1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "disk-io.h"
17 #include "extent-tree.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "dev-replace.h"
22 #include "sysfs.h"
23 #include "tree-checker.h"
24 #include "space-info.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "zoned.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "uuid-tree.h"
31 #include "ioctl.h"
32 #include "relocation.h"
33 #include "scrub.h"
34 #include "super.h"
35 #include "raid-stripe-tree.h"
36
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
38 BTRFS_BLOCK_GROUP_RAID10 | \
39 BTRFS_BLOCK_GROUP_RAID56_MASK)
40
41 struct btrfs_io_geometry {
42 u32 stripe_index;
43 u32 stripe_nr;
44 int mirror_num;
45 int num_stripes;
46 u64 stripe_offset;
47 u64 raid56_full_stripe_start;
48 int max_errors;
49 enum btrfs_map_op op;
50 bool use_rst;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags)
217 return;
218
219 #define DESCRIBE_FLAG(flag, desc) \
220 do { \
221 if (flags & (flag)) { \
222 ret = snprintf(bp, size_bp, "%s|", (desc)); \
223 if (ret < 0 || ret >= size_bp) \
224 goto out_overflow; \
225 size_bp -= ret; \
226 bp += ret; \
227 flags &= ~(flag); \
228 } \
229 } while (0)
230
231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
234
235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
238 btrfs_raid_array[i].raid_name);
239 #undef DESCRIBE_FLAG
240
241 if (flags) {
242 ret = snprintf(bp, size_bp, "0x%llx|", flags);
243 size_bp -= ret;
244 }
245
246 if (size_bp < size_buf)
247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
248
249 /*
250 * The text is trimmed, it's up to the caller to provide sufficiently
251 * large buffer
252 */
253 out_overflow:;
254 }
255
256 static int init_first_rw_device(struct btrfs_trans_handle *trans);
257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
259
260 /*
261 * Device locking
262 * ==============
263 *
264 * There are several mutexes that protect manipulation of devices and low-level
265 * structures like chunks but not block groups, extents or files
266 *
267 * uuid_mutex (global lock)
268 * ------------------------
269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
271 * device) or requested by the device= mount option
272 *
273 * the mutex can be very coarse and can cover long-running operations
274 *
275 * protects: updates to fs_devices counters like missing devices, rw devices,
276 * seeding, structure cloning, opening/closing devices at mount/umount time
277 *
278 * global::fs_devs - add, remove, updates to the global list
279 *
280 * does not protect: manipulation of the fs_devices::devices list in general
281 * but in mount context it could be used to exclude list modifications by eg.
282 * scan ioctl
283 *
284 * btrfs_device::name - renames (write side), read is RCU
285 *
286 * fs_devices::device_list_mutex (per-fs, with RCU)
287 * ------------------------------------------------
288 * protects updates to fs_devices::devices, ie. adding and deleting
289 *
290 * simple list traversal with read-only actions can be done with RCU protection
291 *
292 * may be used to exclude some operations from running concurrently without any
293 * modifications to the list (see write_all_supers)
294 *
295 * Is not required at mount and close times, because our device list is
296 * protected by the uuid_mutex at that point.
297 *
298 * balance_mutex
299 * -------------
300 * protects balance structures (status, state) and context accessed from
301 * several places (internally, ioctl)
302 *
303 * chunk_mutex
304 * -----------
305 * protects chunks, adding or removing during allocation, trim or when a new
306 * device is added/removed. Additionally it also protects post_commit_list of
307 * individual devices, since they can be added to the transaction's
308 * post_commit_list only with chunk_mutex held.
309 *
310 * cleaner_mutex
311 * -------------
312 * a big lock that is held by the cleaner thread and prevents running subvolume
313 * cleaning together with relocation or delayed iputs
314 *
315 *
316 * Lock nesting
317 * ============
318 *
319 * uuid_mutex
320 * device_list_mutex
321 * chunk_mutex
322 * balance_mutex
323 *
324 *
325 * Exclusive operations
326 * ====================
327 *
328 * Maintains the exclusivity of the following operations that apply to the
329 * whole filesystem and cannot run in parallel.
330 *
331 * - Balance (*)
332 * - Device add
333 * - Device remove
334 * - Device replace (*)
335 * - Resize
336 *
337 * The device operations (as above) can be in one of the following states:
338 *
339 * - Running state
340 * - Paused state
341 * - Completed state
342 *
343 * Only device operations marked with (*) can go into the Paused state for the
344 * following reasons:
345 *
346 * - ioctl (only Balance can be Paused through ioctl)
347 * - filesystem remounted as read-only
348 * - filesystem unmounted and mounted as read-only
349 * - system power-cycle and filesystem mounted as read-only
350 * - filesystem or device errors leading to forced read-only
351 *
352 * The status of exclusive operation is set and cleared atomically.
353 * During the course of Paused state, fs_info::exclusive_operation remains set.
354 * A device operation in Paused or Running state can be canceled or resumed
355 * either by ioctl (Balance only) or when remounted as read-write.
356 * The exclusive status is cleared when the device operation is canceled or
357 * completed.
358 */
359
360 DEFINE_MUTEX(uuid_mutex);
361 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
363 {
364 return &fs_uuids;
365 }
366
367 /*
368 * Allocate new btrfs_fs_devices structure identified by a fsid.
369 *
370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
371 * fs_devices::metadata_fsid
372 *
373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374 * The returned struct is not linked onto any lists and can be destroyed with
375 * kfree() right away.
376 */
alloc_fs_devices(const u8 * fsid)377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
378 {
379 struct btrfs_fs_devices *fs_devs;
380
381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
382 if (!fs_devs)
383 return ERR_PTR(-ENOMEM);
384
385 mutex_init(&fs_devs->device_list_mutex);
386
387 INIT_LIST_HEAD(&fs_devs->devices);
388 INIT_LIST_HEAD(&fs_devs->alloc_list);
389 INIT_LIST_HEAD(&fs_devs->fs_list);
390 INIT_LIST_HEAD(&fs_devs->seed_list);
391
392 if (fsid) {
393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 }
396
397 return fs_devs;
398 }
399
btrfs_free_device(struct btrfs_device * device)400 static void btrfs_free_device(struct btrfs_device *device)
401 {
402 WARN_ON(!list_empty(&device->post_commit_list));
403 /*
404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is
405 * reading the device name.
406 */
407 kfree(rcu_dereference_raw(device->name));
408 btrfs_extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411 }
412
free_fs_devices(struct btrfs_fs_devices * fs_devices)413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 WARN_ON(fs_devices->holding);
419 while (!list_empty(&fs_devices->devices)) {
420 device = list_first_entry(&fs_devices->devices,
421 struct btrfs_device, dev_list);
422 list_del(&device->dev_list);
423 btrfs_free_device(device);
424 }
425 kfree(fs_devices);
426 }
427
btrfs_cleanup_fs_uuids(void)428 void __exit btrfs_cleanup_fs_uuids(void)
429 {
430 struct btrfs_fs_devices *fs_devices;
431
432 while (!list_empty(&fs_uuids)) {
433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices,
434 fs_list);
435 list_del(&fs_devices->fs_list);
436 free_fs_devices(fs_devices);
437 }
438 }
439
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
441 const u8 *fsid, const u8 *metadata_fsid)
442 {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
444 return false;
445
446 if (!metadata_fsid)
447 return true;
448
449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
450 return false;
451
452 return true;
453 }
454
find_fsid(const u8 * fsid,const u8 * metadata_fsid)455 static noinline struct btrfs_fs_devices *find_fsid(
456 const u8 *fsid, const u8 *metadata_fsid)
457 {
458 struct btrfs_fs_devices *fs_devices;
459
460 ASSERT(fsid);
461
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
465 return fs_devices;
466 }
467 return NULL;
468 }
469
470 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
472 int flush, struct file **bdev_file,
473 struct btrfs_super_block **disk_super)
474 {
475 struct block_device *bdev;
476 int ret;
477
478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops);
479
480 if (IS_ERR(*bdev_file)) {
481 ret = PTR_ERR(*bdev_file);
482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
483 device_path, flags, ret);
484 goto error;
485 }
486 bdev = file_bdev(*bdev_file);
487
488 if (flush)
489 sync_blockdev(bdev);
490 if (holder) {
491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
492 if (ret) {
493 bdev_fput(*bdev_file);
494 goto error;
495 }
496 }
497 invalidate_bdev(bdev);
498 *disk_super = btrfs_read_disk_super(bdev, 0, false);
499 if (IS_ERR(*disk_super)) {
500 ret = PTR_ERR(*disk_super);
501 bdev_fput(*bdev_file);
502 goto error;
503 }
504
505 return 0;
506
507 error:
508 *disk_super = NULL;
509 *bdev_file = NULL;
510 return ret;
511 }
512
513 /*
514 * Search and remove all stale devices (which are not mounted). When both
515 * inputs are NULL, it will search and release all stale devices.
516 *
517 * @devt: Optional. When provided will it release all unmounted devices
518 * matching this devt only.
519 * @skip_device: Optional. Will skip this device when searching for the stale
520 * devices.
521 *
522 * Return: 0 for success or if @devt is 0.
523 * -EBUSY if @devt is a mounted device.
524 * -ENOENT if @devt does not match any device in the list.
525 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
527 {
528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
529 struct btrfs_device *device, *tmp_device;
530 int ret;
531 bool freed = false;
532
533 lockdep_assert_held(&uuid_mutex);
534
535 /* Return good status if there is no instance of devt. */
536 ret = 0;
537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
538
539 mutex_lock(&fs_devices->device_list_mutex);
540 list_for_each_entry_safe(device, tmp_device,
541 &fs_devices->devices, dev_list) {
542 if (skip_device && skip_device == device)
543 continue;
544 if (devt && devt != device->devt)
545 continue;
546 if (fs_devices->opened || fs_devices->holding) {
547 if (devt)
548 ret = -EBUSY;
549 break;
550 }
551
552 /* delete the stale device */
553 fs_devices->num_devices--;
554 list_del(&device->dev_list);
555 btrfs_free_device(device);
556
557 freed = true;
558 }
559 mutex_unlock(&fs_devices->device_list_mutex);
560
561 if (fs_devices->num_devices == 0) {
562 btrfs_sysfs_remove_fsid(fs_devices);
563 list_del(&fs_devices->fs_list);
564 free_fs_devices(fs_devices);
565 }
566 }
567
568 /* If there is at least one freed device return 0. */
569 if (freed)
570 return 0;
571
572 return ret;
573 }
574
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)575 static struct btrfs_fs_devices *find_fsid_by_device(
576 struct btrfs_super_block *disk_super,
577 dev_t devt, bool *same_fsid_diff_dev)
578 {
579 struct btrfs_fs_devices *fsid_fs_devices;
580 struct btrfs_fs_devices *devt_fs_devices;
581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
583 bool found_by_devt = false;
584
585 /* Find the fs_device by the usual method, if found use it. */
586 fsid_fs_devices = find_fsid(disk_super->fsid,
587 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
588
589 /* The temp_fsid feature is supported only with single device filesystem. */
590 if (btrfs_super_num_devices(disk_super) != 1)
591 return fsid_fs_devices;
592
593 /*
594 * A seed device is an integral component of the sprout device, which
595 * functions as a multi-device filesystem. So, temp-fsid feature is
596 * not supported.
597 */
598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
599 return fsid_fs_devices;
600
601 /* Try to find a fs_devices by matching devt. */
602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
603 struct btrfs_device *device;
604
605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
606 if (device->devt == devt) {
607 found_by_devt = true;
608 break;
609 }
610 }
611 if (found_by_devt)
612 break;
613 }
614
615 if (found_by_devt) {
616 /* Existing device. */
617 if (fsid_fs_devices == NULL) {
618 if (devt_fs_devices->opened == 0) {
619 /* Stale device. */
620 return NULL;
621 } else {
622 /* temp_fsid is mounting a subvol. */
623 return devt_fs_devices;
624 }
625 } else {
626 /* Regular or temp_fsid device mounting a subvol. */
627 return devt_fs_devices;
628 }
629 } else {
630 /* New device. */
631 if (fsid_fs_devices == NULL) {
632 return NULL;
633 } else {
634 /* sb::fsid is already used create a new temp_fsid. */
635 *same_fsid_diff_dev = true;
636 return NULL;
637 }
638 }
639
640 /* Not reached. */
641 }
642
643 /*
644 * This is only used on mount, and we are protected from competing things
645 * messing with our fs_devices by the uuid_mutex, thus we do not need the
646 * fs_devices->device_list_mutex here.
647 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
649 struct btrfs_device *device, blk_mode_t flags,
650 void *holder)
651 {
652 struct file *bdev_file;
653 struct btrfs_super_block *disk_super;
654 u64 devid;
655 int ret;
656
657 if (device->bdev)
658 return -EINVAL;
659 if (!device->name)
660 return -EINVAL;
661
662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1,
663 &bdev_file, &disk_super);
664 if (ret)
665 return ret;
666
667 devid = btrfs_stack_device_id(&disk_super->dev_item);
668 if (devid != device->devid)
669 goto error_free_page;
670
671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
672 goto error_free_page;
673
674 device->generation = btrfs_super_generation(disk_super);
675
676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
677 if (btrfs_super_incompat_flags(disk_super) &
678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
679 btrfs_err(NULL,
680 "invalid seeding and uuid-changed device detected");
681 goto error_free_page;
682 }
683
684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 fs_devices->seeding = true;
686 } else {
687 if (bdev_read_only(file_bdev(bdev_file)))
688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
689 else
690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 }
692
693 if (!bdev_nonrot(file_bdev(bdev_file)))
694 fs_devices->rotating = true;
695
696 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
697 fs_devices->discardable = true;
698
699 device->bdev_file = bdev_file;
700 device->bdev = file_bdev(bdev_file);
701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
702
703 if (device->devt != device->bdev->bd_dev) {
704 btrfs_warn(NULL,
705 "device %s maj:min changed from %d:%d to %d:%d",
706 rcu_dereference_raw(device->name), MAJOR(device->devt),
707 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
708 MINOR(device->bdev->bd_dev));
709
710 device->devt = device->bdev->bd_dev;
711 }
712
713 fs_devices->open_devices++;
714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
715 device->devid != BTRFS_DEV_REPLACE_DEVID) {
716 fs_devices->rw_devices++;
717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
718 }
719 btrfs_release_disk_super(disk_super);
720
721 return 0;
722
723 error_free_page:
724 btrfs_release_disk_super(disk_super);
725 bdev_fput(bdev_file);
726
727 return -EINVAL;
728 }
729
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
731 {
732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
734
735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
736 }
737
is_same_device(struct btrfs_device * device,const char * new_path)738 static bool is_same_device(struct btrfs_device *device, const char *new_path)
739 {
740 struct path old = { .mnt = NULL, .dentry = NULL };
741 struct path new = { .mnt = NULL, .dentry = NULL };
742 char *old_path = NULL;
743 bool is_same = false;
744 int ret;
745
746 if (!device->name)
747 goto out;
748
749 old_path = kzalloc(PATH_MAX, GFP_NOFS);
750 if (!old_path)
751 goto out;
752
753 rcu_read_lock();
754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX);
755 rcu_read_unlock();
756 if (ret < 0)
757 goto out;
758
759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
760 if (ret)
761 goto out;
762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
763 if (ret)
764 goto out;
765 if (path_equal(&old, &new))
766 is_same = true;
767 out:
768 kfree(old_path);
769 path_put(&old);
770 path_put(&new);
771 return is_same;
772 }
773
774 /*
775 * Add new device to list of registered devices
776 *
777 * Returns:
778 * device pointer which was just added or updated when successful
779 * error pointer when failed
780 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)781 static noinline struct btrfs_device *device_list_add(const char *path,
782 struct btrfs_super_block *disk_super,
783 bool *new_device_added)
784 {
785 struct btrfs_device *device;
786 struct btrfs_fs_devices *fs_devices = NULL;
787 const char *name;
788 u64 found_transid = btrfs_super_generation(disk_super);
789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
790 dev_t path_devt;
791 int ret;
792 bool same_fsid_diff_dev = false;
793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795
796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
797 btrfs_err(NULL,
798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
799 path);
800 return ERR_PTR(-EAGAIN);
801 }
802
803 ret = lookup_bdev(path, &path_devt);
804 if (ret) {
805 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
806 path, ret);
807 return ERR_PTR(ret);
808 }
809
810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
811
812 if (!fs_devices) {
813 fs_devices = alloc_fs_devices(disk_super->fsid);
814 if (IS_ERR(fs_devices))
815 return ERR_CAST(fs_devices);
816
817 if (has_metadata_uuid)
818 memcpy(fs_devices->metadata_uuid,
819 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
820
821 if (same_fsid_diff_dev) {
822 generate_random_uuid(fs_devices->fsid);
823 fs_devices->temp_fsid = true;
824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU",
825 path, MAJOR(path_devt), MINOR(path_devt),
826 fs_devices->fsid);
827 }
828
829 mutex_lock(&fs_devices->device_list_mutex);
830 list_add(&fs_devices->fs_list, &fs_uuids);
831
832 device = NULL;
833 } else {
834 struct btrfs_dev_lookup_args args = {
835 .devid = devid,
836 .uuid = disk_super->dev_item.uuid,
837 };
838
839 mutex_lock(&fs_devices->device_list_mutex);
840 device = btrfs_find_device(fs_devices, &args);
841
842 if (found_transid > fs_devices->latest_generation) {
843 memcpy(fs_devices->fsid, disk_super->fsid,
844 BTRFS_FSID_SIZE);
845 memcpy(fs_devices->metadata_uuid,
846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, MAJOR(path_devt), MINOR(path_devt),
857 fs_devices->fsid, current->comm,
858 task_pid_nr(current));
859 mutex_unlock(&fs_devices->device_list_mutex);
860 return ERR_PTR(-EBUSY);
861 }
862
863 nofs_flag = memalloc_nofs_save();
864 device = btrfs_alloc_device(NULL, &devid,
865 disk_super->dev_item.uuid, path);
866 memalloc_nofs_restore(nofs_flag);
867 if (IS_ERR(device)) {
868 mutex_unlock(&fs_devices->device_list_mutex);
869 /* we can safely leave the fs_devices entry around */
870 return device;
871 }
872
873 device->devt = path_devt;
874
875 list_add_rcu(&device->dev_list, &fs_devices->devices);
876 fs_devices->num_devices++;
877
878 device->fs_devices = fs_devices;
879 *new_device_added = true;
880
881 if (disk_super->label[0])
882 pr_info(
883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
884 disk_super->label, devid, found_transid, path,
885 MAJOR(path_devt), MINOR(path_devt),
886 current->comm, task_pid_nr(current));
887 else
888 pr_info(
889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
890 disk_super->fsid, devid, found_transid, path,
891 MAJOR(path_devt), MINOR(path_devt),
892 current->comm, task_pid_nr(current));
893
894 } else if (!device->name || !is_same_device(device, path)) {
895 const char *old_name;
896
897 /*
898 * When FS is already mounted.
899 * 1. If you are here and if the device->name is NULL that
900 * means this device was missing at time of FS mount.
901 * 2. If you are here and if the device->name is different
902 * from 'path' that means either
903 * a. The same device disappeared and reappeared with
904 * different name. or
905 * b. The missing-disk-which-was-replaced, has
906 * reappeared now.
907 *
908 * We must allow 1 and 2a above. But 2b would be a spurious
909 * and unintentional.
910 *
911 * Further in case of 1 and 2a above, the disk at 'path'
912 * would have missed some transaction when it was away and
913 * in case of 2a the stale bdev has to be updated as well.
914 * 2b must not be allowed at all time.
915 */
916
917 /*
918 * For now, we do allow update to btrfs_fs_device through the
919 * btrfs dev scan cli after FS has been mounted. We're still
920 * tracking a problem where systems fail mount by subvolume id
921 * when we reject replacement on a mounted FS.
922 */
923 if (!fs_devices->opened && found_transid < device->generation) {
924 /*
925 * That is if the FS is _not_ mounted and if you
926 * are here, that means there is more than one
927 * disk with same uuid and devid.We keep the one
928 * with larger generation number or the last-in if
929 * generation are equal.
930 */
931 mutex_unlock(&fs_devices->device_list_mutex);
932 btrfs_err(NULL,
933 "device %s already registered with a higher generation, found %llu expect %llu",
934 path, found_transid, device->generation);
935 return ERR_PTR(-EEXIST);
936 }
937
938 /*
939 * We are going to replace the device path for a given devid,
940 * make sure it's the same device if the device is mounted
941 *
942 * NOTE: the device->fs_info may not be reliable here so pass
943 * in a NULL to message helpers instead. This avoids a possible
944 * use-after-free when the fs_info and fs_info->sb are already
945 * torn down.
946 */
947 if (device->bdev) {
948 if (device->devt != path_devt) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 btrfs_warn(NULL,
951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
952 path, devid, found_transid,
953 current->comm,
954 task_pid_nr(current));
955 return ERR_PTR(-EEXIST);
956 }
957 btrfs_info(NULL,
958 "devid %llu device path %s changed to %s scanned by %s (%d)",
959 devid, btrfs_dev_name(device),
960 path, current->comm,
961 task_pid_nr(current));
962 }
963
964 name = kstrdup(path, GFP_NOFS);
965 if (!name) {
966 mutex_unlock(&fs_devices->device_list_mutex);
967 return ERR_PTR(-ENOMEM);
968 }
969 rcu_read_lock();
970 old_name = rcu_dereference(device->name);
971 rcu_read_unlock();
972 rcu_assign_pointer(device->name, name);
973 kfree_rcu_mightsleep(old_name);
974
975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
976 fs_devices->missing_devices--;
977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
978 }
979 device->devt = path_devt;
980 }
981
982 /*
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
986 * (as above).
987 */
988 if (!fs_devices->opened) {
989 device->generation = found_transid;
990 fs_devices->latest_generation = max_t(u64, found_transid,
991 fs_devices->latest_generation);
992 }
993
994 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return device;
998 }
999
clone_fs_devices(struct btrfs_fs_devices * orig)1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 struct btrfs_fs_devices *fs_devices;
1003 struct btrfs_device *device;
1004 struct btrfs_device *orig_dev;
1005 int ret = 0;
1006
1007 lockdep_assert_held(&uuid_mutex);
1008
1009 fs_devices = alloc_fs_devices(orig->fsid);
1010 if (IS_ERR(fs_devices))
1011 return fs_devices;
1012
1013 fs_devices->total_devices = orig->total_devices;
1014
1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1016 const char *dev_path = NULL;
1017
1018 /*
1019 * This is ok to do without RCU read locked because we hold the
1020 * uuid mutex so nothing we touch in here is going to disappear.
1021 */
1022 if (orig_dev->name)
1023 dev_path = rcu_dereference_raw(orig_dev->name);
1024
1025 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1026 orig_dev->uuid, dev_path);
1027 if (IS_ERR(device)) {
1028 ret = PTR_ERR(device);
1029 goto error;
1030 }
1031
1032 if (orig_dev->zone_info) {
1033 struct btrfs_zoned_device_info *zone_info;
1034
1035 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1036 if (!zone_info) {
1037 btrfs_free_device(device);
1038 ret = -ENOMEM;
1039 goto error;
1040 }
1041 device->zone_info = zone_info;
1042 }
1043
1044 list_add(&device->dev_list, &fs_devices->devices);
1045 device->fs_devices = fs_devices;
1046 fs_devices->num_devices++;
1047 }
1048 return fs_devices;
1049 error:
1050 free_fs_devices(fs_devices);
1051 return ERR_PTR(ret);
1052 }
1053
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1055 struct btrfs_device **latest_dev)
1056 {
1057 struct btrfs_device *device, *next;
1058
1059 /* This is the initialized path, it is safe to release the devices. */
1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1063 &device->dev_state) &&
1064 !test_bit(BTRFS_DEV_STATE_MISSING,
1065 &device->dev_state) &&
1066 (!*latest_dev ||
1067 device->generation > (*latest_dev)->generation)) {
1068 *latest_dev = device;
1069 }
1070 continue;
1071 }
1072
1073 /*
1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1075 * in btrfs_init_dev_replace() so just continue.
1076 */
1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1078 continue;
1079
1080 if (device->bdev_file) {
1081 bdev_fput(device->bdev_file);
1082 device->bdev = NULL;
1083 device->bdev_file = NULL;
1084 fs_devices->open_devices--;
1085 }
1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1087 list_del_init(&device->dev_alloc_list);
1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1089 fs_devices->rw_devices--;
1090 }
1091 list_del_init(&device->dev_list);
1092 fs_devices->num_devices--;
1093 btrfs_free_device(device);
1094 }
1095
1096 }
1097
1098 /*
1099 * After we have read the system tree and know devids belonging to this
1100 * filesystem, remove the device which does not belong there.
1101 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1103 {
1104 struct btrfs_device *latest_dev = NULL;
1105 struct btrfs_fs_devices *seed_dev;
1106
1107 mutex_lock(&uuid_mutex);
1108 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1109
1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1111 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1112
1113 fs_devices->latest_dev = latest_dev;
1114
1115 mutex_unlock(&uuid_mutex);
1116 }
1117
btrfs_close_bdev(struct btrfs_device * device)1118 static void btrfs_close_bdev(struct btrfs_device *device)
1119 {
1120 if (!device->bdev)
1121 return;
1122
1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1124 sync_blockdev(device->bdev);
1125 invalidate_bdev(device->bdev);
1126 }
1127
1128 bdev_fput(device->bdev_file);
1129 }
1130
btrfs_close_one_device(struct btrfs_device * device)1131 static void btrfs_close_one_device(struct btrfs_device *device)
1132 {
1133 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1134
1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1136 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1137 list_del_init(&device->dev_alloc_list);
1138 fs_devices->rw_devices--;
1139 }
1140
1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1143
1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1146 fs_devices->missing_devices--;
1147 }
1148
1149 btrfs_close_bdev(device);
1150 if (device->bdev) {
1151 fs_devices->open_devices--;
1152 device->bdev = NULL;
1153 device->bdev_file = NULL;
1154 }
1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156 btrfs_destroy_dev_zone_info(device);
1157
1158 device->fs_info = NULL;
1159 atomic_set(&device->dev_stats_ccnt, 0);
1160 btrfs_extent_io_tree_release(&device->alloc_state);
1161
1162 /*
1163 * Reset the flush error record. We might have a transient flush error
1164 * in this mount, and if so we aborted the current transaction and set
1165 * the fs to an error state, guaranteeing no super blocks can be further
1166 * committed. However that error might be transient and if we unmount the
1167 * filesystem and mount it again, we should allow the mount to succeed
1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1169 * filesystem again we still get flush errors, then we will again abort
1170 * any transaction and set the error state, guaranteeing no commits of
1171 * unsafe super blocks.
1172 */
1173 device->last_flush_error = 0;
1174
1175 /* Verify the device is back in a pristine state */
1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1178 WARN_ON(!list_empty(&device->dev_alloc_list));
1179 WARN_ON(!list_empty(&device->post_commit_list));
1180 }
1181
close_fs_devices(struct btrfs_fs_devices * fs_devices)1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1183 {
1184 struct btrfs_device *device, *tmp;
1185
1186 lockdep_assert_held(&uuid_mutex);
1187
1188 if (--fs_devices->opened > 0)
1189 return;
1190
1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1192 btrfs_close_one_device(device);
1193
1194 WARN_ON(fs_devices->open_devices);
1195 WARN_ON(fs_devices->rw_devices);
1196 fs_devices->opened = 0;
1197 fs_devices->seeding = false;
1198 fs_devices->fs_info = NULL;
1199 }
1200
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1202 {
1203 LIST_HEAD(list);
1204 struct btrfs_fs_devices *tmp;
1205
1206 mutex_lock(&uuid_mutex);
1207 close_fs_devices(fs_devices);
1208 if (!fs_devices->opened && !fs_devices->holding) {
1209 list_splice_init(&fs_devices->seed_list, &list);
1210
1211 /*
1212 * If the struct btrfs_fs_devices is not assembled with any
1213 * other device, it can be re-initialized during the next mount
1214 * without the needing device-scan step. Therefore, it can be
1215 * fully freed.
1216 */
1217 if (fs_devices->num_devices == 1) {
1218 list_del(&fs_devices->fs_list);
1219 free_fs_devices(fs_devices);
1220 }
1221 }
1222
1223
1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1225 close_fs_devices(fs_devices);
1226 list_del(&fs_devices->seed_list);
1227 free_fs_devices(fs_devices);
1228 }
1229 mutex_unlock(&uuid_mutex);
1230 }
1231
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1233 blk_mode_t flags, void *holder)
1234 {
1235 struct btrfs_device *device;
1236 struct btrfs_device *latest_dev = NULL;
1237 struct btrfs_device *tmp_device;
1238 s64 __maybe_unused value = 0;
1239 int ret = 0;
1240
1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1242 dev_list) {
1243 int ret2;
1244
1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1246 if (ret2 == 0 &&
1247 (!latest_dev || device->generation > latest_dev->generation)) {
1248 latest_dev = device;
1249 } else if (ret2 == -ENODATA) {
1250 fs_devices->num_devices--;
1251 list_del(&device->dev_list);
1252 btrfs_free_device(device);
1253 }
1254 if (ret == 0 && ret2 != 0)
1255 ret = ret2;
1256 }
1257
1258 if (fs_devices->open_devices == 0) {
1259 if (ret)
1260 return ret;
1261 return -EINVAL;
1262 }
1263
1264 fs_devices->opened = 1;
1265 fs_devices->latest_dev = latest_dev;
1266 fs_devices->total_rw_bytes = 0;
1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL
1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ;
1270 fs_devices->read_devid = latest_dev->devid;
1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(),
1272 &value);
1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1274 fs_devices->collect_fs_stats = true;
1275
1276 if (value) {
1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1278 fs_devices->rr_min_contig_read = value;
1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID)
1280 fs_devices->read_devid = value;
1281 }
1282 #else
1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1284 #endif
1285
1286 return 0;
1287 }
1288
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1289 static int devid_cmp(void *priv, const struct list_head *a,
1290 const struct list_head *b)
1291 {
1292 const struct btrfs_device *dev1, *dev2;
1293
1294 dev1 = list_entry(a, struct btrfs_device, dev_list);
1295 dev2 = list_entry(b, struct btrfs_device, dev_list);
1296
1297 if (dev1->devid < dev2->devid)
1298 return -1;
1299 else if (dev1->devid > dev2->devid)
1300 return 1;
1301 return 0;
1302 }
1303
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1305 blk_mode_t flags, void *holder)
1306 {
1307 int ret;
1308
1309 lockdep_assert_held(&uuid_mutex);
1310 /*
1311 * The device_list_mutex cannot be taken here in case opening the
1312 * underlying device takes further locks like open_mutex.
1313 *
1314 * We also don't need the lock here as this is called during mount and
1315 * exclusion is provided by uuid_mutex
1316 */
1317
1318 if (fs_devices->opened) {
1319 fs_devices->opened++;
1320 ret = 0;
1321 } else {
1322 list_sort(NULL, &fs_devices->devices, devid_cmp);
1323 ret = open_fs_devices(fs_devices, flags, holder);
1324 }
1325
1326 return ret;
1327 }
1328
btrfs_release_disk_super(struct btrfs_super_block * super)1329 void btrfs_release_disk_super(struct btrfs_super_block *super)
1330 {
1331 struct page *page = virt_to_page(super);
1332
1333 put_page(page);
1334 }
1335
btrfs_read_disk_super(struct block_device * bdev,int copy_num,bool drop_cache)1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1337 int copy_num, bool drop_cache)
1338 {
1339 struct btrfs_super_block *super;
1340 struct page *page;
1341 u64 bytenr, bytenr_orig;
1342 struct address_space *mapping = bdev->bd_mapping;
1343 int ret;
1344
1345 bytenr_orig = btrfs_sb_offset(copy_num);
1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
1347 if (ret < 0) {
1348 if (ret == -ENOENT)
1349 ret = -EINVAL;
1350 return ERR_PTR(ret);
1351 }
1352
1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
1354 return ERR_PTR(-EINVAL);
1355
1356 if (drop_cache) {
1357 /* This should only be called with the primary sb. */
1358 ASSERT(copy_num == 0);
1359
1360 /*
1361 * Drop the page of the primary superblock, so later read will
1362 * always read from the device.
1363 */
1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT,
1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
1366 }
1367
1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
1369 if (IS_ERR(page))
1370 return ERR_CAST(page);
1371
1372 super = page_address(page);
1373 if (btrfs_super_magic(super) != BTRFS_MAGIC ||
1374 btrfs_super_bytenr(super) != bytenr_orig) {
1375 btrfs_release_disk_super(super);
1376 return ERR_PTR(-EINVAL);
1377 }
1378
1379 /*
1380 * Make sure the last byte of label is properly NUL terminated. We use
1381 * '%s' to print the label, if not properly NUL terminated we can access
1382 * beyond the label.
1383 */
1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1])
1385 super->label[BTRFS_LABEL_SIZE - 1] = 0;
1386
1387 return super;
1388 }
1389
btrfs_forget_devices(dev_t devt)1390 int btrfs_forget_devices(dev_t devt)
1391 {
1392 int ret;
1393
1394 mutex_lock(&uuid_mutex);
1395 ret = btrfs_free_stale_devices(devt, NULL);
1396 mutex_unlock(&uuid_mutex);
1397
1398 return ret;
1399 }
1400
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1402 const char *path, dev_t devt,
1403 bool mount_arg_dev)
1404 {
1405 struct btrfs_fs_devices *fs_devices;
1406
1407 /*
1408 * Do not skip device registration for mounted devices with matching
1409 * maj:min but different paths. Booting without initrd relies on
1410 * /dev/root initially, later replaced with the actual root device.
1411 * A successful scan ensures grub2-probe selects the correct device.
1412 */
1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1414 struct btrfs_device *device;
1415
1416 mutex_lock(&fs_devices->device_list_mutex);
1417
1418 if (!fs_devices->opened) {
1419 mutex_unlock(&fs_devices->device_list_mutex);
1420 continue;
1421 }
1422
1423 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1424 if (device->bdev && (device->bdev->bd_dev == devt) &&
1425 strcmp(rcu_dereference_raw(device->name), path) != 0) {
1426 mutex_unlock(&fs_devices->device_list_mutex);
1427
1428 /* Do not skip registration. */
1429 return false;
1430 }
1431 }
1432 mutex_unlock(&fs_devices->device_list_mutex);
1433 }
1434
1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1437 return true;
1438
1439 return false;
1440 }
1441
1442 /*
1443 * Look for a btrfs signature on a device. This may be called out of the mount path
1444 * and we are not allowed to call set_blocksize during the scan. The superblock
1445 * is read via pagecache.
1446 *
1447 * With @mount_arg_dev it's a scan during mount time that will always register
1448 * the device or return an error. Multi-device and seeding devices are registered
1449 * in both cases.
1450 */
btrfs_scan_one_device(const char * path,bool mount_arg_dev)1451 struct btrfs_device *btrfs_scan_one_device(const char *path,
1452 bool mount_arg_dev)
1453 {
1454 struct btrfs_super_block *disk_super;
1455 bool new_device_added = false;
1456 struct btrfs_device *device = NULL;
1457 struct file *bdev_file;
1458 dev_t devt;
1459
1460 lockdep_assert_held(&uuid_mutex);
1461
1462 /*
1463 * Avoid an exclusive open here, as the systemd-udev may initiate the
1464 * device scan which may race with the user's mount or mkfs command,
1465 * resulting in failure.
1466 * Since the device scan is solely for reading purposes, there is no
1467 * need for an exclusive open. Additionally, the devices are read again
1468 * during the mount process. It is ok to get some inconsistent
1469 * values temporarily, as the device paths of the fsid are the only
1470 * required information for assembling the volume.
1471 */
1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL);
1473 if (IS_ERR(bdev_file))
1474 return ERR_CAST(bdev_file);
1475
1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false);
1477 if (IS_ERR(disk_super)) {
1478 device = ERR_CAST(disk_super);
1479 goto error_bdev_put;
1480 }
1481
1482 devt = file_bdev(bdev_file)->bd_dev;
1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)",
1485 path, MAJOR(devt), MINOR(devt));
1486
1487 btrfs_free_stale_devices(devt, NULL);
1488
1489 device = NULL;
1490 goto free_disk_super;
1491 }
1492
1493 device = device_list_add(path, disk_super, &new_device_added);
1494 if (!IS_ERR(device) && new_device_added)
1495 btrfs_free_stale_devices(device->devt, device);
1496
1497 free_disk_super:
1498 btrfs_release_disk_super(disk_super);
1499
1500 error_bdev_put:
1501 bdev_fput(bdev_file);
1502
1503 return device;
1504 }
1505
1506 /*
1507 * Try to find a chunk that intersects [start, start + len] range and when one
1508 * such is found, record the end of it in *start
1509 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1511 u64 len)
1512 {
1513 u64 physical_start, physical_end;
1514
1515 lockdep_assert_held(&device->fs_info->chunk_mutex);
1516
1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start,
1518 &physical_start, &physical_end,
1519 CHUNK_ALLOCATED, NULL)) {
1520
1521 if (in_range(physical_start, *start, len) ||
1522 in_range(*start, physical_start,
1523 physical_end + 1 - physical_start)) {
1524 *start = physical_end + 1;
1525 return true;
1526 }
1527 }
1528 return false;
1529 }
1530
dev_extent_search_start(struct btrfs_device * device)1531 static u64 dev_extent_search_start(struct btrfs_device *device)
1532 {
1533 switch (device->fs_devices->chunk_alloc_policy) {
1534 default:
1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1536 fallthrough;
1537 case BTRFS_CHUNK_ALLOC_REGULAR:
1538 return BTRFS_DEVICE_RANGE_RESERVED;
1539 case BTRFS_CHUNK_ALLOC_ZONED:
1540 /*
1541 * We don't care about the starting region like regular
1542 * allocator, because we anyway use/reserve the first two zones
1543 * for superblock logging.
1544 */
1545 return 0;
1546 }
1547 }
1548
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1550 u64 *hole_start, u64 *hole_size,
1551 u64 num_bytes)
1552 {
1553 u64 zone_size = device->zone_info->zone_size;
1554 u64 pos;
1555 int ret;
1556 bool changed = false;
1557
1558 ASSERT(IS_ALIGNED(*hole_start, zone_size),
1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size);
1560
1561 while (*hole_size > 0) {
1562 pos = btrfs_find_allocatable_zones(device, *hole_start,
1563 *hole_start + *hole_size,
1564 num_bytes);
1565 if (pos != *hole_start) {
1566 *hole_size = *hole_start + *hole_size - pos;
1567 *hole_start = pos;
1568 changed = true;
1569 if (*hole_size < num_bytes)
1570 break;
1571 }
1572
1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1574
1575 /* Range is ensured to be empty */
1576 if (!ret)
1577 return changed;
1578
1579 /* Given hole range was invalid (outside of device) */
1580 if (ret == -ERANGE) {
1581 *hole_start += *hole_size;
1582 *hole_size = 0;
1583 return true;
1584 }
1585
1586 *hole_start += zone_size;
1587 *hole_size -= zone_size;
1588 changed = true;
1589 }
1590
1591 return changed;
1592 }
1593
1594 /*
1595 * Check if specified hole is suitable for allocation.
1596 *
1597 * @device: the device which we have the hole
1598 * @hole_start: starting position of the hole
1599 * @hole_size: the size of the hole
1600 * @num_bytes: the size of the free space that we need
1601 *
1602 * This function may modify @hole_start and @hole_size to reflect the suitable
1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1604 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1606 u64 *hole_size, u64 num_bytes)
1607 {
1608 bool changed = false;
1609 u64 hole_end = *hole_start + *hole_size;
1610
1611 for (;;) {
1612 /*
1613 * Check before we set max_hole_start, otherwise we could end up
1614 * sending back this offset anyway.
1615 */
1616 if (contains_pending_extent(device, hole_start, *hole_size)) {
1617 if (hole_end >= *hole_start)
1618 *hole_size = hole_end - *hole_start;
1619 else
1620 *hole_size = 0;
1621 changed = true;
1622 }
1623
1624 switch (device->fs_devices->chunk_alloc_policy) {
1625 default:
1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1627 fallthrough;
1628 case BTRFS_CHUNK_ALLOC_REGULAR:
1629 /* No extra check */
1630 break;
1631 case BTRFS_CHUNK_ALLOC_ZONED:
1632 if (dev_extent_hole_check_zoned(device, hole_start,
1633 hole_size, num_bytes)) {
1634 changed = true;
1635 /*
1636 * The changed hole can contain pending extent.
1637 * Loop again to check that.
1638 */
1639 continue;
1640 }
1641 break;
1642 }
1643
1644 break;
1645 }
1646
1647 return changed;
1648 }
1649
1650 /*
1651 * Find free space in the specified device.
1652 *
1653 * @device: the device which we search the free space in
1654 * @num_bytes: the size of the free space that we need
1655 * @search_start: the position from which to begin the search
1656 * @start: store the start of the free space.
1657 * @len: the size of the free space. that we find, or the size
1658 * of the max free space if we don't find suitable free space
1659 *
1660 * This does a pretty simple search, the expectation is that it is called very
1661 * infrequently and that a given device has a small number of extents.
1662 *
1663 * @start is used to store the start of the free space if we find. But if we
1664 * don't find suitable free space, it will be used to store the start position
1665 * of the max free space.
1666 *
1667 * @len is used to store the size of the free space that we find.
1668 * But if we don't find suitable free space, it is used to store the size of
1669 * the max free space.
1670 *
1671 * NOTE: This function will search *commit* root of device tree, and does extra
1672 * check to ensure dev extents are not double allocated.
1673 * This makes the function safe to allocate dev extents but may not report
1674 * correct usable device space, as device extent freed in current transaction
1675 * is not reported as available.
1676 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1678 u64 *start, u64 *len)
1679 {
1680 struct btrfs_fs_info *fs_info = device->fs_info;
1681 struct btrfs_root *root = fs_info->dev_root;
1682 struct btrfs_key key;
1683 struct btrfs_dev_extent *dev_extent;
1684 struct btrfs_path *path;
1685 u64 search_start;
1686 u64 hole_size;
1687 u64 max_hole_start;
1688 u64 max_hole_size = 0;
1689 u64 extent_end;
1690 u64 search_end = device->total_bytes;
1691 int ret;
1692 int slot;
1693 struct extent_buffer *l;
1694
1695 search_start = dev_extent_search_start(device);
1696 max_hole_start = search_start;
1697
1698 WARN_ON(device->zone_info &&
1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1700
1701 path = btrfs_alloc_path();
1702 if (!path) {
1703 ret = -ENOMEM;
1704 goto out;
1705 }
1706 again:
1707 if (search_start >= search_end ||
1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1709 ret = -ENOSPC;
1710 goto out;
1711 }
1712
1713 path->reada = READA_FORWARD;
1714 path->search_commit_root = 1;
1715 path->skip_locking = 1;
1716
1717 key.objectid = device->devid;
1718 key.type = BTRFS_DEV_EXTENT_KEY;
1719 key.offset = search_start;
1720
1721 ret = btrfs_search_backwards(root, &key, path);
1722 if (ret < 0)
1723 goto out;
1724
1725 while (search_start < search_end) {
1726 l = path->nodes[0];
1727 slot = path->slots[0];
1728 if (slot >= btrfs_header_nritems(l)) {
1729 ret = btrfs_next_leaf(root, path);
1730 if (ret == 0)
1731 continue;
1732 if (ret < 0)
1733 goto out;
1734
1735 break;
1736 }
1737 btrfs_item_key_to_cpu(l, &key, slot);
1738
1739 if (key.objectid < device->devid)
1740 goto next;
1741
1742 if (key.objectid > device->devid)
1743 break;
1744
1745 if (key.type != BTRFS_DEV_EXTENT_KEY)
1746 goto next;
1747
1748 if (key.offset > search_end)
1749 break;
1750
1751 if (key.offset > search_start) {
1752 hole_size = key.offset - search_start;
1753 dev_extent_hole_check(device, &search_start, &hole_size,
1754 num_bytes);
1755
1756 if (hole_size > max_hole_size) {
1757 max_hole_start = search_start;
1758 max_hole_size = hole_size;
1759 }
1760
1761 /*
1762 * If this free space is greater than which we need,
1763 * it must be the max free space that we have found
1764 * until now, so max_hole_start must point to the start
1765 * of this free space and the length of this free space
1766 * is stored in max_hole_size. Thus, we return
1767 * max_hole_start and max_hole_size and go back to the
1768 * caller.
1769 */
1770 if (hole_size >= num_bytes) {
1771 ret = 0;
1772 goto out;
1773 }
1774 }
1775
1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1777 extent_end = key.offset + btrfs_dev_extent_length(l,
1778 dev_extent);
1779 if (extent_end > search_start)
1780 search_start = extent_end;
1781 next:
1782 path->slots[0]++;
1783 cond_resched();
1784 }
1785
1786 /*
1787 * At this point, search_start should be the end of
1788 * allocated dev extents, and when shrinking the device,
1789 * search_end may be smaller than search_start.
1790 */
1791 if (search_end > search_start) {
1792 hole_size = search_end - search_start;
1793 if (dev_extent_hole_check(device, &search_start, &hole_size,
1794 num_bytes)) {
1795 btrfs_release_path(path);
1796 goto again;
1797 }
1798
1799 if (hole_size > max_hole_size) {
1800 max_hole_start = search_start;
1801 max_hole_size = hole_size;
1802 }
1803 }
1804
1805 /* See above. */
1806 if (max_hole_size < num_bytes)
1807 ret = -ENOSPC;
1808 else
1809 ret = 0;
1810
1811 ASSERT(max_hole_start + max_hole_size <= search_end,
1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu",
1813 max_hole_start, max_hole_size, search_end);
1814 out:
1815 btrfs_free_path(path);
1816 *start = max_hole_start;
1817 if (len)
1818 *len = max_hole_size;
1819 return ret;
1820 }
1821
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1823 struct btrfs_device *device,
1824 u64 start, u64 *dev_extent_len)
1825 {
1826 struct btrfs_fs_info *fs_info = device->fs_info;
1827 struct btrfs_root *root = fs_info->dev_root;
1828 int ret;
1829 struct btrfs_path *path;
1830 struct btrfs_key key;
1831 struct btrfs_key found_key;
1832 struct extent_buffer *leaf = NULL;
1833 struct btrfs_dev_extent *extent = NULL;
1834
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
1838
1839 key.objectid = device->devid;
1840 key.type = BTRFS_DEV_EXTENT_KEY;
1841 key.offset = start;
1842 again:
1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1844 if (ret > 0) {
1845 ret = btrfs_previous_item(root, path, key.objectid,
1846 BTRFS_DEV_EXTENT_KEY);
1847 if (ret)
1848 goto out;
1849 leaf = path->nodes[0];
1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1851 extent = btrfs_item_ptr(leaf, path->slots[0],
1852 struct btrfs_dev_extent);
1853 BUG_ON(found_key.offset > start || found_key.offset +
1854 btrfs_dev_extent_length(leaf, extent) < start);
1855 key = found_key;
1856 btrfs_release_path(path);
1857 goto again;
1858 } else if (ret == 0) {
1859 leaf = path->nodes[0];
1860 extent = btrfs_item_ptr(leaf, path->slots[0],
1861 struct btrfs_dev_extent);
1862 } else {
1863 goto out;
1864 }
1865
1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1867
1868 ret = btrfs_del_item(trans, root, path);
1869 if (ret == 0)
1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1871 out:
1872 btrfs_free_path(path);
1873 return ret;
1874 }
1875
find_next_chunk(struct btrfs_fs_info * fs_info)1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1877 {
1878 struct rb_node *n;
1879 u64 ret = 0;
1880
1881 read_lock(&fs_info->mapping_tree_lock);
1882 n = rb_last(&fs_info->mapping_tree.rb_root);
1883 if (n) {
1884 struct btrfs_chunk_map *map;
1885
1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1887 ret = map->start + map->chunk_len;
1888 }
1889 read_unlock(&fs_info->mapping_tree_lock);
1890
1891 return ret;
1892 }
1893
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1895 u64 *devid_ret)
1896 {
1897 int ret;
1898 struct btrfs_key key;
1899 struct btrfs_key found_key;
1900 struct btrfs_path *path;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = (u64)-1;
1909
1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1911 if (ret < 0)
1912 goto error;
1913
1914 if (unlikely(ret == 0)) {
1915 /* Corruption */
1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1917 ret = -EUCLEAN;
1918 goto error;
1919 }
1920
1921 ret = btrfs_previous_item(fs_info->chunk_root, path,
1922 BTRFS_DEV_ITEMS_OBJECTID,
1923 BTRFS_DEV_ITEM_KEY);
1924 if (ret) {
1925 *devid_ret = 1;
1926 } else {
1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1928 path->slots[0]);
1929 *devid_ret = found_key.offset + 1;
1930 }
1931 ret = 0;
1932 error:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 /*
1938 * the device information is stored in the chunk root
1939 * the btrfs_device struct should be fully filled in
1940 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1942 struct btrfs_device *device)
1943 {
1944 int ret;
1945 struct btrfs_path *path;
1946 struct btrfs_dev_item *dev_item;
1947 struct extent_buffer *leaf;
1948 struct btrfs_key key;
1949 unsigned long ptr;
1950
1951 path = btrfs_alloc_path();
1952 if (!path)
1953 return -ENOMEM;
1954
1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1956 key.type = BTRFS_DEV_ITEM_KEY;
1957 key.offset = device->devid;
1958
1959 btrfs_reserve_chunk_metadata(trans, true);
1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1961 &key, sizeof(*dev_item));
1962 btrfs_trans_release_chunk_metadata(trans);
1963 if (ret)
1964 goto out;
1965
1966 leaf = path->nodes[0];
1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1968
1969 btrfs_set_device_id(leaf, dev_item, device->devid);
1970 btrfs_set_device_generation(leaf, dev_item, 0);
1971 btrfs_set_device_type(leaf, dev_item, device->type);
1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1975 btrfs_set_device_total_bytes(leaf, dev_item,
1976 btrfs_device_get_disk_total_bytes(device));
1977 btrfs_set_device_bytes_used(leaf, dev_item,
1978 btrfs_device_get_bytes_used(device));
1979 btrfs_set_device_group(leaf, dev_item, 0);
1980 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1981 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1982 btrfs_set_device_start_offset(leaf, dev_item, 0);
1983
1984 ptr = btrfs_device_uuid(dev_item);
1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1986 ptr = btrfs_device_fsid(dev_item);
1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1988 ptr, BTRFS_FSID_SIZE);
1989
1990 ret = 0;
1991 out:
1992 btrfs_free_path(path);
1993 return ret;
1994 }
1995
1996 /*
1997 * Function to update ctime/mtime for a given device path.
1998 * Mainly used for ctime/mtime based probe like libblkid.
1999 *
2000 * We don't care about errors here, this is just to be kind to userspace.
2001 */
update_dev_time(const char * device_path)2002 static void update_dev_time(const char *device_path)
2003 {
2004 struct path path;
2005
2006 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) {
2007 vfs_utimes(&path, NULL);
2008 path_put(&path);
2009 }
2010 }
2011
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2012 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2013 struct btrfs_device *device)
2014 {
2015 struct btrfs_root *root = device->fs_info->chunk_root;
2016 int ret;
2017 struct btrfs_path *path;
2018 struct btrfs_key key;
2019
2020 path = btrfs_alloc_path();
2021 if (!path)
2022 return -ENOMEM;
2023
2024 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2025 key.type = BTRFS_DEV_ITEM_KEY;
2026 key.offset = device->devid;
2027
2028 btrfs_reserve_chunk_metadata(trans, false);
2029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2030 btrfs_trans_release_chunk_metadata(trans);
2031 if (ret) {
2032 if (ret > 0)
2033 ret = -ENOENT;
2034 goto out;
2035 }
2036
2037 ret = btrfs_del_item(trans, root, path);
2038 out:
2039 btrfs_free_path(path);
2040 return ret;
2041 }
2042
2043 /*
2044 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2045 * filesystem. It's up to the caller to adjust that number regarding eg. device
2046 * replace.
2047 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2048 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2049 u64 num_devices)
2050 {
2051 u64 all_avail;
2052 unsigned seq;
2053 int i;
2054
2055 do {
2056 seq = read_seqbegin(&fs_info->profiles_lock);
2057
2058 all_avail = fs_info->avail_data_alloc_bits |
2059 fs_info->avail_system_alloc_bits |
2060 fs_info->avail_metadata_alloc_bits;
2061 } while (read_seqretry(&fs_info->profiles_lock, seq));
2062
2063 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2064 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2065 continue;
2066
2067 if (num_devices < btrfs_raid_array[i].devs_min)
2068 return btrfs_raid_array[i].mindev_error;
2069 }
2070
2071 return 0;
2072 }
2073
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2074 static struct btrfs_device * btrfs_find_next_active_device(
2075 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2076 {
2077 struct btrfs_device *next_device;
2078
2079 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2080 if (next_device != device &&
2081 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2082 && next_device->bdev)
2083 return next_device;
2084 }
2085
2086 return NULL;
2087 }
2088
2089 /*
2090 * Helper function to check if the given device is part of s_bdev / latest_dev
2091 * and replace it with the provided or the next active device, in the context
2092 * where this function called, there should be always be another device (or
2093 * this_dev) which is active.
2094 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2095 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2096 struct btrfs_device *next_device)
2097 {
2098 struct btrfs_fs_info *fs_info = device->fs_info;
2099
2100 if (!next_device)
2101 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2102 device);
2103 ASSERT(next_device);
2104
2105 if (fs_info->sb->s_bdev &&
2106 (fs_info->sb->s_bdev == device->bdev))
2107 fs_info->sb->s_bdev = next_device->bdev;
2108
2109 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2110 fs_info->fs_devices->latest_dev = next_device;
2111 }
2112
2113 /*
2114 * Return btrfs_fs_devices::num_devices excluding the device that's being
2115 * currently replaced.
2116 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2117 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2118 {
2119 u64 num_devices = fs_info->fs_devices->num_devices;
2120
2121 down_read(&fs_info->dev_replace.rwsem);
2122 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2123 ASSERT(num_devices > 1, "num_devices=%llu", num_devices);
2124 num_devices--;
2125 }
2126 up_read(&fs_info->dev_replace.rwsem);
2127
2128 return num_devices;
2129 }
2130
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2131 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2132 struct block_device *bdev, int copy_num)
2133 {
2134 struct btrfs_super_block *disk_super;
2135 const size_t len = sizeof(disk_super->magic);
2136 const u64 bytenr = btrfs_sb_offset(copy_num);
2137 int ret;
2138
2139 disk_super = btrfs_read_disk_super(bdev, copy_num, false);
2140 if (IS_ERR(disk_super))
2141 return;
2142
2143 memset(&disk_super->magic, 0, len);
2144 folio_mark_dirty(virt_to_folio(disk_super));
2145 btrfs_release_disk_super(disk_super);
2146
2147 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2148 if (ret)
2149 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2150 copy_num, ret);
2151 }
2152
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2153 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2154 {
2155 int copy_num;
2156 struct block_device *bdev = device->bdev;
2157
2158 if (!bdev)
2159 return;
2160
2161 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2162 if (bdev_is_zoned(bdev))
2163 btrfs_reset_sb_log_zones(bdev, copy_num);
2164 else
2165 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2166 }
2167
2168 /* Notify udev that device has changed */
2169 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2170
2171 /* Update ctime/mtime for device path for libblkid */
2172 update_dev_time(rcu_dereference_raw(device->name));
2173 }
2174
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2175 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2176 struct btrfs_dev_lookup_args *args,
2177 struct file **bdev_file)
2178 {
2179 struct btrfs_trans_handle *trans;
2180 struct btrfs_device *device;
2181 struct btrfs_fs_devices *cur_devices;
2182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2183 u64 num_devices;
2184 int ret = 0;
2185
2186 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2187 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2188 return -EINVAL;
2189 }
2190
2191 /*
2192 * The device list in fs_devices is accessed without locks (neither
2193 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2194 * filesystem and another device rm cannot run.
2195 */
2196 num_devices = btrfs_num_devices(fs_info);
2197
2198 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2199 if (ret)
2200 return ret;
2201
2202 device = btrfs_find_device(fs_info->fs_devices, args);
2203 if (!device) {
2204 if (args->missing)
2205 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2206 else
2207 ret = -ENOENT;
2208 return ret;
2209 }
2210
2211 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2212 btrfs_warn(fs_info,
2213 "cannot remove device %s (devid %llu) due to active swapfile",
2214 btrfs_dev_name(device), device->devid);
2215 return -ETXTBSY;
2216 }
2217
2218 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2219 return BTRFS_ERROR_DEV_TGT_REPLACE;
2220
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2222 fs_info->fs_devices->rw_devices == 1)
2223 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2224
2225 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2226 mutex_lock(&fs_info->chunk_mutex);
2227 list_del_init(&device->dev_alloc_list);
2228 device->fs_devices->rw_devices--;
2229 mutex_unlock(&fs_info->chunk_mutex);
2230 }
2231
2232 ret = btrfs_shrink_device(device, 0);
2233 if (ret)
2234 goto error_undo;
2235
2236 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2237 if (IS_ERR(trans)) {
2238 ret = PTR_ERR(trans);
2239 goto error_undo;
2240 }
2241
2242 ret = btrfs_rm_dev_item(trans, device);
2243 if (unlikely(ret)) {
2244 /* Any error in dev item removal is critical */
2245 btrfs_crit(fs_info,
2246 "failed to remove device item for devid %llu: %d",
2247 device->devid, ret);
2248 btrfs_abort_transaction(trans, ret);
2249 btrfs_end_transaction(trans);
2250 return ret;
2251 }
2252
2253 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2254 btrfs_scrub_cancel_dev(device);
2255
2256 /*
2257 * the device list mutex makes sure that we don't change
2258 * the device list while someone else is writing out all
2259 * the device supers. Whoever is writing all supers, should
2260 * lock the device list mutex before getting the number of
2261 * devices in the super block (super_copy). Conversely,
2262 * whoever updates the number of devices in the super block
2263 * (super_copy) should hold the device list mutex.
2264 */
2265
2266 /*
2267 * In normal cases the cur_devices == fs_devices. But in case
2268 * of deleting a seed device, the cur_devices should point to
2269 * its own fs_devices listed under the fs_devices->seed_list.
2270 */
2271 cur_devices = device->fs_devices;
2272 mutex_lock(&fs_devices->device_list_mutex);
2273 list_del_rcu(&device->dev_list);
2274
2275 cur_devices->num_devices--;
2276 cur_devices->total_devices--;
2277 /* Update total_devices of the parent fs_devices if it's seed */
2278 if (cur_devices != fs_devices)
2279 fs_devices->total_devices--;
2280
2281 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2282 cur_devices->missing_devices--;
2283
2284 btrfs_assign_next_active_device(device, NULL);
2285
2286 if (device->bdev_file) {
2287 cur_devices->open_devices--;
2288 /* remove sysfs entry */
2289 btrfs_sysfs_remove_device(device);
2290 }
2291
2292 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2293 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2294 mutex_unlock(&fs_devices->device_list_mutex);
2295
2296 /*
2297 * At this point, the device is zero sized and detached from the
2298 * devices list. All that's left is to zero out the old supers and
2299 * free the device.
2300 *
2301 * We cannot call btrfs_close_bdev() here because we're holding the sb
2302 * write lock, and bdev_fput() on the block device will pull in the
2303 * ->open_mutex on the block device and it's dependencies. Instead
2304 * just flush the device and let the caller do the final bdev_release.
2305 */
2306 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2307 btrfs_scratch_superblocks(fs_info, device);
2308 if (device->bdev) {
2309 sync_blockdev(device->bdev);
2310 invalidate_bdev(device->bdev);
2311 }
2312 }
2313
2314 *bdev_file = device->bdev_file;
2315 synchronize_rcu();
2316 btrfs_free_device(device);
2317
2318 /*
2319 * This can happen if cur_devices is the private seed devices list. We
2320 * cannot call close_fs_devices() here because it expects the uuid_mutex
2321 * to be held, but in fact we don't need that for the private
2322 * seed_devices, we can simply decrement cur_devices->opened and then
2323 * remove it from our list and free the fs_devices.
2324 */
2325 if (cur_devices->num_devices == 0) {
2326 list_del_init(&cur_devices->seed_list);
2327 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened);
2328 cur_devices->opened--;
2329 free_fs_devices(cur_devices);
2330 }
2331
2332 ret = btrfs_commit_transaction(trans);
2333
2334 return ret;
2335
2336 error_undo:
2337 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2338 mutex_lock(&fs_info->chunk_mutex);
2339 list_add(&device->dev_alloc_list,
2340 &fs_devices->alloc_list);
2341 device->fs_devices->rw_devices++;
2342 mutex_unlock(&fs_info->chunk_mutex);
2343 }
2344 return ret;
2345 }
2346
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2347 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2348 {
2349 struct btrfs_fs_devices *fs_devices;
2350
2351 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2352
2353 /*
2354 * in case of fs with no seed, srcdev->fs_devices will point
2355 * to fs_devices of fs_info. However when the dev being replaced is
2356 * a seed dev it will point to the seed's local fs_devices. In short
2357 * srcdev will have its correct fs_devices in both the cases.
2358 */
2359 fs_devices = srcdev->fs_devices;
2360
2361 list_del_rcu(&srcdev->dev_list);
2362 list_del(&srcdev->dev_alloc_list);
2363 fs_devices->num_devices--;
2364 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2365 fs_devices->missing_devices--;
2366
2367 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2368 fs_devices->rw_devices--;
2369
2370 if (srcdev->bdev)
2371 fs_devices->open_devices--;
2372 }
2373
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2374 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2375 {
2376 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2377
2378 mutex_lock(&uuid_mutex);
2379
2380 btrfs_close_bdev(srcdev);
2381 synchronize_rcu();
2382 btrfs_free_device(srcdev);
2383
2384 /* if this is no devs we rather delete the fs_devices */
2385 if (!fs_devices->num_devices) {
2386 /*
2387 * On a mounted FS, num_devices can't be zero unless it's a
2388 * seed. In case of a seed device being replaced, the replace
2389 * target added to the sprout FS, so there will be no more
2390 * device left under the seed FS.
2391 */
2392 ASSERT(fs_devices->seeding);
2393
2394 list_del_init(&fs_devices->seed_list);
2395 close_fs_devices(fs_devices);
2396 free_fs_devices(fs_devices);
2397 }
2398 mutex_unlock(&uuid_mutex);
2399 }
2400
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2401 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2402 {
2403 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2404
2405 mutex_lock(&fs_devices->device_list_mutex);
2406
2407 btrfs_sysfs_remove_device(tgtdev);
2408
2409 if (tgtdev->bdev)
2410 fs_devices->open_devices--;
2411
2412 fs_devices->num_devices--;
2413
2414 btrfs_assign_next_active_device(tgtdev, NULL);
2415
2416 list_del_rcu(&tgtdev->dev_list);
2417
2418 mutex_unlock(&fs_devices->device_list_mutex);
2419
2420 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2421
2422 btrfs_close_bdev(tgtdev);
2423 synchronize_rcu();
2424 btrfs_free_device(tgtdev);
2425 }
2426
2427 /*
2428 * Populate args from device at path.
2429 *
2430 * @fs_info: the filesystem
2431 * @args: the args to populate
2432 * @path: the path to the device
2433 *
2434 * This will read the super block of the device at @path and populate @args with
2435 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2436 * lookup a device to operate on, but need to do it before we take any locks.
2437 * This properly handles the special case of "missing" that a user may pass in,
2438 * and does some basic sanity checks. The caller must make sure that @path is
2439 * properly NUL terminated before calling in, and must call
2440 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2441 * uuid buffers.
2442 *
2443 * Return: 0 for success, -errno for failure
2444 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2445 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2446 struct btrfs_dev_lookup_args *args,
2447 const char *path)
2448 {
2449 struct btrfs_super_block *disk_super;
2450 struct file *bdev_file;
2451 int ret;
2452
2453 if (!path || !path[0])
2454 return -EINVAL;
2455 if (!strcmp(path, "missing")) {
2456 args->missing = true;
2457 return 0;
2458 }
2459
2460 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2461 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2462 if (!args->uuid || !args->fsid) {
2463 btrfs_put_dev_args_from_path(args);
2464 return -ENOMEM;
2465 }
2466
2467 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2468 &bdev_file, &disk_super);
2469 if (ret) {
2470 btrfs_put_dev_args_from_path(args);
2471 return ret;
2472 }
2473
2474 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2475 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2476 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2477 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2478 else
2479 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2480 btrfs_release_disk_super(disk_super);
2481 bdev_fput(bdev_file);
2482 return 0;
2483 }
2484
2485 /*
2486 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2487 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2488 * that don't need to be freed.
2489 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2490 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2491 {
2492 kfree(args->uuid);
2493 kfree(args->fsid);
2494 args->uuid = NULL;
2495 args->fsid = NULL;
2496 }
2497
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2498 struct btrfs_device *btrfs_find_device_by_devspec(
2499 struct btrfs_fs_info *fs_info, u64 devid,
2500 const char *device_path)
2501 {
2502 BTRFS_DEV_LOOKUP_ARGS(args);
2503 struct btrfs_device *device;
2504 int ret;
2505
2506 if (devid) {
2507 args.devid = devid;
2508 device = btrfs_find_device(fs_info->fs_devices, &args);
2509 if (!device)
2510 return ERR_PTR(-ENOENT);
2511 return device;
2512 }
2513
2514 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2515 if (ret)
2516 return ERR_PTR(ret);
2517 device = btrfs_find_device(fs_info->fs_devices, &args);
2518 btrfs_put_dev_args_from_path(&args);
2519 if (!device)
2520 return ERR_PTR(-ENOENT);
2521 return device;
2522 }
2523
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2524 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2525 {
2526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2527 struct btrfs_fs_devices *old_devices;
2528 struct btrfs_fs_devices *seed_devices;
2529
2530 lockdep_assert_held(&uuid_mutex);
2531 if (!fs_devices->seeding)
2532 return ERR_PTR(-EINVAL);
2533
2534 /*
2535 * Private copy of the seed devices, anchored at
2536 * fs_info->fs_devices->seed_list
2537 */
2538 seed_devices = alloc_fs_devices(NULL);
2539 if (IS_ERR(seed_devices))
2540 return seed_devices;
2541
2542 /*
2543 * It's necessary to retain a copy of the original seed fs_devices in
2544 * fs_uuids so that filesystems which have been seeded can successfully
2545 * reference the seed device from open_seed_devices. This also supports
2546 * multiple fs seed.
2547 */
2548 old_devices = clone_fs_devices(fs_devices);
2549 if (IS_ERR(old_devices)) {
2550 kfree(seed_devices);
2551 return old_devices;
2552 }
2553
2554 list_add(&old_devices->fs_list, &fs_uuids);
2555
2556 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2557 seed_devices->opened = 1;
2558 INIT_LIST_HEAD(&seed_devices->devices);
2559 INIT_LIST_HEAD(&seed_devices->alloc_list);
2560 mutex_init(&seed_devices->device_list_mutex);
2561
2562 return seed_devices;
2563 }
2564
2565 /*
2566 * Splice seed devices into the sprout fs_devices.
2567 * Generate a new fsid for the sprouted read-write filesystem.
2568 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2569 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2570 struct btrfs_fs_devices *seed_devices)
2571 {
2572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2573 struct btrfs_super_block *disk_super = fs_info->super_copy;
2574 struct btrfs_device *device;
2575 u64 super_flags;
2576
2577 /*
2578 * We are updating the fsid, the thread leading to device_list_add()
2579 * could race, so uuid_mutex is needed.
2580 */
2581 lockdep_assert_held(&uuid_mutex);
2582
2583 /*
2584 * The threads listed below may traverse dev_list but can do that without
2585 * device_list_mutex:
2586 * - All device ops and balance - as we are in btrfs_exclop_start.
2587 * - Various dev_list readers - are using RCU.
2588 * - btrfs_ioctl_fitrim() - is using RCU.
2589 *
2590 * For-read threads as below are using device_list_mutex:
2591 * - Readonly scrub btrfs_scrub_dev()
2592 * - Readonly scrub btrfs_scrub_progress()
2593 * - btrfs_get_dev_stats()
2594 */
2595 lockdep_assert_held(&fs_devices->device_list_mutex);
2596
2597 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2598 synchronize_rcu);
2599 list_for_each_entry(device, &seed_devices->devices, dev_list)
2600 device->fs_devices = seed_devices;
2601
2602 fs_devices->seeding = false;
2603 fs_devices->num_devices = 0;
2604 fs_devices->open_devices = 0;
2605 fs_devices->missing_devices = 0;
2606 fs_devices->rotating = false;
2607 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2608
2609 generate_random_uuid(fs_devices->fsid);
2610 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2611 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2612
2613 super_flags = btrfs_super_flags(disk_super) &
2614 ~BTRFS_SUPER_FLAG_SEEDING;
2615 btrfs_set_super_flags(disk_super, super_flags);
2616 }
2617
2618 /*
2619 * Store the expected generation for seed devices in device items.
2620 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2621 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2622 {
2623 BTRFS_DEV_LOOKUP_ARGS(args);
2624 struct btrfs_fs_info *fs_info = trans->fs_info;
2625 struct btrfs_root *root = fs_info->chunk_root;
2626 struct btrfs_path *path;
2627 struct extent_buffer *leaf;
2628 struct btrfs_dev_item *dev_item;
2629 struct btrfs_device *device;
2630 struct btrfs_key key;
2631 u8 fs_uuid[BTRFS_FSID_SIZE];
2632 u8 dev_uuid[BTRFS_UUID_SIZE];
2633 int ret;
2634
2635 path = btrfs_alloc_path();
2636 if (!path)
2637 return -ENOMEM;
2638
2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 key.type = BTRFS_DEV_ITEM_KEY;
2641 key.offset = 0;
2642
2643 while (1) {
2644 btrfs_reserve_chunk_metadata(trans, false);
2645 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2646 btrfs_trans_release_chunk_metadata(trans);
2647 if (ret < 0)
2648 goto error;
2649
2650 leaf = path->nodes[0];
2651 next_slot:
2652 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2653 ret = btrfs_next_leaf(root, path);
2654 if (ret > 0)
2655 break;
2656 if (ret < 0)
2657 goto error;
2658 leaf = path->nodes[0];
2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2660 btrfs_release_path(path);
2661 continue;
2662 }
2663
2664 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2665 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2666 key.type != BTRFS_DEV_ITEM_KEY)
2667 break;
2668
2669 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2670 struct btrfs_dev_item);
2671 args.devid = btrfs_device_id(leaf, dev_item);
2672 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2673 BTRFS_UUID_SIZE);
2674 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2675 BTRFS_FSID_SIZE);
2676 args.uuid = dev_uuid;
2677 args.fsid = fs_uuid;
2678 device = btrfs_find_device(fs_info->fs_devices, &args);
2679 BUG_ON(!device); /* Logic error */
2680
2681 if (device->fs_devices->seeding)
2682 btrfs_set_device_generation(leaf, dev_item,
2683 device->generation);
2684
2685 path->slots[0]++;
2686 goto next_slot;
2687 }
2688 ret = 0;
2689 error:
2690 btrfs_free_path(path);
2691 return ret;
2692 }
2693
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2694 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2695 {
2696 struct btrfs_root *root = fs_info->dev_root;
2697 struct btrfs_trans_handle *trans;
2698 struct btrfs_device *device;
2699 struct file *bdev_file;
2700 struct super_block *sb = fs_info->sb;
2701 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2702 struct btrfs_fs_devices *seed_devices = NULL;
2703 u64 orig_super_total_bytes;
2704 u64 orig_super_num_devices;
2705 int ret = 0;
2706 bool seeding_dev = false;
2707 bool locked = false;
2708
2709 if (sb_rdonly(sb) && !fs_devices->seeding)
2710 return -EROFS;
2711
2712 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2713 fs_info->sb, &fs_holder_ops);
2714 if (IS_ERR(bdev_file))
2715 return PTR_ERR(bdev_file);
2716
2717 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2718 ret = -EINVAL;
2719 goto error;
2720 }
2721
2722 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) {
2723 ret = -EINVAL;
2724 goto error;
2725 }
2726
2727 if (fs_devices->seeding) {
2728 seeding_dev = true;
2729 down_write(&sb->s_umount);
2730 mutex_lock(&uuid_mutex);
2731 locked = true;
2732 }
2733
2734 sync_blockdev(file_bdev(bdev_file));
2735
2736 rcu_read_lock();
2737 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2738 if (device->bdev == file_bdev(bdev_file)) {
2739 ret = -EEXIST;
2740 rcu_read_unlock();
2741 goto error;
2742 }
2743 }
2744 rcu_read_unlock();
2745
2746 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2747 if (IS_ERR(device)) {
2748 /* we can safely leave the fs_devices entry around */
2749 ret = PTR_ERR(device);
2750 goto error;
2751 }
2752
2753 device->fs_info = fs_info;
2754 device->bdev_file = bdev_file;
2755 device->bdev = file_bdev(bdev_file);
2756 ret = lookup_bdev(device_path, &device->devt);
2757 if (ret)
2758 goto error_free_device;
2759
2760 ret = btrfs_get_dev_zone_info(device, false);
2761 if (ret)
2762 goto error_free_device;
2763
2764 trans = btrfs_start_transaction(root, 0);
2765 if (IS_ERR(trans)) {
2766 ret = PTR_ERR(trans);
2767 goto error_free_zone;
2768 }
2769
2770 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2771 device->generation = trans->transid;
2772 device->io_width = fs_info->sectorsize;
2773 device->io_align = fs_info->sectorsize;
2774 device->sector_size = fs_info->sectorsize;
2775 device->total_bytes =
2776 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2777 device->disk_total_bytes = device->total_bytes;
2778 device->commit_total_bytes = device->total_bytes;
2779 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2780 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2781 device->dev_stats_valid = 1;
2782 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2783
2784 if (seeding_dev) {
2785 /* GFP_KERNEL allocation must not be under device_list_mutex */
2786 seed_devices = btrfs_init_sprout(fs_info);
2787 if (IS_ERR(seed_devices)) {
2788 ret = PTR_ERR(seed_devices);
2789 btrfs_abort_transaction(trans, ret);
2790 goto error_trans;
2791 }
2792 }
2793
2794 mutex_lock(&fs_devices->device_list_mutex);
2795 if (seeding_dev) {
2796 btrfs_setup_sprout(fs_info, seed_devices);
2797 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2798 device);
2799 }
2800
2801 device->fs_devices = fs_devices;
2802
2803 mutex_lock(&fs_info->chunk_mutex);
2804 list_add_rcu(&device->dev_list, &fs_devices->devices);
2805 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2806 fs_devices->num_devices++;
2807 fs_devices->open_devices++;
2808 fs_devices->rw_devices++;
2809 fs_devices->total_devices++;
2810 fs_devices->total_rw_bytes += device->total_bytes;
2811
2812 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2813
2814 if (!bdev_nonrot(device->bdev))
2815 fs_devices->rotating = true;
2816
2817 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2818 btrfs_set_super_total_bytes(fs_info->super_copy,
2819 round_down(orig_super_total_bytes + device->total_bytes,
2820 fs_info->sectorsize));
2821
2822 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2823 btrfs_set_super_num_devices(fs_info->super_copy,
2824 orig_super_num_devices + 1);
2825
2826 /*
2827 * we've got more storage, clear any full flags on the space
2828 * infos
2829 */
2830 btrfs_clear_space_info_full(fs_info);
2831
2832 mutex_unlock(&fs_info->chunk_mutex);
2833
2834 /* Add sysfs device entry */
2835 btrfs_sysfs_add_device(device);
2836
2837 mutex_unlock(&fs_devices->device_list_mutex);
2838
2839 if (seeding_dev) {
2840 mutex_lock(&fs_info->chunk_mutex);
2841 ret = init_first_rw_device(trans);
2842 mutex_unlock(&fs_info->chunk_mutex);
2843 if (unlikely(ret)) {
2844 btrfs_abort_transaction(trans, ret);
2845 goto error_sysfs;
2846 }
2847 }
2848
2849 ret = btrfs_add_dev_item(trans, device);
2850 if (unlikely(ret)) {
2851 btrfs_abort_transaction(trans, ret);
2852 goto error_sysfs;
2853 }
2854
2855 if (seeding_dev) {
2856 ret = btrfs_finish_sprout(trans);
2857 if (unlikely(ret)) {
2858 btrfs_abort_transaction(trans, ret);
2859 goto error_sysfs;
2860 }
2861
2862 /*
2863 * fs_devices now represents the newly sprouted filesystem and
2864 * its fsid has been changed by btrfs_sprout_splice().
2865 */
2866 btrfs_sysfs_update_sprout_fsid(fs_devices);
2867 }
2868
2869 ret = btrfs_commit_transaction(trans);
2870
2871 if (seeding_dev) {
2872 mutex_unlock(&uuid_mutex);
2873 up_write(&sb->s_umount);
2874 locked = false;
2875
2876 if (ret) /* transaction commit */
2877 return ret;
2878
2879 ret = btrfs_relocate_sys_chunks(fs_info);
2880 if (ret < 0)
2881 btrfs_handle_fs_error(fs_info, ret,
2882 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2883 trans = btrfs_attach_transaction(root);
2884 if (IS_ERR(trans)) {
2885 if (PTR_ERR(trans) == -ENOENT)
2886 return 0;
2887 ret = PTR_ERR(trans);
2888 trans = NULL;
2889 goto error_sysfs;
2890 }
2891 ret = btrfs_commit_transaction(trans);
2892 }
2893
2894 /*
2895 * Now that we have written a new super block to this device, check all
2896 * other fs_devices list if device_path alienates any other scanned
2897 * device.
2898 * We can ignore the return value as it typically returns -EINVAL and
2899 * only succeeds if the device was an alien.
2900 */
2901 btrfs_forget_devices(device->devt);
2902
2903 /* Update ctime/mtime for blkid or udev */
2904 update_dev_time(device_path);
2905
2906 return ret;
2907
2908 error_sysfs:
2909 btrfs_sysfs_remove_device(device);
2910 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2911 mutex_lock(&fs_info->chunk_mutex);
2912 list_del_rcu(&device->dev_list);
2913 list_del(&device->dev_alloc_list);
2914 fs_info->fs_devices->num_devices--;
2915 fs_info->fs_devices->open_devices--;
2916 fs_info->fs_devices->rw_devices--;
2917 fs_info->fs_devices->total_devices--;
2918 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2919 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2920 btrfs_set_super_total_bytes(fs_info->super_copy,
2921 orig_super_total_bytes);
2922 btrfs_set_super_num_devices(fs_info->super_copy,
2923 orig_super_num_devices);
2924 mutex_unlock(&fs_info->chunk_mutex);
2925 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2926 error_trans:
2927 if (trans)
2928 btrfs_end_transaction(trans);
2929 error_free_zone:
2930 btrfs_destroy_dev_zone_info(device);
2931 error_free_device:
2932 btrfs_free_device(device);
2933 error:
2934 bdev_fput(bdev_file);
2935 if (locked) {
2936 mutex_unlock(&uuid_mutex);
2937 up_write(&sb->s_umount);
2938 }
2939 return ret;
2940 }
2941
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2942 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2943 struct btrfs_device *device)
2944 {
2945 int ret;
2946 struct btrfs_path *path;
2947 struct btrfs_root *root = device->fs_info->chunk_root;
2948 struct btrfs_dev_item *dev_item;
2949 struct extent_buffer *leaf;
2950 struct btrfs_key key;
2951
2952 path = btrfs_alloc_path();
2953 if (!path)
2954 return -ENOMEM;
2955
2956 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2957 key.type = BTRFS_DEV_ITEM_KEY;
2958 key.offset = device->devid;
2959
2960 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2961 if (ret < 0)
2962 goto out;
2963
2964 if (ret > 0) {
2965 ret = -ENOENT;
2966 goto out;
2967 }
2968
2969 leaf = path->nodes[0];
2970 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2971
2972 btrfs_set_device_id(leaf, dev_item, device->devid);
2973 btrfs_set_device_type(leaf, dev_item, device->type);
2974 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2975 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2976 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2977 btrfs_set_device_total_bytes(leaf, dev_item,
2978 btrfs_device_get_disk_total_bytes(device));
2979 btrfs_set_device_bytes_used(leaf, dev_item,
2980 btrfs_device_get_bytes_used(device));
2981 out:
2982 btrfs_free_path(path);
2983 return ret;
2984 }
2985
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2986 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2987 struct btrfs_device *device, u64 new_size)
2988 {
2989 struct btrfs_fs_info *fs_info = device->fs_info;
2990 struct btrfs_super_block *super_copy = fs_info->super_copy;
2991 u64 old_total;
2992 u64 diff;
2993 int ret;
2994
2995 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2996 return -EACCES;
2997
2998 new_size = round_down(new_size, fs_info->sectorsize);
2999
3000 mutex_lock(&fs_info->chunk_mutex);
3001 old_total = btrfs_super_total_bytes(super_copy);
3002 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3003
3004 if (new_size <= device->total_bytes ||
3005 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3006 mutex_unlock(&fs_info->chunk_mutex);
3007 return -EINVAL;
3008 }
3009
3010 btrfs_set_super_total_bytes(super_copy,
3011 round_down(old_total + diff, fs_info->sectorsize));
3012 device->fs_devices->total_rw_bytes += diff;
3013 atomic64_add(diff, &fs_info->free_chunk_space);
3014
3015 btrfs_device_set_total_bytes(device, new_size);
3016 btrfs_device_set_disk_total_bytes(device, new_size);
3017 btrfs_clear_space_info_full(device->fs_info);
3018 if (list_empty(&device->post_commit_list))
3019 list_add_tail(&device->post_commit_list,
3020 &trans->transaction->dev_update_list);
3021 mutex_unlock(&fs_info->chunk_mutex);
3022
3023 btrfs_reserve_chunk_metadata(trans, false);
3024 ret = btrfs_update_device(trans, device);
3025 btrfs_trans_release_chunk_metadata(trans);
3026
3027 return ret;
3028 }
3029
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3030 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3031 {
3032 struct btrfs_fs_info *fs_info = trans->fs_info;
3033 struct btrfs_root *root = fs_info->chunk_root;
3034 int ret;
3035 struct btrfs_path *path;
3036 struct btrfs_key key;
3037
3038 path = btrfs_alloc_path();
3039 if (!path)
3040 return -ENOMEM;
3041
3042 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3043 key.type = BTRFS_CHUNK_ITEM_KEY;
3044 key.offset = chunk_offset;
3045
3046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3047 if (ret < 0)
3048 goto out;
3049 else if (unlikely(ret > 0)) { /* Logic error or corruption */
3050 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3051 chunk_offset);
3052 btrfs_abort_transaction(trans, -ENOENT);
3053 ret = -EUCLEAN;
3054 goto out;
3055 }
3056
3057 ret = btrfs_del_item(trans, root, path);
3058 if (unlikely(ret < 0)) {
3059 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3060 btrfs_abort_transaction(trans, ret);
3061 goto out;
3062 }
3063 out:
3064 btrfs_free_path(path);
3065 return ret;
3066 }
3067
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3068 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3069 {
3070 struct btrfs_super_block *super_copy = fs_info->super_copy;
3071 struct btrfs_disk_key *disk_key;
3072 struct btrfs_chunk *chunk;
3073 u8 *ptr;
3074 int ret = 0;
3075 u32 num_stripes;
3076 u32 array_size;
3077 u32 len = 0;
3078 u32 cur;
3079 struct btrfs_key key;
3080
3081 lockdep_assert_held(&fs_info->chunk_mutex);
3082 array_size = btrfs_super_sys_array_size(super_copy);
3083
3084 ptr = super_copy->sys_chunk_array;
3085 cur = 0;
3086
3087 while (cur < array_size) {
3088 disk_key = (struct btrfs_disk_key *)ptr;
3089 btrfs_disk_key_to_cpu(&key, disk_key);
3090
3091 len = sizeof(*disk_key);
3092
3093 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3094 chunk = (struct btrfs_chunk *)(ptr + len);
3095 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3096 len += btrfs_chunk_item_size(num_stripes);
3097 } else {
3098 ret = -EIO;
3099 break;
3100 }
3101 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3102 key.offset == chunk_offset) {
3103 memmove(ptr, ptr + len, array_size - (cur + len));
3104 array_size -= len;
3105 btrfs_set_super_sys_array_size(super_copy, array_size);
3106 } else {
3107 ptr += len;
3108 cur += len;
3109 }
3110 }
3111 return ret;
3112 }
3113
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3114 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3115 u64 logical, u64 length)
3116 {
3117 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3118 struct rb_node *prev = NULL;
3119 struct rb_node *orig_prev;
3120 struct btrfs_chunk_map *map;
3121 struct btrfs_chunk_map *prev_map = NULL;
3122
3123 while (node) {
3124 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3125 prev = node;
3126 prev_map = map;
3127
3128 if (logical < map->start) {
3129 node = node->rb_left;
3130 } else if (logical >= map->start + map->chunk_len) {
3131 node = node->rb_right;
3132 } else {
3133 refcount_inc(&map->refs);
3134 return map;
3135 }
3136 }
3137
3138 if (!prev)
3139 return NULL;
3140
3141 orig_prev = prev;
3142 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3143 prev = rb_next(prev);
3144 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3145 }
3146
3147 if (!prev) {
3148 prev = orig_prev;
3149 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3150 while (prev && logical < prev_map->start) {
3151 prev = rb_prev(prev);
3152 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3153 }
3154 }
3155
3156 if (prev) {
3157 u64 end = logical + length;
3158
3159 /*
3160 * Caller can pass a U64_MAX length when it wants to get any
3161 * chunk starting at an offset of 'logical' or higher, so deal
3162 * with underflow by resetting the end offset to U64_MAX.
3163 */
3164 if (end < logical)
3165 end = U64_MAX;
3166
3167 if (end > prev_map->start &&
3168 logical < prev_map->start + prev_map->chunk_len) {
3169 refcount_inc(&prev_map->refs);
3170 return prev_map;
3171 }
3172 }
3173
3174 return NULL;
3175 }
3176
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3177 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3178 u64 logical, u64 length)
3179 {
3180 struct btrfs_chunk_map *map;
3181
3182 read_lock(&fs_info->mapping_tree_lock);
3183 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3184 read_unlock(&fs_info->mapping_tree_lock);
3185
3186 return map;
3187 }
3188
3189 /*
3190 * Find the mapping containing the given logical extent.
3191 *
3192 * @logical: Logical block offset in bytes.
3193 * @length: Length of extent in bytes.
3194 *
3195 * Return: Chunk mapping or ERR_PTR.
3196 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3197 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3198 u64 logical, u64 length)
3199 {
3200 struct btrfs_chunk_map *map;
3201
3202 map = btrfs_find_chunk_map(fs_info, logical, length);
3203
3204 if (unlikely(!map)) {
3205 btrfs_crit(fs_info,
3206 "unable to find chunk map for logical %llu length %llu",
3207 logical, length);
3208 return ERR_PTR(-EINVAL);
3209 }
3210
3211 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3212 btrfs_crit(fs_info,
3213 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3214 logical, logical + length, map->start,
3215 map->start + map->chunk_len);
3216 btrfs_free_chunk_map(map);
3217 return ERR_PTR(-EINVAL);
3218 }
3219
3220 /* Callers are responsible for dropping the reference. */
3221 return map;
3222 }
3223
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3224 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3225 struct btrfs_chunk_map *map, u64 chunk_offset)
3226 {
3227 int i;
3228
3229 /*
3230 * Removing chunk items and updating the device items in the chunks btree
3231 * requires holding the chunk_mutex.
3232 * See the comment at btrfs_chunk_alloc() for the details.
3233 */
3234 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3235
3236 for (i = 0; i < map->num_stripes; i++) {
3237 int ret;
3238
3239 ret = btrfs_update_device(trans, map->stripes[i].dev);
3240 if (ret)
3241 return ret;
3242 }
3243
3244 return btrfs_free_chunk(trans, chunk_offset);
3245 }
3246
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3247 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3248 {
3249 struct btrfs_fs_info *fs_info = trans->fs_info;
3250 struct btrfs_chunk_map *map;
3251 u64 dev_extent_len = 0;
3252 int i, ret = 0;
3253 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3254
3255 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3256 if (IS_ERR(map)) {
3257 /*
3258 * This is a logic error, but we don't want to just rely on the
3259 * user having built with ASSERT enabled, so if ASSERT doesn't
3260 * do anything we still error out.
3261 */
3262 DEBUG_WARN("errr %ld reading chunk map at offset %llu",
3263 PTR_ERR(map), chunk_offset);
3264 return PTR_ERR(map);
3265 }
3266
3267 /*
3268 * First delete the device extent items from the devices btree.
3269 * We take the device_list_mutex to avoid racing with the finishing phase
3270 * of a device replace operation. See the comment below before acquiring
3271 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3272 * because that can result in a deadlock when deleting the device extent
3273 * items from the devices btree - COWing an extent buffer from the btree
3274 * may result in allocating a new metadata chunk, which would attempt to
3275 * lock again fs_info->chunk_mutex.
3276 */
3277 mutex_lock(&fs_devices->device_list_mutex);
3278 for (i = 0; i < map->num_stripes; i++) {
3279 struct btrfs_device *device = map->stripes[i].dev;
3280 ret = btrfs_free_dev_extent(trans, device,
3281 map->stripes[i].physical,
3282 &dev_extent_len);
3283 if (unlikely(ret)) {
3284 mutex_unlock(&fs_devices->device_list_mutex);
3285 btrfs_abort_transaction(trans, ret);
3286 goto out;
3287 }
3288
3289 if (device->bytes_used > 0) {
3290 mutex_lock(&fs_info->chunk_mutex);
3291 btrfs_device_set_bytes_used(device,
3292 device->bytes_used - dev_extent_len);
3293 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3294 btrfs_clear_space_info_full(fs_info);
3295
3296 if (list_empty(&device->post_commit_list)) {
3297 list_add_tail(&device->post_commit_list,
3298 &trans->transaction->dev_update_list);
3299 }
3300
3301 mutex_unlock(&fs_info->chunk_mutex);
3302 }
3303 }
3304 mutex_unlock(&fs_devices->device_list_mutex);
3305
3306 /*
3307 * We acquire fs_info->chunk_mutex for 2 reasons:
3308 *
3309 * 1) Just like with the first phase of the chunk allocation, we must
3310 * reserve system space, do all chunk btree updates and deletions, and
3311 * update the system chunk array in the superblock while holding this
3312 * mutex. This is for similar reasons as explained on the comment at
3313 * the top of btrfs_chunk_alloc();
3314 *
3315 * 2) Prevent races with the final phase of a device replace operation
3316 * that replaces the device object associated with the map's stripes,
3317 * because the device object's id can change at any time during that
3318 * final phase of the device replace operation
3319 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3320 * replaced device and then see it with an ID of
3321 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3322 * the device item, which does not exists on the chunk btree.
3323 * The finishing phase of device replace acquires both the
3324 * device_list_mutex and the chunk_mutex, in that order, so we are
3325 * safe by just acquiring the chunk_mutex.
3326 */
3327 trans->removing_chunk = true;
3328 mutex_lock(&fs_info->chunk_mutex);
3329
3330 check_system_chunk(trans, map->type);
3331
3332 ret = remove_chunk_item(trans, map, chunk_offset);
3333 /*
3334 * Normally we should not get -ENOSPC since we reserved space before
3335 * through the call to check_system_chunk().
3336 *
3337 * Despite our system space_info having enough free space, we may not
3338 * be able to allocate extents from its block groups, because all have
3339 * an incompatible profile, which will force us to allocate a new system
3340 * block group with the right profile, or right after we called
3341 * check_system_space() above, a scrub turned the only system block group
3342 * with enough free space into RO mode.
3343 * This is explained with more detail at do_chunk_alloc().
3344 *
3345 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3346 */
3347 if (ret == -ENOSPC) {
3348 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3349 struct btrfs_block_group *sys_bg;
3350 struct btrfs_space_info *space_info;
3351
3352 space_info = btrfs_find_space_info(fs_info, sys_flags);
3353 if (unlikely(!space_info)) {
3354 ret = -EINVAL;
3355 btrfs_abort_transaction(trans, ret);
3356 goto out;
3357 }
3358
3359 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags);
3360 if (IS_ERR(sys_bg)) {
3361 ret = PTR_ERR(sys_bg);
3362 btrfs_abort_transaction(trans, ret);
3363 goto out;
3364 }
3365
3366 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3367 if (unlikely(ret)) {
3368 btrfs_abort_transaction(trans, ret);
3369 goto out;
3370 }
3371
3372 ret = remove_chunk_item(trans, map, chunk_offset);
3373 if (unlikely(ret)) {
3374 btrfs_abort_transaction(trans, ret);
3375 goto out;
3376 }
3377 } else if (unlikely(ret)) {
3378 btrfs_abort_transaction(trans, ret);
3379 goto out;
3380 }
3381
3382 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3383
3384 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3385 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3386 if (unlikely(ret)) {
3387 btrfs_abort_transaction(trans, ret);
3388 goto out;
3389 }
3390 }
3391
3392 mutex_unlock(&fs_info->chunk_mutex);
3393 trans->removing_chunk = false;
3394
3395 /*
3396 * We are done with chunk btree updates and deletions, so release the
3397 * system space we previously reserved (with check_system_chunk()).
3398 */
3399 btrfs_trans_release_chunk_metadata(trans);
3400
3401 ret = btrfs_remove_block_group(trans, map);
3402 if (unlikely(ret)) {
3403 btrfs_abort_transaction(trans, ret);
3404 goto out;
3405 }
3406
3407 out:
3408 if (trans->removing_chunk) {
3409 mutex_unlock(&fs_info->chunk_mutex);
3410 trans->removing_chunk = false;
3411 }
3412 /* once for us */
3413 btrfs_free_chunk_map(map);
3414 return ret;
3415 }
3416
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset,bool verbose)3417 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3418 bool verbose)
3419 {
3420 struct btrfs_root *root = fs_info->chunk_root;
3421 struct btrfs_trans_handle *trans;
3422 struct btrfs_block_group *block_group;
3423 u64 length;
3424 int ret;
3425
3426 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3427 btrfs_err(fs_info,
3428 "relocate: not supported on extent tree v2 yet");
3429 return -EINVAL;
3430 }
3431
3432 /*
3433 * Prevent races with automatic removal of unused block groups.
3434 * After we relocate and before we remove the chunk with offset
3435 * chunk_offset, automatic removal of the block group can kick in,
3436 * resulting in a failure when calling btrfs_remove_chunk() below.
3437 *
3438 * Make sure to acquire this mutex before doing a tree search (dev
3439 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3440 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3441 * we release the path used to search the chunk/dev tree and before
3442 * the current task acquires this mutex and calls us.
3443 */
3444 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3445
3446 /* step one, relocate all the extents inside this chunk */
3447 btrfs_scrub_pause(fs_info);
3448 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true);
3449 btrfs_scrub_continue(fs_info);
3450 if (ret) {
3451 /*
3452 * If we had a transaction abort, stop all running scrubs.
3453 * See transaction.c:cleanup_transaction() why we do it here.
3454 */
3455 if (BTRFS_FS_ERROR(fs_info))
3456 btrfs_scrub_cancel(fs_info);
3457 return ret;
3458 }
3459
3460 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3461 if (!block_group)
3462 return -ENOENT;
3463 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3464 length = block_group->length;
3465 btrfs_put_block_group(block_group);
3466
3467 /*
3468 * On a zoned file system, discard the whole block group, this will
3469 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3470 * resetting the zone fails, don't treat it as a fatal problem from the
3471 * filesystem's point of view.
3472 */
3473 if (btrfs_is_zoned(fs_info)) {
3474 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3475 if (ret)
3476 btrfs_info(fs_info,
3477 "failed to reset zone %llu after relocation",
3478 chunk_offset);
3479 }
3480
3481 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3482 chunk_offset);
3483 if (IS_ERR(trans)) {
3484 ret = PTR_ERR(trans);
3485 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3486 return ret;
3487 }
3488
3489 /*
3490 * step two, delete the device extents and the
3491 * chunk tree entries
3492 */
3493 ret = btrfs_remove_chunk(trans, chunk_offset);
3494 btrfs_end_transaction(trans);
3495 return ret;
3496 }
3497
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3498 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3499 {
3500 struct btrfs_root *chunk_root = fs_info->chunk_root;
3501 struct btrfs_path *path;
3502 struct extent_buffer *leaf;
3503 struct btrfs_chunk *chunk;
3504 struct btrfs_key key;
3505 struct btrfs_key found_key;
3506 u64 chunk_type;
3507 bool retried = false;
3508 int failed = 0;
3509 int ret;
3510
3511 path = btrfs_alloc_path();
3512 if (!path)
3513 return -ENOMEM;
3514
3515 again:
3516 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3517 key.type = BTRFS_CHUNK_ITEM_KEY;
3518 key.offset = (u64)-1;
3519
3520 while (1) {
3521 mutex_lock(&fs_info->reclaim_bgs_lock);
3522 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3523 if (ret < 0) {
3524 mutex_unlock(&fs_info->reclaim_bgs_lock);
3525 goto error;
3526 }
3527 if (unlikely(ret == 0)) {
3528 /*
3529 * On the first search we would find chunk tree with
3530 * offset -1, which is not possible. On subsequent
3531 * loops this would find an existing item on an invalid
3532 * offset (one less than the previous one, wrong
3533 * alignment and size).
3534 */
3535 ret = -EUCLEAN;
3536 mutex_unlock(&fs_info->reclaim_bgs_lock);
3537 goto error;
3538 }
3539
3540 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3541 key.type);
3542 if (ret)
3543 mutex_unlock(&fs_info->reclaim_bgs_lock);
3544 if (ret < 0)
3545 goto error;
3546 if (ret > 0)
3547 break;
3548
3549 leaf = path->nodes[0];
3550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3551
3552 chunk = btrfs_item_ptr(leaf, path->slots[0],
3553 struct btrfs_chunk);
3554 chunk_type = btrfs_chunk_type(leaf, chunk);
3555 btrfs_release_path(path);
3556
3557 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3558 ret = btrfs_relocate_chunk(fs_info, found_key.offset,
3559 true);
3560 if (ret == -ENOSPC)
3561 failed++;
3562 else
3563 BUG_ON(ret);
3564 }
3565 mutex_unlock(&fs_info->reclaim_bgs_lock);
3566
3567 if (found_key.offset == 0)
3568 break;
3569 key.offset = found_key.offset - 1;
3570 }
3571 ret = 0;
3572 if (failed && !retried) {
3573 failed = 0;
3574 retried = true;
3575 goto again;
3576 } else if (WARN_ON(failed && retried)) {
3577 ret = -ENOSPC;
3578 }
3579 error:
3580 btrfs_free_path(path);
3581 return ret;
3582 }
3583
3584 /*
3585 * return 1 : allocate a data chunk successfully,
3586 * return <0: errors during allocating a data chunk,
3587 * return 0 : no need to allocate a data chunk.
3588 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3589 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3590 u64 chunk_offset)
3591 {
3592 struct btrfs_block_group *cache;
3593 u64 bytes_used;
3594 u64 chunk_type;
3595
3596 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3597 ASSERT(cache);
3598 chunk_type = cache->flags;
3599 btrfs_put_block_group(cache);
3600
3601 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3602 return 0;
3603
3604 spin_lock(&fs_info->data_sinfo->lock);
3605 bytes_used = fs_info->data_sinfo->bytes_used;
3606 spin_unlock(&fs_info->data_sinfo->lock);
3607
3608 if (!bytes_used) {
3609 struct btrfs_trans_handle *trans;
3610 int ret;
3611
3612 trans = btrfs_join_transaction(fs_info->tree_root);
3613 if (IS_ERR(trans))
3614 return PTR_ERR(trans);
3615
3616 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3617 btrfs_end_transaction(trans);
3618 if (ret < 0)
3619 return ret;
3620 return 1;
3621 }
3622
3623 return 0;
3624 }
3625
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3626 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3627 const struct btrfs_disk_balance_args *disk)
3628 {
3629 memset(cpu, 0, sizeof(*cpu));
3630
3631 cpu->profiles = le64_to_cpu(disk->profiles);
3632 cpu->usage = le64_to_cpu(disk->usage);
3633 cpu->devid = le64_to_cpu(disk->devid);
3634 cpu->pstart = le64_to_cpu(disk->pstart);
3635 cpu->pend = le64_to_cpu(disk->pend);
3636 cpu->vstart = le64_to_cpu(disk->vstart);
3637 cpu->vend = le64_to_cpu(disk->vend);
3638 cpu->target = le64_to_cpu(disk->target);
3639 cpu->flags = le64_to_cpu(disk->flags);
3640 cpu->limit = le64_to_cpu(disk->limit);
3641 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3642 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3643 }
3644
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3645 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3646 const struct btrfs_balance_args *cpu)
3647 {
3648 memset(disk, 0, sizeof(*disk));
3649
3650 disk->profiles = cpu_to_le64(cpu->profiles);
3651 disk->usage = cpu_to_le64(cpu->usage);
3652 disk->devid = cpu_to_le64(cpu->devid);
3653 disk->pstart = cpu_to_le64(cpu->pstart);
3654 disk->pend = cpu_to_le64(cpu->pend);
3655 disk->vstart = cpu_to_le64(cpu->vstart);
3656 disk->vend = cpu_to_le64(cpu->vend);
3657 disk->target = cpu_to_le64(cpu->target);
3658 disk->flags = cpu_to_le64(cpu->flags);
3659 disk->limit = cpu_to_le64(cpu->limit);
3660 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3661 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3662 }
3663
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3664 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3665 struct btrfs_balance_control *bctl)
3666 {
3667 struct btrfs_root *root = fs_info->tree_root;
3668 struct btrfs_trans_handle *trans;
3669 struct btrfs_balance_item *item;
3670 struct btrfs_disk_balance_args disk_bargs;
3671 struct btrfs_path *path;
3672 struct extent_buffer *leaf;
3673 struct btrfs_key key;
3674 int ret, err;
3675
3676 path = btrfs_alloc_path();
3677 if (!path)
3678 return -ENOMEM;
3679
3680 trans = btrfs_start_transaction(root, 0);
3681 if (IS_ERR(trans)) {
3682 btrfs_free_path(path);
3683 return PTR_ERR(trans);
3684 }
3685
3686 key.objectid = BTRFS_BALANCE_OBJECTID;
3687 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3688 key.offset = 0;
3689
3690 ret = btrfs_insert_empty_item(trans, root, path, &key,
3691 sizeof(*item));
3692 if (ret)
3693 goto out;
3694
3695 leaf = path->nodes[0];
3696 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3697
3698 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3699
3700 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3701 btrfs_set_balance_data(leaf, item, &disk_bargs);
3702 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3703 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3704 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3705 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3706 btrfs_set_balance_flags(leaf, item, bctl->flags);
3707 out:
3708 btrfs_free_path(path);
3709 err = btrfs_commit_transaction(trans);
3710 if (err && !ret)
3711 ret = err;
3712 return ret;
3713 }
3714
del_balance_item(struct btrfs_fs_info * fs_info)3715 static int del_balance_item(struct btrfs_fs_info *fs_info)
3716 {
3717 struct btrfs_root *root = fs_info->tree_root;
3718 struct btrfs_trans_handle *trans;
3719 struct btrfs_path *path;
3720 struct btrfs_key key;
3721 int ret, err;
3722
3723 path = btrfs_alloc_path();
3724 if (!path)
3725 return -ENOMEM;
3726
3727 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3728 if (IS_ERR(trans)) {
3729 btrfs_free_path(path);
3730 return PTR_ERR(trans);
3731 }
3732
3733 key.objectid = BTRFS_BALANCE_OBJECTID;
3734 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3735 key.offset = 0;
3736
3737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3738 if (ret < 0)
3739 goto out;
3740 if (ret > 0) {
3741 ret = -ENOENT;
3742 goto out;
3743 }
3744
3745 ret = btrfs_del_item(trans, root, path);
3746 out:
3747 btrfs_free_path(path);
3748 err = btrfs_commit_transaction(trans);
3749 if (err && !ret)
3750 ret = err;
3751 return ret;
3752 }
3753
3754 /*
3755 * This is a heuristic used to reduce the number of chunks balanced on
3756 * resume after balance was interrupted.
3757 */
update_balance_args(struct btrfs_balance_control * bctl)3758 static void update_balance_args(struct btrfs_balance_control *bctl)
3759 {
3760 /*
3761 * Turn on soft mode for chunk types that were being converted.
3762 */
3763 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3764 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3765 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3766 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3767 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3768 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3769
3770 /*
3771 * Turn on usage filter if is not already used. The idea is
3772 * that chunks that we have already balanced should be
3773 * reasonably full. Don't do it for chunks that are being
3774 * converted - that will keep us from relocating unconverted
3775 * (albeit full) chunks.
3776 */
3777 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3778 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3779 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3780 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3781 bctl->data.usage = 90;
3782 }
3783 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3784 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3785 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3786 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3787 bctl->sys.usage = 90;
3788 }
3789 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3790 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3791 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3792 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3793 bctl->meta.usage = 90;
3794 }
3795 }
3796
3797 /*
3798 * Clear the balance status in fs_info and delete the balance item from disk.
3799 */
reset_balance_state(struct btrfs_fs_info * fs_info)3800 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3801 {
3802 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3803 int ret;
3804
3805 ASSERT(fs_info->balance_ctl);
3806
3807 spin_lock(&fs_info->balance_lock);
3808 fs_info->balance_ctl = NULL;
3809 spin_unlock(&fs_info->balance_lock);
3810
3811 kfree(bctl);
3812 ret = del_balance_item(fs_info);
3813 if (ret)
3814 btrfs_handle_fs_error(fs_info, ret, NULL);
3815 }
3816
3817 /*
3818 * Balance filters. Return 1 if chunk should be filtered out
3819 * (should not be balanced).
3820 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3821 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3822 {
3823 chunk_type = chunk_to_extended(chunk_type) &
3824 BTRFS_EXTENDED_PROFILE_MASK;
3825
3826 if (bargs->profiles & chunk_type)
3827 return false;
3828
3829 return true;
3830 }
3831
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3832 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3833 struct btrfs_balance_args *bargs)
3834 {
3835 struct btrfs_block_group *cache;
3836 u64 chunk_used;
3837 u64 user_thresh_min;
3838 u64 user_thresh_max;
3839 bool ret = true;
3840
3841 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3842 chunk_used = cache->used;
3843
3844 if (bargs->usage_min == 0)
3845 user_thresh_min = 0;
3846 else
3847 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3848
3849 if (bargs->usage_max == 0)
3850 user_thresh_max = 1;
3851 else if (bargs->usage_max > 100)
3852 user_thresh_max = cache->length;
3853 else
3854 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3855
3856 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3857 ret = false;
3858
3859 btrfs_put_block_group(cache);
3860 return ret;
3861 }
3862
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3863 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3864 struct btrfs_balance_args *bargs)
3865 {
3866 struct btrfs_block_group *cache;
3867 u64 chunk_used, user_thresh;
3868 bool ret = true;
3869
3870 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3871 chunk_used = cache->used;
3872
3873 if (bargs->usage_min == 0)
3874 user_thresh = 1;
3875 else if (bargs->usage > 100)
3876 user_thresh = cache->length;
3877 else
3878 user_thresh = mult_perc(cache->length, bargs->usage);
3879
3880 if (chunk_used < user_thresh)
3881 ret = false;
3882
3883 btrfs_put_block_group(cache);
3884 return ret;
3885 }
3886
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3887 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3888 struct btrfs_balance_args *bargs)
3889 {
3890 struct btrfs_stripe *stripe;
3891 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3892 int i;
3893
3894 for (i = 0; i < num_stripes; i++) {
3895 stripe = btrfs_stripe_nr(chunk, i);
3896 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3897 return false;
3898 }
3899
3900 return true;
3901 }
3902
calc_data_stripes(u64 type,int num_stripes)3903 static u64 calc_data_stripes(u64 type, int num_stripes)
3904 {
3905 const int index = btrfs_bg_flags_to_raid_index(type);
3906 const int ncopies = btrfs_raid_array[index].ncopies;
3907 const int nparity = btrfs_raid_array[index].nparity;
3908
3909 return (num_stripes - nparity) / ncopies;
3910 }
3911
3912 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3913 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3914 struct btrfs_balance_args *bargs)
3915 {
3916 struct btrfs_stripe *stripe;
3917 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3918 u64 stripe_offset;
3919 u64 stripe_length;
3920 u64 type;
3921 int factor;
3922 int i;
3923
3924 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3925 return false;
3926
3927 type = btrfs_chunk_type(leaf, chunk);
3928 factor = calc_data_stripes(type, num_stripes);
3929
3930 for (i = 0; i < num_stripes; i++) {
3931 stripe = btrfs_stripe_nr(chunk, i);
3932 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3933 continue;
3934
3935 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3936 stripe_length = btrfs_chunk_length(leaf, chunk);
3937 stripe_length = div_u64(stripe_length, factor);
3938
3939 if (stripe_offset < bargs->pend &&
3940 stripe_offset + stripe_length > bargs->pstart)
3941 return false;
3942 }
3943
3944 return true;
3945 }
3946
3947 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3948 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3949 u64 chunk_offset, struct btrfs_balance_args *bargs)
3950 {
3951 if (chunk_offset < bargs->vend &&
3952 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3953 /* at least part of the chunk is inside this vrange */
3954 return false;
3955
3956 return true;
3957 }
3958
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3959 static bool chunk_stripes_range_filter(struct extent_buffer *leaf,
3960 struct btrfs_chunk *chunk,
3961 struct btrfs_balance_args *bargs)
3962 {
3963 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3964
3965 if (bargs->stripes_min <= num_stripes
3966 && num_stripes <= bargs->stripes_max)
3967 return false;
3968
3969 return true;
3970 }
3971
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3972 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3973 {
3974 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3975 return false;
3976
3977 chunk_type = chunk_to_extended(chunk_type) &
3978 BTRFS_EXTENDED_PROFILE_MASK;
3979
3980 if (bargs->target == chunk_type)
3981 return true;
3982
3983 return false;
3984 }
3985
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3986 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3987 u64 chunk_offset)
3988 {
3989 struct btrfs_fs_info *fs_info = leaf->fs_info;
3990 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3991 struct btrfs_balance_args *bargs = NULL;
3992 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3993
3994 /* type filter */
3995 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3996 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3997 return false;
3998 }
3999
4000 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4001 bargs = &bctl->data;
4002 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4003 bargs = &bctl->sys;
4004 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4005 bargs = &bctl->meta;
4006
4007 /* profiles filter */
4008 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4009 chunk_profiles_filter(chunk_type, bargs)) {
4010 return false;
4011 }
4012
4013 /* usage filter */
4014 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4015 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4016 return false;
4017 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4018 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4019 return false;
4020 }
4021
4022 /* devid filter */
4023 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4024 chunk_devid_filter(leaf, chunk, bargs)) {
4025 return false;
4026 }
4027
4028 /* drange filter, makes sense only with devid filter */
4029 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4030 chunk_drange_filter(leaf, chunk, bargs)) {
4031 return false;
4032 }
4033
4034 /* vrange filter */
4035 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4036 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4037 return false;
4038 }
4039
4040 /* stripes filter */
4041 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4042 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4043 return false;
4044 }
4045
4046 /* soft profile changing mode */
4047 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4048 chunk_soft_convert_filter(chunk_type, bargs)) {
4049 return false;
4050 }
4051
4052 /*
4053 * limited by count, must be the last filter
4054 */
4055 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4056 if (bargs->limit == 0)
4057 return false;
4058 else
4059 bargs->limit--;
4060 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4061 /*
4062 * Same logic as the 'limit' filter; the minimum cannot be
4063 * determined here because we do not have the global information
4064 * about the count of all chunks that satisfy the filters.
4065 */
4066 if (bargs->limit_max == 0)
4067 return false;
4068 else
4069 bargs->limit_max--;
4070 }
4071
4072 return true;
4073 }
4074
__btrfs_balance(struct btrfs_fs_info * fs_info)4075 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4076 {
4077 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4078 struct btrfs_root *chunk_root = fs_info->chunk_root;
4079 u64 chunk_type;
4080 struct btrfs_chunk *chunk;
4081 struct btrfs_path *path = NULL;
4082 struct btrfs_key key;
4083 struct btrfs_key found_key;
4084 struct extent_buffer *leaf;
4085 int slot;
4086 int ret;
4087 int enospc_errors = 0;
4088 bool counting = true;
4089 /* The single value limit and min/max limits use the same bytes in the */
4090 u64 limit_data = bctl->data.limit;
4091 u64 limit_meta = bctl->meta.limit;
4092 u64 limit_sys = bctl->sys.limit;
4093 u32 count_data = 0;
4094 u32 count_meta = 0;
4095 u32 count_sys = 0;
4096 int chunk_reserved = 0;
4097
4098 path = btrfs_alloc_path();
4099 if (!path) {
4100 ret = -ENOMEM;
4101 goto error;
4102 }
4103
4104 /* zero out stat counters */
4105 spin_lock(&fs_info->balance_lock);
4106 memset(&bctl->stat, 0, sizeof(bctl->stat));
4107 spin_unlock(&fs_info->balance_lock);
4108 again:
4109 if (!counting) {
4110 /*
4111 * The single value limit and min/max limits use the same bytes
4112 * in the
4113 */
4114 bctl->data.limit = limit_data;
4115 bctl->meta.limit = limit_meta;
4116 bctl->sys.limit = limit_sys;
4117 }
4118 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4119 key.type = BTRFS_CHUNK_ITEM_KEY;
4120 key.offset = (u64)-1;
4121
4122 while (1) {
4123 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4124 atomic_read(&fs_info->balance_cancel_req)) {
4125 ret = -ECANCELED;
4126 goto error;
4127 }
4128
4129 mutex_lock(&fs_info->reclaim_bgs_lock);
4130 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4131 if (ret < 0) {
4132 mutex_unlock(&fs_info->reclaim_bgs_lock);
4133 goto error;
4134 }
4135
4136 /*
4137 * this shouldn't happen, it means the last relocate
4138 * failed
4139 */
4140 if (ret == 0)
4141 BUG(); /* FIXME break ? */
4142
4143 ret = btrfs_previous_item(chunk_root, path, 0,
4144 BTRFS_CHUNK_ITEM_KEY);
4145 if (ret) {
4146 mutex_unlock(&fs_info->reclaim_bgs_lock);
4147 ret = 0;
4148 break;
4149 }
4150
4151 leaf = path->nodes[0];
4152 slot = path->slots[0];
4153 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4154
4155 if (found_key.objectid != key.objectid) {
4156 mutex_unlock(&fs_info->reclaim_bgs_lock);
4157 break;
4158 }
4159
4160 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4161 chunk_type = btrfs_chunk_type(leaf, chunk);
4162
4163 if (!counting) {
4164 spin_lock(&fs_info->balance_lock);
4165 bctl->stat.considered++;
4166 spin_unlock(&fs_info->balance_lock);
4167 }
4168
4169 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4170
4171 btrfs_release_path(path);
4172 if (!ret) {
4173 mutex_unlock(&fs_info->reclaim_bgs_lock);
4174 goto loop;
4175 }
4176
4177 if (counting) {
4178 mutex_unlock(&fs_info->reclaim_bgs_lock);
4179 spin_lock(&fs_info->balance_lock);
4180 bctl->stat.expected++;
4181 spin_unlock(&fs_info->balance_lock);
4182
4183 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4184 count_data++;
4185 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4186 count_sys++;
4187 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4188 count_meta++;
4189
4190 goto loop;
4191 }
4192
4193 /*
4194 * Apply limit_min filter, no need to check if the LIMITS
4195 * filter is used, limit_min is 0 by default
4196 */
4197 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4198 count_data < bctl->data.limit_min)
4199 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4200 count_meta < bctl->meta.limit_min)
4201 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4202 count_sys < bctl->sys.limit_min)) {
4203 mutex_unlock(&fs_info->reclaim_bgs_lock);
4204 goto loop;
4205 }
4206
4207 if (!chunk_reserved) {
4208 /*
4209 * We may be relocating the only data chunk we have,
4210 * which could potentially end up with losing data's
4211 * raid profile, so lets allocate an empty one in
4212 * advance.
4213 */
4214 ret = btrfs_may_alloc_data_chunk(fs_info,
4215 found_key.offset);
4216 if (ret < 0) {
4217 mutex_unlock(&fs_info->reclaim_bgs_lock);
4218 goto error;
4219 } else if (ret == 1) {
4220 chunk_reserved = 1;
4221 }
4222 }
4223
4224 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true);
4225 mutex_unlock(&fs_info->reclaim_bgs_lock);
4226 if (ret == -ENOSPC) {
4227 enospc_errors++;
4228 } else if (ret == -ETXTBSY) {
4229 btrfs_info(fs_info,
4230 "skipping relocation of block group %llu due to active swapfile",
4231 found_key.offset);
4232 ret = 0;
4233 } else if (ret) {
4234 goto error;
4235 } else {
4236 spin_lock(&fs_info->balance_lock);
4237 bctl->stat.completed++;
4238 spin_unlock(&fs_info->balance_lock);
4239 }
4240 loop:
4241 if (found_key.offset == 0)
4242 break;
4243 key.offset = found_key.offset - 1;
4244 }
4245
4246 if (counting) {
4247 btrfs_release_path(path);
4248 counting = false;
4249 goto again;
4250 }
4251 error:
4252 btrfs_free_path(path);
4253 if (enospc_errors) {
4254 btrfs_info(fs_info, "%d enospc errors during balance",
4255 enospc_errors);
4256 if (!ret)
4257 ret = -ENOSPC;
4258 }
4259
4260 return ret;
4261 }
4262
4263 /*
4264 * See if a given profile is valid and reduced.
4265 *
4266 * @flags: profile to validate
4267 * @extended: if true @flags is treated as an extended profile
4268 */
alloc_profile_is_valid(u64 flags,bool extended)4269 static int alloc_profile_is_valid(u64 flags, bool extended)
4270 {
4271 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4272 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4273
4274 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4275
4276 /* 1) check that all other bits are zeroed */
4277 if (flags & ~mask)
4278 return 0;
4279
4280 /* 2) see if profile is reduced */
4281 if (flags == 0)
4282 return !extended; /* "0" is valid for usual profiles */
4283
4284 return has_single_bit_set(flags);
4285 }
4286
4287 /*
4288 * Validate target profile against allowed profiles and return true if it's OK.
4289 * Otherwise print the error message and return false.
4290 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4291 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4292 const struct btrfs_balance_args *bargs,
4293 u64 allowed, const char *type)
4294 {
4295 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4296 return true;
4297
4298 /* Profile is valid and does not have bits outside of the allowed set */
4299 if (alloc_profile_is_valid(bargs->target, 1) &&
4300 (bargs->target & ~allowed) == 0)
4301 return true;
4302
4303 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4304 type, btrfs_bg_type_to_raid_name(bargs->target));
4305 return false;
4306 }
4307
4308 /*
4309 * Fill @buf with textual description of balance filter flags @bargs, up to
4310 * @size_buf including the terminating null. The output may be trimmed if it
4311 * does not fit into the provided buffer.
4312 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4313 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4314 u32 size_buf)
4315 {
4316 int ret;
4317 u32 size_bp = size_buf;
4318 char *bp = buf;
4319 u64 flags = bargs->flags;
4320 char tmp_buf[128] = {'\0'};
4321
4322 if (!flags)
4323 return;
4324
4325 #define CHECK_APPEND_NOARG(a) \
4326 do { \
4327 ret = snprintf(bp, size_bp, (a)); \
4328 if (ret < 0 || ret >= size_bp) \
4329 goto out_overflow; \
4330 size_bp -= ret; \
4331 bp += ret; \
4332 } while (0)
4333
4334 #define CHECK_APPEND_1ARG(a, v1) \
4335 do { \
4336 ret = snprintf(bp, size_bp, (a), (v1)); \
4337 if (ret < 0 || ret >= size_bp) \
4338 goto out_overflow; \
4339 size_bp -= ret; \
4340 bp += ret; \
4341 } while (0)
4342
4343 #define CHECK_APPEND_2ARG(a, v1, v2) \
4344 do { \
4345 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4346 if (ret < 0 || ret >= size_bp) \
4347 goto out_overflow; \
4348 size_bp -= ret; \
4349 bp += ret; \
4350 } while (0)
4351
4352 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4353 CHECK_APPEND_1ARG("convert=%s,",
4354 btrfs_bg_type_to_raid_name(bargs->target));
4355
4356 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4357 CHECK_APPEND_NOARG("soft,");
4358
4359 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4360 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4361 sizeof(tmp_buf));
4362 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4363 }
4364
4365 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4366 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4367
4368 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4369 CHECK_APPEND_2ARG("usage=%u..%u,",
4370 bargs->usage_min, bargs->usage_max);
4371
4372 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4373 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4374
4375 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4376 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4377 bargs->pstart, bargs->pend);
4378
4379 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4380 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4381 bargs->vstart, bargs->vend);
4382
4383 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4384 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4385
4386 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4387 CHECK_APPEND_2ARG("limit=%u..%u,",
4388 bargs->limit_min, bargs->limit_max);
4389
4390 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4391 CHECK_APPEND_2ARG("stripes=%u..%u,",
4392 bargs->stripes_min, bargs->stripes_max);
4393
4394 #undef CHECK_APPEND_2ARG
4395 #undef CHECK_APPEND_1ARG
4396 #undef CHECK_APPEND_NOARG
4397
4398 out_overflow:
4399
4400 if (size_bp < size_buf)
4401 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4402 else
4403 buf[0] = '\0';
4404 }
4405
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4406 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4407 {
4408 u32 size_buf = 1024;
4409 char tmp_buf[192] = {'\0'};
4410 char *buf;
4411 char *bp;
4412 u32 size_bp = size_buf;
4413 int ret;
4414 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4415
4416 buf = kzalloc(size_buf, GFP_KERNEL);
4417 if (!buf)
4418 return;
4419
4420 bp = buf;
4421
4422 #define CHECK_APPEND_1ARG(a, v1) \
4423 do { \
4424 ret = snprintf(bp, size_bp, (a), (v1)); \
4425 if (ret < 0 || ret >= size_bp) \
4426 goto out_overflow; \
4427 size_bp -= ret; \
4428 bp += ret; \
4429 } while (0)
4430
4431 if (bctl->flags & BTRFS_BALANCE_FORCE)
4432 CHECK_APPEND_1ARG("%s", "-f ");
4433
4434 if (bctl->flags & BTRFS_BALANCE_DATA) {
4435 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4436 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4437 }
4438
4439 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4440 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4441 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4442 }
4443
4444 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4445 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4446 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4447 }
4448
4449 #undef CHECK_APPEND_1ARG
4450
4451 out_overflow:
4452
4453 if (size_bp < size_buf)
4454 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4455 btrfs_info(fs_info, "balance: %s %s",
4456 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4457 "resume" : "start", buf);
4458
4459 kfree(buf);
4460 }
4461
4462 /*
4463 * Should be called with balance mutex held
4464 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4465 int btrfs_balance(struct btrfs_fs_info *fs_info,
4466 struct btrfs_balance_control *bctl,
4467 struct btrfs_ioctl_balance_args *bargs)
4468 {
4469 u64 meta_target, data_target;
4470 u64 allowed;
4471 int mixed = 0;
4472 int ret;
4473 u64 num_devices;
4474 unsigned seq;
4475 bool reducing_redundancy;
4476 bool paused = false;
4477 int i;
4478
4479 if (btrfs_fs_closing(fs_info) ||
4480 atomic_read(&fs_info->balance_pause_req) ||
4481 btrfs_should_cancel_balance(fs_info)) {
4482 ret = -EINVAL;
4483 goto out;
4484 }
4485
4486 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4487 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4488 mixed = 1;
4489
4490 /*
4491 * In case of mixed groups both data and meta should be picked,
4492 * and identical options should be given for both of them.
4493 */
4494 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4495 if (mixed && (bctl->flags & allowed)) {
4496 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4497 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4498 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4499 btrfs_err(fs_info,
4500 "balance: mixed groups data and metadata options must be the same");
4501 ret = -EINVAL;
4502 goto out;
4503 }
4504 }
4505
4506 /*
4507 * rw_devices will not change at the moment, device add/delete/replace
4508 * are exclusive
4509 */
4510 num_devices = fs_info->fs_devices->rw_devices;
4511
4512 /*
4513 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4514 * special bit for it, to make it easier to distinguish. Thus we need
4515 * to set it manually, or balance would refuse the profile.
4516 */
4517 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4518 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4519 if (num_devices >= btrfs_raid_array[i].devs_min)
4520 allowed |= btrfs_raid_array[i].bg_flag;
4521
4522 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4523 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4524 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4525 ret = -EINVAL;
4526 goto out;
4527 }
4528
4529 /*
4530 * Allow to reduce metadata or system integrity only if force set for
4531 * profiles with redundancy (copies, parity)
4532 */
4533 allowed = 0;
4534 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4535 if (btrfs_raid_array[i].ncopies >= 2 ||
4536 btrfs_raid_array[i].tolerated_failures >= 1)
4537 allowed |= btrfs_raid_array[i].bg_flag;
4538 }
4539 do {
4540 seq = read_seqbegin(&fs_info->profiles_lock);
4541
4542 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4543 (fs_info->avail_system_alloc_bits & allowed) &&
4544 !(bctl->sys.target & allowed)) ||
4545 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4546 (fs_info->avail_metadata_alloc_bits & allowed) &&
4547 !(bctl->meta.target & allowed)))
4548 reducing_redundancy = true;
4549 else
4550 reducing_redundancy = false;
4551
4552 /* if we're not converting, the target field is uninitialized */
4553 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4554 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4555 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4556 bctl->data.target : fs_info->avail_data_alloc_bits;
4557 } while (read_seqretry(&fs_info->profiles_lock, seq));
4558
4559 if (reducing_redundancy) {
4560 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4561 btrfs_info(fs_info,
4562 "balance: force reducing metadata redundancy");
4563 } else {
4564 btrfs_err(fs_info,
4565 "balance: reduces metadata redundancy, use --force if you want this");
4566 ret = -EINVAL;
4567 goto out;
4568 }
4569 }
4570
4571 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4572 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4573 btrfs_warn(fs_info,
4574 "balance: metadata profile %s has lower redundancy than data profile %s",
4575 btrfs_bg_type_to_raid_name(meta_target),
4576 btrfs_bg_type_to_raid_name(data_target));
4577 }
4578
4579 ret = insert_balance_item(fs_info, bctl);
4580 if (ret && ret != -EEXIST)
4581 goto out;
4582
4583 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4584 BUG_ON(ret == -EEXIST);
4585 BUG_ON(fs_info->balance_ctl);
4586 spin_lock(&fs_info->balance_lock);
4587 fs_info->balance_ctl = bctl;
4588 spin_unlock(&fs_info->balance_lock);
4589 } else {
4590 BUG_ON(ret != -EEXIST);
4591 spin_lock(&fs_info->balance_lock);
4592 update_balance_args(bctl);
4593 spin_unlock(&fs_info->balance_lock);
4594 }
4595
4596 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4597 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4598 describe_balance_start_or_resume(fs_info);
4599 mutex_unlock(&fs_info->balance_mutex);
4600
4601 ret = __btrfs_balance(fs_info);
4602
4603 mutex_lock(&fs_info->balance_mutex);
4604 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4605 btrfs_info(fs_info, "balance: paused");
4606 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4607 paused = true;
4608 }
4609 /*
4610 * Balance can be canceled by:
4611 *
4612 * - Regular cancel request
4613 * Then ret == -ECANCELED and balance_cancel_req > 0
4614 *
4615 * - Fatal signal to "btrfs" process
4616 * Either the signal caught by wait_reserve_ticket() and callers
4617 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4618 * got -ECANCELED.
4619 * Either way, in this case balance_cancel_req = 0, and
4620 * ret == -EINTR or ret == -ECANCELED.
4621 *
4622 * So here we only check the return value to catch canceled balance.
4623 */
4624 else if (ret == -ECANCELED || ret == -EINTR)
4625 btrfs_info(fs_info, "balance: canceled");
4626 else
4627 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4628
4629 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4630
4631 if (bargs) {
4632 memset(bargs, 0, sizeof(*bargs));
4633 btrfs_update_ioctl_balance_args(fs_info, bargs);
4634 }
4635
4636 /* We didn't pause, we can clean everything up. */
4637 if (!paused) {
4638 reset_balance_state(fs_info);
4639 btrfs_exclop_finish(fs_info);
4640 }
4641
4642 wake_up(&fs_info->balance_wait_q);
4643
4644 return ret;
4645 out:
4646 if (bctl->flags & BTRFS_BALANCE_RESUME)
4647 reset_balance_state(fs_info);
4648 else
4649 kfree(bctl);
4650 btrfs_exclop_finish(fs_info);
4651
4652 return ret;
4653 }
4654
balance_kthread(void * data)4655 static int balance_kthread(void *data)
4656 {
4657 struct btrfs_fs_info *fs_info = data;
4658 int ret = 0;
4659
4660 guard(super_write)(fs_info->sb);
4661
4662 mutex_lock(&fs_info->balance_mutex);
4663 if (fs_info->balance_ctl)
4664 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4665 mutex_unlock(&fs_info->balance_mutex);
4666
4667 return ret;
4668 }
4669
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4670 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4671 {
4672 struct task_struct *tsk;
4673
4674 mutex_lock(&fs_info->balance_mutex);
4675 if (!fs_info->balance_ctl) {
4676 mutex_unlock(&fs_info->balance_mutex);
4677 return 0;
4678 }
4679 mutex_unlock(&fs_info->balance_mutex);
4680
4681 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4682 btrfs_info(fs_info, "balance: resume skipped");
4683 return 0;
4684 }
4685
4686 spin_lock(&fs_info->super_lock);
4687 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED,
4688 "exclusive_operation=%d", fs_info->exclusive_operation);
4689 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4690 spin_unlock(&fs_info->super_lock);
4691 /*
4692 * A ro->rw remount sequence should continue with the paused balance
4693 * regardless of who pauses it, system or the user as of now, so set
4694 * the resume flag.
4695 */
4696 spin_lock(&fs_info->balance_lock);
4697 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4698 spin_unlock(&fs_info->balance_lock);
4699
4700 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4701 return PTR_ERR_OR_ZERO(tsk);
4702 }
4703
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4704 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4705 {
4706 struct btrfs_balance_control *bctl;
4707 struct btrfs_balance_item *item;
4708 struct btrfs_disk_balance_args disk_bargs;
4709 struct btrfs_path *path;
4710 struct extent_buffer *leaf;
4711 struct btrfs_key key;
4712 int ret;
4713
4714 path = btrfs_alloc_path();
4715 if (!path)
4716 return -ENOMEM;
4717
4718 key.objectid = BTRFS_BALANCE_OBJECTID;
4719 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4720 key.offset = 0;
4721
4722 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4723 if (ret < 0)
4724 goto out;
4725 if (ret > 0) { /* ret = -ENOENT; */
4726 ret = 0;
4727 goto out;
4728 }
4729
4730 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4731 if (!bctl) {
4732 ret = -ENOMEM;
4733 goto out;
4734 }
4735
4736 leaf = path->nodes[0];
4737 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4738
4739 bctl->flags = btrfs_balance_flags(leaf, item);
4740 bctl->flags |= BTRFS_BALANCE_RESUME;
4741
4742 btrfs_balance_data(leaf, item, &disk_bargs);
4743 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4744 btrfs_balance_meta(leaf, item, &disk_bargs);
4745 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4746 btrfs_balance_sys(leaf, item, &disk_bargs);
4747 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4748
4749 /*
4750 * This should never happen, as the paused balance state is recovered
4751 * during mount without any chance of other exclusive ops to collide.
4752 *
4753 * This gives the exclusive op status to balance and keeps in paused
4754 * state until user intervention (cancel or umount). If the ownership
4755 * cannot be assigned, show a message but do not fail. The balance
4756 * is in a paused state and must have fs_info::balance_ctl properly
4757 * set up.
4758 */
4759 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4760 btrfs_warn(fs_info,
4761 "balance: cannot set exclusive op status, resume manually");
4762
4763 btrfs_release_path(path);
4764
4765 mutex_lock(&fs_info->balance_mutex);
4766 BUG_ON(fs_info->balance_ctl);
4767 spin_lock(&fs_info->balance_lock);
4768 fs_info->balance_ctl = bctl;
4769 spin_unlock(&fs_info->balance_lock);
4770 mutex_unlock(&fs_info->balance_mutex);
4771 out:
4772 btrfs_free_path(path);
4773 return ret;
4774 }
4775
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4776 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4777 {
4778 int ret = 0;
4779
4780 mutex_lock(&fs_info->balance_mutex);
4781 if (!fs_info->balance_ctl) {
4782 mutex_unlock(&fs_info->balance_mutex);
4783 return -ENOTCONN;
4784 }
4785
4786 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4787 atomic_inc(&fs_info->balance_pause_req);
4788 mutex_unlock(&fs_info->balance_mutex);
4789
4790 wait_event(fs_info->balance_wait_q,
4791 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4792
4793 mutex_lock(&fs_info->balance_mutex);
4794 /* we are good with balance_ctl ripped off from under us */
4795 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4796 atomic_dec(&fs_info->balance_pause_req);
4797 } else {
4798 ret = -ENOTCONN;
4799 }
4800
4801 mutex_unlock(&fs_info->balance_mutex);
4802 return ret;
4803 }
4804
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4805 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4806 {
4807 mutex_lock(&fs_info->balance_mutex);
4808 if (!fs_info->balance_ctl) {
4809 mutex_unlock(&fs_info->balance_mutex);
4810 return -ENOTCONN;
4811 }
4812
4813 /*
4814 * A paused balance with the item stored on disk can be resumed at
4815 * mount time if the mount is read-write. Otherwise it's still paused
4816 * and we must not allow cancelling as it deletes the item.
4817 */
4818 if (sb_rdonly(fs_info->sb)) {
4819 mutex_unlock(&fs_info->balance_mutex);
4820 return -EROFS;
4821 }
4822
4823 atomic_inc(&fs_info->balance_cancel_req);
4824 /*
4825 * if we are running just wait and return, balance item is
4826 * deleted in btrfs_balance in this case
4827 */
4828 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4829 mutex_unlock(&fs_info->balance_mutex);
4830 wait_event(fs_info->balance_wait_q,
4831 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4832 mutex_lock(&fs_info->balance_mutex);
4833 } else {
4834 mutex_unlock(&fs_info->balance_mutex);
4835 /*
4836 * Lock released to allow other waiters to continue, we'll
4837 * reexamine the status again.
4838 */
4839 mutex_lock(&fs_info->balance_mutex);
4840
4841 if (fs_info->balance_ctl) {
4842 reset_balance_state(fs_info);
4843 btrfs_exclop_finish(fs_info);
4844 btrfs_info(fs_info, "balance: canceled");
4845 }
4846 }
4847
4848 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849 atomic_dec(&fs_info->balance_cancel_req);
4850 mutex_unlock(&fs_info->balance_mutex);
4851 return 0;
4852 }
4853
4854 /*
4855 * shrinking a device means finding all of the device extents past
4856 * the new size, and then following the back refs to the chunks.
4857 * The chunk relocation code actually frees the device extent
4858 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4859 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4860 {
4861 struct btrfs_fs_info *fs_info = device->fs_info;
4862 struct btrfs_root *root = fs_info->dev_root;
4863 struct btrfs_trans_handle *trans;
4864 struct btrfs_dev_extent *dev_extent = NULL;
4865 struct btrfs_path *path;
4866 u64 length;
4867 u64 chunk_offset;
4868 int ret;
4869 int slot;
4870 int failed = 0;
4871 bool retried = false;
4872 struct extent_buffer *l;
4873 struct btrfs_key key;
4874 struct btrfs_super_block *super_copy = fs_info->super_copy;
4875 u64 old_total = btrfs_super_total_bytes(super_copy);
4876 u64 old_size = btrfs_device_get_total_bytes(device);
4877 u64 diff;
4878 u64 start;
4879 u64 free_diff = 0;
4880
4881 new_size = round_down(new_size, fs_info->sectorsize);
4882 start = new_size;
4883 diff = round_down(old_size - new_size, fs_info->sectorsize);
4884
4885 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4886 return -EINVAL;
4887
4888 path = btrfs_alloc_path();
4889 if (!path)
4890 return -ENOMEM;
4891
4892 path->reada = READA_BACK;
4893
4894 trans = btrfs_start_transaction(root, 0);
4895 if (IS_ERR(trans)) {
4896 btrfs_free_path(path);
4897 return PTR_ERR(trans);
4898 }
4899
4900 mutex_lock(&fs_info->chunk_mutex);
4901
4902 btrfs_device_set_total_bytes(device, new_size);
4903 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4904 device->fs_devices->total_rw_bytes -= diff;
4905
4906 /*
4907 * The new free_chunk_space is new_size - used, so we have to
4908 * subtract the delta of the old free_chunk_space which included
4909 * old_size - used. If used > new_size then just subtract this
4910 * entire device's free space.
4911 */
4912 if (device->bytes_used < new_size)
4913 free_diff = (old_size - device->bytes_used) -
4914 (new_size - device->bytes_used);
4915 else
4916 free_diff = old_size - device->bytes_used;
4917 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4918 }
4919
4920 /*
4921 * Once the device's size has been set to the new size, ensure all
4922 * in-memory chunks are synced to disk so that the loop below sees them
4923 * and relocates them accordingly.
4924 */
4925 if (contains_pending_extent(device, &start, diff)) {
4926 mutex_unlock(&fs_info->chunk_mutex);
4927 ret = btrfs_commit_transaction(trans);
4928 if (ret)
4929 goto done;
4930 } else {
4931 mutex_unlock(&fs_info->chunk_mutex);
4932 btrfs_end_transaction(trans);
4933 }
4934
4935 again:
4936 key.objectid = device->devid;
4937 key.type = BTRFS_DEV_EXTENT_KEY;
4938 key.offset = (u64)-1;
4939
4940 do {
4941 mutex_lock(&fs_info->reclaim_bgs_lock);
4942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4943 if (ret < 0) {
4944 mutex_unlock(&fs_info->reclaim_bgs_lock);
4945 goto done;
4946 }
4947
4948 ret = btrfs_previous_item(root, path, 0, key.type);
4949 if (ret) {
4950 mutex_unlock(&fs_info->reclaim_bgs_lock);
4951 if (ret < 0)
4952 goto done;
4953 ret = 0;
4954 btrfs_release_path(path);
4955 break;
4956 }
4957
4958 l = path->nodes[0];
4959 slot = path->slots[0];
4960 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4961
4962 if (key.objectid != device->devid) {
4963 mutex_unlock(&fs_info->reclaim_bgs_lock);
4964 btrfs_release_path(path);
4965 break;
4966 }
4967
4968 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4969 length = btrfs_dev_extent_length(l, dev_extent);
4970
4971 if (key.offset + length <= new_size) {
4972 mutex_unlock(&fs_info->reclaim_bgs_lock);
4973 btrfs_release_path(path);
4974 break;
4975 }
4976
4977 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4978 btrfs_release_path(path);
4979
4980 /*
4981 * We may be relocating the only data chunk we have,
4982 * which could potentially end up with losing data's
4983 * raid profile, so lets allocate an empty one in
4984 * advance.
4985 */
4986 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4987 if (ret < 0) {
4988 mutex_unlock(&fs_info->reclaim_bgs_lock);
4989 goto done;
4990 }
4991
4992 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true);
4993 mutex_unlock(&fs_info->reclaim_bgs_lock);
4994 if (ret == -ENOSPC) {
4995 failed++;
4996 } else if (ret) {
4997 if (ret == -ETXTBSY) {
4998 btrfs_warn(fs_info,
4999 "could not shrink block group %llu due to active swapfile",
5000 chunk_offset);
5001 }
5002 goto done;
5003 }
5004 } while (key.offset-- > 0);
5005
5006 if (failed && !retried) {
5007 failed = 0;
5008 retried = true;
5009 goto again;
5010 } else if (failed && retried) {
5011 ret = -ENOSPC;
5012 goto done;
5013 }
5014
5015 /* Shrinking succeeded, else we would be at "done". */
5016 trans = btrfs_start_transaction(root, 0);
5017 if (IS_ERR(trans)) {
5018 ret = PTR_ERR(trans);
5019 goto done;
5020 }
5021
5022 mutex_lock(&fs_info->chunk_mutex);
5023 /* Clear all state bits beyond the shrunk device size */
5024 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1,
5025 CHUNK_STATE_MASK, NULL);
5026
5027 btrfs_device_set_disk_total_bytes(device, new_size);
5028 if (list_empty(&device->post_commit_list))
5029 list_add_tail(&device->post_commit_list,
5030 &trans->transaction->dev_update_list);
5031
5032 WARN_ON(diff > old_total);
5033 btrfs_set_super_total_bytes(super_copy,
5034 round_down(old_total - diff, fs_info->sectorsize));
5035 mutex_unlock(&fs_info->chunk_mutex);
5036
5037 btrfs_reserve_chunk_metadata(trans, false);
5038 /* Now btrfs_update_device() will change the on-disk size. */
5039 ret = btrfs_update_device(trans, device);
5040 btrfs_trans_release_chunk_metadata(trans);
5041 if (unlikely(ret < 0)) {
5042 btrfs_abort_transaction(trans, ret);
5043 btrfs_end_transaction(trans);
5044 } else {
5045 ret = btrfs_commit_transaction(trans);
5046 }
5047 done:
5048 btrfs_free_path(path);
5049 if (ret) {
5050 mutex_lock(&fs_info->chunk_mutex);
5051 btrfs_device_set_total_bytes(device, old_size);
5052 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5053 device->fs_devices->total_rw_bytes += diff;
5054 atomic64_add(free_diff, &fs_info->free_chunk_space);
5055 }
5056 mutex_unlock(&fs_info->chunk_mutex);
5057 }
5058 return ret;
5059 }
5060
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5061 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5062 struct btrfs_key *key,
5063 struct btrfs_chunk *chunk, int item_size)
5064 {
5065 struct btrfs_super_block *super_copy = fs_info->super_copy;
5066 struct btrfs_disk_key disk_key;
5067 u32 array_size;
5068 u8 *ptr;
5069
5070 lockdep_assert_held(&fs_info->chunk_mutex);
5071
5072 array_size = btrfs_super_sys_array_size(super_copy);
5073 if (array_size + item_size + sizeof(disk_key)
5074 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5075 return -EFBIG;
5076
5077 ptr = super_copy->sys_chunk_array + array_size;
5078 btrfs_cpu_key_to_disk(&disk_key, key);
5079 memcpy(ptr, &disk_key, sizeof(disk_key));
5080 ptr += sizeof(disk_key);
5081 memcpy(ptr, chunk, item_size);
5082 item_size += sizeof(disk_key);
5083 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5084
5085 return 0;
5086 }
5087
5088 /*
5089 * sort the devices in descending order by max_avail, total_avail
5090 */
btrfs_cmp_device_info(const void * a,const void * b)5091 static int btrfs_cmp_device_info(const void *a, const void *b)
5092 {
5093 const struct btrfs_device_info *di_a = a;
5094 const struct btrfs_device_info *di_b = b;
5095
5096 if (di_a->max_avail > di_b->max_avail)
5097 return -1;
5098 if (di_a->max_avail < di_b->max_avail)
5099 return 1;
5100 if (di_a->total_avail > di_b->total_avail)
5101 return -1;
5102 if (di_a->total_avail < di_b->total_avail)
5103 return 1;
5104 return 0;
5105 }
5106
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5107 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5108 {
5109 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5110 return;
5111
5112 btrfs_set_fs_incompat(info, RAID56);
5113 }
5114
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5115 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5116 {
5117 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5118 return;
5119
5120 btrfs_set_fs_incompat(info, RAID1C34);
5121 }
5122
5123 /*
5124 * Structure used internally for btrfs_create_chunk() function.
5125 * Wraps needed parameters.
5126 */
5127 struct alloc_chunk_ctl {
5128 u64 start;
5129 u64 type;
5130 /* Total number of stripes to allocate */
5131 int num_stripes;
5132 /* sub_stripes info for map */
5133 int sub_stripes;
5134 /* Stripes per device */
5135 int dev_stripes;
5136 /* Maximum number of devices to use */
5137 int devs_max;
5138 /* Minimum number of devices to use */
5139 int devs_min;
5140 /* ndevs has to be a multiple of this */
5141 int devs_increment;
5142 /* Number of copies */
5143 int ncopies;
5144 /* Number of stripes worth of bytes to store parity information */
5145 int nparity;
5146 u64 max_stripe_size;
5147 u64 max_chunk_size;
5148 u64 dev_extent_min;
5149 u64 stripe_size;
5150 u64 chunk_size;
5151 int ndevs;
5152 /* Space_info the block group is going to belong. */
5153 struct btrfs_space_info *space_info;
5154 };
5155
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5156 static void init_alloc_chunk_ctl_policy_regular(
5157 struct btrfs_fs_devices *fs_devices,
5158 struct alloc_chunk_ctl *ctl)
5159 {
5160 struct btrfs_space_info *space_info;
5161
5162 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5163 ASSERT(space_info);
5164
5165 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5166 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5167
5168 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5169 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5170
5171 /* We don't want a chunk larger than 10% of writable space */
5172 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5173 ctl->max_chunk_size);
5174 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5175 }
5176
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5177 static void init_alloc_chunk_ctl_policy_zoned(
5178 struct btrfs_fs_devices *fs_devices,
5179 struct alloc_chunk_ctl *ctl)
5180 {
5181 u64 zone_size = fs_devices->fs_info->zone_size;
5182 u64 limit;
5183 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5184 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5185 u64 min_chunk_size = min_data_stripes * zone_size;
5186 u64 type = ctl->type;
5187
5188 ctl->max_stripe_size = zone_size;
5189 if (type & BTRFS_BLOCK_GROUP_DATA) {
5190 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5191 zone_size);
5192 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5193 ctl->max_chunk_size = ctl->max_stripe_size;
5194 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5195 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5196 ctl->devs_max = min_t(int, ctl->devs_max,
5197 BTRFS_MAX_DEVS_SYS_CHUNK);
5198 } else {
5199 BUG();
5200 }
5201
5202 /* We don't want a chunk larger than 10% of writable space */
5203 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5204 zone_size),
5205 min_chunk_size);
5206 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5207 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5208 }
5209
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5210 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5211 struct alloc_chunk_ctl *ctl)
5212 {
5213 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5214
5215 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5216 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5217 ctl->devs_max = btrfs_raid_array[index].devs_max;
5218 if (!ctl->devs_max)
5219 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5220 ctl->devs_min = btrfs_raid_array[index].devs_min;
5221 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5222 ctl->ncopies = btrfs_raid_array[index].ncopies;
5223 ctl->nparity = btrfs_raid_array[index].nparity;
5224 ctl->ndevs = 0;
5225
5226 switch (fs_devices->chunk_alloc_policy) {
5227 default:
5228 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5229 fallthrough;
5230 case BTRFS_CHUNK_ALLOC_REGULAR:
5231 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5232 break;
5233 case BTRFS_CHUNK_ALLOC_ZONED:
5234 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5235 break;
5236 }
5237 }
5238
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5239 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5240 struct alloc_chunk_ctl *ctl,
5241 struct btrfs_device_info *devices_info)
5242 {
5243 struct btrfs_fs_info *info = fs_devices->fs_info;
5244 struct btrfs_device *device;
5245 u64 total_avail;
5246 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5247 int ret;
5248 int ndevs = 0;
5249 u64 max_avail;
5250 u64 dev_offset;
5251
5252 /*
5253 * in the first pass through the devices list, we gather information
5254 * about the available holes on each device.
5255 */
5256 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5257 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5258 WARN(1, KERN_ERR
5259 "BTRFS: read-only device in alloc_list\n");
5260 continue;
5261 }
5262
5263 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5264 &device->dev_state) ||
5265 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5266 continue;
5267
5268 if (device->total_bytes > device->bytes_used)
5269 total_avail = device->total_bytes - device->bytes_used;
5270 else
5271 total_avail = 0;
5272
5273 /* If there is no space on this device, skip it. */
5274 if (total_avail < ctl->dev_extent_min)
5275 continue;
5276
5277 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5278 &max_avail);
5279 if (ret && ret != -ENOSPC)
5280 return ret;
5281
5282 if (ret == 0)
5283 max_avail = dev_extent_want;
5284
5285 if (max_avail < ctl->dev_extent_min) {
5286 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5287 btrfs_debug(info,
5288 "%s: devid %llu has no free space, have=%llu want=%llu",
5289 __func__, device->devid, max_avail,
5290 ctl->dev_extent_min);
5291 continue;
5292 }
5293
5294 if (ndevs == fs_devices->rw_devices) {
5295 WARN(1, "%s: found more than %llu devices\n",
5296 __func__, fs_devices->rw_devices);
5297 break;
5298 }
5299 devices_info[ndevs].dev_offset = dev_offset;
5300 devices_info[ndevs].max_avail = max_avail;
5301 devices_info[ndevs].total_avail = total_avail;
5302 devices_info[ndevs].dev = device;
5303 ++ndevs;
5304 }
5305 ctl->ndevs = ndevs;
5306
5307 /*
5308 * now sort the devices by hole size / available space
5309 */
5310 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5311 btrfs_cmp_device_info, NULL);
5312
5313 return 0;
5314 }
5315
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5316 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5317 struct btrfs_device_info *devices_info)
5318 {
5319 /* Number of stripes that count for block group size */
5320 int data_stripes;
5321
5322 /*
5323 * The primary goal is to maximize the number of stripes, so use as
5324 * many devices as possible, even if the stripes are not maximum sized.
5325 *
5326 * The DUP profile stores more than one stripe per device, the
5327 * max_avail is the total size so we have to adjust.
5328 */
5329 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5330 ctl->dev_stripes);
5331 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5332
5333 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5334 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5335
5336 /*
5337 * Use the number of data stripes to figure out how big this chunk is
5338 * really going to be in terms of logical address space, and compare
5339 * that answer with the max chunk size. If it's higher, we try to
5340 * reduce stripe_size.
5341 */
5342 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5343 /*
5344 * Reduce stripe_size, round it up to a 16MB boundary again and
5345 * then use it, unless it ends up being even bigger than the
5346 * previous value we had already.
5347 */
5348 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5349 data_stripes), SZ_16M),
5350 ctl->stripe_size);
5351 }
5352
5353 /* Stripe size should not go beyond 1G. */
5354 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5355
5356 /* Align to BTRFS_STRIPE_LEN */
5357 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5358 ctl->chunk_size = ctl->stripe_size * data_stripes;
5359
5360 return 0;
5361 }
5362
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5363 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5364 struct btrfs_device_info *devices_info)
5365 {
5366 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5367 /* Number of stripes that count for block group size */
5368 int data_stripes;
5369
5370 /*
5371 * It should hold because:
5372 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5373 */
5374 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min,
5375 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs,
5376 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min);
5377
5378 ctl->stripe_size = zone_size;
5379 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5380 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5381
5382 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5383 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5384 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5385 ctl->stripe_size) + ctl->nparity,
5386 ctl->dev_stripes);
5387 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5389 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size,
5390 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu",
5391 ctl->stripe_size, data_stripes, ctl->max_chunk_size);
5392 }
5393
5394 ctl->chunk_size = ctl->stripe_size * data_stripes;
5395
5396 return 0;
5397 }
5398
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5399 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5400 struct alloc_chunk_ctl *ctl,
5401 struct btrfs_device_info *devices_info)
5402 {
5403 struct btrfs_fs_info *info = fs_devices->fs_info;
5404
5405 /*
5406 * Round down to number of usable stripes, devs_increment can be any
5407 * number so we can't use round_down() that requires power of 2, while
5408 * rounddown is safe.
5409 */
5410 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5411
5412 if (ctl->ndevs < ctl->devs_min) {
5413 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5414 btrfs_debug(info,
5415 "%s: not enough devices with free space: have=%d minimum required=%d",
5416 __func__, ctl->ndevs, ctl->devs_min);
5417 }
5418 return -ENOSPC;
5419 }
5420
5421 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5422
5423 switch (fs_devices->chunk_alloc_policy) {
5424 default:
5425 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5426 fallthrough;
5427 case BTRFS_CHUNK_ALLOC_REGULAR:
5428 return decide_stripe_size_regular(ctl, devices_info);
5429 case BTRFS_CHUNK_ALLOC_ZONED:
5430 return decide_stripe_size_zoned(ctl, devices_info);
5431 }
5432 }
5433
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5434 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5435 {
5436 for (int i = 0; i < map->num_stripes; i++) {
5437 struct btrfs_io_stripe *stripe = &map->stripes[i];
5438 struct btrfs_device *device = stripe->dev;
5439
5440 btrfs_set_extent_bit(&device->alloc_state, stripe->physical,
5441 stripe->physical + map->stripe_size - 1,
5442 bits | EXTENT_NOWAIT, NULL);
5443 }
5444 }
5445
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5446 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5447 {
5448 for (int i = 0; i < map->num_stripes; i++) {
5449 struct btrfs_io_stripe *stripe = &map->stripes[i];
5450 struct btrfs_device *device = stripe->dev;
5451
5452 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical,
5453 stripe->physical + map->stripe_size - 1,
5454 bits | EXTENT_NOWAIT, NULL);
5455 }
5456 }
5457
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5458 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5459 {
5460 write_lock(&fs_info->mapping_tree_lock);
5461 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5462 RB_CLEAR_NODE(&map->rb_node);
5463 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5464 write_unlock(&fs_info->mapping_tree_lock);
5465
5466 /* Once for the tree reference. */
5467 btrfs_free_chunk_map(map);
5468 }
5469
btrfs_chunk_map_cmp(const struct rb_node * new,const struct rb_node * exist)5470 static int btrfs_chunk_map_cmp(const struct rb_node *new,
5471 const struct rb_node *exist)
5472 {
5473 const struct btrfs_chunk_map *new_map =
5474 rb_entry(new, struct btrfs_chunk_map, rb_node);
5475 const struct btrfs_chunk_map *exist_map =
5476 rb_entry(exist, struct btrfs_chunk_map, rb_node);
5477
5478 if (new_map->start == exist_map->start)
5479 return 0;
5480 if (new_map->start < exist_map->start)
5481 return -1;
5482 return 1;
5483 }
5484
5485 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5486 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5487 {
5488 struct rb_node *exist;
5489
5490 write_lock(&fs_info->mapping_tree_lock);
5491 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree,
5492 btrfs_chunk_map_cmp);
5493
5494 if (exist) {
5495 write_unlock(&fs_info->mapping_tree_lock);
5496 return -EEXIST;
5497 }
5498 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5499 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5500 write_unlock(&fs_info->mapping_tree_lock);
5501
5502 return 0;
5503 }
5504
5505 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5506 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5507 {
5508 struct btrfs_chunk_map *map;
5509
5510 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5511 if (!map)
5512 return NULL;
5513
5514 refcount_set(&map->refs, 1);
5515 RB_CLEAR_NODE(&map->rb_node);
5516
5517 return map;
5518 }
5519
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5520 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5521 struct alloc_chunk_ctl *ctl,
5522 struct btrfs_device_info *devices_info)
5523 {
5524 struct btrfs_fs_info *info = trans->fs_info;
5525 struct btrfs_chunk_map *map;
5526 struct btrfs_block_group *block_group;
5527 u64 start = ctl->start;
5528 u64 type = ctl->type;
5529 int ret;
5530
5531 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5532 if (!map)
5533 return ERR_PTR(-ENOMEM);
5534
5535 map->start = start;
5536 map->chunk_len = ctl->chunk_size;
5537 map->stripe_size = ctl->stripe_size;
5538 map->type = type;
5539 map->io_align = BTRFS_STRIPE_LEN;
5540 map->io_width = BTRFS_STRIPE_LEN;
5541 map->sub_stripes = ctl->sub_stripes;
5542 map->num_stripes = ctl->num_stripes;
5543
5544 for (int i = 0; i < ctl->ndevs; i++) {
5545 for (int j = 0; j < ctl->dev_stripes; j++) {
5546 int s = i * ctl->dev_stripes + j;
5547 map->stripes[s].dev = devices_info[i].dev;
5548 map->stripes[s].physical = devices_info[i].dev_offset +
5549 j * ctl->stripe_size;
5550 }
5551 }
5552
5553 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5554
5555 ret = btrfs_add_chunk_map(info, map);
5556 if (ret) {
5557 btrfs_free_chunk_map(map);
5558 return ERR_PTR(ret);
5559 }
5560
5561 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start,
5562 ctl->chunk_size);
5563 if (IS_ERR(block_group)) {
5564 btrfs_remove_chunk_map(info, map);
5565 return block_group;
5566 }
5567
5568 for (int i = 0; i < map->num_stripes; i++) {
5569 struct btrfs_device *dev = map->stripes[i].dev;
5570
5571 btrfs_device_set_bytes_used(dev,
5572 dev->bytes_used + ctl->stripe_size);
5573 if (list_empty(&dev->post_commit_list))
5574 list_add_tail(&dev->post_commit_list,
5575 &trans->transaction->dev_update_list);
5576 }
5577
5578 atomic64_sub(ctl->stripe_size * map->num_stripes,
5579 &info->free_chunk_space);
5580
5581 check_raid56_incompat_flag(info, type);
5582 check_raid1c34_incompat_flag(info, type);
5583
5584 return block_group;
5585 }
5586
btrfs_create_chunk(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type)5587 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5588 struct btrfs_space_info *space_info,
5589 u64 type)
5590 {
5591 struct btrfs_fs_info *info = trans->fs_info;
5592 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5593 struct btrfs_device_info *devices_info = NULL;
5594 struct alloc_chunk_ctl ctl;
5595 struct btrfs_block_group *block_group;
5596 int ret;
5597
5598 lockdep_assert_held(&info->chunk_mutex);
5599
5600 if (!alloc_profile_is_valid(type, 0)) {
5601 DEBUG_WARN("invalid alloc profile for type %llu", type);
5602 return ERR_PTR(-EINVAL);
5603 }
5604
5605 if (list_empty(&fs_devices->alloc_list)) {
5606 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5607 btrfs_debug(info, "%s: no writable device", __func__);
5608 return ERR_PTR(-ENOSPC);
5609 }
5610
5611 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5612 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5613 DEBUG_WARN();
5614 return ERR_PTR(-EINVAL);
5615 }
5616
5617 ctl.start = find_next_chunk(info);
5618 ctl.type = type;
5619 ctl.space_info = space_info;
5620 init_alloc_chunk_ctl(fs_devices, &ctl);
5621
5622 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5623 GFP_NOFS);
5624 if (!devices_info)
5625 return ERR_PTR(-ENOMEM);
5626
5627 ret = gather_device_info(fs_devices, &ctl, devices_info);
5628 if (ret < 0) {
5629 block_group = ERR_PTR(ret);
5630 goto out;
5631 }
5632
5633 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5634 if (ret < 0) {
5635 block_group = ERR_PTR(ret);
5636 goto out;
5637 }
5638
5639 block_group = create_chunk(trans, &ctl, devices_info);
5640
5641 out:
5642 kfree(devices_info);
5643 return block_group;
5644 }
5645
5646 /*
5647 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5648 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5649 * chunks.
5650 *
5651 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5652 * phases.
5653 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5654 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5655 struct btrfs_block_group *bg)
5656 {
5657 struct btrfs_fs_info *fs_info = trans->fs_info;
5658 struct btrfs_root *chunk_root = fs_info->chunk_root;
5659 struct btrfs_key key;
5660 struct btrfs_chunk *chunk;
5661 struct btrfs_stripe *stripe;
5662 struct btrfs_chunk_map *map;
5663 size_t item_size;
5664 int i;
5665 int ret;
5666
5667 /*
5668 * We take the chunk_mutex for 2 reasons:
5669 *
5670 * 1) Updates and insertions in the chunk btree must be done while holding
5671 * the chunk_mutex, as well as updating the system chunk array in the
5672 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5673 * details;
5674 *
5675 * 2) To prevent races with the final phase of a device replace operation
5676 * that replaces the device object associated with the map's stripes,
5677 * because the device object's id can change at any time during that
5678 * final phase of the device replace operation
5679 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5680 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5681 * which would cause a failure when updating the device item, which does
5682 * not exists, or persisting a stripe of the chunk item with such ID.
5683 * Here we can't use the device_list_mutex because our caller already
5684 * has locked the chunk_mutex, and the final phase of device replace
5685 * acquires both mutexes - first the device_list_mutex and then the
5686 * chunk_mutex. Using any of those two mutexes protects us from a
5687 * concurrent device replace.
5688 */
5689 lockdep_assert_held(&fs_info->chunk_mutex);
5690
5691 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5692 if (IS_ERR(map)) {
5693 ret = PTR_ERR(map);
5694 btrfs_abort_transaction(trans, ret);
5695 return ret;
5696 }
5697
5698 item_size = btrfs_chunk_item_size(map->num_stripes);
5699
5700 chunk = kzalloc(item_size, GFP_NOFS);
5701 if (unlikely(!chunk)) {
5702 ret = -ENOMEM;
5703 btrfs_abort_transaction(trans, ret);
5704 goto out;
5705 }
5706
5707 for (i = 0; i < map->num_stripes; i++) {
5708 struct btrfs_device *device = map->stripes[i].dev;
5709
5710 ret = btrfs_update_device(trans, device);
5711 if (ret)
5712 goto out;
5713 }
5714
5715 stripe = &chunk->stripe;
5716 for (i = 0; i < map->num_stripes; i++) {
5717 struct btrfs_device *device = map->stripes[i].dev;
5718 const u64 dev_offset = map->stripes[i].physical;
5719
5720 btrfs_set_stack_stripe_devid(stripe, device->devid);
5721 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5722 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5723 stripe++;
5724 }
5725
5726 btrfs_set_stack_chunk_length(chunk, bg->length);
5727 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5728 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5729 btrfs_set_stack_chunk_type(chunk, map->type);
5730 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5731 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5732 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5733 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5734 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5735
5736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5737 key.type = BTRFS_CHUNK_ITEM_KEY;
5738 key.offset = bg->start;
5739
5740 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5741 if (ret)
5742 goto out;
5743
5744 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5745
5746 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5747 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5748 if (ret)
5749 goto out;
5750 }
5751
5752 out:
5753 kfree(chunk);
5754 btrfs_free_chunk_map(map);
5755 return ret;
5756 }
5757
init_first_rw_device(struct btrfs_trans_handle * trans)5758 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5759 {
5760 struct btrfs_fs_info *fs_info = trans->fs_info;
5761 u64 alloc_profile;
5762 struct btrfs_block_group *meta_bg;
5763 struct btrfs_space_info *meta_space_info;
5764 struct btrfs_block_group *sys_bg;
5765 struct btrfs_space_info *sys_space_info;
5766
5767 /*
5768 * When adding a new device for sprouting, the seed device is read-only
5769 * so we must first allocate a metadata and a system chunk. But before
5770 * adding the block group items to the extent, device and chunk btrees,
5771 * we must first:
5772 *
5773 * 1) Create both chunks without doing any changes to the btrees, as
5774 * otherwise we would get -ENOSPC since the block groups from the
5775 * seed device are read-only;
5776 *
5777 * 2) Add the device item for the new sprout device - finishing the setup
5778 * of a new block group requires updating the device item in the chunk
5779 * btree, so it must exist when we attempt to do it. The previous step
5780 * ensures this does not fail with -ENOSPC.
5781 *
5782 * After that we can add the block group items to their btrees:
5783 * update existing device item in the chunk btree, add a new block group
5784 * item to the extent btree, add a new chunk item to the chunk btree and
5785 * finally add the new device extent items to the devices btree.
5786 */
5787
5788 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5789 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5790 if (!meta_space_info) {
5791 DEBUG_WARN();
5792 return -EINVAL;
5793 }
5794 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile);
5795 if (IS_ERR(meta_bg))
5796 return PTR_ERR(meta_bg);
5797
5798 alloc_profile = btrfs_system_alloc_profile(fs_info);
5799 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5800 if (!sys_space_info) {
5801 DEBUG_WARN();
5802 return -EINVAL;
5803 }
5804 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile);
5805 if (IS_ERR(sys_bg))
5806 return PTR_ERR(sys_bg);
5807
5808 return 0;
5809 }
5810
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5811 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5812 {
5813 const int index = btrfs_bg_flags_to_raid_index(map->type);
5814
5815 return btrfs_raid_array[index].tolerated_failures;
5816 }
5817
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5818 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5819 {
5820 struct btrfs_chunk_map *map;
5821 int miss_ndevs = 0;
5822 int i;
5823 bool ret = true;
5824
5825 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5826 if (IS_ERR(map))
5827 return false;
5828
5829 for (i = 0; i < map->num_stripes; i++) {
5830 if (test_bit(BTRFS_DEV_STATE_MISSING,
5831 &map->stripes[i].dev->dev_state)) {
5832 miss_ndevs++;
5833 continue;
5834 }
5835 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5836 &map->stripes[i].dev->dev_state)) {
5837 ret = false;
5838 goto end;
5839 }
5840 }
5841
5842 /*
5843 * If the number of missing devices is larger than max errors, we can
5844 * not write the data into that chunk successfully.
5845 */
5846 if (miss_ndevs > btrfs_chunk_max_errors(map))
5847 ret = false;
5848 end:
5849 btrfs_free_chunk_map(map);
5850 return ret;
5851 }
5852
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5853 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5854 {
5855 write_lock(&fs_info->mapping_tree_lock);
5856 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5857 struct btrfs_chunk_map *map;
5858 struct rb_node *node;
5859
5860 node = rb_first_cached(&fs_info->mapping_tree);
5861 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5862 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5863 RB_CLEAR_NODE(&map->rb_node);
5864 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5865 /* Once for the tree ref. */
5866 btrfs_free_chunk_map(map);
5867 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5868 }
5869 write_unlock(&fs_info->mapping_tree_lock);
5870 }
5871
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5872 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5873 {
5874 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5875
5876 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5877 return 2;
5878
5879 /*
5880 * There could be two corrupted data stripes, we need to loop retry in
5881 * order to rebuild the correct data.
5882 *
5883 * Fail a stripe at a time on every retry except the stripe under
5884 * reconstruction.
5885 */
5886 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5887 return map->num_stripes;
5888
5889 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5890 return btrfs_raid_array[index].ncopies;
5891 }
5892
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5893 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5894 {
5895 struct btrfs_chunk_map *map;
5896 int ret;
5897
5898 map = btrfs_get_chunk_map(fs_info, logical, len);
5899 if (IS_ERR(map))
5900 /*
5901 * We could return errors for these cases, but that could get
5902 * ugly and we'd probably do the same thing which is just not do
5903 * anything else and exit, so return 1 so the callers don't try
5904 * to use other copies.
5905 */
5906 return 1;
5907
5908 ret = btrfs_chunk_map_num_copies(map);
5909 btrfs_free_chunk_map(map);
5910 return ret;
5911 }
5912
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5913 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5914 u64 logical)
5915 {
5916 struct btrfs_chunk_map *map;
5917 unsigned long len = fs_info->sectorsize;
5918
5919 if (!btrfs_fs_incompat(fs_info, RAID56))
5920 return len;
5921
5922 map = btrfs_get_chunk_map(fs_info, logical, len);
5923
5924 if (!WARN_ON(IS_ERR(map))) {
5925 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5926 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5927 btrfs_free_chunk_map(map);
5928 }
5929 return len;
5930 }
5931
5932 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_read_preferred(struct btrfs_chunk_map * map,int first,int num_stripes)5933 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes)
5934 {
5935 for (int index = first; index < first + num_stripes; index++) {
5936 const struct btrfs_device *device = map->stripes[index].dev;
5937
5938 if (device->devid == READ_ONCE(device->fs_devices->read_devid))
5939 return index;
5940 }
5941
5942 /* If no read-preferred device is set use the first stripe. */
5943 return first;
5944 }
5945
5946 struct stripe_mirror {
5947 u64 devid;
5948 int num;
5949 };
5950
btrfs_cmp_devid(const void * a,const void * b)5951 static int btrfs_cmp_devid(const void *a, const void *b)
5952 {
5953 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a;
5954 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b;
5955
5956 if (s1->devid < s2->devid)
5957 return -1;
5958 if (s1->devid > s2->devid)
5959 return 1;
5960 return 0;
5961 }
5962
5963 /*
5964 * Select a stripe for reading using the round-robin algorithm.
5965 *
5966 * 1. Compute the read cycle as the total sectors read divided by the minimum
5967 * sectors per device.
5968 * 2. Determine the stripe number for the current read by taking the modulus
5969 * of the read cycle with the total number of stripes:
5970 *
5971 * stripe index = (total sectors / min sectors per dev) % num stripes
5972 *
5973 * The calculated stripe index is then used to select the corresponding device
5974 * from the list of devices, which is ordered by devid.
5975 */
btrfs_read_rr(const struct btrfs_chunk_map * map,int first,int num_stripes)5976 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes)
5977 {
5978 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 };
5979 struct btrfs_device *device = map->stripes[first].dev;
5980 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info;
5981 unsigned int read_cycle;
5982 unsigned int total_reads;
5983 unsigned int min_reads_per_dev;
5984
5985 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks);
5986 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >>
5987 fs_info->sectorsize_bits;
5988
5989 for (int index = 0, i = first; i < first + num_stripes; i++) {
5990 stripes[index].devid = map->stripes[i].dev->devid;
5991 stripes[index].num = i;
5992 index++;
5993 }
5994 sort(stripes, num_stripes, sizeof(struct stripe_mirror),
5995 btrfs_cmp_devid, NULL);
5996
5997 read_cycle = total_reads / min_reads_per_dev;
5998 return stripes[read_cycle % num_stripes].num;
5999 }
6000 #endif
6001
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,bool dev_replace_is_ongoing)6002 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6003 struct btrfs_chunk_map *map, int first,
6004 bool dev_replace_is_ongoing)
6005 {
6006 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6007 int i;
6008 int num_stripes;
6009 int preferred_mirror;
6010 int tolerance;
6011 struct btrfs_device *srcdev;
6012
6013 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)),
6014 "type=%llu", map->type);
6015
6016 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6017 num_stripes = map->sub_stripes;
6018 else
6019 num_stripes = map->num_stripes;
6020
6021 switch (policy) {
6022 default:
6023 /* Shouldn't happen, just warn and use pid instead of failing */
6024 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6025 policy);
6026 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6027 fallthrough;
6028 case BTRFS_READ_POLICY_PID:
6029 preferred_mirror = first + (current->pid % num_stripes);
6030 break;
6031 #ifdef CONFIG_BTRFS_EXPERIMENTAL
6032 case BTRFS_READ_POLICY_RR:
6033 preferred_mirror = btrfs_read_rr(map, first, num_stripes);
6034 break;
6035 case BTRFS_READ_POLICY_DEVID:
6036 preferred_mirror = btrfs_read_preferred(map, first, num_stripes);
6037 break;
6038 #endif
6039 }
6040
6041 if (dev_replace_is_ongoing &&
6042 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6043 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6044 srcdev = fs_info->dev_replace.srcdev;
6045 else
6046 srcdev = NULL;
6047
6048 /*
6049 * try to avoid the drive that is the source drive for a
6050 * dev-replace procedure, only choose it if no other non-missing
6051 * mirror is available
6052 */
6053 for (tolerance = 0; tolerance < 2; tolerance++) {
6054 if (map->stripes[preferred_mirror].dev->bdev &&
6055 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6056 return preferred_mirror;
6057 for (i = first; i < first + num_stripes; i++) {
6058 if (map->stripes[i].dev->bdev &&
6059 (tolerance || map->stripes[i].dev != srcdev))
6060 return i;
6061 }
6062 }
6063
6064 /* we couldn't find one that doesn't fail. Just return something
6065 * and the io error handling code will clean up eventually
6066 */
6067 return preferred_mirror;
6068 }
6069
6070 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6071 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6072 u64 logical, u16 total_stripes)
6073 {
6074 struct btrfs_io_context *bioc;
6075
6076 bioc = kzalloc(
6077 /* The size of btrfs_io_context */
6078 sizeof(struct btrfs_io_context) +
6079 /* Plus the variable array for the stripes */
6080 sizeof(struct btrfs_io_stripe) * (total_stripes),
6081 GFP_NOFS);
6082
6083 if (!bioc)
6084 return NULL;
6085
6086 refcount_set(&bioc->refs, 1);
6087
6088 bioc->fs_info = fs_info;
6089 bioc->replace_stripe_src = -1;
6090 bioc->full_stripe_logical = (u64)-1;
6091 bioc->logical = logical;
6092
6093 return bioc;
6094 }
6095
btrfs_get_bioc(struct btrfs_io_context * bioc)6096 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6097 {
6098 WARN_ON(!refcount_read(&bioc->refs));
6099 refcount_inc(&bioc->refs);
6100 }
6101
btrfs_put_bioc(struct btrfs_io_context * bioc)6102 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6103 {
6104 if (!bioc)
6105 return;
6106 if (refcount_dec_and_test(&bioc->refs))
6107 kfree(bioc);
6108 }
6109
6110 /*
6111 * Please note that, discard won't be sent to target device of device
6112 * replace.
6113 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6114 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6115 u64 logical, u64 *length_ret,
6116 u32 *num_stripes)
6117 {
6118 struct btrfs_chunk_map *map;
6119 struct btrfs_discard_stripe *stripes;
6120 u64 length = *length_ret;
6121 u64 offset;
6122 u32 stripe_nr;
6123 u32 stripe_nr_end;
6124 u32 stripe_cnt;
6125 u64 stripe_end_offset;
6126 u64 stripe_offset;
6127 u32 stripe_index;
6128 u32 factor = 0;
6129 u32 sub_stripes = 0;
6130 u32 stripes_per_dev = 0;
6131 u32 remaining_stripes = 0;
6132 u32 last_stripe = 0;
6133 int ret;
6134 int i;
6135
6136 map = btrfs_get_chunk_map(fs_info, logical, length);
6137 if (IS_ERR(map))
6138 return ERR_CAST(map);
6139
6140 /* we don't discard raid56 yet */
6141 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6142 ret = -EOPNOTSUPP;
6143 goto out_free_map;
6144 }
6145
6146 offset = logical - map->start;
6147 length = min_t(u64, map->start + map->chunk_len - logical, length);
6148 *length_ret = length;
6149
6150 /*
6151 * stripe_nr counts the total number of stripes we have to stride
6152 * to get to this block
6153 */
6154 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6155
6156 /* stripe_offset is the offset of this block in its stripe */
6157 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6158
6159 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6160 BTRFS_STRIPE_LEN_SHIFT;
6161 stripe_cnt = stripe_nr_end - stripe_nr;
6162 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6163 (offset + length);
6164 /*
6165 * after this, stripe_nr is the number of stripes on this
6166 * device we have to walk to find the data, and stripe_index is
6167 * the number of our device in the stripe array
6168 */
6169 *num_stripes = 1;
6170 stripe_index = 0;
6171 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6172 BTRFS_BLOCK_GROUP_RAID10)) {
6173 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6174 sub_stripes = 1;
6175 else
6176 sub_stripes = map->sub_stripes;
6177
6178 factor = map->num_stripes / sub_stripes;
6179 *num_stripes = min_t(u64, map->num_stripes,
6180 sub_stripes * stripe_cnt);
6181 stripe_index = stripe_nr % factor;
6182 stripe_nr /= factor;
6183 stripe_index *= sub_stripes;
6184
6185 remaining_stripes = stripe_cnt % factor;
6186 stripes_per_dev = stripe_cnt / factor;
6187 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6188 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6189 BTRFS_BLOCK_GROUP_DUP)) {
6190 *num_stripes = map->num_stripes;
6191 } else {
6192 stripe_index = stripe_nr % map->num_stripes;
6193 stripe_nr /= map->num_stripes;
6194 }
6195
6196 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6197 if (!stripes) {
6198 ret = -ENOMEM;
6199 goto out_free_map;
6200 }
6201
6202 for (i = 0; i < *num_stripes; i++) {
6203 stripes[i].physical =
6204 map->stripes[stripe_index].physical +
6205 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6206 stripes[i].dev = map->stripes[stripe_index].dev;
6207
6208 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6209 BTRFS_BLOCK_GROUP_RAID10)) {
6210 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6211
6212 if (i / sub_stripes < remaining_stripes)
6213 stripes[i].length += BTRFS_STRIPE_LEN;
6214
6215 /*
6216 * Special for the first stripe and
6217 * the last stripe:
6218 *
6219 * |-------|...|-------|
6220 * |----------|
6221 * off end_off
6222 */
6223 if (i < sub_stripes)
6224 stripes[i].length -= stripe_offset;
6225
6226 if (stripe_index >= last_stripe &&
6227 stripe_index <= (last_stripe +
6228 sub_stripes - 1))
6229 stripes[i].length -= stripe_end_offset;
6230
6231 if (i == sub_stripes - 1)
6232 stripe_offset = 0;
6233 } else {
6234 stripes[i].length = length;
6235 }
6236
6237 stripe_index++;
6238 if (stripe_index == map->num_stripes) {
6239 stripe_index = 0;
6240 stripe_nr++;
6241 }
6242 }
6243
6244 btrfs_free_chunk_map(map);
6245 return stripes;
6246 out_free_map:
6247 btrfs_free_chunk_map(map);
6248 return ERR_PTR(ret);
6249 }
6250
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6251 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6252 {
6253 struct btrfs_block_group *cache;
6254 bool ret;
6255
6256 /* Non zoned filesystem does not use "to_copy" flag */
6257 if (!btrfs_is_zoned(fs_info))
6258 return false;
6259
6260 cache = btrfs_lookup_block_group(fs_info, logical);
6261
6262 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6263
6264 btrfs_put_block_group(cache);
6265 return ret;
6266 }
6267
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6268 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6269 struct btrfs_dev_replace *dev_replace,
6270 u64 logical,
6271 struct btrfs_io_geometry *io_geom)
6272 {
6273 u64 srcdev_devid = dev_replace->srcdev->devid;
6274 /*
6275 * At this stage, num_stripes is still the real number of stripes,
6276 * excluding the duplicated stripes.
6277 */
6278 int num_stripes = io_geom->num_stripes;
6279 int max_errors = io_geom->max_errors;
6280 int nr_extra_stripes = 0;
6281 int i;
6282
6283 /*
6284 * A block group which has "to_copy" set will eventually be copied by
6285 * the dev-replace process. We can avoid cloning IO here.
6286 */
6287 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6288 return;
6289
6290 /*
6291 * Duplicate the write operations while the dev-replace procedure is
6292 * running. Since the copying of the old disk to the new disk takes
6293 * place at run time while the filesystem is mounted writable, the
6294 * regular write operations to the old disk have to be duplicated to go
6295 * to the new disk as well.
6296 *
6297 * Note that device->missing is handled by the caller, and that the
6298 * write to the old disk is already set up in the stripes array.
6299 */
6300 for (i = 0; i < num_stripes; i++) {
6301 struct btrfs_io_stripe *old = &bioc->stripes[i];
6302 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6303
6304 if (old->dev->devid != srcdev_devid)
6305 continue;
6306
6307 new->physical = old->physical;
6308 new->dev = dev_replace->tgtdev;
6309 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6310 bioc->replace_stripe_src = i;
6311 nr_extra_stripes++;
6312 }
6313
6314 /* We can only have at most 2 extra nr_stripes (for DUP). */
6315 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes);
6316 /*
6317 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6318 * replace.
6319 * If we have 2 extra stripes, only choose the one with smaller physical.
6320 */
6321 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6322 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6323 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6324
6325 /* Only DUP can have two extra stripes. */
6326 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP,
6327 "map_type=%llu", bioc->map_type);
6328
6329 /*
6330 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6331 * The extra stripe would still be there, but won't be accessed.
6332 */
6333 if (first->physical > second->physical) {
6334 swap(second->physical, first->physical);
6335 swap(second->dev, first->dev);
6336 nr_extra_stripes--;
6337 }
6338 }
6339
6340 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6341 io_geom->max_errors = max_errors + nr_extra_stripes;
6342 bioc->replace_nr_stripes = nr_extra_stripes;
6343 }
6344
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6345 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6346 struct btrfs_io_geometry *io_geom)
6347 {
6348 /*
6349 * Stripe_nr is the stripe where this block falls. stripe_offset is
6350 * the offset of this block in its stripe.
6351 */
6352 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6353 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6354 ASSERT(io_geom->stripe_offset < U32_MAX,
6355 "stripe_offset=%llu", io_geom->stripe_offset);
6356
6357 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6358 unsigned long full_stripe_len =
6359 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6360
6361 /*
6362 * For full stripe start, we use previously calculated
6363 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6364 * STRIPE_LEN.
6365 *
6366 * By this we can avoid u64 division completely. And we have
6367 * to go rounddown(), not round_down(), as nr_data_stripes is
6368 * not ensured to be power of 2.
6369 */
6370 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6371 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6372
6373 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset,
6374 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu",
6375 io_geom->raid56_full_stripe_start, full_stripe_len, offset);
6376 ASSERT(io_geom->raid56_full_stripe_start <= offset,
6377 "raid56_full_stripe_start=%llu offset=%llu",
6378 io_geom->raid56_full_stripe_start, offset);
6379 /*
6380 * For writes to RAID56, allow to write a full stripe set, but
6381 * no straddling of stripe sets.
6382 */
6383 if (io_geom->op == BTRFS_MAP_WRITE)
6384 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6385 }
6386
6387 /*
6388 * For other RAID types and for RAID56 reads, allow a single stripe (on
6389 * a single disk).
6390 */
6391 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6392 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6393 return U64_MAX;
6394 }
6395
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6396 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6397 u64 *length, struct btrfs_io_stripe *dst,
6398 struct btrfs_chunk_map *map,
6399 struct btrfs_io_geometry *io_geom)
6400 {
6401 dst->dev = map->stripes[io_geom->stripe_index].dev;
6402
6403 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst)
6404 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6405 map->type,
6406 io_geom->stripe_index, dst);
6407
6408 dst->physical = map->stripes[io_geom->stripe_index].physical +
6409 io_geom->stripe_offset +
6410 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6411 return 0;
6412 }
6413
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,struct btrfs_io_geometry * io_geom)6414 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6415 const struct btrfs_io_stripe *smap,
6416 const struct btrfs_chunk_map *map,
6417 int num_alloc_stripes,
6418 struct btrfs_io_geometry *io_geom)
6419 {
6420 if (!smap)
6421 return false;
6422
6423 if (num_alloc_stripes != 1)
6424 return false;
6425
6426 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ)
6427 return false;
6428
6429 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1)
6430 return false;
6431
6432 return true;
6433 }
6434
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6435 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6436 struct btrfs_io_geometry *io_geom)
6437 {
6438 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6439 io_geom->stripe_nr /= map->num_stripes;
6440 if (io_geom->op == BTRFS_MAP_READ)
6441 io_geom->mirror_num = 1;
6442 }
6443
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6444 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6445 struct btrfs_chunk_map *map,
6446 struct btrfs_io_geometry *io_geom,
6447 bool dev_replace_is_ongoing)
6448 {
6449 if (io_geom->op != BTRFS_MAP_READ) {
6450 io_geom->num_stripes = map->num_stripes;
6451 return;
6452 }
6453
6454 if (io_geom->mirror_num) {
6455 io_geom->stripe_index = io_geom->mirror_num - 1;
6456 return;
6457 }
6458
6459 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6460 dev_replace_is_ongoing);
6461 io_geom->mirror_num = io_geom->stripe_index + 1;
6462 }
6463
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6464 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6465 struct btrfs_io_geometry *io_geom)
6466 {
6467 if (io_geom->op != BTRFS_MAP_READ) {
6468 io_geom->num_stripes = map->num_stripes;
6469 return;
6470 }
6471
6472 if (io_geom->mirror_num) {
6473 io_geom->stripe_index = io_geom->mirror_num - 1;
6474 return;
6475 }
6476
6477 io_geom->mirror_num = 1;
6478 }
6479
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6480 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6481 struct btrfs_chunk_map *map,
6482 struct btrfs_io_geometry *io_geom,
6483 bool dev_replace_is_ongoing)
6484 {
6485 u32 factor = map->num_stripes / map->sub_stripes;
6486 int old_stripe_index;
6487
6488 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6489 io_geom->stripe_nr /= factor;
6490
6491 if (io_geom->op != BTRFS_MAP_READ) {
6492 io_geom->num_stripes = map->sub_stripes;
6493 return;
6494 }
6495
6496 if (io_geom->mirror_num) {
6497 io_geom->stripe_index += io_geom->mirror_num - 1;
6498 return;
6499 }
6500
6501 old_stripe_index = io_geom->stripe_index;
6502 io_geom->stripe_index = find_live_mirror(fs_info, map,
6503 io_geom->stripe_index,
6504 dev_replace_is_ongoing);
6505 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6506 }
6507
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6508 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6509 struct btrfs_io_geometry *io_geom,
6510 u64 logical, u64 *length)
6511 {
6512 int data_stripes = nr_data_stripes(map);
6513
6514 /*
6515 * Needs full stripe mapping.
6516 *
6517 * Push stripe_nr back to the start of the full stripe For those cases
6518 * needing a full stripe, @stripe_nr is the full stripe number.
6519 *
6520 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6521 * that can be expensive. Here we just divide @stripe_nr with
6522 * @data_stripes.
6523 */
6524 io_geom->stripe_nr /= data_stripes;
6525
6526 /* RAID[56] write or recovery. Return all stripes */
6527 io_geom->num_stripes = map->num_stripes;
6528 io_geom->max_errors = btrfs_chunk_max_errors(map);
6529
6530 /* Return the length to the full stripe end. */
6531 *length = min(logical + *length,
6532 io_geom->raid56_full_stripe_start + map->start +
6533 btrfs_stripe_nr_to_offset(data_stripes)) -
6534 logical;
6535 io_geom->stripe_index = 0;
6536 io_geom->stripe_offset = 0;
6537 }
6538
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6539 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6540 struct btrfs_io_geometry *io_geom)
6541 {
6542 int data_stripes = nr_data_stripes(map);
6543
6544 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num);
6545 /* Just grab the data stripe directly. */
6546 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6547 io_geom->stripe_nr /= data_stripes;
6548
6549 /* We distribute the parity blocks across stripes. */
6550 io_geom->stripe_index =
6551 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6552
6553 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6554 io_geom->mirror_num = 1;
6555 }
6556
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6557 static void map_blocks_single(const struct btrfs_chunk_map *map,
6558 struct btrfs_io_geometry *io_geom)
6559 {
6560 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6561 io_geom->stripe_nr /= map->num_stripes;
6562 io_geom->mirror_num = io_geom->stripe_index + 1;
6563 }
6564
6565 /*
6566 * Map one logical range to one or more physical ranges.
6567 *
6568 * @length: (Mandatory) mapped length of this run.
6569 * One logical range can be split into different segments
6570 * due to factors like zones and RAID0/5/6/10 stripe
6571 * boundaries.
6572 *
6573 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6574 * which has one or more physical ranges (btrfs_io_stripe)
6575 * recorded inside.
6576 * Caller should call btrfs_put_bioc() to free it after use.
6577 *
6578 * @smap: (Optional) single physical range optimization.
6579 * If the map request can be fulfilled by one single
6580 * physical range, and this is parameter is not NULL,
6581 * then @bioc_ret would be NULL, and @smap would be
6582 * updated.
6583 *
6584 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6585 * value is 0.
6586 *
6587 * Mirror number 0 means to choose any live mirrors.
6588 *
6589 * For non-RAID56 profiles, non-zero mirror_num means
6590 * the Nth mirror. (e.g. mirror_num 1 means the first
6591 * copy).
6592 *
6593 * For RAID56 profile, mirror 1 means rebuild from P and
6594 * the remaining data stripes.
6595 *
6596 * For RAID6 profile, mirror > 2 means mark another
6597 * data/P stripe error and rebuild from the remaining
6598 * stripes..
6599 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6600 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6601 u64 logical, u64 *length,
6602 struct btrfs_io_context **bioc_ret,
6603 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6604 {
6605 struct btrfs_chunk_map *map;
6606 struct btrfs_io_geometry io_geom = { 0 };
6607 u64 map_offset;
6608 int ret = 0;
6609 int num_copies;
6610 struct btrfs_io_context *bioc = NULL;
6611 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6612 bool dev_replace_is_ongoing = false;
6613 u16 num_alloc_stripes;
6614 u64 max_len;
6615
6616 ASSERT(bioc_ret);
6617
6618 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6619 io_geom.num_stripes = 1;
6620 io_geom.stripe_index = 0;
6621 io_geom.op = op;
6622
6623 map = btrfs_get_chunk_map(fs_info, logical, *length);
6624 if (IS_ERR(map))
6625 return PTR_ERR(map);
6626
6627 num_copies = btrfs_chunk_map_num_copies(map);
6628 if (io_geom.mirror_num > num_copies)
6629 return -EINVAL;
6630
6631 map_offset = logical - map->start;
6632 io_geom.raid56_full_stripe_start = (u64)-1;
6633 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6634 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6635 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type);
6636
6637 if (dev_replace->replace_task != current)
6638 down_read(&dev_replace->rwsem);
6639
6640 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6641 /*
6642 * Hold the semaphore for read during the whole operation, write is
6643 * requested at commit time but must wait.
6644 */
6645 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6646 up_read(&dev_replace->rwsem);
6647
6648 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6649 case BTRFS_BLOCK_GROUP_RAID0:
6650 map_blocks_raid0(map, &io_geom);
6651 break;
6652 case BTRFS_BLOCK_GROUP_RAID1:
6653 case BTRFS_BLOCK_GROUP_RAID1C3:
6654 case BTRFS_BLOCK_GROUP_RAID1C4:
6655 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6656 break;
6657 case BTRFS_BLOCK_GROUP_DUP:
6658 map_blocks_dup(map, &io_geom);
6659 break;
6660 case BTRFS_BLOCK_GROUP_RAID10:
6661 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6662 break;
6663 case BTRFS_BLOCK_GROUP_RAID5:
6664 case BTRFS_BLOCK_GROUP_RAID6:
6665 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6666 map_blocks_raid56_write(map, &io_geom, logical, length);
6667 else
6668 map_blocks_raid56_read(map, &io_geom);
6669 break;
6670 default:
6671 /*
6672 * After this, stripe_nr is the number of stripes on this
6673 * device we have to walk to find the data, and stripe_index is
6674 * the number of our device in the stripe array
6675 */
6676 map_blocks_single(map, &io_geom);
6677 break;
6678 }
6679 if (io_geom.stripe_index >= map->num_stripes) {
6680 btrfs_crit(fs_info,
6681 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6682 io_geom.stripe_index, map->num_stripes);
6683 ret = -EINVAL;
6684 goto out;
6685 }
6686
6687 num_alloc_stripes = io_geom.num_stripes;
6688 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6689 op != BTRFS_MAP_READ)
6690 /*
6691 * For replace case, we need to add extra stripes for extra
6692 * duplicated stripes.
6693 *
6694 * For both WRITE and GET_READ_MIRRORS, we may have at most
6695 * 2 more stripes (DUP types, otherwise 1).
6696 */
6697 num_alloc_stripes += 2;
6698
6699 /*
6700 * If this I/O maps to a single device, try to return the device and
6701 * physical block information on the stack instead of allocating an
6702 * I/O context structure.
6703 */
6704 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) {
6705 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6706 if (mirror_num_ret)
6707 *mirror_num_ret = io_geom.mirror_num;
6708 *bioc_ret = NULL;
6709 goto out;
6710 }
6711
6712 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6713 if (!bioc) {
6714 ret = -ENOMEM;
6715 goto out;
6716 }
6717 bioc->map_type = map->type;
6718 bioc->use_rst = io_geom.use_rst;
6719
6720 /*
6721 * For RAID56 full map, we need to make sure the stripes[] follows the
6722 * rule that data stripes are all ordered, then followed with P and Q
6723 * (if we have).
6724 *
6725 * It's still mostly the same as other profiles, just with extra rotation.
6726 */
6727 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6728 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6729 /*
6730 * For RAID56 @stripe_nr is already the number of full stripes
6731 * before us, which is also the rotation value (needs to modulo
6732 * with num_stripes).
6733 *
6734 * In this case, we just add @stripe_nr with @i, then do the
6735 * modulo, to reduce one modulo call.
6736 */
6737 bioc->full_stripe_logical = map->start +
6738 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6739 nr_data_stripes(map));
6740 for (int i = 0; i < io_geom.num_stripes; i++) {
6741 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6742 u32 stripe_index;
6743
6744 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6745 dst->dev = map->stripes[stripe_index].dev;
6746 dst->physical =
6747 map->stripes[stripe_index].physical +
6748 io_geom.stripe_offset +
6749 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6750 }
6751 } else {
6752 /*
6753 * For all other non-RAID56 profiles, just copy the target
6754 * stripe into the bioc.
6755 */
6756 for (int i = 0; i < io_geom.num_stripes; i++) {
6757 ret = set_io_stripe(fs_info, logical, length,
6758 &bioc->stripes[i], map, &io_geom);
6759 if (ret < 0)
6760 break;
6761 io_geom.stripe_index++;
6762 }
6763 }
6764
6765 if (ret) {
6766 *bioc_ret = NULL;
6767 btrfs_put_bioc(bioc);
6768 goto out;
6769 }
6770
6771 if (op != BTRFS_MAP_READ)
6772 io_geom.max_errors = btrfs_chunk_max_errors(map);
6773
6774 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6775 op != BTRFS_MAP_READ) {
6776 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6777 }
6778
6779 *bioc_ret = bioc;
6780 bioc->num_stripes = io_geom.num_stripes;
6781 bioc->max_errors = io_geom.max_errors;
6782 bioc->mirror_num = io_geom.mirror_num;
6783
6784 out:
6785 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6786 lockdep_assert_held(&dev_replace->rwsem);
6787 /* Unlock and let waiting writers proceed */
6788 up_read(&dev_replace->rwsem);
6789 }
6790 btrfs_free_chunk_map(map);
6791 return ret;
6792 }
6793
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6794 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6795 const struct btrfs_fs_devices *fs_devices)
6796 {
6797 if (args->fsid == NULL)
6798 return true;
6799 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6800 return true;
6801 return false;
6802 }
6803
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6804 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6805 const struct btrfs_device *device)
6806 {
6807 if (args->missing) {
6808 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6809 !device->bdev)
6810 return true;
6811 return false;
6812 }
6813
6814 if (device->devid != args->devid)
6815 return false;
6816 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6817 return false;
6818 return true;
6819 }
6820
6821 /*
6822 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6823 * return NULL.
6824 *
6825 * If devid and uuid are both specified, the match must be exact, otherwise
6826 * only devid is used.
6827 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6828 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6829 const struct btrfs_dev_lookup_args *args)
6830 {
6831 struct btrfs_device *device;
6832 struct btrfs_fs_devices *seed_devs;
6833
6834 if (dev_args_match_fs_devices(args, fs_devices)) {
6835 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6836 if (dev_args_match_device(args, device))
6837 return device;
6838 }
6839 }
6840
6841 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6842 if (!dev_args_match_fs_devices(args, seed_devs))
6843 continue;
6844 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6845 if (dev_args_match_device(args, device))
6846 return device;
6847 }
6848 }
6849
6850 return NULL;
6851 }
6852
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6853 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6854 u64 devid, u8 *dev_uuid)
6855 {
6856 struct btrfs_device *device;
6857 unsigned int nofs_flag;
6858
6859 /*
6860 * We call this under the chunk_mutex, so we want to use NOFS for this
6861 * allocation, however we don't want to change btrfs_alloc_device() to
6862 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6863 * places.
6864 */
6865
6866 nofs_flag = memalloc_nofs_save();
6867 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6868 memalloc_nofs_restore(nofs_flag);
6869 if (IS_ERR(device))
6870 return device;
6871
6872 list_add(&device->dev_list, &fs_devices->devices);
6873 device->fs_devices = fs_devices;
6874 fs_devices->num_devices++;
6875
6876 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6877 fs_devices->missing_devices++;
6878
6879 return device;
6880 }
6881
6882 /*
6883 * Allocate new device struct, set up devid and UUID.
6884 *
6885 * @fs_info: used only for generating a new devid, can be NULL if
6886 * devid is provided (i.e. @devid != NULL).
6887 * @devid: a pointer to devid for this device. If NULL a new devid
6888 * is generated.
6889 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6890 * is generated.
6891 * @path: a pointer to device path if available, NULL otherwise.
6892 *
6893 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6894 * on error. Returned struct is not linked onto any lists and must be
6895 * destroyed with btrfs_free_device.
6896 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6897 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6898 const u64 *devid, const u8 *uuid,
6899 const char *path)
6900 {
6901 struct btrfs_device *dev;
6902 u64 tmp;
6903
6904 if (WARN_ON(!devid && !fs_info))
6905 return ERR_PTR(-EINVAL);
6906
6907 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6908 if (!dev)
6909 return ERR_PTR(-ENOMEM);
6910
6911 INIT_LIST_HEAD(&dev->dev_list);
6912 INIT_LIST_HEAD(&dev->dev_alloc_list);
6913 INIT_LIST_HEAD(&dev->post_commit_list);
6914
6915 atomic_set(&dev->dev_stats_ccnt, 0);
6916 btrfs_device_data_ordered_init(dev);
6917 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6918
6919 if (devid)
6920 tmp = *devid;
6921 else {
6922 int ret;
6923
6924 ret = find_next_devid(fs_info, &tmp);
6925 if (ret) {
6926 btrfs_free_device(dev);
6927 return ERR_PTR(ret);
6928 }
6929 }
6930 dev->devid = tmp;
6931
6932 if (uuid)
6933 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6934 else
6935 generate_random_uuid(dev->uuid);
6936
6937 if (path) {
6938 const char *name;
6939
6940 name = kstrdup(path, GFP_KERNEL);
6941 if (!name) {
6942 btrfs_free_device(dev);
6943 return ERR_PTR(-ENOMEM);
6944 }
6945 rcu_assign_pointer(dev->name, name);
6946 }
6947
6948 return dev;
6949 }
6950
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6951 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6952 u64 devid, u8 *uuid, bool error)
6953 {
6954 if (error)
6955 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6956 devid, uuid);
6957 else
6958 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6959 devid, uuid);
6960 }
6961
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6962 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6963 {
6964 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6965
6966 return div_u64(map->chunk_len, data_stripes);
6967 }
6968
6969 #if BITS_PER_LONG == 32
6970 /*
6971 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6972 * can't be accessed on 32bit systems.
6973 *
6974 * This function do mount time check to reject the fs if it already has
6975 * metadata chunk beyond that limit.
6976 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6977 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6978 u64 logical, u64 length, u64 type)
6979 {
6980 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6981 return 0;
6982
6983 if (logical + length < MAX_LFS_FILESIZE)
6984 return 0;
6985
6986 btrfs_err_32bit_limit(fs_info);
6987 return -EOVERFLOW;
6988 }
6989
6990 /*
6991 * This is to give early warning for any metadata chunk reaching
6992 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6993 * Although we can still access the metadata, it's not going to be possible
6994 * once the limit is reached.
6995 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6996 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6997 u64 logical, u64 length, u64 type)
6998 {
6999 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7000 return;
7001
7002 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7003 return;
7004
7005 btrfs_warn_32bit_limit(fs_info);
7006 }
7007 #endif
7008
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7009 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7010 u64 devid, u8 *uuid)
7011 {
7012 struct btrfs_device *dev;
7013
7014 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7015 btrfs_report_missing_device(fs_info, devid, uuid, true);
7016 return ERR_PTR(-ENOENT);
7017 }
7018
7019 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7020 if (IS_ERR(dev)) {
7021 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7022 devid, PTR_ERR(dev));
7023 return dev;
7024 }
7025 btrfs_report_missing_device(fs_info, devid, uuid, false);
7026
7027 return dev;
7028 }
7029
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7030 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7031 struct btrfs_chunk *chunk)
7032 {
7033 BTRFS_DEV_LOOKUP_ARGS(args);
7034 struct btrfs_fs_info *fs_info = leaf->fs_info;
7035 struct btrfs_chunk_map *map;
7036 u64 logical;
7037 u64 length;
7038 u64 devid;
7039 u64 type;
7040 u8 uuid[BTRFS_UUID_SIZE];
7041 int index;
7042 int num_stripes;
7043 int ret;
7044 int i;
7045
7046 logical = key->offset;
7047 length = btrfs_chunk_length(leaf, chunk);
7048 type = btrfs_chunk_type(leaf, chunk);
7049 index = btrfs_bg_flags_to_raid_index(type);
7050 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7051
7052 #if BITS_PER_LONG == 32
7053 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7054 if (ret < 0)
7055 return ret;
7056 warn_32bit_meta_chunk(fs_info, logical, length, type);
7057 #endif
7058
7059 map = btrfs_find_chunk_map(fs_info, logical, 1);
7060
7061 /* already mapped? */
7062 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7063 btrfs_free_chunk_map(map);
7064 return 0;
7065 } else if (map) {
7066 btrfs_free_chunk_map(map);
7067 }
7068
7069 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7070 if (!map)
7071 return -ENOMEM;
7072
7073 map->start = logical;
7074 map->chunk_len = length;
7075 map->num_stripes = num_stripes;
7076 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7077 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7078 map->type = type;
7079 /*
7080 * We can't use the sub_stripes value, as for profiles other than
7081 * RAID10, they may have 0 as sub_stripes for filesystems created by
7082 * older mkfs (<v5.4).
7083 * In that case, it can cause divide-by-zero errors later.
7084 * Since currently sub_stripes is fixed for each profile, let's
7085 * use the trusted value instead.
7086 */
7087 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7088 map->verified_stripes = 0;
7089 map->stripe_size = btrfs_calc_stripe_length(map);
7090 for (i = 0; i < num_stripes; i++) {
7091 map->stripes[i].physical =
7092 btrfs_stripe_offset_nr(leaf, chunk, i);
7093 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7094 args.devid = devid;
7095 read_extent_buffer(leaf, uuid, (unsigned long)
7096 btrfs_stripe_dev_uuid_nr(chunk, i),
7097 BTRFS_UUID_SIZE);
7098 args.uuid = uuid;
7099 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7100 if (!map->stripes[i].dev) {
7101 map->stripes[i].dev = handle_missing_device(fs_info,
7102 devid, uuid);
7103 if (IS_ERR(map->stripes[i].dev)) {
7104 ret = PTR_ERR(map->stripes[i].dev);
7105 btrfs_free_chunk_map(map);
7106 return ret;
7107 }
7108 }
7109
7110 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7111 &(map->stripes[i].dev->dev_state));
7112 }
7113
7114 ret = btrfs_add_chunk_map(fs_info, map);
7115 if (ret < 0) {
7116 btrfs_err(fs_info,
7117 "failed to add chunk map, start=%llu len=%llu: %d",
7118 map->start, map->chunk_len, ret);
7119 btrfs_free_chunk_map(map);
7120 }
7121
7122 return ret;
7123 }
7124
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7125 static void fill_device_from_item(struct extent_buffer *leaf,
7126 struct btrfs_dev_item *dev_item,
7127 struct btrfs_device *device)
7128 {
7129 unsigned long ptr;
7130
7131 device->devid = btrfs_device_id(leaf, dev_item);
7132 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7133 device->total_bytes = device->disk_total_bytes;
7134 device->commit_total_bytes = device->disk_total_bytes;
7135 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7136 device->commit_bytes_used = device->bytes_used;
7137 device->type = btrfs_device_type(leaf, dev_item);
7138 device->io_align = btrfs_device_io_align(leaf, dev_item);
7139 device->io_width = btrfs_device_io_width(leaf, dev_item);
7140 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7141 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7143
7144 ptr = btrfs_device_uuid(dev_item);
7145 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7146 }
7147
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7148 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7149 u8 *fsid)
7150 {
7151 struct btrfs_fs_devices *fs_devices;
7152 int ret;
7153
7154 lockdep_assert_held(&uuid_mutex);
7155 ASSERT(fsid);
7156
7157 /* This will match only for multi-device seed fs */
7158 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7159 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7160 return fs_devices;
7161
7162
7163 fs_devices = find_fsid(fsid, NULL);
7164 if (!fs_devices) {
7165 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7166 btrfs_err(fs_info,
7167 "failed to find fsid %pU when attempting to open seed devices",
7168 fsid);
7169 return ERR_PTR(-ENOENT);
7170 }
7171
7172 fs_devices = alloc_fs_devices(fsid);
7173 if (IS_ERR(fs_devices))
7174 return fs_devices;
7175
7176 fs_devices->seeding = true;
7177 fs_devices->opened = 1;
7178 return fs_devices;
7179 }
7180
7181 /*
7182 * Upon first call for a seed fs fsid, just create a private copy of the
7183 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7184 */
7185 fs_devices = clone_fs_devices(fs_devices);
7186 if (IS_ERR(fs_devices))
7187 return fs_devices;
7188
7189 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb);
7190 if (ret) {
7191 free_fs_devices(fs_devices);
7192 return ERR_PTR(ret);
7193 }
7194
7195 if (!fs_devices->seeding) {
7196 close_fs_devices(fs_devices);
7197 free_fs_devices(fs_devices);
7198 return ERR_PTR(-EINVAL);
7199 }
7200
7201 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7202
7203 return fs_devices;
7204 }
7205
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7206 static int read_one_dev(struct extent_buffer *leaf,
7207 struct btrfs_dev_item *dev_item)
7208 {
7209 BTRFS_DEV_LOOKUP_ARGS(args);
7210 struct btrfs_fs_info *fs_info = leaf->fs_info;
7211 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7212 struct btrfs_device *device;
7213 u64 devid;
7214 int ret;
7215 u8 fs_uuid[BTRFS_FSID_SIZE];
7216 u8 dev_uuid[BTRFS_UUID_SIZE];
7217
7218 devid = btrfs_device_id(leaf, dev_item);
7219 args.devid = devid;
7220 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7221 BTRFS_UUID_SIZE);
7222 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7223 BTRFS_FSID_SIZE);
7224 args.uuid = dev_uuid;
7225 args.fsid = fs_uuid;
7226
7227 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7228 fs_devices = open_seed_devices(fs_info, fs_uuid);
7229 if (IS_ERR(fs_devices))
7230 return PTR_ERR(fs_devices);
7231 }
7232
7233 device = btrfs_find_device(fs_info->fs_devices, &args);
7234 if (!device) {
7235 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7236 btrfs_report_missing_device(fs_info, devid,
7237 dev_uuid, true);
7238 return -ENOENT;
7239 }
7240
7241 device = add_missing_dev(fs_devices, devid, dev_uuid);
7242 if (IS_ERR(device)) {
7243 btrfs_err(fs_info,
7244 "failed to add missing dev %llu: %ld",
7245 devid, PTR_ERR(device));
7246 return PTR_ERR(device);
7247 }
7248 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7249 } else {
7250 if (!device->bdev) {
7251 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7252 btrfs_report_missing_device(fs_info,
7253 devid, dev_uuid, true);
7254 return -ENOENT;
7255 }
7256 btrfs_report_missing_device(fs_info, devid,
7257 dev_uuid, false);
7258 }
7259
7260 if (!device->bdev &&
7261 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7262 /*
7263 * this happens when a device that was properly setup
7264 * in the device info lists suddenly goes bad.
7265 * device->bdev is NULL, and so we have to set
7266 * device->missing to one here
7267 */
7268 device->fs_devices->missing_devices++;
7269 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7270 }
7271
7272 /* Move the device to its own fs_devices */
7273 if (device->fs_devices != fs_devices) {
7274 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7275 &device->dev_state));
7276
7277 list_move(&device->dev_list, &fs_devices->devices);
7278 device->fs_devices->num_devices--;
7279 fs_devices->num_devices++;
7280
7281 device->fs_devices->missing_devices--;
7282 fs_devices->missing_devices++;
7283
7284 device->fs_devices = fs_devices;
7285 }
7286 }
7287
7288 if (device->fs_devices != fs_info->fs_devices) {
7289 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7290 if (device->generation !=
7291 btrfs_device_generation(leaf, dev_item))
7292 return -EINVAL;
7293 }
7294
7295 fill_device_from_item(leaf, dev_item, device);
7296 if (device->bdev) {
7297 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7298
7299 if (device->total_bytes > max_total_bytes) {
7300 btrfs_err(fs_info,
7301 "device total_bytes should be at most %llu but found %llu",
7302 max_total_bytes, device->total_bytes);
7303 return -EINVAL;
7304 }
7305 }
7306 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7307 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7308 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7309 device->fs_devices->total_rw_bytes += device->total_bytes;
7310 atomic64_add(device->total_bytes - device->bytes_used,
7311 &fs_info->free_chunk_space);
7312 }
7313 ret = 0;
7314 return ret;
7315 }
7316
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7317 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7318 {
7319 struct btrfs_super_block *super_copy = fs_info->super_copy;
7320 struct extent_buffer *sb;
7321 u8 *array_ptr;
7322 unsigned long sb_array_offset;
7323 int ret = 0;
7324 u32 array_size;
7325 u32 cur_offset;
7326 struct btrfs_key key;
7327
7328 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7329
7330 /*
7331 * We allocated a dummy extent, just to use extent buffer accessors.
7332 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7333 * that's fine, we will not go beyond system chunk array anyway.
7334 */
7335 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7336 if (!sb)
7337 return -ENOMEM;
7338 set_extent_buffer_uptodate(sb);
7339
7340 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7341 array_size = btrfs_super_sys_array_size(super_copy);
7342
7343 array_ptr = super_copy->sys_chunk_array;
7344 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7345 cur_offset = 0;
7346
7347 while (cur_offset < array_size) {
7348 struct btrfs_chunk *chunk;
7349 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr;
7350 u32 len = sizeof(*disk_key);
7351
7352 /*
7353 * The sys_chunk_array has been already verified at super block
7354 * read time. Only do ASSERT()s for basic checks.
7355 */
7356 ASSERT(cur_offset + len <= array_size);
7357
7358 btrfs_disk_key_to_cpu(&key, disk_key);
7359
7360 array_ptr += len;
7361 sb_array_offset += len;
7362 cur_offset += len;
7363
7364 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY);
7365
7366 chunk = (struct btrfs_chunk *)sb_array_offset;
7367 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM);
7368
7369 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk));
7370
7371 ASSERT(cur_offset + len <= array_size);
7372
7373 ret = read_one_chunk(&key, sb, chunk);
7374 if (ret)
7375 break;
7376
7377 array_ptr += len;
7378 sb_array_offset += len;
7379 cur_offset += len;
7380 }
7381 clear_extent_buffer_uptodate(sb);
7382 free_extent_buffer_stale(sb);
7383 return ret;
7384 }
7385
7386 /*
7387 * Check if all chunks in the fs are OK for read-write degraded mount
7388 *
7389 * If the @failing_dev is specified, it's accounted as missing.
7390 *
7391 * Return true if all chunks meet the minimal RW mount requirements.
7392 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7393 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7394 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7395 struct btrfs_device *failing_dev)
7396 {
7397 struct btrfs_chunk_map *map;
7398 u64 next_start;
7399 bool ret = true;
7400
7401 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7402 /* No chunk at all? Return false anyway */
7403 if (!map) {
7404 ret = false;
7405 goto out;
7406 }
7407 while (map) {
7408 int missing = 0;
7409 int max_tolerated;
7410 int i;
7411
7412 max_tolerated =
7413 btrfs_get_num_tolerated_disk_barrier_failures(
7414 map->type);
7415 for (i = 0; i < map->num_stripes; i++) {
7416 struct btrfs_device *dev = map->stripes[i].dev;
7417
7418 if (!dev || !dev->bdev ||
7419 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7420 dev->last_flush_error)
7421 missing++;
7422 else if (failing_dev && failing_dev == dev)
7423 missing++;
7424 }
7425 if (missing > max_tolerated) {
7426 if (!failing_dev)
7427 btrfs_warn(fs_info,
7428 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7429 map->start, missing, max_tolerated);
7430 btrfs_free_chunk_map(map);
7431 ret = false;
7432 goto out;
7433 }
7434 next_start = map->start + map->chunk_len;
7435 btrfs_free_chunk_map(map);
7436
7437 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7438 }
7439 out:
7440 return ret;
7441 }
7442
readahead_tree_node_children(struct extent_buffer * node)7443 static void readahead_tree_node_children(struct extent_buffer *node)
7444 {
7445 int i;
7446 const int nr_items = btrfs_header_nritems(node);
7447
7448 for (i = 0; i < nr_items; i++)
7449 btrfs_readahead_node_child(node, i);
7450 }
7451
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7452 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7453 {
7454 struct btrfs_root *root = fs_info->chunk_root;
7455 struct btrfs_path *path;
7456 struct extent_buffer *leaf;
7457 struct btrfs_key key;
7458 struct btrfs_key found_key;
7459 int ret;
7460 int slot;
7461 int iter_ret = 0;
7462 u64 total_dev = 0;
7463 u64 last_ra_node = 0;
7464
7465 path = btrfs_alloc_path();
7466 if (!path)
7467 return -ENOMEM;
7468
7469 /*
7470 * uuid_mutex is needed only if we are mounting a sprout FS
7471 * otherwise we don't need it.
7472 */
7473 mutex_lock(&uuid_mutex);
7474
7475 /*
7476 * It is possible for mount and umount to race in such a way that
7477 * we execute this code path, but open_fs_devices failed to clear
7478 * total_rw_bytes. We certainly want it cleared before reading the
7479 * device items, so clear it here.
7480 */
7481 fs_info->fs_devices->total_rw_bytes = 0;
7482
7483 /*
7484 * Lockdep complains about possible circular locking dependency between
7485 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7486 * used for freeze protection of a fs (struct super_block.s_writers),
7487 * which we take when starting a transaction, and extent buffers of the
7488 * chunk tree if we call read_one_dev() while holding a lock on an
7489 * extent buffer of the chunk tree. Since we are mounting the filesystem
7490 * and at this point there can't be any concurrent task modifying the
7491 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7492 */
7493 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7494 path->skip_locking = 1;
7495
7496 /*
7497 * Read all device items, and then all the chunk items. All
7498 * device items are found before any chunk item (their object id
7499 * is smaller than the lowest possible object id for a chunk
7500 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7501 */
7502 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7503 key.type = 0;
7504 key.offset = 0;
7505 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7506 struct extent_buffer *node = path->nodes[1];
7507
7508 leaf = path->nodes[0];
7509 slot = path->slots[0];
7510
7511 if (node) {
7512 if (last_ra_node != node->start) {
7513 readahead_tree_node_children(node);
7514 last_ra_node = node->start;
7515 }
7516 }
7517 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7518 struct btrfs_dev_item *dev_item;
7519 dev_item = btrfs_item_ptr(leaf, slot,
7520 struct btrfs_dev_item);
7521 ret = read_one_dev(leaf, dev_item);
7522 if (ret)
7523 goto error;
7524 total_dev++;
7525 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7526 struct btrfs_chunk *chunk;
7527
7528 /*
7529 * We are only called at mount time, so no need to take
7530 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7531 * we always lock first fs_info->chunk_mutex before
7532 * acquiring any locks on the chunk tree. This is a
7533 * requirement for chunk allocation, see the comment on
7534 * top of btrfs_chunk_alloc() for details.
7535 */
7536 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7537 ret = read_one_chunk(&found_key, leaf, chunk);
7538 if (ret)
7539 goto error;
7540 }
7541 }
7542 /* Catch error found during iteration */
7543 if (iter_ret < 0) {
7544 ret = iter_ret;
7545 goto error;
7546 }
7547
7548 /*
7549 * After loading chunk tree, we've got all device information,
7550 * do another round of validation checks.
7551 */
7552 if (total_dev != fs_info->fs_devices->total_devices) {
7553 btrfs_warn(fs_info,
7554 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7555 btrfs_super_num_devices(fs_info->super_copy),
7556 total_dev);
7557 fs_info->fs_devices->total_devices = total_dev;
7558 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7559 }
7560 if (btrfs_super_total_bytes(fs_info->super_copy) <
7561 fs_info->fs_devices->total_rw_bytes) {
7562 btrfs_err(fs_info,
7563 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7564 btrfs_super_total_bytes(fs_info->super_copy),
7565 fs_info->fs_devices->total_rw_bytes);
7566 ret = -EINVAL;
7567 goto error;
7568 }
7569 ret = 0;
7570 error:
7571 mutex_unlock(&uuid_mutex);
7572
7573 btrfs_free_path(path);
7574 return ret;
7575 }
7576
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7577 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7578 {
7579 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7580 struct btrfs_device *device;
7581 int ret = 0;
7582
7583 mutex_lock(&fs_devices->device_list_mutex);
7584 list_for_each_entry(device, &fs_devices->devices, dev_list)
7585 device->fs_info = fs_info;
7586
7587 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7588 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7589 device->fs_info = fs_info;
7590 ret = btrfs_get_dev_zone_info(device, false);
7591 if (ret)
7592 break;
7593 }
7594
7595 seed_devs->fs_info = fs_info;
7596 }
7597 mutex_unlock(&fs_devices->device_list_mutex);
7598
7599 return ret;
7600 }
7601
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7602 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7603 const struct btrfs_dev_stats_item *ptr,
7604 int index)
7605 {
7606 u64 val;
7607
7608 read_extent_buffer(eb, &val,
7609 offsetof(struct btrfs_dev_stats_item, values) +
7610 ((unsigned long)ptr) + (index * sizeof(u64)),
7611 sizeof(val));
7612 return val;
7613 }
7614
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7615 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7616 struct btrfs_dev_stats_item *ptr,
7617 int index, u64 val)
7618 {
7619 write_extent_buffer(eb, &val,
7620 offsetof(struct btrfs_dev_stats_item, values) +
7621 ((unsigned long)ptr) + (index * sizeof(u64)),
7622 sizeof(val));
7623 }
7624
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7625 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7626 struct btrfs_path *path)
7627 {
7628 struct btrfs_dev_stats_item *ptr;
7629 struct extent_buffer *eb;
7630 struct btrfs_key key;
7631 int item_size;
7632 int i, ret, slot;
7633
7634 if (!device->fs_info->dev_root)
7635 return 0;
7636
7637 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7638 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7639 key.offset = device->devid;
7640 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7641 if (ret) {
7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7643 btrfs_dev_stat_set(device, i, 0);
7644 device->dev_stats_valid = 1;
7645 btrfs_release_path(path);
7646 return ret < 0 ? ret : 0;
7647 }
7648 slot = path->slots[0];
7649 eb = path->nodes[0];
7650 item_size = btrfs_item_size(eb, slot);
7651
7652 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7653
7654 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7655 if (item_size >= (1 + i) * sizeof(__le64))
7656 btrfs_dev_stat_set(device, i,
7657 btrfs_dev_stats_value(eb, ptr, i));
7658 else
7659 btrfs_dev_stat_set(device, i, 0);
7660 }
7661
7662 device->dev_stats_valid = 1;
7663 btrfs_dev_stat_print_on_load(device);
7664 btrfs_release_path(path);
7665
7666 return 0;
7667 }
7668
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7669 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7670 {
7671 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7672 struct btrfs_device *device;
7673 struct btrfs_path *path = NULL;
7674 int ret = 0;
7675
7676 path = btrfs_alloc_path();
7677 if (!path)
7678 return -ENOMEM;
7679
7680 mutex_lock(&fs_devices->device_list_mutex);
7681 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7682 ret = btrfs_device_init_dev_stats(device, path);
7683 if (ret)
7684 goto out;
7685 }
7686 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7687 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7688 ret = btrfs_device_init_dev_stats(device, path);
7689 if (ret)
7690 goto out;
7691 }
7692 }
7693 out:
7694 mutex_unlock(&fs_devices->device_list_mutex);
7695
7696 btrfs_free_path(path);
7697 return ret;
7698 }
7699
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7700 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7701 struct btrfs_device *device)
7702 {
7703 struct btrfs_fs_info *fs_info = trans->fs_info;
7704 struct btrfs_root *dev_root = fs_info->dev_root;
7705 struct btrfs_path *path;
7706 struct btrfs_key key;
7707 struct extent_buffer *eb;
7708 struct btrfs_dev_stats_item *ptr;
7709 int ret;
7710 int i;
7711
7712 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7713 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7714 key.offset = device->devid;
7715
7716 path = btrfs_alloc_path();
7717 if (!path)
7718 return -ENOMEM;
7719 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7720 if (ret < 0) {
7721 btrfs_warn(fs_info,
7722 "error %d while searching for dev_stats item for device %s",
7723 ret, btrfs_dev_name(device));
7724 goto out;
7725 }
7726
7727 if (ret == 0 &&
7728 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7729 /* need to delete old one and insert a new one */
7730 ret = btrfs_del_item(trans, dev_root, path);
7731 if (ret != 0) {
7732 btrfs_warn(fs_info,
7733 "delete too small dev_stats item for device %s failed %d",
7734 btrfs_dev_name(device), ret);
7735 goto out;
7736 }
7737 ret = 1;
7738 }
7739
7740 if (ret == 1) {
7741 /* need to insert a new item */
7742 btrfs_release_path(path);
7743 ret = btrfs_insert_empty_item(trans, dev_root, path,
7744 &key, sizeof(*ptr));
7745 if (ret < 0) {
7746 btrfs_warn(fs_info,
7747 "insert dev_stats item for device %s failed %d",
7748 btrfs_dev_name(device), ret);
7749 goto out;
7750 }
7751 }
7752
7753 eb = path->nodes[0];
7754 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7755 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7756 btrfs_set_dev_stats_value(eb, ptr, i,
7757 btrfs_dev_stat_read(device, i));
7758 out:
7759 btrfs_free_path(path);
7760 return ret;
7761 }
7762
7763 /*
7764 * called from commit_transaction. Writes all changed device stats to disk.
7765 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7766 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7767 {
7768 struct btrfs_fs_info *fs_info = trans->fs_info;
7769 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7770 struct btrfs_device *device;
7771 int stats_cnt;
7772 int ret = 0;
7773
7774 mutex_lock(&fs_devices->device_list_mutex);
7775 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7776 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7777 if (!device->dev_stats_valid || stats_cnt == 0)
7778 continue;
7779
7780
7781 /*
7782 * There is a LOAD-LOAD control dependency between the value of
7783 * dev_stats_ccnt and updating the on-disk values which requires
7784 * reading the in-memory counters. Such control dependencies
7785 * require explicit read memory barriers.
7786 *
7787 * This memory barriers pairs with smp_mb__before_atomic in
7788 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7789 * barrier implied by atomic_xchg in
7790 * btrfs_dev_stats_read_and_reset
7791 */
7792 smp_rmb();
7793
7794 ret = update_dev_stat_item(trans, device);
7795 if (!ret)
7796 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7797 }
7798 mutex_unlock(&fs_devices->device_list_mutex);
7799
7800 return ret;
7801 }
7802
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7803 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7804 {
7805 btrfs_dev_stat_inc(dev, index);
7806
7807 if (!dev->dev_stats_valid)
7808 return;
7809 btrfs_err_rl(dev->fs_info,
7810 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7811 btrfs_dev_name(dev),
7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7817 }
7818
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7819 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7820 {
7821 int i;
7822
7823 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7824 if (btrfs_dev_stat_read(dev, i) != 0)
7825 break;
7826 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7827 return; /* all values == 0, suppress message */
7828
7829 btrfs_info(dev->fs_info,
7830 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7831 btrfs_dev_name(dev),
7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7837 }
7838
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7839 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7840 struct btrfs_ioctl_get_dev_stats *stats)
7841 {
7842 BTRFS_DEV_LOOKUP_ARGS(args);
7843 struct btrfs_device *dev;
7844 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7845 int i;
7846
7847 mutex_lock(&fs_devices->device_list_mutex);
7848 args.devid = stats->devid;
7849 dev = btrfs_find_device(fs_info->fs_devices, &args);
7850 mutex_unlock(&fs_devices->device_list_mutex);
7851
7852 if (!dev) {
7853 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7854 return -ENODEV;
7855 } else if (!dev->dev_stats_valid) {
7856 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7857 return -ENODEV;
7858 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7859 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7860 if (stats->nr_items > i)
7861 stats->values[i] =
7862 btrfs_dev_stat_read_and_reset(dev, i);
7863 else
7864 btrfs_dev_stat_set(dev, i, 0);
7865 }
7866 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7867 current->comm, task_pid_nr(current));
7868 } else {
7869 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7870 if (stats->nr_items > i)
7871 stats->values[i] = btrfs_dev_stat_read(dev, i);
7872 }
7873 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7874 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7875 return 0;
7876 }
7877
7878 /*
7879 * Update the size and bytes used for each device where it changed. This is
7880 * delayed since we would otherwise get errors while writing out the
7881 * superblocks.
7882 *
7883 * Must be invoked during transaction commit.
7884 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7885 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7886 {
7887 struct btrfs_device *curr, *next;
7888
7889 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state);
7890
7891 if (list_empty(&trans->dev_update_list))
7892 return;
7893
7894 /*
7895 * We don't need the device_list_mutex here. This list is owned by the
7896 * transaction and the transaction must complete before the device is
7897 * released.
7898 */
7899 mutex_lock(&trans->fs_info->chunk_mutex);
7900 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7901 post_commit_list) {
7902 list_del_init(&curr->post_commit_list);
7903 curr->commit_total_bytes = curr->disk_total_bytes;
7904 curr->commit_bytes_used = curr->bytes_used;
7905 }
7906 mutex_unlock(&trans->fs_info->chunk_mutex);
7907 }
7908
7909 /*
7910 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7911 */
btrfs_bg_type_to_factor(u64 flags)7912 int btrfs_bg_type_to_factor(u64 flags)
7913 {
7914 const int index = btrfs_bg_flags_to_raid_index(flags);
7915
7916 return btrfs_raid_array[index].ncopies;
7917 }
7918
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7919 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7920 u64 chunk_offset, u64 devid,
7921 u64 physical_offset, u64 physical_len)
7922 {
7923 struct btrfs_dev_lookup_args args = { .devid = devid };
7924 struct btrfs_chunk_map *map;
7925 struct btrfs_device *dev;
7926 u64 stripe_len;
7927 bool found = false;
7928 int ret = 0;
7929 int i;
7930
7931 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7932 if (unlikely(!map)) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 goto out;
7938 }
7939
7940 stripe_len = btrfs_calc_stripe_length(map);
7941 if (unlikely(physical_len != stripe_len)) {
7942 btrfs_err(fs_info,
7943 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7944 physical_offset, devid, map->start, physical_len,
7945 stripe_len);
7946 ret = -EUCLEAN;
7947 goto out;
7948 }
7949
7950 /*
7951 * Very old mkfs.btrfs (before v4.15) will not respect the reserved
7952 * space. Although kernel can handle it without problem, better to warn
7953 * the users.
7954 */
7955 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7956 btrfs_warn(fs_info,
7957 "devid %llu physical %llu len %llu inside the reserved space",
7958 devid, physical_offset, physical_len);
7959
7960 for (i = 0; i < map->num_stripes; i++) {
7961 if (unlikely(map->stripes[i].dev->devid == devid &&
7962 map->stripes[i].physical == physical_offset)) {
7963 found = true;
7964 if (map->verified_stripes >= map->num_stripes) {
7965 btrfs_err(fs_info,
7966 "too many dev extents for chunk %llu found",
7967 map->start);
7968 ret = -EUCLEAN;
7969 goto out;
7970 }
7971 map->verified_stripes++;
7972 break;
7973 }
7974 }
7975 if (unlikely(!found)) {
7976 btrfs_err(fs_info,
7977 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7978 physical_offset, devid);
7979 ret = -EUCLEAN;
7980 }
7981
7982 /* Make sure no dev extent is beyond device boundary */
7983 dev = btrfs_find_device(fs_info->fs_devices, &args);
7984 if (unlikely(!dev)) {
7985 btrfs_err(fs_info, "failed to find devid %llu", devid);
7986 ret = -EUCLEAN;
7987 goto out;
7988 }
7989
7990 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) {
7991 btrfs_err(fs_info,
7992 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7993 devid, physical_offset, physical_len,
7994 dev->disk_total_bytes);
7995 ret = -EUCLEAN;
7996 goto out;
7997 }
7998
7999 if (dev->zone_info) {
8000 u64 zone_size = dev->zone_info->zone_size;
8001
8002 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) ||
8003 !IS_ALIGNED(physical_len, zone_size))) {
8004 btrfs_err(fs_info,
8005 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8006 devid, physical_offset, physical_len);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011
8012 out:
8013 btrfs_free_chunk_map(map);
8014 return ret;
8015 }
8016
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8017 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8018 {
8019 struct rb_node *node;
8020 int ret = 0;
8021
8022 read_lock(&fs_info->mapping_tree_lock);
8023 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8024 struct btrfs_chunk_map *map;
8025
8026 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8027 if (unlikely(map->num_stripes != map->verified_stripes)) {
8028 btrfs_err(fs_info,
8029 "chunk %llu has missing dev extent, have %d expect %d",
8030 map->start, map->verified_stripes, map->num_stripes);
8031 ret = -EUCLEAN;
8032 goto out;
8033 }
8034 }
8035 out:
8036 read_unlock(&fs_info->mapping_tree_lock);
8037 return ret;
8038 }
8039
8040 /*
8041 * Ensure that all dev extents are mapped to correct chunk, otherwise
8042 * later chunk allocation/free would cause unexpected behavior.
8043 *
8044 * NOTE: This will iterate through the whole device tree, which should be of
8045 * the same size level as the chunk tree. This slightly increases mount time.
8046 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8047 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8048 {
8049 struct btrfs_path *path;
8050 struct btrfs_root *root = fs_info->dev_root;
8051 struct btrfs_key key;
8052 u64 prev_devid = 0;
8053 u64 prev_dev_ext_end = 0;
8054 int ret = 0;
8055
8056 /*
8057 * We don't have a dev_root because we mounted with ignorebadroots and
8058 * failed to load the root, so we want to skip the verification in this
8059 * case for sure.
8060 *
8061 * However if the dev root is fine, but the tree itself is corrupted
8062 * we'd still fail to mount. This verification is only to make sure
8063 * writes can happen safely, so instead just bypass this check
8064 * completely in the case of IGNOREBADROOTS.
8065 */
8066 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8067 return 0;
8068
8069 key.objectid = 1;
8070 key.type = BTRFS_DEV_EXTENT_KEY;
8071 key.offset = 0;
8072
8073 path = btrfs_alloc_path();
8074 if (!path)
8075 return -ENOMEM;
8076
8077 path->reada = READA_FORWARD;
8078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8079 if (ret < 0)
8080 goto out;
8081
8082 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8083 ret = btrfs_next_leaf(root, path);
8084 if (ret < 0)
8085 goto out;
8086 /* No dev extents at all? Not good */
8087 if (unlikely(ret > 0)) {
8088 ret = -EUCLEAN;
8089 goto out;
8090 }
8091 }
8092 while (1) {
8093 struct extent_buffer *leaf = path->nodes[0];
8094 struct btrfs_dev_extent *dext;
8095 int slot = path->slots[0];
8096 u64 chunk_offset;
8097 u64 physical_offset;
8098 u64 physical_len;
8099 u64 devid;
8100
8101 btrfs_item_key_to_cpu(leaf, &key, slot);
8102 if (key.type != BTRFS_DEV_EXTENT_KEY)
8103 break;
8104 devid = key.objectid;
8105 physical_offset = key.offset;
8106
8107 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8108 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8109 physical_len = btrfs_dev_extent_length(leaf, dext);
8110
8111 /* Check if this dev extent overlaps with the previous one */
8112 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) {
8113 btrfs_err(fs_info,
8114 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8115 devid, physical_offset, prev_dev_ext_end);
8116 ret = -EUCLEAN;
8117 goto out;
8118 }
8119
8120 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8121 physical_offset, physical_len);
8122 if (ret < 0)
8123 goto out;
8124 prev_devid = devid;
8125 prev_dev_ext_end = physical_offset + physical_len;
8126
8127 ret = btrfs_next_item(root, path);
8128 if (ret < 0)
8129 goto out;
8130 if (ret > 0) {
8131 ret = 0;
8132 break;
8133 }
8134 }
8135
8136 /* Ensure all chunks have corresponding dev extents */
8137 ret = verify_chunk_dev_extent_mapping(fs_info);
8138 out:
8139 btrfs_free_path(path);
8140 return ret;
8141 }
8142
8143 /*
8144 * Check whether the given block group or device is pinned by any inode being
8145 * used as a swapfile.
8146 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8147 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8148 {
8149 struct btrfs_swapfile_pin *sp;
8150 struct rb_node *node;
8151
8152 spin_lock(&fs_info->swapfile_pins_lock);
8153 node = fs_info->swapfile_pins.rb_node;
8154 while (node) {
8155 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8156 if (ptr < sp->ptr)
8157 node = node->rb_left;
8158 else if (ptr > sp->ptr)
8159 node = node->rb_right;
8160 else
8161 break;
8162 }
8163 spin_unlock(&fs_info->swapfile_pins_lock);
8164 return node != NULL;
8165 }
8166
relocating_repair_kthread(void * data)8167 static int relocating_repair_kthread(void *data)
8168 {
8169 struct btrfs_block_group *cache = data;
8170 struct btrfs_fs_info *fs_info = cache->fs_info;
8171 u64 target;
8172 int ret = 0;
8173
8174 target = cache->start;
8175 btrfs_put_block_group(cache);
8176
8177 guard(super_write)(fs_info->sb);
8178
8179 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8180 btrfs_info(fs_info,
8181 "zoned: skip relocating block group %llu to repair: EBUSY",
8182 target);
8183 return -EBUSY;
8184 }
8185
8186 mutex_lock(&fs_info->reclaim_bgs_lock);
8187
8188 /* Ensure block group still exists */
8189 cache = btrfs_lookup_block_group(fs_info, target);
8190 if (!cache)
8191 goto out;
8192
8193 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8194 goto out;
8195
8196 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8197 if (ret < 0)
8198 goto out;
8199
8200 btrfs_info(fs_info,
8201 "zoned: relocating block group %llu to repair IO failure",
8202 target);
8203 ret = btrfs_relocate_chunk(fs_info, target, true);
8204
8205 out:
8206 if (cache)
8207 btrfs_put_block_group(cache);
8208 mutex_unlock(&fs_info->reclaim_bgs_lock);
8209 btrfs_exclop_finish(fs_info);
8210
8211 return ret;
8212 }
8213
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8214 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8215 {
8216 struct btrfs_block_group *cache;
8217
8218 if (!btrfs_is_zoned(fs_info))
8219 return false;
8220
8221 /* Do not attempt to repair in degraded state */
8222 if (btrfs_test_opt(fs_info, DEGRADED))
8223 return true;
8224
8225 cache = btrfs_lookup_block_group(fs_info, logical);
8226 if (!cache)
8227 return true;
8228
8229 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8230 btrfs_put_block_group(cache);
8231 return true;
8232 }
8233
8234 kthread_run(relocating_repair_kthread, cache,
8235 "btrfs-relocating-repair");
8236
8237 return true;
8238 }
8239
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8240 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8241 struct btrfs_io_stripe *smap,
8242 u64 logical)
8243 {
8244 int data_stripes = nr_bioc_data_stripes(bioc);
8245 int i;
8246
8247 for (i = 0; i < data_stripes; i++) {
8248 u64 stripe_start = bioc->full_stripe_logical +
8249 btrfs_stripe_nr_to_offset(i);
8250
8251 if (logical >= stripe_start &&
8252 logical < stripe_start + BTRFS_STRIPE_LEN)
8253 break;
8254 }
8255 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes);
8256 smap->dev = bioc->stripes[i].dev;
8257 smap->physical = bioc->stripes[i].physical +
8258 ((logical - bioc->full_stripe_logical) &
8259 BTRFS_STRIPE_LEN_MASK);
8260 }
8261
8262 /*
8263 * Map a repair write into a single device.
8264 *
8265 * A repair write is triggered by read time repair or scrub, which would only
8266 * update the contents of a single device.
8267 * Not update any other mirrors nor go through RMW path.
8268 *
8269 * Callers should ensure:
8270 *
8271 * - Call btrfs_bio_counter_inc_blocked() first
8272 * - The range does not cross stripe boundary
8273 * - Has a valid @mirror_num passed in.
8274 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8275 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8276 struct btrfs_io_stripe *smap, u64 logical,
8277 u32 length, int mirror_num)
8278 {
8279 struct btrfs_io_context *bioc = NULL;
8280 u64 map_length = length;
8281 int mirror_ret = mirror_num;
8282 int ret;
8283
8284 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num);
8285
8286 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8287 &bioc, smap, &mirror_ret);
8288 if (ret < 0)
8289 return ret;
8290
8291 /* The map range should not cross stripe boundary. */
8292 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length);
8293
8294 /* Already mapped to single stripe. */
8295 if (!bioc)
8296 goto out;
8297
8298 /* Map the RAID56 multi-stripe writes to a single one. */
8299 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8300 map_raid56_repair_block(bioc, smap, logical);
8301 goto out;
8302 }
8303
8304 ASSERT(mirror_num <= bioc->num_stripes,
8305 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes);
8306 smap->dev = bioc->stripes[mirror_num - 1].dev;
8307 smap->physical = bioc->stripes[mirror_num - 1].physical;
8308 out:
8309 btrfs_put_bioc(bioc);
8310 ASSERT(smap->dev);
8311 return 0;
8312 }
8313