xref: /linux/fs/btrfs/ioctl.c (revision 8912c2fd5830e976c0deaeb0b2a458ce6b4718c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 						unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = inode->flags;
140 	u32 ro_flags = inode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 	unsigned int new_fl = 0;
173 
174 	if (inode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (inode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (inode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (inode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->vfs_inode.i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
249 {
250 	const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 	return 0;
254 }
255 
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct file_kattr *fa)
258 {
259 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 	struct btrfs_root *root = inode->root;
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 	struct btrfs_trans_handle *trans;
263 	unsigned int fsflags, old_fsflags;
264 	int ret;
265 	const char *comp = NULL;
266 	u32 inode_flags;
267 
268 	if (btrfs_root_readonly(root))
269 		return -EROFS;
270 
271 	if (fileattr_has_fsx(fa))
272 		return -EOPNOTSUPP;
273 
274 	fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 	old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 	ret = check_fsflags(old_fsflags, fsflags);
277 	if (ret)
278 		return ret;
279 
280 	ret = check_fsflags_compatible(fs_info, fsflags);
281 	if (ret)
282 		return ret;
283 
284 	inode_flags = inode->flags;
285 	if (fsflags & FS_SYNC_FL)
286 		inode_flags |= BTRFS_INODE_SYNC;
287 	else
288 		inode_flags &= ~BTRFS_INODE_SYNC;
289 	if (fsflags & FS_IMMUTABLE_FL)
290 		inode_flags |= BTRFS_INODE_IMMUTABLE;
291 	else
292 		inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 	if (fsflags & FS_APPEND_FL)
294 		inode_flags |= BTRFS_INODE_APPEND;
295 	else
296 		inode_flags &= ~BTRFS_INODE_APPEND;
297 	if (fsflags & FS_NODUMP_FL)
298 		inode_flags |= BTRFS_INODE_NODUMP;
299 	else
300 		inode_flags &= ~BTRFS_INODE_NODUMP;
301 	if (fsflags & FS_NOATIME_FL)
302 		inode_flags |= BTRFS_INODE_NOATIME;
303 	else
304 		inode_flags &= ~BTRFS_INODE_NOATIME;
305 
306 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 	if (!fa->flags_valid) {
308 		/* 1 item for the inode */
309 		trans = btrfs_start_transaction(root, 1);
310 		if (IS_ERR(trans))
311 			return PTR_ERR(trans);
312 		goto update_flags;
313 	}
314 
315 	if (fsflags & FS_DIRSYNC_FL)
316 		inode_flags |= BTRFS_INODE_DIRSYNC;
317 	else
318 		inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 	if (fsflags & FS_NOCOW_FL) {
320 		if (S_ISREG(inode->vfs_inode.i_mode)) {
321 			/*
322 			 * It's safe to turn csums off here, no extents exist.
323 			 * Otherwise we want the flag to reflect the real COW
324 			 * status of the file and will not set it.
325 			 */
326 			if (inode->vfs_inode.i_size == 0)
327 				inode_flags |= BTRFS_INODE_NODATACOW |
328 					       BTRFS_INODE_NODATASUM;
329 		} else {
330 			inode_flags |= BTRFS_INODE_NODATACOW;
331 		}
332 	} else {
333 		/*
334 		 * Revert back under same assumptions as above
335 		 */
336 		if (S_ISREG(inode->vfs_inode.i_mode)) {
337 			if (inode->vfs_inode.i_size == 0)
338 				inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 						 BTRFS_INODE_NODATASUM);
340 		} else {
341 			inode_flags &= ~BTRFS_INODE_NODATACOW;
342 		}
343 	}
344 
345 	/*
346 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 	 * flag may be changed automatically if compression code won't make
348 	 * things smaller.
349 	 */
350 	if (fsflags & FS_NOCOMP_FL) {
351 		inode_flags &= ~BTRFS_INODE_COMPRESS;
352 		inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 	} else if (fsflags & FS_COMPR_FL) {
354 
355 		if (IS_SWAPFILE(&inode->vfs_inode))
356 			return -ETXTBSY;
357 
358 		inode_flags |= BTRFS_INODE_COMPRESS;
359 		inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360 
361 		comp = btrfs_compress_type2str(fs_info->compress_type);
362 		if (!comp || comp[0] == 0)
363 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 	} else {
365 		inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 	}
367 
368 	/*
369 	 * 1 for inode item
370 	 * 2 for properties
371 	 */
372 	trans = btrfs_start_transaction(root, 3);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	if (comp) {
377 		ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 				     comp, strlen(comp), 0);
379 		if (unlikely(ret)) {
380 			btrfs_abort_transaction(trans, ret);
381 			goto out_end_trans;
382 		}
383 	} else {
384 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 		if (unlikely(ret && ret != -ENODATA)) {
386 			btrfs_abort_transaction(trans, ret);
387 			goto out_end_trans;
388 		}
389 	}
390 
391 update_flags:
392 	inode->flags = inode_flags;
393 	btrfs_update_inode_mapping_flags(inode);
394 	btrfs_sync_inode_flags_to_i_flags(inode);
395 	inode_inc_iversion(&inode->vfs_inode);
396 	inode_set_ctime_current(&inode->vfs_inode);
397 	ret = btrfs_update_inode(trans, inode);
398 
399  out_end_trans:
400 	btrfs_end_transaction(trans);
401 	return ret;
402 }
403 
404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 	return put_user(inode->i_generation, arg);
407 }
408 
409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 					void __user *arg)
411 {
412 	struct btrfs_device *device;
413 	struct fstrim_range range;
414 	u64 minlen = ULLONG_MAX;
415 	u64 num_devices = 0;
416 	int ret;
417 
418 	if (!capable(CAP_SYS_ADMIN))
419 		return -EPERM;
420 
421 	/*
422 	 * btrfs_trim_block_group() depends on space cache, which is not
423 	 * available in zoned filesystem. So, disallow fitrim on a zoned
424 	 * filesystem for now.
425 	 */
426 	if (btrfs_is_zoned(fs_info))
427 		return -EOPNOTSUPP;
428 
429 	/*
430 	 * If the fs is mounted with nologreplay, which requires it to be
431 	 * mounted in RO mode as well, we can not allow discard on free space
432 	 * inside block groups, because log trees refer to extents that are not
433 	 * pinned in a block group's free space cache (pinning the extents is
434 	 * precisely the first phase of replaying a log tree).
435 	 */
436 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 		return -EROFS;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 				dev_list) {
442 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 			continue;
444 		num_devices++;
445 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 				    minlen);
447 	}
448 	rcu_read_unlock();
449 
450 	if (!num_devices)
451 		return -EOPNOTSUPP;
452 	if (copy_from_user(&range, arg, sizeof(range)))
453 		return -EFAULT;
454 
455 	/*
456 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
457 	 * block group is in the logical address space, which can be any
458 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
459 	 */
460 	if (range.len < fs_info->sectorsize)
461 		return -EINVAL;
462 
463 	range.minlen = max(range.minlen, minlen);
464 	ret = btrfs_trim_fs(fs_info, &range);
465 
466 	if (copy_to_user(arg, &range, sizeof(range)))
467 		return -EFAULT;
468 
469 	return ret;
470 }
471 
472 /*
473  * Calculate the number of transaction items to reserve for creating a subvolume
474  * or snapshot, not including the inode, directory entries, or parent directory.
475  */
476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 	/*
479 	 * 1 to add root block
480 	 * 1 to add root item
481 	 * 1 to add root ref
482 	 * 1 to add root backref
483 	 * 1 to add UUID item
484 	 * 1 to add qgroup info
485 	 * 1 to add qgroup limit
486 	 *
487 	 * Ideally the last two would only be accounted if qgroups are enabled,
488 	 * but that can change between now and the time we would insert them.
489 	 */
490 	unsigned int num_items = 7;
491 
492 	if (inherit) {
493 		/* 2 to add qgroup relations for each inherited qgroup */
494 		num_items += 2 * inherit->num_qgroups;
495 	}
496 	return num_items;
497 }
498 
499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 				  struct inode *dir, struct dentry *dentry,
501 				  struct btrfs_qgroup_inherit *inherit)
502 {
503 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 	struct btrfs_trans_handle *trans;
505 	struct btrfs_key key;
506 	struct btrfs_root_item AUTO_KFREE(root_item);
507 	struct btrfs_inode_item *inode_item;
508 	struct extent_buffer *leaf;
509 	struct btrfs_root *root = BTRFS_I(dir)->root;
510 	struct btrfs_root *new_root;
511 	struct btrfs_block_rsv block_rsv;
512 	struct timespec64 cur_time = current_time(dir);
513 	struct btrfs_new_inode_args new_inode_args = {
514 		.dir = dir,
515 		.dentry = dentry,
516 		.subvol = true,
517 	};
518 	unsigned int trans_num_items;
519 	int ret;
520 	dev_t anon_dev;
521 	u64 objectid;
522 	u64 qgroup_reserved = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		return ret;
531 
532 	/*
533 	 * Don't create subvolume whose level is not zero. Or qgroup will be
534 	 * screwed up since it assumes subvolume qgroup's level to be 0.
535 	 */
536 	if (btrfs_qgroup_level(objectid))
537 		return -ENOSPC;
538 
539 	ret = get_anon_bdev(&anon_dev);
540 	if (ret < 0)
541 		return ret;
542 
543 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
544 	if (!new_inode_args.inode) {
545 		ret = -ENOMEM;
546 		goto out_anon_dev;
547 	}
548 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
549 	if (ret)
550 		goto out_inode;
551 	trans_num_items += create_subvol_num_items(inherit);
552 
553 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
554 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
555 					       trans_num_items, false);
556 	if (ret)
557 		goto out_new_inode_args;
558 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
559 
560 	trans = btrfs_start_transaction(root, 0);
561 	if (IS_ERR(trans)) {
562 		ret = PTR_ERR(trans);
563 		goto out_release_rsv;
564 	}
565 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
566 	qgroup_reserved = 0;
567 	trans->block_rsv = &block_rsv;
568 	trans->bytes_reserved = block_rsv.size;
569 
570 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
571 	if (ret)
572 		goto out;
573 
574 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
575 				      0, BTRFS_NESTING_NORMAL);
576 	if (IS_ERR(leaf)) {
577 		ret = PTR_ERR(leaf);
578 		goto out;
579 	}
580 
581 	btrfs_mark_buffer_dirty(trans, leaf);
582 
583 	inode_item = &root_item->inode;
584 	btrfs_set_stack_inode_generation(inode_item, 1);
585 	btrfs_set_stack_inode_size(inode_item, 3);
586 	btrfs_set_stack_inode_nlink(inode_item, 1);
587 	btrfs_set_stack_inode_nbytes(inode_item,
588 				     fs_info->nodesize);
589 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
590 
591 	btrfs_set_root_flags(root_item, 0);
592 	btrfs_set_root_limit(root_item, 0);
593 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
594 
595 	btrfs_set_root_bytenr(root_item, leaf->start);
596 	btrfs_set_root_generation(root_item, trans->transid);
597 	btrfs_set_root_level(root_item, 0);
598 	btrfs_set_root_refs(root_item, 1);
599 	btrfs_set_root_used(root_item, leaf->len);
600 	btrfs_set_root_last_snapshot(root_item, 0);
601 
602 	btrfs_set_root_generation_v2(root_item,
603 			btrfs_root_generation(root_item));
604 	generate_random_guid(root_item->uuid);
605 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
606 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
607 	root_item->ctime = root_item->otime;
608 	btrfs_set_root_ctransid(root_item, trans->transid);
609 	btrfs_set_root_otransid(root_item, trans->transid);
610 
611 	btrfs_tree_unlock(leaf);
612 
613 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
614 
615 	key.objectid = objectid;
616 	key.type = BTRFS_ROOT_ITEM_KEY;
617 	key.offset = 0;
618 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
619 				root_item);
620 	if (ret) {
621 		int ret2;
622 
623 		/*
624 		 * Since we don't abort the transaction in this case, free the
625 		 * tree block so that we don't leak space and leave the
626 		 * filesystem in an inconsistent state (an extent item in the
627 		 * extent tree with a backreference for a root that does not
628 		 * exists).
629 		 */
630 		btrfs_tree_lock(leaf);
631 		btrfs_clear_buffer_dirty(trans, leaf);
632 		btrfs_tree_unlock(leaf);
633 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
634 		if (unlikely(ret2 < 0))
635 			btrfs_abort_transaction(trans, ret2);
636 		free_extent_buffer(leaf);
637 		goto out;
638 	}
639 
640 	free_extent_buffer(leaf);
641 	leaf = NULL;
642 
643 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
644 	if (IS_ERR(new_root)) {
645 		ret = PTR_ERR(new_root);
646 		btrfs_abort_transaction(trans, ret);
647 		goto out;
648 	}
649 	/* anon_dev is owned by new_root now. */
650 	anon_dev = 0;
651 	BTRFS_I(new_inode_args.inode)->root = new_root;
652 	/* ... and new_root is owned by new_inode_args.inode now. */
653 
654 	ret = btrfs_record_root_in_trans(trans, new_root);
655 	if (unlikely(ret)) {
656 		btrfs_abort_transaction(trans, ret);
657 		goto out;
658 	}
659 
660 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
661 				  BTRFS_UUID_KEY_SUBVOL, objectid);
662 	if (unlikely(ret)) {
663 		btrfs_abort_transaction(trans, ret);
664 		goto out;
665 	}
666 
667 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
668 
669 	ret = btrfs_create_new_inode(trans, &new_inode_args);
670 	if (unlikely(ret)) {
671 		btrfs_abort_transaction(trans, ret);
672 		goto out;
673 	}
674 
675 	d_instantiate_new(dentry, new_inode_args.inode);
676 	new_inode_args.inode = NULL;
677 
678 out:
679 	trans->block_rsv = NULL;
680 	trans->bytes_reserved = 0;
681 	btrfs_end_transaction(trans);
682 out_release_rsv:
683 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
684 	if (qgroup_reserved)
685 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
686 out_new_inode_args:
687 	btrfs_new_inode_args_destroy(&new_inode_args);
688 out_inode:
689 	iput(new_inode_args.inode);
690 out_anon_dev:
691 	if (anon_dev)
692 		free_anon_bdev(anon_dev);
693 
694 	return ret;
695 }
696 
697 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
698 			   struct dentry *dentry, bool readonly,
699 			   struct btrfs_qgroup_inherit *inherit)
700 {
701 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
702 	struct inode *inode;
703 	struct btrfs_pending_snapshot *pending_snapshot;
704 	unsigned int trans_num_items;
705 	struct btrfs_trans_handle *trans;
706 	struct btrfs_block_rsv *block_rsv;
707 	u64 qgroup_reserved = 0;
708 	int ret;
709 
710 	/* We do not support snapshotting right now. */
711 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
712 		btrfs_warn(fs_info,
713 			   "extent tree v2 doesn't support snapshotting yet");
714 		return -EOPNOTSUPP;
715 	}
716 
717 	if (btrfs_root_refs(&root->root_item) == 0)
718 		return -ENOENT;
719 
720 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
721 		return -EINVAL;
722 
723 	if (atomic_read(&root->nr_swapfiles)) {
724 		btrfs_warn(fs_info,
725 			   "cannot snapshot subvolume with active swapfile");
726 		return -ETXTBSY;
727 	}
728 
729 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
730 	if (!pending_snapshot)
731 		return -ENOMEM;
732 
733 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
734 	if (ret < 0)
735 		goto free_pending;
736 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
737 			GFP_KERNEL);
738 	pending_snapshot->path = btrfs_alloc_path();
739 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
740 		ret = -ENOMEM;
741 		goto free_pending;
742 	}
743 
744 	block_rsv = &pending_snapshot->block_rsv;
745 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
746 	/*
747 	 * 1 to add dir item
748 	 * 1 to add dir index
749 	 * 1 to update parent inode item
750 	 */
751 	trans_num_items = create_subvol_num_items(inherit) + 3;
752 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
753 					       trans_num_items, false);
754 	if (ret)
755 		goto free_pending;
756 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
757 
758 	pending_snapshot->dentry = dentry;
759 	pending_snapshot->root = root;
760 	pending_snapshot->readonly = readonly;
761 	pending_snapshot->dir = BTRFS_I(dir);
762 	pending_snapshot->inherit = inherit;
763 
764 	trans = btrfs_start_transaction(root, 0);
765 	if (IS_ERR(trans)) {
766 		ret = PTR_ERR(trans);
767 		goto fail;
768 	}
769 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
770 	if (ret) {
771 		btrfs_end_transaction(trans);
772 		goto fail;
773 	}
774 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
775 	qgroup_reserved = 0;
776 
777 	trans->pending_snapshot = pending_snapshot;
778 
779 	ret = btrfs_commit_transaction(trans);
780 	if (ret)
781 		goto fail;
782 
783 	ret = pending_snapshot->error;
784 	if (ret)
785 		goto fail;
786 
787 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
788 	if (ret)
789 		goto fail;
790 
791 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
792 	if (IS_ERR(inode)) {
793 		ret = PTR_ERR(inode);
794 		goto fail;
795 	}
796 
797 	d_instantiate(dentry, inode);
798 	ret = 0;
799 	pending_snapshot->anon_dev = 0;
800 fail:
801 	/* Prevent double freeing of anon_dev */
802 	if (ret && pending_snapshot->snap)
803 		pending_snapshot->snap->anon_dev = 0;
804 	btrfs_put_root(pending_snapshot->snap);
805 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
806 	if (qgroup_reserved)
807 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
808 free_pending:
809 	if (pending_snapshot->anon_dev)
810 		free_anon_bdev(pending_snapshot->anon_dev);
811 	kfree(pending_snapshot->root_item);
812 	btrfs_free_path(pending_snapshot->path);
813 	kfree(pending_snapshot);
814 
815 	return ret;
816 }
817 
818 /*
819  * Create a new subvolume below @parent.  This is largely modeled after
820  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
821  * inside this filesystem so it's quite a bit simpler.
822  */
823 static noinline int btrfs_mksubvol(struct dentry *parent,
824 				   struct mnt_idmap *idmap,
825 				   struct qstr *qname, struct btrfs_root *snap_src,
826 				   bool readonly,
827 				   struct btrfs_qgroup_inherit *inherit)
828 {
829 	struct inode *dir = d_inode(parent);
830 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
831 	struct dentry *dentry;
832 	struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len);
833 	int ret;
834 
835 	dentry = start_creating_killable(idmap, parent, qname);
836 	if (IS_ERR(dentry))
837 		return PTR_ERR(dentry);
838 
839 	ret = may_create_dentry(idmap, dir, dentry);
840 	if (ret)
841 		goto out_dput;
842 
843 	/*
844 	 * even if this name doesn't exist, we may get hash collisions.
845 	 * check for them now when we can safely fail
846 	 */
847 	ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str);
848 	if (ret)
849 		goto out_dput;
850 
851 	down_read(&fs_info->subvol_sem);
852 
853 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
854 		goto out_up_read;
855 
856 	if (snap_src)
857 		ret = create_snapshot(snap_src, dir, dentry, readonly, inherit);
858 	else
859 		ret = create_subvol(idmap, dir, dentry, inherit);
860 
861 	if (!ret)
862 		fsnotify_mkdir(dir, dentry);
863 out_up_read:
864 	up_read(&fs_info->subvol_sem);
865 out_dput:
866 	end_creating(dentry);
867 	return ret;
868 }
869 
870 static noinline int btrfs_mksnapshot(struct dentry *parent,
871 				   struct mnt_idmap *idmap,
872 				   struct qstr *qname,
873 				   struct btrfs_root *root,
874 				   bool readonly,
875 				   struct btrfs_qgroup_inherit *inherit)
876 {
877 	int ret;
878 
879 	/*
880 	 * Force new buffered writes to reserve space even when NOCOW is
881 	 * possible. This is to avoid later writeback (running delalloc) to
882 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
883 	 */
884 	btrfs_drew_read_lock(&root->snapshot_lock);
885 
886 	ret = btrfs_start_delalloc_snapshot(root, false);
887 	if (ret)
888 		goto out;
889 
890 	/*
891 	 * All previous writes have started writeback in NOCOW mode, so now
892 	 * we force future writes to fallback to COW mode during snapshot
893 	 * creation.
894 	 */
895 	atomic_inc(&root->snapshot_force_cow);
896 
897 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
898 
899 	ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit);
900 
901 	atomic_dec(&root->snapshot_force_cow);
902 out:
903 	btrfs_drew_read_unlock(&root->snapshot_lock);
904 	return ret;
905 }
906 
907 /*
908  * Try to start exclusive operation @type or cancel it if it's running.
909  *
910  * Return:
911  *   0        - normal mode, newly claimed op started
912  *  >0        - normal mode, something else is running,
913  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
914  * ECANCELED  - cancel mode, successful cancel
915  * ENOTCONN   - cancel mode, operation not running anymore
916  */
917 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
918 			enum btrfs_exclusive_operation type, bool cancel)
919 {
920 	if (!cancel) {
921 		/* Start normal op */
922 		if (!btrfs_exclop_start(fs_info, type))
923 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
924 		/* Exclusive operation is now claimed */
925 		return 0;
926 	}
927 
928 	/* Cancel running op */
929 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
930 		/*
931 		 * This blocks any exclop finish from setting it to NONE, so we
932 		 * request cancellation. Either it runs and we will wait for it,
933 		 * or it has finished and no waiting will happen.
934 		 */
935 		atomic_inc(&fs_info->reloc_cancel_req);
936 		btrfs_exclop_start_unlock(fs_info);
937 
938 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
939 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
940 				    TASK_INTERRUPTIBLE);
941 
942 		return -ECANCELED;
943 	}
944 
945 	/* Something else is running or none */
946 	return -ENOTCONN;
947 }
948 
949 static noinline int btrfs_ioctl_resize(struct file *file,
950 					void __user *arg)
951 {
952 	BTRFS_DEV_LOOKUP_ARGS(args);
953 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
954 	struct btrfs_fs_info *fs_info = root->fs_info;
955 	u64 new_size;
956 	u64 old_size;
957 	u64 devid = 1;
958 	struct btrfs_ioctl_vol_args *vol_args;
959 	struct btrfs_device *device = NULL;
960 	char *sizestr;
961 	char *devstr = NULL;
962 	int ret = 0;
963 	int mod = 0;
964 	bool cancel;
965 
966 	if (!capable(CAP_SYS_ADMIN))
967 		return -EPERM;
968 
969 	ret = mnt_want_write_file(file);
970 	if (ret)
971 		return ret;
972 
973 	/*
974 	 * Read the arguments before checking exclusivity to be able to
975 	 * distinguish regular resize and cancel
976 	 */
977 	vol_args = memdup_user(arg, sizeof(*vol_args));
978 	if (IS_ERR(vol_args)) {
979 		ret = PTR_ERR(vol_args);
980 		goto out_drop;
981 	}
982 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
983 	if (ret < 0)
984 		goto out_free;
985 
986 	sizestr = vol_args->name;
987 	cancel = (strcmp("cancel", sizestr) == 0);
988 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
989 	if (ret)
990 		goto out_free;
991 	/* Exclusive operation is now claimed */
992 
993 	devstr = strchr(sizestr, ':');
994 	if (devstr) {
995 		sizestr = devstr + 1;
996 		*devstr = '\0';
997 		devstr = vol_args->name;
998 		ret = kstrtoull(devstr, 10, &devid);
999 		if (ret)
1000 			goto out_finish;
1001 		if (!devid) {
1002 			ret = -EINVAL;
1003 			goto out_finish;
1004 		}
1005 		btrfs_info(fs_info, "resizing devid %llu", devid);
1006 	}
1007 
1008 	args.devid = devid;
1009 	device = btrfs_find_device(fs_info->fs_devices, &args);
1010 	if (!device) {
1011 		btrfs_info(fs_info, "resizer unable to find device %llu",
1012 			   devid);
1013 		ret = -ENODEV;
1014 		goto out_finish;
1015 	}
1016 
1017 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1018 		btrfs_info(fs_info,
1019 			   "resizer unable to apply on readonly device %llu",
1020 		       devid);
1021 		ret = -EPERM;
1022 		goto out_finish;
1023 	}
1024 
1025 	if (!strcmp(sizestr, "max"))
1026 		new_size = bdev_nr_bytes(device->bdev);
1027 	else {
1028 		char *retptr;
1029 
1030 		if (sizestr[0] == '-') {
1031 			mod = -1;
1032 			sizestr++;
1033 		} else if (sizestr[0] == '+') {
1034 			mod = 1;
1035 			sizestr++;
1036 		}
1037 		new_size = memparse(sizestr, &retptr);
1038 		if (*retptr != '\0' || new_size == 0) {
1039 			ret = -EINVAL;
1040 			goto out_finish;
1041 		}
1042 	}
1043 
1044 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1045 		ret = -EPERM;
1046 		goto out_finish;
1047 	}
1048 
1049 	old_size = btrfs_device_get_total_bytes(device);
1050 
1051 	if (mod < 0) {
1052 		if (new_size > old_size) {
1053 			ret = -EINVAL;
1054 			goto out_finish;
1055 		}
1056 		new_size = old_size - new_size;
1057 	} else if (mod > 0) {
1058 		if (new_size > ULLONG_MAX - old_size) {
1059 			ret = -ERANGE;
1060 			goto out_finish;
1061 		}
1062 		new_size = old_size + new_size;
1063 	}
1064 
1065 	if (new_size < SZ_256M) {
1066 		ret = -EINVAL;
1067 		goto out_finish;
1068 	}
1069 	if (new_size > bdev_nr_bytes(device->bdev)) {
1070 		ret = -EFBIG;
1071 		goto out_finish;
1072 	}
1073 
1074 	new_size = round_down(new_size, fs_info->sectorsize);
1075 
1076 	if (new_size > old_size) {
1077 		struct btrfs_trans_handle *trans;
1078 
1079 		trans = btrfs_start_transaction(root, 0);
1080 		if (IS_ERR(trans)) {
1081 			ret = PTR_ERR(trans);
1082 			goto out_finish;
1083 		}
1084 		ret = btrfs_grow_device(trans, device, new_size);
1085 		btrfs_commit_transaction(trans);
1086 	} else if (new_size < old_size) {
1087 		ret = btrfs_shrink_device(device, new_size);
1088 	} /* equal, nothing need to do */
1089 
1090 	if (ret == 0 && new_size != old_size)
1091 		btrfs_info(fs_info,
1092 			"resize device %s (devid %llu) from %llu to %llu",
1093 			btrfs_dev_name(device), device->devid,
1094 			old_size, new_size);
1095 out_finish:
1096 	btrfs_exclop_finish(fs_info);
1097 out_free:
1098 	kfree(vol_args);
1099 out_drop:
1100 	mnt_drop_write_file(file);
1101 	return ret;
1102 }
1103 
1104 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1105 				struct mnt_idmap *idmap,
1106 				const char *name, unsigned long fd, bool subvol,
1107 				bool readonly,
1108 				struct btrfs_qgroup_inherit *inherit)
1109 {
1110 	int ret;
1111 	struct qstr qname = QSTR_INIT(name, strlen(name));
1112 
1113 	if (!S_ISDIR(file_inode(file)->i_mode))
1114 		return -ENOTDIR;
1115 
1116 	ret = mnt_want_write_file(file);
1117 	if (ret)
1118 		return ret;
1119 
1120 	if (strchr(name, '/')) {
1121 		ret = -EINVAL;
1122 		goto out_drop_write;
1123 	}
1124 
1125 	if (qname.name[0] == '.' &&
1126 	   (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) {
1127 		ret = -EEXIST;
1128 		goto out_drop_write;
1129 	}
1130 
1131 	if (subvol) {
1132 		ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL,
1133 				     readonly, inherit);
1134 	} else {
1135 		CLASS(fd, src)(fd);
1136 		struct inode *src_inode;
1137 		if (fd_empty(src)) {
1138 			ret = -EINVAL;
1139 			goto out_drop_write;
1140 		}
1141 
1142 		src_inode = file_inode(fd_file(src));
1143 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1144 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1145 				   "Snapshot src from another FS");
1146 			ret = -EXDEV;
1147 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1148 			/*
1149 			 * Subvolume creation is not restricted, but snapshots
1150 			 * are limited to own subvolumes only
1151 			 */
1152 			ret = -EPERM;
1153 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1154 			/*
1155 			 * Snapshots must be made with the src_inode referring
1156 			 * to the subvolume inode, otherwise the permission
1157 			 * checking above is useless because we may have
1158 			 * permission on a lower directory but not the subvol
1159 			 * itself.
1160 			 */
1161 			ret = -EINVAL;
1162 		} else {
1163 			ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname,
1164 					       BTRFS_I(src_inode)->root,
1165 					       readonly, inherit);
1166 		}
1167 	}
1168 out_drop_write:
1169 	mnt_drop_write_file(file);
1170 	return ret;
1171 }
1172 
1173 static noinline int btrfs_ioctl_snap_create(struct file *file,
1174 					    void __user *arg, bool subvol)
1175 {
1176 	struct btrfs_ioctl_vol_args *vol_args;
1177 	int ret;
1178 
1179 	if (!S_ISDIR(file_inode(file)->i_mode))
1180 		return -ENOTDIR;
1181 
1182 	vol_args = memdup_user(arg, sizeof(*vol_args));
1183 	if (IS_ERR(vol_args))
1184 		return PTR_ERR(vol_args);
1185 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1186 	if (ret < 0)
1187 		goto out;
1188 
1189 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1190 					vol_args->name, vol_args->fd, subvol,
1191 					false, NULL);
1192 
1193 out:
1194 	kfree(vol_args);
1195 	return ret;
1196 }
1197 
1198 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1199 					       void __user *arg, bool subvol)
1200 {
1201 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1202 	int ret;
1203 	bool readonly = false;
1204 	struct btrfs_qgroup_inherit *inherit = NULL;
1205 
1206 	if (!S_ISDIR(file_inode(file)->i_mode))
1207 		return -ENOTDIR;
1208 
1209 	vol_args = memdup_user(arg, sizeof(*vol_args));
1210 	if (IS_ERR(vol_args))
1211 		return PTR_ERR(vol_args);
1212 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1213 	if (ret < 0)
1214 		goto free_args;
1215 
1216 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1217 		ret = -EOPNOTSUPP;
1218 		goto free_args;
1219 	}
1220 
1221 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1222 		readonly = true;
1223 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1224 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1225 
1226 		if (vol_args->size < sizeof(*inherit) ||
1227 		    vol_args->size > PAGE_SIZE) {
1228 			ret = -EINVAL;
1229 			goto free_args;
1230 		}
1231 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1232 		if (IS_ERR(inherit)) {
1233 			ret = PTR_ERR(inherit);
1234 			goto free_args;
1235 		}
1236 
1237 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1238 		if (ret < 0)
1239 			goto free_inherit;
1240 	}
1241 
1242 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1243 					vol_args->name, vol_args->fd, subvol,
1244 					readonly, inherit);
1245 	if (ret)
1246 		goto free_inherit;
1247 free_inherit:
1248 	kfree(inherit);
1249 free_args:
1250 	kfree(vol_args);
1251 	return ret;
1252 }
1253 
1254 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1255 						void __user *arg)
1256 {
1257 	struct btrfs_root *root = inode->root;
1258 	struct btrfs_fs_info *fs_info = root->fs_info;
1259 	int ret = 0;
1260 	u64 flags = 0;
1261 
1262 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1263 		return -EINVAL;
1264 
1265 	down_read(&fs_info->subvol_sem);
1266 	if (btrfs_root_readonly(root))
1267 		flags |= BTRFS_SUBVOL_RDONLY;
1268 	up_read(&fs_info->subvol_sem);
1269 
1270 	if (copy_to_user(arg, &flags, sizeof(flags)))
1271 		ret = -EFAULT;
1272 
1273 	return ret;
1274 }
1275 
1276 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1277 					      void __user *arg)
1278 {
1279 	struct inode *inode = file_inode(file);
1280 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1281 	struct btrfs_root *root = BTRFS_I(inode)->root;
1282 	struct btrfs_trans_handle *trans;
1283 	u64 root_flags;
1284 	u64 flags;
1285 	int ret;
1286 
1287 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1288 		return -EPERM;
1289 
1290 	ret = mnt_want_write_file(file);
1291 	if (ret)
1292 		return ret;
1293 
1294 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1295 		ret = -EINVAL;
1296 		goto out_drop_write;
1297 	}
1298 
1299 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1300 		ret = -EFAULT;
1301 		goto out_drop_write;
1302 	}
1303 
1304 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1305 		ret = -EOPNOTSUPP;
1306 		goto out_drop_write;
1307 	}
1308 
1309 	down_write(&fs_info->subvol_sem);
1310 
1311 	/* nothing to do */
1312 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1313 		goto out_drop_sem;
1314 
1315 	root_flags = btrfs_root_flags(&root->root_item);
1316 	if (flags & BTRFS_SUBVOL_RDONLY) {
1317 		btrfs_set_root_flags(&root->root_item,
1318 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1319 	} else {
1320 		/*
1321 		 * Block RO -> RW transition if this subvolume is involved in
1322 		 * send
1323 		 */
1324 		spin_lock(&root->root_item_lock);
1325 		if (root->send_in_progress == 0) {
1326 			btrfs_set_root_flags(&root->root_item,
1327 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1328 			spin_unlock(&root->root_item_lock);
1329 		} else {
1330 			spin_unlock(&root->root_item_lock);
1331 			btrfs_warn(fs_info,
1332 				   "Attempt to set subvolume %llu read-write during send",
1333 				   btrfs_root_id(root));
1334 			ret = -EPERM;
1335 			goto out_drop_sem;
1336 		}
1337 	}
1338 
1339 	trans = btrfs_start_transaction(root, 1);
1340 	if (IS_ERR(trans)) {
1341 		ret = PTR_ERR(trans);
1342 		goto out_reset;
1343 	}
1344 
1345 	ret = btrfs_update_root(trans, fs_info->tree_root,
1346 				&root->root_key, &root->root_item);
1347 	if (ret < 0) {
1348 		btrfs_end_transaction(trans);
1349 		goto out_reset;
1350 	}
1351 
1352 	ret = btrfs_commit_transaction(trans);
1353 
1354 out_reset:
1355 	if (ret)
1356 		btrfs_set_root_flags(&root->root_item, root_flags);
1357 out_drop_sem:
1358 	up_write(&fs_info->subvol_sem);
1359 out_drop_write:
1360 	mnt_drop_write_file(file);
1361 	return ret;
1362 }
1363 
1364 static noinline bool key_in_sk(const struct btrfs_key *key,
1365 			       const struct btrfs_ioctl_search_key *sk)
1366 {
1367 	struct btrfs_key test;
1368 	int ret;
1369 
1370 	test.objectid = sk->min_objectid;
1371 	test.type = sk->min_type;
1372 	test.offset = sk->min_offset;
1373 
1374 	ret = btrfs_comp_cpu_keys(key, &test);
1375 	if (ret < 0)
1376 		return false;
1377 
1378 	test.objectid = sk->max_objectid;
1379 	test.type = sk->max_type;
1380 	test.offset = sk->max_offset;
1381 
1382 	ret = btrfs_comp_cpu_keys(key, &test);
1383 	if (ret > 0)
1384 		return false;
1385 	return true;
1386 }
1387 
1388 static noinline int copy_to_sk(struct btrfs_path *path,
1389 			       struct btrfs_key *key,
1390 			       const struct btrfs_ioctl_search_key *sk,
1391 			       u64 *buf_size,
1392 			       char __user *ubuf,
1393 			       unsigned long *sk_offset,
1394 			       int *num_found)
1395 {
1396 	u64 found_transid;
1397 	struct extent_buffer *leaf;
1398 	struct btrfs_ioctl_search_header sh;
1399 	struct btrfs_key test;
1400 	unsigned long item_off;
1401 	unsigned long item_len;
1402 	int nritems;
1403 	int i;
1404 	int slot;
1405 	int ret = 0;
1406 
1407 	leaf = path->nodes[0];
1408 	slot = path->slots[0];
1409 	nritems = btrfs_header_nritems(leaf);
1410 
1411 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1412 		i = nritems;
1413 		goto advance_key;
1414 	}
1415 	found_transid = btrfs_header_generation(leaf);
1416 
1417 	for (i = slot; i < nritems; i++) {
1418 		item_off = btrfs_item_ptr_offset(leaf, i);
1419 		item_len = btrfs_item_size(leaf, i);
1420 
1421 		btrfs_item_key_to_cpu(leaf, key, i);
1422 		if (!key_in_sk(key, sk))
1423 			continue;
1424 
1425 		if (sizeof(sh) + item_len > *buf_size) {
1426 			if (*num_found)
1427 				return 1;
1428 
1429 			/*
1430 			 * return one empty item back for v1, which does not
1431 			 * handle -EOVERFLOW
1432 			 */
1433 
1434 			*buf_size = sizeof(sh) + item_len;
1435 			item_len = 0;
1436 			ret = -EOVERFLOW;
1437 		}
1438 
1439 		if (sizeof(sh) + item_len + *sk_offset > *buf_size)
1440 			return 1;
1441 
1442 		sh.objectid = key->objectid;
1443 		sh.type = key->type;
1444 		sh.offset = key->offset;
1445 		sh.len = item_len;
1446 		sh.transid = found_transid;
1447 
1448 		/*
1449 		 * Copy search result header. If we fault then loop again so we
1450 		 * can fault in the pages and -EFAULT there if there's a
1451 		 * problem. Otherwise we'll fault and then copy the buffer in
1452 		 * properly this next time through
1453 		 */
1454 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh)))
1455 			return 0;
1456 
1457 		*sk_offset += sizeof(sh);
1458 
1459 		if (item_len) {
1460 			char __user *up = ubuf + *sk_offset;
1461 			/*
1462 			 * Copy the item, same behavior as above, but reset the
1463 			 * * sk_offset so we copy the full thing again.
1464 			 */
1465 			if (read_extent_buffer_to_user_nofault(leaf, up,
1466 						item_off, item_len)) {
1467 				*sk_offset -= sizeof(sh);
1468 				return 0;
1469 			}
1470 
1471 			*sk_offset += item_len;
1472 		}
1473 		(*num_found)++;
1474 
1475 		/* -EOVERFLOW from above. */
1476 		if (ret)
1477 			return ret;
1478 
1479 		if (*num_found >= sk->nr_items)
1480 			return 1;
1481 	}
1482 advance_key:
1483 	ret = 0;
1484 	test.objectid = sk->max_objectid;
1485 	test.type = sk->max_type;
1486 	test.offset = sk->max_offset;
1487 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1488 		ret = 1;
1489 	else if (key->offset < (u64)-1)
1490 		key->offset++;
1491 	else if (key->type < (u8)-1) {
1492 		key->offset = 0;
1493 		key->type++;
1494 	} else if (key->objectid < (u64)-1) {
1495 		key->offset = 0;
1496 		key->type = 0;
1497 		key->objectid++;
1498 	} else
1499 		ret = 1;
1500 
1501 	/*
1502 	 *  0: all items from this leaf copied, continue with next
1503 	 *  1: * more items can be copied, but unused buffer is too small
1504 	 *     * all items were found
1505 	 *     Either way, it will stops the loop which iterates to the next
1506 	 *     leaf
1507 	 *  -EOVERFLOW: item was to large for buffer
1508 	 *  -EFAULT: could not copy extent buffer back to userspace
1509 	 */
1510 	return ret;
1511 }
1512 
1513 static noinline int search_ioctl(struct btrfs_root *root,
1514 				 struct btrfs_ioctl_search_key *sk,
1515 				 u64 *buf_size,
1516 				 char __user *ubuf)
1517 {
1518 	struct btrfs_fs_info *info = root->fs_info;
1519 	struct btrfs_key key;
1520 	BTRFS_PATH_AUTO_FREE(path);
1521 	int ret;
1522 	int num_found = 0;
1523 	unsigned long sk_offset = 0;
1524 
1525 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1526 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1527 		return -EOVERFLOW;
1528 	}
1529 
1530 	path = btrfs_alloc_path();
1531 	if (!path)
1532 		return -ENOMEM;
1533 
1534 	if (sk->tree_id == 0) {
1535 		/* Search the root that we got passed. */
1536 		root = btrfs_grab_root(root);
1537 	} else {
1538 		/* Look up the root from the arguments. */
1539 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1540 		if (IS_ERR(root))
1541 			return PTR_ERR(root);
1542 	}
1543 
1544 	key.objectid = sk->min_objectid;
1545 	key.type = sk->min_type;
1546 	key.offset = sk->min_offset;
1547 
1548 	while (1) {
1549 		/*
1550 		 * Ensure that the whole user buffer is faulted in at sub-page
1551 		 * granularity, otherwise the loop may live-lock.
1552 		 */
1553 		if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1554 			ret = -EFAULT;
1555 			break;
1556 		}
1557 
1558 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1559 		if (ret)
1560 			break;
1561 
1562 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1563 				 &sk_offset, &num_found);
1564 		btrfs_release_path(path);
1565 		if (ret)
1566 			break;
1567 
1568 	}
1569 	/* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1570 	if (ret > 0)
1571 		ret = 0;
1572 
1573 	sk->nr_items = num_found;
1574 	btrfs_put_root(root);
1575 	return ret;
1576 }
1577 
1578 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1579 					    void __user *argp)
1580 {
1581 	struct btrfs_ioctl_search_args __user *uargs = argp;
1582 	struct btrfs_ioctl_search_key sk;
1583 	int ret;
1584 	u64 buf_size;
1585 
1586 	if (!capable(CAP_SYS_ADMIN))
1587 		return -EPERM;
1588 
1589 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1590 		return -EFAULT;
1591 
1592 	buf_size = sizeof(uargs->buf);
1593 
1594 	ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1595 
1596 	/*
1597 	 * In the origin implementation an overflow is handled by returning a
1598 	 * search header with a len of zero, so reset ret.
1599 	 */
1600 	if (ret == -EOVERFLOW)
1601 		ret = 0;
1602 
1603 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1604 		ret = -EFAULT;
1605 	return ret;
1606 }
1607 
1608 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1609 					       void __user *argp)
1610 {
1611 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1612 	struct btrfs_ioctl_search_args_v2 args;
1613 	int ret;
1614 	u64 buf_size;
1615 	const u64 buf_limit = SZ_16M;
1616 
1617 	if (!capable(CAP_SYS_ADMIN))
1618 		return -EPERM;
1619 
1620 	/* copy search header and buffer size */
1621 	if (copy_from_user(&args, uarg, sizeof(args)))
1622 		return -EFAULT;
1623 
1624 	buf_size = args.buf_size;
1625 
1626 	/* limit result size to 16MB */
1627 	if (buf_size > buf_limit)
1628 		buf_size = buf_limit;
1629 
1630 	ret = search_ioctl(root, &args.key, &buf_size,
1631 			   (char __user *)(&uarg->buf[0]));
1632 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1633 		ret = -EFAULT;
1634 	else if (ret == -EOVERFLOW &&
1635 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1636 		ret = -EFAULT;
1637 
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Search INODE_REFs to identify path name of 'dirid' directory
1643  * in a 'tree_id' tree. and sets path name to 'name'.
1644  */
1645 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1646 				u64 tree_id, u64 dirid, char *name)
1647 {
1648 	struct btrfs_root *root;
1649 	struct btrfs_key key;
1650 	char *ptr;
1651 	int ret = -1;
1652 	int slot;
1653 	int len;
1654 	int total_len = 0;
1655 	struct btrfs_inode_ref *iref;
1656 	struct extent_buffer *l;
1657 	BTRFS_PATH_AUTO_FREE(path);
1658 
1659 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1660 		name[0]='\0';
1661 		return 0;
1662 	}
1663 
1664 	path = btrfs_alloc_path();
1665 	if (!path)
1666 		return -ENOMEM;
1667 
1668 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1669 
1670 	root = btrfs_get_fs_root(info, tree_id, true);
1671 	if (IS_ERR(root)) {
1672 		ret = PTR_ERR(root);
1673 		root = NULL;
1674 		goto out;
1675 	}
1676 
1677 	key.objectid = dirid;
1678 	key.type = BTRFS_INODE_REF_KEY;
1679 	key.offset = (u64)-1;
1680 
1681 	while (1) {
1682 		ret = btrfs_search_backwards(root, &key, path);
1683 		if (ret < 0)
1684 			goto out;
1685 		else if (ret > 0) {
1686 			ret = -ENOENT;
1687 			goto out;
1688 		}
1689 
1690 		l = path->nodes[0];
1691 		slot = path->slots[0];
1692 
1693 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1694 		len = btrfs_inode_ref_name_len(l, iref);
1695 		ptr -= len + 1;
1696 		total_len += len + 1;
1697 		if (ptr < name) {
1698 			ret = -ENAMETOOLONG;
1699 			goto out;
1700 		}
1701 
1702 		*(ptr + len) = '/';
1703 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1704 
1705 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1706 			break;
1707 
1708 		btrfs_release_path(path);
1709 		key.objectid = key.offset;
1710 		key.offset = (u64)-1;
1711 		dirid = key.objectid;
1712 	}
1713 	memmove(name, ptr, total_len);
1714 	name[total_len] = '\0';
1715 	ret = 0;
1716 out:
1717 	btrfs_put_root(root);
1718 	return ret;
1719 }
1720 
1721 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1722 				struct inode *inode,
1723 				struct btrfs_ioctl_ino_lookup_user_args *args)
1724 {
1725 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1726 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1727 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1728 	u64 dirid = args->dirid;
1729 	unsigned long item_off;
1730 	unsigned long item_len;
1731 	struct btrfs_inode_ref *iref;
1732 	struct btrfs_root_ref *rref;
1733 	struct btrfs_root *root = NULL;
1734 	BTRFS_PATH_AUTO_FREE(path);
1735 	struct btrfs_key key;
1736 	struct extent_buffer *leaf;
1737 	char *ptr;
1738 	int slot;
1739 	int len;
1740 	int total_len = 0;
1741 	int ret;
1742 
1743 	path = btrfs_alloc_path();
1744 	if (!path)
1745 		return -ENOMEM;
1746 
1747 	/*
1748 	 * If the bottom subvolume does not exist directly under upper_limit,
1749 	 * construct the path in from the bottom up.
1750 	 */
1751 	if (dirid != upper_limit) {
1752 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1753 
1754 		root = btrfs_get_fs_root(fs_info, treeid, true);
1755 		if (IS_ERR(root))
1756 			return PTR_ERR(root);
1757 
1758 		key.objectid = dirid;
1759 		key.type = BTRFS_INODE_REF_KEY;
1760 		key.offset = (u64)-1;
1761 		while (1) {
1762 			struct btrfs_inode *temp_inode;
1763 
1764 			ret = btrfs_search_backwards(root, &key, path);
1765 			if (ret < 0)
1766 				goto out_put;
1767 			else if (ret > 0) {
1768 				ret = -ENOENT;
1769 				goto out_put;
1770 			}
1771 
1772 			leaf = path->nodes[0];
1773 			slot = path->slots[0];
1774 
1775 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1776 			len = btrfs_inode_ref_name_len(leaf, iref);
1777 			ptr -= len + 1;
1778 			total_len += len + 1;
1779 			if (ptr < args->path) {
1780 				ret = -ENAMETOOLONG;
1781 				goto out_put;
1782 			}
1783 
1784 			*(ptr + len) = '/';
1785 			read_extent_buffer(leaf, ptr,
1786 					(unsigned long)(iref + 1), len);
1787 
1788 			/*
1789 			 * We don't need the path anymore, so release it and
1790 			 * avoid deadlocks and lockdep warnings in case
1791 			 * btrfs_iget() needs to lookup the inode from its root
1792 			 * btree and lock the same leaf.
1793 			 */
1794 			btrfs_release_path(path);
1795 			temp_inode = btrfs_iget(key.offset, root);
1796 			if (IS_ERR(temp_inode)) {
1797 				ret = PTR_ERR(temp_inode);
1798 				goto out_put;
1799 			}
1800 			/* Check the read+exec permission of this directory. */
1801 			ret = inode_permission(idmap, &temp_inode->vfs_inode,
1802 					       MAY_READ | MAY_EXEC);
1803 			iput(&temp_inode->vfs_inode);
1804 			if (ret)
1805 				goto out_put;
1806 
1807 			if (key.offset == upper_limit)
1808 				break;
1809 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1810 				ret = -EACCES;
1811 				goto out_put;
1812 			}
1813 
1814 			key.objectid = key.offset;
1815 			key.offset = (u64)-1;
1816 			dirid = key.objectid;
1817 		}
1818 
1819 		memmove(args->path, ptr, total_len);
1820 		args->path[total_len] = '\0';
1821 		btrfs_put_root(root);
1822 		root = NULL;
1823 		btrfs_release_path(path);
1824 	}
1825 
1826 	/* Get the bottom subvolume's name from ROOT_REF */
1827 	key.objectid = treeid;
1828 	key.type = BTRFS_ROOT_REF_KEY;
1829 	key.offset = args->treeid;
1830 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1831 	if (ret < 0)
1832 		return ret;
1833 	else if (ret > 0)
1834 		return -ENOENT;
1835 
1836 	leaf = path->nodes[0];
1837 	slot = path->slots[0];
1838 	btrfs_item_key_to_cpu(leaf, &key, slot);
1839 
1840 	item_off = btrfs_item_ptr_offset(leaf, slot);
1841 	item_len = btrfs_item_size(leaf, slot);
1842 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1843 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1844 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref))
1845 		return -EINVAL;
1846 
1847 	/* Copy subvolume's name */
1848 	item_off += sizeof(struct btrfs_root_ref);
1849 	item_len -= sizeof(struct btrfs_root_ref);
1850 	read_extent_buffer(leaf, args->name, item_off, item_len);
1851 	args->name[item_len] = 0;
1852 
1853 out_put:
1854 	btrfs_put_root(root);
1855 
1856 	return ret;
1857 }
1858 
1859 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1860 					   void __user *argp)
1861 {
1862 	struct btrfs_ioctl_ino_lookup_args *args;
1863 	int ret = 0;
1864 
1865 	args = memdup_user(argp, sizeof(*args));
1866 	if (IS_ERR(args))
1867 		return PTR_ERR(args);
1868 
1869 	/*
1870 	 * Unprivileged query to obtain the containing subvolume root id. The
1871 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1872 	 */
1873 	if (args->treeid == 0)
1874 		args->treeid = btrfs_root_id(root);
1875 
1876 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
1877 		args->name[0] = 0;
1878 		goto out;
1879 	}
1880 
1881 	if (!capable(CAP_SYS_ADMIN)) {
1882 		ret = -EPERM;
1883 		goto out;
1884 	}
1885 
1886 	ret = btrfs_search_path_in_tree(root->fs_info,
1887 					args->treeid, args->objectid,
1888 					args->name);
1889 
1890 out:
1891 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1892 		ret = -EFAULT;
1893 
1894 	kfree(args);
1895 	return ret;
1896 }
1897 
1898 /*
1899  * Version of ino_lookup ioctl (unprivileged)
1900  *
1901  * The main differences from ino_lookup ioctl are:
1902  *
1903  *   1. Read + Exec permission will be checked using inode_permission() during
1904  *      path construction. -EACCES will be returned in case of failure.
1905  *   2. Path construction will be stopped at the inode number which corresponds
1906  *      to the fd with which this ioctl is called. If constructed path does not
1907  *      exist under fd's inode, -EACCES will be returned.
1908  *   3. The name of bottom subvolume is also searched and filled.
1909  */
1910 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
1911 {
1912 	struct btrfs_ioctl_ino_lookup_user_args *args;
1913 	struct inode *inode;
1914 	int ret;
1915 
1916 	args = memdup_user(argp, sizeof(*args));
1917 	if (IS_ERR(args))
1918 		return PTR_ERR(args);
1919 
1920 	inode = file_inode(file);
1921 
1922 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
1923 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1924 		/*
1925 		 * The subvolume does not exist under fd with which this is
1926 		 * called
1927 		 */
1928 		kfree(args);
1929 		return -EACCES;
1930 	}
1931 
1932 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
1933 
1934 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1935 		ret = -EFAULT;
1936 
1937 	kfree(args);
1938 	return ret;
1939 }
1940 
1941 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
1942 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
1943 {
1944 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
1945 	struct btrfs_fs_info *fs_info;
1946 	struct btrfs_root *root;
1947 	struct btrfs_path *path;
1948 	struct btrfs_key key;
1949 	struct btrfs_root_item *root_item;
1950 	struct btrfs_root_ref *rref;
1951 	struct extent_buffer *leaf;
1952 	unsigned long item_off;
1953 	unsigned long item_len;
1954 	int slot;
1955 	int ret = 0;
1956 
1957 	path = btrfs_alloc_path();
1958 	if (!path)
1959 		return -ENOMEM;
1960 
1961 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
1962 	if (!subvol_info) {
1963 		btrfs_free_path(path);
1964 		return -ENOMEM;
1965 	}
1966 
1967 	fs_info = BTRFS_I(inode)->root->fs_info;
1968 
1969 	/* Get root_item of inode's subvolume */
1970 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
1971 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
1972 	if (IS_ERR(root)) {
1973 		ret = PTR_ERR(root);
1974 		goto out_free;
1975 	}
1976 	root_item = &root->root_item;
1977 
1978 	subvol_info->treeid = key.objectid;
1979 
1980 	subvol_info->generation = btrfs_root_generation(root_item);
1981 	subvol_info->flags = btrfs_root_flags(root_item);
1982 
1983 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
1984 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
1985 						    BTRFS_UUID_SIZE);
1986 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
1987 						    BTRFS_UUID_SIZE);
1988 
1989 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
1990 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
1991 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
1992 
1993 	subvol_info->otransid = btrfs_root_otransid(root_item);
1994 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
1995 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
1996 
1997 	subvol_info->stransid = btrfs_root_stransid(root_item);
1998 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
1999 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2000 
2001 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2002 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2003 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2004 
2005 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2006 		/* Search root tree for ROOT_BACKREF of this subvolume */
2007 		key.type = BTRFS_ROOT_BACKREF_KEY;
2008 		key.offset = 0;
2009 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2010 		if (ret < 0) {
2011 			goto out;
2012 		} else if (path->slots[0] >=
2013 			   btrfs_header_nritems(path->nodes[0])) {
2014 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2015 			if (ret < 0) {
2016 				goto out;
2017 			} else if (unlikely(ret > 0)) {
2018 				ret = -EUCLEAN;
2019 				goto out;
2020 			}
2021 		}
2022 
2023 		leaf = path->nodes[0];
2024 		slot = path->slots[0];
2025 		btrfs_item_key_to_cpu(leaf, &key, slot);
2026 		if (key.objectid == subvol_info->treeid &&
2027 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2028 			subvol_info->parent_id = key.offset;
2029 
2030 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2031 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2032 
2033 			item_off = btrfs_item_ptr_offset(leaf, slot)
2034 					+ sizeof(struct btrfs_root_ref);
2035 			item_len = btrfs_item_size(leaf, slot)
2036 					- sizeof(struct btrfs_root_ref);
2037 			read_extent_buffer(leaf, subvol_info->name,
2038 					   item_off, item_len);
2039 		} else {
2040 			ret = -ENOENT;
2041 			goto out;
2042 		}
2043 	}
2044 
2045 	btrfs_free_path(path);
2046 	path = NULL;
2047 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2048 		ret = -EFAULT;
2049 
2050 out:
2051 	btrfs_put_root(root);
2052 out_free:
2053 	btrfs_free_path(path);
2054 	kfree(subvol_info);
2055 	return ret;
2056 }
2057 
2058 /*
2059  * Return ROOT_REF information of the subvolume containing this inode
2060  * except the subvolume name.
2061  */
2062 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2063 					  void __user *argp)
2064 {
2065 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2066 	struct btrfs_root_ref *rref;
2067 	struct btrfs_path *path;
2068 	struct btrfs_key key;
2069 	struct extent_buffer *leaf;
2070 	u64 objectid;
2071 	int slot;
2072 	int ret;
2073 	u8 found;
2074 
2075 	path = btrfs_alloc_path();
2076 	if (!path)
2077 		return -ENOMEM;
2078 
2079 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2080 	if (IS_ERR(rootrefs)) {
2081 		btrfs_free_path(path);
2082 		return PTR_ERR(rootrefs);
2083 	}
2084 
2085 	objectid = btrfs_root_id(root);
2086 	key.objectid = objectid;
2087 	key.type = BTRFS_ROOT_REF_KEY;
2088 	key.offset = rootrefs->min_treeid;
2089 	found = 0;
2090 
2091 	root = root->fs_info->tree_root;
2092 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2093 	if (ret < 0) {
2094 		goto out;
2095 	} else if (path->slots[0] >=
2096 		   btrfs_header_nritems(path->nodes[0])) {
2097 		ret = btrfs_next_leaf(root, path);
2098 		if (ret < 0) {
2099 			goto out;
2100 		} else if (unlikely(ret > 0)) {
2101 			ret = -EUCLEAN;
2102 			goto out;
2103 		}
2104 	}
2105 	while (1) {
2106 		leaf = path->nodes[0];
2107 		slot = path->slots[0];
2108 
2109 		btrfs_item_key_to_cpu(leaf, &key, slot);
2110 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2111 			ret = 0;
2112 			goto out;
2113 		}
2114 
2115 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2116 			ret = -EOVERFLOW;
2117 			goto out;
2118 		}
2119 
2120 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2121 		rootrefs->rootref[found].treeid = key.offset;
2122 		rootrefs->rootref[found].dirid =
2123 				  btrfs_root_ref_dirid(leaf, rref);
2124 		found++;
2125 
2126 		ret = btrfs_next_item(root, path);
2127 		if (ret < 0) {
2128 			goto out;
2129 		} else if (unlikely(ret > 0)) {
2130 			ret = -EUCLEAN;
2131 			goto out;
2132 		}
2133 	}
2134 
2135 out:
2136 	btrfs_free_path(path);
2137 
2138 	if (!ret || ret == -EOVERFLOW) {
2139 		rootrefs->num_items = found;
2140 		/* update min_treeid for next search */
2141 		if (found)
2142 			rootrefs->min_treeid =
2143 				rootrefs->rootref[found - 1].treeid + 1;
2144 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2145 			ret = -EFAULT;
2146 	}
2147 
2148 	kfree(rootrefs);
2149 
2150 	return ret;
2151 }
2152 
2153 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2154 					     void __user *arg,
2155 					     bool destroy_v2)
2156 {
2157 	struct dentry *parent = file->f_path.dentry;
2158 	struct dentry *dentry;
2159 	struct inode *dir = d_inode(parent);
2160 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2161 	struct inode *inode;
2162 	struct btrfs_root *root = BTRFS_I(dir)->root;
2163 	struct btrfs_root *dest = NULL;
2164 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2165 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2166 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2167 	char *subvol_name, *subvol_name_ptr = NULL;
2168 	int ret = 0;
2169 	bool destroy_parent = false;
2170 
2171 	/* We don't support snapshots with extent tree v2 yet. */
2172 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2173 		btrfs_err(fs_info,
2174 			  "extent tree v2 doesn't support snapshot deletion yet");
2175 		return -EOPNOTSUPP;
2176 	}
2177 
2178 	if (destroy_v2) {
2179 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2180 		if (IS_ERR(vol_args2))
2181 			return PTR_ERR(vol_args2);
2182 
2183 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2184 			ret = -EOPNOTSUPP;
2185 			goto out;
2186 		}
2187 
2188 		/*
2189 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2190 		 * name, same as v1 currently does.
2191 		 */
2192 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2193 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2194 			if (ret < 0)
2195 				goto out;
2196 			subvol_name = vol_args2->name;
2197 
2198 			ret = mnt_want_write_file(file);
2199 			if (ret)
2200 				goto out;
2201 		} else {
2202 			struct inode *old_dir;
2203 
2204 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2205 				ret = -EINVAL;
2206 				goto out;
2207 			}
2208 
2209 			ret = mnt_want_write_file(file);
2210 			if (ret)
2211 				goto out;
2212 
2213 			dentry = btrfs_get_dentry(fs_info->sb,
2214 					BTRFS_FIRST_FREE_OBJECTID,
2215 					vol_args2->subvolid, 0);
2216 			if (IS_ERR(dentry)) {
2217 				ret = PTR_ERR(dentry);
2218 				goto out_drop_write;
2219 			}
2220 
2221 			/*
2222 			 * Change the default parent since the subvolume being
2223 			 * deleted can be outside of the current mount point.
2224 			 */
2225 			parent = btrfs_get_parent(dentry);
2226 
2227 			/*
2228 			 * At this point dentry->d_name can point to '/' if the
2229 			 * subvolume we want to destroy is outsite of the
2230 			 * current mount point, so we need to release the
2231 			 * current dentry and execute the lookup to return a new
2232 			 * one with ->d_name pointing to the
2233 			 * <mount point>/subvol_name.
2234 			 */
2235 			dput(dentry);
2236 			if (IS_ERR(parent)) {
2237 				ret = PTR_ERR(parent);
2238 				goto out_drop_write;
2239 			}
2240 			old_dir = dir;
2241 			dir = d_inode(parent);
2242 
2243 			/*
2244 			 * If v2 was used with SPEC_BY_ID, a new parent was
2245 			 * allocated since the subvolume can be outside of the
2246 			 * current mount point. Later on we need to release this
2247 			 * new parent dentry.
2248 			 */
2249 			destroy_parent = true;
2250 
2251 			/*
2252 			 * On idmapped mounts, deletion via subvolid is
2253 			 * restricted to subvolumes that are immediate
2254 			 * ancestors of the inode referenced by the file
2255 			 * descriptor in the ioctl. Otherwise the idmapping
2256 			 * could potentially be abused to delete subvolumes
2257 			 * anywhere in the filesystem the user wouldn't be able
2258 			 * to delete without an idmapped mount.
2259 			 */
2260 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2261 				ret = -EOPNOTSUPP;
2262 				goto free_parent;
2263 			}
2264 
2265 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2266 						fs_info, vol_args2->subvolid);
2267 			if (IS_ERR(subvol_name_ptr)) {
2268 				ret = PTR_ERR(subvol_name_ptr);
2269 				goto free_parent;
2270 			}
2271 			/* subvol_name_ptr is already nul terminated */
2272 			subvol_name = (char *)kbasename(subvol_name_ptr);
2273 		}
2274 	} else {
2275 		vol_args = memdup_user(arg, sizeof(*vol_args));
2276 		if (IS_ERR(vol_args))
2277 			return PTR_ERR(vol_args);
2278 
2279 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2280 		if (ret < 0)
2281 			goto out;
2282 
2283 		subvol_name = vol_args->name;
2284 
2285 		ret = mnt_want_write_file(file);
2286 		if (ret)
2287 			goto out;
2288 	}
2289 
2290 	if (strchr(subvol_name, '/') ||
2291 	    strcmp(subvol_name, "..") == 0) {
2292 		ret = -EINVAL;
2293 		goto free_subvol_name;
2294 	}
2295 
2296 	if (!S_ISDIR(dir->i_mode)) {
2297 		ret = -ENOTDIR;
2298 		goto free_subvol_name;
2299 	}
2300 
2301 	dentry = start_removing_killable(idmap, parent, &QSTR(subvol_name));
2302 	if (IS_ERR(dentry)) {
2303 		ret = PTR_ERR(dentry);
2304 		goto out_end_removing;
2305 	}
2306 
2307 	inode = d_inode(dentry);
2308 	dest = BTRFS_I(inode)->root;
2309 	if (!capable(CAP_SYS_ADMIN)) {
2310 		/*
2311 		 * Regular user.  Only allow this with a special mount
2312 		 * option, when the user has write+exec access to the
2313 		 * subvol root, and when rmdir(2) would have been
2314 		 * allowed.
2315 		 *
2316 		 * Note that this is _not_ check that the subvol is
2317 		 * empty or doesn't contain data that we wouldn't
2318 		 * otherwise be able to delete.
2319 		 *
2320 		 * Users who want to delete empty subvols should try
2321 		 * rmdir(2).
2322 		 */
2323 		ret = -EPERM;
2324 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2325 			goto out_end_removing;
2326 
2327 		/*
2328 		 * Do not allow deletion if the parent dir is the same
2329 		 * as the dir to be deleted.  That means the ioctl
2330 		 * must be called on the dentry referencing the root
2331 		 * of the subvol, not a random directory contained
2332 		 * within it.
2333 		 */
2334 		ret = -EINVAL;
2335 		if (root == dest)
2336 			goto out_end_removing;
2337 
2338 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2339 		if (ret)
2340 			goto out_end_removing;
2341 	}
2342 
2343 	/* check if subvolume may be deleted by a user */
2344 	ret = may_delete_dentry(idmap, dir, dentry, true);
2345 	if (ret)
2346 		goto out_end_removing;
2347 
2348 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2349 		ret = -EINVAL;
2350 		goto out_end_removing;
2351 	}
2352 
2353 	btrfs_inode_lock(BTRFS_I(inode), 0);
2354 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2355 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2356 	if (!ret)
2357 		d_delete_notify(dir, dentry);
2358 
2359 out_end_removing:
2360 	end_removing(dentry);
2361 free_subvol_name:
2362 	kfree(subvol_name_ptr);
2363 free_parent:
2364 	if (destroy_parent)
2365 		dput(parent);
2366 out_drop_write:
2367 	mnt_drop_write_file(file);
2368 out:
2369 	kfree(vol_args2);
2370 	kfree(vol_args);
2371 	return ret;
2372 }
2373 
2374 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2375 {
2376 	struct inode *inode = file_inode(file);
2377 	struct btrfs_root *root = BTRFS_I(inode)->root;
2378 	struct btrfs_ioctl_defrag_range_args range = {0};
2379 	int ret;
2380 
2381 	ret = mnt_want_write_file(file);
2382 	if (ret)
2383 		return ret;
2384 
2385 	if (btrfs_root_readonly(root)) {
2386 		ret = -EROFS;
2387 		goto out;
2388 	}
2389 
2390 	switch (inode->i_mode & S_IFMT) {
2391 	case S_IFDIR:
2392 		if (!capable(CAP_SYS_ADMIN)) {
2393 			ret = -EPERM;
2394 			goto out;
2395 		}
2396 		ret = btrfs_defrag_root(root);
2397 		break;
2398 	case S_IFREG:
2399 		/*
2400 		 * Note that this does not check the file descriptor for write
2401 		 * access. This prevents defragmenting executables that are
2402 		 * running and allows defrag on files open in read-only mode.
2403 		 */
2404 		if (!capable(CAP_SYS_ADMIN) &&
2405 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2406 			ret = -EPERM;
2407 			goto out;
2408 		}
2409 
2410 		/*
2411 		 * Don't allow defrag on pre-content watched files, as it could
2412 		 * populate the page cache with 0's via readahead.
2413 		 */
2414 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2415 			ret = -EINVAL;
2416 			goto out;
2417 		}
2418 
2419 		if (argp) {
2420 			if (copy_from_user(&range, argp, sizeof(range))) {
2421 				ret = -EFAULT;
2422 				goto out;
2423 			}
2424 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2425 				ret = -EOPNOTSUPP;
2426 				goto out;
2427 			}
2428 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) &&
2429 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2430 				ret = -EINVAL;
2431 				goto out;
2432 			}
2433 			/* Compression or no-compression require to start the IO. */
2434 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) ||
2435 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2436 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2437 				range.extent_thresh = (u32)-1;
2438 			}
2439 		} else {
2440 			/* the rest are all set to zero by kzalloc */
2441 			range.len = (u64)-1;
2442 		}
2443 		ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2444 					&range, BTRFS_OLDEST_GENERATION, 0);
2445 		if (ret > 0)
2446 			ret = 0;
2447 		break;
2448 	default:
2449 		ret = -EINVAL;
2450 	}
2451 out:
2452 	mnt_drop_write_file(file);
2453 	return ret;
2454 }
2455 
2456 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2457 {
2458 	struct btrfs_ioctl_vol_args *vol_args;
2459 	bool restore_op = false;
2460 	int ret;
2461 
2462 	if (!capable(CAP_SYS_ADMIN))
2463 		return -EPERM;
2464 
2465 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2466 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2467 		return -EINVAL;
2468 	}
2469 
2470 	if (fs_info->fs_devices->temp_fsid) {
2471 		btrfs_err(fs_info,
2472 			  "device add not supported on cloned temp-fsid mount");
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2477 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2478 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2479 
2480 		/*
2481 		 * We can do the device add because we have a paused balanced,
2482 		 * change the exclusive op type and remember we should bring
2483 		 * back the paused balance
2484 		 */
2485 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2486 		btrfs_exclop_start_unlock(fs_info);
2487 		restore_op = true;
2488 	}
2489 
2490 	vol_args = memdup_user(arg, sizeof(*vol_args));
2491 	if (IS_ERR(vol_args)) {
2492 		ret = PTR_ERR(vol_args);
2493 		goto out;
2494 	}
2495 
2496 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2497 	if (ret < 0)
2498 		goto out_free;
2499 
2500 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2501 
2502 	if (!ret)
2503 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2504 
2505 out_free:
2506 	kfree(vol_args);
2507 out:
2508 	if (restore_op)
2509 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2510 	else
2511 		btrfs_exclop_finish(fs_info);
2512 	return ret;
2513 }
2514 
2515 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2516 {
2517 	BTRFS_DEV_LOOKUP_ARGS(args);
2518 	struct inode *inode = file_inode(file);
2519 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2520 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2521 	struct file *bdev_file = NULL;
2522 	int ret;
2523 	bool cancel = false;
2524 
2525 	if (!capable(CAP_SYS_ADMIN))
2526 		return -EPERM;
2527 
2528 	vol_args = memdup_user(arg, sizeof(*vol_args));
2529 	if (IS_ERR(vol_args))
2530 		return PTR_ERR(vol_args);
2531 
2532 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2533 		ret = -EOPNOTSUPP;
2534 		goto out;
2535 	}
2536 
2537 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2538 	if (ret < 0)
2539 		goto out;
2540 
2541 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2542 		args.devid = vol_args->devid;
2543 	} else if (!strcmp("cancel", vol_args->name)) {
2544 		cancel = true;
2545 	} else {
2546 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2547 		if (ret)
2548 			goto out;
2549 	}
2550 
2551 	ret = mnt_want_write_file(file);
2552 	if (ret)
2553 		goto out;
2554 
2555 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2556 					   cancel);
2557 	if (ret)
2558 		goto err_drop;
2559 
2560 	/* Exclusive operation is now claimed */
2561 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2562 
2563 	btrfs_exclop_finish(fs_info);
2564 
2565 	if (!ret) {
2566 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2567 			btrfs_info(fs_info, "device deleted: id %llu",
2568 					vol_args->devid);
2569 		else
2570 			btrfs_info(fs_info, "device deleted: %s",
2571 					vol_args->name);
2572 	}
2573 err_drop:
2574 	mnt_drop_write_file(file);
2575 	if (bdev_file)
2576 		bdev_fput(bdev_file);
2577 out:
2578 	btrfs_put_dev_args_from_path(&args);
2579 	kfree(vol_args);
2580 	return ret;
2581 }
2582 
2583 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2584 {
2585 	BTRFS_DEV_LOOKUP_ARGS(args);
2586 	struct inode *inode = file_inode(file);
2587 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2588 	struct btrfs_ioctl_vol_args *vol_args;
2589 	struct file *bdev_file = NULL;
2590 	int ret;
2591 	bool cancel = false;
2592 
2593 	if (!capable(CAP_SYS_ADMIN))
2594 		return -EPERM;
2595 
2596 	vol_args = memdup_user(arg, sizeof(*vol_args));
2597 	if (IS_ERR(vol_args))
2598 		return PTR_ERR(vol_args);
2599 
2600 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2601 	if (ret < 0)
2602 		goto out_free;
2603 
2604 	if (!strcmp("cancel", vol_args->name)) {
2605 		cancel = true;
2606 	} else {
2607 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2608 		if (ret)
2609 			goto out;
2610 	}
2611 
2612 	ret = mnt_want_write_file(file);
2613 	if (ret)
2614 		goto out;
2615 
2616 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2617 					   cancel);
2618 	if (ret == 0) {
2619 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2620 		if (!ret)
2621 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2622 		btrfs_exclop_finish(fs_info);
2623 	}
2624 
2625 	mnt_drop_write_file(file);
2626 	if (bdev_file)
2627 		bdev_fput(bdev_file);
2628 out:
2629 	btrfs_put_dev_args_from_path(&args);
2630 out_free:
2631 	kfree(vol_args);
2632 	return ret;
2633 }
2634 
2635 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2636 				void __user *arg)
2637 {
2638 	struct btrfs_ioctl_fs_info_args *fi_args;
2639 	struct btrfs_device *device;
2640 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2641 	u64 flags_in;
2642 	int ret = 0;
2643 
2644 	fi_args = memdup_user(arg, sizeof(*fi_args));
2645 	if (IS_ERR(fi_args))
2646 		return PTR_ERR(fi_args);
2647 
2648 	flags_in = fi_args->flags;
2649 	memset(fi_args, 0, sizeof(*fi_args));
2650 
2651 	rcu_read_lock();
2652 	fi_args->num_devices = fs_devices->num_devices;
2653 
2654 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2655 		if (device->devid > fi_args->max_id)
2656 			fi_args->max_id = device->devid;
2657 	}
2658 	rcu_read_unlock();
2659 
2660 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2661 	fi_args->nodesize = fs_info->nodesize;
2662 	fi_args->sectorsize = fs_info->sectorsize;
2663 	fi_args->clone_alignment = fs_info->sectorsize;
2664 
2665 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2666 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2667 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2668 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2669 	}
2670 
2671 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2672 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2673 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2674 	}
2675 
2676 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2677 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2678 		       sizeof(fi_args->metadata_uuid));
2679 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2680 	}
2681 
2682 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2683 		ret = -EFAULT;
2684 
2685 	kfree(fi_args);
2686 	return ret;
2687 }
2688 
2689 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2690 				 void __user *arg)
2691 {
2692 	BTRFS_DEV_LOOKUP_ARGS(args);
2693 	struct btrfs_ioctl_dev_info_args *di_args;
2694 	struct btrfs_device *dev;
2695 	int ret = 0;
2696 
2697 	di_args = memdup_user(arg, sizeof(*di_args));
2698 	if (IS_ERR(di_args))
2699 		return PTR_ERR(di_args);
2700 
2701 	args.devid = di_args->devid;
2702 	if (!btrfs_is_empty_uuid(di_args->uuid))
2703 		args.uuid = di_args->uuid;
2704 
2705 	rcu_read_lock();
2706 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2707 	if (!dev) {
2708 		ret = -ENODEV;
2709 		goto out;
2710 	}
2711 
2712 	di_args->devid = dev->devid;
2713 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2714 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2715 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2716 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2717 	if (dev->name)
2718 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2719 	else
2720 		di_args->path[0] = '\0';
2721 
2722 out:
2723 	rcu_read_unlock();
2724 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2725 		ret = -EFAULT;
2726 
2727 	kfree(di_args);
2728 	return ret;
2729 }
2730 
2731 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2732 {
2733 	struct inode *inode = file_inode(file);
2734 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2735 	struct btrfs_root *root = BTRFS_I(inode)->root;
2736 	struct btrfs_root *new_root;
2737 	struct btrfs_dir_item *di;
2738 	struct btrfs_trans_handle *trans;
2739 	struct btrfs_path *path = NULL;
2740 	struct btrfs_disk_key disk_key;
2741 	struct fscrypt_str name = FSTR_INIT("default", 7);
2742 	u64 objectid = 0;
2743 	u64 dir_id;
2744 	int ret;
2745 
2746 	if (!capable(CAP_SYS_ADMIN))
2747 		return -EPERM;
2748 
2749 	ret = mnt_want_write_file(file);
2750 	if (ret)
2751 		return ret;
2752 
2753 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2754 		ret = -EFAULT;
2755 		goto out;
2756 	}
2757 
2758 	if (!objectid)
2759 		objectid = BTRFS_FS_TREE_OBJECTID;
2760 
2761 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2762 	if (IS_ERR(new_root)) {
2763 		ret = PTR_ERR(new_root);
2764 		goto out;
2765 	}
2766 	if (!btrfs_is_fstree(btrfs_root_id(new_root))) {
2767 		ret = -ENOENT;
2768 		goto out_free;
2769 	}
2770 
2771 	path = btrfs_alloc_path();
2772 	if (!path) {
2773 		ret = -ENOMEM;
2774 		goto out_free;
2775 	}
2776 
2777 	trans = btrfs_start_transaction(root, 1);
2778 	if (IS_ERR(trans)) {
2779 		ret = PTR_ERR(trans);
2780 		goto out_free;
2781 	}
2782 
2783 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2784 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2785 				   dir_id, &name, 1);
2786 	if (IS_ERR_OR_NULL(di)) {
2787 		btrfs_release_path(path);
2788 		btrfs_end_transaction(trans);
2789 		btrfs_err(fs_info,
2790 			  "Umm, you don't have the default diritem, this isn't going to work");
2791 		ret = -ENOENT;
2792 		goto out_free;
2793 	}
2794 
2795 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2796 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2797 	btrfs_release_path(path);
2798 
2799 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2800 	btrfs_end_transaction(trans);
2801 out_free:
2802 	btrfs_put_root(new_root);
2803 	btrfs_free_path(path);
2804 out:
2805 	mnt_drop_write_file(file);
2806 	return ret;
2807 }
2808 
2809 static void get_block_group_info(struct list_head *groups_list,
2810 				 struct btrfs_ioctl_space_info *space)
2811 {
2812 	struct btrfs_block_group *block_group;
2813 
2814 	space->total_bytes = 0;
2815 	space->used_bytes = 0;
2816 	space->flags = 0;
2817 	list_for_each_entry(block_group, groups_list, list) {
2818 		space->flags = block_group->flags;
2819 		space->total_bytes += block_group->length;
2820 		space->used_bytes += block_group->used;
2821 	}
2822 }
2823 
2824 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2825 				   void __user *arg)
2826 {
2827 	struct btrfs_ioctl_space_args space_args = { 0 };
2828 	struct btrfs_ioctl_space_info space;
2829 	struct btrfs_ioctl_space_info *dest;
2830 	struct btrfs_ioctl_space_info AUTO_KFREE(dest_orig);
2831 	struct btrfs_ioctl_space_info __user *user_dest;
2832 	struct btrfs_space_info *info;
2833 	static const u64 types[] = {
2834 		BTRFS_BLOCK_GROUP_DATA,
2835 		BTRFS_BLOCK_GROUP_SYSTEM,
2836 		BTRFS_BLOCK_GROUP_METADATA,
2837 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2838 	};
2839 	int num_types = 4;
2840 	int alloc_size;
2841 	int ret = 0;
2842 	u64 slot_count = 0;
2843 	int i, c;
2844 
2845 	if (copy_from_user(&space_args,
2846 			   (struct btrfs_ioctl_space_args __user *)arg,
2847 			   sizeof(space_args)))
2848 		return -EFAULT;
2849 
2850 	for (i = 0; i < num_types; i++) {
2851 		struct btrfs_space_info *tmp;
2852 
2853 		info = NULL;
2854 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2855 			if (tmp->flags == types[i]) {
2856 				info = tmp;
2857 				break;
2858 			}
2859 		}
2860 
2861 		if (!info)
2862 			continue;
2863 
2864 		down_read(&info->groups_sem);
2865 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2866 			if (!list_empty(&info->block_groups[c]))
2867 				slot_count++;
2868 		}
2869 		up_read(&info->groups_sem);
2870 	}
2871 
2872 	/*
2873 	 * Global block reserve, exported as a space_info
2874 	 */
2875 	slot_count++;
2876 
2877 	/* space_slots == 0 means they are asking for a count */
2878 	if (space_args.space_slots == 0) {
2879 		space_args.total_spaces = slot_count;
2880 		goto out;
2881 	}
2882 
2883 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2884 
2885 	alloc_size = sizeof(*dest) * slot_count;
2886 
2887 	/* we generally have at most 6 or so space infos, one for each raid
2888 	 * level.  So, a whole page should be more than enough for everyone
2889 	 */
2890 	if (alloc_size > PAGE_SIZE)
2891 		return -ENOMEM;
2892 
2893 	space_args.total_spaces = 0;
2894 	dest = kmalloc(alloc_size, GFP_KERNEL);
2895 	if (!dest)
2896 		return -ENOMEM;
2897 	dest_orig = dest;
2898 
2899 	/* now we have a buffer to copy into */
2900 	for (i = 0; i < num_types; i++) {
2901 		struct btrfs_space_info *tmp;
2902 
2903 		if (!slot_count)
2904 			break;
2905 
2906 		info = NULL;
2907 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2908 			if (tmp->flags == types[i]) {
2909 				info = tmp;
2910 				break;
2911 			}
2912 		}
2913 
2914 		if (!info)
2915 			continue;
2916 		down_read(&info->groups_sem);
2917 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2918 			if (!list_empty(&info->block_groups[c])) {
2919 				get_block_group_info(&info->block_groups[c],
2920 						     &space);
2921 				memcpy(dest, &space, sizeof(space));
2922 				dest++;
2923 				space_args.total_spaces++;
2924 				slot_count--;
2925 			}
2926 			if (!slot_count)
2927 				break;
2928 		}
2929 		up_read(&info->groups_sem);
2930 	}
2931 
2932 	/*
2933 	 * Add global block reserve
2934 	 */
2935 	if (slot_count) {
2936 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2937 
2938 		spin_lock(&block_rsv->lock);
2939 		space.total_bytes = block_rsv->size;
2940 		space.used_bytes = block_rsv->size - block_rsv->reserved;
2941 		spin_unlock(&block_rsv->lock);
2942 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
2943 		memcpy(dest, &space, sizeof(space));
2944 		space_args.total_spaces++;
2945 	}
2946 
2947 	user_dest = (struct btrfs_ioctl_space_info __user *)
2948 		(arg + sizeof(struct btrfs_ioctl_space_args));
2949 
2950 	if (copy_to_user(user_dest, dest_orig, alloc_size))
2951 		return -EFAULT;
2952 
2953 out:
2954 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2955 		ret = -EFAULT;
2956 
2957 	return ret;
2958 }
2959 
2960 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
2961 					    void __user *argp)
2962 {
2963 	struct btrfs_trans_handle *trans;
2964 	u64 transid;
2965 
2966 	/*
2967 	 * Start orphan cleanup here for the given root in case it hasn't been
2968 	 * started already by other means. Errors are handled in the other
2969 	 * functions during transaction commit.
2970 	 */
2971 	btrfs_orphan_cleanup(root);
2972 
2973 	trans = btrfs_attach_transaction_barrier(root);
2974 	if (IS_ERR(trans)) {
2975 		if (PTR_ERR(trans) != -ENOENT)
2976 			return PTR_ERR(trans);
2977 
2978 		/* No running transaction, don't bother */
2979 		transid = btrfs_get_last_trans_committed(root->fs_info);
2980 		goto out;
2981 	}
2982 	transid = trans->transid;
2983 	btrfs_commit_transaction_async(trans);
2984 out:
2985 	if (argp)
2986 		if (copy_to_user(argp, &transid, sizeof(transid)))
2987 			return -EFAULT;
2988 	return 0;
2989 }
2990 
2991 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
2992 					   void __user *argp)
2993 {
2994 	/* By default wait for the current transaction. */
2995 	u64 transid = 0;
2996 
2997 	if (argp)
2998 		if (copy_from_user(&transid, argp, sizeof(transid)))
2999 			return -EFAULT;
3000 
3001 	return btrfs_wait_for_commit(fs_info, transid);
3002 }
3003 
3004 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3005 {
3006 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3007 	struct btrfs_ioctl_scrub_args *sa;
3008 	int ret;
3009 
3010 	if (!capable(CAP_SYS_ADMIN))
3011 		return -EPERM;
3012 
3013 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3014 		btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3015 		return -EINVAL;
3016 	}
3017 
3018 	sa = memdup_user(arg, sizeof(*sa));
3019 	if (IS_ERR(sa))
3020 		return PTR_ERR(sa);
3021 
3022 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3023 		ret = -EOPNOTSUPP;
3024 		goto out;
3025 	}
3026 
3027 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3028 		ret = mnt_want_write_file(file);
3029 		if (ret)
3030 			goto out;
3031 	}
3032 
3033 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3034 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3035 			      0);
3036 
3037 	/*
3038 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3039 	 * error. This is important as it allows user space to know how much
3040 	 * progress scrub has done. For example, if scrub is canceled we get
3041 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3042 	 * space. Later user space can inspect the progress from the structure
3043 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3044 	 * previously (btrfs-progs does this).
3045 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3046 	 * then return -EFAULT to signal the structure was not copied or it may
3047 	 * be corrupt and unreliable due to a partial copy.
3048 	 */
3049 	if (copy_to_user(arg, sa, sizeof(*sa)))
3050 		ret = -EFAULT;
3051 
3052 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3053 		mnt_drop_write_file(file);
3054 out:
3055 	kfree(sa);
3056 	return ret;
3057 }
3058 
3059 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3060 {
3061 	if (!capable(CAP_SYS_ADMIN))
3062 		return -EPERM;
3063 
3064 	return btrfs_scrub_cancel(fs_info);
3065 }
3066 
3067 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3068 				       void __user *arg)
3069 {
3070 	struct btrfs_ioctl_scrub_args *sa;
3071 	int ret;
3072 
3073 	if (!capable(CAP_SYS_ADMIN))
3074 		return -EPERM;
3075 
3076 	sa = memdup_user(arg, sizeof(*sa));
3077 	if (IS_ERR(sa))
3078 		return PTR_ERR(sa);
3079 
3080 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3081 
3082 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3083 		ret = -EFAULT;
3084 
3085 	kfree(sa);
3086 	return ret;
3087 }
3088 
3089 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3090 				      void __user *arg)
3091 {
3092 	struct btrfs_ioctl_get_dev_stats *sa;
3093 	int ret;
3094 
3095 	sa = memdup_user(arg, sizeof(*sa));
3096 	if (IS_ERR(sa))
3097 		return PTR_ERR(sa);
3098 
3099 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3100 		kfree(sa);
3101 		return -EPERM;
3102 	}
3103 
3104 	ret = btrfs_get_dev_stats(fs_info, sa);
3105 
3106 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3107 		ret = -EFAULT;
3108 
3109 	kfree(sa);
3110 	return ret;
3111 }
3112 
3113 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3114 				    void __user *arg)
3115 {
3116 	struct btrfs_ioctl_dev_replace_args *p;
3117 	int ret;
3118 
3119 	if (!capable(CAP_SYS_ADMIN))
3120 		return -EPERM;
3121 
3122 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3123 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3124 		return -EINVAL;
3125 	}
3126 
3127 	p = memdup_user(arg, sizeof(*p));
3128 	if (IS_ERR(p))
3129 		return PTR_ERR(p);
3130 
3131 	switch (p->cmd) {
3132 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3133 		if (sb_rdonly(fs_info->sb)) {
3134 			ret = -EROFS;
3135 			goto out;
3136 		}
3137 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3138 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3139 		} else {
3140 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3141 			btrfs_exclop_finish(fs_info);
3142 		}
3143 		break;
3144 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3145 		btrfs_dev_replace_status(fs_info, p);
3146 		ret = 0;
3147 		break;
3148 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3149 		p->result = btrfs_dev_replace_cancel(fs_info);
3150 		ret = 0;
3151 		break;
3152 	default:
3153 		ret = -EINVAL;
3154 		break;
3155 	}
3156 
3157 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3158 		ret = -EFAULT;
3159 out:
3160 	kfree(p);
3161 	return ret;
3162 }
3163 
3164 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3165 {
3166 	int ret = 0;
3167 	int i;
3168 	u64 rel_ptr;
3169 	int size;
3170 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3171 	struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
3172 	struct btrfs_path *path;
3173 
3174 	if (!capable(CAP_DAC_READ_SEARCH))
3175 		return -EPERM;
3176 
3177 	path = btrfs_alloc_path();
3178 	if (!path) {
3179 		ret = -ENOMEM;
3180 		goto out;
3181 	}
3182 
3183 	ipa = memdup_user(arg, sizeof(*ipa));
3184 	if (IS_ERR(ipa)) {
3185 		ret = PTR_ERR(ipa);
3186 		ipa = NULL;
3187 		goto out;
3188 	}
3189 
3190 	size = min_t(u32, ipa->size, 4096);
3191 	ipath = init_ipath(size, root, path);
3192 	if (IS_ERR(ipath)) {
3193 		ret = PTR_ERR(ipath);
3194 		ipath = NULL;
3195 		goto out;
3196 	}
3197 
3198 	ret = paths_from_inode(ipa->inum, ipath);
3199 	if (ret < 0)
3200 		goto out;
3201 
3202 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3203 		rel_ptr = ipath->fspath->val[i] -
3204 			  (u64)(unsigned long)ipath->fspath->val;
3205 		ipath->fspath->val[i] = rel_ptr;
3206 	}
3207 
3208 	btrfs_free_path(path);
3209 	path = NULL;
3210 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3211 			   ipath->fspath, size);
3212 	if (ret) {
3213 		ret = -EFAULT;
3214 		goto out;
3215 	}
3216 
3217 out:
3218 	btrfs_free_path(path);
3219 	kfree(ipa);
3220 
3221 	return ret;
3222 }
3223 
3224 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3225 					void __user *arg, int version)
3226 {
3227 	int ret = 0;
3228 	int size;
3229 	struct btrfs_ioctl_logical_ino_args *loi;
3230 	struct btrfs_data_container *inodes = NULL;
3231 	bool ignore_offset;
3232 
3233 	if (!capable(CAP_SYS_ADMIN))
3234 		return -EPERM;
3235 
3236 	loi = memdup_user(arg, sizeof(*loi));
3237 	if (IS_ERR(loi))
3238 		return PTR_ERR(loi);
3239 
3240 	if (version == 1) {
3241 		ignore_offset = false;
3242 		size = min_t(u32, loi->size, SZ_64K);
3243 	} else {
3244 		/* All reserved bits must be 0 for now */
3245 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3246 			ret = -EINVAL;
3247 			goto out_loi;
3248 		}
3249 		/* Only accept flags we have defined so far */
3250 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3251 			ret = -EINVAL;
3252 			goto out_loi;
3253 		}
3254 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3255 		size = min_t(u32, loi->size, SZ_16M);
3256 	}
3257 
3258 	inodes = init_data_container(size);
3259 	if (IS_ERR(inodes)) {
3260 		ret = PTR_ERR(inodes);
3261 		goto out_loi;
3262 	}
3263 
3264 	ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset);
3265 	if (ret == -EINVAL)
3266 		ret = -ENOENT;
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3271 			   size);
3272 	if (ret)
3273 		ret = -EFAULT;
3274 
3275 out:
3276 	kvfree(inodes);
3277 out_loi:
3278 	kfree(loi);
3279 
3280 	return ret;
3281 }
3282 
3283 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3284 			       struct btrfs_ioctl_balance_args *bargs)
3285 {
3286 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3287 
3288 	bargs->flags = bctl->flags;
3289 
3290 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3291 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3292 	if (atomic_read(&fs_info->balance_pause_req))
3293 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3294 	if (atomic_read(&fs_info->balance_cancel_req))
3295 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3296 
3297 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3298 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3299 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3300 
3301 	spin_lock(&fs_info->balance_lock);
3302 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3303 	spin_unlock(&fs_info->balance_lock);
3304 }
3305 
3306 /*
3307  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3308  * required.
3309  *
3310  * @fs_info:       the filesystem
3311  * @excl_acquired: ptr to boolean value which is set to false in case balance
3312  *                 is being resumed
3313  *
3314  * Return 0 on success in which case both fs_info::balance is acquired as well
3315  * as exclusive ops are blocked. In case of failure return an error code.
3316  */
3317 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3318 {
3319 	int ret;
3320 
3321 	/*
3322 	 * Exclusive operation is locked. Three possibilities:
3323 	 *   (1) some other op is running
3324 	 *   (2) balance is running
3325 	 *   (3) balance is paused -- special case (think resume)
3326 	 */
3327 	while (1) {
3328 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3329 			*excl_acquired = true;
3330 			mutex_lock(&fs_info->balance_mutex);
3331 			return 0;
3332 		}
3333 
3334 		mutex_lock(&fs_info->balance_mutex);
3335 		if (fs_info->balance_ctl) {
3336 			/* This is either (2) or (3) */
3337 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3338 				/* This is (2) */
3339 				ret = -EINPROGRESS;
3340 				goto out_failure;
3341 
3342 			} else {
3343 				mutex_unlock(&fs_info->balance_mutex);
3344 				/*
3345 				 * Lock released to allow other waiters to
3346 				 * continue, we'll reexamine the status again.
3347 				 */
3348 				mutex_lock(&fs_info->balance_mutex);
3349 
3350 				if (fs_info->balance_ctl &&
3351 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3352 					/* This is (3) */
3353 					*excl_acquired = false;
3354 					return 0;
3355 				}
3356 			}
3357 		} else {
3358 			/* This is (1) */
3359 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3360 			goto out_failure;
3361 		}
3362 
3363 		mutex_unlock(&fs_info->balance_mutex);
3364 	}
3365 
3366 out_failure:
3367 	mutex_unlock(&fs_info->balance_mutex);
3368 	*excl_acquired = false;
3369 	return ret;
3370 }
3371 
3372 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3373 {
3374 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3375 	struct btrfs_fs_info *fs_info = root->fs_info;
3376 	struct btrfs_ioctl_balance_args *bargs;
3377 	struct btrfs_balance_control *bctl;
3378 	bool need_unlock = true;
3379 	int ret;
3380 
3381 	if (!capable(CAP_SYS_ADMIN))
3382 		return -EPERM;
3383 
3384 	ret = mnt_want_write_file(file);
3385 	if (ret)
3386 		return ret;
3387 
3388 	bargs = memdup_user(arg, sizeof(*bargs));
3389 	if (IS_ERR(bargs)) {
3390 		ret = PTR_ERR(bargs);
3391 		bargs = NULL;
3392 		goto out;
3393 	}
3394 
3395 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3396 	if (ret)
3397 		goto out;
3398 
3399 	lockdep_assert_held(&fs_info->balance_mutex);
3400 
3401 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3402 		if (!fs_info->balance_ctl) {
3403 			ret = -ENOTCONN;
3404 			goto out_unlock;
3405 		}
3406 
3407 		bctl = fs_info->balance_ctl;
3408 		spin_lock(&fs_info->balance_lock);
3409 		bctl->flags |= BTRFS_BALANCE_RESUME;
3410 		spin_unlock(&fs_info->balance_lock);
3411 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3412 
3413 		goto do_balance;
3414 	}
3415 
3416 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3417 		ret = -EINVAL;
3418 		goto out_unlock;
3419 	}
3420 
3421 	if (fs_info->balance_ctl) {
3422 		ret = -EINPROGRESS;
3423 		goto out_unlock;
3424 	}
3425 
3426 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3427 	if (!bctl) {
3428 		ret = -ENOMEM;
3429 		goto out_unlock;
3430 	}
3431 
3432 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3433 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3434 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3435 
3436 	bctl->flags = bargs->flags;
3437 do_balance:
3438 	/*
3439 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3440 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3441 	 * all the way until unmount, in free_fs_info.  The flag should be
3442 	 * cleared after reset_balance_state.
3443 	 */
3444 	need_unlock = false;
3445 
3446 	ret = btrfs_balance(fs_info, bctl, bargs);
3447 	bctl = NULL;
3448 
3449 	if (ret == 0 || ret == -ECANCELED) {
3450 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3451 			ret = -EFAULT;
3452 	}
3453 
3454 	kfree(bctl);
3455 out_unlock:
3456 	mutex_unlock(&fs_info->balance_mutex);
3457 	if (need_unlock)
3458 		btrfs_exclop_finish(fs_info);
3459 out:
3460 	mnt_drop_write_file(file);
3461 	kfree(bargs);
3462 	return ret;
3463 }
3464 
3465 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3466 {
3467 	if (!capable(CAP_SYS_ADMIN))
3468 		return -EPERM;
3469 
3470 	switch (cmd) {
3471 	case BTRFS_BALANCE_CTL_PAUSE:
3472 		return btrfs_pause_balance(fs_info);
3473 	case BTRFS_BALANCE_CTL_CANCEL:
3474 		return btrfs_cancel_balance(fs_info);
3475 	}
3476 
3477 	return -EINVAL;
3478 }
3479 
3480 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3481 					 void __user *arg)
3482 {
3483 	struct btrfs_ioctl_balance_args AUTO_KFREE(bargs);
3484 	int ret = 0;
3485 
3486 	if (!capable(CAP_SYS_ADMIN))
3487 		return -EPERM;
3488 
3489 	mutex_lock(&fs_info->balance_mutex);
3490 	if (!fs_info->balance_ctl) {
3491 		ret = -ENOTCONN;
3492 		goto out;
3493 	}
3494 
3495 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3496 	if (!bargs) {
3497 		ret = -ENOMEM;
3498 		goto out;
3499 	}
3500 
3501 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3502 
3503 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3504 		ret = -EFAULT;
3505 out:
3506 	mutex_unlock(&fs_info->balance_mutex);
3507 	return ret;
3508 }
3509 
3510 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3511 {
3512 	struct inode *inode = file_inode(file);
3513 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3514 	struct btrfs_ioctl_quota_ctl_args *sa;
3515 	int ret;
3516 
3517 	if (!capable(CAP_SYS_ADMIN))
3518 		return -EPERM;
3519 
3520 	ret = mnt_want_write_file(file);
3521 	if (ret)
3522 		return ret;
3523 
3524 	sa = memdup_user(arg, sizeof(*sa));
3525 	if (IS_ERR(sa)) {
3526 		ret = PTR_ERR(sa);
3527 		goto drop_write;
3528 	}
3529 
3530 	switch (sa->cmd) {
3531 	case BTRFS_QUOTA_CTL_ENABLE:
3532 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3533 		down_write(&fs_info->subvol_sem);
3534 		ret = btrfs_quota_enable(fs_info, sa);
3535 		up_write(&fs_info->subvol_sem);
3536 		break;
3537 	case BTRFS_QUOTA_CTL_DISABLE:
3538 		/*
3539 		 * Lock the cleaner mutex to prevent races with concurrent
3540 		 * relocation, because relocation may be building backrefs for
3541 		 * blocks of the quota root while we are deleting the root. This
3542 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3543 		 * need the same protection.
3544 		 *
3545 		 * This also prevents races between concurrent tasks trying to
3546 		 * disable quotas, because we will unlock and relock
3547 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3548 		 *
3549 		 * We take this here because we have the dependency of
3550 		 *
3551 		 * inode_lock -> subvol_sem
3552 		 *
3553 		 * because of rename.  With relocation we can prealloc extents,
3554 		 * so that makes the dependency chain
3555 		 *
3556 		 * cleaner_mutex -> inode_lock -> subvol_sem
3557 		 *
3558 		 * so we must take the cleaner_mutex here before we take the
3559 		 * subvol_sem.  The deadlock can't actually happen, but this
3560 		 * quiets lockdep.
3561 		 */
3562 		mutex_lock(&fs_info->cleaner_mutex);
3563 		down_write(&fs_info->subvol_sem);
3564 		ret = btrfs_quota_disable(fs_info);
3565 		up_write(&fs_info->subvol_sem);
3566 		mutex_unlock(&fs_info->cleaner_mutex);
3567 		break;
3568 	default:
3569 		ret = -EINVAL;
3570 		break;
3571 	}
3572 
3573 	kfree(sa);
3574 drop_write:
3575 	mnt_drop_write_file(file);
3576 	return ret;
3577 }
3578 
3579 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3580 {
3581 	struct inode *inode = file_inode(file);
3582 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3583 	struct btrfs_root *root = BTRFS_I(inode)->root;
3584 	struct btrfs_ioctl_qgroup_assign_args *sa;
3585 	struct btrfs_qgroup_list *prealloc = NULL;
3586 	struct btrfs_trans_handle *trans;
3587 	int ret;
3588 	int err;
3589 
3590 	if (!capable(CAP_SYS_ADMIN))
3591 		return -EPERM;
3592 
3593 	if (!btrfs_qgroup_enabled(fs_info))
3594 		return -ENOTCONN;
3595 
3596 	ret = mnt_want_write_file(file);
3597 	if (ret)
3598 		return ret;
3599 
3600 	sa = memdup_user(arg, sizeof(*sa));
3601 	if (IS_ERR(sa)) {
3602 		ret = PTR_ERR(sa);
3603 		goto drop_write;
3604 	}
3605 
3606 	if (sa->assign) {
3607 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3608 		if (!prealloc) {
3609 			ret = -ENOMEM;
3610 			goto out;
3611 		}
3612 	}
3613 
3614 	trans = btrfs_join_transaction(root);
3615 	if (IS_ERR(trans)) {
3616 		ret = PTR_ERR(trans);
3617 		goto out;
3618 	}
3619 
3620 	/*
3621 	 * Prealloc ownership is moved to the relation handler, there it's used
3622 	 * or freed on error.
3623 	 */
3624 	if (sa->assign) {
3625 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3626 		prealloc = NULL;
3627 	} else {
3628 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3629 	}
3630 
3631 	/* update qgroup status and info */
3632 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3633 	err = btrfs_run_qgroups(trans);
3634 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3635 	if (err < 0)
3636 		btrfs_warn(fs_info,
3637 			   "qgroup status update failed after %s relation, marked as inconsistent",
3638 			   sa->assign ? "adding" : "deleting");
3639 	err = btrfs_end_transaction(trans);
3640 	if (err && !ret)
3641 		ret = err;
3642 
3643 out:
3644 	kfree(prealloc);
3645 	kfree(sa);
3646 drop_write:
3647 	mnt_drop_write_file(file);
3648 	return ret;
3649 }
3650 
3651 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3652 {
3653 	struct inode *inode = file_inode(file);
3654 	struct btrfs_root *root = BTRFS_I(inode)->root;
3655 	struct btrfs_ioctl_qgroup_create_args *sa;
3656 	struct btrfs_trans_handle *trans;
3657 	int ret;
3658 	int err;
3659 
3660 	if (!capable(CAP_SYS_ADMIN))
3661 		return -EPERM;
3662 
3663 	if (!btrfs_qgroup_enabled(root->fs_info))
3664 		return -ENOTCONN;
3665 
3666 	ret = mnt_want_write_file(file);
3667 	if (ret)
3668 		return ret;
3669 
3670 	sa = memdup_user(arg, sizeof(*sa));
3671 	if (IS_ERR(sa)) {
3672 		ret = PTR_ERR(sa);
3673 		goto drop_write;
3674 	}
3675 
3676 	if (!sa->qgroupid) {
3677 		ret = -EINVAL;
3678 		goto out;
3679 	}
3680 
3681 	if (sa->create && btrfs_is_fstree(sa->qgroupid)) {
3682 		ret = -EINVAL;
3683 		goto out;
3684 	}
3685 
3686 	trans = btrfs_join_transaction(root);
3687 	if (IS_ERR(trans)) {
3688 		ret = PTR_ERR(trans);
3689 		goto out;
3690 	}
3691 
3692 	if (sa->create) {
3693 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3694 	} else {
3695 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3696 	}
3697 
3698 	err = btrfs_end_transaction(trans);
3699 	if (err && !ret)
3700 		ret = err;
3701 
3702 out:
3703 	kfree(sa);
3704 drop_write:
3705 	mnt_drop_write_file(file);
3706 	return ret;
3707 }
3708 
3709 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3710 {
3711 	struct inode *inode = file_inode(file);
3712 	struct btrfs_root *root = BTRFS_I(inode)->root;
3713 	struct btrfs_ioctl_qgroup_limit_args *sa;
3714 	struct btrfs_trans_handle *trans;
3715 	int ret;
3716 	int err;
3717 	u64 qgroupid;
3718 
3719 	if (!capable(CAP_SYS_ADMIN))
3720 		return -EPERM;
3721 
3722 	if (!btrfs_qgroup_enabled(root->fs_info))
3723 		return -ENOTCONN;
3724 
3725 	ret = mnt_want_write_file(file);
3726 	if (ret)
3727 		return ret;
3728 
3729 	sa = memdup_user(arg, sizeof(*sa));
3730 	if (IS_ERR(sa)) {
3731 		ret = PTR_ERR(sa);
3732 		goto drop_write;
3733 	}
3734 
3735 	trans = btrfs_join_transaction(root);
3736 	if (IS_ERR(trans)) {
3737 		ret = PTR_ERR(trans);
3738 		goto out;
3739 	}
3740 
3741 	qgroupid = sa->qgroupid;
3742 	if (!qgroupid) {
3743 		/* take the current subvol as qgroup */
3744 		qgroupid = btrfs_root_id(root);
3745 	}
3746 
3747 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3748 
3749 	err = btrfs_end_transaction(trans);
3750 	if (err && !ret)
3751 		ret = err;
3752 
3753 out:
3754 	kfree(sa);
3755 drop_write:
3756 	mnt_drop_write_file(file);
3757 	return ret;
3758 }
3759 
3760 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3761 {
3762 	struct inode *inode = file_inode(file);
3763 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3764 	struct btrfs_ioctl_quota_rescan_args *qsa;
3765 	int ret;
3766 
3767 	if (!capable(CAP_SYS_ADMIN))
3768 		return -EPERM;
3769 
3770 	if (!btrfs_qgroup_enabled(fs_info))
3771 		return -ENOTCONN;
3772 
3773 	ret = mnt_want_write_file(file);
3774 	if (ret)
3775 		return ret;
3776 
3777 	qsa = memdup_user(arg, sizeof(*qsa));
3778 	if (IS_ERR(qsa)) {
3779 		ret = PTR_ERR(qsa);
3780 		goto drop_write;
3781 	}
3782 
3783 	if (qsa->flags) {
3784 		ret = -EINVAL;
3785 		goto out;
3786 	}
3787 
3788 	ret = btrfs_qgroup_rescan(fs_info);
3789 
3790 out:
3791 	kfree(qsa);
3792 drop_write:
3793 	mnt_drop_write_file(file);
3794 	return ret;
3795 }
3796 
3797 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3798 						void __user *arg)
3799 {
3800 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3801 
3802 	if (!capable(CAP_SYS_ADMIN))
3803 		return -EPERM;
3804 
3805 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3806 		qsa.flags = 1;
3807 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3808 	}
3809 
3810 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3811 		return -EFAULT;
3812 
3813 	return 0;
3814 }
3815 
3816 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3817 {
3818 	if (!capable(CAP_SYS_ADMIN))
3819 		return -EPERM;
3820 
3821 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3822 }
3823 
3824 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3825 					    struct mnt_idmap *idmap,
3826 					    struct btrfs_ioctl_received_subvol_args *sa)
3827 {
3828 	struct inode *inode = file_inode(file);
3829 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3830 	struct btrfs_root *root = BTRFS_I(inode)->root;
3831 	struct btrfs_root_item *root_item = &root->root_item;
3832 	struct btrfs_trans_handle *trans;
3833 	struct timespec64 ct = current_time(inode);
3834 	int ret = 0;
3835 	int received_uuid_changed;
3836 
3837 	if (!inode_owner_or_capable(idmap, inode))
3838 		return -EPERM;
3839 
3840 	ret = mnt_want_write_file(file);
3841 	if (ret < 0)
3842 		return ret;
3843 
3844 	down_write(&fs_info->subvol_sem);
3845 
3846 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3847 		ret = -EINVAL;
3848 		goto out;
3849 	}
3850 
3851 	if (btrfs_root_readonly(root)) {
3852 		ret = -EROFS;
3853 		goto out;
3854 	}
3855 
3856 	/*
3857 	 * 1 - root item
3858 	 * 2 - uuid items (received uuid + subvol uuid)
3859 	 */
3860 	trans = btrfs_start_transaction(root, 3);
3861 	if (IS_ERR(trans)) {
3862 		ret = PTR_ERR(trans);
3863 		trans = NULL;
3864 		goto out;
3865 	}
3866 
3867 	sa->rtransid = trans->transid;
3868 	sa->rtime.sec = ct.tv_sec;
3869 	sa->rtime.nsec = ct.tv_nsec;
3870 
3871 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3872 				       BTRFS_UUID_SIZE);
3873 	if (received_uuid_changed &&
3874 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3875 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3876 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3877 					  btrfs_root_id(root));
3878 		if (unlikely(ret && ret != -ENOENT)) {
3879 		        btrfs_abort_transaction(trans, ret);
3880 		        btrfs_end_transaction(trans);
3881 		        goto out;
3882 		}
3883 	}
3884 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3885 	btrfs_set_root_stransid(root_item, sa->stransid);
3886 	btrfs_set_root_rtransid(root_item, sa->rtransid);
3887 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3888 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3889 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3890 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3891 
3892 	ret = btrfs_update_root(trans, fs_info->tree_root,
3893 				&root->root_key, &root->root_item);
3894 	if (ret < 0) {
3895 		btrfs_end_transaction(trans);
3896 		goto out;
3897 	}
3898 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3899 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
3900 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3901 					  btrfs_root_id(root));
3902 		if (unlikely(ret < 0 && ret != -EEXIST)) {
3903 			btrfs_abort_transaction(trans, ret);
3904 			btrfs_end_transaction(trans);
3905 			goto out;
3906 		}
3907 	}
3908 	ret = btrfs_commit_transaction(trans);
3909 out:
3910 	up_write(&fs_info->subvol_sem);
3911 	mnt_drop_write_file(file);
3912 	return ret;
3913 }
3914 
3915 #ifdef CONFIG_64BIT
3916 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
3917 						void __user *arg)
3918 {
3919 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
3920 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
3921 	int ret = 0;
3922 
3923 	args32 = memdup_user(arg, sizeof(*args32));
3924 	if (IS_ERR(args32))
3925 		return PTR_ERR(args32);
3926 
3927 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
3928 	if (!args64) {
3929 		ret = -ENOMEM;
3930 		goto out;
3931 	}
3932 
3933 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
3934 	args64->stransid = args32->stransid;
3935 	args64->rtransid = args32->rtransid;
3936 	args64->stime.sec = args32->stime.sec;
3937 	args64->stime.nsec = args32->stime.nsec;
3938 	args64->rtime.sec = args32->rtime.sec;
3939 	args64->rtime.nsec = args32->rtime.nsec;
3940 	args64->flags = args32->flags;
3941 
3942 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
3943 	if (ret)
3944 		goto out;
3945 
3946 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
3947 	args32->stransid = args64->stransid;
3948 	args32->rtransid = args64->rtransid;
3949 	args32->stime.sec = args64->stime.sec;
3950 	args32->stime.nsec = args64->stime.nsec;
3951 	args32->rtime.sec = args64->rtime.sec;
3952 	args32->rtime.nsec = args64->rtime.nsec;
3953 	args32->flags = args64->flags;
3954 
3955 	ret = copy_to_user(arg, args32, sizeof(*args32));
3956 	if (ret)
3957 		ret = -EFAULT;
3958 
3959 out:
3960 	kfree(args32);
3961 	kfree(args64);
3962 	return ret;
3963 }
3964 #endif
3965 
3966 static long btrfs_ioctl_set_received_subvol(struct file *file,
3967 					    void __user *arg)
3968 {
3969 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
3970 	int ret = 0;
3971 
3972 	sa = memdup_user(arg, sizeof(*sa));
3973 	if (IS_ERR(sa))
3974 		return PTR_ERR(sa);
3975 
3976 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
3977 
3978 	if (ret)
3979 		goto out;
3980 
3981 	ret = copy_to_user(arg, sa, sizeof(*sa));
3982 	if (ret)
3983 		ret = -EFAULT;
3984 
3985 out:
3986 	kfree(sa);
3987 	return ret;
3988 }
3989 
3990 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
3991 					void __user *arg)
3992 {
3993 	size_t len;
3994 	int ret;
3995 	char label[BTRFS_LABEL_SIZE];
3996 
3997 	spin_lock(&fs_info->super_lock);
3998 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
3999 	spin_unlock(&fs_info->super_lock);
4000 
4001 	len = strnlen(label, BTRFS_LABEL_SIZE);
4002 
4003 	if (len == BTRFS_LABEL_SIZE) {
4004 		btrfs_warn(fs_info,
4005 			   "label is too long, return the first %zu bytes",
4006 			   --len);
4007 	}
4008 
4009 	ret = copy_to_user(arg, label, len);
4010 
4011 	return ret ? -EFAULT : 0;
4012 }
4013 
4014 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4015 {
4016 	struct inode *inode = file_inode(file);
4017 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4018 	struct btrfs_root *root = BTRFS_I(inode)->root;
4019 	struct btrfs_super_block *super_block = fs_info->super_copy;
4020 	struct btrfs_trans_handle *trans;
4021 	char label[BTRFS_LABEL_SIZE];
4022 	int ret;
4023 
4024 	if (!capable(CAP_SYS_ADMIN))
4025 		return -EPERM;
4026 
4027 	if (copy_from_user(label, arg, sizeof(label)))
4028 		return -EFAULT;
4029 
4030 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4031 		btrfs_err(fs_info,
4032 			  "unable to set label with more than %d bytes",
4033 			  BTRFS_LABEL_SIZE - 1);
4034 		return -EINVAL;
4035 	}
4036 
4037 	ret = mnt_want_write_file(file);
4038 	if (ret)
4039 		return ret;
4040 
4041 	trans = btrfs_start_transaction(root, 0);
4042 	if (IS_ERR(trans)) {
4043 		ret = PTR_ERR(trans);
4044 		goto out_unlock;
4045 	}
4046 
4047 	spin_lock(&fs_info->super_lock);
4048 	strscpy(super_block->label, label);
4049 	spin_unlock(&fs_info->super_lock);
4050 	ret = btrfs_commit_transaction(trans);
4051 
4052 out_unlock:
4053 	mnt_drop_write_file(file);
4054 	return ret;
4055 }
4056 
4057 #define INIT_FEATURE_FLAGS(suffix) \
4058 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4059 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4060 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4061 
4062 int btrfs_ioctl_get_supported_features(void __user *arg)
4063 {
4064 	static const struct btrfs_ioctl_feature_flags features[3] = {
4065 		INIT_FEATURE_FLAGS(SUPP),
4066 		INIT_FEATURE_FLAGS(SAFE_SET),
4067 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4068 	};
4069 
4070 	if (copy_to_user(arg, &features, sizeof(features)))
4071 		return -EFAULT;
4072 
4073 	return 0;
4074 }
4075 
4076 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4077 					void __user *arg)
4078 {
4079 	struct btrfs_super_block *super_block = fs_info->super_copy;
4080 	struct btrfs_ioctl_feature_flags features;
4081 
4082 	features.compat_flags = btrfs_super_compat_flags(super_block);
4083 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4084 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4085 
4086 	if (copy_to_user(arg, &features, sizeof(features)))
4087 		return -EFAULT;
4088 
4089 	return 0;
4090 }
4091 
4092 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4093 			      enum btrfs_feature_set set,
4094 			      u64 change_mask, u64 flags, u64 supported_flags,
4095 			      u64 safe_set, u64 safe_clear)
4096 {
4097 	const char *type = btrfs_feature_set_name(set);
4098 	const char AUTO_KFREE(names);
4099 	u64 disallowed, unsupported;
4100 	u64 set_mask = flags & change_mask;
4101 	u64 clear_mask = ~flags & change_mask;
4102 
4103 	unsupported = set_mask & ~supported_flags;
4104 	if (unsupported) {
4105 		names = btrfs_printable_features(set, unsupported);
4106 		if (names)
4107 			btrfs_warn(fs_info,
4108 				   "this kernel does not support the %s feature bit%s",
4109 				   names, strchr(names, ',') ? "s" : "");
4110 		else
4111 			btrfs_warn(fs_info,
4112 				   "this kernel does not support %s bits 0x%llx",
4113 				   type, unsupported);
4114 		return -EOPNOTSUPP;
4115 	}
4116 
4117 	disallowed = set_mask & ~safe_set;
4118 	if (disallowed) {
4119 		names = btrfs_printable_features(set, disallowed);
4120 		if (names)
4121 			btrfs_warn(fs_info,
4122 				   "can't set the %s feature bit%s while mounted",
4123 				   names, strchr(names, ',') ? "s" : "");
4124 		else
4125 			btrfs_warn(fs_info,
4126 				   "can't set %s bits 0x%llx while mounted",
4127 				   type, disallowed);
4128 		return -EPERM;
4129 	}
4130 
4131 	disallowed = clear_mask & ~safe_clear;
4132 	if (disallowed) {
4133 		names = btrfs_printable_features(set, disallowed);
4134 		if (names)
4135 			btrfs_warn(fs_info,
4136 				   "can't clear the %s feature bit%s while mounted",
4137 				   names, strchr(names, ',') ? "s" : "");
4138 		else
4139 			btrfs_warn(fs_info,
4140 				   "can't clear %s bits 0x%llx while mounted",
4141 				   type, disallowed);
4142 		return -EPERM;
4143 	}
4144 
4145 	return 0;
4146 }
4147 
4148 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4149 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4150 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4151 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4152 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4153 
4154 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4155 {
4156 	struct inode *inode = file_inode(file);
4157 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4158 	struct btrfs_root *root = BTRFS_I(inode)->root;
4159 	struct btrfs_super_block *super_block = fs_info->super_copy;
4160 	struct btrfs_ioctl_feature_flags flags[2];
4161 	struct btrfs_trans_handle *trans;
4162 	u64 newflags;
4163 	int ret;
4164 
4165 	if (!capable(CAP_SYS_ADMIN))
4166 		return -EPERM;
4167 
4168 	if (copy_from_user(flags, arg, sizeof(flags)))
4169 		return -EFAULT;
4170 
4171 	/* Nothing to do */
4172 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4173 	    !flags[0].incompat_flags)
4174 		return 0;
4175 
4176 	ret = check_feature(fs_info, flags[0].compat_flags,
4177 			    flags[1].compat_flags, COMPAT);
4178 	if (ret)
4179 		return ret;
4180 
4181 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4182 			    flags[1].compat_ro_flags, COMPAT_RO);
4183 	if (ret)
4184 		return ret;
4185 
4186 	ret = check_feature(fs_info, flags[0].incompat_flags,
4187 			    flags[1].incompat_flags, INCOMPAT);
4188 	if (ret)
4189 		return ret;
4190 
4191 	ret = mnt_want_write_file(file);
4192 	if (ret)
4193 		return ret;
4194 
4195 	trans = btrfs_start_transaction(root, 0);
4196 	if (IS_ERR(trans)) {
4197 		ret = PTR_ERR(trans);
4198 		goto out_drop_write;
4199 	}
4200 
4201 	spin_lock(&fs_info->super_lock);
4202 	newflags = btrfs_super_compat_flags(super_block);
4203 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4204 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4205 	btrfs_set_super_compat_flags(super_block, newflags);
4206 
4207 	newflags = btrfs_super_compat_ro_flags(super_block);
4208 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4209 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4210 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4211 
4212 	newflags = btrfs_super_incompat_flags(super_block);
4213 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4214 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4215 	btrfs_set_super_incompat_flags(super_block, newflags);
4216 	spin_unlock(&fs_info->super_lock);
4217 
4218 	ret = btrfs_commit_transaction(trans);
4219 out_drop_write:
4220 	mnt_drop_write_file(file);
4221 
4222 	return ret;
4223 }
4224 
4225 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4226 {
4227 	struct btrfs_ioctl_send_args *arg;
4228 	int ret;
4229 
4230 	if (compat) {
4231 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4232 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4233 
4234 		ret = copy_from_user(&args32, argp, sizeof(args32));
4235 		if (ret)
4236 			return -EFAULT;
4237 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4238 		if (!arg)
4239 			return -ENOMEM;
4240 		arg->send_fd = args32.send_fd;
4241 		arg->clone_sources_count = args32.clone_sources_count;
4242 		arg->clone_sources = compat_ptr(args32.clone_sources);
4243 		arg->parent_root = args32.parent_root;
4244 		arg->flags = args32.flags;
4245 		arg->version = args32.version;
4246 		memcpy(arg->reserved, args32.reserved,
4247 		       sizeof(args32.reserved));
4248 #else
4249 		return -ENOTTY;
4250 #endif
4251 	} else {
4252 		arg = memdup_user(argp, sizeof(*arg));
4253 		if (IS_ERR(arg))
4254 			return PTR_ERR(arg);
4255 	}
4256 	ret = btrfs_ioctl_send(root, arg);
4257 	kfree(arg);
4258 	return ret;
4259 }
4260 
4261 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4262 				    bool compat)
4263 {
4264 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4265 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4266 					     flags);
4267 	size_t copy_end;
4268 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4269 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4270 	struct extent_io_tree *io_tree = &inode->io_tree;
4271 	struct iovec iovstack[UIO_FASTIOV];
4272 	struct iovec *iov = iovstack;
4273 	struct iov_iter iter;
4274 	loff_t pos;
4275 	struct kiocb kiocb;
4276 	ssize_t ret;
4277 	u64 disk_bytenr, disk_io_size;
4278 	struct extent_state *cached_state = NULL;
4279 
4280 	if (!capable(CAP_SYS_ADMIN)) {
4281 		ret = -EPERM;
4282 		goto out_acct;
4283 	}
4284 
4285 	if (compat) {
4286 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4287 		struct btrfs_ioctl_encoded_io_args_32 args32;
4288 
4289 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4290 				       flags);
4291 		if (copy_from_user(&args32, argp, copy_end)) {
4292 			ret = -EFAULT;
4293 			goto out_acct;
4294 		}
4295 		args.iov = compat_ptr(args32.iov);
4296 		args.iovcnt = args32.iovcnt;
4297 		args.offset = args32.offset;
4298 		args.flags = args32.flags;
4299 #else
4300 		return -ENOTTY;
4301 #endif
4302 	} else {
4303 		copy_end = copy_end_kernel;
4304 		if (copy_from_user(&args, argp, copy_end)) {
4305 			ret = -EFAULT;
4306 			goto out_acct;
4307 		}
4308 	}
4309 	if (args.flags != 0) {
4310 		ret = -EINVAL;
4311 		goto out_acct;
4312 	}
4313 
4314 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4315 			   &iov, &iter);
4316 	if (ret < 0)
4317 		goto out_acct;
4318 
4319 	if (iov_iter_count(&iter) == 0) {
4320 		ret = 0;
4321 		goto out_iov;
4322 	}
4323 	pos = args.offset;
4324 	ret = rw_verify_area(READ, file, &pos, args.len);
4325 	if (ret < 0)
4326 		goto out_iov;
4327 
4328 	init_sync_kiocb(&kiocb, file);
4329 	kiocb.ki_pos = pos;
4330 
4331 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4332 				 &disk_bytenr, &disk_io_size);
4333 
4334 	if (ret == -EIOCBQUEUED) {
4335 		bool unlocked = false;
4336 		u64 start, lockend, count;
4337 
4338 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4339 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4340 
4341 		if (args.compression)
4342 			count = disk_io_size;
4343 		else
4344 			count = args.len;
4345 
4346 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4347 						 &cached_state, disk_bytenr,
4348 						 disk_io_size, count,
4349 						 args.compression, &unlocked);
4350 
4351 		if (!unlocked) {
4352 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4353 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4354 		}
4355 	}
4356 
4357 	if (ret >= 0) {
4358 		fsnotify_access(file);
4359 		if (copy_to_user(argp + copy_end,
4360 				 (char *)&args + copy_end_kernel,
4361 				 sizeof(args) - copy_end_kernel))
4362 			ret = -EFAULT;
4363 	}
4364 
4365 out_iov:
4366 	kfree(iov);
4367 out_acct:
4368 	if (ret > 0)
4369 		add_rchar(current, ret);
4370 	inc_syscr(current);
4371 	return ret;
4372 }
4373 
4374 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4375 {
4376 	struct btrfs_ioctl_encoded_io_args args;
4377 	struct iovec iovstack[UIO_FASTIOV];
4378 	struct iovec *iov = iovstack;
4379 	struct iov_iter iter;
4380 	loff_t pos;
4381 	struct kiocb kiocb;
4382 	ssize_t ret;
4383 
4384 	if (!capable(CAP_SYS_ADMIN)) {
4385 		ret = -EPERM;
4386 		goto out_acct;
4387 	}
4388 
4389 	if (!(file->f_mode & FMODE_WRITE)) {
4390 		ret = -EBADF;
4391 		goto out_acct;
4392 	}
4393 
4394 	if (compat) {
4395 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4396 		struct btrfs_ioctl_encoded_io_args_32 args32;
4397 
4398 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4399 			ret = -EFAULT;
4400 			goto out_acct;
4401 		}
4402 		args.iov = compat_ptr(args32.iov);
4403 		args.iovcnt = args32.iovcnt;
4404 		args.offset = args32.offset;
4405 		args.flags = args32.flags;
4406 		args.len = args32.len;
4407 		args.unencoded_len = args32.unencoded_len;
4408 		args.unencoded_offset = args32.unencoded_offset;
4409 		args.compression = args32.compression;
4410 		args.encryption = args32.encryption;
4411 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4412 #else
4413 		return -ENOTTY;
4414 #endif
4415 	} else {
4416 		if (copy_from_user(&args, argp, sizeof(args))) {
4417 			ret = -EFAULT;
4418 			goto out_acct;
4419 		}
4420 	}
4421 
4422 	ret = -EINVAL;
4423 	if (args.flags != 0)
4424 		goto out_acct;
4425 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4426 		goto out_acct;
4427 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4428 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4429 		goto out_acct;
4430 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4431 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4432 		goto out_acct;
4433 	if (args.unencoded_offset > args.unencoded_len)
4434 		goto out_acct;
4435 	if (args.len > args.unencoded_len - args.unencoded_offset)
4436 		goto out_acct;
4437 
4438 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4439 			   &iov, &iter);
4440 	if (ret < 0)
4441 		goto out_acct;
4442 
4443 	if (iov_iter_count(&iter) == 0) {
4444 		ret = 0;
4445 		goto out_iov;
4446 	}
4447 	pos = args.offset;
4448 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4449 	if (ret < 0)
4450 		goto out_iov;
4451 
4452 	init_sync_kiocb(&kiocb, file);
4453 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4454 	if (ret)
4455 		goto out_iov;
4456 	kiocb.ki_pos = pos;
4457 
4458 	file_start_write(file);
4459 
4460 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4461 	if (ret > 0)
4462 		fsnotify_modify(file);
4463 
4464 	file_end_write(file);
4465 out_iov:
4466 	kfree(iov);
4467 out_acct:
4468 	if (ret > 0)
4469 		add_wchar(current, ret);
4470 	inc_syscw(current);
4471 	return ret;
4472 }
4473 
4474 struct btrfs_uring_encoded_data {
4475 	struct btrfs_ioctl_encoded_io_args args;
4476 	struct iovec iovstack[UIO_FASTIOV];
4477 	struct iovec *iov;
4478 	struct iov_iter iter;
4479 };
4480 
4481 /*
4482  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4483  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4484  * off and cleanup the I/O in btrfs_uring_read_finished.
4485  */
4486 struct btrfs_uring_priv {
4487 	struct io_uring_cmd *cmd;
4488 	struct page **pages;
4489 	unsigned long nr_pages;
4490 	struct kiocb iocb;
4491 	struct iovec *iov;
4492 	struct iov_iter iter;
4493 	struct extent_state *cached_state;
4494 	u64 count;
4495 	u64 start;
4496 	u64 lockend;
4497 	int err;
4498 	bool compressed;
4499 };
4500 
4501 struct io_btrfs_cmd {
4502 	struct btrfs_uring_encoded_data *data;
4503 	struct btrfs_uring_priv *priv;
4504 };
4505 
4506 static void btrfs_uring_read_finished(struct io_tw_req tw_req, io_tw_token_t tw)
4507 {
4508 	struct io_uring_cmd *cmd = io_uring_cmd_from_tw(tw_req);
4509 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4510 	struct btrfs_uring_priv *priv = bc->priv;
4511 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4512 	struct extent_io_tree *io_tree = &inode->io_tree;
4513 	pgoff_t index;
4514 	u64 cur;
4515 	size_t page_offset;
4516 	ssize_t ret;
4517 
4518 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4519 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4520 
4521 	if (priv->err) {
4522 		ret = priv->err;
4523 		goto out;
4524 	}
4525 
4526 	if (priv->compressed) {
4527 		index = 0;
4528 		page_offset = 0;
4529 	} else {
4530 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4531 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4532 	}
4533 	cur = 0;
4534 	while (cur < priv->count) {
4535 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4536 
4537 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4538 				      &priv->iter) != bytes) {
4539 			ret = -EFAULT;
4540 			goto out;
4541 		}
4542 
4543 		index++;
4544 		cur += bytes;
4545 		page_offset = 0;
4546 	}
4547 	ret = priv->count;
4548 
4549 out:
4550 	btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4551 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4552 
4553 	io_uring_cmd_done(cmd, ret, IO_URING_CMD_TASK_WORK_ISSUE_FLAGS);
4554 	add_rchar(current, ret);
4555 
4556 	for (index = 0; index < priv->nr_pages; index++)
4557 		__free_page(priv->pages[index]);
4558 
4559 	kfree(priv->pages);
4560 	kfree(priv->iov);
4561 	kfree(priv);
4562 	kfree(bc->data);
4563 }
4564 
4565 void btrfs_uring_read_extent_endio(void *ctx, int err)
4566 {
4567 	struct btrfs_uring_priv *priv = ctx;
4568 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4569 
4570 	priv->err = err;
4571 	bc->priv = priv;
4572 
4573 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4574 }
4575 
4576 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4577 				   u64 start, u64 lockend,
4578 				   struct extent_state *cached_state,
4579 				   u64 disk_bytenr, u64 disk_io_size,
4580 				   size_t count, bool compressed,
4581 				   struct iovec *iov, struct io_uring_cmd *cmd)
4582 {
4583 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4584 	struct extent_io_tree *io_tree = &inode->io_tree;
4585 	struct page **pages;
4586 	struct btrfs_uring_priv *priv = NULL;
4587 	unsigned long nr_pages;
4588 	int ret;
4589 
4590 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4591 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4592 	if (!pages)
4593 		return -ENOMEM;
4594 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4595 	if (ret) {
4596 		ret = -ENOMEM;
4597 		goto out_fail;
4598 	}
4599 
4600 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4601 	if (!priv) {
4602 		ret = -ENOMEM;
4603 		goto out_fail;
4604 	}
4605 
4606 	priv->iocb = *iocb;
4607 	priv->iov = iov;
4608 	priv->iter = *iter;
4609 	priv->count = count;
4610 	priv->cmd = cmd;
4611 	priv->cached_state = cached_state;
4612 	priv->compressed = compressed;
4613 	priv->nr_pages = nr_pages;
4614 	priv->pages = pages;
4615 	priv->start = start;
4616 	priv->lockend = lockend;
4617 	priv->err = 0;
4618 
4619 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4620 						    disk_io_size, pages, priv);
4621 	if (ret && ret != -EIOCBQUEUED)
4622 		goto out_fail;
4623 
4624 	/*
4625 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4626 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4627 	 * and inode and freeing the allocations.
4628 	 */
4629 
4630 	/*
4631 	 * We're returning to userspace with the inode lock held, and that's
4632 	 * okay - it'll get unlocked in a worker thread.  Call
4633 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4634 	 */
4635 	btrfs_lockdep_inode_release(inode, i_rwsem);
4636 
4637 	return -EIOCBQUEUED;
4638 
4639 out_fail:
4640 	btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4641 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4642 	kfree(priv);
4643 	return ret;
4644 }
4645 
4646 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4647 {
4648 	struct file *file = cmd->file;
4649 	struct btrfs_inode *inode = BTRFS_I(file->f_inode);
4650 	struct extent_io_tree *io_tree = &inode->io_tree;
4651 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4652 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4653 	size_t copy_end;
4654 	int ret;
4655 	u64 disk_bytenr, disk_io_size;
4656 	loff_t pos;
4657 	struct kiocb kiocb;
4658 	struct extent_state *cached_state = NULL;
4659 	u64 start, lockend;
4660 	void __user *sqe_addr;
4661 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4662 	struct btrfs_uring_encoded_data *data = NULL;
4663 
4664 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4665 		data = bc->data;
4666 
4667 	if (!capable(CAP_SYS_ADMIN)) {
4668 		ret = -EPERM;
4669 		goto out_acct;
4670 	}
4671 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4672 
4673 	if (issue_flags & IO_URING_F_COMPAT) {
4674 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4675 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4676 #else
4677 		ret = -ENOTTY;
4678 		goto out_acct;
4679 #endif
4680 	} else {
4681 		copy_end = copy_end_kernel;
4682 	}
4683 
4684 	if (!data) {
4685 		data = kzalloc(sizeof(*data), GFP_NOFS);
4686 		if (!data) {
4687 			ret = -ENOMEM;
4688 			goto out_acct;
4689 		}
4690 
4691 		bc->data = data;
4692 
4693 		if (issue_flags & IO_URING_F_COMPAT) {
4694 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4695 			struct btrfs_ioctl_encoded_io_args_32 args32;
4696 
4697 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4698 				ret = -EFAULT;
4699 				goto out_acct;
4700 			}
4701 
4702 			data->args.iov = compat_ptr(args32.iov);
4703 			data->args.iovcnt = args32.iovcnt;
4704 			data->args.offset = args32.offset;
4705 			data->args.flags = args32.flags;
4706 #endif
4707 		} else {
4708 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4709 				ret = -EFAULT;
4710 				goto out_acct;
4711 			}
4712 		}
4713 
4714 		if (data->args.flags != 0) {
4715 			ret = -EINVAL;
4716 			goto out_acct;
4717 		}
4718 
4719 		data->iov = data->iovstack;
4720 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4721 				   ARRAY_SIZE(data->iovstack), &data->iov,
4722 				   &data->iter);
4723 		if (ret < 0)
4724 			goto out_acct;
4725 
4726 		if (iov_iter_count(&data->iter) == 0) {
4727 			ret = 0;
4728 			goto out_free;
4729 		}
4730 	}
4731 
4732 	pos = data->args.offset;
4733 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4734 	if (ret < 0)
4735 		goto out_free;
4736 
4737 	init_sync_kiocb(&kiocb, file);
4738 	kiocb.ki_pos = pos;
4739 
4740 	if (issue_flags & IO_URING_F_NONBLOCK)
4741 		kiocb.ki_flags |= IOCB_NOWAIT;
4742 
4743 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4744 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4745 
4746 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4747 				 &disk_bytenr, &disk_io_size);
4748 	if (ret == -EAGAIN)
4749 		goto out_acct;
4750 	if (ret < 0 && ret != -EIOCBQUEUED)
4751 		goto out_free;
4752 
4753 	file_accessed(file);
4754 
4755 	if (copy_to_user(sqe_addr + copy_end,
4756 			 (const char *)&data->args + copy_end_kernel,
4757 			 sizeof(data->args) - copy_end_kernel)) {
4758 		if (ret == -EIOCBQUEUED) {
4759 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4760 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4761 		}
4762 		ret = -EFAULT;
4763 		goto out_free;
4764 	}
4765 
4766 	if (ret == -EIOCBQUEUED) {
4767 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4768 
4769 		/* Match ioctl by not returning past EOF if uncompressed. */
4770 		if (!data->args.compression)
4771 			count = min_t(u64, count, data->args.len);
4772 
4773 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4774 					      cached_state, disk_bytenr, disk_io_size,
4775 					      count, data->args.compression,
4776 					      data->iov, cmd);
4777 
4778 		goto out_acct;
4779 	}
4780 
4781 out_free:
4782 	kfree(data->iov);
4783 
4784 out_acct:
4785 	if (ret > 0)
4786 		add_rchar(current, ret);
4787 	inc_syscr(current);
4788 
4789 	if (ret != -EIOCBQUEUED && ret != -EAGAIN)
4790 		kfree(data);
4791 
4792 	return ret;
4793 }
4794 
4795 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4796 {
4797 	struct file *file = cmd->file;
4798 	loff_t pos;
4799 	struct kiocb kiocb;
4800 	ssize_t ret;
4801 	void __user *sqe_addr;
4802 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4803 	struct btrfs_uring_encoded_data *data = NULL;
4804 
4805 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4806 		data = bc->data;
4807 
4808 	if (!capable(CAP_SYS_ADMIN)) {
4809 		ret = -EPERM;
4810 		goto out_acct;
4811 	}
4812 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4813 
4814 	if (!(file->f_mode & FMODE_WRITE)) {
4815 		ret = -EBADF;
4816 		goto out_acct;
4817 	}
4818 
4819 	if (!data) {
4820 		data = kzalloc(sizeof(*data), GFP_NOFS);
4821 		if (!data) {
4822 			ret = -ENOMEM;
4823 			goto out_acct;
4824 		}
4825 
4826 		bc->data = data;
4827 
4828 		if (issue_flags & IO_URING_F_COMPAT) {
4829 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4830 			struct btrfs_ioctl_encoded_io_args_32 args32;
4831 
4832 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4833 				ret = -EFAULT;
4834 				goto out_acct;
4835 			}
4836 			data->args.iov = compat_ptr(args32.iov);
4837 			data->args.iovcnt = args32.iovcnt;
4838 			data->args.offset = args32.offset;
4839 			data->args.flags = args32.flags;
4840 			data->args.len = args32.len;
4841 			data->args.unencoded_len = args32.unencoded_len;
4842 			data->args.unencoded_offset = args32.unencoded_offset;
4843 			data->args.compression = args32.compression;
4844 			data->args.encryption = args32.encryption;
4845 			memcpy(data->args.reserved, args32.reserved,
4846 			       sizeof(data->args.reserved));
4847 #else
4848 			ret = -ENOTTY;
4849 			goto out_acct;
4850 #endif
4851 		} else {
4852 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
4853 				ret = -EFAULT;
4854 				goto out_acct;
4855 			}
4856 		}
4857 
4858 		ret = -EINVAL;
4859 		if (data->args.flags != 0)
4860 			goto out_acct;
4861 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
4862 			goto out_acct;
4863 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4864 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4865 			goto out_acct;
4866 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4867 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4868 			goto out_acct;
4869 		if (data->args.unencoded_offset > data->args.unencoded_len)
4870 			goto out_acct;
4871 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
4872 			goto out_acct;
4873 
4874 		data->iov = data->iovstack;
4875 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
4876 				   ARRAY_SIZE(data->iovstack), &data->iov,
4877 				   &data->iter);
4878 		if (ret < 0)
4879 			goto out_acct;
4880 
4881 		if (iov_iter_count(&data->iter) == 0) {
4882 			ret = 0;
4883 			goto out_iov;
4884 		}
4885 	}
4886 
4887 	if (issue_flags & IO_URING_F_NONBLOCK) {
4888 		ret = -EAGAIN;
4889 		goto out_acct;
4890 	}
4891 
4892 	pos = data->args.offset;
4893 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
4894 	if (ret < 0)
4895 		goto out_iov;
4896 
4897 	init_sync_kiocb(&kiocb, file);
4898 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4899 	if (ret)
4900 		goto out_iov;
4901 	kiocb.ki_pos = pos;
4902 
4903 	file_start_write(file);
4904 
4905 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
4906 	if (ret > 0)
4907 		fsnotify_modify(file);
4908 
4909 	file_end_write(file);
4910 out_iov:
4911 	kfree(data->iov);
4912 out_acct:
4913 	if (ret > 0)
4914 		add_wchar(current, ret);
4915 	inc_syscw(current);
4916 
4917 	if (ret != -EAGAIN)
4918 		kfree(data);
4919 	return ret;
4920 }
4921 
4922 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
4923 {
4924 	if (btrfs_is_shutdown(inode_to_fs_info(file_inode(cmd->file))))
4925 		return -EIO;
4926 
4927 	switch (cmd->cmd_op) {
4928 	case BTRFS_IOC_ENCODED_READ:
4929 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4930 	case BTRFS_IOC_ENCODED_READ_32:
4931 #endif
4932 		return btrfs_uring_encoded_read(cmd, issue_flags);
4933 
4934 	case BTRFS_IOC_ENCODED_WRITE:
4935 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4936 	case BTRFS_IOC_ENCODED_WRITE_32:
4937 #endif
4938 		return btrfs_uring_encoded_write(cmd, issue_flags);
4939 	}
4940 
4941 	return -EINVAL;
4942 }
4943 
4944 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
4945 {
4946 	struct btrfs_root *root;
4947 	struct btrfs_ioctl_subvol_wait args = { 0 };
4948 	signed long sched_ret;
4949 	int refs;
4950 	u64 root_flags;
4951 	bool wait_for_deletion = false;
4952 	bool found = false;
4953 
4954 	if (copy_from_user(&args, argp, sizeof(args)))
4955 		return -EFAULT;
4956 
4957 	switch (args.mode) {
4958 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
4959 		/*
4960 		 * Wait for the first one deleted that waits until all previous
4961 		 * are cleaned.
4962 		 */
4963 		spin_lock(&fs_info->trans_lock);
4964 		if (!list_empty(&fs_info->dead_roots)) {
4965 			root = list_last_entry(&fs_info->dead_roots,
4966 					       struct btrfs_root, root_list);
4967 			args.subvolid = btrfs_root_id(root);
4968 			found = true;
4969 		}
4970 		spin_unlock(&fs_info->trans_lock);
4971 		if (!found)
4972 			return -ENOENT;
4973 
4974 		fallthrough;
4975 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
4976 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
4977 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
4978 			return -EINVAL;
4979 		break;
4980 	case BTRFS_SUBVOL_SYNC_COUNT:
4981 		spin_lock(&fs_info->trans_lock);
4982 		args.count = list_count_nodes(&fs_info->dead_roots);
4983 		spin_unlock(&fs_info->trans_lock);
4984 		if (copy_to_user(argp, &args, sizeof(args)))
4985 			return -EFAULT;
4986 		return 0;
4987 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
4988 		spin_lock(&fs_info->trans_lock);
4989 		/* Last in the list was deleted first. */
4990 		if (!list_empty(&fs_info->dead_roots)) {
4991 			root = list_last_entry(&fs_info->dead_roots,
4992 					       struct btrfs_root, root_list);
4993 			args.subvolid = btrfs_root_id(root);
4994 		} else {
4995 			args.subvolid = 0;
4996 		}
4997 		spin_unlock(&fs_info->trans_lock);
4998 		if (copy_to_user(argp, &args, sizeof(args)))
4999 			return -EFAULT;
5000 		return 0;
5001 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5002 		spin_lock(&fs_info->trans_lock);
5003 		/* First in the list was deleted last. */
5004 		if (!list_empty(&fs_info->dead_roots)) {
5005 			root = list_first_entry(&fs_info->dead_roots,
5006 						struct btrfs_root, root_list);
5007 			args.subvolid = btrfs_root_id(root);
5008 		} else {
5009 			args.subvolid = 0;
5010 		}
5011 		spin_unlock(&fs_info->trans_lock);
5012 		if (copy_to_user(argp, &args, sizeof(args)))
5013 			return -EFAULT;
5014 		return 0;
5015 	default:
5016 		return -EINVAL;
5017 	}
5018 
5019 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5020 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5021 		return -EOVERFLOW;
5022 
5023 	while (1) {
5024 		/* Wait for the specific one. */
5025 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5026 			return -EINTR;
5027 		refs = -1;
5028 		spin_lock(&fs_info->fs_roots_radix_lock);
5029 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5030 					 (unsigned long)args.subvolid);
5031 		if (root) {
5032 			spin_lock(&root->root_item_lock);
5033 			refs = btrfs_root_refs(&root->root_item);
5034 			root_flags = btrfs_root_flags(&root->root_item);
5035 			spin_unlock(&root->root_item_lock);
5036 		}
5037 		spin_unlock(&fs_info->fs_roots_radix_lock);
5038 		up_read(&fs_info->subvol_sem);
5039 
5040 		/* Subvolume does not exist. */
5041 		if (!root)
5042 			return -ENOENT;
5043 
5044 		/* Subvolume not deleted at all. */
5045 		if (refs > 0)
5046 			return -EEXIST;
5047 		/* We've waited and now the subvolume is gone. */
5048 		if (wait_for_deletion && refs == -1) {
5049 			/* Return the one we waited for as the last one. */
5050 			if (copy_to_user(argp, &args, sizeof(args)))
5051 				return -EFAULT;
5052 			return 0;
5053 		}
5054 
5055 		/* Subvolume not found on the first try (deleted or never existed). */
5056 		if (refs == -1)
5057 			return -ENOENT;
5058 
5059 		wait_for_deletion = true;
5060 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5061 		sched_ret = schedule_timeout_interruptible(HZ);
5062 		/* Early wake up or error. */
5063 		if (sched_ret != 0)
5064 			return -EINTR;
5065 	}
5066 
5067 	return 0;
5068 }
5069 
5070 #ifdef CONFIG_BTRFS_EXPERIMENTAL
5071 static int btrfs_ioctl_shutdown(struct btrfs_fs_info *fs_info, unsigned long arg)
5072 {
5073 	int ret = 0;
5074 	u32 flags;
5075 
5076 	if (!capable(CAP_SYS_ADMIN))
5077 		return -EPERM;
5078 
5079 	if (get_user(flags, (u32 __user *)arg))
5080 		return -EFAULT;
5081 
5082 	if (flags >= BTRFS_SHUTDOWN_FLAGS_LAST)
5083 		return -EINVAL;
5084 
5085 	if (btrfs_is_shutdown(fs_info))
5086 		return 0;
5087 
5088 	switch (flags) {
5089 	case BTRFS_SHUTDOWN_FLAGS_LOGFLUSH:
5090 	case BTRFS_SHUTDOWN_FLAGS_DEFAULT:
5091 		ret = freeze_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL);
5092 		if (ret)
5093 			return ret;
5094 		btrfs_force_shutdown(fs_info);
5095 		ret = thaw_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL);
5096 		if (ret)
5097 			return ret;
5098 		break;
5099 	case BTRFS_SHUTDOWN_FLAGS_NOLOGFLUSH:
5100 		btrfs_force_shutdown(fs_info);
5101 		break;
5102 	}
5103 	return ret;
5104 }
5105 #endif
5106 
5107 long btrfs_ioctl(struct file *file, unsigned int
5108 		cmd, unsigned long arg)
5109 {
5110 	struct inode *inode = file_inode(file);
5111 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5112 	struct btrfs_root *root = BTRFS_I(inode)->root;
5113 	void __user *argp = (void __user *)arg;
5114 
5115 	switch (cmd) {
5116 	case FS_IOC_GETVERSION:
5117 		return btrfs_ioctl_getversion(inode, argp);
5118 	case FS_IOC_GETFSLABEL:
5119 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5120 	case FS_IOC_SETFSLABEL:
5121 		return btrfs_ioctl_set_fslabel(file, argp);
5122 	case FITRIM:
5123 		return btrfs_ioctl_fitrim(fs_info, argp);
5124 	case BTRFS_IOC_SNAP_CREATE:
5125 		return btrfs_ioctl_snap_create(file, argp, false);
5126 	case BTRFS_IOC_SNAP_CREATE_V2:
5127 		return btrfs_ioctl_snap_create_v2(file, argp, false);
5128 	case BTRFS_IOC_SUBVOL_CREATE:
5129 		return btrfs_ioctl_snap_create(file, argp, true);
5130 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5131 		return btrfs_ioctl_snap_create_v2(file, argp, true);
5132 	case BTRFS_IOC_SNAP_DESTROY:
5133 		return btrfs_ioctl_snap_destroy(file, argp, false);
5134 	case BTRFS_IOC_SNAP_DESTROY_V2:
5135 		return btrfs_ioctl_snap_destroy(file, argp, true);
5136 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5137 		return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5138 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5139 		return btrfs_ioctl_subvol_setflags(file, argp);
5140 	case BTRFS_IOC_DEFAULT_SUBVOL:
5141 		return btrfs_ioctl_default_subvol(file, argp);
5142 	case BTRFS_IOC_DEFRAG:
5143 		return btrfs_ioctl_defrag(file, NULL);
5144 	case BTRFS_IOC_DEFRAG_RANGE:
5145 		return btrfs_ioctl_defrag(file, argp);
5146 	case BTRFS_IOC_RESIZE:
5147 		return btrfs_ioctl_resize(file, argp);
5148 	case BTRFS_IOC_ADD_DEV:
5149 		return btrfs_ioctl_add_dev(fs_info, argp);
5150 	case BTRFS_IOC_RM_DEV:
5151 		return btrfs_ioctl_rm_dev(file, argp);
5152 	case BTRFS_IOC_RM_DEV_V2:
5153 		return btrfs_ioctl_rm_dev_v2(file, argp);
5154 	case BTRFS_IOC_FS_INFO:
5155 		return btrfs_ioctl_fs_info(fs_info, argp);
5156 	case BTRFS_IOC_DEV_INFO:
5157 		return btrfs_ioctl_dev_info(fs_info, argp);
5158 	case BTRFS_IOC_TREE_SEARCH:
5159 		return btrfs_ioctl_tree_search(root, argp);
5160 	case BTRFS_IOC_TREE_SEARCH_V2:
5161 		return btrfs_ioctl_tree_search_v2(root, argp);
5162 	case BTRFS_IOC_INO_LOOKUP:
5163 		return btrfs_ioctl_ino_lookup(root, argp);
5164 	case BTRFS_IOC_INO_PATHS:
5165 		return btrfs_ioctl_ino_to_path(root, argp);
5166 	case BTRFS_IOC_LOGICAL_INO:
5167 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5168 	case BTRFS_IOC_LOGICAL_INO_V2:
5169 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5170 	case BTRFS_IOC_SPACE_INFO:
5171 		return btrfs_ioctl_space_info(fs_info, argp);
5172 	case BTRFS_IOC_SYNC: {
5173 		int ret;
5174 
5175 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5176 		if (ret)
5177 			return ret;
5178 		ret = btrfs_sync_fs(inode->i_sb, 1);
5179 		/*
5180 		 * There may be work for the cleaner kthread to do (subvolume
5181 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5182 		 */
5183 		wake_up_process(fs_info->cleaner_kthread);
5184 		return ret;
5185 	}
5186 	case BTRFS_IOC_START_SYNC:
5187 		return btrfs_ioctl_start_sync(root, argp);
5188 	case BTRFS_IOC_WAIT_SYNC:
5189 		return btrfs_ioctl_wait_sync(fs_info, argp);
5190 	case BTRFS_IOC_SCRUB:
5191 		return btrfs_ioctl_scrub(file, argp);
5192 	case BTRFS_IOC_SCRUB_CANCEL:
5193 		return btrfs_ioctl_scrub_cancel(fs_info);
5194 	case BTRFS_IOC_SCRUB_PROGRESS:
5195 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5196 	case BTRFS_IOC_BALANCE_V2:
5197 		return btrfs_ioctl_balance(file, argp);
5198 	case BTRFS_IOC_BALANCE_CTL:
5199 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5200 	case BTRFS_IOC_BALANCE_PROGRESS:
5201 		return btrfs_ioctl_balance_progress(fs_info, argp);
5202 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5203 		return btrfs_ioctl_set_received_subvol(file, argp);
5204 #ifdef CONFIG_64BIT
5205 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5206 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5207 #endif
5208 	case BTRFS_IOC_SEND:
5209 		return _btrfs_ioctl_send(root, argp, false);
5210 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5211 	case BTRFS_IOC_SEND_32:
5212 		return _btrfs_ioctl_send(root, argp, true);
5213 #endif
5214 	case BTRFS_IOC_GET_DEV_STATS:
5215 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5216 	case BTRFS_IOC_QUOTA_CTL:
5217 		return btrfs_ioctl_quota_ctl(file, argp);
5218 	case BTRFS_IOC_QGROUP_ASSIGN:
5219 		return btrfs_ioctl_qgroup_assign(file, argp);
5220 	case BTRFS_IOC_QGROUP_CREATE:
5221 		return btrfs_ioctl_qgroup_create(file, argp);
5222 	case BTRFS_IOC_QGROUP_LIMIT:
5223 		return btrfs_ioctl_qgroup_limit(file, argp);
5224 	case BTRFS_IOC_QUOTA_RESCAN:
5225 		return btrfs_ioctl_quota_rescan(file, argp);
5226 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5227 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5228 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5229 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5230 	case BTRFS_IOC_DEV_REPLACE:
5231 		return btrfs_ioctl_dev_replace(fs_info, argp);
5232 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5233 		return btrfs_ioctl_get_supported_features(argp);
5234 	case BTRFS_IOC_GET_FEATURES:
5235 		return btrfs_ioctl_get_features(fs_info, argp);
5236 	case BTRFS_IOC_SET_FEATURES:
5237 		return btrfs_ioctl_set_features(file, argp);
5238 	case BTRFS_IOC_GET_SUBVOL_INFO:
5239 		return btrfs_ioctl_get_subvol_info(inode, argp);
5240 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5241 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5242 	case BTRFS_IOC_INO_LOOKUP_USER:
5243 		return btrfs_ioctl_ino_lookup_user(file, argp);
5244 	case FS_IOC_ENABLE_VERITY:
5245 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5246 	case FS_IOC_MEASURE_VERITY:
5247 		return fsverity_ioctl_measure(file, argp);
5248 	case FS_IOC_READ_VERITY_METADATA:
5249 		return fsverity_ioctl_read_metadata(file, argp);
5250 	case BTRFS_IOC_ENCODED_READ:
5251 		return btrfs_ioctl_encoded_read(file, argp, false);
5252 	case BTRFS_IOC_ENCODED_WRITE:
5253 		return btrfs_ioctl_encoded_write(file, argp, false);
5254 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5255 	case BTRFS_IOC_ENCODED_READ_32:
5256 		return btrfs_ioctl_encoded_read(file, argp, true);
5257 	case BTRFS_IOC_ENCODED_WRITE_32:
5258 		return btrfs_ioctl_encoded_write(file, argp, true);
5259 #endif
5260 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5261 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5262 #ifdef CONFIG_BTRFS_EXPERIMENTAL
5263 	case BTRFS_IOC_SHUTDOWN:
5264 		return btrfs_ioctl_shutdown(fs_info, arg);
5265 #endif
5266 	}
5267 
5268 	return -ENOTTY;
5269 }
5270 
5271 #ifdef CONFIG_COMPAT
5272 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5273 {
5274 	/*
5275 	 * These all access 32-bit values anyway so no further
5276 	 * handling is necessary.
5277 	 */
5278 	switch (cmd) {
5279 	case FS_IOC32_GETVERSION:
5280 		cmd = FS_IOC_GETVERSION;
5281 		break;
5282 	}
5283 
5284 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5285 }
5286 #endif
5287