1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 __s64 send_fd; /* in */
90 __u64 clone_sources_count; /* in */
91 compat_uptr_t clone_sources; /* in */
92 __u64 parent_root; /* in */
93 __u64 flags; /* in */
94 __u32 version; /* in */
95 __u8 reserved[28]; /* in */
96 } __attribute__ ((__packed__));
97
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 struct btrfs_ioctl_send_args_32)
100
101 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_uptr_t iov;
103 compat_ulong_t iovcnt;
104 __s64 offset;
105 __u64 flags;
106 __u64 len;
107 __u64 unencoded_len;
108 __u64 unencoded_offset;
109 __u32 compression;
110 __u32 encryption;
111 __u8 reserved[64];
112 };
113
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(const struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 unsigned int flags)
123 {
124 if (S_ISDIR(inode->i_mode))
125 return flags;
126 else if (S_ISREG(inode->i_mode))
127 return flags & ~FS_DIRSYNC_FL;
128 else
129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131
132 /*
133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134 * ioctl.
135 */
btrfs_inode_flags_to_fsflags(const struct btrfs_inode * inode)136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 unsigned int iflags = 0;
139 u32 flags = inode->flags;
140 u32 ro_flags = inode->ro_flags;
141
142 if (flags & BTRFS_INODE_SYNC)
143 iflags |= FS_SYNC_FL;
144 if (flags & BTRFS_INODE_IMMUTABLE)
145 iflags |= FS_IMMUTABLE_FL;
146 if (flags & BTRFS_INODE_APPEND)
147 iflags |= FS_APPEND_FL;
148 if (flags & BTRFS_INODE_NODUMP)
149 iflags |= FS_NODUMP_FL;
150 if (flags & BTRFS_INODE_NOATIME)
151 iflags |= FS_NOATIME_FL;
152 if (flags & BTRFS_INODE_DIRSYNC)
153 iflags |= FS_DIRSYNC_FL;
154 if (flags & BTRFS_INODE_NODATACOW)
155 iflags |= FS_NOCOW_FL;
156 if (ro_flags & BTRFS_INODE_RO_VERITY)
157 iflags |= FS_VERITY_FL;
158
159 if (flags & BTRFS_INODE_NOCOMPRESS)
160 iflags |= FS_NOCOMP_FL;
161 else if (flags & BTRFS_INODE_COMPRESS)
162 iflags |= FS_COMPR_FL;
163
164 return iflags;
165 }
166
167 /*
168 * Update inode->i_flags based on the btrfs internal flags.
169 */
btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 unsigned int new_fl = 0;
173
174 if (inode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (inode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (inode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (inode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->vfs_inode.i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190 }
191
192 /*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219 }
220
check_fsflags_compatible(const struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223 {
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228 }
229
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235 }
236
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242 }
243
244 /*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 return 0;
254 }
255
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258 {
259 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 struct btrfs_root *root = inode->root;
261 struct btrfs_fs_info *fs_info = root->fs_info;
262 struct btrfs_trans_handle *trans;
263 unsigned int fsflags, old_fsflags;
264 int ret;
265 const char *comp = NULL;
266 u32 inode_flags;
267
268 if (btrfs_root_readonly(root))
269 return -EROFS;
270
271 if (fileattr_has_fsx(fa))
272 return -EOPNOTSUPP;
273
274 fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 ret = check_fsflags(old_fsflags, fsflags);
277 if (ret)
278 return ret;
279
280 ret = check_fsflags_compatible(fs_info, fsflags);
281 if (ret)
282 return ret;
283
284 inode_flags = inode->flags;
285 if (fsflags & FS_SYNC_FL)
286 inode_flags |= BTRFS_INODE_SYNC;
287 else
288 inode_flags &= ~BTRFS_INODE_SYNC;
289 if (fsflags & FS_IMMUTABLE_FL)
290 inode_flags |= BTRFS_INODE_IMMUTABLE;
291 else
292 inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 if (fsflags & FS_APPEND_FL)
294 inode_flags |= BTRFS_INODE_APPEND;
295 else
296 inode_flags &= ~BTRFS_INODE_APPEND;
297 if (fsflags & FS_NODUMP_FL)
298 inode_flags |= BTRFS_INODE_NODUMP;
299 else
300 inode_flags &= ~BTRFS_INODE_NODUMP;
301 if (fsflags & FS_NOATIME_FL)
302 inode_flags |= BTRFS_INODE_NOATIME;
303 else
304 inode_flags &= ~BTRFS_INODE_NOATIME;
305
306 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 if (!fa->flags_valid) {
308 /* 1 item for the inode */
309 trans = btrfs_start_transaction(root, 1);
310 if (IS_ERR(trans))
311 return PTR_ERR(trans);
312 goto update_flags;
313 }
314
315 if (fsflags & FS_DIRSYNC_FL)
316 inode_flags |= BTRFS_INODE_DIRSYNC;
317 else
318 inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 if (fsflags & FS_NOCOW_FL) {
320 if (S_ISREG(inode->vfs_inode.i_mode)) {
321 /*
322 * It's safe to turn csums off here, no extents exist.
323 * Otherwise we want the flag to reflect the real COW
324 * status of the file and will not set it.
325 */
326 if (inode->vfs_inode.i_size == 0)
327 inode_flags |= BTRFS_INODE_NODATACOW |
328 BTRFS_INODE_NODATASUM;
329 } else {
330 inode_flags |= BTRFS_INODE_NODATACOW;
331 }
332 } else {
333 /*
334 * Revert back under same assumptions as above
335 */
336 if (S_ISREG(inode->vfs_inode.i_mode)) {
337 if (inode->vfs_inode.i_size == 0)
338 inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 BTRFS_INODE_NODATASUM);
340 } else {
341 inode_flags &= ~BTRFS_INODE_NODATACOW;
342 }
343 }
344
345 /*
346 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 * flag may be changed automatically if compression code won't make
348 * things smaller.
349 */
350 if (fsflags & FS_NOCOMP_FL) {
351 inode_flags &= ~BTRFS_INODE_COMPRESS;
352 inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 } else if (fsflags & FS_COMPR_FL) {
354
355 if (IS_SWAPFILE(&inode->vfs_inode))
356 return -ETXTBSY;
357
358 inode_flags |= BTRFS_INODE_COMPRESS;
359 inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360
361 comp = btrfs_compress_type2str(fs_info->compress_type);
362 if (!comp || comp[0] == 0)
363 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 } else {
365 inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 }
367
368 /*
369 * 1 for inode item
370 * 2 for properties
371 */
372 trans = btrfs_start_transaction(root, 3);
373 if (IS_ERR(trans))
374 return PTR_ERR(trans);
375
376 if (comp) {
377 ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 comp, strlen(comp), 0);
379 if (ret) {
380 btrfs_abort_transaction(trans, ret);
381 goto out_end_trans;
382 }
383 } else {
384 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 if (ret && ret != -ENODATA) {
386 btrfs_abort_transaction(trans, ret);
387 goto out_end_trans;
388 }
389 }
390
391 update_flags:
392 inode->flags = inode_flags;
393 btrfs_update_inode_mapping_flags(inode);
394 btrfs_sync_inode_flags_to_i_flags(inode);
395 inode_inc_iversion(&inode->vfs_inode);
396 inode_set_ctime_current(&inode->vfs_inode);
397 ret = btrfs_update_inode(trans, inode);
398
399 out_end_trans:
400 btrfs_end_transaction(trans);
401 return ret;
402 }
403
btrfs_ioctl_getversion(const struct inode * inode,int __user * arg)404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 return put_user(inode->i_generation, arg);
407 }
408
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 void __user *arg)
411 {
412 struct btrfs_device *device;
413 struct fstrim_range range;
414 u64 minlen = ULLONG_MAX;
415 u64 num_devices = 0;
416 int ret;
417
418 if (!capable(CAP_SYS_ADMIN))
419 return -EPERM;
420
421 /*
422 * btrfs_trim_block_group() depends on space cache, which is not
423 * available in zoned filesystem. So, disallow fitrim on a zoned
424 * filesystem for now.
425 */
426 if (btrfs_is_zoned(fs_info))
427 return -EOPNOTSUPP;
428
429 /*
430 * If the fs is mounted with nologreplay, which requires it to be
431 * mounted in RO mode as well, we can not allow discard on free space
432 * inside block groups, because log trees refer to extents that are not
433 * pinned in a block group's free space cache (pinning the extents is
434 * precisely the first phase of replaying a log tree).
435 */
436 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 return -EROFS;
438
439 rcu_read_lock();
440 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 dev_list) {
442 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 continue;
444 num_devices++;
445 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 minlen);
447 }
448 rcu_read_unlock();
449
450 if (!num_devices)
451 return -EOPNOTSUPP;
452 if (copy_from_user(&range, arg, sizeof(range)))
453 return -EFAULT;
454
455 /*
456 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
457 * block group is in the logical address space, which can be any
458 * sectorsize aligned bytenr in the range [0, U64_MAX].
459 */
460 if (range.len < fs_info->sectorsize)
461 return -EINVAL;
462
463 range.minlen = max(range.minlen, minlen);
464 ret = btrfs_trim_fs(fs_info, &range);
465
466 if (copy_to_user(arg, &range, sizeof(range)))
467 return -EFAULT;
468
469 return ret;
470 }
471
472 /*
473 * Calculate the number of transaction items to reserve for creating a subvolume
474 * or snapshot, not including the inode, directory entries, or parent directory.
475 */
create_subvol_num_items(const struct btrfs_qgroup_inherit * inherit)476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 /*
479 * 1 to add root block
480 * 1 to add root item
481 * 1 to add root ref
482 * 1 to add root backref
483 * 1 to add UUID item
484 * 1 to add qgroup info
485 * 1 to add qgroup limit
486 *
487 * Ideally the last two would only be accounted if qgroups are enabled,
488 * but that can change between now and the time we would insert them.
489 */
490 unsigned int num_items = 7;
491
492 if (inherit) {
493 /* 2 to add qgroup relations for each inherited qgroup */
494 num_items += 2 * inherit->num_qgroups;
495 }
496 return num_items;
497 }
498
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 struct inode *dir, struct dentry *dentry,
501 struct btrfs_qgroup_inherit *inherit)
502 {
503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 struct btrfs_trans_handle *trans;
505 struct btrfs_key key;
506 struct btrfs_root_item *root_item;
507 struct btrfs_inode_item *inode_item;
508 struct extent_buffer *leaf;
509 struct btrfs_root *root = BTRFS_I(dir)->root;
510 struct btrfs_root *new_root;
511 struct btrfs_block_rsv block_rsv;
512 struct timespec64 cur_time = current_time(dir);
513 struct btrfs_new_inode_args new_inode_args = {
514 .dir = dir,
515 .dentry = dentry,
516 .subvol = true,
517 };
518 unsigned int trans_num_items;
519 int ret;
520 dev_t anon_dev;
521 u64 objectid;
522 u64 qgroup_reserved = 0;
523
524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 if (!root_item)
526 return -ENOMEM;
527
528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 if (ret)
530 goto out_root_item;
531
532 /*
533 * Don't create subvolume whose level is not zero. Or qgroup will be
534 * screwed up since it assumes subvolume qgroup's level to be 0.
535 */
536 if (btrfs_qgroup_level(objectid)) {
537 ret = -ENOSPC;
538 goto out_root_item;
539 }
540
541 ret = get_anon_bdev(&anon_dev);
542 if (ret < 0)
543 goto out_root_item;
544
545 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 if (!new_inode_args.inode) {
547 ret = -ENOMEM;
548 goto out_anon_dev;
549 }
550 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 if (ret)
552 goto out_inode;
553 trans_num_items += create_subvol_num_items(inherit);
554
555 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 trans_num_items, false);
558 if (ret)
559 goto out_new_inode_args;
560 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561
562 trans = btrfs_start_transaction(root, 0);
563 if (IS_ERR(trans)) {
564 ret = PTR_ERR(trans);
565 goto out_release_rsv;
566 }
567 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 qgroup_reserved = 0;
569 trans->block_rsv = &block_rsv;
570 trans->bytes_reserved = block_rsv.size;
571
572 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 if (ret)
574 goto out;
575
576 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 0, BTRFS_NESTING_NORMAL);
578 if (IS_ERR(leaf)) {
579 ret = PTR_ERR(leaf);
580 goto out;
581 }
582
583 btrfs_mark_buffer_dirty(trans, leaf);
584
585 inode_item = &root_item->inode;
586 btrfs_set_stack_inode_generation(inode_item, 1);
587 btrfs_set_stack_inode_size(inode_item, 3);
588 btrfs_set_stack_inode_nlink(inode_item, 1);
589 btrfs_set_stack_inode_nbytes(inode_item,
590 fs_info->nodesize);
591 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592
593 btrfs_set_root_flags(root_item, 0);
594 btrfs_set_root_limit(root_item, 0);
595 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596
597 btrfs_set_root_bytenr(root_item, leaf->start);
598 btrfs_set_root_generation(root_item, trans->transid);
599 btrfs_set_root_level(root_item, 0);
600 btrfs_set_root_refs(root_item, 1);
601 btrfs_set_root_used(root_item, leaf->len);
602 btrfs_set_root_last_snapshot(root_item, 0);
603
604 btrfs_set_root_generation_v2(root_item,
605 btrfs_root_generation(root_item));
606 generate_random_guid(root_item->uuid);
607 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 root_item->ctime = root_item->otime;
610 btrfs_set_root_ctransid(root_item, trans->transid);
611 btrfs_set_root_otransid(root_item, trans->transid);
612
613 btrfs_tree_unlock(leaf);
614
615 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616
617 key.objectid = objectid;
618 key.type = BTRFS_ROOT_ITEM_KEY;
619 key.offset = 0;
620 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 root_item);
622 if (ret) {
623 int ret2;
624
625 /*
626 * Since we don't abort the transaction in this case, free the
627 * tree block so that we don't leak space and leave the
628 * filesystem in an inconsistent state (an extent item in the
629 * extent tree with a backreference for a root that does not
630 * exists).
631 */
632 btrfs_tree_lock(leaf);
633 btrfs_clear_buffer_dirty(trans, leaf);
634 btrfs_tree_unlock(leaf);
635 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 if (ret2 < 0)
637 btrfs_abort_transaction(trans, ret2);
638 free_extent_buffer(leaf);
639 goto out;
640 }
641
642 free_extent_buffer(leaf);
643 leaf = NULL;
644
645 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 if (IS_ERR(new_root)) {
647 ret = PTR_ERR(new_root);
648 btrfs_abort_transaction(trans, ret);
649 goto out;
650 }
651 /* anon_dev is owned by new_root now. */
652 anon_dev = 0;
653 BTRFS_I(new_inode_args.inode)->root = new_root;
654 /* ... and new_root is owned by new_inode_args.inode now. */
655
656 ret = btrfs_record_root_in_trans(trans, new_root);
657 if (ret) {
658 btrfs_abort_transaction(trans, ret);
659 goto out;
660 }
661
662 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 BTRFS_UUID_KEY_SUBVOL, objectid);
664 if (ret) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 }
668
669 ret = btrfs_create_new_inode(trans, &new_inode_args);
670 if (ret) {
671 btrfs_abort_transaction(trans, ret);
672 goto out;
673 }
674
675 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
676
677 d_instantiate_new(dentry, new_inode_args.inode);
678 new_inode_args.inode = NULL;
679
680 out:
681 trans->block_rsv = NULL;
682 trans->bytes_reserved = 0;
683 btrfs_end_transaction(trans);
684 out_release_rsv:
685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 if (qgroup_reserved)
687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 iput(new_inode_args.inode);
692 out_anon_dev:
693 if (anon_dev)
694 free_anon_bdev(anon_dev);
695 out_root_item:
696 kfree(root_item);
697 return ret;
698 }
699
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 struct dentry *dentry, bool readonly,
702 struct btrfs_qgroup_inherit *inherit)
703 {
704 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 struct inode *inode;
706 struct btrfs_pending_snapshot *pending_snapshot;
707 unsigned int trans_num_items;
708 struct btrfs_trans_handle *trans;
709 struct btrfs_block_rsv *block_rsv;
710 u64 qgroup_reserved = 0;
711 int ret;
712
713 /* We do not support snapshotting right now. */
714 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 btrfs_warn(fs_info,
716 "extent tree v2 doesn't support snapshotting yet");
717 return -EOPNOTSUPP;
718 }
719
720 if (btrfs_root_refs(&root->root_item) == 0)
721 return -ENOENT;
722
723 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 return -EINVAL;
725
726 if (atomic_read(&root->nr_swapfiles)) {
727 btrfs_warn(fs_info,
728 "cannot snapshot subvolume with active swapfile");
729 return -ETXTBSY;
730 }
731
732 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 if (!pending_snapshot)
734 return -ENOMEM;
735
736 ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 if (ret < 0)
738 goto free_pending;
739 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 GFP_KERNEL);
741 pending_snapshot->path = btrfs_alloc_path();
742 if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 ret = -ENOMEM;
744 goto free_pending;
745 }
746
747 block_rsv = &pending_snapshot->block_rsv;
748 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 /*
750 * 1 to add dir item
751 * 1 to add dir index
752 * 1 to update parent inode item
753 */
754 trans_num_items = create_subvol_num_items(inherit) + 3;
755 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 trans_num_items, false);
757 if (ret)
758 goto free_pending;
759 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760
761 pending_snapshot->dentry = dentry;
762 pending_snapshot->root = root;
763 pending_snapshot->readonly = readonly;
764 pending_snapshot->dir = BTRFS_I(dir);
765 pending_snapshot->inherit = inherit;
766
767 trans = btrfs_start_transaction(root, 0);
768 if (IS_ERR(trans)) {
769 ret = PTR_ERR(trans);
770 goto fail;
771 }
772 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 if (ret) {
774 btrfs_end_transaction(trans);
775 goto fail;
776 }
777 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 qgroup_reserved = 0;
779
780 trans->pending_snapshot = pending_snapshot;
781
782 ret = btrfs_commit_transaction(trans);
783 if (ret)
784 goto fail;
785
786 ret = pending_snapshot->error;
787 if (ret)
788 goto fail;
789
790 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 if (ret)
792 goto fail;
793
794 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 if (IS_ERR(inode)) {
796 ret = PTR_ERR(inode);
797 goto fail;
798 }
799
800 d_instantiate(dentry, inode);
801 ret = 0;
802 pending_snapshot->anon_dev = 0;
803 fail:
804 /* Prevent double freeing of anon_dev */
805 if (ret && pending_snapshot->snap)
806 pending_snapshot->snap->anon_dev = 0;
807 btrfs_put_root(pending_snapshot->snap);
808 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 if (qgroup_reserved)
810 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 if (pending_snapshot->anon_dev)
813 free_anon_bdev(pending_snapshot->anon_dev);
814 kfree(pending_snapshot->root_item);
815 btrfs_free_path(pending_snapshot->path);
816 kfree(pending_snapshot);
817
818 return ret;
819 }
820
821 /* copy of may_delete in fs/namei.c()
822 * Check whether we can remove a link victim from directory dir, check
823 * whether the type of victim is right.
824 * 1. We can't do it if dir is read-only (done in permission())
825 * 2. We should have write and exec permissions on dir
826 * 3. We can't remove anything from append-only dir
827 * 4. We can't do anything with immutable dir (done in permission())
828 * 5. If the sticky bit on dir is set we should either
829 * a. be owner of dir, or
830 * b. be owner of victim, or
831 * c. have CAP_FOWNER capability
832 * 6. If the victim is append-only or immutable we can't do anything with
833 * links pointing to it.
834 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836 * 9. We can't remove a root or mountpoint.
837 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838 * nfs_async_unlink().
839 */
840
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 struct inode *dir, struct dentry *victim, int isdir)
843 {
844 int error;
845
846 if (d_really_is_negative(victim))
847 return -ENOENT;
848
849 /* The @victim is not inside @dir. */
850 if (d_inode(victim->d_parent) != dir)
851 return -EINVAL;
852 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853
854 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 if (error)
856 return error;
857 if (IS_APPEND(dir))
858 return -EPERM;
859 if (check_sticky(idmap, dir, d_inode(victim)) ||
860 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 IS_SWAPFILE(d_inode(victim)))
862 return -EPERM;
863 if (isdir) {
864 if (!d_is_dir(victim))
865 return -ENOTDIR;
866 if (IS_ROOT(victim))
867 return -EBUSY;
868 } else if (d_is_dir(victim))
869 return -EISDIR;
870 if (IS_DEADDIR(dir))
871 return -ENOENT;
872 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 return -EBUSY;
874 return 0;
875 }
876
877 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,const struct dentry * child)878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 struct inode *dir, const struct dentry *child)
880 {
881 if (d_really_is_positive(child))
882 return -EEXIST;
883 if (IS_DEADDIR(dir))
884 return -ENOENT;
885 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 return -EOVERFLOW;
887 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889
890 /*
891 * Create a new subvolume below @parent. This is largely modeled after
892 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893 * inside this filesystem so it's quite a bit simpler.
894 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)895 static noinline int btrfs_mksubvol(const struct path *parent,
896 struct mnt_idmap *idmap,
897 const char *name, int namelen,
898 struct btrfs_root *snap_src,
899 bool readonly,
900 struct btrfs_qgroup_inherit *inherit)
901 {
902 struct inode *dir = d_inode(parent->dentry);
903 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
904 struct dentry *dentry;
905 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
906 int error;
907
908 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
909 if (error == -EINTR)
910 return error;
911
912 dentry = lookup_one(idmap, name, parent->dentry, namelen);
913 error = PTR_ERR(dentry);
914 if (IS_ERR(dentry))
915 goto out_unlock;
916
917 error = btrfs_may_create(idmap, dir, dentry);
918 if (error)
919 goto out_dput;
920
921 /*
922 * even if this name doesn't exist, we may get hash collisions.
923 * check for them now when we can safely fail
924 */
925 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
926 dir->i_ino, &name_str);
927 if (error)
928 goto out_dput;
929
930 down_read(&fs_info->subvol_sem);
931
932 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
933 goto out_up_read;
934
935 if (snap_src)
936 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
937 else
938 error = create_subvol(idmap, dir, dentry, inherit);
939
940 if (!error)
941 fsnotify_mkdir(dir, dentry);
942 out_up_read:
943 up_read(&fs_info->subvol_sem);
944 out_dput:
945 dput(dentry);
946 out_unlock:
947 btrfs_inode_unlock(BTRFS_I(dir), 0);
948 return error;
949 }
950
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)951 static noinline int btrfs_mksnapshot(const struct path *parent,
952 struct mnt_idmap *idmap,
953 const char *name, int namelen,
954 struct btrfs_root *root,
955 bool readonly,
956 struct btrfs_qgroup_inherit *inherit)
957 {
958 int ret;
959
960 /*
961 * Force new buffered writes to reserve space even when NOCOW is
962 * possible. This is to avoid later writeback (running dealloc) to
963 * fallback to COW mode and unexpectedly fail with ENOSPC.
964 */
965 btrfs_drew_read_lock(&root->snapshot_lock);
966
967 ret = btrfs_start_delalloc_snapshot(root, false);
968 if (ret)
969 goto out;
970
971 /*
972 * All previous writes have started writeback in NOCOW mode, so now
973 * we force future writes to fallback to COW mode during snapshot
974 * creation.
975 */
976 atomic_inc(&root->snapshot_force_cow);
977
978 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
979
980 ret = btrfs_mksubvol(parent, idmap, name, namelen,
981 root, readonly, inherit);
982 atomic_dec(&root->snapshot_force_cow);
983 out:
984 btrfs_drew_read_unlock(&root->snapshot_lock);
985 return ret;
986 }
987
988 /*
989 * Try to start exclusive operation @type or cancel it if it's running.
990 *
991 * Return:
992 * 0 - normal mode, newly claimed op started
993 * >0 - normal mode, something else is running,
994 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
995 * ECANCELED - cancel mode, successful cancel
996 * ENOTCONN - cancel mode, operation not running anymore
997 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)998 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
999 enum btrfs_exclusive_operation type, bool cancel)
1000 {
1001 if (!cancel) {
1002 /* Start normal op */
1003 if (!btrfs_exclop_start(fs_info, type))
1004 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1005 /* Exclusive operation is now claimed */
1006 return 0;
1007 }
1008
1009 /* Cancel running op */
1010 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1011 /*
1012 * This blocks any exclop finish from setting it to NONE, so we
1013 * request cancellation. Either it runs and we will wait for it,
1014 * or it has finished and no waiting will happen.
1015 */
1016 atomic_inc(&fs_info->reloc_cancel_req);
1017 btrfs_exclop_start_unlock(fs_info);
1018
1019 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1020 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1021 TASK_INTERRUPTIBLE);
1022
1023 return -ECANCELED;
1024 }
1025
1026 /* Something else is running or none */
1027 return -ENOTCONN;
1028 }
1029
btrfs_ioctl_resize(struct file * file,void __user * arg)1030 static noinline int btrfs_ioctl_resize(struct file *file,
1031 void __user *arg)
1032 {
1033 BTRFS_DEV_LOOKUP_ARGS(args);
1034 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1035 struct btrfs_fs_info *fs_info = root->fs_info;
1036 u64 new_size;
1037 u64 old_size;
1038 u64 devid = 1;
1039 struct btrfs_ioctl_vol_args *vol_args;
1040 struct btrfs_device *device = NULL;
1041 char *sizestr;
1042 char *devstr = NULL;
1043 int ret = 0;
1044 int mod = 0;
1045 bool cancel;
1046
1047 if (!capable(CAP_SYS_ADMIN))
1048 return -EPERM;
1049
1050 ret = mnt_want_write_file(file);
1051 if (ret)
1052 return ret;
1053
1054 /*
1055 * Read the arguments before checking exclusivity to be able to
1056 * distinguish regular resize and cancel
1057 */
1058 vol_args = memdup_user(arg, sizeof(*vol_args));
1059 if (IS_ERR(vol_args)) {
1060 ret = PTR_ERR(vol_args);
1061 goto out_drop;
1062 }
1063 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1064 if (ret < 0)
1065 goto out_free;
1066
1067 sizestr = vol_args->name;
1068 cancel = (strcmp("cancel", sizestr) == 0);
1069 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1070 if (ret)
1071 goto out_free;
1072 /* Exclusive operation is now claimed */
1073
1074 devstr = strchr(sizestr, ':');
1075 if (devstr) {
1076 sizestr = devstr + 1;
1077 *devstr = '\0';
1078 devstr = vol_args->name;
1079 ret = kstrtoull(devstr, 10, &devid);
1080 if (ret)
1081 goto out_finish;
1082 if (!devid) {
1083 ret = -EINVAL;
1084 goto out_finish;
1085 }
1086 btrfs_info(fs_info, "resizing devid %llu", devid);
1087 }
1088
1089 args.devid = devid;
1090 device = btrfs_find_device(fs_info->fs_devices, &args);
1091 if (!device) {
1092 btrfs_info(fs_info, "resizer unable to find device %llu",
1093 devid);
1094 ret = -ENODEV;
1095 goto out_finish;
1096 }
1097
1098 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1099 btrfs_info(fs_info,
1100 "resizer unable to apply on readonly device %llu",
1101 devid);
1102 ret = -EPERM;
1103 goto out_finish;
1104 }
1105
1106 if (!strcmp(sizestr, "max"))
1107 new_size = bdev_nr_bytes(device->bdev);
1108 else {
1109 char *retptr;
1110
1111 if (sizestr[0] == '-') {
1112 mod = -1;
1113 sizestr++;
1114 } else if (sizestr[0] == '+') {
1115 mod = 1;
1116 sizestr++;
1117 }
1118 new_size = memparse(sizestr, &retptr);
1119 if (*retptr != '\0' || new_size == 0) {
1120 ret = -EINVAL;
1121 goto out_finish;
1122 }
1123 }
1124
1125 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1126 ret = -EPERM;
1127 goto out_finish;
1128 }
1129
1130 old_size = btrfs_device_get_total_bytes(device);
1131
1132 if (mod < 0) {
1133 if (new_size > old_size) {
1134 ret = -EINVAL;
1135 goto out_finish;
1136 }
1137 new_size = old_size - new_size;
1138 } else if (mod > 0) {
1139 if (new_size > ULLONG_MAX - old_size) {
1140 ret = -ERANGE;
1141 goto out_finish;
1142 }
1143 new_size = old_size + new_size;
1144 }
1145
1146 if (new_size < SZ_256M) {
1147 ret = -EINVAL;
1148 goto out_finish;
1149 }
1150 if (new_size > bdev_nr_bytes(device->bdev)) {
1151 ret = -EFBIG;
1152 goto out_finish;
1153 }
1154
1155 new_size = round_down(new_size, fs_info->sectorsize);
1156
1157 if (new_size > old_size) {
1158 struct btrfs_trans_handle *trans;
1159
1160 trans = btrfs_start_transaction(root, 0);
1161 if (IS_ERR(trans)) {
1162 ret = PTR_ERR(trans);
1163 goto out_finish;
1164 }
1165 ret = btrfs_grow_device(trans, device, new_size);
1166 btrfs_commit_transaction(trans);
1167 } else if (new_size < old_size) {
1168 ret = btrfs_shrink_device(device, new_size);
1169 } /* equal, nothing need to do */
1170
1171 if (ret == 0 && new_size != old_size)
1172 btrfs_info_in_rcu(fs_info,
1173 "resize device %s (devid %llu) from %llu to %llu",
1174 btrfs_dev_name(device), device->devid,
1175 old_size, new_size);
1176 out_finish:
1177 btrfs_exclop_finish(fs_info);
1178 out_free:
1179 kfree(vol_args);
1180 out_drop:
1181 mnt_drop_write_file(file);
1182 return ret;
1183 }
1184
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1185 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1186 struct mnt_idmap *idmap,
1187 const char *name, unsigned long fd, int subvol,
1188 bool readonly,
1189 struct btrfs_qgroup_inherit *inherit)
1190 {
1191 int namelen;
1192 int ret = 0;
1193
1194 if (!S_ISDIR(file_inode(file)->i_mode))
1195 return -ENOTDIR;
1196
1197 ret = mnt_want_write_file(file);
1198 if (ret)
1199 goto out;
1200
1201 namelen = strlen(name);
1202 if (strchr(name, '/')) {
1203 ret = -EINVAL;
1204 goto out_drop_write;
1205 }
1206
1207 if (name[0] == '.' &&
1208 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1209 ret = -EEXIST;
1210 goto out_drop_write;
1211 }
1212
1213 if (subvol) {
1214 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1215 namelen, NULL, readonly, inherit);
1216 } else {
1217 CLASS(fd, src)(fd);
1218 struct inode *src_inode;
1219 if (fd_empty(src)) {
1220 ret = -EINVAL;
1221 goto out_drop_write;
1222 }
1223
1224 src_inode = file_inode(fd_file(src));
1225 if (src_inode->i_sb != file_inode(file)->i_sb) {
1226 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1227 "Snapshot src from another FS");
1228 ret = -EXDEV;
1229 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1230 /*
1231 * Subvolume creation is not restricted, but snapshots
1232 * are limited to own subvolumes only
1233 */
1234 ret = -EPERM;
1235 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1236 /*
1237 * Snapshots must be made with the src_inode referring
1238 * to the subvolume inode, otherwise the permission
1239 * checking above is useless because we may have
1240 * permission on a lower directory but not the subvol
1241 * itself.
1242 */
1243 ret = -EINVAL;
1244 } else {
1245 ret = btrfs_mksnapshot(&file->f_path, idmap,
1246 name, namelen,
1247 BTRFS_I(src_inode)->root,
1248 readonly, inherit);
1249 }
1250 }
1251 out_drop_write:
1252 mnt_drop_write_file(file);
1253 out:
1254 return ret;
1255 }
1256
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1257 static noinline int btrfs_ioctl_snap_create(struct file *file,
1258 void __user *arg, int subvol)
1259 {
1260 struct btrfs_ioctl_vol_args *vol_args;
1261 int ret;
1262
1263 if (!S_ISDIR(file_inode(file)->i_mode))
1264 return -ENOTDIR;
1265
1266 vol_args = memdup_user(arg, sizeof(*vol_args));
1267 if (IS_ERR(vol_args))
1268 return PTR_ERR(vol_args);
1269 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1270 if (ret < 0)
1271 goto out;
1272
1273 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1274 vol_args->name, vol_args->fd, subvol,
1275 false, NULL);
1276
1277 out:
1278 kfree(vol_args);
1279 return ret;
1280 }
1281
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1282 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1283 void __user *arg, int subvol)
1284 {
1285 struct btrfs_ioctl_vol_args_v2 *vol_args;
1286 int ret;
1287 bool readonly = false;
1288 struct btrfs_qgroup_inherit *inherit = NULL;
1289
1290 if (!S_ISDIR(file_inode(file)->i_mode))
1291 return -ENOTDIR;
1292
1293 vol_args = memdup_user(arg, sizeof(*vol_args));
1294 if (IS_ERR(vol_args))
1295 return PTR_ERR(vol_args);
1296 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1297 if (ret < 0)
1298 goto free_args;
1299
1300 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1301 ret = -EOPNOTSUPP;
1302 goto free_args;
1303 }
1304
1305 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1306 readonly = true;
1307 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1308 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1309
1310 if (vol_args->size < sizeof(*inherit) ||
1311 vol_args->size > PAGE_SIZE) {
1312 ret = -EINVAL;
1313 goto free_args;
1314 }
1315 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1316 if (IS_ERR(inherit)) {
1317 ret = PTR_ERR(inherit);
1318 goto free_args;
1319 }
1320
1321 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1322 if (ret < 0)
1323 goto free_inherit;
1324 }
1325
1326 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1327 vol_args->name, vol_args->fd, subvol,
1328 readonly, inherit);
1329 if (ret)
1330 goto free_inherit;
1331 free_inherit:
1332 kfree(inherit);
1333 free_args:
1334 kfree(vol_args);
1335 return ret;
1336 }
1337
btrfs_ioctl_subvol_getflags(struct btrfs_inode * inode,void __user * arg)1338 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1339 void __user *arg)
1340 {
1341 struct btrfs_root *root = inode->root;
1342 struct btrfs_fs_info *fs_info = root->fs_info;
1343 int ret = 0;
1344 u64 flags = 0;
1345
1346 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1347 return -EINVAL;
1348
1349 down_read(&fs_info->subvol_sem);
1350 if (btrfs_root_readonly(root))
1351 flags |= BTRFS_SUBVOL_RDONLY;
1352 up_read(&fs_info->subvol_sem);
1353
1354 if (copy_to_user(arg, &flags, sizeof(flags)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1360 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1361 void __user *arg)
1362 {
1363 struct inode *inode = file_inode(file);
1364 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1365 struct btrfs_root *root = BTRFS_I(inode)->root;
1366 struct btrfs_trans_handle *trans;
1367 u64 root_flags;
1368 u64 flags;
1369 int ret = 0;
1370
1371 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1372 return -EPERM;
1373
1374 ret = mnt_want_write_file(file);
1375 if (ret)
1376 goto out;
1377
1378 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1379 ret = -EINVAL;
1380 goto out_drop_write;
1381 }
1382
1383 if (copy_from_user(&flags, arg, sizeof(flags))) {
1384 ret = -EFAULT;
1385 goto out_drop_write;
1386 }
1387
1388 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1389 ret = -EOPNOTSUPP;
1390 goto out_drop_write;
1391 }
1392
1393 down_write(&fs_info->subvol_sem);
1394
1395 /* nothing to do */
1396 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1397 goto out_drop_sem;
1398
1399 root_flags = btrfs_root_flags(&root->root_item);
1400 if (flags & BTRFS_SUBVOL_RDONLY) {
1401 btrfs_set_root_flags(&root->root_item,
1402 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1403 } else {
1404 /*
1405 * Block RO -> RW transition if this subvolume is involved in
1406 * send
1407 */
1408 spin_lock(&root->root_item_lock);
1409 if (root->send_in_progress == 0) {
1410 btrfs_set_root_flags(&root->root_item,
1411 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1412 spin_unlock(&root->root_item_lock);
1413 } else {
1414 spin_unlock(&root->root_item_lock);
1415 btrfs_warn(fs_info,
1416 "Attempt to set subvolume %llu read-write during send",
1417 btrfs_root_id(root));
1418 ret = -EPERM;
1419 goto out_drop_sem;
1420 }
1421 }
1422
1423 trans = btrfs_start_transaction(root, 1);
1424 if (IS_ERR(trans)) {
1425 ret = PTR_ERR(trans);
1426 goto out_reset;
1427 }
1428
1429 ret = btrfs_update_root(trans, fs_info->tree_root,
1430 &root->root_key, &root->root_item);
1431 if (ret < 0) {
1432 btrfs_end_transaction(trans);
1433 goto out_reset;
1434 }
1435
1436 ret = btrfs_commit_transaction(trans);
1437
1438 out_reset:
1439 if (ret)
1440 btrfs_set_root_flags(&root->root_item, root_flags);
1441 out_drop_sem:
1442 up_write(&fs_info->subvol_sem);
1443 out_drop_write:
1444 mnt_drop_write_file(file);
1445 out:
1446 return ret;
1447 }
1448
key_in_sk(const struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk)1449 static noinline int key_in_sk(const struct btrfs_key *key,
1450 const struct btrfs_ioctl_search_key *sk)
1451 {
1452 struct btrfs_key test;
1453 int ret;
1454
1455 test.objectid = sk->min_objectid;
1456 test.type = sk->min_type;
1457 test.offset = sk->min_offset;
1458
1459 ret = btrfs_comp_cpu_keys(key, &test);
1460 if (ret < 0)
1461 return 0;
1462
1463 test.objectid = sk->max_objectid;
1464 test.type = sk->max_type;
1465 test.offset = sk->max_offset;
1466
1467 ret = btrfs_comp_cpu_keys(key, &test);
1468 if (ret > 0)
1469 return 0;
1470 return 1;
1471 }
1472
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1473 static noinline int copy_to_sk(struct btrfs_path *path,
1474 struct btrfs_key *key,
1475 const struct btrfs_ioctl_search_key *sk,
1476 u64 *buf_size,
1477 char __user *ubuf,
1478 unsigned long *sk_offset,
1479 int *num_found)
1480 {
1481 u64 found_transid;
1482 struct extent_buffer *leaf;
1483 struct btrfs_ioctl_search_header sh;
1484 struct btrfs_key test;
1485 unsigned long item_off;
1486 unsigned long item_len;
1487 int nritems;
1488 int i;
1489 int slot;
1490 int ret = 0;
1491
1492 leaf = path->nodes[0];
1493 slot = path->slots[0];
1494 nritems = btrfs_header_nritems(leaf);
1495
1496 if (btrfs_header_generation(leaf) > sk->max_transid) {
1497 i = nritems;
1498 goto advance_key;
1499 }
1500 found_transid = btrfs_header_generation(leaf);
1501
1502 for (i = slot; i < nritems; i++) {
1503 item_off = btrfs_item_ptr_offset(leaf, i);
1504 item_len = btrfs_item_size(leaf, i);
1505
1506 btrfs_item_key_to_cpu(leaf, key, i);
1507 if (!key_in_sk(key, sk))
1508 continue;
1509
1510 if (sizeof(sh) + item_len > *buf_size) {
1511 if (*num_found) {
1512 ret = 1;
1513 goto out;
1514 }
1515
1516 /*
1517 * return one empty item back for v1, which does not
1518 * handle -EOVERFLOW
1519 */
1520
1521 *buf_size = sizeof(sh) + item_len;
1522 item_len = 0;
1523 ret = -EOVERFLOW;
1524 }
1525
1526 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1527 ret = 1;
1528 goto out;
1529 }
1530
1531 sh.objectid = key->objectid;
1532 sh.type = key->type;
1533 sh.offset = key->offset;
1534 sh.len = item_len;
1535 sh.transid = found_transid;
1536
1537 /*
1538 * Copy search result header. If we fault then loop again so we
1539 * can fault in the pages and -EFAULT there if there's a
1540 * problem. Otherwise we'll fault and then copy the buffer in
1541 * properly this next time through
1542 */
1543 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1544 ret = 0;
1545 goto out;
1546 }
1547
1548 *sk_offset += sizeof(sh);
1549
1550 if (item_len) {
1551 char __user *up = ubuf + *sk_offset;
1552 /*
1553 * Copy the item, same behavior as above, but reset the
1554 * * sk_offset so we copy the full thing again.
1555 */
1556 if (read_extent_buffer_to_user_nofault(leaf, up,
1557 item_off, item_len)) {
1558 ret = 0;
1559 *sk_offset -= sizeof(sh);
1560 goto out;
1561 }
1562
1563 *sk_offset += item_len;
1564 }
1565 (*num_found)++;
1566
1567 if (ret) /* -EOVERFLOW from above */
1568 goto out;
1569
1570 if (*num_found >= sk->nr_items) {
1571 ret = 1;
1572 goto out;
1573 }
1574 }
1575 advance_key:
1576 ret = 0;
1577 test.objectid = sk->max_objectid;
1578 test.type = sk->max_type;
1579 test.offset = sk->max_offset;
1580 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1581 ret = 1;
1582 else if (key->offset < (u64)-1)
1583 key->offset++;
1584 else if (key->type < (u8)-1) {
1585 key->offset = 0;
1586 key->type++;
1587 } else if (key->objectid < (u64)-1) {
1588 key->offset = 0;
1589 key->type = 0;
1590 key->objectid++;
1591 } else
1592 ret = 1;
1593 out:
1594 /*
1595 * 0: all items from this leaf copied, continue with next
1596 * 1: * more items can be copied, but unused buffer is too small
1597 * * all items were found
1598 * Either way, it will stops the loop which iterates to the next
1599 * leaf
1600 * -EOVERFLOW: item was to large for buffer
1601 * -EFAULT: could not copy extent buffer back to userspace
1602 */
1603 return ret;
1604 }
1605
search_ioctl(struct btrfs_root * root,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1606 static noinline int search_ioctl(struct btrfs_root *root,
1607 struct btrfs_ioctl_search_key *sk,
1608 u64 *buf_size,
1609 char __user *ubuf)
1610 {
1611 struct btrfs_fs_info *info = root->fs_info;
1612 struct btrfs_key key;
1613 struct btrfs_path *path;
1614 int ret;
1615 int num_found = 0;
1616 unsigned long sk_offset = 0;
1617
1618 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1619 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1620 return -EOVERFLOW;
1621 }
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 if (sk->tree_id == 0) {
1628 /* Search the root that we got passed. */
1629 root = btrfs_grab_root(root);
1630 } else {
1631 /* Look up the root from the arguments. */
1632 root = btrfs_get_fs_root(info, sk->tree_id, true);
1633 if (IS_ERR(root)) {
1634 btrfs_free_path(path);
1635 return PTR_ERR(root);
1636 }
1637 }
1638
1639 key.objectid = sk->min_objectid;
1640 key.type = sk->min_type;
1641 key.offset = sk->min_offset;
1642
1643 while (1) {
1644 /*
1645 * Ensure that the whole user buffer is faulted in at sub-page
1646 * granularity, otherwise the loop may live-lock.
1647 */
1648 if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1649 ret = -EFAULT;
1650 break;
1651 }
1652
1653 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1654 if (ret)
1655 break;
1656
1657 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1658 &sk_offset, &num_found);
1659 btrfs_release_path(path);
1660 if (ret)
1661 break;
1662
1663 }
1664 /* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1665 if (ret > 0)
1666 ret = 0;
1667
1668 sk->nr_items = num_found;
1669 btrfs_put_root(root);
1670 btrfs_free_path(path);
1671 return ret;
1672 }
1673
btrfs_ioctl_tree_search(struct btrfs_root * root,void __user * argp)1674 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1675 void __user *argp)
1676 {
1677 struct btrfs_ioctl_search_args __user *uargs = argp;
1678 struct btrfs_ioctl_search_key sk;
1679 int ret;
1680 u64 buf_size;
1681
1682 if (!capable(CAP_SYS_ADMIN))
1683 return -EPERM;
1684
1685 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1686 return -EFAULT;
1687
1688 buf_size = sizeof(uargs->buf);
1689
1690 ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1691
1692 /*
1693 * In the origin implementation an overflow is handled by returning a
1694 * search header with a len of zero, so reset ret.
1695 */
1696 if (ret == -EOVERFLOW)
1697 ret = 0;
1698
1699 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1700 ret = -EFAULT;
1701 return ret;
1702 }
1703
btrfs_ioctl_tree_search_v2(struct btrfs_root * root,void __user * argp)1704 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1705 void __user *argp)
1706 {
1707 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1708 struct btrfs_ioctl_search_args_v2 args;
1709 int ret;
1710 u64 buf_size;
1711 const u64 buf_limit = SZ_16M;
1712
1713 if (!capable(CAP_SYS_ADMIN))
1714 return -EPERM;
1715
1716 /* copy search header and buffer size */
1717 if (copy_from_user(&args, uarg, sizeof(args)))
1718 return -EFAULT;
1719
1720 buf_size = args.buf_size;
1721
1722 /* limit result size to 16MB */
1723 if (buf_size > buf_limit)
1724 buf_size = buf_limit;
1725
1726 ret = search_ioctl(root, &args.key, &buf_size,
1727 (char __user *)(&uarg->buf[0]));
1728 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1729 ret = -EFAULT;
1730 else if (ret == -EOVERFLOW &&
1731 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1732 ret = -EFAULT;
1733
1734 return ret;
1735 }
1736
1737 /*
1738 * Search INODE_REFs to identify path name of 'dirid' directory
1739 * in a 'tree_id' tree. and sets path name to 'name'.
1740 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1741 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1742 u64 tree_id, u64 dirid, char *name)
1743 {
1744 struct btrfs_root *root;
1745 struct btrfs_key key;
1746 char *ptr;
1747 int ret = -1;
1748 int slot;
1749 int len;
1750 int total_len = 0;
1751 struct btrfs_inode_ref *iref;
1752 struct extent_buffer *l;
1753 struct btrfs_path *path;
1754
1755 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1756 name[0]='\0';
1757 return 0;
1758 }
1759
1760 path = btrfs_alloc_path();
1761 if (!path)
1762 return -ENOMEM;
1763
1764 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1765
1766 root = btrfs_get_fs_root(info, tree_id, true);
1767 if (IS_ERR(root)) {
1768 ret = PTR_ERR(root);
1769 root = NULL;
1770 goto out;
1771 }
1772
1773 key.objectid = dirid;
1774 key.type = BTRFS_INODE_REF_KEY;
1775 key.offset = (u64)-1;
1776
1777 while (1) {
1778 ret = btrfs_search_backwards(root, &key, path);
1779 if (ret < 0)
1780 goto out;
1781 else if (ret > 0) {
1782 ret = -ENOENT;
1783 goto out;
1784 }
1785
1786 l = path->nodes[0];
1787 slot = path->slots[0];
1788
1789 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1790 len = btrfs_inode_ref_name_len(l, iref);
1791 ptr -= len + 1;
1792 total_len += len + 1;
1793 if (ptr < name) {
1794 ret = -ENAMETOOLONG;
1795 goto out;
1796 }
1797
1798 *(ptr + len) = '/';
1799 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1800
1801 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1802 break;
1803
1804 btrfs_release_path(path);
1805 key.objectid = key.offset;
1806 key.offset = (u64)-1;
1807 dirid = key.objectid;
1808 }
1809 memmove(name, ptr, total_len);
1810 name[total_len] = '\0';
1811 ret = 0;
1812 out:
1813 btrfs_put_root(root);
1814 btrfs_free_path(path);
1815 return ret;
1816 }
1817
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1818 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1819 struct inode *inode,
1820 struct btrfs_ioctl_ino_lookup_user_args *args)
1821 {
1822 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1823 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1824 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1825 u64 dirid = args->dirid;
1826 unsigned long item_off;
1827 unsigned long item_len;
1828 struct btrfs_inode_ref *iref;
1829 struct btrfs_root_ref *rref;
1830 struct btrfs_root *root = NULL;
1831 struct btrfs_path *path;
1832 struct btrfs_key key, key2;
1833 struct extent_buffer *leaf;
1834 char *ptr;
1835 int slot;
1836 int len;
1837 int total_len = 0;
1838 int ret;
1839
1840 path = btrfs_alloc_path();
1841 if (!path)
1842 return -ENOMEM;
1843
1844 /*
1845 * If the bottom subvolume does not exist directly under upper_limit,
1846 * construct the path in from the bottom up.
1847 */
1848 if (dirid != upper_limit) {
1849 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1850
1851 root = btrfs_get_fs_root(fs_info, treeid, true);
1852 if (IS_ERR(root)) {
1853 ret = PTR_ERR(root);
1854 goto out;
1855 }
1856
1857 key.objectid = dirid;
1858 key.type = BTRFS_INODE_REF_KEY;
1859 key.offset = (u64)-1;
1860 while (1) {
1861 struct btrfs_inode *temp_inode;
1862
1863 ret = btrfs_search_backwards(root, &key, path);
1864 if (ret < 0)
1865 goto out_put;
1866 else if (ret > 0) {
1867 ret = -ENOENT;
1868 goto out_put;
1869 }
1870
1871 leaf = path->nodes[0];
1872 slot = path->slots[0];
1873
1874 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1875 len = btrfs_inode_ref_name_len(leaf, iref);
1876 ptr -= len + 1;
1877 total_len += len + 1;
1878 if (ptr < args->path) {
1879 ret = -ENAMETOOLONG;
1880 goto out_put;
1881 }
1882
1883 *(ptr + len) = '/';
1884 read_extent_buffer(leaf, ptr,
1885 (unsigned long)(iref + 1), len);
1886
1887 /* Check the read+exec permission of this directory */
1888 ret = btrfs_previous_item(root, path, dirid,
1889 BTRFS_INODE_ITEM_KEY);
1890 if (ret < 0) {
1891 goto out_put;
1892 } else if (ret > 0) {
1893 ret = -ENOENT;
1894 goto out_put;
1895 }
1896
1897 leaf = path->nodes[0];
1898 slot = path->slots[0];
1899 btrfs_item_key_to_cpu(leaf, &key2, slot);
1900 if (key2.objectid != dirid) {
1901 ret = -ENOENT;
1902 goto out_put;
1903 }
1904
1905 /*
1906 * We don't need the path anymore, so release it and
1907 * avoid deadlocks and lockdep warnings in case
1908 * btrfs_iget() needs to lookup the inode from its root
1909 * btree and lock the same leaf.
1910 */
1911 btrfs_release_path(path);
1912 temp_inode = btrfs_iget(key2.objectid, root);
1913 if (IS_ERR(temp_inode)) {
1914 ret = PTR_ERR(temp_inode);
1915 goto out_put;
1916 }
1917 ret = inode_permission(idmap, &temp_inode->vfs_inode,
1918 MAY_READ | MAY_EXEC);
1919 iput(&temp_inode->vfs_inode);
1920 if (ret) {
1921 ret = -EACCES;
1922 goto out_put;
1923 }
1924
1925 if (key.offset == upper_limit)
1926 break;
1927 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1928 ret = -EACCES;
1929 goto out_put;
1930 }
1931
1932 key.objectid = key.offset;
1933 key.offset = (u64)-1;
1934 dirid = key.objectid;
1935 }
1936
1937 memmove(args->path, ptr, total_len);
1938 args->path[total_len] = '\0';
1939 btrfs_put_root(root);
1940 root = NULL;
1941 btrfs_release_path(path);
1942 }
1943
1944 /* Get the bottom subvolume's name from ROOT_REF */
1945 key.objectid = treeid;
1946 key.type = BTRFS_ROOT_REF_KEY;
1947 key.offset = args->treeid;
1948 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1949 if (ret < 0) {
1950 goto out;
1951 } else if (ret > 0) {
1952 ret = -ENOENT;
1953 goto out;
1954 }
1955
1956 leaf = path->nodes[0];
1957 slot = path->slots[0];
1958 btrfs_item_key_to_cpu(leaf, &key, slot);
1959
1960 item_off = btrfs_item_ptr_offset(leaf, slot);
1961 item_len = btrfs_item_size(leaf, slot);
1962 /* Check if dirid in ROOT_REF corresponds to passed dirid */
1963 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1964 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1965 ret = -EINVAL;
1966 goto out;
1967 }
1968
1969 /* Copy subvolume's name */
1970 item_off += sizeof(struct btrfs_root_ref);
1971 item_len -= sizeof(struct btrfs_root_ref);
1972 read_extent_buffer(leaf, args->name, item_off, item_len);
1973 args->name[item_len] = 0;
1974
1975 out_put:
1976 btrfs_put_root(root);
1977 out:
1978 btrfs_free_path(path);
1979 return ret;
1980 }
1981
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1982 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1983 void __user *argp)
1984 {
1985 struct btrfs_ioctl_ino_lookup_args *args;
1986 int ret = 0;
1987
1988 args = memdup_user(argp, sizeof(*args));
1989 if (IS_ERR(args))
1990 return PTR_ERR(args);
1991
1992 /*
1993 * Unprivileged query to obtain the containing subvolume root id. The
1994 * path is reset so it's consistent with btrfs_search_path_in_tree.
1995 */
1996 if (args->treeid == 0)
1997 args->treeid = btrfs_root_id(root);
1998
1999 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2000 args->name[0] = 0;
2001 goto out;
2002 }
2003
2004 if (!capable(CAP_SYS_ADMIN)) {
2005 ret = -EPERM;
2006 goto out;
2007 }
2008
2009 ret = btrfs_search_path_in_tree(root->fs_info,
2010 args->treeid, args->objectid,
2011 args->name);
2012
2013 out:
2014 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2015 ret = -EFAULT;
2016
2017 kfree(args);
2018 return ret;
2019 }
2020
2021 /*
2022 * Version of ino_lookup ioctl (unprivileged)
2023 *
2024 * The main differences from ino_lookup ioctl are:
2025 *
2026 * 1. Read + Exec permission will be checked using inode_permission() during
2027 * path construction. -EACCES will be returned in case of failure.
2028 * 2. Path construction will be stopped at the inode number which corresponds
2029 * to the fd with which this ioctl is called. If constructed path does not
2030 * exist under fd's inode, -EACCES will be returned.
2031 * 3. The name of bottom subvolume is also searched and filled.
2032 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2033 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2034 {
2035 struct btrfs_ioctl_ino_lookup_user_args *args;
2036 struct inode *inode;
2037 int ret;
2038
2039 args = memdup_user(argp, sizeof(*args));
2040 if (IS_ERR(args))
2041 return PTR_ERR(args);
2042
2043 inode = file_inode(file);
2044
2045 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2046 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2047 /*
2048 * The subvolume does not exist under fd with which this is
2049 * called
2050 */
2051 kfree(args);
2052 return -EACCES;
2053 }
2054
2055 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2056
2057 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2058 ret = -EFAULT;
2059
2060 kfree(args);
2061 return ret;
2062 }
2063
2064 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2065 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2066 {
2067 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2068 struct btrfs_fs_info *fs_info;
2069 struct btrfs_root *root;
2070 struct btrfs_path *path;
2071 struct btrfs_key key;
2072 struct btrfs_root_item *root_item;
2073 struct btrfs_root_ref *rref;
2074 struct extent_buffer *leaf;
2075 unsigned long item_off;
2076 unsigned long item_len;
2077 int slot;
2078 int ret = 0;
2079
2080 path = btrfs_alloc_path();
2081 if (!path)
2082 return -ENOMEM;
2083
2084 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2085 if (!subvol_info) {
2086 btrfs_free_path(path);
2087 return -ENOMEM;
2088 }
2089
2090 fs_info = BTRFS_I(inode)->root->fs_info;
2091
2092 /* Get root_item of inode's subvolume */
2093 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2094 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2095 if (IS_ERR(root)) {
2096 ret = PTR_ERR(root);
2097 goto out_free;
2098 }
2099 root_item = &root->root_item;
2100
2101 subvol_info->treeid = key.objectid;
2102
2103 subvol_info->generation = btrfs_root_generation(root_item);
2104 subvol_info->flags = btrfs_root_flags(root_item);
2105
2106 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2107 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2108 BTRFS_UUID_SIZE);
2109 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2110 BTRFS_UUID_SIZE);
2111
2112 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2113 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2114 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2115
2116 subvol_info->otransid = btrfs_root_otransid(root_item);
2117 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2118 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2119
2120 subvol_info->stransid = btrfs_root_stransid(root_item);
2121 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2122 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2123
2124 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2125 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2126 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2127
2128 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2129 /* Search root tree for ROOT_BACKREF of this subvolume */
2130 key.type = BTRFS_ROOT_BACKREF_KEY;
2131 key.offset = 0;
2132 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2133 if (ret < 0) {
2134 goto out;
2135 } else if (path->slots[0] >=
2136 btrfs_header_nritems(path->nodes[0])) {
2137 ret = btrfs_next_leaf(fs_info->tree_root, path);
2138 if (ret < 0) {
2139 goto out;
2140 } else if (ret > 0) {
2141 ret = -EUCLEAN;
2142 goto out;
2143 }
2144 }
2145
2146 leaf = path->nodes[0];
2147 slot = path->slots[0];
2148 btrfs_item_key_to_cpu(leaf, &key, slot);
2149 if (key.objectid == subvol_info->treeid &&
2150 key.type == BTRFS_ROOT_BACKREF_KEY) {
2151 subvol_info->parent_id = key.offset;
2152
2153 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2154 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2155
2156 item_off = btrfs_item_ptr_offset(leaf, slot)
2157 + sizeof(struct btrfs_root_ref);
2158 item_len = btrfs_item_size(leaf, slot)
2159 - sizeof(struct btrfs_root_ref);
2160 read_extent_buffer(leaf, subvol_info->name,
2161 item_off, item_len);
2162 } else {
2163 ret = -ENOENT;
2164 goto out;
2165 }
2166 }
2167
2168 btrfs_free_path(path);
2169 path = NULL;
2170 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2171 ret = -EFAULT;
2172
2173 out:
2174 btrfs_put_root(root);
2175 out_free:
2176 btrfs_free_path(path);
2177 kfree(subvol_info);
2178 return ret;
2179 }
2180
2181 /*
2182 * Return ROOT_REF information of the subvolume containing this inode
2183 * except the subvolume name.
2184 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2185 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2186 void __user *argp)
2187 {
2188 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2189 struct btrfs_root_ref *rref;
2190 struct btrfs_path *path;
2191 struct btrfs_key key;
2192 struct extent_buffer *leaf;
2193 u64 objectid;
2194 int slot;
2195 int ret;
2196 u8 found;
2197
2198 path = btrfs_alloc_path();
2199 if (!path)
2200 return -ENOMEM;
2201
2202 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2203 if (IS_ERR(rootrefs)) {
2204 btrfs_free_path(path);
2205 return PTR_ERR(rootrefs);
2206 }
2207
2208 objectid = btrfs_root_id(root);
2209 key.objectid = objectid;
2210 key.type = BTRFS_ROOT_REF_KEY;
2211 key.offset = rootrefs->min_treeid;
2212 found = 0;
2213
2214 root = root->fs_info->tree_root;
2215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2216 if (ret < 0) {
2217 goto out;
2218 } else if (path->slots[0] >=
2219 btrfs_header_nritems(path->nodes[0])) {
2220 ret = btrfs_next_leaf(root, path);
2221 if (ret < 0) {
2222 goto out;
2223 } else if (ret > 0) {
2224 ret = -EUCLEAN;
2225 goto out;
2226 }
2227 }
2228 while (1) {
2229 leaf = path->nodes[0];
2230 slot = path->slots[0];
2231
2232 btrfs_item_key_to_cpu(leaf, &key, slot);
2233 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2234 ret = 0;
2235 goto out;
2236 }
2237
2238 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2239 ret = -EOVERFLOW;
2240 goto out;
2241 }
2242
2243 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2244 rootrefs->rootref[found].treeid = key.offset;
2245 rootrefs->rootref[found].dirid =
2246 btrfs_root_ref_dirid(leaf, rref);
2247 found++;
2248
2249 ret = btrfs_next_item(root, path);
2250 if (ret < 0) {
2251 goto out;
2252 } else if (ret > 0) {
2253 ret = -EUCLEAN;
2254 goto out;
2255 }
2256 }
2257
2258 out:
2259 btrfs_free_path(path);
2260
2261 if (!ret || ret == -EOVERFLOW) {
2262 rootrefs->num_items = found;
2263 /* update min_treeid for next search */
2264 if (found)
2265 rootrefs->min_treeid =
2266 rootrefs->rootref[found - 1].treeid + 1;
2267 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2268 ret = -EFAULT;
2269 }
2270
2271 kfree(rootrefs);
2272
2273 return ret;
2274 }
2275
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2276 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2277 void __user *arg,
2278 bool destroy_v2)
2279 {
2280 struct dentry *parent = file->f_path.dentry;
2281 struct dentry *dentry;
2282 struct inode *dir = d_inode(parent);
2283 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2284 struct inode *inode;
2285 struct btrfs_root *root = BTRFS_I(dir)->root;
2286 struct btrfs_root *dest = NULL;
2287 struct btrfs_ioctl_vol_args *vol_args = NULL;
2288 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2289 struct mnt_idmap *idmap = file_mnt_idmap(file);
2290 char *subvol_name, *subvol_name_ptr = NULL;
2291 int subvol_namelen;
2292 int ret = 0;
2293 bool destroy_parent = false;
2294
2295 /* We don't support snapshots with extent tree v2 yet. */
2296 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2297 btrfs_err(fs_info,
2298 "extent tree v2 doesn't support snapshot deletion yet");
2299 return -EOPNOTSUPP;
2300 }
2301
2302 if (destroy_v2) {
2303 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2304 if (IS_ERR(vol_args2))
2305 return PTR_ERR(vol_args2);
2306
2307 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2308 ret = -EOPNOTSUPP;
2309 goto out;
2310 }
2311
2312 /*
2313 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2314 * name, same as v1 currently does.
2315 */
2316 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2317 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2318 if (ret < 0)
2319 goto out;
2320 subvol_name = vol_args2->name;
2321
2322 ret = mnt_want_write_file(file);
2323 if (ret)
2324 goto out;
2325 } else {
2326 struct inode *old_dir;
2327
2328 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2329 ret = -EINVAL;
2330 goto out;
2331 }
2332
2333 ret = mnt_want_write_file(file);
2334 if (ret)
2335 goto out;
2336
2337 dentry = btrfs_get_dentry(fs_info->sb,
2338 BTRFS_FIRST_FREE_OBJECTID,
2339 vol_args2->subvolid, 0);
2340 if (IS_ERR(dentry)) {
2341 ret = PTR_ERR(dentry);
2342 goto out_drop_write;
2343 }
2344
2345 /*
2346 * Change the default parent since the subvolume being
2347 * deleted can be outside of the current mount point.
2348 */
2349 parent = btrfs_get_parent(dentry);
2350
2351 /*
2352 * At this point dentry->d_name can point to '/' if the
2353 * subvolume we want to destroy is outsite of the
2354 * current mount point, so we need to release the
2355 * current dentry and execute the lookup to return a new
2356 * one with ->d_name pointing to the
2357 * <mount point>/subvol_name.
2358 */
2359 dput(dentry);
2360 if (IS_ERR(parent)) {
2361 ret = PTR_ERR(parent);
2362 goto out_drop_write;
2363 }
2364 old_dir = dir;
2365 dir = d_inode(parent);
2366
2367 /*
2368 * If v2 was used with SPEC_BY_ID, a new parent was
2369 * allocated since the subvolume can be outside of the
2370 * current mount point. Later on we need to release this
2371 * new parent dentry.
2372 */
2373 destroy_parent = true;
2374
2375 /*
2376 * On idmapped mounts, deletion via subvolid is
2377 * restricted to subvolumes that are immediate
2378 * ancestors of the inode referenced by the file
2379 * descriptor in the ioctl. Otherwise the idmapping
2380 * could potentially be abused to delete subvolumes
2381 * anywhere in the filesystem the user wouldn't be able
2382 * to delete without an idmapped mount.
2383 */
2384 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2385 ret = -EOPNOTSUPP;
2386 goto free_parent;
2387 }
2388
2389 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2390 fs_info, vol_args2->subvolid);
2391 if (IS_ERR(subvol_name_ptr)) {
2392 ret = PTR_ERR(subvol_name_ptr);
2393 goto free_parent;
2394 }
2395 /* subvol_name_ptr is already nul terminated */
2396 subvol_name = (char *)kbasename(subvol_name_ptr);
2397 }
2398 } else {
2399 vol_args = memdup_user(arg, sizeof(*vol_args));
2400 if (IS_ERR(vol_args))
2401 return PTR_ERR(vol_args);
2402
2403 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2404 if (ret < 0)
2405 goto out;
2406
2407 subvol_name = vol_args->name;
2408
2409 ret = mnt_want_write_file(file);
2410 if (ret)
2411 goto out;
2412 }
2413
2414 subvol_namelen = strlen(subvol_name);
2415
2416 if (strchr(subvol_name, '/') ||
2417 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2418 ret = -EINVAL;
2419 goto free_subvol_name;
2420 }
2421
2422 if (!S_ISDIR(dir->i_mode)) {
2423 ret = -ENOTDIR;
2424 goto free_subvol_name;
2425 }
2426
2427 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2428 if (ret == -EINTR)
2429 goto free_subvol_name;
2430 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2431 if (IS_ERR(dentry)) {
2432 ret = PTR_ERR(dentry);
2433 goto out_unlock_dir;
2434 }
2435
2436 if (d_really_is_negative(dentry)) {
2437 ret = -ENOENT;
2438 goto out_dput;
2439 }
2440
2441 inode = d_inode(dentry);
2442 dest = BTRFS_I(inode)->root;
2443 if (!capable(CAP_SYS_ADMIN)) {
2444 /*
2445 * Regular user. Only allow this with a special mount
2446 * option, when the user has write+exec access to the
2447 * subvol root, and when rmdir(2) would have been
2448 * allowed.
2449 *
2450 * Note that this is _not_ check that the subvol is
2451 * empty or doesn't contain data that we wouldn't
2452 * otherwise be able to delete.
2453 *
2454 * Users who want to delete empty subvols should try
2455 * rmdir(2).
2456 */
2457 ret = -EPERM;
2458 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2459 goto out_dput;
2460
2461 /*
2462 * Do not allow deletion if the parent dir is the same
2463 * as the dir to be deleted. That means the ioctl
2464 * must be called on the dentry referencing the root
2465 * of the subvol, not a random directory contained
2466 * within it.
2467 */
2468 ret = -EINVAL;
2469 if (root == dest)
2470 goto out_dput;
2471
2472 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2473 if (ret)
2474 goto out_dput;
2475 }
2476
2477 /* check if subvolume may be deleted by a user */
2478 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2479 if (ret)
2480 goto out_dput;
2481
2482 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2483 ret = -EINVAL;
2484 goto out_dput;
2485 }
2486
2487 btrfs_inode_lock(BTRFS_I(inode), 0);
2488 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2489 btrfs_inode_unlock(BTRFS_I(inode), 0);
2490 if (!ret)
2491 d_delete_notify(dir, dentry);
2492
2493 out_dput:
2494 dput(dentry);
2495 out_unlock_dir:
2496 btrfs_inode_unlock(BTRFS_I(dir), 0);
2497 free_subvol_name:
2498 kfree(subvol_name_ptr);
2499 free_parent:
2500 if (destroy_parent)
2501 dput(parent);
2502 out_drop_write:
2503 mnt_drop_write_file(file);
2504 out:
2505 kfree(vol_args2);
2506 kfree(vol_args);
2507 return ret;
2508 }
2509
btrfs_ioctl_defrag(struct file * file,void __user * argp)2510 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2511 {
2512 struct inode *inode = file_inode(file);
2513 struct btrfs_root *root = BTRFS_I(inode)->root;
2514 struct btrfs_ioctl_defrag_range_args range = {0};
2515 int ret;
2516
2517 ret = mnt_want_write_file(file);
2518 if (ret)
2519 return ret;
2520
2521 if (btrfs_root_readonly(root)) {
2522 ret = -EROFS;
2523 goto out;
2524 }
2525
2526 switch (inode->i_mode & S_IFMT) {
2527 case S_IFDIR:
2528 if (!capable(CAP_SYS_ADMIN)) {
2529 ret = -EPERM;
2530 goto out;
2531 }
2532 ret = btrfs_defrag_root(root);
2533 break;
2534 case S_IFREG:
2535 /*
2536 * Note that this does not check the file descriptor for write
2537 * access. This prevents defragmenting executables that are
2538 * running and allows defrag on files open in read-only mode.
2539 */
2540 if (!capable(CAP_SYS_ADMIN) &&
2541 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2542 ret = -EPERM;
2543 goto out;
2544 }
2545
2546 /*
2547 * Don't allow defrag on pre-content watched files, as it could
2548 * populate the page cache with 0's via readahead.
2549 */
2550 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2551 ret = -EINVAL;
2552 goto out;
2553 }
2554
2555 if (argp) {
2556 if (copy_from_user(&range, argp, sizeof(range))) {
2557 ret = -EFAULT;
2558 goto out;
2559 }
2560 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2561 ret = -EOPNOTSUPP;
2562 goto out;
2563 }
2564 /* compression requires us to start the IO */
2565 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2566 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2567 range.extent_thresh = (u32)-1;
2568 }
2569 } else {
2570 /* the rest are all set to zero by kzalloc */
2571 range.len = (u64)-1;
2572 }
2573 ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2574 &range, BTRFS_OLDEST_GENERATION, 0);
2575 if (ret > 0)
2576 ret = 0;
2577 break;
2578 default:
2579 ret = -EINVAL;
2580 }
2581 out:
2582 mnt_drop_write_file(file);
2583 return ret;
2584 }
2585
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2586 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2587 {
2588 struct btrfs_ioctl_vol_args *vol_args;
2589 bool restore_op = false;
2590 int ret;
2591
2592 if (!capable(CAP_SYS_ADMIN))
2593 return -EPERM;
2594
2595 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2596 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2597 return -EINVAL;
2598 }
2599
2600 if (fs_info->fs_devices->temp_fsid) {
2601 btrfs_err(fs_info,
2602 "device add not supported on cloned temp-fsid mount");
2603 return -EINVAL;
2604 }
2605
2606 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2607 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2608 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2609
2610 /*
2611 * We can do the device add because we have a paused balanced,
2612 * change the exclusive op type and remember we should bring
2613 * back the paused balance
2614 */
2615 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2616 btrfs_exclop_start_unlock(fs_info);
2617 restore_op = true;
2618 }
2619
2620 vol_args = memdup_user(arg, sizeof(*vol_args));
2621 if (IS_ERR(vol_args)) {
2622 ret = PTR_ERR(vol_args);
2623 goto out;
2624 }
2625
2626 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2627 if (ret < 0)
2628 goto out_free;
2629
2630 ret = btrfs_init_new_device(fs_info, vol_args->name);
2631
2632 if (!ret)
2633 btrfs_info(fs_info, "disk added %s", vol_args->name);
2634
2635 out_free:
2636 kfree(vol_args);
2637 out:
2638 if (restore_op)
2639 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2640 else
2641 btrfs_exclop_finish(fs_info);
2642 return ret;
2643 }
2644
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2645 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2646 {
2647 BTRFS_DEV_LOOKUP_ARGS(args);
2648 struct inode *inode = file_inode(file);
2649 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2650 struct btrfs_ioctl_vol_args_v2 *vol_args;
2651 struct file *bdev_file = NULL;
2652 int ret;
2653 bool cancel = false;
2654
2655 if (!capable(CAP_SYS_ADMIN))
2656 return -EPERM;
2657
2658 vol_args = memdup_user(arg, sizeof(*vol_args));
2659 if (IS_ERR(vol_args))
2660 return PTR_ERR(vol_args);
2661
2662 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2663 ret = -EOPNOTSUPP;
2664 goto out;
2665 }
2666
2667 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2668 if (ret < 0)
2669 goto out;
2670
2671 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2672 args.devid = vol_args->devid;
2673 } else if (!strcmp("cancel", vol_args->name)) {
2674 cancel = true;
2675 } else {
2676 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2677 if (ret)
2678 goto out;
2679 }
2680
2681 ret = mnt_want_write_file(file);
2682 if (ret)
2683 goto out;
2684
2685 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2686 cancel);
2687 if (ret)
2688 goto err_drop;
2689
2690 /* Exclusive operation is now claimed */
2691 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2692
2693 btrfs_exclop_finish(fs_info);
2694
2695 if (!ret) {
2696 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2697 btrfs_info(fs_info, "device deleted: id %llu",
2698 vol_args->devid);
2699 else
2700 btrfs_info(fs_info, "device deleted: %s",
2701 vol_args->name);
2702 }
2703 err_drop:
2704 mnt_drop_write_file(file);
2705 if (bdev_file)
2706 fput(bdev_file);
2707 out:
2708 btrfs_put_dev_args_from_path(&args);
2709 kfree(vol_args);
2710 return ret;
2711 }
2712
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2713 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2714 {
2715 BTRFS_DEV_LOOKUP_ARGS(args);
2716 struct inode *inode = file_inode(file);
2717 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2718 struct btrfs_ioctl_vol_args *vol_args;
2719 struct file *bdev_file = NULL;
2720 int ret;
2721 bool cancel = false;
2722
2723 if (!capable(CAP_SYS_ADMIN))
2724 return -EPERM;
2725
2726 vol_args = memdup_user(arg, sizeof(*vol_args));
2727 if (IS_ERR(vol_args))
2728 return PTR_ERR(vol_args);
2729
2730 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2731 if (ret < 0)
2732 goto out_free;
2733
2734 if (!strcmp("cancel", vol_args->name)) {
2735 cancel = true;
2736 } else {
2737 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2738 if (ret)
2739 goto out;
2740 }
2741
2742 ret = mnt_want_write_file(file);
2743 if (ret)
2744 goto out;
2745
2746 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2747 cancel);
2748 if (ret == 0) {
2749 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2750 if (!ret)
2751 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2752 btrfs_exclop_finish(fs_info);
2753 }
2754
2755 mnt_drop_write_file(file);
2756 if (bdev_file)
2757 fput(bdev_file);
2758 out:
2759 btrfs_put_dev_args_from_path(&args);
2760 out_free:
2761 kfree(vol_args);
2762 return ret;
2763 }
2764
btrfs_ioctl_fs_info(const struct btrfs_fs_info * fs_info,void __user * arg)2765 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2766 void __user *arg)
2767 {
2768 struct btrfs_ioctl_fs_info_args *fi_args;
2769 struct btrfs_device *device;
2770 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2771 u64 flags_in;
2772 int ret = 0;
2773
2774 fi_args = memdup_user(arg, sizeof(*fi_args));
2775 if (IS_ERR(fi_args))
2776 return PTR_ERR(fi_args);
2777
2778 flags_in = fi_args->flags;
2779 memset(fi_args, 0, sizeof(*fi_args));
2780
2781 rcu_read_lock();
2782 fi_args->num_devices = fs_devices->num_devices;
2783
2784 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2785 if (device->devid > fi_args->max_id)
2786 fi_args->max_id = device->devid;
2787 }
2788 rcu_read_unlock();
2789
2790 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2791 fi_args->nodesize = fs_info->nodesize;
2792 fi_args->sectorsize = fs_info->sectorsize;
2793 fi_args->clone_alignment = fs_info->sectorsize;
2794
2795 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2796 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2797 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2798 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2799 }
2800
2801 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2802 fi_args->generation = btrfs_get_fs_generation(fs_info);
2803 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2804 }
2805
2806 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2807 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2808 sizeof(fi_args->metadata_uuid));
2809 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2810 }
2811
2812 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2813 ret = -EFAULT;
2814
2815 kfree(fi_args);
2816 return ret;
2817 }
2818
btrfs_ioctl_dev_info(const struct btrfs_fs_info * fs_info,void __user * arg)2819 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2820 void __user *arg)
2821 {
2822 BTRFS_DEV_LOOKUP_ARGS(args);
2823 struct btrfs_ioctl_dev_info_args *di_args;
2824 struct btrfs_device *dev;
2825 int ret = 0;
2826
2827 di_args = memdup_user(arg, sizeof(*di_args));
2828 if (IS_ERR(di_args))
2829 return PTR_ERR(di_args);
2830
2831 args.devid = di_args->devid;
2832 if (!btrfs_is_empty_uuid(di_args->uuid))
2833 args.uuid = di_args->uuid;
2834
2835 rcu_read_lock();
2836 dev = btrfs_find_device(fs_info->fs_devices, &args);
2837 if (!dev) {
2838 ret = -ENODEV;
2839 goto out;
2840 }
2841
2842 di_args->devid = dev->devid;
2843 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2844 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2845 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2846 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2847 if (dev->name)
2848 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2849 else
2850 di_args->path[0] = '\0';
2851
2852 out:
2853 rcu_read_unlock();
2854 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2855 ret = -EFAULT;
2856
2857 kfree(di_args);
2858 return ret;
2859 }
2860
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2861 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2862 {
2863 struct inode *inode = file_inode(file);
2864 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2865 struct btrfs_root *root = BTRFS_I(inode)->root;
2866 struct btrfs_root *new_root;
2867 struct btrfs_dir_item *di;
2868 struct btrfs_trans_handle *trans;
2869 struct btrfs_path *path = NULL;
2870 struct btrfs_disk_key disk_key;
2871 struct fscrypt_str name = FSTR_INIT("default", 7);
2872 u64 objectid = 0;
2873 u64 dir_id;
2874 int ret;
2875
2876 if (!capable(CAP_SYS_ADMIN))
2877 return -EPERM;
2878
2879 ret = mnt_want_write_file(file);
2880 if (ret)
2881 return ret;
2882
2883 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2884 ret = -EFAULT;
2885 goto out;
2886 }
2887
2888 if (!objectid)
2889 objectid = BTRFS_FS_TREE_OBJECTID;
2890
2891 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2892 if (IS_ERR(new_root)) {
2893 ret = PTR_ERR(new_root);
2894 goto out;
2895 }
2896 if (!is_fstree(btrfs_root_id(new_root))) {
2897 ret = -ENOENT;
2898 goto out_free;
2899 }
2900
2901 path = btrfs_alloc_path();
2902 if (!path) {
2903 ret = -ENOMEM;
2904 goto out_free;
2905 }
2906
2907 trans = btrfs_start_transaction(root, 1);
2908 if (IS_ERR(trans)) {
2909 ret = PTR_ERR(trans);
2910 goto out_free;
2911 }
2912
2913 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2914 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2915 dir_id, &name, 1);
2916 if (IS_ERR_OR_NULL(di)) {
2917 btrfs_release_path(path);
2918 btrfs_end_transaction(trans);
2919 btrfs_err(fs_info,
2920 "Umm, you don't have the default diritem, this isn't going to work");
2921 ret = -ENOENT;
2922 goto out_free;
2923 }
2924
2925 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2926 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2927 btrfs_release_path(path);
2928
2929 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2930 btrfs_end_transaction(trans);
2931 out_free:
2932 btrfs_put_root(new_root);
2933 btrfs_free_path(path);
2934 out:
2935 mnt_drop_write_file(file);
2936 return ret;
2937 }
2938
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2939 static void get_block_group_info(struct list_head *groups_list,
2940 struct btrfs_ioctl_space_info *space)
2941 {
2942 struct btrfs_block_group *block_group;
2943
2944 space->total_bytes = 0;
2945 space->used_bytes = 0;
2946 space->flags = 0;
2947 list_for_each_entry(block_group, groups_list, list) {
2948 space->flags = block_group->flags;
2949 space->total_bytes += block_group->length;
2950 space->used_bytes += block_group->used;
2951 }
2952 }
2953
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2954 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2955 void __user *arg)
2956 {
2957 struct btrfs_ioctl_space_args space_args = { 0 };
2958 struct btrfs_ioctl_space_info space;
2959 struct btrfs_ioctl_space_info *dest;
2960 struct btrfs_ioctl_space_info *dest_orig;
2961 struct btrfs_ioctl_space_info __user *user_dest;
2962 struct btrfs_space_info *info;
2963 static const u64 types[] = {
2964 BTRFS_BLOCK_GROUP_DATA,
2965 BTRFS_BLOCK_GROUP_SYSTEM,
2966 BTRFS_BLOCK_GROUP_METADATA,
2967 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2968 };
2969 int num_types = 4;
2970 int alloc_size;
2971 int ret = 0;
2972 u64 slot_count = 0;
2973 int i, c;
2974
2975 if (copy_from_user(&space_args,
2976 (struct btrfs_ioctl_space_args __user *)arg,
2977 sizeof(space_args)))
2978 return -EFAULT;
2979
2980 for (i = 0; i < num_types; i++) {
2981 struct btrfs_space_info *tmp;
2982
2983 info = NULL;
2984 list_for_each_entry(tmp, &fs_info->space_info, list) {
2985 if (tmp->flags == types[i]) {
2986 info = tmp;
2987 break;
2988 }
2989 }
2990
2991 if (!info)
2992 continue;
2993
2994 down_read(&info->groups_sem);
2995 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2996 if (!list_empty(&info->block_groups[c]))
2997 slot_count++;
2998 }
2999 up_read(&info->groups_sem);
3000 }
3001
3002 /*
3003 * Global block reserve, exported as a space_info
3004 */
3005 slot_count++;
3006
3007 /* space_slots == 0 means they are asking for a count */
3008 if (space_args.space_slots == 0) {
3009 space_args.total_spaces = slot_count;
3010 goto out;
3011 }
3012
3013 slot_count = min_t(u64, space_args.space_slots, slot_count);
3014
3015 alloc_size = sizeof(*dest) * slot_count;
3016
3017 /* we generally have at most 6 or so space infos, one for each raid
3018 * level. So, a whole page should be more than enough for everyone
3019 */
3020 if (alloc_size > PAGE_SIZE)
3021 return -ENOMEM;
3022
3023 space_args.total_spaces = 0;
3024 dest = kmalloc(alloc_size, GFP_KERNEL);
3025 if (!dest)
3026 return -ENOMEM;
3027 dest_orig = dest;
3028
3029 /* now we have a buffer to copy into */
3030 for (i = 0; i < num_types; i++) {
3031 struct btrfs_space_info *tmp;
3032
3033 if (!slot_count)
3034 break;
3035
3036 info = NULL;
3037 list_for_each_entry(tmp, &fs_info->space_info, list) {
3038 if (tmp->flags == types[i]) {
3039 info = tmp;
3040 break;
3041 }
3042 }
3043
3044 if (!info)
3045 continue;
3046 down_read(&info->groups_sem);
3047 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3048 if (!list_empty(&info->block_groups[c])) {
3049 get_block_group_info(&info->block_groups[c],
3050 &space);
3051 memcpy(dest, &space, sizeof(space));
3052 dest++;
3053 space_args.total_spaces++;
3054 slot_count--;
3055 }
3056 if (!slot_count)
3057 break;
3058 }
3059 up_read(&info->groups_sem);
3060 }
3061
3062 /*
3063 * Add global block reserve
3064 */
3065 if (slot_count) {
3066 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3067
3068 spin_lock(&block_rsv->lock);
3069 space.total_bytes = block_rsv->size;
3070 space.used_bytes = block_rsv->size - block_rsv->reserved;
3071 spin_unlock(&block_rsv->lock);
3072 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3073 memcpy(dest, &space, sizeof(space));
3074 space_args.total_spaces++;
3075 }
3076
3077 user_dest = (struct btrfs_ioctl_space_info __user *)
3078 (arg + sizeof(struct btrfs_ioctl_space_args));
3079
3080 if (copy_to_user(user_dest, dest_orig, alloc_size))
3081 ret = -EFAULT;
3082
3083 kfree(dest_orig);
3084 out:
3085 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3086 ret = -EFAULT;
3087
3088 return ret;
3089 }
3090
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3091 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3092 void __user *argp)
3093 {
3094 struct btrfs_trans_handle *trans;
3095 u64 transid;
3096
3097 /*
3098 * Start orphan cleanup here for the given root in case it hasn't been
3099 * started already by other means. Errors are handled in the other
3100 * functions during transaction commit.
3101 */
3102 btrfs_orphan_cleanup(root);
3103
3104 trans = btrfs_attach_transaction_barrier(root);
3105 if (IS_ERR(trans)) {
3106 if (PTR_ERR(trans) != -ENOENT)
3107 return PTR_ERR(trans);
3108
3109 /* No running transaction, don't bother */
3110 transid = btrfs_get_last_trans_committed(root->fs_info);
3111 goto out;
3112 }
3113 transid = trans->transid;
3114 btrfs_commit_transaction_async(trans);
3115 out:
3116 if (argp)
3117 if (copy_to_user(argp, &transid, sizeof(transid)))
3118 return -EFAULT;
3119 return 0;
3120 }
3121
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3122 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3123 void __user *argp)
3124 {
3125 /* By default wait for the current transaction. */
3126 u64 transid = 0;
3127
3128 if (argp)
3129 if (copy_from_user(&transid, argp, sizeof(transid)))
3130 return -EFAULT;
3131
3132 return btrfs_wait_for_commit(fs_info, transid);
3133 }
3134
btrfs_ioctl_scrub(struct file * file,void __user * arg)3135 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3136 {
3137 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3138 struct btrfs_ioctl_scrub_args *sa;
3139 int ret;
3140
3141 if (!capable(CAP_SYS_ADMIN))
3142 return -EPERM;
3143
3144 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3145 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3146 return -EINVAL;
3147 }
3148
3149 sa = memdup_user(arg, sizeof(*sa));
3150 if (IS_ERR(sa))
3151 return PTR_ERR(sa);
3152
3153 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3154 ret = -EOPNOTSUPP;
3155 goto out;
3156 }
3157
3158 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3159 ret = mnt_want_write_file(file);
3160 if (ret)
3161 goto out;
3162 }
3163
3164 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3165 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3166 0);
3167
3168 /*
3169 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3170 * error. This is important as it allows user space to know how much
3171 * progress scrub has done. For example, if scrub is canceled we get
3172 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3173 * space. Later user space can inspect the progress from the structure
3174 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3175 * previously (btrfs-progs does this).
3176 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3177 * then return -EFAULT to signal the structure was not copied or it may
3178 * be corrupt and unreliable due to a partial copy.
3179 */
3180 if (copy_to_user(arg, sa, sizeof(*sa)))
3181 ret = -EFAULT;
3182
3183 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3184 mnt_drop_write_file(file);
3185 out:
3186 kfree(sa);
3187 return ret;
3188 }
3189
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3190 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3191 {
3192 if (!capable(CAP_SYS_ADMIN))
3193 return -EPERM;
3194
3195 return btrfs_scrub_cancel(fs_info);
3196 }
3197
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3198 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3199 void __user *arg)
3200 {
3201 struct btrfs_ioctl_scrub_args *sa;
3202 int ret;
3203
3204 if (!capable(CAP_SYS_ADMIN))
3205 return -EPERM;
3206
3207 sa = memdup_user(arg, sizeof(*sa));
3208 if (IS_ERR(sa))
3209 return PTR_ERR(sa);
3210
3211 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3212
3213 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3214 ret = -EFAULT;
3215
3216 kfree(sa);
3217 return ret;
3218 }
3219
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3220 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3221 void __user *arg)
3222 {
3223 struct btrfs_ioctl_get_dev_stats *sa;
3224 int ret;
3225
3226 sa = memdup_user(arg, sizeof(*sa));
3227 if (IS_ERR(sa))
3228 return PTR_ERR(sa);
3229
3230 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3231 kfree(sa);
3232 return -EPERM;
3233 }
3234
3235 ret = btrfs_get_dev_stats(fs_info, sa);
3236
3237 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3238 ret = -EFAULT;
3239
3240 kfree(sa);
3241 return ret;
3242 }
3243
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3244 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3245 void __user *arg)
3246 {
3247 struct btrfs_ioctl_dev_replace_args *p;
3248 int ret;
3249
3250 if (!capable(CAP_SYS_ADMIN))
3251 return -EPERM;
3252
3253 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3254 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3255 return -EINVAL;
3256 }
3257
3258 p = memdup_user(arg, sizeof(*p));
3259 if (IS_ERR(p))
3260 return PTR_ERR(p);
3261
3262 switch (p->cmd) {
3263 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3264 if (sb_rdonly(fs_info->sb)) {
3265 ret = -EROFS;
3266 goto out;
3267 }
3268 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3269 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3270 } else {
3271 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3272 btrfs_exclop_finish(fs_info);
3273 }
3274 break;
3275 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3276 btrfs_dev_replace_status(fs_info, p);
3277 ret = 0;
3278 break;
3279 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3280 p->result = btrfs_dev_replace_cancel(fs_info);
3281 ret = 0;
3282 break;
3283 default:
3284 ret = -EINVAL;
3285 break;
3286 }
3287
3288 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3289 ret = -EFAULT;
3290 out:
3291 kfree(p);
3292 return ret;
3293 }
3294
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3295 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3296 {
3297 int ret = 0;
3298 int i;
3299 u64 rel_ptr;
3300 int size;
3301 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3302 struct inode_fs_paths *ipath = NULL;
3303 struct btrfs_path *path;
3304
3305 if (!capable(CAP_DAC_READ_SEARCH))
3306 return -EPERM;
3307
3308 path = btrfs_alloc_path();
3309 if (!path) {
3310 ret = -ENOMEM;
3311 goto out;
3312 }
3313
3314 ipa = memdup_user(arg, sizeof(*ipa));
3315 if (IS_ERR(ipa)) {
3316 ret = PTR_ERR(ipa);
3317 ipa = NULL;
3318 goto out;
3319 }
3320
3321 size = min_t(u32, ipa->size, 4096);
3322 ipath = init_ipath(size, root, path);
3323 if (IS_ERR(ipath)) {
3324 ret = PTR_ERR(ipath);
3325 ipath = NULL;
3326 goto out;
3327 }
3328
3329 ret = paths_from_inode(ipa->inum, ipath);
3330 if (ret < 0)
3331 goto out;
3332
3333 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3334 rel_ptr = ipath->fspath->val[i] -
3335 (u64)(unsigned long)ipath->fspath->val;
3336 ipath->fspath->val[i] = rel_ptr;
3337 }
3338
3339 btrfs_free_path(path);
3340 path = NULL;
3341 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3342 ipath->fspath, size);
3343 if (ret) {
3344 ret = -EFAULT;
3345 goto out;
3346 }
3347
3348 out:
3349 btrfs_free_path(path);
3350 free_ipath(ipath);
3351 kfree(ipa);
3352
3353 return ret;
3354 }
3355
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3356 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3357 void __user *arg, int version)
3358 {
3359 int ret = 0;
3360 int size;
3361 struct btrfs_ioctl_logical_ino_args *loi;
3362 struct btrfs_data_container *inodes = NULL;
3363 struct btrfs_path *path = NULL;
3364 bool ignore_offset;
3365
3366 if (!capable(CAP_SYS_ADMIN))
3367 return -EPERM;
3368
3369 loi = memdup_user(arg, sizeof(*loi));
3370 if (IS_ERR(loi))
3371 return PTR_ERR(loi);
3372
3373 if (version == 1) {
3374 ignore_offset = false;
3375 size = min_t(u32, loi->size, SZ_64K);
3376 } else {
3377 /* All reserved bits must be 0 for now */
3378 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3379 ret = -EINVAL;
3380 goto out_loi;
3381 }
3382 /* Only accept flags we have defined so far */
3383 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3384 ret = -EINVAL;
3385 goto out_loi;
3386 }
3387 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3388 size = min_t(u32, loi->size, SZ_16M);
3389 }
3390
3391 inodes = init_data_container(size);
3392 if (IS_ERR(inodes)) {
3393 ret = PTR_ERR(inodes);
3394 goto out_loi;
3395 }
3396
3397 path = btrfs_alloc_path();
3398 if (!path) {
3399 ret = -ENOMEM;
3400 goto out;
3401 }
3402 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3403 inodes, ignore_offset);
3404 btrfs_free_path(path);
3405 if (ret == -EINVAL)
3406 ret = -ENOENT;
3407 if (ret < 0)
3408 goto out;
3409
3410 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3411 size);
3412 if (ret)
3413 ret = -EFAULT;
3414
3415 out:
3416 kvfree(inodes);
3417 out_loi:
3418 kfree(loi);
3419
3420 return ret;
3421 }
3422
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3423 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3424 struct btrfs_ioctl_balance_args *bargs)
3425 {
3426 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427
3428 bargs->flags = bctl->flags;
3429
3430 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3431 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3432 if (atomic_read(&fs_info->balance_pause_req))
3433 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3434 if (atomic_read(&fs_info->balance_cancel_req))
3435 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3436
3437 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3438 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3439 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3440
3441 spin_lock(&fs_info->balance_lock);
3442 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3443 spin_unlock(&fs_info->balance_lock);
3444 }
3445
3446 /*
3447 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3448 * required.
3449 *
3450 * @fs_info: the filesystem
3451 * @excl_acquired: ptr to boolean value which is set to false in case balance
3452 * is being resumed
3453 *
3454 * Return 0 on success in which case both fs_info::balance is acquired as well
3455 * as exclusive ops are blocked. In case of failure return an error code.
3456 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3457 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3458 {
3459 int ret;
3460
3461 /*
3462 * Exclusive operation is locked. Three possibilities:
3463 * (1) some other op is running
3464 * (2) balance is running
3465 * (3) balance is paused -- special case (think resume)
3466 */
3467 while (1) {
3468 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3469 *excl_acquired = true;
3470 mutex_lock(&fs_info->balance_mutex);
3471 return 0;
3472 }
3473
3474 mutex_lock(&fs_info->balance_mutex);
3475 if (fs_info->balance_ctl) {
3476 /* This is either (2) or (3) */
3477 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3478 /* This is (2) */
3479 ret = -EINPROGRESS;
3480 goto out_failure;
3481
3482 } else {
3483 mutex_unlock(&fs_info->balance_mutex);
3484 /*
3485 * Lock released to allow other waiters to
3486 * continue, we'll reexamine the status again.
3487 */
3488 mutex_lock(&fs_info->balance_mutex);
3489
3490 if (fs_info->balance_ctl &&
3491 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3492 /* This is (3) */
3493 *excl_acquired = false;
3494 return 0;
3495 }
3496 }
3497 } else {
3498 /* This is (1) */
3499 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3500 goto out_failure;
3501 }
3502
3503 mutex_unlock(&fs_info->balance_mutex);
3504 }
3505
3506 out_failure:
3507 mutex_unlock(&fs_info->balance_mutex);
3508 *excl_acquired = false;
3509 return ret;
3510 }
3511
btrfs_ioctl_balance(struct file * file,void __user * arg)3512 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3513 {
3514 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3515 struct btrfs_fs_info *fs_info = root->fs_info;
3516 struct btrfs_ioctl_balance_args *bargs;
3517 struct btrfs_balance_control *bctl;
3518 bool need_unlock = true;
3519 int ret;
3520
3521 if (!capable(CAP_SYS_ADMIN))
3522 return -EPERM;
3523
3524 ret = mnt_want_write_file(file);
3525 if (ret)
3526 return ret;
3527
3528 bargs = memdup_user(arg, sizeof(*bargs));
3529 if (IS_ERR(bargs)) {
3530 ret = PTR_ERR(bargs);
3531 bargs = NULL;
3532 goto out;
3533 }
3534
3535 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3536 if (ret)
3537 goto out;
3538
3539 lockdep_assert_held(&fs_info->balance_mutex);
3540
3541 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3542 if (!fs_info->balance_ctl) {
3543 ret = -ENOTCONN;
3544 goto out_unlock;
3545 }
3546
3547 bctl = fs_info->balance_ctl;
3548 spin_lock(&fs_info->balance_lock);
3549 bctl->flags |= BTRFS_BALANCE_RESUME;
3550 spin_unlock(&fs_info->balance_lock);
3551 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3552
3553 goto do_balance;
3554 }
3555
3556 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3557 ret = -EINVAL;
3558 goto out_unlock;
3559 }
3560
3561 if (fs_info->balance_ctl) {
3562 ret = -EINPROGRESS;
3563 goto out_unlock;
3564 }
3565
3566 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3567 if (!bctl) {
3568 ret = -ENOMEM;
3569 goto out_unlock;
3570 }
3571
3572 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3573 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3574 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3575
3576 bctl->flags = bargs->flags;
3577 do_balance:
3578 /*
3579 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3580 * bctl is freed in reset_balance_state, or, if restriper was paused
3581 * all the way until unmount, in free_fs_info. The flag should be
3582 * cleared after reset_balance_state.
3583 */
3584 need_unlock = false;
3585
3586 ret = btrfs_balance(fs_info, bctl, bargs);
3587 bctl = NULL;
3588
3589 if (ret == 0 || ret == -ECANCELED) {
3590 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3591 ret = -EFAULT;
3592 }
3593
3594 kfree(bctl);
3595 out_unlock:
3596 mutex_unlock(&fs_info->balance_mutex);
3597 if (need_unlock)
3598 btrfs_exclop_finish(fs_info);
3599 out:
3600 mnt_drop_write_file(file);
3601 kfree(bargs);
3602 return ret;
3603 }
3604
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3605 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3606 {
3607 if (!capable(CAP_SYS_ADMIN))
3608 return -EPERM;
3609
3610 switch (cmd) {
3611 case BTRFS_BALANCE_CTL_PAUSE:
3612 return btrfs_pause_balance(fs_info);
3613 case BTRFS_BALANCE_CTL_CANCEL:
3614 return btrfs_cancel_balance(fs_info);
3615 }
3616
3617 return -EINVAL;
3618 }
3619
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3620 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3621 void __user *arg)
3622 {
3623 struct btrfs_ioctl_balance_args *bargs;
3624 int ret = 0;
3625
3626 if (!capable(CAP_SYS_ADMIN))
3627 return -EPERM;
3628
3629 mutex_lock(&fs_info->balance_mutex);
3630 if (!fs_info->balance_ctl) {
3631 ret = -ENOTCONN;
3632 goto out;
3633 }
3634
3635 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3636 if (!bargs) {
3637 ret = -ENOMEM;
3638 goto out;
3639 }
3640
3641 btrfs_update_ioctl_balance_args(fs_info, bargs);
3642
3643 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3644 ret = -EFAULT;
3645
3646 kfree(bargs);
3647 out:
3648 mutex_unlock(&fs_info->balance_mutex);
3649 return ret;
3650 }
3651
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3652 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3653 {
3654 struct inode *inode = file_inode(file);
3655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3656 struct btrfs_ioctl_quota_ctl_args *sa;
3657 int ret;
3658
3659 if (!capable(CAP_SYS_ADMIN))
3660 return -EPERM;
3661
3662 ret = mnt_want_write_file(file);
3663 if (ret)
3664 return ret;
3665
3666 sa = memdup_user(arg, sizeof(*sa));
3667 if (IS_ERR(sa)) {
3668 ret = PTR_ERR(sa);
3669 goto drop_write;
3670 }
3671
3672 switch (sa->cmd) {
3673 case BTRFS_QUOTA_CTL_ENABLE:
3674 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3675 down_write(&fs_info->subvol_sem);
3676 ret = btrfs_quota_enable(fs_info, sa);
3677 up_write(&fs_info->subvol_sem);
3678 break;
3679 case BTRFS_QUOTA_CTL_DISABLE:
3680 /*
3681 * Lock the cleaner mutex to prevent races with concurrent
3682 * relocation, because relocation may be building backrefs for
3683 * blocks of the quota root while we are deleting the root. This
3684 * is like dropping fs roots of deleted snapshots/subvolumes, we
3685 * need the same protection.
3686 *
3687 * This also prevents races between concurrent tasks trying to
3688 * disable quotas, because we will unlock and relock
3689 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3690 *
3691 * We take this here because we have the dependency of
3692 *
3693 * inode_lock -> subvol_sem
3694 *
3695 * because of rename. With relocation we can prealloc extents,
3696 * so that makes the dependency chain
3697 *
3698 * cleaner_mutex -> inode_lock -> subvol_sem
3699 *
3700 * so we must take the cleaner_mutex here before we take the
3701 * subvol_sem. The deadlock can't actually happen, but this
3702 * quiets lockdep.
3703 */
3704 mutex_lock(&fs_info->cleaner_mutex);
3705 down_write(&fs_info->subvol_sem);
3706 ret = btrfs_quota_disable(fs_info);
3707 up_write(&fs_info->subvol_sem);
3708 mutex_unlock(&fs_info->cleaner_mutex);
3709 break;
3710 default:
3711 ret = -EINVAL;
3712 break;
3713 }
3714
3715 kfree(sa);
3716 drop_write:
3717 mnt_drop_write_file(file);
3718 return ret;
3719 }
3720
3721 /*
3722 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3723 * done before any operations.
3724 */
qgroup_enabled(struct btrfs_fs_info * fs_info)3725 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3726 {
3727 bool ret = true;
3728
3729 mutex_lock(&fs_info->qgroup_ioctl_lock);
3730 if (!fs_info->quota_root)
3731 ret = false;
3732 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3733
3734 return ret;
3735 }
3736
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3737 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3738 {
3739 struct inode *inode = file_inode(file);
3740 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3741 struct btrfs_root *root = BTRFS_I(inode)->root;
3742 struct btrfs_ioctl_qgroup_assign_args *sa;
3743 struct btrfs_qgroup_list *prealloc = NULL;
3744 struct btrfs_trans_handle *trans;
3745 int ret;
3746 int err;
3747
3748 if (!capable(CAP_SYS_ADMIN))
3749 return -EPERM;
3750
3751 if (!qgroup_enabled(root->fs_info))
3752 return -ENOTCONN;
3753
3754 ret = mnt_want_write_file(file);
3755 if (ret)
3756 return ret;
3757
3758 sa = memdup_user(arg, sizeof(*sa));
3759 if (IS_ERR(sa)) {
3760 ret = PTR_ERR(sa);
3761 goto drop_write;
3762 }
3763
3764 if (sa->assign) {
3765 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3766 if (!prealloc) {
3767 ret = -ENOMEM;
3768 goto drop_write;
3769 }
3770 }
3771
3772 trans = btrfs_join_transaction(root);
3773 if (IS_ERR(trans)) {
3774 ret = PTR_ERR(trans);
3775 goto out;
3776 }
3777
3778 /*
3779 * Prealloc ownership is moved to the relation handler, there it's used
3780 * or freed on error.
3781 */
3782 if (sa->assign) {
3783 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3784 prealloc = NULL;
3785 } else {
3786 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3787 }
3788
3789 /* update qgroup status and info */
3790 mutex_lock(&fs_info->qgroup_ioctl_lock);
3791 err = btrfs_run_qgroups(trans);
3792 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3793 if (err < 0)
3794 btrfs_warn(fs_info,
3795 "qgroup status update failed after %s relation, marked as inconsistent",
3796 sa->assign ? "adding" : "deleting");
3797 err = btrfs_end_transaction(trans);
3798 if (err && !ret)
3799 ret = err;
3800
3801 out:
3802 kfree(prealloc);
3803 kfree(sa);
3804 drop_write:
3805 mnt_drop_write_file(file);
3806 return ret;
3807 }
3808
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3809 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3810 {
3811 struct inode *inode = file_inode(file);
3812 struct btrfs_root *root = BTRFS_I(inode)->root;
3813 struct btrfs_ioctl_qgroup_create_args *sa;
3814 struct btrfs_trans_handle *trans;
3815 int ret;
3816 int err;
3817
3818 if (!capable(CAP_SYS_ADMIN))
3819 return -EPERM;
3820
3821 if (!qgroup_enabled(root->fs_info))
3822 return -ENOTCONN;
3823
3824 ret = mnt_want_write_file(file);
3825 if (ret)
3826 return ret;
3827
3828 sa = memdup_user(arg, sizeof(*sa));
3829 if (IS_ERR(sa)) {
3830 ret = PTR_ERR(sa);
3831 goto drop_write;
3832 }
3833
3834 if (!sa->qgroupid) {
3835 ret = -EINVAL;
3836 goto out;
3837 }
3838
3839 if (sa->create && is_fstree(sa->qgroupid)) {
3840 ret = -EINVAL;
3841 goto out;
3842 }
3843
3844 trans = btrfs_join_transaction(root);
3845 if (IS_ERR(trans)) {
3846 ret = PTR_ERR(trans);
3847 goto out;
3848 }
3849
3850 if (sa->create) {
3851 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3852 } else {
3853 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3854 }
3855
3856 err = btrfs_end_transaction(trans);
3857 if (err && !ret)
3858 ret = err;
3859
3860 out:
3861 kfree(sa);
3862 drop_write:
3863 mnt_drop_write_file(file);
3864 return ret;
3865 }
3866
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3867 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3868 {
3869 struct inode *inode = file_inode(file);
3870 struct btrfs_root *root = BTRFS_I(inode)->root;
3871 struct btrfs_ioctl_qgroup_limit_args *sa;
3872 struct btrfs_trans_handle *trans;
3873 int ret;
3874 int err;
3875 u64 qgroupid;
3876
3877 if (!capable(CAP_SYS_ADMIN))
3878 return -EPERM;
3879
3880 if (!qgroup_enabled(root->fs_info))
3881 return -ENOTCONN;
3882
3883 ret = mnt_want_write_file(file);
3884 if (ret)
3885 return ret;
3886
3887 sa = memdup_user(arg, sizeof(*sa));
3888 if (IS_ERR(sa)) {
3889 ret = PTR_ERR(sa);
3890 goto drop_write;
3891 }
3892
3893 trans = btrfs_join_transaction(root);
3894 if (IS_ERR(trans)) {
3895 ret = PTR_ERR(trans);
3896 goto out;
3897 }
3898
3899 qgroupid = sa->qgroupid;
3900 if (!qgroupid) {
3901 /* take the current subvol as qgroup */
3902 qgroupid = btrfs_root_id(root);
3903 }
3904
3905 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3906
3907 err = btrfs_end_transaction(trans);
3908 if (err && !ret)
3909 ret = err;
3910
3911 out:
3912 kfree(sa);
3913 drop_write:
3914 mnt_drop_write_file(file);
3915 return ret;
3916 }
3917
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3918 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3919 {
3920 struct inode *inode = file_inode(file);
3921 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3922 struct btrfs_ioctl_quota_rescan_args *qsa;
3923 int ret;
3924
3925 if (!capable(CAP_SYS_ADMIN))
3926 return -EPERM;
3927
3928 if (!qgroup_enabled(fs_info))
3929 return -ENOTCONN;
3930
3931 ret = mnt_want_write_file(file);
3932 if (ret)
3933 return ret;
3934
3935 qsa = memdup_user(arg, sizeof(*qsa));
3936 if (IS_ERR(qsa)) {
3937 ret = PTR_ERR(qsa);
3938 goto drop_write;
3939 }
3940
3941 if (qsa->flags) {
3942 ret = -EINVAL;
3943 goto out;
3944 }
3945
3946 ret = btrfs_qgroup_rescan(fs_info);
3947
3948 out:
3949 kfree(qsa);
3950 drop_write:
3951 mnt_drop_write_file(file);
3952 return ret;
3953 }
3954
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3955 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3956 void __user *arg)
3957 {
3958 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3959
3960 if (!capable(CAP_SYS_ADMIN))
3961 return -EPERM;
3962
3963 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3964 qsa.flags = 1;
3965 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3966 }
3967
3968 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3969 return -EFAULT;
3970
3971 return 0;
3972 }
3973
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3974 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3975 {
3976 if (!capable(CAP_SYS_ADMIN))
3977 return -EPERM;
3978
3979 return btrfs_qgroup_wait_for_completion(fs_info, true);
3980 }
3981
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3982 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3983 struct mnt_idmap *idmap,
3984 struct btrfs_ioctl_received_subvol_args *sa)
3985 {
3986 struct inode *inode = file_inode(file);
3987 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3988 struct btrfs_root *root = BTRFS_I(inode)->root;
3989 struct btrfs_root_item *root_item = &root->root_item;
3990 struct btrfs_trans_handle *trans;
3991 struct timespec64 ct = current_time(inode);
3992 int ret = 0;
3993 int received_uuid_changed;
3994
3995 if (!inode_owner_or_capable(idmap, inode))
3996 return -EPERM;
3997
3998 ret = mnt_want_write_file(file);
3999 if (ret < 0)
4000 return ret;
4001
4002 down_write(&fs_info->subvol_sem);
4003
4004 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4005 ret = -EINVAL;
4006 goto out;
4007 }
4008
4009 if (btrfs_root_readonly(root)) {
4010 ret = -EROFS;
4011 goto out;
4012 }
4013
4014 /*
4015 * 1 - root item
4016 * 2 - uuid items (received uuid + subvol uuid)
4017 */
4018 trans = btrfs_start_transaction(root, 3);
4019 if (IS_ERR(trans)) {
4020 ret = PTR_ERR(trans);
4021 trans = NULL;
4022 goto out;
4023 }
4024
4025 sa->rtransid = trans->transid;
4026 sa->rtime.sec = ct.tv_sec;
4027 sa->rtime.nsec = ct.tv_nsec;
4028
4029 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4030 BTRFS_UUID_SIZE);
4031 if (received_uuid_changed &&
4032 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4033 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4034 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4035 btrfs_root_id(root));
4036 if (ret && ret != -ENOENT) {
4037 btrfs_abort_transaction(trans, ret);
4038 btrfs_end_transaction(trans);
4039 goto out;
4040 }
4041 }
4042 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4043 btrfs_set_root_stransid(root_item, sa->stransid);
4044 btrfs_set_root_rtransid(root_item, sa->rtransid);
4045 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4046 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4047 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4048 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4049
4050 ret = btrfs_update_root(trans, fs_info->tree_root,
4051 &root->root_key, &root->root_item);
4052 if (ret < 0) {
4053 btrfs_end_transaction(trans);
4054 goto out;
4055 }
4056 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4057 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4058 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4059 btrfs_root_id(root));
4060 if (ret < 0 && ret != -EEXIST) {
4061 btrfs_abort_transaction(trans, ret);
4062 btrfs_end_transaction(trans);
4063 goto out;
4064 }
4065 }
4066 ret = btrfs_commit_transaction(trans);
4067 out:
4068 up_write(&fs_info->subvol_sem);
4069 mnt_drop_write_file(file);
4070 return ret;
4071 }
4072
4073 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4074 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4075 void __user *arg)
4076 {
4077 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4078 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4079 int ret = 0;
4080
4081 args32 = memdup_user(arg, sizeof(*args32));
4082 if (IS_ERR(args32))
4083 return PTR_ERR(args32);
4084
4085 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4086 if (!args64) {
4087 ret = -ENOMEM;
4088 goto out;
4089 }
4090
4091 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4092 args64->stransid = args32->stransid;
4093 args64->rtransid = args32->rtransid;
4094 args64->stime.sec = args32->stime.sec;
4095 args64->stime.nsec = args32->stime.nsec;
4096 args64->rtime.sec = args32->rtime.sec;
4097 args64->rtime.nsec = args32->rtime.nsec;
4098 args64->flags = args32->flags;
4099
4100 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4101 if (ret)
4102 goto out;
4103
4104 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4105 args32->stransid = args64->stransid;
4106 args32->rtransid = args64->rtransid;
4107 args32->stime.sec = args64->stime.sec;
4108 args32->stime.nsec = args64->stime.nsec;
4109 args32->rtime.sec = args64->rtime.sec;
4110 args32->rtime.nsec = args64->rtime.nsec;
4111 args32->flags = args64->flags;
4112
4113 ret = copy_to_user(arg, args32, sizeof(*args32));
4114 if (ret)
4115 ret = -EFAULT;
4116
4117 out:
4118 kfree(args32);
4119 kfree(args64);
4120 return ret;
4121 }
4122 #endif
4123
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4124 static long btrfs_ioctl_set_received_subvol(struct file *file,
4125 void __user *arg)
4126 {
4127 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4128 int ret = 0;
4129
4130 sa = memdup_user(arg, sizeof(*sa));
4131 if (IS_ERR(sa))
4132 return PTR_ERR(sa);
4133
4134 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4135
4136 if (ret)
4137 goto out;
4138
4139 ret = copy_to_user(arg, sa, sizeof(*sa));
4140 if (ret)
4141 ret = -EFAULT;
4142
4143 out:
4144 kfree(sa);
4145 return ret;
4146 }
4147
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4148 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4149 void __user *arg)
4150 {
4151 size_t len;
4152 int ret;
4153 char label[BTRFS_LABEL_SIZE];
4154
4155 spin_lock(&fs_info->super_lock);
4156 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4157 spin_unlock(&fs_info->super_lock);
4158
4159 len = strnlen(label, BTRFS_LABEL_SIZE);
4160
4161 if (len == BTRFS_LABEL_SIZE) {
4162 btrfs_warn(fs_info,
4163 "label is too long, return the first %zu bytes",
4164 --len);
4165 }
4166
4167 ret = copy_to_user(arg, label, len);
4168
4169 return ret ? -EFAULT : 0;
4170 }
4171
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4172 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4173 {
4174 struct inode *inode = file_inode(file);
4175 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4176 struct btrfs_root *root = BTRFS_I(inode)->root;
4177 struct btrfs_super_block *super_block = fs_info->super_copy;
4178 struct btrfs_trans_handle *trans;
4179 char label[BTRFS_LABEL_SIZE];
4180 int ret;
4181
4182 if (!capable(CAP_SYS_ADMIN))
4183 return -EPERM;
4184
4185 if (copy_from_user(label, arg, sizeof(label)))
4186 return -EFAULT;
4187
4188 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4189 btrfs_err(fs_info,
4190 "unable to set label with more than %d bytes",
4191 BTRFS_LABEL_SIZE - 1);
4192 return -EINVAL;
4193 }
4194
4195 ret = mnt_want_write_file(file);
4196 if (ret)
4197 return ret;
4198
4199 trans = btrfs_start_transaction(root, 0);
4200 if (IS_ERR(trans)) {
4201 ret = PTR_ERR(trans);
4202 goto out_unlock;
4203 }
4204
4205 spin_lock(&fs_info->super_lock);
4206 strcpy(super_block->label, label);
4207 spin_unlock(&fs_info->super_lock);
4208 ret = btrfs_commit_transaction(trans);
4209
4210 out_unlock:
4211 mnt_drop_write_file(file);
4212 return ret;
4213 }
4214
4215 #define INIT_FEATURE_FLAGS(suffix) \
4216 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4217 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4218 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4219
btrfs_ioctl_get_supported_features(void __user * arg)4220 int btrfs_ioctl_get_supported_features(void __user *arg)
4221 {
4222 static const struct btrfs_ioctl_feature_flags features[3] = {
4223 INIT_FEATURE_FLAGS(SUPP),
4224 INIT_FEATURE_FLAGS(SAFE_SET),
4225 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4226 };
4227
4228 if (copy_to_user(arg, &features, sizeof(features)))
4229 return -EFAULT;
4230
4231 return 0;
4232 }
4233
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4234 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4235 void __user *arg)
4236 {
4237 struct btrfs_super_block *super_block = fs_info->super_copy;
4238 struct btrfs_ioctl_feature_flags features;
4239
4240 features.compat_flags = btrfs_super_compat_flags(super_block);
4241 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4242 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4243
4244 if (copy_to_user(arg, &features, sizeof(features)))
4245 return -EFAULT;
4246
4247 return 0;
4248 }
4249
check_feature_bits(const struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4250 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4251 enum btrfs_feature_set set,
4252 u64 change_mask, u64 flags, u64 supported_flags,
4253 u64 safe_set, u64 safe_clear)
4254 {
4255 const char *type = btrfs_feature_set_name(set);
4256 char *names;
4257 u64 disallowed, unsupported;
4258 u64 set_mask = flags & change_mask;
4259 u64 clear_mask = ~flags & change_mask;
4260
4261 unsupported = set_mask & ~supported_flags;
4262 if (unsupported) {
4263 names = btrfs_printable_features(set, unsupported);
4264 if (names) {
4265 btrfs_warn(fs_info,
4266 "this kernel does not support the %s feature bit%s",
4267 names, strchr(names, ',') ? "s" : "");
4268 kfree(names);
4269 } else
4270 btrfs_warn(fs_info,
4271 "this kernel does not support %s bits 0x%llx",
4272 type, unsupported);
4273 return -EOPNOTSUPP;
4274 }
4275
4276 disallowed = set_mask & ~safe_set;
4277 if (disallowed) {
4278 names = btrfs_printable_features(set, disallowed);
4279 if (names) {
4280 btrfs_warn(fs_info,
4281 "can't set the %s feature bit%s while mounted",
4282 names, strchr(names, ',') ? "s" : "");
4283 kfree(names);
4284 } else
4285 btrfs_warn(fs_info,
4286 "can't set %s bits 0x%llx while mounted",
4287 type, disallowed);
4288 return -EPERM;
4289 }
4290
4291 disallowed = clear_mask & ~safe_clear;
4292 if (disallowed) {
4293 names = btrfs_printable_features(set, disallowed);
4294 if (names) {
4295 btrfs_warn(fs_info,
4296 "can't clear the %s feature bit%s while mounted",
4297 names, strchr(names, ',') ? "s" : "");
4298 kfree(names);
4299 } else
4300 btrfs_warn(fs_info,
4301 "can't clear %s bits 0x%llx while mounted",
4302 type, disallowed);
4303 return -EPERM;
4304 }
4305
4306 return 0;
4307 }
4308
4309 #define check_feature(fs_info, change_mask, flags, mask_base) \
4310 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4311 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4312 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4313 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4314
btrfs_ioctl_set_features(struct file * file,void __user * arg)4315 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4316 {
4317 struct inode *inode = file_inode(file);
4318 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4319 struct btrfs_root *root = BTRFS_I(inode)->root;
4320 struct btrfs_super_block *super_block = fs_info->super_copy;
4321 struct btrfs_ioctl_feature_flags flags[2];
4322 struct btrfs_trans_handle *trans;
4323 u64 newflags;
4324 int ret;
4325
4326 if (!capable(CAP_SYS_ADMIN))
4327 return -EPERM;
4328
4329 if (copy_from_user(flags, arg, sizeof(flags)))
4330 return -EFAULT;
4331
4332 /* Nothing to do */
4333 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4334 !flags[0].incompat_flags)
4335 return 0;
4336
4337 ret = check_feature(fs_info, flags[0].compat_flags,
4338 flags[1].compat_flags, COMPAT);
4339 if (ret)
4340 return ret;
4341
4342 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4343 flags[1].compat_ro_flags, COMPAT_RO);
4344 if (ret)
4345 return ret;
4346
4347 ret = check_feature(fs_info, flags[0].incompat_flags,
4348 flags[1].incompat_flags, INCOMPAT);
4349 if (ret)
4350 return ret;
4351
4352 ret = mnt_want_write_file(file);
4353 if (ret)
4354 return ret;
4355
4356 trans = btrfs_start_transaction(root, 0);
4357 if (IS_ERR(trans)) {
4358 ret = PTR_ERR(trans);
4359 goto out_drop_write;
4360 }
4361
4362 spin_lock(&fs_info->super_lock);
4363 newflags = btrfs_super_compat_flags(super_block);
4364 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4365 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4366 btrfs_set_super_compat_flags(super_block, newflags);
4367
4368 newflags = btrfs_super_compat_ro_flags(super_block);
4369 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4370 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4371 btrfs_set_super_compat_ro_flags(super_block, newflags);
4372
4373 newflags = btrfs_super_incompat_flags(super_block);
4374 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4375 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4376 btrfs_set_super_incompat_flags(super_block, newflags);
4377 spin_unlock(&fs_info->super_lock);
4378
4379 ret = btrfs_commit_transaction(trans);
4380 out_drop_write:
4381 mnt_drop_write_file(file);
4382
4383 return ret;
4384 }
4385
_btrfs_ioctl_send(struct btrfs_root * root,void __user * argp,bool compat)4386 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4387 {
4388 struct btrfs_ioctl_send_args *arg;
4389 int ret;
4390
4391 if (compat) {
4392 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4393 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4394
4395 ret = copy_from_user(&args32, argp, sizeof(args32));
4396 if (ret)
4397 return -EFAULT;
4398 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4399 if (!arg)
4400 return -ENOMEM;
4401 arg->send_fd = args32.send_fd;
4402 arg->clone_sources_count = args32.clone_sources_count;
4403 arg->clone_sources = compat_ptr(args32.clone_sources);
4404 arg->parent_root = args32.parent_root;
4405 arg->flags = args32.flags;
4406 arg->version = args32.version;
4407 memcpy(arg->reserved, args32.reserved,
4408 sizeof(args32.reserved));
4409 #else
4410 return -ENOTTY;
4411 #endif
4412 } else {
4413 arg = memdup_user(argp, sizeof(*arg));
4414 if (IS_ERR(arg))
4415 return PTR_ERR(arg);
4416 }
4417 ret = btrfs_ioctl_send(root, arg);
4418 kfree(arg);
4419 return ret;
4420 }
4421
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4422 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4423 bool compat)
4424 {
4425 struct btrfs_ioctl_encoded_io_args args = { 0 };
4426 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4427 flags);
4428 size_t copy_end;
4429 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4431 struct extent_io_tree *io_tree = &inode->io_tree;
4432 struct iovec iovstack[UIO_FASTIOV];
4433 struct iovec *iov = iovstack;
4434 struct iov_iter iter;
4435 loff_t pos;
4436 struct kiocb kiocb;
4437 ssize_t ret;
4438 u64 disk_bytenr, disk_io_size;
4439 struct extent_state *cached_state = NULL;
4440
4441 if (!capable(CAP_SYS_ADMIN)) {
4442 ret = -EPERM;
4443 goto out_acct;
4444 }
4445
4446 if (compat) {
4447 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4448 struct btrfs_ioctl_encoded_io_args_32 args32;
4449
4450 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4451 flags);
4452 if (copy_from_user(&args32, argp, copy_end)) {
4453 ret = -EFAULT;
4454 goto out_acct;
4455 }
4456 args.iov = compat_ptr(args32.iov);
4457 args.iovcnt = args32.iovcnt;
4458 args.offset = args32.offset;
4459 args.flags = args32.flags;
4460 #else
4461 return -ENOTTY;
4462 #endif
4463 } else {
4464 copy_end = copy_end_kernel;
4465 if (copy_from_user(&args, argp, copy_end)) {
4466 ret = -EFAULT;
4467 goto out_acct;
4468 }
4469 }
4470 if (args.flags != 0) {
4471 ret = -EINVAL;
4472 goto out_acct;
4473 }
4474
4475 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4476 &iov, &iter);
4477 if (ret < 0)
4478 goto out_acct;
4479
4480 if (iov_iter_count(&iter) == 0) {
4481 ret = 0;
4482 goto out_iov;
4483 }
4484 pos = args.offset;
4485 ret = rw_verify_area(READ, file, &pos, args.len);
4486 if (ret < 0)
4487 goto out_iov;
4488
4489 init_sync_kiocb(&kiocb, file);
4490 kiocb.ki_pos = pos;
4491
4492 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4493 &disk_bytenr, &disk_io_size);
4494
4495 if (ret == -EIOCBQUEUED) {
4496 bool unlocked = false;
4497 u64 start, lockend, count;
4498
4499 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4500 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4501
4502 if (args.compression)
4503 count = disk_io_size;
4504 else
4505 count = args.len;
4506
4507 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4508 &cached_state, disk_bytenr,
4509 disk_io_size, count,
4510 args.compression, &unlocked);
4511
4512 if (!unlocked) {
4513 unlock_extent(io_tree, start, lockend, &cached_state);
4514 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4515 }
4516 }
4517
4518 if (ret >= 0) {
4519 fsnotify_access(file);
4520 if (copy_to_user(argp + copy_end,
4521 (char *)&args + copy_end_kernel,
4522 sizeof(args) - copy_end_kernel))
4523 ret = -EFAULT;
4524 }
4525
4526 out_iov:
4527 kfree(iov);
4528 out_acct:
4529 if (ret > 0)
4530 add_rchar(current, ret);
4531 inc_syscr(current);
4532 return ret;
4533 }
4534
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4535 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4536 {
4537 struct btrfs_ioctl_encoded_io_args args;
4538 struct iovec iovstack[UIO_FASTIOV];
4539 struct iovec *iov = iovstack;
4540 struct iov_iter iter;
4541 loff_t pos;
4542 struct kiocb kiocb;
4543 ssize_t ret;
4544
4545 if (!capable(CAP_SYS_ADMIN)) {
4546 ret = -EPERM;
4547 goto out_acct;
4548 }
4549
4550 if (!(file->f_mode & FMODE_WRITE)) {
4551 ret = -EBADF;
4552 goto out_acct;
4553 }
4554
4555 if (compat) {
4556 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4557 struct btrfs_ioctl_encoded_io_args_32 args32;
4558
4559 if (copy_from_user(&args32, argp, sizeof(args32))) {
4560 ret = -EFAULT;
4561 goto out_acct;
4562 }
4563 args.iov = compat_ptr(args32.iov);
4564 args.iovcnt = args32.iovcnt;
4565 args.offset = args32.offset;
4566 args.flags = args32.flags;
4567 args.len = args32.len;
4568 args.unencoded_len = args32.unencoded_len;
4569 args.unencoded_offset = args32.unencoded_offset;
4570 args.compression = args32.compression;
4571 args.encryption = args32.encryption;
4572 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4573 #else
4574 return -ENOTTY;
4575 #endif
4576 } else {
4577 if (copy_from_user(&args, argp, sizeof(args))) {
4578 ret = -EFAULT;
4579 goto out_acct;
4580 }
4581 }
4582
4583 ret = -EINVAL;
4584 if (args.flags != 0)
4585 goto out_acct;
4586 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4587 goto out_acct;
4588 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4589 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4590 goto out_acct;
4591 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4592 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4593 goto out_acct;
4594 if (args.unencoded_offset > args.unencoded_len)
4595 goto out_acct;
4596 if (args.len > args.unencoded_len - args.unencoded_offset)
4597 goto out_acct;
4598
4599 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4600 &iov, &iter);
4601 if (ret < 0)
4602 goto out_acct;
4603
4604 if (iov_iter_count(&iter) == 0) {
4605 ret = 0;
4606 goto out_iov;
4607 }
4608 pos = args.offset;
4609 ret = rw_verify_area(WRITE, file, &pos, args.len);
4610 if (ret < 0)
4611 goto out_iov;
4612
4613 init_sync_kiocb(&kiocb, file);
4614 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4615 if (ret)
4616 goto out_iov;
4617 kiocb.ki_pos = pos;
4618
4619 file_start_write(file);
4620
4621 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4622 if (ret > 0)
4623 fsnotify_modify(file);
4624
4625 file_end_write(file);
4626 out_iov:
4627 kfree(iov);
4628 out_acct:
4629 if (ret > 0)
4630 add_wchar(current, ret);
4631 inc_syscw(current);
4632 return ret;
4633 }
4634
4635 /*
4636 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4637 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4638 * off and cleanup the I/O in btrfs_uring_read_finished.
4639 */
4640 struct btrfs_uring_priv {
4641 struct io_uring_cmd *cmd;
4642 struct page **pages;
4643 unsigned long nr_pages;
4644 struct kiocb iocb;
4645 struct iovec *iov;
4646 struct iov_iter iter;
4647 struct extent_state *cached_state;
4648 u64 count;
4649 u64 start;
4650 u64 lockend;
4651 int err;
4652 bool compressed;
4653 };
4654
4655 struct io_btrfs_cmd {
4656 struct btrfs_uring_priv *priv;
4657 };
4658
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4659 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4660 {
4661 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4662 struct btrfs_uring_priv *priv = bc->priv;
4663 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4664 struct extent_io_tree *io_tree = &inode->io_tree;
4665 unsigned long index;
4666 u64 cur;
4667 size_t page_offset;
4668 ssize_t ret;
4669
4670 /* The inode lock has already been acquired in btrfs_uring_read_extent. */
4671 btrfs_lockdep_inode_acquire(inode, i_rwsem);
4672
4673 if (priv->err) {
4674 ret = priv->err;
4675 goto out;
4676 }
4677
4678 if (priv->compressed) {
4679 index = 0;
4680 page_offset = 0;
4681 } else {
4682 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4683 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4684 }
4685 cur = 0;
4686 while (cur < priv->count) {
4687 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4688
4689 if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4690 &priv->iter) != bytes) {
4691 ret = -EFAULT;
4692 goto out;
4693 }
4694
4695 index++;
4696 cur += bytes;
4697 page_offset = 0;
4698 }
4699 ret = priv->count;
4700
4701 out:
4702 unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4703 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4704
4705 io_uring_cmd_done(cmd, ret, 0, issue_flags);
4706 add_rchar(current, ret);
4707
4708 for (index = 0; index < priv->nr_pages; index++)
4709 __free_page(priv->pages[index]);
4710
4711 kfree(priv->pages);
4712 kfree(priv->iov);
4713 kfree(priv);
4714 }
4715
btrfs_uring_read_extent_endio(void * ctx,int err)4716 void btrfs_uring_read_extent_endio(void *ctx, int err)
4717 {
4718 struct btrfs_uring_priv *priv = ctx;
4719 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4720
4721 priv->err = err;
4722 bc->priv = priv;
4723
4724 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4725 }
4726
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4727 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4728 u64 start, u64 lockend,
4729 struct extent_state *cached_state,
4730 u64 disk_bytenr, u64 disk_io_size,
4731 size_t count, bool compressed,
4732 struct iovec *iov, struct io_uring_cmd *cmd)
4733 {
4734 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4735 struct extent_io_tree *io_tree = &inode->io_tree;
4736 struct page **pages;
4737 struct btrfs_uring_priv *priv = NULL;
4738 unsigned long nr_pages;
4739 int ret;
4740
4741 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4742 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4743 if (!pages)
4744 return -ENOMEM;
4745 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4746 if (ret) {
4747 ret = -ENOMEM;
4748 goto out_fail;
4749 }
4750
4751 priv = kmalloc(sizeof(*priv), GFP_NOFS);
4752 if (!priv) {
4753 ret = -ENOMEM;
4754 goto out_fail;
4755 }
4756
4757 priv->iocb = *iocb;
4758 priv->iov = iov;
4759 priv->iter = *iter;
4760 priv->count = count;
4761 priv->cmd = cmd;
4762 priv->cached_state = cached_state;
4763 priv->compressed = compressed;
4764 priv->nr_pages = nr_pages;
4765 priv->pages = pages;
4766 priv->start = start;
4767 priv->lockend = lockend;
4768 priv->err = 0;
4769
4770 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4771 disk_io_size, pages, priv);
4772 if (ret && ret != -EIOCBQUEUED)
4773 goto out_fail;
4774
4775 /*
4776 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4777 * btrfs_uring_read_finished(), which will handle unlocking the extent
4778 * and inode and freeing the allocations.
4779 */
4780
4781 /*
4782 * We're returning to userspace with the inode lock held, and that's
4783 * okay - it'll get unlocked in a worker thread. Call
4784 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4785 */
4786 btrfs_lockdep_inode_release(inode, i_rwsem);
4787
4788 return -EIOCBQUEUED;
4789
4790 out_fail:
4791 unlock_extent(io_tree, start, lockend, &cached_state);
4792 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4793 kfree(priv);
4794 return ret;
4795 }
4796
4797 struct btrfs_uring_encoded_data {
4798 struct btrfs_ioctl_encoded_io_args args;
4799 struct iovec iovstack[UIO_FASTIOV];
4800 struct iovec *iov;
4801 struct iov_iter iter;
4802 };
4803
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4804 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4805 {
4806 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4807 size_t copy_end;
4808 int ret;
4809 u64 disk_bytenr, disk_io_size;
4810 struct file *file;
4811 struct btrfs_inode *inode;
4812 struct btrfs_fs_info *fs_info;
4813 struct extent_io_tree *io_tree;
4814 loff_t pos;
4815 struct kiocb kiocb;
4816 struct extent_state *cached_state = NULL;
4817 u64 start, lockend;
4818 void __user *sqe_addr;
4819 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4820
4821 if (!capable(CAP_SYS_ADMIN)) {
4822 ret = -EPERM;
4823 goto out_acct;
4824 }
4825 file = cmd->file;
4826 inode = BTRFS_I(file->f_inode);
4827 fs_info = inode->root->fs_info;
4828 io_tree = &inode->io_tree;
4829 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4830
4831 if (issue_flags & IO_URING_F_COMPAT) {
4832 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4833 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4834 #else
4835 return -ENOTTY;
4836 #endif
4837 } else {
4838 copy_end = copy_end_kernel;
4839 }
4840
4841 if (!data) {
4842 data = kzalloc(sizeof(*data), GFP_NOFS);
4843 if (!data) {
4844 ret = -ENOMEM;
4845 goto out_acct;
4846 }
4847
4848 io_uring_cmd_get_async_data(cmd)->op_data = data;
4849
4850 if (issue_flags & IO_URING_F_COMPAT) {
4851 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4852 struct btrfs_ioctl_encoded_io_args_32 args32;
4853
4854 if (copy_from_user(&args32, sqe_addr, copy_end)) {
4855 ret = -EFAULT;
4856 goto out_acct;
4857 }
4858
4859 data->args.iov = compat_ptr(args32.iov);
4860 data->args.iovcnt = args32.iovcnt;
4861 data->args.offset = args32.offset;
4862 data->args.flags = args32.flags;
4863 #endif
4864 } else {
4865 if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4866 ret = -EFAULT;
4867 goto out_acct;
4868 }
4869 }
4870
4871 if (data->args.flags != 0) {
4872 ret = -EINVAL;
4873 goto out_acct;
4874 }
4875
4876 data->iov = data->iovstack;
4877 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4878 ARRAY_SIZE(data->iovstack), &data->iov,
4879 &data->iter);
4880 if (ret < 0)
4881 goto out_acct;
4882
4883 if (iov_iter_count(&data->iter) == 0) {
4884 ret = 0;
4885 goto out_free;
4886 }
4887 }
4888
4889 pos = data->args.offset;
4890 ret = rw_verify_area(READ, file, &pos, data->args.len);
4891 if (ret < 0)
4892 goto out_free;
4893
4894 init_sync_kiocb(&kiocb, file);
4895 kiocb.ki_pos = pos;
4896
4897 if (issue_flags & IO_URING_F_NONBLOCK)
4898 kiocb.ki_flags |= IOCB_NOWAIT;
4899
4900 start = ALIGN_DOWN(pos, fs_info->sectorsize);
4901 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4902
4903 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4904 &disk_bytenr, &disk_io_size);
4905 if (ret < 0 && ret != -EIOCBQUEUED)
4906 goto out_free;
4907
4908 file_accessed(file);
4909
4910 if (copy_to_user(sqe_addr + copy_end,
4911 (const char *)&data->args + copy_end_kernel,
4912 sizeof(data->args) - copy_end_kernel)) {
4913 if (ret == -EIOCBQUEUED) {
4914 unlock_extent(io_tree, start, lockend, &cached_state);
4915 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4916 }
4917 ret = -EFAULT;
4918 goto out_free;
4919 }
4920
4921 if (ret == -EIOCBQUEUED) {
4922 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4923
4924 /* Match ioctl by not returning past EOF if uncompressed. */
4925 if (!data->args.compression)
4926 count = min_t(u64, count, data->args.len);
4927
4928 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4929 cached_state, disk_bytenr, disk_io_size,
4930 count, data->args.compression,
4931 data->iov, cmd);
4932
4933 goto out_acct;
4934 }
4935
4936 out_free:
4937 kfree(data->iov);
4938
4939 out_acct:
4940 if (ret > 0)
4941 add_rchar(current, ret);
4942 inc_syscr(current);
4943
4944 return ret;
4945 }
4946
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4947 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4948 {
4949 loff_t pos;
4950 struct kiocb kiocb;
4951 struct file *file;
4952 ssize_t ret;
4953 void __user *sqe_addr;
4954 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4955
4956 if (!capable(CAP_SYS_ADMIN)) {
4957 ret = -EPERM;
4958 goto out_acct;
4959 }
4960
4961 file = cmd->file;
4962 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4963
4964 if (!(file->f_mode & FMODE_WRITE)) {
4965 ret = -EBADF;
4966 goto out_acct;
4967 }
4968
4969 if (!data) {
4970 data = kzalloc(sizeof(*data), GFP_NOFS);
4971 if (!data) {
4972 ret = -ENOMEM;
4973 goto out_acct;
4974 }
4975
4976 io_uring_cmd_get_async_data(cmd)->op_data = data;
4977
4978 if (issue_flags & IO_URING_F_COMPAT) {
4979 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4980 struct btrfs_ioctl_encoded_io_args_32 args32;
4981
4982 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4983 ret = -EFAULT;
4984 goto out_acct;
4985 }
4986 data->args.iov = compat_ptr(args32.iov);
4987 data->args.iovcnt = args32.iovcnt;
4988 data->args.offset = args32.offset;
4989 data->args.flags = args32.flags;
4990 data->args.len = args32.len;
4991 data->args.unencoded_len = args32.unencoded_len;
4992 data->args.unencoded_offset = args32.unencoded_offset;
4993 data->args.compression = args32.compression;
4994 data->args.encryption = args32.encryption;
4995 memcpy(data->args.reserved, args32.reserved,
4996 sizeof(data->args.reserved));
4997 #else
4998 ret = -ENOTTY;
4999 goto out_acct;
5000 #endif
5001 } else {
5002 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
5003 ret = -EFAULT;
5004 goto out_acct;
5005 }
5006 }
5007
5008 ret = -EINVAL;
5009 if (data->args.flags != 0)
5010 goto out_acct;
5011 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5012 goto out_acct;
5013 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5014 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5015 goto out_acct;
5016 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5017 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5018 goto out_acct;
5019 if (data->args.unencoded_offset > data->args.unencoded_len)
5020 goto out_acct;
5021 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5022 goto out_acct;
5023
5024 data->iov = data->iovstack;
5025 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5026 ARRAY_SIZE(data->iovstack), &data->iov,
5027 &data->iter);
5028 if (ret < 0)
5029 goto out_acct;
5030
5031 if (iov_iter_count(&data->iter) == 0) {
5032 ret = 0;
5033 goto out_iov;
5034 }
5035 }
5036
5037 if (issue_flags & IO_URING_F_NONBLOCK) {
5038 ret = -EAGAIN;
5039 goto out_acct;
5040 }
5041
5042 pos = data->args.offset;
5043 ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5044 if (ret < 0)
5045 goto out_iov;
5046
5047 init_sync_kiocb(&kiocb, file);
5048 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5049 if (ret)
5050 goto out_iov;
5051 kiocb.ki_pos = pos;
5052
5053 file_start_write(file);
5054
5055 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5056 if (ret > 0)
5057 fsnotify_modify(file);
5058
5059 file_end_write(file);
5060 out_iov:
5061 kfree(data->iov);
5062 out_acct:
5063 if (ret > 0)
5064 add_wchar(current, ret);
5065 inc_syscw(current);
5066 return ret;
5067 }
5068
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5069 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5070 {
5071 switch (cmd->cmd_op) {
5072 case BTRFS_IOC_ENCODED_READ:
5073 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5074 case BTRFS_IOC_ENCODED_READ_32:
5075 #endif
5076 return btrfs_uring_encoded_read(cmd, issue_flags);
5077
5078 case BTRFS_IOC_ENCODED_WRITE:
5079 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5080 case BTRFS_IOC_ENCODED_WRITE_32:
5081 #endif
5082 return btrfs_uring_encoded_write(cmd, issue_flags);
5083 }
5084
5085 return -EINVAL;
5086 }
5087
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5088 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5089 {
5090 struct btrfs_root *root;
5091 struct btrfs_ioctl_subvol_wait args = { 0 };
5092 signed long sched_ret;
5093 int refs;
5094 u64 root_flags;
5095 bool wait_for_deletion = false;
5096 bool found = false;
5097
5098 if (copy_from_user(&args, argp, sizeof(args)))
5099 return -EFAULT;
5100
5101 switch (args.mode) {
5102 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5103 /*
5104 * Wait for the first one deleted that waits until all previous
5105 * are cleaned.
5106 */
5107 spin_lock(&fs_info->trans_lock);
5108 if (!list_empty(&fs_info->dead_roots)) {
5109 root = list_last_entry(&fs_info->dead_roots,
5110 struct btrfs_root, root_list);
5111 args.subvolid = btrfs_root_id(root);
5112 found = true;
5113 }
5114 spin_unlock(&fs_info->trans_lock);
5115 if (!found)
5116 return -ENOENT;
5117
5118 fallthrough;
5119 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5120 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5121 BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5122 return -EINVAL;
5123 break;
5124 case BTRFS_SUBVOL_SYNC_COUNT:
5125 spin_lock(&fs_info->trans_lock);
5126 args.count = list_count_nodes(&fs_info->dead_roots);
5127 spin_unlock(&fs_info->trans_lock);
5128 if (copy_to_user(argp, &args, sizeof(args)))
5129 return -EFAULT;
5130 return 0;
5131 case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5132 spin_lock(&fs_info->trans_lock);
5133 /* Last in the list was deleted first. */
5134 if (!list_empty(&fs_info->dead_roots)) {
5135 root = list_last_entry(&fs_info->dead_roots,
5136 struct btrfs_root, root_list);
5137 args.subvolid = btrfs_root_id(root);
5138 } else {
5139 args.subvolid = 0;
5140 }
5141 spin_unlock(&fs_info->trans_lock);
5142 if (copy_to_user(argp, &args, sizeof(args)))
5143 return -EFAULT;
5144 return 0;
5145 case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5146 spin_lock(&fs_info->trans_lock);
5147 /* First in the list was deleted last. */
5148 if (!list_empty(&fs_info->dead_roots)) {
5149 root = list_first_entry(&fs_info->dead_roots,
5150 struct btrfs_root, root_list);
5151 args.subvolid = btrfs_root_id(root);
5152 } else {
5153 args.subvolid = 0;
5154 }
5155 spin_unlock(&fs_info->trans_lock);
5156 if (copy_to_user(argp, &args, sizeof(args)))
5157 return -EFAULT;
5158 return 0;
5159 default:
5160 return -EINVAL;
5161 }
5162
5163 /* 32bit limitation: fs_roots_radix key is not wide enough. */
5164 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5165 return -EOVERFLOW;
5166
5167 while (1) {
5168 /* Wait for the specific one. */
5169 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5170 return -EINTR;
5171 refs = -1;
5172 spin_lock(&fs_info->fs_roots_radix_lock);
5173 root = radix_tree_lookup(&fs_info->fs_roots_radix,
5174 (unsigned long)args.subvolid);
5175 if (root) {
5176 spin_lock(&root->root_item_lock);
5177 refs = btrfs_root_refs(&root->root_item);
5178 root_flags = btrfs_root_flags(&root->root_item);
5179 spin_unlock(&root->root_item_lock);
5180 }
5181 spin_unlock(&fs_info->fs_roots_radix_lock);
5182 up_read(&fs_info->subvol_sem);
5183
5184 /* Subvolume does not exist. */
5185 if (!root)
5186 return -ENOENT;
5187
5188 /* Subvolume not deleted at all. */
5189 if (refs > 0)
5190 return -EEXIST;
5191 /* We've waited and now the subvolume is gone. */
5192 if (wait_for_deletion && refs == -1) {
5193 /* Return the one we waited for as the last one. */
5194 if (copy_to_user(argp, &args, sizeof(args)))
5195 return -EFAULT;
5196 return 0;
5197 }
5198
5199 /* Subvolume not found on the first try (deleted or never existed). */
5200 if (refs == -1)
5201 return -ENOENT;
5202
5203 wait_for_deletion = true;
5204 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5205 sched_ret = schedule_timeout_interruptible(HZ);
5206 /* Early wake up or error. */
5207 if (sched_ret != 0)
5208 return -EINTR;
5209 }
5210
5211 return 0;
5212 }
5213
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5214 long btrfs_ioctl(struct file *file, unsigned int
5215 cmd, unsigned long arg)
5216 {
5217 struct inode *inode = file_inode(file);
5218 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5219 struct btrfs_root *root = BTRFS_I(inode)->root;
5220 void __user *argp = (void __user *)arg;
5221
5222 switch (cmd) {
5223 case FS_IOC_GETVERSION:
5224 return btrfs_ioctl_getversion(inode, argp);
5225 case FS_IOC_GETFSLABEL:
5226 return btrfs_ioctl_get_fslabel(fs_info, argp);
5227 case FS_IOC_SETFSLABEL:
5228 return btrfs_ioctl_set_fslabel(file, argp);
5229 case FITRIM:
5230 return btrfs_ioctl_fitrim(fs_info, argp);
5231 case BTRFS_IOC_SNAP_CREATE:
5232 return btrfs_ioctl_snap_create(file, argp, 0);
5233 case BTRFS_IOC_SNAP_CREATE_V2:
5234 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5235 case BTRFS_IOC_SUBVOL_CREATE:
5236 return btrfs_ioctl_snap_create(file, argp, 1);
5237 case BTRFS_IOC_SUBVOL_CREATE_V2:
5238 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5239 case BTRFS_IOC_SNAP_DESTROY:
5240 return btrfs_ioctl_snap_destroy(file, argp, false);
5241 case BTRFS_IOC_SNAP_DESTROY_V2:
5242 return btrfs_ioctl_snap_destroy(file, argp, true);
5243 case BTRFS_IOC_SUBVOL_GETFLAGS:
5244 return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5245 case BTRFS_IOC_SUBVOL_SETFLAGS:
5246 return btrfs_ioctl_subvol_setflags(file, argp);
5247 case BTRFS_IOC_DEFAULT_SUBVOL:
5248 return btrfs_ioctl_default_subvol(file, argp);
5249 case BTRFS_IOC_DEFRAG:
5250 return btrfs_ioctl_defrag(file, NULL);
5251 case BTRFS_IOC_DEFRAG_RANGE:
5252 return btrfs_ioctl_defrag(file, argp);
5253 case BTRFS_IOC_RESIZE:
5254 return btrfs_ioctl_resize(file, argp);
5255 case BTRFS_IOC_ADD_DEV:
5256 return btrfs_ioctl_add_dev(fs_info, argp);
5257 case BTRFS_IOC_RM_DEV:
5258 return btrfs_ioctl_rm_dev(file, argp);
5259 case BTRFS_IOC_RM_DEV_V2:
5260 return btrfs_ioctl_rm_dev_v2(file, argp);
5261 case BTRFS_IOC_FS_INFO:
5262 return btrfs_ioctl_fs_info(fs_info, argp);
5263 case BTRFS_IOC_DEV_INFO:
5264 return btrfs_ioctl_dev_info(fs_info, argp);
5265 case BTRFS_IOC_TREE_SEARCH:
5266 return btrfs_ioctl_tree_search(root, argp);
5267 case BTRFS_IOC_TREE_SEARCH_V2:
5268 return btrfs_ioctl_tree_search_v2(root, argp);
5269 case BTRFS_IOC_INO_LOOKUP:
5270 return btrfs_ioctl_ino_lookup(root, argp);
5271 case BTRFS_IOC_INO_PATHS:
5272 return btrfs_ioctl_ino_to_path(root, argp);
5273 case BTRFS_IOC_LOGICAL_INO:
5274 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5275 case BTRFS_IOC_LOGICAL_INO_V2:
5276 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5277 case BTRFS_IOC_SPACE_INFO:
5278 return btrfs_ioctl_space_info(fs_info, argp);
5279 case BTRFS_IOC_SYNC: {
5280 int ret;
5281
5282 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5283 if (ret)
5284 return ret;
5285 ret = btrfs_sync_fs(inode->i_sb, 1);
5286 /*
5287 * There may be work for the cleaner kthread to do (subvolume
5288 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5289 */
5290 wake_up_process(fs_info->cleaner_kthread);
5291 return ret;
5292 }
5293 case BTRFS_IOC_START_SYNC:
5294 return btrfs_ioctl_start_sync(root, argp);
5295 case BTRFS_IOC_WAIT_SYNC:
5296 return btrfs_ioctl_wait_sync(fs_info, argp);
5297 case BTRFS_IOC_SCRUB:
5298 return btrfs_ioctl_scrub(file, argp);
5299 case BTRFS_IOC_SCRUB_CANCEL:
5300 return btrfs_ioctl_scrub_cancel(fs_info);
5301 case BTRFS_IOC_SCRUB_PROGRESS:
5302 return btrfs_ioctl_scrub_progress(fs_info, argp);
5303 case BTRFS_IOC_BALANCE_V2:
5304 return btrfs_ioctl_balance(file, argp);
5305 case BTRFS_IOC_BALANCE_CTL:
5306 return btrfs_ioctl_balance_ctl(fs_info, arg);
5307 case BTRFS_IOC_BALANCE_PROGRESS:
5308 return btrfs_ioctl_balance_progress(fs_info, argp);
5309 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5310 return btrfs_ioctl_set_received_subvol(file, argp);
5311 #ifdef CONFIG_64BIT
5312 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5313 return btrfs_ioctl_set_received_subvol_32(file, argp);
5314 #endif
5315 case BTRFS_IOC_SEND:
5316 return _btrfs_ioctl_send(root, argp, false);
5317 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5318 case BTRFS_IOC_SEND_32:
5319 return _btrfs_ioctl_send(root, argp, true);
5320 #endif
5321 case BTRFS_IOC_GET_DEV_STATS:
5322 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5323 case BTRFS_IOC_QUOTA_CTL:
5324 return btrfs_ioctl_quota_ctl(file, argp);
5325 case BTRFS_IOC_QGROUP_ASSIGN:
5326 return btrfs_ioctl_qgroup_assign(file, argp);
5327 case BTRFS_IOC_QGROUP_CREATE:
5328 return btrfs_ioctl_qgroup_create(file, argp);
5329 case BTRFS_IOC_QGROUP_LIMIT:
5330 return btrfs_ioctl_qgroup_limit(file, argp);
5331 case BTRFS_IOC_QUOTA_RESCAN:
5332 return btrfs_ioctl_quota_rescan(file, argp);
5333 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5334 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5335 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5336 return btrfs_ioctl_quota_rescan_wait(fs_info);
5337 case BTRFS_IOC_DEV_REPLACE:
5338 return btrfs_ioctl_dev_replace(fs_info, argp);
5339 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5340 return btrfs_ioctl_get_supported_features(argp);
5341 case BTRFS_IOC_GET_FEATURES:
5342 return btrfs_ioctl_get_features(fs_info, argp);
5343 case BTRFS_IOC_SET_FEATURES:
5344 return btrfs_ioctl_set_features(file, argp);
5345 case BTRFS_IOC_GET_SUBVOL_INFO:
5346 return btrfs_ioctl_get_subvol_info(inode, argp);
5347 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5348 return btrfs_ioctl_get_subvol_rootref(root, argp);
5349 case BTRFS_IOC_INO_LOOKUP_USER:
5350 return btrfs_ioctl_ino_lookup_user(file, argp);
5351 case FS_IOC_ENABLE_VERITY:
5352 return fsverity_ioctl_enable(file, (const void __user *)argp);
5353 case FS_IOC_MEASURE_VERITY:
5354 return fsverity_ioctl_measure(file, argp);
5355 case FS_IOC_READ_VERITY_METADATA:
5356 return fsverity_ioctl_read_metadata(file, argp);
5357 case BTRFS_IOC_ENCODED_READ:
5358 return btrfs_ioctl_encoded_read(file, argp, false);
5359 case BTRFS_IOC_ENCODED_WRITE:
5360 return btrfs_ioctl_encoded_write(file, argp, false);
5361 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5362 case BTRFS_IOC_ENCODED_READ_32:
5363 return btrfs_ioctl_encoded_read(file, argp, true);
5364 case BTRFS_IOC_ENCODED_WRITE_32:
5365 return btrfs_ioctl_encoded_write(file, argp, true);
5366 #endif
5367 case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5368 return btrfs_ioctl_subvol_sync(fs_info, argp);
5369 }
5370
5371 return -ENOTTY;
5372 }
5373
5374 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5375 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5376 {
5377 /*
5378 * These all access 32-bit values anyway so no further
5379 * handling is necessary.
5380 */
5381 switch (cmd) {
5382 case FS_IOC32_GETVERSION:
5383 cmd = FS_IOC_GETVERSION;
5384 break;
5385 }
5386
5387 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5388 }
5389 #endif
5390