1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "disk-io.h"
17 #include "extent-tree.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51 bool use_rst;
52 };
53
54 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
55 [BTRFS_RAID_RAID10] = {
56 .sub_stripes = 2,
57 .dev_stripes = 1,
58 .devs_max = 0, /* 0 == as many as possible */
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 .nparity = 0,
64 .raid_name = "raid10",
65 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
66 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
67 },
68 [BTRFS_RAID_RAID1] = {
69 .sub_stripes = 1,
70 .dev_stripes = 1,
71 .devs_max = 2,
72 .devs_min = 2,
73 .tolerated_failures = 1,
74 .devs_increment = 2,
75 .ncopies = 2,
76 .nparity = 0,
77 .raid_name = "raid1",
78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
79 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
80 },
81 [BTRFS_RAID_RAID1C3] = {
82 .sub_stripes = 1,
83 .dev_stripes = 1,
84 .devs_max = 3,
85 .devs_min = 3,
86 .tolerated_failures = 2,
87 .devs_increment = 3,
88 .ncopies = 3,
89 .nparity = 0,
90 .raid_name = "raid1c3",
91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
92 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
93 },
94 [BTRFS_RAID_RAID1C4] = {
95 .sub_stripes = 1,
96 .dev_stripes = 1,
97 .devs_max = 4,
98 .devs_min = 4,
99 .tolerated_failures = 3,
100 .devs_increment = 4,
101 .ncopies = 4,
102 .nparity = 0,
103 .raid_name = "raid1c4",
104 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
105 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
106 },
107 [BTRFS_RAID_DUP] = {
108 .sub_stripes = 1,
109 .dev_stripes = 2,
110 .devs_max = 1,
111 .devs_min = 1,
112 .tolerated_failures = 0,
113 .devs_increment = 1,
114 .ncopies = 2,
115 .nparity = 0,
116 .raid_name = "dup",
117 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
118 .mindev_error = 0,
119 },
120 [BTRFS_RAID_RAID0] = {
121 .sub_stripes = 1,
122 .dev_stripes = 1,
123 .devs_max = 0,
124 .devs_min = 1,
125 .tolerated_failures = 0,
126 .devs_increment = 1,
127 .ncopies = 1,
128 .nparity = 0,
129 .raid_name = "raid0",
130 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
131 .mindev_error = 0,
132 },
133 [BTRFS_RAID_SINGLE] = {
134 .sub_stripes = 1,
135 .dev_stripes = 1,
136 .devs_max = 1,
137 .devs_min = 1,
138 .tolerated_failures = 0,
139 .devs_increment = 1,
140 .ncopies = 1,
141 .nparity = 0,
142 .raid_name = "single",
143 .bg_flag = 0,
144 .mindev_error = 0,
145 },
146 [BTRFS_RAID_RAID5] = {
147 .sub_stripes = 1,
148 .dev_stripes = 1,
149 .devs_max = 0,
150 .devs_min = 2,
151 .tolerated_failures = 1,
152 .devs_increment = 1,
153 .ncopies = 1,
154 .nparity = 1,
155 .raid_name = "raid5",
156 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
157 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
158 },
159 [BTRFS_RAID_RAID6] = {
160 .sub_stripes = 1,
161 .dev_stripes = 1,
162 .devs_max = 0,
163 .devs_min = 3,
164 .tolerated_failures = 2,
165 .devs_increment = 1,
166 .ncopies = 1,
167 .nparity = 2,
168 .raid_name = "raid6",
169 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
170 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
171 },
172 };
173
174 /*
175 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
176 * can be used as index to access btrfs_raid_array[].
177 */
btrfs_bg_flags_to_raid_index(u64 flags)178 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
179 {
180 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
181
182 if (!profile)
183 return BTRFS_RAID_SINGLE;
184
185 return BTRFS_BG_FLAG_TO_INDEX(profile);
186 }
187
btrfs_bg_type_to_raid_name(u64 flags)188 const char *btrfs_bg_type_to_raid_name(u64 flags)
189 {
190 const int index = btrfs_bg_flags_to_raid_index(flags);
191
192 if (index >= BTRFS_NR_RAID_TYPES)
193 return NULL;
194
195 return btrfs_raid_array[index].raid_name;
196 }
197
btrfs_nr_parity_stripes(u64 type)198 int btrfs_nr_parity_stripes(u64 type)
199 {
200 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
201
202 return btrfs_raid_array[index].nparity;
203 }
204
205 /*
206 * Fill @buf with textual description of @bg_flags, no more than @size_buf
207 * bytes including terminating null byte.
208 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)209 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
210 {
211 int i;
212 int ret;
213 char *bp = buf;
214 u64 flags = bg_flags;
215 u32 size_bp = size_buf;
216
217 if (!flags) {
218 strcpy(bp, "NONE");
219 return;
220 }
221
222 #define DESCRIBE_FLAG(flag, desc) \
223 do { \
224 if (flags & (flag)) { \
225 ret = snprintf(bp, size_bp, "%s|", (desc)); \
226 if (ret < 0 || ret >= size_bp) \
227 goto out_overflow; \
228 size_bp -= ret; \
229 bp += ret; \
230 flags &= ~(flag); \
231 } \
232 } while (0)
233
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
237
238 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
239 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
240 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
241 btrfs_raid_array[i].raid_name);
242 #undef DESCRIBE_FLAG
243
244 if (flags) {
245 ret = snprintf(bp, size_bp, "0x%llx|", flags);
246 size_bp -= ret;
247 }
248
249 if (size_bp < size_buf)
250 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
251
252 /*
253 * The text is trimmed, it's up to the caller to provide sufficiently
254 * large buffer
255 */
256 out_overflow:;
257 }
258
259 static int init_first_rw_device(struct btrfs_trans_handle *trans);
260 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
261 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
262
263 /*
264 * Device locking
265 * ==============
266 *
267 * There are several mutexes that protect manipulation of devices and low-level
268 * structures like chunks but not block groups, extents or files
269 *
270 * uuid_mutex (global lock)
271 * ------------------------
272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
274 * device) or requested by the device= mount option
275 *
276 * the mutex can be very coarse and can cover long-running operations
277 *
278 * protects: updates to fs_devices counters like missing devices, rw devices,
279 * seeding, structure cloning, opening/closing devices at mount/umount time
280 *
281 * global::fs_devs - add, remove, updates to the global list
282 *
283 * does not protect: manipulation of the fs_devices::devices list in general
284 * but in mount context it could be used to exclude list modifications by eg.
285 * scan ioctl
286 *
287 * btrfs_device::name - renames (write side), read is RCU
288 *
289 * fs_devices::device_list_mutex (per-fs, with RCU)
290 * ------------------------------------------------
291 * protects updates to fs_devices::devices, ie. adding and deleting
292 *
293 * simple list traversal with read-only actions can be done with RCU protection
294 *
295 * may be used to exclude some operations from running concurrently without any
296 * modifications to the list (see write_all_supers)
297 *
298 * Is not required at mount and close times, because our device list is
299 * protected by the uuid_mutex at that point.
300 *
301 * balance_mutex
302 * -------------
303 * protects balance structures (status, state) and context accessed from
304 * several places (internally, ioctl)
305 *
306 * chunk_mutex
307 * -----------
308 * protects chunks, adding or removing during allocation, trim or when a new
309 * device is added/removed. Additionally it also protects post_commit_list of
310 * individual devices, since they can be added to the transaction's
311 * post_commit_list only with chunk_mutex held.
312 *
313 * cleaner_mutex
314 * -------------
315 * a big lock that is held by the cleaner thread and prevents running subvolume
316 * cleaning together with relocation or delayed iputs
317 *
318 *
319 * Lock nesting
320 * ============
321 *
322 * uuid_mutex
323 * device_list_mutex
324 * chunk_mutex
325 * balance_mutex
326 *
327 *
328 * Exclusive operations
329 * ====================
330 *
331 * Maintains the exclusivity of the following operations that apply to the
332 * whole filesystem and cannot run in parallel.
333 *
334 * - Balance (*)
335 * - Device add
336 * - Device remove
337 * - Device replace (*)
338 * - Resize
339 *
340 * The device operations (as above) can be in one of the following states:
341 *
342 * - Running state
343 * - Paused state
344 * - Completed state
345 *
346 * Only device operations marked with (*) can go into the Paused state for the
347 * following reasons:
348 *
349 * - ioctl (only Balance can be Paused through ioctl)
350 * - filesystem remounted as read-only
351 * - filesystem unmounted and mounted as read-only
352 * - system power-cycle and filesystem mounted as read-only
353 * - filesystem or device errors leading to forced read-only
354 *
355 * The status of exclusive operation is set and cleared atomically.
356 * During the course of Paused state, fs_info::exclusive_operation remains set.
357 * A device operation in Paused or Running state can be canceled or resumed
358 * either by ioctl (Balance only) or when remounted as read-write.
359 * The exclusive status is cleared when the device operation is canceled or
360 * completed.
361 */
362
363 DEFINE_MUTEX(uuid_mutex);
364 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
366 {
367 return &fs_uuids;
368 }
369
370 /*
371 * Allocate new btrfs_fs_devices structure identified by a fsid.
372 *
373 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
374 * fs_devices::metadata_fsid
375 *
376 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
377 * The returned struct is not linked onto any lists and can be destroyed with
378 * kfree() right away.
379 */
alloc_fs_devices(const u8 * fsid)380 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
381 {
382 struct btrfs_fs_devices *fs_devs;
383
384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
385 if (!fs_devs)
386 return ERR_PTR(-ENOMEM);
387
388 mutex_init(&fs_devs->device_list_mutex);
389
390 INIT_LIST_HEAD(&fs_devs->devices);
391 INIT_LIST_HEAD(&fs_devs->alloc_list);
392 INIT_LIST_HEAD(&fs_devs->fs_list);
393 INIT_LIST_HEAD(&fs_devs->seed_list);
394
395 if (fsid) {
396 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
397 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
398 }
399
400 return fs_devs;
401 }
402
btrfs_free_device(struct btrfs_device * device)403 static void btrfs_free_device(struct btrfs_device *device)
404 {
405 WARN_ON(!list_empty(&device->post_commit_list));
406 rcu_string_free(device->name);
407 btrfs_extent_io_tree_release(&device->alloc_state);
408 btrfs_destroy_dev_zone_info(device);
409 kfree(device);
410 }
411
free_fs_devices(struct btrfs_fs_devices * fs_devices)412 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
413 {
414 struct btrfs_device *device;
415
416 WARN_ON(fs_devices->opened);
417 while (!list_empty(&fs_devices->devices)) {
418 device = list_first_entry(&fs_devices->devices,
419 struct btrfs_device, dev_list);
420 list_del(&device->dev_list);
421 btrfs_free_device(device);
422 }
423 kfree(fs_devices);
424 }
425
btrfs_cleanup_fs_uuids(void)426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 struct btrfs_fs_devices *fs_devices;
429
430 while (!list_empty(&fs_uuids)) {
431 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices,
432 fs_list);
433 list_del(&fs_devices->fs_list);
434 free_fs_devices(fs_devices);
435 }
436 }
437
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)438 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
439 const u8 *fsid, const u8 *metadata_fsid)
440 {
441 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
442 return false;
443
444 if (!metadata_fsid)
445 return true;
446
447 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
448 return false;
449
450 return true;
451 }
452
find_fsid(const u8 * fsid,const u8 * metadata_fsid)453 static noinline struct btrfs_fs_devices *find_fsid(
454 const u8 *fsid, const u8 *metadata_fsid)
455 {
456 struct btrfs_fs_devices *fs_devices;
457
458 ASSERT(fsid);
459
460 /* Handle non-split brain cases */
461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
462 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
463 return fs_devices;
464 }
465 return NULL;
466 }
467
468 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)469 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
470 int flush, struct file **bdev_file,
471 struct btrfs_super_block **disk_super)
472 {
473 struct block_device *bdev;
474 int ret;
475
476 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
477
478 if (IS_ERR(*bdev_file)) {
479 ret = PTR_ERR(*bdev_file);
480 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
481 device_path, flags, ret);
482 goto error;
483 }
484 bdev = file_bdev(*bdev_file);
485
486 if (flush)
487 sync_blockdev(bdev);
488 if (holder) {
489 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
490 if (ret) {
491 fput(*bdev_file);
492 goto error;
493 }
494 }
495 invalidate_bdev(bdev);
496 *disk_super = btrfs_read_disk_super(bdev, 0, false);
497 if (IS_ERR(*disk_super)) {
498 ret = PTR_ERR(*disk_super);
499 fput(*bdev_file);
500 goto error;
501 }
502
503 return 0;
504
505 error:
506 *disk_super = NULL;
507 *bdev_file = NULL;
508 return ret;
509 }
510
511 /*
512 * Search and remove all stale devices (which are not mounted). When both
513 * inputs are NULL, it will search and release all stale devices.
514 *
515 * @devt: Optional. When provided will it release all unmounted devices
516 * matching this devt only.
517 * @skip_device: Optional. Will skip this device when searching for the stale
518 * devices.
519 *
520 * Return: 0 for success or if @devt is 0.
521 * -EBUSY if @devt is a mounted device.
522 * -ENOENT if @devt does not match any device in the list.
523 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)524 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
525 {
526 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
527 struct btrfs_device *device, *tmp_device;
528 int ret;
529 bool freed = false;
530
531 lockdep_assert_held(&uuid_mutex);
532
533 /* Return good status if there is no instance of devt. */
534 ret = 0;
535 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
536
537 mutex_lock(&fs_devices->device_list_mutex);
538 list_for_each_entry_safe(device, tmp_device,
539 &fs_devices->devices, dev_list) {
540 if (skip_device && skip_device == device)
541 continue;
542 if (devt && devt != device->devt)
543 continue;
544 if (fs_devices->opened) {
545 if (devt)
546 ret = -EBUSY;
547 break;
548 }
549
550 /* delete the stale device */
551 fs_devices->num_devices--;
552 list_del(&device->dev_list);
553 btrfs_free_device(device);
554
555 freed = true;
556 }
557 mutex_unlock(&fs_devices->device_list_mutex);
558
559 if (fs_devices->num_devices == 0) {
560 btrfs_sysfs_remove_fsid(fs_devices);
561 list_del(&fs_devices->fs_list);
562 free_fs_devices(fs_devices);
563 }
564 }
565
566 /* If there is at least one freed device return 0. */
567 if (freed)
568 return 0;
569
570 return ret;
571 }
572
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)573 static struct btrfs_fs_devices *find_fsid_by_device(
574 struct btrfs_super_block *disk_super,
575 dev_t devt, bool *same_fsid_diff_dev)
576 {
577 struct btrfs_fs_devices *fsid_fs_devices;
578 struct btrfs_fs_devices *devt_fs_devices;
579 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
580 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
581 bool found_by_devt = false;
582
583 /* Find the fs_device by the usual method, if found use it. */
584 fsid_fs_devices = find_fsid(disk_super->fsid,
585 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
586
587 /* The temp_fsid feature is supported only with single device filesystem. */
588 if (btrfs_super_num_devices(disk_super) != 1)
589 return fsid_fs_devices;
590
591 /*
592 * A seed device is an integral component of the sprout device, which
593 * functions as a multi-device filesystem. So, temp-fsid feature is
594 * not supported.
595 */
596 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
597 return fsid_fs_devices;
598
599 /* Try to find a fs_devices by matching devt. */
600 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
601 struct btrfs_device *device;
602
603 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
604 if (device->devt == devt) {
605 found_by_devt = true;
606 break;
607 }
608 }
609 if (found_by_devt)
610 break;
611 }
612
613 if (found_by_devt) {
614 /* Existing device. */
615 if (fsid_fs_devices == NULL) {
616 if (devt_fs_devices->opened == 0) {
617 /* Stale device. */
618 return NULL;
619 } else {
620 /* temp_fsid is mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* Regular or temp_fsid device mounting a subvol. */
625 return devt_fs_devices;
626 }
627 } else {
628 /* New device. */
629 if (fsid_fs_devices == NULL) {
630 return NULL;
631 } else {
632 /* sb::fsid is already used create a new temp_fsid. */
633 *same_fsid_diff_dev = true;
634 return NULL;
635 }
636 }
637
638 /* Not reached. */
639 }
640
641 /*
642 * This is only used on mount, and we are protected from competing things
643 * messing with our fs_devices by the uuid_mutex, thus we do not need the
644 * fs_devices->device_list_mutex here.
645 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)646 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
647 struct btrfs_device *device, blk_mode_t flags,
648 void *holder)
649 {
650 struct file *bdev_file;
651 struct btrfs_super_block *disk_super;
652 u64 devid;
653 int ret;
654
655 if (device->bdev)
656 return -EINVAL;
657 if (!device->name)
658 return -EINVAL;
659
660 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
661 &bdev_file, &disk_super);
662 if (ret)
663 return ret;
664
665 devid = btrfs_stack_device_id(&disk_super->dev_item);
666 if (devid != device->devid)
667 goto error_free_page;
668
669 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
670 goto error_free_page;
671
672 device->generation = btrfs_super_generation(disk_super);
673
674 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
675 if (btrfs_super_incompat_flags(disk_super) &
676 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
677 pr_err(
678 "BTRFS: Invalid seeding and uuid-changed device detected\n");
679 goto error_free_page;
680 }
681
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 fs_devices->seeding = true;
684 } else {
685 if (bdev_read_only(file_bdev(bdev_file)))
686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
687 else
688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
689 }
690
691 if (!bdev_nonrot(file_bdev(bdev_file)))
692 fs_devices->rotating = true;
693
694 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
695 fs_devices->discardable = true;
696
697 device->bdev_file = bdev_file;
698 device->bdev = file_bdev(bdev_file);
699 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
700
701 if (device->devt != device->bdev->bd_dev) {
702 btrfs_warn(NULL,
703 "device %s maj:min changed from %d:%d to %d:%d",
704 device->name->str, MAJOR(device->devt),
705 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
706 MINOR(device->bdev->bd_dev));
707
708 device->devt = device->bdev->bd_dev;
709 }
710
711 fs_devices->open_devices++;
712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
713 device->devid != BTRFS_DEV_REPLACE_DEVID) {
714 fs_devices->rw_devices++;
715 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
716 }
717 btrfs_release_disk_super(disk_super);
718
719 return 0;
720
721 error_free_page:
722 btrfs_release_disk_super(disk_super);
723 fput(bdev_file);
724
725 return -EINVAL;
726 }
727
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)728 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
729 {
730 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
732
733 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
734 }
735
is_same_device(struct btrfs_device * device,const char * new_path)736 static bool is_same_device(struct btrfs_device *device, const char *new_path)
737 {
738 struct path old = { .mnt = NULL, .dentry = NULL };
739 struct path new = { .mnt = NULL, .dentry = NULL };
740 char *old_path = NULL;
741 bool is_same = false;
742 int ret;
743
744 if (!device->name)
745 goto out;
746
747 old_path = kzalloc(PATH_MAX, GFP_NOFS);
748 if (!old_path)
749 goto out;
750
751 rcu_read_lock();
752 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
753 rcu_read_unlock();
754 if (ret < 0)
755 goto out;
756
757 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
758 if (ret)
759 goto out;
760 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
761 if (ret)
762 goto out;
763 if (path_equal(&old, &new))
764 is_same = true;
765 out:
766 kfree(old_path);
767 path_put(&old);
768 path_put(&new);
769 return is_same;
770 }
771
772 /*
773 * Add new device to list of registered devices
774 *
775 * Returns:
776 * device pointer which was just added or updated when successful
777 * error pointer when failed
778 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)779 static noinline struct btrfs_device *device_list_add(const char *path,
780 struct btrfs_super_block *disk_super,
781 bool *new_device_added)
782 {
783 struct btrfs_device *device;
784 struct btrfs_fs_devices *fs_devices = NULL;
785 struct rcu_string *name;
786 u64 found_transid = btrfs_super_generation(disk_super);
787 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
788 dev_t path_devt;
789 int error;
790 bool same_fsid_diff_dev = false;
791 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
792 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
793
794 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
795 btrfs_err(NULL,
796 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
797 path);
798 return ERR_PTR(-EAGAIN);
799 }
800
801 error = lookup_bdev(path, &path_devt);
802 if (error) {
803 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
804 path, error);
805 return ERR_PTR(error);
806 }
807
808 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
809
810 if (!fs_devices) {
811 fs_devices = alloc_fs_devices(disk_super->fsid);
812 if (IS_ERR(fs_devices))
813 return ERR_CAST(fs_devices);
814
815 if (has_metadata_uuid)
816 memcpy(fs_devices->metadata_uuid,
817 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
818
819 if (same_fsid_diff_dev) {
820 generate_random_uuid(fs_devices->fsid);
821 fs_devices->temp_fsid = true;
822 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
823 path, MAJOR(path_devt), MINOR(path_devt),
824 fs_devices->fsid);
825 }
826
827 mutex_lock(&fs_devices->device_list_mutex);
828 list_add(&fs_devices->fs_list, &fs_uuids);
829
830 device = NULL;
831 } else {
832 struct btrfs_dev_lookup_args args = {
833 .devid = devid,
834 .uuid = disk_super->dev_item.uuid,
835 };
836
837 mutex_lock(&fs_devices->device_list_mutex);
838 device = btrfs_find_device(fs_devices, &args);
839
840 if (found_transid > fs_devices->latest_generation) {
841 memcpy(fs_devices->fsid, disk_super->fsid,
842 BTRFS_FSID_SIZE);
843 memcpy(fs_devices->metadata_uuid,
844 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
845 }
846 }
847
848 if (!device) {
849 unsigned int nofs_flag;
850
851 if (fs_devices->opened) {
852 btrfs_err(NULL,
853 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
854 path, MAJOR(path_devt), MINOR(path_devt),
855 fs_devices->fsid, current->comm,
856 task_pid_nr(current));
857 mutex_unlock(&fs_devices->device_list_mutex);
858 return ERR_PTR(-EBUSY);
859 }
860
861 nofs_flag = memalloc_nofs_save();
862 device = btrfs_alloc_device(NULL, &devid,
863 disk_super->dev_item.uuid, path);
864 memalloc_nofs_restore(nofs_flag);
865 if (IS_ERR(device)) {
866 mutex_unlock(&fs_devices->device_list_mutex);
867 /* we can safely leave the fs_devices entry around */
868 return device;
869 }
870
871 device->devt = path_devt;
872
873 list_add_rcu(&device->dev_list, &fs_devices->devices);
874 fs_devices->num_devices++;
875
876 device->fs_devices = fs_devices;
877 *new_device_added = true;
878
879 if (disk_super->label[0])
880 pr_info(
881 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
882 disk_super->label, devid, found_transid, path,
883 MAJOR(path_devt), MINOR(path_devt),
884 current->comm, task_pid_nr(current));
885 else
886 pr_info(
887 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
888 disk_super->fsid, devid, found_transid, path,
889 MAJOR(path_devt), MINOR(path_devt),
890 current->comm, task_pid_nr(current));
891
892 } else if (!device->name || !is_same_device(device, path)) {
893 /*
894 * When FS is already mounted.
895 * 1. If you are here and if the device->name is NULL that
896 * means this device was missing at time of FS mount.
897 * 2. If you are here and if the device->name is different
898 * from 'path' that means either
899 * a. The same device disappeared and reappeared with
900 * different name. or
901 * b. The missing-disk-which-was-replaced, has
902 * reappeared now.
903 *
904 * We must allow 1 and 2a above. But 2b would be a spurious
905 * and unintentional.
906 *
907 * Further in case of 1 and 2a above, the disk at 'path'
908 * would have missed some transaction when it was away and
909 * in case of 2a the stale bdev has to be updated as well.
910 * 2b must not be allowed at all time.
911 */
912
913 /*
914 * For now, we do allow update to btrfs_fs_device through the
915 * btrfs dev scan cli after FS has been mounted. We're still
916 * tracking a problem where systems fail mount by subvolume id
917 * when we reject replacement on a mounted FS.
918 */
919 if (!fs_devices->opened && found_transid < device->generation) {
920 /*
921 * That is if the FS is _not_ mounted and if you
922 * are here, that means there is more than one
923 * disk with same uuid and devid.We keep the one
924 * with larger generation number or the last-in if
925 * generation are equal.
926 */
927 mutex_unlock(&fs_devices->device_list_mutex);
928 btrfs_err(NULL,
929 "device %s already registered with a higher generation, found %llu expect %llu",
930 path, found_transid, device->generation);
931 return ERR_PTR(-EEXIST);
932 }
933
934 /*
935 * We are going to replace the device path for a given devid,
936 * make sure it's the same device if the device is mounted
937 *
938 * NOTE: the device->fs_info may not be reliable here so pass
939 * in a NULL to message helpers instead. This avoids a possible
940 * use-after-free when the fs_info and fs_info->sb are already
941 * torn down.
942 */
943 if (device->bdev) {
944 if (device->devt != path_devt) {
945 mutex_unlock(&fs_devices->device_list_mutex);
946 btrfs_warn_in_rcu(NULL,
947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 path, devid, found_transid,
949 current->comm,
950 task_pid_nr(current));
951 return ERR_PTR(-EEXIST);
952 }
953 btrfs_info_in_rcu(NULL,
954 "devid %llu device path %s changed to %s scanned by %s (%d)",
955 devid, btrfs_dev_name(device),
956 path, current->comm,
957 task_pid_nr(current));
958 }
959
960 name = rcu_string_strdup(path, GFP_NOFS);
961 if (!name) {
962 mutex_unlock(&fs_devices->device_list_mutex);
963 return ERR_PTR(-ENOMEM);
964 }
965 rcu_string_free(device->name);
966 rcu_assign_pointer(device->name, name);
967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 fs_devices->missing_devices--;
969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
970 }
971 device->devt = path_devt;
972 }
973
974 /*
975 * Unmount does not free the btrfs_device struct but would zero
976 * generation along with most of the other members. So just update
977 * it back. We need it to pick the disk with largest generation
978 * (as above).
979 */
980 if (!fs_devices->opened) {
981 device->generation = found_transid;
982 fs_devices->latest_generation = max_t(u64, found_transid,
983 fs_devices->latest_generation);
984 }
985
986 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
987
988 mutex_unlock(&fs_devices->device_list_mutex);
989 return device;
990 }
991
clone_fs_devices(struct btrfs_fs_devices * orig)992 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
993 {
994 struct btrfs_fs_devices *fs_devices;
995 struct btrfs_device *device;
996 struct btrfs_device *orig_dev;
997 int ret = 0;
998
999 lockdep_assert_held(&uuid_mutex);
1000
1001 fs_devices = alloc_fs_devices(orig->fsid);
1002 if (IS_ERR(fs_devices))
1003 return fs_devices;
1004
1005 fs_devices->total_devices = orig->total_devices;
1006
1007 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1008 const char *dev_path = NULL;
1009
1010 /*
1011 * This is ok to do without RCU read locked because we hold the
1012 * uuid mutex so nothing we touch in here is going to disappear.
1013 */
1014 if (orig_dev->name)
1015 dev_path = orig_dev->name->str;
1016
1017 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1018 orig_dev->uuid, dev_path);
1019 if (IS_ERR(device)) {
1020 ret = PTR_ERR(device);
1021 goto error;
1022 }
1023
1024 if (orig_dev->zone_info) {
1025 struct btrfs_zoned_device_info *zone_info;
1026
1027 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1028 if (!zone_info) {
1029 btrfs_free_device(device);
1030 ret = -ENOMEM;
1031 goto error;
1032 }
1033 device->zone_info = zone_info;
1034 }
1035
1036 list_add(&device->dev_list, &fs_devices->devices);
1037 device->fs_devices = fs_devices;
1038 fs_devices->num_devices++;
1039 }
1040 return fs_devices;
1041 error:
1042 free_fs_devices(fs_devices);
1043 return ERR_PTR(ret);
1044 }
1045
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1047 struct btrfs_device **latest_dev)
1048 {
1049 struct btrfs_device *device, *next;
1050
1051 /* This is the initialized path, it is safe to release the devices. */
1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1055 &device->dev_state) &&
1056 !test_bit(BTRFS_DEV_STATE_MISSING,
1057 &device->dev_state) &&
1058 (!*latest_dev ||
1059 device->generation > (*latest_dev)->generation)) {
1060 *latest_dev = device;
1061 }
1062 continue;
1063 }
1064
1065 /*
1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1067 * in btrfs_init_dev_replace() so just continue.
1068 */
1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1070 continue;
1071
1072 if (device->bdev_file) {
1073 fput(device->bdev_file);
1074 device->bdev = NULL;
1075 device->bdev_file = NULL;
1076 fs_devices->open_devices--;
1077 }
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 list_del_init(&device->dev_alloc_list);
1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081 fs_devices->rw_devices--;
1082 }
1083 list_del_init(&device->dev_list);
1084 fs_devices->num_devices--;
1085 btrfs_free_device(device);
1086 }
1087
1088 }
1089
1090 /*
1091 * After we have read the system tree and know devids belonging to this
1092 * filesystem, remove the device which does not belong there.
1093 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1095 {
1096 struct btrfs_device *latest_dev = NULL;
1097 struct btrfs_fs_devices *seed_dev;
1098
1099 mutex_lock(&uuid_mutex);
1100 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1101
1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1103 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1104
1105 fs_devices->latest_dev = latest_dev;
1106
1107 mutex_unlock(&uuid_mutex);
1108 }
1109
btrfs_close_bdev(struct btrfs_device * device)1110 static void btrfs_close_bdev(struct btrfs_device *device)
1111 {
1112 if (!device->bdev)
1113 return;
1114
1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1116 sync_blockdev(device->bdev);
1117 invalidate_bdev(device->bdev);
1118 }
1119
1120 fput(device->bdev_file);
1121 }
1122
btrfs_close_one_device(struct btrfs_device * device)1123 static void btrfs_close_one_device(struct btrfs_device *device)
1124 {
1125 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1126
1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1128 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1129 list_del_init(&device->dev_alloc_list);
1130 fs_devices->rw_devices--;
1131 }
1132
1133 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1134 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1135
1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1137 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1138 fs_devices->missing_devices--;
1139 }
1140
1141 btrfs_close_bdev(device);
1142 if (device->bdev) {
1143 fs_devices->open_devices--;
1144 device->bdev = NULL;
1145 device->bdev_file = NULL;
1146 }
1147 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1148 btrfs_destroy_dev_zone_info(device);
1149
1150 device->fs_info = NULL;
1151 atomic_set(&device->dev_stats_ccnt, 0);
1152 btrfs_extent_io_tree_release(&device->alloc_state);
1153
1154 /*
1155 * Reset the flush error record. We might have a transient flush error
1156 * in this mount, and if so we aborted the current transaction and set
1157 * the fs to an error state, guaranteeing no super blocks can be further
1158 * committed. However that error might be transient and if we unmount the
1159 * filesystem and mount it again, we should allow the mount to succeed
1160 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1161 * filesystem again we still get flush errors, then we will again abort
1162 * any transaction and set the error state, guaranteeing no commits of
1163 * unsafe super blocks.
1164 */
1165 device->last_flush_error = 0;
1166
1167 /* Verify the device is back in a pristine state */
1168 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1169 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1170 WARN_ON(!list_empty(&device->dev_alloc_list));
1171 WARN_ON(!list_empty(&device->post_commit_list));
1172 }
1173
close_fs_devices(struct btrfs_fs_devices * fs_devices)1174 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 struct btrfs_device *device, *tmp;
1177
1178 lockdep_assert_held(&uuid_mutex);
1179
1180 if (--fs_devices->opened > 0)
1181 return;
1182
1183 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1184 btrfs_close_one_device(device);
1185
1186 WARN_ON(fs_devices->open_devices);
1187 WARN_ON(fs_devices->rw_devices);
1188 fs_devices->opened = 0;
1189 fs_devices->seeding = false;
1190 fs_devices->fs_info = NULL;
1191 }
1192
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1193 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1194 {
1195 LIST_HEAD(list);
1196 struct btrfs_fs_devices *tmp;
1197
1198 mutex_lock(&uuid_mutex);
1199 close_fs_devices(fs_devices);
1200 if (!fs_devices->opened) {
1201 list_splice_init(&fs_devices->seed_list, &list);
1202
1203 /*
1204 * If the struct btrfs_fs_devices is not assembled with any
1205 * other device, it can be re-initialized during the next mount
1206 * without the needing device-scan step. Therefore, it can be
1207 * fully freed.
1208 */
1209 if (fs_devices->num_devices == 1) {
1210 list_del(&fs_devices->fs_list);
1211 free_fs_devices(fs_devices);
1212 }
1213 }
1214
1215
1216 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1217 close_fs_devices(fs_devices);
1218 list_del(&fs_devices->seed_list);
1219 free_fs_devices(fs_devices);
1220 }
1221 mutex_unlock(&uuid_mutex);
1222 }
1223
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1224 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1225 blk_mode_t flags, void *holder)
1226 {
1227 struct btrfs_device *device;
1228 struct btrfs_device *latest_dev = NULL;
1229 struct btrfs_device *tmp_device;
1230 s64 __maybe_unused value = 0;
1231 int ret = 0;
1232
1233 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1234 dev_list) {
1235 int ret2;
1236
1237 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1238 if (ret2 == 0 &&
1239 (!latest_dev || device->generation > latest_dev->generation)) {
1240 latest_dev = device;
1241 } else if (ret2 == -ENODATA) {
1242 fs_devices->num_devices--;
1243 list_del(&device->dev_list);
1244 btrfs_free_device(device);
1245 }
1246 if (ret == 0 && ret2 != 0)
1247 ret = ret2;
1248 }
1249
1250 if (fs_devices->open_devices == 0) {
1251 if (ret)
1252 return ret;
1253 return -EINVAL;
1254 }
1255
1256 fs_devices->opened = 1;
1257 fs_devices->latest_dev = latest_dev;
1258 fs_devices->total_rw_bytes = 0;
1259 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1260 #ifdef CONFIG_BTRFS_EXPERIMENTAL
1261 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ;
1262 fs_devices->read_devid = latest_dev->devid;
1263 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(),
1264 &value);
1265 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1266 fs_devices->collect_fs_stats = true;
1267
1268 if (value) {
1269 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1270 fs_devices->rr_min_contig_read = value;
1271 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID)
1272 fs_devices->read_devid = value;
1273 }
1274 #else
1275 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1276 #endif
1277
1278 return 0;
1279 }
1280
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1281 static int devid_cmp(void *priv, const struct list_head *a,
1282 const struct list_head *b)
1283 {
1284 const struct btrfs_device *dev1, *dev2;
1285
1286 dev1 = list_entry(a, struct btrfs_device, dev_list);
1287 dev2 = list_entry(b, struct btrfs_device, dev_list);
1288
1289 if (dev1->devid < dev2->devid)
1290 return -1;
1291 else if (dev1->devid > dev2->devid)
1292 return 1;
1293 return 0;
1294 }
1295
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1296 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1297 blk_mode_t flags, void *holder)
1298 {
1299 int ret;
1300
1301 lockdep_assert_held(&uuid_mutex);
1302 /*
1303 * The device_list_mutex cannot be taken here in case opening the
1304 * underlying device takes further locks like open_mutex.
1305 *
1306 * We also don't need the lock here as this is called during mount and
1307 * exclusion is provided by uuid_mutex
1308 */
1309
1310 if (fs_devices->opened) {
1311 fs_devices->opened++;
1312 ret = 0;
1313 } else {
1314 list_sort(NULL, &fs_devices->devices, devid_cmp);
1315 ret = open_fs_devices(fs_devices, flags, holder);
1316 }
1317
1318 return ret;
1319 }
1320
btrfs_release_disk_super(struct btrfs_super_block * super)1321 void btrfs_release_disk_super(struct btrfs_super_block *super)
1322 {
1323 struct page *page = virt_to_page(super);
1324
1325 put_page(page);
1326 }
1327
btrfs_read_disk_super(struct block_device * bdev,int copy_num,bool drop_cache)1328 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1329 int copy_num, bool drop_cache)
1330 {
1331 struct btrfs_super_block *super;
1332 struct page *page;
1333 u64 bytenr, bytenr_orig;
1334 struct address_space *mapping = bdev->bd_mapping;
1335 int ret;
1336
1337 bytenr_orig = btrfs_sb_offset(copy_num);
1338 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
1339 if (ret < 0) {
1340 if (ret == -ENOENT)
1341 ret = -EINVAL;
1342 return ERR_PTR(ret);
1343 }
1344
1345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
1346 return ERR_PTR(-EINVAL);
1347
1348 if (drop_cache) {
1349 /* This should only be called with the primary sb. */
1350 ASSERT(copy_num == 0);
1351
1352 /*
1353 * Drop the page of the primary superblock, so later read will
1354 * always read from the device.
1355 */
1356 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT,
1357 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
1358 }
1359
1360 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
1361 if (IS_ERR(page))
1362 return ERR_CAST(page);
1363
1364 super = page_address(page);
1365 if (btrfs_super_magic(super) != BTRFS_MAGIC ||
1366 btrfs_super_bytenr(super) != bytenr_orig) {
1367 btrfs_release_disk_super(super);
1368 return ERR_PTR(-EINVAL);
1369 }
1370
1371 /*
1372 * Make sure the last byte of label is properly NUL termiated. We use
1373 * '%s' to print the label, if not properly NUL termiated we can access
1374 * beyond the label.
1375 */
1376 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1])
1377 super->label[BTRFS_LABEL_SIZE - 1] = 0;
1378
1379 return super;
1380 }
1381
btrfs_forget_devices(dev_t devt)1382 int btrfs_forget_devices(dev_t devt)
1383 {
1384 int ret;
1385
1386 mutex_lock(&uuid_mutex);
1387 ret = btrfs_free_stale_devices(devt, NULL);
1388 mutex_unlock(&uuid_mutex);
1389
1390 return ret;
1391 }
1392
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1393 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1394 const char *path, dev_t devt,
1395 bool mount_arg_dev)
1396 {
1397 struct btrfs_fs_devices *fs_devices;
1398
1399 /*
1400 * Do not skip device registration for mounted devices with matching
1401 * maj:min but different paths. Booting without initrd relies on
1402 * /dev/root initially, later replaced with the actual root device.
1403 * A successful scan ensures grub2-probe selects the correct device.
1404 */
1405 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1406 struct btrfs_device *device;
1407
1408 mutex_lock(&fs_devices->device_list_mutex);
1409
1410 if (!fs_devices->opened) {
1411 mutex_unlock(&fs_devices->device_list_mutex);
1412 continue;
1413 }
1414
1415 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1416 if (device->bdev && (device->bdev->bd_dev == devt) &&
1417 strcmp(device->name->str, path) != 0) {
1418 mutex_unlock(&fs_devices->device_list_mutex);
1419
1420 /* Do not skip registration. */
1421 return false;
1422 }
1423 }
1424 mutex_unlock(&fs_devices->device_list_mutex);
1425 }
1426
1427 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1428 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1429 return true;
1430
1431 return false;
1432 }
1433
1434 /*
1435 * Look for a btrfs signature on a device. This may be called out of the mount path
1436 * and we are not allowed to call set_blocksize during the scan. The superblock
1437 * is read via pagecache.
1438 *
1439 * With @mount_arg_dev it's a scan during mount time that will always register
1440 * the device or return an error. Multi-device and seeding devices are registered
1441 * in both cases.
1442 */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1443 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1444 bool mount_arg_dev)
1445 {
1446 struct btrfs_super_block *disk_super;
1447 bool new_device_added = false;
1448 struct btrfs_device *device = NULL;
1449 struct file *bdev_file;
1450 dev_t devt;
1451
1452 lockdep_assert_held(&uuid_mutex);
1453
1454 /*
1455 * Avoid an exclusive open here, as the systemd-udev may initiate the
1456 * device scan which may race with the user's mount or mkfs command,
1457 * resulting in failure.
1458 * Since the device scan is solely for reading purposes, there is no
1459 * need for an exclusive open. Additionally, the devices are read again
1460 * during the mount process. It is ok to get some inconsistent
1461 * values temporarily, as the device paths of the fsid are the only
1462 * required information for assembling the volume.
1463 */
1464 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1465 if (IS_ERR(bdev_file))
1466 return ERR_CAST(bdev_file);
1467
1468 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false);
1469 if (IS_ERR(disk_super)) {
1470 device = ERR_CAST(disk_super);
1471 goto error_bdev_put;
1472 }
1473
1474 devt = file_bdev(bdev_file)->bd_dev;
1475 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1476 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1477 path, MAJOR(devt), MINOR(devt));
1478
1479 btrfs_free_stale_devices(devt, NULL);
1480
1481 device = NULL;
1482 goto free_disk_super;
1483 }
1484
1485 device = device_list_add(path, disk_super, &new_device_added);
1486 if (!IS_ERR(device) && new_device_added)
1487 btrfs_free_stale_devices(device->devt, device);
1488
1489 free_disk_super:
1490 btrfs_release_disk_super(disk_super);
1491
1492 error_bdev_put:
1493 fput(bdev_file);
1494
1495 return device;
1496 }
1497
1498 /*
1499 * Try to find a chunk that intersects [start, start + len] range and when one
1500 * such is found, record the end of it in *start
1501 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1502 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1503 u64 len)
1504 {
1505 u64 physical_start, physical_end;
1506
1507 lockdep_assert_held(&device->fs_info->chunk_mutex);
1508
1509 if (btrfs_find_first_extent_bit(&device->alloc_state, *start,
1510 &physical_start, &physical_end,
1511 CHUNK_ALLOCATED, NULL)) {
1512
1513 if (in_range(physical_start, *start, len) ||
1514 in_range(*start, physical_start,
1515 physical_end + 1 - physical_start)) {
1516 *start = physical_end + 1;
1517 return true;
1518 }
1519 }
1520 return false;
1521 }
1522
dev_extent_search_start(struct btrfs_device * device)1523 static u64 dev_extent_search_start(struct btrfs_device *device)
1524 {
1525 switch (device->fs_devices->chunk_alloc_policy) {
1526 default:
1527 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1528 fallthrough;
1529 case BTRFS_CHUNK_ALLOC_REGULAR:
1530 return BTRFS_DEVICE_RANGE_RESERVED;
1531 case BTRFS_CHUNK_ALLOC_ZONED:
1532 /*
1533 * We don't care about the starting region like regular
1534 * allocator, because we anyway use/reserve the first two zones
1535 * for superblock logging.
1536 */
1537 return 0;
1538 }
1539 }
1540
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1541 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1542 u64 *hole_start, u64 *hole_size,
1543 u64 num_bytes)
1544 {
1545 u64 zone_size = device->zone_info->zone_size;
1546 u64 pos;
1547 int ret;
1548 bool changed = false;
1549
1550 ASSERT(IS_ALIGNED(*hole_start, zone_size),
1551 "hole_start=%llu zone_size=%llu", *hole_start, zone_size);
1552
1553 while (*hole_size > 0) {
1554 pos = btrfs_find_allocatable_zones(device, *hole_start,
1555 *hole_start + *hole_size,
1556 num_bytes);
1557 if (pos != *hole_start) {
1558 *hole_size = *hole_start + *hole_size - pos;
1559 *hole_start = pos;
1560 changed = true;
1561 if (*hole_size < num_bytes)
1562 break;
1563 }
1564
1565 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1566
1567 /* Range is ensured to be empty */
1568 if (!ret)
1569 return changed;
1570
1571 /* Given hole range was invalid (outside of device) */
1572 if (ret == -ERANGE) {
1573 *hole_start += *hole_size;
1574 *hole_size = 0;
1575 return true;
1576 }
1577
1578 *hole_start += zone_size;
1579 *hole_size -= zone_size;
1580 changed = true;
1581 }
1582
1583 return changed;
1584 }
1585
1586 /*
1587 * Check if specified hole is suitable for allocation.
1588 *
1589 * @device: the device which we have the hole
1590 * @hole_start: starting position of the hole
1591 * @hole_size: the size of the hole
1592 * @num_bytes: the size of the free space that we need
1593 *
1594 * This function may modify @hole_start and @hole_size to reflect the suitable
1595 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1596 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1597 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1598 u64 *hole_size, u64 num_bytes)
1599 {
1600 bool changed = false;
1601 u64 hole_end = *hole_start + *hole_size;
1602
1603 for (;;) {
1604 /*
1605 * Check before we set max_hole_start, otherwise we could end up
1606 * sending back this offset anyway.
1607 */
1608 if (contains_pending_extent(device, hole_start, *hole_size)) {
1609 if (hole_end >= *hole_start)
1610 *hole_size = hole_end - *hole_start;
1611 else
1612 *hole_size = 0;
1613 changed = true;
1614 }
1615
1616 switch (device->fs_devices->chunk_alloc_policy) {
1617 default:
1618 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1619 fallthrough;
1620 case BTRFS_CHUNK_ALLOC_REGULAR:
1621 /* No extra check */
1622 break;
1623 case BTRFS_CHUNK_ALLOC_ZONED:
1624 if (dev_extent_hole_check_zoned(device, hole_start,
1625 hole_size, num_bytes)) {
1626 changed = true;
1627 /*
1628 * The changed hole can contain pending extent.
1629 * Loop again to check that.
1630 */
1631 continue;
1632 }
1633 break;
1634 }
1635
1636 break;
1637 }
1638
1639 return changed;
1640 }
1641
1642 /*
1643 * Find free space in the specified device.
1644 *
1645 * @device: the device which we search the free space in
1646 * @num_bytes: the size of the free space that we need
1647 * @search_start: the position from which to begin the search
1648 * @start: store the start of the free space.
1649 * @len: the size of the free space. that we find, or the size
1650 * of the max free space if we don't find suitable free space
1651 *
1652 * This does a pretty simple search, the expectation is that it is called very
1653 * infrequently and that a given device has a small number of extents.
1654 *
1655 * @start is used to store the start of the free space if we find. But if we
1656 * don't find suitable free space, it will be used to store the start position
1657 * of the max free space.
1658 *
1659 * @len is used to store the size of the free space that we find.
1660 * But if we don't find suitable free space, it is used to store the size of
1661 * the max free space.
1662 *
1663 * NOTE: This function will search *commit* root of device tree, and does extra
1664 * check to ensure dev extents are not double allocated.
1665 * This makes the function safe to allocate dev extents but may not report
1666 * correct usable device space, as device extent freed in current transaction
1667 * is not reported as available.
1668 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1669 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1670 u64 *start, u64 *len)
1671 {
1672 struct btrfs_fs_info *fs_info = device->fs_info;
1673 struct btrfs_root *root = fs_info->dev_root;
1674 struct btrfs_key key;
1675 struct btrfs_dev_extent *dev_extent;
1676 struct btrfs_path *path;
1677 u64 search_start;
1678 u64 hole_size;
1679 u64 max_hole_start;
1680 u64 max_hole_size = 0;
1681 u64 extent_end;
1682 u64 search_end = device->total_bytes;
1683 int ret;
1684 int slot;
1685 struct extent_buffer *l;
1686
1687 search_start = dev_extent_search_start(device);
1688 max_hole_start = search_start;
1689
1690 WARN_ON(device->zone_info &&
1691 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1692
1693 path = btrfs_alloc_path();
1694 if (!path) {
1695 ret = -ENOMEM;
1696 goto out;
1697 }
1698 again:
1699 if (search_start >= search_end ||
1700 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1701 ret = -ENOSPC;
1702 goto out;
1703 }
1704
1705 path->reada = READA_FORWARD;
1706 path->search_commit_root = 1;
1707 path->skip_locking = 1;
1708
1709 key.objectid = device->devid;
1710 key.type = BTRFS_DEV_EXTENT_KEY;
1711 key.offset = search_start;
1712
1713 ret = btrfs_search_backwards(root, &key, path);
1714 if (ret < 0)
1715 goto out;
1716
1717 while (search_start < search_end) {
1718 l = path->nodes[0];
1719 slot = path->slots[0];
1720 if (slot >= btrfs_header_nritems(l)) {
1721 ret = btrfs_next_leaf(root, path);
1722 if (ret == 0)
1723 continue;
1724 if (ret < 0)
1725 goto out;
1726
1727 break;
1728 }
1729 btrfs_item_key_to_cpu(l, &key, slot);
1730
1731 if (key.objectid < device->devid)
1732 goto next;
1733
1734 if (key.objectid > device->devid)
1735 break;
1736
1737 if (key.type != BTRFS_DEV_EXTENT_KEY)
1738 goto next;
1739
1740 if (key.offset > search_end)
1741 break;
1742
1743 if (key.offset > search_start) {
1744 hole_size = key.offset - search_start;
1745 dev_extent_hole_check(device, &search_start, &hole_size,
1746 num_bytes);
1747
1748 if (hole_size > max_hole_size) {
1749 max_hole_start = search_start;
1750 max_hole_size = hole_size;
1751 }
1752
1753 /*
1754 * If this free space is greater than which we need,
1755 * it must be the max free space that we have found
1756 * until now, so max_hole_start must point to the start
1757 * of this free space and the length of this free space
1758 * is stored in max_hole_size. Thus, we return
1759 * max_hole_start and max_hole_size and go back to the
1760 * caller.
1761 */
1762 if (hole_size >= num_bytes) {
1763 ret = 0;
1764 goto out;
1765 }
1766 }
1767
1768 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1769 extent_end = key.offset + btrfs_dev_extent_length(l,
1770 dev_extent);
1771 if (extent_end > search_start)
1772 search_start = extent_end;
1773 next:
1774 path->slots[0]++;
1775 cond_resched();
1776 }
1777
1778 /*
1779 * At this point, search_start should be the end of
1780 * allocated dev extents, and when shrinking the device,
1781 * search_end may be smaller than search_start.
1782 */
1783 if (search_end > search_start) {
1784 hole_size = search_end - search_start;
1785 if (dev_extent_hole_check(device, &search_start, &hole_size,
1786 num_bytes)) {
1787 btrfs_release_path(path);
1788 goto again;
1789 }
1790
1791 if (hole_size > max_hole_size) {
1792 max_hole_start = search_start;
1793 max_hole_size = hole_size;
1794 }
1795 }
1796
1797 /* See above. */
1798 if (max_hole_size < num_bytes)
1799 ret = -ENOSPC;
1800 else
1801 ret = 0;
1802
1803 ASSERT(max_hole_start + max_hole_size <= search_end,
1804 "max_hole_start=%llu max_hole_size=%llu search_end=%llu",
1805 max_hole_start, max_hole_size, search_end);
1806 out:
1807 btrfs_free_path(path);
1808 *start = max_hole_start;
1809 if (len)
1810 *len = max_hole_size;
1811 return ret;
1812 }
1813
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1814 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1815 struct btrfs_device *device,
1816 u64 start, u64 *dev_extent_len)
1817 {
1818 struct btrfs_fs_info *fs_info = device->fs_info;
1819 struct btrfs_root *root = fs_info->dev_root;
1820 int ret;
1821 struct btrfs_path *path;
1822 struct btrfs_key key;
1823 struct btrfs_key found_key;
1824 struct extent_buffer *leaf = NULL;
1825 struct btrfs_dev_extent *extent = NULL;
1826
1827 path = btrfs_alloc_path();
1828 if (!path)
1829 return -ENOMEM;
1830
1831 key.objectid = device->devid;
1832 key.type = BTRFS_DEV_EXTENT_KEY;
1833 key.offset = start;
1834 again:
1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1836 if (ret > 0) {
1837 ret = btrfs_previous_item(root, path, key.objectid,
1838 BTRFS_DEV_EXTENT_KEY);
1839 if (ret)
1840 goto out;
1841 leaf = path->nodes[0];
1842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1843 extent = btrfs_item_ptr(leaf, path->slots[0],
1844 struct btrfs_dev_extent);
1845 BUG_ON(found_key.offset > start || found_key.offset +
1846 btrfs_dev_extent_length(leaf, extent) < start);
1847 key = found_key;
1848 btrfs_release_path(path);
1849 goto again;
1850 } else if (ret == 0) {
1851 leaf = path->nodes[0];
1852 extent = btrfs_item_ptr(leaf, path->slots[0],
1853 struct btrfs_dev_extent);
1854 } else {
1855 goto out;
1856 }
1857
1858 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1859
1860 ret = btrfs_del_item(trans, root, path);
1861 if (ret == 0)
1862 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1863 out:
1864 btrfs_free_path(path);
1865 return ret;
1866 }
1867
find_next_chunk(struct btrfs_fs_info * fs_info)1868 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1869 {
1870 struct rb_node *n;
1871 u64 ret = 0;
1872
1873 read_lock(&fs_info->mapping_tree_lock);
1874 n = rb_last(&fs_info->mapping_tree.rb_root);
1875 if (n) {
1876 struct btrfs_chunk_map *map;
1877
1878 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1879 ret = map->start + map->chunk_len;
1880 }
1881 read_unlock(&fs_info->mapping_tree_lock);
1882
1883 return ret;
1884 }
1885
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1886 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1887 u64 *devid_ret)
1888 {
1889 int ret;
1890 struct btrfs_key key;
1891 struct btrfs_key found_key;
1892 struct btrfs_path *path;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1899 key.type = BTRFS_DEV_ITEM_KEY;
1900 key.offset = (u64)-1;
1901
1902 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1903 if (ret < 0)
1904 goto error;
1905
1906 if (ret == 0) {
1907 /* Corruption */
1908 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1909 ret = -EUCLEAN;
1910 goto error;
1911 }
1912
1913 ret = btrfs_previous_item(fs_info->chunk_root, path,
1914 BTRFS_DEV_ITEMS_OBJECTID,
1915 BTRFS_DEV_ITEM_KEY);
1916 if (ret) {
1917 *devid_ret = 1;
1918 } else {
1919 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1920 path->slots[0]);
1921 *devid_ret = found_key.offset + 1;
1922 }
1923 ret = 0;
1924 error:
1925 btrfs_free_path(path);
1926 return ret;
1927 }
1928
1929 /*
1930 * the device information is stored in the chunk root
1931 * the btrfs_device struct should be fully filled in
1932 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1933 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1934 struct btrfs_device *device)
1935 {
1936 int ret;
1937 struct btrfs_path *path;
1938 struct btrfs_dev_item *dev_item;
1939 struct extent_buffer *leaf;
1940 struct btrfs_key key;
1941 unsigned long ptr;
1942
1943 path = btrfs_alloc_path();
1944 if (!path)
1945 return -ENOMEM;
1946
1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1948 key.type = BTRFS_DEV_ITEM_KEY;
1949 key.offset = device->devid;
1950
1951 btrfs_reserve_chunk_metadata(trans, true);
1952 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1953 &key, sizeof(*dev_item));
1954 btrfs_trans_release_chunk_metadata(trans);
1955 if (ret)
1956 goto out;
1957
1958 leaf = path->nodes[0];
1959 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1960
1961 btrfs_set_device_id(leaf, dev_item, device->devid);
1962 btrfs_set_device_generation(leaf, dev_item, 0);
1963 btrfs_set_device_type(leaf, dev_item, device->type);
1964 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1965 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1967 btrfs_set_device_total_bytes(leaf, dev_item,
1968 btrfs_device_get_disk_total_bytes(device));
1969 btrfs_set_device_bytes_used(leaf, dev_item,
1970 btrfs_device_get_bytes_used(device));
1971 btrfs_set_device_group(leaf, dev_item, 0);
1972 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1973 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1974 btrfs_set_device_start_offset(leaf, dev_item, 0);
1975
1976 ptr = btrfs_device_uuid(dev_item);
1977 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1978 ptr = btrfs_device_fsid(dev_item);
1979 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1980 ptr, BTRFS_FSID_SIZE);
1981
1982 ret = 0;
1983 out:
1984 btrfs_free_path(path);
1985 return ret;
1986 }
1987
1988 /*
1989 * Function to update ctime/mtime for a given device path.
1990 * Mainly used for ctime/mtime based probe like libblkid.
1991 *
1992 * We don't care about errors here, this is just to be kind to userspace.
1993 */
update_dev_time(const char * device_path)1994 static void update_dev_time(const char *device_path)
1995 {
1996 struct path path;
1997 int ret;
1998
1999 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2000 if (ret)
2001 return;
2002
2003 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2004 path_put(&path);
2005 }
2006
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2007 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2008 struct btrfs_device *device)
2009 {
2010 struct btrfs_root *root = device->fs_info->chunk_root;
2011 int ret;
2012 struct btrfs_path *path;
2013 struct btrfs_key key;
2014
2015 path = btrfs_alloc_path();
2016 if (!path)
2017 return -ENOMEM;
2018
2019 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2020 key.type = BTRFS_DEV_ITEM_KEY;
2021 key.offset = device->devid;
2022
2023 btrfs_reserve_chunk_metadata(trans, false);
2024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2025 btrfs_trans_release_chunk_metadata(trans);
2026 if (ret) {
2027 if (ret > 0)
2028 ret = -ENOENT;
2029 goto out;
2030 }
2031
2032 ret = btrfs_del_item(trans, root, path);
2033 out:
2034 btrfs_free_path(path);
2035 return ret;
2036 }
2037
2038 /*
2039 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2040 * filesystem. It's up to the caller to adjust that number regarding eg. device
2041 * replace.
2042 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2043 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2044 u64 num_devices)
2045 {
2046 u64 all_avail;
2047 unsigned seq;
2048 int i;
2049
2050 do {
2051 seq = read_seqbegin(&fs_info->profiles_lock);
2052
2053 all_avail = fs_info->avail_data_alloc_bits |
2054 fs_info->avail_system_alloc_bits |
2055 fs_info->avail_metadata_alloc_bits;
2056 } while (read_seqretry(&fs_info->profiles_lock, seq));
2057
2058 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2059 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2060 continue;
2061
2062 if (num_devices < btrfs_raid_array[i].devs_min)
2063 return btrfs_raid_array[i].mindev_error;
2064 }
2065
2066 return 0;
2067 }
2068
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2069 static struct btrfs_device * btrfs_find_next_active_device(
2070 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2071 {
2072 struct btrfs_device *next_device;
2073
2074 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2075 if (next_device != device &&
2076 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2077 && next_device->bdev)
2078 return next_device;
2079 }
2080
2081 return NULL;
2082 }
2083
2084 /*
2085 * Helper function to check if the given device is part of s_bdev / latest_dev
2086 * and replace it with the provided or the next active device, in the context
2087 * where this function called, there should be always be another device (or
2088 * this_dev) which is active.
2089 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2090 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2091 struct btrfs_device *next_device)
2092 {
2093 struct btrfs_fs_info *fs_info = device->fs_info;
2094
2095 if (!next_device)
2096 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2097 device);
2098 ASSERT(next_device);
2099
2100 if (fs_info->sb->s_bdev &&
2101 (fs_info->sb->s_bdev == device->bdev))
2102 fs_info->sb->s_bdev = next_device->bdev;
2103
2104 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2105 fs_info->fs_devices->latest_dev = next_device;
2106 }
2107
2108 /*
2109 * Return btrfs_fs_devices::num_devices excluding the device that's being
2110 * currently replaced.
2111 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2112 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2113 {
2114 u64 num_devices = fs_info->fs_devices->num_devices;
2115
2116 down_read(&fs_info->dev_replace.rwsem);
2117 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2118 ASSERT(num_devices > 1, "num_devices=%llu", num_devices);
2119 num_devices--;
2120 }
2121 up_read(&fs_info->dev_replace.rwsem);
2122
2123 return num_devices;
2124 }
2125
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2126 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2127 struct block_device *bdev, int copy_num)
2128 {
2129 struct btrfs_super_block *disk_super;
2130 const size_t len = sizeof(disk_super->magic);
2131 const u64 bytenr = btrfs_sb_offset(copy_num);
2132 int ret;
2133
2134 disk_super = btrfs_read_disk_super(bdev, copy_num, false);
2135 if (IS_ERR(disk_super))
2136 return;
2137
2138 memset(&disk_super->magic, 0, len);
2139 folio_mark_dirty(virt_to_folio(disk_super));
2140 btrfs_release_disk_super(disk_super);
2141
2142 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2143 if (ret)
2144 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2145 copy_num, ret);
2146 }
2147
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2148 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2149 {
2150 int copy_num;
2151 struct block_device *bdev = device->bdev;
2152
2153 if (!bdev)
2154 return;
2155
2156 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2157 if (bdev_is_zoned(bdev))
2158 btrfs_reset_sb_log_zones(bdev, copy_num);
2159 else
2160 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2161 }
2162
2163 /* Notify udev that device has changed */
2164 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2165
2166 /* Update ctime/mtime for device path for libblkid */
2167 update_dev_time(device->name->str);
2168 }
2169
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2170 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2171 struct btrfs_dev_lookup_args *args,
2172 struct file **bdev_file)
2173 {
2174 struct btrfs_trans_handle *trans;
2175 struct btrfs_device *device;
2176 struct btrfs_fs_devices *cur_devices;
2177 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2178 u64 num_devices;
2179 int ret = 0;
2180
2181 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2182 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2183 return -EINVAL;
2184 }
2185
2186 /*
2187 * The device list in fs_devices is accessed without locks (neither
2188 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2189 * filesystem and another device rm cannot run.
2190 */
2191 num_devices = btrfs_num_devices(fs_info);
2192
2193 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2194 if (ret)
2195 return ret;
2196
2197 device = btrfs_find_device(fs_info->fs_devices, args);
2198 if (!device) {
2199 if (args->missing)
2200 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2201 else
2202 ret = -ENOENT;
2203 return ret;
2204 }
2205
2206 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2207 btrfs_warn_in_rcu(fs_info,
2208 "cannot remove device %s (devid %llu) due to active swapfile",
2209 btrfs_dev_name(device), device->devid);
2210 return -ETXTBSY;
2211 }
2212
2213 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2214 return BTRFS_ERROR_DEV_TGT_REPLACE;
2215
2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2217 fs_info->fs_devices->rw_devices == 1)
2218 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2219
2220 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2221 mutex_lock(&fs_info->chunk_mutex);
2222 list_del_init(&device->dev_alloc_list);
2223 device->fs_devices->rw_devices--;
2224 mutex_unlock(&fs_info->chunk_mutex);
2225 }
2226
2227 ret = btrfs_shrink_device(device, 0);
2228 if (ret)
2229 goto error_undo;
2230
2231 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2232 if (IS_ERR(trans)) {
2233 ret = PTR_ERR(trans);
2234 goto error_undo;
2235 }
2236
2237 ret = btrfs_rm_dev_item(trans, device);
2238 if (ret) {
2239 /* Any error in dev item removal is critical */
2240 btrfs_crit(fs_info,
2241 "failed to remove device item for devid %llu: %d",
2242 device->devid, ret);
2243 btrfs_abort_transaction(trans, ret);
2244 btrfs_end_transaction(trans);
2245 return ret;
2246 }
2247
2248 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2249 btrfs_scrub_cancel_dev(device);
2250
2251 /*
2252 * the device list mutex makes sure that we don't change
2253 * the device list while someone else is writing out all
2254 * the device supers. Whoever is writing all supers, should
2255 * lock the device list mutex before getting the number of
2256 * devices in the super block (super_copy). Conversely,
2257 * whoever updates the number of devices in the super block
2258 * (super_copy) should hold the device list mutex.
2259 */
2260
2261 /*
2262 * In normal cases the cur_devices == fs_devices. But in case
2263 * of deleting a seed device, the cur_devices should point to
2264 * its own fs_devices listed under the fs_devices->seed_list.
2265 */
2266 cur_devices = device->fs_devices;
2267 mutex_lock(&fs_devices->device_list_mutex);
2268 list_del_rcu(&device->dev_list);
2269
2270 cur_devices->num_devices--;
2271 cur_devices->total_devices--;
2272 /* Update total_devices of the parent fs_devices if it's seed */
2273 if (cur_devices != fs_devices)
2274 fs_devices->total_devices--;
2275
2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2277 cur_devices->missing_devices--;
2278
2279 btrfs_assign_next_active_device(device, NULL);
2280
2281 if (device->bdev_file) {
2282 cur_devices->open_devices--;
2283 /* remove sysfs entry */
2284 btrfs_sysfs_remove_device(device);
2285 }
2286
2287 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2288 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2289 mutex_unlock(&fs_devices->device_list_mutex);
2290
2291 /*
2292 * At this point, the device is zero sized and detached from the
2293 * devices list. All that's left is to zero out the old supers and
2294 * free the device.
2295 *
2296 * We cannot call btrfs_close_bdev() here because we're holding the sb
2297 * write lock, and fput() on the block device will pull in the
2298 * ->open_mutex on the block device and it's dependencies. Instead
2299 * just flush the device and let the caller do the final bdev_release.
2300 */
2301 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2302 btrfs_scratch_superblocks(fs_info, device);
2303 if (device->bdev) {
2304 sync_blockdev(device->bdev);
2305 invalidate_bdev(device->bdev);
2306 }
2307 }
2308
2309 *bdev_file = device->bdev_file;
2310 synchronize_rcu();
2311 btrfs_free_device(device);
2312
2313 /*
2314 * This can happen if cur_devices is the private seed devices list. We
2315 * cannot call close_fs_devices() here because it expects the uuid_mutex
2316 * to be held, but in fact we don't need that for the private
2317 * seed_devices, we can simply decrement cur_devices->opened and then
2318 * remove it from our list and free the fs_devices.
2319 */
2320 if (cur_devices->num_devices == 0) {
2321 list_del_init(&cur_devices->seed_list);
2322 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened);
2323 cur_devices->opened--;
2324 free_fs_devices(cur_devices);
2325 }
2326
2327 ret = btrfs_commit_transaction(trans);
2328
2329 return ret;
2330
2331 error_undo:
2332 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2333 mutex_lock(&fs_info->chunk_mutex);
2334 list_add(&device->dev_alloc_list,
2335 &fs_devices->alloc_list);
2336 device->fs_devices->rw_devices++;
2337 mutex_unlock(&fs_info->chunk_mutex);
2338 }
2339 return ret;
2340 }
2341
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2342 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2343 {
2344 struct btrfs_fs_devices *fs_devices;
2345
2346 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2347
2348 /*
2349 * in case of fs with no seed, srcdev->fs_devices will point
2350 * to fs_devices of fs_info. However when the dev being replaced is
2351 * a seed dev it will point to the seed's local fs_devices. In short
2352 * srcdev will have its correct fs_devices in both the cases.
2353 */
2354 fs_devices = srcdev->fs_devices;
2355
2356 list_del_rcu(&srcdev->dev_list);
2357 list_del(&srcdev->dev_alloc_list);
2358 fs_devices->num_devices--;
2359 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2360 fs_devices->missing_devices--;
2361
2362 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2363 fs_devices->rw_devices--;
2364
2365 if (srcdev->bdev)
2366 fs_devices->open_devices--;
2367 }
2368
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2369 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2370 {
2371 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2372
2373 mutex_lock(&uuid_mutex);
2374
2375 btrfs_close_bdev(srcdev);
2376 synchronize_rcu();
2377 btrfs_free_device(srcdev);
2378
2379 /* if this is no devs we rather delete the fs_devices */
2380 if (!fs_devices->num_devices) {
2381 /*
2382 * On a mounted FS, num_devices can't be zero unless it's a
2383 * seed. In case of a seed device being replaced, the replace
2384 * target added to the sprout FS, so there will be no more
2385 * device left under the seed FS.
2386 */
2387 ASSERT(fs_devices->seeding);
2388
2389 list_del_init(&fs_devices->seed_list);
2390 close_fs_devices(fs_devices);
2391 free_fs_devices(fs_devices);
2392 }
2393 mutex_unlock(&uuid_mutex);
2394 }
2395
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2396 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2397 {
2398 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2399
2400 mutex_lock(&fs_devices->device_list_mutex);
2401
2402 btrfs_sysfs_remove_device(tgtdev);
2403
2404 if (tgtdev->bdev)
2405 fs_devices->open_devices--;
2406
2407 fs_devices->num_devices--;
2408
2409 btrfs_assign_next_active_device(tgtdev, NULL);
2410
2411 list_del_rcu(&tgtdev->dev_list);
2412
2413 mutex_unlock(&fs_devices->device_list_mutex);
2414
2415 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2416
2417 btrfs_close_bdev(tgtdev);
2418 synchronize_rcu();
2419 btrfs_free_device(tgtdev);
2420 }
2421
2422 /*
2423 * Populate args from device at path.
2424 *
2425 * @fs_info: the filesystem
2426 * @args: the args to populate
2427 * @path: the path to the device
2428 *
2429 * This will read the super block of the device at @path and populate @args with
2430 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2431 * lookup a device to operate on, but need to do it before we take any locks.
2432 * This properly handles the special case of "missing" that a user may pass in,
2433 * and does some basic sanity checks. The caller must make sure that @path is
2434 * properly NUL terminated before calling in, and must call
2435 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2436 * uuid buffers.
2437 *
2438 * Return: 0 for success, -errno for failure
2439 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2440 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2441 struct btrfs_dev_lookup_args *args,
2442 const char *path)
2443 {
2444 struct btrfs_super_block *disk_super;
2445 struct file *bdev_file;
2446 int ret;
2447
2448 if (!path || !path[0])
2449 return -EINVAL;
2450 if (!strcmp(path, "missing")) {
2451 args->missing = true;
2452 return 0;
2453 }
2454
2455 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2456 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2457 if (!args->uuid || !args->fsid) {
2458 btrfs_put_dev_args_from_path(args);
2459 return -ENOMEM;
2460 }
2461
2462 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2463 &bdev_file, &disk_super);
2464 if (ret) {
2465 btrfs_put_dev_args_from_path(args);
2466 return ret;
2467 }
2468
2469 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2470 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2471 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2472 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2473 else
2474 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2475 btrfs_release_disk_super(disk_super);
2476 fput(bdev_file);
2477 return 0;
2478 }
2479
2480 /*
2481 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2482 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2483 * that don't need to be freed.
2484 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2485 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2486 {
2487 kfree(args->uuid);
2488 kfree(args->fsid);
2489 args->uuid = NULL;
2490 args->fsid = NULL;
2491 }
2492
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2493 struct btrfs_device *btrfs_find_device_by_devspec(
2494 struct btrfs_fs_info *fs_info, u64 devid,
2495 const char *device_path)
2496 {
2497 BTRFS_DEV_LOOKUP_ARGS(args);
2498 struct btrfs_device *device;
2499 int ret;
2500
2501 if (devid) {
2502 args.devid = devid;
2503 device = btrfs_find_device(fs_info->fs_devices, &args);
2504 if (!device)
2505 return ERR_PTR(-ENOENT);
2506 return device;
2507 }
2508
2509 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2510 if (ret)
2511 return ERR_PTR(ret);
2512 device = btrfs_find_device(fs_info->fs_devices, &args);
2513 btrfs_put_dev_args_from_path(&args);
2514 if (!device)
2515 return ERR_PTR(-ENOENT);
2516 return device;
2517 }
2518
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2519 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2520 {
2521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2522 struct btrfs_fs_devices *old_devices;
2523 struct btrfs_fs_devices *seed_devices;
2524
2525 lockdep_assert_held(&uuid_mutex);
2526 if (!fs_devices->seeding)
2527 return ERR_PTR(-EINVAL);
2528
2529 /*
2530 * Private copy of the seed devices, anchored at
2531 * fs_info->fs_devices->seed_list
2532 */
2533 seed_devices = alloc_fs_devices(NULL);
2534 if (IS_ERR(seed_devices))
2535 return seed_devices;
2536
2537 /*
2538 * It's necessary to retain a copy of the original seed fs_devices in
2539 * fs_uuids so that filesystems which have been seeded can successfully
2540 * reference the seed device from open_seed_devices. This also supports
2541 * multiple fs seed.
2542 */
2543 old_devices = clone_fs_devices(fs_devices);
2544 if (IS_ERR(old_devices)) {
2545 kfree(seed_devices);
2546 return old_devices;
2547 }
2548
2549 list_add(&old_devices->fs_list, &fs_uuids);
2550
2551 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2552 seed_devices->opened = 1;
2553 INIT_LIST_HEAD(&seed_devices->devices);
2554 INIT_LIST_HEAD(&seed_devices->alloc_list);
2555 mutex_init(&seed_devices->device_list_mutex);
2556
2557 return seed_devices;
2558 }
2559
2560 /*
2561 * Splice seed devices into the sprout fs_devices.
2562 * Generate a new fsid for the sprouted read-write filesystem.
2563 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2564 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2565 struct btrfs_fs_devices *seed_devices)
2566 {
2567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2568 struct btrfs_super_block *disk_super = fs_info->super_copy;
2569 struct btrfs_device *device;
2570 u64 super_flags;
2571
2572 /*
2573 * We are updating the fsid, the thread leading to device_list_add()
2574 * could race, so uuid_mutex is needed.
2575 */
2576 lockdep_assert_held(&uuid_mutex);
2577
2578 /*
2579 * The threads listed below may traverse dev_list but can do that without
2580 * device_list_mutex:
2581 * - All device ops and balance - as we are in btrfs_exclop_start.
2582 * - Various dev_list readers - are using RCU.
2583 * - btrfs_ioctl_fitrim() - is using RCU.
2584 *
2585 * For-read threads as below are using device_list_mutex:
2586 * - Readonly scrub btrfs_scrub_dev()
2587 * - Readonly scrub btrfs_scrub_progress()
2588 * - btrfs_get_dev_stats()
2589 */
2590 lockdep_assert_held(&fs_devices->device_list_mutex);
2591
2592 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2593 synchronize_rcu);
2594 list_for_each_entry(device, &seed_devices->devices, dev_list)
2595 device->fs_devices = seed_devices;
2596
2597 fs_devices->seeding = false;
2598 fs_devices->num_devices = 0;
2599 fs_devices->open_devices = 0;
2600 fs_devices->missing_devices = 0;
2601 fs_devices->rotating = false;
2602 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2603
2604 generate_random_uuid(fs_devices->fsid);
2605 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2606 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2607
2608 super_flags = btrfs_super_flags(disk_super) &
2609 ~BTRFS_SUPER_FLAG_SEEDING;
2610 btrfs_set_super_flags(disk_super, super_flags);
2611 }
2612
2613 /*
2614 * Store the expected generation for seed devices in device items.
2615 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2616 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2617 {
2618 BTRFS_DEV_LOOKUP_ARGS(args);
2619 struct btrfs_fs_info *fs_info = trans->fs_info;
2620 struct btrfs_root *root = fs_info->chunk_root;
2621 struct btrfs_path *path;
2622 struct extent_buffer *leaf;
2623 struct btrfs_dev_item *dev_item;
2624 struct btrfs_device *device;
2625 struct btrfs_key key;
2626 u8 fs_uuid[BTRFS_FSID_SIZE];
2627 u8 dev_uuid[BTRFS_UUID_SIZE];
2628 int ret;
2629
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2635 key.type = BTRFS_DEV_ITEM_KEY;
2636 key.offset = 0;
2637
2638 while (1) {
2639 btrfs_reserve_chunk_metadata(trans, false);
2640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2641 btrfs_trans_release_chunk_metadata(trans);
2642 if (ret < 0)
2643 goto error;
2644
2645 leaf = path->nodes[0];
2646 next_slot:
2647 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2648 ret = btrfs_next_leaf(root, path);
2649 if (ret > 0)
2650 break;
2651 if (ret < 0)
2652 goto error;
2653 leaf = path->nodes[0];
2654 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2655 btrfs_release_path(path);
2656 continue;
2657 }
2658
2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2660 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2661 key.type != BTRFS_DEV_ITEM_KEY)
2662 break;
2663
2664 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2665 struct btrfs_dev_item);
2666 args.devid = btrfs_device_id(leaf, dev_item);
2667 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2668 BTRFS_UUID_SIZE);
2669 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2670 BTRFS_FSID_SIZE);
2671 args.uuid = dev_uuid;
2672 args.fsid = fs_uuid;
2673 device = btrfs_find_device(fs_info->fs_devices, &args);
2674 BUG_ON(!device); /* Logic error */
2675
2676 if (device->fs_devices->seeding)
2677 btrfs_set_device_generation(leaf, dev_item,
2678 device->generation);
2679
2680 path->slots[0]++;
2681 goto next_slot;
2682 }
2683 ret = 0;
2684 error:
2685 btrfs_free_path(path);
2686 return ret;
2687 }
2688
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2689 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2690 {
2691 struct btrfs_root *root = fs_info->dev_root;
2692 struct btrfs_trans_handle *trans;
2693 struct btrfs_device *device;
2694 struct file *bdev_file;
2695 struct super_block *sb = fs_info->sb;
2696 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2697 struct btrfs_fs_devices *seed_devices = NULL;
2698 u64 orig_super_total_bytes;
2699 u64 orig_super_num_devices;
2700 int ret = 0;
2701 bool seeding_dev = false;
2702 bool locked = false;
2703
2704 if (sb_rdonly(sb) && !fs_devices->seeding)
2705 return -EROFS;
2706
2707 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2708 fs_info->bdev_holder, NULL);
2709 if (IS_ERR(bdev_file))
2710 return PTR_ERR(bdev_file);
2711
2712 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2713 ret = -EINVAL;
2714 goto error;
2715 }
2716
2717 if (fs_devices->seeding) {
2718 seeding_dev = true;
2719 down_write(&sb->s_umount);
2720 mutex_lock(&uuid_mutex);
2721 locked = true;
2722 }
2723
2724 sync_blockdev(file_bdev(bdev_file));
2725
2726 rcu_read_lock();
2727 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2728 if (device->bdev == file_bdev(bdev_file)) {
2729 ret = -EEXIST;
2730 rcu_read_unlock();
2731 goto error;
2732 }
2733 }
2734 rcu_read_unlock();
2735
2736 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2737 if (IS_ERR(device)) {
2738 /* we can safely leave the fs_devices entry around */
2739 ret = PTR_ERR(device);
2740 goto error;
2741 }
2742
2743 device->fs_info = fs_info;
2744 device->bdev_file = bdev_file;
2745 device->bdev = file_bdev(bdev_file);
2746 ret = lookup_bdev(device_path, &device->devt);
2747 if (ret)
2748 goto error_free_device;
2749
2750 ret = btrfs_get_dev_zone_info(device, false);
2751 if (ret)
2752 goto error_free_device;
2753
2754 trans = btrfs_start_transaction(root, 0);
2755 if (IS_ERR(trans)) {
2756 ret = PTR_ERR(trans);
2757 goto error_free_zone;
2758 }
2759
2760 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2761 device->generation = trans->transid;
2762 device->io_width = fs_info->sectorsize;
2763 device->io_align = fs_info->sectorsize;
2764 device->sector_size = fs_info->sectorsize;
2765 device->total_bytes =
2766 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2767 device->disk_total_bytes = device->total_bytes;
2768 device->commit_total_bytes = device->total_bytes;
2769 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2770 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2771 device->dev_stats_valid = 1;
2772 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2773
2774 if (seeding_dev) {
2775 /* GFP_KERNEL allocation must not be under device_list_mutex */
2776 seed_devices = btrfs_init_sprout(fs_info);
2777 if (IS_ERR(seed_devices)) {
2778 ret = PTR_ERR(seed_devices);
2779 btrfs_abort_transaction(trans, ret);
2780 goto error_trans;
2781 }
2782 }
2783
2784 mutex_lock(&fs_devices->device_list_mutex);
2785 if (seeding_dev) {
2786 btrfs_setup_sprout(fs_info, seed_devices);
2787 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2788 device);
2789 }
2790
2791 device->fs_devices = fs_devices;
2792
2793 mutex_lock(&fs_info->chunk_mutex);
2794 list_add_rcu(&device->dev_list, &fs_devices->devices);
2795 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2796 fs_devices->num_devices++;
2797 fs_devices->open_devices++;
2798 fs_devices->rw_devices++;
2799 fs_devices->total_devices++;
2800 fs_devices->total_rw_bytes += device->total_bytes;
2801
2802 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2803
2804 if (!bdev_nonrot(device->bdev))
2805 fs_devices->rotating = true;
2806
2807 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2808 btrfs_set_super_total_bytes(fs_info->super_copy,
2809 round_down(orig_super_total_bytes + device->total_bytes,
2810 fs_info->sectorsize));
2811
2812 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2813 btrfs_set_super_num_devices(fs_info->super_copy,
2814 orig_super_num_devices + 1);
2815
2816 /*
2817 * we've got more storage, clear any full flags on the space
2818 * infos
2819 */
2820 btrfs_clear_space_info_full(fs_info);
2821
2822 mutex_unlock(&fs_info->chunk_mutex);
2823
2824 /* Add sysfs device entry */
2825 btrfs_sysfs_add_device(device);
2826
2827 mutex_unlock(&fs_devices->device_list_mutex);
2828
2829 if (seeding_dev) {
2830 mutex_lock(&fs_info->chunk_mutex);
2831 ret = init_first_rw_device(trans);
2832 mutex_unlock(&fs_info->chunk_mutex);
2833 if (ret) {
2834 btrfs_abort_transaction(trans, ret);
2835 goto error_sysfs;
2836 }
2837 }
2838
2839 ret = btrfs_add_dev_item(trans, device);
2840 if (ret) {
2841 btrfs_abort_transaction(trans, ret);
2842 goto error_sysfs;
2843 }
2844
2845 if (seeding_dev) {
2846 ret = btrfs_finish_sprout(trans);
2847 if (ret) {
2848 btrfs_abort_transaction(trans, ret);
2849 goto error_sysfs;
2850 }
2851
2852 /*
2853 * fs_devices now represents the newly sprouted filesystem and
2854 * its fsid has been changed by btrfs_sprout_splice().
2855 */
2856 btrfs_sysfs_update_sprout_fsid(fs_devices);
2857 }
2858
2859 ret = btrfs_commit_transaction(trans);
2860
2861 if (seeding_dev) {
2862 mutex_unlock(&uuid_mutex);
2863 up_write(&sb->s_umount);
2864 locked = false;
2865
2866 if (ret) /* transaction commit */
2867 return ret;
2868
2869 ret = btrfs_relocate_sys_chunks(fs_info);
2870 if (ret < 0)
2871 btrfs_handle_fs_error(fs_info, ret,
2872 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2873 trans = btrfs_attach_transaction(root);
2874 if (IS_ERR(trans)) {
2875 if (PTR_ERR(trans) == -ENOENT)
2876 return 0;
2877 ret = PTR_ERR(trans);
2878 trans = NULL;
2879 goto error_sysfs;
2880 }
2881 ret = btrfs_commit_transaction(trans);
2882 }
2883
2884 /*
2885 * Now that we have written a new super block to this device, check all
2886 * other fs_devices list if device_path alienates any other scanned
2887 * device.
2888 * We can ignore the return value as it typically returns -EINVAL and
2889 * only succeeds if the device was an alien.
2890 */
2891 btrfs_forget_devices(device->devt);
2892
2893 /* Update ctime/mtime for blkid or udev */
2894 update_dev_time(device_path);
2895
2896 return ret;
2897
2898 error_sysfs:
2899 btrfs_sysfs_remove_device(device);
2900 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2901 mutex_lock(&fs_info->chunk_mutex);
2902 list_del_rcu(&device->dev_list);
2903 list_del(&device->dev_alloc_list);
2904 fs_info->fs_devices->num_devices--;
2905 fs_info->fs_devices->open_devices--;
2906 fs_info->fs_devices->rw_devices--;
2907 fs_info->fs_devices->total_devices--;
2908 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2909 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2910 btrfs_set_super_total_bytes(fs_info->super_copy,
2911 orig_super_total_bytes);
2912 btrfs_set_super_num_devices(fs_info->super_copy,
2913 orig_super_num_devices);
2914 mutex_unlock(&fs_info->chunk_mutex);
2915 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2916 error_trans:
2917 if (trans)
2918 btrfs_end_transaction(trans);
2919 error_free_zone:
2920 btrfs_destroy_dev_zone_info(device);
2921 error_free_device:
2922 btrfs_free_device(device);
2923 error:
2924 fput(bdev_file);
2925 if (locked) {
2926 mutex_unlock(&uuid_mutex);
2927 up_write(&sb->s_umount);
2928 }
2929 return ret;
2930 }
2931
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2932 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2933 struct btrfs_device *device)
2934 {
2935 int ret;
2936 struct btrfs_path *path;
2937 struct btrfs_root *root = device->fs_info->chunk_root;
2938 struct btrfs_dev_item *dev_item;
2939 struct extent_buffer *leaf;
2940 struct btrfs_key key;
2941
2942 path = btrfs_alloc_path();
2943 if (!path)
2944 return -ENOMEM;
2945
2946 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2947 key.type = BTRFS_DEV_ITEM_KEY;
2948 key.offset = device->devid;
2949
2950 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2951 if (ret < 0)
2952 goto out;
2953
2954 if (ret > 0) {
2955 ret = -ENOENT;
2956 goto out;
2957 }
2958
2959 leaf = path->nodes[0];
2960 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2961
2962 btrfs_set_device_id(leaf, dev_item, device->devid);
2963 btrfs_set_device_type(leaf, dev_item, device->type);
2964 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2965 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2967 btrfs_set_device_total_bytes(leaf, dev_item,
2968 btrfs_device_get_disk_total_bytes(device));
2969 btrfs_set_device_bytes_used(leaf, dev_item,
2970 btrfs_device_get_bytes_used(device));
2971 out:
2972 btrfs_free_path(path);
2973 return ret;
2974 }
2975
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2976 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2977 struct btrfs_device *device, u64 new_size)
2978 {
2979 struct btrfs_fs_info *fs_info = device->fs_info;
2980 struct btrfs_super_block *super_copy = fs_info->super_copy;
2981 u64 old_total;
2982 u64 diff;
2983 int ret;
2984
2985 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2986 return -EACCES;
2987
2988 new_size = round_down(new_size, fs_info->sectorsize);
2989
2990 mutex_lock(&fs_info->chunk_mutex);
2991 old_total = btrfs_super_total_bytes(super_copy);
2992 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2993
2994 if (new_size <= device->total_bytes ||
2995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2996 mutex_unlock(&fs_info->chunk_mutex);
2997 return -EINVAL;
2998 }
2999
3000 btrfs_set_super_total_bytes(super_copy,
3001 round_down(old_total + diff, fs_info->sectorsize));
3002 device->fs_devices->total_rw_bytes += diff;
3003 atomic64_add(diff, &fs_info->free_chunk_space);
3004
3005 btrfs_device_set_total_bytes(device, new_size);
3006 btrfs_device_set_disk_total_bytes(device, new_size);
3007 btrfs_clear_space_info_full(device->fs_info);
3008 if (list_empty(&device->post_commit_list))
3009 list_add_tail(&device->post_commit_list,
3010 &trans->transaction->dev_update_list);
3011 mutex_unlock(&fs_info->chunk_mutex);
3012
3013 btrfs_reserve_chunk_metadata(trans, false);
3014 ret = btrfs_update_device(trans, device);
3015 btrfs_trans_release_chunk_metadata(trans);
3016
3017 return ret;
3018 }
3019
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3020 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3021 {
3022 struct btrfs_fs_info *fs_info = trans->fs_info;
3023 struct btrfs_root *root = fs_info->chunk_root;
3024 int ret;
3025 struct btrfs_path *path;
3026 struct btrfs_key key;
3027
3028 path = btrfs_alloc_path();
3029 if (!path)
3030 return -ENOMEM;
3031
3032 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3033 key.type = BTRFS_CHUNK_ITEM_KEY;
3034 key.offset = chunk_offset;
3035
3036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3037 if (ret < 0)
3038 goto out;
3039 else if (ret > 0) { /* Logic error or corruption */
3040 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3041 chunk_offset);
3042 btrfs_abort_transaction(trans, -ENOENT);
3043 ret = -EUCLEAN;
3044 goto out;
3045 }
3046
3047 ret = btrfs_del_item(trans, root, path);
3048 if (ret < 0) {
3049 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3050 btrfs_abort_transaction(trans, ret);
3051 goto out;
3052 }
3053 out:
3054 btrfs_free_path(path);
3055 return ret;
3056 }
3057
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3058 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3059 {
3060 struct btrfs_super_block *super_copy = fs_info->super_copy;
3061 struct btrfs_disk_key *disk_key;
3062 struct btrfs_chunk *chunk;
3063 u8 *ptr;
3064 int ret = 0;
3065 u32 num_stripes;
3066 u32 array_size;
3067 u32 len = 0;
3068 u32 cur;
3069 struct btrfs_key key;
3070
3071 lockdep_assert_held(&fs_info->chunk_mutex);
3072 array_size = btrfs_super_sys_array_size(super_copy);
3073
3074 ptr = super_copy->sys_chunk_array;
3075 cur = 0;
3076
3077 while (cur < array_size) {
3078 disk_key = (struct btrfs_disk_key *)ptr;
3079 btrfs_disk_key_to_cpu(&key, disk_key);
3080
3081 len = sizeof(*disk_key);
3082
3083 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3084 chunk = (struct btrfs_chunk *)(ptr + len);
3085 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3086 len += btrfs_chunk_item_size(num_stripes);
3087 } else {
3088 ret = -EIO;
3089 break;
3090 }
3091 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3092 key.offset == chunk_offset) {
3093 memmove(ptr, ptr + len, array_size - (cur + len));
3094 array_size -= len;
3095 btrfs_set_super_sys_array_size(super_copy, array_size);
3096 } else {
3097 ptr += len;
3098 cur += len;
3099 }
3100 }
3101 return ret;
3102 }
3103
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3104 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3105 u64 logical, u64 length)
3106 {
3107 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3108 struct rb_node *prev = NULL;
3109 struct rb_node *orig_prev;
3110 struct btrfs_chunk_map *map;
3111 struct btrfs_chunk_map *prev_map = NULL;
3112
3113 while (node) {
3114 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3115 prev = node;
3116 prev_map = map;
3117
3118 if (logical < map->start) {
3119 node = node->rb_left;
3120 } else if (logical >= map->start + map->chunk_len) {
3121 node = node->rb_right;
3122 } else {
3123 refcount_inc(&map->refs);
3124 return map;
3125 }
3126 }
3127
3128 if (!prev)
3129 return NULL;
3130
3131 orig_prev = prev;
3132 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3133 prev = rb_next(prev);
3134 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3135 }
3136
3137 if (!prev) {
3138 prev = orig_prev;
3139 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3140 while (prev && logical < prev_map->start) {
3141 prev = rb_prev(prev);
3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3143 }
3144 }
3145
3146 if (prev) {
3147 u64 end = logical + length;
3148
3149 /*
3150 * Caller can pass a U64_MAX length when it wants to get any
3151 * chunk starting at an offset of 'logical' or higher, so deal
3152 * with underflow by resetting the end offset to U64_MAX.
3153 */
3154 if (end < logical)
3155 end = U64_MAX;
3156
3157 if (end > prev_map->start &&
3158 logical < prev_map->start + prev_map->chunk_len) {
3159 refcount_inc(&prev_map->refs);
3160 return prev_map;
3161 }
3162 }
3163
3164 return NULL;
3165 }
3166
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3167 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3168 u64 logical, u64 length)
3169 {
3170 struct btrfs_chunk_map *map;
3171
3172 read_lock(&fs_info->mapping_tree_lock);
3173 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3174 read_unlock(&fs_info->mapping_tree_lock);
3175
3176 return map;
3177 }
3178
3179 /*
3180 * Find the mapping containing the given logical extent.
3181 *
3182 * @logical: Logical block offset in bytes.
3183 * @length: Length of extent in bytes.
3184 *
3185 * Return: Chunk mapping or ERR_PTR.
3186 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3187 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3188 u64 logical, u64 length)
3189 {
3190 struct btrfs_chunk_map *map;
3191
3192 map = btrfs_find_chunk_map(fs_info, logical, length);
3193
3194 if (unlikely(!map)) {
3195 btrfs_crit(fs_info,
3196 "unable to find chunk map for logical %llu length %llu",
3197 logical, length);
3198 return ERR_PTR(-EINVAL);
3199 }
3200
3201 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3202 btrfs_crit(fs_info,
3203 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3204 logical, logical + length, map->start,
3205 map->start + map->chunk_len);
3206 btrfs_free_chunk_map(map);
3207 return ERR_PTR(-EINVAL);
3208 }
3209
3210 /* Callers are responsible for dropping the reference. */
3211 return map;
3212 }
3213
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3214 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3215 struct btrfs_chunk_map *map, u64 chunk_offset)
3216 {
3217 int i;
3218
3219 /*
3220 * Removing chunk items and updating the device items in the chunks btree
3221 * requires holding the chunk_mutex.
3222 * See the comment at btrfs_chunk_alloc() for the details.
3223 */
3224 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3225
3226 for (i = 0; i < map->num_stripes; i++) {
3227 int ret;
3228
3229 ret = btrfs_update_device(trans, map->stripes[i].dev);
3230 if (ret)
3231 return ret;
3232 }
3233
3234 return btrfs_free_chunk(trans, chunk_offset);
3235 }
3236
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3237 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3238 {
3239 struct btrfs_fs_info *fs_info = trans->fs_info;
3240 struct btrfs_chunk_map *map;
3241 u64 dev_extent_len = 0;
3242 int i, ret = 0;
3243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3244
3245 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3246 if (IS_ERR(map)) {
3247 /*
3248 * This is a logic error, but we don't want to just rely on the
3249 * user having built with ASSERT enabled, so if ASSERT doesn't
3250 * do anything we still error out.
3251 */
3252 DEBUG_WARN("errr %ld reading chunk map at offset %llu",
3253 PTR_ERR(map), chunk_offset);
3254 return PTR_ERR(map);
3255 }
3256
3257 /*
3258 * First delete the device extent items from the devices btree.
3259 * We take the device_list_mutex to avoid racing with the finishing phase
3260 * of a device replace operation. See the comment below before acquiring
3261 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3262 * because that can result in a deadlock when deleting the device extent
3263 * items from the devices btree - COWing an extent buffer from the btree
3264 * may result in allocating a new metadata chunk, which would attempt to
3265 * lock again fs_info->chunk_mutex.
3266 */
3267 mutex_lock(&fs_devices->device_list_mutex);
3268 for (i = 0; i < map->num_stripes; i++) {
3269 struct btrfs_device *device = map->stripes[i].dev;
3270 ret = btrfs_free_dev_extent(trans, device,
3271 map->stripes[i].physical,
3272 &dev_extent_len);
3273 if (ret) {
3274 mutex_unlock(&fs_devices->device_list_mutex);
3275 btrfs_abort_transaction(trans, ret);
3276 goto out;
3277 }
3278
3279 if (device->bytes_used > 0) {
3280 mutex_lock(&fs_info->chunk_mutex);
3281 btrfs_device_set_bytes_used(device,
3282 device->bytes_used - dev_extent_len);
3283 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3284 btrfs_clear_space_info_full(fs_info);
3285
3286 if (list_empty(&device->post_commit_list)) {
3287 list_add_tail(&device->post_commit_list,
3288 &trans->transaction->dev_update_list);
3289 }
3290
3291 mutex_unlock(&fs_info->chunk_mutex);
3292 }
3293 }
3294 mutex_unlock(&fs_devices->device_list_mutex);
3295
3296 /*
3297 * We acquire fs_info->chunk_mutex for 2 reasons:
3298 *
3299 * 1) Just like with the first phase of the chunk allocation, we must
3300 * reserve system space, do all chunk btree updates and deletions, and
3301 * update the system chunk array in the superblock while holding this
3302 * mutex. This is for similar reasons as explained on the comment at
3303 * the top of btrfs_chunk_alloc();
3304 *
3305 * 2) Prevent races with the final phase of a device replace operation
3306 * that replaces the device object associated with the map's stripes,
3307 * because the device object's id can change at any time during that
3308 * final phase of the device replace operation
3309 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3310 * replaced device and then see it with an ID of
3311 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3312 * the device item, which does not exists on the chunk btree.
3313 * The finishing phase of device replace acquires both the
3314 * device_list_mutex and the chunk_mutex, in that order, so we are
3315 * safe by just acquiring the chunk_mutex.
3316 */
3317 trans->removing_chunk = true;
3318 mutex_lock(&fs_info->chunk_mutex);
3319
3320 check_system_chunk(trans, map->type);
3321
3322 ret = remove_chunk_item(trans, map, chunk_offset);
3323 /*
3324 * Normally we should not get -ENOSPC since we reserved space before
3325 * through the call to check_system_chunk().
3326 *
3327 * Despite our system space_info having enough free space, we may not
3328 * be able to allocate extents from its block groups, because all have
3329 * an incompatible profile, which will force us to allocate a new system
3330 * block group with the right profile, or right after we called
3331 * check_system_space() above, a scrub turned the only system block group
3332 * with enough free space into RO mode.
3333 * This is explained with more detail at do_chunk_alloc().
3334 *
3335 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3336 */
3337 if (ret == -ENOSPC) {
3338 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3339 struct btrfs_block_group *sys_bg;
3340 struct btrfs_space_info *space_info;
3341
3342 space_info = btrfs_find_space_info(fs_info, sys_flags);
3343 if (!space_info) {
3344 ret = -EINVAL;
3345 btrfs_abort_transaction(trans, ret);
3346 goto out;
3347 }
3348
3349 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags);
3350 if (IS_ERR(sys_bg)) {
3351 ret = PTR_ERR(sys_bg);
3352 btrfs_abort_transaction(trans, ret);
3353 goto out;
3354 }
3355
3356 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3357 if (ret) {
3358 btrfs_abort_transaction(trans, ret);
3359 goto out;
3360 }
3361
3362 ret = remove_chunk_item(trans, map, chunk_offset);
3363 if (ret) {
3364 btrfs_abort_transaction(trans, ret);
3365 goto out;
3366 }
3367 } else if (ret) {
3368 btrfs_abort_transaction(trans, ret);
3369 goto out;
3370 }
3371
3372 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3373
3374 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3375 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3376 if (ret) {
3377 btrfs_abort_transaction(trans, ret);
3378 goto out;
3379 }
3380 }
3381
3382 mutex_unlock(&fs_info->chunk_mutex);
3383 trans->removing_chunk = false;
3384
3385 /*
3386 * We are done with chunk btree updates and deletions, so release the
3387 * system space we previously reserved (with check_system_chunk()).
3388 */
3389 btrfs_trans_release_chunk_metadata(trans);
3390
3391 ret = btrfs_remove_block_group(trans, map);
3392 if (ret) {
3393 btrfs_abort_transaction(trans, ret);
3394 goto out;
3395 }
3396
3397 out:
3398 if (trans->removing_chunk) {
3399 mutex_unlock(&fs_info->chunk_mutex);
3400 trans->removing_chunk = false;
3401 }
3402 /* once for us */
3403 btrfs_free_chunk_map(map);
3404 return ret;
3405 }
3406
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3407 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3408 {
3409 struct btrfs_root *root = fs_info->chunk_root;
3410 struct btrfs_trans_handle *trans;
3411 struct btrfs_block_group *block_group;
3412 u64 length;
3413 int ret;
3414
3415 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3416 btrfs_err(fs_info,
3417 "relocate: not supported on extent tree v2 yet");
3418 return -EINVAL;
3419 }
3420
3421 /*
3422 * Prevent races with automatic removal of unused block groups.
3423 * After we relocate and before we remove the chunk with offset
3424 * chunk_offset, automatic removal of the block group can kick in,
3425 * resulting in a failure when calling btrfs_remove_chunk() below.
3426 *
3427 * Make sure to acquire this mutex before doing a tree search (dev
3428 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3429 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3430 * we release the path used to search the chunk/dev tree and before
3431 * the current task acquires this mutex and calls us.
3432 */
3433 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3434
3435 /* step one, relocate all the extents inside this chunk */
3436 btrfs_scrub_pause(fs_info);
3437 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3438 btrfs_scrub_continue(fs_info);
3439 if (ret) {
3440 /*
3441 * If we had a transaction abort, stop all running scrubs.
3442 * See transaction.c:cleanup_transaction() why we do it here.
3443 */
3444 if (BTRFS_FS_ERROR(fs_info))
3445 btrfs_scrub_cancel(fs_info);
3446 return ret;
3447 }
3448
3449 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3450 if (!block_group)
3451 return -ENOENT;
3452 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3453 length = block_group->length;
3454 btrfs_put_block_group(block_group);
3455
3456 /*
3457 * On a zoned file system, discard the whole block group, this will
3458 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3459 * resetting the zone fails, don't treat it as a fatal problem from the
3460 * filesystem's point of view.
3461 */
3462 if (btrfs_is_zoned(fs_info)) {
3463 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3464 if (ret)
3465 btrfs_info(fs_info,
3466 "failed to reset zone %llu after relocation",
3467 chunk_offset);
3468 }
3469
3470 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3471 chunk_offset);
3472 if (IS_ERR(trans)) {
3473 ret = PTR_ERR(trans);
3474 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3475 return ret;
3476 }
3477
3478 /*
3479 * step two, delete the device extents and the
3480 * chunk tree entries
3481 */
3482 ret = btrfs_remove_chunk(trans, chunk_offset);
3483 btrfs_end_transaction(trans);
3484 return ret;
3485 }
3486
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3487 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3488 {
3489 struct btrfs_root *chunk_root = fs_info->chunk_root;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_chunk *chunk;
3493 struct btrfs_key key;
3494 struct btrfs_key found_key;
3495 u64 chunk_type;
3496 bool retried = false;
3497 int failed = 0;
3498 int ret;
3499
3500 path = btrfs_alloc_path();
3501 if (!path)
3502 return -ENOMEM;
3503
3504 again:
3505 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3506 key.type = BTRFS_CHUNK_ITEM_KEY;
3507 key.offset = (u64)-1;
3508
3509 while (1) {
3510 mutex_lock(&fs_info->reclaim_bgs_lock);
3511 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3512 if (ret < 0) {
3513 mutex_unlock(&fs_info->reclaim_bgs_lock);
3514 goto error;
3515 }
3516 if (ret == 0) {
3517 /*
3518 * On the first search we would find chunk tree with
3519 * offset -1, which is not possible. On subsequent
3520 * loops this would find an existing item on an invalid
3521 * offset (one less than the previous one, wrong
3522 * alignment and size).
3523 */
3524 ret = -EUCLEAN;
3525 mutex_unlock(&fs_info->reclaim_bgs_lock);
3526 goto error;
3527 }
3528
3529 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3530 key.type);
3531 if (ret)
3532 mutex_unlock(&fs_info->reclaim_bgs_lock);
3533 if (ret < 0)
3534 goto error;
3535 if (ret > 0)
3536 break;
3537
3538 leaf = path->nodes[0];
3539 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3540
3541 chunk = btrfs_item_ptr(leaf, path->slots[0],
3542 struct btrfs_chunk);
3543 chunk_type = btrfs_chunk_type(leaf, chunk);
3544 btrfs_release_path(path);
3545
3546 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3547 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3548 if (ret == -ENOSPC)
3549 failed++;
3550 else
3551 BUG_ON(ret);
3552 }
3553 mutex_unlock(&fs_info->reclaim_bgs_lock);
3554
3555 if (found_key.offset == 0)
3556 break;
3557 key.offset = found_key.offset - 1;
3558 }
3559 ret = 0;
3560 if (failed && !retried) {
3561 failed = 0;
3562 retried = true;
3563 goto again;
3564 } else if (WARN_ON(failed && retried)) {
3565 ret = -ENOSPC;
3566 }
3567 error:
3568 btrfs_free_path(path);
3569 return ret;
3570 }
3571
3572 /*
3573 * return 1 : allocate a data chunk successfully,
3574 * return <0: errors during allocating a data chunk,
3575 * return 0 : no need to allocate a data chunk.
3576 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3577 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3578 u64 chunk_offset)
3579 {
3580 struct btrfs_block_group *cache;
3581 u64 bytes_used;
3582 u64 chunk_type;
3583
3584 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3585 ASSERT(cache);
3586 chunk_type = cache->flags;
3587 btrfs_put_block_group(cache);
3588
3589 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3590 return 0;
3591
3592 spin_lock(&fs_info->data_sinfo->lock);
3593 bytes_used = fs_info->data_sinfo->bytes_used;
3594 spin_unlock(&fs_info->data_sinfo->lock);
3595
3596 if (!bytes_used) {
3597 struct btrfs_trans_handle *trans;
3598 int ret;
3599
3600 trans = btrfs_join_transaction(fs_info->tree_root);
3601 if (IS_ERR(trans))
3602 return PTR_ERR(trans);
3603
3604 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3605 btrfs_end_transaction(trans);
3606 if (ret < 0)
3607 return ret;
3608 return 1;
3609 }
3610
3611 return 0;
3612 }
3613
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3614 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3615 const struct btrfs_disk_balance_args *disk)
3616 {
3617 memset(cpu, 0, sizeof(*cpu));
3618
3619 cpu->profiles = le64_to_cpu(disk->profiles);
3620 cpu->usage = le64_to_cpu(disk->usage);
3621 cpu->devid = le64_to_cpu(disk->devid);
3622 cpu->pstart = le64_to_cpu(disk->pstart);
3623 cpu->pend = le64_to_cpu(disk->pend);
3624 cpu->vstart = le64_to_cpu(disk->vstart);
3625 cpu->vend = le64_to_cpu(disk->vend);
3626 cpu->target = le64_to_cpu(disk->target);
3627 cpu->flags = le64_to_cpu(disk->flags);
3628 cpu->limit = le64_to_cpu(disk->limit);
3629 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3630 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3631 }
3632
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3633 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3634 const struct btrfs_balance_args *cpu)
3635 {
3636 memset(disk, 0, sizeof(*disk));
3637
3638 disk->profiles = cpu_to_le64(cpu->profiles);
3639 disk->usage = cpu_to_le64(cpu->usage);
3640 disk->devid = cpu_to_le64(cpu->devid);
3641 disk->pstart = cpu_to_le64(cpu->pstart);
3642 disk->pend = cpu_to_le64(cpu->pend);
3643 disk->vstart = cpu_to_le64(cpu->vstart);
3644 disk->vend = cpu_to_le64(cpu->vend);
3645 disk->target = cpu_to_le64(cpu->target);
3646 disk->flags = cpu_to_le64(cpu->flags);
3647 disk->limit = cpu_to_le64(cpu->limit);
3648 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3649 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3650 }
3651
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3652 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3653 struct btrfs_balance_control *bctl)
3654 {
3655 struct btrfs_root *root = fs_info->tree_root;
3656 struct btrfs_trans_handle *trans;
3657 struct btrfs_balance_item *item;
3658 struct btrfs_disk_balance_args disk_bargs;
3659 struct btrfs_path *path;
3660 struct extent_buffer *leaf;
3661 struct btrfs_key key;
3662 int ret, err;
3663
3664 path = btrfs_alloc_path();
3665 if (!path)
3666 return -ENOMEM;
3667
3668 trans = btrfs_start_transaction(root, 0);
3669 if (IS_ERR(trans)) {
3670 btrfs_free_path(path);
3671 return PTR_ERR(trans);
3672 }
3673
3674 key.objectid = BTRFS_BALANCE_OBJECTID;
3675 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3676 key.offset = 0;
3677
3678 ret = btrfs_insert_empty_item(trans, root, path, &key,
3679 sizeof(*item));
3680 if (ret)
3681 goto out;
3682
3683 leaf = path->nodes[0];
3684 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3685
3686 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3687
3688 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3689 btrfs_set_balance_data(leaf, item, &disk_bargs);
3690 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3691 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3692 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3693 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3694 btrfs_set_balance_flags(leaf, item, bctl->flags);
3695 out:
3696 btrfs_free_path(path);
3697 err = btrfs_commit_transaction(trans);
3698 if (err && !ret)
3699 ret = err;
3700 return ret;
3701 }
3702
del_balance_item(struct btrfs_fs_info * fs_info)3703 static int del_balance_item(struct btrfs_fs_info *fs_info)
3704 {
3705 struct btrfs_root *root = fs_info->tree_root;
3706 struct btrfs_trans_handle *trans;
3707 struct btrfs_path *path;
3708 struct btrfs_key key;
3709 int ret, err;
3710
3711 path = btrfs_alloc_path();
3712 if (!path)
3713 return -ENOMEM;
3714
3715 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3716 if (IS_ERR(trans)) {
3717 btrfs_free_path(path);
3718 return PTR_ERR(trans);
3719 }
3720
3721 key.objectid = BTRFS_BALANCE_OBJECTID;
3722 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3723 key.offset = 0;
3724
3725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3726 if (ret < 0)
3727 goto out;
3728 if (ret > 0) {
3729 ret = -ENOENT;
3730 goto out;
3731 }
3732
3733 ret = btrfs_del_item(trans, root, path);
3734 out:
3735 btrfs_free_path(path);
3736 err = btrfs_commit_transaction(trans);
3737 if (err && !ret)
3738 ret = err;
3739 return ret;
3740 }
3741
3742 /*
3743 * This is a heuristic used to reduce the number of chunks balanced on
3744 * resume after balance was interrupted.
3745 */
update_balance_args(struct btrfs_balance_control * bctl)3746 static void update_balance_args(struct btrfs_balance_control *bctl)
3747 {
3748 /*
3749 * Turn on soft mode for chunk types that were being converted.
3750 */
3751 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3752 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3753 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3754 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3755 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3756 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3757
3758 /*
3759 * Turn on usage filter if is not already used. The idea is
3760 * that chunks that we have already balanced should be
3761 * reasonably full. Don't do it for chunks that are being
3762 * converted - that will keep us from relocating unconverted
3763 * (albeit full) chunks.
3764 */
3765 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3766 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3767 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3768 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3769 bctl->data.usage = 90;
3770 }
3771 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3772 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3773 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3774 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3775 bctl->sys.usage = 90;
3776 }
3777 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3778 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3779 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3780 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3781 bctl->meta.usage = 90;
3782 }
3783 }
3784
3785 /*
3786 * Clear the balance status in fs_info and delete the balance item from disk.
3787 */
reset_balance_state(struct btrfs_fs_info * fs_info)3788 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3789 {
3790 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3791 int ret;
3792
3793 ASSERT(fs_info->balance_ctl);
3794
3795 spin_lock(&fs_info->balance_lock);
3796 fs_info->balance_ctl = NULL;
3797 spin_unlock(&fs_info->balance_lock);
3798
3799 kfree(bctl);
3800 ret = del_balance_item(fs_info);
3801 if (ret)
3802 btrfs_handle_fs_error(fs_info, ret, NULL);
3803 }
3804
3805 /*
3806 * Balance filters. Return 1 if chunk should be filtered out
3807 * (should not be balanced).
3808 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3809 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3810 {
3811 chunk_type = chunk_to_extended(chunk_type) &
3812 BTRFS_EXTENDED_PROFILE_MASK;
3813
3814 if (bargs->profiles & chunk_type)
3815 return false;
3816
3817 return true;
3818 }
3819
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3820 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3821 struct btrfs_balance_args *bargs)
3822 {
3823 struct btrfs_block_group *cache;
3824 u64 chunk_used;
3825 u64 user_thresh_min;
3826 u64 user_thresh_max;
3827 bool ret = true;
3828
3829 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3830 chunk_used = cache->used;
3831
3832 if (bargs->usage_min == 0)
3833 user_thresh_min = 0;
3834 else
3835 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3836
3837 if (bargs->usage_max == 0)
3838 user_thresh_max = 1;
3839 else if (bargs->usage_max > 100)
3840 user_thresh_max = cache->length;
3841 else
3842 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3843
3844 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3845 ret = false;
3846
3847 btrfs_put_block_group(cache);
3848 return ret;
3849 }
3850
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3851 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3852 struct btrfs_balance_args *bargs)
3853 {
3854 struct btrfs_block_group *cache;
3855 u64 chunk_used, user_thresh;
3856 bool ret = true;
3857
3858 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3859 chunk_used = cache->used;
3860
3861 if (bargs->usage_min == 0)
3862 user_thresh = 1;
3863 else if (bargs->usage > 100)
3864 user_thresh = cache->length;
3865 else
3866 user_thresh = mult_perc(cache->length, bargs->usage);
3867
3868 if (chunk_used < user_thresh)
3869 ret = false;
3870
3871 btrfs_put_block_group(cache);
3872 return ret;
3873 }
3874
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3875 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3876 struct btrfs_balance_args *bargs)
3877 {
3878 struct btrfs_stripe *stripe;
3879 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3880 int i;
3881
3882 for (i = 0; i < num_stripes; i++) {
3883 stripe = btrfs_stripe_nr(chunk, i);
3884 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3885 return false;
3886 }
3887
3888 return true;
3889 }
3890
calc_data_stripes(u64 type,int num_stripes)3891 static u64 calc_data_stripes(u64 type, int num_stripes)
3892 {
3893 const int index = btrfs_bg_flags_to_raid_index(type);
3894 const int ncopies = btrfs_raid_array[index].ncopies;
3895 const int nparity = btrfs_raid_array[index].nparity;
3896
3897 return (num_stripes - nparity) / ncopies;
3898 }
3899
3900 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3901 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3902 struct btrfs_balance_args *bargs)
3903 {
3904 struct btrfs_stripe *stripe;
3905 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3906 u64 stripe_offset;
3907 u64 stripe_length;
3908 u64 type;
3909 int factor;
3910 int i;
3911
3912 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3913 return false;
3914
3915 type = btrfs_chunk_type(leaf, chunk);
3916 factor = calc_data_stripes(type, num_stripes);
3917
3918 for (i = 0; i < num_stripes; i++) {
3919 stripe = btrfs_stripe_nr(chunk, i);
3920 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3921 continue;
3922
3923 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3924 stripe_length = btrfs_chunk_length(leaf, chunk);
3925 stripe_length = div_u64(stripe_length, factor);
3926
3927 if (stripe_offset < bargs->pend &&
3928 stripe_offset + stripe_length > bargs->pstart)
3929 return false;
3930 }
3931
3932 return true;
3933 }
3934
3935 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3936 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3937 u64 chunk_offset, struct btrfs_balance_args *bargs)
3938 {
3939 if (chunk_offset < bargs->vend &&
3940 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3941 /* at least part of the chunk is inside this vrange */
3942 return false;
3943
3944 return true;
3945 }
3946
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3947 static bool chunk_stripes_range_filter(struct extent_buffer *leaf,
3948 struct btrfs_chunk *chunk,
3949 struct btrfs_balance_args *bargs)
3950 {
3951 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3952
3953 if (bargs->stripes_min <= num_stripes
3954 && num_stripes <= bargs->stripes_max)
3955 return false;
3956
3957 return true;
3958 }
3959
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3960 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3961 {
3962 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3963 return false;
3964
3965 chunk_type = chunk_to_extended(chunk_type) &
3966 BTRFS_EXTENDED_PROFILE_MASK;
3967
3968 if (bargs->target == chunk_type)
3969 return true;
3970
3971 return false;
3972 }
3973
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3974 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3975 u64 chunk_offset)
3976 {
3977 struct btrfs_fs_info *fs_info = leaf->fs_info;
3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979 struct btrfs_balance_args *bargs = NULL;
3980 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3981
3982 /* type filter */
3983 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3984 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3985 return false;
3986 }
3987
3988 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3989 bargs = &bctl->data;
3990 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3991 bargs = &bctl->sys;
3992 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3993 bargs = &bctl->meta;
3994
3995 /* profiles filter */
3996 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3997 chunk_profiles_filter(chunk_type, bargs)) {
3998 return false;
3999 }
4000
4001 /* usage filter */
4002 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4003 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4004 return false;
4005 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4006 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4007 return false;
4008 }
4009
4010 /* devid filter */
4011 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4012 chunk_devid_filter(leaf, chunk, bargs)) {
4013 return false;
4014 }
4015
4016 /* drange filter, makes sense only with devid filter */
4017 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4018 chunk_drange_filter(leaf, chunk, bargs)) {
4019 return false;
4020 }
4021
4022 /* vrange filter */
4023 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4024 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4025 return false;
4026 }
4027
4028 /* stripes filter */
4029 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4030 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4031 return false;
4032 }
4033
4034 /* soft profile changing mode */
4035 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4036 chunk_soft_convert_filter(chunk_type, bargs)) {
4037 return false;
4038 }
4039
4040 /*
4041 * limited by count, must be the last filter
4042 */
4043 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4044 if (bargs->limit == 0)
4045 return false;
4046 else
4047 bargs->limit--;
4048 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4049 /*
4050 * Same logic as the 'limit' filter; the minimum cannot be
4051 * determined here because we do not have the global information
4052 * about the count of all chunks that satisfy the filters.
4053 */
4054 if (bargs->limit_max == 0)
4055 return false;
4056 else
4057 bargs->limit_max--;
4058 }
4059
4060 return true;
4061 }
4062
__btrfs_balance(struct btrfs_fs_info * fs_info)4063 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4064 {
4065 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4066 struct btrfs_root *chunk_root = fs_info->chunk_root;
4067 u64 chunk_type;
4068 struct btrfs_chunk *chunk;
4069 struct btrfs_path *path = NULL;
4070 struct btrfs_key key;
4071 struct btrfs_key found_key;
4072 struct extent_buffer *leaf;
4073 int slot;
4074 int ret;
4075 int enospc_errors = 0;
4076 bool counting = true;
4077 /* The single value limit and min/max limits use the same bytes in the */
4078 u64 limit_data = bctl->data.limit;
4079 u64 limit_meta = bctl->meta.limit;
4080 u64 limit_sys = bctl->sys.limit;
4081 u32 count_data = 0;
4082 u32 count_meta = 0;
4083 u32 count_sys = 0;
4084 int chunk_reserved = 0;
4085
4086 path = btrfs_alloc_path();
4087 if (!path) {
4088 ret = -ENOMEM;
4089 goto error;
4090 }
4091
4092 /* zero out stat counters */
4093 spin_lock(&fs_info->balance_lock);
4094 memset(&bctl->stat, 0, sizeof(bctl->stat));
4095 spin_unlock(&fs_info->balance_lock);
4096 again:
4097 if (!counting) {
4098 /*
4099 * The single value limit and min/max limits use the same bytes
4100 * in the
4101 */
4102 bctl->data.limit = limit_data;
4103 bctl->meta.limit = limit_meta;
4104 bctl->sys.limit = limit_sys;
4105 }
4106 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4107 key.type = BTRFS_CHUNK_ITEM_KEY;
4108 key.offset = (u64)-1;
4109
4110 while (1) {
4111 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4112 atomic_read(&fs_info->balance_cancel_req)) {
4113 ret = -ECANCELED;
4114 goto error;
4115 }
4116
4117 mutex_lock(&fs_info->reclaim_bgs_lock);
4118 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4119 if (ret < 0) {
4120 mutex_unlock(&fs_info->reclaim_bgs_lock);
4121 goto error;
4122 }
4123
4124 /*
4125 * this shouldn't happen, it means the last relocate
4126 * failed
4127 */
4128 if (ret == 0)
4129 BUG(); /* FIXME break ? */
4130
4131 ret = btrfs_previous_item(chunk_root, path, 0,
4132 BTRFS_CHUNK_ITEM_KEY);
4133 if (ret) {
4134 mutex_unlock(&fs_info->reclaim_bgs_lock);
4135 ret = 0;
4136 break;
4137 }
4138
4139 leaf = path->nodes[0];
4140 slot = path->slots[0];
4141 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4142
4143 if (found_key.objectid != key.objectid) {
4144 mutex_unlock(&fs_info->reclaim_bgs_lock);
4145 break;
4146 }
4147
4148 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4149 chunk_type = btrfs_chunk_type(leaf, chunk);
4150
4151 if (!counting) {
4152 spin_lock(&fs_info->balance_lock);
4153 bctl->stat.considered++;
4154 spin_unlock(&fs_info->balance_lock);
4155 }
4156
4157 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4158
4159 btrfs_release_path(path);
4160 if (!ret) {
4161 mutex_unlock(&fs_info->reclaim_bgs_lock);
4162 goto loop;
4163 }
4164
4165 if (counting) {
4166 mutex_unlock(&fs_info->reclaim_bgs_lock);
4167 spin_lock(&fs_info->balance_lock);
4168 bctl->stat.expected++;
4169 spin_unlock(&fs_info->balance_lock);
4170
4171 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4172 count_data++;
4173 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4174 count_sys++;
4175 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4176 count_meta++;
4177
4178 goto loop;
4179 }
4180
4181 /*
4182 * Apply limit_min filter, no need to check if the LIMITS
4183 * filter is used, limit_min is 0 by default
4184 */
4185 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4186 count_data < bctl->data.limit_min)
4187 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4188 count_meta < bctl->meta.limit_min)
4189 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4190 count_sys < bctl->sys.limit_min)) {
4191 mutex_unlock(&fs_info->reclaim_bgs_lock);
4192 goto loop;
4193 }
4194
4195 if (!chunk_reserved) {
4196 /*
4197 * We may be relocating the only data chunk we have,
4198 * which could potentially end up with losing data's
4199 * raid profile, so lets allocate an empty one in
4200 * advance.
4201 */
4202 ret = btrfs_may_alloc_data_chunk(fs_info,
4203 found_key.offset);
4204 if (ret < 0) {
4205 mutex_unlock(&fs_info->reclaim_bgs_lock);
4206 goto error;
4207 } else if (ret == 1) {
4208 chunk_reserved = 1;
4209 }
4210 }
4211
4212 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4213 mutex_unlock(&fs_info->reclaim_bgs_lock);
4214 if (ret == -ENOSPC) {
4215 enospc_errors++;
4216 } else if (ret == -ETXTBSY) {
4217 btrfs_info(fs_info,
4218 "skipping relocation of block group %llu due to active swapfile",
4219 found_key.offset);
4220 ret = 0;
4221 } else if (ret) {
4222 goto error;
4223 } else {
4224 spin_lock(&fs_info->balance_lock);
4225 bctl->stat.completed++;
4226 spin_unlock(&fs_info->balance_lock);
4227 }
4228 loop:
4229 if (found_key.offset == 0)
4230 break;
4231 key.offset = found_key.offset - 1;
4232 }
4233
4234 if (counting) {
4235 btrfs_release_path(path);
4236 counting = false;
4237 goto again;
4238 }
4239 error:
4240 btrfs_free_path(path);
4241 if (enospc_errors) {
4242 btrfs_info(fs_info, "%d enospc errors during balance",
4243 enospc_errors);
4244 if (!ret)
4245 ret = -ENOSPC;
4246 }
4247
4248 return ret;
4249 }
4250
4251 /*
4252 * See if a given profile is valid and reduced.
4253 *
4254 * @flags: profile to validate
4255 * @extended: if true @flags is treated as an extended profile
4256 */
alloc_profile_is_valid(u64 flags,int extended)4257 static int alloc_profile_is_valid(u64 flags, int extended)
4258 {
4259 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4260 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4261
4262 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4263
4264 /* 1) check that all other bits are zeroed */
4265 if (flags & ~mask)
4266 return 0;
4267
4268 /* 2) see if profile is reduced */
4269 if (flags == 0)
4270 return !extended; /* "0" is valid for usual profiles */
4271
4272 return has_single_bit_set(flags);
4273 }
4274
4275 /*
4276 * Validate target profile against allowed profiles and return true if it's OK.
4277 * Otherwise print the error message and return false.
4278 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4279 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4280 const struct btrfs_balance_args *bargs,
4281 u64 allowed, const char *type)
4282 {
4283 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4284 return true;
4285
4286 /* Profile is valid and does not have bits outside of the allowed set */
4287 if (alloc_profile_is_valid(bargs->target, 1) &&
4288 (bargs->target & ~allowed) == 0)
4289 return true;
4290
4291 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4292 type, btrfs_bg_type_to_raid_name(bargs->target));
4293 return false;
4294 }
4295
4296 /*
4297 * Fill @buf with textual description of balance filter flags @bargs, up to
4298 * @size_buf including the terminating null. The output may be trimmed if it
4299 * does not fit into the provided buffer.
4300 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4301 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4302 u32 size_buf)
4303 {
4304 int ret;
4305 u32 size_bp = size_buf;
4306 char *bp = buf;
4307 u64 flags = bargs->flags;
4308 char tmp_buf[128] = {'\0'};
4309
4310 if (!flags)
4311 return;
4312
4313 #define CHECK_APPEND_NOARG(a) \
4314 do { \
4315 ret = snprintf(bp, size_bp, (a)); \
4316 if (ret < 0 || ret >= size_bp) \
4317 goto out_overflow; \
4318 size_bp -= ret; \
4319 bp += ret; \
4320 } while (0)
4321
4322 #define CHECK_APPEND_1ARG(a, v1) \
4323 do { \
4324 ret = snprintf(bp, size_bp, (a), (v1)); \
4325 if (ret < 0 || ret >= size_bp) \
4326 goto out_overflow; \
4327 size_bp -= ret; \
4328 bp += ret; \
4329 } while (0)
4330
4331 #define CHECK_APPEND_2ARG(a, v1, v2) \
4332 do { \
4333 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4334 if (ret < 0 || ret >= size_bp) \
4335 goto out_overflow; \
4336 size_bp -= ret; \
4337 bp += ret; \
4338 } while (0)
4339
4340 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4341 CHECK_APPEND_1ARG("convert=%s,",
4342 btrfs_bg_type_to_raid_name(bargs->target));
4343
4344 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4345 CHECK_APPEND_NOARG("soft,");
4346
4347 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4348 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4349 sizeof(tmp_buf));
4350 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4351 }
4352
4353 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4354 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4355
4356 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4357 CHECK_APPEND_2ARG("usage=%u..%u,",
4358 bargs->usage_min, bargs->usage_max);
4359
4360 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4361 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4362
4363 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4364 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4365 bargs->pstart, bargs->pend);
4366
4367 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4368 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4369 bargs->vstart, bargs->vend);
4370
4371 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4372 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4373
4374 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4375 CHECK_APPEND_2ARG("limit=%u..%u,",
4376 bargs->limit_min, bargs->limit_max);
4377
4378 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4379 CHECK_APPEND_2ARG("stripes=%u..%u,",
4380 bargs->stripes_min, bargs->stripes_max);
4381
4382 #undef CHECK_APPEND_2ARG
4383 #undef CHECK_APPEND_1ARG
4384 #undef CHECK_APPEND_NOARG
4385
4386 out_overflow:
4387
4388 if (size_bp < size_buf)
4389 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4390 else
4391 buf[0] = '\0';
4392 }
4393
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4394 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4395 {
4396 u32 size_buf = 1024;
4397 char tmp_buf[192] = {'\0'};
4398 char *buf;
4399 char *bp;
4400 u32 size_bp = size_buf;
4401 int ret;
4402 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4403
4404 buf = kzalloc(size_buf, GFP_KERNEL);
4405 if (!buf)
4406 return;
4407
4408 bp = buf;
4409
4410 #define CHECK_APPEND_1ARG(a, v1) \
4411 do { \
4412 ret = snprintf(bp, size_bp, (a), (v1)); \
4413 if (ret < 0 || ret >= size_bp) \
4414 goto out_overflow; \
4415 size_bp -= ret; \
4416 bp += ret; \
4417 } while (0)
4418
4419 if (bctl->flags & BTRFS_BALANCE_FORCE)
4420 CHECK_APPEND_1ARG("%s", "-f ");
4421
4422 if (bctl->flags & BTRFS_BALANCE_DATA) {
4423 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4424 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4425 }
4426
4427 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4428 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4429 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4430 }
4431
4432 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4433 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4434 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4435 }
4436
4437 #undef CHECK_APPEND_1ARG
4438
4439 out_overflow:
4440
4441 if (size_bp < size_buf)
4442 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4443 btrfs_info(fs_info, "balance: %s %s",
4444 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4445 "resume" : "start", buf);
4446
4447 kfree(buf);
4448 }
4449
4450 /*
4451 * Should be called with balance mutexe held
4452 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4453 int btrfs_balance(struct btrfs_fs_info *fs_info,
4454 struct btrfs_balance_control *bctl,
4455 struct btrfs_ioctl_balance_args *bargs)
4456 {
4457 u64 meta_target, data_target;
4458 u64 allowed;
4459 int mixed = 0;
4460 int ret;
4461 u64 num_devices;
4462 unsigned seq;
4463 bool reducing_redundancy;
4464 bool paused = false;
4465 int i;
4466
4467 if (btrfs_fs_closing(fs_info) ||
4468 atomic_read(&fs_info->balance_pause_req) ||
4469 btrfs_should_cancel_balance(fs_info)) {
4470 ret = -EINVAL;
4471 goto out;
4472 }
4473
4474 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4475 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4476 mixed = 1;
4477
4478 /*
4479 * In case of mixed groups both data and meta should be picked,
4480 * and identical options should be given for both of them.
4481 */
4482 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4483 if (mixed && (bctl->flags & allowed)) {
4484 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4485 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4486 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4487 btrfs_err(fs_info,
4488 "balance: mixed groups data and metadata options must be the same");
4489 ret = -EINVAL;
4490 goto out;
4491 }
4492 }
4493
4494 /*
4495 * rw_devices will not change at the moment, device add/delete/replace
4496 * are exclusive
4497 */
4498 num_devices = fs_info->fs_devices->rw_devices;
4499
4500 /*
4501 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4502 * special bit for it, to make it easier to distinguish. Thus we need
4503 * to set it manually, or balance would refuse the profile.
4504 */
4505 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4506 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4507 if (num_devices >= btrfs_raid_array[i].devs_min)
4508 allowed |= btrfs_raid_array[i].bg_flag;
4509
4510 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4511 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4512 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4513 ret = -EINVAL;
4514 goto out;
4515 }
4516
4517 /*
4518 * Allow to reduce metadata or system integrity only if force set for
4519 * profiles with redundancy (copies, parity)
4520 */
4521 allowed = 0;
4522 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4523 if (btrfs_raid_array[i].ncopies >= 2 ||
4524 btrfs_raid_array[i].tolerated_failures >= 1)
4525 allowed |= btrfs_raid_array[i].bg_flag;
4526 }
4527 do {
4528 seq = read_seqbegin(&fs_info->profiles_lock);
4529
4530 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4531 (fs_info->avail_system_alloc_bits & allowed) &&
4532 !(bctl->sys.target & allowed)) ||
4533 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4534 (fs_info->avail_metadata_alloc_bits & allowed) &&
4535 !(bctl->meta.target & allowed)))
4536 reducing_redundancy = true;
4537 else
4538 reducing_redundancy = false;
4539
4540 /* if we're not converting, the target field is uninitialized */
4541 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4542 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4543 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4544 bctl->data.target : fs_info->avail_data_alloc_bits;
4545 } while (read_seqretry(&fs_info->profiles_lock, seq));
4546
4547 if (reducing_redundancy) {
4548 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4549 btrfs_info(fs_info,
4550 "balance: force reducing metadata redundancy");
4551 } else {
4552 btrfs_err(fs_info,
4553 "balance: reduces metadata redundancy, use --force if you want this");
4554 ret = -EINVAL;
4555 goto out;
4556 }
4557 }
4558
4559 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4560 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4561 btrfs_warn(fs_info,
4562 "balance: metadata profile %s has lower redundancy than data profile %s",
4563 btrfs_bg_type_to_raid_name(meta_target),
4564 btrfs_bg_type_to_raid_name(data_target));
4565 }
4566
4567 ret = insert_balance_item(fs_info, bctl);
4568 if (ret && ret != -EEXIST)
4569 goto out;
4570
4571 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4572 BUG_ON(ret == -EEXIST);
4573 BUG_ON(fs_info->balance_ctl);
4574 spin_lock(&fs_info->balance_lock);
4575 fs_info->balance_ctl = bctl;
4576 spin_unlock(&fs_info->balance_lock);
4577 } else {
4578 BUG_ON(ret != -EEXIST);
4579 spin_lock(&fs_info->balance_lock);
4580 update_balance_args(bctl);
4581 spin_unlock(&fs_info->balance_lock);
4582 }
4583
4584 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4585 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4586 describe_balance_start_or_resume(fs_info);
4587 mutex_unlock(&fs_info->balance_mutex);
4588
4589 ret = __btrfs_balance(fs_info);
4590
4591 mutex_lock(&fs_info->balance_mutex);
4592 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4593 btrfs_info(fs_info, "balance: paused");
4594 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4595 paused = true;
4596 }
4597 /*
4598 * Balance can be canceled by:
4599 *
4600 * - Regular cancel request
4601 * Then ret == -ECANCELED and balance_cancel_req > 0
4602 *
4603 * - Fatal signal to "btrfs" process
4604 * Either the signal caught by wait_reserve_ticket() and callers
4605 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4606 * got -ECANCELED.
4607 * Either way, in this case balance_cancel_req = 0, and
4608 * ret == -EINTR or ret == -ECANCELED.
4609 *
4610 * So here we only check the return value to catch canceled balance.
4611 */
4612 else if (ret == -ECANCELED || ret == -EINTR)
4613 btrfs_info(fs_info, "balance: canceled");
4614 else
4615 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4616
4617 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4618
4619 if (bargs) {
4620 memset(bargs, 0, sizeof(*bargs));
4621 btrfs_update_ioctl_balance_args(fs_info, bargs);
4622 }
4623
4624 /* We didn't pause, we can clean everything up. */
4625 if (!paused) {
4626 reset_balance_state(fs_info);
4627 btrfs_exclop_finish(fs_info);
4628 }
4629
4630 wake_up(&fs_info->balance_wait_q);
4631
4632 return ret;
4633 out:
4634 if (bctl->flags & BTRFS_BALANCE_RESUME)
4635 reset_balance_state(fs_info);
4636 else
4637 kfree(bctl);
4638 btrfs_exclop_finish(fs_info);
4639
4640 return ret;
4641 }
4642
balance_kthread(void * data)4643 static int balance_kthread(void *data)
4644 {
4645 struct btrfs_fs_info *fs_info = data;
4646 int ret = 0;
4647
4648 sb_start_write(fs_info->sb);
4649 mutex_lock(&fs_info->balance_mutex);
4650 if (fs_info->balance_ctl)
4651 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4652 mutex_unlock(&fs_info->balance_mutex);
4653 sb_end_write(fs_info->sb);
4654
4655 return ret;
4656 }
4657
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4658 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4659 {
4660 struct task_struct *tsk;
4661
4662 mutex_lock(&fs_info->balance_mutex);
4663 if (!fs_info->balance_ctl) {
4664 mutex_unlock(&fs_info->balance_mutex);
4665 return 0;
4666 }
4667 mutex_unlock(&fs_info->balance_mutex);
4668
4669 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4670 btrfs_info(fs_info, "balance: resume skipped");
4671 return 0;
4672 }
4673
4674 spin_lock(&fs_info->super_lock);
4675 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED,
4676 "exclusive_operation=%d", fs_info->exclusive_operation);
4677 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4678 spin_unlock(&fs_info->super_lock);
4679 /*
4680 * A ro->rw remount sequence should continue with the paused balance
4681 * regardless of who pauses it, system or the user as of now, so set
4682 * the resume flag.
4683 */
4684 spin_lock(&fs_info->balance_lock);
4685 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4686 spin_unlock(&fs_info->balance_lock);
4687
4688 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4689 return PTR_ERR_OR_ZERO(tsk);
4690 }
4691
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4692 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4693 {
4694 struct btrfs_balance_control *bctl;
4695 struct btrfs_balance_item *item;
4696 struct btrfs_disk_balance_args disk_bargs;
4697 struct btrfs_path *path;
4698 struct extent_buffer *leaf;
4699 struct btrfs_key key;
4700 int ret;
4701
4702 path = btrfs_alloc_path();
4703 if (!path)
4704 return -ENOMEM;
4705
4706 key.objectid = BTRFS_BALANCE_OBJECTID;
4707 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4708 key.offset = 0;
4709
4710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4711 if (ret < 0)
4712 goto out;
4713 if (ret > 0) { /* ret = -ENOENT; */
4714 ret = 0;
4715 goto out;
4716 }
4717
4718 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4719 if (!bctl) {
4720 ret = -ENOMEM;
4721 goto out;
4722 }
4723
4724 leaf = path->nodes[0];
4725 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4726
4727 bctl->flags = btrfs_balance_flags(leaf, item);
4728 bctl->flags |= BTRFS_BALANCE_RESUME;
4729
4730 btrfs_balance_data(leaf, item, &disk_bargs);
4731 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4732 btrfs_balance_meta(leaf, item, &disk_bargs);
4733 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4734 btrfs_balance_sys(leaf, item, &disk_bargs);
4735 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4736
4737 /*
4738 * This should never happen, as the paused balance state is recovered
4739 * during mount without any chance of other exclusive ops to collide.
4740 *
4741 * This gives the exclusive op status to balance and keeps in paused
4742 * state until user intervention (cancel or umount). If the ownership
4743 * cannot be assigned, show a message but do not fail. The balance
4744 * is in a paused state and must have fs_info::balance_ctl properly
4745 * set up.
4746 */
4747 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4748 btrfs_warn(fs_info,
4749 "balance: cannot set exclusive op status, resume manually");
4750
4751 btrfs_release_path(path);
4752
4753 mutex_lock(&fs_info->balance_mutex);
4754 BUG_ON(fs_info->balance_ctl);
4755 spin_lock(&fs_info->balance_lock);
4756 fs_info->balance_ctl = bctl;
4757 spin_unlock(&fs_info->balance_lock);
4758 mutex_unlock(&fs_info->balance_mutex);
4759 out:
4760 btrfs_free_path(path);
4761 return ret;
4762 }
4763
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4764 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4765 {
4766 int ret = 0;
4767
4768 mutex_lock(&fs_info->balance_mutex);
4769 if (!fs_info->balance_ctl) {
4770 mutex_unlock(&fs_info->balance_mutex);
4771 return -ENOTCONN;
4772 }
4773
4774 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4775 atomic_inc(&fs_info->balance_pause_req);
4776 mutex_unlock(&fs_info->balance_mutex);
4777
4778 wait_event(fs_info->balance_wait_q,
4779 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4780
4781 mutex_lock(&fs_info->balance_mutex);
4782 /* we are good with balance_ctl ripped off from under us */
4783 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4784 atomic_dec(&fs_info->balance_pause_req);
4785 } else {
4786 ret = -ENOTCONN;
4787 }
4788
4789 mutex_unlock(&fs_info->balance_mutex);
4790 return ret;
4791 }
4792
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4793 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4794 {
4795 mutex_lock(&fs_info->balance_mutex);
4796 if (!fs_info->balance_ctl) {
4797 mutex_unlock(&fs_info->balance_mutex);
4798 return -ENOTCONN;
4799 }
4800
4801 /*
4802 * A paused balance with the item stored on disk can be resumed at
4803 * mount time if the mount is read-write. Otherwise it's still paused
4804 * and we must not allow cancelling as it deletes the item.
4805 */
4806 if (sb_rdonly(fs_info->sb)) {
4807 mutex_unlock(&fs_info->balance_mutex);
4808 return -EROFS;
4809 }
4810
4811 atomic_inc(&fs_info->balance_cancel_req);
4812 /*
4813 * if we are running just wait and return, balance item is
4814 * deleted in btrfs_balance in this case
4815 */
4816 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4817 mutex_unlock(&fs_info->balance_mutex);
4818 wait_event(fs_info->balance_wait_q,
4819 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4820 mutex_lock(&fs_info->balance_mutex);
4821 } else {
4822 mutex_unlock(&fs_info->balance_mutex);
4823 /*
4824 * Lock released to allow other waiters to continue, we'll
4825 * reexamine the status again.
4826 */
4827 mutex_lock(&fs_info->balance_mutex);
4828
4829 if (fs_info->balance_ctl) {
4830 reset_balance_state(fs_info);
4831 btrfs_exclop_finish(fs_info);
4832 btrfs_info(fs_info, "balance: canceled");
4833 }
4834 }
4835
4836 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4837 atomic_dec(&fs_info->balance_cancel_req);
4838 mutex_unlock(&fs_info->balance_mutex);
4839 return 0;
4840 }
4841
4842 /*
4843 * shrinking a device means finding all of the device extents past
4844 * the new size, and then following the back refs to the chunks.
4845 * The chunk relocation code actually frees the device extent
4846 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4847 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4848 {
4849 struct btrfs_fs_info *fs_info = device->fs_info;
4850 struct btrfs_root *root = fs_info->dev_root;
4851 struct btrfs_trans_handle *trans;
4852 struct btrfs_dev_extent *dev_extent = NULL;
4853 struct btrfs_path *path;
4854 u64 length;
4855 u64 chunk_offset;
4856 int ret;
4857 int slot;
4858 int failed = 0;
4859 bool retried = false;
4860 struct extent_buffer *l;
4861 struct btrfs_key key;
4862 struct btrfs_super_block *super_copy = fs_info->super_copy;
4863 u64 old_total = btrfs_super_total_bytes(super_copy);
4864 u64 old_size = btrfs_device_get_total_bytes(device);
4865 u64 diff;
4866 u64 start;
4867 u64 free_diff = 0;
4868
4869 new_size = round_down(new_size, fs_info->sectorsize);
4870 start = new_size;
4871 diff = round_down(old_size - new_size, fs_info->sectorsize);
4872
4873 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4874 return -EINVAL;
4875
4876 path = btrfs_alloc_path();
4877 if (!path)
4878 return -ENOMEM;
4879
4880 path->reada = READA_BACK;
4881
4882 trans = btrfs_start_transaction(root, 0);
4883 if (IS_ERR(trans)) {
4884 btrfs_free_path(path);
4885 return PTR_ERR(trans);
4886 }
4887
4888 mutex_lock(&fs_info->chunk_mutex);
4889
4890 btrfs_device_set_total_bytes(device, new_size);
4891 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4892 device->fs_devices->total_rw_bytes -= diff;
4893
4894 /*
4895 * The new free_chunk_space is new_size - used, so we have to
4896 * subtract the delta of the old free_chunk_space which included
4897 * old_size - used. If used > new_size then just subtract this
4898 * entire device's free space.
4899 */
4900 if (device->bytes_used < new_size)
4901 free_diff = (old_size - device->bytes_used) -
4902 (new_size - device->bytes_used);
4903 else
4904 free_diff = old_size - device->bytes_used;
4905 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4906 }
4907
4908 /*
4909 * Once the device's size has been set to the new size, ensure all
4910 * in-memory chunks are synced to disk so that the loop below sees them
4911 * and relocates them accordingly.
4912 */
4913 if (contains_pending_extent(device, &start, diff)) {
4914 mutex_unlock(&fs_info->chunk_mutex);
4915 ret = btrfs_commit_transaction(trans);
4916 if (ret)
4917 goto done;
4918 } else {
4919 mutex_unlock(&fs_info->chunk_mutex);
4920 btrfs_end_transaction(trans);
4921 }
4922
4923 again:
4924 key.objectid = device->devid;
4925 key.type = BTRFS_DEV_EXTENT_KEY;
4926 key.offset = (u64)-1;
4927
4928 do {
4929 mutex_lock(&fs_info->reclaim_bgs_lock);
4930 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4931 if (ret < 0) {
4932 mutex_unlock(&fs_info->reclaim_bgs_lock);
4933 goto done;
4934 }
4935
4936 ret = btrfs_previous_item(root, path, 0, key.type);
4937 if (ret) {
4938 mutex_unlock(&fs_info->reclaim_bgs_lock);
4939 if (ret < 0)
4940 goto done;
4941 ret = 0;
4942 btrfs_release_path(path);
4943 break;
4944 }
4945
4946 l = path->nodes[0];
4947 slot = path->slots[0];
4948 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4949
4950 if (key.objectid != device->devid) {
4951 mutex_unlock(&fs_info->reclaim_bgs_lock);
4952 btrfs_release_path(path);
4953 break;
4954 }
4955
4956 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4957 length = btrfs_dev_extent_length(l, dev_extent);
4958
4959 if (key.offset + length <= new_size) {
4960 mutex_unlock(&fs_info->reclaim_bgs_lock);
4961 btrfs_release_path(path);
4962 break;
4963 }
4964
4965 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4966 btrfs_release_path(path);
4967
4968 /*
4969 * We may be relocating the only data chunk we have,
4970 * which could potentially end up with losing data's
4971 * raid profile, so lets allocate an empty one in
4972 * advance.
4973 */
4974 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4975 if (ret < 0) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 goto done;
4978 }
4979
4980 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4981 mutex_unlock(&fs_info->reclaim_bgs_lock);
4982 if (ret == -ENOSPC) {
4983 failed++;
4984 } else if (ret) {
4985 if (ret == -ETXTBSY) {
4986 btrfs_warn(fs_info,
4987 "could not shrink block group %llu due to active swapfile",
4988 chunk_offset);
4989 }
4990 goto done;
4991 }
4992 } while (key.offset-- > 0);
4993
4994 if (failed && !retried) {
4995 failed = 0;
4996 retried = true;
4997 goto again;
4998 } else if (failed && retried) {
4999 ret = -ENOSPC;
5000 goto done;
5001 }
5002
5003 /* Shrinking succeeded, else we would be at "done". */
5004 trans = btrfs_start_transaction(root, 0);
5005 if (IS_ERR(trans)) {
5006 ret = PTR_ERR(trans);
5007 goto done;
5008 }
5009
5010 mutex_lock(&fs_info->chunk_mutex);
5011 /* Clear all state bits beyond the shrunk device size */
5012 btrfs_clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5013 CHUNK_STATE_MASK);
5014
5015 btrfs_device_set_disk_total_bytes(device, new_size);
5016 if (list_empty(&device->post_commit_list))
5017 list_add_tail(&device->post_commit_list,
5018 &trans->transaction->dev_update_list);
5019
5020 WARN_ON(diff > old_total);
5021 btrfs_set_super_total_bytes(super_copy,
5022 round_down(old_total - diff, fs_info->sectorsize));
5023 mutex_unlock(&fs_info->chunk_mutex);
5024
5025 btrfs_reserve_chunk_metadata(trans, false);
5026 /* Now btrfs_update_device() will change the on-disk size. */
5027 ret = btrfs_update_device(trans, device);
5028 btrfs_trans_release_chunk_metadata(trans);
5029 if (ret < 0) {
5030 btrfs_abort_transaction(trans, ret);
5031 btrfs_end_transaction(trans);
5032 } else {
5033 ret = btrfs_commit_transaction(trans);
5034 }
5035 done:
5036 btrfs_free_path(path);
5037 if (ret) {
5038 mutex_lock(&fs_info->chunk_mutex);
5039 btrfs_device_set_total_bytes(device, old_size);
5040 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5041 device->fs_devices->total_rw_bytes += diff;
5042 atomic64_add(free_diff, &fs_info->free_chunk_space);
5043 }
5044 mutex_unlock(&fs_info->chunk_mutex);
5045 }
5046 return ret;
5047 }
5048
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5049 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5050 struct btrfs_key *key,
5051 struct btrfs_chunk *chunk, int item_size)
5052 {
5053 struct btrfs_super_block *super_copy = fs_info->super_copy;
5054 struct btrfs_disk_key disk_key;
5055 u32 array_size;
5056 u8 *ptr;
5057
5058 lockdep_assert_held(&fs_info->chunk_mutex);
5059
5060 array_size = btrfs_super_sys_array_size(super_copy);
5061 if (array_size + item_size + sizeof(disk_key)
5062 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5063 return -EFBIG;
5064
5065 ptr = super_copy->sys_chunk_array + array_size;
5066 btrfs_cpu_key_to_disk(&disk_key, key);
5067 memcpy(ptr, &disk_key, sizeof(disk_key));
5068 ptr += sizeof(disk_key);
5069 memcpy(ptr, chunk, item_size);
5070 item_size += sizeof(disk_key);
5071 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5072
5073 return 0;
5074 }
5075
5076 /*
5077 * sort the devices in descending order by max_avail, total_avail
5078 */
btrfs_cmp_device_info(const void * a,const void * b)5079 static int btrfs_cmp_device_info(const void *a, const void *b)
5080 {
5081 const struct btrfs_device_info *di_a = a;
5082 const struct btrfs_device_info *di_b = b;
5083
5084 if (di_a->max_avail > di_b->max_avail)
5085 return -1;
5086 if (di_a->max_avail < di_b->max_avail)
5087 return 1;
5088 if (di_a->total_avail > di_b->total_avail)
5089 return -1;
5090 if (di_a->total_avail < di_b->total_avail)
5091 return 1;
5092 return 0;
5093 }
5094
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5095 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5096 {
5097 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5098 return;
5099
5100 btrfs_set_fs_incompat(info, RAID56);
5101 }
5102
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5103 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5104 {
5105 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5106 return;
5107
5108 btrfs_set_fs_incompat(info, RAID1C34);
5109 }
5110
5111 /*
5112 * Structure used internally for btrfs_create_chunk() function.
5113 * Wraps needed parameters.
5114 */
5115 struct alloc_chunk_ctl {
5116 u64 start;
5117 u64 type;
5118 /* Total number of stripes to allocate */
5119 int num_stripes;
5120 /* sub_stripes info for map */
5121 int sub_stripes;
5122 /* Stripes per device */
5123 int dev_stripes;
5124 /* Maximum number of devices to use */
5125 int devs_max;
5126 /* Minimum number of devices to use */
5127 int devs_min;
5128 /* ndevs has to be a multiple of this */
5129 int devs_increment;
5130 /* Number of copies */
5131 int ncopies;
5132 /* Number of stripes worth of bytes to store parity information */
5133 int nparity;
5134 u64 max_stripe_size;
5135 u64 max_chunk_size;
5136 u64 dev_extent_min;
5137 u64 stripe_size;
5138 u64 chunk_size;
5139 int ndevs;
5140 /* Space_info the block group is going to belong. */
5141 struct btrfs_space_info *space_info;
5142 };
5143
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5144 static void init_alloc_chunk_ctl_policy_regular(
5145 struct btrfs_fs_devices *fs_devices,
5146 struct alloc_chunk_ctl *ctl)
5147 {
5148 struct btrfs_space_info *space_info;
5149
5150 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5151 ASSERT(space_info);
5152
5153 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5154 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5155
5156 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5157 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5158
5159 /* We don't want a chunk larger than 10% of writable space */
5160 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5161 ctl->max_chunk_size);
5162 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5163 }
5164
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5165 static void init_alloc_chunk_ctl_policy_zoned(
5166 struct btrfs_fs_devices *fs_devices,
5167 struct alloc_chunk_ctl *ctl)
5168 {
5169 u64 zone_size = fs_devices->fs_info->zone_size;
5170 u64 limit;
5171 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5172 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5173 u64 min_chunk_size = min_data_stripes * zone_size;
5174 u64 type = ctl->type;
5175
5176 ctl->max_stripe_size = zone_size;
5177 if (type & BTRFS_BLOCK_GROUP_DATA) {
5178 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5179 zone_size);
5180 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5181 ctl->max_chunk_size = ctl->max_stripe_size;
5182 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5183 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5184 ctl->devs_max = min_t(int, ctl->devs_max,
5185 BTRFS_MAX_DEVS_SYS_CHUNK);
5186 } else {
5187 BUG();
5188 }
5189
5190 /* We don't want a chunk larger than 10% of writable space */
5191 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5192 zone_size),
5193 min_chunk_size);
5194 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5195 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5196 }
5197
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5198 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5199 struct alloc_chunk_ctl *ctl)
5200 {
5201 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5202
5203 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5204 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5205 ctl->devs_max = btrfs_raid_array[index].devs_max;
5206 if (!ctl->devs_max)
5207 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5208 ctl->devs_min = btrfs_raid_array[index].devs_min;
5209 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5210 ctl->ncopies = btrfs_raid_array[index].ncopies;
5211 ctl->nparity = btrfs_raid_array[index].nparity;
5212 ctl->ndevs = 0;
5213
5214 switch (fs_devices->chunk_alloc_policy) {
5215 default:
5216 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5217 fallthrough;
5218 case BTRFS_CHUNK_ALLOC_REGULAR:
5219 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5220 break;
5221 case BTRFS_CHUNK_ALLOC_ZONED:
5222 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5223 break;
5224 }
5225 }
5226
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5227 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5228 struct alloc_chunk_ctl *ctl,
5229 struct btrfs_device_info *devices_info)
5230 {
5231 struct btrfs_fs_info *info = fs_devices->fs_info;
5232 struct btrfs_device *device;
5233 u64 total_avail;
5234 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5235 int ret;
5236 int ndevs = 0;
5237 u64 max_avail;
5238 u64 dev_offset;
5239
5240 /*
5241 * in the first pass through the devices list, we gather information
5242 * about the available holes on each device.
5243 */
5244 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5245 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5246 WARN(1, KERN_ERR
5247 "BTRFS: read-only device in alloc_list\n");
5248 continue;
5249 }
5250
5251 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5252 &device->dev_state) ||
5253 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5254 continue;
5255
5256 if (device->total_bytes > device->bytes_used)
5257 total_avail = device->total_bytes - device->bytes_used;
5258 else
5259 total_avail = 0;
5260
5261 /* If there is no space on this device, skip it. */
5262 if (total_avail < ctl->dev_extent_min)
5263 continue;
5264
5265 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5266 &max_avail);
5267 if (ret && ret != -ENOSPC)
5268 return ret;
5269
5270 if (ret == 0)
5271 max_avail = dev_extent_want;
5272
5273 if (max_avail < ctl->dev_extent_min) {
5274 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5275 btrfs_debug(info,
5276 "%s: devid %llu has no free space, have=%llu want=%llu",
5277 __func__, device->devid, max_avail,
5278 ctl->dev_extent_min);
5279 continue;
5280 }
5281
5282 if (ndevs == fs_devices->rw_devices) {
5283 WARN(1, "%s: found more than %llu devices\n",
5284 __func__, fs_devices->rw_devices);
5285 break;
5286 }
5287 devices_info[ndevs].dev_offset = dev_offset;
5288 devices_info[ndevs].max_avail = max_avail;
5289 devices_info[ndevs].total_avail = total_avail;
5290 devices_info[ndevs].dev = device;
5291 ++ndevs;
5292 }
5293 ctl->ndevs = ndevs;
5294
5295 /*
5296 * now sort the devices by hole size / available space
5297 */
5298 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5299 btrfs_cmp_device_info, NULL);
5300
5301 return 0;
5302 }
5303
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5304 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5305 struct btrfs_device_info *devices_info)
5306 {
5307 /* Number of stripes that count for block group size */
5308 int data_stripes;
5309
5310 /*
5311 * The primary goal is to maximize the number of stripes, so use as
5312 * many devices as possible, even if the stripes are not maximum sized.
5313 *
5314 * The DUP profile stores more than one stripe per device, the
5315 * max_avail is the total size so we have to adjust.
5316 */
5317 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5318 ctl->dev_stripes);
5319 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5320
5321 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5322 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5323
5324 /*
5325 * Use the number of data stripes to figure out how big this chunk is
5326 * really going to be in terms of logical address space, and compare
5327 * that answer with the max chunk size. If it's higher, we try to
5328 * reduce stripe_size.
5329 */
5330 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5331 /*
5332 * Reduce stripe_size, round it up to a 16MB boundary again and
5333 * then use it, unless it ends up being even bigger than the
5334 * previous value we had already.
5335 */
5336 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5337 data_stripes), SZ_16M),
5338 ctl->stripe_size);
5339 }
5340
5341 /* Stripe size should not go beyond 1G. */
5342 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5343
5344 /* Align to BTRFS_STRIPE_LEN */
5345 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5346 ctl->chunk_size = ctl->stripe_size * data_stripes;
5347
5348 return 0;
5349 }
5350
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5351 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5352 struct btrfs_device_info *devices_info)
5353 {
5354 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5355 /* Number of stripes that count for block group size */
5356 int data_stripes;
5357
5358 /*
5359 * It should hold because:
5360 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5361 */
5362 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min,
5363 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs,
5364 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min);
5365
5366 ctl->stripe_size = zone_size;
5367 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5368 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5369
5370 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5371 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5372 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5373 ctl->stripe_size) + ctl->nparity,
5374 ctl->dev_stripes);
5375 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5376 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5377 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size,
5378 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu",
5379 ctl->stripe_size, data_stripes, ctl->max_chunk_size);
5380 }
5381
5382 ctl->chunk_size = ctl->stripe_size * data_stripes;
5383
5384 return 0;
5385 }
5386
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5387 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5388 struct alloc_chunk_ctl *ctl,
5389 struct btrfs_device_info *devices_info)
5390 {
5391 struct btrfs_fs_info *info = fs_devices->fs_info;
5392
5393 /*
5394 * Round down to number of usable stripes, devs_increment can be any
5395 * number so we can't use round_down() that requires power of 2, while
5396 * rounddown is safe.
5397 */
5398 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5399
5400 if (ctl->ndevs < ctl->devs_min) {
5401 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5402 btrfs_debug(info,
5403 "%s: not enough devices with free space: have=%d minimum required=%d",
5404 __func__, ctl->ndevs, ctl->devs_min);
5405 }
5406 return -ENOSPC;
5407 }
5408
5409 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5410
5411 switch (fs_devices->chunk_alloc_policy) {
5412 default:
5413 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5414 fallthrough;
5415 case BTRFS_CHUNK_ALLOC_REGULAR:
5416 return decide_stripe_size_regular(ctl, devices_info);
5417 case BTRFS_CHUNK_ALLOC_ZONED:
5418 return decide_stripe_size_zoned(ctl, devices_info);
5419 }
5420 }
5421
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5422 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5423 {
5424 for (int i = 0; i < map->num_stripes; i++) {
5425 struct btrfs_io_stripe *stripe = &map->stripes[i];
5426 struct btrfs_device *device = stripe->dev;
5427
5428 btrfs_set_extent_bit(&device->alloc_state, stripe->physical,
5429 stripe->physical + map->stripe_size - 1,
5430 bits | EXTENT_NOWAIT, NULL);
5431 }
5432 }
5433
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5434 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5435 {
5436 for (int i = 0; i < map->num_stripes; i++) {
5437 struct btrfs_io_stripe *stripe = &map->stripes[i];
5438 struct btrfs_device *device = stripe->dev;
5439
5440 btrfs_clear_extent_bits(&device->alloc_state, stripe->physical,
5441 stripe->physical + map->stripe_size - 1,
5442 bits | EXTENT_NOWAIT);
5443 }
5444 }
5445
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5446 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5447 {
5448 write_lock(&fs_info->mapping_tree_lock);
5449 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5450 RB_CLEAR_NODE(&map->rb_node);
5451 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5452 write_unlock(&fs_info->mapping_tree_lock);
5453
5454 /* Once for the tree reference. */
5455 btrfs_free_chunk_map(map);
5456 }
5457
btrfs_chunk_map_cmp(const struct rb_node * new,const struct rb_node * exist)5458 static int btrfs_chunk_map_cmp(const struct rb_node *new,
5459 const struct rb_node *exist)
5460 {
5461 const struct btrfs_chunk_map *new_map =
5462 rb_entry(new, struct btrfs_chunk_map, rb_node);
5463 const struct btrfs_chunk_map *exist_map =
5464 rb_entry(exist, struct btrfs_chunk_map, rb_node);
5465
5466 if (new_map->start == exist_map->start)
5467 return 0;
5468 if (new_map->start < exist_map->start)
5469 return -1;
5470 return 1;
5471 }
5472
5473 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5474 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5475 {
5476 struct rb_node *exist;
5477
5478 write_lock(&fs_info->mapping_tree_lock);
5479 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree,
5480 btrfs_chunk_map_cmp);
5481
5482 if (exist) {
5483 write_unlock(&fs_info->mapping_tree_lock);
5484 return -EEXIST;
5485 }
5486 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5487 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5488 write_unlock(&fs_info->mapping_tree_lock);
5489
5490 return 0;
5491 }
5492
5493 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5494 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5495 {
5496 struct btrfs_chunk_map *map;
5497
5498 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5499 if (!map)
5500 return NULL;
5501
5502 refcount_set(&map->refs, 1);
5503 RB_CLEAR_NODE(&map->rb_node);
5504
5505 return map;
5506 }
5507
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5508 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5509 struct alloc_chunk_ctl *ctl,
5510 struct btrfs_device_info *devices_info)
5511 {
5512 struct btrfs_fs_info *info = trans->fs_info;
5513 struct btrfs_chunk_map *map;
5514 struct btrfs_block_group *block_group;
5515 u64 start = ctl->start;
5516 u64 type = ctl->type;
5517 int ret;
5518
5519 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5520 if (!map)
5521 return ERR_PTR(-ENOMEM);
5522
5523 map->start = start;
5524 map->chunk_len = ctl->chunk_size;
5525 map->stripe_size = ctl->stripe_size;
5526 map->type = type;
5527 map->io_align = BTRFS_STRIPE_LEN;
5528 map->io_width = BTRFS_STRIPE_LEN;
5529 map->sub_stripes = ctl->sub_stripes;
5530 map->num_stripes = ctl->num_stripes;
5531
5532 for (int i = 0; i < ctl->ndevs; i++) {
5533 for (int j = 0; j < ctl->dev_stripes; j++) {
5534 int s = i * ctl->dev_stripes + j;
5535 map->stripes[s].dev = devices_info[i].dev;
5536 map->stripes[s].physical = devices_info[i].dev_offset +
5537 j * ctl->stripe_size;
5538 }
5539 }
5540
5541 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5542
5543 ret = btrfs_add_chunk_map(info, map);
5544 if (ret) {
5545 btrfs_free_chunk_map(map);
5546 return ERR_PTR(ret);
5547 }
5548
5549 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start,
5550 ctl->chunk_size);
5551 if (IS_ERR(block_group)) {
5552 btrfs_remove_chunk_map(info, map);
5553 return block_group;
5554 }
5555
5556 for (int i = 0; i < map->num_stripes; i++) {
5557 struct btrfs_device *dev = map->stripes[i].dev;
5558
5559 btrfs_device_set_bytes_used(dev,
5560 dev->bytes_used + ctl->stripe_size);
5561 if (list_empty(&dev->post_commit_list))
5562 list_add_tail(&dev->post_commit_list,
5563 &trans->transaction->dev_update_list);
5564 }
5565
5566 atomic64_sub(ctl->stripe_size * map->num_stripes,
5567 &info->free_chunk_space);
5568
5569 check_raid56_incompat_flag(info, type);
5570 check_raid1c34_incompat_flag(info, type);
5571
5572 return block_group;
5573 }
5574
btrfs_create_chunk(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type)5575 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5576 struct btrfs_space_info *space_info,
5577 u64 type)
5578 {
5579 struct btrfs_fs_info *info = trans->fs_info;
5580 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5581 struct btrfs_device_info *devices_info = NULL;
5582 struct alloc_chunk_ctl ctl;
5583 struct btrfs_block_group *block_group;
5584 int ret;
5585
5586 lockdep_assert_held(&info->chunk_mutex);
5587
5588 if (!alloc_profile_is_valid(type, 0)) {
5589 DEBUG_WARN("invalid alloc profile for type %llu", type);
5590 return ERR_PTR(-EINVAL);
5591 }
5592
5593 if (list_empty(&fs_devices->alloc_list)) {
5594 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5595 btrfs_debug(info, "%s: no writable device", __func__);
5596 return ERR_PTR(-ENOSPC);
5597 }
5598
5599 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5600 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5601 DEBUG_WARN();
5602 return ERR_PTR(-EINVAL);
5603 }
5604
5605 ctl.start = find_next_chunk(info);
5606 ctl.type = type;
5607 ctl.space_info = space_info;
5608 init_alloc_chunk_ctl(fs_devices, &ctl);
5609
5610 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5611 GFP_NOFS);
5612 if (!devices_info)
5613 return ERR_PTR(-ENOMEM);
5614
5615 ret = gather_device_info(fs_devices, &ctl, devices_info);
5616 if (ret < 0) {
5617 block_group = ERR_PTR(ret);
5618 goto out;
5619 }
5620
5621 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5622 if (ret < 0) {
5623 block_group = ERR_PTR(ret);
5624 goto out;
5625 }
5626
5627 block_group = create_chunk(trans, &ctl, devices_info);
5628
5629 out:
5630 kfree(devices_info);
5631 return block_group;
5632 }
5633
5634 /*
5635 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5636 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5637 * chunks.
5638 *
5639 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5640 * phases.
5641 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5642 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5643 struct btrfs_block_group *bg)
5644 {
5645 struct btrfs_fs_info *fs_info = trans->fs_info;
5646 struct btrfs_root *chunk_root = fs_info->chunk_root;
5647 struct btrfs_key key;
5648 struct btrfs_chunk *chunk;
5649 struct btrfs_stripe *stripe;
5650 struct btrfs_chunk_map *map;
5651 size_t item_size;
5652 int i;
5653 int ret;
5654
5655 /*
5656 * We take the chunk_mutex for 2 reasons:
5657 *
5658 * 1) Updates and insertions in the chunk btree must be done while holding
5659 * the chunk_mutex, as well as updating the system chunk array in the
5660 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5661 * details;
5662 *
5663 * 2) To prevent races with the final phase of a device replace operation
5664 * that replaces the device object associated with the map's stripes,
5665 * because the device object's id can change at any time during that
5666 * final phase of the device replace operation
5667 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5668 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5669 * which would cause a failure when updating the device item, which does
5670 * not exists, or persisting a stripe of the chunk item with such ID.
5671 * Here we can't use the device_list_mutex because our caller already
5672 * has locked the chunk_mutex, and the final phase of device replace
5673 * acquires both mutexes - first the device_list_mutex and then the
5674 * chunk_mutex. Using any of those two mutexes protects us from a
5675 * concurrent device replace.
5676 */
5677 lockdep_assert_held(&fs_info->chunk_mutex);
5678
5679 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5680 if (IS_ERR(map)) {
5681 ret = PTR_ERR(map);
5682 btrfs_abort_transaction(trans, ret);
5683 return ret;
5684 }
5685
5686 item_size = btrfs_chunk_item_size(map->num_stripes);
5687
5688 chunk = kzalloc(item_size, GFP_NOFS);
5689 if (!chunk) {
5690 ret = -ENOMEM;
5691 btrfs_abort_transaction(trans, ret);
5692 goto out;
5693 }
5694
5695 for (i = 0; i < map->num_stripes; i++) {
5696 struct btrfs_device *device = map->stripes[i].dev;
5697
5698 ret = btrfs_update_device(trans, device);
5699 if (ret)
5700 goto out;
5701 }
5702
5703 stripe = &chunk->stripe;
5704 for (i = 0; i < map->num_stripes; i++) {
5705 struct btrfs_device *device = map->stripes[i].dev;
5706 const u64 dev_offset = map->stripes[i].physical;
5707
5708 btrfs_set_stack_stripe_devid(stripe, device->devid);
5709 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5710 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5711 stripe++;
5712 }
5713
5714 btrfs_set_stack_chunk_length(chunk, bg->length);
5715 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5716 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5717 btrfs_set_stack_chunk_type(chunk, map->type);
5718 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5719 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5720 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5721 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5722 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5723
5724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5725 key.type = BTRFS_CHUNK_ITEM_KEY;
5726 key.offset = bg->start;
5727
5728 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5729 if (ret)
5730 goto out;
5731
5732 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5733
5734 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5735 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5736 if (ret)
5737 goto out;
5738 }
5739
5740 out:
5741 kfree(chunk);
5742 btrfs_free_chunk_map(map);
5743 return ret;
5744 }
5745
init_first_rw_device(struct btrfs_trans_handle * trans)5746 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5747 {
5748 struct btrfs_fs_info *fs_info = trans->fs_info;
5749 u64 alloc_profile;
5750 struct btrfs_block_group *meta_bg;
5751 struct btrfs_space_info *meta_space_info;
5752 struct btrfs_block_group *sys_bg;
5753 struct btrfs_space_info *sys_space_info;
5754
5755 /*
5756 * When adding a new device for sprouting, the seed device is read-only
5757 * so we must first allocate a metadata and a system chunk. But before
5758 * adding the block group items to the extent, device and chunk btrees,
5759 * we must first:
5760 *
5761 * 1) Create both chunks without doing any changes to the btrees, as
5762 * otherwise we would get -ENOSPC since the block groups from the
5763 * seed device are read-only;
5764 *
5765 * 2) Add the device item for the new sprout device - finishing the setup
5766 * of a new block group requires updating the device item in the chunk
5767 * btree, so it must exist when we attempt to do it. The previous step
5768 * ensures this does not fail with -ENOSPC.
5769 *
5770 * After that we can add the block group items to their btrees:
5771 * update existing device item in the chunk btree, add a new block group
5772 * item to the extent btree, add a new chunk item to the chunk btree and
5773 * finally add the new device extent items to the devices btree.
5774 */
5775
5776 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5777 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5778 if (!meta_space_info) {
5779 DEBUG_WARN();
5780 return -EINVAL;
5781 }
5782 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile);
5783 if (IS_ERR(meta_bg))
5784 return PTR_ERR(meta_bg);
5785
5786 alloc_profile = btrfs_system_alloc_profile(fs_info);
5787 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5788 if (!sys_space_info) {
5789 DEBUG_WARN();
5790 return -EINVAL;
5791 }
5792 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile);
5793 if (IS_ERR(sys_bg))
5794 return PTR_ERR(sys_bg);
5795
5796 return 0;
5797 }
5798
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5799 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5800 {
5801 const int index = btrfs_bg_flags_to_raid_index(map->type);
5802
5803 return btrfs_raid_array[index].tolerated_failures;
5804 }
5805
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5806 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5807 {
5808 struct btrfs_chunk_map *map;
5809 int miss_ndevs = 0;
5810 int i;
5811 bool ret = true;
5812
5813 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5814 if (IS_ERR(map))
5815 return false;
5816
5817 for (i = 0; i < map->num_stripes; i++) {
5818 if (test_bit(BTRFS_DEV_STATE_MISSING,
5819 &map->stripes[i].dev->dev_state)) {
5820 miss_ndevs++;
5821 continue;
5822 }
5823 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5824 &map->stripes[i].dev->dev_state)) {
5825 ret = false;
5826 goto end;
5827 }
5828 }
5829
5830 /*
5831 * If the number of missing devices is larger than max errors, we can
5832 * not write the data into that chunk successfully.
5833 */
5834 if (miss_ndevs > btrfs_chunk_max_errors(map))
5835 ret = false;
5836 end:
5837 btrfs_free_chunk_map(map);
5838 return ret;
5839 }
5840
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5841 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5842 {
5843 write_lock(&fs_info->mapping_tree_lock);
5844 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5845 struct btrfs_chunk_map *map;
5846 struct rb_node *node;
5847
5848 node = rb_first_cached(&fs_info->mapping_tree);
5849 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5850 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5851 RB_CLEAR_NODE(&map->rb_node);
5852 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5853 /* Once for the tree ref. */
5854 btrfs_free_chunk_map(map);
5855 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5856 }
5857 write_unlock(&fs_info->mapping_tree_lock);
5858 }
5859
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5860 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5861 {
5862 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5863
5864 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5865 return 2;
5866
5867 /*
5868 * There could be two corrupted data stripes, we need to loop retry in
5869 * order to rebuild the correct data.
5870 *
5871 * Fail a stripe at a time on every retry except the stripe under
5872 * reconstruction.
5873 */
5874 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5875 return map->num_stripes;
5876
5877 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5878 return btrfs_raid_array[index].ncopies;
5879 }
5880
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5881 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5882 {
5883 struct btrfs_chunk_map *map;
5884 int ret;
5885
5886 map = btrfs_get_chunk_map(fs_info, logical, len);
5887 if (IS_ERR(map))
5888 /*
5889 * We could return errors for these cases, but that could get
5890 * ugly and we'd probably do the same thing which is just not do
5891 * anything else and exit, so return 1 so the callers don't try
5892 * to use other copies.
5893 */
5894 return 1;
5895
5896 ret = btrfs_chunk_map_num_copies(map);
5897 btrfs_free_chunk_map(map);
5898 return ret;
5899 }
5900
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5901 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5902 u64 logical)
5903 {
5904 struct btrfs_chunk_map *map;
5905 unsigned long len = fs_info->sectorsize;
5906
5907 if (!btrfs_fs_incompat(fs_info, RAID56))
5908 return len;
5909
5910 map = btrfs_get_chunk_map(fs_info, logical, len);
5911
5912 if (!WARN_ON(IS_ERR(map))) {
5913 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5914 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5915 btrfs_free_chunk_map(map);
5916 }
5917 return len;
5918 }
5919
5920 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_read_preferred(struct btrfs_chunk_map * map,int first,int num_stripes)5921 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes)
5922 {
5923 for (int index = first; index < first + num_stripes; index++) {
5924 const struct btrfs_device *device = map->stripes[index].dev;
5925
5926 if (device->devid == READ_ONCE(device->fs_devices->read_devid))
5927 return index;
5928 }
5929
5930 /* If no read-preferred device is set use the first stripe. */
5931 return first;
5932 }
5933
5934 struct stripe_mirror {
5935 u64 devid;
5936 int num;
5937 };
5938
btrfs_cmp_devid(const void * a,const void * b)5939 static int btrfs_cmp_devid(const void *a, const void *b)
5940 {
5941 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a;
5942 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b;
5943
5944 if (s1->devid < s2->devid)
5945 return -1;
5946 if (s1->devid > s2->devid)
5947 return 1;
5948 return 0;
5949 }
5950
5951 /*
5952 * Select a stripe for reading using the round-robin algorithm.
5953 *
5954 * 1. Compute the read cycle as the total sectors read divided by the minimum
5955 * sectors per device.
5956 * 2. Determine the stripe number for the current read by taking the modulus
5957 * of the read cycle with the total number of stripes:
5958 *
5959 * stripe index = (total sectors / min sectors per dev) % num stripes
5960 *
5961 * The calculated stripe index is then used to select the corresponding device
5962 * from the list of devices, which is ordered by devid.
5963 */
btrfs_read_rr(const struct btrfs_chunk_map * map,int first,int num_stripes)5964 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes)
5965 {
5966 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 };
5967 struct btrfs_device *device = map->stripes[first].dev;
5968 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info;
5969 unsigned int read_cycle;
5970 unsigned int total_reads;
5971 unsigned int min_reads_per_dev;
5972
5973 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks);
5974 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >>
5975 fs_info->sectorsize_bits;
5976
5977 for (int index = 0, i = first; i < first + num_stripes; i++) {
5978 stripes[index].devid = map->stripes[i].dev->devid;
5979 stripes[index].num = i;
5980 index++;
5981 }
5982 sort(stripes, num_stripes, sizeof(struct stripe_mirror),
5983 btrfs_cmp_devid, NULL);
5984
5985 read_cycle = total_reads / min_reads_per_dev;
5986 return stripes[read_cycle % num_stripes].num;
5987 }
5988 #endif
5989
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,bool dev_replace_is_ongoing)5990 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5991 struct btrfs_chunk_map *map, int first,
5992 bool dev_replace_is_ongoing)
5993 {
5994 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5995 int i;
5996 int num_stripes;
5997 int preferred_mirror;
5998 int tolerance;
5999 struct btrfs_device *srcdev;
6000
6001 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)),
6002 "type=%llu", map->type);
6003
6004 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6005 num_stripes = map->sub_stripes;
6006 else
6007 num_stripes = map->num_stripes;
6008
6009 switch (policy) {
6010 default:
6011 /* Shouldn't happen, just warn and use pid instead of failing */
6012 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6013 policy);
6014 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6015 fallthrough;
6016 case BTRFS_READ_POLICY_PID:
6017 preferred_mirror = first + (current->pid % num_stripes);
6018 break;
6019 #ifdef CONFIG_BTRFS_EXPERIMENTAL
6020 case BTRFS_READ_POLICY_RR:
6021 preferred_mirror = btrfs_read_rr(map, first, num_stripes);
6022 break;
6023 case BTRFS_READ_POLICY_DEVID:
6024 preferred_mirror = btrfs_read_preferred(map, first, num_stripes);
6025 break;
6026 #endif
6027 }
6028
6029 if (dev_replace_is_ongoing &&
6030 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6031 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6032 srcdev = fs_info->dev_replace.srcdev;
6033 else
6034 srcdev = NULL;
6035
6036 /*
6037 * try to avoid the drive that is the source drive for a
6038 * dev-replace procedure, only choose it if no other non-missing
6039 * mirror is available
6040 */
6041 for (tolerance = 0; tolerance < 2; tolerance++) {
6042 if (map->stripes[preferred_mirror].dev->bdev &&
6043 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6044 return preferred_mirror;
6045 for (i = first; i < first + num_stripes; i++) {
6046 if (map->stripes[i].dev->bdev &&
6047 (tolerance || map->stripes[i].dev != srcdev))
6048 return i;
6049 }
6050 }
6051
6052 /* we couldn't find one that doesn't fail. Just return something
6053 * and the io error handling code will clean up eventually
6054 */
6055 return preferred_mirror;
6056 }
6057
6058 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6059 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6060 u64 logical, u16 total_stripes)
6061 {
6062 struct btrfs_io_context *bioc;
6063
6064 bioc = kzalloc(
6065 /* The size of btrfs_io_context */
6066 sizeof(struct btrfs_io_context) +
6067 /* Plus the variable array for the stripes */
6068 sizeof(struct btrfs_io_stripe) * (total_stripes),
6069 GFP_NOFS);
6070
6071 if (!bioc)
6072 return NULL;
6073
6074 refcount_set(&bioc->refs, 1);
6075
6076 bioc->fs_info = fs_info;
6077 bioc->replace_stripe_src = -1;
6078 bioc->full_stripe_logical = (u64)-1;
6079 bioc->logical = logical;
6080
6081 return bioc;
6082 }
6083
btrfs_get_bioc(struct btrfs_io_context * bioc)6084 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6085 {
6086 WARN_ON(!refcount_read(&bioc->refs));
6087 refcount_inc(&bioc->refs);
6088 }
6089
btrfs_put_bioc(struct btrfs_io_context * bioc)6090 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6091 {
6092 if (!bioc)
6093 return;
6094 if (refcount_dec_and_test(&bioc->refs))
6095 kfree(bioc);
6096 }
6097
6098 /*
6099 * Please note that, discard won't be sent to target device of device
6100 * replace.
6101 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6102 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6103 u64 logical, u64 *length_ret,
6104 u32 *num_stripes)
6105 {
6106 struct btrfs_chunk_map *map;
6107 struct btrfs_discard_stripe *stripes;
6108 u64 length = *length_ret;
6109 u64 offset;
6110 u32 stripe_nr;
6111 u32 stripe_nr_end;
6112 u32 stripe_cnt;
6113 u64 stripe_end_offset;
6114 u64 stripe_offset;
6115 u32 stripe_index;
6116 u32 factor = 0;
6117 u32 sub_stripes = 0;
6118 u32 stripes_per_dev = 0;
6119 u32 remaining_stripes = 0;
6120 u32 last_stripe = 0;
6121 int ret;
6122 int i;
6123
6124 map = btrfs_get_chunk_map(fs_info, logical, length);
6125 if (IS_ERR(map))
6126 return ERR_CAST(map);
6127
6128 /* we don't discard raid56 yet */
6129 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6130 ret = -EOPNOTSUPP;
6131 goto out_free_map;
6132 }
6133
6134 offset = logical - map->start;
6135 length = min_t(u64, map->start + map->chunk_len - logical, length);
6136 *length_ret = length;
6137
6138 /*
6139 * stripe_nr counts the total number of stripes we have to stride
6140 * to get to this block
6141 */
6142 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6143
6144 /* stripe_offset is the offset of this block in its stripe */
6145 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6146
6147 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6148 BTRFS_STRIPE_LEN_SHIFT;
6149 stripe_cnt = stripe_nr_end - stripe_nr;
6150 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6151 (offset + length);
6152 /*
6153 * after this, stripe_nr is the number of stripes on this
6154 * device we have to walk to find the data, and stripe_index is
6155 * the number of our device in the stripe array
6156 */
6157 *num_stripes = 1;
6158 stripe_index = 0;
6159 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6160 BTRFS_BLOCK_GROUP_RAID10)) {
6161 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6162 sub_stripes = 1;
6163 else
6164 sub_stripes = map->sub_stripes;
6165
6166 factor = map->num_stripes / sub_stripes;
6167 *num_stripes = min_t(u64, map->num_stripes,
6168 sub_stripes * stripe_cnt);
6169 stripe_index = stripe_nr % factor;
6170 stripe_nr /= factor;
6171 stripe_index *= sub_stripes;
6172
6173 remaining_stripes = stripe_cnt % factor;
6174 stripes_per_dev = stripe_cnt / factor;
6175 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6176 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6177 BTRFS_BLOCK_GROUP_DUP)) {
6178 *num_stripes = map->num_stripes;
6179 } else {
6180 stripe_index = stripe_nr % map->num_stripes;
6181 stripe_nr /= map->num_stripes;
6182 }
6183
6184 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6185 if (!stripes) {
6186 ret = -ENOMEM;
6187 goto out_free_map;
6188 }
6189
6190 for (i = 0; i < *num_stripes; i++) {
6191 stripes[i].physical =
6192 map->stripes[stripe_index].physical +
6193 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6194 stripes[i].dev = map->stripes[stripe_index].dev;
6195
6196 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6197 BTRFS_BLOCK_GROUP_RAID10)) {
6198 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6199
6200 if (i / sub_stripes < remaining_stripes)
6201 stripes[i].length += BTRFS_STRIPE_LEN;
6202
6203 /*
6204 * Special for the first stripe and
6205 * the last stripe:
6206 *
6207 * |-------|...|-------|
6208 * |----------|
6209 * off end_off
6210 */
6211 if (i < sub_stripes)
6212 stripes[i].length -= stripe_offset;
6213
6214 if (stripe_index >= last_stripe &&
6215 stripe_index <= (last_stripe +
6216 sub_stripes - 1))
6217 stripes[i].length -= stripe_end_offset;
6218
6219 if (i == sub_stripes - 1)
6220 stripe_offset = 0;
6221 } else {
6222 stripes[i].length = length;
6223 }
6224
6225 stripe_index++;
6226 if (stripe_index == map->num_stripes) {
6227 stripe_index = 0;
6228 stripe_nr++;
6229 }
6230 }
6231
6232 btrfs_free_chunk_map(map);
6233 return stripes;
6234 out_free_map:
6235 btrfs_free_chunk_map(map);
6236 return ERR_PTR(ret);
6237 }
6238
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6239 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6240 {
6241 struct btrfs_block_group *cache;
6242 bool ret;
6243
6244 /* Non zoned filesystem does not use "to_copy" flag */
6245 if (!btrfs_is_zoned(fs_info))
6246 return false;
6247
6248 cache = btrfs_lookup_block_group(fs_info, logical);
6249
6250 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6251
6252 btrfs_put_block_group(cache);
6253 return ret;
6254 }
6255
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6256 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6257 struct btrfs_dev_replace *dev_replace,
6258 u64 logical,
6259 struct btrfs_io_geometry *io_geom)
6260 {
6261 u64 srcdev_devid = dev_replace->srcdev->devid;
6262 /*
6263 * At this stage, num_stripes is still the real number of stripes,
6264 * excluding the duplicated stripes.
6265 */
6266 int num_stripes = io_geom->num_stripes;
6267 int max_errors = io_geom->max_errors;
6268 int nr_extra_stripes = 0;
6269 int i;
6270
6271 /*
6272 * A block group which has "to_copy" set will eventually be copied by
6273 * the dev-replace process. We can avoid cloning IO here.
6274 */
6275 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6276 return;
6277
6278 /*
6279 * Duplicate the write operations while the dev-replace procedure is
6280 * running. Since the copying of the old disk to the new disk takes
6281 * place at run time while the filesystem is mounted writable, the
6282 * regular write operations to the old disk have to be duplicated to go
6283 * to the new disk as well.
6284 *
6285 * Note that device->missing is handled by the caller, and that the
6286 * write to the old disk is already set up in the stripes array.
6287 */
6288 for (i = 0; i < num_stripes; i++) {
6289 struct btrfs_io_stripe *old = &bioc->stripes[i];
6290 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6291
6292 if (old->dev->devid != srcdev_devid)
6293 continue;
6294
6295 new->physical = old->physical;
6296 new->dev = dev_replace->tgtdev;
6297 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6298 bioc->replace_stripe_src = i;
6299 nr_extra_stripes++;
6300 }
6301
6302 /* We can only have at most 2 extra nr_stripes (for DUP). */
6303 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes);
6304 /*
6305 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6306 * replace.
6307 * If we have 2 extra stripes, only choose the one with smaller physical.
6308 */
6309 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6310 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6311 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6312
6313 /* Only DUP can have two extra stripes. */
6314 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP,
6315 "map_type=%llu", bioc->map_type);
6316
6317 /*
6318 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6319 * The extra stripe would still be there, but won't be accessed.
6320 */
6321 if (first->physical > second->physical) {
6322 swap(second->physical, first->physical);
6323 swap(second->dev, first->dev);
6324 nr_extra_stripes--;
6325 }
6326 }
6327
6328 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6329 io_geom->max_errors = max_errors + nr_extra_stripes;
6330 bioc->replace_nr_stripes = nr_extra_stripes;
6331 }
6332
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6333 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6334 struct btrfs_io_geometry *io_geom)
6335 {
6336 /*
6337 * Stripe_nr is the stripe where this block falls. stripe_offset is
6338 * the offset of this block in its stripe.
6339 */
6340 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6341 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6342 ASSERT(io_geom->stripe_offset < U32_MAX,
6343 "stripe_offset=%llu", io_geom->stripe_offset);
6344
6345 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6346 unsigned long full_stripe_len =
6347 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6348
6349 /*
6350 * For full stripe start, we use previously calculated
6351 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6352 * STRIPE_LEN.
6353 *
6354 * By this we can avoid u64 division completely. And we have
6355 * to go rounddown(), not round_down(), as nr_data_stripes is
6356 * not ensured to be power of 2.
6357 */
6358 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6359 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6360
6361 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset,
6362 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu",
6363 io_geom->raid56_full_stripe_start, full_stripe_len, offset);
6364 ASSERT(io_geom->raid56_full_stripe_start <= offset,
6365 "raid56_full_stripe_start=%llu offset=%llu",
6366 io_geom->raid56_full_stripe_start, offset);
6367 /*
6368 * For writes to RAID56, allow to write a full stripe set, but
6369 * no straddling of stripe sets.
6370 */
6371 if (io_geom->op == BTRFS_MAP_WRITE)
6372 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6373 }
6374
6375 /*
6376 * For other RAID types and for RAID56 reads, allow a single stripe (on
6377 * a single disk).
6378 */
6379 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6380 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6381 return U64_MAX;
6382 }
6383
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6384 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6385 u64 *length, struct btrfs_io_stripe *dst,
6386 struct btrfs_chunk_map *map,
6387 struct btrfs_io_geometry *io_geom)
6388 {
6389 dst->dev = map->stripes[io_geom->stripe_index].dev;
6390
6391 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst)
6392 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6393 map->type,
6394 io_geom->stripe_index, dst);
6395
6396 dst->physical = map->stripes[io_geom->stripe_index].physical +
6397 io_geom->stripe_offset +
6398 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6399 return 0;
6400 }
6401
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,struct btrfs_io_geometry * io_geom)6402 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6403 const struct btrfs_io_stripe *smap,
6404 const struct btrfs_chunk_map *map,
6405 int num_alloc_stripes,
6406 struct btrfs_io_geometry *io_geom)
6407 {
6408 if (!smap)
6409 return false;
6410
6411 if (num_alloc_stripes != 1)
6412 return false;
6413
6414 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ)
6415 return false;
6416
6417 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1)
6418 return false;
6419
6420 return true;
6421 }
6422
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6423 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6424 struct btrfs_io_geometry *io_geom)
6425 {
6426 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6427 io_geom->stripe_nr /= map->num_stripes;
6428 if (io_geom->op == BTRFS_MAP_READ)
6429 io_geom->mirror_num = 1;
6430 }
6431
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6432 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6433 struct btrfs_chunk_map *map,
6434 struct btrfs_io_geometry *io_geom,
6435 bool dev_replace_is_ongoing)
6436 {
6437 if (io_geom->op != BTRFS_MAP_READ) {
6438 io_geom->num_stripes = map->num_stripes;
6439 return;
6440 }
6441
6442 if (io_geom->mirror_num) {
6443 io_geom->stripe_index = io_geom->mirror_num - 1;
6444 return;
6445 }
6446
6447 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6448 dev_replace_is_ongoing);
6449 io_geom->mirror_num = io_geom->stripe_index + 1;
6450 }
6451
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6452 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6453 struct btrfs_io_geometry *io_geom)
6454 {
6455 if (io_geom->op != BTRFS_MAP_READ) {
6456 io_geom->num_stripes = map->num_stripes;
6457 return;
6458 }
6459
6460 if (io_geom->mirror_num) {
6461 io_geom->stripe_index = io_geom->mirror_num - 1;
6462 return;
6463 }
6464
6465 io_geom->mirror_num = 1;
6466 }
6467
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6468 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6469 struct btrfs_chunk_map *map,
6470 struct btrfs_io_geometry *io_geom,
6471 bool dev_replace_is_ongoing)
6472 {
6473 u32 factor = map->num_stripes / map->sub_stripes;
6474 int old_stripe_index;
6475
6476 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6477 io_geom->stripe_nr /= factor;
6478
6479 if (io_geom->op != BTRFS_MAP_READ) {
6480 io_geom->num_stripes = map->sub_stripes;
6481 return;
6482 }
6483
6484 if (io_geom->mirror_num) {
6485 io_geom->stripe_index += io_geom->mirror_num - 1;
6486 return;
6487 }
6488
6489 old_stripe_index = io_geom->stripe_index;
6490 io_geom->stripe_index = find_live_mirror(fs_info, map,
6491 io_geom->stripe_index,
6492 dev_replace_is_ongoing);
6493 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6494 }
6495
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6496 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6497 struct btrfs_io_geometry *io_geom,
6498 u64 logical, u64 *length)
6499 {
6500 int data_stripes = nr_data_stripes(map);
6501
6502 /*
6503 * Needs full stripe mapping.
6504 *
6505 * Push stripe_nr back to the start of the full stripe For those cases
6506 * needing a full stripe, @stripe_nr is the full stripe number.
6507 *
6508 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6509 * that can be expensive. Here we just divide @stripe_nr with
6510 * @data_stripes.
6511 */
6512 io_geom->stripe_nr /= data_stripes;
6513
6514 /* RAID[56] write or recovery. Return all stripes */
6515 io_geom->num_stripes = map->num_stripes;
6516 io_geom->max_errors = btrfs_chunk_max_errors(map);
6517
6518 /* Return the length to the full stripe end. */
6519 *length = min(logical + *length,
6520 io_geom->raid56_full_stripe_start + map->start +
6521 btrfs_stripe_nr_to_offset(data_stripes)) -
6522 logical;
6523 io_geom->stripe_index = 0;
6524 io_geom->stripe_offset = 0;
6525 }
6526
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6527 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6528 struct btrfs_io_geometry *io_geom)
6529 {
6530 int data_stripes = nr_data_stripes(map);
6531
6532 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num);
6533 /* Just grab the data stripe directly. */
6534 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6535 io_geom->stripe_nr /= data_stripes;
6536
6537 /* We distribute the parity blocks across stripes. */
6538 io_geom->stripe_index =
6539 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6540
6541 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6542 io_geom->mirror_num = 1;
6543 }
6544
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6545 static void map_blocks_single(const struct btrfs_chunk_map *map,
6546 struct btrfs_io_geometry *io_geom)
6547 {
6548 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6549 io_geom->stripe_nr /= map->num_stripes;
6550 io_geom->mirror_num = io_geom->stripe_index + 1;
6551 }
6552
6553 /*
6554 * Map one logical range to one or more physical ranges.
6555 *
6556 * @length: (Mandatory) mapped length of this run.
6557 * One logical range can be split into different segments
6558 * due to factors like zones and RAID0/5/6/10 stripe
6559 * boundaries.
6560 *
6561 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6562 * which has one or more physical ranges (btrfs_io_stripe)
6563 * recorded inside.
6564 * Caller should call btrfs_put_bioc() to free it after use.
6565 *
6566 * @smap: (Optional) single physical range optimization.
6567 * If the map request can be fulfilled by one single
6568 * physical range, and this is parameter is not NULL,
6569 * then @bioc_ret would be NULL, and @smap would be
6570 * updated.
6571 *
6572 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6573 * value is 0.
6574 *
6575 * Mirror number 0 means to choose any live mirrors.
6576 *
6577 * For non-RAID56 profiles, non-zero mirror_num means
6578 * the Nth mirror. (e.g. mirror_num 1 means the first
6579 * copy).
6580 *
6581 * For RAID56 profile, mirror 1 means rebuild from P and
6582 * the remaining data stripes.
6583 *
6584 * For RAID6 profile, mirror > 2 means mark another
6585 * data/P stripe error and rebuild from the remaining
6586 * stripes..
6587 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6588 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6589 u64 logical, u64 *length,
6590 struct btrfs_io_context **bioc_ret,
6591 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6592 {
6593 struct btrfs_chunk_map *map;
6594 struct btrfs_io_geometry io_geom = { 0 };
6595 u64 map_offset;
6596 int ret = 0;
6597 int num_copies;
6598 struct btrfs_io_context *bioc = NULL;
6599 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6600 bool dev_replace_is_ongoing = false;
6601 u16 num_alloc_stripes;
6602 u64 max_len;
6603
6604 ASSERT(bioc_ret);
6605
6606 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6607 io_geom.num_stripes = 1;
6608 io_geom.stripe_index = 0;
6609 io_geom.op = op;
6610
6611 map = btrfs_get_chunk_map(fs_info, logical, *length);
6612 if (IS_ERR(map))
6613 return PTR_ERR(map);
6614
6615 num_copies = btrfs_chunk_map_num_copies(map);
6616 if (io_geom.mirror_num > num_copies)
6617 return -EINVAL;
6618
6619 map_offset = logical - map->start;
6620 io_geom.raid56_full_stripe_start = (u64)-1;
6621 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6622 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6623 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type);
6624
6625 if (dev_replace->replace_task != current)
6626 down_read(&dev_replace->rwsem);
6627
6628 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6629 /*
6630 * Hold the semaphore for read during the whole operation, write is
6631 * requested at commit time but must wait.
6632 */
6633 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6634 up_read(&dev_replace->rwsem);
6635
6636 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6637 case BTRFS_BLOCK_GROUP_RAID0:
6638 map_blocks_raid0(map, &io_geom);
6639 break;
6640 case BTRFS_BLOCK_GROUP_RAID1:
6641 case BTRFS_BLOCK_GROUP_RAID1C3:
6642 case BTRFS_BLOCK_GROUP_RAID1C4:
6643 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6644 break;
6645 case BTRFS_BLOCK_GROUP_DUP:
6646 map_blocks_dup(map, &io_geom);
6647 break;
6648 case BTRFS_BLOCK_GROUP_RAID10:
6649 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6650 break;
6651 case BTRFS_BLOCK_GROUP_RAID5:
6652 case BTRFS_BLOCK_GROUP_RAID6:
6653 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6654 map_blocks_raid56_write(map, &io_geom, logical, length);
6655 else
6656 map_blocks_raid56_read(map, &io_geom);
6657 break;
6658 default:
6659 /*
6660 * After this, stripe_nr is the number of stripes on this
6661 * device we have to walk to find the data, and stripe_index is
6662 * the number of our device in the stripe array
6663 */
6664 map_blocks_single(map, &io_geom);
6665 break;
6666 }
6667 if (io_geom.stripe_index >= map->num_stripes) {
6668 btrfs_crit(fs_info,
6669 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6670 io_geom.stripe_index, map->num_stripes);
6671 ret = -EINVAL;
6672 goto out;
6673 }
6674
6675 num_alloc_stripes = io_geom.num_stripes;
6676 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6677 op != BTRFS_MAP_READ)
6678 /*
6679 * For replace case, we need to add extra stripes for extra
6680 * duplicated stripes.
6681 *
6682 * For both WRITE and GET_READ_MIRRORS, we may have at most
6683 * 2 more stripes (DUP types, otherwise 1).
6684 */
6685 num_alloc_stripes += 2;
6686
6687 /*
6688 * If this I/O maps to a single device, try to return the device and
6689 * physical block information on the stack instead of allocating an
6690 * I/O context structure.
6691 */
6692 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) {
6693 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6694 if (mirror_num_ret)
6695 *mirror_num_ret = io_geom.mirror_num;
6696 *bioc_ret = NULL;
6697 goto out;
6698 }
6699
6700 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6701 if (!bioc) {
6702 ret = -ENOMEM;
6703 goto out;
6704 }
6705 bioc->map_type = map->type;
6706 bioc->use_rst = io_geom.use_rst;
6707
6708 /*
6709 * For RAID56 full map, we need to make sure the stripes[] follows the
6710 * rule that data stripes are all ordered, then followed with P and Q
6711 * (if we have).
6712 *
6713 * It's still mostly the same as other profiles, just with extra rotation.
6714 */
6715 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6716 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6717 /*
6718 * For RAID56 @stripe_nr is already the number of full stripes
6719 * before us, which is also the rotation value (needs to modulo
6720 * with num_stripes).
6721 *
6722 * In this case, we just add @stripe_nr with @i, then do the
6723 * modulo, to reduce one modulo call.
6724 */
6725 bioc->full_stripe_logical = map->start +
6726 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6727 nr_data_stripes(map));
6728 for (int i = 0; i < io_geom.num_stripes; i++) {
6729 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6730 u32 stripe_index;
6731
6732 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6733 dst->dev = map->stripes[stripe_index].dev;
6734 dst->physical =
6735 map->stripes[stripe_index].physical +
6736 io_geom.stripe_offset +
6737 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6738 }
6739 } else {
6740 /*
6741 * For all other non-RAID56 profiles, just copy the target
6742 * stripe into the bioc.
6743 */
6744 for (int i = 0; i < io_geom.num_stripes; i++) {
6745 ret = set_io_stripe(fs_info, logical, length,
6746 &bioc->stripes[i], map, &io_geom);
6747 if (ret < 0)
6748 break;
6749 io_geom.stripe_index++;
6750 }
6751 }
6752
6753 if (ret) {
6754 *bioc_ret = NULL;
6755 btrfs_put_bioc(bioc);
6756 goto out;
6757 }
6758
6759 if (op != BTRFS_MAP_READ)
6760 io_geom.max_errors = btrfs_chunk_max_errors(map);
6761
6762 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6763 op != BTRFS_MAP_READ) {
6764 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6765 }
6766
6767 *bioc_ret = bioc;
6768 bioc->num_stripes = io_geom.num_stripes;
6769 bioc->max_errors = io_geom.max_errors;
6770 bioc->mirror_num = io_geom.mirror_num;
6771
6772 out:
6773 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6774 lockdep_assert_held(&dev_replace->rwsem);
6775 /* Unlock and let waiting writers proceed */
6776 up_read(&dev_replace->rwsem);
6777 }
6778 btrfs_free_chunk_map(map);
6779 return ret;
6780 }
6781
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6782 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6783 const struct btrfs_fs_devices *fs_devices)
6784 {
6785 if (args->fsid == NULL)
6786 return true;
6787 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6788 return true;
6789 return false;
6790 }
6791
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6792 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6793 const struct btrfs_device *device)
6794 {
6795 if (args->missing) {
6796 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6797 !device->bdev)
6798 return true;
6799 return false;
6800 }
6801
6802 if (device->devid != args->devid)
6803 return false;
6804 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6805 return false;
6806 return true;
6807 }
6808
6809 /*
6810 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6811 * return NULL.
6812 *
6813 * If devid and uuid are both specified, the match must be exact, otherwise
6814 * only devid is used.
6815 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6816 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6817 const struct btrfs_dev_lookup_args *args)
6818 {
6819 struct btrfs_device *device;
6820 struct btrfs_fs_devices *seed_devs;
6821
6822 if (dev_args_match_fs_devices(args, fs_devices)) {
6823 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6824 if (dev_args_match_device(args, device))
6825 return device;
6826 }
6827 }
6828
6829 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6830 if (!dev_args_match_fs_devices(args, seed_devs))
6831 continue;
6832 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6833 if (dev_args_match_device(args, device))
6834 return device;
6835 }
6836 }
6837
6838 return NULL;
6839 }
6840
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6841 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6842 u64 devid, u8 *dev_uuid)
6843 {
6844 struct btrfs_device *device;
6845 unsigned int nofs_flag;
6846
6847 /*
6848 * We call this under the chunk_mutex, so we want to use NOFS for this
6849 * allocation, however we don't want to change btrfs_alloc_device() to
6850 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6851 * places.
6852 */
6853
6854 nofs_flag = memalloc_nofs_save();
6855 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6856 memalloc_nofs_restore(nofs_flag);
6857 if (IS_ERR(device))
6858 return device;
6859
6860 list_add(&device->dev_list, &fs_devices->devices);
6861 device->fs_devices = fs_devices;
6862 fs_devices->num_devices++;
6863
6864 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6865 fs_devices->missing_devices++;
6866
6867 return device;
6868 }
6869
6870 /*
6871 * Allocate new device struct, set up devid and UUID.
6872 *
6873 * @fs_info: used only for generating a new devid, can be NULL if
6874 * devid is provided (i.e. @devid != NULL).
6875 * @devid: a pointer to devid for this device. If NULL a new devid
6876 * is generated.
6877 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6878 * is generated.
6879 * @path: a pointer to device path if available, NULL otherwise.
6880 *
6881 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6882 * on error. Returned struct is not linked onto any lists and must be
6883 * destroyed with btrfs_free_device.
6884 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6885 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6886 const u64 *devid, const u8 *uuid,
6887 const char *path)
6888 {
6889 struct btrfs_device *dev;
6890 u64 tmp;
6891
6892 if (WARN_ON(!devid && !fs_info))
6893 return ERR_PTR(-EINVAL);
6894
6895 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6896 if (!dev)
6897 return ERR_PTR(-ENOMEM);
6898
6899 INIT_LIST_HEAD(&dev->dev_list);
6900 INIT_LIST_HEAD(&dev->dev_alloc_list);
6901 INIT_LIST_HEAD(&dev->post_commit_list);
6902
6903 atomic_set(&dev->dev_stats_ccnt, 0);
6904 btrfs_device_data_ordered_init(dev);
6905 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6906
6907 if (devid)
6908 tmp = *devid;
6909 else {
6910 int ret;
6911
6912 ret = find_next_devid(fs_info, &tmp);
6913 if (ret) {
6914 btrfs_free_device(dev);
6915 return ERR_PTR(ret);
6916 }
6917 }
6918 dev->devid = tmp;
6919
6920 if (uuid)
6921 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6922 else
6923 generate_random_uuid(dev->uuid);
6924
6925 if (path) {
6926 struct rcu_string *name;
6927
6928 name = rcu_string_strdup(path, GFP_KERNEL);
6929 if (!name) {
6930 btrfs_free_device(dev);
6931 return ERR_PTR(-ENOMEM);
6932 }
6933 rcu_assign_pointer(dev->name, name);
6934 }
6935
6936 return dev;
6937 }
6938
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6939 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6940 u64 devid, u8 *uuid, bool error)
6941 {
6942 if (error)
6943 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6944 devid, uuid);
6945 else
6946 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6947 devid, uuid);
6948 }
6949
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6950 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6951 {
6952 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6953
6954 return div_u64(map->chunk_len, data_stripes);
6955 }
6956
6957 #if BITS_PER_LONG == 32
6958 /*
6959 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6960 * can't be accessed on 32bit systems.
6961 *
6962 * This function do mount time check to reject the fs if it already has
6963 * metadata chunk beyond that limit.
6964 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6965 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6966 u64 logical, u64 length, u64 type)
6967 {
6968 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6969 return 0;
6970
6971 if (logical + length < MAX_LFS_FILESIZE)
6972 return 0;
6973
6974 btrfs_err_32bit_limit(fs_info);
6975 return -EOVERFLOW;
6976 }
6977
6978 /*
6979 * This is to give early warning for any metadata chunk reaching
6980 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6981 * Although we can still access the metadata, it's not going to be possible
6982 * once the limit is reached.
6983 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6984 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6985 u64 logical, u64 length, u64 type)
6986 {
6987 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6988 return;
6989
6990 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6991 return;
6992
6993 btrfs_warn_32bit_limit(fs_info);
6994 }
6995 #endif
6996
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6997 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6998 u64 devid, u8 *uuid)
6999 {
7000 struct btrfs_device *dev;
7001
7002 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7003 btrfs_report_missing_device(fs_info, devid, uuid, true);
7004 return ERR_PTR(-ENOENT);
7005 }
7006
7007 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7008 if (IS_ERR(dev)) {
7009 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7010 devid, PTR_ERR(dev));
7011 return dev;
7012 }
7013 btrfs_report_missing_device(fs_info, devid, uuid, false);
7014
7015 return dev;
7016 }
7017
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7018 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7019 struct btrfs_chunk *chunk)
7020 {
7021 BTRFS_DEV_LOOKUP_ARGS(args);
7022 struct btrfs_fs_info *fs_info = leaf->fs_info;
7023 struct btrfs_chunk_map *map;
7024 u64 logical;
7025 u64 length;
7026 u64 devid;
7027 u64 type;
7028 u8 uuid[BTRFS_UUID_SIZE];
7029 int index;
7030 int num_stripes;
7031 int ret;
7032 int i;
7033
7034 logical = key->offset;
7035 length = btrfs_chunk_length(leaf, chunk);
7036 type = btrfs_chunk_type(leaf, chunk);
7037 index = btrfs_bg_flags_to_raid_index(type);
7038 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7039
7040 #if BITS_PER_LONG == 32
7041 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7042 if (ret < 0)
7043 return ret;
7044 warn_32bit_meta_chunk(fs_info, logical, length, type);
7045 #endif
7046
7047 map = btrfs_find_chunk_map(fs_info, logical, 1);
7048
7049 /* already mapped? */
7050 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7051 btrfs_free_chunk_map(map);
7052 return 0;
7053 } else if (map) {
7054 btrfs_free_chunk_map(map);
7055 }
7056
7057 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7058 if (!map)
7059 return -ENOMEM;
7060
7061 map->start = logical;
7062 map->chunk_len = length;
7063 map->num_stripes = num_stripes;
7064 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7065 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7066 map->type = type;
7067 /*
7068 * We can't use the sub_stripes value, as for profiles other than
7069 * RAID10, they may have 0 as sub_stripes for filesystems created by
7070 * older mkfs (<v5.4).
7071 * In that case, it can cause divide-by-zero errors later.
7072 * Since currently sub_stripes is fixed for each profile, let's
7073 * use the trusted value instead.
7074 */
7075 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7076 map->verified_stripes = 0;
7077 map->stripe_size = btrfs_calc_stripe_length(map);
7078 for (i = 0; i < num_stripes; i++) {
7079 map->stripes[i].physical =
7080 btrfs_stripe_offset_nr(leaf, chunk, i);
7081 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7082 args.devid = devid;
7083 read_extent_buffer(leaf, uuid, (unsigned long)
7084 btrfs_stripe_dev_uuid_nr(chunk, i),
7085 BTRFS_UUID_SIZE);
7086 args.uuid = uuid;
7087 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7088 if (!map->stripes[i].dev) {
7089 map->stripes[i].dev = handle_missing_device(fs_info,
7090 devid, uuid);
7091 if (IS_ERR(map->stripes[i].dev)) {
7092 ret = PTR_ERR(map->stripes[i].dev);
7093 btrfs_free_chunk_map(map);
7094 return ret;
7095 }
7096 }
7097
7098 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7099 &(map->stripes[i].dev->dev_state));
7100 }
7101
7102 ret = btrfs_add_chunk_map(fs_info, map);
7103 if (ret < 0) {
7104 btrfs_err(fs_info,
7105 "failed to add chunk map, start=%llu len=%llu: %d",
7106 map->start, map->chunk_len, ret);
7107 btrfs_free_chunk_map(map);
7108 }
7109
7110 return ret;
7111 }
7112
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7113 static void fill_device_from_item(struct extent_buffer *leaf,
7114 struct btrfs_dev_item *dev_item,
7115 struct btrfs_device *device)
7116 {
7117 unsigned long ptr;
7118
7119 device->devid = btrfs_device_id(leaf, dev_item);
7120 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7121 device->total_bytes = device->disk_total_bytes;
7122 device->commit_total_bytes = device->disk_total_bytes;
7123 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7124 device->commit_bytes_used = device->bytes_used;
7125 device->type = btrfs_device_type(leaf, dev_item);
7126 device->io_align = btrfs_device_io_align(leaf, dev_item);
7127 device->io_width = btrfs_device_io_width(leaf, dev_item);
7128 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7129 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7131
7132 ptr = btrfs_device_uuid(dev_item);
7133 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7134 }
7135
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7136 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7137 u8 *fsid)
7138 {
7139 struct btrfs_fs_devices *fs_devices;
7140 int ret;
7141
7142 lockdep_assert_held(&uuid_mutex);
7143 ASSERT(fsid);
7144
7145 /* This will match only for multi-device seed fs */
7146 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7147 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7148 return fs_devices;
7149
7150
7151 fs_devices = find_fsid(fsid, NULL);
7152 if (!fs_devices) {
7153 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7154 btrfs_err(fs_info,
7155 "failed to find fsid %pU when attempting to open seed devices",
7156 fsid);
7157 return ERR_PTR(-ENOENT);
7158 }
7159
7160 fs_devices = alloc_fs_devices(fsid);
7161 if (IS_ERR(fs_devices))
7162 return fs_devices;
7163
7164 fs_devices->seeding = true;
7165 fs_devices->opened = 1;
7166 return fs_devices;
7167 }
7168
7169 /*
7170 * Upon first call for a seed fs fsid, just create a private copy of the
7171 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7172 */
7173 fs_devices = clone_fs_devices(fs_devices);
7174 if (IS_ERR(fs_devices))
7175 return fs_devices;
7176
7177 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7178 if (ret) {
7179 free_fs_devices(fs_devices);
7180 return ERR_PTR(ret);
7181 }
7182
7183 if (!fs_devices->seeding) {
7184 close_fs_devices(fs_devices);
7185 free_fs_devices(fs_devices);
7186 return ERR_PTR(-EINVAL);
7187 }
7188
7189 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7190
7191 return fs_devices;
7192 }
7193
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7194 static int read_one_dev(struct extent_buffer *leaf,
7195 struct btrfs_dev_item *dev_item)
7196 {
7197 BTRFS_DEV_LOOKUP_ARGS(args);
7198 struct btrfs_fs_info *fs_info = leaf->fs_info;
7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 struct btrfs_device *device;
7201 u64 devid;
7202 int ret;
7203 u8 fs_uuid[BTRFS_FSID_SIZE];
7204 u8 dev_uuid[BTRFS_UUID_SIZE];
7205
7206 devid = btrfs_device_id(leaf, dev_item);
7207 args.devid = devid;
7208 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7209 BTRFS_UUID_SIZE);
7210 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7211 BTRFS_FSID_SIZE);
7212 args.uuid = dev_uuid;
7213 args.fsid = fs_uuid;
7214
7215 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7216 fs_devices = open_seed_devices(fs_info, fs_uuid);
7217 if (IS_ERR(fs_devices))
7218 return PTR_ERR(fs_devices);
7219 }
7220
7221 device = btrfs_find_device(fs_info->fs_devices, &args);
7222 if (!device) {
7223 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7224 btrfs_report_missing_device(fs_info, devid,
7225 dev_uuid, true);
7226 return -ENOENT;
7227 }
7228
7229 device = add_missing_dev(fs_devices, devid, dev_uuid);
7230 if (IS_ERR(device)) {
7231 btrfs_err(fs_info,
7232 "failed to add missing dev %llu: %ld",
7233 devid, PTR_ERR(device));
7234 return PTR_ERR(device);
7235 }
7236 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7237 } else {
7238 if (!device->bdev) {
7239 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7240 btrfs_report_missing_device(fs_info,
7241 devid, dev_uuid, true);
7242 return -ENOENT;
7243 }
7244 btrfs_report_missing_device(fs_info, devid,
7245 dev_uuid, false);
7246 }
7247
7248 if (!device->bdev &&
7249 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7250 /*
7251 * this happens when a device that was properly setup
7252 * in the device info lists suddenly goes bad.
7253 * device->bdev is NULL, and so we have to set
7254 * device->missing to one here
7255 */
7256 device->fs_devices->missing_devices++;
7257 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7258 }
7259
7260 /* Move the device to its own fs_devices */
7261 if (device->fs_devices != fs_devices) {
7262 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7263 &device->dev_state));
7264
7265 list_move(&device->dev_list, &fs_devices->devices);
7266 device->fs_devices->num_devices--;
7267 fs_devices->num_devices++;
7268
7269 device->fs_devices->missing_devices--;
7270 fs_devices->missing_devices++;
7271
7272 device->fs_devices = fs_devices;
7273 }
7274 }
7275
7276 if (device->fs_devices != fs_info->fs_devices) {
7277 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7278 if (device->generation !=
7279 btrfs_device_generation(leaf, dev_item))
7280 return -EINVAL;
7281 }
7282
7283 fill_device_from_item(leaf, dev_item, device);
7284 if (device->bdev) {
7285 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7286
7287 if (device->total_bytes > max_total_bytes) {
7288 btrfs_err(fs_info,
7289 "device total_bytes should be at most %llu but found %llu",
7290 max_total_bytes, device->total_bytes);
7291 return -EINVAL;
7292 }
7293 }
7294 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7295 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7296 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7297 device->fs_devices->total_rw_bytes += device->total_bytes;
7298 atomic64_add(device->total_bytes - device->bytes_used,
7299 &fs_info->free_chunk_space);
7300 }
7301 ret = 0;
7302 return ret;
7303 }
7304
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7305 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7306 {
7307 struct btrfs_super_block *super_copy = fs_info->super_copy;
7308 struct extent_buffer *sb;
7309 u8 *array_ptr;
7310 unsigned long sb_array_offset;
7311 int ret = 0;
7312 u32 array_size;
7313 u32 cur_offset;
7314 struct btrfs_key key;
7315
7316 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7317
7318 /*
7319 * We allocated a dummy extent, just to use extent buffer accessors.
7320 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7321 * that's fine, we will not go beyond system chunk array anyway.
7322 */
7323 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7324 if (!sb)
7325 return -ENOMEM;
7326 set_extent_buffer_uptodate(sb);
7327
7328 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7329 array_size = btrfs_super_sys_array_size(super_copy);
7330
7331 array_ptr = super_copy->sys_chunk_array;
7332 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7333 cur_offset = 0;
7334
7335 while (cur_offset < array_size) {
7336 struct btrfs_chunk *chunk;
7337 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr;
7338 u32 len = sizeof(*disk_key);
7339
7340 /*
7341 * The sys_chunk_array has been already verified at super block
7342 * read time. Only do ASSERT()s for basic checks.
7343 */
7344 ASSERT(cur_offset + len <= array_size);
7345
7346 btrfs_disk_key_to_cpu(&key, disk_key);
7347
7348 array_ptr += len;
7349 sb_array_offset += len;
7350 cur_offset += len;
7351
7352 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY);
7353
7354 chunk = (struct btrfs_chunk *)sb_array_offset;
7355 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM);
7356
7357 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk));
7358
7359 ASSERT(cur_offset + len <= array_size);
7360
7361 ret = read_one_chunk(&key, sb, chunk);
7362 if (ret)
7363 break;
7364
7365 array_ptr += len;
7366 sb_array_offset += len;
7367 cur_offset += len;
7368 }
7369 clear_extent_buffer_uptodate(sb);
7370 free_extent_buffer_stale(sb);
7371 return ret;
7372 }
7373
7374 /*
7375 * Check if all chunks in the fs are OK for read-write degraded mount
7376 *
7377 * If the @failing_dev is specified, it's accounted as missing.
7378 *
7379 * Return true if all chunks meet the minimal RW mount requirements.
7380 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7381 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7382 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7383 struct btrfs_device *failing_dev)
7384 {
7385 struct btrfs_chunk_map *map;
7386 u64 next_start;
7387 bool ret = true;
7388
7389 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7390 /* No chunk at all? Return false anyway */
7391 if (!map) {
7392 ret = false;
7393 goto out;
7394 }
7395 while (map) {
7396 int missing = 0;
7397 int max_tolerated;
7398 int i;
7399
7400 max_tolerated =
7401 btrfs_get_num_tolerated_disk_barrier_failures(
7402 map->type);
7403 for (i = 0; i < map->num_stripes; i++) {
7404 struct btrfs_device *dev = map->stripes[i].dev;
7405
7406 if (!dev || !dev->bdev ||
7407 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7408 dev->last_flush_error)
7409 missing++;
7410 else if (failing_dev && failing_dev == dev)
7411 missing++;
7412 }
7413 if (missing > max_tolerated) {
7414 if (!failing_dev)
7415 btrfs_warn(fs_info,
7416 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7417 map->start, missing, max_tolerated);
7418 btrfs_free_chunk_map(map);
7419 ret = false;
7420 goto out;
7421 }
7422 next_start = map->start + map->chunk_len;
7423 btrfs_free_chunk_map(map);
7424
7425 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7426 }
7427 out:
7428 return ret;
7429 }
7430
readahead_tree_node_children(struct extent_buffer * node)7431 static void readahead_tree_node_children(struct extent_buffer *node)
7432 {
7433 int i;
7434 const int nr_items = btrfs_header_nritems(node);
7435
7436 for (i = 0; i < nr_items; i++)
7437 btrfs_readahead_node_child(node, i);
7438 }
7439
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7440 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7441 {
7442 struct btrfs_root *root = fs_info->chunk_root;
7443 struct btrfs_path *path;
7444 struct extent_buffer *leaf;
7445 struct btrfs_key key;
7446 struct btrfs_key found_key;
7447 int ret;
7448 int slot;
7449 int iter_ret = 0;
7450 u64 total_dev = 0;
7451 u64 last_ra_node = 0;
7452
7453 path = btrfs_alloc_path();
7454 if (!path)
7455 return -ENOMEM;
7456
7457 /*
7458 * uuid_mutex is needed only if we are mounting a sprout FS
7459 * otherwise we don't need it.
7460 */
7461 mutex_lock(&uuid_mutex);
7462
7463 /*
7464 * It is possible for mount and umount to race in such a way that
7465 * we execute this code path, but open_fs_devices failed to clear
7466 * total_rw_bytes. We certainly want it cleared before reading the
7467 * device items, so clear it here.
7468 */
7469 fs_info->fs_devices->total_rw_bytes = 0;
7470
7471 /*
7472 * Lockdep complains about possible circular locking dependency between
7473 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7474 * used for freeze procection of a fs (struct super_block.s_writers),
7475 * which we take when starting a transaction, and extent buffers of the
7476 * chunk tree if we call read_one_dev() while holding a lock on an
7477 * extent buffer of the chunk tree. Since we are mounting the filesystem
7478 * and at this point there can't be any concurrent task modifying the
7479 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7480 */
7481 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7482 path->skip_locking = 1;
7483
7484 /*
7485 * Read all device items, and then all the chunk items. All
7486 * device items are found before any chunk item (their object id
7487 * is smaller than the lowest possible object id for a chunk
7488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7489 */
7490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 key.type = 0;
7492 key.offset = 0;
7493 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7494 struct extent_buffer *node = path->nodes[1];
7495
7496 leaf = path->nodes[0];
7497 slot = path->slots[0];
7498
7499 if (node) {
7500 if (last_ra_node != node->start) {
7501 readahead_tree_node_children(node);
7502 last_ra_node = node->start;
7503 }
7504 }
7505 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7506 struct btrfs_dev_item *dev_item;
7507 dev_item = btrfs_item_ptr(leaf, slot,
7508 struct btrfs_dev_item);
7509 ret = read_one_dev(leaf, dev_item);
7510 if (ret)
7511 goto error;
7512 total_dev++;
7513 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7514 struct btrfs_chunk *chunk;
7515
7516 /*
7517 * We are only called at mount time, so no need to take
7518 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7519 * we always lock first fs_info->chunk_mutex before
7520 * acquiring any locks on the chunk tree. This is a
7521 * requirement for chunk allocation, see the comment on
7522 * top of btrfs_chunk_alloc() for details.
7523 */
7524 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7525 ret = read_one_chunk(&found_key, leaf, chunk);
7526 if (ret)
7527 goto error;
7528 }
7529 }
7530 /* Catch error found during iteration */
7531 if (iter_ret < 0) {
7532 ret = iter_ret;
7533 goto error;
7534 }
7535
7536 /*
7537 * After loading chunk tree, we've got all device information,
7538 * do another round of validation checks.
7539 */
7540 if (total_dev != fs_info->fs_devices->total_devices) {
7541 btrfs_warn(fs_info,
7542 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7543 btrfs_super_num_devices(fs_info->super_copy),
7544 total_dev);
7545 fs_info->fs_devices->total_devices = total_dev;
7546 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7547 }
7548 if (btrfs_super_total_bytes(fs_info->super_copy) <
7549 fs_info->fs_devices->total_rw_bytes) {
7550 btrfs_err(fs_info,
7551 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7552 btrfs_super_total_bytes(fs_info->super_copy),
7553 fs_info->fs_devices->total_rw_bytes);
7554 ret = -EINVAL;
7555 goto error;
7556 }
7557 ret = 0;
7558 error:
7559 mutex_unlock(&uuid_mutex);
7560
7561 btrfs_free_path(path);
7562 return ret;
7563 }
7564
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7565 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7566 {
7567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7568 struct btrfs_device *device;
7569 int ret = 0;
7570
7571 mutex_lock(&fs_devices->device_list_mutex);
7572 list_for_each_entry(device, &fs_devices->devices, dev_list)
7573 device->fs_info = fs_info;
7574
7575 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7576 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7577 device->fs_info = fs_info;
7578 ret = btrfs_get_dev_zone_info(device, false);
7579 if (ret)
7580 break;
7581 }
7582
7583 seed_devs->fs_info = fs_info;
7584 }
7585 mutex_unlock(&fs_devices->device_list_mutex);
7586
7587 return ret;
7588 }
7589
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7590 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7591 const struct btrfs_dev_stats_item *ptr,
7592 int index)
7593 {
7594 u64 val;
7595
7596 read_extent_buffer(eb, &val,
7597 offsetof(struct btrfs_dev_stats_item, values) +
7598 ((unsigned long)ptr) + (index * sizeof(u64)),
7599 sizeof(val));
7600 return val;
7601 }
7602
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7603 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7604 struct btrfs_dev_stats_item *ptr,
7605 int index, u64 val)
7606 {
7607 write_extent_buffer(eb, &val,
7608 offsetof(struct btrfs_dev_stats_item, values) +
7609 ((unsigned long)ptr) + (index * sizeof(u64)),
7610 sizeof(val));
7611 }
7612
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7613 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7614 struct btrfs_path *path)
7615 {
7616 struct btrfs_dev_stats_item *ptr;
7617 struct extent_buffer *eb;
7618 struct btrfs_key key;
7619 int item_size;
7620 int i, ret, slot;
7621
7622 if (!device->fs_info->dev_root)
7623 return 0;
7624
7625 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7626 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7627 key.offset = device->devid;
7628 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7629 if (ret) {
7630 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7631 btrfs_dev_stat_set(device, i, 0);
7632 device->dev_stats_valid = 1;
7633 btrfs_release_path(path);
7634 return ret < 0 ? ret : 0;
7635 }
7636 slot = path->slots[0];
7637 eb = path->nodes[0];
7638 item_size = btrfs_item_size(eb, slot);
7639
7640 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7641
7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7643 if (item_size >= (1 + i) * sizeof(__le64))
7644 btrfs_dev_stat_set(device, i,
7645 btrfs_dev_stats_value(eb, ptr, i));
7646 else
7647 btrfs_dev_stat_set(device, i, 0);
7648 }
7649
7650 device->dev_stats_valid = 1;
7651 btrfs_dev_stat_print_on_load(device);
7652 btrfs_release_path(path);
7653
7654 return 0;
7655 }
7656
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7657 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7658 {
7659 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7660 struct btrfs_device *device;
7661 struct btrfs_path *path = NULL;
7662 int ret = 0;
7663
7664 path = btrfs_alloc_path();
7665 if (!path)
7666 return -ENOMEM;
7667
7668 mutex_lock(&fs_devices->device_list_mutex);
7669 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7670 ret = btrfs_device_init_dev_stats(device, path);
7671 if (ret)
7672 goto out;
7673 }
7674 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7675 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7676 ret = btrfs_device_init_dev_stats(device, path);
7677 if (ret)
7678 goto out;
7679 }
7680 }
7681 out:
7682 mutex_unlock(&fs_devices->device_list_mutex);
7683
7684 btrfs_free_path(path);
7685 return ret;
7686 }
7687
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7688 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7689 struct btrfs_device *device)
7690 {
7691 struct btrfs_fs_info *fs_info = trans->fs_info;
7692 struct btrfs_root *dev_root = fs_info->dev_root;
7693 struct btrfs_path *path;
7694 struct btrfs_key key;
7695 struct extent_buffer *eb;
7696 struct btrfs_dev_stats_item *ptr;
7697 int ret;
7698 int i;
7699
7700 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7701 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7702 key.offset = device->devid;
7703
7704 path = btrfs_alloc_path();
7705 if (!path)
7706 return -ENOMEM;
7707 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7708 if (ret < 0) {
7709 btrfs_warn_in_rcu(fs_info,
7710 "error %d while searching for dev_stats item for device %s",
7711 ret, btrfs_dev_name(device));
7712 goto out;
7713 }
7714
7715 if (ret == 0 &&
7716 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7717 /* need to delete old one and insert a new one */
7718 ret = btrfs_del_item(trans, dev_root, path);
7719 if (ret != 0) {
7720 btrfs_warn_in_rcu(fs_info,
7721 "delete too small dev_stats item for device %s failed %d",
7722 btrfs_dev_name(device), ret);
7723 goto out;
7724 }
7725 ret = 1;
7726 }
7727
7728 if (ret == 1) {
7729 /* need to insert a new item */
7730 btrfs_release_path(path);
7731 ret = btrfs_insert_empty_item(trans, dev_root, path,
7732 &key, sizeof(*ptr));
7733 if (ret < 0) {
7734 btrfs_warn_in_rcu(fs_info,
7735 "insert dev_stats item for device %s failed %d",
7736 btrfs_dev_name(device), ret);
7737 goto out;
7738 }
7739 }
7740
7741 eb = path->nodes[0];
7742 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7743 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7744 btrfs_set_dev_stats_value(eb, ptr, i,
7745 btrfs_dev_stat_read(device, i));
7746 out:
7747 btrfs_free_path(path);
7748 return ret;
7749 }
7750
7751 /*
7752 * called from commit_transaction. Writes all changed device stats to disk.
7753 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7754 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7755 {
7756 struct btrfs_fs_info *fs_info = trans->fs_info;
7757 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7758 struct btrfs_device *device;
7759 int stats_cnt;
7760 int ret = 0;
7761
7762 mutex_lock(&fs_devices->device_list_mutex);
7763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7764 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7765 if (!device->dev_stats_valid || stats_cnt == 0)
7766 continue;
7767
7768
7769 /*
7770 * There is a LOAD-LOAD control dependency between the value of
7771 * dev_stats_ccnt and updating the on-disk values which requires
7772 * reading the in-memory counters. Such control dependencies
7773 * require explicit read memory barriers.
7774 *
7775 * This memory barriers pairs with smp_mb__before_atomic in
7776 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7777 * barrier implied by atomic_xchg in
7778 * btrfs_dev_stats_read_and_reset
7779 */
7780 smp_rmb();
7781
7782 ret = update_dev_stat_item(trans, device);
7783 if (!ret)
7784 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7785 }
7786 mutex_unlock(&fs_devices->device_list_mutex);
7787
7788 return ret;
7789 }
7790
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7791 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7792 {
7793 btrfs_dev_stat_inc(dev, index);
7794
7795 if (!dev->dev_stats_valid)
7796 return;
7797 btrfs_err_rl_in_rcu(dev->fs_info,
7798 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7799 btrfs_dev_name(dev),
7800 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7801 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7802 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7803 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7804 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7805 }
7806
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7807 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7808 {
7809 int i;
7810
7811 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7812 if (btrfs_dev_stat_read(dev, i) != 0)
7813 break;
7814 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7815 return; /* all values == 0, suppress message */
7816
7817 btrfs_info_in_rcu(dev->fs_info,
7818 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7819 btrfs_dev_name(dev),
7820 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7821 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7822 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7823 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7824 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7825 }
7826
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7827 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7828 struct btrfs_ioctl_get_dev_stats *stats)
7829 {
7830 BTRFS_DEV_LOOKUP_ARGS(args);
7831 struct btrfs_device *dev;
7832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7833 int i;
7834
7835 mutex_lock(&fs_devices->device_list_mutex);
7836 args.devid = stats->devid;
7837 dev = btrfs_find_device(fs_info->fs_devices, &args);
7838 mutex_unlock(&fs_devices->device_list_mutex);
7839
7840 if (!dev) {
7841 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7842 return -ENODEV;
7843 } else if (!dev->dev_stats_valid) {
7844 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7845 return -ENODEV;
7846 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7847 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7848 if (stats->nr_items > i)
7849 stats->values[i] =
7850 btrfs_dev_stat_read_and_reset(dev, i);
7851 else
7852 btrfs_dev_stat_set(dev, i, 0);
7853 }
7854 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7855 current->comm, task_pid_nr(current));
7856 } else {
7857 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7858 if (stats->nr_items > i)
7859 stats->values[i] = btrfs_dev_stat_read(dev, i);
7860 }
7861 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7862 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7863 return 0;
7864 }
7865
7866 /*
7867 * Update the size and bytes used for each device where it changed. This is
7868 * delayed since we would otherwise get errors while writing out the
7869 * superblocks.
7870 *
7871 * Must be invoked during transaction commit.
7872 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7873 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7874 {
7875 struct btrfs_device *curr, *next;
7876
7877 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state);
7878
7879 if (list_empty(&trans->dev_update_list))
7880 return;
7881
7882 /*
7883 * We don't need the device_list_mutex here. This list is owned by the
7884 * transaction and the transaction must complete before the device is
7885 * released.
7886 */
7887 mutex_lock(&trans->fs_info->chunk_mutex);
7888 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7889 post_commit_list) {
7890 list_del_init(&curr->post_commit_list);
7891 curr->commit_total_bytes = curr->disk_total_bytes;
7892 curr->commit_bytes_used = curr->bytes_used;
7893 }
7894 mutex_unlock(&trans->fs_info->chunk_mutex);
7895 }
7896
7897 /*
7898 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7899 */
btrfs_bg_type_to_factor(u64 flags)7900 int btrfs_bg_type_to_factor(u64 flags)
7901 {
7902 const int index = btrfs_bg_flags_to_raid_index(flags);
7903
7904 return btrfs_raid_array[index].ncopies;
7905 }
7906
7907
7908
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7909 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7910 u64 chunk_offset, u64 devid,
7911 u64 physical_offset, u64 physical_len)
7912 {
7913 struct btrfs_dev_lookup_args args = { .devid = devid };
7914 struct btrfs_chunk_map *map;
7915 struct btrfs_device *dev;
7916 u64 stripe_len;
7917 bool found = false;
7918 int ret = 0;
7919 int i;
7920
7921 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7922 if (!map) {
7923 btrfs_err(fs_info,
7924 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7925 physical_offset, devid);
7926 ret = -EUCLEAN;
7927 goto out;
7928 }
7929
7930 stripe_len = btrfs_calc_stripe_length(map);
7931 if (physical_len != stripe_len) {
7932 btrfs_err(fs_info,
7933 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7934 physical_offset, devid, map->start, physical_len,
7935 stripe_len);
7936 ret = -EUCLEAN;
7937 goto out;
7938 }
7939
7940 /*
7941 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7942 * space. Although kernel can handle it without problem, better to warn
7943 * the users.
7944 */
7945 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7946 btrfs_warn(fs_info,
7947 "devid %llu physical %llu len %llu inside the reserved space",
7948 devid, physical_offset, physical_len);
7949
7950 for (i = 0; i < map->num_stripes; i++) {
7951 if (map->stripes[i].dev->devid == devid &&
7952 map->stripes[i].physical == physical_offset) {
7953 found = true;
7954 if (map->verified_stripes >= map->num_stripes) {
7955 btrfs_err(fs_info,
7956 "too many dev extents for chunk %llu found",
7957 map->start);
7958 ret = -EUCLEAN;
7959 goto out;
7960 }
7961 map->verified_stripes++;
7962 break;
7963 }
7964 }
7965 if (!found) {
7966 btrfs_err(fs_info,
7967 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7968 physical_offset, devid);
7969 ret = -EUCLEAN;
7970 }
7971
7972 /* Make sure no dev extent is beyond device boundary */
7973 dev = btrfs_find_device(fs_info->fs_devices, &args);
7974 if (!dev) {
7975 btrfs_err(fs_info, "failed to find devid %llu", devid);
7976 ret = -EUCLEAN;
7977 goto out;
7978 }
7979
7980 if (physical_offset + physical_len > dev->disk_total_bytes) {
7981 btrfs_err(fs_info,
7982 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7983 devid, physical_offset, physical_len,
7984 dev->disk_total_bytes);
7985 ret = -EUCLEAN;
7986 goto out;
7987 }
7988
7989 if (dev->zone_info) {
7990 u64 zone_size = dev->zone_info->zone_size;
7991
7992 if (!IS_ALIGNED(physical_offset, zone_size) ||
7993 !IS_ALIGNED(physical_len, zone_size)) {
7994 btrfs_err(fs_info,
7995 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7996 devid, physical_offset, physical_len);
7997 ret = -EUCLEAN;
7998 goto out;
7999 }
8000 }
8001
8002 out:
8003 btrfs_free_chunk_map(map);
8004 return ret;
8005 }
8006
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8007 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8008 {
8009 struct rb_node *node;
8010 int ret = 0;
8011
8012 read_lock(&fs_info->mapping_tree_lock);
8013 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8014 struct btrfs_chunk_map *map;
8015
8016 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8017 if (map->num_stripes != map->verified_stripes) {
8018 btrfs_err(fs_info,
8019 "chunk %llu has missing dev extent, have %d expect %d",
8020 map->start, map->verified_stripes, map->num_stripes);
8021 ret = -EUCLEAN;
8022 goto out;
8023 }
8024 }
8025 out:
8026 read_unlock(&fs_info->mapping_tree_lock);
8027 return ret;
8028 }
8029
8030 /*
8031 * Ensure that all dev extents are mapped to correct chunk, otherwise
8032 * later chunk allocation/free would cause unexpected behavior.
8033 *
8034 * NOTE: This will iterate through the whole device tree, which should be of
8035 * the same size level as the chunk tree. This slightly increases mount time.
8036 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8037 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8038 {
8039 struct btrfs_path *path;
8040 struct btrfs_root *root = fs_info->dev_root;
8041 struct btrfs_key key;
8042 u64 prev_devid = 0;
8043 u64 prev_dev_ext_end = 0;
8044 int ret = 0;
8045
8046 /*
8047 * We don't have a dev_root because we mounted with ignorebadroots and
8048 * failed to load the root, so we want to skip the verification in this
8049 * case for sure.
8050 *
8051 * However if the dev root is fine, but the tree itself is corrupted
8052 * we'd still fail to mount. This verification is only to make sure
8053 * writes can happen safely, so instead just bypass this check
8054 * completely in the case of IGNOREBADROOTS.
8055 */
8056 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8057 return 0;
8058
8059 key.objectid = 1;
8060 key.type = BTRFS_DEV_EXTENT_KEY;
8061 key.offset = 0;
8062
8063 path = btrfs_alloc_path();
8064 if (!path)
8065 return -ENOMEM;
8066
8067 path->reada = READA_FORWARD;
8068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8069 if (ret < 0)
8070 goto out;
8071
8072 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8073 ret = btrfs_next_leaf(root, path);
8074 if (ret < 0)
8075 goto out;
8076 /* No dev extents at all? Not good */
8077 if (ret > 0) {
8078 ret = -EUCLEAN;
8079 goto out;
8080 }
8081 }
8082 while (1) {
8083 struct extent_buffer *leaf = path->nodes[0];
8084 struct btrfs_dev_extent *dext;
8085 int slot = path->slots[0];
8086 u64 chunk_offset;
8087 u64 physical_offset;
8088 u64 physical_len;
8089 u64 devid;
8090
8091 btrfs_item_key_to_cpu(leaf, &key, slot);
8092 if (key.type != BTRFS_DEV_EXTENT_KEY)
8093 break;
8094 devid = key.objectid;
8095 physical_offset = key.offset;
8096
8097 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8098 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8099 physical_len = btrfs_dev_extent_length(leaf, dext);
8100
8101 /* Check if this dev extent overlaps with the previous one */
8102 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8103 btrfs_err(fs_info,
8104 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8105 devid, physical_offset, prev_dev_ext_end);
8106 ret = -EUCLEAN;
8107 goto out;
8108 }
8109
8110 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8111 physical_offset, physical_len);
8112 if (ret < 0)
8113 goto out;
8114 prev_devid = devid;
8115 prev_dev_ext_end = physical_offset + physical_len;
8116
8117 ret = btrfs_next_item(root, path);
8118 if (ret < 0)
8119 goto out;
8120 if (ret > 0) {
8121 ret = 0;
8122 break;
8123 }
8124 }
8125
8126 /* Ensure all chunks have corresponding dev extents */
8127 ret = verify_chunk_dev_extent_mapping(fs_info);
8128 out:
8129 btrfs_free_path(path);
8130 return ret;
8131 }
8132
8133 /*
8134 * Check whether the given block group or device is pinned by any inode being
8135 * used as a swapfile.
8136 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8137 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8138 {
8139 struct btrfs_swapfile_pin *sp;
8140 struct rb_node *node;
8141
8142 spin_lock(&fs_info->swapfile_pins_lock);
8143 node = fs_info->swapfile_pins.rb_node;
8144 while (node) {
8145 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8146 if (ptr < sp->ptr)
8147 node = node->rb_left;
8148 else if (ptr > sp->ptr)
8149 node = node->rb_right;
8150 else
8151 break;
8152 }
8153 spin_unlock(&fs_info->swapfile_pins_lock);
8154 return node != NULL;
8155 }
8156
relocating_repair_kthread(void * data)8157 static int relocating_repair_kthread(void *data)
8158 {
8159 struct btrfs_block_group *cache = data;
8160 struct btrfs_fs_info *fs_info = cache->fs_info;
8161 u64 target;
8162 int ret = 0;
8163
8164 target = cache->start;
8165 btrfs_put_block_group(cache);
8166
8167 sb_start_write(fs_info->sb);
8168 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8169 btrfs_info(fs_info,
8170 "zoned: skip relocating block group %llu to repair: EBUSY",
8171 target);
8172 sb_end_write(fs_info->sb);
8173 return -EBUSY;
8174 }
8175
8176 mutex_lock(&fs_info->reclaim_bgs_lock);
8177
8178 /* Ensure block group still exists */
8179 cache = btrfs_lookup_block_group(fs_info, target);
8180 if (!cache)
8181 goto out;
8182
8183 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8184 goto out;
8185
8186 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8187 if (ret < 0)
8188 goto out;
8189
8190 btrfs_info(fs_info,
8191 "zoned: relocating block group %llu to repair IO failure",
8192 target);
8193 ret = btrfs_relocate_chunk(fs_info, target);
8194
8195 out:
8196 if (cache)
8197 btrfs_put_block_group(cache);
8198 mutex_unlock(&fs_info->reclaim_bgs_lock);
8199 btrfs_exclop_finish(fs_info);
8200 sb_end_write(fs_info->sb);
8201
8202 return ret;
8203 }
8204
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8205 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8206 {
8207 struct btrfs_block_group *cache;
8208
8209 if (!btrfs_is_zoned(fs_info))
8210 return false;
8211
8212 /* Do not attempt to repair in degraded state */
8213 if (btrfs_test_opt(fs_info, DEGRADED))
8214 return true;
8215
8216 cache = btrfs_lookup_block_group(fs_info, logical);
8217 if (!cache)
8218 return true;
8219
8220 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8221 btrfs_put_block_group(cache);
8222 return true;
8223 }
8224
8225 kthread_run(relocating_repair_kthread, cache,
8226 "btrfs-relocating-repair");
8227
8228 return true;
8229 }
8230
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8231 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8232 struct btrfs_io_stripe *smap,
8233 u64 logical)
8234 {
8235 int data_stripes = nr_bioc_data_stripes(bioc);
8236 int i;
8237
8238 for (i = 0; i < data_stripes; i++) {
8239 u64 stripe_start = bioc->full_stripe_logical +
8240 btrfs_stripe_nr_to_offset(i);
8241
8242 if (logical >= stripe_start &&
8243 logical < stripe_start + BTRFS_STRIPE_LEN)
8244 break;
8245 }
8246 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes);
8247 smap->dev = bioc->stripes[i].dev;
8248 smap->physical = bioc->stripes[i].physical +
8249 ((logical - bioc->full_stripe_logical) &
8250 BTRFS_STRIPE_LEN_MASK);
8251 }
8252
8253 /*
8254 * Map a repair write into a single device.
8255 *
8256 * A repair write is triggered by read time repair or scrub, which would only
8257 * update the contents of a single device.
8258 * Not update any other mirrors nor go through RMW path.
8259 *
8260 * Callers should ensure:
8261 *
8262 * - Call btrfs_bio_counter_inc_blocked() first
8263 * - The range does not cross stripe boundary
8264 * - Has a valid @mirror_num passed in.
8265 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8266 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8267 struct btrfs_io_stripe *smap, u64 logical,
8268 u32 length, int mirror_num)
8269 {
8270 struct btrfs_io_context *bioc = NULL;
8271 u64 map_length = length;
8272 int mirror_ret = mirror_num;
8273 int ret;
8274
8275 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num);
8276
8277 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8278 &bioc, smap, &mirror_ret);
8279 if (ret < 0)
8280 return ret;
8281
8282 /* The map range should not cross stripe boundary. */
8283 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length);
8284
8285 /* Already mapped to single stripe. */
8286 if (!bioc)
8287 goto out;
8288
8289 /* Map the RAID56 multi-stripe writes to a single one. */
8290 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8291 map_raid56_repair_block(bioc, smap, logical);
8292 goto out;
8293 }
8294
8295 ASSERT(mirror_num <= bioc->num_stripes,
8296 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes);
8297 smap->dev = bioc->stripes[mirror_num - 1].dev;
8298 smap->physical = bioc->stripes[mirror_num - 1].physical;
8299 out:
8300 btrfs_put_bioc(bioc);
8301 ASSERT(smap->dev);
8302 return 0;
8303 }
8304