1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 /* Block groups containing the remap tree. */ 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA_REMAP, "metadata-remap"); 236 /* Block group that has been remapped. */ 237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_REMAPPED, "remapped"); 238 239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 242 btrfs_raid_array[i].raid_name); 243 #undef DESCRIBE_FLAG 244 245 if (flags) { 246 ret = snprintf(bp, size_bp, "0x%llx|", flags); 247 size_bp -= ret; 248 } 249 250 if (size_bp < size_buf) 251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 252 253 /* 254 * The text is trimmed, it's up to the caller to provide sufficiently 255 * large buffer 256 */ 257 out_overflow:; 258 } 259 260 static int init_first_rw_device(struct btrfs_trans_handle *trans); 261 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 263 264 /* 265 * Device locking 266 * ============== 267 * 268 * There are several mutexes that protect manipulation of devices and low-level 269 * structures like chunks but not block groups, extents or files 270 * 271 * uuid_mutex (global lock) 272 * ------------------------ 273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 275 * device) or requested by the device= mount option 276 * 277 * the mutex can be very coarse and can cover long-running operations 278 * 279 * protects: updates to fs_devices counters like missing devices, rw devices, 280 * seeding, structure cloning, opening/closing devices at mount/umount time 281 * 282 * global::fs_devs - add, remove, updates to the global list 283 * 284 * does not protect: manipulation of the fs_devices::devices list in general 285 * but in mount context it could be used to exclude list modifications by eg. 286 * scan ioctl 287 * 288 * btrfs_device::name - renames (write side), read is RCU 289 * 290 * fs_devices::device_list_mutex (per-fs, with RCU) 291 * ------------------------------------------------ 292 * protects updates to fs_devices::devices, ie. adding and deleting 293 * 294 * simple list traversal with read-only actions can be done with RCU protection 295 * 296 * may be used to exclude some operations from running concurrently without any 297 * modifications to the list (see write_all_supers) 298 * 299 * Is not required at mount and close times, because our device list is 300 * protected by the uuid_mutex at that point. 301 * 302 * balance_mutex 303 * ------------- 304 * protects balance structures (status, state) and context accessed from 305 * several places (internally, ioctl) 306 * 307 * chunk_mutex 308 * ----------- 309 * protects chunks, adding or removing during allocation, trim or when a new 310 * device is added/removed. Additionally it also protects post_commit_list of 311 * individual devices, since they can be added to the transaction's 312 * post_commit_list only with chunk_mutex held. 313 * 314 * cleaner_mutex 315 * ------------- 316 * a big lock that is held by the cleaner thread and prevents running subvolume 317 * cleaning together with relocation or delayed iputs 318 * 319 * 320 * Lock nesting 321 * ============ 322 * 323 * uuid_mutex 324 * device_list_mutex 325 * chunk_mutex 326 * balance_mutex 327 * 328 * 329 * Exclusive operations 330 * ==================== 331 * 332 * Maintains the exclusivity of the following operations that apply to the 333 * whole filesystem and cannot run in parallel. 334 * 335 * - Balance (*) 336 * - Device add 337 * - Device remove 338 * - Device replace (*) 339 * - Resize 340 * 341 * The device operations (as above) can be in one of the following states: 342 * 343 * - Running state 344 * - Paused state 345 * - Completed state 346 * 347 * Only device operations marked with (*) can go into the Paused state for the 348 * following reasons: 349 * 350 * - ioctl (only Balance can be Paused through ioctl) 351 * - filesystem remounted as read-only 352 * - filesystem unmounted and mounted as read-only 353 * - system power-cycle and filesystem mounted as read-only 354 * - filesystem or device errors leading to forced read-only 355 * 356 * The status of exclusive operation is set and cleared atomically. 357 * During the course of Paused state, fs_info::exclusive_operation remains set. 358 * A device operation in Paused or Running state can be canceled or resumed 359 * either by ioctl (Balance only) or when remounted as read-write. 360 * The exclusive status is cleared when the device operation is canceled or 361 * completed. 362 */ 363 364 DEFINE_MUTEX(uuid_mutex); 365 static LIST_HEAD(fs_uuids); 366 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 367 { 368 return &fs_uuids; 369 } 370 371 /* 372 * Allocate new btrfs_fs_devices structure identified by a fsid. 373 * 374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 375 * fs_devices::metadata_fsid 376 * 377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 378 * The returned struct is not linked onto any lists and can be destroyed with 379 * kfree() right away. 380 */ 381 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 382 { 383 struct btrfs_fs_devices *fs_devs; 384 385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 386 if (!fs_devs) 387 return ERR_PTR(-ENOMEM); 388 389 mutex_init(&fs_devs->device_list_mutex); 390 391 INIT_LIST_HEAD(&fs_devs->devices); 392 INIT_LIST_HEAD(&fs_devs->alloc_list); 393 INIT_LIST_HEAD(&fs_devs->fs_list); 394 INIT_LIST_HEAD(&fs_devs->seed_list); 395 396 if (fsid) { 397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 399 } 400 401 return fs_devs; 402 } 403 404 static void btrfs_free_device(struct btrfs_device *device) 405 { 406 WARN_ON(!list_empty(&device->post_commit_list)); 407 /* 408 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 409 * reading the device name. 410 */ 411 kfree(rcu_dereference_raw(device->name)); 412 btrfs_extent_io_tree_release(&device->alloc_state); 413 btrfs_destroy_dev_zone_info(device); 414 kfree(device); 415 } 416 417 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 418 { 419 struct btrfs_device *device; 420 421 WARN_ON(fs_devices->opened); 422 WARN_ON(fs_devices->holding); 423 while (!list_empty(&fs_devices->devices)) { 424 device = list_first_entry(&fs_devices->devices, 425 struct btrfs_device, dev_list); 426 list_del(&device->dev_list); 427 btrfs_free_device(device); 428 } 429 kfree(fs_devices); 430 } 431 432 void __exit btrfs_cleanup_fs_uuids(void) 433 { 434 struct btrfs_fs_devices *fs_devices; 435 436 while (!list_empty(&fs_uuids)) { 437 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 438 fs_list); 439 list_del(&fs_devices->fs_list); 440 free_fs_devices(fs_devices); 441 } 442 } 443 444 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 445 const u8 *fsid, const u8 *metadata_fsid) 446 { 447 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 448 return false; 449 450 if (!metadata_fsid) 451 return true; 452 453 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 454 return false; 455 456 return true; 457 } 458 459 static noinline struct btrfs_fs_devices *find_fsid( 460 const u8 *fsid, const u8 *metadata_fsid) 461 { 462 struct btrfs_fs_devices *fs_devices; 463 464 ASSERT(fsid); 465 466 /* Handle non-split brain cases */ 467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 468 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 469 return fs_devices; 470 } 471 return NULL; 472 } 473 474 static int 475 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 476 int flush, struct file **bdev_file, 477 struct btrfs_super_block **disk_super) 478 { 479 struct block_device *bdev; 480 int ret; 481 482 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 483 484 if (IS_ERR(*bdev_file)) { 485 ret = PTR_ERR(*bdev_file); 486 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 487 device_path, flags, ret); 488 goto error; 489 } 490 bdev = file_bdev(*bdev_file); 491 492 if (flush) 493 sync_blockdev(bdev); 494 if (holder) { 495 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 496 if (ret) { 497 bdev_fput(*bdev_file); 498 goto error; 499 } 500 } 501 invalidate_bdev(bdev); 502 *disk_super = btrfs_read_disk_super(bdev, 0, false); 503 if (IS_ERR(*disk_super)) { 504 ret = PTR_ERR(*disk_super); 505 bdev_fput(*bdev_file); 506 goto error; 507 } 508 509 return 0; 510 511 error: 512 *disk_super = NULL; 513 *bdev_file = NULL; 514 return ret; 515 } 516 517 /* 518 * Search and remove all stale devices (which are not mounted). When both 519 * inputs are NULL, it will search and release all stale devices. 520 * 521 * @devt: Optional. When provided will it release all unmounted devices 522 * matching this devt only. 523 * @skip_device: Optional. Will skip this device when searching for the stale 524 * devices. 525 * 526 * Return: 0 for success or if @devt is 0. 527 * -EBUSY if @devt is a mounted device. 528 * -ENOENT if @devt does not match any device in the list. 529 */ 530 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 531 { 532 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 533 struct btrfs_device *device, *tmp_device; 534 int ret; 535 bool freed = false; 536 537 lockdep_assert_held(&uuid_mutex); 538 539 /* Return good status if there is no instance of devt. */ 540 ret = 0; 541 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 542 543 mutex_lock(&fs_devices->device_list_mutex); 544 list_for_each_entry_safe(device, tmp_device, 545 &fs_devices->devices, dev_list) { 546 if (skip_device && skip_device == device) 547 continue; 548 if (devt && devt != device->devt) 549 continue; 550 if (fs_devices->opened || fs_devices->holding) { 551 if (devt) 552 ret = -EBUSY; 553 break; 554 } 555 556 /* delete the stale device */ 557 fs_devices->num_devices--; 558 list_del(&device->dev_list); 559 btrfs_free_device(device); 560 561 freed = true; 562 } 563 mutex_unlock(&fs_devices->device_list_mutex); 564 565 if (fs_devices->num_devices == 0) { 566 btrfs_sysfs_remove_fsid(fs_devices); 567 list_del(&fs_devices->fs_list); 568 free_fs_devices(fs_devices); 569 } 570 } 571 572 /* If there is at least one freed device return 0. */ 573 if (freed) 574 return 0; 575 576 return ret; 577 } 578 579 static struct btrfs_fs_devices *find_fsid_by_device( 580 struct btrfs_super_block *disk_super, 581 dev_t devt, bool *same_fsid_diff_dev) 582 { 583 struct btrfs_fs_devices *fsid_fs_devices; 584 struct btrfs_fs_devices *devt_fs_devices; 585 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 586 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 587 bool found_by_devt = false; 588 589 /* Find the fs_device by the usual method, if found use it. */ 590 fsid_fs_devices = find_fsid(disk_super->fsid, 591 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 592 593 /* The temp_fsid feature is supported only with single device filesystem. */ 594 if (btrfs_super_num_devices(disk_super) != 1) 595 return fsid_fs_devices; 596 597 /* 598 * A seed device is an integral component of the sprout device, which 599 * functions as a multi-device filesystem. So, temp-fsid feature is 600 * not supported. 601 */ 602 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 603 return fsid_fs_devices; 604 605 /* Try to find a fs_devices by matching devt. */ 606 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 607 struct btrfs_device *device; 608 609 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 610 if (device->devt == devt) { 611 found_by_devt = true; 612 break; 613 } 614 } 615 if (found_by_devt) 616 break; 617 } 618 619 if (found_by_devt) { 620 /* Existing device. */ 621 if (fsid_fs_devices == NULL) { 622 if (devt_fs_devices->opened == 0) { 623 /* Stale device. */ 624 return NULL; 625 } else { 626 /* temp_fsid is mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* Regular or temp_fsid device mounting a subvol. */ 631 return devt_fs_devices; 632 } 633 } else { 634 /* New device. */ 635 if (fsid_fs_devices == NULL) { 636 return NULL; 637 } else { 638 /* sb::fsid is already used create a new temp_fsid. */ 639 *same_fsid_diff_dev = true; 640 return NULL; 641 } 642 } 643 644 /* Not reached. */ 645 } 646 647 /* 648 * This is only used on mount, and we are protected from competing things 649 * messing with our fs_devices by the uuid_mutex, thus we do not need the 650 * fs_devices->device_list_mutex here. 651 */ 652 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 653 struct btrfs_device *device, blk_mode_t flags, 654 void *holder) 655 { 656 struct file *bdev_file; 657 struct btrfs_super_block *disk_super; 658 u64 devid; 659 int ret; 660 661 if (device->bdev) 662 return -EINVAL; 663 if (!device->name) 664 return -EINVAL; 665 666 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 667 &bdev_file, &disk_super); 668 if (ret) 669 return ret; 670 671 devid = btrfs_stack_device_id(&disk_super->dev_item); 672 if (devid != device->devid) 673 goto error_free_page; 674 675 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 676 goto error_free_page; 677 678 device->generation = btrfs_super_generation(disk_super); 679 680 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 681 if (btrfs_super_incompat_flags(disk_super) & 682 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 683 btrfs_err(NULL, 684 "invalid seeding and uuid-changed device detected"); 685 goto error_free_page; 686 } 687 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 fs_devices->seeding = true; 690 } else { 691 if (bdev_read_only(file_bdev(bdev_file))) 692 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 693 else 694 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 695 } 696 697 if (!bdev_nonrot(file_bdev(bdev_file))) 698 fs_devices->rotating = true; 699 700 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 701 fs_devices->discardable = true; 702 703 device->bdev_file = bdev_file; 704 device->bdev = file_bdev(bdev_file); 705 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 706 707 if (device->devt != device->bdev->bd_dev) { 708 btrfs_warn(NULL, 709 "device %s maj:min changed from %d:%d to %d:%d", 710 rcu_dereference_raw(device->name), MAJOR(device->devt), 711 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 712 MINOR(device->bdev->bd_dev)); 713 714 device->devt = device->bdev->bd_dev; 715 } 716 717 fs_devices->open_devices++; 718 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 719 device->devid != BTRFS_DEV_REPLACE_DEVID) { 720 fs_devices->rw_devices++; 721 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 722 } 723 btrfs_release_disk_super(disk_super); 724 725 return 0; 726 727 error_free_page: 728 btrfs_release_disk_super(disk_super); 729 bdev_fput(bdev_file); 730 731 return -EINVAL; 732 } 733 734 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 735 { 736 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 737 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 738 739 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 740 } 741 742 static bool is_same_device(struct btrfs_device *device, const char *new_path) 743 { 744 struct path old = { .mnt = NULL, .dentry = NULL }; 745 struct path new = { .mnt = NULL, .dentry = NULL }; 746 char AUTO_KFREE(old_path); 747 bool is_same = false; 748 int ret; 749 750 if (!device->name) 751 goto out; 752 753 old_path = kzalloc(PATH_MAX, GFP_NOFS); 754 if (!old_path) 755 goto out; 756 757 rcu_read_lock(); 758 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 759 rcu_read_unlock(); 760 if (ret < 0) 761 goto out; 762 763 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 764 if (ret) 765 goto out; 766 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 767 if (ret) 768 goto out; 769 if (path_equal(&old, &new)) 770 is_same = true; 771 out: 772 path_put(&old); 773 path_put(&new); 774 return is_same; 775 } 776 777 /* 778 * Add new device to list of registered devices 779 * 780 * Returns: 781 * device pointer which was just added or updated when successful 782 * error pointer when failed 783 */ 784 static noinline struct btrfs_device *device_list_add(const char *path, 785 struct btrfs_super_block *disk_super, 786 bool *new_device_added) 787 { 788 struct btrfs_device *device; 789 struct btrfs_fs_devices *fs_devices = NULL; 790 const char *name; 791 u64 found_transid = btrfs_super_generation(disk_super); 792 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 793 dev_t path_devt; 794 int ret; 795 bool same_fsid_diff_dev = false; 796 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 797 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 798 799 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 800 btrfs_err(NULL, 801 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 802 path); 803 return ERR_PTR(-EAGAIN); 804 } 805 806 ret = lookup_bdev(path, &path_devt); 807 if (ret) { 808 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 809 path, ret); 810 return ERR_PTR(ret); 811 } 812 813 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 814 815 if (!fs_devices) { 816 fs_devices = alloc_fs_devices(disk_super->fsid); 817 if (IS_ERR(fs_devices)) 818 return ERR_CAST(fs_devices); 819 820 if (has_metadata_uuid) 821 memcpy(fs_devices->metadata_uuid, 822 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 823 824 if (same_fsid_diff_dev) { 825 generate_random_uuid(fs_devices->fsid); 826 fs_devices->temp_fsid = true; 827 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 828 path, MAJOR(path_devt), MINOR(path_devt), 829 fs_devices->fsid); 830 } 831 832 mutex_lock(&fs_devices->device_list_mutex); 833 list_add(&fs_devices->fs_list, &fs_uuids); 834 835 device = NULL; 836 } else { 837 struct btrfs_dev_lookup_args args = { 838 .devid = devid, 839 .uuid = disk_super->dev_item.uuid, 840 }; 841 842 mutex_lock(&fs_devices->device_list_mutex); 843 device = btrfs_find_device(fs_devices, &args); 844 845 if (found_transid > fs_devices->latest_generation) { 846 memcpy(fs_devices->fsid, disk_super->fsid, 847 BTRFS_FSID_SIZE); 848 memcpy(fs_devices->metadata_uuid, 849 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 850 } 851 } 852 853 if (!device) { 854 unsigned int nofs_flag; 855 856 if (fs_devices->opened) { 857 btrfs_err(NULL, 858 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 859 path, MAJOR(path_devt), MINOR(path_devt), 860 fs_devices->fsid, current->comm, 861 task_pid_nr(current)); 862 mutex_unlock(&fs_devices->device_list_mutex); 863 return ERR_PTR(-EBUSY); 864 } 865 866 nofs_flag = memalloc_nofs_save(); 867 device = btrfs_alloc_device(NULL, &devid, 868 disk_super->dev_item.uuid, path); 869 memalloc_nofs_restore(nofs_flag); 870 if (IS_ERR(device)) { 871 mutex_unlock(&fs_devices->device_list_mutex); 872 /* we can safely leave the fs_devices entry around */ 873 return device; 874 } 875 876 device->devt = path_devt; 877 878 list_add_rcu(&device->dev_list, &fs_devices->devices); 879 fs_devices->num_devices++; 880 881 device->fs_devices = fs_devices; 882 *new_device_added = true; 883 884 if (disk_super->label[0]) 885 pr_info( 886 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 887 disk_super->label, devid, found_transid, path, 888 MAJOR(path_devt), MINOR(path_devt), 889 current->comm, task_pid_nr(current)); 890 else 891 pr_info( 892 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 893 disk_super->fsid, devid, found_transid, path, 894 MAJOR(path_devt), MINOR(path_devt), 895 current->comm, task_pid_nr(current)); 896 897 } else if (!device->name || !is_same_device(device, path)) { 898 const char *old_name; 899 900 /* 901 * When FS is already mounted. 902 * 1. If you are here and if the device->name is NULL that 903 * means this device was missing at time of FS mount. 904 * 2. If you are here and if the device->name is different 905 * from 'path' that means either 906 * a. The same device disappeared and reappeared with 907 * different name. or 908 * b. The missing-disk-which-was-replaced, has 909 * reappeared now. 910 * 911 * We must allow 1 and 2a above. But 2b would be a spurious 912 * and unintentional. 913 * 914 * Further in case of 1 and 2a above, the disk at 'path' 915 * would have missed some transaction when it was away and 916 * in case of 2a the stale bdev has to be updated as well. 917 * 2b must not be allowed at all time. 918 */ 919 920 /* 921 * For now, we do allow update to btrfs_fs_device through the 922 * btrfs dev scan cli after FS has been mounted. We're still 923 * tracking a problem where systems fail mount by subvolume id 924 * when we reject replacement on a mounted FS. 925 */ 926 if (!fs_devices->opened && found_transid < device->generation) { 927 /* 928 * That is if the FS is _not_ mounted and if you 929 * are here, that means there is more than one 930 * disk with same uuid and devid.We keep the one 931 * with larger generation number or the last-in if 932 * generation are equal. 933 */ 934 mutex_unlock(&fs_devices->device_list_mutex); 935 btrfs_err(NULL, 936 "device %s already registered with a higher generation, found %llu expect %llu", 937 path, found_transid, device->generation); 938 return ERR_PTR(-EEXIST); 939 } 940 941 /* 942 * We are going to replace the device path for a given devid, 943 * make sure it's the same device if the device is mounted 944 * 945 * NOTE: the device->fs_info may not be reliable here so pass 946 * in a NULL to message helpers instead. This avoids a possible 947 * use-after-free when the fs_info and fs_info->sb are already 948 * torn down. 949 */ 950 if (device->bdev) { 951 if (device->devt != path_devt) { 952 mutex_unlock(&fs_devices->device_list_mutex); 953 btrfs_warn(NULL, 954 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 955 path, devid, found_transid, 956 current->comm, 957 task_pid_nr(current)); 958 return ERR_PTR(-EEXIST); 959 } 960 btrfs_info(NULL, 961 "devid %llu device path %s changed to %s scanned by %s (%d)", 962 devid, btrfs_dev_name(device), 963 path, current->comm, 964 task_pid_nr(current)); 965 } 966 967 name = kstrdup(path, GFP_NOFS); 968 if (!name) { 969 mutex_unlock(&fs_devices->device_list_mutex); 970 return ERR_PTR(-ENOMEM); 971 } 972 rcu_read_lock(); 973 old_name = rcu_dereference(device->name); 974 rcu_read_unlock(); 975 rcu_assign_pointer(device->name, name); 976 kfree_rcu_mightsleep(old_name); 977 978 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 979 fs_devices->missing_devices--; 980 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 981 } 982 device->devt = path_devt; 983 } 984 985 /* 986 * Unmount does not free the btrfs_device struct but would zero 987 * generation along with most of the other members. So just update 988 * it back. We need it to pick the disk with largest generation 989 * (as above). 990 */ 991 if (!fs_devices->opened) { 992 device->generation = found_transid; 993 fs_devices->latest_generation = max_t(u64, found_transid, 994 fs_devices->latest_generation); 995 } 996 997 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 998 999 mutex_unlock(&fs_devices->device_list_mutex); 1000 return device; 1001 } 1002 1003 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1004 { 1005 struct btrfs_fs_devices *fs_devices; 1006 struct btrfs_device *device; 1007 struct btrfs_device *orig_dev; 1008 int ret = 0; 1009 1010 lockdep_assert_held(&uuid_mutex); 1011 1012 fs_devices = alloc_fs_devices(orig->fsid); 1013 if (IS_ERR(fs_devices)) 1014 return fs_devices; 1015 1016 fs_devices->total_devices = orig->total_devices; 1017 1018 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1019 const char *dev_path = NULL; 1020 1021 /* 1022 * This is ok to do without RCU read locked because we hold the 1023 * uuid mutex so nothing we touch in here is going to disappear. 1024 */ 1025 if (orig_dev->name) 1026 dev_path = rcu_dereference_raw(orig_dev->name); 1027 1028 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1029 orig_dev->uuid, dev_path); 1030 if (IS_ERR(device)) { 1031 ret = PTR_ERR(device); 1032 goto error; 1033 } 1034 1035 if (orig_dev->zone_info) { 1036 struct btrfs_zoned_device_info *zone_info; 1037 1038 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1039 if (!zone_info) { 1040 btrfs_free_device(device); 1041 ret = -ENOMEM; 1042 goto error; 1043 } 1044 device->zone_info = zone_info; 1045 } 1046 1047 list_add(&device->dev_list, &fs_devices->devices); 1048 device->fs_devices = fs_devices; 1049 fs_devices->num_devices++; 1050 } 1051 return fs_devices; 1052 error: 1053 free_fs_devices(fs_devices); 1054 return ERR_PTR(ret); 1055 } 1056 1057 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1058 struct btrfs_device **latest_dev) 1059 { 1060 struct btrfs_device *device, *next; 1061 1062 /* This is the initialized path, it is safe to release the devices. */ 1063 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1064 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1065 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1066 &device->dev_state) && 1067 !test_bit(BTRFS_DEV_STATE_MISSING, 1068 &device->dev_state) && 1069 (!*latest_dev || 1070 device->generation > (*latest_dev)->generation)) { 1071 *latest_dev = device; 1072 } 1073 continue; 1074 } 1075 1076 /* 1077 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1078 * in btrfs_init_dev_replace() so just continue. 1079 */ 1080 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1081 continue; 1082 1083 if (device->bdev_file) { 1084 bdev_fput(device->bdev_file); 1085 device->bdev = NULL; 1086 device->bdev_file = NULL; 1087 fs_devices->open_devices--; 1088 } 1089 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1090 list_del_init(&device->dev_alloc_list); 1091 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1092 fs_devices->rw_devices--; 1093 } 1094 list_del_init(&device->dev_list); 1095 fs_devices->num_devices--; 1096 btrfs_free_device(device); 1097 } 1098 1099 } 1100 1101 /* 1102 * After we have read the system tree and know devids belonging to this 1103 * filesystem, remove the device which does not belong there. 1104 */ 1105 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1106 { 1107 struct btrfs_device *latest_dev = NULL; 1108 struct btrfs_fs_devices *seed_dev; 1109 1110 mutex_lock(&uuid_mutex); 1111 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1112 1113 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1114 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1115 1116 fs_devices->latest_dev = latest_dev; 1117 1118 mutex_unlock(&uuid_mutex); 1119 } 1120 1121 static void btrfs_close_bdev(struct btrfs_device *device) 1122 { 1123 if (!device->bdev) 1124 return; 1125 1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1127 sync_blockdev(device->bdev); 1128 invalidate_bdev(device->bdev); 1129 } 1130 1131 bdev_fput(device->bdev_file); 1132 } 1133 1134 static void btrfs_close_one_device(struct btrfs_device *device) 1135 { 1136 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1137 1138 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1139 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1140 list_del_init(&device->dev_alloc_list); 1141 fs_devices->rw_devices--; 1142 } 1143 1144 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1145 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1146 1147 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1148 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1149 fs_devices->missing_devices--; 1150 } 1151 1152 btrfs_close_bdev(device); 1153 if (device->bdev) { 1154 fs_devices->open_devices--; 1155 device->bdev = NULL; 1156 device->bdev_file = NULL; 1157 } 1158 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1159 btrfs_destroy_dev_zone_info(device); 1160 1161 device->fs_info = NULL; 1162 atomic_set(&device->dev_stats_ccnt, 0); 1163 btrfs_extent_io_tree_release(&device->alloc_state); 1164 1165 /* 1166 * Reset the flush error record. We might have a transient flush error 1167 * in this mount, and if so we aborted the current transaction and set 1168 * the fs to an error state, guaranteeing no super blocks can be further 1169 * committed. However that error might be transient and if we unmount the 1170 * filesystem and mount it again, we should allow the mount to succeed 1171 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1172 * filesystem again we still get flush errors, then we will again abort 1173 * any transaction and set the error state, guaranteeing no commits of 1174 * unsafe super blocks. 1175 */ 1176 clear_bit(BTRFS_DEV_STATE_FLUSH_FAILED, &device->dev_state); 1177 1178 /* Verify the device is back in a pristine state */ 1179 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1180 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1181 WARN_ON(!list_empty(&device->dev_alloc_list)); 1182 WARN_ON(!list_empty(&device->post_commit_list)); 1183 } 1184 1185 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1186 { 1187 struct btrfs_device *device, *tmp; 1188 1189 lockdep_assert_held(&uuid_mutex); 1190 1191 if (--fs_devices->opened > 0) 1192 return; 1193 1194 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1195 btrfs_close_one_device(device); 1196 1197 WARN_ON(fs_devices->open_devices); 1198 WARN_ON(fs_devices->rw_devices); 1199 fs_devices->opened = 0; 1200 fs_devices->seeding = false; 1201 fs_devices->fs_info = NULL; 1202 } 1203 1204 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1205 { 1206 LIST_HEAD(list); 1207 struct btrfs_fs_devices *tmp; 1208 1209 mutex_lock(&uuid_mutex); 1210 close_fs_devices(fs_devices); 1211 if (!fs_devices->opened && !fs_devices->holding) { 1212 list_splice_init(&fs_devices->seed_list, &list); 1213 1214 /* 1215 * If the struct btrfs_fs_devices is not assembled with any 1216 * other device, it can be re-initialized during the next mount 1217 * without the needing device-scan step. Therefore, it can be 1218 * fully freed. 1219 */ 1220 if (fs_devices->num_devices == 1) { 1221 list_del(&fs_devices->fs_list); 1222 free_fs_devices(fs_devices); 1223 } 1224 } 1225 1226 1227 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1228 close_fs_devices(fs_devices); 1229 list_del(&fs_devices->seed_list); 1230 free_fs_devices(fs_devices); 1231 } 1232 mutex_unlock(&uuid_mutex); 1233 } 1234 1235 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1236 blk_mode_t flags, void *holder) 1237 { 1238 struct btrfs_device *device; 1239 struct btrfs_device *latest_dev = NULL; 1240 struct btrfs_device *tmp_device; 1241 s64 __maybe_unused value = 0; 1242 int ret = 0; 1243 1244 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1245 dev_list) { 1246 int ret2; 1247 1248 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1249 if (ret2 == 0 && 1250 (!latest_dev || device->generation > latest_dev->generation)) { 1251 latest_dev = device; 1252 } else if (ret2 == -ENODATA) { 1253 fs_devices->num_devices--; 1254 list_del(&device->dev_list); 1255 btrfs_free_device(device); 1256 } 1257 if (ret == 0 && ret2 != 0) 1258 ret = ret2; 1259 } 1260 1261 if (fs_devices->open_devices == 0) { 1262 if (ret) 1263 return ret; 1264 return -EINVAL; 1265 } 1266 1267 fs_devices->opened = 1; 1268 fs_devices->latest_dev = latest_dev; 1269 fs_devices->total_rw_bytes = 0; 1270 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1271 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1272 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1273 fs_devices->read_devid = latest_dev->devid; 1274 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1275 &value); 1276 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1277 fs_devices->collect_fs_stats = true; 1278 1279 if (value) { 1280 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1281 fs_devices->rr_min_contig_read = value; 1282 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1283 fs_devices->read_devid = value; 1284 } 1285 #else 1286 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1287 #endif 1288 1289 return 0; 1290 } 1291 1292 static int devid_cmp(void *priv, const struct list_head *a, 1293 const struct list_head *b) 1294 { 1295 const struct btrfs_device *dev1, *dev2; 1296 1297 dev1 = list_entry(a, struct btrfs_device, dev_list); 1298 dev2 = list_entry(b, struct btrfs_device, dev_list); 1299 1300 if (dev1->devid < dev2->devid) 1301 return -1; 1302 else if (dev1->devid > dev2->devid) 1303 return 1; 1304 return 0; 1305 } 1306 1307 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1308 blk_mode_t flags, void *holder) 1309 { 1310 int ret; 1311 1312 lockdep_assert_held(&uuid_mutex); 1313 /* 1314 * The device_list_mutex cannot be taken here in case opening the 1315 * underlying device takes further locks like open_mutex. 1316 * 1317 * We also don't need the lock here as this is called during mount and 1318 * exclusion is provided by uuid_mutex 1319 */ 1320 1321 if (fs_devices->opened) { 1322 fs_devices->opened++; 1323 ret = 0; 1324 } else { 1325 list_sort(NULL, &fs_devices->devices, devid_cmp); 1326 ret = open_fs_devices(fs_devices, flags, holder); 1327 } 1328 1329 return ret; 1330 } 1331 1332 void btrfs_release_disk_super(struct btrfs_super_block *super) 1333 { 1334 struct page *page = virt_to_page(super); 1335 1336 put_page(page); 1337 } 1338 1339 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1340 int copy_num, bool drop_cache) 1341 { 1342 struct btrfs_super_block *super; 1343 struct page *page; 1344 u64 bytenr, bytenr_orig; 1345 struct address_space *mapping = bdev->bd_mapping; 1346 int ret; 1347 1348 bytenr_orig = btrfs_sb_offset(copy_num); 1349 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1350 if (ret < 0) { 1351 if (ret == -ENOENT) 1352 ret = -EINVAL; 1353 return ERR_PTR(ret); 1354 } 1355 1356 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1357 return ERR_PTR(-EINVAL); 1358 1359 if (drop_cache) { 1360 /* This should only be called with the primary sb. */ 1361 ASSERT(copy_num == 0); 1362 1363 /* 1364 * Drop the page of the primary superblock, so later read will 1365 * always read from the device. 1366 */ 1367 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1368 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1369 } 1370 1371 filemap_invalidate_lock(mapping); 1372 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1373 filemap_invalidate_unlock(mapping); 1374 if (IS_ERR(page)) 1375 return ERR_CAST(page); 1376 1377 super = page_address(page); 1378 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1379 btrfs_super_bytenr(super) != bytenr_orig) { 1380 btrfs_release_disk_super(super); 1381 return ERR_PTR(-EINVAL); 1382 } 1383 1384 /* 1385 * Make sure the last byte of label is properly NUL terminated. We use 1386 * '%s' to print the label, if not properly NUL terminated we can access 1387 * beyond the label. 1388 */ 1389 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1390 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1391 1392 return super; 1393 } 1394 1395 int btrfs_forget_devices(dev_t devt) 1396 { 1397 int ret; 1398 1399 mutex_lock(&uuid_mutex); 1400 ret = btrfs_free_stale_devices(devt, NULL); 1401 mutex_unlock(&uuid_mutex); 1402 1403 return ret; 1404 } 1405 1406 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1407 const char *path, dev_t devt, 1408 bool mount_arg_dev) 1409 { 1410 struct btrfs_fs_devices *fs_devices; 1411 1412 /* 1413 * Do not skip device registration for mounted devices with matching 1414 * maj:min but different paths. Booting without initrd relies on 1415 * /dev/root initially, later replaced with the actual root device. 1416 * A successful scan ensures grub2-probe selects the correct device. 1417 */ 1418 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1419 struct btrfs_device *device; 1420 1421 mutex_lock(&fs_devices->device_list_mutex); 1422 1423 if (!fs_devices->opened) { 1424 mutex_unlock(&fs_devices->device_list_mutex); 1425 continue; 1426 } 1427 1428 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1429 if (device->bdev && (device->bdev->bd_dev == devt) && 1430 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1431 mutex_unlock(&fs_devices->device_list_mutex); 1432 1433 /* Do not skip registration. */ 1434 return false; 1435 } 1436 } 1437 mutex_unlock(&fs_devices->device_list_mutex); 1438 } 1439 1440 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1441 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1442 return true; 1443 1444 return false; 1445 } 1446 1447 /* 1448 * Look for a btrfs signature on a device. This may be called out of the mount path 1449 * and we are not allowed to call set_blocksize during the scan. The superblock 1450 * is read via pagecache. 1451 * 1452 * With @mount_arg_dev it's a scan during mount time that will always register 1453 * the device or return an error. Multi-device and seeding devices are registered 1454 * in both cases. 1455 */ 1456 struct btrfs_device *btrfs_scan_one_device(const char *path, 1457 bool mount_arg_dev) 1458 { 1459 struct btrfs_super_block *disk_super; 1460 bool new_device_added = false; 1461 struct btrfs_device *device = NULL; 1462 struct file *bdev_file; 1463 dev_t devt; 1464 1465 lockdep_assert_held(&uuid_mutex); 1466 1467 /* 1468 * Avoid an exclusive open here, as the systemd-udev may initiate the 1469 * device scan which may race with the user's mount or mkfs command, 1470 * resulting in failure. 1471 * Since the device scan is solely for reading purposes, there is no 1472 * need for an exclusive open. Additionally, the devices are read again 1473 * during the mount process. It is ok to get some inconsistent 1474 * values temporarily, as the device paths of the fsid are the only 1475 * required information for assembling the volume. 1476 */ 1477 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1478 if (IS_ERR(bdev_file)) 1479 return ERR_CAST(bdev_file); 1480 1481 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1482 if (IS_ERR(disk_super)) { 1483 device = ERR_CAST(disk_super); 1484 goto error_bdev_put; 1485 } 1486 1487 devt = file_bdev(bdev_file)->bd_dev; 1488 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1489 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1490 path, MAJOR(devt), MINOR(devt)); 1491 1492 btrfs_free_stale_devices(devt, NULL); 1493 1494 device = NULL; 1495 goto free_disk_super; 1496 } 1497 1498 device = device_list_add(path, disk_super, &new_device_added); 1499 if (!IS_ERR(device) && new_device_added) 1500 btrfs_free_stale_devices(device->devt, device); 1501 1502 free_disk_super: 1503 btrfs_release_disk_super(disk_super); 1504 1505 error_bdev_put: 1506 bdev_fput(bdev_file); 1507 1508 return device; 1509 } 1510 1511 /* 1512 * Find the first pending extent intersecting a range. 1513 * 1514 * @device: the device to search 1515 * @start: start of the range to check 1516 * @len: length of the range to check 1517 * @pending_start: output pointer for the start of the found pending extent 1518 * @pending_end: output pointer for the end of the found pending extent (inclusive) 1519 * 1520 * Search for a pending chunk allocation that intersects the half-open range 1521 * [start, start + len). 1522 * 1523 * Return: true if a pending extent was found, false otherwise. 1524 * If the return value is true, store the first pending extent in 1525 * [*pending_start, *pending_end]. Otherwise, the two output variables 1526 * may still be modified, to something outside the range and should not 1527 * be used. 1528 */ 1529 bool btrfs_first_pending_extent(struct btrfs_device *device, u64 start, u64 len, 1530 u64 *pending_start, u64 *pending_end) 1531 { 1532 lockdep_assert_held(&device->fs_info->chunk_mutex); 1533 1534 if (btrfs_find_first_extent_bit(&device->alloc_state, start, 1535 pending_start, pending_end, 1536 CHUNK_ALLOCATED, NULL)) { 1537 1538 if (in_range(*pending_start, start, len) || 1539 in_range(start, *pending_start, *pending_end + 1 - *pending_start)) { 1540 return true; 1541 } 1542 } 1543 return false; 1544 } 1545 1546 /* 1547 * Find the first real hole accounting for pending extents. 1548 * 1549 * @device: the device containing the candidate hole 1550 * @start: input/output pointer for the hole start position 1551 * @len: input/output pointer for the hole length 1552 * @min_hole_size: the size of hole we are looking for 1553 * 1554 * Given a potential hole specified by [*start, *start + *len), check for pending 1555 * chunk allocations within that range. If pending extents are found, the hole is 1556 * adjusted to represent the first true free space that is large enough when 1557 * accounting for pending chunks. 1558 * 1559 * Note that this function must handle various cases involving non consecutive 1560 * pending extents. 1561 * 1562 * Returns: true if a suitable hole was found and false otherwise. 1563 * If the return value is true, then *start and *len are set to represent the hole. 1564 * If the return value is false, then *start is set to the largest hole we 1565 * found and *len is set to its length. 1566 * If there are no holes at all, then *start is set to the end of the range and 1567 * *len is set to 0. 1568 */ 1569 bool btrfs_find_hole_in_pending_extents(struct btrfs_device *device, u64 *start, 1570 u64 *len, u64 min_hole_size) 1571 { 1572 u64 pending_start, pending_end; 1573 u64 end; 1574 u64 max_hole_start = 0; 1575 u64 max_hole_len = 0; 1576 1577 lockdep_assert_held(&device->fs_info->chunk_mutex); 1578 1579 if (*len == 0) 1580 return false; 1581 1582 end = *start + *len - 1; 1583 1584 /* 1585 * Loop until we either see a large enough hole or check every pending 1586 * extent overlapping the candidate hole. 1587 * At every hole that we observe, record it if it is the new max. 1588 * At the end of the iteration, set the output variables to the max hole. 1589 */ 1590 while (true) { 1591 if (btrfs_first_pending_extent(device, *start, *len, &pending_start, &pending_end)) { 1592 /* 1593 * Case 1: the pending extent overlaps the start of 1594 * candidate hole. That means the true hole is after the 1595 * pending extent, but we need to find the next pending 1596 * extent to properly size the hole. In the next loop, 1597 * we will reduce to case 2 or 3. 1598 * e.g., 1599 * 1600 * |----pending A----| real hole |----pending B----| 1601 * | candidate hole | 1602 * *start end 1603 */ 1604 if (pending_start <= *start) { 1605 *start = pending_end + 1; 1606 goto next; 1607 } 1608 /* 1609 * Case 2: The pending extent starts after *start (and overlaps 1610 * [*start, end), so the first hole just goes up to the start 1611 * of the pending extent. 1612 * e.g., 1613 * 1614 * | real hole |----pending A----| 1615 * | candidate hole | 1616 * *start end 1617 */ 1618 *len = pending_start - *start; 1619 if (*len > max_hole_len) { 1620 max_hole_start = *start; 1621 max_hole_len = *len; 1622 } 1623 if (*len >= min_hole_size) 1624 break; 1625 /* 1626 * If the hole wasn't big enough, then we advance past 1627 * the pending extent and keep looking. 1628 */ 1629 *start = pending_end + 1; 1630 goto next; 1631 } else { 1632 /* 1633 * Case 3: There is no pending extent overlapping the 1634 * range [*start, *start + *len - 1], so the only remaining 1635 * hole is the remaining range. 1636 * e.g., 1637 * 1638 * | candidate hole | 1639 * | real hole | 1640 * *start end 1641 */ 1642 1643 if (*len > max_hole_len) { 1644 max_hole_start = *start; 1645 max_hole_len = *len; 1646 } 1647 break; 1648 } 1649 next: 1650 if (*start > end) 1651 break; 1652 *len = end - *start + 1; 1653 } 1654 if (max_hole_len) { 1655 *start = max_hole_start; 1656 *len = max_hole_len; 1657 } else { 1658 *start = end + 1; 1659 *len = 0; 1660 } 1661 return max_hole_len >= min_hole_size; 1662 } 1663 1664 static u64 dev_extent_search_start(struct btrfs_device *device) 1665 { 1666 switch (device->fs_devices->chunk_alloc_policy) { 1667 default: 1668 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1669 fallthrough; 1670 case BTRFS_CHUNK_ALLOC_REGULAR: 1671 return BTRFS_DEVICE_RANGE_RESERVED; 1672 case BTRFS_CHUNK_ALLOC_ZONED: 1673 /* 1674 * We don't care about the starting region like regular 1675 * allocator, because we anyway use/reserve the first two zones 1676 * for superblock logging. 1677 */ 1678 return 0; 1679 } 1680 } 1681 1682 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1683 u64 *hole_start, u64 *hole_size, 1684 u64 num_bytes) 1685 { 1686 u64 zone_size = device->zone_info->zone_size; 1687 u64 pos; 1688 int ret; 1689 bool changed = false; 1690 1691 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1692 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1693 1694 while (*hole_size > 0) { 1695 pos = btrfs_find_allocatable_zones(device, *hole_start, 1696 *hole_start + *hole_size, 1697 num_bytes); 1698 if (pos != *hole_start) { 1699 *hole_size = *hole_start + *hole_size - pos; 1700 *hole_start = pos; 1701 changed = true; 1702 if (*hole_size < num_bytes) 1703 break; 1704 } 1705 1706 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1707 1708 /* Range is ensured to be empty */ 1709 if (!ret) 1710 return changed; 1711 1712 /* Given hole range was invalid (outside of device) */ 1713 if (ret == -ERANGE) { 1714 *hole_start += *hole_size; 1715 *hole_size = 0; 1716 return true; 1717 } 1718 1719 *hole_start += zone_size; 1720 *hole_size -= zone_size; 1721 changed = true; 1722 } 1723 1724 return changed; 1725 } 1726 1727 /* 1728 * Validate and adjust a hole for chunk allocation 1729 * 1730 * @device: the device containing the candidate hole 1731 * @hole_start: input/output pointer for the hole start position 1732 * @hole_size: input/output pointer for the hole size 1733 * @num_bytes: minimum allocation size required 1734 * 1735 * Check if the specified hole is suitable for allocation and adjust it if 1736 * necessary. The hole may be modified to skip over pending chunk allocations 1737 * and to satisfy stricter zoned requirements on zoned filesystems. 1738 * 1739 * For regular (non-zoned) allocation, if the hole after adjustment is smaller 1740 * than @num_bytes, the search continues past additional pending extents until 1741 * either a sufficiently large hole is found or no more pending extents exist. 1742 * 1743 * Return: true if a suitable hole was found and false otherwise. 1744 * If the return value is true, then *hole_start and *hole_size are set to 1745 * represent the hole we found. 1746 * If the return value is false, then *hole_start is set to the largest 1747 * hole we found and *hole_size is set to its length. 1748 * If there are no holes at all, then *hole_start is set to the end of the range 1749 * and *hole_size is set to 0. 1750 */ 1751 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1752 u64 *hole_size, u64 num_bytes) 1753 { 1754 bool found = false; 1755 const u64 hole_end = *hole_start + *hole_size - 1; 1756 1757 ASSERT(*hole_size > 0); 1758 1759 again: 1760 *hole_size = hole_end - *hole_start + 1; 1761 found = btrfs_find_hole_in_pending_extents(device, hole_start, hole_size, num_bytes); 1762 if (!found) 1763 return found; 1764 ASSERT(*hole_size >= num_bytes); 1765 1766 switch (device->fs_devices->chunk_alloc_policy) { 1767 default: 1768 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1769 fallthrough; 1770 case BTRFS_CHUNK_ALLOC_REGULAR: 1771 return found; 1772 case BTRFS_CHUNK_ALLOC_ZONED: 1773 if (dev_extent_hole_check_zoned(device, hole_start, hole_size, num_bytes)) 1774 goto again; 1775 break; 1776 } 1777 1778 return found; 1779 } 1780 1781 /* 1782 * Find free space in the specified device. 1783 * 1784 * @device: the device which we search the free space in 1785 * @num_bytes: the size of the free space that we need 1786 * @search_start: the position from which to begin the search 1787 * @start: store the start of the free space. 1788 * @len: the size of the free space. that we find, or the size 1789 * of the max free space if we don't find suitable free space 1790 * 1791 * This does a pretty simple search, the expectation is that it is called very 1792 * infrequently and that a given device has a small number of extents. 1793 * 1794 * @start is used to store the start of the free space if we find. But if we 1795 * don't find suitable free space, it will be used to store the start position 1796 * of the max free space. 1797 * 1798 * @len is used to store the size of the free space that we find. 1799 * But if we don't find suitable free space, it is used to store the size of 1800 * the max free space. 1801 * 1802 * NOTE: This function will search *commit* root of device tree, and does extra 1803 * check to ensure dev extents are not double allocated. 1804 * This makes the function safe to allocate dev extents but may not report 1805 * correct usable device space, as device extent freed in current transaction 1806 * is not reported as available. 1807 */ 1808 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1809 u64 *start, u64 *len) 1810 { 1811 struct btrfs_fs_info *fs_info = device->fs_info; 1812 struct btrfs_root *root = fs_info->dev_root; 1813 struct btrfs_key key; 1814 struct btrfs_dev_extent *dev_extent; 1815 BTRFS_PATH_AUTO_FREE(path); 1816 u64 search_start; 1817 u64 hole_size; 1818 u64 max_hole_start; 1819 u64 max_hole_size = 0; 1820 u64 extent_end; 1821 u64 search_end = device->total_bytes; 1822 int ret; 1823 int slot; 1824 struct extent_buffer *l; 1825 1826 search_start = dev_extent_search_start(device); 1827 max_hole_start = search_start; 1828 1829 WARN_ON(device->zone_info && 1830 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1831 1832 path = btrfs_alloc_path(); 1833 if (!path) { 1834 ret = -ENOMEM; 1835 goto out; 1836 } 1837 1838 if (search_start >= search_end || 1839 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1840 ret = -ENOSPC; 1841 goto out; 1842 } 1843 1844 path->reada = READA_FORWARD; 1845 path->search_commit_root = true; 1846 path->skip_locking = true; 1847 1848 key.objectid = device->devid; 1849 key.type = BTRFS_DEV_EXTENT_KEY; 1850 key.offset = search_start; 1851 1852 ret = btrfs_search_backwards(root, &key, path); 1853 if (ret < 0) 1854 goto out; 1855 1856 while (search_start < search_end) { 1857 l = path->nodes[0]; 1858 slot = path->slots[0]; 1859 if (slot >= btrfs_header_nritems(l)) { 1860 ret = btrfs_next_leaf(root, path); 1861 if (ret == 0) 1862 continue; 1863 if (ret < 0) 1864 goto out; 1865 1866 break; 1867 } 1868 btrfs_item_key_to_cpu(l, &key, slot); 1869 1870 if (key.objectid < device->devid) 1871 goto next; 1872 1873 if (key.objectid > device->devid) 1874 break; 1875 1876 if (key.type != BTRFS_DEV_EXTENT_KEY) 1877 goto next; 1878 1879 if (key.offset > search_end) 1880 break; 1881 1882 if (key.offset > search_start) { 1883 hole_size = key.offset - search_start; 1884 dev_extent_hole_check(device, &search_start, &hole_size, 1885 num_bytes); 1886 1887 if (hole_size > max_hole_size) { 1888 max_hole_start = search_start; 1889 max_hole_size = hole_size; 1890 } 1891 1892 /* 1893 * If this free space is greater than which we need, 1894 * it must be the max free space that we have found 1895 * until now, so max_hole_start must point to the start 1896 * of this free space and the length of this free space 1897 * is stored in max_hole_size. Thus, we return 1898 * max_hole_start and max_hole_size and go back to the 1899 * caller. 1900 */ 1901 if (hole_size >= num_bytes) { 1902 ret = 0; 1903 goto out; 1904 } 1905 } 1906 1907 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1908 extent_end = key.offset + btrfs_dev_extent_length(l, 1909 dev_extent); 1910 if (extent_end > search_start) 1911 search_start = extent_end; 1912 next: 1913 path->slots[0]++; 1914 cond_resched(); 1915 } 1916 1917 /* 1918 * At this point, search_start should be the end of 1919 * allocated dev extents, and when shrinking the device, 1920 * search_end may be smaller than search_start. 1921 */ 1922 if (search_end > search_start) { 1923 hole_size = search_end - search_start; 1924 dev_extent_hole_check(device, &search_start, &hole_size, num_bytes); 1925 1926 if (hole_size > max_hole_size) { 1927 max_hole_start = search_start; 1928 max_hole_size = hole_size; 1929 } 1930 } 1931 1932 /* See above. */ 1933 if (max_hole_size < num_bytes) 1934 ret = -ENOSPC; 1935 else 1936 ret = 0; 1937 1938 ASSERT(max_hole_start + max_hole_size <= search_end, 1939 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1940 max_hole_start, max_hole_size, search_end); 1941 out: 1942 *start = max_hole_start; 1943 if (len) 1944 *len = max_hole_size; 1945 return ret; 1946 } 1947 1948 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1949 struct btrfs_device *device, 1950 u64 start, u64 *dev_extent_len) 1951 { 1952 struct btrfs_fs_info *fs_info = device->fs_info; 1953 struct btrfs_root *root = fs_info->dev_root; 1954 int ret; 1955 BTRFS_PATH_AUTO_FREE(path); 1956 struct btrfs_key key; 1957 struct btrfs_key found_key; 1958 struct extent_buffer *leaf = NULL; 1959 struct btrfs_dev_extent *extent = NULL; 1960 1961 path = btrfs_alloc_path(); 1962 if (!path) 1963 return -ENOMEM; 1964 1965 key.objectid = device->devid; 1966 key.type = BTRFS_DEV_EXTENT_KEY; 1967 key.offset = start; 1968 again: 1969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1970 if (ret > 0) { 1971 ret = btrfs_previous_item(root, path, key.objectid, 1972 BTRFS_DEV_EXTENT_KEY); 1973 if (ret) 1974 return ret; 1975 leaf = path->nodes[0]; 1976 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1977 extent = btrfs_item_ptr(leaf, path->slots[0], 1978 struct btrfs_dev_extent); 1979 BUG_ON(found_key.offset > start || found_key.offset + 1980 btrfs_dev_extent_length(leaf, extent) < start); 1981 key = found_key; 1982 btrfs_release_path(path); 1983 goto again; 1984 } else if (ret == 0) { 1985 leaf = path->nodes[0]; 1986 extent = btrfs_item_ptr(leaf, path->slots[0], 1987 struct btrfs_dev_extent); 1988 } else { 1989 return ret; 1990 } 1991 1992 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1993 1994 ret = btrfs_del_item(trans, root, path); 1995 if (ret == 0) 1996 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1997 return ret; 1998 } 1999 2000 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 2001 { 2002 struct rb_node *n; 2003 u64 ret = 0; 2004 2005 read_lock(&fs_info->mapping_tree_lock); 2006 n = rb_last(&fs_info->mapping_tree.rb_root); 2007 if (n) { 2008 struct btrfs_chunk_map *map; 2009 2010 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 2011 ret = map->start + map->chunk_len; 2012 } 2013 read_unlock(&fs_info->mapping_tree_lock); 2014 2015 return ret; 2016 } 2017 2018 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 2019 u64 *devid_ret) 2020 { 2021 int ret; 2022 struct btrfs_key key; 2023 struct btrfs_key found_key; 2024 BTRFS_PATH_AUTO_FREE(path); 2025 2026 path = btrfs_alloc_path(); 2027 if (!path) 2028 return -ENOMEM; 2029 2030 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2031 key.type = BTRFS_DEV_ITEM_KEY; 2032 key.offset = (u64)-1; 2033 2034 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 2035 if (ret < 0) 2036 return ret; 2037 2038 if (unlikely(ret == 0)) { 2039 /* Corruption */ 2040 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 2041 return -EUCLEAN; 2042 } 2043 2044 ret = btrfs_previous_item(fs_info->chunk_root, path, 2045 BTRFS_DEV_ITEMS_OBJECTID, 2046 BTRFS_DEV_ITEM_KEY); 2047 if (ret) { 2048 *devid_ret = 1; 2049 } else { 2050 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2051 path->slots[0]); 2052 *devid_ret = found_key.offset + 1; 2053 } 2054 return 0; 2055 } 2056 2057 /* 2058 * the device information is stored in the chunk root 2059 * the btrfs_device struct should be fully filled in 2060 */ 2061 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 2062 struct btrfs_device *device) 2063 { 2064 int ret; 2065 BTRFS_PATH_AUTO_FREE(path); 2066 struct btrfs_dev_item *dev_item; 2067 struct extent_buffer *leaf; 2068 struct btrfs_key key; 2069 unsigned long ptr; 2070 2071 path = btrfs_alloc_path(); 2072 if (!path) 2073 return -ENOMEM; 2074 2075 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2076 key.type = BTRFS_DEV_ITEM_KEY; 2077 key.offset = device->devid; 2078 2079 btrfs_reserve_chunk_metadata(trans, true); 2080 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 2081 &key, sizeof(*dev_item)); 2082 btrfs_trans_release_chunk_metadata(trans); 2083 if (ret) 2084 return ret; 2085 2086 leaf = path->nodes[0]; 2087 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2088 2089 btrfs_set_device_id(leaf, dev_item, device->devid); 2090 btrfs_set_device_generation(leaf, dev_item, 0); 2091 btrfs_set_device_type(leaf, dev_item, device->type); 2092 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2093 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2094 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2095 btrfs_set_device_total_bytes(leaf, dev_item, 2096 btrfs_device_get_disk_total_bytes(device)); 2097 btrfs_set_device_bytes_used(leaf, dev_item, 2098 btrfs_device_get_bytes_used(device)); 2099 btrfs_set_device_group(leaf, dev_item, 0); 2100 btrfs_set_device_seek_speed(leaf, dev_item, 0); 2101 btrfs_set_device_bandwidth(leaf, dev_item, 0); 2102 btrfs_set_device_start_offset(leaf, dev_item, 0); 2103 2104 ptr = btrfs_device_uuid(dev_item); 2105 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 2106 ptr = btrfs_device_fsid(dev_item); 2107 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 2108 ptr, BTRFS_FSID_SIZE); 2109 2110 return 0; 2111 } 2112 2113 /* 2114 * Function to update ctime/mtime for a given device path. 2115 * Mainly used for ctime/mtime based probe like libblkid. 2116 * 2117 * We don't care about errors here, this is just to be kind to userspace. 2118 */ 2119 static void update_dev_time(const char *device_path) 2120 { 2121 struct path path; 2122 2123 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) { 2124 vfs_utimes(&path, NULL); 2125 path_put(&path); 2126 } 2127 } 2128 2129 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2130 struct btrfs_device *device) 2131 { 2132 struct btrfs_root *root = device->fs_info->chunk_root; 2133 int ret; 2134 BTRFS_PATH_AUTO_FREE(path); 2135 struct btrfs_key key; 2136 2137 path = btrfs_alloc_path(); 2138 if (!path) 2139 return -ENOMEM; 2140 2141 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2142 key.type = BTRFS_DEV_ITEM_KEY; 2143 key.offset = device->devid; 2144 2145 btrfs_reserve_chunk_metadata(trans, false); 2146 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2147 btrfs_trans_release_chunk_metadata(trans); 2148 if (ret > 0) 2149 return -ENOENT; 2150 if (ret < 0) 2151 return ret; 2152 2153 return btrfs_del_item(trans, root, path); 2154 } 2155 2156 /* 2157 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2158 * filesystem. It's up to the caller to adjust that number regarding eg. device 2159 * replace. 2160 */ 2161 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2162 u64 num_devices) 2163 { 2164 u64 all_avail; 2165 unsigned seq; 2166 int i; 2167 2168 do { 2169 seq = read_seqbegin(&fs_info->profiles_lock); 2170 2171 all_avail = fs_info->avail_data_alloc_bits | 2172 fs_info->avail_system_alloc_bits | 2173 fs_info->avail_metadata_alloc_bits; 2174 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2175 2176 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2177 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2178 continue; 2179 2180 if (num_devices < btrfs_raid_array[i].devs_min) 2181 return btrfs_raid_array[i].mindev_error; 2182 } 2183 2184 return 0; 2185 } 2186 2187 static struct btrfs_device * btrfs_find_next_active_device( 2188 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2189 { 2190 struct btrfs_device *next_device; 2191 2192 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2193 if (next_device != device && 2194 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2195 && next_device->bdev) 2196 return next_device; 2197 } 2198 2199 return NULL; 2200 } 2201 2202 /* 2203 * Helper function to check if the given device is part of s_bdev / latest_dev 2204 * and replace it with the provided or the next active device, in the context 2205 * where this function called, there should be always be another device (or 2206 * this_dev) which is active. 2207 */ 2208 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2209 struct btrfs_device *next_device) 2210 { 2211 struct btrfs_fs_info *fs_info = device->fs_info; 2212 2213 if (!next_device) 2214 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2215 device); 2216 ASSERT(next_device); 2217 2218 if (fs_info->sb->s_bdev && 2219 (fs_info->sb->s_bdev == device->bdev)) 2220 fs_info->sb->s_bdev = next_device->bdev; 2221 2222 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2223 fs_info->fs_devices->latest_dev = next_device; 2224 } 2225 2226 /* 2227 * Return btrfs_fs_devices::num_devices excluding the device that's being 2228 * currently replaced. 2229 */ 2230 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2231 { 2232 u64 num_devices = fs_info->fs_devices->num_devices; 2233 2234 down_read(&fs_info->dev_replace.rwsem); 2235 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2236 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2237 num_devices--; 2238 } 2239 up_read(&fs_info->dev_replace.rwsem); 2240 2241 return num_devices; 2242 } 2243 2244 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2245 struct block_device *bdev, int copy_num) 2246 { 2247 struct btrfs_super_block *disk_super; 2248 const size_t len = sizeof(disk_super->magic); 2249 const u64 bytenr = btrfs_sb_offset(copy_num); 2250 int ret; 2251 2252 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2253 if (IS_ERR(disk_super)) 2254 return; 2255 2256 memset(&disk_super->magic, 0, len); 2257 folio_mark_dirty(virt_to_folio(disk_super)); 2258 btrfs_release_disk_super(disk_super); 2259 2260 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2261 if (ret) 2262 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2263 copy_num, ret); 2264 } 2265 2266 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2267 { 2268 int copy_num; 2269 struct block_device *bdev = device->bdev; 2270 2271 if (!bdev) 2272 return; 2273 2274 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2275 if (bdev_is_zoned(bdev)) 2276 btrfs_reset_sb_log_zones(bdev, copy_num); 2277 else 2278 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2279 } 2280 2281 /* Notify udev that device has changed */ 2282 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2283 2284 /* Update ctime/mtime for device path for libblkid */ 2285 update_dev_time(rcu_dereference_raw(device->name)); 2286 } 2287 2288 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2289 struct btrfs_dev_lookup_args *args, 2290 struct file **bdev_file) 2291 { 2292 struct btrfs_trans_handle *trans; 2293 struct btrfs_device *device; 2294 struct btrfs_fs_devices *cur_devices; 2295 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2296 u64 num_devices; 2297 int ret = 0; 2298 2299 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2300 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2301 return -EINVAL; 2302 } 2303 2304 /* 2305 * The device list in fs_devices is accessed without locks (neither 2306 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2307 * filesystem and another device rm cannot run. 2308 */ 2309 num_devices = btrfs_num_devices(fs_info); 2310 2311 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2312 if (ret) 2313 return ret; 2314 2315 device = btrfs_find_device(fs_info->fs_devices, args); 2316 if (!device) { 2317 if (args->missing) 2318 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2319 else 2320 ret = -ENOENT; 2321 return ret; 2322 } 2323 2324 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2325 btrfs_warn(fs_info, 2326 "cannot remove device %s (devid %llu) due to active swapfile", 2327 btrfs_dev_name(device), device->devid); 2328 return -ETXTBSY; 2329 } 2330 2331 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2332 return BTRFS_ERROR_DEV_TGT_REPLACE; 2333 2334 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2335 fs_info->fs_devices->rw_devices == 1) 2336 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2337 2338 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2339 mutex_lock(&fs_info->chunk_mutex); 2340 list_del_init(&device->dev_alloc_list); 2341 device->fs_devices->rw_devices--; 2342 mutex_unlock(&fs_info->chunk_mutex); 2343 } 2344 2345 ret = btrfs_shrink_device(device, 0); 2346 if (ret) 2347 goto error_undo; 2348 2349 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2350 if (IS_ERR(trans)) { 2351 ret = PTR_ERR(trans); 2352 goto error_undo; 2353 } 2354 2355 ret = btrfs_rm_dev_item(trans, device); 2356 if (unlikely(ret)) { 2357 /* Any error in dev item removal is critical */ 2358 btrfs_crit(fs_info, 2359 "failed to remove device item for devid %llu: %d", 2360 device->devid, ret); 2361 btrfs_abort_transaction(trans, ret); 2362 btrfs_end_transaction(trans); 2363 return ret; 2364 } 2365 2366 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2367 btrfs_scrub_cancel_dev(device); 2368 2369 /* 2370 * the device list mutex makes sure that we don't change 2371 * the device list while someone else is writing out all 2372 * the device supers. Whoever is writing all supers, should 2373 * lock the device list mutex before getting the number of 2374 * devices in the super block (super_copy). Conversely, 2375 * whoever updates the number of devices in the super block 2376 * (super_copy) should hold the device list mutex. 2377 */ 2378 2379 /* 2380 * In normal cases the cur_devices == fs_devices. But in case 2381 * of deleting a seed device, the cur_devices should point to 2382 * its own fs_devices listed under the fs_devices->seed_list. 2383 */ 2384 cur_devices = device->fs_devices; 2385 mutex_lock(&fs_devices->device_list_mutex); 2386 list_del_rcu(&device->dev_list); 2387 2388 cur_devices->num_devices--; 2389 cur_devices->total_devices--; 2390 /* Update total_devices of the parent fs_devices if it's seed */ 2391 if (cur_devices != fs_devices) 2392 fs_devices->total_devices--; 2393 2394 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2395 cur_devices->missing_devices--; 2396 2397 btrfs_assign_next_active_device(device, NULL); 2398 2399 if (device->bdev_file) { 2400 cur_devices->open_devices--; 2401 /* remove sysfs entry */ 2402 btrfs_sysfs_remove_device(device); 2403 } 2404 2405 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2406 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2407 mutex_unlock(&fs_devices->device_list_mutex); 2408 2409 /* 2410 * At this point, the device is zero sized and detached from the 2411 * devices list. All that's left is to zero out the old supers and 2412 * free the device. 2413 * 2414 * We cannot call btrfs_close_bdev() here because we're holding the sb 2415 * write lock, and bdev_fput() on the block device will pull in the 2416 * ->open_mutex on the block device and it's dependencies. Instead 2417 * just flush the device and let the caller do the final bdev_release. 2418 */ 2419 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2420 btrfs_scratch_superblocks(fs_info, device); 2421 if (device->bdev) { 2422 sync_blockdev(device->bdev); 2423 invalidate_bdev(device->bdev); 2424 } 2425 } 2426 2427 *bdev_file = device->bdev_file; 2428 synchronize_rcu(); 2429 btrfs_free_device(device); 2430 2431 /* 2432 * This can happen if cur_devices is the private seed devices list. We 2433 * cannot call close_fs_devices() here because it expects the uuid_mutex 2434 * to be held, but in fact we don't need that for the private 2435 * seed_devices, we can simply decrement cur_devices->opened and then 2436 * remove it from our list and free the fs_devices. 2437 */ 2438 if (cur_devices->num_devices == 0) { 2439 list_del_init(&cur_devices->seed_list); 2440 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2441 cur_devices->opened--; 2442 free_fs_devices(cur_devices); 2443 } 2444 2445 return btrfs_commit_transaction(trans); 2446 2447 error_undo: 2448 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2449 mutex_lock(&fs_info->chunk_mutex); 2450 list_add(&device->dev_alloc_list, 2451 &fs_devices->alloc_list); 2452 device->fs_devices->rw_devices++; 2453 mutex_unlock(&fs_info->chunk_mutex); 2454 } 2455 return ret; 2456 } 2457 2458 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2459 { 2460 struct btrfs_fs_devices *fs_devices; 2461 2462 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2463 2464 /* 2465 * in case of fs with no seed, srcdev->fs_devices will point 2466 * to fs_devices of fs_info. However when the dev being replaced is 2467 * a seed dev it will point to the seed's local fs_devices. In short 2468 * srcdev will have its correct fs_devices in both the cases. 2469 */ 2470 fs_devices = srcdev->fs_devices; 2471 2472 list_del_rcu(&srcdev->dev_list); 2473 list_del(&srcdev->dev_alloc_list); 2474 fs_devices->num_devices--; 2475 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2476 fs_devices->missing_devices--; 2477 2478 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2479 fs_devices->rw_devices--; 2480 2481 if (srcdev->bdev) 2482 fs_devices->open_devices--; 2483 } 2484 2485 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2486 { 2487 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2488 2489 mutex_lock(&uuid_mutex); 2490 2491 btrfs_close_bdev(srcdev); 2492 synchronize_rcu(); 2493 btrfs_free_device(srcdev); 2494 2495 /* if this is no devs we rather delete the fs_devices */ 2496 if (!fs_devices->num_devices) { 2497 /* 2498 * On a mounted FS, num_devices can't be zero unless it's a 2499 * seed. In case of a seed device being replaced, the replace 2500 * target added to the sprout FS, so there will be no more 2501 * device left under the seed FS. 2502 */ 2503 ASSERT(fs_devices->seeding); 2504 2505 list_del_init(&fs_devices->seed_list); 2506 close_fs_devices(fs_devices); 2507 free_fs_devices(fs_devices); 2508 } 2509 mutex_unlock(&uuid_mutex); 2510 } 2511 2512 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2513 { 2514 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2515 2516 mutex_lock(&fs_devices->device_list_mutex); 2517 2518 btrfs_sysfs_remove_device(tgtdev); 2519 2520 if (tgtdev->bdev) 2521 fs_devices->open_devices--; 2522 2523 fs_devices->num_devices--; 2524 2525 btrfs_assign_next_active_device(tgtdev, NULL); 2526 2527 list_del_rcu(&tgtdev->dev_list); 2528 2529 mutex_unlock(&fs_devices->device_list_mutex); 2530 2531 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2532 2533 btrfs_close_bdev(tgtdev); 2534 synchronize_rcu(); 2535 btrfs_free_device(tgtdev); 2536 } 2537 2538 /* 2539 * Populate args from device at path. 2540 * 2541 * @fs_info: the filesystem 2542 * @args: the args to populate 2543 * @path: the path to the device 2544 * 2545 * This will read the super block of the device at @path and populate @args with 2546 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2547 * lookup a device to operate on, but need to do it before we take any locks. 2548 * This properly handles the special case of "missing" that a user may pass in, 2549 * and does some basic sanity checks. The caller must make sure that @path is 2550 * properly NUL terminated before calling in, and must call 2551 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2552 * uuid buffers. 2553 * 2554 * Return: 0 for success, -errno for failure 2555 */ 2556 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2557 struct btrfs_dev_lookup_args *args, 2558 const char *path) 2559 { 2560 struct btrfs_super_block *disk_super; 2561 struct file *bdev_file; 2562 int ret; 2563 2564 if (!path || !path[0]) 2565 return -EINVAL; 2566 if (!strcmp(path, "missing")) { 2567 args->missing = true; 2568 return 0; 2569 } 2570 2571 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2572 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2573 if (!args->uuid || !args->fsid) { 2574 btrfs_put_dev_args_from_path(args); 2575 return -ENOMEM; 2576 } 2577 2578 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2579 &bdev_file, &disk_super); 2580 if (ret) { 2581 btrfs_put_dev_args_from_path(args); 2582 return ret; 2583 } 2584 2585 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2586 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2587 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2588 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2589 else 2590 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2591 btrfs_release_disk_super(disk_super); 2592 bdev_fput(bdev_file); 2593 return 0; 2594 } 2595 2596 /* 2597 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2598 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2599 * that don't need to be freed. 2600 */ 2601 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2602 { 2603 kfree(args->uuid); 2604 kfree(args->fsid); 2605 args->uuid = NULL; 2606 args->fsid = NULL; 2607 } 2608 2609 struct btrfs_device *btrfs_find_device_by_devspec( 2610 struct btrfs_fs_info *fs_info, u64 devid, 2611 const char *device_path) 2612 { 2613 BTRFS_DEV_LOOKUP_ARGS(args); 2614 struct btrfs_device *device; 2615 int ret; 2616 2617 if (devid) { 2618 args.devid = devid; 2619 device = btrfs_find_device(fs_info->fs_devices, &args); 2620 if (!device) 2621 return ERR_PTR(-ENOENT); 2622 return device; 2623 } 2624 2625 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2626 if (ret) 2627 return ERR_PTR(ret); 2628 device = btrfs_find_device(fs_info->fs_devices, &args); 2629 btrfs_put_dev_args_from_path(&args); 2630 if (!device) 2631 return ERR_PTR(-ENOENT); 2632 return device; 2633 } 2634 2635 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2636 { 2637 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2638 struct btrfs_fs_devices *old_devices; 2639 struct btrfs_fs_devices *seed_devices; 2640 2641 lockdep_assert_held(&uuid_mutex); 2642 if (!fs_devices->seeding) 2643 return ERR_PTR(-EINVAL); 2644 2645 /* 2646 * Private copy of the seed devices, anchored at 2647 * fs_info->fs_devices->seed_list 2648 */ 2649 seed_devices = alloc_fs_devices(NULL); 2650 if (IS_ERR(seed_devices)) 2651 return seed_devices; 2652 2653 /* 2654 * It's necessary to retain a copy of the original seed fs_devices in 2655 * fs_uuids so that filesystems which have been seeded can successfully 2656 * reference the seed device from open_seed_devices. This also supports 2657 * multiple fs seed. 2658 */ 2659 old_devices = clone_fs_devices(fs_devices); 2660 if (IS_ERR(old_devices)) { 2661 kfree(seed_devices); 2662 return old_devices; 2663 } 2664 2665 list_add(&old_devices->fs_list, &fs_uuids); 2666 2667 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2668 seed_devices->opened = 1; 2669 INIT_LIST_HEAD(&seed_devices->devices); 2670 INIT_LIST_HEAD(&seed_devices->alloc_list); 2671 mutex_init(&seed_devices->device_list_mutex); 2672 2673 return seed_devices; 2674 } 2675 2676 /* 2677 * Splice seed devices into the sprout fs_devices. 2678 * Generate a new fsid for the sprouted read-write filesystem. 2679 */ 2680 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2681 struct btrfs_fs_devices *seed_devices) 2682 { 2683 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2684 struct btrfs_super_block *disk_super = fs_info->super_copy; 2685 struct btrfs_device *device; 2686 u64 super_flags; 2687 2688 /* 2689 * We are updating the fsid, the thread leading to device_list_add() 2690 * could race, so uuid_mutex is needed. 2691 */ 2692 lockdep_assert_held(&uuid_mutex); 2693 2694 /* 2695 * The threads listed below may traverse dev_list but can do that without 2696 * device_list_mutex: 2697 * - All device ops and balance - as we are in btrfs_exclop_start. 2698 * - Various dev_list readers - are using RCU. 2699 * - btrfs_ioctl_fitrim() - is using RCU. 2700 * 2701 * For-read threads as below are using device_list_mutex: 2702 * - Readonly scrub btrfs_scrub_dev() 2703 * - Readonly scrub btrfs_scrub_progress() 2704 * - btrfs_get_dev_stats() 2705 */ 2706 lockdep_assert_held(&fs_devices->device_list_mutex); 2707 2708 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2709 synchronize_rcu); 2710 list_for_each_entry(device, &seed_devices->devices, dev_list) 2711 device->fs_devices = seed_devices; 2712 2713 fs_devices->seeding = false; 2714 fs_devices->num_devices = 0; 2715 fs_devices->open_devices = 0; 2716 fs_devices->missing_devices = 0; 2717 fs_devices->rotating = false; 2718 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2719 2720 generate_random_uuid(fs_devices->fsid); 2721 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2722 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2723 2724 super_flags = btrfs_super_flags(disk_super) & 2725 ~BTRFS_SUPER_FLAG_SEEDING; 2726 btrfs_set_super_flags(disk_super, super_flags); 2727 } 2728 2729 /* 2730 * Store the expected generation for seed devices in device items. 2731 */ 2732 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2733 { 2734 BTRFS_DEV_LOOKUP_ARGS(args); 2735 struct btrfs_fs_info *fs_info = trans->fs_info; 2736 struct btrfs_root *root = fs_info->chunk_root; 2737 BTRFS_PATH_AUTO_FREE(path); 2738 struct extent_buffer *leaf; 2739 struct btrfs_dev_item *dev_item; 2740 struct btrfs_device *device; 2741 struct btrfs_key key; 2742 u8 fs_uuid[BTRFS_FSID_SIZE]; 2743 u8 dev_uuid[BTRFS_UUID_SIZE]; 2744 int ret; 2745 2746 path = btrfs_alloc_path(); 2747 if (!path) 2748 return -ENOMEM; 2749 2750 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2751 key.type = BTRFS_DEV_ITEM_KEY; 2752 key.offset = 0; 2753 2754 while (1) { 2755 btrfs_reserve_chunk_metadata(trans, false); 2756 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2757 btrfs_trans_release_chunk_metadata(trans); 2758 if (ret < 0) 2759 return ret; 2760 2761 leaf = path->nodes[0]; 2762 next_slot: 2763 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2764 ret = btrfs_next_leaf(root, path); 2765 if (ret > 0) 2766 break; 2767 if (ret < 0) 2768 return ret; 2769 leaf = path->nodes[0]; 2770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2771 btrfs_release_path(path); 2772 continue; 2773 } 2774 2775 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2776 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2777 key.type != BTRFS_DEV_ITEM_KEY) 2778 break; 2779 2780 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2781 struct btrfs_dev_item); 2782 args.devid = btrfs_device_id(leaf, dev_item); 2783 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2784 BTRFS_UUID_SIZE); 2785 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2786 BTRFS_FSID_SIZE); 2787 args.uuid = dev_uuid; 2788 args.fsid = fs_uuid; 2789 device = btrfs_find_device(fs_info->fs_devices, &args); 2790 BUG_ON(!device); /* Logic error */ 2791 2792 if (device->fs_devices->seeding) 2793 btrfs_set_device_generation(leaf, dev_item, 2794 device->generation); 2795 2796 path->slots[0]++; 2797 goto next_slot; 2798 } 2799 return 0; 2800 } 2801 2802 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2803 { 2804 struct btrfs_root *root = fs_info->dev_root; 2805 struct btrfs_trans_handle *trans; 2806 struct btrfs_device *device; 2807 struct file *bdev_file; 2808 struct super_block *sb = fs_info->sb; 2809 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2810 struct btrfs_fs_devices *seed_devices = NULL; 2811 u64 orig_super_total_bytes; 2812 u64 orig_super_num_devices; 2813 int ret = 0; 2814 bool seeding_dev = false; 2815 bool locked = false; 2816 2817 if (sb_rdonly(sb) && !fs_devices->seeding) 2818 return -EROFS; 2819 2820 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2821 fs_info->sb, &fs_holder_ops); 2822 if (IS_ERR(bdev_file)) 2823 return PTR_ERR(bdev_file); 2824 2825 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2826 ret = -EINVAL; 2827 goto error; 2828 } 2829 2830 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { 2831 ret = -EINVAL; 2832 goto error; 2833 } 2834 2835 if (fs_devices->seeding) { 2836 seeding_dev = true; 2837 down_write(&sb->s_umount); 2838 mutex_lock(&uuid_mutex); 2839 locked = true; 2840 } 2841 2842 sync_blockdev(file_bdev(bdev_file)); 2843 2844 rcu_read_lock(); 2845 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2846 if (device->bdev == file_bdev(bdev_file)) { 2847 ret = -EEXIST; 2848 rcu_read_unlock(); 2849 goto error; 2850 } 2851 } 2852 rcu_read_unlock(); 2853 2854 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2855 if (IS_ERR(device)) { 2856 /* we can safely leave the fs_devices entry around */ 2857 ret = PTR_ERR(device); 2858 goto error; 2859 } 2860 2861 device->fs_info = fs_info; 2862 device->bdev_file = bdev_file; 2863 device->bdev = file_bdev(bdev_file); 2864 ret = lookup_bdev(device_path, &device->devt); 2865 if (ret) 2866 goto error_free_device; 2867 2868 ret = btrfs_get_dev_zone_info(device, false); 2869 if (ret) 2870 goto error_free_device; 2871 2872 trans = btrfs_start_transaction(root, 0); 2873 if (IS_ERR(trans)) { 2874 ret = PTR_ERR(trans); 2875 goto error_free_zone; 2876 } 2877 2878 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2879 device->generation = trans->transid; 2880 device->io_width = fs_info->sectorsize; 2881 device->io_align = fs_info->sectorsize; 2882 device->sector_size = fs_info->sectorsize; 2883 device->total_bytes = 2884 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2885 device->disk_total_bytes = device->total_bytes; 2886 device->commit_total_bytes = device->total_bytes; 2887 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2888 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2889 device->dev_stats_valid = 1; 2890 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2891 2892 if (seeding_dev) { 2893 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2894 seed_devices = btrfs_init_sprout(fs_info); 2895 if (IS_ERR(seed_devices)) { 2896 ret = PTR_ERR(seed_devices); 2897 btrfs_abort_transaction(trans, ret); 2898 goto error_trans; 2899 } 2900 } 2901 2902 mutex_lock(&fs_devices->device_list_mutex); 2903 if (seeding_dev) { 2904 btrfs_setup_sprout(fs_info, seed_devices); 2905 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2906 device); 2907 } 2908 2909 device->fs_devices = fs_devices; 2910 2911 mutex_lock(&fs_info->chunk_mutex); 2912 list_add_rcu(&device->dev_list, &fs_devices->devices); 2913 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2914 fs_devices->num_devices++; 2915 fs_devices->open_devices++; 2916 fs_devices->rw_devices++; 2917 fs_devices->total_devices++; 2918 fs_devices->total_rw_bytes += device->total_bytes; 2919 2920 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2921 2922 if (!bdev_nonrot(device->bdev)) 2923 fs_devices->rotating = true; 2924 2925 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2926 btrfs_set_super_total_bytes(fs_info->super_copy, 2927 round_down(orig_super_total_bytes + device->total_bytes, 2928 fs_info->sectorsize)); 2929 2930 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2931 btrfs_set_super_num_devices(fs_info->super_copy, 2932 orig_super_num_devices + 1); 2933 2934 /* 2935 * we've got more storage, clear any full flags on the space 2936 * infos 2937 */ 2938 btrfs_clear_space_info_full(fs_info); 2939 2940 mutex_unlock(&fs_info->chunk_mutex); 2941 2942 /* Add sysfs device entry */ 2943 btrfs_sysfs_add_device(device); 2944 2945 mutex_unlock(&fs_devices->device_list_mutex); 2946 2947 if (seeding_dev) { 2948 mutex_lock(&fs_info->chunk_mutex); 2949 ret = init_first_rw_device(trans); 2950 mutex_unlock(&fs_info->chunk_mutex); 2951 if (unlikely(ret)) { 2952 btrfs_abort_transaction(trans, ret); 2953 goto error_sysfs; 2954 } 2955 } 2956 2957 ret = btrfs_add_dev_item(trans, device); 2958 if (unlikely(ret)) { 2959 btrfs_abort_transaction(trans, ret); 2960 goto error_sysfs; 2961 } 2962 2963 if (seeding_dev) { 2964 ret = btrfs_finish_sprout(trans); 2965 if (unlikely(ret)) { 2966 btrfs_abort_transaction(trans, ret); 2967 goto error_sysfs; 2968 } 2969 2970 /* 2971 * fs_devices now represents the newly sprouted filesystem and 2972 * its fsid has been changed by btrfs_sprout_splice(). 2973 */ 2974 btrfs_sysfs_update_sprout_fsid(fs_devices); 2975 } 2976 2977 ret = btrfs_commit_transaction(trans); 2978 2979 if (seeding_dev) { 2980 mutex_unlock(&uuid_mutex); 2981 up_write(&sb->s_umount); 2982 locked = false; 2983 2984 if (ret) /* transaction commit */ 2985 return ret; 2986 2987 ret = btrfs_relocate_sys_chunks(fs_info); 2988 if (ret < 0) 2989 btrfs_handle_fs_error(fs_info, ret, 2990 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2991 trans = btrfs_attach_transaction(root); 2992 if (IS_ERR(trans)) { 2993 if (PTR_ERR(trans) == -ENOENT) 2994 return 0; 2995 ret = PTR_ERR(trans); 2996 trans = NULL; 2997 goto error_sysfs; 2998 } 2999 ret = btrfs_commit_transaction(trans); 3000 } 3001 3002 /* 3003 * Now that we have written a new super block to this device, check all 3004 * other fs_devices list if device_path alienates any other scanned 3005 * device. 3006 * We can ignore the return value as it typically returns -EINVAL and 3007 * only succeeds if the device was an alien. 3008 */ 3009 btrfs_forget_devices(device->devt); 3010 3011 /* Update ctime/mtime for blkid or udev */ 3012 update_dev_time(device_path); 3013 3014 return ret; 3015 3016 error_sysfs: 3017 btrfs_sysfs_remove_device(device); 3018 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3019 mutex_lock(&fs_info->chunk_mutex); 3020 list_del_rcu(&device->dev_list); 3021 list_del(&device->dev_alloc_list); 3022 fs_info->fs_devices->num_devices--; 3023 fs_info->fs_devices->open_devices--; 3024 fs_info->fs_devices->rw_devices--; 3025 fs_info->fs_devices->total_devices--; 3026 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 3027 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 3028 btrfs_set_super_total_bytes(fs_info->super_copy, 3029 orig_super_total_bytes); 3030 btrfs_set_super_num_devices(fs_info->super_copy, 3031 orig_super_num_devices); 3032 mutex_unlock(&fs_info->chunk_mutex); 3033 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3034 error_trans: 3035 if (trans) 3036 btrfs_end_transaction(trans); 3037 error_free_zone: 3038 btrfs_destroy_dev_zone_info(device); 3039 error_free_device: 3040 btrfs_free_device(device); 3041 error: 3042 bdev_fput(bdev_file); 3043 if (locked) { 3044 mutex_unlock(&uuid_mutex); 3045 up_write(&sb->s_umount); 3046 } 3047 return ret; 3048 } 3049 3050 int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device) 3051 { 3052 int ret; 3053 BTRFS_PATH_AUTO_FREE(path); 3054 struct btrfs_root *root = device->fs_info->chunk_root; 3055 struct btrfs_dev_item *dev_item; 3056 struct extent_buffer *leaf; 3057 struct btrfs_key key; 3058 3059 path = btrfs_alloc_path(); 3060 if (!path) 3061 return -ENOMEM; 3062 3063 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 3064 key.type = BTRFS_DEV_ITEM_KEY; 3065 key.offset = device->devid; 3066 3067 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3068 if (ret < 0) 3069 return ret; 3070 3071 if (ret > 0) 3072 return -ENOENT; 3073 3074 leaf = path->nodes[0]; 3075 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 3076 3077 btrfs_set_device_id(leaf, dev_item, device->devid); 3078 btrfs_set_device_type(leaf, dev_item, device->type); 3079 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 3080 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 3081 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 3082 btrfs_set_device_total_bytes(leaf, dev_item, 3083 btrfs_device_get_disk_total_bytes(device)); 3084 btrfs_set_device_bytes_used(leaf, dev_item, 3085 btrfs_device_get_bytes_used(device)); 3086 return ret; 3087 } 3088 3089 int btrfs_grow_device(struct btrfs_trans_handle *trans, 3090 struct btrfs_device *device, u64 new_size) 3091 { 3092 struct btrfs_fs_info *fs_info = device->fs_info; 3093 struct btrfs_super_block *super_copy = fs_info->super_copy; 3094 u64 old_total; 3095 u64 diff; 3096 int ret; 3097 3098 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 3099 return -EACCES; 3100 3101 new_size = round_down(new_size, fs_info->sectorsize); 3102 3103 mutex_lock(&fs_info->chunk_mutex); 3104 old_total = btrfs_super_total_bytes(super_copy); 3105 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3106 3107 if (new_size <= device->total_bytes || 3108 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3109 mutex_unlock(&fs_info->chunk_mutex); 3110 return -EINVAL; 3111 } 3112 3113 btrfs_set_super_total_bytes(super_copy, 3114 round_down(old_total + diff, fs_info->sectorsize)); 3115 device->fs_devices->total_rw_bytes += diff; 3116 atomic64_add(diff, &fs_info->free_chunk_space); 3117 3118 btrfs_device_set_total_bytes(device, new_size); 3119 btrfs_device_set_disk_total_bytes(device, new_size); 3120 btrfs_clear_space_info_full(device->fs_info); 3121 if (list_empty(&device->post_commit_list)) 3122 list_add_tail(&device->post_commit_list, 3123 &trans->transaction->dev_update_list); 3124 mutex_unlock(&fs_info->chunk_mutex); 3125 3126 btrfs_reserve_chunk_metadata(trans, false); 3127 ret = btrfs_update_device(trans, device); 3128 btrfs_trans_release_chunk_metadata(trans); 3129 3130 return ret; 3131 } 3132 3133 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3134 { 3135 struct btrfs_fs_info *fs_info = trans->fs_info; 3136 struct btrfs_root *root = fs_info->chunk_root; 3137 int ret; 3138 BTRFS_PATH_AUTO_FREE(path); 3139 struct btrfs_key key; 3140 3141 path = btrfs_alloc_path(); 3142 if (!path) 3143 return -ENOMEM; 3144 3145 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3146 key.type = BTRFS_CHUNK_ITEM_KEY; 3147 key.offset = chunk_offset; 3148 3149 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3150 if (ret < 0) 3151 return ret; 3152 if (unlikely(ret > 0)) { 3153 /* Logic error or corruption */ 3154 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3155 chunk_offset); 3156 btrfs_abort_transaction(trans, -ENOENT); 3157 return -EUCLEAN; 3158 } 3159 3160 ret = btrfs_del_item(trans, root, path); 3161 if (unlikely(ret < 0)) { 3162 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3163 btrfs_abort_transaction(trans, ret); 3164 return ret; 3165 } 3166 return ret; 3167 } 3168 3169 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3170 { 3171 struct btrfs_super_block *super_copy = fs_info->super_copy; 3172 struct btrfs_disk_key *disk_key; 3173 struct btrfs_chunk *chunk; 3174 u8 *ptr; 3175 int ret = 0; 3176 u32 num_stripes; 3177 u32 array_size; 3178 u32 len = 0; 3179 u32 cur; 3180 struct btrfs_key key; 3181 3182 lockdep_assert_held(&fs_info->chunk_mutex); 3183 array_size = btrfs_super_sys_array_size(super_copy); 3184 3185 ptr = super_copy->sys_chunk_array; 3186 cur = 0; 3187 3188 while (cur < array_size) { 3189 disk_key = (struct btrfs_disk_key *)ptr; 3190 btrfs_disk_key_to_cpu(&key, disk_key); 3191 3192 len = sizeof(*disk_key); 3193 3194 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3195 chunk = (struct btrfs_chunk *)(ptr + len); 3196 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3197 len += btrfs_chunk_item_size(num_stripes); 3198 } else { 3199 ret = -EIO; 3200 break; 3201 } 3202 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3203 key.offset == chunk_offset) { 3204 memmove(ptr, ptr + len, array_size - (cur + len)); 3205 array_size -= len; 3206 btrfs_set_super_sys_array_size(super_copy, array_size); 3207 } else { 3208 ptr += len; 3209 cur += len; 3210 } 3211 } 3212 return ret; 3213 } 3214 3215 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3216 u64 logical, u64 length) 3217 { 3218 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3219 struct rb_node *prev = NULL; 3220 struct rb_node *orig_prev; 3221 struct btrfs_chunk_map *map; 3222 struct btrfs_chunk_map *prev_map = NULL; 3223 3224 while (node) { 3225 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3226 prev = node; 3227 prev_map = map; 3228 3229 if (logical < map->start) { 3230 node = node->rb_left; 3231 } else if (logical >= map->start + map->chunk_len) { 3232 node = node->rb_right; 3233 } else { 3234 refcount_inc(&map->refs); 3235 return map; 3236 } 3237 } 3238 3239 if (!prev) 3240 return NULL; 3241 3242 orig_prev = prev; 3243 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3244 prev = rb_next(prev); 3245 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3246 } 3247 3248 if (!prev) { 3249 prev = orig_prev; 3250 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3251 while (prev && logical < prev_map->start) { 3252 prev = rb_prev(prev); 3253 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3254 } 3255 } 3256 3257 if (prev) { 3258 u64 end = logical + length; 3259 3260 /* 3261 * Caller can pass a U64_MAX length when it wants to get any 3262 * chunk starting at an offset of 'logical' or higher, so deal 3263 * with underflow by resetting the end offset to U64_MAX. 3264 */ 3265 if (end < logical) 3266 end = U64_MAX; 3267 3268 if (end > prev_map->start && 3269 logical < prev_map->start + prev_map->chunk_len) { 3270 refcount_inc(&prev_map->refs); 3271 return prev_map; 3272 } 3273 } 3274 3275 return NULL; 3276 } 3277 3278 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3279 u64 logical, u64 length) 3280 { 3281 struct btrfs_chunk_map *map; 3282 3283 read_lock(&fs_info->mapping_tree_lock); 3284 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3285 read_unlock(&fs_info->mapping_tree_lock); 3286 3287 return map; 3288 } 3289 3290 /* 3291 * Find the mapping containing the given logical extent. 3292 * 3293 * @logical: Logical block offset in bytes. 3294 * @length: Length of extent in bytes. 3295 * 3296 * Return: Chunk mapping or ERR_PTR. 3297 */ 3298 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3299 u64 logical, u64 length) 3300 { 3301 struct btrfs_chunk_map *map; 3302 3303 map = btrfs_find_chunk_map(fs_info, logical, length); 3304 3305 if (unlikely(!map)) { 3306 btrfs_crit(fs_info, 3307 "unable to find chunk map for logical %llu length %llu", 3308 logical, length); 3309 return ERR_PTR(-EINVAL); 3310 } 3311 3312 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3313 btrfs_crit(fs_info, 3314 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3315 logical, logical + length, map->start, 3316 map->start + map->chunk_len); 3317 btrfs_free_chunk_map(map); 3318 return ERR_PTR(-EINVAL); 3319 } 3320 3321 /* Callers are responsible for dropping the reference. */ 3322 return map; 3323 } 3324 3325 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3326 struct btrfs_chunk_map *map, u64 chunk_offset) 3327 { 3328 int i; 3329 3330 /* 3331 * Removing chunk items and updating the device items in the chunks btree 3332 * requires holding the chunk_mutex. 3333 * See the comment at btrfs_chunk_alloc() for the details. 3334 */ 3335 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3336 3337 for (i = 0; i < map->num_stripes; i++) { 3338 int ret; 3339 3340 ret = btrfs_update_device(trans, map->stripes[i].dev); 3341 if (ret) 3342 return ret; 3343 } 3344 3345 return btrfs_free_chunk(trans, chunk_offset); 3346 } 3347 3348 int btrfs_remove_dev_extents(struct btrfs_trans_handle *trans, struct btrfs_chunk_map *map) 3349 { 3350 struct btrfs_fs_info *fs_info = trans->fs_info; 3351 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3352 u64 dev_extent_len = 0; 3353 int i, ret = 0; 3354 3355 /* 3356 * First delete the device extent items from the devices btree. 3357 * We take the device_list_mutex to avoid racing with the finishing phase 3358 * of a device replace operation. See the comment below before acquiring 3359 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3360 * because that can result in a deadlock when deleting the device extent 3361 * items from the devices btree - COWing an extent buffer from the btree 3362 * may result in allocating a new metadata chunk, which would attempt to 3363 * lock again fs_info->chunk_mutex. 3364 */ 3365 mutex_lock(&fs_devices->device_list_mutex); 3366 for (i = 0; i < map->num_stripes; i++) { 3367 struct btrfs_device *device = map->stripes[i].dev; 3368 ret = btrfs_free_dev_extent(trans, device, 3369 map->stripes[i].physical, 3370 &dev_extent_len); 3371 if (unlikely(ret)) { 3372 mutex_unlock(&fs_devices->device_list_mutex); 3373 btrfs_abort_transaction(trans, ret); 3374 return ret; 3375 } 3376 3377 if (device->bytes_used > 0) { 3378 mutex_lock(&fs_info->chunk_mutex); 3379 btrfs_device_set_bytes_used(device, 3380 device->bytes_used - dev_extent_len); 3381 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3382 btrfs_clear_space_info_full(fs_info); 3383 3384 if (list_empty(&device->post_commit_list)) { 3385 list_add_tail(&device->post_commit_list, 3386 &trans->transaction->dev_update_list); 3387 } 3388 3389 mutex_unlock(&fs_info->chunk_mutex); 3390 } 3391 } 3392 mutex_unlock(&fs_devices->device_list_mutex); 3393 3394 return 0; 3395 } 3396 3397 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3398 { 3399 struct btrfs_fs_info *fs_info = trans->fs_info; 3400 struct btrfs_chunk_map *map; 3401 int ret; 3402 3403 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3404 if (IS_ERR(map)) { 3405 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3406 PTR_ERR(map), chunk_offset); 3407 return PTR_ERR(map); 3408 } 3409 3410 ret = btrfs_remove_dev_extents(trans, map); 3411 if (ret) 3412 goto out; 3413 3414 /* 3415 * We acquire fs_info->chunk_mutex for 2 reasons: 3416 * 3417 * 1) Just like with the first phase of the chunk allocation, we must 3418 * reserve system space, do all chunk btree updates and deletions, and 3419 * update the system chunk array in the superblock while holding this 3420 * mutex. This is for similar reasons as explained on the comment at 3421 * the top of btrfs_chunk_alloc(); 3422 * 3423 * 2) Prevent races with the final phase of a device replace operation 3424 * that replaces the device object associated with the map's stripes, 3425 * because the device object's id can change at any time during that 3426 * final phase of the device replace operation 3427 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3428 * replaced device and then see it with an ID of 3429 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3430 * the device item, which does not exists on the chunk btree. 3431 * The finishing phase of device replace acquires both the 3432 * device_list_mutex and the chunk_mutex, in that order, so we are 3433 * safe by just acquiring the chunk_mutex. 3434 */ 3435 trans->removing_chunk = true; 3436 mutex_lock(&fs_info->chunk_mutex); 3437 3438 check_system_chunk(trans, map->type); 3439 3440 ret = remove_chunk_item(trans, map, chunk_offset); 3441 /* 3442 * Normally we should not get -ENOSPC since we reserved space before 3443 * through the call to check_system_chunk(). 3444 * 3445 * Despite our system space_info having enough free space, we may not 3446 * be able to allocate extents from its block groups, because all have 3447 * an incompatible profile, which will force us to allocate a new system 3448 * block group with the right profile, or right after we called 3449 * check_system_space() above, a scrub turned the only system block group 3450 * with enough free space into RO mode. 3451 * This is explained with more detail at do_chunk_alloc(). 3452 * 3453 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3454 */ 3455 if (ret == -ENOSPC) { 3456 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3457 struct btrfs_block_group *sys_bg; 3458 struct btrfs_space_info *space_info; 3459 3460 space_info = btrfs_find_space_info(fs_info, sys_flags); 3461 if (unlikely(!space_info)) { 3462 ret = -EINVAL; 3463 btrfs_abort_transaction(trans, ret); 3464 goto out; 3465 } 3466 3467 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3468 if (IS_ERR(sys_bg)) { 3469 ret = PTR_ERR(sys_bg); 3470 btrfs_abort_transaction(trans, ret); 3471 goto out; 3472 } 3473 3474 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3475 if (unlikely(ret)) { 3476 btrfs_abort_transaction(trans, ret); 3477 goto out; 3478 } 3479 3480 ret = remove_chunk_item(trans, map, chunk_offset); 3481 if (unlikely(ret)) { 3482 btrfs_abort_transaction(trans, ret); 3483 goto out; 3484 } 3485 } else if (unlikely(ret)) { 3486 btrfs_abort_transaction(trans, ret); 3487 goto out; 3488 } 3489 3490 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3491 3492 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3493 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3494 if (unlikely(ret)) { 3495 btrfs_abort_transaction(trans, ret); 3496 goto out; 3497 } 3498 } 3499 3500 mutex_unlock(&fs_info->chunk_mutex); 3501 trans->removing_chunk = false; 3502 3503 /* 3504 * We are done with chunk btree updates and deletions, so release the 3505 * system space we previously reserved (with check_system_chunk()). 3506 */ 3507 btrfs_trans_release_chunk_metadata(trans); 3508 3509 /* On error, btrfs_remove_block_group() aborts the transaction. */ 3510 ret = btrfs_remove_block_group(trans, map); 3511 if (unlikely(ret)) 3512 ASSERT(BTRFS_FS_ERROR(fs_info) != 0); 3513 3514 out: 3515 if (trans->removing_chunk) { 3516 mutex_unlock(&fs_info->chunk_mutex); 3517 trans->removing_chunk = false; 3518 } 3519 /* once for us */ 3520 btrfs_free_chunk_map(map); 3521 return ret; 3522 } 3523 3524 static int btrfs_relocate_chunk_finish(struct btrfs_fs_info *fs_info, 3525 struct btrfs_block_group *bg) 3526 { 3527 struct btrfs_root *root = fs_info->chunk_root; 3528 struct btrfs_trans_handle *trans; 3529 u64 length; 3530 int ret; 3531 3532 btrfs_discard_cancel_work(&fs_info->discard_ctl, bg); 3533 length = bg->length; 3534 btrfs_put_block_group(bg); 3535 3536 /* 3537 * On a zoned file system, discard the whole block group, this will 3538 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3539 * resetting the zone fails, don't treat it as a fatal problem from the 3540 * filesystem's point of view. 3541 */ 3542 if (btrfs_is_zoned(fs_info)) { 3543 ret = btrfs_discard_extent(fs_info, bg->start, length, NULL, true); 3544 if (ret) 3545 btrfs_info(fs_info, "failed to reset zone %llu after relocation", 3546 bg->start); 3547 } 3548 3549 trans = btrfs_start_trans_remove_block_group(root->fs_info, bg->start); 3550 if (IS_ERR(trans)) { 3551 ret = PTR_ERR(trans); 3552 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3553 return ret; 3554 } 3555 3556 /* Step two, delete the device extents and the chunk tree entries. */ 3557 ret = btrfs_remove_chunk(trans, bg->start); 3558 btrfs_end_transaction(trans); 3559 3560 return ret; 3561 } 3562 3563 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, bool verbose) 3564 { 3565 struct btrfs_block_group *block_group; 3566 int ret; 3567 3568 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3569 btrfs_err(fs_info, 3570 "relocate: not supported on extent tree v2 yet"); 3571 return -EINVAL; 3572 } 3573 3574 /* 3575 * Prevent races with automatic removal of unused block groups. 3576 * After we relocate and before we remove the chunk with offset 3577 * chunk_offset, automatic removal of the block group can kick in, 3578 * resulting in a failure when calling btrfs_remove_chunk() below. 3579 * 3580 * Make sure to acquire this mutex before doing a tree search (dev 3581 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3582 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3583 * we release the path used to search the chunk/dev tree and before 3584 * the current task acquires this mutex and calls us. 3585 */ 3586 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3587 3588 /* step one, relocate all the extents inside this chunk */ 3589 btrfs_scrub_pause(fs_info); 3590 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3591 btrfs_scrub_continue(fs_info); 3592 if (ret) { 3593 /* 3594 * If we had a transaction abort, stop all running scrubs. 3595 * See transaction.c:cleanup_transaction() why we do it here. 3596 */ 3597 if (BTRFS_FS_ERROR(fs_info)) 3598 btrfs_scrub_cancel(fs_info); 3599 return ret; 3600 } 3601 3602 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3603 if (!block_group) 3604 return -ENOENT; 3605 3606 if (should_relocate_using_remap_tree(block_group)) { 3607 /* If we're relocating using the remap tree we're now done. */ 3608 btrfs_put_block_group(block_group); 3609 ret = 0; 3610 } else { 3611 ret = btrfs_relocate_chunk_finish(fs_info, block_group); 3612 } 3613 3614 return ret; 3615 } 3616 3617 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3618 { 3619 struct btrfs_root *chunk_root = fs_info->chunk_root; 3620 BTRFS_PATH_AUTO_FREE(path); 3621 struct extent_buffer *leaf; 3622 struct btrfs_chunk *chunk; 3623 struct btrfs_key key; 3624 struct btrfs_key found_key; 3625 u64 chunk_type; 3626 bool retried = false; 3627 int failed = 0; 3628 int ret; 3629 3630 path = btrfs_alloc_path(); 3631 if (!path) 3632 return -ENOMEM; 3633 3634 again: 3635 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3636 key.type = BTRFS_CHUNK_ITEM_KEY; 3637 key.offset = (u64)-1; 3638 3639 while (1) { 3640 mutex_lock(&fs_info->reclaim_bgs_lock); 3641 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3642 if (ret < 0) { 3643 mutex_unlock(&fs_info->reclaim_bgs_lock); 3644 return ret; 3645 } 3646 if (unlikely(ret == 0)) { 3647 /* 3648 * On the first search we would find chunk tree with 3649 * offset -1, which is not possible. On subsequent 3650 * loops this would find an existing item on an invalid 3651 * offset (one less than the previous one, wrong 3652 * alignment and size). 3653 */ 3654 mutex_unlock(&fs_info->reclaim_bgs_lock); 3655 return -EUCLEAN; 3656 } 3657 3658 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3659 key.type); 3660 if (ret) 3661 mutex_unlock(&fs_info->reclaim_bgs_lock); 3662 if (ret < 0) 3663 return ret; 3664 if (ret > 0) 3665 break; 3666 3667 leaf = path->nodes[0]; 3668 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3669 3670 chunk = btrfs_item_ptr(leaf, path->slots[0], 3671 struct btrfs_chunk); 3672 chunk_type = btrfs_chunk_type(leaf, chunk); 3673 btrfs_release_path(path); 3674 3675 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3676 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3677 true); 3678 if (ret == -ENOSPC) 3679 failed++; 3680 else 3681 BUG_ON(ret); 3682 } 3683 mutex_unlock(&fs_info->reclaim_bgs_lock); 3684 3685 if (found_key.offset == 0) 3686 break; 3687 key.offset = found_key.offset - 1; 3688 } 3689 ret = 0; 3690 if (failed && !retried) { 3691 failed = 0; 3692 retried = true; 3693 goto again; 3694 } else if (WARN_ON(failed && retried)) { 3695 ret = -ENOSPC; 3696 } 3697 return ret; 3698 } 3699 3700 /* 3701 * return 1 : allocate a data chunk successfully, 3702 * return <0: errors during allocating a data chunk, 3703 * return 0 : no need to allocate a data chunk. 3704 */ 3705 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3706 u64 chunk_offset) 3707 { 3708 struct btrfs_block_group *cache; 3709 u64 bytes_used; 3710 u64 chunk_type; 3711 3712 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3713 ASSERT(cache); 3714 chunk_type = cache->flags; 3715 btrfs_put_block_group(cache); 3716 3717 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3718 return 0; 3719 3720 spin_lock(&fs_info->data_sinfo->lock); 3721 bytes_used = fs_info->data_sinfo->bytes_used; 3722 spin_unlock(&fs_info->data_sinfo->lock); 3723 3724 if (!bytes_used) { 3725 struct btrfs_trans_handle *trans; 3726 int ret; 3727 3728 trans = btrfs_join_transaction(fs_info->tree_root); 3729 if (IS_ERR(trans)) 3730 return PTR_ERR(trans); 3731 3732 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3733 btrfs_end_transaction(trans); 3734 if (ret < 0) 3735 return ret; 3736 return 1; 3737 } 3738 3739 return 0; 3740 } 3741 3742 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3743 const struct btrfs_disk_balance_args *disk) 3744 { 3745 memset(cpu, 0, sizeof(*cpu)); 3746 3747 cpu->profiles = le64_to_cpu(disk->profiles); 3748 cpu->usage = le64_to_cpu(disk->usage); 3749 cpu->devid = le64_to_cpu(disk->devid); 3750 cpu->pstart = le64_to_cpu(disk->pstart); 3751 cpu->pend = le64_to_cpu(disk->pend); 3752 cpu->vstart = le64_to_cpu(disk->vstart); 3753 cpu->vend = le64_to_cpu(disk->vend); 3754 cpu->target = le64_to_cpu(disk->target); 3755 cpu->flags = le64_to_cpu(disk->flags); 3756 cpu->limit = le64_to_cpu(disk->limit); 3757 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3758 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3759 } 3760 3761 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3762 const struct btrfs_balance_args *cpu) 3763 { 3764 memset(disk, 0, sizeof(*disk)); 3765 3766 disk->profiles = cpu_to_le64(cpu->profiles); 3767 disk->usage = cpu_to_le64(cpu->usage); 3768 disk->devid = cpu_to_le64(cpu->devid); 3769 disk->pstart = cpu_to_le64(cpu->pstart); 3770 disk->pend = cpu_to_le64(cpu->pend); 3771 disk->vstart = cpu_to_le64(cpu->vstart); 3772 disk->vend = cpu_to_le64(cpu->vend); 3773 disk->target = cpu_to_le64(cpu->target); 3774 disk->flags = cpu_to_le64(cpu->flags); 3775 disk->limit = cpu_to_le64(cpu->limit); 3776 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3777 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3778 } 3779 3780 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3781 struct btrfs_balance_control *bctl) 3782 { 3783 struct btrfs_root *root = fs_info->tree_root; 3784 struct btrfs_trans_handle *trans; 3785 struct btrfs_balance_item *item; 3786 struct btrfs_disk_balance_args disk_bargs; 3787 struct btrfs_path *path; 3788 struct extent_buffer *leaf; 3789 struct btrfs_key key; 3790 int ret; 3791 3792 path = btrfs_alloc_path(); 3793 if (!path) 3794 return -ENOMEM; 3795 3796 trans = btrfs_start_transaction(root, 0); 3797 if (IS_ERR(trans)) { 3798 btrfs_free_path(path); 3799 return PTR_ERR(trans); 3800 } 3801 3802 key.objectid = BTRFS_BALANCE_OBJECTID; 3803 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3804 key.offset = 0; 3805 3806 ret = btrfs_insert_empty_item(trans, root, path, &key, 3807 sizeof(*item)); 3808 if (ret) 3809 goto out; 3810 3811 leaf = path->nodes[0]; 3812 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3813 3814 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3815 3816 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3817 btrfs_set_balance_data(leaf, item, &disk_bargs); 3818 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3819 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3820 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3821 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3822 btrfs_set_balance_flags(leaf, item, bctl->flags); 3823 out: 3824 btrfs_free_path(path); 3825 if (ret == 0) 3826 ret = btrfs_commit_transaction(trans); 3827 else 3828 btrfs_end_transaction(trans); 3829 3830 return ret; 3831 } 3832 3833 static int del_balance_item(struct btrfs_fs_info *fs_info) 3834 { 3835 struct btrfs_root *root = fs_info->tree_root; 3836 struct btrfs_trans_handle *trans; 3837 struct btrfs_path *path; 3838 struct btrfs_key key; 3839 int ret; 3840 3841 path = btrfs_alloc_path(); 3842 if (!path) 3843 return -ENOMEM; 3844 3845 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3846 if (IS_ERR(trans)) { 3847 btrfs_free_path(path); 3848 return PTR_ERR(trans); 3849 } 3850 3851 key.objectid = BTRFS_BALANCE_OBJECTID; 3852 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3853 key.offset = 0; 3854 3855 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3856 if (ret < 0) 3857 goto out; 3858 if (ret > 0) { 3859 ret = -ENOENT; 3860 goto out; 3861 } 3862 3863 ret = btrfs_del_item(trans, root, path); 3864 out: 3865 btrfs_free_path(path); 3866 if (ret == 0) 3867 ret = btrfs_commit_transaction(trans); 3868 else 3869 btrfs_end_transaction(trans); 3870 3871 return ret; 3872 } 3873 3874 /* 3875 * This is a heuristic used to reduce the number of chunks balanced on 3876 * resume after balance was interrupted. 3877 */ 3878 static void update_balance_args(struct btrfs_balance_control *bctl) 3879 { 3880 /* 3881 * Turn on soft mode for chunk types that were being converted. 3882 */ 3883 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3884 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3885 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3886 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3887 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3888 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3889 3890 /* 3891 * Turn on usage filter if is not already used. The idea is 3892 * that chunks that we have already balanced should be 3893 * reasonably full. Don't do it for chunks that are being 3894 * converted - that will keep us from relocating unconverted 3895 * (albeit full) chunks. 3896 */ 3897 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3898 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3899 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3900 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3901 bctl->data.usage = 90; 3902 } 3903 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3904 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3905 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3906 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3907 bctl->sys.usage = 90; 3908 } 3909 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3910 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3911 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3912 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3913 bctl->meta.usage = 90; 3914 } 3915 } 3916 3917 /* 3918 * Clear the balance status in fs_info and delete the balance item from disk. 3919 */ 3920 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3921 { 3922 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3923 int ret; 3924 3925 ASSERT(fs_info->balance_ctl); 3926 3927 spin_lock(&fs_info->balance_lock); 3928 fs_info->balance_ctl = NULL; 3929 spin_unlock(&fs_info->balance_lock); 3930 3931 kfree(bctl); 3932 ret = del_balance_item(fs_info); 3933 if (ret) 3934 btrfs_handle_fs_error(fs_info, ret, NULL); 3935 } 3936 3937 /* 3938 * Balance filters. Return 1 if chunk should be filtered out 3939 * (should not be balanced). 3940 */ 3941 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3942 { 3943 chunk_type = chunk_to_extended(chunk_type) & 3944 BTRFS_EXTENDED_PROFILE_MASK; 3945 3946 if (bargs->profiles & chunk_type) 3947 return false; 3948 3949 return true; 3950 } 3951 3952 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3953 struct btrfs_balance_args *bargs) 3954 { 3955 struct btrfs_block_group *cache; 3956 u64 chunk_used; 3957 u64 user_thresh_min; 3958 u64 user_thresh_max; 3959 bool ret = true; 3960 3961 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3962 chunk_used = cache->used; 3963 3964 if (bargs->usage_min == 0) 3965 user_thresh_min = 0; 3966 else 3967 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3968 3969 if (bargs->usage_max == 0) 3970 user_thresh_max = 1; 3971 else if (bargs->usage_max > 100) 3972 user_thresh_max = cache->length; 3973 else 3974 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3975 3976 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3977 ret = false; 3978 3979 btrfs_put_block_group(cache); 3980 return ret; 3981 } 3982 3983 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3984 struct btrfs_balance_args *bargs) 3985 { 3986 struct btrfs_block_group *cache; 3987 u64 chunk_used, user_thresh; 3988 bool ret = true; 3989 3990 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3991 chunk_used = cache->used; 3992 3993 if (bargs->usage_min == 0) 3994 user_thresh = 1; 3995 else if (bargs->usage > 100) 3996 user_thresh = cache->length; 3997 else 3998 user_thresh = mult_perc(cache->length, bargs->usage); 3999 4000 if (chunk_used < user_thresh) 4001 ret = false; 4002 4003 btrfs_put_block_group(cache); 4004 return ret; 4005 } 4006 4007 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 4008 struct btrfs_balance_args *bargs) 4009 { 4010 struct btrfs_stripe *stripe; 4011 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4012 int i; 4013 4014 for (i = 0; i < num_stripes; i++) { 4015 stripe = btrfs_stripe_nr(chunk, i); 4016 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 4017 return false; 4018 } 4019 4020 return true; 4021 } 4022 4023 static u64 calc_data_stripes(u64 type, int num_stripes) 4024 { 4025 const int index = btrfs_bg_flags_to_raid_index(type); 4026 const int ncopies = btrfs_raid_array[index].ncopies; 4027 const int nparity = btrfs_raid_array[index].nparity; 4028 4029 return (num_stripes - nparity) / ncopies; 4030 } 4031 4032 /* [pstart, pend) */ 4033 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 4034 struct btrfs_balance_args *bargs) 4035 { 4036 struct btrfs_stripe *stripe; 4037 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4038 u64 stripe_offset; 4039 u64 stripe_length; 4040 u64 type; 4041 int factor; 4042 int i; 4043 4044 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 4045 return false; 4046 4047 type = btrfs_chunk_type(leaf, chunk); 4048 factor = calc_data_stripes(type, num_stripes); 4049 4050 for (i = 0; i < num_stripes; i++) { 4051 stripe = btrfs_stripe_nr(chunk, i); 4052 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 4053 continue; 4054 4055 stripe_offset = btrfs_stripe_offset(leaf, stripe); 4056 stripe_length = btrfs_chunk_length(leaf, chunk); 4057 stripe_length = div_u64(stripe_length, factor); 4058 4059 if (stripe_offset < bargs->pend && 4060 stripe_offset + stripe_length > bargs->pstart) 4061 return false; 4062 } 4063 4064 return true; 4065 } 4066 4067 /* [vstart, vend) */ 4068 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 4069 u64 chunk_offset, struct btrfs_balance_args *bargs) 4070 { 4071 if (chunk_offset < bargs->vend && 4072 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 4073 /* at least part of the chunk is inside this vrange */ 4074 return false; 4075 4076 return true; 4077 } 4078 4079 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 4080 struct btrfs_chunk *chunk, 4081 struct btrfs_balance_args *bargs) 4082 { 4083 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4084 4085 if (bargs->stripes_min <= num_stripes 4086 && num_stripes <= bargs->stripes_max) 4087 return false; 4088 4089 return true; 4090 } 4091 4092 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 4093 { 4094 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4095 return false; 4096 4097 chunk_type = chunk_to_extended(chunk_type) & 4098 BTRFS_EXTENDED_PROFILE_MASK; 4099 4100 if (bargs->target == chunk_type) 4101 return true; 4102 4103 return false; 4104 } 4105 4106 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 4107 u64 chunk_offset) 4108 { 4109 struct btrfs_fs_info *fs_info = leaf->fs_info; 4110 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4111 struct btrfs_balance_args *bargs = NULL; 4112 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 4113 4114 /* Treat METADATA_REMAP chunks as METADATA. */ 4115 if (chunk_type & BTRFS_BLOCK_GROUP_METADATA_REMAP) { 4116 chunk_type &= ~BTRFS_BLOCK_GROUP_METADATA_REMAP; 4117 chunk_type |= BTRFS_BLOCK_GROUP_METADATA; 4118 } 4119 4120 /* type filter */ 4121 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 4122 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 4123 return false; 4124 } 4125 4126 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4127 bargs = &bctl->data; 4128 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4129 bargs = &bctl->sys; 4130 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4131 bargs = &bctl->meta; 4132 4133 /* profiles filter */ 4134 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4135 chunk_profiles_filter(chunk_type, bargs)) { 4136 return false; 4137 } 4138 4139 /* usage filter */ 4140 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4141 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4142 return false; 4143 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4144 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4145 return false; 4146 } 4147 4148 /* devid filter */ 4149 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4150 chunk_devid_filter(leaf, chunk, bargs)) { 4151 return false; 4152 } 4153 4154 /* drange filter, makes sense only with devid filter */ 4155 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4156 chunk_drange_filter(leaf, chunk, bargs)) { 4157 return false; 4158 } 4159 4160 /* vrange filter */ 4161 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4162 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4163 return false; 4164 } 4165 4166 /* stripes filter */ 4167 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4168 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4169 return false; 4170 } 4171 4172 /* soft profile changing mode */ 4173 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4174 chunk_soft_convert_filter(chunk_type, bargs)) { 4175 return false; 4176 } 4177 4178 /* 4179 * limited by count, must be the last filter 4180 */ 4181 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4182 if (bargs->limit == 0) 4183 return false; 4184 else 4185 bargs->limit--; 4186 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4187 /* 4188 * Same logic as the 'limit' filter; the minimum cannot be 4189 * determined here because we do not have the global information 4190 * about the count of all chunks that satisfy the filters. 4191 */ 4192 if (bargs->limit_max == 0) 4193 return false; 4194 else 4195 bargs->limit_max--; 4196 } 4197 4198 return true; 4199 } 4200 4201 struct remap_chunk_info { 4202 struct list_head list; 4203 u64 offset; 4204 struct btrfs_block_group *bg; 4205 bool made_ro; 4206 }; 4207 4208 static int cow_remap_tree(struct btrfs_trans_handle *trans, struct btrfs_path *path) 4209 { 4210 struct btrfs_fs_info *fs_info = trans->fs_info; 4211 struct btrfs_key key = { 0 }; 4212 int ret; 4213 4214 ret = btrfs_search_slot(trans, fs_info->remap_root, &key, path, 0, 1); 4215 if (ret < 0) 4216 return ret; 4217 4218 while (true) { 4219 ret = btrfs_next_leaf(fs_info->remap_root, path); 4220 if (ret < 0) { 4221 return ret; 4222 } else if (ret > 0) { 4223 ret = 0; 4224 break; 4225 } 4226 4227 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4228 4229 btrfs_release_path(path); 4230 4231 ret = btrfs_search_slot(trans, fs_info->remap_root, &key, path, 0, 1); 4232 if (ret < 0) 4233 break; 4234 } 4235 4236 return ret; 4237 } 4238 4239 static int balance_remap_chunks(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4240 struct list_head *chunks) 4241 { 4242 struct remap_chunk_info *rci, *tmp; 4243 struct btrfs_trans_handle *trans; 4244 int ret; 4245 4246 list_for_each_entry_safe(rci, tmp, chunks, list) { 4247 rci->bg = btrfs_lookup_block_group(fs_info, rci->offset); 4248 if (!rci->bg) { 4249 list_del(&rci->list); 4250 kfree(rci); 4251 continue; 4252 } 4253 4254 ret = btrfs_inc_block_group_ro(rci->bg, false); 4255 if (ret) 4256 goto end; 4257 4258 rci->made_ro = true; 4259 } 4260 4261 if (list_empty(chunks)) 4262 return 0; 4263 4264 trans = btrfs_start_transaction(fs_info->remap_root, 0); 4265 if (IS_ERR(trans)) { 4266 ret = PTR_ERR(trans); 4267 goto end; 4268 } 4269 4270 mutex_lock(&fs_info->remap_mutex); 4271 ret = cow_remap_tree(trans, path); 4272 mutex_unlock(&fs_info->remap_mutex); 4273 4274 btrfs_release_path(path); 4275 btrfs_commit_transaction(trans); 4276 4277 end: 4278 while (!list_empty(chunks)) { 4279 bool is_unused; 4280 4281 rci = list_first_entry(chunks, struct remap_chunk_info, list); 4282 4283 spin_lock(&rci->bg->lock); 4284 is_unused = !btrfs_is_block_group_used(rci->bg); 4285 spin_unlock(&rci->bg->lock); 4286 4287 if (is_unused) 4288 btrfs_mark_bg_unused(rci->bg); 4289 4290 if (rci->made_ro) 4291 btrfs_dec_block_group_ro(rci->bg); 4292 4293 btrfs_put_block_group(rci->bg); 4294 4295 list_del(&rci->list); 4296 kfree(rci); 4297 } 4298 4299 return ret; 4300 } 4301 4302 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4303 { 4304 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4305 struct btrfs_root *chunk_root = fs_info->chunk_root; 4306 u64 chunk_type; 4307 struct btrfs_chunk *chunk; 4308 BTRFS_PATH_AUTO_FREE(path); 4309 struct btrfs_key key; 4310 struct btrfs_key found_key; 4311 struct extent_buffer *leaf; 4312 int slot; 4313 int ret; 4314 int enospc_errors = 0; 4315 bool counting = true; 4316 /* The single value limit and min/max limits use the same bytes in the */ 4317 u64 limit_data = bctl->data.limit; 4318 u64 limit_meta = bctl->meta.limit; 4319 u64 limit_sys = bctl->sys.limit; 4320 u32 count_data = 0; 4321 u32 count_meta = 0; 4322 u32 count_sys = 0; 4323 int chunk_reserved = 0; 4324 struct remap_chunk_info *rci; 4325 unsigned int num_remap_chunks = 0; 4326 LIST_HEAD(remap_chunks); 4327 4328 path = btrfs_alloc_path(); 4329 if (!path) { 4330 ret = -ENOMEM; 4331 goto error; 4332 } 4333 4334 /* zero out stat counters */ 4335 spin_lock(&fs_info->balance_lock); 4336 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4337 spin_unlock(&fs_info->balance_lock); 4338 again: 4339 if (!counting) { 4340 /* 4341 * The single value limit and min/max limits use the same bytes 4342 * in the 4343 */ 4344 bctl->data.limit = limit_data; 4345 bctl->meta.limit = limit_meta; 4346 bctl->sys.limit = limit_sys; 4347 } 4348 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4349 key.type = BTRFS_CHUNK_ITEM_KEY; 4350 key.offset = (u64)-1; 4351 4352 while (1) { 4353 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4354 atomic_read(&fs_info->balance_cancel_req)) { 4355 ret = -ECANCELED; 4356 goto error; 4357 } 4358 4359 mutex_lock(&fs_info->reclaim_bgs_lock); 4360 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4361 if (ret < 0) { 4362 mutex_unlock(&fs_info->reclaim_bgs_lock); 4363 goto error; 4364 } 4365 4366 /* 4367 * this shouldn't happen, it means the last relocate 4368 * failed 4369 */ 4370 if (ret == 0) 4371 BUG(); /* FIXME break ? */ 4372 4373 ret = btrfs_previous_item(chunk_root, path, 0, 4374 BTRFS_CHUNK_ITEM_KEY); 4375 if (ret) { 4376 mutex_unlock(&fs_info->reclaim_bgs_lock); 4377 ret = 0; 4378 break; 4379 } 4380 4381 leaf = path->nodes[0]; 4382 slot = path->slots[0]; 4383 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4384 4385 if (found_key.objectid != key.objectid) { 4386 mutex_unlock(&fs_info->reclaim_bgs_lock); 4387 break; 4388 } 4389 4390 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4391 chunk_type = btrfs_chunk_type(leaf, chunk); 4392 4393 /* Check if chunk has already been fully relocated. */ 4394 if (chunk_type & BTRFS_BLOCK_GROUP_REMAPPED && 4395 btrfs_chunk_num_stripes(leaf, chunk) == 0) { 4396 btrfs_release_path(path); 4397 mutex_unlock(&fs_info->reclaim_bgs_lock); 4398 goto loop; 4399 } 4400 4401 if (!counting) { 4402 spin_lock(&fs_info->balance_lock); 4403 bctl->stat.considered++; 4404 spin_unlock(&fs_info->balance_lock); 4405 } 4406 4407 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4408 4409 btrfs_release_path(path); 4410 if (!ret) { 4411 mutex_unlock(&fs_info->reclaim_bgs_lock); 4412 goto loop; 4413 } 4414 4415 if (counting) { 4416 mutex_unlock(&fs_info->reclaim_bgs_lock); 4417 spin_lock(&fs_info->balance_lock); 4418 bctl->stat.expected++; 4419 spin_unlock(&fs_info->balance_lock); 4420 4421 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4422 count_data++; 4423 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4424 count_sys++; 4425 else if (chunk_type & (BTRFS_BLOCK_GROUP_METADATA | 4426 BTRFS_BLOCK_GROUP_METADATA_REMAP)) 4427 count_meta++; 4428 4429 goto loop; 4430 } 4431 4432 /* 4433 * Apply limit_min filter, no need to check if the LIMITS 4434 * filter is used, limit_min is 0 by default 4435 */ 4436 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4437 count_data < bctl->data.limit_min) 4438 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4439 count_meta < bctl->meta.limit_min) 4440 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4441 count_sys < bctl->sys.limit_min)) { 4442 mutex_unlock(&fs_info->reclaim_bgs_lock); 4443 goto loop; 4444 } 4445 4446 /* 4447 * Balancing METADATA_REMAP chunks takes place separately - add 4448 * the details to a list so it can be processed later. 4449 */ 4450 if (chunk_type & BTRFS_BLOCK_GROUP_METADATA_REMAP) { 4451 mutex_unlock(&fs_info->reclaim_bgs_lock); 4452 4453 rci = kmalloc(sizeof(struct remap_chunk_info), GFP_NOFS); 4454 if (!rci) { 4455 ret = -ENOMEM; 4456 goto error; 4457 } 4458 4459 rci->offset = found_key.offset; 4460 rci->bg = NULL; 4461 rci->made_ro = false; 4462 list_add_tail(&rci->list, &remap_chunks); 4463 4464 num_remap_chunks++; 4465 4466 goto loop; 4467 } 4468 4469 if (!chunk_reserved) { 4470 /* 4471 * We may be relocating the only data chunk we have, 4472 * which could potentially end up with losing data's 4473 * raid profile, so lets allocate an empty one in 4474 * advance. 4475 */ 4476 ret = btrfs_may_alloc_data_chunk(fs_info, 4477 found_key.offset); 4478 if (ret < 0) { 4479 mutex_unlock(&fs_info->reclaim_bgs_lock); 4480 goto error; 4481 } else if (ret == 1) { 4482 chunk_reserved = 1; 4483 } 4484 } 4485 4486 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4487 mutex_unlock(&fs_info->reclaim_bgs_lock); 4488 if (ret == -ENOSPC) { 4489 enospc_errors++; 4490 } else if (ret == -ETXTBSY) { 4491 btrfs_info(fs_info, 4492 "skipping relocation of block group %llu due to active swapfile", 4493 found_key.offset); 4494 ret = 0; 4495 } else if (ret) { 4496 goto error; 4497 } else { 4498 spin_lock(&fs_info->balance_lock); 4499 bctl->stat.completed++; 4500 spin_unlock(&fs_info->balance_lock); 4501 } 4502 loop: 4503 if (found_key.offset == 0) 4504 break; 4505 key.offset = found_key.offset - 1; 4506 } 4507 4508 btrfs_release_path(path); 4509 4510 if (counting) { 4511 counting = false; 4512 goto again; 4513 } 4514 4515 if (!list_empty(&remap_chunks)) { 4516 ret = balance_remap_chunks(fs_info, path, &remap_chunks); 4517 if (ret == -ENOSPC) 4518 enospc_errors++; 4519 4520 if (!ret) { 4521 spin_lock(&fs_info->balance_lock); 4522 bctl->stat.completed += num_remap_chunks; 4523 spin_unlock(&fs_info->balance_lock); 4524 } 4525 } 4526 error: 4527 if (enospc_errors) { 4528 btrfs_info(fs_info, "%d enospc errors during balance", 4529 enospc_errors); 4530 if (!ret) 4531 ret = -ENOSPC; 4532 } 4533 4534 return ret; 4535 } 4536 4537 /* 4538 * See if a given profile is valid and reduced. 4539 * 4540 * @flags: profile to validate 4541 * @extended: if true @flags is treated as an extended profile 4542 */ 4543 static int alloc_profile_is_valid(u64 flags, bool extended) 4544 { 4545 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4546 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4547 4548 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4549 4550 /* 1) check that all other bits are zeroed */ 4551 if (flags & ~mask) 4552 return 0; 4553 4554 /* 2) see if profile is reduced */ 4555 if (flags == 0) 4556 return !extended; /* "0" is valid for usual profiles */ 4557 4558 return has_single_bit_set(flags); 4559 } 4560 4561 /* 4562 * Validate target profile against allowed profiles and return true if it's OK. 4563 * Otherwise print the error message and return false. 4564 */ 4565 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4566 const struct btrfs_balance_args *bargs, 4567 u64 allowed, const char *type) 4568 { 4569 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4570 return true; 4571 4572 /* Profile is valid and does not have bits outside of the allowed set */ 4573 if (alloc_profile_is_valid(bargs->target, 1) && 4574 (bargs->target & ~allowed) == 0) 4575 return true; 4576 4577 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4578 type, btrfs_bg_type_to_raid_name(bargs->target)); 4579 return false; 4580 } 4581 4582 /* 4583 * Fill @buf with textual description of balance filter flags @bargs, up to 4584 * @size_buf including the terminating null. The output may be trimmed if it 4585 * does not fit into the provided buffer. 4586 */ 4587 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4588 u32 size_buf) 4589 { 4590 int ret; 4591 u32 size_bp = size_buf; 4592 char *bp = buf; 4593 u64 flags = bargs->flags; 4594 char tmp_buf[128] = {'\0'}; 4595 4596 if (!flags) 4597 return; 4598 4599 #define CHECK_APPEND_NOARG(a) \ 4600 do { \ 4601 ret = snprintf(bp, size_bp, (a)); \ 4602 if (ret < 0 || ret >= size_bp) \ 4603 goto out_overflow; \ 4604 size_bp -= ret; \ 4605 bp += ret; \ 4606 } while (0) 4607 4608 #define CHECK_APPEND_1ARG(a, v1) \ 4609 do { \ 4610 ret = snprintf(bp, size_bp, (a), (v1)); \ 4611 if (ret < 0 || ret >= size_bp) \ 4612 goto out_overflow; \ 4613 size_bp -= ret; \ 4614 bp += ret; \ 4615 } while (0) 4616 4617 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4618 do { \ 4619 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4620 if (ret < 0 || ret >= size_bp) \ 4621 goto out_overflow; \ 4622 size_bp -= ret; \ 4623 bp += ret; \ 4624 } while (0) 4625 4626 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4627 CHECK_APPEND_1ARG("convert=%s,", 4628 btrfs_bg_type_to_raid_name(bargs->target)); 4629 4630 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4631 CHECK_APPEND_NOARG("soft,"); 4632 4633 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4634 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4635 sizeof(tmp_buf)); 4636 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4637 } 4638 4639 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4640 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4641 4642 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4643 CHECK_APPEND_2ARG("usage=%u..%u,", 4644 bargs->usage_min, bargs->usage_max); 4645 4646 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4647 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4648 4649 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4650 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4651 bargs->pstart, bargs->pend); 4652 4653 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4654 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4655 bargs->vstart, bargs->vend); 4656 4657 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4658 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4659 4660 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4661 CHECK_APPEND_2ARG("limit=%u..%u,", 4662 bargs->limit_min, bargs->limit_max); 4663 4664 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4665 CHECK_APPEND_2ARG("stripes=%u..%u,", 4666 bargs->stripes_min, bargs->stripes_max); 4667 4668 #undef CHECK_APPEND_2ARG 4669 #undef CHECK_APPEND_1ARG 4670 #undef CHECK_APPEND_NOARG 4671 4672 out_overflow: 4673 4674 if (size_bp < size_buf) 4675 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4676 else 4677 buf[0] = '\0'; 4678 } 4679 4680 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4681 { 4682 u32 size_buf = 1024; 4683 char tmp_buf[192] = {'\0'}; 4684 char AUTO_KFREE(buf); 4685 char *bp; 4686 u32 size_bp = size_buf; 4687 int ret; 4688 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4689 4690 buf = kzalloc(size_buf, GFP_KERNEL); 4691 if (!buf) 4692 return; 4693 4694 bp = buf; 4695 4696 #define CHECK_APPEND_1ARG(a, v1) \ 4697 do { \ 4698 ret = snprintf(bp, size_bp, (a), (v1)); \ 4699 if (ret < 0 || ret >= size_bp) \ 4700 goto out_overflow; \ 4701 size_bp -= ret; \ 4702 bp += ret; \ 4703 } while (0) 4704 4705 if (bctl->flags & BTRFS_BALANCE_FORCE) 4706 CHECK_APPEND_1ARG("%s", "-f "); 4707 4708 if (bctl->flags & BTRFS_BALANCE_DATA) { 4709 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4710 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4711 } 4712 4713 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4714 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4715 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4716 } 4717 4718 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4719 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4720 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4721 } 4722 4723 #undef CHECK_APPEND_1ARG 4724 4725 out_overflow: 4726 4727 if (size_bp < size_buf) 4728 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4729 btrfs_info(fs_info, "balance: %s %s", 4730 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4731 "resume" : "start", buf); 4732 } 4733 4734 /* 4735 * Should be called with balance mutex held 4736 */ 4737 int btrfs_balance(struct btrfs_fs_info *fs_info, 4738 struct btrfs_balance_control *bctl, 4739 struct btrfs_ioctl_balance_args *bargs) 4740 { 4741 u64 meta_target, data_target; 4742 u64 allowed; 4743 int mixed = 0; 4744 int ret; 4745 u64 num_devices; 4746 unsigned seq; 4747 bool reducing_redundancy; 4748 bool paused = false; 4749 int i; 4750 4751 if (btrfs_fs_closing(fs_info) || 4752 atomic_read(&fs_info->balance_pause_req) || 4753 btrfs_should_cancel_balance(fs_info)) { 4754 ret = -EINVAL; 4755 goto out; 4756 } 4757 4758 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4759 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4760 mixed = 1; 4761 4762 /* 4763 * In case of mixed groups both data and meta should be picked, 4764 * and identical options should be given for both of them. 4765 */ 4766 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4767 if (mixed && (bctl->flags & allowed)) { 4768 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4769 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4770 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4771 btrfs_err(fs_info, 4772 "balance: mixed groups data and metadata options must be the same"); 4773 ret = -EINVAL; 4774 goto out; 4775 } 4776 } 4777 4778 /* 4779 * rw_devices will not change at the moment, device add/delete/replace 4780 * are exclusive 4781 */ 4782 num_devices = fs_info->fs_devices->rw_devices; 4783 4784 /* 4785 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4786 * special bit for it, to make it easier to distinguish. Thus we need 4787 * to set it manually, or balance would refuse the profile. 4788 */ 4789 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4790 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4791 if (num_devices >= btrfs_raid_array[i].devs_min) 4792 allowed |= btrfs_raid_array[i].bg_flag; 4793 4794 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4795 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4796 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4797 ret = -EINVAL; 4798 goto out; 4799 } 4800 4801 /* 4802 * Allow to reduce metadata or system integrity only if force set for 4803 * profiles with redundancy (copies, parity) 4804 */ 4805 allowed = 0; 4806 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4807 if (btrfs_raid_array[i].ncopies >= 2 || 4808 btrfs_raid_array[i].tolerated_failures >= 1) 4809 allowed |= btrfs_raid_array[i].bg_flag; 4810 } 4811 do { 4812 seq = read_seqbegin(&fs_info->profiles_lock); 4813 4814 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4815 (fs_info->avail_system_alloc_bits & allowed) && 4816 !(bctl->sys.target & allowed)) || 4817 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4818 (fs_info->avail_metadata_alloc_bits & allowed) && 4819 !(bctl->meta.target & allowed))) 4820 reducing_redundancy = true; 4821 else 4822 reducing_redundancy = false; 4823 4824 /* if we're not converting, the target field is uninitialized */ 4825 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4826 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4827 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4828 bctl->data.target : fs_info->avail_data_alloc_bits; 4829 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4830 4831 if (reducing_redundancy) { 4832 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4833 btrfs_info(fs_info, 4834 "balance: force reducing metadata redundancy"); 4835 } else { 4836 btrfs_err(fs_info, 4837 "balance: reduces metadata redundancy, use --force if you want this"); 4838 ret = -EINVAL; 4839 goto out; 4840 } 4841 } 4842 4843 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4844 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4845 btrfs_warn(fs_info, 4846 "balance: metadata profile %s has lower redundancy than data profile %s", 4847 btrfs_bg_type_to_raid_name(meta_target), 4848 btrfs_bg_type_to_raid_name(data_target)); 4849 } 4850 4851 ret = insert_balance_item(fs_info, bctl); 4852 if (ret && ret != -EEXIST) 4853 goto out; 4854 4855 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4856 BUG_ON(ret == -EEXIST); 4857 BUG_ON(fs_info->balance_ctl); 4858 spin_lock(&fs_info->balance_lock); 4859 fs_info->balance_ctl = bctl; 4860 spin_unlock(&fs_info->balance_lock); 4861 } else { 4862 BUG_ON(ret != -EEXIST); 4863 spin_lock(&fs_info->balance_lock); 4864 update_balance_args(bctl); 4865 spin_unlock(&fs_info->balance_lock); 4866 } 4867 4868 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4869 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4870 describe_balance_start_or_resume(fs_info); 4871 mutex_unlock(&fs_info->balance_mutex); 4872 4873 ret = __btrfs_balance(fs_info); 4874 4875 mutex_lock(&fs_info->balance_mutex); 4876 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4877 btrfs_info(fs_info, "balance: paused"); 4878 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4879 paused = true; 4880 } 4881 /* 4882 * Balance can be canceled by: 4883 * 4884 * - Regular cancel request 4885 * Then ret == -ECANCELED and balance_cancel_req > 0 4886 * 4887 * - Fatal signal to "btrfs" process 4888 * Either the signal caught by wait_reserve_ticket() and callers 4889 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4890 * got -ECANCELED. 4891 * Either way, in this case balance_cancel_req = 0, and 4892 * ret == -EINTR or ret == -ECANCELED. 4893 * 4894 * So here we only check the return value to catch canceled balance. 4895 */ 4896 else if (ret == -ECANCELED || ret == -EINTR) 4897 btrfs_info(fs_info, "balance: canceled"); 4898 else 4899 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4900 4901 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4902 4903 if (bargs) { 4904 memset(bargs, 0, sizeof(*bargs)); 4905 btrfs_update_ioctl_balance_args(fs_info, bargs); 4906 } 4907 4908 /* We didn't pause, we can clean everything up. */ 4909 if (!paused) { 4910 reset_balance_state(fs_info); 4911 btrfs_exclop_finish(fs_info); 4912 } 4913 4914 wake_up(&fs_info->balance_wait_q); 4915 4916 return ret; 4917 out: 4918 if (bctl->flags & BTRFS_BALANCE_RESUME) 4919 reset_balance_state(fs_info); 4920 else 4921 kfree(bctl); 4922 btrfs_exclop_finish(fs_info); 4923 4924 return ret; 4925 } 4926 4927 static int balance_kthread(void *data) 4928 { 4929 struct btrfs_fs_info *fs_info = data; 4930 int ret = 0; 4931 4932 guard(super_write)(fs_info->sb); 4933 4934 mutex_lock(&fs_info->balance_mutex); 4935 if (fs_info->balance_ctl) 4936 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4937 mutex_unlock(&fs_info->balance_mutex); 4938 4939 return ret; 4940 } 4941 4942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4943 { 4944 struct task_struct *tsk; 4945 4946 mutex_lock(&fs_info->balance_mutex); 4947 if (!fs_info->balance_ctl) { 4948 mutex_unlock(&fs_info->balance_mutex); 4949 return 0; 4950 } 4951 mutex_unlock(&fs_info->balance_mutex); 4952 4953 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4954 btrfs_info(fs_info, "balance: resume skipped"); 4955 return 0; 4956 } 4957 4958 spin_lock(&fs_info->super_lock); 4959 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4960 "exclusive_operation=%d", fs_info->exclusive_operation); 4961 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4962 spin_unlock(&fs_info->super_lock); 4963 /* 4964 * A ro->rw remount sequence should continue with the paused balance 4965 * regardless of who pauses it, system or the user as of now, so set 4966 * the resume flag. 4967 */ 4968 spin_lock(&fs_info->balance_lock); 4969 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4970 spin_unlock(&fs_info->balance_lock); 4971 4972 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4973 return PTR_ERR_OR_ZERO(tsk); 4974 } 4975 4976 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4977 { 4978 struct btrfs_balance_control *bctl; 4979 struct btrfs_balance_item *item; 4980 struct btrfs_disk_balance_args disk_bargs; 4981 BTRFS_PATH_AUTO_FREE(path); 4982 struct extent_buffer *leaf; 4983 struct btrfs_key key; 4984 int ret; 4985 4986 path = btrfs_alloc_path(); 4987 if (!path) 4988 return -ENOMEM; 4989 4990 key.objectid = BTRFS_BALANCE_OBJECTID; 4991 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4992 key.offset = 0; 4993 4994 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4995 if (ret < 0) 4996 return ret; 4997 if (ret > 0) { /* ret = -ENOENT; */ 4998 return 0; 4999 } 5000 5001 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 5002 if (!bctl) 5003 return -ENOMEM; 5004 5005 leaf = path->nodes[0]; 5006 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 5007 5008 bctl->flags = btrfs_balance_flags(leaf, item); 5009 bctl->flags |= BTRFS_BALANCE_RESUME; 5010 5011 btrfs_balance_data(leaf, item, &disk_bargs); 5012 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 5013 btrfs_balance_meta(leaf, item, &disk_bargs); 5014 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 5015 btrfs_balance_sys(leaf, item, &disk_bargs); 5016 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 5017 5018 /* 5019 * This should never happen, as the paused balance state is recovered 5020 * during mount without any chance of other exclusive ops to collide. 5021 * 5022 * This gives the exclusive op status to balance and keeps in paused 5023 * state until user intervention (cancel or umount). If the ownership 5024 * cannot be assigned, show a message but do not fail. The balance 5025 * is in a paused state and must have fs_info::balance_ctl properly 5026 * set up. 5027 */ 5028 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 5029 btrfs_warn(fs_info, 5030 "balance: cannot set exclusive op status, resume manually"); 5031 5032 btrfs_release_path(path); 5033 5034 mutex_lock(&fs_info->balance_mutex); 5035 BUG_ON(fs_info->balance_ctl); 5036 spin_lock(&fs_info->balance_lock); 5037 fs_info->balance_ctl = bctl; 5038 spin_unlock(&fs_info->balance_lock); 5039 mutex_unlock(&fs_info->balance_mutex); 5040 return ret; 5041 } 5042 5043 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 5044 { 5045 int ret = 0; 5046 5047 mutex_lock(&fs_info->balance_mutex); 5048 if (!fs_info->balance_ctl) { 5049 mutex_unlock(&fs_info->balance_mutex); 5050 return -ENOTCONN; 5051 } 5052 5053 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 5054 atomic_inc(&fs_info->balance_pause_req); 5055 mutex_unlock(&fs_info->balance_mutex); 5056 5057 wait_event(fs_info->balance_wait_q, 5058 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 5059 5060 mutex_lock(&fs_info->balance_mutex); 5061 /* we are good with balance_ctl ripped off from under us */ 5062 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 5063 atomic_dec(&fs_info->balance_pause_req); 5064 } else { 5065 ret = -ENOTCONN; 5066 } 5067 5068 mutex_unlock(&fs_info->balance_mutex); 5069 return ret; 5070 } 5071 5072 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 5073 { 5074 mutex_lock(&fs_info->balance_mutex); 5075 if (!fs_info->balance_ctl) { 5076 mutex_unlock(&fs_info->balance_mutex); 5077 return -ENOTCONN; 5078 } 5079 5080 /* 5081 * A paused balance with the item stored on disk can be resumed at 5082 * mount time if the mount is read-write. Otherwise it's still paused 5083 * and we must not allow cancelling as it deletes the item. 5084 */ 5085 if (sb_rdonly(fs_info->sb)) { 5086 mutex_unlock(&fs_info->balance_mutex); 5087 return -EROFS; 5088 } 5089 5090 atomic_inc(&fs_info->balance_cancel_req); 5091 /* 5092 * if we are running just wait and return, balance item is 5093 * deleted in btrfs_balance in this case 5094 */ 5095 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 5096 mutex_unlock(&fs_info->balance_mutex); 5097 wait_event(fs_info->balance_wait_q, 5098 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 5099 mutex_lock(&fs_info->balance_mutex); 5100 } else { 5101 mutex_unlock(&fs_info->balance_mutex); 5102 /* 5103 * Lock released to allow other waiters to continue, we'll 5104 * reexamine the status again. 5105 */ 5106 mutex_lock(&fs_info->balance_mutex); 5107 5108 if (fs_info->balance_ctl) { 5109 reset_balance_state(fs_info); 5110 btrfs_exclop_finish(fs_info); 5111 btrfs_info(fs_info, "balance: canceled"); 5112 } 5113 } 5114 5115 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 5116 atomic_dec(&fs_info->balance_cancel_req); 5117 mutex_unlock(&fs_info->balance_mutex); 5118 return 0; 5119 } 5120 5121 /* 5122 * shrinking a device means finding all of the device extents past 5123 * the new size, and then following the back refs to the chunks. 5124 * The chunk relocation code actually frees the device extent 5125 */ 5126 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 5127 { 5128 struct btrfs_fs_info *fs_info = device->fs_info; 5129 struct btrfs_root *root = fs_info->dev_root; 5130 struct btrfs_trans_handle *trans; 5131 struct btrfs_dev_extent *dev_extent = NULL; 5132 struct btrfs_path *path; 5133 u64 length; 5134 u64 chunk_offset; 5135 int ret; 5136 int slot; 5137 int failed = 0; 5138 bool retried = false; 5139 struct extent_buffer *l; 5140 struct btrfs_key key; 5141 struct btrfs_super_block *super_copy = fs_info->super_copy; 5142 u64 old_total = btrfs_super_total_bytes(super_copy); 5143 u64 old_size = btrfs_device_get_total_bytes(device); 5144 u64 diff; 5145 u64 start; 5146 u64 free_diff = 0; 5147 u64 pending_start, pending_end; 5148 5149 new_size = round_down(new_size, fs_info->sectorsize); 5150 start = new_size; 5151 diff = round_down(old_size - new_size, fs_info->sectorsize); 5152 5153 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5154 return -EINVAL; 5155 5156 path = btrfs_alloc_path(); 5157 if (!path) 5158 return -ENOMEM; 5159 5160 path->reada = READA_BACK; 5161 5162 trans = btrfs_start_transaction(root, 0); 5163 if (IS_ERR(trans)) { 5164 btrfs_free_path(path); 5165 return PTR_ERR(trans); 5166 } 5167 5168 mutex_lock(&fs_info->chunk_mutex); 5169 5170 btrfs_device_set_total_bytes(device, new_size); 5171 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5172 device->fs_devices->total_rw_bytes -= diff; 5173 5174 /* 5175 * The new free_chunk_space is new_size - used, so we have to 5176 * subtract the delta of the old free_chunk_space which included 5177 * old_size - used. If used > new_size then just subtract this 5178 * entire device's free space. 5179 */ 5180 if (device->bytes_used < new_size) 5181 free_diff = (old_size - device->bytes_used) - 5182 (new_size - device->bytes_used); 5183 else 5184 free_diff = old_size - device->bytes_used; 5185 atomic64_sub(free_diff, &fs_info->free_chunk_space); 5186 } 5187 5188 /* 5189 * Once the device's size has been set to the new size, ensure all 5190 * in-memory chunks are synced to disk so that the loop below sees them 5191 * and relocates them accordingly. 5192 */ 5193 if (btrfs_first_pending_extent(device, start, diff, &pending_start, &pending_end)) { 5194 mutex_unlock(&fs_info->chunk_mutex); 5195 ret = btrfs_commit_transaction(trans); 5196 if (ret) 5197 goto done; 5198 } else { 5199 mutex_unlock(&fs_info->chunk_mutex); 5200 btrfs_end_transaction(trans); 5201 } 5202 5203 again: 5204 key.objectid = device->devid; 5205 key.type = BTRFS_DEV_EXTENT_KEY; 5206 key.offset = (u64)-1; 5207 5208 do { 5209 mutex_lock(&fs_info->reclaim_bgs_lock); 5210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5211 if (ret < 0) { 5212 mutex_unlock(&fs_info->reclaim_bgs_lock); 5213 goto done; 5214 } 5215 5216 ret = btrfs_previous_item(root, path, 0, key.type); 5217 if (ret) { 5218 mutex_unlock(&fs_info->reclaim_bgs_lock); 5219 if (ret < 0) 5220 goto done; 5221 ret = 0; 5222 btrfs_release_path(path); 5223 break; 5224 } 5225 5226 l = path->nodes[0]; 5227 slot = path->slots[0]; 5228 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5229 5230 if (key.objectid != device->devid) { 5231 mutex_unlock(&fs_info->reclaim_bgs_lock); 5232 btrfs_release_path(path); 5233 break; 5234 } 5235 5236 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5237 length = btrfs_dev_extent_length(l, dev_extent); 5238 5239 if (key.offset + length <= new_size) { 5240 mutex_unlock(&fs_info->reclaim_bgs_lock); 5241 btrfs_release_path(path); 5242 break; 5243 } 5244 5245 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5246 btrfs_release_path(path); 5247 5248 /* 5249 * We may be relocating the only data chunk we have, 5250 * which could potentially end up with losing data's 5251 * raid profile, so lets allocate an empty one in 5252 * advance. 5253 */ 5254 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5255 if (ret < 0) { 5256 mutex_unlock(&fs_info->reclaim_bgs_lock); 5257 goto done; 5258 } 5259 5260 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 5261 mutex_unlock(&fs_info->reclaim_bgs_lock); 5262 if (ret == -ENOSPC) { 5263 failed++; 5264 } else if (ret) { 5265 if (ret == -ETXTBSY) { 5266 btrfs_warn(fs_info, 5267 "could not shrink block group %llu due to active swapfile", 5268 chunk_offset); 5269 } 5270 goto done; 5271 } 5272 } while (key.offset-- > 0); 5273 5274 if (failed && !retried) { 5275 failed = 0; 5276 retried = true; 5277 goto again; 5278 } else if (failed && retried) { 5279 ret = -ENOSPC; 5280 goto done; 5281 } 5282 5283 /* Shrinking succeeded, else we would be at "done". */ 5284 trans = btrfs_start_transaction(root, 0); 5285 if (IS_ERR(trans)) { 5286 ret = PTR_ERR(trans); 5287 goto done; 5288 } 5289 5290 mutex_lock(&fs_info->chunk_mutex); 5291 /* Clear all state bits beyond the shrunk device size */ 5292 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 5293 CHUNK_STATE_MASK, NULL); 5294 5295 btrfs_device_set_disk_total_bytes(device, new_size); 5296 if (list_empty(&device->post_commit_list)) 5297 list_add_tail(&device->post_commit_list, 5298 &trans->transaction->dev_update_list); 5299 5300 WARN_ON(diff > old_total); 5301 btrfs_set_super_total_bytes(super_copy, 5302 round_down(old_total - diff, fs_info->sectorsize)); 5303 mutex_unlock(&fs_info->chunk_mutex); 5304 5305 btrfs_reserve_chunk_metadata(trans, false); 5306 /* Now btrfs_update_device() will change the on-disk size. */ 5307 ret = btrfs_update_device(trans, device); 5308 btrfs_trans_release_chunk_metadata(trans); 5309 if (unlikely(ret < 0)) { 5310 btrfs_abort_transaction(trans, ret); 5311 btrfs_end_transaction(trans); 5312 } else { 5313 ret = btrfs_commit_transaction(trans); 5314 } 5315 done: 5316 btrfs_free_path(path); 5317 if (ret) { 5318 mutex_lock(&fs_info->chunk_mutex); 5319 btrfs_device_set_total_bytes(device, old_size); 5320 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5321 device->fs_devices->total_rw_bytes += diff; 5322 atomic64_add(free_diff, &fs_info->free_chunk_space); 5323 } 5324 mutex_unlock(&fs_info->chunk_mutex); 5325 } 5326 return ret; 5327 } 5328 5329 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5330 struct btrfs_key *key, 5331 struct btrfs_chunk *chunk, int item_size) 5332 { 5333 struct btrfs_super_block *super_copy = fs_info->super_copy; 5334 struct btrfs_disk_key disk_key; 5335 u32 array_size; 5336 u8 *ptr; 5337 5338 lockdep_assert_held(&fs_info->chunk_mutex); 5339 5340 array_size = btrfs_super_sys_array_size(super_copy); 5341 if (array_size + item_size + sizeof(disk_key) 5342 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5343 return -EFBIG; 5344 5345 ptr = super_copy->sys_chunk_array + array_size; 5346 btrfs_cpu_key_to_disk(&disk_key, key); 5347 memcpy(ptr, &disk_key, sizeof(disk_key)); 5348 ptr += sizeof(disk_key); 5349 memcpy(ptr, chunk, item_size); 5350 item_size += sizeof(disk_key); 5351 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5352 5353 return 0; 5354 } 5355 5356 /* 5357 * sort the devices in descending order by max_avail, total_avail 5358 */ 5359 static int btrfs_cmp_device_info(const void *a, const void *b) 5360 { 5361 const struct btrfs_device_info *di_a = a; 5362 const struct btrfs_device_info *di_b = b; 5363 5364 if (di_a->max_avail > di_b->max_avail) 5365 return -1; 5366 if (di_a->max_avail < di_b->max_avail) 5367 return 1; 5368 if (di_a->total_avail > di_b->total_avail) 5369 return -1; 5370 if (di_a->total_avail < di_b->total_avail) 5371 return 1; 5372 return 0; 5373 } 5374 5375 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5376 { 5377 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5378 return; 5379 5380 btrfs_set_fs_incompat(info, RAID56); 5381 } 5382 5383 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5384 { 5385 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5386 return; 5387 5388 btrfs_set_fs_incompat(info, RAID1C34); 5389 } 5390 5391 /* 5392 * Structure used internally for btrfs_create_chunk() function. 5393 * Wraps needed parameters. 5394 */ 5395 struct alloc_chunk_ctl { 5396 u64 start; 5397 u64 type; 5398 /* Total number of stripes to allocate */ 5399 int num_stripes; 5400 /* sub_stripes info for map */ 5401 int sub_stripes; 5402 /* Stripes per device */ 5403 int dev_stripes; 5404 /* Maximum number of devices to use */ 5405 int devs_max; 5406 /* Minimum number of devices to use */ 5407 int devs_min; 5408 /* ndevs has to be a multiple of this */ 5409 int devs_increment; 5410 /* Number of copies */ 5411 int ncopies; 5412 /* Number of stripes worth of bytes to store parity information */ 5413 int nparity; 5414 u64 max_stripe_size; 5415 u64 max_chunk_size; 5416 u64 dev_extent_min; 5417 u64 stripe_size; 5418 u64 chunk_size; 5419 int ndevs; 5420 /* Space_info the block group is going to belong. */ 5421 struct btrfs_space_info *space_info; 5422 }; 5423 5424 static void init_alloc_chunk_ctl_policy_regular( 5425 struct btrfs_fs_devices *fs_devices, 5426 struct alloc_chunk_ctl *ctl) 5427 { 5428 struct btrfs_space_info *space_info; 5429 5430 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5431 ASSERT(space_info); 5432 5433 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5434 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5435 5436 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5437 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5438 5439 /* We don't want a chunk larger than 10% of writable space */ 5440 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5441 ctl->max_chunk_size); 5442 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5443 } 5444 5445 static void init_alloc_chunk_ctl_policy_zoned( 5446 struct btrfs_fs_devices *fs_devices, 5447 struct alloc_chunk_ctl *ctl) 5448 { 5449 u64 zone_size = fs_devices->fs_info->zone_size; 5450 u64 limit; 5451 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5452 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5453 u64 min_chunk_size = min_data_stripes * zone_size; 5454 u64 type = ctl->type; 5455 5456 ctl->max_stripe_size = zone_size; 5457 if (type & BTRFS_BLOCK_GROUP_DATA) { 5458 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5459 zone_size); 5460 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5461 ctl->max_chunk_size = ctl->max_stripe_size; 5462 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5463 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5464 ctl->devs_max = min_t(int, ctl->devs_max, 5465 BTRFS_MAX_DEVS_SYS_CHUNK); 5466 } else { 5467 BUG(); 5468 } 5469 5470 /* We don't want a chunk larger than 10% of writable space */ 5471 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5472 zone_size), 5473 min_chunk_size); 5474 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5475 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5476 } 5477 5478 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5479 struct alloc_chunk_ctl *ctl) 5480 { 5481 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5482 5483 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5484 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5485 ctl->devs_max = btrfs_raid_array[index].devs_max; 5486 if (!ctl->devs_max) 5487 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5488 ctl->devs_min = btrfs_raid_array[index].devs_min; 5489 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5490 ctl->ncopies = btrfs_raid_array[index].ncopies; 5491 ctl->nparity = btrfs_raid_array[index].nparity; 5492 ctl->ndevs = 0; 5493 5494 switch (fs_devices->chunk_alloc_policy) { 5495 default: 5496 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5497 fallthrough; 5498 case BTRFS_CHUNK_ALLOC_REGULAR: 5499 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5500 break; 5501 case BTRFS_CHUNK_ALLOC_ZONED: 5502 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5503 break; 5504 } 5505 } 5506 5507 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5508 struct alloc_chunk_ctl *ctl, 5509 struct btrfs_device_info *devices_info) 5510 { 5511 struct btrfs_fs_info *info = fs_devices->fs_info; 5512 struct btrfs_device *device; 5513 u64 total_avail; 5514 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5515 int ret; 5516 int ndevs = 0; 5517 u64 max_avail; 5518 u64 dev_offset; 5519 5520 /* 5521 * in the first pass through the devices list, we gather information 5522 * about the available holes on each device. 5523 */ 5524 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5525 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5526 WARN(1, KERN_ERR 5527 "BTRFS: read-only device in alloc_list\n"); 5528 continue; 5529 } 5530 5531 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5532 &device->dev_state) || 5533 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5534 continue; 5535 5536 if (device->total_bytes > device->bytes_used) 5537 total_avail = device->total_bytes - device->bytes_used; 5538 else 5539 total_avail = 0; 5540 5541 /* If there is no space on this device, skip it. */ 5542 if (total_avail < ctl->dev_extent_min) 5543 continue; 5544 5545 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5546 &max_avail); 5547 if (ret && ret != -ENOSPC) 5548 return ret; 5549 5550 if (ret == 0) 5551 max_avail = dev_extent_want; 5552 5553 if (max_avail < ctl->dev_extent_min) { 5554 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5555 btrfs_debug(info, 5556 "%s: devid %llu has no free space, have=%llu want=%llu", 5557 __func__, device->devid, max_avail, 5558 ctl->dev_extent_min); 5559 continue; 5560 } 5561 5562 if (ndevs == fs_devices->rw_devices) { 5563 WARN(1, "%s: found more than %llu devices\n", 5564 __func__, fs_devices->rw_devices); 5565 break; 5566 } 5567 devices_info[ndevs].dev_offset = dev_offset; 5568 devices_info[ndevs].max_avail = max_avail; 5569 devices_info[ndevs].total_avail = total_avail; 5570 devices_info[ndevs].dev = device; 5571 ++ndevs; 5572 } 5573 ctl->ndevs = ndevs; 5574 5575 /* 5576 * now sort the devices by hole size / available space 5577 */ 5578 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5579 btrfs_cmp_device_info, NULL); 5580 5581 return 0; 5582 } 5583 5584 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5585 struct btrfs_device_info *devices_info) 5586 { 5587 /* Number of stripes that count for block group size */ 5588 int data_stripes; 5589 5590 /* 5591 * The primary goal is to maximize the number of stripes, so use as 5592 * many devices as possible, even if the stripes are not maximum sized. 5593 * 5594 * The DUP profile stores more than one stripe per device, the 5595 * max_avail is the total size so we have to adjust. 5596 */ 5597 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5598 ctl->dev_stripes); 5599 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5600 5601 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5602 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5603 5604 /* 5605 * Use the number of data stripes to figure out how big this chunk is 5606 * really going to be in terms of logical address space, and compare 5607 * that answer with the max chunk size. If it's higher, we try to 5608 * reduce stripe_size. 5609 */ 5610 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5611 /* 5612 * Reduce stripe_size, round it up to a 16MB boundary again and 5613 * then use it, unless it ends up being even bigger than the 5614 * previous value we had already. 5615 */ 5616 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5617 data_stripes), SZ_16M), 5618 ctl->stripe_size); 5619 } 5620 5621 /* Stripe size should not go beyond 1G. */ 5622 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5623 5624 /* Align to BTRFS_STRIPE_LEN */ 5625 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5626 ctl->chunk_size = ctl->stripe_size * data_stripes; 5627 5628 return 0; 5629 } 5630 5631 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5632 struct btrfs_device_info *devices_info) 5633 { 5634 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5635 /* Number of stripes that count for block group size */ 5636 int data_stripes; 5637 5638 /* 5639 * It should hold because: 5640 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5641 */ 5642 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5643 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5644 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5645 5646 ctl->stripe_size = zone_size; 5647 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5648 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5649 5650 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5651 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5652 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5653 ctl->stripe_size) + ctl->nparity, 5654 ctl->dev_stripes); 5655 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5656 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5657 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5658 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5659 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5660 } 5661 5662 ctl->chunk_size = ctl->stripe_size * data_stripes; 5663 5664 return 0; 5665 } 5666 5667 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5668 struct alloc_chunk_ctl *ctl, 5669 struct btrfs_device_info *devices_info) 5670 { 5671 struct btrfs_fs_info *info = fs_devices->fs_info; 5672 5673 /* 5674 * Round down to number of usable stripes, devs_increment can be any 5675 * number so we can't use round_down() that requires power of 2, while 5676 * rounddown is safe. 5677 */ 5678 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5679 5680 if (ctl->ndevs < ctl->devs_min) { 5681 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5682 btrfs_debug(info, 5683 "%s: not enough devices with free space: have=%d minimum required=%d", 5684 __func__, ctl->ndevs, ctl->devs_min); 5685 } 5686 return -ENOSPC; 5687 } 5688 5689 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5690 5691 switch (fs_devices->chunk_alloc_policy) { 5692 default: 5693 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5694 fallthrough; 5695 case BTRFS_CHUNK_ALLOC_REGULAR: 5696 return decide_stripe_size_regular(ctl, devices_info); 5697 case BTRFS_CHUNK_ALLOC_ZONED: 5698 return decide_stripe_size_zoned(ctl, devices_info); 5699 } 5700 } 5701 5702 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5703 { 5704 for (int i = 0; i < map->num_stripes; i++) { 5705 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5706 struct btrfs_device *device = stripe->dev; 5707 5708 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5709 stripe->physical + map->stripe_size - 1, 5710 bits | EXTENT_NOWAIT, NULL); 5711 } 5712 } 5713 5714 void btrfs_chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5715 { 5716 for (int i = 0; i < map->num_stripes; i++) { 5717 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5718 struct btrfs_device *device = stripe->dev; 5719 5720 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5721 stripe->physical + map->stripe_size - 1, 5722 bits | EXTENT_NOWAIT, NULL); 5723 } 5724 } 5725 5726 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5727 { 5728 write_lock(&fs_info->mapping_tree_lock); 5729 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5730 RB_CLEAR_NODE(&map->rb_node); 5731 btrfs_chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5732 write_unlock(&fs_info->mapping_tree_lock); 5733 5734 /* Once for the tree reference. */ 5735 btrfs_free_chunk_map(map); 5736 } 5737 5738 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5739 const struct rb_node *exist) 5740 { 5741 const struct btrfs_chunk_map *new_map = 5742 rb_entry(new, struct btrfs_chunk_map, rb_node); 5743 const struct btrfs_chunk_map *exist_map = 5744 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5745 5746 if (new_map->start == exist_map->start) 5747 return 0; 5748 if (new_map->start < exist_map->start) 5749 return -1; 5750 return 1; 5751 } 5752 5753 EXPORT_FOR_TESTS 5754 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5755 { 5756 struct rb_node *exist; 5757 5758 write_lock(&fs_info->mapping_tree_lock); 5759 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5760 btrfs_chunk_map_cmp); 5761 5762 if (exist) { 5763 write_unlock(&fs_info->mapping_tree_lock); 5764 return -EEXIST; 5765 } 5766 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5767 btrfs_chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5768 write_unlock(&fs_info->mapping_tree_lock); 5769 5770 return 0; 5771 } 5772 5773 EXPORT_FOR_TESTS 5774 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5775 { 5776 struct btrfs_chunk_map *map; 5777 5778 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5779 if (!map) 5780 return NULL; 5781 5782 refcount_set(&map->refs, 1); 5783 RB_CLEAR_NODE(&map->rb_node); 5784 5785 return map; 5786 } 5787 5788 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5789 struct alloc_chunk_ctl *ctl, 5790 struct btrfs_device_info *devices_info) 5791 { 5792 struct btrfs_fs_info *info = trans->fs_info; 5793 struct btrfs_chunk_map *map; 5794 struct btrfs_block_group *block_group; 5795 u64 start = ctl->start; 5796 u64 type = ctl->type; 5797 int ret; 5798 5799 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5800 if (!map) 5801 return ERR_PTR(-ENOMEM); 5802 5803 map->start = start; 5804 map->chunk_len = ctl->chunk_size; 5805 map->stripe_size = ctl->stripe_size; 5806 map->type = type; 5807 map->io_align = BTRFS_STRIPE_LEN; 5808 map->io_width = BTRFS_STRIPE_LEN; 5809 map->sub_stripes = ctl->sub_stripes; 5810 map->num_stripes = ctl->num_stripes; 5811 5812 for (int i = 0; i < ctl->ndevs; i++) { 5813 for (int j = 0; j < ctl->dev_stripes; j++) { 5814 int s = i * ctl->dev_stripes + j; 5815 map->stripes[s].dev = devices_info[i].dev; 5816 map->stripes[s].physical = devices_info[i].dev_offset + 5817 j * ctl->stripe_size; 5818 } 5819 } 5820 5821 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5822 5823 ret = btrfs_add_chunk_map(info, map); 5824 if (ret) { 5825 btrfs_free_chunk_map(map); 5826 return ERR_PTR(ret); 5827 } 5828 5829 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5830 ctl->chunk_size); 5831 if (IS_ERR(block_group)) { 5832 btrfs_remove_chunk_map(info, map); 5833 return block_group; 5834 } 5835 5836 for (int i = 0; i < map->num_stripes; i++) { 5837 struct btrfs_device *dev = map->stripes[i].dev; 5838 5839 btrfs_device_set_bytes_used(dev, 5840 dev->bytes_used + ctl->stripe_size); 5841 if (list_empty(&dev->post_commit_list)) 5842 list_add_tail(&dev->post_commit_list, 5843 &trans->transaction->dev_update_list); 5844 } 5845 5846 atomic64_sub(ctl->stripe_size * map->num_stripes, 5847 &info->free_chunk_space); 5848 5849 check_raid56_incompat_flag(info, type); 5850 check_raid1c34_incompat_flag(info, type); 5851 5852 return block_group; 5853 } 5854 5855 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5856 struct btrfs_space_info *space_info, 5857 u64 type) 5858 { 5859 struct btrfs_fs_info *info = trans->fs_info; 5860 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5861 struct btrfs_device_info AUTO_KFREE(devices_info); 5862 struct alloc_chunk_ctl ctl; 5863 int ret; 5864 5865 lockdep_assert_held(&info->chunk_mutex); 5866 5867 if (!alloc_profile_is_valid(type, 0)) { 5868 DEBUG_WARN("invalid alloc profile for type %llu", type); 5869 return ERR_PTR(-EINVAL); 5870 } 5871 5872 if (list_empty(&fs_devices->alloc_list)) { 5873 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5874 btrfs_debug(info, "%s: no writable device", __func__); 5875 return ERR_PTR(-ENOSPC); 5876 } 5877 5878 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5879 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5880 DEBUG_WARN(); 5881 return ERR_PTR(-EINVAL); 5882 } 5883 5884 ctl.start = find_next_chunk(info); 5885 ctl.type = type; 5886 ctl.space_info = space_info; 5887 init_alloc_chunk_ctl(fs_devices, &ctl); 5888 5889 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5890 GFP_NOFS); 5891 if (!devices_info) 5892 return ERR_PTR(-ENOMEM); 5893 5894 ret = gather_device_info(fs_devices, &ctl, devices_info); 5895 if (ret < 0) 5896 return ERR_PTR(ret); 5897 5898 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5899 if (ret < 0) 5900 return ERR_PTR(ret); 5901 5902 return create_chunk(trans, &ctl, devices_info); 5903 } 5904 5905 /* 5906 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5907 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5908 * chunks. 5909 * 5910 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5911 * phases. 5912 */ 5913 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5914 struct btrfs_block_group *bg) 5915 { 5916 struct btrfs_fs_info *fs_info = trans->fs_info; 5917 struct btrfs_root *chunk_root = fs_info->chunk_root; 5918 struct btrfs_key key; 5919 struct btrfs_chunk *chunk; 5920 struct btrfs_stripe *stripe; 5921 struct btrfs_chunk_map *map; 5922 size_t item_size; 5923 int i; 5924 int ret; 5925 5926 /* 5927 * We take the chunk_mutex for 2 reasons: 5928 * 5929 * 1) Updates and insertions in the chunk btree must be done while holding 5930 * the chunk_mutex, as well as updating the system chunk array in the 5931 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5932 * details; 5933 * 5934 * 2) To prevent races with the final phase of a device replace operation 5935 * that replaces the device object associated with the map's stripes, 5936 * because the device object's id can change at any time during that 5937 * final phase of the device replace operation 5938 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5939 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5940 * which would cause a failure when updating the device item, which does 5941 * not exists, or persisting a stripe of the chunk item with such ID. 5942 * Here we can't use the device_list_mutex because our caller already 5943 * has locked the chunk_mutex, and the final phase of device replace 5944 * acquires both mutexes - first the device_list_mutex and then the 5945 * chunk_mutex. Using any of those two mutexes protects us from a 5946 * concurrent device replace. 5947 */ 5948 lockdep_assert_held(&fs_info->chunk_mutex); 5949 5950 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5951 if (IS_ERR(map)) { 5952 ret = PTR_ERR(map); 5953 btrfs_abort_transaction(trans, ret); 5954 return ret; 5955 } 5956 5957 item_size = btrfs_chunk_item_size(map->num_stripes); 5958 5959 chunk = kzalloc(item_size, GFP_NOFS); 5960 if (unlikely(!chunk)) { 5961 ret = -ENOMEM; 5962 btrfs_abort_transaction(trans, ret); 5963 goto out; 5964 } 5965 5966 for (i = 0; i < map->num_stripes; i++) { 5967 struct btrfs_device *device = map->stripes[i].dev; 5968 5969 ret = btrfs_update_device(trans, device); 5970 if (ret) 5971 goto out; 5972 } 5973 5974 stripe = &chunk->stripe; 5975 for (i = 0; i < map->num_stripes; i++) { 5976 struct btrfs_device *device = map->stripes[i].dev; 5977 const u64 dev_offset = map->stripes[i].physical; 5978 5979 btrfs_set_stack_stripe_devid(stripe, device->devid); 5980 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5981 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5982 stripe++; 5983 } 5984 5985 btrfs_set_stack_chunk_length(chunk, bg->length); 5986 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5987 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5988 btrfs_set_stack_chunk_type(chunk, map->type); 5989 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5990 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5991 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5992 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5993 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5994 5995 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5996 key.type = BTRFS_CHUNK_ITEM_KEY; 5997 key.offset = bg->start; 5998 5999 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 6000 if (ret) 6001 goto out; 6002 6003 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 6004 6005 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 6006 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 6007 if (ret) 6008 goto out; 6009 } 6010 6011 out: 6012 kfree(chunk); 6013 btrfs_free_chunk_map(map); 6014 return ret; 6015 } 6016 6017 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 6018 { 6019 struct btrfs_fs_info *fs_info = trans->fs_info; 6020 u64 alloc_profile; 6021 struct btrfs_block_group *meta_bg; 6022 struct btrfs_space_info *meta_space_info; 6023 struct btrfs_block_group *sys_bg; 6024 struct btrfs_space_info *sys_space_info; 6025 6026 /* 6027 * When adding a new device for sprouting, the seed device is read-only 6028 * so we must first allocate a metadata and a system chunk. But before 6029 * adding the block group items to the extent, device and chunk btrees, 6030 * we must first: 6031 * 6032 * 1) Create both chunks without doing any changes to the btrees, as 6033 * otherwise we would get -ENOSPC since the block groups from the 6034 * seed device are read-only; 6035 * 6036 * 2) Add the device item for the new sprout device - finishing the setup 6037 * of a new block group requires updating the device item in the chunk 6038 * btree, so it must exist when we attempt to do it. The previous step 6039 * ensures this does not fail with -ENOSPC. 6040 * 6041 * After that we can add the block group items to their btrees: 6042 * update existing device item in the chunk btree, add a new block group 6043 * item to the extent btree, add a new chunk item to the chunk btree and 6044 * finally add the new device extent items to the devices btree. 6045 */ 6046 6047 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 6048 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 6049 if (!meta_space_info) { 6050 DEBUG_WARN(); 6051 return -EINVAL; 6052 } 6053 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 6054 if (IS_ERR(meta_bg)) 6055 return PTR_ERR(meta_bg); 6056 6057 alloc_profile = btrfs_system_alloc_profile(fs_info); 6058 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 6059 if (!sys_space_info) { 6060 DEBUG_WARN(); 6061 return -EINVAL; 6062 } 6063 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 6064 if (IS_ERR(sys_bg)) 6065 return PTR_ERR(sys_bg); 6066 6067 return 0; 6068 } 6069 6070 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 6071 { 6072 const int index = btrfs_bg_flags_to_raid_index(map->type); 6073 6074 return btrfs_raid_array[index].tolerated_failures; 6075 } 6076 6077 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 6078 { 6079 struct btrfs_chunk_map *map; 6080 int miss_ndevs = 0; 6081 int i; 6082 bool ret = true; 6083 6084 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 6085 if (IS_ERR(map)) 6086 return false; 6087 6088 for (i = 0; i < map->num_stripes; i++) { 6089 if (test_bit(BTRFS_DEV_STATE_MISSING, 6090 &map->stripes[i].dev->dev_state)) { 6091 miss_ndevs++; 6092 continue; 6093 } 6094 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 6095 &map->stripes[i].dev->dev_state)) { 6096 ret = false; 6097 goto end; 6098 } 6099 } 6100 6101 /* 6102 * If the number of missing devices is larger than max errors, we can 6103 * not write the data into that chunk successfully. 6104 */ 6105 if (miss_ndevs > btrfs_chunk_max_errors(map)) 6106 ret = false; 6107 end: 6108 btrfs_free_chunk_map(map); 6109 return ret; 6110 } 6111 6112 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 6113 { 6114 write_lock(&fs_info->mapping_tree_lock); 6115 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 6116 struct btrfs_chunk_map *map; 6117 struct rb_node *node; 6118 6119 node = rb_first_cached(&fs_info->mapping_tree); 6120 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 6121 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 6122 RB_CLEAR_NODE(&map->rb_node); 6123 btrfs_chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 6124 /* Once for the tree ref. */ 6125 btrfs_free_chunk_map(map); 6126 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 6127 } 6128 write_unlock(&fs_info->mapping_tree_lock); 6129 } 6130 6131 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 6132 { 6133 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 6134 6135 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 6136 return 2; 6137 6138 /* 6139 * There could be two corrupted data stripes, we need to loop retry in 6140 * order to rebuild the correct data. 6141 * 6142 * Fail a stripe at a time on every retry except the stripe under 6143 * reconstruction. 6144 */ 6145 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6146 return map->num_stripes; 6147 6148 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 6149 return btrfs_raid_array[index].ncopies; 6150 } 6151 6152 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 6153 { 6154 struct btrfs_chunk_map *map; 6155 int ret; 6156 6157 map = btrfs_get_chunk_map(fs_info, logical, len); 6158 if (IS_ERR(map)) 6159 /* 6160 * We could return errors for these cases, but that could get 6161 * ugly and we'd probably do the same thing which is just not do 6162 * anything else and exit, so return 1 so the callers don't try 6163 * to use other copies. 6164 */ 6165 return 1; 6166 6167 ret = btrfs_chunk_map_num_copies(map); 6168 btrfs_free_chunk_map(map); 6169 return ret; 6170 } 6171 6172 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 6173 u64 logical) 6174 { 6175 struct btrfs_chunk_map *map; 6176 unsigned long len = fs_info->sectorsize; 6177 6178 if (!btrfs_fs_incompat(fs_info, RAID56)) 6179 return len; 6180 6181 map = btrfs_get_chunk_map(fs_info, logical, len); 6182 6183 if (!WARN_ON(IS_ERR(map))) { 6184 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6185 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6186 btrfs_free_chunk_map(map); 6187 } 6188 return len; 6189 } 6190 6191 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6192 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 6193 { 6194 for (int index = first; index < first + num_stripes; index++) { 6195 const struct btrfs_device *device = map->stripes[index].dev; 6196 6197 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 6198 return index; 6199 } 6200 6201 /* If no read-preferred device is set use the first stripe. */ 6202 return first; 6203 } 6204 6205 struct stripe_mirror { 6206 u64 devid; 6207 int num; 6208 }; 6209 6210 static int btrfs_cmp_devid(const void *a, const void *b) 6211 { 6212 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 6213 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 6214 6215 if (s1->devid < s2->devid) 6216 return -1; 6217 if (s1->devid > s2->devid) 6218 return 1; 6219 return 0; 6220 } 6221 6222 /* 6223 * Select a stripe for reading using the round-robin algorithm. 6224 * 6225 * 1. Compute the read cycle as the total sectors read divided by the minimum 6226 * sectors per device. 6227 * 2. Determine the stripe number for the current read by taking the modulus 6228 * of the read cycle with the total number of stripes: 6229 * 6230 * stripe index = (total sectors / min sectors per dev) % num stripes 6231 * 6232 * The calculated stripe index is then used to select the corresponding device 6233 * from the list of devices, which is ordered by devid. 6234 */ 6235 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 6236 { 6237 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 6238 struct btrfs_device *device = map->stripes[first].dev; 6239 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 6240 unsigned int read_cycle; 6241 unsigned int total_reads; 6242 unsigned int min_reads_per_dev; 6243 6244 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 6245 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 6246 fs_info->sectorsize_bits; 6247 6248 for (int index = 0, i = first; i < first + num_stripes; i++) { 6249 stripes[index].devid = map->stripes[i].dev->devid; 6250 stripes[index].num = i; 6251 index++; 6252 } 6253 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 6254 btrfs_cmp_devid, NULL); 6255 6256 read_cycle = total_reads / min_reads_per_dev; 6257 return stripes[read_cycle % num_stripes].num; 6258 } 6259 #endif 6260 6261 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6262 struct btrfs_chunk_map *map, int first, 6263 bool dev_replace_is_ongoing) 6264 { 6265 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6266 int i; 6267 int num_stripes; 6268 int preferred_mirror; 6269 int tolerance; 6270 struct btrfs_device *srcdev; 6271 6272 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 6273 "type=%llu", map->type); 6274 6275 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6276 num_stripes = map->sub_stripes; 6277 else 6278 num_stripes = map->num_stripes; 6279 6280 switch (policy) { 6281 default: 6282 /* Shouldn't happen, just warn and use pid instead of failing */ 6283 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6284 policy); 6285 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6286 fallthrough; 6287 case BTRFS_READ_POLICY_PID: 6288 preferred_mirror = first + (current->pid % num_stripes); 6289 break; 6290 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6291 case BTRFS_READ_POLICY_RR: 6292 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6293 break; 6294 case BTRFS_READ_POLICY_DEVID: 6295 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6296 break; 6297 #endif 6298 } 6299 6300 if (dev_replace_is_ongoing && 6301 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6302 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6303 srcdev = fs_info->dev_replace.srcdev; 6304 else 6305 srcdev = NULL; 6306 6307 /* 6308 * try to avoid the drive that is the source drive for a 6309 * dev-replace procedure, only choose it if no other non-missing 6310 * mirror is available 6311 */ 6312 for (tolerance = 0; tolerance < 2; tolerance++) { 6313 if (map->stripes[preferred_mirror].dev->bdev && 6314 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6315 return preferred_mirror; 6316 for (i = first; i < first + num_stripes; i++) { 6317 if (map->stripes[i].dev->bdev && 6318 (tolerance || map->stripes[i].dev != srcdev)) 6319 return i; 6320 } 6321 } 6322 6323 /* we couldn't find one that doesn't fail. Just return something 6324 * and the io error handling code will clean up eventually 6325 */ 6326 return preferred_mirror; 6327 } 6328 6329 EXPORT_FOR_TESTS 6330 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6331 u64 logical, u16 total_stripes) 6332 { 6333 struct btrfs_io_context *bioc; 6334 6335 bioc = kzalloc(struct_size(bioc, stripes, total_stripes), GFP_NOFS); 6336 6337 if (!bioc) 6338 return NULL; 6339 6340 refcount_set(&bioc->refs, 1); 6341 6342 bioc->fs_info = fs_info; 6343 bioc->replace_stripe_src = -1; 6344 bioc->full_stripe_logical = (u64)-1; 6345 bioc->logical = logical; 6346 6347 return bioc; 6348 } 6349 6350 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6351 { 6352 WARN_ON(!refcount_read(&bioc->refs)); 6353 refcount_inc(&bioc->refs); 6354 } 6355 6356 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6357 { 6358 if (!bioc) 6359 return; 6360 if (refcount_dec_and_test(&bioc->refs)) 6361 kfree(bioc); 6362 } 6363 6364 /* 6365 * Please note that, discard won't be sent to target device of device 6366 * replace. 6367 */ 6368 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6369 u64 logical, u64 *length_ret, 6370 u32 *num_stripes, bool do_remap) 6371 { 6372 struct btrfs_chunk_map *map; 6373 struct btrfs_discard_stripe *stripes; 6374 u64 length = *length_ret; 6375 u64 offset; 6376 u32 stripe_nr; 6377 u32 stripe_nr_end; 6378 u32 stripe_cnt; 6379 u64 stripe_end_offset; 6380 u64 stripe_offset; 6381 u32 stripe_index; 6382 u32 factor = 0; 6383 u32 sub_stripes = 0; 6384 u32 stripes_per_dev = 0; 6385 u32 remaining_stripes = 0; 6386 u32 last_stripe = 0; 6387 int ret; 6388 int i; 6389 6390 map = btrfs_get_chunk_map(fs_info, logical, length); 6391 if (IS_ERR(map)) 6392 return ERR_CAST(map); 6393 6394 if (do_remap && (map->type & BTRFS_BLOCK_GROUP_REMAPPED)) { 6395 u64 new_logical = logical; 6396 6397 ret = btrfs_translate_remap(fs_info, &new_logical, &length); 6398 if (ret) 6399 goto out_free_map; 6400 6401 if (new_logical != logical) { 6402 btrfs_free_chunk_map(map); 6403 6404 map = btrfs_get_chunk_map(fs_info, new_logical, length); 6405 if (IS_ERR(map)) 6406 return ERR_CAST(map); 6407 6408 logical = new_logical; 6409 } 6410 } 6411 6412 /* we don't discard raid56 yet */ 6413 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6414 ret = -EOPNOTSUPP; 6415 goto out_free_map; 6416 } 6417 6418 offset = logical - map->start; 6419 length = min_t(u64, map->start + map->chunk_len - logical, length); 6420 *length_ret = length; 6421 6422 /* 6423 * stripe_nr counts the total number of stripes we have to stride 6424 * to get to this block 6425 */ 6426 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6427 6428 /* stripe_offset is the offset of this block in its stripe */ 6429 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6430 6431 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6432 BTRFS_STRIPE_LEN_SHIFT; 6433 stripe_cnt = stripe_nr_end - stripe_nr; 6434 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6435 (offset + length); 6436 /* 6437 * after this, stripe_nr is the number of stripes on this 6438 * device we have to walk to find the data, and stripe_index is 6439 * the number of our device in the stripe array 6440 */ 6441 *num_stripes = 1; 6442 stripe_index = 0; 6443 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6444 BTRFS_BLOCK_GROUP_RAID10)) { 6445 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6446 sub_stripes = 1; 6447 else 6448 sub_stripes = map->sub_stripes; 6449 6450 factor = map->num_stripes / sub_stripes; 6451 *num_stripes = min_t(u64, map->num_stripes, 6452 sub_stripes * stripe_cnt); 6453 stripe_index = stripe_nr % factor; 6454 stripe_nr /= factor; 6455 stripe_index *= sub_stripes; 6456 6457 remaining_stripes = stripe_cnt % factor; 6458 stripes_per_dev = stripe_cnt / factor; 6459 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6460 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6461 BTRFS_BLOCK_GROUP_DUP)) { 6462 *num_stripes = map->num_stripes; 6463 } else { 6464 stripe_index = stripe_nr % map->num_stripes; 6465 stripe_nr /= map->num_stripes; 6466 } 6467 6468 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6469 if (!stripes) { 6470 ret = -ENOMEM; 6471 goto out_free_map; 6472 } 6473 6474 for (i = 0; i < *num_stripes; i++) { 6475 stripes[i].physical = 6476 map->stripes[stripe_index].physical + 6477 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6478 stripes[i].dev = map->stripes[stripe_index].dev; 6479 6480 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6481 BTRFS_BLOCK_GROUP_RAID10)) { 6482 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6483 6484 if (i / sub_stripes < remaining_stripes) 6485 stripes[i].length += BTRFS_STRIPE_LEN; 6486 6487 /* 6488 * Special for the first stripe and 6489 * the last stripe: 6490 * 6491 * |-------|...|-------| 6492 * |----------| 6493 * off end_off 6494 */ 6495 if (i < sub_stripes) 6496 stripes[i].length -= stripe_offset; 6497 6498 if (stripe_index >= last_stripe && 6499 stripe_index <= (last_stripe + 6500 sub_stripes - 1)) 6501 stripes[i].length -= stripe_end_offset; 6502 6503 if (i == sub_stripes - 1) 6504 stripe_offset = 0; 6505 } else { 6506 stripes[i].length = length; 6507 } 6508 6509 stripe_index++; 6510 if (stripe_index == map->num_stripes) { 6511 stripe_index = 0; 6512 stripe_nr++; 6513 } 6514 } 6515 6516 btrfs_free_chunk_map(map); 6517 return stripes; 6518 out_free_map: 6519 btrfs_free_chunk_map(map); 6520 return ERR_PTR(ret); 6521 } 6522 6523 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6524 { 6525 struct btrfs_block_group *cache; 6526 bool ret; 6527 6528 /* Non zoned filesystem does not use "to_copy" flag */ 6529 if (!btrfs_is_zoned(fs_info)) 6530 return false; 6531 6532 cache = btrfs_lookup_block_group(fs_info, logical); 6533 6534 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6535 6536 btrfs_put_block_group(cache); 6537 return ret; 6538 } 6539 6540 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6541 struct btrfs_dev_replace *dev_replace, 6542 u64 logical, 6543 struct btrfs_io_geometry *io_geom) 6544 { 6545 u64 srcdev_devid = dev_replace->srcdev->devid; 6546 /* 6547 * At this stage, num_stripes is still the real number of stripes, 6548 * excluding the duplicated stripes. 6549 */ 6550 int num_stripes = io_geom->num_stripes; 6551 int max_errors = io_geom->max_errors; 6552 int nr_extra_stripes = 0; 6553 int i; 6554 6555 /* 6556 * A block group which has "to_copy" set will eventually be copied by 6557 * the dev-replace process. We can avoid cloning IO here. 6558 */ 6559 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6560 return; 6561 6562 /* 6563 * Duplicate the write operations while the dev-replace procedure is 6564 * running. Since the copying of the old disk to the new disk takes 6565 * place at run time while the filesystem is mounted writable, the 6566 * regular write operations to the old disk have to be duplicated to go 6567 * to the new disk as well. 6568 * 6569 * Note that device->missing is handled by the caller, and that the 6570 * write to the old disk is already set up in the stripes array. 6571 */ 6572 for (i = 0; i < num_stripes; i++) { 6573 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6574 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6575 6576 if (old->dev->devid != srcdev_devid) 6577 continue; 6578 6579 new->physical = old->physical; 6580 new->dev = dev_replace->tgtdev; 6581 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6582 bioc->replace_stripe_src = i; 6583 nr_extra_stripes++; 6584 } 6585 6586 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6587 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6588 /* 6589 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6590 * replace. 6591 * If we have 2 extra stripes, only choose the one with smaller physical. 6592 */ 6593 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6594 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6595 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6596 6597 /* Only DUP can have two extra stripes. */ 6598 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6599 "map_type=%llu", bioc->map_type); 6600 6601 /* 6602 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6603 * The extra stripe would still be there, but won't be accessed. 6604 */ 6605 if (first->physical > second->physical) { 6606 swap(second->physical, first->physical); 6607 swap(second->dev, first->dev); 6608 nr_extra_stripes--; 6609 } 6610 } 6611 6612 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6613 io_geom->max_errors = max_errors + nr_extra_stripes; 6614 bioc->replace_nr_stripes = nr_extra_stripes; 6615 } 6616 6617 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6618 struct btrfs_io_geometry *io_geom) 6619 { 6620 /* 6621 * Stripe_nr is the stripe where this block falls. stripe_offset is 6622 * the offset of this block in its stripe. 6623 */ 6624 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6625 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6626 ASSERT(io_geom->stripe_offset < U32_MAX, 6627 "stripe_offset=%llu", io_geom->stripe_offset); 6628 6629 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6630 unsigned long full_stripe_len = 6631 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6632 6633 /* 6634 * For full stripe start, we use previously calculated 6635 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6636 * STRIPE_LEN. 6637 * 6638 * By this we can avoid u64 division completely. And we have 6639 * to go rounddown(), not round_down(), as nr_data_stripes is 6640 * not ensured to be power of 2. 6641 */ 6642 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6643 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6644 6645 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6646 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6647 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6648 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6649 "raid56_full_stripe_start=%llu offset=%llu", 6650 io_geom->raid56_full_stripe_start, offset); 6651 /* 6652 * For writes to RAID56, allow to write a full stripe set, but 6653 * no straddling of stripe sets. 6654 */ 6655 if (io_geom->op == BTRFS_MAP_WRITE) 6656 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6657 } 6658 6659 /* 6660 * For other RAID types and for RAID56 reads, allow a single stripe (on 6661 * a single disk). 6662 */ 6663 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6664 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6665 return U64_MAX; 6666 } 6667 6668 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6669 u64 *length, struct btrfs_io_stripe *dst, 6670 struct btrfs_chunk_map *map, 6671 struct btrfs_io_geometry *io_geom) 6672 { 6673 dst->dev = map->stripes[io_geom->stripe_index].dev; 6674 6675 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6676 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6677 map->type, 6678 io_geom->stripe_index, dst); 6679 6680 dst->physical = map->stripes[io_geom->stripe_index].physical + 6681 io_geom->stripe_offset + 6682 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6683 return 0; 6684 } 6685 6686 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6687 const struct btrfs_io_stripe *smap, 6688 const struct btrfs_chunk_map *map, 6689 int num_alloc_stripes, 6690 struct btrfs_io_geometry *io_geom) 6691 { 6692 if (!smap) 6693 return false; 6694 6695 if (num_alloc_stripes != 1) 6696 return false; 6697 6698 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6699 return false; 6700 6701 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6702 return false; 6703 6704 return true; 6705 } 6706 6707 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6708 struct btrfs_io_geometry *io_geom) 6709 { 6710 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6711 io_geom->stripe_nr /= map->num_stripes; 6712 if (io_geom->op == BTRFS_MAP_READ) 6713 io_geom->mirror_num = 1; 6714 } 6715 6716 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6717 struct btrfs_chunk_map *map, 6718 struct btrfs_io_geometry *io_geom, 6719 bool dev_replace_is_ongoing) 6720 { 6721 if (io_geom->op != BTRFS_MAP_READ) { 6722 io_geom->num_stripes = map->num_stripes; 6723 return; 6724 } 6725 6726 if (io_geom->mirror_num) { 6727 io_geom->stripe_index = io_geom->mirror_num - 1; 6728 return; 6729 } 6730 6731 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6732 dev_replace_is_ongoing); 6733 io_geom->mirror_num = io_geom->stripe_index + 1; 6734 } 6735 6736 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6737 struct btrfs_io_geometry *io_geom) 6738 { 6739 if (io_geom->op != BTRFS_MAP_READ) { 6740 io_geom->num_stripes = map->num_stripes; 6741 return; 6742 } 6743 6744 if (io_geom->mirror_num) { 6745 io_geom->stripe_index = io_geom->mirror_num - 1; 6746 return; 6747 } 6748 6749 io_geom->mirror_num = 1; 6750 } 6751 6752 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6753 struct btrfs_chunk_map *map, 6754 struct btrfs_io_geometry *io_geom, 6755 bool dev_replace_is_ongoing) 6756 { 6757 u32 factor = map->num_stripes / map->sub_stripes; 6758 int old_stripe_index; 6759 6760 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6761 io_geom->stripe_nr /= factor; 6762 6763 if (io_geom->op != BTRFS_MAP_READ) { 6764 io_geom->num_stripes = map->sub_stripes; 6765 return; 6766 } 6767 6768 if (io_geom->mirror_num) { 6769 io_geom->stripe_index += io_geom->mirror_num - 1; 6770 return; 6771 } 6772 6773 old_stripe_index = io_geom->stripe_index; 6774 io_geom->stripe_index = find_live_mirror(fs_info, map, 6775 io_geom->stripe_index, 6776 dev_replace_is_ongoing); 6777 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6778 } 6779 6780 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6781 struct btrfs_io_geometry *io_geom, 6782 u64 logical, u64 *length) 6783 { 6784 int data_stripes = nr_data_stripes(map); 6785 6786 /* 6787 * Needs full stripe mapping. 6788 * 6789 * Push stripe_nr back to the start of the full stripe For those cases 6790 * needing a full stripe, @stripe_nr is the full stripe number. 6791 * 6792 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6793 * that can be expensive. Here we just divide @stripe_nr with 6794 * @data_stripes. 6795 */ 6796 io_geom->stripe_nr /= data_stripes; 6797 6798 /* RAID[56] write or recovery. Return all stripes */ 6799 io_geom->num_stripes = map->num_stripes; 6800 io_geom->max_errors = btrfs_chunk_max_errors(map); 6801 6802 /* Return the length to the full stripe end. */ 6803 *length = min(logical + *length, 6804 io_geom->raid56_full_stripe_start + map->start + 6805 btrfs_stripe_nr_to_offset(data_stripes)) - 6806 logical; 6807 io_geom->stripe_index = 0; 6808 io_geom->stripe_offset = 0; 6809 } 6810 6811 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6812 struct btrfs_io_geometry *io_geom) 6813 { 6814 int data_stripes = nr_data_stripes(map); 6815 6816 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6817 /* Just grab the data stripe directly. */ 6818 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6819 io_geom->stripe_nr /= data_stripes; 6820 6821 /* We distribute the parity blocks across stripes. */ 6822 io_geom->stripe_index = 6823 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6824 6825 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6826 io_geom->mirror_num = 1; 6827 } 6828 6829 static void map_blocks_single(const struct btrfs_chunk_map *map, 6830 struct btrfs_io_geometry *io_geom) 6831 { 6832 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6833 io_geom->stripe_nr /= map->num_stripes; 6834 io_geom->mirror_num = io_geom->stripe_index + 1; 6835 } 6836 6837 /* 6838 * Map one logical range to one or more physical ranges. 6839 * 6840 * @length: (Mandatory) mapped length of this run. 6841 * One logical range can be split into different segments 6842 * due to factors like zones and RAID0/5/6/10 stripe 6843 * boundaries. 6844 * 6845 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6846 * which has one or more physical ranges (btrfs_io_stripe) 6847 * recorded inside. 6848 * Caller should call btrfs_put_bioc() to free it after use. 6849 * 6850 * @smap: (Optional) single physical range optimization. 6851 * If the map request can be fulfilled by one single 6852 * physical range, and this is parameter is not NULL, 6853 * then @bioc_ret would be NULL, and @smap would be 6854 * updated. 6855 * 6856 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6857 * value is 0. 6858 * 6859 * Mirror number 0 means to choose any live mirrors. 6860 * 6861 * For non-RAID56 profiles, non-zero mirror_num means 6862 * the Nth mirror. (e.g. mirror_num 1 means the first 6863 * copy). 6864 * 6865 * For RAID56 profile, mirror 1 means rebuild from P and 6866 * the remaining data stripes. 6867 * 6868 * For RAID6 profile, mirror > 2 means mark another 6869 * data/P stripe error and rebuild from the remaining 6870 * stripes.. 6871 */ 6872 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6873 u64 logical, u64 *length, 6874 struct btrfs_io_context **bioc_ret, 6875 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6876 { 6877 struct btrfs_chunk_map *map; 6878 struct btrfs_io_geometry io_geom = { 0 }; 6879 u64 map_offset; 6880 int ret = 0; 6881 int num_copies; 6882 struct btrfs_io_context *bioc = NULL; 6883 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6884 bool dev_replace_is_ongoing = false; 6885 u16 num_alloc_stripes; 6886 u64 max_len; 6887 6888 ASSERT(bioc_ret); 6889 6890 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6891 io_geom.num_stripes = 1; 6892 io_geom.stripe_index = 0; 6893 io_geom.op = op; 6894 6895 map = btrfs_get_chunk_map(fs_info, logical, *length); 6896 if (IS_ERR(map)) 6897 return PTR_ERR(map); 6898 6899 if (map->type & BTRFS_BLOCK_GROUP_REMAPPED) { 6900 u64 new_logical = logical; 6901 6902 ret = btrfs_translate_remap(fs_info, &new_logical, length); 6903 if (ret) 6904 return ret; 6905 6906 if (new_logical != logical) { 6907 btrfs_free_chunk_map(map); 6908 6909 map = btrfs_get_chunk_map(fs_info, new_logical, *length); 6910 if (IS_ERR(map)) 6911 return PTR_ERR(map); 6912 6913 logical = new_logical; 6914 } 6915 } 6916 6917 num_copies = btrfs_chunk_map_num_copies(map); 6918 if (io_geom.mirror_num > num_copies) 6919 return -EINVAL; 6920 6921 map_offset = logical - map->start; 6922 io_geom.raid56_full_stripe_start = (u64)-1; 6923 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6924 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6925 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6926 6927 if (dev_replace->replace_task != current) 6928 down_read(&dev_replace->rwsem); 6929 6930 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6931 /* 6932 * Hold the semaphore for read during the whole operation, write is 6933 * requested at commit time but must wait. 6934 */ 6935 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6936 up_read(&dev_replace->rwsem); 6937 6938 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6939 case BTRFS_BLOCK_GROUP_RAID0: 6940 map_blocks_raid0(map, &io_geom); 6941 break; 6942 case BTRFS_BLOCK_GROUP_RAID1: 6943 case BTRFS_BLOCK_GROUP_RAID1C3: 6944 case BTRFS_BLOCK_GROUP_RAID1C4: 6945 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6946 break; 6947 case BTRFS_BLOCK_GROUP_DUP: 6948 map_blocks_dup(map, &io_geom); 6949 break; 6950 case BTRFS_BLOCK_GROUP_RAID10: 6951 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6952 break; 6953 case BTRFS_BLOCK_GROUP_RAID5: 6954 case BTRFS_BLOCK_GROUP_RAID6: 6955 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6956 map_blocks_raid56_write(map, &io_geom, logical, length); 6957 else 6958 map_blocks_raid56_read(map, &io_geom); 6959 break; 6960 default: 6961 /* 6962 * After this, stripe_nr is the number of stripes on this 6963 * device we have to walk to find the data, and stripe_index is 6964 * the number of our device in the stripe array 6965 */ 6966 map_blocks_single(map, &io_geom); 6967 break; 6968 } 6969 if (io_geom.stripe_index >= map->num_stripes) { 6970 btrfs_crit(fs_info, 6971 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6972 io_geom.stripe_index, map->num_stripes); 6973 ret = -EINVAL; 6974 goto out; 6975 } 6976 6977 num_alloc_stripes = io_geom.num_stripes; 6978 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6979 op != BTRFS_MAP_READ) 6980 /* 6981 * For replace case, we need to add extra stripes for extra 6982 * duplicated stripes. 6983 * 6984 * For both WRITE and GET_READ_MIRRORS, we may have at most 6985 * 2 more stripes (DUP types, otherwise 1). 6986 */ 6987 num_alloc_stripes += 2; 6988 6989 /* 6990 * If this I/O maps to a single device, try to return the device and 6991 * physical block information on the stack instead of allocating an 6992 * I/O context structure. 6993 */ 6994 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6995 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6996 if (mirror_num_ret) 6997 *mirror_num_ret = io_geom.mirror_num; 6998 *bioc_ret = NULL; 6999 goto out; 7000 } 7001 7002 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 7003 if (!bioc) { 7004 ret = -ENOMEM; 7005 goto out; 7006 } 7007 bioc->map_type = map->type; 7008 bioc->use_rst = io_geom.use_rst; 7009 7010 /* 7011 * For RAID56 full map, we need to make sure the stripes[] follows the 7012 * rule that data stripes are all ordered, then followed with P and Q 7013 * (if we have). 7014 * 7015 * It's still mostly the same as other profiles, just with extra rotation. 7016 */ 7017 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 7018 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 7019 /* 7020 * For RAID56 @stripe_nr is already the number of full stripes 7021 * before us, which is also the rotation value (needs to modulo 7022 * with num_stripes). 7023 * 7024 * In this case, we just add @stripe_nr with @i, then do the 7025 * modulo, to reduce one modulo call. 7026 */ 7027 bioc->full_stripe_logical = map->start + 7028 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 7029 nr_data_stripes(map)); 7030 for (int i = 0; i < io_geom.num_stripes; i++) { 7031 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 7032 u32 stripe_index; 7033 7034 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 7035 dst->dev = map->stripes[stripe_index].dev; 7036 dst->physical = 7037 map->stripes[stripe_index].physical + 7038 io_geom.stripe_offset + 7039 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 7040 } 7041 } else { 7042 /* 7043 * For all other non-RAID56 profiles, just copy the target 7044 * stripe into the bioc. 7045 */ 7046 for (int i = 0; i < io_geom.num_stripes; i++) { 7047 ret = set_io_stripe(fs_info, logical, length, 7048 &bioc->stripes[i], map, &io_geom); 7049 if (ret < 0) 7050 break; 7051 io_geom.stripe_index++; 7052 } 7053 } 7054 7055 if (ret) { 7056 *bioc_ret = NULL; 7057 btrfs_put_bioc(bioc); 7058 goto out; 7059 } 7060 7061 if (op != BTRFS_MAP_READ) 7062 io_geom.max_errors = btrfs_chunk_max_errors(map); 7063 7064 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 7065 op != BTRFS_MAP_READ) { 7066 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 7067 } 7068 7069 *bioc_ret = bioc; 7070 bioc->num_stripes = io_geom.num_stripes; 7071 bioc->max_errors = io_geom.max_errors; 7072 bioc->mirror_num = io_geom.mirror_num; 7073 7074 out: 7075 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 7076 lockdep_assert_held(&dev_replace->rwsem); 7077 /* Unlock and let waiting writers proceed */ 7078 up_read(&dev_replace->rwsem); 7079 } 7080 btrfs_free_chunk_map(map); 7081 return ret; 7082 } 7083 7084 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 7085 const struct btrfs_fs_devices *fs_devices) 7086 { 7087 if (args->fsid == NULL) 7088 return true; 7089 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 7090 return true; 7091 return false; 7092 } 7093 7094 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 7095 const struct btrfs_device *device) 7096 { 7097 if (args->devt) 7098 return device->devt == args->devt; 7099 if (args->missing) { 7100 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 7101 !device->bdev) 7102 return true; 7103 return false; 7104 } 7105 7106 if (device->devid != args->devid) 7107 return false; 7108 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 7109 return false; 7110 return true; 7111 } 7112 7113 /* 7114 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 7115 * return NULL. 7116 * 7117 * If devid and uuid are both specified, the match must be exact, otherwise 7118 * only devid is used. 7119 */ 7120 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 7121 const struct btrfs_dev_lookup_args *args) 7122 { 7123 struct btrfs_device *device; 7124 struct btrfs_fs_devices *seed_devs; 7125 7126 if (dev_args_match_fs_devices(args, fs_devices)) { 7127 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7128 if (dev_args_match_device(args, device)) 7129 return device; 7130 } 7131 } 7132 7133 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7134 if (!dev_args_match_fs_devices(args, seed_devs)) 7135 continue; 7136 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7137 if (dev_args_match_device(args, device)) 7138 return device; 7139 } 7140 } 7141 7142 return NULL; 7143 } 7144 7145 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 7146 u64 devid, u8 *dev_uuid) 7147 { 7148 struct btrfs_device *device; 7149 unsigned int nofs_flag; 7150 7151 /* 7152 * We call this under the chunk_mutex, so we want to use NOFS for this 7153 * allocation, however we don't want to change btrfs_alloc_device() to 7154 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 7155 * places. 7156 */ 7157 7158 nofs_flag = memalloc_nofs_save(); 7159 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 7160 memalloc_nofs_restore(nofs_flag); 7161 if (IS_ERR(device)) 7162 return device; 7163 7164 list_add(&device->dev_list, &fs_devices->devices); 7165 device->fs_devices = fs_devices; 7166 fs_devices->num_devices++; 7167 7168 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7169 fs_devices->missing_devices++; 7170 7171 return device; 7172 } 7173 7174 /* 7175 * Allocate new device struct, set up devid and UUID. 7176 * 7177 * @fs_info: used only for generating a new devid, can be NULL if 7178 * devid is provided (i.e. @devid != NULL). 7179 * @devid: a pointer to devid for this device. If NULL a new devid 7180 * is generated. 7181 * @uuid: a pointer to UUID for this device. If NULL a new UUID 7182 * is generated. 7183 * @path: a pointer to device path if available, NULL otherwise. 7184 * 7185 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 7186 * on error. Returned struct is not linked onto any lists and must be 7187 * destroyed with btrfs_free_device. 7188 */ 7189 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 7190 const u64 *devid, const u8 *uuid, 7191 const char *path) 7192 { 7193 struct btrfs_device *dev; 7194 u64 tmp; 7195 7196 if (WARN_ON(!devid && !fs_info)) 7197 return ERR_PTR(-EINVAL); 7198 7199 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 7200 if (!dev) 7201 return ERR_PTR(-ENOMEM); 7202 7203 INIT_LIST_HEAD(&dev->dev_list); 7204 INIT_LIST_HEAD(&dev->dev_alloc_list); 7205 INIT_LIST_HEAD(&dev->post_commit_list); 7206 7207 atomic_set(&dev->dev_stats_ccnt, 0); 7208 btrfs_device_data_ordered_init(dev); 7209 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 7210 7211 if (devid) 7212 tmp = *devid; 7213 else { 7214 int ret; 7215 7216 ret = find_next_devid(fs_info, &tmp); 7217 if (ret) { 7218 btrfs_free_device(dev); 7219 return ERR_PTR(ret); 7220 } 7221 } 7222 dev->devid = tmp; 7223 7224 if (uuid) 7225 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 7226 else 7227 generate_random_uuid(dev->uuid); 7228 7229 if (path) { 7230 const char *name; 7231 7232 name = kstrdup(path, GFP_KERNEL); 7233 if (!name) { 7234 btrfs_free_device(dev); 7235 return ERR_PTR(-ENOMEM); 7236 } 7237 rcu_assign_pointer(dev->name, name); 7238 } 7239 7240 return dev; 7241 } 7242 7243 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 7244 u64 devid, u8 *uuid, bool error) 7245 { 7246 if (error) 7247 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 7248 devid, uuid); 7249 else 7250 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 7251 devid, uuid); 7252 } 7253 7254 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 7255 { 7256 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 7257 7258 return div_u64(map->chunk_len, data_stripes); 7259 } 7260 7261 #if BITS_PER_LONG == 32 7262 /* 7263 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7264 * can't be accessed on 32bit systems. 7265 * 7266 * This function do mount time check to reject the fs if it already has 7267 * metadata chunk beyond that limit. 7268 */ 7269 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7270 u64 logical, u64 length, u64 type) 7271 { 7272 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7273 return 0; 7274 7275 if (logical + length < MAX_LFS_FILESIZE) 7276 return 0; 7277 7278 btrfs_err_32bit_limit(fs_info); 7279 return -EOVERFLOW; 7280 } 7281 7282 /* 7283 * This is to give early warning for any metadata chunk reaching 7284 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7285 * Although we can still access the metadata, it's not going to be possible 7286 * once the limit is reached. 7287 */ 7288 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7289 u64 logical, u64 length, u64 type) 7290 { 7291 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7292 return; 7293 7294 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7295 return; 7296 7297 btrfs_warn_32bit_limit(fs_info); 7298 } 7299 #endif 7300 7301 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7302 u64 devid, u8 *uuid) 7303 { 7304 struct btrfs_device *dev; 7305 7306 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7307 btrfs_report_missing_device(fs_info, devid, uuid, true); 7308 return ERR_PTR(-ENOENT); 7309 } 7310 7311 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7312 if (IS_ERR(dev)) { 7313 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7314 devid, PTR_ERR(dev)); 7315 return dev; 7316 } 7317 btrfs_report_missing_device(fs_info, devid, uuid, false); 7318 7319 return dev; 7320 } 7321 7322 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7323 struct btrfs_chunk *chunk) 7324 { 7325 BTRFS_DEV_LOOKUP_ARGS(args); 7326 struct btrfs_fs_info *fs_info = leaf->fs_info; 7327 struct btrfs_chunk_map *map; 7328 u64 logical; 7329 u64 length; 7330 u64 devid; 7331 u64 type; 7332 u8 uuid[BTRFS_UUID_SIZE]; 7333 int index; 7334 int num_stripes; 7335 int ret; 7336 int i; 7337 7338 logical = key->offset; 7339 length = btrfs_chunk_length(leaf, chunk); 7340 type = btrfs_chunk_type(leaf, chunk); 7341 index = btrfs_bg_flags_to_raid_index(type); 7342 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7343 7344 #if BITS_PER_LONG == 32 7345 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7346 if (ret < 0) 7347 return ret; 7348 warn_32bit_meta_chunk(fs_info, logical, length, type); 7349 #endif 7350 7351 map = btrfs_find_chunk_map(fs_info, logical, 1); 7352 7353 /* already mapped? */ 7354 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7355 btrfs_free_chunk_map(map); 7356 return 0; 7357 } else if (map) { 7358 btrfs_free_chunk_map(map); 7359 } 7360 7361 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7362 if (!map) 7363 return -ENOMEM; 7364 7365 map->start = logical; 7366 map->chunk_len = length; 7367 map->num_stripes = num_stripes; 7368 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7369 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7370 map->type = type; 7371 /* 7372 * We can't use the sub_stripes value, as for profiles other than 7373 * RAID10, they may have 0 as sub_stripes for filesystems created by 7374 * older mkfs (<v5.4). 7375 * In that case, it can cause divide-by-zero errors later. 7376 * Since currently sub_stripes is fixed for each profile, let's 7377 * use the trusted value instead. 7378 */ 7379 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7380 map->verified_stripes = 0; 7381 7382 if (num_stripes > 0) 7383 map->stripe_size = btrfs_calc_stripe_length(map); 7384 else 7385 map->stripe_size = 0; 7386 7387 for (i = 0; i < num_stripes; i++) { 7388 map->stripes[i].physical = 7389 btrfs_stripe_offset_nr(leaf, chunk, i); 7390 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7391 args.devid = devid; 7392 read_extent_buffer(leaf, uuid, (unsigned long) 7393 btrfs_stripe_dev_uuid_nr(chunk, i), 7394 BTRFS_UUID_SIZE); 7395 args.uuid = uuid; 7396 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7397 if (!map->stripes[i].dev) { 7398 map->stripes[i].dev = handle_missing_device(fs_info, 7399 devid, uuid); 7400 if (IS_ERR(map->stripes[i].dev)) { 7401 ret = PTR_ERR(map->stripes[i].dev); 7402 btrfs_free_chunk_map(map); 7403 return ret; 7404 } 7405 } 7406 7407 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7408 &(map->stripes[i].dev->dev_state)); 7409 } 7410 7411 ret = btrfs_add_chunk_map(fs_info, map); 7412 if (ret < 0) { 7413 btrfs_err(fs_info, 7414 "failed to add chunk map, start=%llu len=%llu: %d", 7415 map->start, map->chunk_len, ret); 7416 btrfs_free_chunk_map(map); 7417 } 7418 7419 return ret; 7420 } 7421 7422 static void fill_device_from_item(struct extent_buffer *leaf, 7423 struct btrfs_dev_item *dev_item, 7424 struct btrfs_device *device) 7425 { 7426 unsigned long ptr; 7427 7428 device->devid = btrfs_device_id(leaf, dev_item); 7429 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7430 device->total_bytes = device->disk_total_bytes; 7431 device->commit_total_bytes = device->disk_total_bytes; 7432 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7433 device->commit_bytes_used = device->bytes_used; 7434 device->type = btrfs_device_type(leaf, dev_item); 7435 device->io_align = btrfs_device_io_align(leaf, dev_item); 7436 device->io_width = btrfs_device_io_width(leaf, dev_item); 7437 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7438 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7439 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7440 7441 ptr = btrfs_device_uuid(dev_item); 7442 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7443 } 7444 7445 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7446 u8 *fsid) 7447 { 7448 struct btrfs_fs_devices *fs_devices; 7449 int ret; 7450 7451 lockdep_assert_held(&uuid_mutex); 7452 ASSERT(fsid); 7453 7454 /* This will match only for multi-device seed fs */ 7455 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7456 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7457 return fs_devices; 7458 7459 7460 fs_devices = find_fsid(fsid, NULL); 7461 if (!fs_devices) { 7462 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7463 btrfs_err(fs_info, 7464 "failed to find fsid %pU when attempting to open seed devices", 7465 fsid); 7466 return ERR_PTR(-ENOENT); 7467 } 7468 7469 fs_devices = alloc_fs_devices(fsid); 7470 if (IS_ERR(fs_devices)) 7471 return fs_devices; 7472 7473 fs_devices->seeding = true; 7474 fs_devices->opened = 1; 7475 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7476 return fs_devices; 7477 } 7478 7479 /* 7480 * Upon first call for a seed fs fsid, just create a private copy of the 7481 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7482 */ 7483 fs_devices = clone_fs_devices(fs_devices); 7484 if (IS_ERR(fs_devices)) 7485 return fs_devices; 7486 7487 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7488 if (ret) { 7489 free_fs_devices(fs_devices); 7490 return ERR_PTR(ret); 7491 } 7492 7493 if (!fs_devices->seeding) { 7494 close_fs_devices(fs_devices); 7495 free_fs_devices(fs_devices); 7496 return ERR_PTR(-EINVAL); 7497 } 7498 7499 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7500 7501 return fs_devices; 7502 } 7503 7504 static int read_one_dev(struct extent_buffer *leaf, 7505 struct btrfs_dev_item *dev_item) 7506 { 7507 BTRFS_DEV_LOOKUP_ARGS(args); 7508 struct btrfs_fs_info *fs_info = leaf->fs_info; 7509 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7510 struct btrfs_device *device; 7511 u64 devid; 7512 u8 fs_uuid[BTRFS_FSID_SIZE]; 7513 u8 dev_uuid[BTRFS_UUID_SIZE]; 7514 7515 devid = btrfs_device_id(leaf, dev_item); 7516 args.devid = devid; 7517 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7518 BTRFS_UUID_SIZE); 7519 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7520 BTRFS_FSID_SIZE); 7521 args.uuid = dev_uuid; 7522 args.fsid = fs_uuid; 7523 7524 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7525 fs_devices = open_seed_devices(fs_info, fs_uuid); 7526 if (IS_ERR(fs_devices)) 7527 return PTR_ERR(fs_devices); 7528 } 7529 7530 device = btrfs_find_device(fs_info->fs_devices, &args); 7531 if (!device) { 7532 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7533 btrfs_report_missing_device(fs_info, devid, 7534 dev_uuid, true); 7535 return -ENOENT; 7536 } 7537 7538 device = add_missing_dev(fs_devices, devid, dev_uuid); 7539 if (IS_ERR(device)) { 7540 btrfs_err(fs_info, 7541 "failed to add missing dev %llu: %ld", 7542 devid, PTR_ERR(device)); 7543 return PTR_ERR(device); 7544 } 7545 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7546 } else { 7547 if (!device->bdev) { 7548 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7549 btrfs_report_missing_device(fs_info, 7550 devid, dev_uuid, true); 7551 return -ENOENT; 7552 } 7553 btrfs_report_missing_device(fs_info, devid, 7554 dev_uuid, false); 7555 } 7556 7557 if (!device->bdev && 7558 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7559 /* 7560 * this happens when a device that was properly setup 7561 * in the device info lists suddenly goes bad. 7562 * device->bdev is NULL, and so we have to set 7563 * device->missing to one here 7564 */ 7565 device->fs_devices->missing_devices++; 7566 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7567 } 7568 7569 /* Move the device to its own fs_devices */ 7570 if (device->fs_devices != fs_devices) { 7571 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7572 &device->dev_state)); 7573 7574 list_move(&device->dev_list, &fs_devices->devices); 7575 device->fs_devices->num_devices--; 7576 fs_devices->num_devices++; 7577 7578 device->fs_devices->missing_devices--; 7579 fs_devices->missing_devices++; 7580 7581 device->fs_devices = fs_devices; 7582 } 7583 } 7584 7585 if (device->fs_devices != fs_info->fs_devices) { 7586 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7587 if (device->generation != 7588 btrfs_device_generation(leaf, dev_item)) 7589 return -EINVAL; 7590 } 7591 7592 fill_device_from_item(leaf, dev_item, device); 7593 if (device->bdev) { 7594 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7595 7596 if (device->total_bytes > max_total_bytes) { 7597 btrfs_err(fs_info, 7598 "device total_bytes should be at most %llu but found %llu", 7599 max_total_bytes, device->total_bytes); 7600 return -EINVAL; 7601 } 7602 } 7603 set_bit(BTRFS_DEV_STATE_ITEM_FOUND, &device->dev_state); 7604 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7605 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7606 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7607 device->fs_devices->total_rw_bytes += device->total_bytes; 7608 atomic64_add(device->total_bytes - device->bytes_used, 7609 &fs_info->free_chunk_space); 7610 } 7611 7612 return 0; 7613 } 7614 7615 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7616 { 7617 struct btrfs_super_block *super_copy = fs_info->super_copy; 7618 struct extent_buffer *sb; 7619 u8 *array_ptr; 7620 unsigned long sb_array_offset; 7621 int ret = 0; 7622 u32 array_size; 7623 u32 cur_offset; 7624 struct btrfs_key key; 7625 7626 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7627 7628 /* 7629 * We allocated a dummy extent, just to use extent buffer accessors. 7630 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7631 * that's fine, we will not go beyond system chunk array anyway. 7632 */ 7633 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7634 if (!sb) 7635 return -ENOMEM; 7636 set_extent_buffer_uptodate(sb); 7637 7638 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7639 array_size = btrfs_super_sys_array_size(super_copy); 7640 7641 array_ptr = super_copy->sys_chunk_array; 7642 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7643 cur_offset = 0; 7644 7645 while (cur_offset < array_size) { 7646 struct btrfs_chunk *chunk; 7647 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7648 u32 len = sizeof(*disk_key); 7649 7650 /* 7651 * The sys_chunk_array has been already verified at super block 7652 * read time. Only do ASSERT()s for basic checks. 7653 */ 7654 ASSERT(cur_offset + len <= array_size); 7655 7656 btrfs_disk_key_to_cpu(&key, disk_key); 7657 7658 array_ptr += len; 7659 sb_array_offset += len; 7660 cur_offset += len; 7661 7662 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7663 7664 chunk = (struct btrfs_chunk *)sb_array_offset; 7665 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7666 7667 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7668 7669 ASSERT(cur_offset + len <= array_size); 7670 7671 ret = read_one_chunk(&key, sb, chunk); 7672 if (ret) 7673 break; 7674 7675 array_ptr += len; 7676 sb_array_offset += len; 7677 cur_offset += len; 7678 } 7679 clear_extent_buffer_uptodate(sb); 7680 free_extent_buffer_stale(sb); 7681 return ret; 7682 } 7683 7684 /* 7685 * Check if all chunks in the fs are OK for read-write degraded mount 7686 * 7687 * If the @failing_dev is specified, it's accounted as missing. 7688 * 7689 * Return true if all chunks meet the minimal RW mount requirements. 7690 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7691 */ 7692 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7693 struct btrfs_device *failing_dev) 7694 { 7695 struct btrfs_chunk_map *map; 7696 u64 next_start; 7697 bool ret = true; 7698 7699 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7700 /* No chunk at all? Return false anyway */ 7701 if (!map) 7702 return false; 7703 7704 while (map) { 7705 int missing = 0; 7706 int max_tolerated; 7707 int i; 7708 7709 max_tolerated = 7710 btrfs_get_num_tolerated_disk_barrier_failures( 7711 map->type); 7712 for (i = 0; i < map->num_stripes; i++) { 7713 struct btrfs_device *dev = map->stripes[i].dev; 7714 7715 if (!dev || !dev->bdev || 7716 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7717 test_bit(BTRFS_DEV_STATE_FLUSH_FAILED, &dev->dev_state)) 7718 missing++; 7719 else if (failing_dev && failing_dev == dev) 7720 missing++; 7721 } 7722 if (missing > max_tolerated) { 7723 if (!failing_dev) 7724 btrfs_warn(fs_info, 7725 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7726 map->start, missing, max_tolerated); 7727 btrfs_free_chunk_map(map); 7728 return false; 7729 } 7730 next_start = map->start + map->chunk_len; 7731 btrfs_free_chunk_map(map); 7732 7733 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7734 } 7735 7736 return ret; 7737 } 7738 7739 static void readahead_tree_node_children(struct extent_buffer *node) 7740 { 7741 int i; 7742 const int nr_items = btrfs_header_nritems(node); 7743 7744 for (i = 0; i < nr_items; i++) 7745 btrfs_readahead_node_child(node, i); 7746 } 7747 7748 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7749 { 7750 struct btrfs_root *root = fs_info->chunk_root; 7751 BTRFS_PATH_AUTO_FREE(path); 7752 struct extent_buffer *leaf; 7753 struct btrfs_key key; 7754 struct btrfs_key found_key; 7755 int ret; 7756 int slot; 7757 int iter_ret = 0; 7758 u64 total_dev = 0; 7759 u64 last_ra_node = 0; 7760 7761 path = btrfs_alloc_path(); 7762 if (!path) 7763 return -ENOMEM; 7764 7765 /* 7766 * uuid_mutex is needed only if we are mounting a sprout FS 7767 * otherwise we don't need it. 7768 */ 7769 mutex_lock(&uuid_mutex); 7770 7771 /* 7772 * It is possible for mount and umount to race in such a way that 7773 * we execute this code path, but open_fs_devices failed to clear 7774 * total_rw_bytes. We certainly want it cleared before reading the 7775 * device items, so clear it here. 7776 */ 7777 fs_info->fs_devices->total_rw_bytes = 0; 7778 7779 /* 7780 * Lockdep complains about possible circular locking dependency between 7781 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7782 * used for freeze protection of a fs (struct super_block.s_writers), 7783 * which we take when starting a transaction, and extent buffers of the 7784 * chunk tree if we call read_one_dev() while holding a lock on an 7785 * extent buffer of the chunk tree. Since we are mounting the filesystem 7786 * and at this point there can't be any concurrent task modifying the 7787 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7788 */ 7789 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7790 path->skip_locking = true; 7791 7792 /* 7793 * Read all device items, and then all the chunk items. All 7794 * device items are found before any chunk item (their object id 7795 * is smaller than the lowest possible object id for a chunk 7796 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7797 */ 7798 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7799 key.type = 0; 7800 key.offset = 0; 7801 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7802 struct extent_buffer *node = path->nodes[1]; 7803 7804 leaf = path->nodes[0]; 7805 slot = path->slots[0]; 7806 7807 if (node) { 7808 if (last_ra_node != node->start) { 7809 readahead_tree_node_children(node); 7810 last_ra_node = node->start; 7811 } 7812 } 7813 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7814 struct btrfs_dev_item *dev_item; 7815 dev_item = btrfs_item_ptr(leaf, slot, 7816 struct btrfs_dev_item); 7817 ret = read_one_dev(leaf, dev_item); 7818 if (ret) 7819 goto error; 7820 total_dev++; 7821 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7822 struct btrfs_chunk *chunk; 7823 7824 /* 7825 * We are only called at mount time, so no need to take 7826 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7827 * we always lock first fs_info->chunk_mutex before 7828 * acquiring any locks on the chunk tree. This is a 7829 * requirement for chunk allocation, see the comment on 7830 * top of btrfs_chunk_alloc() for details. 7831 */ 7832 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7833 ret = read_one_chunk(&found_key, leaf, chunk); 7834 if (ret) 7835 goto error; 7836 } 7837 } 7838 /* Catch error found during iteration */ 7839 if (iter_ret < 0) { 7840 ret = iter_ret; 7841 goto error; 7842 } 7843 7844 /* 7845 * After loading chunk tree, we've got all device information, 7846 * do another round of validation checks. 7847 */ 7848 if (total_dev != fs_info->fs_devices->total_devices) { 7849 btrfs_warn(fs_info, 7850 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7851 btrfs_super_num_devices(fs_info->super_copy), 7852 total_dev); 7853 fs_info->fs_devices->total_devices = total_dev; 7854 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7855 } 7856 if (btrfs_super_total_bytes(fs_info->super_copy) < 7857 fs_info->fs_devices->total_rw_bytes) { 7858 btrfs_err(fs_info, 7859 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7860 btrfs_super_total_bytes(fs_info->super_copy), 7861 fs_info->fs_devices->total_rw_bytes); 7862 ret = -EINVAL; 7863 goto error; 7864 } 7865 ret = 0; 7866 error: 7867 mutex_unlock(&uuid_mutex); 7868 return ret; 7869 } 7870 7871 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7872 { 7873 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7874 struct btrfs_device *device; 7875 int ret = 0; 7876 7877 mutex_lock(&fs_devices->device_list_mutex); 7878 list_for_each_entry(device, &fs_devices->devices, dev_list) 7879 device->fs_info = fs_info; 7880 7881 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7882 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7883 device->fs_info = fs_info; 7884 ret = btrfs_get_dev_zone_info(device, false); 7885 if (ret) 7886 break; 7887 } 7888 7889 seed_devs->fs_info = fs_info; 7890 } 7891 mutex_unlock(&fs_devices->device_list_mutex); 7892 7893 return ret; 7894 } 7895 7896 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7897 const struct btrfs_dev_stats_item *ptr, 7898 int index) 7899 { 7900 u64 val; 7901 7902 read_extent_buffer(eb, &val, 7903 offsetof(struct btrfs_dev_stats_item, values) + 7904 ((unsigned long)ptr) + (index * sizeof(u64)), 7905 sizeof(val)); 7906 return val; 7907 } 7908 7909 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7910 struct btrfs_dev_stats_item *ptr, 7911 int index, u64 val) 7912 { 7913 write_extent_buffer(eb, &val, 7914 offsetof(struct btrfs_dev_stats_item, values) + 7915 ((unsigned long)ptr) + (index * sizeof(u64)), 7916 sizeof(val)); 7917 } 7918 7919 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7920 struct btrfs_path *path) 7921 { 7922 struct btrfs_dev_stats_item *ptr; 7923 struct extent_buffer *eb; 7924 struct btrfs_key key; 7925 int item_size; 7926 int i, ret, slot; 7927 7928 if (!device->fs_info->dev_root) 7929 return 0; 7930 7931 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7932 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7933 key.offset = device->devid; 7934 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7935 if (ret) { 7936 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7937 btrfs_dev_stat_set(device, i, 0); 7938 device->dev_stats_valid = 1; 7939 btrfs_release_path(path); 7940 return ret < 0 ? ret : 0; 7941 } 7942 slot = path->slots[0]; 7943 eb = path->nodes[0]; 7944 item_size = btrfs_item_size(eb, slot); 7945 7946 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7947 7948 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7949 if (item_size >= (1 + i) * sizeof(__le64)) 7950 btrfs_dev_stat_set(device, i, 7951 btrfs_dev_stats_value(eb, ptr, i)); 7952 else 7953 btrfs_dev_stat_set(device, i, 0); 7954 } 7955 7956 device->dev_stats_valid = 1; 7957 btrfs_dev_stat_print_on_load(device); 7958 btrfs_release_path(path); 7959 7960 return 0; 7961 } 7962 7963 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7964 { 7965 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7966 struct btrfs_device *device; 7967 BTRFS_PATH_AUTO_FREE(path); 7968 int ret = 0; 7969 7970 path = btrfs_alloc_path(); 7971 if (!path) 7972 return -ENOMEM; 7973 7974 mutex_lock(&fs_devices->device_list_mutex); 7975 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7976 ret = btrfs_device_init_dev_stats(device, path); 7977 if (ret) 7978 goto out; 7979 } 7980 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7981 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7982 ret = btrfs_device_init_dev_stats(device, path); 7983 if (ret) 7984 goto out; 7985 } 7986 } 7987 out: 7988 mutex_unlock(&fs_devices->device_list_mutex); 7989 return ret; 7990 } 7991 7992 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7993 struct btrfs_device *device) 7994 { 7995 struct btrfs_fs_info *fs_info = trans->fs_info; 7996 struct btrfs_root *dev_root = fs_info->dev_root; 7997 BTRFS_PATH_AUTO_FREE(path); 7998 struct btrfs_key key; 7999 struct extent_buffer *eb; 8000 struct btrfs_dev_stats_item *ptr; 8001 int ret; 8002 int i; 8003 8004 key.objectid = BTRFS_DEV_STATS_OBJECTID; 8005 key.type = BTRFS_PERSISTENT_ITEM_KEY; 8006 key.offset = device->devid; 8007 8008 path = btrfs_alloc_path(); 8009 if (!path) 8010 return -ENOMEM; 8011 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 8012 if (ret < 0) { 8013 btrfs_warn(fs_info, 8014 "error %d while searching for dev_stats item for device %s", 8015 ret, btrfs_dev_name(device)); 8016 return ret; 8017 } 8018 8019 if (ret == 0 && 8020 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 8021 /* need to delete old one and insert a new one */ 8022 ret = btrfs_del_item(trans, dev_root, path); 8023 if (ret != 0) { 8024 btrfs_warn(fs_info, 8025 "delete too small dev_stats item for device %s failed %d", 8026 btrfs_dev_name(device), ret); 8027 return ret; 8028 } 8029 ret = 1; 8030 } 8031 8032 if (ret == 1) { 8033 /* need to insert a new item */ 8034 btrfs_release_path(path); 8035 ret = btrfs_insert_empty_item(trans, dev_root, path, 8036 &key, sizeof(*ptr)); 8037 if (ret < 0) { 8038 btrfs_warn(fs_info, 8039 "insert dev_stats item for device %s failed %d", 8040 btrfs_dev_name(device), ret); 8041 return ret; 8042 } 8043 } 8044 8045 eb = path->nodes[0]; 8046 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 8047 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8048 btrfs_set_dev_stats_value(eb, ptr, i, 8049 btrfs_dev_stat_read(device, i)); 8050 return ret; 8051 } 8052 8053 /* 8054 * called from commit_transaction. Writes all changed device stats to disk. 8055 */ 8056 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 8057 { 8058 struct btrfs_fs_info *fs_info = trans->fs_info; 8059 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 8060 struct btrfs_device *device; 8061 int stats_cnt; 8062 int ret = 0; 8063 8064 mutex_lock(&fs_devices->device_list_mutex); 8065 list_for_each_entry(device, &fs_devices->devices, dev_list) { 8066 stats_cnt = atomic_read(&device->dev_stats_ccnt); 8067 if (!device->dev_stats_valid || stats_cnt == 0) 8068 continue; 8069 8070 8071 /* 8072 * There is a LOAD-LOAD control dependency between the value of 8073 * dev_stats_ccnt and updating the on-disk values which requires 8074 * reading the in-memory counters. Such control dependencies 8075 * require explicit read memory barriers. 8076 * 8077 * This memory barriers pairs with smp_mb__before_atomic in 8078 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 8079 * barrier implied by atomic_xchg in 8080 * btrfs_dev_stats_read_and_reset 8081 */ 8082 smp_rmb(); 8083 8084 ret = update_dev_stat_item(trans, device); 8085 if (!ret) 8086 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 8087 } 8088 mutex_unlock(&fs_devices->device_list_mutex); 8089 8090 return ret; 8091 } 8092 8093 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 8094 { 8095 btrfs_dev_stat_inc(dev, index); 8096 8097 if (!dev->dev_stats_valid) 8098 return; 8099 btrfs_err_rl(dev->fs_info, 8100 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 8101 btrfs_dev_name(dev), 8102 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 8103 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 8104 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 8105 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 8106 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 8107 } 8108 8109 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 8110 { 8111 int i; 8112 8113 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8114 if (btrfs_dev_stat_read(dev, i) != 0) 8115 break; 8116 if (i == BTRFS_DEV_STAT_VALUES_MAX) 8117 return; /* all values == 0, suppress message */ 8118 8119 btrfs_info(dev->fs_info, 8120 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 8121 btrfs_dev_name(dev), 8122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 8123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 8124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 8125 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 8126 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 8127 } 8128 8129 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 8130 struct btrfs_ioctl_get_dev_stats *stats) 8131 { 8132 BTRFS_DEV_LOOKUP_ARGS(args); 8133 struct btrfs_device *dev; 8134 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 8135 int i; 8136 8137 mutex_lock(&fs_devices->device_list_mutex); 8138 args.devid = stats->devid; 8139 dev = btrfs_find_device(fs_info->fs_devices, &args); 8140 mutex_unlock(&fs_devices->device_list_mutex); 8141 8142 if (!dev) { 8143 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 8144 return -ENODEV; 8145 } else if (!dev->dev_stats_valid) { 8146 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 8147 return -ENODEV; 8148 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 8149 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 8150 if (stats->nr_items > i) 8151 stats->values[i] = 8152 btrfs_dev_stat_read_and_reset(dev, i); 8153 else 8154 btrfs_dev_stat_set(dev, i, 0); 8155 } 8156 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 8157 current->comm, task_pid_nr(current)); 8158 } else { 8159 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8160 if (stats->nr_items > i) 8161 stats->values[i] = btrfs_dev_stat_read(dev, i); 8162 } 8163 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 8164 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 8165 return 0; 8166 } 8167 8168 /* 8169 * Update the size and bytes used for each device where it changed. This is 8170 * delayed since we would otherwise get errors while writing out the 8171 * superblocks. 8172 * 8173 * Must be invoked during transaction commit. 8174 */ 8175 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 8176 { 8177 struct btrfs_device *curr, *next; 8178 8179 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 8180 8181 if (list_empty(&trans->dev_update_list)) 8182 return; 8183 8184 /* 8185 * We don't need the device_list_mutex here. This list is owned by the 8186 * transaction and the transaction must complete before the device is 8187 * released. 8188 */ 8189 mutex_lock(&trans->fs_info->chunk_mutex); 8190 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 8191 post_commit_list) { 8192 list_del_init(&curr->post_commit_list); 8193 curr->commit_total_bytes = curr->disk_total_bytes; 8194 curr->commit_bytes_used = curr->bytes_used; 8195 } 8196 mutex_unlock(&trans->fs_info->chunk_mutex); 8197 } 8198 8199 /* 8200 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 8201 */ 8202 int btrfs_bg_type_to_factor(u64 flags) 8203 { 8204 const int index = btrfs_bg_flags_to_raid_index(flags); 8205 8206 return btrfs_raid_array[index].ncopies; 8207 } 8208 8209 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8210 u64 chunk_offset, u64 devid, 8211 u64 physical_offset, u64 physical_len) 8212 { 8213 struct btrfs_dev_lookup_args args = { .devid = devid }; 8214 struct btrfs_chunk_map *map; 8215 struct btrfs_device *dev; 8216 u64 stripe_len; 8217 bool found = false; 8218 int ret = 0; 8219 int i; 8220 8221 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 8222 if (unlikely(!map)) { 8223 btrfs_err(fs_info, 8224 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8225 physical_offset, devid); 8226 ret = -EUCLEAN; 8227 goto out; 8228 } 8229 8230 stripe_len = btrfs_calc_stripe_length(map); 8231 if (unlikely(physical_len != stripe_len)) { 8232 btrfs_err(fs_info, 8233 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8234 physical_offset, devid, map->start, physical_len, 8235 stripe_len); 8236 ret = -EUCLEAN; 8237 goto out; 8238 } 8239 8240 /* 8241 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 8242 * space. Although kernel can handle it without problem, better to warn 8243 * the users. 8244 */ 8245 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8246 btrfs_warn(fs_info, 8247 "devid %llu physical %llu len %llu inside the reserved space", 8248 devid, physical_offset, physical_len); 8249 8250 for (i = 0; i < map->num_stripes; i++) { 8251 if (unlikely(map->stripes[i].dev->devid == devid && 8252 map->stripes[i].physical == physical_offset)) { 8253 found = true; 8254 if (map->verified_stripes >= map->num_stripes) { 8255 btrfs_err(fs_info, 8256 "too many dev extents for chunk %llu found", 8257 map->start); 8258 ret = -EUCLEAN; 8259 goto out; 8260 } 8261 map->verified_stripes++; 8262 break; 8263 } 8264 } 8265 if (unlikely(!found)) { 8266 btrfs_err(fs_info, 8267 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8268 physical_offset, devid); 8269 ret = -EUCLEAN; 8270 } 8271 8272 /* Make sure no dev extent is beyond device boundary */ 8273 dev = btrfs_find_device(fs_info->fs_devices, &args); 8274 if (unlikely(!dev)) { 8275 btrfs_err(fs_info, "failed to find devid %llu", devid); 8276 ret = -EUCLEAN; 8277 goto out; 8278 } 8279 8280 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) { 8281 btrfs_err(fs_info, 8282 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8283 devid, physical_offset, physical_len, 8284 dev->disk_total_bytes); 8285 ret = -EUCLEAN; 8286 goto out; 8287 } 8288 8289 if (dev->zone_info) { 8290 u64 zone_size = dev->zone_info->zone_size; 8291 8292 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) || 8293 !IS_ALIGNED(physical_len, zone_size))) { 8294 btrfs_err(fs_info, 8295 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8296 devid, physical_offset, physical_len); 8297 ret = -EUCLEAN; 8298 goto out; 8299 } 8300 } 8301 8302 out: 8303 btrfs_free_chunk_map(map); 8304 return ret; 8305 } 8306 8307 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8308 { 8309 struct rb_node *node; 8310 int ret = 0; 8311 8312 read_lock(&fs_info->mapping_tree_lock); 8313 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8314 struct btrfs_chunk_map *map; 8315 8316 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8317 if (unlikely(map->num_stripes != map->verified_stripes)) { 8318 btrfs_err(fs_info, 8319 "chunk %llu has missing dev extent, have %d expect %d", 8320 map->start, map->verified_stripes, map->num_stripes); 8321 ret = -EUCLEAN; 8322 goto out; 8323 } 8324 } 8325 out: 8326 read_unlock(&fs_info->mapping_tree_lock); 8327 return ret; 8328 } 8329 8330 /* 8331 * Ensure that all dev extents are mapped to correct chunk, otherwise 8332 * later chunk allocation/free would cause unexpected behavior. 8333 * 8334 * NOTE: This will iterate through the whole device tree, which should be of 8335 * the same size level as the chunk tree. This slightly increases mount time. 8336 */ 8337 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8338 { 8339 BTRFS_PATH_AUTO_FREE(path); 8340 struct btrfs_root *root = fs_info->dev_root; 8341 struct btrfs_key key; 8342 u64 prev_devid = 0; 8343 u64 prev_dev_ext_end = 0; 8344 int ret = 0; 8345 8346 /* 8347 * We don't have a dev_root because we mounted with ignorebadroots and 8348 * failed to load the root, so we want to skip the verification in this 8349 * case for sure. 8350 * 8351 * However if the dev root is fine, but the tree itself is corrupted 8352 * we'd still fail to mount. This verification is only to make sure 8353 * writes can happen safely, so instead just bypass this check 8354 * completely in the case of IGNOREBADROOTS. 8355 */ 8356 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8357 return 0; 8358 8359 key.objectid = 1; 8360 key.type = BTRFS_DEV_EXTENT_KEY; 8361 key.offset = 0; 8362 8363 path = btrfs_alloc_path(); 8364 if (!path) 8365 return -ENOMEM; 8366 8367 path->reada = READA_FORWARD_ALWAYS; 8368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8369 if (ret < 0) 8370 return ret; 8371 8372 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8373 ret = btrfs_next_leaf(root, path); 8374 if (ret < 0) 8375 return ret; 8376 /* No dev extents at all? Not good */ 8377 if (unlikely(ret > 0)) 8378 return -EUCLEAN; 8379 } 8380 while (1) { 8381 struct extent_buffer *leaf = path->nodes[0]; 8382 struct btrfs_dev_extent *dext; 8383 int slot = path->slots[0]; 8384 u64 chunk_offset; 8385 u64 physical_offset; 8386 u64 physical_len; 8387 u64 devid; 8388 8389 btrfs_item_key_to_cpu(leaf, &key, slot); 8390 if (key.type != BTRFS_DEV_EXTENT_KEY) 8391 break; 8392 devid = key.objectid; 8393 physical_offset = key.offset; 8394 8395 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8396 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8397 physical_len = btrfs_dev_extent_length(leaf, dext); 8398 8399 /* Check if this dev extent overlaps with the previous one */ 8400 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) { 8401 btrfs_err(fs_info, 8402 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8403 devid, physical_offset, prev_dev_ext_end); 8404 return -EUCLEAN; 8405 } 8406 8407 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8408 physical_offset, physical_len); 8409 if (ret < 0) 8410 return ret; 8411 prev_devid = devid; 8412 prev_dev_ext_end = physical_offset + physical_len; 8413 8414 ret = btrfs_next_item(root, path); 8415 if (ret < 0) 8416 return ret; 8417 if (ret > 0) { 8418 ret = 0; 8419 break; 8420 } 8421 } 8422 8423 /* Ensure all chunks have corresponding dev extents */ 8424 return verify_chunk_dev_extent_mapping(fs_info); 8425 } 8426 8427 /* 8428 * Ensure that all devices registered in the fs have their device items in the 8429 * chunk tree. 8430 * 8431 * Return true if unexpected device is found. 8432 * Return false otherwise. 8433 */ 8434 bool btrfs_verify_dev_items(const struct btrfs_fs_info *fs_info) 8435 { 8436 struct btrfs_fs_devices *seed_devs; 8437 struct btrfs_device *dev; 8438 bool ret = false; 8439 8440 mutex_lock(&uuid_mutex); 8441 list_for_each_entry(dev, &fs_info->fs_devices->devices, dev_list) { 8442 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) { 8443 btrfs_err(fs_info, 8444 "devid %llu path %s is registered but not found in chunk tree", 8445 dev->devid, btrfs_dev_name(dev)); 8446 ret = true; 8447 } 8448 } 8449 list_for_each_entry(seed_devs, &fs_info->fs_devices->seed_list, seed_list) { 8450 list_for_each_entry(dev, &seed_devs->devices, dev_list) { 8451 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) { 8452 btrfs_err(fs_info, 8453 "devid %llu path %s is registered but not found in chunk tree", 8454 dev->devid, btrfs_dev_name(dev)); 8455 ret = true; 8456 } 8457 } 8458 } 8459 mutex_unlock(&uuid_mutex); 8460 if (ret) 8461 btrfs_err(fs_info, 8462 "remove the above devices or use 'btrfs device scan --forget <dev>' to unregister them before mount"); 8463 return ret; 8464 } 8465 8466 /* 8467 * Check whether the given block group or device is pinned by any inode being 8468 * used as a swapfile. 8469 */ 8470 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8471 { 8472 struct btrfs_swapfile_pin *sp; 8473 struct rb_node *node; 8474 8475 spin_lock(&fs_info->swapfile_pins_lock); 8476 node = fs_info->swapfile_pins.rb_node; 8477 while (node) { 8478 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8479 if (ptr < sp->ptr) 8480 node = node->rb_left; 8481 else if (ptr > sp->ptr) 8482 node = node->rb_right; 8483 else 8484 break; 8485 } 8486 spin_unlock(&fs_info->swapfile_pins_lock); 8487 return node != NULL; 8488 } 8489 8490 static int relocating_repair_kthread(void *data) 8491 { 8492 struct btrfs_block_group *cache = data; 8493 struct btrfs_fs_info *fs_info = cache->fs_info; 8494 u64 target; 8495 int ret = 0; 8496 8497 target = cache->start; 8498 btrfs_put_block_group(cache); 8499 8500 guard(super_write)(fs_info->sb); 8501 8502 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8503 btrfs_info(fs_info, 8504 "zoned: skip relocating block group %llu to repair: EBUSY", 8505 target); 8506 return -EBUSY; 8507 } 8508 8509 mutex_lock(&fs_info->reclaim_bgs_lock); 8510 8511 /* Ensure block group still exists */ 8512 cache = btrfs_lookup_block_group(fs_info, target); 8513 if (!cache) 8514 goto out; 8515 8516 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8517 goto out; 8518 8519 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8520 if (ret < 0) 8521 goto out; 8522 8523 btrfs_info(fs_info, 8524 "zoned: relocating block group %llu to repair IO failure", 8525 target); 8526 ret = btrfs_relocate_chunk(fs_info, target, true); 8527 8528 out: 8529 if (cache) 8530 btrfs_put_block_group(cache); 8531 mutex_unlock(&fs_info->reclaim_bgs_lock); 8532 btrfs_exclop_finish(fs_info); 8533 8534 return ret; 8535 } 8536 8537 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8538 { 8539 struct btrfs_block_group *cache; 8540 8541 if (!btrfs_is_zoned(fs_info)) 8542 return false; 8543 8544 /* Do not attempt to repair in degraded state */ 8545 if (btrfs_test_opt(fs_info, DEGRADED)) 8546 return true; 8547 8548 cache = btrfs_lookup_block_group(fs_info, logical); 8549 if (!cache) 8550 return true; 8551 8552 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8553 btrfs_put_block_group(cache); 8554 return true; 8555 } 8556 8557 kthread_run(relocating_repair_kthread, cache, 8558 "btrfs-relocating-repair"); 8559 8560 return true; 8561 } 8562 8563 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8564 struct btrfs_io_stripe *smap, 8565 u64 logical) 8566 { 8567 int data_stripes = nr_bioc_data_stripes(bioc); 8568 int i; 8569 8570 for (i = 0; i < data_stripes; i++) { 8571 u64 stripe_start = bioc->full_stripe_logical + 8572 btrfs_stripe_nr_to_offset(i); 8573 8574 if (logical >= stripe_start && 8575 logical < stripe_start + BTRFS_STRIPE_LEN) 8576 break; 8577 } 8578 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8579 smap->dev = bioc->stripes[i].dev; 8580 smap->physical = bioc->stripes[i].physical + 8581 ((logical - bioc->full_stripe_logical) & 8582 BTRFS_STRIPE_LEN_MASK); 8583 } 8584 8585 /* 8586 * Map a repair write into a single device. 8587 * 8588 * A repair write is triggered by read time repair or scrub, which would only 8589 * update the contents of a single device. 8590 * Not update any other mirrors nor go through RMW path. 8591 * 8592 * Callers should ensure: 8593 * 8594 * - Call btrfs_bio_counter_inc_blocked() first 8595 * - The range does not cross stripe boundary 8596 * - Has a valid @mirror_num passed in. 8597 */ 8598 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8599 struct btrfs_io_stripe *smap, u64 logical, 8600 u32 length, int mirror_num) 8601 { 8602 struct btrfs_io_context *bioc = NULL; 8603 u64 map_length = length; 8604 int mirror_ret = mirror_num; 8605 int ret; 8606 8607 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8608 8609 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8610 &bioc, smap, &mirror_ret); 8611 if (ret < 0) 8612 return ret; 8613 8614 /* The map range should not cross stripe boundary. */ 8615 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8616 8617 /* Already mapped to single stripe. */ 8618 if (!bioc) 8619 goto out; 8620 8621 /* Map the RAID56 multi-stripe writes to a single one. */ 8622 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8623 map_raid56_repair_block(bioc, smap, logical); 8624 goto out; 8625 } 8626 8627 ASSERT(mirror_num <= bioc->num_stripes, 8628 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8629 smap->dev = bioc->stripes[mirror_num - 1].dev; 8630 smap->physical = bioc->stripes[mirror_num - 1].physical; 8631 out: 8632 btrfs_put_bioc(bioc); 8633 ASSERT(smap->dev); 8634 return 0; 8635 } 8636