xref: /linux/fs/btrfs/volumes.c (revision 7a40974fd0efa3698de4c6d1d0ee0436bcc4445d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
alloc_fs_devices(const u8 * fsid)379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
btrfs_free_device(struct btrfs_device * device)402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
free_fs_devices(struct btrfs_fs_devices * fs_devices)411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
btrfs_cleanup_fs_uuids(void)425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
find_fsid(const u8 * fsid,const u8 * metadata_fsid)452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 			  device_path, flags, ret);
481 		goto error;
482 	}
483 	bdev = file_bdev(*bdev_file);
484 
485 	if (flush)
486 		sync_blockdev(bdev);
487 	if (holder) {
488 		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 		if (ret) {
490 			fput(*bdev_file);
491 			goto error;
492 		}
493 	}
494 	invalidate_bdev(bdev);
495 	*disk_super = btrfs_read_dev_super(bdev);
496 	if (IS_ERR(*disk_super)) {
497 		ret = PTR_ERR(*disk_super);
498 		fput(*bdev_file);
499 		goto error;
500 	}
501 
502 	return 0;
503 
504 error:
505 	*disk_super = NULL;
506 	*bdev_file = NULL;
507 	return ret;
508 }
509 
510 /*
511  *  Search and remove all stale devices (which are not mounted).  When both
512  *  inputs are NULL, it will search and release all stale devices.
513  *
514  *  @devt:         Optional. When provided will it release all unmounted devices
515  *                 matching this devt only.
516  *  @skip_device:  Optional. Will skip this device when searching for the stale
517  *                 devices.
518  *
519  *  Return:	0 for success or if @devt is 0.
520  *		-EBUSY if @devt is a mounted device.
521  *		-ENOENT if @devt does not match any device in the list.
522  */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 	struct btrfs_device *device, *tmp_device;
527 	int ret;
528 	bool freed = false;
529 
530 	lockdep_assert_held(&uuid_mutex);
531 
532 	/* Return good status if there is no instance of devt. */
533 	ret = 0;
534 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535 
536 		mutex_lock(&fs_devices->device_list_mutex);
537 		list_for_each_entry_safe(device, tmp_device,
538 					 &fs_devices->devices, dev_list) {
539 			if (skip_device && skip_device == device)
540 				continue;
541 			if (devt && devt != device->devt)
542 				continue;
543 			if (fs_devices->opened) {
544 				if (devt)
545 					ret = -EBUSY;
546 				break;
547 			}
548 
549 			/* delete the stale device */
550 			fs_devices->num_devices--;
551 			list_del(&device->dev_list);
552 			btrfs_free_device(device);
553 
554 			freed = true;
555 		}
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		if (fs_devices->num_devices == 0) {
559 			btrfs_sysfs_remove_fsid(fs_devices);
560 			list_del(&fs_devices->fs_list);
561 			free_fs_devices(fs_devices);
562 		}
563 	}
564 
565 	/* If there is at least one freed device return 0. */
566 	if (freed)
567 		return 0;
568 
569 	return ret;
570 }
571 
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)572 static struct btrfs_fs_devices *find_fsid_by_device(
573 					struct btrfs_super_block *disk_super,
574 					dev_t devt, bool *same_fsid_diff_dev)
575 {
576 	struct btrfs_fs_devices *fsid_fs_devices;
577 	struct btrfs_fs_devices *devt_fs_devices;
578 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 	bool found_by_devt = false;
581 
582 	/* Find the fs_device by the usual method, if found use it. */
583 	fsid_fs_devices = find_fsid(disk_super->fsid,
584 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585 
586 	/* The temp_fsid feature is supported only with single device filesystem. */
587 	if (btrfs_super_num_devices(disk_super) != 1)
588 		return fsid_fs_devices;
589 
590 	/*
591 	 * A seed device is an integral component of the sprout device, which
592 	 * functions as a multi-device filesystem. So, temp-fsid feature is
593 	 * not supported.
594 	 */
595 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 		return fsid_fs_devices;
597 
598 	/* Try to find a fs_devices by matching devt. */
599 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 		struct btrfs_device *device;
601 
602 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 			if (device->devt == devt) {
604 				found_by_devt = true;
605 				break;
606 			}
607 		}
608 		if (found_by_devt)
609 			break;
610 	}
611 
612 	if (found_by_devt) {
613 		/* Existing device. */
614 		if (fsid_fs_devices == NULL) {
615 			if (devt_fs_devices->opened == 0) {
616 				/* Stale device. */
617 				return NULL;
618 			} else {
619 				/* temp_fsid is mounting a subvol. */
620 				return devt_fs_devices;
621 			}
622 		} else {
623 			/* Regular or temp_fsid device mounting a subvol. */
624 			return devt_fs_devices;
625 		}
626 	} else {
627 		/* New device. */
628 		if (fsid_fs_devices == NULL) {
629 			return NULL;
630 		} else {
631 			/* sb::fsid is already used create a new temp_fsid. */
632 			*same_fsid_diff_dev = true;
633 			return NULL;
634 		}
635 	}
636 
637 	/* Not reached. */
638 }
639 
640 /*
641  * This is only used on mount, and we are protected from competing things
642  * messing with our fs_devices by the uuid_mutex, thus we do not need the
643  * fs_devices->device_list_mutex here.
644  */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 			struct btrfs_device *device, blk_mode_t flags,
647 			void *holder)
648 {
649 	struct file *bdev_file;
650 	struct btrfs_super_block *disk_super;
651 	u64 devid;
652 	int ret;
653 
654 	if (device->bdev)
655 		return -EINVAL;
656 	if (!device->name)
657 		return -EINVAL;
658 
659 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 				    &bdev_file, &disk_super);
661 	if (ret)
662 		return ret;
663 
664 	devid = btrfs_stack_device_id(&disk_super->dev_item);
665 	if (devid != device->devid)
666 		goto error_free_page;
667 
668 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 		goto error_free_page;
670 
671 	device->generation = btrfs_super_generation(disk_super);
672 
673 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 		if (btrfs_super_incompat_flags(disk_super) &
675 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 			pr_err(
677 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
678 			goto error_free_page;
679 		}
680 
681 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 		fs_devices->seeding = true;
683 	} else {
684 		if (bdev_read_only(file_bdev(bdev_file)))
685 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 		else
687 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 	}
689 
690 	if (!bdev_nonrot(file_bdev(bdev_file)))
691 		fs_devices->rotating = true;
692 
693 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 		fs_devices->discardable = true;
695 
696 	device->bdev_file = bdev_file;
697 	device->bdev = file_bdev(bdev_file);
698 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699 
700 	if (device->devt != device->bdev->bd_dev) {
701 		btrfs_warn(NULL,
702 			   "device %s maj:min changed from %d:%d to %d:%d",
703 			   device->name->str, MAJOR(device->devt),
704 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 			   MINOR(device->bdev->bd_dev));
706 
707 		device->devt = device->bdev->bd_dev;
708 	}
709 
710 	fs_devices->open_devices++;
711 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 		fs_devices->rw_devices++;
714 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 	}
716 	btrfs_release_disk_super(disk_super);
717 
718 	return 0;
719 
720 error_free_page:
721 	btrfs_release_disk_super(disk_super);
722 	fput(bdev_file);
723 
724 	return -EINVAL;
725 }
726 
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731 
732 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734 
735 /*
736  * Add new device to list of registered devices
737  *
738  * Returns:
739  * device pointer which was just added or updated when successful
740  * error pointer when failed
741  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)742 static noinline struct btrfs_device *device_list_add(const char *path,
743 			   struct btrfs_super_block *disk_super,
744 			   bool *new_device_added)
745 {
746 	struct btrfs_device *device;
747 	struct btrfs_fs_devices *fs_devices = NULL;
748 	struct rcu_string *name;
749 	u64 found_transid = btrfs_super_generation(disk_super);
750 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
751 	dev_t path_devt;
752 	int error;
753 	bool same_fsid_diff_dev = false;
754 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
755 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
756 
757 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
758 		btrfs_err(NULL,
759 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
760 			  path);
761 		return ERR_PTR(-EAGAIN);
762 	}
763 
764 	error = lookup_bdev(path, &path_devt);
765 	if (error) {
766 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
767 			  path, error);
768 		return ERR_PTR(error);
769 	}
770 
771 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
772 
773 	if (!fs_devices) {
774 		fs_devices = alloc_fs_devices(disk_super->fsid);
775 		if (IS_ERR(fs_devices))
776 			return ERR_CAST(fs_devices);
777 
778 		if (has_metadata_uuid)
779 			memcpy(fs_devices->metadata_uuid,
780 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
781 
782 		if (same_fsid_diff_dev) {
783 			generate_random_uuid(fs_devices->fsid);
784 			fs_devices->temp_fsid = true;
785 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
786 				path, MAJOR(path_devt), MINOR(path_devt),
787 				fs_devices->fsid);
788 		}
789 
790 		mutex_lock(&fs_devices->device_list_mutex);
791 		list_add(&fs_devices->fs_list, &fs_uuids);
792 
793 		device = NULL;
794 	} else {
795 		struct btrfs_dev_lookup_args args = {
796 			.devid = devid,
797 			.uuid = disk_super->dev_item.uuid,
798 		};
799 
800 		mutex_lock(&fs_devices->device_list_mutex);
801 		device = btrfs_find_device(fs_devices, &args);
802 
803 		if (found_transid > fs_devices->latest_generation) {
804 			memcpy(fs_devices->fsid, disk_super->fsid,
805 					BTRFS_FSID_SIZE);
806 			memcpy(fs_devices->metadata_uuid,
807 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
808 		}
809 	}
810 
811 	if (!device) {
812 		unsigned int nofs_flag;
813 
814 		if (fs_devices->opened) {
815 			btrfs_err(NULL,
816 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
817 				  path, MAJOR(path_devt), MINOR(path_devt),
818 				  fs_devices->fsid, current->comm,
819 				  task_pid_nr(current));
820 			mutex_unlock(&fs_devices->device_list_mutex);
821 			return ERR_PTR(-EBUSY);
822 		}
823 
824 		nofs_flag = memalloc_nofs_save();
825 		device = btrfs_alloc_device(NULL, &devid,
826 					    disk_super->dev_item.uuid, path);
827 		memalloc_nofs_restore(nofs_flag);
828 		if (IS_ERR(device)) {
829 			mutex_unlock(&fs_devices->device_list_mutex);
830 			/* we can safely leave the fs_devices entry around */
831 			return device;
832 		}
833 
834 		device->devt = path_devt;
835 
836 		list_add_rcu(&device->dev_list, &fs_devices->devices);
837 		fs_devices->num_devices++;
838 
839 		device->fs_devices = fs_devices;
840 		*new_device_added = true;
841 
842 		if (disk_super->label[0])
843 			pr_info(
844 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
845 				disk_super->label, devid, found_transid, path,
846 				MAJOR(path_devt), MINOR(path_devt),
847 				current->comm, task_pid_nr(current));
848 		else
849 			pr_info(
850 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
851 				disk_super->fsid, devid, found_transid, path,
852 				MAJOR(path_devt), MINOR(path_devt),
853 				current->comm, task_pid_nr(current));
854 
855 	} else if (!device->name || strcmp(device->name->str, path)) {
856 		/*
857 		 * When FS is already mounted.
858 		 * 1. If you are here and if the device->name is NULL that
859 		 *    means this device was missing at time of FS mount.
860 		 * 2. If you are here and if the device->name is different
861 		 *    from 'path' that means either
862 		 *      a. The same device disappeared and reappeared with
863 		 *         different name. or
864 		 *      b. The missing-disk-which-was-replaced, has
865 		 *         reappeared now.
866 		 *
867 		 * We must allow 1 and 2a above. But 2b would be a spurious
868 		 * and unintentional.
869 		 *
870 		 * Further in case of 1 and 2a above, the disk at 'path'
871 		 * would have missed some transaction when it was away and
872 		 * in case of 2a the stale bdev has to be updated as well.
873 		 * 2b must not be allowed at all time.
874 		 */
875 
876 		/*
877 		 * For now, we do allow update to btrfs_fs_device through the
878 		 * btrfs dev scan cli after FS has been mounted.  We're still
879 		 * tracking a problem where systems fail mount by subvolume id
880 		 * when we reject replacement on a mounted FS.
881 		 */
882 		if (!fs_devices->opened && found_transid < device->generation) {
883 			/*
884 			 * That is if the FS is _not_ mounted and if you
885 			 * are here, that means there is more than one
886 			 * disk with same uuid and devid.We keep the one
887 			 * with larger generation number or the last-in if
888 			 * generation are equal.
889 			 */
890 			mutex_unlock(&fs_devices->device_list_mutex);
891 			btrfs_err(NULL,
892 "device %s already registered with a higher generation, found %llu expect %llu",
893 				  path, found_transid, device->generation);
894 			return ERR_PTR(-EEXIST);
895 		}
896 
897 		/*
898 		 * We are going to replace the device path for a given devid,
899 		 * make sure it's the same device if the device is mounted
900 		 *
901 		 * NOTE: the device->fs_info may not be reliable here so pass
902 		 * in a NULL to message helpers instead. This avoids a possible
903 		 * use-after-free when the fs_info and fs_info->sb are already
904 		 * torn down.
905 		 */
906 		if (device->bdev) {
907 			if (device->devt != path_devt) {
908 				mutex_unlock(&fs_devices->device_list_mutex);
909 				btrfs_warn_in_rcu(NULL,
910 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
911 						  path, devid, found_transid,
912 						  current->comm,
913 						  task_pid_nr(current));
914 				return ERR_PTR(-EEXIST);
915 			}
916 			btrfs_info_in_rcu(NULL,
917 	"devid %llu device path %s changed to %s scanned by %s (%d)",
918 					  devid, btrfs_dev_name(device),
919 					  path, current->comm,
920 					  task_pid_nr(current));
921 		}
922 
923 		name = rcu_string_strdup(path, GFP_NOFS);
924 		if (!name) {
925 			mutex_unlock(&fs_devices->device_list_mutex);
926 			return ERR_PTR(-ENOMEM);
927 		}
928 		rcu_string_free(device->name);
929 		rcu_assign_pointer(device->name, name);
930 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
931 			fs_devices->missing_devices--;
932 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
933 		}
934 		device->devt = path_devt;
935 	}
936 
937 	/*
938 	 * Unmount does not free the btrfs_device struct but would zero
939 	 * generation along with most of the other members. So just update
940 	 * it back. We need it to pick the disk with largest generation
941 	 * (as above).
942 	 */
943 	if (!fs_devices->opened) {
944 		device->generation = found_transid;
945 		fs_devices->latest_generation = max_t(u64, found_transid,
946 						fs_devices->latest_generation);
947 	}
948 
949 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
950 
951 	mutex_unlock(&fs_devices->device_list_mutex);
952 	return device;
953 }
954 
clone_fs_devices(struct btrfs_fs_devices * orig)955 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
956 {
957 	struct btrfs_fs_devices *fs_devices;
958 	struct btrfs_device *device;
959 	struct btrfs_device *orig_dev;
960 	int ret = 0;
961 
962 	lockdep_assert_held(&uuid_mutex);
963 
964 	fs_devices = alloc_fs_devices(orig->fsid);
965 	if (IS_ERR(fs_devices))
966 		return fs_devices;
967 
968 	fs_devices->total_devices = orig->total_devices;
969 
970 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
971 		const char *dev_path = NULL;
972 
973 		/*
974 		 * This is ok to do without RCU read locked because we hold the
975 		 * uuid mutex so nothing we touch in here is going to disappear.
976 		 */
977 		if (orig_dev->name)
978 			dev_path = orig_dev->name->str;
979 
980 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
981 					    orig_dev->uuid, dev_path);
982 		if (IS_ERR(device)) {
983 			ret = PTR_ERR(device);
984 			goto error;
985 		}
986 
987 		if (orig_dev->zone_info) {
988 			struct btrfs_zoned_device_info *zone_info;
989 
990 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
991 			if (!zone_info) {
992 				btrfs_free_device(device);
993 				ret = -ENOMEM;
994 				goto error;
995 			}
996 			device->zone_info = zone_info;
997 		}
998 
999 		list_add(&device->dev_list, &fs_devices->devices);
1000 		device->fs_devices = fs_devices;
1001 		fs_devices->num_devices++;
1002 	}
1003 	return fs_devices;
1004 error:
1005 	free_fs_devices(fs_devices);
1006 	return ERR_PTR(ret);
1007 }
1008 
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1009 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1010 				      struct btrfs_device **latest_dev)
1011 {
1012 	struct btrfs_device *device, *next;
1013 
1014 	/* This is the initialized path, it is safe to release the devices. */
1015 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1016 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1017 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1018 				      &device->dev_state) &&
1019 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1020 				      &device->dev_state) &&
1021 			    (!*latest_dev ||
1022 			     device->generation > (*latest_dev)->generation)) {
1023 				*latest_dev = device;
1024 			}
1025 			continue;
1026 		}
1027 
1028 		/*
1029 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1030 		 * in btrfs_init_dev_replace() so just continue.
1031 		 */
1032 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1033 			continue;
1034 
1035 		if (device->bdev_file) {
1036 			fput(device->bdev_file);
1037 			device->bdev = NULL;
1038 			device->bdev_file = NULL;
1039 			fs_devices->open_devices--;
1040 		}
1041 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1042 			list_del_init(&device->dev_alloc_list);
1043 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1044 			fs_devices->rw_devices--;
1045 		}
1046 		list_del_init(&device->dev_list);
1047 		fs_devices->num_devices--;
1048 		btrfs_free_device(device);
1049 	}
1050 
1051 }
1052 
1053 /*
1054  * After we have read the system tree and know devids belonging to this
1055  * filesystem, remove the device which does not belong there.
1056  */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1057 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1058 {
1059 	struct btrfs_device *latest_dev = NULL;
1060 	struct btrfs_fs_devices *seed_dev;
1061 
1062 	mutex_lock(&uuid_mutex);
1063 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1064 
1065 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1066 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1067 
1068 	fs_devices->latest_dev = latest_dev;
1069 
1070 	mutex_unlock(&uuid_mutex);
1071 }
1072 
btrfs_close_bdev(struct btrfs_device * device)1073 static void btrfs_close_bdev(struct btrfs_device *device)
1074 {
1075 	if (!device->bdev)
1076 		return;
1077 
1078 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 		sync_blockdev(device->bdev);
1080 		invalidate_bdev(device->bdev);
1081 	}
1082 
1083 	fput(device->bdev_file);
1084 }
1085 
btrfs_close_one_device(struct btrfs_device * device)1086 static void btrfs_close_one_device(struct btrfs_device *device)
1087 {
1088 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1089 
1090 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1091 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1092 		list_del_init(&device->dev_alloc_list);
1093 		fs_devices->rw_devices--;
1094 	}
1095 
1096 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1097 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1098 
1099 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1100 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1101 		fs_devices->missing_devices--;
1102 	}
1103 
1104 	btrfs_close_bdev(device);
1105 	if (device->bdev) {
1106 		fs_devices->open_devices--;
1107 		device->bdev = NULL;
1108 	}
1109 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1110 	btrfs_destroy_dev_zone_info(device);
1111 
1112 	device->fs_info = NULL;
1113 	atomic_set(&device->dev_stats_ccnt, 0);
1114 	extent_io_tree_release(&device->alloc_state);
1115 
1116 	/*
1117 	 * Reset the flush error record. We might have a transient flush error
1118 	 * in this mount, and if so we aborted the current transaction and set
1119 	 * the fs to an error state, guaranteeing no super blocks can be further
1120 	 * committed. However that error might be transient and if we unmount the
1121 	 * filesystem and mount it again, we should allow the mount to succeed
1122 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1123 	 * filesystem again we still get flush errors, then we will again abort
1124 	 * any transaction and set the error state, guaranteeing no commits of
1125 	 * unsafe super blocks.
1126 	 */
1127 	device->last_flush_error = 0;
1128 
1129 	/* Verify the device is back in a pristine state  */
1130 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1131 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1132 	WARN_ON(!list_empty(&device->dev_alloc_list));
1133 	WARN_ON(!list_empty(&device->post_commit_list));
1134 }
1135 
close_fs_devices(struct btrfs_fs_devices * fs_devices)1136 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1137 {
1138 	struct btrfs_device *device, *tmp;
1139 
1140 	lockdep_assert_held(&uuid_mutex);
1141 
1142 	if (--fs_devices->opened > 0)
1143 		return;
1144 
1145 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1146 		btrfs_close_one_device(device);
1147 
1148 	WARN_ON(fs_devices->open_devices);
1149 	WARN_ON(fs_devices->rw_devices);
1150 	fs_devices->opened = 0;
1151 	fs_devices->seeding = false;
1152 	fs_devices->fs_info = NULL;
1153 }
1154 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1155 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 	LIST_HEAD(list);
1158 	struct btrfs_fs_devices *tmp;
1159 
1160 	mutex_lock(&uuid_mutex);
1161 	close_fs_devices(fs_devices);
1162 	if (!fs_devices->opened) {
1163 		list_splice_init(&fs_devices->seed_list, &list);
1164 
1165 		/*
1166 		 * If the struct btrfs_fs_devices is not assembled with any
1167 		 * other device, it can be re-initialized during the next mount
1168 		 * without the needing device-scan step. Therefore, it can be
1169 		 * fully freed.
1170 		 */
1171 		if (fs_devices->num_devices == 1) {
1172 			list_del(&fs_devices->fs_list);
1173 			free_fs_devices(fs_devices);
1174 		}
1175 	}
1176 
1177 
1178 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1179 		close_fs_devices(fs_devices);
1180 		list_del(&fs_devices->seed_list);
1181 		free_fs_devices(fs_devices);
1182 	}
1183 	mutex_unlock(&uuid_mutex);
1184 }
1185 
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1186 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1187 				blk_mode_t flags, void *holder)
1188 {
1189 	struct btrfs_device *device;
1190 	struct btrfs_device *latest_dev = NULL;
1191 	struct btrfs_device *tmp_device;
1192 	int ret = 0;
1193 
1194 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1195 				 dev_list) {
1196 		int ret2;
1197 
1198 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1199 		if (ret2 == 0 &&
1200 		    (!latest_dev || device->generation > latest_dev->generation)) {
1201 			latest_dev = device;
1202 		} else if (ret2 == -ENODATA) {
1203 			fs_devices->num_devices--;
1204 			list_del(&device->dev_list);
1205 			btrfs_free_device(device);
1206 		}
1207 		if (ret == 0 && ret2 != 0)
1208 			ret = ret2;
1209 	}
1210 
1211 	if (fs_devices->open_devices == 0) {
1212 		if (ret)
1213 			return ret;
1214 		return -EINVAL;
1215 	}
1216 
1217 	fs_devices->opened = 1;
1218 	fs_devices->latest_dev = latest_dev;
1219 	fs_devices->total_rw_bytes = 0;
1220 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1221 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1222 
1223 	return 0;
1224 }
1225 
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1226 static int devid_cmp(void *priv, const struct list_head *a,
1227 		     const struct list_head *b)
1228 {
1229 	const struct btrfs_device *dev1, *dev2;
1230 
1231 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1232 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1233 
1234 	if (dev1->devid < dev2->devid)
1235 		return -1;
1236 	else if (dev1->devid > dev2->devid)
1237 		return 1;
1238 	return 0;
1239 }
1240 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1241 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1242 		       blk_mode_t flags, void *holder)
1243 {
1244 	int ret;
1245 
1246 	lockdep_assert_held(&uuid_mutex);
1247 	/*
1248 	 * The device_list_mutex cannot be taken here in case opening the
1249 	 * underlying device takes further locks like open_mutex.
1250 	 *
1251 	 * We also don't need the lock here as this is called during mount and
1252 	 * exclusion is provided by uuid_mutex
1253 	 */
1254 
1255 	if (fs_devices->opened) {
1256 		fs_devices->opened++;
1257 		ret = 0;
1258 	} else {
1259 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1260 		ret = open_fs_devices(fs_devices, flags, holder);
1261 	}
1262 
1263 	return ret;
1264 }
1265 
btrfs_release_disk_super(struct btrfs_super_block * super)1266 void btrfs_release_disk_super(struct btrfs_super_block *super)
1267 {
1268 	struct page *page = virt_to_page(super);
1269 
1270 	put_page(page);
1271 }
1272 
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1273 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1274 						       u64 bytenr, u64 bytenr_orig)
1275 {
1276 	struct btrfs_super_block *disk_super;
1277 	struct page *page;
1278 	void *p;
1279 	pgoff_t index;
1280 
1281 	/* make sure our super fits in the device */
1282 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/* make sure our super fits in the page */
1286 	if (sizeof(*disk_super) > PAGE_SIZE)
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* make sure our super doesn't straddle pages on disk */
1290 	index = bytenr >> PAGE_SHIFT;
1291 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1292 		return ERR_PTR(-EINVAL);
1293 
1294 	/* pull in the page with our super */
1295 	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1296 
1297 	if (IS_ERR(page))
1298 		return ERR_CAST(page);
1299 
1300 	p = page_address(page);
1301 
1302 	/* align our pointer to the offset of the super block */
1303 	disk_super = p + offset_in_page(bytenr);
1304 
1305 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1306 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1307 		btrfs_release_disk_super(p);
1308 		return ERR_PTR(-EINVAL);
1309 	}
1310 
1311 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1312 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1313 
1314 	return disk_super;
1315 }
1316 
btrfs_forget_devices(dev_t devt)1317 int btrfs_forget_devices(dev_t devt)
1318 {
1319 	int ret;
1320 
1321 	mutex_lock(&uuid_mutex);
1322 	ret = btrfs_free_stale_devices(devt, NULL);
1323 	mutex_unlock(&uuid_mutex);
1324 
1325 	return ret;
1326 }
1327 
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1328 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1329 				    const char *path, dev_t devt,
1330 				    bool mount_arg_dev)
1331 {
1332 	struct btrfs_fs_devices *fs_devices;
1333 
1334 	/*
1335 	 * Do not skip device registration for mounted devices with matching
1336 	 * maj:min but different paths. Booting without initrd relies on
1337 	 * /dev/root initially, later replaced with the actual root device.
1338 	 * A successful scan ensures grub2-probe selects the correct device.
1339 	 */
1340 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1341 		struct btrfs_device *device;
1342 
1343 		mutex_lock(&fs_devices->device_list_mutex);
1344 
1345 		if (!fs_devices->opened) {
1346 			mutex_unlock(&fs_devices->device_list_mutex);
1347 			continue;
1348 		}
1349 
1350 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1351 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1352 			    strcmp(device->name->str, path) != 0) {
1353 				mutex_unlock(&fs_devices->device_list_mutex);
1354 
1355 				/* Do not skip registration. */
1356 				return false;
1357 			}
1358 		}
1359 		mutex_unlock(&fs_devices->device_list_mutex);
1360 	}
1361 
1362 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1363 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1364 		return true;
1365 
1366 	return false;
1367 }
1368 
1369 /*
1370  * Look for a btrfs signature on a device. This may be called out of the mount path
1371  * and we are not allowed to call set_blocksize during the scan. The superblock
1372  * is read via pagecache.
1373  *
1374  * With @mount_arg_dev it's a scan during mount time that will always register
1375  * the device or return an error. Multi-device and seeding devices are registered
1376  * in both cases.
1377  */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1378 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1379 					   bool mount_arg_dev)
1380 {
1381 	struct btrfs_super_block *disk_super;
1382 	bool new_device_added = false;
1383 	struct btrfs_device *device = NULL;
1384 	struct file *bdev_file;
1385 	u64 bytenr;
1386 	dev_t devt;
1387 	int ret;
1388 
1389 	lockdep_assert_held(&uuid_mutex);
1390 
1391 	/*
1392 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1393 	 * device scan which may race with the user's mount or mkfs command,
1394 	 * resulting in failure.
1395 	 * Since the device scan is solely for reading purposes, there is no
1396 	 * need for an exclusive open. Additionally, the devices are read again
1397 	 * during the mount process. It is ok to get some inconsistent
1398 	 * values temporarily, as the device paths of the fsid are the only
1399 	 * required information for assembling the volume.
1400 	 */
1401 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1402 	if (IS_ERR(bdev_file))
1403 		return ERR_CAST(bdev_file);
1404 
1405 	/*
1406 	 * We would like to check all the super blocks, but doing so would
1407 	 * allow a mount to succeed after a mkfs from a different filesystem.
1408 	 * Currently, recovery from a bad primary btrfs superblock is done
1409 	 * using the userspace command 'btrfs check --super'.
1410 	 */
1411 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1412 	if (ret) {
1413 		device = ERR_PTR(ret);
1414 		goto error_bdev_put;
1415 	}
1416 
1417 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1418 					   btrfs_sb_offset(0));
1419 	if (IS_ERR(disk_super)) {
1420 		device = ERR_CAST(disk_super);
1421 		goto error_bdev_put;
1422 	}
1423 
1424 	devt = file_bdev(bdev_file)->bd_dev;
1425 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1426 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1427 			  path, MAJOR(devt), MINOR(devt));
1428 
1429 		btrfs_free_stale_devices(devt, NULL);
1430 
1431 		device = NULL;
1432 		goto free_disk_super;
1433 	}
1434 
1435 	device = device_list_add(path, disk_super, &new_device_added);
1436 	if (!IS_ERR(device) && new_device_added)
1437 		btrfs_free_stale_devices(device->devt, device);
1438 
1439 free_disk_super:
1440 	btrfs_release_disk_super(disk_super);
1441 
1442 error_bdev_put:
1443 	fput(bdev_file);
1444 
1445 	return device;
1446 }
1447 
1448 /*
1449  * Try to find a chunk that intersects [start, start + len] range and when one
1450  * such is found, record the end of it in *start
1451  */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1452 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1453 				    u64 len)
1454 {
1455 	u64 physical_start, physical_end;
1456 
1457 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1458 
1459 	if (find_first_extent_bit(&device->alloc_state, *start,
1460 				  &physical_start, &physical_end,
1461 				  CHUNK_ALLOCATED, NULL)) {
1462 
1463 		if (in_range(physical_start, *start, len) ||
1464 		    in_range(*start, physical_start,
1465 			     physical_end + 1 - physical_start)) {
1466 			*start = physical_end + 1;
1467 			return true;
1468 		}
1469 	}
1470 	return false;
1471 }
1472 
dev_extent_search_start(struct btrfs_device * device)1473 static u64 dev_extent_search_start(struct btrfs_device *device)
1474 {
1475 	switch (device->fs_devices->chunk_alloc_policy) {
1476 	case BTRFS_CHUNK_ALLOC_REGULAR:
1477 		return BTRFS_DEVICE_RANGE_RESERVED;
1478 	case BTRFS_CHUNK_ALLOC_ZONED:
1479 		/*
1480 		 * We don't care about the starting region like regular
1481 		 * allocator, because we anyway use/reserve the first two zones
1482 		 * for superblock logging.
1483 		 */
1484 		return 0;
1485 	default:
1486 		BUG();
1487 	}
1488 }
1489 
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1490 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1491 					u64 *hole_start, u64 *hole_size,
1492 					u64 num_bytes)
1493 {
1494 	u64 zone_size = device->zone_info->zone_size;
1495 	u64 pos;
1496 	int ret;
1497 	bool changed = false;
1498 
1499 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1500 
1501 	while (*hole_size > 0) {
1502 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1503 						   *hole_start + *hole_size,
1504 						   num_bytes);
1505 		if (pos != *hole_start) {
1506 			*hole_size = *hole_start + *hole_size - pos;
1507 			*hole_start = pos;
1508 			changed = true;
1509 			if (*hole_size < num_bytes)
1510 				break;
1511 		}
1512 
1513 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1514 
1515 		/* Range is ensured to be empty */
1516 		if (!ret)
1517 			return changed;
1518 
1519 		/* Given hole range was invalid (outside of device) */
1520 		if (ret == -ERANGE) {
1521 			*hole_start += *hole_size;
1522 			*hole_size = 0;
1523 			return true;
1524 		}
1525 
1526 		*hole_start += zone_size;
1527 		*hole_size -= zone_size;
1528 		changed = true;
1529 	}
1530 
1531 	return changed;
1532 }
1533 
1534 /*
1535  * Check if specified hole is suitable for allocation.
1536  *
1537  * @device:	the device which we have the hole
1538  * @hole_start: starting position of the hole
1539  * @hole_size:	the size of the hole
1540  * @num_bytes:	the size of the free space that we need
1541  *
1542  * This function may modify @hole_start and @hole_size to reflect the suitable
1543  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1544  */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1545 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1546 				  u64 *hole_size, u64 num_bytes)
1547 {
1548 	bool changed = false;
1549 	u64 hole_end = *hole_start + *hole_size;
1550 
1551 	for (;;) {
1552 		/*
1553 		 * Check before we set max_hole_start, otherwise we could end up
1554 		 * sending back this offset anyway.
1555 		 */
1556 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1557 			if (hole_end >= *hole_start)
1558 				*hole_size = hole_end - *hole_start;
1559 			else
1560 				*hole_size = 0;
1561 			changed = true;
1562 		}
1563 
1564 		switch (device->fs_devices->chunk_alloc_policy) {
1565 		case BTRFS_CHUNK_ALLOC_REGULAR:
1566 			/* No extra check */
1567 			break;
1568 		case BTRFS_CHUNK_ALLOC_ZONED:
1569 			if (dev_extent_hole_check_zoned(device, hole_start,
1570 							hole_size, num_bytes)) {
1571 				changed = true;
1572 				/*
1573 				 * The changed hole can contain pending extent.
1574 				 * Loop again to check that.
1575 				 */
1576 				continue;
1577 			}
1578 			break;
1579 		default:
1580 			BUG();
1581 		}
1582 
1583 		break;
1584 	}
1585 
1586 	return changed;
1587 }
1588 
1589 /*
1590  * Find free space in the specified device.
1591  *
1592  * @device:	  the device which we search the free space in
1593  * @num_bytes:	  the size of the free space that we need
1594  * @search_start: the position from which to begin the search
1595  * @start:	  store the start of the free space.
1596  * @len:	  the size of the free space. that we find, or the size
1597  *		  of the max free space if we don't find suitable free space
1598  *
1599  * This does a pretty simple search, the expectation is that it is called very
1600  * infrequently and that a given device has a small number of extents.
1601  *
1602  * @start is used to store the start of the free space if we find. But if we
1603  * don't find suitable free space, it will be used to store the start position
1604  * of the max free space.
1605  *
1606  * @len is used to store the size of the free space that we find.
1607  * But if we don't find suitable free space, it is used to store the size of
1608  * the max free space.
1609  *
1610  * NOTE: This function will search *commit* root of device tree, and does extra
1611  * check to ensure dev extents are not double allocated.
1612  * This makes the function safe to allocate dev extents but may not report
1613  * correct usable device space, as device extent freed in current transaction
1614  * is not reported as available.
1615  */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1616 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617 				u64 *start, u64 *len)
1618 {
1619 	struct btrfs_fs_info *fs_info = device->fs_info;
1620 	struct btrfs_root *root = fs_info->dev_root;
1621 	struct btrfs_key key;
1622 	struct btrfs_dev_extent *dev_extent;
1623 	struct btrfs_path *path;
1624 	u64 search_start;
1625 	u64 hole_size;
1626 	u64 max_hole_start;
1627 	u64 max_hole_size = 0;
1628 	u64 extent_end;
1629 	u64 search_end = device->total_bytes;
1630 	int ret;
1631 	int slot;
1632 	struct extent_buffer *l;
1633 
1634 	search_start = dev_extent_search_start(device);
1635 	max_hole_start = search_start;
1636 
1637 	WARN_ON(device->zone_info &&
1638 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1639 
1640 	path = btrfs_alloc_path();
1641 	if (!path) {
1642 		ret = -ENOMEM;
1643 		goto out;
1644 	}
1645 again:
1646 	if (search_start >= search_end ||
1647 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1648 		ret = -ENOSPC;
1649 		goto out;
1650 	}
1651 
1652 	path->reada = READA_FORWARD;
1653 	path->search_commit_root = 1;
1654 	path->skip_locking = 1;
1655 
1656 	key.objectid = device->devid;
1657 	key.offset = search_start;
1658 	key.type = BTRFS_DEV_EXTENT_KEY;
1659 
1660 	ret = btrfs_search_backwards(root, &key, path);
1661 	if (ret < 0)
1662 		goto out;
1663 
1664 	while (search_start < search_end) {
1665 		l = path->nodes[0];
1666 		slot = path->slots[0];
1667 		if (slot >= btrfs_header_nritems(l)) {
1668 			ret = btrfs_next_leaf(root, path);
1669 			if (ret == 0)
1670 				continue;
1671 			if (ret < 0)
1672 				goto out;
1673 
1674 			break;
1675 		}
1676 		btrfs_item_key_to_cpu(l, &key, slot);
1677 
1678 		if (key.objectid < device->devid)
1679 			goto next;
1680 
1681 		if (key.objectid > device->devid)
1682 			break;
1683 
1684 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1685 			goto next;
1686 
1687 		if (key.offset > search_end)
1688 			break;
1689 
1690 		if (key.offset > search_start) {
1691 			hole_size = key.offset - search_start;
1692 			dev_extent_hole_check(device, &search_start, &hole_size,
1693 					      num_bytes);
1694 
1695 			if (hole_size > max_hole_size) {
1696 				max_hole_start = search_start;
1697 				max_hole_size = hole_size;
1698 			}
1699 
1700 			/*
1701 			 * If this free space is greater than which we need,
1702 			 * it must be the max free space that we have found
1703 			 * until now, so max_hole_start must point to the start
1704 			 * of this free space and the length of this free space
1705 			 * is stored in max_hole_size. Thus, we return
1706 			 * max_hole_start and max_hole_size and go back to the
1707 			 * caller.
1708 			 */
1709 			if (hole_size >= num_bytes) {
1710 				ret = 0;
1711 				goto out;
1712 			}
1713 		}
1714 
1715 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1716 		extent_end = key.offset + btrfs_dev_extent_length(l,
1717 								  dev_extent);
1718 		if (extent_end > search_start)
1719 			search_start = extent_end;
1720 next:
1721 		path->slots[0]++;
1722 		cond_resched();
1723 	}
1724 
1725 	/*
1726 	 * At this point, search_start should be the end of
1727 	 * allocated dev extents, and when shrinking the device,
1728 	 * search_end may be smaller than search_start.
1729 	 */
1730 	if (search_end > search_start) {
1731 		hole_size = search_end - search_start;
1732 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1733 					  num_bytes)) {
1734 			btrfs_release_path(path);
1735 			goto again;
1736 		}
1737 
1738 		if (hole_size > max_hole_size) {
1739 			max_hole_start = search_start;
1740 			max_hole_size = hole_size;
1741 		}
1742 	}
1743 
1744 	/* See above. */
1745 	if (max_hole_size < num_bytes)
1746 		ret = -ENOSPC;
1747 	else
1748 		ret = 0;
1749 
1750 	ASSERT(max_hole_start + max_hole_size <= search_end);
1751 out:
1752 	btrfs_free_path(path);
1753 	*start = max_hole_start;
1754 	if (len)
1755 		*len = max_hole_size;
1756 	return ret;
1757 }
1758 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1759 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1760 			  struct btrfs_device *device,
1761 			  u64 start, u64 *dev_extent_len)
1762 {
1763 	struct btrfs_fs_info *fs_info = device->fs_info;
1764 	struct btrfs_root *root = fs_info->dev_root;
1765 	int ret;
1766 	struct btrfs_path *path;
1767 	struct btrfs_key key;
1768 	struct btrfs_key found_key;
1769 	struct extent_buffer *leaf = NULL;
1770 	struct btrfs_dev_extent *extent = NULL;
1771 
1772 	path = btrfs_alloc_path();
1773 	if (!path)
1774 		return -ENOMEM;
1775 
1776 	key.objectid = device->devid;
1777 	key.offset = start;
1778 	key.type = BTRFS_DEV_EXTENT_KEY;
1779 again:
1780 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1781 	if (ret > 0) {
1782 		ret = btrfs_previous_item(root, path, key.objectid,
1783 					  BTRFS_DEV_EXTENT_KEY);
1784 		if (ret)
1785 			goto out;
1786 		leaf = path->nodes[0];
1787 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1788 		extent = btrfs_item_ptr(leaf, path->slots[0],
1789 					struct btrfs_dev_extent);
1790 		BUG_ON(found_key.offset > start || found_key.offset +
1791 		       btrfs_dev_extent_length(leaf, extent) < start);
1792 		key = found_key;
1793 		btrfs_release_path(path);
1794 		goto again;
1795 	} else if (ret == 0) {
1796 		leaf = path->nodes[0];
1797 		extent = btrfs_item_ptr(leaf, path->slots[0],
1798 					struct btrfs_dev_extent);
1799 	} else {
1800 		goto out;
1801 	}
1802 
1803 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1804 
1805 	ret = btrfs_del_item(trans, root, path);
1806 	if (ret == 0)
1807 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1808 out:
1809 	btrfs_free_path(path);
1810 	return ret;
1811 }
1812 
find_next_chunk(struct btrfs_fs_info * fs_info)1813 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1814 {
1815 	struct rb_node *n;
1816 	u64 ret = 0;
1817 
1818 	read_lock(&fs_info->mapping_tree_lock);
1819 	n = rb_last(&fs_info->mapping_tree.rb_root);
1820 	if (n) {
1821 		struct btrfs_chunk_map *map;
1822 
1823 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1824 		ret = map->start + map->chunk_len;
1825 	}
1826 	read_unlock(&fs_info->mapping_tree_lock);
1827 
1828 	return ret;
1829 }
1830 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1831 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1832 				    u64 *devid_ret)
1833 {
1834 	int ret;
1835 	struct btrfs_key key;
1836 	struct btrfs_key found_key;
1837 	struct btrfs_path *path;
1838 
1839 	path = btrfs_alloc_path();
1840 	if (!path)
1841 		return -ENOMEM;
1842 
1843 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1844 	key.type = BTRFS_DEV_ITEM_KEY;
1845 	key.offset = (u64)-1;
1846 
1847 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1848 	if (ret < 0)
1849 		goto error;
1850 
1851 	if (ret == 0) {
1852 		/* Corruption */
1853 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1854 		ret = -EUCLEAN;
1855 		goto error;
1856 	}
1857 
1858 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1859 				  BTRFS_DEV_ITEMS_OBJECTID,
1860 				  BTRFS_DEV_ITEM_KEY);
1861 	if (ret) {
1862 		*devid_ret = 1;
1863 	} else {
1864 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1865 				      path->slots[0]);
1866 		*devid_ret = found_key.offset + 1;
1867 	}
1868 	ret = 0;
1869 error:
1870 	btrfs_free_path(path);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * the device information is stored in the chunk root
1876  * the btrfs_device struct should be fully filled in
1877  */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1878 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1879 			    struct btrfs_device *device)
1880 {
1881 	int ret;
1882 	struct btrfs_path *path;
1883 	struct btrfs_dev_item *dev_item;
1884 	struct extent_buffer *leaf;
1885 	struct btrfs_key key;
1886 	unsigned long ptr;
1887 
1888 	path = btrfs_alloc_path();
1889 	if (!path)
1890 		return -ENOMEM;
1891 
1892 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1893 	key.type = BTRFS_DEV_ITEM_KEY;
1894 	key.offset = device->devid;
1895 
1896 	btrfs_reserve_chunk_metadata(trans, true);
1897 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1898 				      &key, sizeof(*dev_item));
1899 	btrfs_trans_release_chunk_metadata(trans);
1900 	if (ret)
1901 		goto out;
1902 
1903 	leaf = path->nodes[0];
1904 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905 
1906 	btrfs_set_device_id(leaf, dev_item, device->devid);
1907 	btrfs_set_device_generation(leaf, dev_item, 0);
1908 	btrfs_set_device_type(leaf, dev_item, device->type);
1909 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 	btrfs_set_device_total_bytes(leaf, dev_item,
1913 				     btrfs_device_get_disk_total_bytes(device));
1914 	btrfs_set_device_bytes_used(leaf, dev_item,
1915 				    btrfs_device_get_bytes_used(device));
1916 	btrfs_set_device_group(leaf, dev_item, 0);
1917 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1920 
1921 	ptr = btrfs_device_uuid(dev_item);
1922 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923 	ptr = btrfs_device_fsid(dev_item);
1924 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925 			    ptr, BTRFS_FSID_SIZE);
1926 	btrfs_mark_buffer_dirty(trans, leaf);
1927 
1928 	ret = 0;
1929 out:
1930 	btrfs_free_path(path);
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Function to update ctime/mtime for a given device path.
1936  * Mainly used for ctime/mtime based probe like libblkid.
1937  *
1938  * We don't care about errors here, this is just to be kind to userspace.
1939  */
update_dev_time(const char * device_path)1940 static void update_dev_time(const char *device_path)
1941 {
1942 	struct path path;
1943 	int ret;
1944 
1945 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1946 	if (ret)
1947 		return;
1948 
1949 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1950 	path_put(&path);
1951 }
1952 
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1953 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1954 			     struct btrfs_device *device)
1955 {
1956 	struct btrfs_root *root = device->fs_info->chunk_root;
1957 	int ret;
1958 	struct btrfs_path *path;
1959 	struct btrfs_key key;
1960 
1961 	path = btrfs_alloc_path();
1962 	if (!path)
1963 		return -ENOMEM;
1964 
1965 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1966 	key.type = BTRFS_DEV_ITEM_KEY;
1967 	key.offset = device->devid;
1968 
1969 	btrfs_reserve_chunk_metadata(trans, false);
1970 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 	btrfs_trans_release_chunk_metadata(trans);
1972 	if (ret) {
1973 		if (ret > 0)
1974 			ret = -ENOENT;
1975 		goto out;
1976 	}
1977 
1978 	ret = btrfs_del_item(trans, root, path);
1979 out:
1980 	btrfs_free_path(path);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1986  * filesystem. It's up to the caller to adjust that number regarding eg. device
1987  * replace.
1988  */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1989 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1990 		u64 num_devices)
1991 {
1992 	u64 all_avail;
1993 	unsigned seq;
1994 	int i;
1995 
1996 	do {
1997 		seq = read_seqbegin(&fs_info->profiles_lock);
1998 
1999 		all_avail = fs_info->avail_data_alloc_bits |
2000 			    fs_info->avail_system_alloc_bits |
2001 			    fs_info->avail_metadata_alloc_bits;
2002 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2003 
2004 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2005 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2006 			continue;
2007 
2008 		if (num_devices < btrfs_raid_array[i].devs_min)
2009 			return btrfs_raid_array[i].mindev_error;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2015 static struct btrfs_device * btrfs_find_next_active_device(
2016 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2017 {
2018 	struct btrfs_device *next_device;
2019 
2020 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2021 		if (next_device != device &&
2022 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2023 		    && next_device->bdev)
2024 			return next_device;
2025 	}
2026 
2027 	return NULL;
2028 }
2029 
2030 /*
2031  * Helper function to check if the given device is part of s_bdev / latest_dev
2032  * and replace it with the provided or the next active device, in the context
2033  * where this function called, there should be always be another device (or
2034  * this_dev) which is active.
2035  */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2036 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2037 					    struct btrfs_device *next_device)
2038 {
2039 	struct btrfs_fs_info *fs_info = device->fs_info;
2040 
2041 	if (!next_device)
2042 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2043 							    device);
2044 	ASSERT(next_device);
2045 
2046 	if (fs_info->sb->s_bdev &&
2047 			(fs_info->sb->s_bdev == device->bdev))
2048 		fs_info->sb->s_bdev = next_device->bdev;
2049 
2050 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2051 		fs_info->fs_devices->latest_dev = next_device;
2052 }
2053 
2054 /*
2055  * Return btrfs_fs_devices::num_devices excluding the device that's being
2056  * currently replaced.
2057  */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2058 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2059 {
2060 	u64 num_devices = fs_info->fs_devices->num_devices;
2061 
2062 	down_read(&fs_info->dev_replace.rwsem);
2063 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2064 		ASSERT(num_devices > 1);
2065 		num_devices--;
2066 	}
2067 	up_read(&fs_info->dev_replace.rwsem);
2068 
2069 	return num_devices;
2070 }
2071 
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2072 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2073 				     struct block_device *bdev, int copy_num)
2074 {
2075 	struct btrfs_super_block *disk_super;
2076 	const size_t len = sizeof(disk_super->magic);
2077 	const u64 bytenr = btrfs_sb_offset(copy_num);
2078 	int ret;
2079 
2080 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2081 	if (IS_ERR(disk_super))
2082 		return;
2083 
2084 	memset(&disk_super->magic, 0, len);
2085 	folio_mark_dirty(virt_to_folio(disk_super));
2086 	btrfs_release_disk_super(disk_super);
2087 
2088 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2089 	if (ret)
2090 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2091 			copy_num, ret);
2092 }
2093 
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2094 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2095 {
2096 	int copy_num;
2097 	struct block_device *bdev = device->bdev;
2098 
2099 	if (!bdev)
2100 		return;
2101 
2102 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2103 		if (bdev_is_zoned(bdev))
2104 			btrfs_reset_sb_log_zones(bdev, copy_num);
2105 		else
2106 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2107 	}
2108 
2109 	/* Notify udev that device has changed */
2110 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2111 
2112 	/* Update ctime/mtime for device path for libblkid */
2113 	update_dev_time(device->name->str);
2114 }
2115 
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2116 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2117 		    struct btrfs_dev_lookup_args *args,
2118 		    struct file **bdev_file)
2119 {
2120 	struct btrfs_trans_handle *trans;
2121 	struct btrfs_device *device;
2122 	struct btrfs_fs_devices *cur_devices;
2123 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2124 	u64 num_devices;
2125 	int ret = 0;
2126 
2127 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2128 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2129 		return -EINVAL;
2130 	}
2131 
2132 	/*
2133 	 * The device list in fs_devices is accessed without locks (neither
2134 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2135 	 * filesystem and another device rm cannot run.
2136 	 */
2137 	num_devices = btrfs_num_devices(fs_info);
2138 
2139 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2140 	if (ret)
2141 		return ret;
2142 
2143 	device = btrfs_find_device(fs_info->fs_devices, args);
2144 	if (!device) {
2145 		if (args->missing)
2146 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147 		else
2148 			ret = -ENOENT;
2149 		return ret;
2150 	}
2151 
2152 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2153 		btrfs_warn_in_rcu(fs_info,
2154 		  "cannot remove device %s (devid %llu) due to active swapfile",
2155 				  btrfs_dev_name(device), device->devid);
2156 		return -ETXTBSY;
2157 	}
2158 
2159 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2160 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2161 
2162 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2163 	    fs_info->fs_devices->rw_devices == 1)
2164 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2165 
2166 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167 		mutex_lock(&fs_info->chunk_mutex);
2168 		list_del_init(&device->dev_alloc_list);
2169 		device->fs_devices->rw_devices--;
2170 		mutex_unlock(&fs_info->chunk_mutex);
2171 	}
2172 
2173 	ret = btrfs_shrink_device(device, 0);
2174 	if (ret)
2175 		goto error_undo;
2176 
2177 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2178 	if (IS_ERR(trans)) {
2179 		ret = PTR_ERR(trans);
2180 		goto error_undo;
2181 	}
2182 
2183 	ret = btrfs_rm_dev_item(trans, device);
2184 	if (ret) {
2185 		/* Any error in dev item removal is critical */
2186 		btrfs_crit(fs_info,
2187 			   "failed to remove device item for devid %llu: %d",
2188 			   device->devid, ret);
2189 		btrfs_abort_transaction(trans, ret);
2190 		btrfs_end_transaction(trans);
2191 		return ret;
2192 	}
2193 
2194 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195 	btrfs_scrub_cancel_dev(device);
2196 
2197 	/*
2198 	 * the device list mutex makes sure that we don't change
2199 	 * the device list while someone else is writing out all
2200 	 * the device supers. Whoever is writing all supers, should
2201 	 * lock the device list mutex before getting the number of
2202 	 * devices in the super block (super_copy). Conversely,
2203 	 * whoever updates the number of devices in the super block
2204 	 * (super_copy) should hold the device list mutex.
2205 	 */
2206 
2207 	/*
2208 	 * In normal cases the cur_devices == fs_devices. But in case
2209 	 * of deleting a seed device, the cur_devices should point to
2210 	 * its own fs_devices listed under the fs_devices->seed_list.
2211 	 */
2212 	cur_devices = device->fs_devices;
2213 	mutex_lock(&fs_devices->device_list_mutex);
2214 	list_del_rcu(&device->dev_list);
2215 
2216 	cur_devices->num_devices--;
2217 	cur_devices->total_devices--;
2218 	/* Update total_devices of the parent fs_devices if it's seed */
2219 	if (cur_devices != fs_devices)
2220 		fs_devices->total_devices--;
2221 
2222 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223 		cur_devices->missing_devices--;
2224 
2225 	btrfs_assign_next_active_device(device, NULL);
2226 
2227 	if (device->bdev_file) {
2228 		cur_devices->open_devices--;
2229 		/* remove sysfs entry */
2230 		btrfs_sysfs_remove_device(device);
2231 	}
2232 
2233 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235 	mutex_unlock(&fs_devices->device_list_mutex);
2236 
2237 	/*
2238 	 * At this point, the device is zero sized and detached from the
2239 	 * devices list.  All that's left is to zero out the old supers and
2240 	 * free the device.
2241 	 *
2242 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2243 	 * write lock, and fput() on the block device will pull in the
2244 	 * ->open_mutex on the block device and it's dependencies.  Instead
2245 	 *  just flush the device and let the caller do the final bdev_release.
2246 	 */
2247 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2248 		btrfs_scratch_superblocks(fs_info, device);
2249 		if (device->bdev) {
2250 			sync_blockdev(device->bdev);
2251 			invalidate_bdev(device->bdev);
2252 		}
2253 	}
2254 
2255 	*bdev_file = device->bdev_file;
2256 	synchronize_rcu();
2257 	btrfs_free_device(device);
2258 
2259 	/*
2260 	 * This can happen if cur_devices is the private seed devices list.  We
2261 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2262 	 * to be held, but in fact we don't need that for the private
2263 	 * seed_devices, we can simply decrement cur_devices->opened and then
2264 	 * remove it from our list and free the fs_devices.
2265 	 */
2266 	if (cur_devices->num_devices == 0) {
2267 		list_del_init(&cur_devices->seed_list);
2268 		ASSERT(cur_devices->opened == 1);
2269 		cur_devices->opened--;
2270 		free_fs_devices(cur_devices);
2271 	}
2272 
2273 	ret = btrfs_commit_transaction(trans);
2274 
2275 	return ret;
2276 
2277 error_undo:
2278 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2279 		mutex_lock(&fs_info->chunk_mutex);
2280 		list_add(&device->dev_alloc_list,
2281 			 &fs_devices->alloc_list);
2282 		device->fs_devices->rw_devices++;
2283 		mutex_unlock(&fs_info->chunk_mutex);
2284 	}
2285 	return ret;
2286 }
2287 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2288 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2289 {
2290 	struct btrfs_fs_devices *fs_devices;
2291 
2292 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2293 
2294 	/*
2295 	 * in case of fs with no seed, srcdev->fs_devices will point
2296 	 * to fs_devices of fs_info. However when the dev being replaced is
2297 	 * a seed dev it will point to the seed's local fs_devices. In short
2298 	 * srcdev will have its correct fs_devices in both the cases.
2299 	 */
2300 	fs_devices = srcdev->fs_devices;
2301 
2302 	list_del_rcu(&srcdev->dev_list);
2303 	list_del(&srcdev->dev_alloc_list);
2304 	fs_devices->num_devices--;
2305 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2306 		fs_devices->missing_devices--;
2307 
2308 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2309 		fs_devices->rw_devices--;
2310 
2311 	if (srcdev->bdev)
2312 		fs_devices->open_devices--;
2313 }
2314 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2315 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2316 {
2317 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2318 
2319 	mutex_lock(&uuid_mutex);
2320 
2321 	btrfs_close_bdev(srcdev);
2322 	synchronize_rcu();
2323 	btrfs_free_device(srcdev);
2324 
2325 	/* if this is no devs we rather delete the fs_devices */
2326 	if (!fs_devices->num_devices) {
2327 		/*
2328 		 * On a mounted FS, num_devices can't be zero unless it's a
2329 		 * seed. In case of a seed device being replaced, the replace
2330 		 * target added to the sprout FS, so there will be no more
2331 		 * device left under the seed FS.
2332 		 */
2333 		ASSERT(fs_devices->seeding);
2334 
2335 		list_del_init(&fs_devices->seed_list);
2336 		close_fs_devices(fs_devices);
2337 		free_fs_devices(fs_devices);
2338 	}
2339 	mutex_unlock(&uuid_mutex);
2340 }
2341 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2342 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2343 {
2344 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2345 
2346 	mutex_lock(&fs_devices->device_list_mutex);
2347 
2348 	btrfs_sysfs_remove_device(tgtdev);
2349 
2350 	if (tgtdev->bdev)
2351 		fs_devices->open_devices--;
2352 
2353 	fs_devices->num_devices--;
2354 
2355 	btrfs_assign_next_active_device(tgtdev, NULL);
2356 
2357 	list_del_rcu(&tgtdev->dev_list);
2358 
2359 	mutex_unlock(&fs_devices->device_list_mutex);
2360 
2361 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2362 
2363 	btrfs_close_bdev(tgtdev);
2364 	synchronize_rcu();
2365 	btrfs_free_device(tgtdev);
2366 }
2367 
2368 /*
2369  * Populate args from device at path.
2370  *
2371  * @fs_info:	the filesystem
2372  * @args:	the args to populate
2373  * @path:	the path to the device
2374  *
2375  * This will read the super block of the device at @path and populate @args with
2376  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2377  * lookup a device to operate on, but need to do it before we take any locks.
2378  * This properly handles the special case of "missing" that a user may pass in,
2379  * and does some basic sanity checks.  The caller must make sure that @path is
2380  * properly NUL terminated before calling in, and must call
2381  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2382  * uuid buffers.
2383  *
2384  * Return: 0 for success, -errno for failure
2385  */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2386 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2387 				 struct btrfs_dev_lookup_args *args,
2388 				 const char *path)
2389 {
2390 	struct btrfs_super_block *disk_super;
2391 	struct file *bdev_file;
2392 	int ret;
2393 
2394 	if (!path || !path[0])
2395 		return -EINVAL;
2396 	if (!strcmp(path, "missing")) {
2397 		args->missing = true;
2398 		return 0;
2399 	}
2400 
2401 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2402 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2403 	if (!args->uuid || !args->fsid) {
2404 		btrfs_put_dev_args_from_path(args);
2405 		return -ENOMEM;
2406 	}
2407 
2408 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2409 				    &bdev_file, &disk_super);
2410 	if (ret) {
2411 		btrfs_put_dev_args_from_path(args);
2412 		return ret;
2413 	}
2414 
2415 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2416 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2417 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2418 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2419 	else
2420 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2421 	btrfs_release_disk_super(disk_super);
2422 	fput(bdev_file);
2423 	return 0;
2424 }
2425 
2426 /*
2427  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2428  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2429  * that don't need to be freed.
2430  */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2431 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2432 {
2433 	kfree(args->uuid);
2434 	kfree(args->fsid);
2435 	args->uuid = NULL;
2436 	args->fsid = NULL;
2437 }
2438 
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2439 struct btrfs_device *btrfs_find_device_by_devspec(
2440 		struct btrfs_fs_info *fs_info, u64 devid,
2441 		const char *device_path)
2442 {
2443 	BTRFS_DEV_LOOKUP_ARGS(args);
2444 	struct btrfs_device *device;
2445 	int ret;
2446 
2447 	if (devid) {
2448 		args.devid = devid;
2449 		device = btrfs_find_device(fs_info->fs_devices, &args);
2450 		if (!device)
2451 			return ERR_PTR(-ENOENT);
2452 		return device;
2453 	}
2454 
2455 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2456 	if (ret)
2457 		return ERR_PTR(ret);
2458 	device = btrfs_find_device(fs_info->fs_devices, &args);
2459 	btrfs_put_dev_args_from_path(&args);
2460 	if (!device)
2461 		return ERR_PTR(-ENOENT);
2462 	return device;
2463 }
2464 
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2465 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2466 {
2467 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2468 	struct btrfs_fs_devices *old_devices;
2469 	struct btrfs_fs_devices *seed_devices;
2470 
2471 	lockdep_assert_held(&uuid_mutex);
2472 	if (!fs_devices->seeding)
2473 		return ERR_PTR(-EINVAL);
2474 
2475 	/*
2476 	 * Private copy of the seed devices, anchored at
2477 	 * fs_info->fs_devices->seed_list
2478 	 */
2479 	seed_devices = alloc_fs_devices(NULL);
2480 	if (IS_ERR(seed_devices))
2481 		return seed_devices;
2482 
2483 	/*
2484 	 * It's necessary to retain a copy of the original seed fs_devices in
2485 	 * fs_uuids so that filesystems which have been seeded can successfully
2486 	 * reference the seed device from open_seed_devices. This also supports
2487 	 * multiple fs seed.
2488 	 */
2489 	old_devices = clone_fs_devices(fs_devices);
2490 	if (IS_ERR(old_devices)) {
2491 		kfree(seed_devices);
2492 		return old_devices;
2493 	}
2494 
2495 	list_add(&old_devices->fs_list, &fs_uuids);
2496 
2497 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2498 	seed_devices->opened = 1;
2499 	INIT_LIST_HEAD(&seed_devices->devices);
2500 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2501 	mutex_init(&seed_devices->device_list_mutex);
2502 
2503 	return seed_devices;
2504 }
2505 
2506 /*
2507  * Splice seed devices into the sprout fs_devices.
2508  * Generate a new fsid for the sprouted read-write filesystem.
2509  */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2510 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2511 			       struct btrfs_fs_devices *seed_devices)
2512 {
2513 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2514 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2515 	struct btrfs_device *device;
2516 	u64 super_flags;
2517 
2518 	/*
2519 	 * We are updating the fsid, the thread leading to device_list_add()
2520 	 * could race, so uuid_mutex is needed.
2521 	 */
2522 	lockdep_assert_held(&uuid_mutex);
2523 
2524 	/*
2525 	 * The threads listed below may traverse dev_list but can do that without
2526 	 * device_list_mutex:
2527 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2528 	 * - Various dev_list readers - are using RCU.
2529 	 * - btrfs_ioctl_fitrim() - is using RCU.
2530 	 *
2531 	 * For-read threads as below are using device_list_mutex:
2532 	 * - Readonly scrub btrfs_scrub_dev()
2533 	 * - Readonly scrub btrfs_scrub_progress()
2534 	 * - btrfs_get_dev_stats()
2535 	 */
2536 	lockdep_assert_held(&fs_devices->device_list_mutex);
2537 
2538 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2539 			      synchronize_rcu);
2540 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2541 		device->fs_devices = seed_devices;
2542 
2543 	fs_devices->seeding = false;
2544 	fs_devices->num_devices = 0;
2545 	fs_devices->open_devices = 0;
2546 	fs_devices->missing_devices = 0;
2547 	fs_devices->rotating = false;
2548 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2549 
2550 	generate_random_uuid(fs_devices->fsid);
2551 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2552 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2553 
2554 	super_flags = btrfs_super_flags(disk_super) &
2555 		      ~BTRFS_SUPER_FLAG_SEEDING;
2556 	btrfs_set_super_flags(disk_super, super_flags);
2557 }
2558 
2559 /*
2560  * Store the expected generation for seed devices in device items.
2561  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2562 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2563 {
2564 	BTRFS_DEV_LOOKUP_ARGS(args);
2565 	struct btrfs_fs_info *fs_info = trans->fs_info;
2566 	struct btrfs_root *root = fs_info->chunk_root;
2567 	struct btrfs_path *path;
2568 	struct extent_buffer *leaf;
2569 	struct btrfs_dev_item *dev_item;
2570 	struct btrfs_device *device;
2571 	struct btrfs_key key;
2572 	u8 fs_uuid[BTRFS_FSID_SIZE];
2573 	u8 dev_uuid[BTRFS_UUID_SIZE];
2574 	int ret;
2575 
2576 	path = btrfs_alloc_path();
2577 	if (!path)
2578 		return -ENOMEM;
2579 
2580 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2581 	key.offset = 0;
2582 	key.type = BTRFS_DEV_ITEM_KEY;
2583 
2584 	while (1) {
2585 		btrfs_reserve_chunk_metadata(trans, false);
2586 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2587 		btrfs_trans_release_chunk_metadata(trans);
2588 		if (ret < 0)
2589 			goto error;
2590 
2591 		leaf = path->nodes[0];
2592 next_slot:
2593 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2594 			ret = btrfs_next_leaf(root, path);
2595 			if (ret > 0)
2596 				break;
2597 			if (ret < 0)
2598 				goto error;
2599 			leaf = path->nodes[0];
2600 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2601 			btrfs_release_path(path);
2602 			continue;
2603 		}
2604 
2605 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2606 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2607 		    key.type != BTRFS_DEV_ITEM_KEY)
2608 			break;
2609 
2610 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2611 					  struct btrfs_dev_item);
2612 		args.devid = btrfs_device_id(leaf, dev_item);
2613 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2614 				   BTRFS_UUID_SIZE);
2615 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2616 				   BTRFS_FSID_SIZE);
2617 		args.uuid = dev_uuid;
2618 		args.fsid = fs_uuid;
2619 		device = btrfs_find_device(fs_info->fs_devices, &args);
2620 		BUG_ON(!device); /* Logic error */
2621 
2622 		if (device->fs_devices->seeding) {
2623 			btrfs_set_device_generation(leaf, dev_item,
2624 						    device->generation);
2625 			btrfs_mark_buffer_dirty(trans, leaf);
2626 		}
2627 
2628 		path->slots[0]++;
2629 		goto next_slot;
2630 	}
2631 	ret = 0;
2632 error:
2633 	btrfs_free_path(path);
2634 	return ret;
2635 }
2636 
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2637 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2638 {
2639 	struct btrfs_root *root = fs_info->dev_root;
2640 	struct btrfs_trans_handle *trans;
2641 	struct btrfs_device *device;
2642 	struct file *bdev_file;
2643 	struct super_block *sb = fs_info->sb;
2644 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2645 	struct btrfs_fs_devices *seed_devices = NULL;
2646 	u64 orig_super_total_bytes;
2647 	u64 orig_super_num_devices;
2648 	int ret = 0;
2649 	bool seeding_dev = false;
2650 	bool locked = false;
2651 
2652 	if (sb_rdonly(sb) && !fs_devices->seeding)
2653 		return -EROFS;
2654 
2655 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2656 					fs_info->bdev_holder, NULL);
2657 	if (IS_ERR(bdev_file))
2658 		return PTR_ERR(bdev_file);
2659 
2660 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2661 		ret = -EINVAL;
2662 		goto error;
2663 	}
2664 
2665 	if (fs_devices->seeding) {
2666 		seeding_dev = true;
2667 		down_write(&sb->s_umount);
2668 		mutex_lock(&uuid_mutex);
2669 		locked = true;
2670 	}
2671 
2672 	sync_blockdev(file_bdev(bdev_file));
2673 
2674 	rcu_read_lock();
2675 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2676 		if (device->bdev == file_bdev(bdev_file)) {
2677 			ret = -EEXIST;
2678 			rcu_read_unlock();
2679 			goto error;
2680 		}
2681 	}
2682 	rcu_read_unlock();
2683 
2684 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2685 	if (IS_ERR(device)) {
2686 		/* we can safely leave the fs_devices entry around */
2687 		ret = PTR_ERR(device);
2688 		goto error;
2689 	}
2690 
2691 	device->fs_info = fs_info;
2692 	device->bdev_file = bdev_file;
2693 	device->bdev = file_bdev(bdev_file);
2694 	ret = lookup_bdev(device_path, &device->devt);
2695 	if (ret)
2696 		goto error_free_device;
2697 
2698 	ret = btrfs_get_dev_zone_info(device, false);
2699 	if (ret)
2700 		goto error_free_device;
2701 
2702 	trans = btrfs_start_transaction(root, 0);
2703 	if (IS_ERR(trans)) {
2704 		ret = PTR_ERR(trans);
2705 		goto error_free_zone;
2706 	}
2707 
2708 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2709 	device->generation = trans->transid;
2710 	device->io_width = fs_info->sectorsize;
2711 	device->io_align = fs_info->sectorsize;
2712 	device->sector_size = fs_info->sectorsize;
2713 	device->total_bytes =
2714 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2715 	device->disk_total_bytes = device->total_bytes;
2716 	device->commit_total_bytes = device->total_bytes;
2717 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2718 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2719 	device->dev_stats_valid = 1;
2720 	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2721 
2722 	if (seeding_dev) {
2723 		btrfs_clear_sb_rdonly(sb);
2724 
2725 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2726 		seed_devices = btrfs_init_sprout(fs_info);
2727 		if (IS_ERR(seed_devices)) {
2728 			ret = PTR_ERR(seed_devices);
2729 			btrfs_abort_transaction(trans, ret);
2730 			goto error_trans;
2731 		}
2732 	}
2733 
2734 	mutex_lock(&fs_devices->device_list_mutex);
2735 	if (seeding_dev) {
2736 		btrfs_setup_sprout(fs_info, seed_devices);
2737 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2738 						device);
2739 	}
2740 
2741 	device->fs_devices = fs_devices;
2742 
2743 	mutex_lock(&fs_info->chunk_mutex);
2744 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2745 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2746 	fs_devices->num_devices++;
2747 	fs_devices->open_devices++;
2748 	fs_devices->rw_devices++;
2749 	fs_devices->total_devices++;
2750 	fs_devices->total_rw_bytes += device->total_bytes;
2751 
2752 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2753 
2754 	if (!bdev_nonrot(device->bdev))
2755 		fs_devices->rotating = true;
2756 
2757 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2758 	btrfs_set_super_total_bytes(fs_info->super_copy,
2759 		round_down(orig_super_total_bytes + device->total_bytes,
2760 			   fs_info->sectorsize));
2761 
2762 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2763 	btrfs_set_super_num_devices(fs_info->super_copy,
2764 				    orig_super_num_devices + 1);
2765 
2766 	/*
2767 	 * we've got more storage, clear any full flags on the space
2768 	 * infos
2769 	 */
2770 	btrfs_clear_space_info_full(fs_info);
2771 
2772 	mutex_unlock(&fs_info->chunk_mutex);
2773 
2774 	/* Add sysfs device entry */
2775 	btrfs_sysfs_add_device(device);
2776 
2777 	mutex_unlock(&fs_devices->device_list_mutex);
2778 
2779 	if (seeding_dev) {
2780 		mutex_lock(&fs_info->chunk_mutex);
2781 		ret = init_first_rw_device(trans);
2782 		mutex_unlock(&fs_info->chunk_mutex);
2783 		if (ret) {
2784 			btrfs_abort_transaction(trans, ret);
2785 			goto error_sysfs;
2786 		}
2787 	}
2788 
2789 	ret = btrfs_add_dev_item(trans, device);
2790 	if (ret) {
2791 		btrfs_abort_transaction(trans, ret);
2792 		goto error_sysfs;
2793 	}
2794 
2795 	if (seeding_dev) {
2796 		ret = btrfs_finish_sprout(trans);
2797 		if (ret) {
2798 			btrfs_abort_transaction(trans, ret);
2799 			goto error_sysfs;
2800 		}
2801 
2802 		/*
2803 		 * fs_devices now represents the newly sprouted filesystem and
2804 		 * its fsid has been changed by btrfs_sprout_splice().
2805 		 */
2806 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2807 	}
2808 
2809 	ret = btrfs_commit_transaction(trans);
2810 
2811 	if (seeding_dev) {
2812 		mutex_unlock(&uuid_mutex);
2813 		up_write(&sb->s_umount);
2814 		locked = false;
2815 
2816 		if (ret) /* transaction commit */
2817 			return ret;
2818 
2819 		ret = btrfs_relocate_sys_chunks(fs_info);
2820 		if (ret < 0)
2821 			btrfs_handle_fs_error(fs_info, ret,
2822 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2823 		trans = btrfs_attach_transaction(root);
2824 		if (IS_ERR(trans)) {
2825 			if (PTR_ERR(trans) == -ENOENT)
2826 				return 0;
2827 			ret = PTR_ERR(trans);
2828 			trans = NULL;
2829 			goto error_sysfs;
2830 		}
2831 		ret = btrfs_commit_transaction(trans);
2832 	}
2833 
2834 	/*
2835 	 * Now that we have written a new super block to this device, check all
2836 	 * other fs_devices list if device_path alienates any other scanned
2837 	 * device.
2838 	 * We can ignore the return value as it typically returns -EINVAL and
2839 	 * only succeeds if the device was an alien.
2840 	 */
2841 	btrfs_forget_devices(device->devt);
2842 
2843 	/* Update ctime/mtime for blkid or udev */
2844 	update_dev_time(device_path);
2845 
2846 	return ret;
2847 
2848 error_sysfs:
2849 	btrfs_sysfs_remove_device(device);
2850 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2851 	mutex_lock(&fs_info->chunk_mutex);
2852 	list_del_rcu(&device->dev_list);
2853 	list_del(&device->dev_alloc_list);
2854 	fs_info->fs_devices->num_devices--;
2855 	fs_info->fs_devices->open_devices--;
2856 	fs_info->fs_devices->rw_devices--;
2857 	fs_info->fs_devices->total_devices--;
2858 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2859 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2860 	btrfs_set_super_total_bytes(fs_info->super_copy,
2861 				    orig_super_total_bytes);
2862 	btrfs_set_super_num_devices(fs_info->super_copy,
2863 				    orig_super_num_devices);
2864 	mutex_unlock(&fs_info->chunk_mutex);
2865 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2866 error_trans:
2867 	if (seeding_dev)
2868 		btrfs_set_sb_rdonly(sb);
2869 	if (trans)
2870 		btrfs_end_transaction(trans);
2871 error_free_zone:
2872 	btrfs_destroy_dev_zone_info(device);
2873 error_free_device:
2874 	btrfs_free_device(device);
2875 error:
2876 	fput(bdev_file);
2877 	if (locked) {
2878 		mutex_unlock(&uuid_mutex);
2879 		up_write(&sb->s_umount);
2880 	}
2881 	return ret;
2882 }
2883 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2884 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2885 					struct btrfs_device *device)
2886 {
2887 	int ret;
2888 	struct btrfs_path *path;
2889 	struct btrfs_root *root = device->fs_info->chunk_root;
2890 	struct btrfs_dev_item *dev_item;
2891 	struct extent_buffer *leaf;
2892 	struct btrfs_key key;
2893 
2894 	path = btrfs_alloc_path();
2895 	if (!path)
2896 		return -ENOMEM;
2897 
2898 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2899 	key.type = BTRFS_DEV_ITEM_KEY;
2900 	key.offset = device->devid;
2901 
2902 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2903 	if (ret < 0)
2904 		goto out;
2905 
2906 	if (ret > 0) {
2907 		ret = -ENOENT;
2908 		goto out;
2909 	}
2910 
2911 	leaf = path->nodes[0];
2912 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2913 
2914 	btrfs_set_device_id(leaf, dev_item, device->devid);
2915 	btrfs_set_device_type(leaf, dev_item, device->type);
2916 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2917 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2918 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2919 	btrfs_set_device_total_bytes(leaf, dev_item,
2920 				     btrfs_device_get_disk_total_bytes(device));
2921 	btrfs_set_device_bytes_used(leaf, dev_item,
2922 				    btrfs_device_get_bytes_used(device));
2923 	btrfs_mark_buffer_dirty(trans, leaf);
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 	return ret;
2928 }
2929 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2930 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2931 		      struct btrfs_device *device, u64 new_size)
2932 {
2933 	struct btrfs_fs_info *fs_info = device->fs_info;
2934 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2935 	u64 old_total;
2936 	u64 diff;
2937 	int ret;
2938 
2939 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2940 		return -EACCES;
2941 
2942 	new_size = round_down(new_size, fs_info->sectorsize);
2943 
2944 	mutex_lock(&fs_info->chunk_mutex);
2945 	old_total = btrfs_super_total_bytes(super_copy);
2946 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2947 
2948 	if (new_size <= device->total_bytes ||
2949 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2950 		mutex_unlock(&fs_info->chunk_mutex);
2951 		return -EINVAL;
2952 	}
2953 
2954 	btrfs_set_super_total_bytes(super_copy,
2955 			round_down(old_total + diff, fs_info->sectorsize));
2956 	device->fs_devices->total_rw_bytes += diff;
2957 	atomic64_add(diff, &fs_info->free_chunk_space);
2958 
2959 	btrfs_device_set_total_bytes(device, new_size);
2960 	btrfs_device_set_disk_total_bytes(device, new_size);
2961 	btrfs_clear_space_info_full(device->fs_info);
2962 	if (list_empty(&device->post_commit_list))
2963 		list_add_tail(&device->post_commit_list,
2964 			      &trans->transaction->dev_update_list);
2965 	mutex_unlock(&fs_info->chunk_mutex);
2966 
2967 	btrfs_reserve_chunk_metadata(trans, false);
2968 	ret = btrfs_update_device(trans, device);
2969 	btrfs_trans_release_chunk_metadata(trans);
2970 
2971 	return ret;
2972 }
2973 
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2974 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2975 {
2976 	struct btrfs_fs_info *fs_info = trans->fs_info;
2977 	struct btrfs_root *root = fs_info->chunk_root;
2978 	int ret;
2979 	struct btrfs_path *path;
2980 	struct btrfs_key key;
2981 
2982 	path = btrfs_alloc_path();
2983 	if (!path)
2984 		return -ENOMEM;
2985 
2986 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2987 	key.offset = chunk_offset;
2988 	key.type = BTRFS_CHUNK_ITEM_KEY;
2989 
2990 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2991 	if (ret < 0)
2992 		goto out;
2993 	else if (ret > 0) { /* Logic error or corruption */
2994 		btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2995 			  chunk_offset);
2996 		btrfs_abort_transaction(trans, -ENOENT);
2997 		ret = -EUCLEAN;
2998 		goto out;
2999 	}
3000 
3001 	ret = btrfs_del_item(trans, root, path);
3002 	if (ret < 0) {
3003 		btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3004 		btrfs_abort_transaction(trans, ret);
3005 		goto out;
3006 	}
3007 out:
3008 	btrfs_free_path(path);
3009 	return ret;
3010 }
3011 
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3012 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3013 {
3014 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3015 	struct btrfs_disk_key *disk_key;
3016 	struct btrfs_chunk *chunk;
3017 	u8 *ptr;
3018 	int ret = 0;
3019 	u32 num_stripes;
3020 	u32 array_size;
3021 	u32 len = 0;
3022 	u32 cur;
3023 	struct btrfs_key key;
3024 
3025 	lockdep_assert_held(&fs_info->chunk_mutex);
3026 	array_size = btrfs_super_sys_array_size(super_copy);
3027 
3028 	ptr = super_copy->sys_chunk_array;
3029 	cur = 0;
3030 
3031 	while (cur < array_size) {
3032 		disk_key = (struct btrfs_disk_key *)ptr;
3033 		btrfs_disk_key_to_cpu(&key, disk_key);
3034 
3035 		len = sizeof(*disk_key);
3036 
3037 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3038 			chunk = (struct btrfs_chunk *)(ptr + len);
3039 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3040 			len += btrfs_chunk_item_size(num_stripes);
3041 		} else {
3042 			ret = -EIO;
3043 			break;
3044 		}
3045 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3046 		    key.offset == chunk_offset) {
3047 			memmove(ptr, ptr + len, array_size - (cur + len));
3048 			array_size -= len;
3049 			btrfs_set_super_sys_array_size(super_copy, array_size);
3050 		} else {
3051 			ptr += len;
3052 			cur += len;
3053 		}
3054 	}
3055 	return ret;
3056 }
3057 
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3058 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3059 						    u64 logical, u64 length)
3060 {
3061 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3062 	struct rb_node *prev = NULL;
3063 	struct rb_node *orig_prev;
3064 	struct btrfs_chunk_map *map;
3065 	struct btrfs_chunk_map *prev_map = NULL;
3066 
3067 	while (node) {
3068 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3069 		prev = node;
3070 		prev_map = map;
3071 
3072 		if (logical < map->start) {
3073 			node = node->rb_left;
3074 		} else if (logical >= map->start + map->chunk_len) {
3075 			node = node->rb_right;
3076 		} else {
3077 			refcount_inc(&map->refs);
3078 			return map;
3079 		}
3080 	}
3081 
3082 	if (!prev)
3083 		return NULL;
3084 
3085 	orig_prev = prev;
3086 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3087 		prev = rb_next(prev);
3088 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3089 	}
3090 
3091 	if (!prev) {
3092 		prev = orig_prev;
3093 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3094 		while (prev && logical < prev_map->start) {
3095 			prev = rb_prev(prev);
3096 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3097 		}
3098 	}
3099 
3100 	if (prev) {
3101 		u64 end = logical + length;
3102 
3103 		/*
3104 		 * Caller can pass a U64_MAX length when it wants to get any
3105 		 * chunk starting at an offset of 'logical' or higher, so deal
3106 		 * with underflow by resetting the end offset to U64_MAX.
3107 		 */
3108 		if (end < logical)
3109 			end = U64_MAX;
3110 
3111 		if (end > prev_map->start &&
3112 		    logical < prev_map->start + prev_map->chunk_len) {
3113 			refcount_inc(&prev_map->refs);
3114 			return prev_map;
3115 		}
3116 	}
3117 
3118 	return NULL;
3119 }
3120 
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3121 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3122 					     u64 logical, u64 length)
3123 {
3124 	struct btrfs_chunk_map *map;
3125 
3126 	read_lock(&fs_info->mapping_tree_lock);
3127 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3128 	read_unlock(&fs_info->mapping_tree_lock);
3129 
3130 	return map;
3131 }
3132 
3133 /*
3134  * Find the mapping containing the given logical extent.
3135  *
3136  * @logical: Logical block offset in bytes.
3137  * @length: Length of extent in bytes.
3138  *
3139  * Return: Chunk mapping or ERR_PTR.
3140  */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3141 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3142 					    u64 logical, u64 length)
3143 {
3144 	struct btrfs_chunk_map *map;
3145 
3146 	map = btrfs_find_chunk_map(fs_info, logical, length);
3147 
3148 	if (unlikely(!map)) {
3149 		btrfs_crit(fs_info,
3150 			   "unable to find chunk map for logical %llu length %llu",
3151 			   logical, length);
3152 		return ERR_PTR(-EINVAL);
3153 	}
3154 
3155 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3156 		btrfs_crit(fs_info,
3157 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3158 			   logical, logical + length, map->start,
3159 			   map->start + map->chunk_len);
3160 		btrfs_free_chunk_map(map);
3161 		return ERR_PTR(-EINVAL);
3162 	}
3163 
3164 	/* Callers are responsible for dropping the reference. */
3165 	return map;
3166 }
3167 
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3168 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3169 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3170 {
3171 	int i;
3172 
3173 	/*
3174 	 * Removing chunk items and updating the device items in the chunks btree
3175 	 * requires holding the chunk_mutex.
3176 	 * See the comment at btrfs_chunk_alloc() for the details.
3177 	 */
3178 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3179 
3180 	for (i = 0; i < map->num_stripes; i++) {
3181 		int ret;
3182 
3183 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3184 		if (ret)
3185 			return ret;
3186 	}
3187 
3188 	return btrfs_free_chunk(trans, chunk_offset);
3189 }
3190 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3191 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3192 {
3193 	struct btrfs_fs_info *fs_info = trans->fs_info;
3194 	struct btrfs_chunk_map *map;
3195 	u64 dev_extent_len = 0;
3196 	int i, ret = 0;
3197 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3198 
3199 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3200 	if (IS_ERR(map)) {
3201 		/*
3202 		 * This is a logic error, but we don't want to just rely on the
3203 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3204 		 * do anything we still error out.
3205 		 */
3206 		ASSERT(0);
3207 		return PTR_ERR(map);
3208 	}
3209 
3210 	/*
3211 	 * First delete the device extent items from the devices btree.
3212 	 * We take the device_list_mutex to avoid racing with the finishing phase
3213 	 * of a device replace operation. See the comment below before acquiring
3214 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3215 	 * because that can result in a deadlock when deleting the device extent
3216 	 * items from the devices btree - COWing an extent buffer from the btree
3217 	 * may result in allocating a new metadata chunk, which would attempt to
3218 	 * lock again fs_info->chunk_mutex.
3219 	 */
3220 	mutex_lock(&fs_devices->device_list_mutex);
3221 	for (i = 0; i < map->num_stripes; i++) {
3222 		struct btrfs_device *device = map->stripes[i].dev;
3223 		ret = btrfs_free_dev_extent(trans, device,
3224 					    map->stripes[i].physical,
3225 					    &dev_extent_len);
3226 		if (ret) {
3227 			mutex_unlock(&fs_devices->device_list_mutex);
3228 			btrfs_abort_transaction(trans, ret);
3229 			goto out;
3230 		}
3231 
3232 		if (device->bytes_used > 0) {
3233 			mutex_lock(&fs_info->chunk_mutex);
3234 			btrfs_device_set_bytes_used(device,
3235 					device->bytes_used - dev_extent_len);
3236 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3237 			btrfs_clear_space_info_full(fs_info);
3238 			mutex_unlock(&fs_info->chunk_mutex);
3239 		}
3240 	}
3241 	mutex_unlock(&fs_devices->device_list_mutex);
3242 
3243 	/*
3244 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3245 	 *
3246 	 * 1) Just like with the first phase of the chunk allocation, we must
3247 	 *    reserve system space, do all chunk btree updates and deletions, and
3248 	 *    update the system chunk array in the superblock while holding this
3249 	 *    mutex. This is for similar reasons as explained on the comment at
3250 	 *    the top of btrfs_chunk_alloc();
3251 	 *
3252 	 * 2) Prevent races with the final phase of a device replace operation
3253 	 *    that replaces the device object associated with the map's stripes,
3254 	 *    because the device object's id can change at any time during that
3255 	 *    final phase of the device replace operation
3256 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3257 	 *    replaced device and then see it with an ID of
3258 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3259 	 *    the device item, which does not exists on the chunk btree.
3260 	 *    The finishing phase of device replace acquires both the
3261 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3262 	 *    safe by just acquiring the chunk_mutex.
3263 	 */
3264 	trans->removing_chunk = true;
3265 	mutex_lock(&fs_info->chunk_mutex);
3266 
3267 	check_system_chunk(trans, map->type);
3268 
3269 	ret = remove_chunk_item(trans, map, chunk_offset);
3270 	/*
3271 	 * Normally we should not get -ENOSPC since we reserved space before
3272 	 * through the call to check_system_chunk().
3273 	 *
3274 	 * Despite our system space_info having enough free space, we may not
3275 	 * be able to allocate extents from its block groups, because all have
3276 	 * an incompatible profile, which will force us to allocate a new system
3277 	 * block group with the right profile, or right after we called
3278 	 * check_system_space() above, a scrub turned the only system block group
3279 	 * with enough free space into RO mode.
3280 	 * This is explained with more detail at do_chunk_alloc().
3281 	 *
3282 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3283 	 */
3284 	if (ret == -ENOSPC) {
3285 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3286 		struct btrfs_block_group *sys_bg;
3287 
3288 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3289 		if (IS_ERR(sys_bg)) {
3290 			ret = PTR_ERR(sys_bg);
3291 			btrfs_abort_transaction(trans, ret);
3292 			goto out;
3293 		}
3294 
3295 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3296 		if (ret) {
3297 			btrfs_abort_transaction(trans, ret);
3298 			goto out;
3299 		}
3300 
3301 		ret = remove_chunk_item(trans, map, chunk_offset);
3302 		if (ret) {
3303 			btrfs_abort_transaction(trans, ret);
3304 			goto out;
3305 		}
3306 	} else if (ret) {
3307 		btrfs_abort_transaction(trans, ret);
3308 		goto out;
3309 	}
3310 
3311 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3312 
3313 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3314 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3315 		if (ret) {
3316 			btrfs_abort_transaction(trans, ret);
3317 			goto out;
3318 		}
3319 	}
3320 
3321 	mutex_unlock(&fs_info->chunk_mutex);
3322 	trans->removing_chunk = false;
3323 
3324 	/*
3325 	 * We are done with chunk btree updates and deletions, so release the
3326 	 * system space we previously reserved (with check_system_chunk()).
3327 	 */
3328 	btrfs_trans_release_chunk_metadata(trans);
3329 
3330 	ret = btrfs_remove_block_group(trans, map);
3331 	if (ret) {
3332 		btrfs_abort_transaction(trans, ret);
3333 		goto out;
3334 	}
3335 
3336 out:
3337 	if (trans->removing_chunk) {
3338 		mutex_unlock(&fs_info->chunk_mutex);
3339 		trans->removing_chunk = false;
3340 	}
3341 	/* once for us */
3342 	btrfs_free_chunk_map(map);
3343 	return ret;
3344 }
3345 
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3346 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3347 {
3348 	struct btrfs_root *root = fs_info->chunk_root;
3349 	struct btrfs_trans_handle *trans;
3350 	struct btrfs_block_group *block_group;
3351 	u64 length;
3352 	int ret;
3353 
3354 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3355 		btrfs_err(fs_info,
3356 			  "relocate: not supported on extent tree v2 yet");
3357 		return -EINVAL;
3358 	}
3359 
3360 	/*
3361 	 * Prevent races with automatic removal of unused block groups.
3362 	 * After we relocate and before we remove the chunk with offset
3363 	 * chunk_offset, automatic removal of the block group can kick in,
3364 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3365 	 *
3366 	 * Make sure to acquire this mutex before doing a tree search (dev
3367 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3368 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3369 	 * we release the path used to search the chunk/dev tree and before
3370 	 * the current task acquires this mutex and calls us.
3371 	 */
3372 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3373 
3374 	/* step one, relocate all the extents inside this chunk */
3375 	btrfs_scrub_pause(fs_info);
3376 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3377 	btrfs_scrub_continue(fs_info);
3378 	if (ret) {
3379 		/*
3380 		 * If we had a transaction abort, stop all running scrubs.
3381 		 * See transaction.c:cleanup_transaction() why we do it here.
3382 		 */
3383 		if (BTRFS_FS_ERROR(fs_info))
3384 			btrfs_scrub_cancel(fs_info);
3385 		return ret;
3386 	}
3387 
3388 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3389 	if (!block_group)
3390 		return -ENOENT;
3391 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3392 	length = block_group->length;
3393 	btrfs_put_block_group(block_group);
3394 
3395 	/*
3396 	 * On a zoned file system, discard the whole block group, this will
3397 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3398 	 * resetting the zone fails, don't treat it as a fatal problem from the
3399 	 * filesystem's point of view.
3400 	 */
3401 	if (btrfs_is_zoned(fs_info)) {
3402 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3403 		if (ret)
3404 			btrfs_info(fs_info,
3405 				"failed to reset zone %llu after relocation",
3406 				chunk_offset);
3407 	}
3408 
3409 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3410 						     chunk_offset);
3411 	if (IS_ERR(trans)) {
3412 		ret = PTR_ERR(trans);
3413 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3414 		return ret;
3415 	}
3416 
3417 	/*
3418 	 * step two, delete the device extents and the
3419 	 * chunk tree entries
3420 	 */
3421 	ret = btrfs_remove_chunk(trans, chunk_offset);
3422 	btrfs_end_transaction(trans);
3423 	return ret;
3424 }
3425 
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3426 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3427 {
3428 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3429 	struct btrfs_path *path;
3430 	struct extent_buffer *leaf;
3431 	struct btrfs_chunk *chunk;
3432 	struct btrfs_key key;
3433 	struct btrfs_key found_key;
3434 	u64 chunk_type;
3435 	bool retried = false;
3436 	int failed = 0;
3437 	int ret;
3438 
3439 	path = btrfs_alloc_path();
3440 	if (!path)
3441 		return -ENOMEM;
3442 
3443 again:
3444 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3445 	key.offset = (u64)-1;
3446 	key.type = BTRFS_CHUNK_ITEM_KEY;
3447 
3448 	while (1) {
3449 		mutex_lock(&fs_info->reclaim_bgs_lock);
3450 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3451 		if (ret < 0) {
3452 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3453 			goto error;
3454 		}
3455 		if (ret == 0) {
3456 			/*
3457 			 * On the first search we would find chunk tree with
3458 			 * offset -1, which is not possible. On subsequent
3459 			 * loops this would find an existing item on an invalid
3460 			 * offset (one less than the previous one, wrong
3461 			 * alignment and size).
3462 			 */
3463 			ret = -EUCLEAN;
3464 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3465 			goto error;
3466 		}
3467 
3468 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3469 					  key.type);
3470 		if (ret)
3471 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3472 		if (ret < 0)
3473 			goto error;
3474 		if (ret > 0)
3475 			break;
3476 
3477 		leaf = path->nodes[0];
3478 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3479 
3480 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3481 				       struct btrfs_chunk);
3482 		chunk_type = btrfs_chunk_type(leaf, chunk);
3483 		btrfs_release_path(path);
3484 
3485 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3486 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3487 			if (ret == -ENOSPC)
3488 				failed++;
3489 			else
3490 				BUG_ON(ret);
3491 		}
3492 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3493 
3494 		if (found_key.offset == 0)
3495 			break;
3496 		key.offset = found_key.offset - 1;
3497 	}
3498 	ret = 0;
3499 	if (failed && !retried) {
3500 		failed = 0;
3501 		retried = true;
3502 		goto again;
3503 	} else if (WARN_ON(failed && retried)) {
3504 		ret = -ENOSPC;
3505 	}
3506 error:
3507 	btrfs_free_path(path);
3508 	return ret;
3509 }
3510 
3511 /*
3512  * return 1 : allocate a data chunk successfully,
3513  * return <0: errors during allocating a data chunk,
3514  * return 0 : no need to allocate a data chunk.
3515  */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3516 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3517 				      u64 chunk_offset)
3518 {
3519 	struct btrfs_block_group *cache;
3520 	u64 bytes_used;
3521 	u64 chunk_type;
3522 
3523 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3524 	ASSERT(cache);
3525 	chunk_type = cache->flags;
3526 	btrfs_put_block_group(cache);
3527 
3528 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3529 		return 0;
3530 
3531 	spin_lock(&fs_info->data_sinfo->lock);
3532 	bytes_used = fs_info->data_sinfo->bytes_used;
3533 	spin_unlock(&fs_info->data_sinfo->lock);
3534 
3535 	if (!bytes_used) {
3536 		struct btrfs_trans_handle *trans;
3537 		int ret;
3538 
3539 		trans =	btrfs_join_transaction(fs_info->tree_root);
3540 		if (IS_ERR(trans))
3541 			return PTR_ERR(trans);
3542 
3543 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3544 		btrfs_end_transaction(trans);
3545 		if (ret < 0)
3546 			return ret;
3547 		return 1;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3553 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3554 					   const struct btrfs_disk_balance_args *disk)
3555 {
3556 	memset(cpu, 0, sizeof(*cpu));
3557 
3558 	cpu->profiles = le64_to_cpu(disk->profiles);
3559 	cpu->usage = le64_to_cpu(disk->usage);
3560 	cpu->devid = le64_to_cpu(disk->devid);
3561 	cpu->pstart = le64_to_cpu(disk->pstart);
3562 	cpu->pend = le64_to_cpu(disk->pend);
3563 	cpu->vstart = le64_to_cpu(disk->vstart);
3564 	cpu->vend = le64_to_cpu(disk->vend);
3565 	cpu->target = le64_to_cpu(disk->target);
3566 	cpu->flags = le64_to_cpu(disk->flags);
3567 	cpu->limit = le64_to_cpu(disk->limit);
3568 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3569 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3570 }
3571 
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3572 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3573 					   const struct btrfs_balance_args *cpu)
3574 {
3575 	memset(disk, 0, sizeof(*disk));
3576 
3577 	disk->profiles = cpu_to_le64(cpu->profiles);
3578 	disk->usage = cpu_to_le64(cpu->usage);
3579 	disk->devid = cpu_to_le64(cpu->devid);
3580 	disk->pstart = cpu_to_le64(cpu->pstart);
3581 	disk->pend = cpu_to_le64(cpu->pend);
3582 	disk->vstart = cpu_to_le64(cpu->vstart);
3583 	disk->vend = cpu_to_le64(cpu->vend);
3584 	disk->target = cpu_to_le64(cpu->target);
3585 	disk->flags = cpu_to_le64(cpu->flags);
3586 	disk->limit = cpu_to_le64(cpu->limit);
3587 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3588 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3589 }
3590 
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3591 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3592 			       struct btrfs_balance_control *bctl)
3593 {
3594 	struct btrfs_root *root = fs_info->tree_root;
3595 	struct btrfs_trans_handle *trans;
3596 	struct btrfs_balance_item *item;
3597 	struct btrfs_disk_balance_args disk_bargs;
3598 	struct btrfs_path *path;
3599 	struct extent_buffer *leaf;
3600 	struct btrfs_key key;
3601 	int ret, err;
3602 
3603 	path = btrfs_alloc_path();
3604 	if (!path)
3605 		return -ENOMEM;
3606 
3607 	trans = btrfs_start_transaction(root, 0);
3608 	if (IS_ERR(trans)) {
3609 		btrfs_free_path(path);
3610 		return PTR_ERR(trans);
3611 	}
3612 
3613 	key.objectid = BTRFS_BALANCE_OBJECTID;
3614 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3615 	key.offset = 0;
3616 
3617 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3618 				      sizeof(*item));
3619 	if (ret)
3620 		goto out;
3621 
3622 	leaf = path->nodes[0];
3623 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3624 
3625 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3626 
3627 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3628 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3629 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3630 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3631 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3632 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3633 
3634 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3635 
3636 	btrfs_mark_buffer_dirty(trans, leaf);
3637 out:
3638 	btrfs_free_path(path);
3639 	err = btrfs_commit_transaction(trans);
3640 	if (err && !ret)
3641 		ret = err;
3642 	return ret;
3643 }
3644 
del_balance_item(struct btrfs_fs_info * fs_info)3645 static int del_balance_item(struct btrfs_fs_info *fs_info)
3646 {
3647 	struct btrfs_root *root = fs_info->tree_root;
3648 	struct btrfs_trans_handle *trans;
3649 	struct btrfs_path *path;
3650 	struct btrfs_key key;
3651 	int ret, err;
3652 
3653 	path = btrfs_alloc_path();
3654 	if (!path)
3655 		return -ENOMEM;
3656 
3657 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3658 	if (IS_ERR(trans)) {
3659 		btrfs_free_path(path);
3660 		return PTR_ERR(trans);
3661 	}
3662 
3663 	key.objectid = BTRFS_BALANCE_OBJECTID;
3664 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3665 	key.offset = 0;
3666 
3667 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3668 	if (ret < 0)
3669 		goto out;
3670 	if (ret > 0) {
3671 		ret = -ENOENT;
3672 		goto out;
3673 	}
3674 
3675 	ret = btrfs_del_item(trans, root, path);
3676 out:
3677 	btrfs_free_path(path);
3678 	err = btrfs_commit_transaction(trans);
3679 	if (err && !ret)
3680 		ret = err;
3681 	return ret;
3682 }
3683 
3684 /*
3685  * This is a heuristic used to reduce the number of chunks balanced on
3686  * resume after balance was interrupted.
3687  */
update_balance_args(struct btrfs_balance_control * bctl)3688 static void update_balance_args(struct btrfs_balance_control *bctl)
3689 {
3690 	/*
3691 	 * Turn on soft mode for chunk types that were being converted.
3692 	 */
3693 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3694 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3695 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3696 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3697 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3698 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3699 
3700 	/*
3701 	 * Turn on usage filter if is not already used.  The idea is
3702 	 * that chunks that we have already balanced should be
3703 	 * reasonably full.  Don't do it for chunks that are being
3704 	 * converted - that will keep us from relocating unconverted
3705 	 * (albeit full) chunks.
3706 	 */
3707 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 		bctl->data.usage = 90;
3712 	}
3713 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 		bctl->sys.usage = 90;
3718 	}
3719 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3720 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3721 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3722 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3723 		bctl->meta.usage = 90;
3724 	}
3725 }
3726 
3727 /*
3728  * Clear the balance status in fs_info and delete the balance item from disk.
3729  */
reset_balance_state(struct btrfs_fs_info * fs_info)3730 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3731 {
3732 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3733 	int ret;
3734 
3735 	ASSERT(fs_info->balance_ctl);
3736 
3737 	spin_lock(&fs_info->balance_lock);
3738 	fs_info->balance_ctl = NULL;
3739 	spin_unlock(&fs_info->balance_lock);
3740 
3741 	kfree(bctl);
3742 	ret = del_balance_item(fs_info);
3743 	if (ret)
3744 		btrfs_handle_fs_error(fs_info, ret, NULL);
3745 }
3746 
3747 /*
3748  * Balance filters.  Return 1 if chunk should be filtered out
3749  * (should not be balanced).
3750  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3751 static int chunk_profiles_filter(u64 chunk_type,
3752 				 struct btrfs_balance_args *bargs)
3753 {
3754 	chunk_type = chunk_to_extended(chunk_type) &
3755 				BTRFS_EXTENDED_PROFILE_MASK;
3756 
3757 	if (bargs->profiles & chunk_type)
3758 		return 0;
3759 
3760 	return 1;
3761 }
3762 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3763 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3764 			      struct btrfs_balance_args *bargs)
3765 {
3766 	struct btrfs_block_group *cache;
3767 	u64 chunk_used;
3768 	u64 user_thresh_min;
3769 	u64 user_thresh_max;
3770 	int ret = 1;
3771 
3772 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3773 	chunk_used = cache->used;
3774 
3775 	if (bargs->usage_min == 0)
3776 		user_thresh_min = 0;
3777 	else
3778 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3779 
3780 	if (bargs->usage_max == 0)
3781 		user_thresh_max = 1;
3782 	else if (bargs->usage_max > 100)
3783 		user_thresh_max = cache->length;
3784 	else
3785 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3786 
3787 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3788 		ret = 0;
3789 
3790 	btrfs_put_block_group(cache);
3791 	return ret;
3792 }
3793 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3794 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3795 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3796 {
3797 	struct btrfs_block_group *cache;
3798 	u64 chunk_used, user_thresh;
3799 	int ret = 1;
3800 
3801 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3802 	chunk_used = cache->used;
3803 
3804 	if (bargs->usage_min == 0)
3805 		user_thresh = 1;
3806 	else if (bargs->usage > 100)
3807 		user_thresh = cache->length;
3808 	else
3809 		user_thresh = mult_perc(cache->length, bargs->usage);
3810 
3811 	if (chunk_used < user_thresh)
3812 		ret = 0;
3813 
3814 	btrfs_put_block_group(cache);
3815 	return ret;
3816 }
3817 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3818 static int chunk_devid_filter(struct extent_buffer *leaf,
3819 			      struct btrfs_chunk *chunk,
3820 			      struct btrfs_balance_args *bargs)
3821 {
3822 	struct btrfs_stripe *stripe;
3823 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3824 	int i;
3825 
3826 	for (i = 0; i < num_stripes; i++) {
3827 		stripe = btrfs_stripe_nr(chunk, i);
3828 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3829 			return 0;
3830 	}
3831 
3832 	return 1;
3833 }
3834 
calc_data_stripes(u64 type,int num_stripes)3835 static u64 calc_data_stripes(u64 type, int num_stripes)
3836 {
3837 	const int index = btrfs_bg_flags_to_raid_index(type);
3838 	const int ncopies = btrfs_raid_array[index].ncopies;
3839 	const int nparity = btrfs_raid_array[index].nparity;
3840 
3841 	return (num_stripes - nparity) / ncopies;
3842 }
3843 
3844 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3845 static int chunk_drange_filter(struct extent_buffer *leaf,
3846 			       struct btrfs_chunk *chunk,
3847 			       struct btrfs_balance_args *bargs)
3848 {
3849 	struct btrfs_stripe *stripe;
3850 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3851 	u64 stripe_offset;
3852 	u64 stripe_length;
3853 	u64 type;
3854 	int factor;
3855 	int i;
3856 
3857 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3858 		return 0;
3859 
3860 	type = btrfs_chunk_type(leaf, chunk);
3861 	factor = calc_data_stripes(type, num_stripes);
3862 
3863 	for (i = 0; i < num_stripes; i++) {
3864 		stripe = btrfs_stripe_nr(chunk, i);
3865 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3866 			continue;
3867 
3868 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3869 		stripe_length = btrfs_chunk_length(leaf, chunk);
3870 		stripe_length = div_u64(stripe_length, factor);
3871 
3872 		if (stripe_offset < bargs->pend &&
3873 		    stripe_offset + stripe_length > bargs->pstart)
3874 			return 0;
3875 	}
3876 
3877 	return 1;
3878 }
3879 
3880 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3881 static int chunk_vrange_filter(struct extent_buffer *leaf,
3882 			       struct btrfs_chunk *chunk,
3883 			       u64 chunk_offset,
3884 			       struct btrfs_balance_args *bargs)
3885 {
3886 	if (chunk_offset < bargs->vend &&
3887 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3888 		/* at least part of the chunk is inside this vrange */
3889 		return 0;
3890 
3891 	return 1;
3892 }
3893 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3894 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3895 			       struct btrfs_chunk *chunk,
3896 			       struct btrfs_balance_args *bargs)
3897 {
3898 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3899 
3900 	if (bargs->stripes_min <= num_stripes
3901 			&& num_stripes <= bargs->stripes_max)
3902 		return 0;
3903 
3904 	return 1;
3905 }
3906 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3907 static int chunk_soft_convert_filter(u64 chunk_type,
3908 				     struct btrfs_balance_args *bargs)
3909 {
3910 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3911 		return 0;
3912 
3913 	chunk_type = chunk_to_extended(chunk_type) &
3914 				BTRFS_EXTENDED_PROFILE_MASK;
3915 
3916 	if (bargs->target == chunk_type)
3917 		return 1;
3918 
3919 	return 0;
3920 }
3921 
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3922 static int should_balance_chunk(struct extent_buffer *leaf,
3923 				struct btrfs_chunk *chunk, u64 chunk_offset)
3924 {
3925 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3926 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3927 	struct btrfs_balance_args *bargs = NULL;
3928 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3929 
3930 	/* type filter */
3931 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3932 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3933 		return 0;
3934 	}
3935 
3936 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3937 		bargs = &bctl->data;
3938 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3939 		bargs = &bctl->sys;
3940 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3941 		bargs = &bctl->meta;
3942 
3943 	/* profiles filter */
3944 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3945 	    chunk_profiles_filter(chunk_type, bargs)) {
3946 		return 0;
3947 	}
3948 
3949 	/* usage filter */
3950 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3951 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3952 		return 0;
3953 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3954 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3955 		return 0;
3956 	}
3957 
3958 	/* devid filter */
3959 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3960 	    chunk_devid_filter(leaf, chunk, bargs)) {
3961 		return 0;
3962 	}
3963 
3964 	/* drange filter, makes sense only with devid filter */
3965 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3966 	    chunk_drange_filter(leaf, chunk, bargs)) {
3967 		return 0;
3968 	}
3969 
3970 	/* vrange filter */
3971 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3972 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3973 		return 0;
3974 	}
3975 
3976 	/* stripes filter */
3977 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3978 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3979 		return 0;
3980 	}
3981 
3982 	/* soft profile changing mode */
3983 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3984 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3985 		return 0;
3986 	}
3987 
3988 	/*
3989 	 * limited by count, must be the last filter
3990 	 */
3991 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3992 		if (bargs->limit == 0)
3993 			return 0;
3994 		else
3995 			bargs->limit--;
3996 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3997 		/*
3998 		 * Same logic as the 'limit' filter; the minimum cannot be
3999 		 * determined here because we do not have the global information
4000 		 * about the count of all chunks that satisfy the filters.
4001 		 */
4002 		if (bargs->limit_max == 0)
4003 			return 0;
4004 		else
4005 			bargs->limit_max--;
4006 	}
4007 
4008 	return 1;
4009 }
4010 
__btrfs_balance(struct btrfs_fs_info * fs_info)4011 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4012 {
4013 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4014 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4015 	u64 chunk_type;
4016 	struct btrfs_chunk *chunk;
4017 	struct btrfs_path *path = NULL;
4018 	struct btrfs_key key;
4019 	struct btrfs_key found_key;
4020 	struct extent_buffer *leaf;
4021 	int slot;
4022 	int ret;
4023 	int enospc_errors = 0;
4024 	bool counting = true;
4025 	/* The single value limit and min/max limits use the same bytes in the */
4026 	u64 limit_data = bctl->data.limit;
4027 	u64 limit_meta = bctl->meta.limit;
4028 	u64 limit_sys = bctl->sys.limit;
4029 	u32 count_data = 0;
4030 	u32 count_meta = 0;
4031 	u32 count_sys = 0;
4032 	int chunk_reserved = 0;
4033 
4034 	path = btrfs_alloc_path();
4035 	if (!path) {
4036 		ret = -ENOMEM;
4037 		goto error;
4038 	}
4039 
4040 	/* zero out stat counters */
4041 	spin_lock(&fs_info->balance_lock);
4042 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4043 	spin_unlock(&fs_info->balance_lock);
4044 again:
4045 	if (!counting) {
4046 		/*
4047 		 * The single value limit and min/max limits use the same bytes
4048 		 * in the
4049 		 */
4050 		bctl->data.limit = limit_data;
4051 		bctl->meta.limit = limit_meta;
4052 		bctl->sys.limit = limit_sys;
4053 	}
4054 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4055 	key.offset = (u64)-1;
4056 	key.type = BTRFS_CHUNK_ITEM_KEY;
4057 
4058 	while (1) {
4059 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4060 		    atomic_read(&fs_info->balance_cancel_req)) {
4061 			ret = -ECANCELED;
4062 			goto error;
4063 		}
4064 
4065 		mutex_lock(&fs_info->reclaim_bgs_lock);
4066 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4067 		if (ret < 0) {
4068 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4069 			goto error;
4070 		}
4071 
4072 		/*
4073 		 * this shouldn't happen, it means the last relocate
4074 		 * failed
4075 		 */
4076 		if (ret == 0)
4077 			BUG(); /* FIXME break ? */
4078 
4079 		ret = btrfs_previous_item(chunk_root, path, 0,
4080 					  BTRFS_CHUNK_ITEM_KEY);
4081 		if (ret) {
4082 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4083 			ret = 0;
4084 			break;
4085 		}
4086 
4087 		leaf = path->nodes[0];
4088 		slot = path->slots[0];
4089 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4090 
4091 		if (found_key.objectid != key.objectid) {
4092 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4093 			break;
4094 		}
4095 
4096 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4097 		chunk_type = btrfs_chunk_type(leaf, chunk);
4098 
4099 		if (!counting) {
4100 			spin_lock(&fs_info->balance_lock);
4101 			bctl->stat.considered++;
4102 			spin_unlock(&fs_info->balance_lock);
4103 		}
4104 
4105 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4106 
4107 		btrfs_release_path(path);
4108 		if (!ret) {
4109 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4110 			goto loop;
4111 		}
4112 
4113 		if (counting) {
4114 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4115 			spin_lock(&fs_info->balance_lock);
4116 			bctl->stat.expected++;
4117 			spin_unlock(&fs_info->balance_lock);
4118 
4119 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4120 				count_data++;
4121 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4122 				count_sys++;
4123 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4124 				count_meta++;
4125 
4126 			goto loop;
4127 		}
4128 
4129 		/*
4130 		 * Apply limit_min filter, no need to check if the LIMITS
4131 		 * filter is used, limit_min is 0 by default
4132 		 */
4133 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4134 					count_data < bctl->data.limit_min)
4135 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4136 					count_meta < bctl->meta.limit_min)
4137 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4138 					count_sys < bctl->sys.limit_min)) {
4139 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4140 			goto loop;
4141 		}
4142 
4143 		if (!chunk_reserved) {
4144 			/*
4145 			 * We may be relocating the only data chunk we have,
4146 			 * which could potentially end up with losing data's
4147 			 * raid profile, so lets allocate an empty one in
4148 			 * advance.
4149 			 */
4150 			ret = btrfs_may_alloc_data_chunk(fs_info,
4151 							 found_key.offset);
4152 			if (ret < 0) {
4153 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4154 				goto error;
4155 			} else if (ret == 1) {
4156 				chunk_reserved = 1;
4157 			}
4158 		}
4159 
4160 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4161 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4162 		if (ret == -ENOSPC) {
4163 			enospc_errors++;
4164 		} else if (ret == -ETXTBSY) {
4165 			btrfs_info(fs_info,
4166 	   "skipping relocation of block group %llu due to active swapfile",
4167 				   found_key.offset);
4168 			ret = 0;
4169 		} else if (ret) {
4170 			goto error;
4171 		} else {
4172 			spin_lock(&fs_info->balance_lock);
4173 			bctl->stat.completed++;
4174 			spin_unlock(&fs_info->balance_lock);
4175 		}
4176 loop:
4177 		if (found_key.offset == 0)
4178 			break;
4179 		key.offset = found_key.offset - 1;
4180 	}
4181 
4182 	if (counting) {
4183 		btrfs_release_path(path);
4184 		counting = false;
4185 		goto again;
4186 	}
4187 error:
4188 	btrfs_free_path(path);
4189 	if (enospc_errors) {
4190 		btrfs_info(fs_info, "%d enospc errors during balance",
4191 			   enospc_errors);
4192 		if (!ret)
4193 			ret = -ENOSPC;
4194 	}
4195 
4196 	return ret;
4197 }
4198 
4199 /*
4200  * See if a given profile is valid and reduced.
4201  *
4202  * @flags:     profile to validate
4203  * @extended:  if true @flags is treated as an extended profile
4204  */
alloc_profile_is_valid(u64 flags,int extended)4205 static int alloc_profile_is_valid(u64 flags, int extended)
4206 {
4207 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4208 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4209 
4210 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4211 
4212 	/* 1) check that all other bits are zeroed */
4213 	if (flags & ~mask)
4214 		return 0;
4215 
4216 	/* 2) see if profile is reduced */
4217 	if (flags == 0)
4218 		return !extended; /* "0" is valid for usual profiles */
4219 
4220 	return has_single_bit_set(flags);
4221 }
4222 
4223 /*
4224  * Validate target profile against allowed profiles and return true if it's OK.
4225  * Otherwise print the error message and return false.
4226  */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4227 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4228 		const struct btrfs_balance_args *bargs,
4229 		u64 allowed, const char *type)
4230 {
4231 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4232 		return true;
4233 
4234 	/* Profile is valid and does not have bits outside of the allowed set */
4235 	if (alloc_profile_is_valid(bargs->target, 1) &&
4236 	    (bargs->target & ~allowed) == 0)
4237 		return true;
4238 
4239 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4240 			type, btrfs_bg_type_to_raid_name(bargs->target));
4241 	return false;
4242 }
4243 
4244 /*
4245  * Fill @buf with textual description of balance filter flags @bargs, up to
4246  * @size_buf including the terminating null. The output may be trimmed if it
4247  * does not fit into the provided buffer.
4248  */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4249 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4250 				 u32 size_buf)
4251 {
4252 	int ret;
4253 	u32 size_bp = size_buf;
4254 	char *bp = buf;
4255 	u64 flags = bargs->flags;
4256 	char tmp_buf[128] = {'\0'};
4257 
4258 	if (!flags)
4259 		return;
4260 
4261 #define CHECK_APPEND_NOARG(a)						\
4262 	do {								\
4263 		ret = snprintf(bp, size_bp, (a));			\
4264 		if (ret < 0 || ret >= size_bp)				\
4265 			goto out_overflow;				\
4266 		size_bp -= ret;						\
4267 		bp += ret;						\
4268 	} while (0)
4269 
4270 #define CHECK_APPEND_1ARG(a, v1)					\
4271 	do {								\
4272 		ret = snprintf(bp, size_bp, (a), (v1));			\
4273 		if (ret < 0 || ret >= size_bp)				\
4274 			goto out_overflow;				\
4275 		size_bp -= ret;						\
4276 		bp += ret;						\
4277 	} while (0)
4278 
4279 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4280 	do {								\
4281 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4282 		if (ret < 0 || ret >= size_bp)				\
4283 			goto out_overflow;				\
4284 		size_bp -= ret;						\
4285 		bp += ret;						\
4286 	} while (0)
4287 
4288 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4289 		CHECK_APPEND_1ARG("convert=%s,",
4290 				  btrfs_bg_type_to_raid_name(bargs->target));
4291 
4292 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4293 		CHECK_APPEND_NOARG("soft,");
4294 
4295 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4296 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4297 					    sizeof(tmp_buf));
4298 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4299 	}
4300 
4301 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4302 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4303 
4304 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4305 		CHECK_APPEND_2ARG("usage=%u..%u,",
4306 				  bargs->usage_min, bargs->usage_max);
4307 
4308 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4309 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4310 
4311 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4312 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4313 				  bargs->pstart, bargs->pend);
4314 
4315 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4316 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4317 				  bargs->vstart, bargs->vend);
4318 
4319 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4320 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4321 
4322 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4323 		CHECK_APPEND_2ARG("limit=%u..%u,",
4324 				bargs->limit_min, bargs->limit_max);
4325 
4326 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4327 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4328 				  bargs->stripes_min, bargs->stripes_max);
4329 
4330 #undef CHECK_APPEND_2ARG
4331 #undef CHECK_APPEND_1ARG
4332 #undef CHECK_APPEND_NOARG
4333 
4334 out_overflow:
4335 
4336 	if (size_bp < size_buf)
4337 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4338 	else
4339 		buf[0] = '\0';
4340 }
4341 
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4342 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4343 {
4344 	u32 size_buf = 1024;
4345 	char tmp_buf[192] = {'\0'};
4346 	char *buf;
4347 	char *bp;
4348 	u32 size_bp = size_buf;
4349 	int ret;
4350 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4351 
4352 	buf = kzalloc(size_buf, GFP_KERNEL);
4353 	if (!buf)
4354 		return;
4355 
4356 	bp = buf;
4357 
4358 #define CHECK_APPEND_1ARG(a, v1)					\
4359 	do {								\
4360 		ret = snprintf(bp, size_bp, (a), (v1));			\
4361 		if (ret < 0 || ret >= size_bp)				\
4362 			goto out_overflow;				\
4363 		size_bp -= ret;						\
4364 		bp += ret;						\
4365 	} while (0)
4366 
4367 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4368 		CHECK_APPEND_1ARG("%s", "-f ");
4369 
4370 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4371 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4372 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4373 	}
4374 
4375 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4376 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4377 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4378 	}
4379 
4380 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4381 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4382 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4383 	}
4384 
4385 #undef CHECK_APPEND_1ARG
4386 
4387 out_overflow:
4388 
4389 	if (size_bp < size_buf)
4390 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4391 	btrfs_info(fs_info, "balance: %s %s",
4392 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4393 		   "resume" : "start", buf);
4394 
4395 	kfree(buf);
4396 }
4397 
4398 /*
4399  * Should be called with balance mutexe held
4400  */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4401 int btrfs_balance(struct btrfs_fs_info *fs_info,
4402 		  struct btrfs_balance_control *bctl,
4403 		  struct btrfs_ioctl_balance_args *bargs)
4404 {
4405 	u64 meta_target, data_target;
4406 	u64 allowed;
4407 	int mixed = 0;
4408 	int ret;
4409 	u64 num_devices;
4410 	unsigned seq;
4411 	bool reducing_redundancy;
4412 	bool paused = false;
4413 	int i;
4414 
4415 	if (btrfs_fs_closing(fs_info) ||
4416 	    atomic_read(&fs_info->balance_pause_req) ||
4417 	    btrfs_should_cancel_balance(fs_info)) {
4418 		ret = -EINVAL;
4419 		goto out;
4420 	}
4421 
4422 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4423 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4424 		mixed = 1;
4425 
4426 	/*
4427 	 * In case of mixed groups both data and meta should be picked,
4428 	 * and identical options should be given for both of them.
4429 	 */
4430 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4431 	if (mixed && (bctl->flags & allowed)) {
4432 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4433 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4434 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4435 			btrfs_err(fs_info,
4436 	  "balance: mixed groups data and metadata options must be the same");
4437 			ret = -EINVAL;
4438 			goto out;
4439 		}
4440 	}
4441 
4442 	/*
4443 	 * rw_devices will not change at the moment, device add/delete/replace
4444 	 * are exclusive
4445 	 */
4446 	num_devices = fs_info->fs_devices->rw_devices;
4447 
4448 	/*
4449 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4450 	 * special bit for it, to make it easier to distinguish.  Thus we need
4451 	 * to set it manually, or balance would refuse the profile.
4452 	 */
4453 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4454 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4455 		if (num_devices >= btrfs_raid_array[i].devs_min)
4456 			allowed |= btrfs_raid_array[i].bg_flag;
4457 
4458 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4459 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4460 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4461 		ret = -EINVAL;
4462 		goto out;
4463 	}
4464 
4465 	/*
4466 	 * Allow to reduce metadata or system integrity only if force set for
4467 	 * profiles with redundancy (copies, parity)
4468 	 */
4469 	allowed = 0;
4470 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4471 		if (btrfs_raid_array[i].ncopies >= 2 ||
4472 		    btrfs_raid_array[i].tolerated_failures >= 1)
4473 			allowed |= btrfs_raid_array[i].bg_flag;
4474 	}
4475 	do {
4476 		seq = read_seqbegin(&fs_info->profiles_lock);
4477 
4478 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4479 		     (fs_info->avail_system_alloc_bits & allowed) &&
4480 		     !(bctl->sys.target & allowed)) ||
4481 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4482 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4483 		     !(bctl->meta.target & allowed)))
4484 			reducing_redundancy = true;
4485 		else
4486 			reducing_redundancy = false;
4487 
4488 		/* if we're not converting, the target field is uninitialized */
4489 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4490 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4491 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4492 			bctl->data.target : fs_info->avail_data_alloc_bits;
4493 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4494 
4495 	if (reducing_redundancy) {
4496 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4497 			btrfs_info(fs_info,
4498 			   "balance: force reducing metadata redundancy");
4499 		} else {
4500 			btrfs_err(fs_info,
4501 	"balance: reduces metadata redundancy, use --force if you want this");
4502 			ret = -EINVAL;
4503 			goto out;
4504 		}
4505 	}
4506 
4507 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4508 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4509 		btrfs_warn(fs_info,
4510 	"balance: metadata profile %s has lower redundancy than data profile %s",
4511 				btrfs_bg_type_to_raid_name(meta_target),
4512 				btrfs_bg_type_to_raid_name(data_target));
4513 	}
4514 
4515 	ret = insert_balance_item(fs_info, bctl);
4516 	if (ret && ret != -EEXIST)
4517 		goto out;
4518 
4519 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4520 		BUG_ON(ret == -EEXIST);
4521 		BUG_ON(fs_info->balance_ctl);
4522 		spin_lock(&fs_info->balance_lock);
4523 		fs_info->balance_ctl = bctl;
4524 		spin_unlock(&fs_info->balance_lock);
4525 	} else {
4526 		BUG_ON(ret != -EEXIST);
4527 		spin_lock(&fs_info->balance_lock);
4528 		update_balance_args(bctl);
4529 		spin_unlock(&fs_info->balance_lock);
4530 	}
4531 
4532 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4533 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4534 	describe_balance_start_or_resume(fs_info);
4535 	mutex_unlock(&fs_info->balance_mutex);
4536 
4537 	ret = __btrfs_balance(fs_info);
4538 
4539 	mutex_lock(&fs_info->balance_mutex);
4540 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4541 		btrfs_info(fs_info, "balance: paused");
4542 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4543 		paused = true;
4544 	}
4545 	/*
4546 	 * Balance can be canceled by:
4547 	 *
4548 	 * - Regular cancel request
4549 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4550 	 *
4551 	 * - Fatal signal to "btrfs" process
4552 	 *   Either the signal caught by wait_reserve_ticket() and callers
4553 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4554 	 *   got -ECANCELED.
4555 	 *   Either way, in this case balance_cancel_req = 0, and
4556 	 *   ret == -EINTR or ret == -ECANCELED.
4557 	 *
4558 	 * So here we only check the return value to catch canceled balance.
4559 	 */
4560 	else if (ret == -ECANCELED || ret == -EINTR)
4561 		btrfs_info(fs_info, "balance: canceled");
4562 	else
4563 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4564 
4565 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4566 
4567 	if (bargs) {
4568 		memset(bargs, 0, sizeof(*bargs));
4569 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4570 	}
4571 
4572 	/* We didn't pause, we can clean everything up. */
4573 	if (!paused) {
4574 		reset_balance_state(fs_info);
4575 		btrfs_exclop_finish(fs_info);
4576 	}
4577 
4578 	wake_up(&fs_info->balance_wait_q);
4579 
4580 	return ret;
4581 out:
4582 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4583 		reset_balance_state(fs_info);
4584 	else
4585 		kfree(bctl);
4586 	btrfs_exclop_finish(fs_info);
4587 
4588 	return ret;
4589 }
4590 
balance_kthread(void * data)4591 static int balance_kthread(void *data)
4592 {
4593 	struct btrfs_fs_info *fs_info = data;
4594 	int ret = 0;
4595 
4596 	sb_start_write(fs_info->sb);
4597 	mutex_lock(&fs_info->balance_mutex);
4598 	if (fs_info->balance_ctl)
4599 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4600 	mutex_unlock(&fs_info->balance_mutex);
4601 	sb_end_write(fs_info->sb);
4602 
4603 	return ret;
4604 }
4605 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4606 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4607 {
4608 	struct task_struct *tsk;
4609 
4610 	mutex_lock(&fs_info->balance_mutex);
4611 	if (!fs_info->balance_ctl) {
4612 		mutex_unlock(&fs_info->balance_mutex);
4613 		return 0;
4614 	}
4615 	mutex_unlock(&fs_info->balance_mutex);
4616 
4617 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4618 		btrfs_info(fs_info, "balance: resume skipped");
4619 		return 0;
4620 	}
4621 
4622 	spin_lock(&fs_info->super_lock);
4623 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4624 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4625 	spin_unlock(&fs_info->super_lock);
4626 	/*
4627 	 * A ro->rw remount sequence should continue with the paused balance
4628 	 * regardless of who pauses it, system or the user as of now, so set
4629 	 * the resume flag.
4630 	 */
4631 	spin_lock(&fs_info->balance_lock);
4632 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4633 	spin_unlock(&fs_info->balance_lock);
4634 
4635 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4636 	return PTR_ERR_OR_ZERO(tsk);
4637 }
4638 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4639 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4640 {
4641 	struct btrfs_balance_control *bctl;
4642 	struct btrfs_balance_item *item;
4643 	struct btrfs_disk_balance_args disk_bargs;
4644 	struct btrfs_path *path;
4645 	struct extent_buffer *leaf;
4646 	struct btrfs_key key;
4647 	int ret;
4648 
4649 	path = btrfs_alloc_path();
4650 	if (!path)
4651 		return -ENOMEM;
4652 
4653 	key.objectid = BTRFS_BALANCE_OBJECTID;
4654 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4655 	key.offset = 0;
4656 
4657 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4658 	if (ret < 0)
4659 		goto out;
4660 	if (ret > 0) { /* ret = -ENOENT; */
4661 		ret = 0;
4662 		goto out;
4663 	}
4664 
4665 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4666 	if (!bctl) {
4667 		ret = -ENOMEM;
4668 		goto out;
4669 	}
4670 
4671 	leaf = path->nodes[0];
4672 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4673 
4674 	bctl->flags = btrfs_balance_flags(leaf, item);
4675 	bctl->flags |= BTRFS_BALANCE_RESUME;
4676 
4677 	btrfs_balance_data(leaf, item, &disk_bargs);
4678 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4679 	btrfs_balance_meta(leaf, item, &disk_bargs);
4680 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4681 	btrfs_balance_sys(leaf, item, &disk_bargs);
4682 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4683 
4684 	/*
4685 	 * This should never happen, as the paused balance state is recovered
4686 	 * during mount without any chance of other exclusive ops to collide.
4687 	 *
4688 	 * This gives the exclusive op status to balance and keeps in paused
4689 	 * state until user intervention (cancel or umount). If the ownership
4690 	 * cannot be assigned, show a message but do not fail. The balance
4691 	 * is in a paused state and must have fs_info::balance_ctl properly
4692 	 * set up.
4693 	 */
4694 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4695 		btrfs_warn(fs_info,
4696 	"balance: cannot set exclusive op status, resume manually");
4697 
4698 	btrfs_release_path(path);
4699 
4700 	mutex_lock(&fs_info->balance_mutex);
4701 	BUG_ON(fs_info->balance_ctl);
4702 	spin_lock(&fs_info->balance_lock);
4703 	fs_info->balance_ctl = bctl;
4704 	spin_unlock(&fs_info->balance_lock);
4705 	mutex_unlock(&fs_info->balance_mutex);
4706 out:
4707 	btrfs_free_path(path);
4708 	return ret;
4709 }
4710 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4711 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4712 {
4713 	int ret = 0;
4714 
4715 	mutex_lock(&fs_info->balance_mutex);
4716 	if (!fs_info->balance_ctl) {
4717 		mutex_unlock(&fs_info->balance_mutex);
4718 		return -ENOTCONN;
4719 	}
4720 
4721 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4722 		atomic_inc(&fs_info->balance_pause_req);
4723 		mutex_unlock(&fs_info->balance_mutex);
4724 
4725 		wait_event(fs_info->balance_wait_q,
4726 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4727 
4728 		mutex_lock(&fs_info->balance_mutex);
4729 		/* we are good with balance_ctl ripped off from under us */
4730 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4731 		atomic_dec(&fs_info->balance_pause_req);
4732 	} else {
4733 		ret = -ENOTCONN;
4734 	}
4735 
4736 	mutex_unlock(&fs_info->balance_mutex);
4737 	return ret;
4738 }
4739 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4740 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4741 {
4742 	mutex_lock(&fs_info->balance_mutex);
4743 	if (!fs_info->balance_ctl) {
4744 		mutex_unlock(&fs_info->balance_mutex);
4745 		return -ENOTCONN;
4746 	}
4747 
4748 	/*
4749 	 * A paused balance with the item stored on disk can be resumed at
4750 	 * mount time if the mount is read-write. Otherwise it's still paused
4751 	 * and we must not allow cancelling as it deletes the item.
4752 	 */
4753 	if (sb_rdonly(fs_info->sb)) {
4754 		mutex_unlock(&fs_info->balance_mutex);
4755 		return -EROFS;
4756 	}
4757 
4758 	atomic_inc(&fs_info->balance_cancel_req);
4759 	/*
4760 	 * if we are running just wait and return, balance item is
4761 	 * deleted in btrfs_balance in this case
4762 	 */
4763 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4764 		mutex_unlock(&fs_info->balance_mutex);
4765 		wait_event(fs_info->balance_wait_q,
4766 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4767 		mutex_lock(&fs_info->balance_mutex);
4768 	} else {
4769 		mutex_unlock(&fs_info->balance_mutex);
4770 		/*
4771 		 * Lock released to allow other waiters to continue, we'll
4772 		 * reexamine the status again.
4773 		 */
4774 		mutex_lock(&fs_info->balance_mutex);
4775 
4776 		if (fs_info->balance_ctl) {
4777 			reset_balance_state(fs_info);
4778 			btrfs_exclop_finish(fs_info);
4779 			btrfs_info(fs_info, "balance: canceled");
4780 		}
4781 	}
4782 
4783 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4784 	atomic_dec(&fs_info->balance_cancel_req);
4785 	mutex_unlock(&fs_info->balance_mutex);
4786 	return 0;
4787 }
4788 
4789 /*
4790  * shrinking a device means finding all of the device extents past
4791  * the new size, and then following the back refs to the chunks.
4792  * The chunk relocation code actually frees the device extent
4793  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4794 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4795 {
4796 	struct btrfs_fs_info *fs_info = device->fs_info;
4797 	struct btrfs_root *root = fs_info->dev_root;
4798 	struct btrfs_trans_handle *trans;
4799 	struct btrfs_dev_extent *dev_extent = NULL;
4800 	struct btrfs_path *path;
4801 	u64 length;
4802 	u64 chunk_offset;
4803 	int ret;
4804 	int slot;
4805 	int failed = 0;
4806 	bool retried = false;
4807 	struct extent_buffer *l;
4808 	struct btrfs_key key;
4809 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4810 	u64 old_total = btrfs_super_total_bytes(super_copy);
4811 	u64 old_size = btrfs_device_get_total_bytes(device);
4812 	u64 diff;
4813 	u64 start;
4814 	u64 free_diff = 0;
4815 
4816 	new_size = round_down(new_size, fs_info->sectorsize);
4817 	start = new_size;
4818 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4819 
4820 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4821 		return -EINVAL;
4822 
4823 	path = btrfs_alloc_path();
4824 	if (!path)
4825 		return -ENOMEM;
4826 
4827 	path->reada = READA_BACK;
4828 
4829 	trans = btrfs_start_transaction(root, 0);
4830 	if (IS_ERR(trans)) {
4831 		btrfs_free_path(path);
4832 		return PTR_ERR(trans);
4833 	}
4834 
4835 	mutex_lock(&fs_info->chunk_mutex);
4836 
4837 	btrfs_device_set_total_bytes(device, new_size);
4838 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4839 		device->fs_devices->total_rw_bytes -= diff;
4840 
4841 		/*
4842 		 * The new free_chunk_space is new_size - used, so we have to
4843 		 * subtract the delta of the old free_chunk_space which included
4844 		 * old_size - used.  If used > new_size then just subtract this
4845 		 * entire device's free space.
4846 		 */
4847 		if (device->bytes_used < new_size)
4848 			free_diff = (old_size - device->bytes_used) -
4849 				    (new_size - device->bytes_used);
4850 		else
4851 			free_diff = old_size - device->bytes_used;
4852 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4853 	}
4854 
4855 	/*
4856 	 * Once the device's size has been set to the new size, ensure all
4857 	 * in-memory chunks are synced to disk so that the loop below sees them
4858 	 * and relocates them accordingly.
4859 	 */
4860 	if (contains_pending_extent(device, &start, diff)) {
4861 		mutex_unlock(&fs_info->chunk_mutex);
4862 		ret = btrfs_commit_transaction(trans);
4863 		if (ret)
4864 			goto done;
4865 	} else {
4866 		mutex_unlock(&fs_info->chunk_mutex);
4867 		btrfs_end_transaction(trans);
4868 	}
4869 
4870 again:
4871 	key.objectid = device->devid;
4872 	key.offset = (u64)-1;
4873 	key.type = BTRFS_DEV_EXTENT_KEY;
4874 
4875 	do {
4876 		mutex_lock(&fs_info->reclaim_bgs_lock);
4877 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 		if (ret < 0) {
4879 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4880 			goto done;
4881 		}
4882 
4883 		ret = btrfs_previous_item(root, path, 0, key.type);
4884 		if (ret) {
4885 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 			if (ret < 0)
4887 				goto done;
4888 			ret = 0;
4889 			btrfs_release_path(path);
4890 			break;
4891 		}
4892 
4893 		l = path->nodes[0];
4894 		slot = path->slots[0];
4895 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4896 
4897 		if (key.objectid != device->devid) {
4898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 			btrfs_release_path(path);
4900 			break;
4901 		}
4902 
4903 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4904 		length = btrfs_dev_extent_length(l, dev_extent);
4905 
4906 		if (key.offset + length <= new_size) {
4907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4913 		btrfs_release_path(path);
4914 
4915 		/*
4916 		 * We may be relocating the only data chunk we have,
4917 		 * which could potentially end up with losing data's
4918 		 * raid profile, so lets allocate an empty one in
4919 		 * advance.
4920 		 */
4921 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4922 		if (ret < 0) {
4923 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 			goto done;
4925 		}
4926 
4927 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4928 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 		if (ret == -ENOSPC) {
4930 			failed++;
4931 		} else if (ret) {
4932 			if (ret == -ETXTBSY) {
4933 				btrfs_warn(fs_info,
4934 		   "could not shrink block group %llu due to active swapfile",
4935 					   chunk_offset);
4936 			}
4937 			goto done;
4938 		}
4939 	} while (key.offset-- > 0);
4940 
4941 	if (failed && !retried) {
4942 		failed = 0;
4943 		retried = true;
4944 		goto again;
4945 	} else if (failed && retried) {
4946 		ret = -ENOSPC;
4947 		goto done;
4948 	}
4949 
4950 	/* Shrinking succeeded, else we would be at "done". */
4951 	trans = btrfs_start_transaction(root, 0);
4952 	if (IS_ERR(trans)) {
4953 		ret = PTR_ERR(trans);
4954 		goto done;
4955 	}
4956 
4957 	mutex_lock(&fs_info->chunk_mutex);
4958 	/* Clear all state bits beyond the shrunk device size */
4959 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4960 			  CHUNK_STATE_MASK);
4961 
4962 	btrfs_device_set_disk_total_bytes(device, new_size);
4963 	if (list_empty(&device->post_commit_list))
4964 		list_add_tail(&device->post_commit_list,
4965 			      &trans->transaction->dev_update_list);
4966 
4967 	WARN_ON(diff > old_total);
4968 	btrfs_set_super_total_bytes(super_copy,
4969 			round_down(old_total - diff, fs_info->sectorsize));
4970 	mutex_unlock(&fs_info->chunk_mutex);
4971 
4972 	btrfs_reserve_chunk_metadata(trans, false);
4973 	/* Now btrfs_update_device() will change the on-disk size. */
4974 	ret = btrfs_update_device(trans, device);
4975 	btrfs_trans_release_chunk_metadata(trans);
4976 	if (ret < 0) {
4977 		btrfs_abort_transaction(trans, ret);
4978 		btrfs_end_transaction(trans);
4979 	} else {
4980 		ret = btrfs_commit_transaction(trans);
4981 	}
4982 done:
4983 	btrfs_free_path(path);
4984 	if (ret) {
4985 		mutex_lock(&fs_info->chunk_mutex);
4986 		btrfs_device_set_total_bytes(device, old_size);
4987 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4988 			device->fs_devices->total_rw_bytes += diff;
4989 			atomic64_add(free_diff, &fs_info->free_chunk_space);
4990 		}
4991 		mutex_unlock(&fs_info->chunk_mutex);
4992 	}
4993 	return ret;
4994 }
4995 
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4996 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4997 			   struct btrfs_key *key,
4998 			   struct btrfs_chunk *chunk, int item_size)
4999 {
5000 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5001 	struct btrfs_disk_key disk_key;
5002 	u32 array_size;
5003 	u8 *ptr;
5004 
5005 	lockdep_assert_held(&fs_info->chunk_mutex);
5006 
5007 	array_size = btrfs_super_sys_array_size(super_copy);
5008 	if (array_size + item_size + sizeof(disk_key)
5009 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5010 		return -EFBIG;
5011 
5012 	ptr = super_copy->sys_chunk_array + array_size;
5013 	btrfs_cpu_key_to_disk(&disk_key, key);
5014 	memcpy(ptr, &disk_key, sizeof(disk_key));
5015 	ptr += sizeof(disk_key);
5016 	memcpy(ptr, chunk, item_size);
5017 	item_size += sizeof(disk_key);
5018 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5019 
5020 	return 0;
5021 }
5022 
5023 /*
5024  * sort the devices in descending order by max_avail, total_avail
5025  */
btrfs_cmp_device_info(const void * a,const void * b)5026 static int btrfs_cmp_device_info(const void *a, const void *b)
5027 {
5028 	const struct btrfs_device_info *di_a = a;
5029 	const struct btrfs_device_info *di_b = b;
5030 
5031 	if (di_a->max_avail > di_b->max_avail)
5032 		return -1;
5033 	if (di_a->max_avail < di_b->max_avail)
5034 		return 1;
5035 	if (di_a->total_avail > di_b->total_avail)
5036 		return -1;
5037 	if (di_a->total_avail < di_b->total_avail)
5038 		return 1;
5039 	return 0;
5040 }
5041 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5042 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5043 {
5044 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5045 		return;
5046 
5047 	btrfs_set_fs_incompat(info, RAID56);
5048 }
5049 
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5050 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5051 {
5052 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5053 		return;
5054 
5055 	btrfs_set_fs_incompat(info, RAID1C34);
5056 }
5057 
5058 /*
5059  * Structure used internally for btrfs_create_chunk() function.
5060  * Wraps needed parameters.
5061  */
5062 struct alloc_chunk_ctl {
5063 	u64 start;
5064 	u64 type;
5065 	/* Total number of stripes to allocate */
5066 	int num_stripes;
5067 	/* sub_stripes info for map */
5068 	int sub_stripes;
5069 	/* Stripes per device */
5070 	int dev_stripes;
5071 	/* Maximum number of devices to use */
5072 	int devs_max;
5073 	/* Minimum number of devices to use */
5074 	int devs_min;
5075 	/* ndevs has to be a multiple of this */
5076 	int devs_increment;
5077 	/* Number of copies */
5078 	int ncopies;
5079 	/* Number of stripes worth of bytes to store parity information */
5080 	int nparity;
5081 	u64 max_stripe_size;
5082 	u64 max_chunk_size;
5083 	u64 dev_extent_min;
5084 	u64 stripe_size;
5085 	u64 chunk_size;
5086 	int ndevs;
5087 };
5088 
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5089 static void init_alloc_chunk_ctl_policy_regular(
5090 				struct btrfs_fs_devices *fs_devices,
5091 				struct alloc_chunk_ctl *ctl)
5092 {
5093 	struct btrfs_space_info *space_info;
5094 
5095 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5096 	ASSERT(space_info);
5097 
5098 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5099 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5100 
5101 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5102 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5103 
5104 	/* We don't want a chunk larger than 10% of writable space */
5105 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5106 				  ctl->max_chunk_size);
5107 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5108 }
5109 
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5110 static void init_alloc_chunk_ctl_policy_zoned(
5111 				      struct btrfs_fs_devices *fs_devices,
5112 				      struct alloc_chunk_ctl *ctl)
5113 {
5114 	u64 zone_size = fs_devices->fs_info->zone_size;
5115 	u64 limit;
5116 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5117 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5118 	u64 min_chunk_size = min_data_stripes * zone_size;
5119 	u64 type = ctl->type;
5120 
5121 	ctl->max_stripe_size = zone_size;
5122 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5123 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5124 						 zone_size);
5125 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5126 		ctl->max_chunk_size = ctl->max_stripe_size;
5127 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5128 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5129 		ctl->devs_max = min_t(int, ctl->devs_max,
5130 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5131 	} else {
5132 		BUG();
5133 	}
5134 
5135 	/* We don't want a chunk larger than 10% of writable space */
5136 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5137 			       zone_size),
5138 		    min_chunk_size);
5139 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5140 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5141 }
5142 
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5143 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5144 				 struct alloc_chunk_ctl *ctl)
5145 {
5146 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5147 
5148 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5149 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5150 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5151 	if (!ctl->devs_max)
5152 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5153 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5154 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5155 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5156 	ctl->nparity = btrfs_raid_array[index].nparity;
5157 	ctl->ndevs = 0;
5158 
5159 	switch (fs_devices->chunk_alloc_policy) {
5160 	case BTRFS_CHUNK_ALLOC_REGULAR:
5161 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5162 		break;
5163 	case BTRFS_CHUNK_ALLOC_ZONED:
5164 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5165 		break;
5166 	default:
5167 		BUG();
5168 	}
5169 }
5170 
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5171 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5172 			      struct alloc_chunk_ctl *ctl,
5173 			      struct btrfs_device_info *devices_info)
5174 {
5175 	struct btrfs_fs_info *info = fs_devices->fs_info;
5176 	struct btrfs_device *device;
5177 	u64 total_avail;
5178 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5179 	int ret;
5180 	int ndevs = 0;
5181 	u64 max_avail;
5182 	u64 dev_offset;
5183 
5184 	/*
5185 	 * in the first pass through the devices list, we gather information
5186 	 * about the available holes on each device.
5187 	 */
5188 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5189 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5190 			WARN(1, KERN_ERR
5191 			       "BTRFS: read-only device in alloc_list\n");
5192 			continue;
5193 		}
5194 
5195 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5196 					&device->dev_state) ||
5197 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5198 			continue;
5199 
5200 		if (device->total_bytes > device->bytes_used)
5201 			total_avail = device->total_bytes - device->bytes_used;
5202 		else
5203 			total_avail = 0;
5204 
5205 		/* If there is no space on this device, skip it. */
5206 		if (total_avail < ctl->dev_extent_min)
5207 			continue;
5208 
5209 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5210 					   &max_avail);
5211 		if (ret && ret != -ENOSPC)
5212 			return ret;
5213 
5214 		if (ret == 0)
5215 			max_avail = dev_extent_want;
5216 
5217 		if (max_avail < ctl->dev_extent_min) {
5218 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5219 				btrfs_debug(info,
5220 			"%s: devid %llu has no free space, have=%llu want=%llu",
5221 					    __func__, device->devid, max_avail,
5222 					    ctl->dev_extent_min);
5223 			continue;
5224 		}
5225 
5226 		if (ndevs == fs_devices->rw_devices) {
5227 			WARN(1, "%s: found more than %llu devices\n",
5228 			     __func__, fs_devices->rw_devices);
5229 			break;
5230 		}
5231 		devices_info[ndevs].dev_offset = dev_offset;
5232 		devices_info[ndevs].max_avail = max_avail;
5233 		devices_info[ndevs].total_avail = total_avail;
5234 		devices_info[ndevs].dev = device;
5235 		++ndevs;
5236 	}
5237 	ctl->ndevs = ndevs;
5238 
5239 	/*
5240 	 * now sort the devices by hole size / available space
5241 	 */
5242 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5243 	     btrfs_cmp_device_info, NULL);
5244 
5245 	return 0;
5246 }
5247 
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5248 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5249 				      struct btrfs_device_info *devices_info)
5250 {
5251 	/* Number of stripes that count for block group size */
5252 	int data_stripes;
5253 
5254 	/*
5255 	 * The primary goal is to maximize the number of stripes, so use as
5256 	 * many devices as possible, even if the stripes are not maximum sized.
5257 	 *
5258 	 * The DUP profile stores more than one stripe per device, the
5259 	 * max_avail is the total size so we have to adjust.
5260 	 */
5261 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5262 				   ctl->dev_stripes);
5263 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5264 
5265 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5266 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5267 
5268 	/*
5269 	 * Use the number of data stripes to figure out how big this chunk is
5270 	 * really going to be in terms of logical address space, and compare
5271 	 * that answer with the max chunk size. If it's higher, we try to
5272 	 * reduce stripe_size.
5273 	 */
5274 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5275 		/*
5276 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5277 		 * then use it, unless it ends up being even bigger than the
5278 		 * previous value we had already.
5279 		 */
5280 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5281 							data_stripes), SZ_16M),
5282 				       ctl->stripe_size);
5283 	}
5284 
5285 	/* Stripe size should not go beyond 1G. */
5286 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5287 
5288 	/* Align to BTRFS_STRIPE_LEN */
5289 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5290 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5291 
5292 	return 0;
5293 }
5294 
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5295 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5296 				    struct btrfs_device_info *devices_info)
5297 {
5298 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5299 	/* Number of stripes that count for block group size */
5300 	int data_stripes;
5301 
5302 	/*
5303 	 * It should hold because:
5304 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5305 	 */
5306 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5307 
5308 	ctl->stripe_size = zone_size;
5309 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5310 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5311 
5312 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5313 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5314 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5315 					     ctl->stripe_size) + ctl->nparity,
5316 				     ctl->dev_stripes);
5317 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5318 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5319 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5320 	}
5321 
5322 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5323 
5324 	return 0;
5325 }
5326 
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5327 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5328 			      struct alloc_chunk_ctl *ctl,
5329 			      struct btrfs_device_info *devices_info)
5330 {
5331 	struct btrfs_fs_info *info = fs_devices->fs_info;
5332 
5333 	/*
5334 	 * Round down to number of usable stripes, devs_increment can be any
5335 	 * number so we can't use round_down() that requires power of 2, while
5336 	 * rounddown is safe.
5337 	 */
5338 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5339 
5340 	if (ctl->ndevs < ctl->devs_min) {
5341 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5342 			btrfs_debug(info,
5343 	"%s: not enough devices with free space: have=%d minimum required=%d",
5344 				    __func__, ctl->ndevs, ctl->devs_min);
5345 		}
5346 		return -ENOSPC;
5347 	}
5348 
5349 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5350 
5351 	switch (fs_devices->chunk_alloc_policy) {
5352 	case BTRFS_CHUNK_ALLOC_REGULAR:
5353 		return decide_stripe_size_regular(ctl, devices_info);
5354 	case BTRFS_CHUNK_ALLOC_ZONED:
5355 		return decide_stripe_size_zoned(ctl, devices_info);
5356 	default:
5357 		BUG();
5358 	}
5359 }
5360 
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5361 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5362 {
5363 	for (int i = 0; i < map->num_stripes; i++) {
5364 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5365 		struct btrfs_device *device = stripe->dev;
5366 
5367 		set_extent_bit(&device->alloc_state, stripe->physical,
5368 			       stripe->physical + map->stripe_size - 1,
5369 			       bits | EXTENT_NOWAIT, NULL);
5370 	}
5371 }
5372 
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5373 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5374 {
5375 	for (int i = 0; i < map->num_stripes; i++) {
5376 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5377 		struct btrfs_device *device = stripe->dev;
5378 
5379 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5380 				   stripe->physical + map->stripe_size - 1,
5381 				   bits | EXTENT_NOWAIT,
5382 				   NULL, NULL);
5383 	}
5384 }
5385 
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5386 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5387 {
5388 	write_lock(&fs_info->mapping_tree_lock);
5389 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5390 	RB_CLEAR_NODE(&map->rb_node);
5391 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5392 	write_unlock(&fs_info->mapping_tree_lock);
5393 
5394 	/* Once for the tree reference. */
5395 	btrfs_free_chunk_map(map);
5396 }
5397 
5398 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5399 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5400 {
5401 	struct rb_node **p;
5402 	struct rb_node *parent = NULL;
5403 	bool leftmost = true;
5404 
5405 	write_lock(&fs_info->mapping_tree_lock);
5406 	p = &fs_info->mapping_tree.rb_root.rb_node;
5407 	while (*p) {
5408 		struct btrfs_chunk_map *entry;
5409 
5410 		parent = *p;
5411 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5412 
5413 		if (map->start < entry->start) {
5414 			p = &(*p)->rb_left;
5415 		} else if (map->start > entry->start) {
5416 			p = &(*p)->rb_right;
5417 			leftmost = false;
5418 		} else {
5419 			write_unlock(&fs_info->mapping_tree_lock);
5420 			return -EEXIST;
5421 		}
5422 	}
5423 	rb_link_node(&map->rb_node, parent, p);
5424 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5425 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5426 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5427 	write_unlock(&fs_info->mapping_tree_lock);
5428 
5429 	return 0;
5430 }
5431 
5432 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5433 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5434 {
5435 	struct btrfs_chunk_map *map;
5436 
5437 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5438 	if (!map)
5439 		return NULL;
5440 
5441 	refcount_set(&map->refs, 1);
5442 	RB_CLEAR_NODE(&map->rb_node);
5443 
5444 	return map;
5445 }
5446 
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5447 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5448 			struct alloc_chunk_ctl *ctl,
5449 			struct btrfs_device_info *devices_info)
5450 {
5451 	struct btrfs_fs_info *info = trans->fs_info;
5452 	struct btrfs_chunk_map *map;
5453 	struct btrfs_block_group *block_group;
5454 	u64 start = ctl->start;
5455 	u64 type = ctl->type;
5456 	int ret;
5457 
5458 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5459 	if (!map)
5460 		return ERR_PTR(-ENOMEM);
5461 
5462 	map->start = start;
5463 	map->chunk_len = ctl->chunk_size;
5464 	map->stripe_size = ctl->stripe_size;
5465 	map->type = type;
5466 	map->io_align = BTRFS_STRIPE_LEN;
5467 	map->io_width = BTRFS_STRIPE_LEN;
5468 	map->sub_stripes = ctl->sub_stripes;
5469 	map->num_stripes = ctl->num_stripes;
5470 
5471 	for (int i = 0; i < ctl->ndevs; i++) {
5472 		for (int j = 0; j < ctl->dev_stripes; j++) {
5473 			int s = i * ctl->dev_stripes + j;
5474 			map->stripes[s].dev = devices_info[i].dev;
5475 			map->stripes[s].physical = devices_info[i].dev_offset +
5476 						   j * ctl->stripe_size;
5477 		}
5478 	}
5479 
5480 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5481 
5482 	ret = btrfs_add_chunk_map(info, map);
5483 	if (ret) {
5484 		btrfs_free_chunk_map(map);
5485 		return ERR_PTR(ret);
5486 	}
5487 
5488 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5489 	if (IS_ERR(block_group)) {
5490 		btrfs_remove_chunk_map(info, map);
5491 		return block_group;
5492 	}
5493 
5494 	for (int i = 0; i < map->num_stripes; i++) {
5495 		struct btrfs_device *dev = map->stripes[i].dev;
5496 
5497 		btrfs_device_set_bytes_used(dev,
5498 					    dev->bytes_used + ctl->stripe_size);
5499 		if (list_empty(&dev->post_commit_list))
5500 			list_add_tail(&dev->post_commit_list,
5501 				      &trans->transaction->dev_update_list);
5502 	}
5503 
5504 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5505 		     &info->free_chunk_space);
5506 
5507 	check_raid56_incompat_flag(info, type);
5508 	check_raid1c34_incompat_flag(info, type);
5509 
5510 	return block_group;
5511 }
5512 
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5513 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5514 					    u64 type)
5515 {
5516 	struct btrfs_fs_info *info = trans->fs_info;
5517 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5518 	struct btrfs_device_info *devices_info = NULL;
5519 	struct alloc_chunk_ctl ctl;
5520 	struct btrfs_block_group *block_group;
5521 	int ret;
5522 
5523 	lockdep_assert_held(&info->chunk_mutex);
5524 
5525 	if (!alloc_profile_is_valid(type, 0)) {
5526 		ASSERT(0);
5527 		return ERR_PTR(-EINVAL);
5528 	}
5529 
5530 	if (list_empty(&fs_devices->alloc_list)) {
5531 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5532 			btrfs_debug(info, "%s: no writable device", __func__);
5533 		return ERR_PTR(-ENOSPC);
5534 	}
5535 
5536 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5537 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5538 		ASSERT(0);
5539 		return ERR_PTR(-EINVAL);
5540 	}
5541 
5542 	ctl.start = find_next_chunk(info);
5543 	ctl.type = type;
5544 	init_alloc_chunk_ctl(fs_devices, &ctl);
5545 
5546 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5547 			       GFP_NOFS);
5548 	if (!devices_info)
5549 		return ERR_PTR(-ENOMEM);
5550 
5551 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5552 	if (ret < 0) {
5553 		block_group = ERR_PTR(ret);
5554 		goto out;
5555 	}
5556 
5557 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5558 	if (ret < 0) {
5559 		block_group = ERR_PTR(ret);
5560 		goto out;
5561 	}
5562 
5563 	block_group = create_chunk(trans, &ctl, devices_info);
5564 
5565 out:
5566 	kfree(devices_info);
5567 	return block_group;
5568 }
5569 
5570 /*
5571  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5572  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5573  * chunks.
5574  *
5575  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5576  * phases.
5577  */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5578 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5579 				     struct btrfs_block_group *bg)
5580 {
5581 	struct btrfs_fs_info *fs_info = trans->fs_info;
5582 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5583 	struct btrfs_key key;
5584 	struct btrfs_chunk *chunk;
5585 	struct btrfs_stripe *stripe;
5586 	struct btrfs_chunk_map *map;
5587 	size_t item_size;
5588 	int i;
5589 	int ret;
5590 
5591 	/*
5592 	 * We take the chunk_mutex for 2 reasons:
5593 	 *
5594 	 * 1) Updates and insertions in the chunk btree must be done while holding
5595 	 *    the chunk_mutex, as well as updating the system chunk array in the
5596 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5597 	 *    details;
5598 	 *
5599 	 * 2) To prevent races with the final phase of a device replace operation
5600 	 *    that replaces the device object associated with the map's stripes,
5601 	 *    because the device object's id can change at any time during that
5602 	 *    final phase of the device replace operation
5603 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5604 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5605 	 *    which would cause a failure when updating the device item, which does
5606 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5607 	 *    Here we can't use the device_list_mutex because our caller already
5608 	 *    has locked the chunk_mutex, and the final phase of device replace
5609 	 *    acquires both mutexes - first the device_list_mutex and then the
5610 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5611 	 *    concurrent device replace.
5612 	 */
5613 	lockdep_assert_held(&fs_info->chunk_mutex);
5614 
5615 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5616 	if (IS_ERR(map)) {
5617 		ret = PTR_ERR(map);
5618 		btrfs_abort_transaction(trans, ret);
5619 		return ret;
5620 	}
5621 
5622 	item_size = btrfs_chunk_item_size(map->num_stripes);
5623 
5624 	chunk = kzalloc(item_size, GFP_NOFS);
5625 	if (!chunk) {
5626 		ret = -ENOMEM;
5627 		btrfs_abort_transaction(trans, ret);
5628 		goto out;
5629 	}
5630 
5631 	for (i = 0; i < map->num_stripes; i++) {
5632 		struct btrfs_device *device = map->stripes[i].dev;
5633 
5634 		ret = btrfs_update_device(trans, device);
5635 		if (ret)
5636 			goto out;
5637 	}
5638 
5639 	stripe = &chunk->stripe;
5640 	for (i = 0; i < map->num_stripes; i++) {
5641 		struct btrfs_device *device = map->stripes[i].dev;
5642 		const u64 dev_offset = map->stripes[i].physical;
5643 
5644 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5645 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5646 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5647 		stripe++;
5648 	}
5649 
5650 	btrfs_set_stack_chunk_length(chunk, bg->length);
5651 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5652 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5653 	btrfs_set_stack_chunk_type(chunk, map->type);
5654 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5655 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5656 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5657 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5658 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5659 
5660 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5661 	key.type = BTRFS_CHUNK_ITEM_KEY;
5662 	key.offset = bg->start;
5663 
5664 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5665 	if (ret)
5666 		goto out;
5667 
5668 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5669 
5670 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5671 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5672 		if (ret)
5673 			goto out;
5674 	}
5675 
5676 out:
5677 	kfree(chunk);
5678 	btrfs_free_chunk_map(map);
5679 	return ret;
5680 }
5681 
init_first_rw_device(struct btrfs_trans_handle * trans)5682 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5683 {
5684 	struct btrfs_fs_info *fs_info = trans->fs_info;
5685 	u64 alloc_profile;
5686 	struct btrfs_block_group *meta_bg;
5687 	struct btrfs_block_group *sys_bg;
5688 
5689 	/*
5690 	 * When adding a new device for sprouting, the seed device is read-only
5691 	 * so we must first allocate a metadata and a system chunk. But before
5692 	 * adding the block group items to the extent, device and chunk btrees,
5693 	 * we must first:
5694 	 *
5695 	 * 1) Create both chunks without doing any changes to the btrees, as
5696 	 *    otherwise we would get -ENOSPC since the block groups from the
5697 	 *    seed device are read-only;
5698 	 *
5699 	 * 2) Add the device item for the new sprout device - finishing the setup
5700 	 *    of a new block group requires updating the device item in the chunk
5701 	 *    btree, so it must exist when we attempt to do it. The previous step
5702 	 *    ensures this does not fail with -ENOSPC.
5703 	 *
5704 	 * After that we can add the block group items to their btrees:
5705 	 * update existing device item in the chunk btree, add a new block group
5706 	 * item to the extent btree, add a new chunk item to the chunk btree and
5707 	 * finally add the new device extent items to the devices btree.
5708 	 */
5709 
5710 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5711 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5712 	if (IS_ERR(meta_bg))
5713 		return PTR_ERR(meta_bg);
5714 
5715 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5716 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5717 	if (IS_ERR(sys_bg))
5718 		return PTR_ERR(sys_bg);
5719 
5720 	return 0;
5721 }
5722 
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5723 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5724 {
5725 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5726 
5727 	return btrfs_raid_array[index].tolerated_failures;
5728 }
5729 
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5730 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5731 {
5732 	struct btrfs_chunk_map *map;
5733 	int miss_ndevs = 0;
5734 	int i;
5735 	bool ret = true;
5736 
5737 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5738 	if (IS_ERR(map))
5739 		return false;
5740 
5741 	for (i = 0; i < map->num_stripes; i++) {
5742 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5743 					&map->stripes[i].dev->dev_state)) {
5744 			miss_ndevs++;
5745 			continue;
5746 		}
5747 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5748 					&map->stripes[i].dev->dev_state)) {
5749 			ret = false;
5750 			goto end;
5751 		}
5752 	}
5753 
5754 	/*
5755 	 * If the number of missing devices is larger than max errors, we can
5756 	 * not write the data into that chunk successfully.
5757 	 */
5758 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5759 		ret = false;
5760 end:
5761 	btrfs_free_chunk_map(map);
5762 	return ret;
5763 }
5764 
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5765 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5766 {
5767 	write_lock(&fs_info->mapping_tree_lock);
5768 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5769 		struct btrfs_chunk_map *map;
5770 		struct rb_node *node;
5771 
5772 		node = rb_first_cached(&fs_info->mapping_tree);
5773 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5774 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5775 		RB_CLEAR_NODE(&map->rb_node);
5776 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5777 		/* Once for the tree ref. */
5778 		btrfs_free_chunk_map(map);
5779 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5780 	}
5781 	write_unlock(&fs_info->mapping_tree_lock);
5782 }
5783 
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5784 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5785 {
5786 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5787 
5788 	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5789 		return 2;
5790 
5791 	/*
5792 	 * There could be two corrupted data stripes, we need to loop retry in
5793 	 * order to rebuild the correct data.
5794 	 *
5795 	 * Fail a stripe at a time on every retry except the stripe under
5796 	 * reconstruction.
5797 	 */
5798 	if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5799 		return map->num_stripes;
5800 
5801 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5802 	return btrfs_raid_array[index].ncopies;
5803 }
5804 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5805 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5806 {
5807 	struct btrfs_chunk_map *map;
5808 	int ret;
5809 
5810 	map = btrfs_get_chunk_map(fs_info, logical, len);
5811 	if (IS_ERR(map))
5812 		/*
5813 		 * We could return errors for these cases, but that could get
5814 		 * ugly and we'd probably do the same thing which is just not do
5815 		 * anything else and exit, so return 1 so the callers don't try
5816 		 * to use other copies.
5817 		 */
5818 		return 1;
5819 
5820 	ret = btrfs_chunk_map_num_copies(map);
5821 	btrfs_free_chunk_map(map);
5822 	return ret;
5823 }
5824 
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5825 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5826 				    u64 logical)
5827 {
5828 	struct btrfs_chunk_map *map;
5829 	unsigned long len = fs_info->sectorsize;
5830 
5831 	if (!btrfs_fs_incompat(fs_info, RAID56))
5832 		return len;
5833 
5834 	map = btrfs_get_chunk_map(fs_info, logical, len);
5835 
5836 	if (!WARN_ON(IS_ERR(map))) {
5837 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5838 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5839 		btrfs_free_chunk_map(map);
5840 	}
5841 	return len;
5842 }
5843 
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5844 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5845 {
5846 	struct btrfs_chunk_map *map;
5847 	int ret = 0;
5848 
5849 	if (!btrfs_fs_incompat(fs_info, RAID56))
5850 		return 0;
5851 
5852 	map = btrfs_get_chunk_map(fs_info, logical, len);
5853 
5854 	if (!WARN_ON(IS_ERR(map))) {
5855 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5856 			ret = 1;
5857 		btrfs_free_chunk_map(map);
5858 	}
5859 	return ret;
5860 }
5861 
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,int dev_replace_is_ongoing)5862 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5863 			    struct btrfs_chunk_map *map, int first,
5864 			    int dev_replace_is_ongoing)
5865 {
5866 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5867 	int i;
5868 	int num_stripes;
5869 	int preferred_mirror;
5870 	int tolerance;
5871 	struct btrfs_device *srcdev;
5872 
5873 	ASSERT((map->type &
5874 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5875 
5876 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5877 		num_stripes = map->sub_stripes;
5878 	else
5879 		num_stripes = map->num_stripes;
5880 
5881 	switch (policy) {
5882 	default:
5883 		/* Shouldn't happen, just warn and use pid instead of failing */
5884 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5885 			      policy);
5886 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5887 		fallthrough;
5888 	case BTRFS_READ_POLICY_PID:
5889 		preferred_mirror = first + (current->pid % num_stripes);
5890 		break;
5891 	}
5892 
5893 	if (dev_replace_is_ongoing &&
5894 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5895 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5896 		srcdev = fs_info->dev_replace.srcdev;
5897 	else
5898 		srcdev = NULL;
5899 
5900 	/*
5901 	 * try to avoid the drive that is the source drive for a
5902 	 * dev-replace procedure, only choose it if no other non-missing
5903 	 * mirror is available
5904 	 */
5905 	for (tolerance = 0; tolerance < 2; tolerance++) {
5906 		if (map->stripes[preferred_mirror].dev->bdev &&
5907 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5908 			return preferred_mirror;
5909 		for (i = first; i < first + num_stripes; i++) {
5910 			if (map->stripes[i].dev->bdev &&
5911 			    (tolerance || map->stripes[i].dev != srcdev))
5912 				return i;
5913 		}
5914 	}
5915 
5916 	/* we couldn't find one that doesn't fail.  Just return something
5917 	 * and the io error handling code will clean up eventually
5918 	 */
5919 	return preferred_mirror;
5920 }
5921 
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)5922 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5923 						       u64 logical,
5924 						       u16 total_stripes)
5925 {
5926 	struct btrfs_io_context *bioc;
5927 
5928 	bioc = kzalloc(
5929 		 /* The size of btrfs_io_context */
5930 		sizeof(struct btrfs_io_context) +
5931 		/* Plus the variable array for the stripes */
5932 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5933 		GFP_NOFS);
5934 
5935 	if (!bioc)
5936 		return NULL;
5937 
5938 	refcount_set(&bioc->refs, 1);
5939 
5940 	bioc->fs_info = fs_info;
5941 	bioc->replace_stripe_src = -1;
5942 	bioc->full_stripe_logical = (u64)-1;
5943 	bioc->logical = logical;
5944 
5945 	return bioc;
5946 }
5947 
btrfs_get_bioc(struct btrfs_io_context * bioc)5948 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5949 {
5950 	WARN_ON(!refcount_read(&bioc->refs));
5951 	refcount_inc(&bioc->refs);
5952 }
5953 
btrfs_put_bioc(struct btrfs_io_context * bioc)5954 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5955 {
5956 	if (!bioc)
5957 		return;
5958 	if (refcount_dec_and_test(&bioc->refs))
5959 		kfree(bioc);
5960 }
5961 
5962 /*
5963  * Please note that, discard won't be sent to target device of device
5964  * replace.
5965  */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5966 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5967 					       u64 logical, u64 *length_ret,
5968 					       u32 *num_stripes)
5969 {
5970 	struct btrfs_chunk_map *map;
5971 	struct btrfs_discard_stripe *stripes;
5972 	u64 length = *length_ret;
5973 	u64 offset;
5974 	u32 stripe_nr;
5975 	u32 stripe_nr_end;
5976 	u32 stripe_cnt;
5977 	u64 stripe_end_offset;
5978 	u64 stripe_offset;
5979 	u32 stripe_index;
5980 	u32 factor = 0;
5981 	u32 sub_stripes = 0;
5982 	u32 stripes_per_dev = 0;
5983 	u32 remaining_stripes = 0;
5984 	u32 last_stripe = 0;
5985 	int ret;
5986 	int i;
5987 
5988 	map = btrfs_get_chunk_map(fs_info, logical, length);
5989 	if (IS_ERR(map))
5990 		return ERR_CAST(map);
5991 
5992 	/* we don't discard raid56 yet */
5993 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5994 		ret = -EOPNOTSUPP;
5995 		goto out_free_map;
5996 	}
5997 
5998 	offset = logical - map->start;
5999 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6000 	*length_ret = length;
6001 
6002 	/*
6003 	 * stripe_nr counts the total number of stripes we have to stride
6004 	 * to get to this block
6005 	 */
6006 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6007 
6008 	/* stripe_offset is the offset of this block in its stripe */
6009 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6010 
6011 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6012 			BTRFS_STRIPE_LEN_SHIFT;
6013 	stripe_cnt = stripe_nr_end - stripe_nr;
6014 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6015 			    (offset + length);
6016 	/*
6017 	 * after this, stripe_nr is the number of stripes on this
6018 	 * device we have to walk to find the data, and stripe_index is
6019 	 * the number of our device in the stripe array
6020 	 */
6021 	*num_stripes = 1;
6022 	stripe_index = 0;
6023 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6024 			 BTRFS_BLOCK_GROUP_RAID10)) {
6025 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6026 			sub_stripes = 1;
6027 		else
6028 			sub_stripes = map->sub_stripes;
6029 
6030 		factor = map->num_stripes / sub_stripes;
6031 		*num_stripes = min_t(u64, map->num_stripes,
6032 				    sub_stripes * stripe_cnt);
6033 		stripe_index = stripe_nr % factor;
6034 		stripe_nr /= factor;
6035 		stripe_index *= sub_stripes;
6036 
6037 		remaining_stripes = stripe_cnt % factor;
6038 		stripes_per_dev = stripe_cnt / factor;
6039 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6040 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6041 				BTRFS_BLOCK_GROUP_DUP)) {
6042 		*num_stripes = map->num_stripes;
6043 	} else {
6044 		stripe_index = stripe_nr % map->num_stripes;
6045 		stripe_nr /= map->num_stripes;
6046 	}
6047 
6048 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6049 	if (!stripes) {
6050 		ret = -ENOMEM;
6051 		goto out_free_map;
6052 	}
6053 
6054 	for (i = 0; i < *num_stripes; i++) {
6055 		stripes[i].physical =
6056 			map->stripes[stripe_index].physical +
6057 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6058 		stripes[i].dev = map->stripes[stripe_index].dev;
6059 
6060 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6061 				 BTRFS_BLOCK_GROUP_RAID10)) {
6062 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6063 
6064 			if (i / sub_stripes < remaining_stripes)
6065 				stripes[i].length += BTRFS_STRIPE_LEN;
6066 
6067 			/*
6068 			 * Special for the first stripe and
6069 			 * the last stripe:
6070 			 *
6071 			 * |-------|...|-------|
6072 			 *     |----------|
6073 			 *    off     end_off
6074 			 */
6075 			if (i < sub_stripes)
6076 				stripes[i].length -= stripe_offset;
6077 
6078 			if (stripe_index >= last_stripe &&
6079 			    stripe_index <= (last_stripe +
6080 					     sub_stripes - 1))
6081 				stripes[i].length -= stripe_end_offset;
6082 
6083 			if (i == sub_stripes - 1)
6084 				stripe_offset = 0;
6085 		} else {
6086 			stripes[i].length = length;
6087 		}
6088 
6089 		stripe_index++;
6090 		if (stripe_index == map->num_stripes) {
6091 			stripe_index = 0;
6092 			stripe_nr++;
6093 		}
6094 	}
6095 
6096 	btrfs_free_chunk_map(map);
6097 	return stripes;
6098 out_free_map:
6099 	btrfs_free_chunk_map(map);
6100 	return ERR_PTR(ret);
6101 }
6102 
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6103 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6104 {
6105 	struct btrfs_block_group *cache;
6106 	bool ret;
6107 
6108 	/* Non zoned filesystem does not use "to_copy" flag */
6109 	if (!btrfs_is_zoned(fs_info))
6110 		return false;
6111 
6112 	cache = btrfs_lookup_block_group(fs_info, logical);
6113 
6114 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6115 
6116 	btrfs_put_block_group(cache);
6117 	return ret;
6118 }
6119 
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6120 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6121 				      struct btrfs_dev_replace *dev_replace,
6122 				      u64 logical,
6123 				      struct btrfs_io_geometry *io_geom)
6124 {
6125 	u64 srcdev_devid = dev_replace->srcdev->devid;
6126 	/*
6127 	 * At this stage, num_stripes is still the real number of stripes,
6128 	 * excluding the duplicated stripes.
6129 	 */
6130 	int num_stripes = io_geom->num_stripes;
6131 	int max_errors = io_geom->max_errors;
6132 	int nr_extra_stripes = 0;
6133 	int i;
6134 
6135 	/*
6136 	 * A block group which has "to_copy" set will eventually be copied by
6137 	 * the dev-replace process. We can avoid cloning IO here.
6138 	 */
6139 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6140 		return;
6141 
6142 	/*
6143 	 * Duplicate the write operations while the dev-replace procedure is
6144 	 * running. Since the copying of the old disk to the new disk takes
6145 	 * place at run time while the filesystem is mounted writable, the
6146 	 * regular write operations to the old disk have to be duplicated to go
6147 	 * to the new disk as well.
6148 	 *
6149 	 * Note that device->missing is handled by the caller, and that the
6150 	 * write to the old disk is already set up in the stripes array.
6151 	 */
6152 	for (i = 0; i < num_stripes; i++) {
6153 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6154 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6155 
6156 		if (old->dev->devid != srcdev_devid)
6157 			continue;
6158 
6159 		new->physical = old->physical;
6160 		new->dev = dev_replace->tgtdev;
6161 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6162 			bioc->replace_stripe_src = i;
6163 		nr_extra_stripes++;
6164 	}
6165 
6166 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6167 	ASSERT(nr_extra_stripes <= 2);
6168 	/*
6169 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6170 	 * replace.
6171 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6172 	 */
6173 	if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6174 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6175 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6176 
6177 		/* Only DUP can have two extra stripes. */
6178 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6179 
6180 		/*
6181 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6182 		 * The extra stripe would still be there, but won't be accessed.
6183 		 */
6184 		if (first->physical > second->physical) {
6185 			swap(second->physical, first->physical);
6186 			swap(second->dev, first->dev);
6187 			nr_extra_stripes--;
6188 		}
6189 	}
6190 
6191 	io_geom->num_stripes = num_stripes + nr_extra_stripes;
6192 	io_geom->max_errors = max_errors + nr_extra_stripes;
6193 	bioc->replace_nr_stripes = nr_extra_stripes;
6194 }
6195 
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6196 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6197 			    struct btrfs_io_geometry *io_geom)
6198 {
6199 	/*
6200 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6201 	 * the offset of this block in its stripe.
6202 	 */
6203 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6204 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6205 	ASSERT(io_geom->stripe_offset < U32_MAX);
6206 
6207 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6208 		unsigned long full_stripe_len =
6209 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6210 
6211 		/*
6212 		 * For full stripe start, we use previously calculated
6213 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6214 		 * STRIPE_LEN.
6215 		 *
6216 		 * By this we can avoid u64 division completely.  And we have
6217 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6218 		 * not ensured to be power of 2.
6219 		 */
6220 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6221 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6222 
6223 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6224 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6225 		/*
6226 		 * For writes to RAID56, allow to write a full stripe set, but
6227 		 * no straddling of stripe sets.
6228 		 */
6229 		if (io_geom->op == BTRFS_MAP_WRITE)
6230 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6231 	}
6232 
6233 	/*
6234 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6235 	 * a single disk).
6236 	 */
6237 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6238 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6239 	return U64_MAX;
6240 }
6241 
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6242 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6243 			 u64 *length, struct btrfs_io_stripe *dst,
6244 			 struct btrfs_chunk_map *map,
6245 			 struct btrfs_io_geometry *io_geom)
6246 {
6247 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6248 
6249 	if (io_geom->op == BTRFS_MAP_READ &&
6250 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6251 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6252 						    map->type,
6253 						    io_geom->stripe_index, dst);
6254 
6255 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6256 			io_geom->stripe_offset +
6257 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6258 	return 0;
6259 }
6260 
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,enum btrfs_map_op op,int mirror_num)6261 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6262 				const struct btrfs_io_stripe *smap,
6263 				const struct btrfs_chunk_map *map,
6264 				int num_alloc_stripes,
6265 				enum btrfs_map_op op, int mirror_num)
6266 {
6267 	if (!smap)
6268 		return false;
6269 
6270 	if (num_alloc_stripes != 1)
6271 		return false;
6272 
6273 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6274 		return false;
6275 
6276 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6277 		return false;
6278 
6279 	return true;
6280 }
6281 
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6282 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6283 			     struct btrfs_io_geometry *io_geom)
6284 {
6285 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6286 	io_geom->stripe_nr /= map->num_stripes;
6287 	if (io_geom->op == BTRFS_MAP_READ)
6288 		io_geom->mirror_num = 1;
6289 }
6290 
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6291 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6292 			     struct btrfs_chunk_map *map,
6293 			     struct btrfs_io_geometry *io_geom,
6294 			     bool dev_replace_is_ongoing)
6295 {
6296 	if (io_geom->op != BTRFS_MAP_READ) {
6297 		io_geom->num_stripes = map->num_stripes;
6298 		return;
6299 	}
6300 
6301 	if (io_geom->mirror_num) {
6302 		io_geom->stripe_index = io_geom->mirror_num - 1;
6303 		return;
6304 	}
6305 
6306 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6307 						 dev_replace_is_ongoing);
6308 	io_geom->mirror_num = io_geom->stripe_index + 1;
6309 }
6310 
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6311 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6312 			   struct btrfs_io_geometry *io_geom)
6313 {
6314 	if (io_geom->op != BTRFS_MAP_READ) {
6315 		io_geom->num_stripes = map->num_stripes;
6316 		return;
6317 	}
6318 
6319 	if (io_geom->mirror_num) {
6320 		io_geom->stripe_index = io_geom->mirror_num - 1;
6321 		return;
6322 	}
6323 
6324 	io_geom->mirror_num = 1;
6325 }
6326 
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6327 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6328 			      struct btrfs_chunk_map *map,
6329 			      struct btrfs_io_geometry *io_geom,
6330 			      bool dev_replace_is_ongoing)
6331 {
6332 	u32 factor = map->num_stripes / map->sub_stripes;
6333 	int old_stripe_index;
6334 
6335 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6336 	io_geom->stripe_nr /= factor;
6337 
6338 	if (io_geom->op != BTRFS_MAP_READ) {
6339 		io_geom->num_stripes = map->sub_stripes;
6340 		return;
6341 	}
6342 
6343 	if (io_geom->mirror_num) {
6344 		io_geom->stripe_index += io_geom->mirror_num - 1;
6345 		return;
6346 	}
6347 
6348 	old_stripe_index = io_geom->stripe_index;
6349 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6350 						 io_geom->stripe_index,
6351 						 dev_replace_is_ongoing);
6352 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6353 }
6354 
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6355 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6356 				    struct btrfs_io_geometry *io_geom,
6357 				    u64 logical, u64 *length)
6358 {
6359 	int data_stripes = nr_data_stripes(map);
6360 
6361 	/*
6362 	 * Needs full stripe mapping.
6363 	 *
6364 	 * Push stripe_nr back to the start of the full stripe For those cases
6365 	 * needing a full stripe, @stripe_nr is the full stripe number.
6366 	 *
6367 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6368 	 * that can be expensive.  Here we just divide @stripe_nr with
6369 	 * @data_stripes.
6370 	 */
6371 	io_geom->stripe_nr /= data_stripes;
6372 
6373 	/* RAID[56] write or recovery. Return all stripes */
6374 	io_geom->num_stripes = map->num_stripes;
6375 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6376 
6377 	/* Return the length to the full stripe end. */
6378 	*length = min(logical + *length,
6379 		      io_geom->raid56_full_stripe_start + map->start +
6380 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6381 		logical;
6382 	io_geom->stripe_index = 0;
6383 	io_geom->stripe_offset = 0;
6384 }
6385 
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6386 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6387 				   struct btrfs_io_geometry *io_geom)
6388 {
6389 	int data_stripes = nr_data_stripes(map);
6390 
6391 	ASSERT(io_geom->mirror_num <= 1);
6392 	/* Just grab the data stripe directly. */
6393 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6394 	io_geom->stripe_nr /= data_stripes;
6395 
6396 	/* We distribute the parity blocks across stripes. */
6397 	io_geom->stripe_index =
6398 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6399 
6400 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6401 		io_geom->mirror_num = 1;
6402 }
6403 
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6404 static void map_blocks_single(const struct btrfs_chunk_map *map,
6405 			      struct btrfs_io_geometry *io_geom)
6406 {
6407 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6408 	io_geom->stripe_nr /= map->num_stripes;
6409 	io_geom->mirror_num = io_geom->stripe_index + 1;
6410 }
6411 
6412 /*
6413  * Map one logical range to one or more physical ranges.
6414  *
6415  * @length:		(Mandatory) mapped length of this run.
6416  *			One logical range can be split into different segments
6417  *			due to factors like zones and RAID0/5/6/10 stripe
6418  *			boundaries.
6419  *
6420  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6421  *			which has one or more physical ranges (btrfs_io_stripe)
6422  *			recorded inside.
6423  *			Caller should call btrfs_put_bioc() to free it after use.
6424  *
6425  * @smap:		(Optional) single physical range optimization.
6426  *			If the map request can be fulfilled by one single
6427  *			physical range, and this is parameter is not NULL,
6428  *			then @bioc_ret would be NULL, and @smap would be
6429  *			updated.
6430  *
6431  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6432  *			value is 0.
6433  *
6434  *			Mirror number 0 means to choose any live mirrors.
6435  *
6436  *			For non-RAID56 profiles, non-zero mirror_num means
6437  *			the Nth mirror. (e.g. mirror_num 1 means the first
6438  *			copy).
6439  *
6440  *			For RAID56 profile, mirror 1 means rebuild from P and
6441  *			the remaining data stripes.
6442  *
6443  *			For RAID6 profile, mirror > 2 means mark another
6444  *			data/P stripe error and rebuild from the remaining
6445  *			stripes..
6446  */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6447 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6448 		    u64 logical, u64 *length,
6449 		    struct btrfs_io_context **bioc_ret,
6450 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6451 {
6452 	struct btrfs_chunk_map *map;
6453 	struct btrfs_io_geometry io_geom = { 0 };
6454 	u64 map_offset;
6455 	int ret = 0;
6456 	int num_copies;
6457 	struct btrfs_io_context *bioc = NULL;
6458 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6459 	int dev_replace_is_ongoing = 0;
6460 	u16 num_alloc_stripes;
6461 	u64 max_len;
6462 
6463 	ASSERT(bioc_ret);
6464 
6465 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6466 	io_geom.num_stripes = 1;
6467 	io_geom.stripe_index = 0;
6468 	io_geom.op = op;
6469 
6470 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6471 	if (IS_ERR(map))
6472 		return PTR_ERR(map);
6473 
6474 	num_copies = btrfs_chunk_map_num_copies(map);
6475 	if (io_geom.mirror_num > num_copies)
6476 		return -EINVAL;
6477 
6478 	map_offset = logical - map->start;
6479 	io_geom.raid56_full_stripe_start = (u64)-1;
6480 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6481 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6482 
6483 	down_read(&dev_replace->rwsem);
6484 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6485 	/*
6486 	 * Hold the semaphore for read during the whole operation, write is
6487 	 * requested at commit time but must wait.
6488 	 */
6489 	if (!dev_replace_is_ongoing)
6490 		up_read(&dev_replace->rwsem);
6491 
6492 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6493 	case BTRFS_BLOCK_GROUP_RAID0:
6494 		map_blocks_raid0(map, &io_geom);
6495 		break;
6496 	case BTRFS_BLOCK_GROUP_RAID1:
6497 	case BTRFS_BLOCK_GROUP_RAID1C3:
6498 	case BTRFS_BLOCK_GROUP_RAID1C4:
6499 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6500 		break;
6501 	case BTRFS_BLOCK_GROUP_DUP:
6502 		map_blocks_dup(map, &io_geom);
6503 		break;
6504 	case BTRFS_BLOCK_GROUP_RAID10:
6505 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6506 		break;
6507 	case BTRFS_BLOCK_GROUP_RAID5:
6508 	case BTRFS_BLOCK_GROUP_RAID6:
6509 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6510 			map_blocks_raid56_write(map, &io_geom, logical, length);
6511 		else
6512 			map_blocks_raid56_read(map, &io_geom);
6513 		break;
6514 	default:
6515 		/*
6516 		 * After this, stripe_nr is the number of stripes on this
6517 		 * device we have to walk to find the data, and stripe_index is
6518 		 * the number of our device in the stripe array
6519 		 */
6520 		map_blocks_single(map, &io_geom);
6521 		break;
6522 	}
6523 	if (io_geom.stripe_index >= map->num_stripes) {
6524 		btrfs_crit(fs_info,
6525 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6526 			   io_geom.stripe_index, map->num_stripes);
6527 		ret = -EINVAL;
6528 		goto out;
6529 	}
6530 
6531 	num_alloc_stripes = io_geom.num_stripes;
6532 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6533 	    op != BTRFS_MAP_READ)
6534 		/*
6535 		 * For replace case, we need to add extra stripes for extra
6536 		 * duplicated stripes.
6537 		 *
6538 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6539 		 * 2 more stripes (DUP types, otherwise 1).
6540 		 */
6541 		num_alloc_stripes += 2;
6542 
6543 	/*
6544 	 * If this I/O maps to a single device, try to return the device and
6545 	 * physical block information on the stack instead of allocating an
6546 	 * I/O context structure.
6547 	 */
6548 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6549 				io_geom.mirror_num)) {
6550 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6551 		if (mirror_num_ret)
6552 			*mirror_num_ret = io_geom.mirror_num;
6553 		*bioc_ret = NULL;
6554 		goto out;
6555 	}
6556 
6557 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6558 	if (!bioc) {
6559 		ret = -ENOMEM;
6560 		goto out;
6561 	}
6562 	bioc->map_type = map->type;
6563 
6564 	/*
6565 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6566 	 * rule that data stripes are all ordered, then followed with P and Q
6567 	 * (if we have).
6568 	 *
6569 	 * It's still mostly the same as other profiles, just with extra rotation.
6570 	 */
6571 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6572 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6573 		/*
6574 		 * For RAID56 @stripe_nr is already the number of full stripes
6575 		 * before us, which is also the rotation value (needs to modulo
6576 		 * with num_stripes).
6577 		 *
6578 		 * In this case, we just add @stripe_nr with @i, then do the
6579 		 * modulo, to reduce one modulo call.
6580 		 */
6581 		bioc->full_stripe_logical = map->start +
6582 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6583 						  nr_data_stripes(map));
6584 		for (int i = 0; i < io_geom.num_stripes; i++) {
6585 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6586 			u32 stripe_index;
6587 
6588 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6589 			dst->dev = map->stripes[stripe_index].dev;
6590 			dst->physical =
6591 				map->stripes[stripe_index].physical +
6592 				io_geom.stripe_offset +
6593 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6594 		}
6595 	} else {
6596 		/*
6597 		 * For all other non-RAID56 profiles, just copy the target
6598 		 * stripe into the bioc.
6599 		 */
6600 		for (int i = 0; i < io_geom.num_stripes; i++) {
6601 			ret = set_io_stripe(fs_info, logical, length,
6602 					    &bioc->stripes[i], map, &io_geom);
6603 			if (ret < 0)
6604 				break;
6605 			io_geom.stripe_index++;
6606 		}
6607 	}
6608 
6609 	if (ret) {
6610 		*bioc_ret = NULL;
6611 		btrfs_put_bioc(bioc);
6612 		goto out;
6613 	}
6614 
6615 	if (op != BTRFS_MAP_READ)
6616 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6617 
6618 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6619 	    op != BTRFS_MAP_READ) {
6620 		handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6621 	}
6622 
6623 	*bioc_ret = bioc;
6624 	bioc->num_stripes = io_geom.num_stripes;
6625 	bioc->max_errors = io_geom.max_errors;
6626 	bioc->mirror_num = io_geom.mirror_num;
6627 
6628 out:
6629 	if (dev_replace_is_ongoing) {
6630 		lockdep_assert_held(&dev_replace->rwsem);
6631 		/* Unlock and let waiting writers proceed */
6632 		up_read(&dev_replace->rwsem);
6633 	}
6634 	btrfs_free_chunk_map(map);
6635 	return ret;
6636 }
6637 
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6638 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6639 				      const struct btrfs_fs_devices *fs_devices)
6640 {
6641 	if (args->fsid == NULL)
6642 		return true;
6643 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6644 		return true;
6645 	return false;
6646 }
6647 
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6648 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6649 				  const struct btrfs_device *device)
6650 {
6651 	if (args->missing) {
6652 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6653 		    !device->bdev)
6654 			return true;
6655 		return false;
6656 	}
6657 
6658 	if (device->devid != args->devid)
6659 		return false;
6660 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6661 		return false;
6662 	return true;
6663 }
6664 
6665 /*
6666  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6667  * return NULL.
6668  *
6669  * If devid and uuid are both specified, the match must be exact, otherwise
6670  * only devid is used.
6671  */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6672 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6673 				       const struct btrfs_dev_lookup_args *args)
6674 {
6675 	struct btrfs_device *device;
6676 	struct btrfs_fs_devices *seed_devs;
6677 
6678 	if (dev_args_match_fs_devices(args, fs_devices)) {
6679 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6680 			if (dev_args_match_device(args, device))
6681 				return device;
6682 		}
6683 	}
6684 
6685 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6686 		if (!dev_args_match_fs_devices(args, seed_devs))
6687 			continue;
6688 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6689 			if (dev_args_match_device(args, device))
6690 				return device;
6691 		}
6692 	}
6693 
6694 	return NULL;
6695 }
6696 
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6697 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6698 					    u64 devid, u8 *dev_uuid)
6699 {
6700 	struct btrfs_device *device;
6701 	unsigned int nofs_flag;
6702 
6703 	/*
6704 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6705 	 * allocation, however we don't want to change btrfs_alloc_device() to
6706 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6707 	 * places.
6708 	 */
6709 
6710 	nofs_flag = memalloc_nofs_save();
6711 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6712 	memalloc_nofs_restore(nofs_flag);
6713 	if (IS_ERR(device))
6714 		return device;
6715 
6716 	list_add(&device->dev_list, &fs_devices->devices);
6717 	device->fs_devices = fs_devices;
6718 	fs_devices->num_devices++;
6719 
6720 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6721 	fs_devices->missing_devices++;
6722 
6723 	return device;
6724 }
6725 
6726 /*
6727  * Allocate new device struct, set up devid and UUID.
6728  *
6729  * @fs_info:	used only for generating a new devid, can be NULL if
6730  *		devid is provided (i.e. @devid != NULL).
6731  * @devid:	a pointer to devid for this device.  If NULL a new devid
6732  *		is generated.
6733  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6734  *		is generated.
6735  * @path:	a pointer to device path if available, NULL otherwise.
6736  *
6737  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6738  * on error.  Returned struct is not linked onto any lists and must be
6739  * destroyed with btrfs_free_device.
6740  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6741 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6742 					const u64 *devid, const u8 *uuid,
6743 					const char *path)
6744 {
6745 	struct btrfs_device *dev;
6746 	u64 tmp;
6747 
6748 	if (WARN_ON(!devid && !fs_info))
6749 		return ERR_PTR(-EINVAL);
6750 
6751 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6752 	if (!dev)
6753 		return ERR_PTR(-ENOMEM);
6754 
6755 	INIT_LIST_HEAD(&dev->dev_list);
6756 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6757 	INIT_LIST_HEAD(&dev->post_commit_list);
6758 
6759 	atomic_set(&dev->dev_stats_ccnt, 0);
6760 	btrfs_device_data_ordered_init(dev);
6761 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6762 
6763 	if (devid)
6764 		tmp = *devid;
6765 	else {
6766 		int ret;
6767 
6768 		ret = find_next_devid(fs_info, &tmp);
6769 		if (ret) {
6770 			btrfs_free_device(dev);
6771 			return ERR_PTR(ret);
6772 		}
6773 	}
6774 	dev->devid = tmp;
6775 
6776 	if (uuid)
6777 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6778 	else
6779 		generate_random_uuid(dev->uuid);
6780 
6781 	if (path) {
6782 		struct rcu_string *name;
6783 
6784 		name = rcu_string_strdup(path, GFP_KERNEL);
6785 		if (!name) {
6786 			btrfs_free_device(dev);
6787 			return ERR_PTR(-ENOMEM);
6788 		}
6789 		rcu_assign_pointer(dev->name, name);
6790 	}
6791 
6792 	return dev;
6793 }
6794 
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6795 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6796 					u64 devid, u8 *uuid, bool error)
6797 {
6798 	if (error)
6799 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6800 			      devid, uuid);
6801 	else
6802 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6803 			      devid, uuid);
6804 }
6805 
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6806 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6807 {
6808 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6809 
6810 	return div_u64(map->chunk_len, data_stripes);
6811 }
6812 
6813 #if BITS_PER_LONG == 32
6814 /*
6815  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6816  * can't be accessed on 32bit systems.
6817  *
6818  * This function do mount time check to reject the fs if it already has
6819  * metadata chunk beyond that limit.
6820  */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6821 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6822 				  u64 logical, u64 length, u64 type)
6823 {
6824 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6825 		return 0;
6826 
6827 	if (logical + length < MAX_LFS_FILESIZE)
6828 		return 0;
6829 
6830 	btrfs_err_32bit_limit(fs_info);
6831 	return -EOVERFLOW;
6832 }
6833 
6834 /*
6835  * This is to give early warning for any metadata chunk reaching
6836  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6837  * Although we can still access the metadata, it's not going to be possible
6838  * once the limit is reached.
6839  */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6840 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6841 				  u64 logical, u64 length, u64 type)
6842 {
6843 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6844 		return;
6845 
6846 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6847 		return;
6848 
6849 	btrfs_warn_32bit_limit(fs_info);
6850 }
6851 #endif
6852 
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6853 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6854 						  u64 devid, u8 *uuid)
6855 {
6856 	struct btrfs_device *dev;
6857 
6858 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6859 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6860 		return ERR_PTR(-ENOENT);
6861 	}
6862 
6863 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6864 	if (IS_ERR(dev)) {
6865 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6866 			  devid, PTR_ERR(dev));
6867 		return dev;
6868 	}
6869 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6870 
6871 	return dev;
6872 }
6873 
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6874 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6875 			  struct btrfs_chunk *chunk)
6876 {
6877 	BTRFS_DEV_LOOKUP_ARGS(args);
6878 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6879 	struct btrfs_chunk_map *map;
6880 	u64 logical;
6881 	u64 length;
6882 	u64 devid;
6883 	u64 type;
6884 	u8 uuid[BTRFS_UUID_SIZE];
6885 	int index;
6886 	int num_stripes;
6887 	int ret;
6888 	int i;
6889 
6890 	logical = key->offset;
6891 	length = btrfs_chunk_length(leaf, chunk);
6892 	type = btrfs_chunk_type(leaf, chunk);
6893 	index = btrfs_bg_flags_to_raid_index(type);
6894 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6895 
6896 #if BITS_PER_LONG == 32
6897 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6898 	if (ret < 0)
6899 		return ret;
6900 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6901 #endif
6902 
6903 	/*
6904 	 * Only need to verify chunk item if we're reading from sys chunk array,
6905 	 * as chunk item in tree block is already verified by tree-checker.
6906 	 */
6907 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6908 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6909 		if (ret)
6910 			return ret;
6911 	}
6912 
6913 	map = btrfs_find_chunk_map(fs_info, logical, 1);
6914 
6915 	/* already mapped? */
6916 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
6917 		btrfs_free_chunk_map(map);
6918 		return 0;
6919 	} else if (map) {
6920 		btrfs_free_chunk_map(map);
6921 	}
6922 
6923 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
6924 	if (!map)
6925 		return -ENOMEM;
6926 
6927 	map->start = logical;
6928 	map->chunk_len = length;
6929 	map->num_stripes = num_stripes;
6930 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6931 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6932 	map->type = type;
6933 	/*
6934 	 * We can't use the sub_stripes value, as for profiles other than
6935 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6936 	 * older mkfs (<v5.4).
6937 	 * In that case, it can cause divide-by-zero errors later.
6938 	 * Since currently sub_stripes is fixed for each profile, let's
6939 	 * use the trusted value instead.
6940 	 */
6941 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6942 	map->verified_stripes = 0;
6943 	map->stripe_size = btrfs_calc_stripe_length(map);
6944 	for (i = 0; i < num_stripes; i++) {
6945 		map->stripes[i].physical =
6946 			btrfs_stripe_offset_nr(leaf, chunk, i);
6947 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6948 		args.devid = devid;
6949 		read_extent_buffer(leaf, uuid, (unsigned long)
6950 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6951 				   BTRFS_UUID_SIZE);
6952 		args.uuid = uuid;
6953 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6954 		if (!map->stripes[i].dev) {
6955 			map->stripes[i].dev = handle_missing_device(fs_info,
6956 								    devid, uuid);
6957 			if (IS_ERR(map->stripes[i].dev)) {
6958 				ret = PTR_ERR(map->stripes[i].dev);
6959 				btrfs_free_chunk_map(map);
6960 				return ret;
6961 			}
6962 		}
6963 
6964 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6965 				&(map->stripes[i].dev->dev_state));
6966 	}
6967 
6968 	ret = btrfs_add_chunk_map(fs_info, map);
6969 	if (ret < 0) {
6970 		btrfs_err(fs_info,
6971 			  "failed to add chunk map, start=%llu len=%llu: %d",
6972 			  map->start, map->chunk_len, ret);
6973 	}
6974 
6975 	return ret;
6976 }
6977 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6978 static void fill_device_from_item(struct extent_buffer *leaf,
6979 				 struct btrfs_dev_item *dev_item,
6980 				 struct btrfs_device *device)
6981 {
6982 	unsigned long ptr;
6983 
6984 	device->devid = btrfs_device_id(leaf, dev_item);
6985 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6986 	device->total_bytes = device->disk_total_bytes;
6987 	device->commit_total_bytes = device->disk_total_bytes;
6988 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6989 	device->commit_bytes_used = device->bytes_used;
6990 	device->type = btrfs_device_type(leaf, dev_item);
6991 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6992 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6993 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6994 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6995 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6996 
6997 	ptr = btrfs_device_uuid(dev_item);
6998 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6999 }
7000 
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7001 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7002 						  u8 *fsid)
7003 {
7004 	struct btrfs_fs_devices *fs_devices;
7005 	int ret;
7006 
7007 	lockdep_assert_held(&uuid_mutex);
7008 	ASSERT(fsid);
7009 
7010 	/* This will match only for multi-device seed fs */
7011 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7012 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7013 			return fs_devices;
7014 
7015 
7016 	fs_devices = find_fsid(fsid, NULL);
7017 	if (!fs_devices) {
7018 		if (!btrfs_test_opt(fs_info, DEGRADED))
7019 			return ERR_PTR(-ENOENT);
7020 
7021 		fs_devices = alloc_fs_devices(fsid);
7022 		if (IS_ERR(fs_devices))
7023 			return fs_devices;
7024 
7025 		fs_devices->seeding = true;
7026 		fs_devices->opened = 1;
7027 		return fs_devices;
7028 	}
7029 
7030 	/*
7031 	 * Upon first call for a seed fs fsid, just create a private copy of the
7032 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7033 	 */
7034 	fs_devices = clone_fs_devices(fs_devices);
7035 	if (IS_ERR(fs_devices))
7036 		return fs_devices;
7037 
7038 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7039 	if (ret) {
7040 		free_fs_devices(fs_devices);
7041 		return ERR_PTR(ret);
7042 	}
7043 
7044 	if (!fs_devices->seeding) {
7045 		close_fs_devices(fs_devices);
7046 		free_fs_devices(fs_devices);
7047 		return ERR_PTR(-EINVAL);
7048 	}
7049 
7050 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7051 
7052 	return fs_devices;
7053 }
7054 
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7055 static int read_one_dev(struct extent_buffer *leaf,
7056 			struct btrfs_dev_item *dev_item)
7057 {
7058 	BTRFS_DEV_LOOKUP_ARGS(args);
7059 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7060 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7061 	struct btrfs_device *device;
7062 	u64 devid;
7063 	int ret;
7064 	u8 fs_uuid[BTRFS_FSID_SIZE];
7065 	u8 dev_uuid[BTRFS_UUID_SIZE];
7066 
7067 	devid = btrfs_device_id(leaf, dev_item);
7068 	args.devid = devid;
7069 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7070 			   BTRFS_UUID_SIZE);
7071 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7072 			   BTRFS_FSID_SIZE);
7073 	args.uuid = dev_uuid;
7074 	args.fsid = fs_uuid;
7075 
7076 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7077 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7078 		if (IS_ERR(fs_devices))
7079 			return PTR_ERR(fs_devices);
7080 	}
7081 
7082 	device = btrfs_find_device(fs_info->fs_devices, &args);
7083 	if (!device) {
7084 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7085 			btrfs_report_missing_device(fs_info, devid,
7086 							dev_uuid, true);
7087 			return -ENOENT;
7088 		}
7089 
7090 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7091 		if (IS_ERR(device)) {
7092 			btrfs_err(fs_info,
7093 				"failed to add missing dev %llu: %ld",
7094 				devid, PTR_ERR(device));
7095 			return PTR_ERR(device);
7096 		}
7097 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7098 	} else {
7099 		if (!device->bdev) {
7100 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7101 				btrfs_report_missing_device(fs_info,
7102 						devid, dev_uuid, true);
7103 				return -ENOENT;
7104 			}
7105 			btrfs_report_missing_device(fs_info, devid,
7106 							dev_uuid, false);
7107 		}
7108 
7109 		if (!device->bdev &&
7110 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7111 			/*
7112 			 * this happens when a device that was properly setup
7113 			 * in the device info lists suddenly goes bad.
7114 			 * device->bdev is NULL, and so we have to set
7115 			 * device->missing to one here
7116 			 */
7117 			device->fs_devices->missing_devices++;
7118 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7119 		}
7120 
7121 		/* Move the device to its own fs_devices */
7122 		if (device->fs_devices != fs_devices) {
7123 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7124 							&device->dev_state));
7125 
7126 			list_move(&device->dev_list, &fs_devices->devices);
7127 			device->fs_devices->num_devices--;
7128 			fs_devices->num_devices++;
7129 
7130 			device->fs_devices->missing_devices--;
7131 			fs_devices->missing_devices++;
7132 
7133 			device->fs_devices = fs_devices;
7134 		}
7135 	}
7136 
7137 	if (device->fs_devices != fs_info->fs_devices) {
7138 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7139 		if (device->generation !=
7140 		    btrfs_device_generation(leaf, dev_item))
7141 			return -EINVAL;
7142 	}
7143 
7144 	fill_device_from_item(leaf, dev_item, device);
7145 	if (device->bdev) {
7146 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7147 
7148 		if (device->total_bytes > max_total_bytes) {
7149 			btrfs_err(fs_info,
7150 			"device total_bytes should be at most %llu but found %llu",
7151 				  max_total_bytes, device->total_bytes);
7152 			return -EINVAL;
7153 		}
7154 	}
7155 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7156 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7157 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7158 		device->fs_devices->total_rw_bytes += device->total_bytes;
7159 		atomic64_add(device->total_bytes - device->bytes_used,
7160 				&fs_info->free_chunk_space);
7161 	}
7162 	ret = 0;
7163 	return ret;
7164 }
7165 
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7166 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7167 {
7168 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7169 	struct extent_buffer *sb;
7170 	struct btrfs_disk_key *disk_key;
7171 	struct btrfs_chunk *chunk;
7172 	u8 *array_ptr;
7173 	unsigned long sb_array_offset;
7174 	int ret = 0;
7175 	u32 num_stripes;
7176 	u32 array_size;
7177 	u32 len = 0;
7178 	u32 cur_offset;
7179 	u64 type;
7180 	struct btrfs_key key;
7181 
7182 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7183 
7184 	/*
7185 	 * We allocated a dummy extent, just to use extent buffer accessors.
7186 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7187 	 * that's fine, we will not go beyond system chunk array anyway.
7188 	 */
7189 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7190 	if (!sb)
7191 		return -ENOMEM;
7192 	set_extent_buffer_uptodate(sb);
7193 
7194 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7195 	array_size = btrfs_super_sys_array_size(super_copy);
7196 
7197 	array_ptr = super_copy->sys_chunk_array;
7198 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7199 	cur_offset = 0;
7200 
7201 	while (cur_offset < array_size) {
7202 		disk_key = (struct btrfs_disk_key *)array_ptr;
7203 		len = sizeof(*disk_key);
7204 		if (cur_offset + len > array_size)
7205 			goto out_short_read;
7206 
7207 		btrfs_disk_key_to_cpu(&key, disk_key);
7208 
7209 		array_ptr += len;
7210 		sb_array_offset += len;
7211 		cur_offset += len;
7212 
7213 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7214 			btrfs_err(fs_info,
7215 			    "unexpected item type %u in sys_array at offset %u",
7216 				  (u32)key.type, cur_offset);
7217 			ret = -EIO;
7218 			break;
7219 		}
7220 
7221 		chunk = (struct btrfs_chunk *)sb_array_offset;
7222 		/*
7223 		 * At least one btrfs_chunk with one stripe must be present,
7224 		 * exact stripe count check comes afterwards
7225 		 */
7226 		len = btrfs_chunk_item_size(1);
7227 		if (cur_offset + len > array_size)
7228 			goto out_short_read;
7229 
7230 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7231 		if (!num_stripes) {
7232 			btrfs_err(fs_info,
7233 			"invalid number of stripes %u in sys_array at offset %u",
7234 				  num_stripes, cur_offset);
7235 			ret = -EIO;
7236 			break;
7237 		}
7238 
7239 		type = btrfs_chunk_type(sb, chunk);
7240 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7241 			btrfs_err(fs_info,
7242 			"invalid chunk type %llu in sys_array at offset %u",
7243 				  type, cur_offset);
7244 			ret = -EIO;
7245 			break;
7246 		}
7247 
7248 		len = btrfs_chunk_item_size(num_stripes);
7249 		if (cur_offset + len > array_size)
7250 			goto out_short_read;
7251 
7252 		ret = read_one_chunk(&key, sb, chunk);
7253 		if (ret)
7254 			break;
7255 
7256 		array_ptr += len;
7257 		sb_array_offset += len;
7258 		cur_offset += len;
7259 	}
7260 	clear_extent_buffer_uptodate(sb);
7261 	free_extent_buffer_stale(sb);
7262 	return ret;
7263 
7264 out_short_read:
7265 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7266 			len, cur_offset);
7267 	clear_extent_buffer_uptodate(sb);
7268 	free_extent_buffer_stale(sb);
7269 	return -EIO;
7270 }
7271 
7272 /*
7273  * Check if all chunks in the fs are OK for read-write degraded mount
7274  *
7275  * If the @failing_dev is specified, it's accounted as missing.
7276  *
7277  * Return true if all chunks meet the minimal RW mount requirements.
7278  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7279  */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7280 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7281 					struct btrfs_device *failing_dev)
7282 {
7283 	struct btrfs_chunk_map *map;
7284 	u64 next_start;
7285 	bool ret = true;
7286 
7287 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7288 	/* No chunk at all? Return false anyway */
7289 	if (!map) {
7290 		ret = false;
7291 		goto out;
7292 	}
7293 	while (map) {
7294 		int missing = 0;
7295 		int max_tolerated;
7296 		int i;
7297 
7298 		max_tolerated =
7299 			btrfs_get_num_tolerated_disk_barrier_failures(
7300 					map->type);
7301 		for (i = 0; i < map->num_stripes; i++) {
7302 			struct btrfs_device *dev = map->stripes[i].dev;
7303 
7304 			if (!dev || !dev->bdev ||
7305 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7306 			    dev->last_flush_error)
7307 				missing++;
7308 			else if (failing_dev && failing_dev == dev)
7309 				missing++;
7310 		}
7311 		if (missing > max_tolerated) {
7312 			if (!failing_dev)
7313 				btrfs_warn(fs_info,
7314 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7315 				   map->start, missing, max_tolerated);
7316 			btrfs_free_chunk_map(map);
7317 			ret = false;
7318 			goto out;
7319 		}
7320 		next_start = map->start + map->chunk_len;
7321 		btrfs_free_chunk_map(map);
7322 
7323 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7324 	}
7325 out:
7326 	return ret;
7327 }
7328 
readahead_tree_node_children(struct extent_buffer * node)7329 static void readahead_tree_node_children(struct extent_buffer *node)
7330 {
7331 	int i;
7332 	const int nr_items = btrfs_header_nritems(node);
7333 
7334 	for (i = 0; i < nr_items; i++)
7335 		btrfs_readahead_node_child(node, i);
7336 }
7337 
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7338 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7339 {
7340 	struct btrfs_root *root = fs_info->chunk_root;
7341 	struct btrfs_path *path;
7342 	struct extent_buffer *leaf;
7343 	struct btrfs_key key;
7344 	struct btrfs_key found_key;
7345 	int ret;
7346 	int slot;
7347 	int iter_ret = 0;
7348 	u64 total_dev = 0;
7349 	u64 last_ra_node = 0;
7350 
7351 	path = btrfs_alloc_path();
7352 	if (!path)
7353 		return -ENOMEM;
7354 
7355 	/*
7356 	 * uuid_mutex is needed only if we are mounting a sprout FS
7357 	 * otherwise we don't need it.
7358 	 */
7359 	mutex_lock(&uuid_mutex);
7360 
7361 	/*
7362 	 * It is possible for mount and umount to race in such a way that
7363 	 * we execute this code path, but open_fs_devices failed to clear
7364 	 * total_rw_bytes. We certainly want it cleared before reading the
7365 	 * device items, so clear it here.
7366 	 */
7367 	fs_info->fs_devices->total_rw_bytes = 0;
7368 
7369 	/*
7370 	 * Lockdep complains about possible circular locking dependency between
7371 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7372 	 * used for freeze procection of a fs (struct super_block.s_writers),
7373 	 * which we take when starting a transaction, and extent buffers of the
7374 	 * chunk tree if we call read_one_dev() while holding a lock on an
7375 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7376 	 * and at this point there can't be any concurrent task modifying the
7377 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7378 	 */
7379 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7380 	path->skip_locking = 1;
7381 
7382 	/*
7383 	 * Read all device items, and then all the chunk items. All
7384 	 * device items are found before any chunk item (their object id
7385 	 * is smaller than the lowest possible object id for a chunk
7386 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7387 	 */
7388 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7389 	key.offset = 0;
7390 	key.type = 0;
7391 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7392 		struct extent_buffer *node = path->nodes[1];
7393 
7394 		leaf = path->nodes[0];
7395 		slot = path->slots[0];
7396 
7397 		if (node) {
7398 			if (last_ra_node != node->start) {
7399 				readahead_tree_node_children(node);
7400 				last_ra_node = node->start;
7401 			}
7402 		}
7403 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7404 			struct btrfs_dev_item *dev_item;
7405 			dev_item = btrfs_item_ptr(leaf, slot,
7406 						  struct btrfs_dev_item);
7407 			ret = read_one_dev(leaf, dev_item);
7408 			if (ret)
7409 				goto error;
7410 			total_dev++;
7411 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7412 			struct btrfs_chunk *chunk;
7413 
7414 			/*
7415 			 * We are only called at mount time, so no need to take
7416 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7417 			 * we always lock first fs_info->chunk_mutex before
7418 			 * acquiring any locks on the chunk tree. This is a
7419 			 * requirement for chunk allocation, see the comment on
7420 			 * top of btrfs_chunk_alloc() for details.
7421 			 */
7422 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7423 			ret = read_one_chunk(&found_key, leaf, chunk);
7424 			if (ret)
7425 				goto error;
7426 		}
7427 	}
7428 	/* Catch error found during iteration */
7429 	if (iter_ret < 0) {
7430 		ret = iter_ret;
7431 		goto error;
7432 	}
7433 
7434 	/*
7435 	 * After loading chunk tree, we've got all device information,
7436 	 * do another round of validation checks.
7437 	 */
7438 	if (total_dev != fs_info->fs_devices->total_devices) {
7439 		btrfs_warn(fs_info,
7440 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7441 			  btrfs_super_num_devices(fs_info->super_copy),
7442 			  total_dev);
7443 		fs_info->fs_devices->total_devices = total_dev;
7444 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7445 	}
7446 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7447 	    fs_info->fs_devices->total_rw_bytes) {
7448 		btrfs_err(fs_info,
7449 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7450 			  btrfs_super_total_bytes(fs_info->super_copy),
7451 			  fs_info->fs_devices->total_rw_bytes);
7452 		ret = -EINVAL;
7453 		goto error;
7454 	}
7455 	ret = 0;
7456 error:
7457 	mutex_unlock(&uuid_mutex);
7458 
7459 	btrfs_free_path(path);
7460 	return ret;
7461 }
7462 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7463 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7464 {
7465 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7466 	struct btrfs_device *device;
7467 	int ret = 0;
7468 
7469 	fs_devices->fs_info = fs_info;
7470 
7471 	mutex_lock(&fs_devices->device_list_mutex);
7472 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7473 		device->fs_info = fs_info;
7474 
7475 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7476 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7477 			device->fs_info = fs_info;
7478 			ret = btrfs_get_dev_zone_info(device, false);
7479 			if (ret)
7480 				break;
7481 		}
7482 
7483 		seed_devs->fs_info = fs_info;
7484 	}
7485 	mutex_unlock(&fs_devices->device_list_mutex);
7486 
7487 	return ret;
7488 }
7489 
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7490 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7491 				 const struct btrfs_dev_stats_item *ptr,
7492 				 int index)
7493 {
7494 	u64 val;
7495 
7496 	read_extent_buffer(eb, &val,
7497 			   offsetof(struct btrfs_dev_stats_item, values) +
7498 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7499 			   sizeof(val));
7500 	return val;
7501 }
7502 
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7503 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7504 				      struct btrfs_dev_stats_item *ptr,
7505 				      int index, u64 val)
7506 {
7507 	write_extent_buffer(eb, &val,
7508 			    offsetof(struct btrfs_dev_stats_item, values) +
7509 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7510 			    sizeof(val));
7511 }
7512 
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7513 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7514 				       struct btrfs_path *path)
7515 {
7516 	struct btrfs_dev_stats_item *ptr;
7517 	struct extent_buffer *eb;
7518 	struct btrfs_key key;
7519 	int item_size;
7520 	int i, ret, slot;
7521 
7522 	if (!device->fs_info->dev_root)
7523 		return 0;
7524 
7525 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7526 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7527 	key.offset = device->devid;
7528 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7529 	if (ret) {
7530 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7531 			btrfs_dev_stat_set(device, i, 0);
7532 		device->dev_stats_valid = 1;
7533 		btrfs_release_path(path);
7534 		return ret < 0 ? ret : 0;
7535 	}
7536 	slot = path->slots[0];
7537 	eb = path->nodes[0];
7538 	item_size = btrfs_item_size(eb, slot);
7539 
7540 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7541 
7542 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7543 		if (item_size >= (1 + i) * sizeof(__le64))
7544 			btrfs_dev_stat_set(device, i,
7545 					   btrfs_dev_stats_value(eb, ptr, i));
7546 		else
7547 			btrfs_dev_stat_set(device, i, 0);
7548 	}
7549 
7550 	device->dev_stats_valid = 1;
7551 	btrfs_dev_stat_print_on_load(device);
7552 	btrfs_release_path(path);
7553 
7554 	return 0;
7555 }
7556 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7557 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7558 {
7559 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7560 	struct btrfs_device *device;
7561 	struct btrfs_path *path = NULL;
7562 	int ret = 0;
7563 
7564 	path = btrfs_alloc_path();
7565 	if (!path)
7566 		return -ENOMEM;
7567 
7568 	mutex_lock(&fs_devices->device_list_mutex);
7569 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7570 		ret = btrfs_device_init_dev_stats(device, path);
7571 		if (ret)
7572 			goto out;
7573 	}
7574 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7575 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7576 			ret = btrfs_device_init_dev_stats(device, path);
7577 			if (ret)
7578 				goto out;
7579 		}
7580 	}
7581 out:
7582 	mutex_unlock(&fs_devices->device_list_mutex);
7583 
7584 	btrfs_free_path(path);
7585 	return ret;
7586 }
7587 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7588 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7589 				struct btrfs_device *device)
7590 {
7591 	struct btrfs_fs_info *fs_info = trans->fs_info;
7592 	struct btrfs_root *dev_root = fs_info->dev_root;
7593 	struct btrfs_path *path;
7594 	struct btrfs_key key;
7595 	struct extent_buffer *eb;
7596 	struct btrfs_dev_stats_item *ptr;
7597 	int ret;
7598 	int i;
7599 
7600 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7601 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7602 	key.offset = device->devid;
7603 
7604 	path = btrfs_alloc_path();
7605 	if (!path)
7606 		return -ENOMEM;
7607 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7608 	if (ret < 0) {
7609 		btrfs_warn_in_rcu(fs_info,
7610 			"error %d while searching for dev_stats item for device %s",
7611 				  ret, btrfs_dev_name(device));
7612 		goto out;
7613 	}
7614 
7615 	if (ret == 0 &&
7616 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7617 		/* need to delete old one and insert a new one */
7618 		ret = btrfs_del_item(trans, dev_root, path);
7619 		if (ret != 0) {
7620 			btrfs_warn_in_rcu(fs_info,
7621 				"delete too small dev_stats item for device %s failed %d",
7622 					  btrfs_dev_name(device), ret);
7623 			goto out;
7624 		}
7625 		ret = 1;
7626 	}
7627 
7628 	if (ret == 1) {
7629 		/* need to insert a new item */
7630 		btrfs_release_path(path);
7631 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7632 					      &key, sizeof(*ptr));
7633 		if (ret < 0) {
7634 			btrfs_warn_in_rcu(fs_info,
7635 				"insert dev_stats item for device %s failed %d",
7636 				btrfs_dev_name(device), ret);
7637 			goto out;
7638 		}
7639 	}
7640 
7641 	eb = path->nodes[0];
7642 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7643 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7644 		btrfs_set_dev_stats_value(eb, ptr, i,
7645 					  btrfs_dev_stat_read(device, i));
7646 	btrfs_mark_buffer_dirty(trans, eb);
7647 
7648 out:
7649 	btrfs_free_path(path);
7650 	return ret;
7651 }
7652 
7653 /*
7654  * called from commit_transaction. Writes all changed device stats to disk.
7655  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7656 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7657 {
7658 	struct btrfs_fs_info *fs_info = trans->fs_info;
7659 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7660 	struct btrfs_device *device;
7661 	int stats_cnt;
7662 	int ret = 0;
7663 
7664 	mutex_lock(&fs_devices->device_list_mutex);
7665 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7666 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7667 		if (!device->dev_stats_valid || stats_cnt == 0)
7668 			continue;
7669 
7670 
7671 		/*
7672 		 * There is a LOAD-LOAD control dependency between the value of
7673 		 * dev_stats_ccnt and updating the on-disk values which requires
7674 		 * reading the in-memory counters. Such control dependencies
7675 		 * require explicit read memory barriers.
7676 		 *
7677 		 * This memory barriers pairs with smp_mb__before_atomic in
7678 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7679 		 * barrier implied by atomic_xchg in
7680 		 * btrfs_dev_stats_read_and_reset
7681 		 */
7682 		smp_rmb();
7683 
7684 		ret = update_dev_stat_item(trans, device);
7685 		if (!ret)
7686 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7687 	}
7688 	mutex_unlock(&fs_devices->device_list_mutex);
7689 
7690 	return ret;
7691 }
7692 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7693 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7694 {
7695 	btrfs_dev_stat_inc(dev, index);
7696 
7697 	if (!dev->dev_stats_valid)
7698 		return;
7699 	btrfs_err_rl_in_rcu(dev->fs_info,
7700 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7701 			   btrfs_dev_name(dev),
7702 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7703 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7704 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7705 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7706 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7707 }
7708 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7709 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7710 {
7711 	int i;
7712 
7713 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7714 		if (btrfs_dev_stat_read(dev, i) != 0)
7715 			break;
7716 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7717 		return; /* all values == 0, suppress message */
7718 
7719 	btrfs_info_in_rcu(dev->fs_info,
7720 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7721 	       btrfs_dev_name(dev),
7722 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7723 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7724 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7725 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7726 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7727 }
7728 
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7729 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7730 			struct btrfs_ioctl_get_dev_stats *stats)
7731 {
7732 	BTRFS_DEV_LOOKUP_ARGS(args);
7733 	struct btrfs_device *dev;
7734 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7735 	int i;
7736 
7737 	mutex_lock(&fs_devices->device_list_mutex);
7738 	args.devid = stats->devid;
7739 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7740 	mutex_unlock(&fs_devices->device_list_mutex);
7741 
7742 	if (!dev) {
7743 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7744 		return -ENODEV;
7745 	} else if (!dev->dev_stats_valid) {
7746 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7747 		return -ENODEV;
7748 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7749 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7750 			if (stats->nr_items > i)
7751 				stats->values[i] =
7752 					btrfs_dev_stat_read_and_reset(dev, i);
7753 			else
7754 				btrfs_dev_stat_set(dev, i, 0);
7755 		}
7756 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7757 			   current->comm, task_pid_nr(current));
7758 	} else {
7759 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7760 			if (stats->nr_items > i)
7761 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7762 	}
7763 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7764 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7765 	return 0;
7766 }
7767 
7768 /*
7769  * Update the size and bytes used for each device where it changed.  This is
7770  * delayed since we would otherwise get errors while writing out the
7771  * superblocks.
7772  *
7773  * Must be invoked during transaction commit.
7774  */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7775 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7776 {
7777 	struct btrfs_device *curr, *next;
7778 
7779 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7780 
7781 	if (list_empty(&trans->dev_update_list))
7782 		return;
7783 
7784 	/*
7785 	 * We don't need the device_list_mutex here.  This list is owned by the
7786 	 * transaction and the transaction must complete before the device is
7787 	 * released.
7788 	 */
7789 	mutex_lock(&trans->fs_info->chunk_mutex);
7790 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7791 				 post_commit_list) {
7792 		list_del_init(&curr->post_commit_list);
7793 		curr->commit_total_bytes = curr->disk_total_bytes;
7794 		curr->commit_bytes_used = curr->bytes_used;
7795 	}
7796 	mutex_unlock(&trans->fs_info->chunk_mutex);
7797 }
7798 
7799 /*
7800  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7801  */
btrfs_bg_type_to_factor(u64 flags)7802 int btrfs_bg_type_to_factor(u64 flags)
7803 {
7804 	const int index = btrfs_bg_flags_to_raid_index(flags);
7805 
7806 	return btrfs_raid_array[index].ncopies;
7807 }
7808 
7809 
7810 
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7811 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7812 				 u64 chunk_offset, u64 devid,
7813 				 u64 physical_offset, u64 physical_len)
7814 {
7815 	struct btrfs_dev_lookup_args args = { .devid = devid };
7816 	struct btrfs_chunk_map *map;
7817 	struct btrfs_device *dev;
7818 	u64 stripe_len;
7819 	bool found = false;
7820 	int ret = 0;
7821 	int i;
7822 
7823 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7824 	if (!map) {
7825 		btrfs_err(fs_info,
7826 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7827 			  physical_offset, devid);
7828 		ret = -EUCLEAN;
7829 		goto out;
7830 	}
7831 
7832 	stripe_len = btrfs_calc_stripe_length(map);
7833 	if (physical_len != stripe_len) {
7834 		btrfs_err(fs_info,
7835 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7836 			  physical_offset, devid, map->start, physical_len,
7837 			  stripe_len);
7838 		ret = -EUCLEAN;
7839 		goto out;
7840 	}
7841 
7842 	/*
7843 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7844 	 * space. Although kernel can handle it without problem, better to warn
7845 	 * the users.
7846 	 */
7847 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7848 		btrfs_warn(fs_info,
7849 		"devid %llu physical %llu len %llu inside the reserved space",
7850 			   devid, physical_offset, physical_len);
7851 
7852 	for (i = 0; i < map->num_stripes; i++) {
7853 		if (map->stripes[i].dev->devid == devid &&
7854 		    map->stripes[i].physical == physical_offset) {
7855 			found = true;
7856 			if (map->verified_stripes >= map->num_stripes) {
7857 				btrfs_err(fs_info,
7858 				"too many dev extents for chunk %llu found",
7859 					  map->start);
7860 				ret = -EUCLEAN;
7861 				goto out;
7862 			}
7863 			map->verified_stripes++;
7864 			break;
7865 		}
7866 	}
7867 	if (!found) {
7868 		btrfs_err(fs_info,
7869 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7870 			physical_offset, devid);
7871 		ret = -EUCLEAN;
7872 	}
7873 
7874 	/* Make sure no dev extent is beyond device boundary */
7875 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7876 	if (!dev) {
7877 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7878 		ret = -EUCLEAN;
7879 		goto out;
7880 	}
7881 
7882 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7883 		btrfs_err(fs_info,
7884 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7885 			  devid, physical_offset, physical_len,
7886 			  dev->disk_total_bytes);
7887 		ret = -EUCLEAN;
7888 		goto out;
7889 	}
7890 
7891 	if (dev->zone_info) {
7892 		u64 zone_size = dev->zone_info->zone_size;
7893 
7894 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7895 		    !IS_ALIGNED(physical_len, zone_size)) {
7896 			btrfs_err(fs_info,
7897 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7898 				  devid, physical_offset, physical_len);
7899 			ret = -EUCLEAN;
7900 			goto out;
7901 		}
7902 	}
7903 
7904 out:
7905 	btrfs_free_chunk_map(map);
7906 	return ret;
7907 }
7908 
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7909 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7910 {
7911 	struct rb_node *node;
7912 	int ret = 0;
7913 
7914 	read_lock(&fs_info->mapping_tree_lock);
7915 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7916 		struct btrfs_chunk_map *map;
7917 
7918 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7919 		if (map->num_stripes != map->verified_stripes) {
7920 			btrfs_err(fs_info,
7921 			"chunk %llu has missing dev extent, have %d expect %d",
7922 				  map->start, map->verified_stripes, map->num_stripes);
7923 			ret = -EUCLEAN;
7924 			goto out;
7925 		}
7926 	}
7927 out:
7928 	read_unlock(&fs_info->mapping_tree_lock);
7929 	return ret;
7930 }
7931 
7932 /*
7933  * Ensure that all dev extents are mapped to correct chunk, otherwise
7934  * later chunk allocation/free would cause unexpected behavior.
7935  *
7936  * NOTE: This will iterate through the whole device tree, which should be of
7937  * the same size level as the chunk tree.  This slightly increases mount time.
7938  */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7939 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7940 {
7941 	struct btrfs_path *path;
7942 	struct btrfs_root *root = fs_info->dev_root;
7943 	struct btrfs_key key;
7944 	u64 prev_devid = 0;
7945 	u64 prev_dev_ext_end = 0;
7946 	int ret = 0;
7947 
7948 	/*
7949 	 * We don't have a dev_root because we mounted with ignorebadroots and
7950 	 * failed to load the root, so we want to skip the verification in this
7951 	 * case for sure.
7952 	 *
7953 	 * However if the dev root is fine, but the tree itself is corrupted
7954 	 * we'd still fail to mount.  This verification is only to make sure
7955 	 * writes can happen safely, so instead just bypass this check
7956 	 * completely in the case of IGNOREBADROOTS.
7957 	 */
7958 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7959 		return 0;
7960 
7961 	key.objectid = 1;
7962 	key.type = BTRFS_DEV_EXTENT_KEY;
7963 	key.offset = 0;
7964 
7965 	path = btrfs_alloc_path();
7966 	if (!path)
7967 		return -ENOMEM;
7968 
7969 	path->reada = READA_FORWARD;
7970 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7971 	if (ret < 0)
7972 		goto out;
7973 
7974 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7975 		ret = btrfs_next_leaf(root, path);
7976 		if (ret < 0)
7977 			goto out;
7978 		/* No dev extents at all? Not good */
7979 		if (ret > 0) {
7980 			ret = -EUCLEAN;
7981 			goto out;
7982 		}
7983 	}
7984 	while (1) {
7985 		struct extent_buffer *leaf = path->nodes[0];
7986 		struct btrfs_dev_extent *dext;
7987 		int slot = path->slots[0];
7988 		u64 chunk_offset;
7989 		u64 physical_offset;
7990 		u64 physical_len;
7991 		u64 devid;
7992 
7993 		btrfs_item_key_to_cpu(leaf, &key, slot);
7994 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7995 			break;
7996 		devid = key.objectid;
7997 		physical_offset = key.offset;
7998 
7999 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8000 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8001 		physical_len = btrfs_dev_extent_length(leaf, dext);
8002 
8003 		/* Check if this dev extent overlaps with the previous one */
8004 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8005 			btrfs_err(fs_info,
8006 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8007 				  devid, physical_offset, prev_dev_ext_end);
8008 			ret = -EUCLEAN;
8009 			goto out;
8010 		}
8011 
8012 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8013 					    physical_offset, physical_len);
8014 		if (ret < 0)
8015 			goto out;
8016 		prev_devid = devid;
8017 		prev_dev_ext_end = physical_offset + physical_len;
8018 
8019 		ret = btrfs_next_item(root, path);
8020 		if (ret < 0)
8021 			goto out;
8022 		if (ret > 0) {
8023 			ret = 0;
8024 			break;
8025 		}
8026 	}
8027 
8028 	/* Ensure all chunks have corresponding dev extents */
8029 	ret = verify_chunk_dev_extent_mapping(fs_info);
8030 out:
8031 	btrfs_free_path(path);
8032 	return ret;
8033 }
8034 
8035 /*
8036  * Check whether the given block group or device is pinned by any inode being
8037  * used as a swapfile.
8038  */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8039 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8040 {
8041 	struct btrfs_swapfile_pin *sp;
8042 	struct rb_node *node;
8043 
8044 	spin_lock(&fs_info->swapfile_pins_lock);
8045 	node = fs_info->swapfile_pins.rb_node;
8046 	while (node) {
8047 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8048 		if (ptr < sp->ptr)
8049 			node = node->rb_left;
8050 		else if (ptr > sp->ptr)
8051 			node = node->rb_right;
8052 		else
8053 			break;
8054 	}
8055 	spin_unlock(&fs_info->swapfile_pins_lock);
8056 	return node != NULL;
8057 }
8058 
relocating_repair_kthread(void * data)8059 static int relocating_repair_kthread(void *data)
8060 {
8061 	struct btrfs_block_group *cache = data;
8062 	struct btrfs_fs_info *fs_info = cache->fs_info;
8063 	u64 target;
8064 	int ret = 0;
8065 
8066 	target = cache->start;
8067 	btrfs_put_block_group(cache);
8068 
8069 	sb_start_write(fs_info->sb);
8070 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8071 		btrfs_info(fs_info,
8072 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8073 			   target);
8074 		sb_end_write(fs_info->sb);
8075 		return -EBUSY;
8076 	}
8077 
8078 	mutex_lock(&fs_info->reclaim_bgs_lock);
8079 
8080 	/* Ensure block group still exists */
8081 	cache = btrfs_lookup_block_group(fs_info, target);
8082 	if (!cache)
8083 		goto out;
8084 
8085 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8086 		goto out;
8087 
8088 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8089 	if (ret < 0)
8090 		goto out;
8091 
8092 	btrfs_info(fs_info,
8093 		   "zoned: relocating block group %llu to repair IO failure",
8094 		   target);
8095 	ret = btrfs_relocate_chunk(fs_info, target);
8096 
8097 out:
8098 	if (cache)
8099 		btrfs_put_block_group(cache);
8100 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8101 	btrfs_exclop_finish(fs_info);
8102 	sb_end_write(fs_info->sb);
8103 
8104 	return ret;
8105 }
8106 
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8107 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8108 {
8109 	struct btrfs_block_group *cache;
8110 
8111 	if (!btrfs_is_zoned(fs_info))
8112 		return false;
8113 
8114 	/* Do not attempt to repair in degraded state */
8115 	if (btrfs_test_opt(fs_info, DEGRADED))
8116 		return true;
8117 
8118 	cache = btrfs_lookup_block_group(fs_info, logical);
8119 	if (!cache)
8120 		return true;
8121 
8122 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8123 		btrfs_put_block_group(cache);
8124 		return true;
8125 	}
8126 
8127 	kthread_run(relocating_repair_kthread, cache,
8128 		    "btrfs-relocating-repair");
8129 
8130 	return true;
8131 }
8132 
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8133 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8134 				    struct btrfs_io_stripe *smap,
8135 				    u64 logical)
8136 {
8137 	int data_stripes = nr_bioc_data_stripes(bioc);
8138 	int i;
8139 
8140 	for (i = 0; i < data_stripes; i++) {
8141 		u64 stripe_start = bioc->full_stripe_logical +
8142 				   btrfs_stripe_nr_to_offset(i);
8143 
8144 		if (logical >= stripe_start &&
8145 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8146 			break;
8147 	}
8148 	ASSERT(i < data_stripes);
8149 	smap->dev = bioc->stripes[i].dev;
8150 	smap->physical = bioc->stripes[i].physical +
8151 			((logical - bioc->full_stripe_logical) &
8152 			 BTRFS_STRIPE_LEN_MASK);
8153 }
8154 
8155 /*
8156  * Map a repair write into a single device.
8157  *
8158  * A repair write is triggered by read time repair or scrub, which would only
8159  * update the contents of a single device.
8160  * Not update any other mirrors nor go through RMW path.
8161  *
8162  * Callers should ensure:
8163  *
8164  * - Call btrfs_bio_counter_inc_blocked() first
8165  * - The range does not cross stripe boundary
8166  * - Has a valid @mirror_num passed in.
8167  */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8168 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8169 			   struct btrfs_io_stripe *smap, u64 logical,
8170 			   u32 length, int mirror_num)
8171 {
8172 	struct btrfs_io_context *bioc = NULL;
8173 	u64 map_length = length;
8174 	int mirror_ret = mirror_num;
8175 	int ret;
8176 
8177 	ASSERT(mirror_num > 0);
8178 
8179 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8180 			      &bioc, smap, &mirror_ret);
8181 	if (ret < 0)
8182 		return ret;
8183 
8184 	/* The map range should not cross stripe boundary. */
8185 	ASSERT(map_length >= length);
8186 
8187 	/* Already mapped to single stripe. */
8188 	if (!bioc)
8189 		goto out;
8190 
8191 	/* Map the RAID56 multi-stripe writes to a single one. */
8192 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8193 		map_raid56_repair_block(bioc, smap, logical);
8194 		goto out;
8195 	}
8196 
8197 	ASSERT(mirror_num <= bioc->num_stripes);
8198 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8199 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8200 out:
8201 	btrfs_put_bioc(bioc);
8202 	ASSERT(smap->dev);
8203 	return 0;
8204 }
8205