYS_ADMIN)) 3799 return -EPERM; 3800 3801 if (!btrfs_qgroup_enabled(root->fs_info)) 3802 return -ENOTCONN; 3803 3804 ret = mnt_want_write_file(file); 3805 if (ret) 3806 return ret; 3807 3808 sa = memdup_user(arg, sizeof(*sa)); 3809 if (IS_ERR(sa)) { 3810 ret = PTR_ERR(sa); 3811 goto drop_write; 3812 } 3813 3814 trans = btrfs_join_transaction(root); 3815 if (IS_ERR(trans)) { 3816 ret = PTR_ERR(trans); 3817 goto out; 3818 } 3819 3820 qgroupid = sa->qgroupid; 3821 if (!qgroupid) { 3822 /* take the current subvol as qgroup */ 3823 qgroupid = btrfs_root_id(root); 3824 } 3825 3826 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3827 3828 err = btrfs_end_transaction(trans); 3829 if (err && !ret) 3830 ret = err; 3831 3832 out: 3833 kfree(sa); 3834 drop_write: 3835 mnt_drop_write_file(file); 3836 return ret; 3837 } 3838 3839 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3840 { 3841 struct inode *inode = file_inode(file); 3842 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3843 struct btrfs_ioctl_quota_rescan_args *qsa; 3844 int ret; 3845 3846 if (!capable(CAP_SYS_ADMIN)) 3847 return -EPERM; 3848 3849 if (!btrfs_qgroup_enabled(fs_info)) 3850 return -ENOTCONN; 3851 3852 ret = mnt_want_write_file(file); 3853 if (ret) 3854 return ret; 3855 3856 qsa = memdup_user(arg, sizeof(*qsa)); 3857 if (IS_ERR(qsa)) { 3858 ret = PTR_ERR(qsa); 3859 goto drop_write; 3860 } 3861 3862 if (qsa->flags) { 3863 ret = -EINVAL; 3864 goto out; 3865 } 3866 3867 ret = btrfs_qgroup_rescan(fs_info); 3868 3869 out: 3870 kfree(qsa); 3871 drop_write: 3872 mnt_drop_write_file(file); 3873 return ret; 3874 } 3875 3876 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3877 void __user *arg) 3878 { 3879 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3880 3881 if (!capable(CAP_SYS_ADMIN)) 3882 return -EPERM; 3883 3884 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3885 qsa.flags = 1; 3886 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3887 } 3888 3889 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3890 return -EFAULT; 3891 3892 return 0; 3893 } 3894 3895 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info) 3896 { 3897 if (!capable(CAP_SYS_ADMIN)) 3898 return -EPERM; 3899 3900 return btrfs_qgroup_wait_for_completion(fs_info, true); 3901 } 3902 3903 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3904 struct mnt_idmap *idmap, 3905 struct btrfs_ioctl_received_subvol_args *sa) 3906 { 3907 struct inode *inode = file_inode(file); 3908 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3909 struct btrfs_root *root = BTRFS_I(inode)->root; 3910 struct btrfs_root_item *root_item = &root->root_item; 3911 struct btrfs_trans_handle *trans; 3912 struct timespec64 ct = current_time(inode); 3913 int ret = 0; 3914 int received_uuid_changed; 3915 3916 if (!inode_owner_or_capable(idmap, inode)) 3917 return -EPERM; 3918 3919 ret = mnt_want_write_file(file); 3920 if (ret < 0) 3921 return ret; 3922 3923 down_write(&fs_info->subvol_sem); 3924 3925 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3926 ret = -EINVAL; 3927 goto out; 3928 } 3929 3930 if (btrfs_root_readonly(root)) { 3931 ret = -EROFS; 3932 goto out; 3933 } 3934 3935 /* 3936 * 1 - root item 3937 * 2 - uuid items (received uuid + subvol uuid) 3938 */ 3939 trans = btrfs_start_transaction(root, 3); 3940 if (IS_ERR(trans)) { 3941 ret = PTR_ERR(trans); 3942 trans = NULL; 3943 goto out; 3944 } 3945 3946 sa->rtransid = trans->transid; 3947 sa->rtime.sec = ct.tv_sec; 3948 sa->rtime.nsec = ct.tv_nsec; 3949 3950 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3951 BTRFS_UUID_SIZE); 3952 if (received_uuid_changed && 3953 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3954 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3955 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3956 btrfs_root_id(root)); 3957 if (unlikely(ret && ret != -ENOENT)) { 3958 btrfs_abort_transaction(trans, ret); 3959 btrfs_end_transaction(trans); 3960 goto out; 3961 } 3962 } 3963 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3964 btrfs_set_root_stransid(root_item, sa->stransid); 3965 btrfs_set_root_rtransid(root_item, sa->rtransid); 3966 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 3967 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 3968 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 3969 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 3970 3971 ret = btrfs_update_root(trans, fs_info->tree_root, 3972 &root->root_key, &root->root_item); 3973 if (ret < 0) { 3974 btrfs_end_transaction(trans); 3975 goto out; 3976 } 3977 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 3978 ret = btrfs_uuid_tree_add(trans, sa->uuid, 3979 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3980 btrfs_root_id(root)); 3981 if (unlikely(ret < 0 && ret != -EEXIST)) { 3982 btrfs_abort_transaction(trans, ret); 3983 btrfs_end_transaction(trans); 3984 goto out; 3985 } 3986 } 3987 ret = btrfs_commit_transaction(trans); 3988 out: 3989 up_write(&fs_info->subvol_sem); 3990 mnt_drop_write_file(file); 3991 return ret; 3992 } 3993 3994 #ifdef CONFIG_64BIT 3995 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 3996 void __user *arg) 3997 { 3998 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 3999 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4000 int ret = 0; 4001 4002 args32 = memdup_user(arg, sizeof(*args32)); 4003 if (IS_ERR(args32)) 4004 return PTR_ERR(args32); 4005 4006 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4007 if (!args64) { 4008 ret = -ENOMEM; 4009 goto out; 4010 } 4011 4012 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4013 args64->stransid = args32->stransid; 4014 args64->rtransid = args32->rtransid; 4015 args64->stime.sec = args32->stime.sec; 4016 args64->stime.nsec = args32->stime.nsec; 4017 args64->rtime.sec = args32->rtime.sec; 4018 args64->rtime.nsec = args32->rtime.nsec; 4019 args64->flags = args32->flags; 4020 4021 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4022 if (ret) 4023 goto out; 4024 4025 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4026 args32->stransid = args64->stransid; 4027 args32->rtransid = args64->rtransid; 4028 args32->stime.sec = args64->stime.sec; 4029 args32->stime.nsec = args64->stime.nsec; 4030 args32->rtime.sec = args64->rtime.sec; 4031 args32->rtime.nsec = args64->rtime.nsec; 4032 args32->flags = args64->flags; 4033 4034 ret = copy_to_user(arg, args32, sizeof(*args32)); 4035 if (ret) 4036 ret = -EFAULT; 4037 4038 out: 4039 kfree(args32); 4040 kfree(args64); 4041 return ret; 4042 } 4043 #endif 4044 4045 static long btrfs_ioctl_set_received_subvol(struct file *file, 4046 void __user *arg) 4047 { 4048 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4049 int ret = 0; 4050 4051 sa = memdup_user(arg, sizeof(*sa)); 4052 if (IS_ERR(sa)) 4053 return PTR_ERR(sa); 4054 4055 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4056 4057 if (ret) 4058 goto out; 4059 4060 ret = copy_to_user(arg, sa, sizeof(*sa)); 4061 if (ret) 4062 ret = -EFAULT; 4063 4064 out: 4065 kfree(sa); 4066 return ret; 4067 } 4068 4069 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4070 void __user *arg) 4071 { 4072 size_t len; 4073 int ret; 4074 char label[BTRFS_LABEL_SIZE]; 4075 4076 spin_lock(&fs_info->super_lock); 4077 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4078 spin_unlock(&fs_info->super_lock); 4079 4080 len = strnlen(label, BTRFS_LABEL_SIZE); 4081 4082 if (len == BTRFS_LABEL_SIZE) { 4083 btrfs_warn(fs_info, 4084 "label is too long, return the first %zu bytes", 4085 --len); 4086 } 4087 4088 ret = copy_to_user(arg, label, len); 4089 4090 return ret ? -EFAULT : 0; 4091 } 4092 4093 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4094 { 4095 struct inode *inode = file_inode(file); 4096 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4097 struct btrfs_root *root = BTRFS_I(inode)->root; 4098 struct btrfs_super_block *super_block = fs_info->super_copy; 4099 struct btrfs_trans_handle *trans; 4100 char label[BTRFS_LABEL_SIZE]; 4101 int ret; 4102 4103 if (!capable(CAP_SYS_ADMIN)) 4104 return -EPERM; 4105 4106 if (copy_from_user(label, arg, sizeof(label))) 4107 return -EFAULT; 4108 4109 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4110 btrfs_err(fs_info, 4111 "unable to set label with more than %d bytes", 4112 BTRFS_LABEL_SIZE - 1); 4113 return -EINVAL; 4114 } 4115 4116 ret = mnt_want_write_file(file); 4117 if (ret) 4118 return ret; 4119 4120 trans = btrfs_start_transaction(root, 0); 4121 if (IS_ERR(trans)) { 4122 ret = PTR_ERR(trans); 4123 goto out_unlock; 4124 } 4125 4126 spin_lock(&fs_info->super_lock); 4127 strscpy(super_block->label, label); 4128 spin_unlock(&fs_info->super_lock); 4129 ret = btrfs_commit_transaction(trans); 4130 4131 out_unlock: 4132 mnt_drop_write_file(file); 4133 return ret; 4134 } 4135 4136 #define INIT_FEATURE_FLAGS(suffix) \ 4137 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4138 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4139 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4140 4141 int btrfs_ioctl_get_supported_features(void __user *arg) 4142 { 4143 static const struct btrfs_ioctl_feature_flags features[3] = { 4144 INIT_FEATURE_FLAGS(SUPP), 4145 INIT_FEATURE_FLAGS(SAFE_SET), 4146 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4147 }; 4148 4149 if (copy_to_user(arg, &features, sizeof(features))) 4150 return -EFAULT; 4151 4152 return 0; 4153 } 4154 4155 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4156 void __user *arg) 4157 { 4158 struct btrfs_super_block *super_block = fs_info->super_copy; 4159 struct btrfs_ioctl_feature_flags features; 4160 4161 features.compat_flags = btrfs_super_compat_flags(super_block); 4162 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4163 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4164 4165 if (copy_to_user(arg, &features, sizeof(features))) 4166 return -EFAULT; 4167 4168 return 0; 4169 } 4170 4171 static int check_feature_bits(const struct btrfs_fs_info *fs_info, 4172 enum btrfs_feature_set set, 4173 u64 change_mask, u64 flags, u64 supported_flags, 4174 u64 safe_set, u64 safe_clear) 4175 { 4176 const char *type = btrfs_feature_set_name(set); 4177 const char AUTO_KFREE(names); 4178 u64 disallowed, unsupported; 4179 u64 set_mask = flags & change_mask; 4180 u64 clear_mask = ~flags & change_mask; 4181 4182 unsupported = set_mask & ~supported_flags; 4183 if (unsupported) { 4184 names = btrfs_printable_features(set, unsupported); 4185 if (names) 4186 btrfs_warn(fs_info, 4187 "this kernel does not support the %s feature bit%s", 4188 names, strchr(names, ',') ? "s" : ""); 4189 else 4190 btrfs_warn(fs_info, 4191 "this kernel does not support %s bits 0x%llx", 4192 type, unsupported); 4193 return -EOPNOTSUPP; 4194 } 4195 4196 disallowed = set_mask & ~safe_set; 4197 if (disallowed) { 4198 names = btrfs_printable_features(set, disallowed); 4199 if (names) 4200 btrfs_warn(fs_info, 4201 "can't set the %s feature bit%s while mounted", 4202 names, strchr(names, ',') ? "s" : ""); 4203 else 4204 btrfs_warn(fs_info, 4205 "can't set %s bits 0x%llx while mounted", 4206 type, disallowed); 4207 return -EPERM; 4208 } 4209 4210 disallowed = clear_mask & ~safe_clear; 4211 if (disallowed) { 4212 names = btrfs_printable_features(set, disallowed); 4213 if (names) 4214 btrfs_warn(fs_info, 4215 "can't clear the %s feature bit%s while mounted", 4216 names, strchr(names, ',') ? "s" : ""); 4217 else 4218 btrfs_warn(fs_info, 4219 "can't clear %s bits 0x%llx while mounted", 4220 type, disallowed); 4221 return -EPERM; 4222 } 4223 4224 return 0; 4225 } 4226 4227 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4228 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4229 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4230 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4231 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4232 4233 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4234 { 4235 struct inode *inode = file_inode(file); 4236 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4237 struct btrfs_root *root = BTRFS_I(inode)->root; 4238 struct btrfs_super_block *super_block = fs_info->super_copy; 4239 struct btrfs_ioctl_feature_flags flags[2]; 4240 struct btrfs_trans_handle *trans; 4241 u64 newflags; 4242 int ret; 4243 4244 if (!capable(CAP_SYS_ADMIN)) 4245 return -EPERM; 4246 4247 if (copy_from_user(flags, arg, sizeof(flags))) 4248 return -EFAULT; 4249 4250 /* Nothing to do */ 4251 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4252 !flags[0].incompat_flags) 4253 return 0; 4254 4255 ret = check_feature(fs_info, flags[0].compat_flags, 4256 flags[1].compat_flags, COMPAT); 4257 if (ret) 4258 return ret; 4259 4260 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4261 flags[1].compat_ro_flags, COMPAT_RO); 4262 if (ret) 4263 return ret; 4264 4265 ret = check_feature(fs_info, flags[0].incompat_flags, 4266 flags[1].incompat_flags, INCOMPAT); 4267 if (ret) 4268 return ret; 4269 4270 ret = mnt_want_write_file(file); 4271 if (ret) 4272 return ret; 4273 4274 trans = btrfs_start_transaction(root, 0); 4275 if (IS_ERR(trans)) { 4276 ret = PTR_ERR(trans); 4277 goto out_drop_write; 4278 } 4279 4280 spin_lock(&fs_info->super_lock); 4281 newflags = btrfs_super_compat_flags(super_block); 4282 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4283 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4284 btrfs_set_super_compat_flags(super_block, newflags); 4285 4286 newflags = btrfs_super_compat_ro_flags(super_block); 4287 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4288 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4289 btrfs_set_super_compat_ro_flags(super_block, newflags); 4290 4291 newflags = btrfs_super_incompat_flags(super_block); 4292 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4293 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4294 btrfs_set_super_incompat_flags(super_block, newflags); 4295 spin_unlock(&fs_info->super_lock); 4296 4297 ret = btrfs_commit_transaction(trans); 4298 out_drop_write: 4299 mnt_drop_write_file(file); 4300 4301 return ret; 4302 } 4303 4304 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat) 4305 { 4306 struct btrfs_ioctl_send_args *arg; 4307 int ret; 4308 4309 if (compat) { 4310 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4311 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4312 4313 ret = copy_from_user(&args32, argp, sizeof(args32)); 4314 if (ret) 4315 return -EFAULT; 4316 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4317 if (!arg) 4318 return -ENOMEM; 4319 arg->send_fd = args32.send_fd; 4320 arg->clone_sources_count = args32.clone_sources_count; 4321 arg->clone_sources = compat_ptr(args32.clone_sources); 4322 arg->parent_root = args32.parent_root; 4323 arg->flags = args32.flags; 4324 arg->version = args32.version; 4325 memcpy(arg->reserved, args32.reserved, 4326 sizeof(args32.reserved)); 4327 #else 4328 return -ENOTTY; 4329 #endif 4330 } else { 4331 arg = memdup_user(argp, sizeof(*arg)); 4332 if (IS_ERR(arg)) 4333 return PTR_ERR(arg); 4334 } 4335 ret = btrfs_ioctl_send(root, arg); 4336 kfree(arg); 4337 return ret; 4338 } 4339 4340 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4341 bool compat) 4342 { 4343 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4344 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4345 flags); 4346 size_t copy_end; 4347 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 4348 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4349 struct extent_io_tree *io_tree = &inode->io_tree; 4350 struct iovec iovstack[UIO_FASTIOV]; 4351 struct iovec *iov = iovstack; 4352 struct iov_iter iter; 4353 loff_t pos; 4354 struct kiocb kiocb; 4355 ssize_t ret; 4356 u64 disk_bytenr, disk_io_size; 4357 struct extent_state *cached_state = NULL; 4358 4359 if (!capable(CAP_SYS_ADMIN)) { 4360 ret = -EPERM; 4361 goto out_acct; 4362 } 4363 4364 if (compat) { 4365 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4366 struct btrfs_ioctl_encoded_io_args_32 args32; 4367 4368 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4369 flags); 4370 if (copy_from_user(&args32, argp, copy_end)) { 4371 ret = -EFAULT; 4372 goto out_acct; 4373 } 4374 args.iov = compat_ptr(args32.iov); 4375 args.iovcnt = args32.iovcnt; 4376 args.offset = args32.offset; 4377 args.flags = args32.flags; 4378 #else 4379 return -ENOTTY; 4380 #endif 4381 } else { 4382 copy_end = copy_end_kernel; 4383 if (copy_from_user(&args, argp, copy_end)) { 4384 ret = -EFAULT; 4385 goto out_acct; 4386 } 4387 } 4388 if (args.flags != 0) { 4389 ret = -EINVAL; 4390 goto out_acct; 4391 } 4392 4393 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4394 &iov, &iter); 4395 if (ret < 0) 4396 goto out_acct; 4397 4398 if (iov_iter_count(&iter) == 0) { 4399 ret = 0; 4400 goto out_iov; 4401 } 4402 pos = args.offset; 4403 ret = rw_verify_area(READ, file, &pos, args.len); 4404 if (ret < 0) 4405 goto out_iov; 4406 4407 init_sync_kiocb(&kiocb, file); 4408 kiocb.ki_pos = pos; 4409 4410 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state, 4411 &disk_bytenr, &disk_io_size); 4412 4413 if (ret == -EIOCBQUEUED) { 4414 bool unlocked = false; 4415 u64 start, lockend, count; 4416 4417 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize); 4418 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4419 4420 if (args.compression) 4421 count = disk_io_size; 4422 else 4423 count = args.len; 4424 4425 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend, 4426 &cached_state, disk_bytenr, 4427 disk_io_size, count, 4428 args.compression, &unlocked); 4429 4430 if (!unlocked) { 4431 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4432 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4433 } 4434 } 4435 4436 if (ret >= 0) { 4437 fsnotify_access(file); 4438 if (copy_to_user(argp + copy_end, 4439 (char *)&args + copy_end_kernel, 4440 sizeof(args) - copy_end_kernel)) 4441 ret = -EFAULT; 4442 } 4443 4444 out_iov: 4445 kfree(iov); 4446 out_acct: 4447 if (ret > 0) 4448 add_rchar(current, ret); 4449 inc_syscr(current); 4450 return ret; 4451 } 4452 4453 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4454 { 4455 struct btrfs_ioctl_encoded_io_args args; 4456 struct iovec iovstack[UIO_FASTIOV]; 4457 struct iovec *iov = iovstack; 4458 struct iov_iter iter; 4459 loff_t pos; 4460 struct kiocb kiocb; 4461 ssize_t ret; 4462 4463 if (!capable(CAP_SYS_ADMIN)) { 4464 ret = -EPERM; 4465 goto out_acct; 4466 } 4467 4468 if (!(file->f_mode & FMODE_WRITE)) { 4469 ret = -EBADF; 4470 goto out_acct; 4471 } 4472 4473 if (compat) { 4474 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4475 struct btrfs_ioctl_encoded_io_args_32 args32; 4476 4477 if (copy_from_user(&args32, argp, sizeof(args32))) { 4478 ret = -EFAULT; 4479 goto out_acct; 4480 } 4481 args.iov = compat_ptr(args32.iov); 4482 args.iovcnt = args32.iovcnt; 4483 args.offset = args32.offset; 4484 args.flags = args32.flags; 4485 args.len = args32.len; 4486 args.unencoded_len = args32.unencoded_len; 4487 args.unencoded_offset = args32.unencoded_offset; 4488 args.compression = args32.compression; 4489 args.encryption = args32.encryption; 4490 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4491 #else 4492 return -ENOTTY; 4493 #endif 4494 } else { 4495 if (copy_from_user(&args, argp, sizeof(args))) { 4496 ret = -EFAULT; 4497 goto out_acct; 4498 } 4499 } 4500 4501 ret = -EINVAL; 4502 if (args.flags != 0) 4503 goto out_acct; 4504 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4505 goto out_acct; 4506 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4507 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4508 goto out_acct; 4509 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4510 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4511 goto out_acct; 4512 if (args.unencoded_offset > args.unencoded_len) 4513 goto out_acct; 4514 if (args.len > args.unencoded_len - args.unencoded_offset) 4515 goto out_acct; 4516 4517 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4518 &iov, &iter); 4519 if (ret < 0) 4520 goto out_acct; 4521 4522 if (iov_iter_count(&iter) == 0) { 4523 ret = 0; 4524 goto out_iov; 4525 } 4526 pos = args.offset; 4527 ret = rw_verify_area(WRITE, file, &pos, args.len); 4528 if (ret < 0) 4529 goto out_iov; 4530 4531 init_sync_kiocb(&kiocb, file); 4532 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4533 if (ret) 4534 goto out_iov; 4535 kiocb.ki_pos = pos; 4536 4537 file_start_write(file); 4538 4539 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4540 if (ret > 0) 4541 fsnotify_modify(file); 4542 4543 file_end_write(file); 4544 out_iov: 4545 kfree(iov); 4546 out_acct: 4547 if (ret > 0) 4548 add_wchar(current, ret); 4549 inc_syscw(current); 4550 return ret; 4551 } 4552 4553 struct btrfs_uring_encoded_data { 4554 struct btrfs_ioctl_encoded_io_args args; 4555 struct iovec iovstack[UIO_FASTIOV]; 4556 struct iovec *iov; 4557 struct iov_iter iter; 4558 }; 4559 4560 /* 4561 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It 4562 * contains the fields in btrfs_uring_read_extent that are necessary to finish 4563 * off and cleanup the I/O in btrfs_uring_read_finished. 4564 */ 4565 struct btrfs_uring_priv { 4566 struct io_uring_cmd *cmd; 4567 struct page **pages; 4568 unsigned long nr_pages; 4569 struct kiocb iocb; 4570 struct iovec *iov; 4571 struct iov_iter iter; 4572 struct extent_state *cached_state; 4573 u64 count; 4574 u64 start; 4575 u64 lockend; 4576 int err; 4577 bool compressed; 4578 }; 4579 4580 struct io_btrfs_cmd { 4581 struct btrfs_uring_encoded_data *data; 4582 struct btrfs_uring_priv *priv; 4583 }; 4584 4585 static void btrfs_uring_read_finished(struct io_tw_req tw_req, io_tw_token_t tw) 4586 { 4587 struct io_uring_cmd *cmd = io_uring_cmd_from_tw(tw_req); 4588 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4589 struct btrfs_uring_priv *priv = bc->priv; 4590 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp)); 4591 struct extent_io_tree *io_tree = &inode->io_tree; 4592 pgoff_t index; 4593 u64 cur; 4594 size_t page_offset; 4595 ssize_t ret; 4596 4597 /* The inode lock has already been acquired in btrfs_uring_read_extent. */ 4598 btrfs_lockdep_inode_acquire(inode, i_rwsem); 4599 4600 if (priv->err) { 4601 ret = priv->err; 4602 goto out; 4603 } 4604 4605 if (priv->compressed) { 4606 index = 0; 4607 page_offset = 0; 4608 } else { 4609 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT; 4610 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start); 4611 } 4612 cur = 0; 4613 while (cur < priv->count) { 4614 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset); 4615 4616 if (copy_page_to_iter(priv->pages[index], page_offset, bytes, 4617 &priv->iter) != bytes) { 4618 ret = -EFAULT; 4619 goto out; 4620 } 4621 4622 index++; 4623 cur += bytes; 4624 page_offset = 0; 4625 } 4626 ret = priv->count; 4627 4628 out: 4629 btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state); 4630 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4631 4632 io_uring_cmd_done(cmd, ret, IO_URING_CMD_TASK_WORK_ISSUE_FLAGS); 4633 add_rchar(current, ret); 4634 4635 for (index = 0; index < priv->nr_pages; index++) 4636 __free_page(priv->pages[index]); 4637 4638 kfree(priv->pages); 4639 kfree(priv->iov); 4640 kfree(priv); 4641 kfree(bc->data); 4642 } 4643 4644 void btrfs_uring_read_extent_endio(void *ctx, int err) 4645 { 4646 struct btrfs_uring_priv *priv = ctx; 4647 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd); 4648 4649 priv->err = err; 4650 bc->priv = priv; 4651 4652 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished); 4653 } 4654 4655 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter, 4656 u64 start, u64 lockend, 4657 struct extent_state *cached_state, 4658 u64 disk_bytenr, u64 disk_io_size, 4659 size_t count, bool compressed, 4660 struct iovec *iov, struct io_uring_cmd *cmd) 4661 { 4662 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 4663 struct extent_io_tree *io_tree = &inode->io_tree; 4664 struct page **pages; 4665 struct btrfs_uring_priv *priv = NULL; 4666 unsigned long nr_pages; 4667 int ret; 4668 4669 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 4670 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 4671 if (!pages) 4672 return -ENOMEM; 4673 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 4674 if (ret) { 4675 ret = -ENOMEM; 4676 goto out_fail; 4677 } 4678 4679 priv = kmalloc(sizeof(*priv), GFP_NOFS); 4680 if (!priv) { 4681 ret = -ENOMEM; 4682 goto out_fail; 4683 } 4684 4685 priv->iocb = *iocb; 4686 priv->iov = iov; 4687 priv->iter = *iter; 4688 priv->count = count; 4689 priv->cmd = cmd; 4690 priv->cached_state = cached_state; 4691 priv->compressed = compressed; 4692 priv->nr_pages = nr_pages; 4693 priv->pages = pages; 4694 priv->start = start; 4695 priv->lockend = lockend; 4696 priv->err = 0; 4697 4698 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 4699 disk_io_size, pages, priv); 4700 if (ret && ret != -EIOCBQUEUED) 4701 goto out_fail; 4702 4703 /* 4704 * If we return -EIOCBQUEUED, we're deferring the cleanup to 4705 * btrfs_uring_read_finished(), which will handle unlocking the extent 4706 * and inode and freeing the allocations. 4707 */ 4708 4709 /* 4710 * We're returning to userspace with the inode lock held, and that's 4711 * okay - it'll get unlocked in a worker thread. Call 4712 * btrfs_lockdep_inode_release() to avoid confusing lockdep. 4713 */ 4714 btrfs_lockdep_inode_release(inode, i_rwsem); 4715 4716 return -EIOCBQUEUED; 4717 4718 out_fail: 4719 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4720 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4721 kfree(priv); 4722 return ret; 4723 } 4724 4725 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags) 4726 { 4727 struct file *file = cmd->file; 4728 struct btrfs_inode *inode = BTRFS_I(file->f_inode); 4729 struct extent_io_tree *io_tree = &inode->io_tree; 4730 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4731 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags); 4732 size_t copy_end; 4733 int ret; 4734 u64 disk_bytenr, disk_io_size; 4735 loff_t pos; 4736 struct kiocb kiocb; 4737 struct extent_state *cached_state = NULL; 4738 u64 start, lockend; 4739 void __user *sqe_addr; 4740 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4741 struct btrfs_uring_encoded_data *data = NULL; 4742 4743 if (cmd->flags & IORING_URING_CMD_REISSUE) 4744 data = bc->data; 4745 4746 if (!capable(CAP_SYS_ADMIN)) { 4747 ret = -EPERM; 4748 goto out_acct; 4749 } 4750 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4751 4752 if (issue_flags & IO_URING_F_COMPAT) { 4753 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4754 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags); 4755 #else 4756 ret = -ENOTTY; 4757 goto out_acct; 4758 #endif 4759 } else { 4760 copy_end = copy_end_kernel; 4761 } 4762 4763 if (!data) { 4764 data = kzalloc(sizeof(*data), GFP_NOFS); 4765 if (!data) { 4766 ret = -ENOMEM; 4767 goto out_acct; 4768 } 4769 4770 bc->data = data; 4771 4772 if (issue_flags & IO_URING_F_COMPAT) { 4773 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4774 struct btrfs_ioctl_encoded_io_args_32 args32; 4775 4776 if (copy_from_user(&args32, sqe_addr, copy_end)) { 4777 ret = -EFAULT; 4778 goto out_acct; 4779 } 4780 4781 data->args.iov = compat_ptr(args32.iov); 4782 data->args.iovcnt = args32.iovcnt; 4783 data->args.offset = args32.offset; 4784 data->args.flags = args32.flags; 4785 #endif 4786 } else { 4787 if (copy_from_user(&data->args, sqe_addr, copy_end)) { 4788 ret = -EFAULT; 4789 goto out_acct; 4790 } 4791 } 4792 4793 if (data->args.flags != 0) { 4794 ret = -EINVAL; 4795 goto out_acct; 4796 } 4797 4798 data->iov = data->iovstack; 4799 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt, 4800 ARRAY_SIZE(data->iovstack), &data->iov, 4801 &data->iter); 4802 if (ret < 0) 4803 goto out_acct; 4804 4805 if (iov_iter_count(&data->iter) == 0) { 4806 ret = 0; 4807 goto out_free; 4808 } 4809 } 4810 4811 pos = data->args.offset; 4812 ret = rw_verify_area(READ, file, &pos, data->args.len); 4813 if (ret < 0) 4814 goto out_free; 4815 4816 init_sync_kiocb(&kiocb, file); 4817 kiocb.ki_pos = pos; 4818 4819 if (issue_flags & IO_URING_F_NONBLOCK) 4820 kiocb.ki_flags |= IOCB_NOWAIT; 4821 4822 start = ALIGN_DOWN(pos, fs_info->sectorsize); 4823 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4824 4825 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state, 4826 &disk_bytenr, &disk_io_size); 4827 if (ret == -EAGAIN) 4828 goto out_acct; 4829 if (ret < 0 && ret != -EIOCBQUEUED) 4830 goto out_free; 4831 4832 file_accessed(file); 4833 4834 if (copy_to_user(sqe_addr + copy_end, 4835 (const char *)&data->args + copy_end_kernel, 4836 sizeof(data->args) - copy_end_kernel)) { 4837 if (ret == -EIOCBQUEUED) { 4838 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4839 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4840 } 4841 ret = -EFAULT; 4842 goto out_free; 4843 } 4844 4845 if (ret == -EIOCBQUEUED) { 4846 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size); 4847 4848 /* Match ioctl by not returning past EOF if uncompressed. */ 4849 if (!data->args.compression) 4850 count = min_t(u64, count, data->args.len); 4851 4852 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend, 4853 cached_state, disk_bytenr, disk_io_size, 4854 count, data->args.compression, 4855 data->iov, cmd); 4856 4857 goto out_acct; 4858 } 4859 4860 out_free: 4861 kfree(data->iov); 4862 4863 out_acct: 4864 if (ret > 0) 4865 add_rchar(current, ret); 4866 inc_syscr(current); 4867 4868 if (ret != -EIOCBQUEUED && ret != -EAGAIN) 4869 kfree(data); 4870 4871 return ret; 4872 } 4873 4874 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags) 4875 { 4876 struct file *file = cmd->file; 4877 loff_t pos; 4878 struct kiocb kiocb; 4879 ssize_t ret; 4880 void __user *sqe_addr; 4881 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4882 struct btrfs_uring_encoded_data *data = NULL; 4883 4884 if (cmd->flags & IORING_URING_CMD_REISSUE) 4885 data = bc->data; 4886 4887 if (!capable(CAP_SYS_ADMIN)) { 4888 ret = -EPERM; 4889 goto out_acct; 4890 } 4891 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4892 4893 if (!(file->f_mode & FMODE_WRITE)) { 4894 ret = -EBADF; 4895 goto out_acct; 4896 } 4897 4898 if (!data) { 4899 data = kzalloc(sizeof(*data), GFP_NOFS); 4900 if (!data) { 4901 ret = -ENOMEM; 4902 goto out_acct; 4903 } 4904 4905 bc->data = data; 4906 4907 if (issue_flags & IO_URING_F_COMPAT) { 4908 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4909 struct btrfs_ioctl_encoded_io_args_32 args32; 4910 4911 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) { 4912 ret = -EFAULT; 4913 goto out_acct; 4914 } 4915 data->args.iov = compat_ptr(args32.iov); 4916 data->args.iovcnt = args32.iovcnt; 4917 data->args.offset = args32.offset; 4918 data->args.flags = args32.flags; 4919 data->args.len = args32.len; 4920 data->args.unencoded_len = args32.unencoded_len; 4921 data->args.unencoded_offset = args32.unencoded_offset; 4922 data->args.compression = args32.compression; 4923 data->args.encryption = args32.encryption; 4924 memcpy(data->args.reserved, args32.reserved, 4925 sizeof(data->args.reserved)); 4926 #else 4927 ret = -ENOTTY; 4928 goto out_acct; 4929 #endif 4930 } else { 4931 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) { 4932 ret = -EFAULT; 4933 goto out_acct; 4934 } 4935 } 4936 4937 ret = -EINVAL; 4938 if (data->args.flags != 0) 4939 goto out_acct; 4940 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved))) 4941 goto out_acct; 4942 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4943 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4944 goto out_acct; 4945 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4946 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4947 goto out_acct; 4948 if (data->args.unencoded_offset > data->args.unencoded_len) 4949 goto out_acct; 4950 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset) 4951 goto out_acct; 4952 4953 data->iov = data->iovstack; 4954 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt, 4955 ARRAY_SIZE(data->iovstack), &data->iov, 4956 &data->iter); 4957 if (ret < 0) 4958 goto out_acct; 4959 4960 if (iov_iter_count(&data->iter) == 0) { 4961 ret = 0; 4962 goto out_iov; 4963 } 4964 } 4965 4966 if (issue_flags & IO_URING_F_NONBLOCK) { 4967 ret = -EAGAIN; 4968 goto out_acct; 4969 } 4970 4971 pos = data->args.offset; 4972 ret = rw_verify_area(WRITE, file, &pos, data->args.len); 4973 if (ret < 0) 4974 goto out_iov; 4975 4976 init_sync_kiocb(&kiocb, file); 4977 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4978 if (ret) 4979 goto out_iov; 4980 kiocb.ki_pos = pos; 4981 4982 file_start_write(file); 4983 4984 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args); 4985 if (ret > 0) 4986 fsnotify_modify(file); 4987 4988 file_end_write(file); 4989 out_iov: 4990 kfree(data->iov); 4991 out_acct: 4992 if (ret > 0) 4993 add_wchar(current, ret); 4994 inc_syscw(current); 4995 4996 if (ret != -EAGAIN) 4997 kfree(data); 4998 return ret; 4999 } 5000 5001 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags) 5002 { 5003 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(cmd->file))))) 5004 return -EIO; 5005 5006 switch (cmd->cmd_op) { 5007 case BTRFS_IOC_ENCODED_READ: 5008 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5009 case BTRFS_IOC_ENCODED_READ_32: 5010 #endif 5011 return btrfs_uring_encoded_read(cmd, issue_flags); 5012 5013 case BTRFS_IOC_ENCODED_WRITE: 5014 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5015 case BTRFS_IOC_ENCODED_WRITE_32: 5016 #endif 5017 return btrfs_uring_encoded_write(cmd, issue_flags); 5018 } 5019 5020 return -EINVAL; 5021 } 5022 5023 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp) 5024 { 5025 struct btrfs_root *root; 5026 struct btrfs_ioctl_subvol_wait args = { 0 }; 5027 signed long sched_ret; 5028 int refs; 5029 u64 root_flags; 5030 bool wait_for_deletion = false; 5031 bool found = false; 5032 5033 if (copy_from_user(&args, argp, sizeof(args))) 5034 return -EFAULT; 5035 5036 switch (args.mode) { 5037 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED: 5038 /* 5039 * Wait for the first one deleted that waits until all previous 5040 * are cleaned. 5041 */ 5042 spin_lock(&fs_info->trans_lock); 5043 if (!list_empty(&fs_info->dead_roots)) { 5044 root = list_last_entry(&fs_info->dead_roots, 5045 struct btrfs_root, root_list); 5046 args.subvolid = btrfs_root_id(root); 5047 found = true; 5048 } 5049 spin_unlock(&fs_info->trans_lock); 5050 if (!found) 5051 return -ENOENT; 5052 5053 fallthrough; 5054 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE: 5055 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) || 5056 BTRFS_LAST_FREE_OBJECTID < args.subvolid) 5057 return -EINVAL; 5058 break; 5059 case BTRFS_SUBVOL_SYNC_COUNT: 5060 spin_lock(&fs_info->trans_lock); 5061 args.count = list_count_nodes(&fs_info->dead_roots); 5062 spin_unlock(&fs_info->trans_lock); 5063 if (copy_to_user(argp, &args, sizeof(args))) 5064 return -EFAULT; 5065 return 0; 5066 case BTRFS_SUBVOL_SYNC_PEEK_FIRST: 5067 spin_lock(&fs_info->trans_lock); 5068 /* Last in the list was deleted first. */ 5069 if (!list_empty(&fs_info->dead_roots)) { 5070 root = list_last_entry(&fs_info->dead_roots, 5071 struct btrfs_root, root_list); 5072 args.subvolid = btrfs_root_id(root); 5073 } else { 5074 args.subvolid = 0; 5075 } 5076 spin_unlock(&fs_info->trans_lock); 5077 if (copy_to_user(argp, &args, sizeof(args))) 5078 return -EFAULT; 5079 return 0; 5080 case BTRFS_SUBVOL_SYNC_PEEK_LAST: 5081 spin_lock(&fs_info->trans_lock); 5082 /* First in the list was deleted last. */ 5083 if (!list_empty(&fs_info->dead_roots)) { 5084 root = list_first_entry(&fs_info->dead_roots, 5085 struct btrfs_root, root_list); 5086 args.subvolid = btrfs_root_id(root); 5087 } else { 5088 args.subvolid = 0; 5089 } 5090 spin_unlock(&fs_info->trans_lock); 5091 if (copy_to_user(argp, &args, sizeof(args))) 5092 return -EFAULT; 5093 return 0; 5094 default: 5095 return -EINVAL; 5096 } 5097 5098 /* 32bit limitation: fs_roots_radix key is not wide enough. */ 5099 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX) 5100 return -EOVERFLOW; 5101 5102 while (1) { 5103 /* Wait for the specific one. */ 5104 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR) 5105 return -EINTR; 5106 refs = -1; 5107 spin_lock(&fs_info->fs_roots_radix_lock); 5108 root = radix_tree_lookup(&fs_info->fs_roots_radix, 5109 (unsigned long)args.subvolid); 5110 if (root) { 5111 spin_lock(&root->root_item_lock); 5112 refs = btrfs_root_refs(&root->root_item); 5113 root_flags = btrfs_root_flags(&root->root_item); 5114 spin_unlock(&root->root_item_lock); 5115 } 5116 spin_unlock(&fs_info->fs_roots_radix_lock); 5117 up_read(&fs_info->subvol_sem); 5118 5119 /* Subvolume does not exist. */ 5120 if (!root) 5121 return -ENOENT; 5122 5123 /* Subvolume not deleted at all. */ 5124 if (refs > 0) 5125 return -EEXIST; 5126 /* We've waited and now the subvolume is gone. */ 5127 if (wait_for_deletion && refs == -1) { 5128 /* Return the one we waited for as the last one. */ 5129 if (copy_to_user(argp, &args, sizeof(args))) 5130 return -EFAULT; 5131 return 0; 5132 } 5133 5134 /* Subvolume not found on the first try (deleted or never existed). */ 5135 if (refs == -1) 5136 return -ENOENT; 5137 5138 wait_for_deletion = true; 5139 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD); 5140 sched_ret = schedule_timeout_interruptible(HZ); 5141 /* Early wake up or error. */ 5142 if (sched_ret != 0) 5143 return -EINTR; 5144 } 5145 5146 return 0; 5147 } 5148 5149 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5150 static int btrfs_ioctl_shutdown(struct btrfs_fs_info *fs_info, unsigned long arg) 5151 { 5152 int ret = 0; 5153 u32 flags; 5154 5155 if (!capable(CAP_SYS_ADMIN)) 5156 return -EPERM; 5157 5158 if (get_user(flags, (u32 __user *)arg)) 5159 return -EFAULT; 5160 5161 if (flags >= BTRFS_SHUTDOWN_FLAGS_LAST) 5162 return -EINVAL; 5163 5164 if (btrfs_is_shutdown(fs_info)) 5165 return 0; 5166 5167 switch (flags) { 5168 case BTRFS_SHUTDOWN_FLAGS_LOGFLUSH: 5169 case BTRFS_SHUTDOWN_FLAGS_DEFAULT: 5170 ret = freeze_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL); 5171 if (ret) 5172 return ret; 5173 btrfs_force_shutdown(fs_info); 5174 ret = thaw_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL); 5175 if (ret) 5176 return ret; 5177 break; 5178 case BTRFS_SHUTDOWN_FLAGS_NOLOGFLUSH: 5179 btrfs_force_shutdown(fs_info); 5180 break; 5181 } 5182 return ret; 5183 } 5184 #endif 5185 5186 long btrfs_ioctl(struct file *file, unsigned int 5187 cmd, unsigned long arg) 5188 { 5189 struct inode *inode = file_inode(file); 5190 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5191 struct btrfs_root *root = BTRFS_I(inode)->root; 5192 void __user *argp = (void __user *)arg; 5193 5194 switch (cmd) { 5195 case FS_IOC_GETVERSION: 5196 return btrfs_ioctl_getversion(inode, argp); 5197 case FS_IOC_GETFSLABEL: 5198 return btrfs_ioctl_get_fslabel(fs_info, argp); 5199 case FS_IOC_SETFSLABEL: 5200 return btrfs_ioctl_set_fslabel(file, argp); 5201 case FITRIM: 5202 return btrfs_ioctl_fitrim(fs_info, argp); 5203 case BTRFS_IOC_SNAP_CREATE: 5204 return btrfs_ioctl_snap_create(file, argp, false); 5205 case BTRFS_IOC_SNAP_CREATE_V2: 5206 return btrfs_ioctl_snap_create_v2(file, argp, false); 5207 case BTRFS_IOC_SUBVOL_CREATE: 5208 return btrfs_ioctl_snap_create(file, argp, true); 5209 case BTRFS_IOC_SUBVOL_CREATE_V2: 5210 return btrfs_ioctl_snap_create_v2(file, argp, true); 5211 case BTRFS_IOC_SNAP_DESTROY: 5212 return btrfs_ioctl_snap_destroy(file, argp, false); 5213 case BTRFS_IOC_SNAP_DESTROY_V2: 5214 return btrfs_ioctl_snap_destroy(file, argp, true); 5215 case BTRFS_IOC_SUBVOL_GETFLAGS: 5216 return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp); 5217 case BTRFS_IOC_SUBVOL_SETFLAGS: 5218 return btrfs_ioctl_subvol_setflags(file, argp); 5219 case BTRFS_IOC_DEFAULT_SUBVOL: 5220 return btrfs_ioctl_default_subvol(file, argp); 5221 case BTRFS_IOC_DEFRAG: 5222 return btrfs_ioctl_defrag(file, NULL); 5223 case BTRFS_IOC_DEFRAG_RANGE: 5224 return btrfs_ioctl_defrag(file, argp); 5225 case BTRFS_IOC_RESIZE: 5226 return btrfs_ioctl_resize(file, argp); 5227 case BTRFS_IOC_ADD_DEV: 5228 return btrfs_ioctl_add_dev(fs_info, argp); 5229 case BTRFS_IOC_RM_DEV: 5230 return btrfs_ioctl_rm_dev(file, argp); 5231 case BTRFS_IOC_RM_DEV_V2: 5232 return btrfs_ioctl_rm_dev_v2(file, argp); 5233 case BTRFS_IOC_FS_INFO: 5234 return btrfs_ioctl_fs_info(fs_info, argp); 5235 case BTRFS_IOC_DEV_INFO: 5236 return btrfs_ioctl_dev_info(fs_info, argp); 5237 case BTRFS_IOC_TREE_SEARCH: 5238 return btrfs_ioctl_tree_search(root, argp); 5239 case BTRFS_IOC_TREE_SEARCH_V2: 5240 return btrfs_ioctl_tree_search_v2(root, argp); 5241 case BTRFS_IOC_INO_LOOKUP: 5242 return btrfs_ioctl_ino_lookup(root, argp); 5243 case BTRFS_IOC_INO_PATHS: 5244 return btrfs_ioctl_ino_to_path(root, argp); 5245 case BTRFS_IOC_LOGICAL_INO: 5246 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5247 case BTRFS_IOC_LOGICAL_INO_V2: 5248 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5249 case BTRFS_IOC_SPACE_INFO: 5250 return btrfs_ioctl_space_info(fs_info, argp); 5251 case BTRFS_IOC_SYNC: { 5252 int ret; 5253 5254 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5255 if (ret) 5256 return ret; 5257 ret = btrfs_sync_fs(inode->i_sb, 1); 5258 /* 5259 * There may be work for the cleaner kthread to do (subvolume 5260 * deletion, delayed iputs, defrag inodes, etc), so wake it up. 5261 */ 5262 wake_up_process(fs_info->cleaner_kthread); 5263 return ret; 5264 } 5265 case BTRFS_IOC_START_SYNC: 5266 return btrfs_ioctl_start_sync(root, argp); 5267 case BTRFS_IOC_WAIT_SYNC: 5268 return btrfs_ioctl_wait_sync(fs_info, argp); 5269 case BTRFS_IOC_SCRUB: 5270 return btrfs_ioctl_scrub(file, argp); 5271 case BTRFS_IOC_SCRUB_CANCEL: 5272 return btrfs_ioctl_scrub_cancel(fs_info); 5273 case BTRFS_IOC_SCRUB_PROGRESS: 5274 return btrfs_ioctl_scrub_progress(fs_info, argp); 5275 case BTRFS_IOC_BALANCE_V2: 5276 return btrfs_ioctl_balance(file, argp); 5277 case BTRFS_IOC_BALANCE_CTL: 5278 return btrfs_ioctl_balance_ctl(fs_info, arg); 5279 case BTRFS_IOC_BALANCE_PROGRESS: 5280 return btrfs_ioctl_balance_progress(fs_info, argp); 5281 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5282 return btrfs_ioctl_set_received_subvol(file, argp); 5283 #ifdef CONFIG_64BIT 5284 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5285 return btrfs_ioctl_set_received_subvol_32(file, argp); 5286 #endif 5287 case BTRFS_IOC_SEND: 5288 return _btrfs_ioctl_send(root, argp, false); 5289 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5290 case BTRFS_IOC_SEND_32: 5291 return _btrfs_ioctl_send(root, argp, true); 5292 #endif 5293 case BTRFS_IOC_GET_DEV_STATS: 5294 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5295 case BTRFS_IOC_QUOTA_CTL: 5296 return btrfs_ioctl_quota_ctl(file, argp); 5297 case BTRFS_IOC_QGROUP_ASSIGN: 5298 return btrfs_ioctl_qgroup_assign(file, argp); 5299 case BTRFS_IOC_QGROUP_CREATE: 5300 return btrfs_ioctl_qgroup_create(file, argp); 5301 case BTRFS_IOC_QGROUP_LIMIT: 5302 return btrfs_ioctl_qgroup_limit(file, argp); 5303 case BTRFS_IOC_QUOTA_RESCAN: 5304 return btrfs_ioctl_quota_rescan(file, argp); 5305 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5306 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5307 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5308 return btrfs_ioctl_quota_rescan_wait(fs_info); 5309 case BTRFS_IOC_DEV_REPLACE: 5310 return btrfs_ioctl_dev_replace(fs_info, argp); 5311 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5312 return btrfs_ioctl_get_supported_features(argp); 5313 case BTRFS_IOC_GET_FEATURES: 5314 return btrfs_ioctl_get_features(fs_info, argp); 5315 case BTRFS_IOC_SET_FEATURES: 5316 return btrfs_ioctl_set_features(file, argp); 5317 case BTRFS_IOC_GET_SUBVOL_INFO: 5318 return btrfs_ioctl_get_subvol_info(inode, argp); 5319 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5320 return btrfs_ioctl_get_subvol_rootref(root, argp); 5321 case BTRFS_IOC_INO_LOOKUP_USER: 5322 return btrfs_ioctl_ino_lookup_user(file, argp); 5323 case FS_IOC_ENABLE_VERITY: 5324 return fsverity_ioctl_enable(file, (const void __user *)argp); 5325 case FS_IOC_MEASURE_VERITY: 5326 return fsverity_ioctl_measure(file, argp); 5327 case FS_IOC_READ_VERITY_METADATA: 5328 return fsverity_ioctl_read_metadata(file, argp); 5329 case BTRFS_IOC_ENCODED_READ: 5330 return btrfs_ioctl_encoded_read(file, argp, false); 5331 case BTRFS_IOC_ENCODED_WRITE: 5332 return btrfs_ioctl_encoded_write(file, argp, false); 5333 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5334 case BTRFS_IOC_ENCODED_READ_32: 5335 return btrfs_ioctl_encoded_read(file, argp, true); 5336 case BTRFS_IOC_ENCODED_WRITE_32: 5337 return btrfs_ioctl_encoded_write(file, argp, true); 5338 #endif 5339 case BTRFS_IOC_SUBVOL_SYNC_WAIT: 5340 return btrfs_ioctl_subvol_sync(fs_info, argp); 5341 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5342 case BTRFS_IOC_SHUTDOWN: 5343 return btrfs_ioctl_shutdown(fs_info, arg); 5344 #endif 5345 } 5346 5347 return -ENOTTY; 5348 } 5349 5350 #ifdef CONFIG_COMPAT 5351 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5352 { 5353 /* 5354 * These all access 32-bit values anyway so no further 5355 * handling is necessary. 5356 */ 5357 switch (cmd) { 5358 case FS_IOC32_GETVERSION: 5359 cmd = FS_IOC_GETVERSION; 5360 break; 5361 } 5362 5363 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5364 } 5365 #endif 5366