1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 238 btrfs_raid_array[i].raid_name); 239 #undef DESCRIBE_FLAG 240 241 if (flags) { 242 ret = snprintf(bp, size_bp, "0x%llx|", flags); 243 size_bp -= ret; 244 } 245 246 if (size_bp < size_buf) 247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 248 249 /* 250 * The text is trimmed, it's up to the caller to provide sufficiently 251 * large buffer 252 */ 253 out_overflow:; 254 } 255 256 static int init_first_rw_device(struct btrfs_trans_handle *trans); 257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 259 260 /* 261 * Device locking 262 * ============== 263 * 264 * There are several mutexes that protect manipulation of devices and low-level 265 * structures like chunks but not block groups, extents or files 266 * 267 * uuid_mutex (global lock) 268 * ------------------------ 269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 271 * device) or requested by the device= mount option 272 * 273 * the mutex can be very coarse and can cover long-running operations 274 * 275 * protects: updates to fs_devices counters like missing devices, rw devices, 276 * seeding, structure cloning, opening/closing devices at mount/umount time 277 * 278 * global::fs_devs - add, remove, updates to the global list 279 * 280 * does not protect: manipulation of the fs_devices::devices list in general 281 * but in mount context it could be used to exclude list modifications by eg. 282 * scan ioctl 283 * 284 * btrfs_device::name - renames (write side), read is RCU 285 * 286 * fs_devices::device_list_mutex (per-fs, with RCU) 287 * ------------------------------------------------ 288 * protects updates to fs_devices::devices, ie. adding and deleting 289 * 290 * simple list traversal with read-only actions can be done with RCU protection 291 * 292 * may be used to exclude some operations from running concurrently without any 293 * modifications to the list (see write_all_supers) 294 * 295 * Is not required at mount and close times, because our device list is 296 * protected by the uuid_mutex at that point. 297 * 298 * balance_mutex 299 * ------------- 300 * protects balance structures (status, state) and context accessed from 301 * several places (internally, ioctl) 302 * 303 * chunk_mutex 304 * ----------- 305 * protects chunks, adding or removing during allocation, trim or when a new 306 * device is added/removed. Additionally it also protects post_commit_list of 307 * individual devices, since they can be added to the transaction's 308 * post_commit_list only with chunk_mutex held. 309 * 310 * cleaner_mutex 311 * ------------- 312 * a big lock that is held by the cleaner thread and prevents running subvolume 313 * cleaning together with relocation or delayed iputs 314 * 315 * 316 * Lock nesting 317 * ============ 318 * 319 * uuid_mutex 320 * device_list_mutex 321 * chunk_mutex 322 * balance_mutex 323 * 324 * 325 * Exclusive operations 326 * ==================== 327 * 328 * Maintains the exclusivity of the following operations that apply to the 329 * whole filesystem and cannot run in parallel. 330 * 331 * - Balance (*) 332 * - Device add 333 * - Device remove 334 * - Device replace (*) 335 * - Resize 336 * 337 * The device operations (as above) can be in one of the following states: 338 * 339 * - Running state 340 * - Paused state 341 * - Completed state 342 * 343 * Only device operations marked with (*) can go into the Paused state for the 344 * following reasons: 345 * 346 * - ioctl (only Balance can be Paused through ioctl) 347 * - filesystem remounted as read-only 348 * - filesystem unmounted and mounted as read-only 349 * - system power-cycle and filesystem mounted as read-only 350 * - filesystem or device errors leading to forced read-only 351 * 352 * The status of exclusive operation is set and cleared atomically. 353 * During the course of Paused state, fs_info::exclusive_operation remains set. 354 * A device operation in Paused or Running state can be canceled or resumed 355 * either by ioctl (Balance only) or when remounted as read-write. 356 * The exclusive status is cleared when the device operation is canceled or 357 * completed. 358 */ 359 360 DEFINE_MUTEX(uuid_mutex); 361 static LIST_HEAD(fs_uuids); 362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 363 { 364 return &fs_uuids; 365 } 366 367 /* 368 * Allocate new btrfs_fs_devices structure identified by a fsid. 369 * 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 371 * fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 378 { 379 struct btrfs_fs_devices *fs_devs; 380 381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 382 if (!fs_devs) 383 return ERR_PTR(-ENOMEM); 384 385 mutex_init(&fs_devs->device_list_mutex); 386 387 INIT_LIST_HEAD(&fs_devs->devices); 388 INIT_LIST_HEAD(&fs_devs->alloc_list); 389 INIT_LIST_HEAD(&fs_devs->fs_list); 390 INIT_LIST_HEAD(&fs_devs->seed_list); 391 392 if (fsid) { 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 } 396 397 return fs_devs; 398 } 399 400 static void btrfs_free_device(struct btrfs_device *device) 401 { 402 WARN_ON(!list_empty(&device->post_commit_list)); 403 /* 404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 405 * reading the device name. 406 */ 407 kfree(rcu_dereference_raw(device->name)); 408 btrfs_extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 WARN_ON(fs_devices->holding); 419 while (!list_empty(&fs_devices->devices)) { 420 device = list_first_entry(&fs_devices->devices, 421 struct btrfs_device, dev_list); 422 list_del(&device->dev_list); 423 btrfs_free_device(device); 424 } 425 kfree(fs_devices); 426 } 427 428 void __exit btrfs_cleanup_fs_uuids(void) 429 { 430 struct btrfs_fs_devices *fs_devices; 431 432 while (!list_empty(&fs_uuids)) { 433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 434 fs_list); 435 list_del(&fs_devices->fs_list); 436 free_fs_devices(fs_devices); 437 } 438 } 439 440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 441 const u8 *fsid, const u8 *metadata_fsid) 442 { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 444 return false; 445 446 if (!metadata_fsid) 447 return true; 448 449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 450 return false; 451 452 return true; 453 } 454 455 static noinline struct btrfs_fs_devices *find_fsid( 456 const u8 *fsid, const u8 *metadata_fsid) 457 { 458 struct btrfs_fs_devices *fs_devices; 459 460 ASSERT(fsid); 461 462 /* Handle non-split brain cases */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 465 return fs_devices; 466 } 467 return NULL; 468 } 469 470 static int 471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 472 int flush, struct file **bdev_file, 473 struct btrfs_super_block **disk_super) 474 { 475 struct block_device *bdev; 476 int ret; 477 478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 479 480 if (IS_ERR(*bdev_file)) { 481 ret = PTR_ERR(*bdev_file); 482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 483 device_path, flags, ret); 484 goto error; 485 } 486 bdev = file_bdev(*bdev_file); 487 488 if (flush) 489 sync_blockdev(bdev); 490 if (holder) { 491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 bdev_fput(*bdev_file); 494 goto error; 495 } 496 } 497 invalidate_bdev(bdev); 498 *disk_super = btrfs_read_disk_super(bdev, 0, false); 499 if (IS_ERR(*disk_super)) { 500 ret = PTR_ERR(*disk_super); 501 bdev_fput(*bdev_file); 502 goto error; 503 } 504 505 return 0; 506 507 error: 508 *disk_super = NULL; 509 *bdev_file = NULL; 510 return ret; 511 } 512 513 /* 514 * Search and remove all stale devices (which are not mounted). When both 515 * inputs are NULL, it will search and release all stale devices. 516 * 517 * @devt: Optional. When provided will it release all unmounted devices 518 * matching this devt only. 519 * @skip_device: Optional. Will skip this device when searching for the stale 520 * devices. 521 * 522 * Return: 0 for success or if @devt is 0. 523 * -EBUSY if @devt is a mounted device. 524 * -ENOENT if @devt does not match any device in the list. 525 */ 526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 527 { 528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 529 struct btrfs_device *device, *tmp_device; 530 int ret; 531 bool freed = false; 532 533 lockdep_assert_held(&uuid_mutex); 534 535 /* Return good status if there is no instance of devt. */ 536 ret = 0; 537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 538 539 mutex_lock(&fs_devices->device_list_mutex); 540 list_for_each_entry_safe(device, tmp_device, 541 &fs_devices->devices, dev_list) { 542 if (skip_device && skip_device == device) 543 continue; 544 if (devt && devt != device->devt) 545 continue; 546 if (fs_devices->opened || fs_devices->holding) { 547 if (devt) 548 ret = -EBUSY; 549 break; 550 } 551 552 /* delete the stale device */ 553 fs_devices->num_devices--; 554 list_del(&device->dev_list); 555 btrfs_free_device(device); 556 557 freed = true; 558 } 559 mutex_unlock(&fs_devices->device_list_mutex); 560 561 if (fs_devices->num_devices == 0) { 562 btrfs_sysfs_remove_fsid(fs_devices); 563 list_del(&fs_devices->fs_list); 564 free_fs_devices(fs_devices); 565 } 566 } 567 568 /* If there is at least one freed device return 0. */ 569 if (freed) 570 return 0; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *find_fsid_by_device( 576 struct btrfs_super_block *disk_super, 577 dev_t devt, bool *same_fsid_diff_dev) 578 { 579 struct btrfs_fs_devices *fsid_fs_devices; 580 struct btrfs_fs_devices *devt_fs_devices; 581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 583 bool found_by_devt = false; 584 585 /* Find the fs_device by the usual method, if found use it. */ 586 fsid_fs_devices = find_fsid(disk_super->fsid, 587 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 588 589 /* The temp_fsid feature is supported only with single device filesystem. */ 590 if (btrfs_super_num_devices(disk_super) != 1) 591 return fsid_fs_devices; 592 593 /* 594 * A seed device is an integral component of the sprout device, which 595 * functions as a multi-device filesystem. So, temp-fsid feature is 596 * not supported. 597 */ 598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 599 return fsid_fs_devices; 600 601 /* Try to find a fs_devices by matching devt. */ 602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 603 struct btrfs_device *device; 604 605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 606 if (device->devt == devt) { 607 found_by_devt = true; 608 break; 609 } 610 } 611 if (found_by_devt) 612 break; 613 } 614 615 if (found_by_devt) { 616 /* Existing device. */ 617 if (fsid_fs_devices == NULL) { 618 if (devt_fs_devices->opened == 0) { 619 /* Stale device. */ 620 return NULL; 621 } else { 622 /* temp_fsid is mounting a subvol. */ 623 return devt_fs_devices; 624 } 625 } else { 626 /* Regular or temp_fsid device mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* New device. */ 631 if (fsid_fs_devices == NULL) { 632 return NULL; 633 } else { 634 /* sb::fsid is already used create a new temp_fsid. */ 635 *same_fsid_diff_dev = true; 636 return NULL; 637 } 638 } 639 640 /* Not reached. */ 641 } 642 643 /* 644 * This is only used on mount, and we are protected from competing things 645 * messing with our fs_devices by the uuid_mutex, thus we do not need the 646 * fs_devices->device_list_mutex here. 647 */ 648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 649 struct btrfs_device *device, blk_mode_t flags, 650 void *holder) 651 { 652 struct file *bdev_file; 653 struct btrfs_super_block *disk_super; 654 u64 devid; 655 int ret; 656 657 if (device->bdev) 658 return -EINVAL; 659 if (!device->name) 660 return -EINVAL; 661 662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 663 &bdev_file, &disk_super); 664 if (ret) 665 return ret; 666 667 devid = btrfs_stack_device_id(&disk_super->dev_item); 668 if (devid != device->devid) 669 goto error_free_page; 670 671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 672 goto error_free_page; 673 674 device->generation = btrfs_super_generation(disk_super); 675 676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 677 if (btrfs_super_incompat_flags(disk_super) & 678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 679 btrfs_err(NULL, 680 "invalid seeding and uuid-changed device detected"); 681 goto error_free_page; 682 } 683 684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 fs_devices->seeding = true; 686 } else { 687 if (bdev_read_only(file_bdev(bdev_file))) 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 else 690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 691 } 692 693 if (!bdev_nonrot(file_bdev(bdev_file))) 694 fs_devices->rotating = true; 695 696 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 697 fs_devices->discardable = true; 698 699 device->bdev_file = bdev_file; 700 device->bdev = file_bdev(bdev_file); 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 703 if (device->devt != device->bdev->bd_dev) { 704 btrfs_warn(NULL, 705 "device %s maj:min changed from %d:%d to %d:%d", 706 rcu_dereference_raw(device->name), MAJOR(device->devt), 707 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 708 MINOR(device->bdev->bd_dev)); 709 710 device->devt = device->bdev->bd_dev; 711 } 712 713 fs_devices->open_devices++; 714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 715 device->devid != BTRFS_DEV_REPLACE_DEVID) { 716 fs_devices->rw_devices++; 717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 718 } 719 btrfs_release_disk_super(disk_super); 720 721 return 0; 722 723 error_free_page: 724 btrfs_release_disk_super(disk_super); 725 bdev_fput(bdev_file); 726 727 return -EINVAL; 728 } 729 730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 731 { 732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 734 735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 736 } 737 738 static bool is_same_device(struct btrfs_device *device, const char *new_path) 739 { 740 struct path old = { .mnt = NULL, .dentry = NULL }; 741 struct path new = { .mnt = NULL, .dentry = NULL }; 742 char AUTO_KFREE(old_path); 743 bool is_same = false; 744 int ret; 745 746 if (!device->name) 747 goto out; 748 749 old_path = kzalloc(PATH_MAX, GFP_NOFS); 750 if (!old_path) 751 goto out; 752 753 rcu_read_lock(); 754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 755 rcu_read_unlock(); 756 if (ret < 0) 757 goto out; 758 759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 760 if (ret) 761 goto out; 762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 763 if (ret) 764 goto out; 765 if (path_equal(&old, &new)) 766 is_same = true; 767 out: 768 path_put(&old); 769 path_put(&new); 770 return is_same; 771 } 772 773 /* 774 * Add new device to list of registered devices 775 * 776 * Returns: 777 * device pointer which was just added or updated when successful 778 * error pointer when failed 779 */ 780 static noinline struct btrfs_device *device_list_add(const char *path, 781 struct btrfs_super_block *disk_super, 782 bool *new_device_added) 783 { 784 struct btrfs_device *device; 785 struct btrfs_fs_devices *fs_devices = NULL; 786 const char *name; 787 u64 found_transid = btrfs_super_generation(disk_super); 788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 789 dev_t path_devt; 790 int ret; 791 bool same_fsid_diff_dev = false; 792 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 793 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 794 795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 796 btrfs_err(NULL, 797 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 798 path); 799 return ERR_PTR(-EAGAIN); 800 } 801 802 ret = lookup_bdev(path, &path_devt); 803 if (ret) { 804 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 805 path, ret); 806 return ERR_PTR(ret); 807 } 808 809 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 810 811 if (!fs_devices) { 812 fs_devices = alloc_fs_devices(disk_super->fsid); 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 if (has_metadata_uuid) 817 memcpy(fs_devices->metadata_uuid, 818 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 819 820 if (same_fsid_diff_dev) { 821 generate_random_uuid(fs_devices->fsid); 822 fs_devices->temp_fsid = true; 823 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 824 path, MAJOR(path_devt), MINOR(path_devt), 825 fs_devices->fsid); 826 } 827 828 mutex_lock(&fs_devices->device_list_mutex); 829 list_add(&fs_devices->fs_list, &fs_uuids); 830 831 device = NULL; 832 } else { 833 struct btrfs_dev_lookup_args args = { 834 .devid = devid, 835 .uuid = disk_super->dev_item.uuid, 836 }; 837 838 mutex_lock(&fs_devices->device_list_mutex); 839 device = btrfs_find_device(fs_devices, &args); 840 841 if (found_transid > fs_devices->latest_generation) { 842 memcpy(fs_devices->fsid, disk_super->fsid, 843 BTRFS_FSID_SIZE); 844 memcpy(fs_devices->metadata_uuid, 845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 846 } 847 } 848 849 if (!device) { 850 unsigned int nofs_flag; 851 852 if (fs_devices->opened) { 853 btrfs_err(NULL, 854 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 855 path, MAJOR(path_devt), MINOR(path_devt), 856 fs_devices->fsid, current->comm, 857 task_pid_nr(current)); 858 mutex_unlock(&fs_devices->device_list_mutex); 859 return ERR_PTR(-EBUSY); 860 } 861 862 nofs_flag = memalloc_nofs_save(); 863 device = btrfs_alloc_device(NULL, &devid, 864 disk_super->dev_item.uuid, path); 865 memalloc_nofs_restore(nofs_flag); 866 if (IS_ERR(device)) { 867 mutex_unlock(&fs_devices->device_list_mutex); 868 /* we can safely leave the fs_devices entry around */ 869 return device; 870 } 871 872 device->devt = path_devt; 873 874 list_add_rcu(&device->dev_list, &fs_devices->devices); 875 fs_devices->num_devices++; 876 877 device->fs_devices = fs_devices; 878 *new_device_added = true; 879 880 if (disk_super->label[0]) 881 pr_info( 882 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 883 disk_super->label, devid, found_transid, path, 884 MAJOR(path_devt), MINOR(path_devt), 885 current->comm, task_pid_nr(current)); 886 else 887 pr_info( 888 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 889 disk_super->fsid, devid, found_transid, path, 890 MAJOR(path_devt), MINOR(path_devt), 891 current->comm, task_pid_nr(current)); 892 893 } else if (!device->name || !is_same_device(device, path)) { 894 const char *old_name; 895 896 /* 897 * When FS is already mounted. 898 * 1. If you are here and if the device->name is NULL that 899 * means this device was missing at time of FS mount. 900 * 2. If you are here and if the device->name is different 901 * from 'path' that means either 902 * a. The same device disappeared and reappeared with 903 * different name. or 904 * b. The missing-disk-which-was-replaced, has 905 * reappeared now. 906 * 907 * We must allow 1 and 2a above. But 2b would be a spurious 908 * and unintentional. 909 * 910 * Further in case of 1 and 2a above, the disk at 'path' 911 * would have missed some transaction when it was away and 912 * in case of 2a the stale bdev has to be updated as well. 913 * 2b must not be allowed at all time. 914 */ 915 916 /* 917 * For now, we do allow update to btrfs_fs_device through the 918 * btrfs dev scan cli after FS has been mounted. We're still 919 * tracking a problem where systems fail mount by subvolume id 920 * when we reject replacement on a mounted FS. 921 */ 922 if (!fs_devices->opened && found_transid < device->generation) { 923 /* 924 * That is if the FS is _not_ mounted and if you 925 * are here, that means there is more than one 926 * disk with same uuid and devid.We keep the one 927 * with larger generation number or the last-in if 928 * generation are equal. 929 */ 930 mutex_unlock(&fs_devices->device_list_mutex); 931 btrfs_err(NULL, 932 "device %s already registered with a higher generation, found %llu expect %llu", 933 path, found_transid, device->generation); 934 return ERR_PTR(-EEXIST); 935 } 936 937 /* 938 * We are going to replace the device path for a given devid, 939 * make sure it's the same device if the device is mounted 940 * 941 * NOTE: the device->fs_info may not be reliable here so pass 942 * in a NULL to message helpers instead. This avoids a possible 943 * use-after-free when the fs_info and fs_info->sb are already 944 * torn down. 945 */ 946 if (device->bdev) { 947 if (device->devt != path_devt) { 948 mutex_unlock(&fs_devices->device_list_mutex); 949 btrfs_warn(NULL, 950 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 951 path, devid, found_transid, 952 current->comm, 953 task_pid_nr(current)); 954 return ERR_PTR(-EEXIST); 955 } 956 btrfs_info(NULL, 957 "devid %llu device path %s changed to %s scanned by %s (%d)", 958 devid, btrfs_dev_name(device), 959 path, current->comm, 960 task_pid_nr(current)); 961 } 962 963 name = kstrdup(path, GFP_NOFS); 964 if (!name) { 965 mutex_unlock(&fs_devices->device_list_mutex); 966 return ERR_PTR(-ENOMEM); 967 } 968 rcu_read_lock(); 969 old_name = rcu_dereference(device->name); 970 rcu_read_unlock(); 971 rcu_assign_pointer(device->name, name); 972 kfree_rcu_mightsleep(old_name); 973 974 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 975 fs_devices->missing_devices--; 976 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 977 } 978 device->devt = path_devt; 979 } 980 981 /* 982 * Unmount does not free the btrfs_device struct but would zero 983 * generation along with most of the other members. So just update 984 * it back. We need it to pick the disk with largest generation 985 * (as above). 986 */ 987 if (!fs_devices->opened) { 988 device->generation = found_transid; 989 fs_devices->latest_generation = max_t(u64, found_transid, 990 fs_devices->latest_generation); 991 } 992 993 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 994 995 mutex_unlock(&fs_devices->device_list_mutex); 996 return device; 997 } 998 999 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1000 { 1001 struct btrfs_fs_devices *fs_devices; 1002 struct btrfs_device *device; 1003 struct btrfs_device *orig_dev; 1004 int ret = 0; 1005 1006 lockdep_assert_held(&uuid_mutex); 1007 1008 fs_devices = alloc_fs_devices(orig->fsid); 1009 if (IS_ERR(fs_devices)) 1010 return fs_devices; 1011 1012 fs_devices->total_devices = orig->total_devices; 1013 1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1015 const char *dev_path = NULL; 1016 1017 /* 1018 * This is ok to do without RCU read locked because we hold the 1019 * uuid mutex so nothing we touch in here is going to disappear. 1020 */ 1021 if (orig_dev->name) 1022 dev_path = rcu_dereference_raw(orig_dev->name); 1023 1024 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1025 orig_dev->uuid, dev_path); 1026 if (IS_ERR(device)) { 1027 ret = PTR_ERR(device); 1028 goto error; 1029 } 1030 1031 if (orig_dev->zone_info) { 1032 struct btrfs_zoned_device_info *zone_info; 1033 1034 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1035 if (!zone_info) { 1036 btrfs_free_device(device); 1037 ret = -ENOMEM; 1038 goto error; 1039 } 1040 device->zone_info = zone_info; 1041 } 1042 1043 list_add(&device->dev_list, &fs_devices->devices); 1044 device->fs_devices = fs_devices; 1045 fs_devices->num_devices++; 1046 } 1047 return fs_devices; 1048 error: 1049 free_fs_devices(fs_devices); 1050 return ERR_PTR(ret); 1051 } 1052 1053 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1054 struct btrfs_device **latest_dev) 1055 { 1056 struct btrfs_device *device, *next; 1057 1058 /* This is the initialized path, it is safe to release the devices. */ 1059 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1060 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1061 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1062 &device->dev_state) && 1063 !test_bit(BTRFS_DEV_STATE_MISSING, 1064 &device->dev_state) && 1065 (!*latest_dev || 1066 device->generation > (*latest_dev)->generation)) { 1067 *latest_dev = device; 1068 } 1069 continue; 1070 } 1071 1072 /* 1073 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1074 * in btrfs_init_dev_replace() so just continue. 1075 */ 1076 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1077 continue; 1078 1079 if (device->bdev_file) { 1080 bdev_fput(device->bdev_file); 1081 device->bdev = NULL; 1082 device->bdev_file = NULL; 1083 fs_devices->open_devices--; 1084 } 1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1086 list_del_init(&device->dev_alloc_list); 1087 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1088 fs_devices->rw_devices--; 1089 } 1090 list_del_init(&device->dev_list); 1091 fs_devices->num_devices--; 1092 btrfs_free_device(device); 1093 } 1094 1095 } 1096 1097 /* 1098 * After we have read the system tree and know devids belonging to this 1099 * filesystem, remove the device which does not belong there. 1100 */ 1101 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1102 { 1103 struct btrfs_device *latest_dev = NULL; 1104 struct btrfs_fs_devices *seed_dev; 1105 1106 mutex_lock(&uuid_mutex); 1107 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1108 1109 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1110 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1111 1112 fs_devices->latest_dev = latest_dev; 1113 1114 mutex_unlock(&uuid_mutex); 1115 } 1116 1117 static void btrfs_close_bdev(struct btrfs_device *device) 1118 { 1119 if (!device->bdev) 1120 return; 1121 1122 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1123 sync_blockdev(device->bdev); 1124 invalidate_bdev(device->bdev); 1125 } 1126 1127 bdev_fput(device->bdev_file); 1128 } 1129 1130 static void btrfs_close_one_device(struct btrfs_device *device) 1131 { 1132 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1133 1134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1135 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1136 list_del_init(&device->dev_alloc_list); 1137 fs_devices->rw_devices--; 1138 } 1139 1140 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1141 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1142 1143 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1144 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1145 fs_devices->missing_devices--; 1146 } 1147 1148 btrfs_close_bdev(device); 1149 if (device->bdev) { 1150 fs_devices->open_devices--; 1151 device->bdev = NULL; 1152 device->bdev_file = NULL; 1153 } 1154 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1155 btrfs_destroy_dev_zone_info(device); 1156 1157 device->fs_info = NULL; 1158 atomic_set(&device->dev_stats_ccnt, 0); 1159 btrfs_extent_io_tree_release(&device->alloc_state); 1160 1161 /* 1162 * Reset the flush error record. We might have a transient flush error 1163 * in this mount, and if so we aborted the current transaction and set 1164 * the fs to an error state, guaranteeing no super blocks can be further 1165 * committed. However that error might be transient and if we unmount the 1166 * filesystem and mount it again, we should allow the mount to succeed 1167 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1168 * filesystem again we still get flush errors, then we will again abort 1169 * any transaction and set the error state, guaranteeing no commits of 1170 * unsafe super blocks. 1171 */ 1172 device->last_flush_error = 0; 1173 1174 /* Verify the device is back in a pristine state */ 1175 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1176 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1177 WARN_ON(!list_empty(&device->dev_alloc_list)); 1178 WARN_ON(!list_empty(&device->post_commit_list)); 1179 } 1180 1181 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1182 { 1183 struct btrfs_device *device, *tmp; 1184 1185 lockdep_assert_held(&uuid_mutex); 1186 1187 if (--fs_devices->opened > 0) 1188 return; 1189 1190 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1191 btrfs_close_one_device(device); 1192 1193 WARN_ON(fs_devices->open_devices); 1194 WARN_ON(fs_devices->rw_devices); 1195 fs_devices->opened = 0; 1196 fs_devices->seeding = false; 1197 fs_devices->fs_info = NULL; 1198 } 1199 1200 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1201 { 1202 LIST_HEAD(list); 1203 struct btrfs_fs_devices *tmp; 1204 1205 mutex_lock(&uuid_mutex); 1206 close_fs_devices(fs_devices); 1207 if (!fs_devices->opened && !fs_devices->holding) { 1208 list_splice_init(&fs_devices->seed_list, &list); 1209 1210 /* 1211 * If the struct btrfs_fs_devices is not assembled with any 1212 * other device, it can be re-initialized during the next mount 1213 * without the needing device-scan step. Therefore, it can be 1214 * fully freed. 1215 */ 1216 if (fs_devices->num_devices == 1) { 1217 list_del(&fs_devices->fs_list); 1218 free_fs_devices(fs_devices); 1219 } 1220 } 1221 1222 1223 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1224 close_fs_devices(fs_devices); 1225 list_del(&fs_devices->seed_list); 1226 free_fs_devices(fs_devices); 1227 } 1228 mutex_unlock(&uuid_mutex); 1229 } 1230 1231 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1232 blk_mode_t flags, void *holder) 1233 { 1234 struct btrfs_device *device; 1235 struct btrfs_device *latest_dev = NULL; 1236 struct btrfs_device *tmp_device; 1237 s64 __maybe_unused value = 0; 1238 int ret = 0; 1239 1240 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1241 dev_list) { 1242 int ret2; 1243 1244 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1245 if (ret2 == 0 && 1246 (!latest_dev || device->generation > latest_dev->generation)) { 1247 latest_dev = device; 1248 } else if (ret2 == -ENODATA) { 1249 fs_devices->num_devices--; 1250 list_del(&device->dev_list); 1251 btrfs_free_device(device); 1252 } 1253 if (ret == 0 && ret2 != 0) 1254 ret = ret2; 1255 } 1256 1257 if (fs_devices->open_devices == 0) { 1258 if (ret) 1259 return ret; 1260 return -EINVAL; 1261 } 1262 1263 fs_devices->opened = 1; 1264 fs_devices->latest_dev = latest_dev; 1265 fs_devices->total_rw_bytes = 0; 1266 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1267 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1268 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1269 fs_devices->read_devid = latest_dev->devid; 1270 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1271 &value); 1272 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1273 fs_devices->collect_fs_stats = true; 1274 1275 if (value) { 1276 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1277 fs_devices->rr_min_contig_read = value; 1278 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1279 fs_devices->read_devid = value; 1280 } 1281 #else 1282 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1283 #endif 1284 1285 return 0; 1286 } 1287 1288 static int devid_cmp(void *priv, const struct list_head *a, 1289 const struct list_head *b) 1290 { 1291 const struct btrfs_device *dev1, *dev2; 1292 1293 dev1 = list_entry(a, struct btrfs_device, dev_list); 1294 dev2 = list_entry(b, struct btrfs_device, dev_list); 1295 1296 if (dev1->devid < dev2->devid) 1297 return -1; 1298 else if (dev1->devid > dev2->devid) 1299 return 1; 1300 return 0; 1301 } 1302 1303 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1304 blk_mode_t flags, void *holder) 1305 { 1306 int ret; 1307 1308 lockdep_assert_held(&uuid_mutex); 1309 /* 1310 * The device_list_mutex cannot be taken here in case opening the 1311 * underlying device takes further locks like open_mutex. 1312 * 1313 * We also don't need the lock here as this is called during mount and 1314 * exclusion is provided by uuid_mutex 1315 */ 1316 1317 if (fs_devices->opened) { 1318 fs_devices->opened++; 1319 ret = 0; 1320 } else { 1321 list_sort(NULL, &fs_devices->devices, devid_cmp); 1322 ret = open_fs_devices(fs_devices, flags, holder); 1323 } 1324 1325 return ret; 1326 } 1327 1328 void btrfs_release_disk_super(struct btrfs_super_block *super) 1329 { 1330 struct page *page = virt_to_page(super); 1331 1332 put_page(page); 1333 } 1334 1335 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1336 int copy_num, bool drop_cache) 1337 { 1338 struct btrfs_super_block *super; 1339 struct page *page; 1340 u64 bytenr, bytenr_orig; 1341 struct address_space *mapping = bdev->bd_mapping; 1342 int ret; 1343 1344 bytenr_orig = btrfs_sb_offset(copy_num); 1345 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1346 if (ret < 0) { 1347 if (ret == -ENOENT) 1348 ret = -EINVAL; 1349 return ERR_PTR(ret); 1350 } 1351 1352 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1353 return ERR_PTR(-EINVAL); 1354 1355 if (drop_cache) { 1356 /* This should only be called with the primary sb. */ 1357 ASSERT(copy_num == 0); 1358 1359 /* 1360 * Drop the page of the primary superblock, so later read will 1361 * always read from the device. 1362 */ 1363 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1364 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1365 } 1366 1367 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1368 if (IS_ERR(page)) 1369 return ERR_CAST(page); 1370 1371 super = page_address(page); 1372 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1373 btrfs_super_bytenr(super) != bytenr_orig) { 1374 btrfs_release_disk_super(super); 1375 return ERR_PTR(-EINVAL); 1376 } 1377 1378 /* 1379 * Make sure the last byte of label is properly NUL terminated. We use 1380 * '%s' to print the label, if not properly NUL terminated we can access 1381 * beyond the label. 1382 */ 1383 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1384 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1385 1386 return super; 1387 } 1388 1389 int btrfs_forget_devices(dev_t devt) 1390 { 1391 int ret; 1392 1393 mutex_lock(&uuid_mutex); 1394 ret = btrfs_free_stale_devices(devt, NULL); 1395 mutex_unlock(&uuid_mutex); 1396 1397 return ret; 1398 } 1399 1400 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1401 const char *path, dev_t devt, 1402 bool mount_arg_dev) 1403 { 1404 struct btrfs_fs_devices *fs_devices; 1405 1406 /* 1407 * Do not skip device registration for mounted devices with matching 1408 * maj:min but different paths. Booting without initrd relies on 1409 * /dev/root initially, later replaced with the actual root device. 1410 * A successful scan ensures grub2-probe selects the correct device. 1411 */ 1412 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1413 struct btrfs_device *device; 1414 1415 mutex_lock(&fs_devices->device_list_mutex); 1416 1417 if (!fs_devices->opened) { 1418 mutex_unlock(&fs_devices->device_list_mutex); 1419 continue; 1420 } 1421 1422 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1423 if (device->bdev && (device->bdev->bd_dev == devt) && 1424 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1425 mutex_unlock(&fs_devices->device_list_mutex); 1426 1427 /* Do not skip registration. */ 1428 return false; 1429 } 1430 } 1431 mutex_unlock(&fs_devices->device_list_mutex); 1432 } 1433 1434 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1435 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1436 return true; 1437 1438 return false; 1439 } 1440 1441 /* 1442 * Look for a btrfs signature on a device. This may be called out of the mount path 1443 * and we are not allowed to call set_blocksize during the scan. The superblock 1444 * is read via pagecache. 1445 * 1446 * With @mount_arg_dev it's a scan during mount time that will always register 1447 * the device or return an error. Multi-device and seeding devices are registered 1448 * in both cases. 1449 */ 1450 struct btrfs_device *btrfs_scan_one_device(const char *path, 1451 bool mount_arg_dev) 1452 { 1453 struct btrfs_super_block *disk_super; 1454 bool new_device_added = false; 1455 struct btrfs_device *device = NULL; 1456 struct file *bdev_file; 1457 dev_t devt; 1458 1459 lockdep_assert_held(&uuid_mutex); 1460 1461 /* 1462 * Avoid an exclusive open here, as the systemd-udev may initiate the 1463 * device scan which may race with the user's mount or mkfs command, 1464 * resulting in failure. 1465 * Since the device scan is solely for reading purposes, there is no 1466 * need for an exclusive open. Additionally, the devices are read again 1467 * during the mount process. It is ok to get some inconsistent 1468 * values temporarily, as the device paths of the fsid are the only 1469 * required information for assembling the volume. 1470 */ 1471 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1472 if (IS_ERR(bdev_file)) 1473 return ERR_CAST(bdev_file); 1474 1475 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1476 if (IS_ERR(disk_super)) { 1477 device = ERR_CAST(disk_super); 1478 goto error_bdev_put; 1479 } 1480 1481 devt = file_bdev(bdev_file)->bd_dev; 1482 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1483 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1484 path, MAJOR(devt), MINOR(devt)); 1485 1486 btrfs_free_stale_devices(devt, NULL); 1487 1488 device = NULL; 1489 goto free_disk_super; 1490 } 1491 1492 device = device_list_add(path, disk_super, &new_device_added); 1493 if (!IS_ERR(device) && new_device_added) 1494 btrfs_free_stale_devices(device->devt, device); 1495 1496 free_disk_super: 1497 btrfs_release_disk_super(disk_super); 1498 1499 error_bdev_put: 1500 bdev_fput(bdev_file); 1501 1502 return device; 1503 } 1504 1505 /* 1506 * Try to find a chunk that intersects [start, start + len] range and when one 1507 * such is found, record the end of it in *start 1508 */ 1509 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1510 u64 len) 1511 { 1512 u64 physical_start, physical_end; 1513 1514 lockdep_assert_held(&device->fs_info->chunk_mutex); 1515 1516 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1517 &physical_start, &physical_end, 1518 CHUNK_ALLOCATED, NULL)) { 1519 1520 if (in_range(physical_start, *start, len) || 1521 in_range(*start, physical_start, 1522 physical_end + 1 - physical_start)) { 1523 *start = physical_end + 1; 1524 return true; 1525 } 1526 } 1527 return false; 1528 } 1529 1530 static u64 dev_extent_search_start(struct btrfs_device *device) 1531 { 1532 switch (device->fs_devices->chunk_alloc_policy) { 1533 default: 1534 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1535 fallthrough; 1536 case BTRFS_CHUNK_ALLOC_REGULAR: 1537 return BTRFS_DEVICE_RANGE_RESERVED; 1538 case BTRFS_CHUNK_ALLOC_ZONED: 1539 /* 1540 * We don't care about the starting region like regular 1541 * allocator, because we anyway use/reserve the first two zones 1542 * for superblock logging. 1543 */ 1544 return 0; 1545 } 1546 } 1547 1548 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1549 u64 *hole_start, u64 *hole_size, 1550 u64 num_bytes) 1551 { 1552 u64 zone_size = device->zone_info->zone_size; 1553 u64 pos; 1554 int ret; 1555 bool changed = false; 1556 1557 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1558 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1559 1560 while (*hole_size > 0) { 1561 pos = btrfs_find_allocatable_zones(device, *hole_start, 1562 *hole_start + *hole_size, 1563 num_bytes); 1564 if (pos != *hole_start) { 1565 *hole_size = *hole_start + *hole_size - pos; 1566 *hole_start = pos; 1567 changed = true; 1568 if (*hole_size < num_bytes) 1569 break; 1570 } 1571 1572 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1573 1574 /* Range is ensured to be empty */ 1575 if (!ret) 1576 return changed; 1577 1578 /* Given hole range was invalid (outside of device) */ 1579 if (ret == -ERANGE) { 1580 *hole_start += *hole_size; 1581 *hole_size = 0; 1582 return true; 1583 } 1584 1585 *hole_start += zone_size; 1586 *hole_size -= zone_size; 1587 changed = true; 1588 } 1589 1590 return changed; 1591 } 1592 1593 /* 1594 * Check if specified hole is suitable for allocation. 1595 * 1596 * @device: the device which we have the hole 1597 * @hole_start: starting position of the hole 1598 * @hole_size: the size of the hole 1599 * @num_bytes: the size of the free space that we need 1600 * 1601 * This function may modify @hole_start and @hole_size to reflect the suitable 1602 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1603 */ 1604 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1605 u64 *hole_size, u64 num_bytes) 1606 { 1607 bool changed = false; 1608 u64 hole_end = *hole_start + *hole_size; 1609 1610 for (;;) { 1611 /* 1612 * Check before we set max_hole_start, otherwise we could end up 1613 * sending back this offset anyway. 1614 */ 1615 if (contains_pending_extent(device, hole_start, *hole_size)) { 1616 if (hole_end >= *hole_start) 1617 *hole_size = hole_end - *hole_start; 1618 else 1619 *hole_size = 0; 1620 changed = true; 1621 } 1622 1623 switch (device->fs_devices->chunk_alloc_policy) { 1624 default: 1625 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1626 fallthrough; 1627 case BTRFS_CHUNK_ALLOC_REGULAR: 1628 /* No extra check */ 1629 break; 1630 case BTRFS_CHUNK_ALLOC_ZONED: 1631 if (dev_extent_hole_check_zoned(device, hole_start, 1632 hole_size, num_bytes)) { 1633 changed = true; 1634 /* 1635 * The changed hole can contain pending extent. 1636 * Loop again to check that. 1637 */ 1638 continue; 1639 } 1640 break; 1641 } 1642 1643 break; 1644 } 1645 1646 return changed; 1647 } 1648 1649 /* 1650 * Find free space in the specified device. 1651 * 1652 * @device: the device which we search the free space in 1653 * @num_bytes: the size of the free space that we need 1654 * @search_start: the position from which to begin the search 1655 * @start: store the start of the free space. 1656 * @len: the size of the free space. that we find, or the size 1657 * of the max free space if we don't find suitable free space 1658 * 1659 * This does a pretty simple search, the expectation is that it is called very 1660 * infrequently and that a given device has a small number of extents. 1661 * 1662 * @start is used to store the start of the free space if we find. But if we 1663 * don't find suitable free space, it will be used to store the start position 1664 * of the max free space. 1665 * 1666 * @len is used to store the size of the free space that we find. 1667 * But if we don't find suitable free space, it is used to store the size of 1668 * the max free space. 1669 * 1670 * NOTE: This function will search *commit* root of device tree, and does extra 1671 * check to ensure dev extents are not double allocated. 1672 * This makes the function safe to allocate dev extents but may not report 1673 * correct usable device space, as device extent freed in current transaction 1674 * is not reported as available. 1675 */ 1676 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1677 u64 *start, u64 *len) 1678 { 1679 struct btrfs_fs_info *fs_info = device->fs_info; 1680 struct btrfs_root *root = fs_info->dev_root; 1681 struct btrfs_key key; 1682 struct btrfs_dev_extent *dev_extent; 1683 BTRFS_PATH_AUTO_FREE(path); 1684 u64 search_start; 1685 u64 hole_size; 1686 u64 max_hole_start; 1687 u64 max_hole_size = 0; 1688 u64 extent_end; 1689 u64 search_end = device->total_bytes; 1690 int ret; 1691 int slot; 1692 struct extent_buffer *l; 1693 1694 search_start = dev_extent_search_start(device); 1695 max_hole_start = search_start; 1696 1697 WARN_ON(device->zone_info && 1698 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1699 1700 path = btrfs_alloc_path(); 1701 if (!path) { 1702 ret = -ENOMEM; 1703 goto out; 1704 } 1705 again: 1706 if (search_start >= search_end || 1707 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1708 ret = -ENOSPC; 1709 goto out; 1710 } 1711 1712 path->reada = READA_FORWARD; 1713 path->search_commit_root = true; 1714 path->skip_locking = true; 1715 1716 key.objectid = device->devid; 1717 key.type = BTRFS_DEV_EXTENT_KEY; 1718 key.offset = search_start; 1719 1720 ret = btrfs_search_backwards(root, &key, path); 1721 if (ret < 0) 1722 goto out; 1723 1724 while (search_start < search_end) { 1725 l = path->nodes[0]; 1726 slot = path->slots[0]; 1727 if (slot >= btrfs_header_nritems(l)) { 1728 ret = btrfs_next_leaf(root, path); 1729 if (ret == 0) 1730 continue; 1731 if (ret < 0) 1732 goto out; 1733 1734 break; 1735 } 1736 btrfs_item_key_to_cpu(l, &key, slot); 1737 1738 if (key.objectid < device->devid) 1739 goto next; 1740 1741 if (key.objectid > device->devid) 1742 break; 1743 1744 if (key.type != BTRFS_DEV_EXTENT_KEY) 1745 goto next; 1746 1747 if (key.offset > search_end) 1748 break; 1749 1750 if (key.offset > search_start) { 1751 hole_size = key.offset - search_start; 1752 dev_extent_hole_check(device, &search_start, &hole_size, 1753 num_bytes); 1754 1755 if (hole_size > max_hole_size) { 1756 max_hole_start = search_start; 1757 max_hole_size = hole_size; 1758 } 1759 1760 /* 1761 * If this free space is greater than which we need, 1762 * it must be the max free space that we have found 1763 * until now, so max_hole_start must point to the start 1764 * of this free space and the length of this free space 1765 * is stored in max_hole_size. Thus, we return 1766 * max_hole_start and max_hole_size and go back to the 1767 * caller. 1768 */ 1769 if (hole_size >= num_bytes) { 1770 ret = 0; 1771 goto out; 1772 } 1773 } 1774 1775 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1776 extent_end = key.offset + btrfs_dev_extent_length(l, 1777 dev_extent); 1778 if (extent_end > search_start) 1779 search_start = extent_end; 1780 next: 1781 path->slots[0]++; 1782 cond_resched(); 1783 } 1784 1785 /* 1786 * At this point, search_start should be the end of 1787 * allocated dev extents, and when shrinking the device, 1788 * search_end may be smaller than search_start. 1789 */ 1790 if (search_end > search_start) { 1791 hole_size = search_end - search_start; 1792 if (dev_extent_hole_check(device, &search_start, &hole_size, 1793 num_bytes)) { 1794 btrfs_release_path(path); 1795 goto again; 1796 } 1797 1798 if (hole_size > max_hole_size) { 1799 max_hole_start = search_start; 1800 max_hole_size = hole_size; 1801 } 1802 } 1803 1804 /* See above. */ 1805 if (max_hole_size < num_bytes) 1806 ret = -ENOSPC; 1807 else 1808 ret = 0; 1809 1810 ASSERT(max_hole_start + max_hole_size <= search_end, 1811 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1812 max_hole_start, max_hole_size, search_end); 1813 out: 1814 *start = max_hole_start; 1815 if (len) 1816 *len = max_hole_size; 1817 return ret; 1818 } 1819 1820 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1821 struct btrfs_device *device, 1822 u64 start, u64 *dev_extent_len) 1823 { 1824 struct btrfs_fs_info *fs_info = device->fs_info; 1825 struct btrfs_root *root = fs_info->dev_root; 1826 int ret; 1827 BTRFS_PATH_AUTO_FREE(path); 1828 struct btrfs_key key; 1829 struct btrfs_key found_key; 1830 struct extent_buffer *leaf = NULL; 1831 struct btrfs_dev_extent *extent = NULL; 1832 1833 path = btrfs_alloc_path(); 1834 if (!path) 1835 return -ENOMEM; 1836 1837 key.objectid = device->devid; 1838 key.type = BTRFS_DEV_EXTENT_KEY; 1839 key.offset = start; 1840 again: 1841 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1842 if (ret > 0) { 1843 ret = btrfs_previous_item(root, path, key.objectid, 1844 BTRFS_DEV_EXTENT_KEY); 1845 if (ret) 1846 return ret; 1847 leaf = path->nodes[0]; 1848 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1849 extent = btrfs_item_ptr(leaf, path->slots[0], 1850 struct btrfs_dev_extent); 1851 BUG_ON(found_key.offset > start || found_key.offset + 1852 btrfs_dev_extent_length(leaf, extent) < start); 1853 key = found_key; 1854 btrfs_release_path(path); 1855 goto again; 1856 } else if (ret == 0) { 1857 leaf = path->nodes[0]; 1858 extent = btrfs_item_ptr(leaf, path->slots[0], 1859 struct btrfs_dev_extent); 1860 } else { 1861 return ret; 1862 } 1863 1864 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1865 1866 ret = btrfs_del_item(trans, root, path); 1867 if (ret == 0) 1868 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1869 return ret; 1870 } 1871 1872 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1873 { 1874 struct rb_node *n; 1875 u64 ret = 0; 1876 1877 read_lock(&fs_info->mapping_tree_lock); 1878 n = rb_last(&fs_info->mapping_tree.rb_root); 1879 if (n) { 1880 struct btrfs_chunk_map *map; 1881 1882 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1883 ret = map->start + map->chunk_len; 1884 } 1885 read_unlock(&fs_info->mapping_tree_lock); 1886 1887 return ret; 1888 } 1889 1890 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1891 u64 *devid_ret) 1892 { 1893 int ret; 1894 struct btrfs_key key; 1895 struct btrfs_key found_key; 1896 BTRFS_PATH_AUTO_FREE(path); 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1903 key.type = BTRFS_DEV_ITEM_KEY; 1904 key.offset = (u64)-1; 1905 1906 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1907 if (ret < 0) 1908 return ret; 1909 1910 if (unlikely(ret == 0)) { 1911 /* Corruption */ 1912 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1913 return -EUCLEAN; 1914 } 1915 1916 ret = btrfs_previous_item(fs_info->chunk_root, path, 1917 BTRFS_DEV_ITEMS_OBJECTID, 1918 BTRFS_DEV_ITEM_KEY); 1919 if (ret) { 1920 *devid_ret = 1; 1921 } else { 1922 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1923 path->slots[0]); 1924 *devid_ret = found_key.offset + 1; 1925 } 1926 return 0; 1927 } 1928 1929 /* 1930 * the device information is stored in the chunk root 1931 * the btrfs_device struct should be fully filled in 1932 */ 1933 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1934 struct btrfs_device *device) 1935 { 1936 int ret; 1937 BTRFS_PATH_AUTO_FREE(path); 1938 struct btrfs_dev_item *dev_item; 1939 struct extent_buffer *leaf; 1940 struct btrfs_key key; 1941 unsigned long ptr; 1942 1943 path = btrfs_alloc_path(); 1944 if (!path) 1945 return -ENOMEM; 1946 1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1948 key.type = BTRFS_DEV_ITEM_KEY; 1949 key.offset = device->devid; 1950 1951 btrfs_reserve_chunk_metadata(trans, true); 1952 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1953 &key, sizeof(*dev_item)); 1954 btrfs_trans_release_chunk_metadata(trans); 1955 if (ret) 1956 return ret; 1957 1958 leaf = path->nodes[0]; 1959 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1960 1961 btrfs_set_device_id(leaf, dev_item, device->devid); 1962 btrfs_set_device_generation(leaf, dev_item, 0); 1963 btrfs_set_device_type(leaf, dev_item, device->type); 1964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1967 btrfs_set_device_total_bytes(leaf, dev_item, 1968 btrfs_device_get_disk_total_bytes(device)); 1969 btrfs_set_device_bytes_used(leaf, dev_item, 1970 btrfs_device_get_bytes_used(device)); 1971 btrfs_set_device_group(leaf, dev_item, 0); 1972 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1973 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1974 btrfs_set_device_start_offset(leaf, dev_item, 0); 1975 1976 ptr = btrfs_device_uuid(dev_item); 1977 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1978 ptr = btrfs_device_fsid(dev_item); 1979 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1980 ptr, BTRFS_FSID_SIZE); 1981 1982 return 0; 1983 } 1984 1985 /* 1986 * Function to update ctime/mtime for a given device path. 1987 * Mainly used for ctime/mtime based probe like libblkid. 1988 * 1989 * We don't care about errors here, this is just to be kind to userspace. 1990 */ 1991 static void update_dev_time(const char *device_path) 1992 { 1993 struct path path; 1994 1995 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) { 1996 vfs_utimes(&path, NULL); 1997 path_put(&path); 1998 } 1999 } 2000 2001 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2002 struct btrfs_device *device) 2003 { 2004 struct btrfs_root *root = device->fs_info->chunk_root; 2005 int ret; 2006 BTRFS_PATH_AUTO_FREE(path); 2007 struct btrfs_key key; 2008 2009 path = btrfs_alloc_path(); 2010 if (!path) 2011 return -ENOMEM; 2012 2013 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2014 key.type = BTRFS_DEV_ITEM_KEY; 2015 key.offset = device->devid; 2016 2017 btrfs_reserve_chunk_metadata(trans, false); 2018 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2019 btrfs_trans_release_chunk_metadata(trans); 2020 if (ret > 0) 2021 return -ENOENT; 2022 if (ret < 0) 2023 return ret; 2024 2025 return btrfs_del_item(trans, root, path); 2026 } 2027 2028 /* 2029 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2030 * filesystem. It's up to the caller to adjust that number regarding eg. device 2031 * replace. 2032 */ 2033 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2034 u64 num_devices) 2035 { 2036 u64 all_avail; 2037 unsigned seq; 2038 int i; 2039 2040 do { 2041 seq = read_seqbegin(&fs_info->profiles_lock); 2042 2043 all_avail = fs_info->avail_data_alloc_bits | 2044 fs_info->avail_system_alloc_bits | 2045 fs_info->avail_metadata_alloc_bits; 2046 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2047 2048 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2049 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2050 continue; 2051 2052 if (num_devices < btrfs_raid_array[i].devs_min) 2053 return btrfs_raid_array[i].mindev_error; 2054 } 2055 2056 return 0; 2057 } 2058 2059 static struct btrfs_device * btrfs_find_next_active_device( 2060 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2061 { 2062 struct btrfs_device *next_device; 2063 2064 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2065 if (next_device != device && 2066 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2067 && next_device->bdev) 2068 return next_device; 2069 } 2070 2071 return NULL; 2072 } 2073 2074 /* 2075 * Helper function to check if the given device is part of s_bdev / latest_dev 2076 * and replace it with the provided or the next active device, in the context 2077 * where this function called, there should be always be another device (or 2078 * this_dev) which is active. 2079 */ 2080 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2081 struct btrfs_device *next_device) 2082 { 2083 struct btrfs_fs_info *fs_info = device->fs_info; 2084 2085 if (!next_device) 2086 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2087 device); 2088 ASSERT(next_device); 2089 2090 if (fs_info->sb->s_bdev && 2091 (fs_info->sb->s_bdev == device->bdev)) 2092 fs_info->sb->s_bdev = next_device->bdev; 2093 2094 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2095 fs_info->fs_devices->latest_dev = next_device; 2096 } 2097 2098 /* 2099 * Return btrfs_fs_devices::num_devices excluding the device that's being 2100 * currently replaced. 2101 */ 2102 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2103 { 2104 u64 num_devices = fs_info->fs_devices->num_devices; 2105 2106 down_read(&fs_info->dev_replace.rwsem); 2107 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2108 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2109 num_devices--; 2110 } 2111 up_read(&fs_info->dev_replace.rwsem); 2112 2113 return num_devices; 2114 } 2115 2116 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2117 struct block_device *bdev, int copy_num) 2118 { 2119 struct btrfs_super_block *disk_super; 2120 const size_t len = sizeof(disk_super->magic); 2121 const u64 bytenr = btrfs_sb_offset(copy_num); 2122 int ret; 2123 2124 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2125 if (IS_ERR(disk_super)) 2126 return; 2127 2128 memset(&disk_super->magic, 0, len); 2129 folio_mark_dirty(virt_to_folio(disk_super)); 2130 btrfs_release_disk_super(disk_super); 2131 2132 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2133 if (ret) 2134 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2135 copy_num, ret); 2136 } 2137 2138 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2139 { 2140 int copy_num; 2141 struct block_device *bdev = device->bdev; 2142 2143 if (!bdev) 2144 return; 2145 2146 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2147 if (bdev_is_zoned(bdev)) 2148 btrfs_reset_sb_log_zones(bdev, copy_num); 2149 else 2150 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2151 } 2152 2153 /* Notify udev that device has changed */ 2154 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2155 2156 /* Update ctime/mtime for device path for libblkid */ 2157 update_dev_time(rcu_dereference_raw(device->name)); 2158 } 2159 2160 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2161 struct btrfs_dev_lookup_args *args, 2162 struct file **bdev_file) 2163 { 2164 struct btrfs_trans_handle *trans; 2165 struct btrfs_device *device; 2166 struct btrfs_fs_devices *cur_devices; 2167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2168 u64 num_devices; 2169 int ret = 0; 2170 2171 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2172 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2173 return -EINVAL; 2174 } 2175 2176 /* 2177 * The device list in fs_devices is accessed without locks (neither 2178 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2179 * filesystem and another device rm cannot run. 2180 */ 2181 num_devices = btrfs_num_devices(fs_info); 2182 2183 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2184 if (ret) 2185 return ret; 2186 2187 device = btrfs_find_device(fs_info->fs_devices, args); 2188 if (!device) { 2189 if (args->missing) 2190 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2191 else 2192 ret = -ENOENT; 2193 return ret; 2194 } 2195 2196 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2197 btrfs_warn(fs_info, 2198 "cannot remove device %s (devid %llu) due to active swapfile", 2199 btrfs_dev_name(device), device->devid); 2200 return -ETXTBSY; 2201 } 2202 2203 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2204 return BTRFS_ERROR_DEV_TGT_REPLACE; 2205 2206 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2207 fs_info->fs_devices->rw_devices == 1) 2208 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2209 2210 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2211 mutex_lock(&fs_info->chunk_mutex); 2212 list_del_init(&device->dev_alloc_list); 2213 device->fs_devices->rw_devices--; 2214 mutex_unlock(&fs_info->chunk_mutex); 2215 } 2216 2217 ret = btrfs_shrink_device(device, 0); 2218 if (ret) 2219 goto error_undo; 2220 2221 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2222 if (IS_ERR(trans)) { 2223 ret = PTR_ERR(trans); 2224 goto error_undo; 2225 } 2226 2227 ret = btrfs_rm_dev_item(trans, device); 2228 if (unlikely(ret)) { 2229 /* Any error in dev item removal is critical */ 2230 btrfs_crit(fs_info, 2231 "failed to remove device item for devid %llu: %d", 2232 device->devid, ret); 2233 btrfs_abort_transaction(trans, ret); 2234 btrfs_end_transaction(trans); 2235 return ret; 2236 } 2237 2238 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2239 btrfs_scrub_cancel_dev(device); 2240 2241 /* 2242 * the device list mutex makes sure that we don't change 2243 * the device list while someone else is writing out all 2244 * the device supers. Whoever is writing all supers, should 2245 * lock the device list mutex before getting the number of 2246 * devices in the super block (super_copy). Conversely, 2247 * whoever updates the number of devices in the super block 2248 * (super_copy) should hold the device list mutex. 2249 */ 2250 2251 /* 2252 * In normal cases the cur_devices == fs_devices. But in case 2253 * of deleting a seed device, the cur_devices should point to 2254 * its own fs_devices listed under the fs_devices->seed_list. 2255 */ 2256 cur_devices = device->fs_devices; 2257 mutex_lock(&fs_devices->device_list_mutex); 2258 list_del_rcu(&device->dev_list); 2259 2260 cur_devices->num_devices--; 2261 cur_devices->total_devices--; 2262 /* Update total_devices of the parent fs_devices if it's seed */ 2263 if (cur_devices != fs_devices) 2264 fs_devices->total_devices--; 2265 2266 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2267 cur_devices->missing_devices--; 2268 2269 btrfs_assign_next_active_device(device, NULL); 2270 2271 if (device->bdev_file) { 2272 cur_devices->open_devices--; 2273 /* remove sysfs entry */ 2274 btrfs_sysfs_remove_device(device); 2275 } 2276 2277 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2278 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2279 mutex_unlock(&fs_devices->device_list_mutex); 2280 2281 /* 2282 * At this point, the device is zero sized and detached from the 2283 * devices list. All that's left is to zero out the old supers and 2284 * free the device. 2285 * 2286 * We cannot call btrfs_close_bdev() here because we're holding the sb 2287 * write lock, and bdev_fput() on the block device will pull in the 2288 * ->open_mutex on the block device and it's dependencies. Instead 2289 * just flush the device and let the caller do the final bdev_release. 2290 */ 2291 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2292 btrfs_scratch_superblocks(fs_info, device); 2293 if (device->bdev) { 2294 sync_blockdev(device->bdev); 2295 invalidate_bdev(device->bdev); 2296 } 2297 } 2298 2299 *bdev_file = device->bdev_file; 2300 synchronize_rcu(); 2301 btrfs_free_device(device); 2302 2303 /* 2304 * This can happen if cur_devices is the private seed devices list. We 2305 * cannot call close_fs_devices() here because it expects the uuid_mutex 2306 * to be held, but in fact we don't need that for the private 2307 * seed_devices, we can simply decrement cur_devices->opened and then 2308 * remove it from our list and free the fs_devices. 2309 */ 2310 if (cur_devices->num_devices == 0) { 2311 list_del_init(&cur_devices->seed_list); 2312 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2313 cur_devices->opened--; 2314 free_fs_devices(cur_devices); 2315 } 2316 2317 ret = btrfs_commit_transaction(trans); 2318 2319 return ret; 2320 2321 error_undo: 2322 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2323 mutex_lock(&fs_info->chunk_mutex); 2324 list_add(&device->dev_alloc_list, 2325 &fs_devices->alloc_list); 2326 device->fs_devices->rw_devices++; 2327 mutex_unlock(&fs_info->chunk_mutex); 2328 } 2329 return ret; 2330 } 2331 2332 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2333 { 2334 struct btrfs_fs_devices *fs_devices; 2335 2336 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2337 2338 /* 2339 * in case of fs with no seed, srcdev->fs_devices will point 2340 * to fs_devices of fs_info. However when the dev being replaced is 2341 * a seed dev it will point to the seed's local fs_devices. In short 2342 * srcdev will have its correct fs_devices in both the cases. 2343 */ 2344 fs_devices = srcdev->fs_devices; 2345 2346 list_del_rcu(&srcdev->dev_list); 2347 list_del(&srcdev->dev_alloc_list); 2348 fs_devices->num_devices--; 2349 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2350 fs_devices->missing_devices--; 2351 2352 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2353 fs_devices->rw_devices--; 2354 2355 if (srcdev->bdev) 2356 fs_devices->open_devices--; 2357 } 2358 2359 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2360 { 2361 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2362 2363 mutex_lock(&uuid_mutex); 2364 2365 btrfs_close_bdev(srcdev); 2366 synchronize_rcu(); 2367 btrfs_free_device(srcdev); 2368 2369 /* if this is no devs we rather delete the fs_devices */ 2370 if (!fs_devices->num_devices) { 2371 /* 2372 * On a mounted FS, num_devices can't be zero unless it's a 2373 * seed. In case of a seed device being replaced, the replace 2374 * target added to the sprout FS, so there will be no more 2375 * device left under the seed FS. 2376 */ 2377 ASSERT(fs_devices->seeding); 2378 2379 list_del_init(&fs_devices->seed_list); 2380 close_fs_devices(fs_devices); 2381 free_fs_devices(fs_devices); 2382 } 2383 mutex_unlock(&uuid_mutex); 2384 } 2385 2386 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2387 { 2388 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2389 2390 mutex_lock(&fs_devices->device_list_mutex); 2391 2392 btrfs_sysfs_remove_device(tgtdev); 2393 2394 if (tgtdev->bdev) 2395 fs_devices->open_devices--; 2396 2397 fs_devices->num_devices--; 2398 2399 btrfs_assign_next_active_device(tgtdev, NULL); 2400 2401 list_del_rcu(&tgtdev->dev_list); 2402 2403 mutex_unlock(&fs_devices->device_list_mutex); 2404 2405 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2406 2407 btrfs_close_bdev(tgtdev); 2408 synchronize_rcu(); 2409 btrfs_free_device(tgtdev); 2410 } 2411 2412 /* 2413 * Populate args from device at path. 2414 * 2415 * @fs_info: the filesystem 2416 * @args: the args to populate 2417 * @path: the path to the device 2418 * 2419 * This will read the super block of the device at @path and populate @args with 2420 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2421 * lookup a device to operate on, but need to do it before we take any locks. 2422 * This properly handles the special case of "missing" that a user may pass in, 2423 * and does some basic sanity checks. The caller must make sure that @path is 2424 * properly NUL terminated before calling in, and must call 2425 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2426 * uuid buffers. 2427 * 2428 * Return: 0 for success, -errno for failure 2429 */ 2430 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2431 struct btrfs_dev_lookup_args *args, 2432 const char *path) 2433 { 2434 struct btrfs_super_block *disk_super; 2435 struct file *bdev_file; 2436 int ret; 2437 2438 if (!path || !path[0]) 2439 return -EINVAL; 2440 if (!strcmp(path, "missing")) { 2441 args->missing = true; 2442 return 0; 2443 } 2444 2445 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2446 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2447 if (!args->uuid || !args->fsid) { 2448 btrfs_put_dev_args_from_path(args); 2449 return -ENOMEM; 2450 } 2451 2452 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2453 &bdev_file, &disk_super); 2454 if (ret) { 2455 btrfs_put_dev_args_from_path(args); 2456 return ret; 2457 } 2458 2459 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2460 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2461 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2462 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2463 else 2464 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2465 btrfs_release_disk_super(disk_super); 2466 bdev_fput(bdev_file); 2467 return 0; 2468 } 2469 2470 /* 2471 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2472 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2473 * that don't need to be freed. 2474 */ 2475 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2476 { 2477 kfree(args->uuid); 2478 kfree(args->fsid); 2479 args->uuid = NULL; 2480 args->fsid = NULL; 2481 } 2482 2483 struct btrfs_device *btrfs_find_device_by_devspec( 2484 struct btrfs_fs_info *fs_info, u64 devid, 2485 const char *device_path) 2486 { 2487 BTRFS_DEV_LOOKUP_ARGS(args); 2488 struct btrfs_device *device; 2489 int ret; 2490 2491 if (devid) { 2492 args.devid = devid; 2493 device = btrfs_find_device(fs_info->fs_devices, &args); 2494 if (!device) 2495 return ERR_PTR(-ENOENT); 2496 return device; 2497 } 2498 2499 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2500 if (ret) 2501 return ERR_PTR(ret); 2502 device = btrfs_find_device(fs_info->fs_devices, &args); 2503 btrfs_put_dev_args_from_path(&args); 2504 if (!device) 2505 return ERR_PTR(-ENOENT); 2506 return device; 2507 } 2508 2509 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2510 { 2511 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2512 struct btrfs_fs_devices *old_devices; 2513 struct btrfs_fs_devices *seed_devices; 2514 2515 lockdep_assert_held(&uuid_mutex); 2516 if (!fs_devices->seeding) 2517 return ERR_PTR(-EINVAL); 2518 2519 /* 2520 * Private copy of the seed devices, anchored at 2521 * fs_info->fs_devices->seed_list 2522 */ 2523 seed_devices = alloc_fs_devices(NULL); 2524 if (IS_ERR(seed_devices)) 2525 return seed_devices; 2526 2527 /* 2528 * It's necessary to retain a copy of the original seed fs_devices in 2529 * fs_uuids so that filesystems which have been seeded can successfully 2530 * reference the seed device from open_seed_devices. This also supports 2531 * multiple fs seed. 2532 */ 2533 old_devices = clone_fs_devices(fs_devices); 2534 if (IS_ERR(old_devices)) { 2535 kfree(seed_devices); 2536 return old_devices; 2537 } 2538 2539 list_add(&old_devices->fs_list, &fs_uuids); 2540 2541 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2542 seed_devices->opened = 1; 2543 INIT_LIST_HEAD(&seed_devices->devices); 2544 INIT_LIST_HEAD(&seed_devices->alloc_list); 2545 mutex_init(&seed_devices->device_list_mutex); 2546 2547 return seed_devices; 2548 } 2549 2550 /* 2551 * Splice seed devices into the sprout fs_devices. 2552 * Generate a new fsid for the sprouted read-write filesystem. 2553 */ 2554 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2555 struct btrfs_fs_devices *seed_devices) 2556 { 2557 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2558 struct btrfs_super_block *disk_super = fs_info->super_copy; 2559 struct btrfs_device *device; 2560 u64 super_flags; 2561 2562 /* 2563 * We are updating the fsid, the thread leading to device_list_add() 2564 * could race, so uuid_mutex is needed. 2565 */ 2566 lockdep_assert_held(&uuid_mutex); 2567 2568 /* 2569 * The threads listed below may traverse dev_list but can do that without 2570 * device_list_mutex: 2571 * - All device ops and balance - as we are in btrfs_exclop_start. 2572 * - Various dev_list readers - are using RCU. 2573 * - btrfs_ioctl_fitrim() - is using RCU. 2574 * 2575 * For-read threads as below are using device_list_mutex: 2576 * - Readonly scrub btrfs_scrub_dev() 2577 * - Readonly scrub btrfs_scrub_progress() 2578 * - btrfs_get_dev_stats() 2579 */ 2580 lockdep_assert_held(&fs_devices->device_list_mutex); 2581 2582 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2583 synchronize_rcu); 2584 list_for_each_entry(device, &seed_devices->devices, dev_list) 2585 device->fs_devices = seed_devices; 2586 2587 fs_devices->seeding = false; 2588 fs_devices->num_devices = 0; 2589 fs_devices->open_devices = 0; 2590 fs_devices->missing_devices = 0; 2591 fs_devices->rotating = false; 2592 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2593 2594 generate_random_uuid(fs_devices->fsid); 2595 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2596 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2597 2598 super_flags = btrfs_super_flags(disk_super) & 2599 ~BTRFS_SUPER_FLAG_SEEDING; 2600 btrfs_set_super_flags(disk_super, super_flags); 2601 } 2602 2603 /* 2604 * Store the expected generation for seed devices in device items. 2605 */ 2606 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2607 { 2608 BTRFS_DEV_LOOKUP_ARGS(args); 2609 struct btrfs_fs_info *fs_info = trans->fs_info; 2610 struct btrfs_root *root = fs_info->chunk_root; 2611 BTRFS_PATH_AUTO_FREE(path); 2612 struct extent_buffer *leaf; 2613 struct btrfs_dev_item *dev_item; 2614 struct btrfs_device *device; 2615 struct btrfs_key key; 2616 u8 fs_uuid[BTRFS_FSID_SIZE]; 2617 u8 dev_uuid[BTRFS_UUID_SIZE]; 2618 int ret; 2619 2620 path = btrfs_alloc_path(); 2621 if (!path) 2622 return -ENOMEM; 2623 2624 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2625 key.type = BTRFS_DEV_ITEM_KEY; 2626 key.offset = 0; 2627 2628 while (1) { 2629 btrfs_reserve_chunk_metadata(trans, false); 2630 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2631 btrfs_trans_release_chunk_metadata(trans); 2632 if (ret < 0) 2633 return ret; 2634 2635 leaf = path->nodes[0]; 2636 next_slot: 2637 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2638 ret = btrfs_next_leaf(root, path); 2639 if (ret > 0) 2640 break; 2641 if (ret < 0) 2642 return ret; 2643 leaf = path->nodes[0]; 2644 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2645 btrfs_release_path(path); 2646 continue; 2647 } 2648 2649 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2650 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2651 key.type != BTRFS_DEV_ITEM_KEY) 2652 break; 2653 2654 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2655 struct btrfs_dev_item); 2656 args.devid = btrfs_device_id(leaf, dev_item); 2657 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2658 BTRFS_UUID_SIZE); 2659 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2660 BTRFS_FSID_SIZE); 2661 args.uuid = dev_uuid; 2662 args.fsid = fs_uuid; 2663 device = btrfs_find_device(fs_info->fs_devices, &args); 2664 BUG_ON(!device); /* Logic error */ 2665 2666 if (device->fs_devices->seeding) 2667 btrfs_set_device_generation(leaf, dev_item, 2668 device->generation); 2669 2670 path->slots[0]++; 2671 goto next_slot; 2672 } 2673 return 0; 2674 } 2675 2676 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2677 { 2678 struct btrfs_root *root = fs_info->dev_root; 2679 struct btrfs_trans_handle *trans; 2680 struct btrfs_device *device; 2681 struct file *bdev_file; 2682 struct super_block *sb = fs_info->sb; 2683 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2684 struct btrfs_fs_devices *seed_devices = NULL; 2685 u64 orig_super_total_bytes; 2686 u64 orig_super_num_devices; 2687 int ret = 0; 2688 bool seeding_dev = false; 2689 bool locked = false; 2690 2691 if (sb_rdonly(sb) && !fs_devices->seeding) 2692 return -EROFS; 2693 2694 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2695 fs_info->sb, &fs_holder_ops); 2696 if (IS_ERR(bdev_file)) 2697 return PTR_ERR(bdev_file); 2698 2699 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2700 ret = -EINVAL; 2701 goto error; 2702 } 2703 2704 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { 2705 ret = -EINVAL; 2706 goto error; 2707 } 2708 2709 if (fs_devices->seeding) { 2710 seeding_dev = true; 2711 down_write(&sb->s_umount); 2712 mutex_lock(&uuid_mutex); 2713 locked = true; 2714 } 2715 2716 sync_blockdev(file_bdev(bdev_file)); 2717 2718 rcu_read_lock(); 2719 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2720 if (device->bdev == file_bdev(bdev_file)) { 2721 ret = -EEXIST; 2722 rcu_read_unlock(); 2723 goto error; 2724 } 2725 } 2726 rcu_read_unlock(); 2727 2728 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2729 if (IS_ERR(device)) { 2730 /* we can safely leave the fs_devices entry around */ 2731 ret = PTR_ERR(device); 2732 goto error; 2733 } 2734 2735 device->fs_info = fs_info; 2736 device->bdev_file = bdev_file; 2737 device->bdev = file_bdev(bdev_file); 2738 ret = lookup_bdev(device_path, &device->devt); 2739 if (ret) 2740 goto error_free_device; 2741 2742 ret = btrfs_get_dev_zone_info(device, false); 2743 if (ret) 2744 goto error_free_device; 2745 2746 trans = btrfs_start_transaction(root, 0); 2747 if (IS_ERR(trans)) { 2748 ret = PTR_ERR(trans); 2749 goto error_free_zone; 2750 } 2751 2752 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2753 device->generation = trans->transid; 2754 device->io_width = fs_info->sectorsize; 2755 device->io_align = fs_info->sectorsize; 2756 device->sector_size = fs_info->sectorsize; 2757 device->total_bytes = 2758 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2759 device->disk_total_bytes = device->total_bytes; 2760 device->commit_total_bytes = device->total_bytes; 2761 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2762 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2763 device->dev_stats_valid = 1; 2764 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2765 2766 if (seeding_dev) { 2767 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2768 seed_devices = btrfs_init_sprout(fs_info); 2769 if (IS_ERR(seed_devices)) { 2770 ret = PTR_ERR(seed_devices); 2771 btrfs_abort_transaction(trans, ret); 2772 goto error_trans; 2773 } 2774 } 2775 2776 mutex_lock(&fs_devices->device_list_mutex); 2777 if (seeding_dev) { 2778 btrfs_setup_sprout(fs_info, seed_devices); 2779 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2780 device); 2781 } 2782 2783 device->fs_devices = fs_devices; 2784 2785 mutex_lock(&fs_info->chunk_mutex); 2786 list_add_rcu(&device->dev_list, &fs_devices->devices); 2787 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2788 fs_devices->num_devices++; 2789 fs_devices->open_devices++; 2790 fs_devices->rw_devices++; 2791 fs_devices->total_devices++; 2792 fs_devices->total_rw_bytes += device->total_bytes; 2793 2794 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2795 2796 if (!bdev_nonrot(device->bdev)) 2797 fs_devices->rotating = true; 2798 2799 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2800 btrfs_set_super_total_bytes(fs_info->super_copy, 2801 round_down(orig_super_total_bytes + device->total_bytes, 2802 fs_info->sectorsize)); 2803 2804 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2805 btrfs_set_super_num_devices(fs_info->super_copy, 2806 orig_super_num_devices + 1); 2807 2808 /* 2809 * we've got more storage, clear any full flags on the space 2810 * infos 2811 */ 2812 btrfs_clear_space_info_full(fs_info); 2813 2814 mutex_unlock(&fs_info->chunk_mutex); 2815 2816 /* Add sysfs device entry */ 2817 btrfs_sysfs_add_device(device); 2818 2819 mutex_unlock(&fs_devices->device_list_mutex); 2820 2821 if (seeding_dev) { 2822 mutex_lock(&fs_info->chunk_mutex); 2823 ret = init_first_rw_device(trans); 2824 mutex_unlock(&fs_info->chunk_mutex); 2825 if (unlikely(ret)) { 2826 btrfs_abort_transaction(trans, ret); 2827 goto error_sysfs; 2828 } 2829 } 2830 2831 ret = btrfs_add_dev_item(trans, device); 2832 if (unlikely(ret)) { 2833 btrfs_abort_transaction(trans, ret); 2834 goto error_sysfs; 2835 } 2836 2837 if (seeding_dev) { 2838 ret = btrfs_finish_sprout(trans); 2839 if (unlikely(ret)) { 2840 btrfs_abort_transaction(trans, ret); 2841 goto error_sysfs; 2842 } 2843 2844 /* 2845 * fs_devices now represents the newly sprouted filesystem and 2846 * its fsid has been changed by btrfs_sprout_splice(). 2847 */ 2848 btrfs_sysfs_update_sprout_fsid(fs_devices); 2849 } 2850 2851 ret = btrfs_commit_transaction(trans); 2852 2853 if (seeding_dev) { 2854 mutex_unlock(&uuid_mutex); 2855 up_write(&sb->s_umount); 2856 locked = false; 2857 2858 if (ret) /* transaction commit */ 2859 return ret; 2860 2861 ret = btrfs_relocate_sys_chunks(fs_info); 2862 if (ret < 0) 2863 btrfs_handle_fs_error(fs_info, ret, 2864 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2865 trans = btrfs_attach_transaction(root); 2866 if (IS_ERR(trans)) { 2867 if (PTR_ERR(trans) == -ENOENT) 2868 return 0; 2869 ret = PTR_ERR(trans); 2870 trans = NULL; 2871 goto error_sysfs; 2872 } 2873 ret = btrfs_commit_transaction(trans); 2874 } 2875 2876 /* 2877 * Now that we have written a new super block to this device, check all 2878 * other fs_devices list if device_path alienates any other scanned 2879 * device. 2880 * We can ignore the return value as it typically returns -EINVAL and 2881 * only succeeds if the device was an alien. 2882 */ 2883 btrfs_forget_devices(device->devt); 2884 2885 /* Update ctime/mtime for blkid or udev */ 2886 update_dev_time(device_path); 2887 2888 return ret; 2889 2890 error_sysfs: 2891 btrfs_sysfs_remove_device(device); 2892 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2893 mutex_lock(&fs_info->chunk_mutex); 2894 list_del_rcu(&device->dev_list); 2895 list_del(&device->dev_alloc_list); 2896 fs_info->fs_devices->num_devices--; 2897 fs_info->fs_devices->open_devices--; 2898 fs_info->fs_devices->rw_devices--; 2899 fs_info->fs_devices->total_devices--; 2900 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2901 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2902 btrfs_set_super_total_bytes(fs_info->super_copy, 2903 orig_super_total_bytes); 2904 btrfs_set_super_num_devices(fs_info->super_copy, 2905 orig_super_num_devices); 2906 mutex_unlock(&fs_info->chunk_mutex); 2907 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2908 error_trans: 2909 if (trans) 2910 btrfs_end_transaction(trans); 2911 error_free_zone: 2912 btrfs_destroy_dev_zone_info(device); 2913 error_free_device: 2914 btrfs_free_device(device); 2915 error: 2916 bdev_fput(bdev_file); 2917 if (locked) { 2918 mutex_unlock(&uuid_mutex); 2919 up_write(&sb->s_umount); 2920 } 2921 return ret; 2922 } 2923 2924 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2925 struct btrfs_device *device) 2926 { 2927 int ret; 2928 BTRFS_PATH_AUTO_FREE(path); 2929 struct btrfs_root *root = device->fs_info->chunk_root; 2930 struct btrfs_dev_item *dev_item; 2931 struct extent_buffer *leaf; 2932 struct btrfs_key key; 2933 2934 path = btrfs_alloc_path(); 2935 if (!path) 2936 return -ENOMEM; 2937 2938 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2939 key.type = BTRFS_DEV_ITEM_KEY; 2940 key.offset = device->devid; 2941 2942 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2943 if (ret < 0) 2944 return ret; 2945 2946 if (ret > 0) 2947 return -ENOENT; 2948 2949 leaf = path->nodes[0]; 2950 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2951 2952 btrfs_set_device_id(leaf, dev_item, device->devid); 2953 btrfs_set_device_type(leaf, dev_item, device->type); 2954 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2955 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2956 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2957 btrfs_set_device_total_bytes(leaf, dev_item, 2958 btrfs_device_get_disk_total_bytes(device)); 2959 btrfs_set_device_bytes_used(leaf, dev_item, 2960 btrfs_device_get_bytes_used(device)); 2961 return ret; 2962 } 2963 2964 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2965 struct btrfs_device *device, u64 new_size) 2966 { 2967 struct btrfs_fs_info *fs_info = device->fs_info; 2968 struct btrfs_super_block *super_copy = fs_info->super_copy; 2969 u64 old_total; 2970 u64 diff; 2971 int ret; 2972 2973 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2974 return -EACCES; 2975 2976 new_size = round_down(new_size, fs_info->sectorsize); 2977 2978 mutex_lock(&fs_info->chunk_mutex); 2979 old_total = btrfs_super_total_bytes(super_copy); 2980 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2981 2982 if (new_size <= device->total_bytes || 2983 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2984 mutex_unlock(&fs_info->chunk_mutex); 2985 return -EINVAL; 2986 } 2987 2988 btrfs_set_super_total_bytes(super_copy, 2989 round_down(old_total + diff, fs_info->sectorsize)); 2990 device->fs_devices->total_rw_bytes += diff; 2991 atomic64_add(diff, &fs_info->free_chunk_space); 2992 2993 btrfs_device_set_total_bytes(device, new_size); 2994 btrfs_device_set_disk_total_bytes(device, new_size); 2995 btrfs_clear_space_info_full(device->fs_info); 2996 if (list_empty(&device->post_commit_list)) 2997 list_add_tail(&device->post_commit_list, 2998 &trans->transaction->dev_update_list); 2999 mutex_unlock(&fs_info->chunk_mutex); 3000 3001 btrfs_reserve_chunk_metadata(trans, false); 3002 ret = btrfs_update_device(trans, device); 3003 btrfs_trans_release_chunk_metadata(trans); 3004 3005 return ret; 3006 } 3007 3008 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3009 { 3010 struct btrfs_fs_info *fs_info = trans->fs_info; 3011 struct btrfs_root *root = fs_info->chunk_root; 3012 int ret; 3013 BTRFS_PATH_AUTO_FREE(path); 3014 struct btrfs_key key; 3015 3016 path = btrfs_alloc_path(); 3017 if (!path) 3018 return -ENOMEM; 3019 3020 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3021 key.type = BTRFS_CHUNK_ITEM_KEY; 3022 key.offset = chunk_offset; 3023 3024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3025 if (ret < 0) 3026 return ret; 3027 if (unlikely(ret > 0)) { 3028 /* Logic error or corruption */ 3029 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3030 chunk_offset); 3031 btrfs_abort_transaction(trans, -ENOENT); 3032 return -EUCLEAN; 3033 } 3034 3035 ret = btrfs_del_item(trans, root, path); 3036 if (unlikely(ret < 0)) { 3037 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3038 btrfs_abort_transaction(trans, ret); 3039 return ret; 3040 } 3041 return ret; 3042 } 3043 3044 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3045 { 3046 struct btrfs_super_block *super_copy = fs_info->super_copy; 3047 struct btrfs_disk_key *disk_key; 3048 struct btrfs_chunk *chunk; 3049 u8 *ptr; 3050 int ret = 0; 3051 u32 num_stripes; 3052 u32 array_size; 3053 u32 len = 0; 3054 u32 cur; 3055 struct btrfs_key key; 3056 3057 lockdep_assert_held(&fs_info->chunk_mutex); 3058 array_size = btrfs_super_sys_array_size(super_copy); 3059 3060 ptr = super_copy->sys_chunk_array; 3061 cur = 0; 3062 3063 while (cur < array_size) { 3064 disk_key = (struct btrfs_disk_key *)ptr; 3065 btrfs_disk_key_to_cpu(&key, disk_key); 3066 3067 len = sizeof(*disk_key); 3068 3069 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3070 chunk = (struct btrfs_chunk *)(ptr + len); 3071 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3072 len += btrfs_chunk_item_size(num_stripes); 3073 } else { 3074 ret = -EIO; 3075 break; 3076 } 3077 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3078 key.offset == chunk_offset) { 3079 memmove(ptr, ptr + len, array_size - (cur + len)); 3080 array_size -= len; 3081 btrfs_set_super_sys_array_size(super_copy, array_size); 3082 } else { 3083 ptr += len; 3084 cur += len; 3085 } 3086 } 3087 return ret; 3088 } 3089 3090 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3091 u64 logical, u64 length) 3092 { 3093 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3094 struct rb_node *prev = NULL; 3095 struct rb_node *orig_prev; 3096 struct btrfs_chunk_map *map; 3097 struct btrfs_chunk_map *prev_map = NULL; 3098 3099 while (node) { 3100 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3101 prev = node; 3102 prev_map = map; 3103 3104 if (logical < map->start) { 3105 node = node->rb_left; 3106 } else if (logical >= map->start + map->chunk_len) { 3107 node = node->rb_right; 3108 } else { 3109 refcount_inc(&map->refs); 3110 return map; 3111 } 3112 } 3113 3114 if (!prev) 3115 return NULL; 3116 3117 orig_prev = prev; 3118 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3119 prev = rb_next(prev); 3120 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3121 } 3122 3123 if (!prev) { 3124 prev = orig_prev; 3125 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3126 while (prev && logical < prev_map->start) { 3127 prev = rb_prev(prev); 3128 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3129 } 3130 } 3131 3132 if (prev) { 3133 u64 end = logical + length; 3134 3135 /* 3136 * Caller can pass a U64_MAX length when it wants to get any 3137 * chunk starting at an offset of 'logical' or higher, so deal 3138 * with underflow by resetting the end offset to U64_MAX. 3139 */ 3140 if (end < logical) 3141 end = U64_MAX; 3142 3143 if (end > prev_map->start && 3144 logical < prev_map->start + prev_map->chunk_len) { 3145 refcount_inc(&prev_map->refs); 3146 return prev_map; 3147 } 3148 } 3149 3150 return NULL; 3151 } 3152 3153 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3154 u64 logical, u64 length) 3155 { 3156 struct btrfs_chunk_map *map; 3157 3158 read_lock(&fs_info->mapping_tree_lock); 3159 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3160 read_unlock(&fs_info->mapping_tree_lock); 3161 3162 return map; 3163 } 3164 3165 /* 3166 * Find the mapping containing the given logical extent. 3167 * 3168 * @logical: Logical block offset in bytes. 3169 * @length: Length of extent in bytes. 3170 * 3171 * Return: Chunk mapping or ERR_PTR. 3172 */ 3173 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3174 u64 logical, u64 length) 3175 { 3176 struct btrfs_chunk_map *map; 3177 3178 map = btrfs_find_chunk_map(fs_info, logical, length); 3179 3180 if (unlikely(!map)) { 3181 btrfs_crit(fs_info, 3182 "unable to find chunk map for logical %llu length %llu", 3183 logical, length); 3184 return ERR_PTR(-EINVAL); 3185 } 3186 3187 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3188 btrfs_crit(fs_info, 3189 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3190 logical, logical + length, map->start, 3191 map->start + map->chunk_len); 3192 btrfs_free_chunk_map(map); 3193 return ERR_PTR(-EINVAL); 3194 } 3195 3196 /* Callers are responsible for dropping the reference. */ 3197 return map; 3198 } 3199 3200 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3201 struct btrfs_chunk_map *map, u64 chunk_offset) 3202 { 3203 int i; 3204 3205 /* 3206 * Removing chunk items and updating the device items in the chunks btree 3207 * requires holding the chunk_mutex. 3208 * See the comment at btrfs_chunk_alloc() for the details. 3209 */ 3210 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3211 3212 for (i = 0; i < map->num_stripes; i++) { 3213 int ret; 3214 3215 ret = btrfs_update_device(trans, map->stripes[i].dev); 3216 if (ret) 3217 return ret; 3218 } 3219 3220 return btrfs_free_chunk(trans, chunk_offset); 3221 } 3222 3223 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3224 { 3225 struct btrfs_fs_info *fs_info = trans->fs_info; 3226 struct btrfs_chunk_map *map; 3227 u64 dev_extent_len = 0; 3228 int i, ret = 0; 3229 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3230 3231 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3232 if (IS_ERR(map)) { 3233 /* 3234 * This is a logic error, but we don't want to just rely on the 3235 * user having built with ASSERT enabled, so if ASSERT doesn't 3236 * do anything we still error out. 3237 */ 3238 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3239 PTR_ERR(map), chunk_offset); 3240 return PTR_ERR(map); 3241 } 3242 3243 /* 3244 * First delete the device extent items from the devices btree. 3245 * We take the device_list_mutex to avoid racing with the finishing phase 3246 * of a device replace operation. See the comment below before acquiring 3247 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3248 * because that can result in a deadlock when deleting the device extent 3249 * items from the devices btree - COWing an extent buffer from the btree 3250 * may result in allocating a new metadata chunk, which would attempt to 3251 * lock again fs_info->chunk_mutex. 3252 */ 3253 mutex_lock(&fs_devices->device_list_mutex); 3254 for (i = 0; i < map->num_stripes; i++) { 3255 struct btrfs_device *device = map->stripes[i].dev; 3256 ret = btrfs_free_dev_extent(trans, device, 3257 map->stripes[i].physical, 3258 &dev_extent_len); 3259 if (unlikely(ret)) { 3260 mutex_unlock(&fs_devices->device_list_mutex); 3261 btrfs_abort_transaction(trans, ret); 3262 goto out; 3263 } 3264 3265 if (device->bytes_used > 0) { 3266 mutex_lock(&fs_info->chunk_mutex); 3267 btrfs_device_set_bytes_used(device, 3268 device->bytes_used - dev_extent_len); 3269 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3270 btrfs_clear_space_info_full(fs_info); 3271 3272 if (list_empty(&device->post_commit_list)) { 3273 list_add_tail(&device->post_commit_list, 3274 &trans->transaction->dev_update_list); 3275 } 3276 3277 mutex_unlock(&fs_info->chunk_mutex); 3278 } 3279 } 3280 mutex_unlock(&fs_devices->device_list_mutex); 3281 3282 /* 3283 * We acquire fs_info->chunk_mutex for 2 reasons: 3284 * 3285 * 1) Just like with the first phase of the chunk allocation, we must 3286 * reserve system space, do all chunk btree updates and deletions, and 3287 * update the system chunk array in the superblock while holding this 3288 * mutex. This is for similar reasons as explained on the comment at 3289 * the top of btrfs_chunk_alloc(); 3290 * 3291 * 2) Prevent races with the final phase of a device replace operation 3292 * that replaces the device object associated with the map's stripes, 3293 * because the device object's id can change at any time during that 3294 * final phase of the device replace operation 3295 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3296 * replaced device and then see it with an ID of 3297 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3298 * the device item, which does not exists on the chunk btree. 3299 * The finishing phase of device replace acquires both the 3300 * device_list_mutex and the chunk_mutex, in that order, so we are 3301 * safe by just acquiring the chunk_mutex. 3302 */ 3303 trans->removing_chunk = true; 3304 mutex_lock(&fs_info->chunk_mutex); 3305 3306 check_system_chunk(trans, map->type); 3307 3308 ret = remove_chunk_item(trans, map, chunk_offset); 3309 /* 3310 * Normally we should not get -ENOSPC since we reserved space before 3311 * through the call to check_system_chunk(). 3312 * 3313 * Despite our system space_info having enough free space, we may not 3314 * be able to allocate extents from its block groups, because all have 3315 * an incompatible profile, which will force us to allocate a new system 3316 * block group with the right profile, or right after we called 3317 * check_system_space() above, a scrub turned the only system block group 3318 * with enough free space into RO mode. 3319 * This is explained with more detail at do_chunk_alloc(). 3320 * 3321 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3322 */ 3323 if (ret == -ENOSPC) { 3324 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3325 struct btrfs_block_group *sys_bg; 3326 struct btrfs_space_info *space_info; 3327 3328 space_info = btrfs_find_space_info(fs_info, sys_flags); 3329 if (unlikely(!space_info)) { 3330 ret = -EINVAL; 3331 btrfs_abort_transaction(trans, ret); 3332 goto out; 3333 } 3334 3335 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3336 if (IS_ERR(sys_bg)) { 3337 ret = PTR_ERR(sys_bg); 3338 btrfs_abort_transaction(trans, ret); 3339 goto out; 3340 } 3341 3342 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3343 if (unlikely(ret)) { 3344 btrfs_abort_transaction(trans, ret); 3345 goto out; 3346 } 3347 3348 ret = remove_chunk_item(trans, map, chunk_offset); 3349 if (unlikely(ret)) { 3350 btrfs_abort_transaction(trans, ret); 3351 goto out; 3352 } 3353 } else if (unlikely(ret)) { 3354 btrfs_abort_transaction(trans, ret); 3355 goto out; 3356 } 3357 3358 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3359 3360 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3361 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3362 if (unlikely(ret)) { 3363 btrfs_abort_transaction(trans, ret); 3364 goto out; 3365 } 3366 } 3367 3368 mutex_unlock(&fs_info->chunk_mutex); 3369 trans->removing_chunk = false; 3370 3371 /* 3372 * We are done with chunk btree updates and deletions, so release the 3373 * system space we previously reserved (with check_system_chunk()). 3374 */ 3375 btrfs_trans_release_chunk_metadata(trans); 3376 3377 ret = btrfs_remove_block_group(trans, map); 3378 if (unlikely(ret)) { 3379 btrfs_abort_transaction(trans, ret); 3380 goto out; 3381 } 3382 3383 out: 3384 if (trans->removing_chunk) { 3385 mutex_unlock(&fs_info->chunk_mutex); 3386 trans->removing_chunk = false; 3387 } 3388 /* once for us */ 3389 btrfs_free_chunk_map(map); 3390 return ret; 3391 } 3392 3393 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3394 bool verbose) 3395 { 3396 struct btrfs_root *root = fs_info->chunk_root; 3397 struct btrfs_trans_handle *trans; 3398 struct btrfs_block_group *block_group; 3399 u64 length; 3400 int ret; 3401 3402 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3403 btrfs_err(fs_info, 3404 "relocate: not supported on extent tree v2 yet"); 3405 return -EINVAL; 3406 } 3407 3408 /* 3409 * Prevent races with automatic removal of unused block groups. 3410 * After we relocate and before we remove the chunk with offset 3411 * chunk_offset, automatic removal of the block group can kick in, 3412 * resulting in a failure when calling btrfs_remove_chunk() below. 3413 * 3414 * Make sure to acquire this mutex before doing a tree search (dev 3415 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3416 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3417 * we release the path used to search the chunk/dev tree and before 3418 * the current task acquires this mutex and calls us. 3419 */ 3420 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3421 3422 /* step one, relocate all the extents inside this chunk */ 3423 btrfs_scrub_pause(fs_info); 3424 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3425 btrfs_scrub_continue(fs_info); 3426 if (ret) { 3427 /* 3428 * If we had a transaction abort, stop all running scrubs. 3429 * See transaction.c:cleanup_transaction() why we do it here. 3430 */ 3431 if (BTRFS_FS_ERROR(fs_info)) 3432 btrfs_scrub_cancel(fs_info); 3433 return ret; 3434 } 3435 3436 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3437 if (!block_group) 3438 return -ENOENT; 3439 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3440 length = block_group->length; 3441 btrfs_put_block_group(block_group); 3442 3443 /* 3444 * On a zoned file system, discard the whole block group, this will 3445 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3446 * resetting the zone fails, don't treat it as a fatal problem from the 3447 * filesystem's point of view. 3448 */ 3449 if (btrfs_is_zoned(fs_info)) { 3450 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3451 if (ret) 3452 btrfs_info(fs_info, 3453 "failed to reset zone %llu after relocation", 3454 chunk_offset); 3455 } 3456 3457 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3458 chunk_offset); 3459 if (IS_ERR(trans)) { 3460 ret = PTR_ERR(trans); 3461 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3462 return ret; 3463 } 3464 3465 /* 3466 * step two, delete the device extents and the 3467 * chunk tree entries 3468 */ 3469 ret = btrfs_remove_chunk(trans, chunk_offset); 3470 btrfs_end_transaction(trans); 3471 return ret; 3472 } 3473 3474 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3475 { 3476 struct btrfs_root *chunk_root = fs_info->chunk_root; 3477 BTRFS_PATH_AUTO_FREE(path); 3478 struct extent_buffer *leaf; 3479 struct btrfs_chunk *chunk; 3480 struct btrfs_key key; 3481 struct btrfs_key found_key; 3482 u64 chunk_type; 3483 bool retried = false; 3484 int failed = 0; 3485 int ret; 3486 3487 path = btrfs_alloc_path(); 3488 if (!path) 3489 return -ENOMEM; 3490 3491 again: 3492 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3493 key.type = BTRFS_CHUNK_ITEM_KEY; 3494 key.offset = (u64)-1; 3495 3496 while (1) { 3497 mutex_lock(&fs_info->reclaim_bgs_lock); 3498 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3499 if (ret < 0) { 3500 mutex_unlock(&fs_info->reclaim_bgs_lock); 3501 return ret; 3502 } 3503 if (unlikely(ret == 0)) { 3504 /* 3505 * On the first search we would find chunk tree with 3506 * offset -1, which is not possible. On subsequent 3507 * loops this would find an existing item on an invalid 3508 * offset (one less than the previous one, wrong 3509 * alignment and size). 3510 */ 3511 mutex_unlock(&fs_info->reclaim_bgs_lock); 3512 return -EUCLEAN; 3513 } 3514 3515 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3516 key.type); 3517 if (ret) 3518 mutex_unlock(&fs_info->reclaim_bgs_lock); 3519 if (ret < 0) 3520 return ret; 3521 if (ret > 0) 3522 break; 3523 3524 leaf = path->nodes[0]; 3525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3526 3527 chunk = btrfs_item_ptr(leaf, path->slots[0], 3528 struct btrfs_chunk); 3529 chunk_type = btrfs_chunk_type(leaf, chunk); 3530 btrfs_release_path(path); 3531 3532 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3533 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3534 true); 3535 if (ret == -ENOSPC) 3536 failed++; 3537 else 3538 BUG_ON(ret); 3539 } 3540 mutex_unlock(&fs_info->reclaim_bgs_lock); 3541 3542 if (found_key.offset == 0) 3543 break; 3544 key.offset = found_key.offset - 1; 3545 } 3546 ret = 0; 3547 if (failed && !retried) { 3548 failed = 0; 3549 retried = true; 3550 goto again; 3551 } else if (WARN_ON(failed && retried)) { 3552 ret = -ENOSPC; 3553 } 3554 return ret; 3555 } 3556 3557 /* 3558 * return 1 : allocate a data chunk successfully, 3559 * return <0: errors during allocating a data chunk, 3560 * return 0 : no need to allocate a data chunk. 3561 */ 3562 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3563 u64 chunk_offset) 3564 { 3565 struct btrfs_block_group *cache; 3566 u64 bytes_used; 3567 u64 chunk_type; 3568 3569 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3570 ASSERT(cache); 3571 chunk_type = cache->flags; 3572 btrfs_put_block_group(cache); 3573 3574 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3575 return 0; 3576 3577 spin_lock(&fs_info->data_sinfo->lock); 3578 bytes_used = fs_info->data_sinfo->bytes_used; 3579 spin_unlock(&fs_info->data_sinfo->lock); 3580 3581 if (!bytes_used) { 3582 struct btrfs_trans_handle *trans; 3583 int ret; 3584 3585 trans = btrfs_join_transaction(fs_info->tree_root); 3586 if (IS_ERR(trans)) 3587 return PTR_ERR(trans); 3588 3589 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3590 btrfs_end_transaction(trans); 3591 if (ret < 0) 3592 return ret; 3593 return 1; 3594 } 3595 3596 return 0; 3597 } 3598 3599 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3600 const struct btrfs_disk_balance_args *disk) 3601 { 3602 memset(cpu, 0, sizeof(*cpu)); 3603 3604 cpu->profiles = le64_to_cpu(disk->profiles); 3605 cpu->usage = le64_to_cpu(disk->usage); 3606 cpu->devid = le64_to_cpu(disk->devid); 3607 cpu->pstart = le64_to_cpu(disk->pstart); 3608 cpu->pend = le64_to_cpu(disk->pend); 3609 cpu->vstart = le64_to_cpu(disk->vstart); 3610 cpu->vend = le64_to_cpu(disk->vend); 3611 cpu->target = le64_to_cpu(disk->target); 3612 cpu->flags = le64_to_cpu(disk->flags); 3613 cpu->limit = le64_to_cpu(disk->limit); 3614 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3615 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3616 } 3617 3618 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3619 const struct btrfs_balance_args *cpu) 3620 { 3621 memset(disk, 0, sizeof(*disk)); 3622 3623 disk->profiles = cpu_to_le64(cpu->profiles); 3624 disk->usage = cpu_to_le64(cpu->usage); 3625 disk->devid = cpu_to_le64(cpu->devid); 3626 disk->pstart = cpu_to_le64(cpu->pstart); 3627 disk->pend = cpu_to_le64(cpu->pend); 3628 disk->vstart = cpu_to_le64(cpu->vstart); 3629 disk->vend = cpu_to_le64(cpu->vend); 3630 disk->target = cpu_to_le64(cpu->target); 3631 disk->flags = cpu_to_le64(cpu->flags); 3632 disk->limit = cpu_to_le64(cpu->limit); 3633 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3634 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3635 } 3636 3637 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3638 struct btrfs_balance_control *bctl) 3639 { 3640 struct btrfs_root *root = fs_info->tree_root; 3641 struct btrfs_trans_handle *trans; 3642 struct btrfs_balance_item *item; 3643 struct btrfs_disk_balance_args disk_bargs; 3644 struct btrfs_path *path; 3645 struct extent_buffer *leaf; 3646 struct btrfs_key key; 3647 int ret, err; 3648 3649 path = btrfs_alloc_path(); 3650 if (!path) 3651 return -ENOMEM; 3652 3653 trans = btrfs_start_transaction(root, 0); 3654 if (IS_ERR(trans)) { 3655 btrfs_free_path(path); 3656 return PTR_ERR(trans); 3657 } 3658 3659 key.objectid = BTRFS_BALANCE_OBJECTID; 3660 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3661 key.offset = 0; 3662 3663 ret = btrfs_insert_empty_item(trans, root, path, &key, 3664 sizeof(*item)); 3665 if (ret) 3666 goto out; 3667 3668 leaf = path->nodes[0]; 3669 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3670 3671 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3672 3673 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3674 btrfs_set_balance_data(leaf, item, &disk_bargs); 3675 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3676 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3677 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3678 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3679 btrfs_set_balance_flags(leaf, item, bctl->flags); 3680 out: 3681 btrfs_free_path(path); 3682 err = btrfs_commit_transaction(trans); 3683 if (err && !ret) 3684 ret = err; 3685 return ret; 3686 } 3687 3688 static int del_balance_item(struct btrfs_fs_info *fs_info) 3689 { 3690 struct btrfs_root *root = fs_info->tree_root; 3691 struct btrfs_trans_handle *trans; 3692 struct btrfs_path *path; 3693 struct btrfs_key key; 3694 int ret, err; 3695 3696 path = btrfs_alloc_path(); 3697 if (!path) 3698 return -ENOMEM; 3699 3700 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3701 if (IS_ERR(trans)) { 3702 btrfs_free_path(path); 3703 return PTR_ERR(trans); 3704 } 3705 3706 key.objectid = BTRFS_BALANCE_OBJECTID; 3707 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3708 key.offset = 0; 3709 3710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3711 if (ret < 0) 3712 goto out; 3713 if (ret > 0) { 3714 ret = -ENOENT; 3715 goto out; 3716 } 3717 3718 ret = btrfs_del_item(trans, root, path); 3719 out: 3720 btrfs_free_path(path); 3721 err = btrfs_commit_transaction(trans); 3722 if (err && !ret) 3723 ret = err; 3724 return ret; 3725 } 3726 3727 /* 3728 * This is a heuristic used to reduce the number of chunks balanced on 3729 * resume after balance was interrupted. 3730 */ 3731 static void update_balance_args(struct btrfs_balance_control *bctl) 3732 { 3733 /* 3734 * Turn on soft mode for chunk types that were being converted. 3735 */ 3736 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3737 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3738 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3739 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3740 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3741 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3742 3743 /* 3744 * Turn on usage filter if is not already used. The idea is 3745 * that chunks that we have already balanced should be 3746 * reasonably full. Don't do it for chunks that are being 3747 * converted - that will keep us from relocating unconverted 3748 * (albeit full) chunks. 3749 */ 3750 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3751 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3752 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3753 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3754 bctl->data.usage = 90; 3755 } 3756 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3757 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3758 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3759 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3760 bctl->sys.usage = 90; 3761 } 3762 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3763 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3764 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3765 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3766 bctl->meta.usage = 90; 3767 } 3768 } 3769 3770 /* 3771 * Clear the balance status in fs_info and delete the balance item from disk. 3772 */ 3773 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3774 { 3775 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3776 int ret; 3777 3778 ASSERT(fs_info->balance_ctl); 3779 3780 spin_lock(&fs_info->balance_lock); 3781 fs_info->balance_ctl = NULL; 3782 spin_unlock(&fs_info->balance_lock); 3783 3784 kfree(bctl); 3785 ret = del_balance_item(fs_info); 3786 if (ret) 3787 btrfs_handle_fs_error(fs_info, ret, NULL); 3788 } 3789 3790 /* 3791 * Balance filters. Return 1 if chunk should be filtered out 3792 * (should not be balanced). 3793 */ 3794 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3795 { 3796 chunk_type = chunk_to_extended(chunk_type) & 3797 BTRFS_EXTENDED_PROFILE_MASK; 3798 3799 if (bargs->profiles & chunk_type) 3800 return false; 3801 3802 return true; 3803 } 3804 3805 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3806 struct btrfs_balance_args *bargs) 3807 { 3808 struct btrfs_block_group *cache; 3809 u64 chunk_used; 3810 u64 user_thresh_min; 3811 u64 user_thresh_max; 3812 bool ret = true; 3813 3814 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3815 chunk_used = cache->used; 3816 3817 if (bargs->usage_min == 0) 3818 user_thresh_min = 0; 3819 else 3820 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3821 3822 if (bargs->usage_max == 0) 3823 user_thresh_max = 1; 3824 else if (bargs->usage_max > 100) 3825 user_thresh_max = cache->length; 3826 else 3827 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3828 3829 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3830 ret = false; 3831 3832 btrfs_put_block_group(cache); 3833 return ret; 3834 } 3835 3836 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3837 struct btrfs_balance_args *bargs) 3838 { 3839 struct btrfs_block_group *cache; 3840 u64 chunk_used, user_thresh; 3841 bool ret = true; 3842 3843 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3844 chunk_used = cache->used; 3845 3846 if (bargs->usage_min == 0) 3847 user_thresh = 1; 3848 else if (bargs->usage > 100) 3849 user_thresh = cache->length; 3850 else 3851 user_thresh = mult_perc(cache->length, bargs->usage); 3852 3853 if (chunk_used < user_thresh) 3854 ret = false; 3855 3856 btrfs_put_block_group(cache); 3857 return ret; 3858 } 3859 3860 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3861 struct btrfs_balance_args *bargs) 3862 { 3863 struct btrfs_stripe *stripe; 3864 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3865 int i; 3866 3867 for (i = 0; i < num_stripes; i++) { 3868 stripe = btrfs_stripe_nr(chunk, i); 3869 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3870 return false; 3871 } 3872 3873 return true; 3874 } 3875 3876 static u64 calc_data_stripes(u64 type, int num_stripes) 3877 { 3878 const int index = btrfs_bg_flags_to_raid_index(type); 3879 const int ncopies = btrfs_raid_array[index].ncopies; 3880 const int nparity = btrfs_raid_array[index].nparity; 3881 3882 return (num_stripes - nparity) / ncopies; 3883 } 3884 3885 /* [pstart, pend) */ 3886 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3887 struct btrfs_balance_args *bargs) 3888 { 3889 struct btrfs_stripe *stripe; 3890 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3891 u64 stripe_offset; 3892 u64 stripe_length; 3893 u64 type; 3894 int factor; 3895 int i; 3896 3897 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3898 return false; 3899 3900 type = btrfs_chunk_type(leaf, chunk); 3901 factor = calc_data_stripes(type, num_stripes); 3902 3903 for (i = 0; i < num_stripes; i++) { 3904 stripe = btrfs_stripe_nr(chunk, i); 3905 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3906 continue; 3907 3908 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3909 stripe_length = btrfs_chunk_length(leaf, chunk); 3910 stripe_length = div_u64(stripe_length, factor); 3911 3912 if (stripe_offset < bargs->pend && 3913 stripe_offset + stripe_length > bargs->pstart) 3914 return false; 3915 } 3916 3917 return true; 3918 } 3919 3920 /* [vstart, vend) */ 3921 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3922 u64 chunk_offset, struct btrfs_balance_args *bargs) 3923 { 3924 if (chunk_offset < bargs->vend && 3925 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3926 /* at least part of the chunk is inside this vrange */ 3927 return false; 3928 3929 return true; 3930 } 3931 3932 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3933 struct btrfs_chunk *chunk, 3934 struct btrfs_balance_args *bargs) 3935 { 3936 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3937 3938 if (bargs->stripes_min <= num_stripes 3939 && num_stripes <= bargs->stripes_max) 3940 return false; 3941 3942 return true; 3943 } 3944 3945 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3946 { 3947 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3948 return false; 3949 3950 chunk_type = chunk_to_extended(chunk_type) & 3951 BTRFS_EXTENDED_PROFILE_MASK; 3952 3953 if (bargs->target == chunk_type) 3954 return true; 3955 3956 return false; 3957 } 3958 3959 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3960 u64 chunk_offset) 3961 { 3962 struct btrfs_fs_info *fs_info = leaf->fs_info; 3963 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3964 struct btrfs_balance_args *bargs = NULL; 3965 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3966 3967 /* type filter */ 3968 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3969 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3970 return false; 3971 } 3972 3973 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3974 bargs = &bctl->data; 3975 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3976 bargs = &bctl->sys; 3977 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3978 bargs = &bctl->meta; 3979 3980 /* profiles filter */ 3981 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3982 chunk_profiles_filter(chunk_type, bargs)) { 3983 return false; 3984 } 3985 3986 /* usage filter */ 3987 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3988 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3989 return false; 3990 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3991 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3992 return false; 3993 } 3994 3995 /* devid filter */ 3996 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3997 chunk_devid_filter(leaf, chunk, bargs)) { 3998 return false; 3999 } 4000 4001 /* drange filter, makes sense only with devid filter */ 4002 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4003 chunk_drange_filter(leaf, chunk, bargs)) { 4004 return false; 4005 } 4006 4007 /* vrange filter */ 4008 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4009 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4010 return false; 4011 } 4012 4013 /* stripes filter */ 4014 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4015 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4016 return false; 4017 } 4018 4019 /* soft profile changing mode */ 4020 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4021 chunk_soft_convert_filter(chunk_type, bargs)) { 4022 return false; 4023 } 4024 4025 /* 4026 * limited by count, must be the last filter 4027 */ 4028 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4029 if (bargs->limit == 0) 4030 return false; 4031 else 4032 bargs->limit--; 4033 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4034 /* 4035 * Same logic as the 'limit' filter; the minimum cannot be 4036 * determined here because we do not have the global information 4037 * about the count of all chunks that satisfy the filters. 4038 */ 4039 if (bargs->limit_max == 0) 4040 return false; 4041 else 4042 bargs->limit_max--; 4043 } 4044 4045 return true; 4046 } 4047 4048 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4049 { 4050 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4051 struct btrfs_root *chunk_root = fs_info->chunk_root; 4052 u64 chunk_type; 4053 struct btrfs_chunk *chunk; 4054 BTRFS_PATH_AUTO_FREE(path); 4055 struct btrfs_key key; 4056 struct btrfs_key found_key; 4057 struct extent_buffer *leaf; 4058 int slot; 4059 int ret; 4060 int enospc_errors = 0; 4061 bool counting = true; 4062 /* The single value limit and min/max limits use the same bytes in the */ 4063 u64 limit_data = bctl->data.limit; 4064 u64 limit_meta = bctl->meta.limit; 4065 u64 limit_sys = bctl->sys.limit; 4066 u32 count_data = 0; 4067 u32 count_meta = 0; 4068 u32 count_sys = 0; 4069 int chunk_reserved = 0; 4070 4071 path = btrfs_alloc_path(); 4072 if (!path) { 4073 ret = -ENOMEM; 4074 goto error; 4075 } 4076 4077 /* zero out stat counters */ 4078 spin_lock(&fs_info->balance_lock); 4079 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4080 spin_unlock(&fs_info->balance_lock); 4081 again: 4082 if (!counting) { 4083 /* 4084 * The single value limit and min/max limits use the same bytes 4085 * in the 4086 */ 4087 bctl->data.limit = limit_data; 4088 bctl->meta.limit = limit_meta; 4089 bctl->sys.limit = limit_sys; 4090 } 4091 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4092 key.type = BTRFS_CHUNK_ITEM_KEY; 4093 key.offset = (u64)-1; 4094 4095 while (1) { 4096 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4097 atomic_read(&fs_info->balance_cancel_req)) { 4098 ret = -ECANCELED; 4099 goto error; 4100 } 4101 4102 mutex_lock(&fs_info->reclaim_bgs_lock); 4103 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4104 if (ret < 0) { 4105 mutex_unlock(&fs_info->reclaim_bgs_lock); 4106 goto error; 4107 } 4108 4109 /* 4110 * this shouldn't happen, it means the last relocate 4111 * failed 4112 */ 4113 if (ret == 0) 4114 BUG(); /* FIXME break ? */ 4115 4116 ret = btrfs_previous_item(chunk_root, path, 0, 4117 BTRFS_CHUNK_ITEM_KEY); 4118 if (ret) { 4119 mutex_unlock(&fs_info->reclaim_bgs_lock); 4120 ret = 0; 4121 break; 4122 } 4123 4124 leaf = path->nodes[0]; 4125 slot = path->slots[0]; 4126 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4127 4128 if (found_key.objectid != key.objectid) { 4129 mutex_unlock(&fs_info->reclaim_bgs_lock); 4130 break; 4131 } 4132 4133 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4134 chunk_type = btrfs_chunk_type(leaf, chunk); 4135 4136 if (!counting) { 4137 spin_lock(&fs_info->balance_lock); 4138 bctl->stat.considered++; 4139 spin_unlock(&fs_info->balance_lock); 4140 } 4141 4142 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4143 4144 btrfs_release_path(path); 4145 if (!ret) { 4146 mutex_unlock(&fs_info->reclaim_bgs_lock); 4147 goto loop; 4148 } 4149 4150 if (counting) { 4151 mutex_unlock(&fs_info->reclaim_bgs_lock); 4152 spin_lock(&fs_info->balance_lock); 4153 bctl->stat.expected++; 4154 spin_unlock(&fs_info->balance_lock); 4155 4156 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4157 count_data++; 4158 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4159 count_sys++; 4160 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4161 count_meta++; 4162 4163 goto loop; 4164 } 4165 4166 /* 4167 * Apply limit_min filter, no need to check if the LIMITS 4168 * filter is used, limit_min is 0 by default 4169 */ 4170 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4171 count_data < bctl->data.limit_min) 4172 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4173 count_meta < bctl->meta.limit_min) 4174 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4175 count_sys < bctl->sys.limit_min)) { 4176 mutex_unlock(&fs_info->reclaim_bgs_lock); 4177 goto loop; 4178 } 4179 4180 if (!chunk_reserved) { 4181 /* 4182 * We may be relocating the only data chunk we have, 4183 * which could potentially end up with losing data's 4184 * raid profile, so lets allocate an empty one in 4185 * advance. 4186 */ 4187 ret = btrfs_may_alloc_data_chunk(fs_info, 4188 found_key.offset); 4189 if (ret < 0) { 4190 mutex_unlock(&fs_info->reclaim_bgs_lock); 4191 goto error; 4192 } else if (ret == 1) { 4193 chunk_reserved = 1; 4194 } 4195 } 4196 4197 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4198 mutex_unlock(&fs_info->reclaim_bgs_lock); 4199 if (ret == -ENOSPC) { 4200 enospc_errors++; 4201 } else if (ret == -ETXTBSY) { 4202 btrfs_info(fs_info, 4203 "skipping relocation of block group %llu due to active swapfile", 4204 found_key.offset); 4205 ret = 0; 4206 } else if (ret) { 4207 goto error; 4208 } else { 4209 spin_lock(&fs_info->balance_lock); 4210 bctl->stat.completed++; 4211 spin_unlock(&fs_info->balance_lock); 4212 } 4213 loop: 4214 if (found_key.offset == 0) 4215 break; 4216 key.offset = found_key.offset - 1; 4217 } 4218 4219 if (counting) { 4220 btrfs_release_path(path); 4221 counting = false; 4222 goto again; 4223 } 4224 error: 4225 if (enospc_errors) { 4226 btrfs_info(fs_info, "%d enospc errors during balance", 4227 enospc_errors); 4228 if (!ret) 4229 ret = -ENOSPC; 4230 } 4231 4232 return ret; 4233 } 4234 4235 /* 4236 * See if a given profile is valid and reduced. 4237 * 4238 * @flags: profile to validate 4239 * @extended: if true @flags is treated as an extended profile 4240 */ 4241 static int alloc_profile_is_valid(u64 flags, bool extended) 4242 { 4243 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4244 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4245 4246 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4247 4248 /* 1) check that all other bits are zeroed */ 4249 if (flags & ~mask) 4250 return 0; 4251 4252 /* 2) see if profile is reduced */ 4253 if (flags == 0) 4254 return !extended; /* "0" is valid for usual profiles */ 4255 4256 return has_single_bit_set(flags); 4257 } 4258 4259 /* 4260 * Validate target profile against allowed profiles and return true if it's OK. 4261 * Otherwise print the error message and return false. 4262 */ 4263 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4264 const struct btrfs_balance_args *bargs, 4265 u64 allowed, const char *type) 4266 { 4267 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4268 return true; 4269 4270 /* Profile is valid and does not have bits outside of the allowed set */ 4271 if (alloc_profile_is_valid(bargs->target, 1) && 4272 (bargs->target & ~allowed) == 0) 4273 return true; 4274 4275 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4276 type, btrfs_bg_type_to_raid_name(bargs->target)); 4277 return false; 4278 } 4279 4280 /* 4281 * Fill @buf with textual description of balance filter flags @bargs, up to 4282 * @size_buf including the terminating null. The output may be trimmed if it 4283 * does not fit into the provided buffer. 4284 */ 4285 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4286 u32 size_buf) 4287 { 4288 int ret; 4289 u32 size_bp = size_buf; 4290 char *bp = buf; 4291 u64 flags = bargs->flags; 4292 char tmp_buf[128] = {'\0'}; 4293 4294 if (!flags) 4295 return; 4296 4297 #define CHECK_APPEND_NOARG(a) \ 4298 do { \ 4299 ret = snprintf(bp, size_bp, (a)); \ 4300 if (ret < 0 || ret >= size_bp) \ 4301 goto out_overflow; \ 4302 size_bp -= ret; \ 4303 bp += ret; \ 4304 } while (0) 4305 4306 #define CHECK_APPEND_1ARG(a, v1) \ 4307 do { \ 4308 ret = snprintf(bp, size_bp, (a), (v1)); \ 4309 if (ret < 0 || ret >= size_bp) \ 4310 goto out_overflow; \ 4311 size_bp -= ret; \ 4312 bp += ret; \ 4313 } while (0) 4314 4315 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4316 do { \ 4317 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4318 if (ret < 0 || ret >= size_bp) \ 4319 goto out_overflow; \ 4320 size_bp -= ret; \ 4321 bp += ret; \ 4322 } while (0) 4323 4324 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4325 CHECK_APPEND_1ARG("convert=%s,", 4326 btrfs_bg_type_to_raid_name(bargs->target)); 4327 4328 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4329 CHECK_APPEND_NOARG("soft,"); 4330 4331 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4332 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4333 sizeof(tmp_buf)); 4334 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4335 } 4336 4337 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4338 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4339 4340 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4341 CHECK_APPEND_2ARG("usage=%u..%u,", 4342 bargs->usage_min, bargs->usage_max); 4343 4344 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4345 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4346 4347 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4348 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4349 bargs->pstart, bargs->pend); 4350 4351 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4352 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4353 bargs->vstart, bargs->vend); 4354 4355 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4356 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4357 4358 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4359 CHECK_APPEND_2ARG("limit=%u..%u,", 4360 bargs->limit_min, bargs->limit_max); 4361 4362 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4363 CHECK_APPEND_2ARG("stripes=%u..%u,", 4364 bargs->stripes_min, bargs->stripes_max); 4365 4366 #undef CHECK_APPEND_2ARG 4367 #undef CHECK_APPEND_1ARG 4368 #undef CHECK_APPEND_NOARG 4369 4370 out_overflow: 4371 4372 if (size_bp < size_buf) 4373 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4374 else 4375 buf[0] = '\0'; 4376 } 4377 4378 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4379 { 4380 u32 size_buf = 1024; 4381 char tmp_buf[192] = {'\0'}; 4382 char AUTO_KFREE(buf); 4383 char *bp; 4384 u32 size_bp = size_buf; 4385 int ret; 4386 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4387 4388 buf = kzalloc(size_buf, GFP_KERNEL); 4389 if (!buf) 4390 return; 4391 4392 bp = buf; 4393 4394 #define CHECK_APPEND_1ARG(a, v1) \ 4395 do { \ 4396 ret = snprintf(bp, size_bp, (a), (v1)); \ 4397 if (ret < 0 || ret >= size_bp) \ 4398 goto out_overflow; \ 4399 size_bp -= ret; \ 4400 bp += ret; \ 4401 } while (0) 4402 4403 if (bctl->flags & BTRFS_BALANCE_FORCE) 4404 CHECK_APPEND_1ARG("%s", "-f "); 4405 4406 if (bctl->flags & BTRFS_BALANCE_DATA) { 4407 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4408 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4409 } 4410 4411 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4412 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4413 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4414 } 4415 4416 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4417 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4418 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4419 } 4420 4421 #undef CHECK_APPEND_1ARG 4422 4423 out_overflow: 4424 4425 if (size_bp < size_buf) 4426 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4427 btrfs_info(fs_info, "balance: %s %s", 4428 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4429 "resume" : "start", buf); 4430 } 4431 4432 /* 4433 * Should be called with balance mutex held 4434 */ 4435 int btrfs_balance(struct btrfs_fs_info *fs_info, 4436 struct btrfs_balance_control *bctl, 4437 struct btrfs_ioctl_balance_args *bargs) 4438 { 4439 u64 meta_target, data_target; 4440 u64 allowed; 4441 int mixed = 0; 4442 int ret; 4443 u64 num_devices; 4444 unsigned seq; 4445 bool reducing_redundancy; 4446 bool paused = false; 4447 int i; 4448 4449 if (btrfs_fs_closing(fs_info) || 4450 atomic_read(&fs_info->balance_pause_req) || 4451 btrfs_should_cancel_balance(fs_info)) { 4452 ret = -EINVAL; 4453 goto out; 4454 } 4455 4456 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4457 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4458 mixed = 1; 4459 4460 /* 4461 * In case of mixed groups both data and meta should be picked, 4462 * and identical options should be given for both of them. 4463 */ 4464 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4465 if (mixed && (bctl->flags & allowed)) { 4466 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4467 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4468 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4469 btrfs_err(fs_info, 4470 "balance: mixed groups data and metadata options must be the same"); 4471 ret = -EINVAL; 4472 goto out; 4473 } 4474 } 4475 4476 /* 4477 * rw_devices will not change at the moment, device add/delete/replace 4478 * are exclusive 4479 */ 4480 num_devices = fs_info->fs_devices->rw_devices; 4481 4482 /* 4483 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4484 * special bit for it, to make it easier to distinguish. Thus we need 4485 * to set it manually, or balance would refuse the profile. 4486 */ 4487 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4488 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4489 if (num_devices >= btrfs_raid_array[i].devs_min) 4490 allowed |= btrfs_raid_array[i].bg_flag; 4491 4492 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4493 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4494 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4495 ret = -EINVAL; 4496 goto out; 4497 } 4498 4499 /* 4500 * Allow to reduce metadata or system integrity only if force set for 4501 * profiles with redundancy (copies, parity) 4502 */ 4503 allowed = 0; 4504 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4505 if (btrfs_raid_array[i].ncopies >= 2 || 4506 btrfs_raid_array[i].tolerated_failures >= 1) 4507 allowed |= btrfs_raid_array[i].bg_flag; 4508 } 4509 do { 4510 seq = read_seqbegin(&fs_info->profiles_lock); 4511 4512 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4513 (fs_info->avail_system_alloc_bits & allowed) && 4514 !(bctl->sys.target & allowed)) || 4515 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4516 (fs_info->avail_metadata_alloc_bits & allowed) && 4517 !(bctl->meta.target & allowed))) 4518 reducing_redundancy = true; 4519 else 4520 reducing_redundancy = false; 4521 4522 /* if we're not converting, the target field is uninitialized */ 4523 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4524 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4525 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4526 bctl->data.target : fs_info->avail_data_alloc_bits; 4527 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4528 4529 if (reducing_redundancy) { 4530 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4531 btrfs_info(fs_info, 4532 "balance: force reducing metadata redundancy"); 4533 } else { 4534 btrfs_err(fs_info, 4535 "balance: reduces metadata redundancy, use --force if you want this"); 4536 ret = -EINVAL; 4537 goto out; 4538 } 4539 } 4540 4541 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4542 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4543 btrfs_warn(fs_info, 4544 "balance: metadata profile %s has lower redundancy than data profile %s", 4545 btrfs_bg_type_to_raid_name(meta_target), 4546 btrfs_bg_type_to_raid_name(data_target)); 4547 } 4548 4549 ret = insert_balance_item(fs_info, bctl); 4550 if (ret && ret != -EEXIST) 4551 goto out; 4552 4553 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4554 BUG_ON(ret == -EEXIST); 4555 BUG_ON(fs_info->balance_ctl); 4556 spin_lock(&fs_info->balance_lock); 4557 fs_info->balance_ctl = bctl; 4558 spin_unlock(&fs_info->balance_lock); 4559 } else { 4560 BUG_ON(ret != -EEXIST); 4561 spin_lock(&fs_info->balance_lock); 4562 update_balance_args(bctl); 4563 spin_unlock(&fs_info->balance_lock); 4564 } 4565 4566 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4567 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4568 describe_balance_start_or_resume(fs_info); 4569 mutex_unlock(&fs_info->balance_mutex); 4570 4571 ret = __btrfs_balance(fs_info); 4572 4573 mutex_lock(&fs_info->balance_mutex); 4574 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4575 btrfs_info(fs_info, "balance: paused"); 4576 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4577 paused = true; 4578 } 4579 /* 4580 * Balance can be canceled by: 4581 * 4582 * - Regular cancel request 4583 * Then ret == -ECANCELED and balance_cancel_req > 0 4584 * 4585 * - Fatal signal to "btrfs" process 4586 * Either the signal caught by wait_reserve_ticket() and callers 4587 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4588 * got -ECANCELED. 4589 * Either way, in this case balance_cancel_req = 0, and 4590 * ret == -EINTR or ret == -ECANCELED. 4591 * 4592 * So here we only check the return value to catch canceled balance. 4593 */ 4594 else if (ret == -ECANCELED || ret == -EINTR) 4595 btrfs_info(fs_info, "balance: canceled"); 4596 else 4597 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4598 4599 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4600 4601 if (bargs) { 4602 memset(bargs, 0, sizeof(*bargs)); 4603 btrfs_update_ioctl_balance_args(fs_info, bargs); 4604 } 4605 4606 /* We didn't pause, we can clean everything up. */ 4607 if (!paused) { 4608 reset_balance_state(fs_info); 4609 btrfs_exclop_finish(fs_info); 4610 } 4611 4612 wake_up(&fs_info->balance_wait_q); 4613 4614 return ret; 4615 out: 4616 if (bctl->flags & BTRFS_BALANCE_RESUME) 4617 reset_balance_state(fs_info); 4618 else 4619 kfree(bctl); 4620 btrfs_exclop_finish(fs_info); 4621 4622 return ret; 4623 } 4624 4625 static int balance_kthread(void *data) 4626 { 4627 struct btrfs_fs_info *fs_info = data; 4628 int ret = 0; 4629 4630 guard(super_write)(fs_info->sb); 4631 4632 mutex_lock(&fs_info->balance_mutex); 4633 if (fs_info->balance_ctl) 4634 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4635 mutex_unlock(&fs_info->balance_mutex); 4636 4637 return ret; 4638 } 4639 4640 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4641 { 4642 struct task_struct *tsk; 4643 4644 mutex_lock(&fs_info->balance_mutex); 4645 if (!fs_info->balance_ctl) { 4646 mutex_unlock(&fs_info->balance_mutex); 4647 return 0; 4648 } 4649 mutex_unlock(&fs_info->balance_mutex); 4650 4651 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4652 btrfs_info(fs_info, "balance: resume skipped"); 4653 return 0; 4654 } 4655 4656 spin_lock(&fs_info->super_lock); 4657 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4658 "exclusive_operation=%d", fs_info->exclusive_operation); 4659 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4660 spin_unlock(&fs_info->super_lock); 4661 /* 4662 * A ro->rw remount sequence should continue with the paused balance 4663 * regardless of who pauses it, system or the user as of now, so set 4664 * the resume flag. 4665 */ 4666 spin_lock(&fs_info->balance_lock); 4667 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4668 spin_unlock(&fs_info->balance_lock); 4669 4670 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4671 return PTR_ERR_OR_ZERO(tsk); 4672 } 4673 4674 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4675 { 4676 struct btrfs_balance_control *bctl; 4677 struct btrfs_balance_item *item; 4678 struct btrfs_disk_balance_args disk_bargs; 4679 BTRFS_PATH_AUTO_FREE(path); 4680 struct extent_buffer *leaf; 4681 struct btrfs_key key; 4682 int ret; 4683 4684 path = btrfs_alloc_path(); 4685 if (!path) 4686 return -ENOMEM; 4687 4688 key.objectid = BTRFS_BALANCE_OBJECTID; 4689 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4690 key.offset = 0; 4691 4692 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4693 if (ret < 0) 4694 return ret; 4695 if (ret > 0) { /* ret = -ENOENT; */ 4696 return 0; 4697 } 4698 4699 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4700 if (!bctl) 4701 return -ENOMEM; 4702 4703 leaf = path->nodes[0]; 4704 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4705 4706 bctl->flags = btrfs_balance_flags(leaf, item); 4707 bctl->flags |= BTRFS_BALANCE_RESUME; 4708 4709 btrfs_balance_data(leaf, item, &disk_bargs); 4710 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4711 btrfs_balance_meta(leaf, item, &disk_bargs); 4712 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4713 btrfs_balance_sys(leaf, item, &disk_bargs); 4714 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4715 4716 /* 4717 * This should never happen, as the paused balance state is recovered 4718 * during mount without any chance of other exclusive ops to collide. 4719 * 4720 * This gives the exclusive op status to balance and keeps in paused 4721 * state until user intervention (cancel or umount). If the ownership 4722 * cannot be assigned, show a message but do not fail. The balance 4723 * is in a paused state and must have fs_info::balance_ctl properly 4724 * set up. 4725 */ 4726 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4727 btrfs_warn(fs_info, 4728 "balance: cannot set exclusive op status, resume manually"); 4729 4730 btrfs_release_path(path); 4731 4732 mutex_lock(&fs_info->balance_mutex); 4733 BUG_ON(fs_info->balance_ctl); 4734 spin_lock(&fs_info->balance_lock); 4735 fs_info->balance_ctl = bctl; 4736 spin_unlock(&fs_info->balance_lock); 4737 mutex_unlock(&fs_info->balance_mutex); 4738 return ret; 4739 } 4740 4741 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4742 { 4743 int ret = 0; 4744 4745 mutex_lock(&fs_info->balance_mutex); 4746 if (!fs_info->balance_ctl) { 4747 mutex_unlock(&fs_info->balance_mutex); 4748 return -ENOTCONN; 4749 } 4750 4751 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4752 atomic_inc(&fs_info->balance_pause_req); 4753 mutex_unlock(&fs_info->balance_mutex); 4754 4755 wait_event(fs_info->balance_wait_q, 4756 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4757 4758 mutex_lock(&fs_info->balance_mutex); 4759 /* we are good with balance_ctl ripped off from under us */ 4760 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4761 atomic_dec(&fs_info->balance_pause_req); 4762 } else { 4763 ret = -ENOTCONN; 4764 } 4765 4766 mutex_unlock(&fs_info->balance_mutex); 4767 return ret; 4768 } 4769 4770 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4771 { 4772 mutex_lock(&fs_info->balance_mutex); 4773 if (!fs_info->balance_ctl) { 4774 mutex_unlock(&fs_info->balance_mutex); 4775 return -ENOTCONN; 4776 } 4777 4778 /* 4779 * A paused balance with the item stored on disk can be resumed at 4780 * mount time if the mount is read-write. Otherwise it's still paused 4781 * and we must not allow cancelling as it deletes the item. 4782 */ 4783 if (sb_rdonly(fs_info->sb)) { 4784 mutex_unlock(&fs_info->balance_mutex); 4785 return -EROFS; 4786 } 4787 4788 atomic_inc(&fs_info->balance_cancel_req); 4789 /* 4790 * if we are running just wait and return, balance item is 4791 * deleted in btrfs_balance in this case 4792 */ 4793 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4794 mutex_unlock(&fs_info->balance_mutex); 4795 wait_event(fs_info->balance_wait_q, 4796 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4797 mutex_lock(&fs_info->balance_mutex); 4798 } else { 4799 mutex_unlock(&fs_info->balance_mutex); 4800 /* 4801 * Lock released to allow other waiters to continue, we'll 4802 * reexamine the status again. 4803 */ 4804 mutex_lock(&fs_info->balance_mutex); 4805 4806 if (fs_info->balance_ctl) { 4807 reset_balance_state(fs_info); 4808 btrfs_exclop_finish(fs_info); 4809 btrfs_info(fs_info, "balance: canceled"); 4810 } 4811 } 4812 4813 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4814 atomic_dec(&fs_info->balance_cancel_req); 4815 mutex_unlock(&fs_info->balance_mutex); 4816 return 0; 4817 } 4818 4819 /* 4820 * shrinking a device means finding all of the device extents past 4821 * the new size, and then following the back refs to the chunks. 4822 * The chunk relocation code actually frees the device extent 4823 */ 4824 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4825 { 4826 struct btrfs_fs_info *fs_info = device->fs_info; 4827 struct btrfs_root *root = fs_info->dev_root; 4828 struct btrfs_trans_handle *trans; 4829 struct btrfs_dev_extent *dev_extent = NULL; 4830 struct btrfs_path *path; 4831 u64 length; 4832 u64 chunk_offset; 4833 int ret; 4834 int slot; 4835 int failed = 0; 4836 bool retried = false; 4837 struct extent_buffer *l; 4838 struct btrfs_key key; 4839 struct btrfs_super_block *super_copy = fs_info->super_copy; 4840 u64 old_total = btrfs_super_total_bytes(super_copy); 4841 u64 old_size = btrfs_device_get_total_bytes(device); 4842 u64 diff; 4843 u64 start; 4844 u64 free_diff = 0; 4845 4846 new_size = round_down(new_size, fs_info->sectorsize); 4847 start = new_size; 4848 diff = round_down(old_size - new_size, fs_info->sectorsize); 4849 4850 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4851 return -EINVAL; 4852 4853 path = btrfs_alloc_path(); 4854 if (!path) 4855 return -ENOMEM; 4856 4857 path->reada = READA_BACK; 4858 4859 trans = btrfs_start_transaction(root, 0); 4860 if (IS_ERR(trans)) { 4861 btrfs_free_path(path); 4862 return PTR_ERR(trans); 4863 } 4864 4865 mutex_lock(&fs_info->chunk_mutex); 4866 4867 btrfs_device_set_total_bytes(device, new_size); 4868 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4869 device->fs_devices->total_rw_bytes -= diff; 4870 4871 /* 4872 * The new free_chunk_space is new_size - used, so we have to 4873 * subtract the delta of the old free_chunk_space which included 4874 * old_size - used. If used > new_size then just subtract this 4875 * entire device's free space. 4876 */ 4877 if (device->bytes_used < new_size) 4878 free_diff = (old_size - device->bytes_used) - 4879 (new_size - device->bytes_used); 4880 else 4881 free_diff = old_size - device->bytes_used; 4882 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4883 } 4884 4885 /* 4886 * Once the device's size has been set to the new size, ensure all 4887 * in-memory chunks are synced to disk so that the loop below sees them 4888 * and relocates them accordingly. 4889 */ 4890 if (contains_pending_extent(device, &start, diff)) { 4891 mutex_unlock(&fs_info->chunk_mutex); 4892 ret = btrfs_commit_transaction(trans); 4893 if (ret) 4894 goto done; 4895 } else { 4896 mutex_unlock(&fs_info->chunk_mutex); 4897 btrfs_end_transaction(trans); 4898 } 4899 4900 again: 4901 key.objectid = device->devid; 4902 key.type = BTRFS_DEV_EXTENT_KEY; 4903 key.offset = (u64)-1; 4904 4905 do { 4906 mutex_lock(&fs_info->reclaim_bgs_lock); 4907 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4908 if (ret < 0) { 4909 mutex_unlock(&fs_info->reclaim_bgs_lock); 4910 goto done; 4911 } 4912 4913 ret = btrfs_previous_item(root, path, 0, key.type); 4914 if (ret) { 4915 mutex_unlock(&fs_info->reclaim_bgs_lock); 4916 if (ret < 0) 4917 goto done; 4918 ret = 0; 4919 btrfs_release_path(path); 4920 break; 4921 } 4922 4923 l = path->nodes[0]; 4924 slot = path->slots[0]; 4925 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4926 4927 if (key.objectid != device->devid) { 4928 mutex_unlock(&fs_info->reclaim_bgs_lock); 4929 btrfs_release_path(path); 4930 break; 4931 } 4932 4933 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4934 length = btrfs_dev_extent_length(l, dev_extent); 4935 4936 if (key.offset + length <= new_size) { 4937 mutex_unlock(&fs_info->reclaim_bgs_lock); 4938 btrfs_release_path(path); 4939 break; 4940 } 4941 4942 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4943 btrfs_release_path(path); 4944 4945 /* 4946 * We may be relocating the only data chunk we have, 4947 * which could potentially end up with losing data's 4948 * raid profile, so lets allocate an empty one in 4949 * advance. 4950 */ 4951 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4952 if (ret < 0) { 4953 mutex_unlock(&fs_info->reclaim_bgs_lock); 4954 goto done; 4955 } 4956 4957 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 4958 mutex_unlock(&fs_info->reclaim_bgs_lock); 4959 if (ret == -ENOSPC) { 4960 failed++; 4961 } else if (ret) { 4962 if (ret == -ETXTBSY) { 4963 btrfs_warn(fs_info, 4964 "could not shrink block group %llu due to active swapfile", 4965 chunk_offset); 4966 } 4967 goto done; 4968 } 4969 } while (key.offset-- > 0); 4970 4971 if (failed && !retried) { 4972 failed = 0; 4973 retried = true; 4974 goto again; 4975 } else if (failed && retried) { 4976 ret = -ENOSPC; 4977 goto done; 4978 } 4979 4980 /* Shrinking succeeded, else we would be at "done". */ 4981 trans = btrfs_start_transaction(root, 0); 4982 if (IS_ERR(trans)) { 4983 ret = PTR_ERR(trans); 4984 goto done; 4985 } 4986 4987 mutex_lock(&fs_info->chunk_mutex); 4988 /* Clear all state bits beyond the shrunk device size */ 4989 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 4990 CHUNK_STATE_MASK, NULL); 4991 4992 btrfs_device_set_disk_total_bytes(device, new_size); 4993 if (list_empty(&device->post_commit_list)) 4994 list_add_tail(&device->post_commit_list, 4995 &trans->transaction->dev_update_list); 4996 4997 WARN_ON(diff > old_total); 4998 btrfs_set_super_total_bytes(super_copy, 4999 round_down(old_total - diff, fs_info->sectorsize)); 5000 mutex_unlock(&fs_info->chunk_mutex); 5001 5002 btrfs_reserve_chunk_metadata(trans, false); 5003 /* Now btrfs_update_device() will change the on-disk size. */ 5004 ret = btrfs_update_device(trans, device); 5005 btrfs_trans_release_chunk_metadata(trans); 5006 if (unlikely(ret < 0)) { 5007 btrfs_abort_transaction(trans, ret); 5008 btrfs_end_transaction(trans); 5009 } else { 5010 ret = btrfs_commit_transaction(trans); 5011 } 5012 done: 5013 btrfs_free_path(path); 5014 if (ret) { 5015 mutex_lock(&fs_info->chunk_mutex); 5016 btrfs_device_set_total_bytes(device, old_size); 5017 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5018 device->fs_devices->total_rw_bytes += diff; 5019 atomic64_add(free_diff, &fs_info->free_chunk_space); 5020 } 5021 mutex_unlock(&fs_info->chunk_mutex); 5022 } 5023 return ret; 5024 } 5025 5026 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5027 struct btrfs_key *key, 5028 struct btrfs_chunk *chunk, int item_size) 5029 { 5030 struct btrfs_super_block *super_copy = fs_info->super_copy; 5031 struct btrfs_disk_key disk_key; 5032 u32 array_size; 5033 u8 *ptr; 5034 5035 lockdep_assert_held(&fs_info->chunk_mutex); 5036 5037 array_size = btrfs_super_sys_array_size(super_copy); 5038 if (array_size + item_size + sizeof(disk_key) 5039 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5040 return -EFBIG; 5041 5042 ptr = super_copy->sys_chunk_array + array_size; 5043 btrfs_cpu_key_to_disk(&disk_key, key); 5044 memcpy(ptr, &disk_key, sizeof(disk_key)); 5045 ptr += sizeof(disk_key); 5046 memcpy(ptr, chunk, item_size); 5047 item_size += sizeof(disk_key); 5048 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5049 5050 return 0; 5051 } 5052 5053 /* 5054 * sort the devices in descending order by max_avail, total_avail 5055 */ 5056 static int btrfs_cmp_device_info(const void *a, const void *b) 5057 { 5058 const struct btrfs_device_info *di_a = a; 5059 const struct btrfs_device_info *di_b = b; 5060 5061 if (di_a->max_avail > di_b->max_avail) 5062 return -1; 5063 if (di_a->max_avail < di_b->max_avail) 5064 return 1; 5065 if (di_a->total_avail > di_b->total_avail) 5066 return -1; 5067 if (di_a->total_avail < di_b->total_avail) 5068 return 1; 5069 return 0; 5070 } 5071 5072 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5073 { 5074 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5075 return; 5076 5077 btrfs_set_fs_incompat(info, RAID56); 5078 } 5079 5080 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5081 { 5082 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5083 return; 5084 5085 btrfs_set_fs_incompat(info, RAID1C34); 5086 } 5087 5088 /* 5089 * Structure used internally for btrfs_create_chunk() function. 5090 * Wraps needed parameters. 5091 */ 5092 struct alloc_chunk_ctl { 5093 u64 start; 5094 u64 type; 5095 /* Total number of stripes to allocate */ 5096 int num_stripes; 5097 /* sub_stripes info for map */ 5098 int sub_stripes; 5099 /* Stripes per device */ 5100 int dev_stripes; 5101 /* Maximum number of devices to use */ 5102 int devs_max; 5103 /* Minimum number of devices to use */ 5104 int devs_min; 5105 /* ndevs has to be a multiple of this */ 5106 int devs_increment; 5107 /* Number of copies */ 5108 int ncopies; 5109 /* Number of stripes worth of bytes to store parity information */ 5110 int nparity; 5111 u64 max_stripe_size; 5112 u64 max_chunk_size; 5113 u64 dev_extent_min; 5114 u64 stripe_size; 5115 u64 chunk_size; 5116 int ndevs; 5117 /* Space_info the block group is going to belong. */ 5118 struct btrfs_space_info *space_info; 5119 }; 5120 5121 static void init_alloc_chunk_ctl_policy_regular( 5122 struct btrfs_fs_devices *fs_devices, 5123 struct alloc_chunk_ctl *ctl) 5124 { 5125 struct btrfs_space_info *space_info; 5126 5127 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5128 ASSERT(space_info); 5129 5130 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5131 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5132 5133 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5134 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5135 5136 /* We don't want a chunk larger than 10% of writable space */ 5137 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5138 ctl->max_chunk_size); 5139 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5140 } 5141 5142 static void init_alloc_chunk_ctl_policy_zoned( 5143 struct btrfs_fs_devices *fs_devices, 5144 struct alloc_chunk_ctl *ctl) 5145 { 5146 u64 zone_size = fs_devices->fs_info->zone_size; 5147 u64 limit; 5148 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5149 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5150 u64 min_chunk_size = min_data_stripes * zone_size; 5151 u64 type = ctl->type; 5152 5153 ctl->max_stripe_size = zone_size; 5154 if (type & BTRFS_BLOCK_GROUP_DATA) { 5155 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5156 zone_size); 5157 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5158 ctl->max_chunk_size = ctl->max_stripe_size; 5159 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5160 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5161 ctl->devs_max = min_t(int, ctl->devs_max, 5162 BTRFS_MAX_DEVS_SYS_CHUNK); 5163 } else { 5164 BUG(); 5165 } 5166 5167 /* We don't want a chunk larger than 10% of writable space */ 5168 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5169 zone_size), 5170 min_chunk_size); 5171 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5172 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5173 } 5174 5175 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5176 struct alloc_chunk_ctl *ctl) 5177 { 5178 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5179 5180 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5181 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5182 ctl->devs_max = btrfs_raid_array[index].devs_max; 5183 if (!ctl->devs_max) 5184 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5185 ctl->devs_min = btrfs_raid_array[index].devs_min; 5186 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5187 ctl->ncopies = btrfs_raid_array[index].ncopies; 5188 ctl->nparity = btrfs_raid_array[index].nparity; 5189 ctl->ndevs = 0; 5190 5191 switch (fs_devices->chunk_alloc_policy) { 5192 default: 5193 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5194 fallthrough; 5195 case BTRFS_CHUNK_ALLOC_REGULAR: 5196 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5197 break; 5198 case BTRFS_CHUNK_ALLOC_ZONED: 5199 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5200 break; 5201 } 5202 } 5203 5204 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5205 struct alloc_chunk_ctl *ctl, 5206 struct btrfs_device_info *devices_info) 5207 { 5208 struct btrfs_fs_info *info = fs_devices->fs_info; 5209 struct btrfs_device *device; 5210 u64 total_avail; 5211 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5212 int ret; 5213 int ndevs = 0; 5214 u64 max_avail; 5215 u64 dev_offset; 5216 5217 /* 5218 * in the first pass through the devices list, we gather information 5219 * about the available holes on each device. 5220 */ 5221 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5222 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5223 WARN(1, KERN_ERR 5224 "BTRFS: read-only device in alloc_list\n"); 5225 continue; 5226 } 5227 5228 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5229 &device->dev_state) || 5230 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5231 continue; 5232 5233 if (device->total_bytes > device->bytes_used) 5234 total_avail = device->total_bytes - device->bytes_used; 5235 else 5236 total_avail = 0; 5237 5238 /* If there is no space on this device, skip it. */ 5239 if (total_avail < ctl->dev_extent_min) 5240 continue; 5241 5242 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5243 &max_avail); 5244 if (ret && ret != -ENOSPC) 5245 return ret; 5246 5247 if (ret == 0) 5248 max_avail = dev_extent_want; 5249 5250 if (max_avail < ctl->dev_extent_min) { 5251 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5252 btrfs_debug(info, 5253 "%s: devid %llu has no free space, have=%llu want=%llu", 5254 __func__, device->devid, max_avail, 5255 ctl->dev_extent_min); 5256 continue; 5257 } 5258 5259 if (ndevs == fs_devices->rw_devices) { 5260 WARN(1, "%s: found more than %llu devices\n", 5261 __func__, fs_devices->rw_devices); 5262 break; 5263 } 5264 devices_info[ndevs].dev_offset = dev_offset; 5265 devices_info[ndevs].max_avail = max_avail; 5266 devices_info[ndevs].total_avail = total_avail; 5267 devices_info[ndevs].dev = device; 5268 ++ndevs; 5269 } 5270 ctl->ndevs = ndevs; 5271 5272 /* 5273 * now sort the devices by hole size / available space 5274 */ 5275 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5276 btrfs_cmp_device_info, NULL); 5277 5278 return 0; 5279 } 5280 5281 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5282 struct btrfs_device_info *devices_info) 5283 { 5284 /* Number of stripes that count for block group size */ 5285 int data_stripes; 5286 5287 /* 5288 * The primary goal is to maximize the number of stripes, so use as 5289 * many devices as possible, even if the stripes are not maximum sized. 5290 * 5291 * The DUP profile stores more than one stripe per device, the 5292 * max_avail is the total size so we have to adjust. 5293 */ 5294 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5295 ctl->dev_stripes); 5296 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5297 5298 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5299 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5300 5301 /* 5302 * Use the number of data stripes to figure out how big this chunk is 5303 * really going to be in terms of logical address space, and compare 5304 * that answer with the max chunk size. If it's higher, we try to 5305 * reduce stripe_size. 5306 */ 5307 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5308 /* 5309 * Reduce stripe_size, round it up to a 16MB boundary again and 5310 * then use it, unless it ends up being even bigger than the 5311 * previous value we had already. 5312 */ 5313 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5314 data_stripes), SZ_16M), 5315 ctl->stripe_size); 5316 } 5317 5318 /* Stripe size should not go beyond 1G. */ 5319 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5320 5321 /* Align to BTRFS_STRIPE_LEN */ 5322 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5323 ctl->chunk_size = ctl->stripe_size * data_stripes; 5324 5325 return 0; 5326 } 5327 5328 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5329 struct btrfs_device_info *devices_info) 5330 { 5331 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5332 /* Number of stripes that count for block group size */ 5333 int data_stripes; 5334 5335 /* 5336 * It should hold because: 5337 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5338 */ 5339 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5340 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5341 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5342 5343 ctl->stripe_size = zone_size; 5344 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5345 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5346 5347 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5348 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5349 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5350 ctl->stripe_size) + ctl->nparity, 5351 ctl->dev_stripes); 5352 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5353 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5354 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5355 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5356 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5357 } 5358 5359 ctl->chunk_size = ctl->stripe_size * data_stripes; 5360 5361 return 0; 5362 } 5363 5364 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5365 struct alloc_chunk_ctl *ctl, 5366 struct btrfs_device_info *devices_info) 5367 { 5368 struct btrfs_fs_info *info = fs_devices->fs_info; 5369 5370 /* 5371 * Round down to number of usable stripes, devs_increment can be any 5372 * number so we can't use round_down() that requires power of 2, while 5373 * rounddown is safe. 5374 */ 5375 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5376 5377 if (ctl->ndevs < ctl->devs_min) { 5378 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5379 btrfs_debug(info, 5380 "%s: not enough devices with free space: have=%d minimum required=%d", 5381 __func__, ctl->ndevs, ctl->devs_min); 5382 } 5383 return -ENOSPC; 5384 } 5385 5386 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5387 5388 switch (fs_devices->chunk_alloc_policy) { 5389 default: 5390 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5391 fallthrough; 5392 case BTRFS_CHUNK_ALLOC_REGULAR: 5393 return decide_stripe_size_regular(ctl, devices_info); 5394 case BTRFS_CHUNK_ALLOC_ZONED: 5395 return decide_stripe_size_zoned(ctl, devices_info); 5396 } 5397 } 5398 5399 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5400 { 5401 for (int i = 0; i < map->num_stripes; i++) { 5402 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5403 struct btrfs_device *device = stripe->dev; 5404 5405 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5406 stripe->physical + map->stripe_size - 1, 5407 bits | EXTENT_NOWAIT, NULL); 5408 } 5409 } 5410 5411 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5412 { 5413 for (int i = 0; i < map->num_stripes; i++) { 5414 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5415 struct btrfs_device *device = stripe->dev; 5416 5417 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5418 stripe->physical + map->stripe_size - 1, 5419 bits | EXTENT_NOWAIT, NULL); 5420 } 5421 } 5422 5423 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5424 { 5425 write_lock(&fs_info->mapping_tree_lock); 5426 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5427 RB_CLEAR_NODE(&map->rb_node); 5428 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5429 write_unlock(&fs_info->mapping_tree_lock); 5430 5431 /* Once for the tree reference. */ 5432 btrfs_free_chunk_map(map); 5433 } 5434 5435 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5436 const struct rb_node *exist) 5437 { 5438 const struct btrfs_chunk_map *new_map = 5439 rb_entry(new, struct btrfs_chunk_map, rb_node); 5440 const struct btrfs_chunk_map *exist_map = 5441 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5442 5443 if (new_map->start == exist_map->start) 5444 return 0; 5445 if (new_map->start < exist_map->start) 5446 return -1; 5447 return 1; 5448 } 5449 5450 EXPORT_FOR_TESTS 5451 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5452 { 5453 struct rb_node *exist; 5454 5455 write_lock(&fs_info->mapping_tree_lock); 5456 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5457 btrfs_chunk_map_cmp); 5458 5459 if (exist) { 5460 write_unlock(&fs_info->mapping_tree_lock); 5461 return -EEXIST; 5462 } 5463 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5464 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5465 write_unlock(&fs_info->mapping_tree_lock); 5466 5467 return 0; 5468 } 5469 5470 EXPORT_FOR_TESTS 5471 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5472 { 5473 struct btrfs_chunk_map *map; 5474 5475 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5476 if (!map) 5477 return NULL; 5478 5479 refcount_set(&map->refs, 1); 5480 RB_CLEAR_NODE(&map->rb_node); 5481 5482 return map; 5483 } 5484 5485 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5486 struct alloc_chunk_ctl *ctl, 5487 struct btrfs_device_info *devices_info) 5488 { 5489 struct btrfs_fs_info *info = trans->fs_info; 5490 struct btrfs_chunk_map *map; 5491 struct btrfs_block_group *block_group; 5492 u64 start = ctl->start; 5493 u64 type = ctl->type; 5494 int ret; 5495 5496 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5497 if (!map) 5498 return ERR_PTR(-ENOMEM); 5499 5500 map->start = start; 5501 map->chunk_len = ctl->chunk_size; 5502 map->stripe_size = ctl->stripe_size; 5503 map->type = type; 5504 map->io_align = BTRFS_STRIPE_LEN; 5505 map->io_width = BTRFS_STRIPE_LEN; 5506 map->sub_stripes = ctl->sub_stripes; 5507 map->num_stripes = ctl->num_stripes; 5508 5509 for (int i = 0; i < ctl->ndevs; i++) { 5510 for (int j = 0; j < ctl->dev_stripes; j++) { 5511 int s = i * ctl->dev_stripes + j; 5512 map->stripes[s].dev = devices_info[i].dev; 5513 map->stripes[s].physical = devices_info[i].dev_offset + 5514 j * ctl->stripe_size; 5515 } 5516 } 5517 5518 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5519 5520 ret = btrfs_add_chunk_map(info, map); 5521 if (ret) { 5522 btrfs_free_chunk_map(map); 5523 return ERR_PTR(ret); 5524 } 5525 5526 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5527 ctl->chunk_size); 5528 if (IS_ERR(block_group)) { 5529 btrfs_remove_chunk_map(info, map); 5530 return block_group; 5531 } 5532 5533 for (int i = 0; i < map->num_stripes; i++) { 5534 struct btrfs_device *dev = map->stripes[i].dev; 5535 5536 btrfs_device_set_bytes_used(dev, 5537 dev->bytes_used + ctl->stripe_size); 5538 if (list_empty(&dev->post_commit_list)) 5539 list_add_tail(&dev->post_commit_list, 5540 &trans->transaction->dev_update_list); 5541 } 5542 5543 atomic64_sub(ctl->stripe_size * map->num_stripes, 5544 &info->free_chunk_space); 5545 5546 check_raid56_incompat_flag(info, type); 5547 check_raid1c34_incompat_flag(info, type); 5548 5549 return block_group; 5550 } 5551 5552 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5553 struct btrfs_space_info *space_info, 5554 u64 type) 5555 { 5556 struct btrfs_fs_info *info = trans->fs_info; 5557 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5558 struct btrfs_device_info AUTO_KFREE(devices_info); 5559 struct alloc_chunk_ctl ctl; 5560 int ret; 5561 5562 lockdep_assert_held(&info->chunk_mutex); 5563 5564 if (!alloc_profile_is_valid(type, 0)) { 5565 DEBUG_WARN("invalid alloc profile for type %llu", type); 5566 return ERR_PTR(-EINVAL); 5567 } 5568 5569 if (list_empty(&fs_devices->alloc_list)) { 5570 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5571 btrfs_debug(info, "%s: no writable device", __func__); 5572 return ERR_PTR(-ENOSPC); 5573 } 5574 5575 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5576 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5577 DEBUG_WARN(); 5578 return ERR_PTR(-EINVAL); 5579 } 5580 5581 ctl.start = find_next_chunk(info); 5582 ctl.type = type; 5583 ctl.space_info = space_info; 5584 init_alloc_chunk_ctl(fs_devices, &ctl); 5585 5586 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5587 GFP_NOFS); 5588 if (!devices_info) 5589 return ERR_PTR(-ENOMEM); 5590 5591 ret = gather_device_info(fs_devices, &ctl, devices_info); 5592 if (ret < 0) 5593 return ERR_PTR(ret); 5594 5595 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5596 if (ret < 0) 5597 return ERR_PTR(ret); 5598 5599 return create_chunk(trans, &ctl, devices_info); 5600 } 5601 5602 /* 5603 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5604 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5605 * chunks. 5606 * 5607 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5608 * phases. 5609 */ 5610 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5611 struct btrfs_block_group *bg) 5612 { 5613 struct btrfs_fs_info *fs_info = trans->fs_info; 5614 struct btrfs_root *chunk_root = fs_info->chunk_root; 5615 struct btrfs_key key; 5616 struct btrfs_chunk *chunk; 5617 struct btrfs_stripe *stripe; 5618 struct btrfs_chunk_map *map; 5619 size_t item_size; 5620 int i; 5621 int ret; 5622 5623 /* 5624 * We take the chunk_mutex for 2 reasons: 5625 * 5626 * 1) Updates and insertions in the chunk btree must be done while holding 5627 * the chunk_mutex, as well as updating the system chunk array in the 5628 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5629 * details; 5630 * 5631 * 2) To prevent races with the final phase of a device replace operation 5632 * that replaces the device object associated with the map's stripes, 5633 * because the device object's id can change at any time during that 5634 * final phase of the device replace operation 5635 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5636 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5637 * which would cause a failure when updating the device item, which does 5638 * not exists, or persisting a stripe of the chunk item with such ID. 5639 * Here we can't use the device_list_mutex because our caller already 5640 * has locked the chunk_mutex, and the final phase of device replace 5641 * acquires both mutexes - first the device_list_mutex and then the 5642 * chunk_mutex. Using any of those two mutexes protects us from a 5643 * concurrent device replace. 5644 */ 5645 lockdep_assert_held(&fs_info->chunk_mutex); 5646 5647 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5648 if (IS_ERR(map)) { 5649 ret = PTR_ERR(map); 5650 btrfs_abort_transaction(trans, ret); 5651 return ret; 5652 } 5653 5654 item_size = btrfs_chunk_item_size(map->num_stripes); 5655 5656 chunk = kzalloc(item_size, GFP_NOFS); 5657 if (unlikely(!chunk)) { 5658 ret = -ENOMEM; 5659 btrfs_abort_transaction(trans, ret); 5660 goto out; 5661 } 5662 5663 for (i = 0; i < map->num_stripes; i++) { 5664 struct btrfs_device *device = map->stripes[i].dev; 5665 5666 ret = btrfs_update_device(trans, device); 5667 if (ret) 5668 goto out; 5669 } 5670 5671 stripe = &chunk->stripe; 5672 for (i = 0; i < map->num_stripes; i++) { 5673 struct btrfs_device *device = map->stripes[i].dev; 5674 const u64 dev_offset = map->stripes[i].physical; 5675 5676 btrfs_set_stack_stripe_devid(stripe, device->devid); 5677 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5678 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5679 stripe++; 5680 } 5681 5682 btrfs_set_stack_chunk_length(chunk, bg->length); 5683 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5684 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5685 btrfs_set_stack_chunk_type(chunk, map->type); 5686 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5687 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5688 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5689 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5690 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5691 5692 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5693 key.type = BTRFS_CHUNK_ITEM_KEY; 5694 key.offset = bg->start; 5695 5696 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5697 if (ret) 5698 goto out; 5699 5700 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5701 5702 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5703 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5704 if (ret) 5705 goto out; 5706 } 5707 5708 out: 5709 kfree(chunk); 5710 btrfs_free_chunk_map(map); 5711 return ret; 5712 } 5713 5714 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5715 { 5716 struct btrfs_fs_info *fs_info = trans->fs_info; 5717 u64 alloc_profile; 5718 struct btrfs_block_group *meta_bg; 5719 struct btrfs_space_info *meta_space_info; 5720 struct btrfs_block_group *sys_bg; 5721 struct btrfs_space_info *sys_space_info; 5722 5723 /* 5724 * When adding a new device for sprouting, the seed device is read-only 5725 * so we must first allocate a metadata and a system chunk. But before 5726 * adding the block group items to the extent, device and chunk btrees, 5727 * we must first: 5728 * 5729 * 1) Create both chunks without doing any changes to the btrees, as 5730 * otherwise we would get -ENOSPC since the block groups from the 5731 * seed device are read-only; 5732 * 5733 * 2) Add the device item for the new sprout device - finishing the setup 5734 * of a new block group requires updating the device item in the chunk 5735 * btree, so it must exist when we attempt to do it. The previous step 5736 * ensures this does not fail with -ENOSPC. 5737 * 5738 * After that we can add the block group items to their btrees: 5739 * update existing device item in the chunk btree, add a new block group 5740 * item to the extent btree, add a new chunk item to the chunk btree and 5741 * finally add the new device extent items to the devices btree. 5742 */ 5743 5744 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5745 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5746 if (!meta_space_info) { 5747 DEBUG_WARN(); 5748 return -EINVAL; 5749 } 5750 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5751 if (IS_ERR(meta_bg)) 5752 return PTR_ERR(meta_bg); 5753 5754 alloc_profile = btrfs_system_alloc_profile(fs_info); 5755 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5756 if (!sys_space_info) { 5757 DEBUG_WARN(); 5758 return -EINVAL; 5759 } 5760 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5761 if (IS_ERR(sys_bg)) 5762 return PTR_ERR(sys_bg); 5763 5764 return 0; 5765 } 5766 5767 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5768 { 5769 const int index = btrfs_bg_flags_to_raid_index(map->type); 5770 5771 return btrfs_raid_array[index].tolerated_failures; 5772 } 5773 5774 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5775 { 5776 struct btrfs_chunk_map *map; 5777 int miss_ndevs = 0; 5778 int i; 5779 bool ret = true; 5780 5781 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5782 if (IS_ERR(map)) 5783 return false; 5784 5785 for (i = 0; i < map->num_stripes; i++) { 5786 if (test_bit(BTRFS_DEV_STATE_MISSING, 5787 &map->stripes[i].dev->dev_state)) { 5788 miss_ndevs++; 5789 continue; 5790 } 5791 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5792 &map->stripes[i].dev->dev_state)) { 5793 ret = false; 5794 goto end; 5795 } 5796 } 5797 5798 /* 5799 * If the number of missing devices is larger than max errors, we can 5800 * not write the data into that chunk successfully. 5801 */ 5802 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5803 ret = false; 5804 end: 5805 btrfs_free_chunk_map(map); 5806 return ret; 5807 } 5808 5809 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5810 { 5811 write_lock(&fs_info->mapping_tree_lock); 5812 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5813 struct btrfs_chunk_map *map; 5814 struct rb_node *node; 5815 5816 node = rb_first_cached(&fs_info->mapping_tree); 5817 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5818 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5819 RB_CLEAR_NODE(&map->rb_node); 5820 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5821 /* Once for the tree ref. */ 5822 btrfs_free_chunk_map(map); 5823 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5824 } 5825 write_unlock(&fs_info->mapping_tree_lock); 5826 } 5827 5828 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5829 { 5830 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5831 5832 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5833 return 2; 5834 5835 /* 5836 * There could be two corrupted data stripes, we need to loop retry in 5837 * order to rebuild the correct data. 5838 * 5839 * Fail a stripe at a time on every retry except the stripe under 5840 * reconstruction. 5841 */ 5842 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5843 return map->num_stripes; 5844 5845 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5846 return btrfs_raid_array[index].ncopies; 5847 } 5848 5849 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5850 { 5851 struct btrfs_chunk_map *map; 5852 int ret; 5853 5854 map = btrfs_get_chunk_map(fs_info, logical, len); 5855 if (IS_ERR(map)) 5856 /* 5857 * We could return errors for these cases, but that could get 5858 * ugly and we'd probably do the same thing which is just not do 5859 * anything else and exit, so return 1 so the callers don't try 5860 * to use other copies. 5861 */ 5862 return 1; 5863 5864 ret = btrfs_chunk_map_num_copies(map); 5865 btrfs_free_chunk_map(map); 5866 return ret; 5867 } 5868 5869 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5870 u64 logical) 5871 { 5872 struct btrfs_chunk_map *map; 5873 unsigned long len = fs_info->sectorsize; 5874 5875 if (!btrfs_fs_incompat(fs_info, RAID56)) 5876 return len; 5877 5878 map = btrfs_get_chunk_map(fs_info, logical, len); 5879 5880 if (!WARN_ON(IS_ERR(map))) { 5881 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5882 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5883 btrfs_free_chunk_map(map); 5884 } 5885 return len; 5886 } 5887 5888 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5889 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5890 { 5891 for (int index = first; index < first + num_stripes; index++) { 5892 const struct btrfs_device *device = map->stripes[index].dev; 5893 5894 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5895 return index; 5896 } 5897 5898 /* If no read-preferred device is set use the first stripe. */ 5899 return first; 5900 } 5901 5902 struct stripe_mirror { 5903 u64 devid; 5904 int num; 5905 }; 5906 5907 static int btrfs_cmp_devid(const void *a, const void *b) 5908 { 5909 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5910 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5911 5912 if (s1->devid < s2->devid) 5913 return -1; 5914 if (s1->devid > s2->devid) 5915 return 1; 5916 return 0; 5917 } 5918 5919 /* 5920 * Select a stripe for reading using the round-robin algorithm. 5921 * 5922 * 1. Compute the read cycle as the total sectors read divided by the minimum 5923 * sectors per device. 5924 * 2. Determine the stripe number for the current read by taking the modulus 5925 * of the read cycle with the total number of stripes: 5926 * 5927 * stripe index = (total sectors / min sectors per dev) % num stripes 5928 * 5929 * The calculated stripe index is then used to select the corresponding device 5930 * from the list of devices, which is ordered by devid. 5931 */ 5932 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5933 { 5934 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5935 struct btrfs_device *device = map->stripes[first].dev; 5936 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5937 unsigned int read_cycle; 5938 unsigned int total_reads; 5939 unsigned int min_reads_per_dev; 5940 5941 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5942 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5943 fs_info->sectorsize_bits; 5944 5945 for (int index = 0, i = first; i < first + num_stripes; i++) { 5946 stripes[index].devid = map->stripes[i].dev->devid; 5947 stripes[index].num = i; 5948 index++; 5949 } 5950 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5951 btrfs_cmp_devid, NULL); 5952 5953 read_cycle = total_reads / min_reads_per_dev; 5954 return stripes[read_cycle % num_stripes].num; 5955 } 5956 #endif 5957 5958 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5959 struct btrfs_chunk_map *map, int first, 5960 bool dev_replace_is_ongoing) 5961 { 5962 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5963 int i; 5964 int num_stripes; 5965 int preferred_mirror; 5966 int tolerance; 5967 struct btrfs_device *srcdev; 5968 5969 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 5970 "type=%llu", map->type); 5971 5972 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5973 num_stripes = map->sub_stripes; 5974 else 5975 num_stripes = map->num_stripes; 5976 5977 switch (policy) { 5978 default: 5979 /* Shouldn't happen, just warn and use pid instead of failing */ 5980 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 5981 policy); 5982 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 5983 fallthrough; 5984 case BTRFS_READ_POLICY_PID: 5985 preferred_mirror = first + (current->pid % num_stripes); 5986 break; 5987 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5988 case BTRFS_READ_POLICY_RR: 5989 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 5990 break; 5991 case BTRFS_READ_POLICY_DEVID: 5992 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 5993 break; 5994 #endif 5995 } 5996 5997 if (dev_replace_is_ongoing && 5998 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5999 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6000 srcdev = fs_info->dev_replace.srcdev; 6001 else 6002 srcdev = NULL; 6003 6004 /* 6005 * try to avoid the drive that is the source drive for a 6006 * dev-replace procedure, only choose it if no other non-missing 6007 * mirror is available 6008 */ 6009 for (tolerance = 0; tolerance < 2; tolerance++) { 6010 if (map->stripes[preferred_mirror].dev->bdev && 6011 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6012 return preferred_mirror; 6013 for (i = first; i < first + num_stripes; i++) { 6014 if (map->stripes[i].dev->bdev && 6015 (tolerance || map->stripes[i].dev != srcdev)) 6016 return i; 6017 } 6018 } 6019 6020 /* we couldn't find one that doesn't fail. Just return something 6021 * and the io error handling code will clean up eventually 6022 */ 6023 return preferred_mirror; 6024 } 6025 6026 EXPORT_FOR_TESTS 6027 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6028 u64 logical, u16 total_stripes) 6029 { 6030 struct btrfs_io_context *bioc; 6031 6032 bioc = kzalloc(struct_size(bioc, stripes, total_stripes), GFP_NOFS); 6033 6034 if (!bioc) 6035 return NULL; 6036 6037 refcount_set(&bioc->refs, 1); 6038 6039 bioc->fs_info = fs_info; 6040 bioc->replace_stripe_src = -1; 6041 bioc->full_stripe_logical = (u64)-1; 6042 bioc->logical = logical; 6043 6044 return bioc; 6045 } 6046 6047 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6048 { 6049 WARN_ON(!refcount_read(&bioc->refs)); 6050 refcount_inc(&bioc->refs); 6051 } 6052 6053 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6054 { 6055 if (!bioc) 6056 return; 6057 if (refcount_dec_and_test(&bioc->refs)) 6058 kfree(bioc); 6059 } 6060 6061 /* 6062 * Please note that, discard won't be sent to target device of device 6063 * replace. 6064 */ 6065 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6066 u64 logical, u64 *length_ret, 6067 u32 *num_stripes) 6068 { 6069 struct btrfs_chunk_map *map; 6070 struct btrfs_discard_stripe *stripes; 6071 u64 length = *length_ret; 6072 u64 offset; 6073 u32 stripe_nr; 6074 u32 stripe_nr_end; 6075 u32 stripe_cnt; 6076 u64 stripe_end_offset; 6077 u64 stripe_offset; 6078 u32 stripe_index; 6079 u32 factor = 0; 6080 u32 sub_stripes = 0; 6081 u32 stripes_per_dev = 0; 6082 u32 remaining_stripes = 0; 6083 u32 last_stripe = 0; 6084 int ret; 6085 int i; 6086 6087 map = btrfs_get_chunk_map(fs_info, logical, length); 6088 if (IS_ERR(map)) 6089 return ERR_CAST(map); 6090 6091 /* we don't discard raid56 yet */ 6092 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6093 ret = -EOPNOTSUPP; 6094 goto out_free_map; 6095 } 6096 6097 offset = logical - map->start; 6098 length = min_t(u64, map->start + map->chunk_len - logical, length); 6099 *length_ret = length; 6100 6101 /* 6102 * stripe_nr counts the total number of stripes we have to stride 6103 * to get to this block 6104 */ 6105 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6106 6107 /* stripe_offset is the offset of this block in its stripe */ 6108 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6109 6110 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6111 BTRFS_STRIPE_LEN_SHIFT; 6112 stripe_cnt = stripe_nr_end - stripe_nr; 6113 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6114 (offset + length); 6115 /* 6116 * after this, stripe_nr is the number of stripes on this 6117 * device we have to walk to find the data, and stripe_index is 6118 * the number of our device in the stripe array 6119 */ 6120 *num_stripes = 1; 6121 stripe_index = 0; 6122 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6123 BTRFS_BLOCK_GROUP_RAID10)) { 6124 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6125 sub_stripes = 1; 6126 else 6127 sub_stripes = map->sub_stripes; 6128 6129 factor = map->num_stripes / sub_stripes; 6130 *num_stripes = min_t(u64, map->num_stripes, 6131 sub_stripes * stripe_cnt); 6132 stripe_index = stripe_nr % factor; 6133 stripe_nr /= factor; 6134 stripe_index *= sub_stripes; 6135 6136 remaining_stripes = stripe_cnt % factor; 6137 stripes_per_dev = stripe_cnt / factor; 6138 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6139 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6140 BTRFS_BLOCK_GROUP_DUP)) { 6141 *num_stripes = map->num_stripes; 6142 } else { 6143 stripe_index = stripe_nr % map->num_stripes; 6144 stripe_nr /= map->num_stripes; 6145 } 6146 6147 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6148 if (!stripes) { 6149 ret = -ENOMEM; 6150 goto out_free_map; 6151 } 6152 6153 for (i = 0; i < *num_stripes; i++) { 6154 stripes[i].physical = 6155 map->stripes[stripe_index].physical + 6156 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6157 stripes[i].dev = map->stripes[stripe_index].dev; 6158 6159 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6160 BTRFS_BLOCK_GROUP_RAID10)) { 6161 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6162 6163 if (i / sub_stripes < remaining_stripes) 6164 stripes[i].length += BTRFS_STRIPE_LEN; 6165 6166 /* 6167 * Special for the first stripe and 6168 * the last stripe: 6169 * 6170 * |-------|...|-------| 6171 * |----------| 6172 * off end_off 6173 */ 6174 if (i < sub_stripes) 6175 stripes[i].length -= stripe_offset; 6176 6177 if (stripe_index >= last_stripe && 6178 stripe_index <= (last_stripe + 6179 sub_stripes - 1)) 6180 stripes[i].length -= stripe_end_offset; 6181 6182 if (i == sub_stripes - 1) 6183 stripe_offset = 0; 6184 } else { 6185 stripes[i].length = length; 6186 } 6187 6188 stripe_index++; 6189 if (stripe_index == map->num_stripes) { 6190 stripe_index = 0; 6191 stripe_nr++; 6192 } 6193 } 6194 6195 btrfs_free_chunk_map(map); 6196 return stripes; 6197 out_free_map: 6198 btrfs_free_chunk_map(map); 6199 return ERR_PTR(ret); 6200 } 6201 6202 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6203 { 6204 struct btrfs_block_group *cache; 6205 bool ret; 6206 6207 /* Non zoned filesystem does not use "to_copy" flag */ 6208 if (!btrfs_is_zoned(fs_info)) 6209 return false; 6210 6211 cache = btrfs_lookup_block_group(fs_info, logical); 6212 6213 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6214 6215 btrfs_put_block_group(cache); 6216 return ret; 6217 } 6218 6219 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6220 struct btrfs_dev_replace *dev_replace, 6221 u64 logical, 6222 struct btrfs_io_geometry *io_geom) 6223 { 6224 u64 srcdev_devid = dev_replace->srcdev->devid; 6225 /* 6226 * At this stage, num_stripes is still the real number of stripes, 6227 * excluding the duplicated stripes. 6228 */ 6229 int num_stripes = io_geom->num_stripes; 6230 int max_errors = io_geom->max_errors; 6231 int nr_extra_stripes = 0; 6232 int i; 6233 6234 /* 6235 * A block group which has "to_copy" set will eventually be copied by 6236 * the dev-replace process. We can avoid cloning IO here. 6237 */ 6238 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6239 return; 6240 6241 /* 6242 * Duplicate the write operations while the dev-replace procedure is 6243 * running. Since the copying of the old disk to the new disk takes 6244 * place at run time while the filesystem is mounted writable, the 6245 * regular write operations to the old disk have to be duplicated to go 6246 * to the new disk as well. 6247 * 6248 * Note that device->missing is handled by the caller, and that the 6249 * write to the old disk is already set up in the stripes array. 6250 */ 6251 for (i = 0; i < num_stripes; i++) { 6252 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6253 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6254 6255 if (old->dev->devid != srcdev_devid) 6256 continue; 6257 6258 new->physical = old->physical; 6259 new->dev = dev_replace->tgtdev; 6260 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6261 bioc->replace_stripe_src = i; 6262 nr_extra_stripes++; 6263 } 6264 6265 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6266 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6267 /* 6268 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6269 * replace. 6270 * If we have 2 extra stripes, only choose the one with smaller physical. 6271 */ 6272 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6273 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6274 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6275 6276 /* Only DUP can have two extra stripes. */ 6277 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6278 "map_type=%llu", bioc->map_type); 6279 6280 /* 6281 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6282 * The extra stripe would still be there, but won't be accessed. 6283 */ 6284 if (first->physical > second->physical) { 6285 swap(second->physical, first->physical); 6286 swap(second->dev, first->dev); 6287 nr_extra_stripes--; 6288 } 6289 } 6290 6291 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6292 io_geom->max_errors = max_errors + nr_extra_stripes; 6293 bioc->replace_nr_stripes = nr_extra_stripes; 6294 } 6295 6296 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6297 struct btrfs_io_geometry *io_geom) 6298 { 6299 /* 6300 * Stripe_nr is the stripe where this block falls. stripe_offset is 6301 * the offset of this block in its stripe. 6302 */ 6303 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6304 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6305 ASSERT(io_geom->stripe_offset < U32_MAX, 6306 "stripe_offset=%llu", io_geom->stripe_offset); 6307 6308 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6309 unsigned long full_stripe_len = 6310 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6311 6312 /* 6313 * For full stripe start, we use previously calculated 6314 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6315 * STRIPE_LEN. 6316 * 6317 * By this we can avoid u64 division completely. And we have 6318 * to go rounddown(), not round_down(), as nr_data_stripes is 6319 * not ensured to be power of 2. 6320 */ 6321 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6322 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6323 6324 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6325 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6326 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6327 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6328 "raid56_full_stripe_start=%llu offset=%llu", 6329 io_geom->raid56_full_stripe_start, offset); 6330 /* 6331 * For writes to RAID56, allow to write a full stripe set, but 6332 * no straddling of stripe sets. 6333 */ 6334 if (io_geom->op == BTRFS_MAP_WRITE) 6335 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6336 } 6337 6338 /* 6339 * For other RAID types and for RAID56 reads, allow a single stripe (on 6340 * a single disk). 6341 */ 6342 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6343 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6344 return U64_MAX; 6345 } 6346 6347 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6348 u64 *length, struct btrfs_io_stripe *dst, 6349 struct btrfs_chunk_map *map, 6350 struct btrfs_io_geometry *io_geom) 6351 { 6352 dst->dev = map->stripes[io_geom->stripe_index].dev; 6353 6354 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6355 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6356 map->type, 6357 io_geom->stripe_index, dst); 6358 6359 dst->physical = map->stripes[io_geom->stripe_index].physical + 6360 io_geom->stripe_offset + 6361 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6362 return 0; 6363 } 6364 6365 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6366 const struct btrfs_io_stripe *smap, 6367 const struct btrfs_chunk_map *map, 6368 int num_alloc_stripes, 6369 struct btrfs_io_geometry *io_geom) 6370 { 6371 if (!smap) 6372 return false; 6373 6374 if (num_alloc_stripes != 1) 6375 return false; 6376 6377 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6378 return false; 6379 6380 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6381 return false; 6382 6383 return true; 6384 } 6385 6386 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6387 struct btrfs_io_geometry *io_geom) 6388 { 6389 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6390 io_geom->stripe_nr /= map->num_stripes; 6391 if (io_geom->op == BTRFS_MAP_READ) 6392 io_geom->mirror_num = 1; 6393 } 6394 6395 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6396 struct btrfs_chunk_map *map, 6397 struct btrfs_io_geometry *io_geom, 6398 bool dev_replace_is_ongoing) 6399 { 6400 if (io_geom->op != BTRFS_MAP_READ) { 6401 io_geom->num_stripes = map->num_stripes; 6402 return; 6403 } 6404 6405 if (io_geom->mirror_num) { 6406 io_geom->stripe_index = io_geom->mirror_num - 1; 6407 return; 6408 } 6409 6410 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6411 dev_replace_is_ongoing); 6412 io_geom->mirror_num = io_geom->stripe_index + 1; 6413 } 6414 6415 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6416 struct btrfs_io_geometry *io_geom) 6417 { 6418 if (io_geom->op != BTRFS_MAP_READ) { 6419 io_geom->num_stripes = map->num_stripes; 6420 return; 6421 } 6422 6423 if (io_geom->mirror_num) { 6424 io_geom->stripe_index = io_geom->mirror_num - 1; 6425 return; 6426 } 6427 6428 io_geom->mirror_num = 1; 6429 } 6430 6431 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6432 struct btrfs_chunk_map *map, 6433 struct btrfs_io_geometry *io_geom, 6434 bool dev_replace_is_ongoing) 6435 { 6436 u32 factor = map->num_stripes / map->sub_stripes; 6437 int old_stripe_index; 6438 6439 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6440 io_geom->stripe_nr /= factor; 6441 6442 if (io_geom->op != BTRFS_MAP_READ) { 6443 io_geom->num_stripes = map->sub_stripes; 6444 return; 6445 } 6446 6447 if (io_geom->mirror_num) { 6448 io_geom->stripe_index += io_geom->mirror_num - 1; 6449 return; 6450 } 6451 6452 old_stripe_index = io_geom->stripe_index; 6453 io_geom->stripe_index = find_live_mirror(fs_info, map, 6454 io_geom->stripe_index, 6455 dev_replace_is_ongoing); 6456 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6457 } 6458 6459 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6460 struct btrfs_io_geometry *io_geom, 6461 u64 logical, u64 *length) 6462 { 6463 int data_stripes = nr_data_stripes(map); 6464 6465 /* 6466 * Needs full stripe mapping. 6467 * 6468 * Push stripe_nr back to the start of the full stripe For those cases 6469 * needing a full stripe, @stripe_nr is the full stripe number. 6470 * 6471 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6472 * that can be expensive. Here we just divide @stripe_nr with 6473 * @data_stripes. 6474 */ 6475 io_geom->stripe_nr /= data_stripes; 6476 6477 /* RAID[56] write or recovery. Return all stripes */ 6478 io_geom->num_stripes = map->num_stripes; 6479 io_geom->max_errors = btrfs_chunk_max_errors(map); 6480 6481 /* Return the length to the full stripe end. */ 6482 *length = min(logical + *length, 6483 io_geom->raid56_full_stripe_start + map->start + 6484 btrfs_stripe_nr_to_offset(data_stripes)) - 6485 logical; 6486 io_geom->stripe_index = 0; 6487 io_geom->stripe_offset = 0; 6488 } 6489 6490 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6491 struct btrfs_io_geometry *io_geom) 6492 { 6493 int data_stripes = nr_data_stripes(map); 6494 6495 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6496 /* Just grab the data stripe directly. */ 6497 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6498 io_geom->stripe_nr /= data_stripes; 6499 6500 /* We distribute the parity blocks across stripes. */ 6501 io_geom->stripe_index = 6502 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6503 6504 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6505 io_geom->mirror_num = 1; 6506 } 6507 6508 static void map_blocks_single(const struct btrfs_chunk_map *map, 6509 struct btrfs_io_geometry *io_geom) 6510 { 6511 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6512 io_geom->stripe_nr /= map->num_stripes; 6513 io_geom->mirror_num = io_geom->stripe_index + 1; 6514 } 6515 6516 /* 6517 * Map one logical range to one or more physical ranges. 6518 * 6519 * @length: (Mandatory) mapped length of this run. 6520 * One logical range can be split into different segments 6521 * due to factors like zones and RAID0/5/6/10 stripe 6522 * boundaries. 6523 * 6524 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6525 * which has one or more physical ranges (btrfs_io_stripe) 6526 * recorded inside. 6527 * Caller should call btrfs_put_bioc() to free it after use. 6528 * 6529 * @smap: (Optional) single physical range optimization. 6530 * If the map request can be fulfilled by one single 6531 * physical range, and this is parameter is not NULL, 6532 * then @bioc_ret would be NULL, and @smap would be 6533 * updated. 6534 * 6535 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6536 * value is 0. 6537 * 6538 * Mirror number 0 means to choose any live mirrors. 6539 * 6540 * For non-RAID56 profiles, non-zero mirror_num means 6541 * the Nth mirror. (e.g. mirror_num 1 means the first 6542 * copy). 6543 * 6544 * For RAID56 profile, mirror 1 means rebuild from P and 6545 * the remaining data stripes. 6546 * 6547 * For RAID6 profile, mirror > 2 means mark another 6548 * data/P stripe error and rebuild from the remaining 6549 * stripes.. 6550 */ 6551 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6552 u64 logical, u64 *length, 6553 struct btrfs_io_context **bioc_ret, 6554 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6555 { 6556 struct btrfs_chunk_map *map; 6557 struct btrfs_io_geometry io_geom = { 0 }; 6558 u64 map_offset; 6559 int ret = 0; 6560 int num_copies; 6561 struct btrfs_io_context *bioc = NULL; 6562 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6563 bool dev_replace_is_ongoing = false; 6564 u16 num_alloc_stripes; 6565 u64 max_len; 6566 6567 ASSERT(bioc_ret); 6568 6569 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6570 io_geom.num_stripes = 1; 6571 io_geom.stripe_index = 0; 6572 io_geom.op = op; 6573 6574 map = btrfs_get_chunk_map(fs_info, logical, *length); 6575 if (IS_ERR(map)) 6576 return PTR_ERR(map); 6577 6578 num_copies = btrfs_chunk_map_num_copies(map); 6579 if (io_geom.mirror_num > num_copies) 6580 return -EINVAL; 6581 6582 map_offset = logical - map->start; 6583 io_geom.raid56_full_stripe_start = (u64)-1; 6584 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6585 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6586 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6587 6588 if (dev_replace->replace_task != current) 6589 down_read(&dev_replace->rwsem); 6590 6591 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6592 /* 6593 * Hold the semaphore for read during the whole operation, write is 6594 * requested at commit time but must wait. 6595 */ 6596 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6597 up_read(&dev_replace->rwsem); 6598 6599 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6600 case BTRFS_BLOCK_GROUP_RAID0: 6601 map_blocks_raid0(map, &io_geom); 6602 break; 6603 case BTRFS_BLOCK_GROUP_RAID1: 6604 case BTRFS_BLOCK_GROUP_RAID1C3: 6605 case BTRFS_BLOCK_GROUP_RAID1C4: 6606 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6607 break; 6608 case BTRFS_BLOCK_GROUP_DUP: 6609 map_blocks_dup(map, &io_geom); 6610 break; 6611 case BTRFS_BLOCK_GROUP_RAID10: 6612 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6613 break; 6614 case BTRFS_BLOCK_GROUP_RAID5: 6615 case BTRFS_BLOCK_GROUP_RAID6: 6616 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6617 map_blocks_raid56_write(map, &io_geom, logical, length); 6618 else 6619 map_blocks_raid56_read(map, &io_geom); 6620 break; 6621 default: 6622 /* 6623 * After this, stripe_nr is the number of stripes on this 6624 * device we have to walk to find the data, and stripe_index is 6625 * the number of our device in the stripe array 6626 */ 6627 map_blocks_single(map, &io_geom); 6628 break; 6629 } 6630 if (io_geom.stripe_index >= map->num_stripes) { 6631 btrfs_crit(fs_info, 6632 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6633 io_geom.stripe_index, map->num_stripes); 6634 ret = -EINVAL; 6635 goto out; 6636 } 6637 6638 num_alloc_stripes = io_geom.num_stripes; 6639 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6640 op != BTRFS_MAP_READ) 6641 /* 6642 * For replace case, we need to add extra stripes for extra 6643 * duplicated stripes. 6644 * 6645 * For both WRITE and GET_READ_MIRRORS, we may have at most 6646 * 2 more stripes (DUP types, otherwise 1). 6647 */ 6648 num_alloc_stripes += 2; 6649 6650 /* 6651 * If this I/O maps to a single device, try to return the device and 6652 * physical block information on the stack instead of allocating an 6653 * I/O context structure. 6654 */ 6655 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6656 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6657 if (mirror_num_ret) 6658 *mirror_num_ret = io_geom.mirror_num; 6659 *bioc_ret = NULL; 6660 goto out; 6661 } 6662 6663 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6664 if (!bioc) { 6665 ret = -ENOMEM; 6666 goto out; 6667 } 6668 bioc->map_type = map->type; 6669 bioc->use_rst = io_geom.use_rst; 6670 6671 /* 6672 * For RAID56 full map, we need to make sure the stripes[] follows the 6673 * rule that data stripes are all ordered, then followed with P and Q 6674 * (if we have). 6675 * 6676 * It's still mostly the same as other profiles, just with extra rotation. 6677 */ 6678 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6679 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6680 /* 6681 * For RAID56 @stripe_nr is already the number of full stripes 6682 * before us, which is also the rotation value (needs to modulo 6683 * with num_stripes). 6684 * 6685 * In this case, we just add @stripe_nr with @i, then do the 6686 * modulo, to reduce one modulo call. 6687 */ 6688 bioc->full_stripe_logical = map->start + 6689 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6690 nr_data_stripes(map)); 6691 for (int i = 0; i < io_geom.num_stripes; i++) { 6692 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6693 u32 stripe_index; 6694 6695 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6696 dst->dev = map->stripes[stripe_index].dev; 6697 dst->physical = 6698 map->stripes[stripe_index].physical + 6699 io_geom.stripe_offset + 6700 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6701 } 6702 } else { 6703 /* 6704 * For all other non-RAID56 profiles, just copy the target 6705 * stripe into the bioc. 6706 */ 6707 for (int i = 0; i < io_geom.num_stripes; i++) { 6708 ret = set_io_stripe(fs_info, logical, length, 6709 &bioc->stripes[i], map, &io_geom); 6710 if (ret < 0) 6711 break; 6712 io_geom.stripe_index++; 6713 } 6714 } 6715 6716 if (ret) { 6717 *bioc_ret = NULL; 6718 btrfs_put_bioc(bioc); 6719 goto out; 6720 } 6721 6722 if (op != BTRFS_MAP_READ) 6723 io_geom.max_errors = btrfs_chunk_max_errors(map); 6724 6725 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6726 op != BTRFS_MAP_READ) { 6727 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6728 } 6729 6730 *bioc_ret = bioc; 6731 bioc->num_stripes = io_geom.num_stripes; 6732 bioc->max_errors = io_geom.max_errors; 6733 bioc->mirror_num = io_geom.mirror_num; 6734 6735 out: 6736 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6737 lockdep_assert_held(&dev_replace->rwsem); 6738 /* Unlock and let waiting writers proceed */ 6739 up_read(&dev_replace->rwsem); 6740 } 6741 btrfs_free_chunk_map(map); 6742 return ret; 6743 } 6744 6745 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6746 const struct btrfs_fs_devices *fs_devices) 6747 { 6748 if (args->fsid == NULL) 6749 return true; 6750 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6751 return true; 6752 return false; 6753 } 6754 6755 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6756 const struct btrfs_device *device) 6757 { 6758 if (args->devt) 6759 return device->devt == args->devt; 6760 if (args->missing) { 6761 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6762 !device->bdev) 6763 return true; 6764 return false; 6765 } 6766 6767 if (device->devid != args->devid) 6768 return false; 6769 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6770 return false; 6771 return true; 6772 } 6773 6774 /* 6775 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6776 * return NULL. 6777 * 6778 * If devid and uuid are both specified, the match must be exact, otherwise 6779 * only devid is used. 6780 */ 6781 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6782 const struct btrfs_dev_lookup_args *args) 6783 { 6784 struct btrfs_device *device; 6785 struct btrfs_fs_devices *seed_devs; 6786 6787 if (dev_args_match_fs_devices(args, fs_devices)) { 6788 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6789 if (dev_args_match_device(args, device)) 6790 return device; 6791 } 6792 } 6793 6794 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6795 if (!dev_args_match_fs_devices(args, seed_devs)) 6796 continue; 6797 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6798 if (dev_args_match_device(args, device)) 6799 return device; 6800 } 6801 } 6802 6803 return NULL; 6804 } 6805 6806 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6807 u64 devid, u8 *dev_uuid) 6808 { 6809 struct btrfs_device *device; 6810 unsigned int nofs_flag; 6811 6812 /* 6813 * We call this under the chunk_mutex, so we want to use NOFS for this 6814 * allocation, however we don't want to change btrfs_alloc_device() to 6815 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6816 * places. 6817 */ 6818 6819 nofs_flag = memalloc_nofs_save(); 6820 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6821 memalloc_nofs_restore(nofs_flag); 6822 if (IS_ERR(device)) 6823 return device; 6824 6825 list_add(&device->dev_list, &fs_devices->devices); 6826 device->fs_devices = fs_devices; 6827 fs_devices->num_devices++; 6828 6829 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6830 fs_devices->missing_devices++; 6831 6832 return device; 6833 } 6834 6835 /* 6836 * Allocate new device struct, set up devid and UUID. 6837 * 6838 * @fs_info: used only for generating a new devid, can be NULL if 6839 * devid is provided (i.e. @devid != NULL). 6840 * @devid: a pointer to devid for this device. If NULL a new devid 6841 * is generated. 6842 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6843 * is generated. 6844 * @path: a pointer to device path if available, NULL otherwise. 6845 * 6846 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6847 * on error. Returned struct is not linked onto any lists and must be 6848 * destroyed with btrfs_free_device. 6849 */ 6850 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6851 const u64 *devid, const u8 *uuid, 6852 const char *path) 6853 { 6854 struct btrfs_device *dev; 6855 u64 tmp; 6856 6857 if (WARN_ON(!devid && !fs_info)) 6858 return ERR_PTR(-EINVAL); 6859 6860 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6861 if (!dev) 6862 return ERR_PTR(-ENOMEM); 6863 6864 INIT_LIST_HEAD(&dev->dev_list); 6865 INIT_LIST_HEAD(&dev->dev_alloc_list); 6866 INIT_LIST_HEAD(&dev->post_commit_list); 6867 6868 atomic_set(&dev->dev_stats_ccnt, 0); 6869 btrfs_device_data_ordered_init(dev); 6870 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6871 6872 if (devid) 6873 tmp = *devid; 6874 else { 6875 int ret; 6876 6877 ret = find_next_devid(fs_info, &tmp); 6878 if (ret) { 6879 btrfs_free_device(dev); 6880 return ERR_PTR(ret); 6881 } 6882 } 6883 dev->devid = tmp; 6884 6885 if (uuid) 6886 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6887 else 6888 generate_random_uuid(dev->uuid); 6889 6890 if (path) { 6891 const char *name; 6892 6893 name = kstrdup(path, GFP_KERNEL); 6894 if (!name) { 6895 btrfs_free_device(dev); 6896 return ERR_PTR(-ENOMEM); 6897 } 6898 rcu_assign_pointer(dev->name, name); 6899 } 6900 6901 return dev; 6902 } 6903 6904 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6905 u64 devid, u8 *uuid, bool error) 6906 { 6907 if (error) 6908 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6909 devid, uuid); 6910 else 6911 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6912 devid, uuid); 6913 } 6914 6915 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6916 { 6917 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6918 6919 return div_u64(map->chunk_len, data_stripes); 6920 } 6921 6922 #if BITS_PER_LONG == 32 6923 /* 6924 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6925 * can't be accessed on 32bit systems. 6926 * 6927 * This function do mount time check to reject the fs if it already has 6928 * metadata chunk beyond that limit. 6929 */ 6930 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6931 u64 logical, u64 length, u64 type) 6932 { 6933 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6934 return 0; 6935 6936 if (logical + length < MAX_LFS_FILESIZE) 6937 return 0; 6938 6939 btrfs_err_32bit_limit(fs_info); 6940 return -EOVERFLOW; 6941 } 6942 6943 /* 6944 * This is to give early warning for any metadata chunk reaching 6945 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6946 * Although we can still access the metadata, it's not going to be possible 6947 * once the limit is reached. 6948 */ 6949 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6950 u64 logical, u64 length, u64 type) 6951 { 6952 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6953 return; 6954 6955 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6956 return; 6957 6958 btrfs_warn_32bit_limit(fs_info); 6959 } 6960 #endif 6961 6962 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6963 u64 devid, u8 *uuid) 6964 { 6965 struct btrfs_device *dev; 6966 6967 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6968 btrfs_report_missing_device(fs_info, devid, uuid, true); 6969 return ERR_PTR(-ENOENT); 6970 } 6971 6972 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6973 if (IS_ERR(dev)) { 6974 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6975 devid, PTR_ERR(dev)); 6976 return dev; 6977 } 6978 btrfs_report_missing_device(fs_info, devid, uuid, false); 6979 6980 return dev; 6981 } 6982 6983 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6984 struct btrfs_chunk *chunk) 6985 { 6986 BTRFS_DEV_LOOKUP_ARGS(args); 6987 struct btrfs_fs_info *fs_info = leaf->fs_info; 6988 struct btrfs_chunk_map *map; 6989 u64 logical; 6990 u64 length; 6991 u64 devid; 6992 u64 type; 6993 u8 uuid[BTRFS_UUID_SIZE]; 6994 int index; 6995 int num_stripes; 6996 int ret; 6997 int i; 6998 6999 logical = key->offset; 7000 length = btrfs_chunk_length(leaf, chunk); 7001 type = btrfs_chunk_type(leaf, chunk); 7002 index = btrfs_bg_flags_to_raid_index(type); 7003 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7004 7005 #if BITS_PER_LONG == 32 7006 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7007 if (ret < 0) 7008 return ret; 7009 warn_32bit_meta_chunk(fs_info, logical, length, type); 7010 #endif 7011 7012 map = btrfs_find_chunk_map(fs_info, logical, 1); 7013 7014 /* already mapped? */ 7015 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7016 btrfs_free_chunk_map(map); 7017 return 0; 7018 } else if (map) { 7019 btrfs_free_chunk_map(map); 7020 } 7021 7022 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7023 if (!map) 7024 return -ENOMEM; 7025 7026 map->start = logical; 7027 map->chunk_len = length; 7028 map->num_stripes = num_stripes; 7029 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7030 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7031 map->type = type; 7032 /* 7033 * We can't use the sub_stripes value, as for profiles other than 7034 * RAID10, they may have 0 as sub_stripes for filesystems created by 7035 * older mkfs (<v5.4). 7036 * In that case, it can cause divide-by-zero errors later. 7037 * Since currently sub_stripes is fixed for each profile, let's 7038 * use the trusted value instead. 7039 */ 7040 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7041 map->verified_stripes = 0; 7042 map->stripe_size = btrfs_calc_stripe_length(map); 7043 for (i = 0; i < num_stripes; i++) { 7044 map->stripes[i].physical = 7045 btrfs_stripe_offset_nr(leaf, chunk, i); 7046 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7047 args.devid = devid; 7048 read_extent_buffer(leaf, uuid, (unsigned long) 7049 btrfs_stripe_dev_uuid_nr(chunk, i), 7050 BTRFS_UUID_SIZE); 7051 args.uuid = uuid; 7052 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7053 if (!map->stripes[i].dev) { 7054 map->stripes[i].dev = handle_missing_device(fs_info, 7055 devid, uuid); 7056 if (IS_ERR(map->stripes[i].dev)) { 7057 ret = PTR_ERR(map->stripes[i].dev); 7058 btrfs_free_chunk_map(map); 7059 return ret; 7060 } 7061 } 7062 7063 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7064 &(map->stripes[i].dev->dev_state)); 7065 } 7066 7067 ret = btrfs_add_chunk_map(fs_info, map); 7068 if (ret < 0) { 7069 btrfs_err(fs_info, 7070 "failed to add chunk map, start=%llu len=%llu: %d", 7071 map->start, map->chunk_len, ret); 7072 btrfs_free_chunk_map(map); 7073 } 7074 7075 return ret; 7076 } 7077 7078 static void fill_device_from_item(struct extent_buffer *leaf, 7079 struct btrfs_dev_item *dev_item, 7080 struct btrfs_device *device) 7081 { 7082 unsigned long ptr; 7083 7084 device->devid = btrfs_device_id(leaf, dev_item); 7085 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7086 device->total_bytes = device->disk_total_bytes; 7087 device->commit_total_bytes = device->disk_total_bytes; 7088 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7089 device->commit_bytes_used = device->bytes_used; 7090 device->type = btrfs_device_type(leaf, dev_item); 7091 device->io_align = btrfs_device_io_align(leaf, dev_item); 7092 device->io_width = btrfs_device_io_width(leaf, dev_item); 7093 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7094 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7095 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7096 7097 ptr = btrfs_device_uuid(dev_item); 7098 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7099 } 7100 7101 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7102 u8 *fsid) 7103 { 7104 struct btrfs_fs_devices *fs_devices; 7105 int ret; 7106 7107 lockdep_assert_held(&uuid_mutex); 7108 ASSERT(fsid); 7109 7110 /* This will match only for multi-device seed fs */ 7111 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7112 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7113 return fs_devices; 7114 7115 7116 fs_devices = find_fsid(fsid, NULL); 7117 if (!fs_devices) { 7118 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7119 btrfs_err(fs_info, 7120 "failed to find fsid %pU when attempting to open seed devices", 7121 fsid); 7122 return ERR_PTR(-ENOENT); 7123 } 7124 7125 fs_devices = alloc_fs_devices(fsid); 7126 if (IS_ERR(fs_devices)) 7127 return fs_devices; 7128 7129 fs_devices->seeding = true; 7130 fs_devices->opened = 1; 7131 return fs_devices; 7132 } 7133 7134 /* 7135 * Upon first call for a seed fs fsid, just create a private copy of the 7136 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7137 */ 7138 fs_devices = clone_fs_devices(fs_devices); 7139 if (IS_ERR(fs_devices)) 7140 return fs_devices; 7141 7142 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7143 if (ret) { 7144 free_fs_devices(fs_devices); 7145 return ERR_PTR(ret); 7146 } 7147 7148 if (!fs_devices->seeding) { 7149 close_fs_devices(fs_devices); 7150 free_fs_devices(fs_devices); 7151 return ERR_PTR(-EINVAL); 7152 } 7153 7154 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7155 7156 return fs_devices; 7157 } 7158 7159 static int read_one_dev(struct extent_buffer *leaf, 7160 struct btrfs_dev_item *dev_item) 7161 { 7162 BTRFS_DEV_LOOKUP_ARGS(args); 7163 struct btrfs_fs_info *fs_info = leaf->fs_info; 7164 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7165 struct btrfs_device *device; 7166 u64 devid; 7167 int ret; 7168 u8 fs_uuid[BTRFS_FSID_SIZE]; 7169 u8 dev_uuid[BTRFS_UUID_SIZE]; 7170 7171 devid = btrfs_device_id(leaf, dev_item); 7172 args.devid = devid; 7173 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7174 BTRFS_UUID_SIZE); 7175 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7176 BTRFS_FSID_SIZE); 7177 args.uuid = dev_uuid; 7178 args.fsid = fs_uuid; 7179 7180 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7181 fs_devices = open_seed_devices(fs_info, fs_uuid); 7182 if (IS_ERR(fs_devices)) 7183 return PTR_ERR(fs_devices); 7184 } 7185 7186 device = btrfs_find_device(fs_info->fs_devices, &args); 7187 if (!device) { 7188 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7189 btrfs_report_missing_device(fs_info, devid, 7190 dev_uuid, true); 7191 return -ENOENT; 7192 } 7193 7194 device = add_missing_dev(fs_devices, devid, dev_uuid); 7195 if (IS_ERR(device)) { 7196 btrfs_err(fs_info, 7197 "failed to add missing dev %llu: %ld", 7198 devid, PTR_ERR(device)); 7199 return PTR_ERR(device); 7200 } 7201 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7202 } else { 7203 if (!device->bdev) { 7204 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7205 btrfs_report_missing_device(fs_info, 7206 devid, dev_uuid, true); 7207 return -ENOENT; 7208 } 7209 btrfs_report_missing_device(fs_info, devid, 7210 dev_uuid, false); 7211 } 7212 7213 if (!device->bdev && 7214 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7215 /* 7216 * this happens when a device that was properly setup 7217 * in the device info lists suddenly goes bad. 7218 * device->bdev is NULL, and so we have to set 7219 * device->missing to one here 7220 */ 7221 device->fs_devices->missing_devices++; 7222 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7223 } 7224 7225 /* Move the device to its own fs_devices */ 7226 if (device->fs_devices != fs_devices) { 7227 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7228 &device->dev_state)); 7229 7230 list_move(&device->dev_list, &fs_devices->devices); 7231 device->fs_devices->num_devices--; 7232 fs_devices->num_devices++; 7233 7234 device->fs_devices->missing_devices--; 7235 fs_devices->missing_devices++; 7236 7237 device->fs_devices = fs_devices; 7238 } 7239 } 7240 7241 if (device->fs_devices != fs_info->fs_devices) { 7242 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7243 if (device->generation != 7244 btrfs_device_generation(leaf, dev_item)) 7245 return -EINVAL; 7246 } 7247 7248 fill_device_from_item(leaf, dev_item, device); 7249 if (device->bdev) { 7250 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7251 7252 if (device->total_bytes > max_total_bytes) { 7253 btrfs_err(fs_info, 7254 "device total_bytes should be at most %llu but found %llu", 7255 max_total_bytes, device->total_bytes); 7256 return -EINVAL; 7257 } 7258 } 7259 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7260 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7261 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7262 device->fs_devices->total_rw_bytes += device->total_bytes; 7263 atomic64_add(device->total_bytes - device->bytes_used, 7264 &fs_info->free_chunk_space); 7265 } 7266 ret = 0; 7267 return ret; 7268 } 7269 7270 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7271 { 7272 struct btrfs_super_block *super_copy = fs_info->super_copy; 7273 struct extent_buffer *sb; 7274 u8 *array_ptr; 7275 unsigned long sb_array_offset; 7276 int ret = 0; 7277 u32 array_size; 7278 u32 cur_offset; 7279 struct btrfs_key key; 7280 7281 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7282 7283 /* 7284 * We allocated a dummy extent, just to use extent buffer accessors. 7285 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7286 * that's fine, we will not go beyond system chunk array anyway. 7287 */ 7288 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7289 if (!sb) 7290 return -ENOMEM; 7291 set_extent_buffer_uptodate(sb); 7292 7293 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7294 array_size = btrfs_super_sys_array_size(super_copy); 7295 7296 array_ptr = super_copy->sys_chunk_array; 7297 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7298 cur_offset = 0; 7299 7300 while (cur_offset < array_size) { 7301 struct btrfs_chunk *chunk; 7302 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7303 u32 len = sizeof(*disk_key); 7304 7305 /* 7306 * The sys_chunk_array has been already verified at super block 7307 * read time. Only do ASSERT()s for basic checks. 7308 */ 7309 ASSERT(cur_offset + len <= array_size); 7310 7311 btrfs_disk_key_to_cpu(&key, disk_key); 7312 7313 array_ptr += len; 7314 sb_array_offset += len; 7315 cur_offset += len; 7316 7317 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7318 7319 chunk = (struct btrfs_chunk *)sb_array_offset; 7320 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7321 7322 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7323 7324 ASSERT(cur_offset + len <= array_size); 7325 7326 ret = read_one_chunk(&key, sb, chunk); 7327 if (ret) 7328 break; 7329 7330 array_ptr += len; 7331 sb_array_offset += len; 7332 cur_offset += len; 7333 } 7334 clear_extent_buffer_uptodate(sb); 7335 free_extent_buffer_stale(sb); 7336 return ret; 7337 } 7338 7339 /* 7340 * Check if all chunks in the fs are OK for read-write degraded mount 7341 * 7342 * If the @failing_dev is specified, it's accounted as missing. 7343 * 7344 * Return true if all chunks meet the minimal RW mount requirements. 7345 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7346 */ 7347 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7348 struct btrfs_device *failing_dev) 7349 { 7350 struct btrfs_chunk_map *map; 7351 u64 next_start; 7352 bool ret = true; 7353 7354 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7355 /* No chunk at all? Return false anyway */ 7356 if (!map) { 7357 ret = false; 7358 goto out; 7359 } 7360 while (map) { 7361 int missing = 0; 7362 int max_tolerated; 7363 int i; 7364 7365 max_tolerated = 7366 btrfs_get_num_tolerated_disk_barrier_failures( 7367 map->type); 7368 for (i = 0; i < map->num_stripes; i++) { 7369 struct btrfs_device *dev = map->stripes[i].dev; 7370 7371 if (!dev || !dev->bdev || 7372 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7373 dev->last_flush_error) 7374 missing++; 7375 else if (failing_dev && failing_dev == dev) 7376 missing++; 7377 } 7378 if (missing > max_tolerated) { 7379 if (!failing_dev) 7380 btrfs_warn(fs_info, 7381 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7382 map->start, missing, max_tolerated); 7383 btrfs_free_chunk_map(map); 7384 ret = false; 7385 goto out; 7386 } 7387 next_start = map->start + map->chunk_len; 7388 btrfs_free_chunk_map(map); 7389 7390 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7391 } 7392 out: 7393 return ret; 7394 } 7395 7396 static void readahead_tree_node_children(struct extent_buffer *node) 7397 { 7398 int i; 7399 const int nr_items = btrfs_header_nritems(node); 7400 7401 for (i = 0; i < nr_items; i++) 7402 btrfs_readahead_node_child(node, i); 7403 } 7404 7405 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7406 { 7407 struct btrfs_root *root = fs_info->chunk_root; 7408 BTRFS_PATH_AUTO_FREE(path); 7409 struct extent_buffer *leaf; 7410 struct btrfs_key key; 7411 struct btrfs_key found_key; 7412 int ret; 7413 int slot; 7414 int iter_ret = 0; 7415 u64 total_dev = 0; 7416 u64 last_ra_node = 0; 7417 7418 path = btrfs_alloc_path(); 7419 if (!path) 7420 return -ENOMEM; 7421 7422 /* 7423 * uuid_mutex is needed only if we are mounting a sprout FS 7424 * otherwise we don't need it. 7425 */ 7426 mutex_lock(&uuid_mutex); 7427 7428 /* 7429 * It is possible for mount and umount to race in such a way that 7430 * we execute this code path, but open_fs_devices failed to clear 7431 * total_rw_bytes. We certainly want it cleared before reading the 7432 * device items, so clear it here. 7433 */ 7434 fs_info->fs_devices->total_rw_bytes = 0; 7435 7436 /* 7437 * Lockdep complains about possible circular locking dependency between 7438 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7439 * used for freeze protection of a fs (struct super_block.s_writers), 7440 * which we take when starting a transaction, and extent buffers of the 7441 * chunk tree if we call read_one_dev() while holding a lock on an 7442 * extent buffer of the chunk tree. Since we are mounting the filesystem 7443 * and at this point there can't be any concurrent task modifying the 7444 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7445 */ 7446 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7447 path->skip_locking = true; 7448 7449 /* 7450 * Read all device items, and then all the chunk items. All 7451 * device items are found before any chunk item (their object id 7452 * is smaller than the lowest possible object id for a chunk 7453 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7454 */ 7455 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7456 key.type = 0; 7457 key.offset = 0; 7458 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7459 struct extent_buffer *node = path->nodes[1]; 7460 7461 leaf = path->nodes[0]; 7462 slot = path->slots[0]; 7463 7464 if (node) { 7465 if (last_ra_node != node->start) { 7466 readahead_tree_node_children(node); 7467 last_ra_node = node->start; 7468 } 7469 } 7470 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7471 struct btrfs_dev_item *dev_item; 7472 dev_item = btrfs_item_ptr(leaf, slot, 7473 struct btrfs_dev_item); 7474 ret = read_one_dev(leaf, dev_item); 7475 if (ret) 7476 goto error; 7477 total_dev++; 7478 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7479 struct btrfs_chunk *chunk; 7480 7481 /* 7482 * We are only called at mount time, so no need to take 7483 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7484 * we always lock first fs_info->chunk_mutex before 7485 * acquiring any locks on the chunk tree. This is a 7486 * requirement for chunk allocation, see the comment on 7487 * top of btrfs_chunk_alloc() for details. 7488 */ 7489 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7490 ret = read_one_chunk(&found_key, leaf, chunk); 7491 if (ret) 7492 goto error; 7493 } 7494 } 7495 /* Catch error found during iteration */ 7496 if (iter_ret < 0) { 7497 ret = iter_ret; 7498 goto error; 7499 } 7500 7501 /* 7502 * After loading chunk tree, we've got all device information, 7503 * do another round of validation checks. 7504 */ 7505 if (total_dev != fs_info->fs_devices->total_devices) { 7506 btrfs_warn(fs_info, 7507 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7508 btrfs_super_num_devices(fs_info->super_copy), 7509 total_dev); 7510 fs_info->fs_devices->total_devices = total_dev; 7511 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7512 } 7513 if (btrfs_super_total_bytes(fs_info->super_copy) < 7514 fs_info->fs_devices->total_rw_bytes) { 7515 btrfs_err(fs_info, 7516 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7517 btrfs_super_total_bytes(fs_info->super_copy), 7518 fs_info->fs_devices->total_rw_bytes); 7519 ret = -EINVAL; 7520 goto error; 7521 } 7522 ret = 0; 7523 error: 7524 mutex_unlock(&uuid_mutex); 7525 return ret; 7526 } 7527 7528 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7529 { 7530 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7531 struct btrfs_device *device; 7532 int ret = 0; 7533 7534 mutex_lock(&fs_devices->device_list_mutex); 7535 list_for_each_entry(device, &fs_devices->devices, dev_list) 7536 device->fs_info = fs_info; 7537 7538 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7539 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7540 device->fs_info = fs_info; 7541 ret = btrfs_get_dev_zone_info(device, false); 7542 if (ret) 7543 break; 7544 } 7545 7546 seed_devs->fs_info = fs_info; 7547 } 7548 mutex_unlock(&fs_devices->device_list_mutex); 7549 7550 return ret; 7551 } 7552 7553 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7554 const struct btrfs_dev_stats_item *ptr, 7555 int index) 7556 { 7557 u64 val; 7558 7559 read_extent_buffer(eb, &val, 7560 offsetof(struct btrfs_dev_stats_item, values) + 7561 ((unsigned long)ptr) + (index * sizeof(u64)), 7562 sizeof(val)); 7563 return val; 7564 } 7565 7566 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7567 struct btrfs_dev_stats_item *ptr, 7568 int index, u64 val) 7569 { 7570 write_extent_buffer(eb, &val, 7571 offsetof(struct btrfs_dev_stats_item, values) + 7572 ((unsigned long)ptr) + (index * sizeof(u64)), 7573 sizeof(val)); 7574 } 7575 7576 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7577 struct btrfs_path *path) 7578 { 7579 struct btrfs_dev_stats_item *ptr; 7580 struct extent_buffer *eb; 7581 struct btrfs_key key; 7582 int item_size; 7583 int i, ret, slot; 7584 7585 if (!device->fs_info->dev_root) 7586 return 0; 7587 7588 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7589 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7590 key.offset = device->devid; 7591 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7592 if (ret) { 7593 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7594 btrfs_dev_stat_set(device, i, 0); 7595 device->dev_stats_valid = 1; 7596 btrfs_release_path(path); 7597 return ret < 0 ? ret : 0; 7598 } 7599 slot = path->slots[0]; 7600 eb = path->nodes[0]; 7601 item_size = btrfs_item_size(eb, slot); 7602 7603 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7604 7605 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7606 if (item_size >= (1 + i) * sizeof(__le64)) 7607 btrfs_dev_stat_set(device, i, 7608 btrfs_dev_stats_value(eb, ptr, i)); 7609 else 7610 btrfs_dev_stat_set(device, i, 0); 7611 } 7612 7613 device->dev_stats_valid = 1; 7614 btrfs_dev_stat_print_on_load(device); 7615 btrfs_release_path(path); 7616 7617 return 0; 7618 } 7619 7620 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7621 { 7622 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7623 struct btrfs_device *device; 7624 BTRFS_PATH_AUTO_FREE(path); 7625 int ret = 0; 7626 7627 path = btrfs_alloc_path(); 7628 if (!path) 7629 return -ENOMEM; 7630 7631 mutex_lock(&fs_devices->device_list_mutex); 7632 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7633 ret = btrfs_device_init_dev_stats(device, path); 7634 if (ret) 7635 goto out; 7636 } 7637 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7638 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7639 ret = btrfs_device_init_dev_stats(device, path); 7640 if (ret) 7641 goto out; 7642 } 7643 } 7644 out: 7645 mutex_unlock(&fs_devices->device_list_mutex); 7646 return ret; 7647 } 7648 7649 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7650 struct btrfs_device *device) 7651 { 7652 struct btrfs_fs_info *fs_info = trans->fs_info; 7653 struct btrfs_root *dev_root = fs_info->dev_root; 7654 BTRFS_PATH_AUTO_FREE(path); 7655 struct btrfs_key key; 7656 struct extent_buffer *eb; 7657 struct btrfs_dev_stats_item *ptr; 7658 int ret; 7659 int i; 7660 7661 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7662 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7663 key.offset = device->devid; 7664 7665 path = btrfs_alloc_path(); 7666 if (!path) 7667 return -ENOMEM; 7668 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7669 if (ret < 0) { 7670 btrfs_warn(fs_info, 7671 "error %d while searching for dev_stats item for device %s", 7672 ret, btrfs_dev_name(device)); 7673 return ret; 7674 } 7675 7676 if (ret == 0 && 7677 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7678 /* need to delete old one and insert a new one */ 7679 ret = btrfs_del_item(trans, dev_root, path); 7680 if (ret != 0) { 7681 btrfs_warn(fs_info, 7682 "delete too small dev_stats item for device %s failed %d", 7683 btrfs_dev_name(device), ret); 7684 return ret; 7685 } 7686 ret = 1; 7687 } 7688 7689 if (ret == 1) { 7690 /* need to insert a new item */ 7691 btrfs_release_path(path); 7692 ret = btrfs_insert_empty_item(trans, dev_root, path, 7693 &key, sizeof(*ptr)); 7694 if (ret < 0) { 7695 btrfs_warn(fs_info, 7696 "insert dev_stats item for device %s failed %d", 7697 btrfs_dev_name(device), ret); 7698 return ret; 7699 } 7700 } 7701 7702 eb = path->nodes[0]; 7703 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7704 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7705 btrfs_set_dev_stats_value(eb, ptr, i, 7706 btrfs_dev_stat_read(device, i)); 7707 return ret; 7708 } 7709 7710 /* 7711 * called from commit_transaction. Writes all changed device stats to disk. 7712 */ 7713 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7714 { 7715 struct btrfs_fs_info *fs_info = trans->fs_info; 7716 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7717 struct btrfs_device *device; 7718 int stats_cnt; 7719 int ret = 0; 7720 7721 mutex_lock(&fs_devices->device_list_mutex); 7722 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7723 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7724 if (!device->dev_stats_valid || stats_cnt == 0) 7725 continue; 7726 7727 7728 /* 7729 * There is a LOAD-LOAD control dependency between the value of 7730 * dev_stats_ccnt and updating the on-disk values which requires 7731 * reading the in-memory counters. Such control dependencies 7732 * require explicit read memory barriers. 7733 * 7734 * This memory barriers pairs with smp_mb__before_atomic in 7735 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7736 * barrier implied by atomic_xchg in 7737 * btrfs_dev_stats_read_and_reset 7738 */ 7739 smp_rmb(); 7740 7741 ret = update_dev_stat_item(trans, device); 7742 if (!ret) 7743 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7744 } 7745 mutex_unlock(&fs_devices->device_list_mutex); 7746 7747 return ret; 7748 } 7749 7750 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7751 { 7752 btrfs_dev_stat_inc(dev, index); 7753 7754 if (!dev->dev_stats_valid) 7755 return; 7756 btrfs_err_rl(dev->fs_info, 7757 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7758 btrfs_dev_name(dev), 7759 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7760 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7764 } 7765 7766 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7767 { 7768 int i; 7769 7770 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7771 if (btrfs_dev_stat_read(dev, i) != 0) 7772 break; 7773 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7774 return; /* all values == 0, suppress message */ 7775 7776 btrfs_info(dev->fs_info, 7777 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7778 btrfs_dev_name(dev), 7779 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7780 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7784 } 7785 7786 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7787 struct btrfs_ioctl_get_dev_stats *stats) 7788 { 7789 BTRFS_DEV_LOOKUP_ARGS(args); 7790 struct btrfs_device *dev; 7791 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7792 int i; 7793 7794 mutex_lock(&fs_devices->device_list_mutex); 7795 args.devid = stats->devid; 7796 dev = btrfs_find_device(fs_info->fs_devices, &args); 7797 mutex_unlock(&fs_devices->device_list_mutex); 7798 7799 if (!dev) { 7800 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7801 return -ENODEV; 7802 } else if (!dev->dev_stats_valid) { 7803 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7804 return -ENODEV; 7805 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7806 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7807 if (stats->nr_items > i) 7808 stats->values[i] = 7809 btrfs_dev_stat_read_and_reset(dev, i); 7810 else 7811 btrfs_dev_stat_set(dev, i, 0); 7812 } 7813 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7814 current->comm, task_pid_nr(current)); 7815 } else { 7816 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7817 if (stats->nr_items > i) 7818 stats->values[i] = btrfs_dev_stat_read(dev, i); 7819 } 7820 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7821 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7822 return 0; 7823 } 7824 7825 /* 7826 * Update the size and bytes used for each device where it changed. This is 7827 * delayed since we would otherwise get errors while writing out the 7828 * superblocks. 7829 * 7830 * Must be invoked during transaction commit. 7831 */ 7832 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7833 { 7834 struct btrfs_device *curr, *next; 7835 7836 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7837 7838 if (list_empty(&trans->dev_update_list)) 7839 return; 7840 7841 /* 7842 * We don't need the device_list_mutex here. This list is owned by the 7843 * transaction and the transaction must complete before the device is 7844 * released. 7845 */ 7846 mutex_lock(&trans->fs_info->chunk_mutex); 7847 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7848 post_commit_list) { 7849 list_del_init(&curr->post_commit_list); 7850 curr->commit_total_bytes = curr->disk_total_bytes; 7851 curr->commit_bytes_used = curr->bytes_used; 7852 } 7853 mutex_unlock(&trans->fs_info->chunk_mutex); 7854 } 7855 7856 /* 7857 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7858 */ 7859 int btrfs_bg_type_to_factor(u64 flags) 7860 { 7861 const int index = btrfs_bg_flags_to_raid_index(flags); 7862 7863 return btrfs_raid_array[index].ncopies; 7864 } 7865 7866 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7867 u64 chunk_offset, u64 devid, 7868 u64 physical_offset, u64 physical_len) 7869 { 7870 struct btrfs_dev_lookup_args args = { .devid = devid }; 7871 struct btrfs_chunk_map *map; 7872 struct btrfs_device *dev; 7873 u64 stripe_len; 7874 bool found = false; 7875 int ret = 0; 7876 int i; 7877 7878 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7879 if (unlikely(!map)) { 7880 btrfs_err(fs_info, 7881 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7882 physical_offset, devid); 7883 ret = -EUCLEAN; 7884 goto out; 7885 } 7886 7887 stripe_len = btrfs_calc_stripe_length(map); 7888 if (unlikely(physical_len != stripe_len)) { 7889 btrfs_err(fs_info, 7890 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7891 physical_offset, devid, map->start, physical_len, 7892 stripe_len); 7893 ret = -EUCLEAN; 7894 goto out; 7895 } 7896 7897 /* 7898 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 7899 * space. Although kernel can handle it without problem, better to warn 7900 * the users. 7901 */ 7902 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7903 btrfs_warn(fs_info, 7904 "devid %llu physical %llu len %llu inside the reserved space", 7905 devid, physical_offset, physical_len); 7906 7907 for (i = 0; i < map->num_stripes; i++) { 7908 if (unlikely(map->stripes[i].dev->devid == devid && 7909 map->stripes[i].physical == physical_offset)) { 7910 found = true; 7911 if (map->verified_stripes >= map->num_stripes) { 7912 btrfs_err(fs_info, 7913 "too many dev extents for chunk %llu found", 7914 map->start); 7915 ret = -EUCLEAN; 7916 goto out; 7917 } 7918 map->verified_stripes++; 7919 break; 7920 } 7921 } 7922 if (unlikely(!found)) { 7923 btrfs_err(fs_info, 7924 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7925 physical_offset, devid); 7926 ret = -EUCLEAN; 7927 } 7928 7929 /* Make sure no dev extent is beyond device boundary */ 7930 dev = btrfs_find_device(fs_info->fs_devices, &args); 7931 if (unlikely(!dev)) { 7932 btrfs_err(fs_info, "failed to find devid %llu", devid); 7933 ret = -EUCLEAN; 7934 goto out; 7935 } 7936 7937 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) { 7938 btrfs_err(fs_info, 7939 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7940 devid, physical_offset, physical_len, 7941 dev->disk_total_bytes); 7942 ret = -EUCLEAN; 7943 goto out; 7944 } 7945 7946 if (dev->zone_info) { 7947 u64 zone_size = dev->zone_info->zone_size; 7948 7949 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) || 7950 !IS_ALIGNED(physical_len, zone_size))) { 7951 btrfs_err(fs_info, 7952 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7953 devid, physical_offset, physical_len); 7954 ret = -EUCLEAN; 7955 goto out; 7956 } 7957 } 7958 7959 out: 7960 btrfs_free_chunk_map(map); 7961 return ret; 7962 } 7963 7964 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7965 { 7966 struct rb_node *node; 7967 int ret = 0; 7968 7969 read_lock(&fs_info->mapping_tree_lock); 7970 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 7971 struct btrfs_chunk_map *map; 7972 7973 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 7974 if (unlikely(map->num_stripes != map->verified_stripes)) { 7975 btrfs_err(fs_info, 7976 "chunk %llu has missing dev extent, have %d expect %d", 7977 map->start, map->verified_stripes, map->num_stripes); 7978 ret = -EUCLEAN; 7979 goto out; 7980 } 7981 } 7982 out: 7983 read_unlock(&fs_info->mapping_tree_lock); 7984 return ret; 7985 } 7986 7987 /* 7988 * Ensure that all dev extents are mapped to correct chunk, otherwise 7989 * later chunk allocation/free would cause unexpected behavior. 7990 * 7991 * NOTE: This will iterate through the whole device tree, which should be of 7992 * the same size level as the chunk tree. This slightly increases mount time. 7993 */ 7994 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7995 { 7996 BTRFS_PATH_AUTO_FREE(path); 7997 struct btrfs_root *root = fs_info->dev_root; 7998 struct btrfs_key key; 7999 u64 prev_devid = 0; 8000 u64 prev_dev_ext_end = 0; 8001 int ret = 0; 8002 8003 /* 8004 * We don't have a dev_root because we mounted with ignorebadroots and 8005 * failed to load the root, so we want to skip the verification in this 8006 * case for sure. 8007 * 8008 * However if the dev root is fine, but the tree itself is corrupted 8009 * we'd still fail to mount. This verification is only to make sure 8010 * writes can happen safely, so instead just bypass this check 8011 * completely in the case of IGNOREBADROOTS. 8012 */ 8013 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8014 return 0; 8015 8016 key.objectid = 1; 8017 key.type = BTRFS_DEV_EXTENT_KEY; 8018 key.offset = 0; 8019 8020 path = btrfs_alloc_path(); 8021 if (!path) 8022 return -ENOMEM; 8023 8024 path->reada = READA_FORWARD; 8025 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8026 if (ret < 0) 8027 return ret; 8028 8029 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8030 ret = btrfs_next_leaf(root, path); 8031 if (ret < 0) 8032 return ret; 8033 /* No dev extents at all? Not good */ 8034 if (unlikely(ret > 0)) 8035 return -EUCLEAN; 8036 } 8037 while (1) { 8038 struct extent_buffer *leaf = path->nodes[0]; 8039 struct btrfs_dev_extent *dext; 8040 int slot = path->slots[0]; 8041 u64 chunk_offset; 8042 u64 physical_offset; 8043 u64 physical_len; 8044 u64 devid; 8045 8046 btrfs_item_key_to_cpu(leaf, &key, slot); 8047 if (key.type != BTRFS_DEV_EXTENT_KEY) 8048 break; 8049 devid = key.objectid; 8050 physical_offset = key.offset; 8051 8052 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8053 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8054 physical_len = btrfs_dev_extent_length(leaf, dext); 8055 8056 /* Check if this dev extent overlaps with the previous one */ 8057 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) { 8058 btrfs_err(fs_info, 8059 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8060 devid, physical_offset, prev_dev_ext_end); 8061 return -EUCLEAN; 8062 } 8063 8064 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8065 physical_offset, physical_len); 8066 if (ret < 0) 8067 return ret; 8068 prev_devid = devid; 8069 prev_dev_ext_end = physical_offset + physical_len; 8070 8071 ret = btrfs_next_item(root, path); 8072 if (ret < 0) 8073 return ret; 8074 if (ret > 0) { 8075 ret = 0; 8076 break; 8077 } 8078 } 8079 8080 /* Ensure all chunks have corresponding dev extents */ 8081 return verify_chunk_dev_extent_mapping(fs_info); 8082 } 8083 8084 /* 8085 * Check whether the given block group or device is pinned by any inode being 8086 * used as a swapfile. 8087 */ 8088 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8089 { 8090 struct btrfs_swapfile_pin *sp; 8091 struct rb_node *node; 8092 8093 spin_lock(&fs_info->swapfile_pins_lock); 8094 node = fs_info->swapfile_pins.rb_node; 8095 while (node) { 8096 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8097 if (ptr < sp->ptr) 8098 node = node->rb_left; 8099 else if (ptr > sp->ptr) 8100 node = node->rb_right; 8101 else 8102 break; 8103 } 8104 spin_unlock(&fs_info->swapfile_pins_lock); 8105 return node != NULL; 8106 } 8107 8108 static int relocating_repair_kthread(void *data) 8109 { 8110 struct btrfs_block_group *cache = data; 8111 struct btrfs_fs_info *fs_info = cache->fs_info; 8112 u64 target; 8113 int ret = 0; 8114 8115 target = cache->start; 8116 btrfs_put_block_group(cache); 8117 8118 guard(super_write)(fs_info->sb); 8119 8120 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8121 btrfs_info(fs_info, 8122 "zoned: skip relocating block group %llu to repair: EBUSY", 8123 target); 8124 return -EBUSY; 8125 } 8126 8127 mutex_lock(&fs_info->reclaim_bgs_lock); 8128 8129 /* Ensure block group still exists */ 8130 cache = btrfs_lookup_block_group(fs_info, target); 8131 if (!cache) 8132 goto out; 8133 8134 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8135 goto out; 8136 8137 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8138 if (ret < 0) 8139 goto out; 8140 8141 btrfs_info(fs_info, 8142 "zoned: relocating block group %llu to repair IO failure", 8143 target); 8144 ret = btrfs_relocate_chunk(fs_info, target, true); 8145 8146 out: 8147 if (cache) 8148 btrfs_put_block_group(cache); 8149 mutex_unlock(&fs_info->reclaim_bgs_lock); 8150 btrfs_exclop_finish(fs_info); 8151 8152 return ret; 8153 } 8154 8155 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8156 { 8157 struct btrfs_block_group *cache; 8158 8159 if (!btrfs_is_zoned(fs_info)) 8160 return false; 8161 8162 /* Do not attempt to repair in degraded state */ 8163 if (btrfs_test_opt(fs_info, DEGRADED)) 8164 return true; 8165 8166 cache = btrfs_lookup_block_group(fs_info, logical); 8167 if (!cache) 8168 return true; 8169 8170 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8171 btrfs_put_block_group(cache); 8172 return true; 8173 } 8174 8175 kthread_run(relocating_repair_kthread, cache, 8176 "btrfs-relocating-repair"); 8177 8178 return true; 8179 } 8180 8181 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8182 struct btrfs_io_stripe *smap, 8183 u64 logical) 8184 { 8185 int data_stripes = nr_bioc_data_stripes(bioc); 8186 int i; 8187 8188 for (i = 0; i < data_stripes; i++) { 8189 u64 stripe_start = bioc->full_stripe_logical + 8190 btrfs_stripe_nr_to_offset(i); 8191 8192 if (logical >= stripe_start && 8193 logical < stripe_start + BTRFS_STRIPE_LEN) 8194 break; 8195 } 8196 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8197 smap->dev = bioc->stripes[i].dev; 8198 smap->physical = bioc->stripes[i].physical + 8199 ((logical - bioc->full_stripe_logical) & 8200 BTRFS_STRIPE_LEN_MASK); 8201 } 8202 8203 /* 8204 * Map a repair write into a single device. 8205 * 8206 * A repair write is triggered by read time repair or scrub, which would only 8207 * update the contents of a single device. 8208 * Not update any other mirrors nor go through RMW path. 8209 * 8210 * Callers should ensure: 8211 * 8212 * - Call btrfs_bio_counter_inc_blocked() first 8213 * - The range does not cross stripe boundary 8214 * - Has a valid @mirror_num passed in. 8215 */ 8216 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8217 struct btrfs_io_stripe *smap, u64 logical, 8218 u32 length, int mirror_num) 8219 { 8220 struct btrfs_io_context *bioc = NULL; 8221 u64 map_length = length; 8222 int mirror_ret = mirror_num; 8223 int ret; 8224 8225 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8226 8227 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8228 &bioc, smap, &mirror_ret); 8229 if (ret < 0) 8230 return ret; 8231 8232 /* The map range should not cross stripe boundary. */ 8233 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8234 8235 /* Already mapped to single stripe. */ 8236 if (!bioc) 8237 goto out; 8238 8239 /* Map the RAID56 multi-stripe writes to a single one. */ 8240 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8241 map_raid56_repair_block(bioc, smap, logical); 8242 goto out; 8243 } 8244 8245 ASSERT(mirror_num <= bioc->num_stripes, 8246 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8247 smap->dev = bioc->stripes[mirror_num - 1].dev; 8248 smap->physical = bioc->stripes[mirror_num - 1].physical; 8249 out: 8250 btrfs_put_bioc(bioc); 8251 ASSERT(smap->dev); 8252 return 0; 8253 } 8254