xref: /linux/fs/btrfs/ioctl.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 						unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = inode->flags;
140 	u32 ro_flags = inode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 	unsigned int new_fl = 0;
173 
174 	if (inode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (inode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (inode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (inode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->vfs_inode.i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
249 {
250 	const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 	return 0;
254 }
255 
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct file_kattr *fa)
258 {
259 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 	struct btrfs_root *root = inode->root;
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 	struct btrfs_trans_handle *trans;
263 	unsigned int fsflags, old_fsflags;
264 	int ret;
265 	const char *comp = NULL;
266 	u32 inode_flags;
267 
268 	if (btrfs_root_readonly(root))
269 		return -EROFS;
270 
271 	if (fileattr_has_fsx(fa))
272 		return -EOPNOTSUPP;
273 
274 	fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 	old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 	ret = check_fsflags(old_fsflags, fsflags);
277 	if (ret)
278 		return ret;
279 
280 	ret = check_fsflags_compatible(fs_info, fsflags);
281 	if (ret)
282 		return ret;
283 
284 	inode_flags = inode->flags;
285 	if (fsflags & FS_SYNC_FL)
286 		inode_flags |= BTRFS_INODE_SYNC;
287 	else
288 		inode_flags &= ~BTRFS_INODE_SYNC;
289 	if (fsflags & FS_IMMUTABLE_FL)
290 		inode_flags |= BTRFS_INODE_IMMUTABLE;
291 	else
292 		inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 	if (fsflags & FS_APPEND_FL)
294 		inode_flags |= BTRFS_INODE_APPEND;
295 	else
296 		inode_flags &= ~BTRFS_INODE_APPEND;
297 	if (fsflags & FS_NODUMP_FL)
298 		inode_flags |= BTRFS_INODE_NODUMP;
299 	else
300 		inode_flags &= ~BTRFS_INODE_NODUMP;
301 	if (fsflags & FS_NOATIME_FL)
302 		inode_flags |= BTRFS_INODE_NOATIME;
303 	else
304 		inode_flags &= ~BTRFS_INODE_NOATIME;
305 
306 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 	if (!fa->flags_valid) {
308 		/* 1 item for the inode */
309 		trans = btrfs_start_transaction(root, 1);
310 		if (IS_ERR(trans))
311 			return PTR_ERR(trans);
312 		goto update_flags;
313 	}
314 
315 	if (fsflags & FS_DIRSYNC_FL)
316 		inode_flags |= BTRFS_INODE_DIRSYNC;
317 	else
318 		inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 	if (fsflags & FS_NOCOW_FL) {
320 		if (S_ISREG(inode->vfs_inode.i_mode)) {
321 			/*
322 			 * It's safe to turn csums off here, no extents exist.
323 			 * Otherwise we want the flag to reflect the real COW
324 			 * status of the file and will not set it.
325 			 */
326 			if (inode->vfs_inode.i_size == 0)
327 				inode_flags |= BTRFS_INODE_NODATACOW |
328 					       BTRFS_INODE_NODATASUM;
329 		} else {
330 			inode_flags |= BTRFS_INODE_NODATACOW;
331 		}
332 	} else {
333 		/*
334 		 * Revert back under same assumptions as above
335 		 */
336 		if (S_ISREG(inode->vfs_inode.i_mode)) {
337 			if (inode->vfs_inode.i_size == 0)
338 				inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 						 BTRFS_INODE_NODATASUM);
340 		} else {
341 			inode_flags &= ~BTRFS_INODE_NODATACOW;
342 		}
343 	}
344 
345 	/*
346 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 	 * flag may be changed automatically if compression code won't make
348 	 * things smaller.
349 	 */
350 	if (fsflags & FS_NOCOMP_FL) {
351 		inode_flags &= ~BTRFS_INODE_COMPRESS;
352 		inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 	} else if (fsflags & FS_COMPR_FL) {
354 
355 		if (IS_SWAPFILE(&inode->vfs_inode))
356 			return -ETXTBSY;
357 
358 		inode_flags |= BTRFS_INODE_COMPRESS;
359 		inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360 
361 		comp = btrfs_compress_type2str(fs_info->compress_type);
362 		if (!comp || comp[0] == 0)
363 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 	} else {
365 		inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 	}
367 
368 	/*
369 	 * 1 for inode item
370 	 * 2 for properties
371 	 */
372 	trans = btrfs_start_transaction(root, 3);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	if (comp) {
377 		ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 				     comp, strlen(comp), 0);
379 		if (unlikely(ret)) {
380 			btrfs_abort_transaction(trans, ret);
381 			goto out_end_trans;
382 		}
383 	} else {
384 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 		if (unlikely(ret && ret != -ENODATA)) {
386 			btrfs_abort_transaction(trans, ret);
387 			goto out_end_trans;
388 		}
389 	}
390 
391 update_flags:
392 	inode->flags = inode_flags;
393 	btrfs_update_inode_mapping_flags(inode);
394 	btrfs_sync_inode_flags_to_i_flags(inode);
395 	inode_inc_iversion(&inode->vfs_inode);
396 	inode_set_ctime_current(&inode->vfs_inode);
397 	ret = btrfs_update_inode(trans, inode);
398 
399  out_end_trans:
400 	btrfs_end_transaction(trans);
401 	return ret;
402 }
403 
404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 	return put_user(inode->i_generation, arg);
407 }
408 
409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 					void __user *arg)
411 {
412 	struct btrfs_device *device;
413 	struct fstrim_range range;
414 	u64 minlen = ULLONG_MAX;
415 	u64 num_devices = 0;
416 	int ret;
417 
418 	if (!capable(CAP_SYS_ADMIN))
419 		return -EPERM;
420 
421 	/*
422 	 * btrfs_trim_block_group() depends on space cache, which is not
423 	 * available in zoned filesystem. So, disallow fitrim on a zoned
424 	 * filesystem for now.
425 	 */
426 	if (btrfs_is_zoned(fs_info))
427 		return -EOPNOTSUPP;
428 
429 	/*
430 	 * If the fs is mounted with nologreplay, which requires it to be
431 	 * mounted in RO mode as well, we can not allow discard on free space
432 	 * inside block groups, because log trees refer to extents that are not
433 	 * pinned in a block group's free space cache (pinning the extents is
434 	 * precisely the first phase of replaying a log tree).
435 	 */
436 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 		return -EROFS;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 				dev_list) {
442 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 			continue;
444 		num_devices++;
445 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 				    minlen);
447 	}
448 	rcu_read_unlock();
449 
450 	if (!num_devices)
451 		return -EOPNOTSUPP;
452 	if (copy_from_user(&range, arg, sizeof(range)))
453 		return -EFAULT;
454 
455 	/*
456 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
457 	 * block group is in the logical address space, which can be any
458 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
459 	 */
460 	if (range.len < fs_info->sectorsize)
461 		return -EINVAL;
462 
463 	range.minlen = max(range.minlen, minlen);
464 	ret = btrfs_trim_fs(fs_info, &range);
465 
466 	if (copy_to_user(arg, &range, sizeof(range)))
467 		return -EFAULT;
468 
469 	return ret;
470 }
471 
472 /*
473  * Calculate the number of transaction items to reserve for creating a subvolume
474  * or snapshot, not including the inode, directory entries, or parent directory.
475  */
476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 	/*
479 	 * 1 to add root block
480 	 * 1 to add root item
481 	 * 1 to add root ref
482 	 * 1 to add root backref
483 	 * 1 to add UUID item
484 	 * 1 to add qgroup info
485 	 * 1 to add qgroup limit
486 	 *
487 	 * Ideally the last two would only be accounted if qgroups are enabled,
488 	 * but that can change between now and the time we would insert them.
489 	 */
490 	unsigned int num_items = 7;
491 
492 	if (inherit) {
493 		/* 2 to add qgroup relations for each inherited qgroup */
494 		num_items += 2 * inherit->num_qgroups;
495 	}
496 	return num_items;
497 }
498 
499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 				  struct inode *dir, struct dentry *dentry,
501 				  struct btrfs_qgroup_inherit *inherit)
502 {
503 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 	struct btrfs_trans_handle *trans;
505 	struct btrfs_key key;
506 	struct btrfs_root_item AUTO_KFREE(root_item);
507 	struct btrfs_inode_item *inode_item;
508 	struct extent_buffer *leaf;
509 	struct btrfs_root *root = BTRFS_I(dir)->root;
510 	struct btrfs_root *new_root;
511 	struct btrfs_block_rsv block_rsv;
512 	struct timespec64 cur_time = current_time(dir);
513 	struct btrfs_new_inode_args new_inode_args = {
514 		.dir = dir,
515 		.dentry = dentry,
516 		.subvol = true,
517 	};
518 	unsigned int trans_num_items;
519 	int ret;
520 	dev_t anon_dev;
521 	u64 objectid;
522 	u64 qgroup_reserved = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		return ret;
531 
532 	/*
533 	 * Don't create subvolume whose level is not zero. Or qgroup will be
534 	 * screwed up since it assumes subvolume qgroup's level to be 0.
535 	 */
536 	if (btrfs_qgroup_level(objectid))
537 		return -ENOSPC;
538 
539 	ret = get_anon_bdev(&anon_dev);
540 	if (ret < 0)
541 		return ret;
542 
543 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
544 	if (!new_inode_args.inode) {
545 		ret = -ENOMEM;
546 		goto out_anon_dev;
547 	}
548 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
549 	if (ret)
550 		goto out_inode;
551 	trans_num_items += create_subvol_num_items(inherit);
552 
553 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
554 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
555 					       trans_num_items, false);
556 	if (ret)
557 		goto out_new_inode_args;
558 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
559 
560 	trans = btrfs_start_transaction(root, 0);
561 	if (IS_ERR(trans)) {
562 		ret = PTR_ERR(trans);
563 		goto out_release_rsv;
564 	}
565 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
566 	qgroup_reserved = 0;
567 	trans->block_rsv = &block_rsv;
568 	trans->bytes_reserved = block_rsv.size;
569 
570 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
571 	if (ret)
572 		goto out;
573 
574 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
575 				      0, BTRFS_NESTING_NORMAL);
576 	if (IS_ERR(leaf)) {
577 		ret = PTR_ERR(leaf);
578 		goto out;
579 	}
580 
581 	btrfs_mark_buffer_dirty(trans, leaf);
582 
583 	inode_item = &root_item->inode;
584 	btrfs_set_stack_inode_generation(inode_item, 1);
585 	btrfs_set_stack_inode_size(inode_item, 3);
586 	btrfs_set_stack_inode_nlink(inode_item, 1);
587 	btrfs_set_stack_inode_nbytes(inode_item,
588 				     fs_info->nodesize);
589 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
590 
591 	btrfs_set_root_flags(root_item, 0);
592 	btrfs_set_root_limit(root_item, 0);
593 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
594 
595 	btrfs_set_root_bytenr(root_item, leaf->start);
596 	btrfs_set_root_generation(root_item, trans->transid);
597 	btrfs_set_root_level(root_item, 0);
598 	btrfs_set_root_refs(root_item, 1);
599 	btrfs_set_root_used(root_item, leaf->len);
600 	btrfs_set_root_last_snapshot(root_item, 0);
601 
602 	btrfs_set_root_generation_v2(root_item,
603 			btrfs_root_generation(root_item));
604 	generate_random_guid(root_item->uuid);
605 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
606 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
607 	root_item->ctime = root_item->otime;
608 	btrfs_set_root_ctransid(root_item, trans->transid);
609 	btrfs_set_root_otransid(root_item, trans->transid);
610 
611 	btrfs_tree_unlock(leaf);
612 
613 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
614 
615 	key.objectid = objectid;
616 	key.type = BTRFS_ROOT_ITEM_KEY;
617 	key.offset = 0;
618 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
619 				root_item);
620 	if (ret) {
621 		int ret2;
622 
623 		/*
624 		 * Since we don't abort the transaction in this case, free the
625 		 * tree block so that we don't leak space and leave the
626 		 * filesystem in an inconsistent state (an extent item in the
627 		 * extent tree with a backreference for a root that does not
628 		 * exists).
629 		 */
630 		btrfs_tree_lock(leaf);
631 		btrfs_clear_buffer_dirty(trans, leaf);
632 		btrfs_tree_unlock(leaf);
633 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
634 		if (unlikely(ret2 < 0))
635 			btrfs_abort_transaction(trans, ret2);
636 		free_extent_buffer(leaf);
637 		goto out;
638 	}
639 
640 	free_extent_buffer(leaf);
641 	leaf = NULL;
642 
643 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
644 	if (IS_ERR(new_root)) {
645 		ret = PTR_ERR(new_root);
646 		btrfs_abort_transaction(trans, ret);
647 		goto out;
648 	}
649 	/* anon_dev is owned by new_root now. */
650 	anon_dev = 0;
651 	BTRFS_I(new_inode_args.inode)->root = new_root;
652 	/* ... and new_root is owned by new_inode_args.inode now. */
653 
654 	ret = btrfs_record_root_in_trans(trans, new_root);
655 	if (unlikely(ret)) {
656 		btrfs_abort_transaction(trans, ret);
657 		goto out;
658 	}
659 
660 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
661 				  BTRFS_UUID_KEY_SUBVOL, objectid);
662 	if (unlikely(ret)) {
663 		btrfs_abort_transaction(trans, ret);
664 		goto out;
665 	}
666 
667 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
668 
669 	ret = btrfs_create_new_inode(trans, &new_inode_args);
670 	if (unlikely(ret)) {
671 		btrfs_abort_transaction(trans, ret);
672 		goto out;
673 	}
674 
675 	d_instantiate_new(dentry, new_inode_args.inode);
676 	new_inode_args.inode = NULL;
677 
678 out:
679 	trans->block_rsv = NULL;
680 	trans->bytes_reserved = 0;
681 	btrfs_end_transaction(trans);
682 out_release_rsv:
683 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
684 	if (qgroup_reserved)
685 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
686 out_new_inode_args:
687 	btrfs_new_inode_args_destroy(&new_inode_args);
688 out_inode:
689 	iput(new_inode_args.inode);
690 out_anon_dev:
691 	if (anon_dev)
692 		free_anon_bdev(anon_dev);
693 
694 	return ret;
695 }
696 
697 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
698 			   struct dentry *dentry, bool readonly,
699 			   struct btrfs_qgroup_inherit *inherit)
700 {
701 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
702 	struct inode *inode;
703 	struct btrfs_pending_snapshot *pending_snapshot;
704 	unsigned int trans_num_items;
705 	struct btrfs_trans_handle *trans;
706 	struct btrfs_block_rsv *block_rsv;
707 	u64 qgroup_reserved = 0;
708 	int ret;
709 
710 	/* We do not support snapshotting right now. */
711 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
712 		btrfs_warn(fs_info,
713 			   "extent tree v2 doesn't support snapshotting yet");
714 		return -EOPNOTSUPP;
715 	}
716 
717 	if (btrfs_root_refs(&root->root_item) == 0)
718 		return -ENOENT;
719 
720 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
721 		return -EINVAL;
722 
723 	if (atomic_read(&root->nr_swapfiles)) {
724 		btrfs_warn(fs_info,
725 			   "cannot snapshot subvolume with active swapfile");
726 		return -ETXTBSY;
727 	}
728 
729 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
730 	if (!pending_snapshot)
731 		return -ENOMEM;
732 
733 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
734 	if (ret < 0)
735 		goto free_pending;
736 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
737 			GFP_KERNEL);
738 	pending_snapshot->path = btrfs_alloc_path();
739 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
740 		ret = -ENOMEM;
741 		goto free_pending;
742 	}
743 
744 	block_rsv = &pending_snapshot->block_rsv;
745 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
746 	/*
747 	 * 1 to add dir item
748 	 * 1 to add dir index
749 	 * 1 to update parent inode item
750 	 */
751 	trans_num_items = create_subvol_num_items(inherit) + 3;
752 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
753 					       trans_num_items, false);
754 	if (ret)
755 		goto free_pending;
756 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
757 
758 	pending_snapshot->dentry = dentry;
759 	pending_snapshot->root = root;
760 	pending_snapshot->readonly = readonly;
761 	pending_snapshot->dir = BTRFS_I(dir);
762 	pending_snapshot->inherit = inherit;
763 
764 	trans = btrfs_start_transaction(root, 0);
765 	if (IS_ERR(trans)) {
766 		ret = PTR_ERR(trans);
767 		goto fail;
768 	}
769 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
770 	if (ret) {
771 		btrfs_end_transaction(trans);
772 		goto fail;
773 	}
774 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
775 	qgroup_reserved = 0;
776 
777 	trans->pending_snapshot = pending_snapshot;
778 
779 	ret = btrfs_commit_transaction(trans);
780 	if (ret)
781 		goto fail;
782 
783 	ret = pending_snapshot->error;
784 	if (ret)
785 		goto fail;
786 
787 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
788 	if (ret)
789 		goto fail;
790 
791 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
792 	if (IS_ERR(inode)) {
793 		ret = PTR_ERR(inode);
794 		goto fail;
795 	}
796 
797 	d_instantiate(dentry, inode);
798 	ret = 0;
799 	pending_snapshot->anon_dev = 0;
800 fail:
801 	/* Prevent double freeing of anon_dev */
802 	if (ret && pending_snapshot->snap)
803 		pending_snapshot->snap->anon_dev = 0;
804 	btrfs_put_root(pending_snapshot->snap);
805 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
806 	if (qgroup_reserved)
807 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
808 free_pending:
809 	if (pending_snapshot->anon_dev)
810 		free_anon_bdev(pending_snapshot->anon_dev);
811 	kfree(pending_snapshot->root_item);
812 	btrfs_free_path(pending_snapshot->path);
813 	kfree(pending_snapshot);
814 
815 	return ret;
816 }
817 
818 /*  copy of may_delete in fs/namei.c()
819  *	Check whether we can remove a link victim from directory dir, check
820  *  whether the type of victim is right.
821  *  1. We can't do it if dir is read-only (done in permission())
822  *  2. We should have write and exec permissions on dir
823  *  3. We can't remove anything from append-only dir
824  *  4. We can't do anything with immutable dir (done in permission())
825  *  5. If the sticky bit on dir is set we should either
826  *	a. be owner of dir, or
827  *	b. be owner of victim, or
828  *	c. have CAP_FOWNER capability
829  *  6. If the victim is append-only or immutable we can't do anything with
830  *     links pointing to it.
831  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
832  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
833  *  9. We can't remove a root or mountpoint.
834  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
835  *     nfs_async_unlink().
836  */
837 
838 static int btrfs_may_delete(struct mnt_idmap *idmap,
839 			    struct inode *dir, struct dentry *victim, int isdir)
840 {
841 	int ret;
842 
843 	if (d_really_is_negative(victim))
844 		return -ENOENT;
845 
846 	/* The @victim is not inside @dir. */
847 	if (d_inode(victim->d_parent) != dir)
848 		return -EINVAL;
849 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
850 
851 	ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
852 	if (ret)
853 		return ret;
854 	if (IS_APPEND(dir))
855 		return -EPERM;
856 	if (check_sticky(idmap, dir, d_inode(victim)) ||
857 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
858 	    IS_SWAPFILE(d_inode(victim)))
859 		return -EPERM;
860 	if (isdir) {
861 		if (!d_is_dir(victim))
862 			return -ENOTDIR;
863 		if (IS_ROOT(victim))
864 			return -EBUSY;
865 	} else if (d_is_dir(victim))
866 		return -EISDIR;
867 	if (IS_DEADDIR(dir))
868 		return -ENOENT;
869 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
870 		return -EBUSY;
871 	return 0;
872 }
873 
874 /* copy of may_create in fs/namei.c() */
875 static inline int btrfs_may_create(struct mnt_idmap *idmap,
876 				   struct inode *dir, const struct dentry *child)
877 {
878 	if (d_really_is_positive(child))
879 		return -EEXIST;
880 	if (IS_DEADDIR(dir))
881 		return -ENOENT;
882 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
883 		return -EOVERFLOW;
884 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
885 }
886 
887 /*
888  * Create a new subvolume below @parent.  This is largely modeled after
889  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
890  * inside this filesystem so it's quite a bit simpler.
891  */
892 static noinline int btrfs_mksubvol(struct dentry *parent,
893 				   struct mnt_idmap *idmap,
894 				   struct qstr *qname, struct btrfs_root *snap_src,
895 				   bool readonly,
896 				   struct btrfs_qgroup_inherit *inherit)
897 {
898 	struct inode *dir = d_inode(parent);
899 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
900 	struct dentry *dentry;
901 	struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len);
902 	int ret;
903 
904 	dentry = start_creating_killable(idmap, parent, qname);
905 	if (IS_ERR(dentry))
906 		return PTR_ERR(dentry);
907 
908 	ret = btrfs_may_create(idmap, dir, dentry);
909 	if (ret)
910 		goto out_dput;
911 
912 	/*
913 	 * even if this name doesn't exist, we may get hash collisions.
914 	 * check for them now when we can safely fail
915 	 */
916 	ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str);
917 	if (ret)
918 		goto out_dput;
919 
920 	down_read(&fs_info->subvol_sem);
921 
922 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
923 		goto out_up_read;
924 
925 	if (snap_src)
926 		ret = create_snapshot(snap_src, dir, dentry, readonly, inherit);
927 	else
928 		ret = create_subvol(idmap, dir, dentry, inherit);
929 
930 	if (!ret)
931 		fsnotify_mkdir(dir, dentry);
932 out_up_read:
933 	up_read(&fs_info->subvol_sem);
934 out_dput:
935 	end_creating(dentry);
936 	return ret;
937 }
938 
939 static noinline int btrfs_mksnapshot(struct dentry *parent,
940 				   struct mnt_idmap *idmap,
941 				   struct qstr *qname,
942 				   struct btrfs_root *root,
943 				   bool readonly,
944 				   struct btrfs_qgroup_inherit *inherit)
945 {
946 	int ret;
947 
948 	/*
949 	 * Force new buffered writes to reserve space even when NOCOW is
950 	 * possible. This is to avoid later writeback (running delalloc) to
951 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
952 	 */
953 	btrfs_drew_read_lock(&root->snapshot_lock);
954 
955 	ret = btrfs_start_delalloc_snapshot(root, false);
956 	if (ret)
957 		goto out;
958 
959 	/*
960 	 * All previous writes have started writeback in NOCOW mode, so now
961 	 * we force future writes to fallback to COW mode during snapshot
962 	 * creation.
963 	 */
964 	atomic_inc(&root->snapshot_force_cow);
965 
966 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
967 
968 	ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit);
969 
970 	atomic_dec(&root->snapshot_force_cow);
971 out:
972 	btrfs_drew_read_unlock(&root->snapshot_lock);
973 	return ret;
974 }
975 
976 /*
977  * Try to start exclusive operation @type or cancel it if it's running.
978  *
979  * Return:
980  *   0        - normal mode, newly claimed op started
981  *  >0        - normal mode, something else is running,
982  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
983  * ECANCELED  - cancel mode, successful cancel
984  * ENOTCONN   - cancel mode, operation not running anymore
985  */
986 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
987 			enum btrfs_exclusive_operation type, bool cancel)
988 {
989 	if (!cancel) {
990 		/* Start normal op */
991 		if (!btrfs_exclop_start(fs_info, type))
992 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
993 		/* Exclusive operation is now claimed */
994 		return 0;
995 	}
996 
997 	/* Cancel running op */
998 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
999 		/*
1000 		 * This blocks any exclop finish from setting it to NONE, so we
1001 		 * request cancellation. Either it runs and we will wait for it,
1002 		 * or it has finished and no waiting will happen.
1003 		 */
1004 		atomic_inc(&fs_info->reloc_cancel_req);
1005 		btrfs_exclop_start_unlock(fs_info);
1006 
1007 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1008 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1009 				    TASK_INTERRUPTIBLE);
1010 
1011 		return -ECANCELED;
1012 	}
1013 
1014 	/* Something else is running or none */
1015 	return -ENOTCONN;
1016 }
1017 
1018 static noinline int btrfs_ioctl_resize(struct file *file,
1019 					void __user *arg)
1020 {
1021 	BTRFS_DEV_LOOKUP_ARGS(args);
1022 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1023 	struct btrfs_fs_info *fs_info = root->fs_info;
1024 	u64 new_size;
1025 	u64 old_size;
1026 	u64 devid = 1;
1027 	struct btrfs_ioctl_vol_args *vol_args;
1028 	struct btrfs_device *device = NULL;
1029 	char *sizestr;
1030 	char *devstr = NULL;
1031 	int ret = 0;
1032 	int mod = 0;
1033 	bool cancel;
1034 
1035 	if (!capable(CAP_SYS_ADMIN))
1036 		return -EPERM;
1037 
1038 	ret = mnt_want_write_file(file);
1039 	if (ret)
1040 		return ret;
1041 
1042 	/*
1043 	 * Read the arguments before checking exclusivity to be able to
1044 	 * distinguish regular resize and cancel
1045 	 */
1046 	vol_args = memdup_user(arg, sizeof(*vol_args));
1047 	if (IS_ERR(vol_args)) {
1048 		ret = PTR_ERR(vol_args);
1049 		goto out_drop;
1050 	}
1051 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1052 	if (ret < 0)
1053 		goto out_free;
1054 
1055 	sizestr = vol_args->name;
1056 	cancel = (strcmp("cancel", sizestr) == 0);
1057 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1058 	if (ret)
1059 		goto out_free;
1060 	/* Exclusive operation is now claimed */
1061 
1062 	devstr = strchr(sizestr, ':');
1063 	if (devstr) {
1064 		sizestr = devstr + 1;
1065 		*devstr = '\0';
1066 		devstr = vol_args->name;
1067 		ret = kstrtoull(devstr, 10, &devid);
1068 		if (ret)
1069 			goto out_finish;
1070 		if (!devid) {
1071 			ret = -EINVAL;
1072 			goto out_finish;
1073 		}
1074 		btrfs_info(fs_info, "resizing devid %llu", devid);
1075 	}
1076 
1077 	args.devid = devid;
1078 	device = btrfs_find_device(fs_info->fs_devices, &args);
1079 	if (!device) {
1080 		btrfs_info(fs_info, "resizer unable to find device %llu",
1081 			   devid);
1082 		ret = -ENODEV;
1083 		goto out_finish;
1084 	}
1085 
1086 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1087 		btrfs_info(fs_info,
1088 			   "resizer unable to apply on readonly device %llu",
1089 		       devid);
1090 		ret = -EPERM;
1091 		goto out_finish;
1092 	}
1093 
1094 	if (!strcmp(sizestr, "max"))
1095 		new_size = bdev_nr_bytes(device->bdev);
1096 	else {
1097 		char *retptr;
1098 
1099 		if (sizestr[0] == '-') {
1100 			mod = -1;
1101 			sizestr++;
1102 		} else if (sizestr[0] == '+') {
1103 			mod = 1;
1104 			sizestr++;
1105 		}
1106 		new_size = memparse(sizestr, &retptr);
1107 		if (*retptr != '\0' || new_size == 0) {
1108 			ret = -EINVAL;
1109 			goto out_finish;
1110 		}
1111 	}
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1114 		ret = -EPERM;
1115 		goto out_finish;
1116 	}
1117 
1118 	old_size = btrfs_device_get_total_bytes(device);
1119 
1120 	if (mod < 0) {
1121 		if (new_size > old_size) {
1122 			ret = -EINVAL;
1123 			goto out_finish;
1124 		}
1125 		new_size = old_size - new_size;
1126 	} else if (mod > 0) {
1127 		if (new_size > ULLONG_MAX - old_size) {
1128 			ret = -ERANGE;
1129 			goto out_finish;
1130 		}
1131 		new_size = old_size + new_size;
1132 	}
1133 
1134 	if (new_size < SZ_256M) {
1135 		ret = -EINVAL;
1136 		goto out_finish;
1137 	}
1138 	if (new_size > bdev_nr_bytes(device->bdev)) {
1139 		ret = -EFBIG;
1140 		goto out_finish;
1141 	}
1142 
1143 	new_size = round_down(new_size, fs_info->sectorsize);
1144 
1145 	if (new_size > old_size) {
1146 		struct btrfs_trans_handle *trans;
1147 
1148 		trans = btrfs_start_transaction(root, 0);
1149 		if (IS_ERR(trans)) {
1150 			ret = PTR_ERR(trans);
1151 			goto out_finish;
1152 		}
1153 		ret = btrfs_grow_device(trans, device, new_size);
1154 		btrfs_commit_transaction(trans);
1155 	} else if (new_size < old_size) {
1156 		ret = btrfs_shrink_device(device, new_size);
1157 	} /* equal, nothing need to do */
1158 
1159 	if (ret == 0 && new_size != old_size)
1160 		btrfs_info(fs_info,
1161 			"resize device %s (devid %llu) from %llu to %llu",
1162 			btrfs_dev_name(device), device->devid,
1163 			old_size, new_size);
1164 out_finish:
1165 	btrfs_exclop_finish(fs_info);
1166 out_free:
1167 	kfree(vol_args);
1168 out_drop:
1169 	mnt_drop_write_file(file);
1170 	return ret;
1171 }
1172 
1173 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1174 				struct mnt_idmap *idmap,
1175 				const char *name, unsigned long fd, bool subvol,
1176 				bool readonly,
1177 				struct btrfs_qgroup_inherit *inherit)
1178 {
1179 	int ret = 0;
1180 	struct qstr qname = QSTR_INIT(name, strlen(name));
1181 
1182 	if (!S_ISDIR(file_inode(file)->i_mode))
1183 		return -ENOTDIR;
1184 
1185 	ret = mnt_want_write_file(file);
1186 	if (ret)
1187 		goto out;
1188 
1189 	if (strchr(name, '/')) {
1190 		ret = -EINVAL;
1191 		goto out_drop_write;
1192 	}
1193 
1194 	if (qname.name[0] == '.' &&
1195 	   (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) {
1196 		ret = -EEXIST;
1197 		goto out_drop_write;
1198 	}
1199 
1200 	if (subvol) {
1201 		ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL,
1202 				     readonly, inherit);
1203 	} else {
1204 		CLASS(fd, src)(fd);
1205 		struct inode *src_inode;
1206 		if (fd_empty(src)) {
1207 			ret = -EINVAL;
1208 			goto out_drop_write;
1209 		}
1210 
1211 		src_inode = file_inode(fd_file(src));
1212 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1213 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1214 				   "Snapshot src from another FS");
1215 			ret = -EXDEV;
1216 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1217 			/*
1218 			 * Subvolume creation is not restricted, but snapshots
1219 			 * are limited to own subvolumes only
1220 			 */
1221 			ret = -EPERM;
1222 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1223 			/*
1224 			 * Snapshots must be made with the src_inode referring
1225 			 * to the subvolume inode, otherwise the permission
1226 			 * checking above is useless because we may have
1227 			 * permission on a lower directory but not the subvol
1228 			 * itself.
1229 			 */
1230 			ret = -EINVAL;
1231 		} else {
1232 			ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname,
1233 					       BTRFS_I(src_inode)->root,
1234 					       readonly, inherit);
1235 		}
1236 	}
1237 out_drop_write:
1238 	mnt_drop_write_file(file);
1239 out:
1240 	return ret;
1241 }
1242 
1243 static noinline int btrfs_ioctl_snap_create(struct file *file,
1244 					    void __user *arg, bool subvol)
1245 {
1246 	struct btrfs_ioctl_vol_args *vol_args;
1247 	int ret;
1248 
1249 	if (!S_ISDIR(file_inode(file)->i_mode))
1250 		return -ENOTDIR;
1251 
1252 	vol_args = memdup_user(arg, sizeof(*vol_args));
1253 	if (IS_ERR(vol_args))
1254 		return PTR_ERR(vol_args);
1255 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1256 	if (ret < 0)
1257 		goto out;
1258 
1259 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1260 					vol_args->name, vol_args->fd, subvol,
1261 					false, NULL);
1262 
1263 out:
1264 	kfree(vol_args);
1265 	return ret;
1266 }
1267 
1268 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1269 					       void __user *arg, bool subvol)
1270 {
1271 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1272 	int ret;
1273 	bool readonly = false;
1274 	struct btrfs_qgroup_inherit *inherit = NULL;
1275 
1276 	if (!S_ISDIR(file_inode(file)->i_mode))
1277 		return -ENOTDIR;
1278 
1279 	vol_args = memdup_user(arg, sizeof(*vol_args));
1280 	if (IS_ERR(vol_args))
1281 		return PTR_ERR(vol_args);
1282 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1283 	if (ret < 0)
1284 		goto free_args;
1285 
1286 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1287 		ret = -EOPNOTSUPP;
1288 		goto free_args;
1289 	}
1290 
1291 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1292 		readonly = true;
1293 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1294 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1295 
1296 		if (vol_args->size < sizeof(*inherit) ||
1297 		    vol_args->size > PAGE_SIZE) {
1298 			ret = -EINVAL;
1299 			goto free_args;
1300 		}
1301 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1302 		if (IS_ERR(inherit)) {
1303 			ret = PTR_ERR(inherit);
1304 			goto free_args;
1305 		}
1306 
1307 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1308 		if (ret < 0)
1309 			goto free_inherit;
1310 	}
1311 
1312 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1313 					vol_args->name, vol_args->fd, subvol,
1314 					readonly, inherit);
1315 	if (ret)
1316 		goto free_inherit;
1317 free_inherit:
1318 	kfree(inherit);
1319 free_args:
1320 	kfree(vol_args);
1321 	return ret;
1322 }
1323 
1324 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1325 						void __user *arg)
1326 {
1327 	struct btrfs_root *root = inode->root;
1328 	struct btrfs_fs_info *fs_info = root->fs_info;
1329 	int ret = 0;
1330 	u64 flags = 0;
1331 
1332 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1333 		return -EINVAL;
1334 
1335 	down_read(&fs_info->subvol_sem);
1336 	if (btrfs_root_readonly(root))
1337 		flags |= BTRFS_SUBVOL_RDONLY;
1338 	up_read(&fs_info->subvol_sem);
1339 
1340 	if (copy_to_user(arg, &flags, sizeof(flags)))
1341 		ret = -EFAULT;
1342 
1343 	return ret;
1344 }
1345 
1346 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1347 					      void __user *arg)
1348 {
1349 	struct inode *inode = file_inode(file);
1350 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1351 	struct btrfs_root *root = BTRFS_I(inode)->root;
1352 	struct btrfs_trans_handle *trans;
1353 	u64 root_flags;
1354 	u64 flags;
1355 	int ret = 0;
1356 
1357 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1358 		return -EPERM;
1359 
1360 	ret = mnt_want_write_file(file);
1361 	if (ret)
1362 		goto out;
1363 
1364 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1365 		ret = -EINVAL;
1366 		goto out_drop_write;
1367 	}
1368 
1369 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1370 		ret = -EFAULT;
1371 		goto out_drop_write;
1372 	}
1373 
1374 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1375 		ret = -EOPNOTSUPP;
1376 		goto out_drop_write;
1377 	}
1378 
1379 	down_write(&fs_info->subvol_sem);
1380 
1381 	/* nothing to do */
1382 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1383 		goto out_drop_sem;
1384 
1385 	root_flags = btrfs_root_flags(&root->root_item);
1386 	if (flags & BTRFS_SUBVOL_RDONLY) {
1387 		btrfs_set_root_flags(&root->root_item,
1388 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1389 	} else {
1390 		/*
1391 		 * Block RO -> RW transition if this subvolume is involved in
1392 		 * send
1393 		 */
1394 		spin_lock(&root->root_item_lock);
1395 		if (root->send_in_progress == 0) {
1396 			btrfs_set_root_flags(&root->root_item,
1397 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1398 			spin_unlock(&root->root_item_lock);
1399 		} else {
1400 			spin_unlock(&root->root_item_lock);
1401 			btrfs_warn(fs_info,
1402 				   "Attempt to set subvolume %llu read-write during send",
1403 				   btrfs_root_id(root));
1404 			ret = -EPERM;
1405 			goto out_drop_sem;
1406 		}
1407 	}
1408 
1409 	trans = btrfs_start_transaction(root, 1);
1410 	if (IS_ERR(trans)) {
1411 		ret = PTR_ERR(trans);
1412 		goto out_reset;
1413 	}
1414 
1415 	ret = btrfs_update_root(trans, fs_info->tree_root,
1416 				&root->root_key, &root->root_item);
1417 	if (ret < 0) {
1418 		btrfs_end_transaction(trans);
1419 		goto out_reset;
1420 	}
1421 
1422 	ret = btrfs_commit_transaction(trans);
1423 
1424 out_reset:
1425 	if (ret)
1426 		btrfs_set_root_flags(&root->root_item, root_flags);
1427 out_drop_sem:
1428 	up_write(&fs_info->subvol_sem);
1429 out_drop_write:
1430 	mnt_drop_write_file(file);
1431 out:
1432 	return ret;
1433 }
1434 
1435 static noinline bool key_in_sk(const struct btrfs_key *key,
1436 			       const struct btrfs_ioctl_search_key *sk)
1437 {
1438 	struct btrfs_key test;
1439 	int ret;
1440 
1441 	test.objectid = sk->min_objectid;
1442 	test.type = sk->min_type;
1443 	test.offset = sk->min_offset;
1444 
1445 	ret = btrfs_comp_cpu_keys(key, &test);
1446 	if (ret < 0)
1447 		return false;
1448 
1449 	test.objectid = sk->max_objectid;
1450 	test.type = sk->max_type;
1451 	test.offset = sk->max_offset;
1452 
1453 	ret = btrfs_comp_cpu_keys(key, &test);
1454 	if (ret > 0)
1455 		return false;
1456 	return true;
1457 }
1458 
1459 static noinline int copy_to_sk(struct btrfs_path *path,
1460 			       struct btrfs_key *key,
1461 			       const struct btrfs_ioctl_search_key *sk,
1462 			       u64 *buf_size,
1463 			       char __user *ubuf,
1464 			       unsigned long *sk_offset,
1465 			       int *num_found)
1466 {
1467 	u64 found_transid;
1468 	struct extent_buffer *leaf;
1469 	struct btrfs_ioctl_search_header sh;
1470 	struct btrfs_key test;
1471 	unsigned long item_off;
1472 	unsigned long item_len;
1473 	int nritems;
1474 	int i;
1475 	int slot;
1476 	int ret = 0;
1477 
1478 	leaf = path->nodes[0];
1479 	slot = path->slots[0];
1480 	nritems = btrfs_header_nritems(leaf);
1481 
1482 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1483 		i = nritems;
1484 		goto advance_key;
1485 	}
1486 	found_transid = btrfs_header_generation(leaf);
1487 
1488 	for (i = slot; i < nritems; i++) {
1489 		item_off = btrfs_item_ptr_offset(leaf, i);
1490 		item_len = btrfs_item_size(leaf, i);
1491 
1492 		btrfs_item_key_to_cpu(leaf, key, i);
1493 		if (!key_in_sk(key, sk))
1494 			continue;
1495 
1496 		if (sizeof(sh) + item_len > *buf_size) {
1497 			if (*num_found) {
1498 				ret = 1;
1499 				goto out;
1500 			}
1501 
1502 			/*
1503 			 * return one empty item back for v1, which does not
1504 			 * handle -EOVERFLOW
1505 			 */
1506 
1507 			*buf_size = sizeof(sh) + item_len;
1508 			item_len = 0;
1509 			ret = -EOVERFLOW;
1510 		}
1511 
1512 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1513 			ret = 1;
1514 			goto out;
1515 		}
1516 
1517 		sh.objectid = key->objectid;
1518 		sh.type = key->type;
1519 		sh.offset = key->offset;
1520 		sh.len = item_len;
1521 		sh.transid = found_transid;
1522 
1523 		/*
1524 		 * Copy search result header. If we fault then loop again so we
1525 		 * can fault in the pages and -EFAULT there if there's a
1526 		 * problem. Otherwise we'll fault and then copy the buffer in
1527 		 * properly this next time through
1528 		 */
1529 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1530 			ret = 0;
1531 			goto out;
1532 		}
1533 
1534 		*sk_offset += sizeof(sh);
1535 
1536 		if (item_len) {
1537 			char __user *up = ubuf + *sk_offset;
1538 			/*
1539 			 * Copy the item, same behavior as above, but reset the
1540 			 * * sk_offset so we copy the full thing again.
1541 			 */
1542 			if (read_extent_buffer_to_user_nofault(leaf, up,
1543 						item_off, item_len)) {
1544 				ret = 0;
1545 				*sk_offset -= sizeof(sh);
1546 				goto out;
1547 			}
1548 
1549 			*sk_offset += item_len;
1550 		}
1551 		(*num_found)++;
1552 
1553 		if (ret) /* -EOVERFLOW from above */
1554 			goto out;
1555 
1556 		if (*num_found >= sk->nr_items) {
1557 			ret = 1;
1558 			goto out;
1559 		}
1560 	}
1561 advance_key:
1562 	ret = 0;
1563 	test.objectid = sk->max_objectid;
1564 	test.type = sk->max_type;
1565 	test.offset = sk->max_offset;
1566 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1567 		ret = 1;
1568 	else if (key->offset < (u64)-1)
1569 		key->offset++;
1570 	else if (key->type < (u8)-1) {
1571 		key->offset = 0;
1572 		key->type++;
1573 	} else if (key->objectid < (u64)-1) {
1574 		key->offset = 0;
1575 		key->type = 0;
1576 		key->objectid++;
1577 	} else
1578 		ret = 1;
1579 out:
1580 	/*
1581 	 *  0: all items from this leaf copied, continue with next
1582 	 *  1: * more items can be copied, but unused buffer is too small
1583 	 *     * all items were found
1584 	 *     Either way, it will stops the loop which iterates to the next
1585 	 *     leaf
1586 	 *  -EOVERFLOW: item was to large for buffer
1587 	 *  -EFAULT: could not copy extent buffer back to userspace
1588 	 */
1589 	return ret;
1590 }
1591 
1592 static noinline int search_ioctl(struct btrfs_root *root,
1593 				 struct btrfs_ioctl_search_key *sk,
1594 				 u64 *buf_size,
1595 				 char __user *ubuf)
1596 {
1597 	struct btrfs_fs_info *info = root->fs_info;
1598 	struct btrfs_key key;
1599 	BTRFS_PATH_AUTO_FREE(path);
1600 	int ret;
1601 	int num_found = 0;
1602 	unsigned long sk_offset = 0;
1603 
1604 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1605 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1606 		return -EOVERFLOW;
1607 	}
1608 
1609 	path = btrfs_alloc_path();
1610 	if (!path)
1611 		return -ENOMEM;
1612 
1613 	if (sk->tree_id == 0) {
1614 		/* Search the root that we got passed. */
1615 		root = btrfs_grab_root(root);
1616 	} else {
1617 		/* Look up the root from the arguments. */
1618 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1619 		if (IS_ERR(root))
1620 			return PTR_ERR(root);
1621 	}
1622 
1623 	key.objectid = sk->min_objectid;
1624 	key.type = sk->min_type;
1625 	key.offset = sk->min_offset;
1626 
1627 	while (1) {
1628 		/*
1629 		 * Ensure that the whole user buffer is faulted in at sub-page
1630 		 * granularity, otherwise the loop may live-lock.
1631 		 */
1632 		if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1633 			ret = -EFAULT;
1634 			break;
1635 		}
1636 
1637 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1638 		if (ret)
1639 			break;
1640 
1641 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1642 				 &sk_offset, &num_found);
1643 		btrfs_release_path(path);
1644 		if (ret)
1645 			break;
1646 
1647 	}
1648 	/* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1649 	if (ret > 0)
1650 		ret = 0;
1651 
1652 	sk->nr_items = num_found;
1653 	btrfs_put_root(root);
1654 	return ret;
1655 }
1656 
1657 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1658 					    void __user *argp)
1659 {
1660 	struct btrfs_ioctl_search_args __user *uargs = argp;
1661 	struct btrfs_ioctl_search_key sk;
1662 	int ret;
1663 	u64 buf_size;
1664 
1665 	if (!capable(CAP_SYS_ADMIN))
1666 		return -EPERM;
1667 
1668 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1669 		return -EFAULT;
1670 
1671 	buf_size = sizeof(uargs->buf);
1672 
1673 	ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1674 
1675 	/*
1676 	 * In the origin implementation an overflow is handled by returning a
1677 	 * search header with a len of zero, so reset ret.
1678 	 */
1679 	if (ret == -EOVERFLOW)
1680 		ret = 0;
1681 
1682 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1683 		ret = -EFAULT;
1684 	return ret;
1685 }
1686 
1687 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1688 					       void __user *argp)
1689 {
1690 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1691 	struct btrfs_ioctl_search_args_v2 args;
1692 	int ret;
1693 	u64 buf_size;
1694 	const u64 buf_limit = SZ_16M;
1695 
1696 	if (!capable(CAP_SYS_ADMIN))
1697 		return -EPERM;
1698 
1699 	/* copy search header and buffer size */
1700 	if (copy_from_user(&args, uarg, sizeof(args)))
1701 		return -EFAULT;
1702 
1703 	buf_size = args.buf_size;
1704 
1705 	/* limit result size to 16MB */
1706 	if (buf_size > buf_limit)
1707 		buf_size = buf_limit;
1708 
1709 	ret = search_ioctl(root, &args.key, &buf_size,
1710 			   (char __user *)(&uarg->buf[0]));
1711 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1712 		ret = -EFAULT;
1713 	else if (ret == -EOVERFLOW &&
1714 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1715 		ret = -EFAULT;
1716 
1717 	return ret;
1718 }
1719 
1720 /*
1721  * Search INODE_REFs to identify path name of 'dirid' directory
1722  * in a 'tree_id' tree. and sets path name to 'name'.
1723  */
1724 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1725 				u64 tree_id, u64 dirid, char *name)
1726 {
1727 	struct btrfs_root *root;
1728 	struct btrfs_key key;
1729 	char *ptr;
1730 	int ret = -1;
1731 	int slot;
1732 	int len;
1733 	int total_len = 0;
1734 	struct btrfs_inode_ref *iref;
1735 	struct extent_buffer *l;
1736 	BTRFS_PATH_AUTO_FREE(path);
1737 
1738 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1739 		name[0]='\0';
1740 		return 0;
1741 	}
1742 
1743 	path = btrfs_alloc_path();
1744 	if (!path)
1745 		return -ENOMEM;
1746 
1747 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1748 
1749 	root = btrfs_get_fs_root(info, tree_id, true);
1750 	if (IS_ERR(root)) {
1751 		ret = PTR_ERR(root);
1752 		root = NULL;
1753 		goto out;
1754 	}
1755 
1756 	key.objectid = dirid;
1757 	key.type = BTRFS_INODE_REF_KEY;
1758 	key.offset = (u64)-1;
1759 
1760 	while (1) {
1761 		ret = btrfs_search_backwards(root, &key, path);
1762 		if (ret < 0)
1763 			goto out;
1764 		else if (ret > 0) {
1765 			ret = -ENOENT;
1766 			goto out;
1767 		}
1768 
1769 		l = path->nodes[0];
1770 		slot = path->slots[0];
1771 
1772 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1773 		len = btrfs_inode_ref_name_len(l, iref);
1774 		ptr -= len + 1;
1775 		total_len += len + 1;
1776 		if (ptr < name) {
1777 			ret = -ENAMETOOLONG;
1778 			goto out;
1779 		}
1780 
1781 		*(ptr + len) = '/';
1782 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1783 
1784 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1785 			break;
1786 
1787 		btrfs_release_path(path);
1788 		key.objectid = key.offset;
1789 		key.offset = (u64)-1;
1790 		dirid = key.objectid;
1791 	}
1792 	memmove(name, ptr, total_len);
1793 	name[total_len] = '\0';
1794 	ret = 0;
1795 out:
1796 	btrfs_put_root(root);
1797 	return ret;
1798 }
1799 
1800 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1801 				struct inode *inode,
1802 				struct btrfs_ioctl_ino_lookup_user_args *args)
1803 {
1804 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1805 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1806 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1807 	u64 dirid = args->dirid;
1808 	unsigned long item_off;
1809 	unsigned long item_len;
1810 	struct btrfs_inode_ref *iref;
1811 	struct btrfs_root_ref *rref;
1812 	struct btrfs_root *root = NULL;
1813 	BTRFS_PATH_AUTO_FREE(path);
1814 	struct btrfs_key key;
1815 	struct extent_buffer *leaf;
1816 	char *ptr;
1817 	int slot;
1818 	int len;
1819 	int total_len = 0;
1820 	int ret;
1821 
1822 	path = btrfs_alloc_path();
1823 	if (!path)
1824 		return -ENOMEM;
1825 
1826 	/*
1827 	 * If the bottom subvolume does not exist directly under upper_limit,
1828 	 * construct the path in from the bottom up.
1829 	 */
1830 	if (dirid != upper_limit) {
1831 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1832 
1833 		root = btrfs_get_fs_root(fs_info, treeid, true);
1834 		if (IS_ERR(root))
1835 			return PTR_ERR(root);
1836 
1837 		key.objectid = dirid;
1838 		key.type = BTRFS_INODE_REF_KEY;
1839 		key.offset = (u64)-1;
1840 		while (1) {
1841 			struct btrfs_inode *temp_inode;
1842 
1843 			ret = btrfs_search_backwards(root, &key, path);
1844 			if (ret < 0)
1845 				goto out_put;
1846 			else if (ret > 0) {
1847 				ret = -ENOENT;
1848 				goto out_put;
1849 			}
1850 
1851 			leaf = path->nodes[0];
1852 			slot = path->slots[0];
1853 
1854 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1855 			len = btrfs_inode_ref_name_len(leaf, iref);
1856 			ptr -= len + 1;
1857 			total_len += len + 1;
1858 			if (ptr < args->path) {
1859 				ret = -ENAMETOOLONG;
1860 				goto out_put;
1861 			}
1862 
1863 			*(ptr + len) = '/';
1864 			read_extent_buffer(leaf, ptr,
1865 					(unsigned long)(iref + 1), len);
1866 
1867 			/*
1868 			 * We don't need the path anymore, so release it and
1869 			 * avoid deadlocks and lockdep warnings in case
1870 			 * btrfs_iget() needs to lookup the inode from its root
1871 			 * btree and lock the same leaf.
1872 			 */
1873 			btrfs_release_path(path);
1874 			temp_inode = btrfs_iget(key.offset, root);
1875 			if (IS_ERR(temp_inode)) {
1876 				ret = PTR_ERR(temp_inode);
1877 				goto out_put;
1878 			}
1879 			/* Check the read+exec permission of this directory. */
1880 			ret = inode_permission(idmap, &temp_inode->vfs_inode,
1881 					       MAY_READ | MAY_EXEC);
1882 			iput(&temp_inode->vfs_inode);
1883 			if (ret)
1884 				goto out_put;
1885 
1886 			if (key.offset == upper_limit)
1887 				break;
1888 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1889 				ret = -EACCES;
1890 				goto out_put;
1891 			}
1892 
1893 			key.objectid = key.offset;
1894 			key.offset = (u64)-1;
1895 			dirid = key.objectid;
1896 		}
1897 
1898 		memmove(args->path, ptr, total_len);
1899 		args->path[total_len] = '\0';
1900 		btrfs_put_root(root);
1901 		root = NULL;
1902 		btrfs_release_path(path);
1903 	}
1904 
1905 	/* Get the bottom subvolume's name from ROOT_REF */
1906 	key.objectid = treeid;
1907 	key.type = BTRFS_ROOT_REF_KEY;
1908 	key.offset = args->treeid;
1909 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1910 	if (ret < 0)
1911 		return ret;
1912 	else if (ret > 0)
1913 		return -ENOENT;
1914 
1915 	leaf = path->nodes[0];
1916 	slot = path->slots[0];
1917 	btrfs_item_key_to_cpu(leaf, &key, slot);
1918 
1919 	item_off = btrfs_item_ptr_offset(leaf, slot);
1920 	item_len = btrfs_item_size(leaf, slot);
1921 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1922 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1923 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref))
1924 		return -EINVAL;
1925 
1926 	/* Copy subvolume's name */
1927 	item_off += sizeof(struct btrfs_root_ref);
1928 	item_len -= sizeof(struct btrfs_root_ref);
1929 	read_extent_buffer(leaf, args->name, item_off, item_len);
1930 	args->name[item_len] = 0;
1931 
1932 out_put:
1933 	btrfs_put_root(root);
1934 
1935 	return ret;
1936 }
1937 
1938 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1939 					   void __user *argp)
1940 {
1941 	struct btrfs_ioctl_ino_lookup_args *args;
1942 	int ret = 0;
1943 
1944 	args = memdup_user(argp, sizeof(*args));
1945 	if (IS_ERR(args))
1946 		return PTR_ERR(args);
1947 
1948 	/*
1949 	 * Unprivileged query to obtain the containing subvolume root id. The
1950 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1951 	 */
1952 	if (args->treeid == 0)
1953 		args->treeid = btrfs_root_id(root);
1954 
1955 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
1956 		args->name[0] = 0;
1957 		goto out;
1958 	}
1959 
1960 	if (!capable(CAP_SYS_ADMIN)) {
1961 		ret = -EPERM;
1962 		goto out;
1963 	}
1964 
1965 	ret = btrfs_search_path_in_tree(root->fs_info,
1966 					args->treeid, args->objectid,
1967 					args->name);
1968 
1969 out:
1970 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1971 		ret = -EFAULT;
1972 
1973 	kfree(args);
1974 	return ret;
1975 }
1976 
1977 /*
1978  * Version of ino_lookup ioctl (unprivileged)
1979  *
1980  * The main differences from ino_lookup ioctl are:
1981  *
1982  *   1. Read + Exec permission will be checked using inode_permission() during
1983  *      path construction. -EACCES will be returned in case of failure.
1984  *   2. Path construction will be stopped at the inode number which corresponds
1985  *      to the fd with which this ioctl is called. If constructed path does not
1986  *      exist under fd's inode, -EACCES will be returned.
1987  *   3. The name of bottom subvolume is also searched and filled.
1988  */
1989 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
1990 {
1991 	struct btrfs_ioctl_ino_lookup_user_args *args;
1992 	struct inode *inode;
1993 	int ret;
1994 
1995 	args = memdup_user(argp, sizeof(*args));
1996 	if (IS_ERR(args))
1997 		return PTR_ERR(args);
1998 
1999 	inode = file_inode(file);
2000 
2001 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2002 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2003 		/*
2004 		 * The subvolume does not exist under fd with which this is
2005 		 * called
2006 		 */
2007 		kfree(args);
2008 		return -EACCES;
2009 	}
2010 
2011 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2012 
2013 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2014 		ret = -EFAULT;
2015 
2016 	kfree(args);
2017 	return ret;
2018 }
2019 
2020 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2021 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2022 {
2023 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2024 	struct btrfs_fs_info *fs_info;
2025 	struct btrfs_root *root;
2026 	struct btrfs_path *path;
2027 	struct btrfs_key key;
2028 	struct btrfs_root_item *root_item;
2029 	struct btrfs_root_ref *rref;
2030 	struct extent_buffer *leaf;
2031 	unsigned long item_off;
2032 	unsigned long item_len;
2033 	int slot;
2034 	int ret = 0;
2035 
2036 	path = btrfs_alloc_path();
2037 	if (!path)
2038 		return -ENOMEM;
2039 
2040 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2041 	if (!subvol_info) {
2042 		btrfs_free_path(path);
2043 		return -ENOMEM;
2044 	}
2045 
2046 	fs_info = BTRFS_I(inode)->root->fs_info;
2047 
2048 	/* Get root_item of inode's subvolume */
2049 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2050 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2051 	if (IS_ERR(root)) {
2052 		ret = PTR_ERR(root);
2053 		goto out_free;
2054 	}
2055 	root_item = &root->root_item;
2056 
2057 	subvol_info->treeid = key.objectid;
2058 
2059 	subvol_info->generation = btrfs_root_generation(root_item);
2060 	subvol_info->flags = btrfs_root_flags(root_item);
2061 
2062 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2063 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2064 						    BTRFS_UUID_SIZE);
2065 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2066 						    BTRFS_UUID_SIZE);
2067 
2068 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2069 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2070 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2071 
2072 	subvol_info->otransid = btrfs_root_otransid(root_item);
2073 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2074 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2075 
2076 	subvol_info->stransid = btrfs_root_stransid(root_item);
2077 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2078 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2079 
2080 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2081 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2082 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2083 
2084 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2085 		/* Search root tree for ROOT_BACKREF of this subvolume */
2086 		key.type = BTRFS_ROOT_BACKREF_KEY;
2087 		key.offset = 0;
2088 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2089 		if (ret < 0) {
2090 			goto out;
2091 		} else if (path->slots[0] >=
2092 			   btrfs_header_nritems(path->nodes[0])) {
2093 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2094 			if (ret < 0) {
2095 				goto out;
2096 			} else if (unlikely(ret > 0)) {
2097 				ret = -EUCLEAN;
2098 				goto out;
2099 			}
2100 		}
2101 
2102 		leaf = path->nodes[0];
2103 		slot = path->slots[0];
2104 		btrfs_item_key_to_cpu(leaf, &key, slot);
2105 		if (key.objectid == subvol_info->treeid &&
2106 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2107 			subvol_info->parent_id = key.offset;
2108 
2109 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2110 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2111 
2112 			item_off = btrfs_item_ptr_offset(leaf, slot)
2113 					+ sizeof(struct btrfs_root_ref);
2114 			item_len = btrfs_item_size(leaf, slot)
2115 					- sizeof(struct btrfs_root_ref);
2116 			read_extent_buffer(leaf, subvol_info->name,
2117 					   item_off, item_len);
2118 		} else {
2119 			ret = -ENOENT;
2120 			goto out;
2121 		}
2122 	}
2123 
2124 	btrfs_free_path(path);
2125 	path = NULL;
2126 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2127 		ret = -EFAULT;
2128 
2129 out:
2130 	btrfs_put_root(root);
2131 out_free:
2132 	btrfs_free_path(path);
2133 	kfree(subvol_info);
2134 	return ret;
2135 }
2136 
2137 /*
2138  * Return ROOT_REF information of the subvolume containing this inode
2139  * except the subvolume name.
2140  */
2141 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2142 					  void __user *argp)
2143 {
2144 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2145 	struct btrfs_root_ref *rref;
2146 	struct btrfs_path *path;
2147 	struct btrfs_key key;
2148 	struct extent_buffer *leaf;
2149 	u64 objectid;
2150 	int slot;
2151 	int ret;
2152 	u8 found;
2153 
2154 	path = btrfs_alloc_path();
2155 	if (!path)
2156 		return -ENOMEM;
2157 
2158 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2159 	if (IS_ERR(rootrefs)) {
2160 		btrfs_free_path(path);
2161 		return PTR_ERR(rootrefs);
2162 	}
2163 
2164 	objectid = btrfs_root_id(root);
2165 	key.objectid = objectid;
2166 	key.type = BTRFS_ROOT_REF_KEY;
2167 	key.offset = rootrefs->min_treeid;
2168 	found = 0;
2169 
2170 	root = root->fs_info->tree_root;
2171 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2172 	if (ret < 0) {
2173 		goto out;
2174 	} else if (path->slots[0] >=
2175 		   btrfs_header_nritems(path->nodes[0])) {
2176 		ret = btrfs_next_leaf(root, path);
2177 		if (ret < 0) {
2178 			goto out;
2179 		} else if (unlikely(ret > 0)) {
2180 			ret = -EUCLEAN;
2181 			goto out;
2182 		}
2183 	}
2184 	while (1) {
2185 		leaf = path->nodes[0];
2186 		slot = path->slots[0];
2187 
2188 		btrfs_item_key_to_cpu(leaf, &key, slot);
2189 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2190 			ret = 0;
2191 			goto out;
2192 		}
2193 
2194 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2195 			ret = -EOVERFLOW;
2196 			goto out;
2197 		}
2198 
2199 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2200 		rootrefs->rootref[found].treeid = key.offset;
2201 		rootrefs->rootref[found].dirid =
2202 				  btrfs_root_ref_dirid(leaf, rref);
2203 		found++;
2204 
2205 		ret = btrfs_next_item(root, path);
2206 		if (ret < 0) {
2207 			goto out;
2208 		} else if (unlikely(ret > 0)) {
2209 			ret = -EUCLEAN;
2210 			goto out;
2211 		}
2212 	}
2213 
2214 out:
2215 	btrfs_free_path(path);
2216 
2217 	if (!ret || ret == -EOVERFLOW) {
2218 		rootrefs->num_items = found;
2219 		/* update min_treeid for next search */
2220 		if (found)
2221 			rootrefs->min_treeid =
2222 				rootrefs->rootref[found - 1].treeid + 1;
2223 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2224 			ret = -EFAULT;
2225 	}
2226 
2227 	kfree(rootrefs);
2228 
2229 	return ret;
2230 }
2231 
2232 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2233 					     void __user *arg,
2234 					     bool destroy_v2)
2235 {
2236 	struct dentry *parent = file->f_path.dentry;
2237 	struct dentry *dentry;
2238 	struct inode *dir = d_inode(parent);
2239 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2240 	struct inode *inode;
2241 	struct btrfs_root *root = BTRFS_I(dir)->root;
2242 	struct btrfs_root *dest = NULL;
2243 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2244 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2245 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2246 	char *subvol_name, *subvol_name_ptr = NULL;
2247 	int ret = 0;
2248 	bool destroy_parent = false;
2249 
2250 	/* We don't support snapshots with extent tree v2 yet. */
2251 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2252 		btrfs_err(fs_info,
2253 			  "extent tree v2 doesn't support snapshot deletion yet");
2254 		return -EOPNOTSUPP;
2255 	}
2256 
2257 	if (destroy_v2) {
2258 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2259 		if (IS_ERR(vol_args2))
2260 			return PTR_ERR(vol_args2);
2261 
2262 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2263 			ret = -EOPNOTSUPP;
2264 			goto out;
2265 		}
2266 
2267 		/*
2268 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2269 		 * name, same as v1 currently does.
2270 		 */
2271 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2272 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2273 			if (ret < 0)
2274 				goto out;
2275 			subvol_name = vol_args2->name;
2276 
2277 			ret = mnt_want_write_file(file);
2278 			if (ret)
2279 				goto out;
2280 		} else {
2281 			struct inode *old_dir;
2282 
2283 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2284 				ret = -EINVAL;
2285 				goto out;
2286 			}
2287 
2288 			ret = mnt_want_write_file(file);
2289 			if (ret)
2290 				goto out;
2291 
2292 			dentry = btrfs_get_dentry(fs_info->sb,
2293 					BTRFS_FIRST_FREE_OBJECTID,
2294 					vol_args2->subvolid, 0);
2295 			if (IS_ERR(dentry)) {
2296 				ret = PTR_ERR(dentry);
2297 				goto out_drop_write;
2298 			}
2299 
2300 			/*
2301 			 * Change the default parent since the subvolume being
2302 			 * deleted can be outside of the current mount point.
2303 			 */
2304 			parent = btrfs_get_parent(dentry);
2305 
2306 			/*
2307 			 * At this point dentry->d_name can point to '/' if the
2308 			 * subvolume we want to destroy is outsite of the
2309 			 * current mount point, so we need to release the
2310 			 * current dentry and execute the lookup to return a new
2311 			 * one with ->d_name pointing to the
2312 			 * <mount point>/subvol_name.
2313 			 */
2314 			dput(dentry);
2315 			if (IS_ERR(parent)) {
2316 				ret = PTR_ERR(parent);
2317 				goto out_drop_write;
2318 			}
2319 			old_dir = dir;
2320 			dir = d_inode(parent);
2321 
2322 			/*
2323 			 * If v2 was used with SPEC_BY_ID, a new parent was
2324 			 * allocated since the subvolume can be outside of the
2325 			 * current mount point. Later on we need to release this
2326 			 * new parent dentry.
2327 			 */
2328 			destroy_parent = true;
2329 
2330 			/*
2331 			 * On idmapped mounts, deletion via subvolid is
2332 			 * restricted to subvolumes that are immediate
2333 			 * ancestors of the inode referenced by the file
2334 			 * descriptor in the ioctl. Otherwise the idmapping
2335 			 * could potentially be abused to delete subvolumes
2336 			 * anywhere in the filesystem the user wouldn't be able
2337 			 * to delete without an idmapped mount.
2338 			 */
2339 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2340 				ret = -EOPNOTSUPP;
2341 				goto free_parent;
2342 			}
2343 
2344 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2345 						fs_info, vol_args2->subvolid);
2346 			if (IS_ERR(subvol_name_ptr)) {
2347 				ret = PTR_ERR(subvol_name_ptr);
2348 				goto free_parent;
2349 			}
2350 			/* subvol_name_ptr is already nul terminated */
2351 			subvol_name = (char *)kbasename(subvol_name_ptr);
2352 		}
2353 	} else {
2354 		vol_args = memdup_user(arg, sizeof(*vol_args));
2355 		if (IS_ERR(vol_args))
2356 			return PTR_ERR(vol_args);
2357 
2358 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2359 		if (ret < 0)
2360 			goto out;
2361 
2362 		subvol_name = vol_args->name;
2363 
2364 		ret = mnt_want_write_file(file);
2365 		if (ret)
2366 			goto out;
2367 	}
2368 
2369 	if (strchr(subvol_name, '/') ||
2370 	    strcmp(subvol_name, "..") == 0) {
2371 		ret = -EINVAL;
2372 		goto free_subvol_name;
2373 	}
2374 
2375 	if (!S_ISDIR(dir->i_mode)) {
2376 		ret = -ENOTDIR;
2377 		goto free_subvol_name;
2378 	}
2379 
2380 	dentry = start_removing_killable(idmap, parent, &QSTR(subvol_name));
2381 	if (IS_ERR(dentry)) {
2382 		ret = PTR_ERR(dentry);
2383 		goto out_end_removing;
2384 	}
2385 
2386 	inode = d_inode(dentry);
2387 	dest = BTRFS_I(inode)->root;
2388 	if (!capable(CAP_SYS_ADMIN)) {
2389 		/*
2390 		 * Regular user.  Only allow this with a special mount
2391 		 * option, when the user has write+exec access to the
2392 		 * subvol root, and when rmdir(2) would have been
2393 		 * allowed.
2394 		 *
2395 		 * Note that this is _not_ check that the subvol is
2396 		 * empty or doesn't contain data that we wouldn't
2397 		 * otherwise be able to delete.
2398 		 *
2399 		 * Users who want to delete empty subvols should try
2400 		 * rmdir(2).
2401 		 */
2402 		ret = -EPERM;
2403 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2404 			goto out_end_removing;
2405 
2406 		/*
2407 		 * Do not allow deletion if the parent dir is the same
2408 		 * as the dir to be deleted.  That means the ioctl
2409 		 * must be called on the dentry referencing the root
2410 		 * of the subvol, not a random directory contained
2411 		 * within it.
2412 		 */
2413 		ret = -EINVAL;
2414 		if (root == dest)
2415 			goto out_end_removing;
2416 
2417 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2418 		if (ret)
2419 			goto out_end_removing;
2420 	}
2421 
2422 	/* check if subvolume may be deleted by a user */
2423 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2424 	if (ret)
2425 		goto out_end_removing;
2426 
2427 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2428 		ret = -EINVAL;
2429 		goto out_end_removing;
2430 	}
2431 
2432 	btrfs_inode_lock(BTRFS_I(inode), 0);
2433 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2434 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2435 	if (!ret)
2436 		d_delete_notify(dir, dentry);
2437 
2438 out_end_removing:
2439 	end_removing(dentry);
2440 free_subvol_name:
2441 	kfree(subvol_name_ptr);
2442 free_parent:
2443 	if (destroy_parent)
2444 		dput(parent);
2445 out_drop_write:
2446 	mnt_drop_write_file(file);
2447 out:
2448 	kfree(vol_args2);
2449 	kfree(vol_args);
2450 	return ret;
2451 }
2452 
2453 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2454 {
2455 	struct inode *inode = file_inode(file);
2456 	struct btrfs_root *root = BTRFS_I(inode)->root;
2457 	struct btrfs_ioctl_defrag_range_args range = {0};
2458 	int ret;
2459 
2460 	ret = mnt_want_write_file(file);
2461 	if (ret)
2462 		return ret;
2463 
2464 	if (btrfs_root_readonly(root)) {
2465 		ret = -EROFS;
2466 		goto out;
2467 	}
2468 
2469 	switch (inode->i_mode & S_IFMT) {
2470 	case S_IFDIR:
2471 		if (!capable(CAP_SYS_ADMIN)) {
2472 			ret = -EPERM;
2473 			goto out;
2474 		}
2475 		ret = btrfs_defrag_root(root);
2476 		break;
2477 	case S_IFREG:
2478 		/*
2479 		 * Note that this does not check the file descriptor for write
2480 		 * access. This prevents defragmenting executables that are
2481 		 * running and allows defrag on files open in read-only mode.
2482 		 */
2483 		if (!capable(CAP_SYS_ADMIN) &&
2484 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2485 			ret = -EPERM;
2486 			goto out;
2487 		}
2488 
2489 		/*
2490 		 * Don't allow defrag on pre-content watched files, as it could
2491 		 * populate the page cache with 0's via readahead.
2492 		 */
2493 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2494 			ret = -EINVAL;
2495 			goto out;
2496 		}
2497 
2498 		if (argp) {
2499 			if (copy_from_user(&range, argp, sizeof(range))) {
2500 				ret = -EFAULT;
2501 				goto out;
2502 			}
2503 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2504 				ret = -EOPNOTSUPP;
2505 				goto out;
2506 			}
2507 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) &&
2508 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2509 				ret = -EINVAL;
2510 				goto out;
2511 			}
2512 			/* Compression or no-compression require to start the IO. */
2513 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) ||
2514 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2515 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2516 				range.extent_thresh = (u32)-1;
2517 			}
2518 		} else {
2519 			/* the rest are all set to zero by kzalloc */
2520 			range.len = (u64)-1;
2521 		}
2522 		ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2523 					&range, BTRFS_OLDEST_GENERATION, 0);
2524 		if (ret > 0)
2525 			ret = 0;
2526 		break;
2527 	default:
2528 		ret = -EINVAL;
2529 	}
2530 out:
2531 	mnt_drop_write_file(file);
2532 	return ret;
2533 }
2534 
2535 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2536 {
2537 	struct btrfs_ioctl_vol_args *vol_args;
2538 	bool restore_op = false;
2539 	int ret;
2540 
2541 	if (!capable(CAP_SYS_ADMIN))
2542 		return -EPERM;
2543 
2544 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2545 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2546 		return -EINVAL;
2547 	}
2548 
2549 	if (fs_info->fs_devices->temp_fsid) {
2550 		btrfs_err(fs_info,
2551 			  "device add not supported on cloned temp-fsid mount");
2552 		return -EINVAL;
2553 	}
2554 
2555 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2556 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2557 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2558 
2559 		/*
2560 		 * We can do the device add because we have a paused balanced,
2561 		 * change the exclusive op type and remember we should bring
2562 		 * back the paused balance
2563 		 */
2564 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2565 		btrfs_exclop_start_unlock(fs_info);
2566 		restore_op = true;
2567 	}
2568 
2569 	vol_args = memdup_user(arg, sizeof(*vol_args));
2570 	if (IS_ERR(vol_args)) {
2571 		ret = PTR_ERR(vol_args);
2572 		goto out;
2573 	}
2574 
2575 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2576 	if (ret < 0)
2577 		goto out_free;
2578 
2579 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2580 
2581 	if (!ret)
2582 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2583 
2584 out_free:
2585 	kfree(vol_args);
2586 out:
2587 	if (restore_op)
2588 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2589 	else
2590 		btrfs_exclop_finish(fs_info);
2591 	return ret;
2592 }
2593 
2594 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2595 {
2596 	BTRFS_DEV_LOOKUP_ARGS(args);
2597 	struct inode *inode = file_inode(file);
2598 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2599 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2600 	struct file *bdev_file = NULL;
2601 	int ret;
2602 	bool cancel = false;
2603 
2604 	if (!capable(CAP_SYS_ADMIN))
2605 		return -EPERM;
2606 
2607 	vol_args = memdup_user(arg, sizeof(*vol_args));
2608 	if (IS_ERR(vol_args))
2609 		return PTR_ERR(vol_args);
2610 
2611 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2612 		ret = -EOPNOTSUPP;
2613 		goto out;
2614 	}
2615 
2616 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2617 	if (ret < 0)
2618 		goto out;
2619 
2620 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2621 		args.devid = vol_args->devid;
2622 	} else if (!strcmp("cancel", vol_args->name)) {
2623 		cancel = true;
2624 	} else {
2625 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2626 		if (ret)
2627 			goto out;
2628 	}
2629 
2630 	ret = mnt_want_write_file(file);
2631 	if (ret)
2632 		goto out;
2633 
2634 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2635 					   cancel);
2636 	if (ret)
2637 		goto err_drop;
2638 
2639 	/* Exclusive operation is now claimed */
2640 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2641 
2642 	btrfs_exclop_finish(fs_info);
2643 
2644 	if (!ret) {
2645 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2646 			btrfs_info(fs_info, "device deleted: id %llu",
2647 					vol_args->devid);
2648 		else
2649 			btrfs_info(fs_info, "device deleted: %s",
2650 					vol_args->name);
2651 	}
2652 err_drop:
2653 	mnt_drop_write_file(file);
2654 	if (bdev_file)
2655 		bdev_fput(bdev_file);
2656 out:
2657 	btrfs_put_dev_args_from_path(&args);
2658 	kfree(vol_args);
2659 	return ret;
2660 }
2661 
2662 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2663 {
2664 	BTRFS_DEV_LOOKUP_ARGS(args);
2665 	struct inode *inode = file_inode(file);
2666 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2667 	struct btrfs_ioctl_vol_args *vol_args;
2668 	struct file *bdev_file = NULL;
2669 	int ret;
2670 	bool cancel = false;
2671 
2672 	if (!capable(CAP_SYS_ADMIN))
2673 		return -EPERM;
2674 
2675 	vol_args = memdup_user(arg, sizeof(*vol_args));
2676 	if (IS_ERR(vol_args))
2677 		return PTR_ERR(vol_args);
2678 
2679 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2680 	if (ret < 0)
2681 		goto out_free;
2682 
2683 	if (!strcmp("cancel", vol_args->name)) {
2684 		cancel = true;
2685 	} else {
2686 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2687 		if (ret)
2688 			goto out;
2689 	}
2690 
2691 	ret = mnt_want_write_file(file);
2692 	if (ret)
2693 		goto out;
2694 
2695 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2696 					   cancel);
2697 	if (ret == 0) {
2698 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2699 		if (!ret)
2700 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2701 		btrfs_exclop_finish(fs_info);
2702 	}
2703 
2704 	mnt_drop_write_file(file);
2705 	if (bdev_file)
2706 		bdev_fput(bdev_file);
2707 out:
2708 	btrfs_put_dev_args_from_path(&args);
2709 out_free:
2710 	kfree(vol_args);
2711 	return ret;
2712 }
2713 
2714 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2715 				void __user *arg)
2716 {
2717 	struct btrfs_ioctl_fs_info_args *fi_args;
2718 	struct btrfs_device *device;
2719 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2720 	u64 flags_in;
2721 	int ret = 0;
2722 
2723 	fi_args = memdup_user(arg, sizeof(*fi_args));
2724 	if (IS_ERR(fi_args))
2725 		return PTR_ERR(fi_args);
2726 
2727 	flags_in = fi_args->flags;
2728 	memset(fi_args, 0, sizeof(*fi_args));
2729 
2730 	rcu_read_lock();
2731 	fi_args->num_devices = fs_devices->num_devices;
2732 
2733 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2734 		if (device->devid > fi_args->max_id)
2735 			fi_args->max_id = device->devid;
2736 	}
2737 	rcu_read_unlock();
2738 
2739 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2740 	fi_args->nodesize = fs_info->nodesize;
2741 	fi_args->sectorsize = fs_info->sectorsize;
2742 	fi_args->clone_alignment = fs_info->sectorsize;
2743 
2744 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2745 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2746 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2747 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2748 	}
2749 
2750 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2751 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2752 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2753 	}
2754 
2755 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2756 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2757 		       sizeof(fi_args->metadata_uuid));
2758 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2759 	}
2760 
2761 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2762 		ret = -EFAULT;
2763 
2764 	kfree(fi_args);
2765 	return ret;
2766 }
2767 
2768 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2769 				 void __user *arg)
2770 {
2771 	BTRFS_DEV_LOOKUP_ARGS(args);
2772 	struct btrfs_ioctl_dev_info_args *di_args;
2773 	struct btrfs_device *dev;
2774 	int ret = 0;
2775 
2776 	di_args = memdup_user(arg, sizeof(*di_args));
2777 	if (IS_ERR(di_args))
2778 		return PTR_ERR(di_args);
2779 
2780 	args.devid = di_args->devid;
2781 	if (!btrfs_is_empty_uuid(di_args->uuid))
2782 		args.uuid = di_args->uuid;
2783 
2784 	rcu_read_lock();
2785 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2786 	if (!dev) {
2787 		ret = -ENODEV;
2788 		goto out;
2789 	}
2790 
2791 	di_args->devid = dev->devid;
2792 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2793 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2794 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2795 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2796 	if (dev->name)
2797 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2798 	else
2799 		di_args->path[0] = '\0';
2800 
2801 out:
2802 	rcu_read_unlock();
2803 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2804 		ret = -EFAULT;
2805 
2806 	kfree(di_args);
2807 	return ret;
2808 }
2809 
2810 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2811 {
2812 	struct inode *inode = file_inode(file);
2813 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2814 	struct btrfs_root *root = BTRFS_I(inode)->root;
2815 	struct btrfs_root *new_root;
2816 	struct btrfs_dir_item *di;
2817 	struct btrfs_trans_handle *trans;
2818 	struct btrfs_path *path = NULL;
2819 	struct btrfs_disk_key disk_key;
2820 	struct fscrypt_str name = FSTR_INIT("default", 7);
2821 	u64 objectid = 0;
2822 	u64 dir_id;
2823 	int ret;
2824 
2825 	if (!capable(CAP_SYS_ADMIN))
2826 		return -EPERM;
2827 
2828 	ret = mnt_want_write_file(file);
2829 	if (ret)
2830 		return ret;
2831 
2832 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2833 		ret = -EFAULT;
2834 		goto out;
2835 	}
2836 
2837 	if (!objectid)
2838 		objectid = BTRFS_FS_TREE_OBJECTID;
2839 
2840 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2841 	if (IS_ERR(new_root)) {
2842 		ret = PTR_ERR(new_root);
2843 		goto out;
2844 	}
2845 	if (!btrfs_is_fstree(btrfs_root_id(new_root))) {
2846 		ret = -ENOENT;
2847 		goto out_free;
2848 	}
2849 
2850 	path = btrfs_alloc_path();
2851 	if (!path) {
2852 		ret = -ENOMEM;
2853 		goto out_free;
2854 	}
2855 
2856 	trans = btrfs_start_transaction(root, 1);
2857 	if (IS_ERR(trans)) {
2858 		ret = PTR_ERR(trans);
2859 		goto out_free;
2860 	}
2861 
2862 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2863 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2864 				   dir_id, &name, 1);
2865 	if (IS_ERR_OR_NULL(di)) {
2866 		btrfs_release_path(path);
2867 		btrfs_end_transaction(trans);
2868 		btrfs_err(fs_info,
2869 			  "Umm, you don't have the default diritem, this isn't going to work");
2870 		ret = -ENOENT;
2871 		goto out_free;
2872 	}
2873 
2874 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2875 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2876 	btrfs_release_path(path);
2877 
2878 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2879 	btrfs_end_transaction(trans);
2880 out_free:
2881 	btrfs_put_root(new_root);
2882 	btrfs_free_path(path);
2883 out:
2884 	mnt_drop_write_file(file);
2885 	return ret;
2886 }
2887 
2888 static void get_block_group_info(struct list_head *groups_list,
2889 				 struct btrfs_ioctl_space_info *space)
2890 {
2891 	struct btrfs_block_group *block_group;
2892 
2893 	space->total_bytes = 0;
2894 	space->used_bytes = 0;
2895 	space->flags = 0;
2896 	list_for_each_entry(block_group, groups_list, list) {
2897 		space->flags = block_group->flags;
2898 		space->total_bytes += block_group->length;
2899 		space->used_bytes += block_group->used;
2900 	}
2901 }
2902 
2903 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2904 				   void __user *arg)
2905 {
2906 	struct btrfs_ioctl_space_args space_args = { 0 };
2907 	struct btrfs_ioctl_space_info space;
2908 	struct btrfs_ioctl_space_info *dest;
2909 	struct btrfs_ioctl_space_info AUTO_KFREE(dest_orig);
2910 	struct btrfs_ioctl_space_info __user *user_dest;
2911 	struct btrfs_space_info *info;
2912 	static const u64 types[] = {
2913 		BTRFS_BLOCK_GROUP_DATA,
2914 		BTRFS_BLOCK_GROUP_SYSTEM,
2915 		BTRFS_BLOCK_GROUP_METADATA,
2916 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2917 	};
2918 	int num_types = 4;
2919 	int alloc_size;
2920 	int ret = 0;
2921 	u64 slot_count = 0;
2922 	int i, c;
2923 
2924 	if (copy_from_user(&space_args,
2925 			   (struct btrfs_ioctl_space_args __user *)arg,
2926 			   sizeof(space_args)))
2927 		return -EFAULT;
2928 
2929 	for (i = 0; i < num_types; i++) {
2930 		struct btrfs_space_info *tmp;
2931 
2932 		info = NULL;
2933 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2934 			if (tmp->flags == types[i]) {
2935 				info = tmp;
2936 				break;
2937 			}
2938 		}
2939 
2940 		if (!info)
2941 			continue;
2942 
2943 		down_read(&info->groups_sem);
2944 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2945 			if (!list_empty(&info->block_groups[c]))
2946 				slot_count++;
2947 		}
2948 		up_read(&info->groups_sem);
2949 	}
2950 
2951 	/*
2952 	 * Global block reserve, exported as a space_info
2953 	 */
2954 	slot_count++;
2955 
2956 	/* space_slots == 0 means they are asking for a count */
2957 	if (space_args.space_slots == 0) {
2958 		space_args.total_spaces = slot_count;
2959 		goto out;
2960 	}
2961 
2962 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2963 
2964 	alloc_size = sizeof(*dest) * slot_count;
2965 
2966 	/* we generally have at most 6 or so space infos, one for each raid
2967 	 * level.  So, a whole page should be more than enough for everyone
2968 	 */
2969 	if (alloc_size > PAGE_SIZE)
2970 		return -ENOMEM;
2971 
2972 	space_args.total_spaces = 0;
2973 	dest = kmalloc(alloc_size, GFP_KERNEL);
2974 	if (!dest)
2975 		return -ENOMEM;
2976 	dest_orig = dest;
2977 
2978 	/* now we have a buffer to copy into */
2979 	for (i = 0; i < num_types; i++) {
2980 		struct btrfs_space_info *tmp;
2981 
2982 		if (!slot_count)
2983 			break;
2984 
2985 		info = NULL;
2986 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2987 			if (tmp->flags == types[i]) {
2988 				info = tmp;
2989 				break;
2990 			}
2991 		}
2992 
2993 		if (!info)
2994 			continue;
2995 		down_read(&info->groups_sem);
2996 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2997 			if (!list_empty(&info->block_groups[c])) {
2998 				get_block_group_info(&info->block_groups[c],
2999 						     &space);
3000 				memcpy(dest, &space, sizeof(space));
3001 				dest++;
3002 				space_args.total_spaces++;
3003 				slot_count--;
3004 			}
3005 			if (!slot_count)
3006 				break;
3007 		}
3008 		up_read(&info->groups_sem);
3009 	}
3010 
3011 	/*
3012 	 * Add global block reserve
3013 	 */
3014 	if (slot_count) {
3015 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3016 
3017 		spin_lock(&block_rsv->lock);
3018 		space.total_bytes = block_rsv->size;
3019 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3020 		spin_unlock(&block_rsv->lock);
3021 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3022 		memcpy(dest, &space, sizeof(space));
3023 		space_args.total_spaces++;
3024 	}
3025 
3026 	user_dest = (struct btrfs_ioctl_space_info __user *)
3027 		(arg + sizeof(struct btrfs_ioctl_space_args));
3028 
3029 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3030 		return -EFAULT;
3031 
3032 out:
3033 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3034 		ret = -EFAULT;
3035 
3036 	return ret;
3037 }
3038 
3039 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3040 					    void __user *argp)
3041 {
3042 	struct btrfs_trans_handle *trans;
3043 	u64 transid;
3044 
3045 	/*
3046 	 * Start orphan cleanup here for the given root in case it hasn't been
3047 	 * started already by other means. Errors are handled in the other
3048 	 * functions during transaction commit.
3049 	 */
3050 	btrfs_orphan_cleanup(root);
3051 
3052 	trans = btrfs_attach_transaction_barrier(root);
3053 	if (IS_ERR(trans)) {
3054 		if (PTR_ERR(trans) != -ENOENT)
3055 			return PTR_ERR(trans);
3056 
3057 		/* No running transaction, don't bother */
3058 		transid = btrfs_get_last_trans_committed(root->fs_info);
3059 		goto out;
3060 	}
3061 	transid = trans->transid;
3062 	btrfs_commit_transaction_async(trans);
3063 out:
3064 	if (argp)
3065 		if (copy_to_user(argp, &transid, sizeof(transid)))
3066 			return -EFAULT;
3067 	return 0;
3068 }
3069 
3070 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3071 					   void __user *argp)
3072 {
3073 	/* By default wait for the current transaction. */
3074 	u64 transid = 0;
3075 
3076 	if (argp)
3077 		if (copy_from_user(&transid, argp, sizeof(transid)))
3078 			return -EFAULT;
3079 
3080 	return btrfs_wait_for_commit(fs_info, transid);
3081 }
3082 
3083 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3084 {
3085 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3086 	struct btrfs_ioctl_scrub_args *sa;
3087 	int ret;
3088 
3089 	if (!capable(CAP_SYS_ADMIN))
3090 		return -EPERM;
3091 
3092 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3093 		btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3094 		return -EINVAL;
3095 	}
3096 
3097 	sa = memdup_user(arg, sizeof(*sa));
3098 	if (IS_ERR(sa))
3099 		return PTR_ERR(sa);
3100 
3101 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3102 		ret = -EOPNOTSUPP;
3103 		goto out;
3104 	}
3105 
3106 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3107 		ret = mnt_want_write_file(file);
3108 		if (ret)
3109 			goto out;
3110 	}
3111 
3112 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3113 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3114 			      0);
3115 
3116 	/*
3117 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3118 	 * error. This is important as it allows user space to know how much
3119 	 * progress scrub has done. For example, if scrub is canceled we get
3120 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3121 	 * space. Later user space can inspect the progress from the structure
3122 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3123 	 * previously (btrfs-progs does this).
3124 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3125 	 * then return -EFAULT to signal the structure was not copied or it may
3126 	 * be corrupt and unreliable due to a partial copy.
3127 	 */
3128 	if (copy_to_user(arg, sa, sizeof(*sa)))
3129 		ret = -EFAULT;
3130 
3131 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3132 		mnt_drop_write_file(file);
3133 out:
3134 	kfree(sa);
3135 	return ret;
3136 }
3137 
3138 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3139 {
3140 	if (!capable(CAP_SYS_ADMIN))
3141 		return -EPERM;
3142 
3143 	return btrfs_scrub_cancel(fs_info);
3144 }
3145 
3146 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3147 				       void __user *arg)
3148 {
3149 	struct btrfs_ioctl_scrub_args *sa;
3150 	int ret;
3151 
3152 	if (!capable(CAP_SYS_ADMIN))
3153 		return -EPERM;
3154 
3155 	sa = memdup_user(arg, sizeof(*sa));
3156 	if (IS_ERR(sa))
3157 		return PTR_ERR(sa);
3158 
3159 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3160 
3161 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3162 		ret = -EFAULT;
3163 
3164 	kfree(sa);
3165 	return ret;
3166 }
3167 
3168 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3169 				      void __user *arg)
3170 {
3171 	struct btrfs_ioctl_get_dev_stats *sa;
3172 	int ret;
3173 
3174 	sa = memdup_user(arg, sizeof(*sa));
3175 	if (IS_ERR(sa))
3176 		return PTR_ERR(sa);
3177 
3178 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3179 		kfree(sa);
3180 		return -EPERM;
3181 	}
3182 
3183 	ret = btrfs_get_dev_stats(fs_info, sa);
3184 
3185 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3186 		ret = -EFAULT;
3187 
3188 	kfree(sa);
3189 	return ret;
3190 }
3191 
3192 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3193 				    void __user *arg)
3194 {
3195 	struct btrfs_ioctl_dev_replace_args *p;
3196 	int ret;
3197 
3198 	if (!capable(CAP_SYS_ADMIN))
3199 		return -EPERM;
3200 
3201 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3202 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3203 		return -EINVAL;
3204 	}
3205 
3206 	p = memdup_user(arg, sizeof(*p));
3207 	if (IS_ERR(p))
3208 		return PTR_ERR(p);
3209 
3210 	switch (p->cmd) {
3211 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3212 		if (sb_rdonly(fs_info->sb)) {
3213 			ret = -EROFS;
3214 			goto out;
3215 		}
3216 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3217 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3218 		} else {
3219 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3220 			btrfs_exclop_finish(fs_info);
3221 		}
3222 		break;
3223 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3224 		btrfs_dev_replace_status(fs_info, p);
3225 		ret = 0;
3226 		break;
3227 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3228 		p->result = btrfs_dev_replace_cancel(fs_info);
3229 		ret = 0;
3230 		break;
3231 	default:
3232 		ret = -EINVAL;
3233 		break;
3234 	}
3235 
3236 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3237 		ret = -EFAULT;
3238 out:
3239 	kfree(p);
3240 	return ret;
3241 }
3242 
3243 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3244 {
3245 	int ret = 0;
3246 	int i;
3247 	u64 rel_ptr;
3248 	int size;
3249 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3250 	struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
3251 	struct btrfs_path *path;
3252 
3253 	if (!capable(CAP_DAC_READ_SEARCH))
3254 		return -EPERM;
3255 
3256 	path = btrfs_alloc_path();
3257 	if (!path) {
3258 		ret = -ENOMEM;
3259 		goto out;
3260 	}
3261 
3262 	ipa = memdup_user(arg, sizeof(*ipa));
3263 	if (IS_ERR(ipa)) {
3264 		ret = PTR_ERR(ipa);
3265 		ipa = NULL;
3266 		goto out;
3267 	}
3268 
3269 	size = min_t(u32, ipa->size, 4096);
3270 	ipath = init_ipath(size, root, path);
3271 	if (IS_ERR(ipath)) {
3272 		ret = PTR_ERR(ipath);
3273 		ipath = NULL;
3274 		goto out;
3275 	}
3276 
3277 	ret = paths_from_inode(ipa->inum, ipath);
3278 	if (ret < 0)
3279 		goto out;
3280 
3281 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3282 		rel_ptr = ipath->fspath->val[i] -
3283 			  (u64)(unsigned long)ipath->fspath->val;
3284 		ipath->fspath->val[i] = rel_ptr;
3285 	}
3286 
3287 	btrfs_free_path(path);
3288 	path = NULL;
3289 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3290 			   ipath->fspath, size);
3291 	if (ret) {
3292 		ret = -EFAULT;
3293 		goto out;
3294 	}
3295 
3296 out:
3297 	btrfs_free_path(path);
3298 	kfree(ipa);
3299 
3300 	return ret;
3301 }
3302 
3303 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3304 					void __user *arg, int version)
3305 {
3306 	int ret = 0;
3307 	int size;
3308 	struct btrfs_ioctl_logical_ino_args *loi;
3309 	struct btrfs_data_container *inodes = NULL;
3310 	bool ignore_offset;
3311 
3312 	if (!capable(CAP_SYS_ADMIN))
3313 		return -EPERM;
3314 
3315 	loi = memdup_user(arg, sizeof(*loi));
3316 	if (IS_ERR(loi))
3317 		return PTR_ERR(loi);
3318 
3319 	if (version == 1) {
3320 		ignore_offset = false;
3321 		size = min_t(u32, loi->size, SZ_64K);
3322 	} else {
3323 		/* All reserved bits must be 0 for now */
3324 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3325 			ret = -EINVAL;
3326 			goto out_loi;
3327 		}
3328 		/* Only accept flags we have defined so far */
3329 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3330 			ret = -EINVAL;
3331 			goto out_loi;
3332 		}
3333 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3334 		size = min_t(u32, loi->size, SZ_16M);
3335 	}
3336 
3337 	inodes = init_data_container(size);
3338 	if (IS_ERR(inodes)) {
3339 		ret = PTR_ERR(inodes);
3340 		goto out_loi;
3341 	}
3342 
3343 	ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset);
3344 	if (ret == -EINVAL)
3345 		ret = -ENOENT;
3346 	if (ret < 0)
3347 		goto out;
3348 
3349 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3350 			   size);
3351 	if (ret)
3352 		ret = -EFAULT;
3353 
3354 out:
3355 	kvfree(inodes);
3356 out_loi:
3357 	kfree(loi);
3358 
3359 	return ret;
3360 }
3361 
3362 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3363 			       struct btrfs_ioctl_balance_args *bargs)
3364 {
3365 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3366 
3367 	bargs->flags = bctl->flags;
3368 
3369 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3370 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3371 	if (atomic_read(&fs_info->balance_pause_req))
3372 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3373 	if (atomic_read(&fs_info->balance_cancel_req))
3374 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3375 
3376 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3377 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3378 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3379 
3380 	spin_lock(&fs_info->balance_lock);
3381 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3382 	spin_unlock(&fs_info->balance_lock);
3383 }
3384 
3385 /*
3386  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3387  * required.
3388  *
3389  * @fs_info:       the filesystem
3390  * @excl_acquired: ptr to boolean value which is set to false in case balance
3391  *                 is being resumed
3392  *
3393  * Return 0 on success in which case both fs_info::balance is acquired as well
3394  * as exclusive ops are blocked. In case of failure return an error code.
3395  */
3396 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3397 {
3398 	int ret;
3399 
3400 	/*
3401 	 * Exclusive operation is locked. Three possibilities:
3402 	 *   (1) some other op is running
3403 	 *   (2) balance is running
3404 	 *   (3) balance is paused -- special case (think resume)
3405 	 */
3406 	while (1) {
3407 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3408 			*excl_acquired = true;
3409 			mutex_lock(&fs_info->balance_mutex);
3410 			return 0;
3411 		}
3412 
3413 		mutex_lock(&fs_info->balance_mutex);
3414 		if (fs_info->balance_ctl) {
3415 			/* This is either (2) or (3) */
3416 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3417 				/* This is (2) */
3418 				ret = -EINPROGRESS;
3419 				goto out_failure;
3420 
3421 			} else {
3422 				mutex_unlock(&fs_info->balance_mutex);
3423 				/*
3424 				 * Lock released to allow other waiters to
3425 				 * continue, we'll reexamine the status again.
3426 				 */
3427 				mutex_lock(&fs_info->balance_mutex);
3428 
3429 				if (fs_info->balance_ctl &&
3430 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3431 					/* This is (3) */
3432 					*excl_acquired = false;
3433 					return 0;
3434 				}
3435 			}
3436 		} else {
3437 			/* This is (1) */
3438 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3439 			goto out_failure;
3440 		}
3441 
3442 		mutex_unlock(&fs_info->balance_mutex);
3443 	}
3444 
3445 out_failure:
3446 	mutex_unlock(&fs_info->balance_mutex);
3447 	*excl_acquired = false;
3448 	return ret;
3449 }
3450 
3451 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3452 {
3453 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3454 	struct btrfs_fs_info *fs_info = root->fs_info;
3455 	struct btrfs_ioctl_balance_args *bargs;
3456 	struct btrfs_balance_control *bctl;
3457 	bool need_unlock = true;
3458 	int ret;
3459 
3460 	if (!capable(CAP_SYS_ADMIN))
3461 		return -EPERM;
3462 
3463 	ret = mnt_want_write_file(file);
3464 	if (ret)
3465 		return ret;
3466 
3467 	bargs = memdup_user(arg, sizeof(*bargs));
3468 	if (IS_ERR(bargs)) {
3469 		ret = PTR_ERR(bargs);
3470 		bargs = NULL;
3471 		goto out;
3472 	}
3473 
3474 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3475 	if (ret)
3476 		goto out;
3477 
3478 	lockdep_assert_held(&fs_info->balance_mutex);
3479 
3480 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3481 		if (!fs_info->balance_ctl) {
3482 			ret = -ENOTCONN;
3483 			goto out_unlock;
3484 		}
3485 
3486 		bctl = fs_info->balance_ctl;
3487 		spin_lock(&fs_info->balance_lock);
3488 		bctl->flags |= BTRFS_BALANCE_RESUME;
3489 		spin_unlock(&fs_info->balance_lock);
3490 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3491 
3492 		goto do_balance;
3493 	}
3494 
3495 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3496 		ret = -EINVAL;
3497 		goto out_unlock;
3498 	}
3499 
3500 	if (fs_info->balance_ctl) {
3501 		ret = -EINPROGRESS;
3502 		goto out_unlock;
3503 	}
3504 
3505 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3506 	if (!bctl) {
3507 		ret = -ENOMEM;
3508 		goto out_unlock;
3509 	}
3510 
3511 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3512 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3513 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3514 
3515 	bctl->flags = bargs->flags;
3516 do_balance:
3517 	/*
3518 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3519 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3520 	 * all the way until unmount, in free_fs_info.  The flag should be
3521 	 * cleared after reset_balance_state.
3522 	 */
3523 	need_unlock = false;
3524 
3525 	ret = btrfs_balance(fs_info, bctl, bargs);
3526 	bctl = NULL;
3527 
3528 	if (ret == 0 || ret == -ECANCELED) {
3529 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3530 			ret = -EFAULT;
3531 	}
3532 
3533 	kfree(bctl);
3534 out_unlock:
3535 	mutex_unlock(&fs_info->balance_mutex);
3536 	if (need_unlock)
3537 		btrfs_exclop_finish(fs_info);
3538 out:
3539 	mnt_drop_write_file(file);
3540 	kfree(bargs);
3541 	return ret;
3542 }
3543 
3544 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3545 {
3546 	if (!capable(CAP_SYS_ADMIN))
3547 		return -EPERM;
3548 
3549 	switch (cmd) {
3550 	case BTRFS_BALANCE_CTL_PAUSE:
3551 		return btrfs_pause_balance(fs_info);
3552 	case BTRFS_BALANCE_CTL_CANCEL:
3553 		return btrfs_cancel_balance(fs_info);
3554 	}
3555 
3556 	return -EINVAL;
3557 }
3558 
3559 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3560 					 void __user *arg)
3561 {
3562 	struct btrfs_ioctl_balance_args AUTO_KFREE(bargs);
3563 	int ret = 0;
3564 
3565 	if (!capable(CAP_SYS_ADMIN))
3566 		return -EPERM;
3567 
3568 	mutex_lock(&fs_info->balance_mutex);
3569 	if (!fs_info->balance_ctl) {
3570 		ret = -ENOTCONN;
3571 		goto out;
3572 	}
3573 
3574 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3575 	if (!bargs) {
3576 		ret = -ENOMEM;
3577 		goto out;
3578 	}
3579 
3580 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3581 
3582 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3583 		ret = -EFAULT;
3584 out:
3585 	mutex_unlock(&fs_info->balance_mutex);
3586 	return ret;
3587 }
3588 
3589 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3590 {
3591 	struct inode *inode = file_inode(file);
3592 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3593 	struct btrfs_ioctl_quota_ctl_args *sa;
3594 	int ret;
3595 
3596 	if (!capable(CAP_SYS_ADMIN))
3597 		return -EPERM;
3598 
3599 	ret = mnt_want_write_file(file);
3600 	if (ret)
3601 		return ret;
3602 
3603 	sa = memdup_user(arg, sizeof(*sa));
3604 	if (IS_ERR(sa)) {
3605 		ret = PTR_ERR(sa);
3606 		goto drop_write;
3607 	}
3608 
3609 	switch (sa->cmd) {
3610 	case BTRFS_QUOTA_CTL_ENABLE:
3611 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3612 		down_write(&fs_info->subvol_sem);
3613 		ret = btrfs_quota_enable(fs_info, sa);
3614 		up_write(&fs_info->subvol_sem);
3615 		break;
3616 	case BTRFS_QUOTA_CTL_DISABLE:
3617 		/*
3618 		 * Lock the cleaner mutex to prevent races with concurrent
3619 		 * relocation, because relocation may be building backrefs for
3620 		 * blocks of the quota root while we are deleting the root. This
3621 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3622 		 * need the same protection.
3623 		 *
3624 		 * This also prevents races between concurrent tasks trying to
3625 		 * disable quotas, because we will unlock and relock
3626 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3627 		 *
3628 		 * We take this here because we have the dependency of
3629 		 *
3630 		 * inode_lock -> subvol_sem
3631 		 *
3632 		 * because of rename.  With relocation we can prealloc extents,
3633 		 * so that makes the dependency chain
3634 		 *
3635 		 * cleaner_mutex -> inode_lock -> subvol_sem
3636 		 *
3637 		 * so we must take the cleaner_mutex here before we take the
3638 		 * subvol_sem.  The deadlock can't actually happen, but this
3639 		 * quiets lockdep.
3640 		 */
3641 		mutex_lock(&fs_info->cleaner_mutex);
3642 		down_write(&fs_info->subvol_sem);
3643 		ret = btrfs_quota_disable(fs_info);
3644 		up_write(&fs_info->subvol_sem);
3645 		mutex_unlock(&fs_info->cleaner_mutex);
3646 		break;
3647 	default:
3648 		ret = -EINVAL;
3649 		break;
3650 	}
3651 
3652 	kfree(sa);
3653 drop_write:
3654 	mnt_drop_write_file(file);
3655 	return ret;
3656 }
3657 
3658 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3659 {
3660 	struct inode *inode = file_inode(file);
3661 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3662 	struct btrfs_root *root = BTRFS_I(inode)->root;
3663 	struct btrfs_ioctl_qgroup_assign_args *sa;
3664 	struct btrfs_qgroup_list *prealloc = NULL;
3665 	struct btrfs_trans_handle *trans;
3666 	int ret;
3667 	int err;
3668 
3669 	if (!capable(CAP_SYS_ADMIN))
3670 		return -EPERM;
3671 
3672 	if (!btrfs_qgroup_enabled(fs_info))
3673 		return -ENOTCONN;
3674 
3675 	ret = mnt_want_write_file(file);
3676 	if (ret)
3677 		return ret;
3678 
3679 	sa = memdup_user(arg, sizeof(*sa));
3680 	if (IS_ERR(sa)) {
3681 		ret = PTR_ERR(sa);
3682 		goto drop_write;
3683 	}
3684 
3685 	if (sa->assign) {
3686 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3687 		if (!prealloc) {
3688 			ret = -ENOMEM;
3689 			goto out;
3690 		}
3691 	}
3692 
3693 	trans = btrfs_join_transaction(root);
3694 	if (IS_ERR(trans)) {
3695 		ret = PTR_ERR(trans);
3696 		goto out;
3697 	}
3698 
3699 	/*
3700 	 * Prealloc ownership is moved to the relation handler, there it's used
3701 	 * or freed on error.
3702 	 */
3703 	if (sa->assign) {
3704 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3705 		prealloc = NULL;
3706 	} else {
3707 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3708 	}
3709 
3710 	/* update qgroup status and info */
3711 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3712 	err = btrfs_run_qgroups(trans);
3713 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3714 	if (err < 0)
3715 		btrfs_warn(fs_info,
3716 			   "qgroup status update failed after %s relation, marked as inconsistent",
3717 			   sa->assign ? "adding" : "deleting");
3718 	err = btrfs_end_transaction(trans);
3719 	if (err && !ret)
3720 		ret = err;
3721 
3722 out:
3723 	kfree(prealloc);
3724 	kfree(sa);
3725 drop_write:
3726 	mnt_drop_write_file(file);
3727 	return ret;
3728 }
3729 
3730 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3731 {
3732 	struct inode *inode = file_inode(file);
3733 	struct btrfs_root *root = BTRFS_I(inode)->root;
3734 	struct btrfs_ioctl_qgroup_create_args *sa;
3735 	struct btrfs_trans_handle *trans;
3736 	int ret;
3737 	int err;
3738 
3739 	if (!capable(CAP_SYS_ADMIN))
3740 		return -EPERM;
3741 
3742 	if (!btrfs_qgroup_enabled(root->fs_info))
3743 		return -ENOTCONN;
3744 
3745 	ret = mnt_want_write_file(file);
3746 	if (ret)
3747 		return ret;
3748 
3749 	sa = memdup_user(arg, sizeof(*sa));
3750 	if (IS_ERR(sa)) {
3751 		ret = PTR_ERR(sa);
3752 		goto drop_write;
3753 	}
3754 
3755 	if (!sa->qgroupid) {
3756 		ret = -EINVAL;
3757 		goto out;
3758 	}
3759 
3760 	if (sa->create && btrfs_is_fstree(sa->qgroupid)) {
3761 		ret = -EINVAL;
3762 		goto out;
3763 	}
3764 
3765 	trans = btrfs_join_transaction(root);
3766 	if (IS_ERR(trans)) {
3767 		ret = PTR_ERR(trans);
3768 		goto out;
3769 	}
3770 
3771 	if (sa->create) {
3772 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3773 	} else {
3774 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3775 	}
3776 
3777 	err = btrfs_end_transaction(trans);
3778 	if (err && !ret)
3779 		ret = err;
3780 
3781 out:
3782 	kfree(sa);
3783 drop_write:
3784 	mnt_drop_write_file(file);
3785 	return ret;
3786 }
3787 
3788 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3789 {
3790 	struct inode *inode = file_inode(file);
3791 	struct btrfs_root *root = BTRFS_I(inode)->root;
3792 	struct btrfs_ioctl_qgroup_limit_args *sa;
3793 	struct btrfs_trans_handle *trans;
3794 	int ret;
3795 	int err;
3796 	u64 qgroupid;
3797 
3798 	if (!capable(CAP_SYS_ADMIN))
3799 		return -EPERM;
3800 
3801 	if (!btrfs_qgroup_enabled(root->fs_info))
3802 		return -ENOTCONN;
3803 
3804 	ret = mnt_want_write_file(file);
3805 	if (ret)
3806 		return ret;
3807 
3808 	sa = memdup_user(arg, sizeof(*sa));
3809 	if (IS_ERR(sa)) {
3810 		ret = PTR_ERR(sa);
3811 		goto drop_write;
3812 	}
3813 
3814 	trans = btrfs_join_transaction(root);
3815 	if (IS_ERR(trans)) {
3816 		ret = PTR_ERR(trans);
3817 		goto out;
3818 	}
3819 
3820 	qgroupid = sa->qgroupid;
3821 	if (!qgroupid) {
3822 		/* take the current subvol as qgroup */
3823 		qgroupid = btrfs_root_id(root);
3824 	}
3825 
3826 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3827 
3828 	err = btrfs_end_transaction(trans);
3829 	if (err && !ret)
3830 		ret = err;
3831 
3832 out:
3833 	kfree(sa);
3834 drop_write:
3835 	mnt_drop_write_file(file);
3836 	return ret;
3837 }
3838 
3839 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3840 {
3841 	struct inode *inode = file_inode(file);
3842 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3843 	struct btrfs_ioctl_quota_rescan_args *qsa;
3844 	int ret;
3845 
3846 	if (!capable(CAP_SYS_ADMIN))
3847 		return -EPERM;
3848 
3849 	if (!btrfs_qgroup_enabled(fs_info))
3850 		return -ENOTCONN;
3851 
3852 	ret = mnt_want_write_file(file);
3853 	if (ret)
3854 		return ret;
3855 
3856 	qsa = memdup_user(arg, sizeof(*qsa));
3857 	if (IS_ERR(qsa)) {
3858 		ret = PTR_ERR(qsa);
3859 		goto drop_write;
3860 	}
3861 
3862 	if (qsa->flags) {
3863 		ret = -EINVAL;
3864 		goto out;
3865 	}
3866 
3867 	ret = btrfs_qgroup_rescan(fs_info);
3868 
3869 out:
3870 	kfree(qsa);
3871 drop_write:
3872 	mnt_drop_write_file(file);
3873 	return ret;
3874 }
3875 
3876 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3877 						void __user *arg)
3878 {
3879 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3880 
3881 	if (!capable(CAP_SYS_ADMIN))
3882 		return -EPERM;
3883 
3884 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3885 		qsa.flags = 1;
3886 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3887 	}
3888 
3889 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3890 		return -EFAULT;
3891 
3892 	return 0;
3893 }
3894 
3895 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3896 {
3897 	if (!capable(CAP_SYS_ADMIN))
3898 		return -EPERM;
3899 
3900 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3901 }
3902 
3903 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3904 					    struct mnt_idmap *idmap,
3905 					    struct btrfs_ioctl_received_subvol_args *sa)
3906 {
3907 	struct inode *inode = file_inode(file);
3908 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3909 	struct btrfs_root *root = BTRFS_I(inode)->root;
3910 	struct btrfs_root_item *root_item = &root->root_item;
3911 	struct btrfs_trans_handle *trans;
3912 	struct timespec64 ct = current_time(inode);
3913 	int ret = 0;
3914 	int received_uuid_changed;
3915 
3916 	if (!inode_owner_or_capable(idmap, inode))
3917 		return -EPERM;
3918 
3919 	ret = mnt_want_write_file(file);
3920 	if (ret < 0)
3921 		return ret;
3922 
3923 	down_write(&fs_info->subvol_sem);
3924 
3925 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3926 		ret = -EINVAL;
3927 		goto out;
3928 	}
3929 
3930 	if (btrfs_root_readonly(root)) {
3931 		ret = -EROFS;
3932 		goto out;
3933 	}
3934 
3935 	/*
3936 	 * 1 - root item
3937 	 * 2 - uuid items (received uuid + subvol uuid)
3938 	 */
3939 	trans = btrfs_start_transaction(root, 3);
3940 	if (IS_ERR(trans)) {
3941 		ret = PTR_ERR(trans);
3942 		trans = NULL;
3943 		goto out;
3944 	}
3945 
3946 	sa->rtransid = trans->transid;
3947 	sa->rtime.sec = ct.tv_sec;
3948 	sa->rtime.nsec = ct.tv_nsec;
3949 
3950 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3951 				       BTRFS_UUID_SIZE);
3952 	if (received_uuid_changed &&
3953 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3954 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3955 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3956 					  btrfs_root_id(root));
3957 		if (unlikely(ret && ret != -ENOENT)) {
3958 		        btrfs_abort_transaction(trans, ret);
3959 		        btrfs_end_transaction(trans);
3960 		        goto out;
3961 		}
3962 	}
3963 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3964 	btrfs_set_root_stransid(root_item, sa->stransid);
3965 	btrfs_set_root_rtransid(root_item, sa->rtransid);
3966 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3967 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3968 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3969 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3970 
3971 	ret = btrfs_update_root(trans, fs_info->tree_root,
3972 				&root->root_key, &root->root_item);
3973 	if (ret < 0) {
3974 		btrfs_end_transaction(trans);
3975 		goto out;
3976 	}
3977 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3978 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
3979 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3980 					  btrfs_root_id(root));
3981 		if (unlikely(ret < 0 && ret != -EEXIST)) {
3982 			btrfs_abort_transaction(trans, ret);
3983 			btrfs_end_transaction(trans);
3984 			goto out;
3985 		}
3986 	}
3987 	ret = btrfs_commit_transaction(trans);
3988 out:
3989 	up_write(&fs_info->subvol_sem);
3990 	mnt_drop_write_file(file);
3991 	return ret;
3992 }
3993 
3994 #ifdef CONFIG_64BIT
3995 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
3996 						void __user *arg)
3997 {
3998 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
3999 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4000 	int ret = 0;
4001 
4002 	args32 = memdup_user(arg, sizeof(*args32));
4003 	if (IS_ERR(args32))
4004 		return PTR_ERR(args32);
4005 
4006 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4007 	if (!args64) {
4008 		ret = -ENOMEM;
4009 		goto out;
4010 	}
4011 
4012 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4013 	args64->stransid = args32->stransid;
4014 	args64->rtransid = args32->rtransid;
4015 	args64->stime.sec = args32->stime.sec;
4016 	args64->stime.nsec = args32->stime.nsec;
4017 	args64->rtime.sec = args32->rtime.sec;
4018 	args64->rtime.nsec = args32->rtime.nsec;
4019 	args64->flags = args32->flags;
4020 
4021 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4022 	if (ret)
4023 		goto out;
4024 
4025 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4026 	args32->stransid = args64->stransid;
4027 	args32->rtransid = args64->rtransid;
4028 	args32->stime.sec = args64->stime.sec;
4029 	args32->stime.nsec = args64->stime.nsec;
4030 	args32->rtime.sec = args64->rtime.sec;
4031 	args32->rtime.nsec = args64->rtime.nsec;
4032 	args32->flags = args64->flags;
4033 
4034 	ret = copy_to_user(arg, args32, sizeof(*args32));
4035 	if (ret)
4036 		ret = -EFAULT;
4037 
4038 out:
4039 	kfree(args32);
4040 	kfree(args64);
4041 	return ret;
4042 }
4043 #endif
4044 
4045 static long btrfs_ioctl_set_received_subvol(struct file *file,
4046 					    void __user *arg)
4047 {
4048 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4049 	int ret = 0;
4050 
4051 	sa = memdup_user(arg, sizeof(*sa));
4052 	if (IS_ERR(sa))
4053 		return PTR_ERR(sa);
4054 
4055 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4056 
4057 	if (ret)
4058 		goto out;
4059 
4060 	ret = copy_to_user(arg, sa, sizeof(*sa));
4061 	if (ret)
4062 		ret = -EFAULT;
4063 
4064 out:
4065 	kfree(sa);
4066 	return ret;
4067 }
4068 
4069 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4070 					void __user *arg)
4071 {
4072 	size_t len;
4073 	int ret;
4074 	char label[BTRFS_LABEL_SIZE];
4075 
4076 	spin_lock(&fs_info->super_lock);
4077 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4078 	spin_unlock(&fs_info->super_lock);
4079 
4080 	len = strnlen(label, BTRFS_LABEL_SIZE);
4081 
4082 	if (len == BTRFS_LABEL_SIZE) {
4083 		btrfs_warn(fs_info,
4084 			   "label is too long, return the first %zu bytes",
4085 			   --len);
4086 	}
4087 
4088 	ret = copy_to_user(arg, label, len);
4089 
4090 	return ret ? -EFAULT : 0;
4091 }
4092 
4093 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4094 {
4095 	struct inode *inode = file_inode(file);
4096 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4097 	struct btrfs_root *root = BTRFS_I(inode)->root;
4098 	struct btrfs_super_block *super_block = fs_info->super_copy;
4099 	struct btrfs_trans_handle *trans;
4100 	char label[BTRFS_LABEL_SIZE];
4101 	int ret;
4102 
4103 	if (!capable(CAP_SYS_ADMIN))
4104 		return -EPERM;
4105 
4106 	if (copy_from_user(label, arg, sizeof(label)))
4107 		return -EFAULT;
4108 
4109 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4110 		btrfs_err(fs_info,
4111 			  "unable to set label with more than %d bytes",
4112 			  BTRFS_LABEL_SIZE - 1);
4113 		return -EINVAL;
4114 	}
4115 
4116 	ret = mnt_want_write_file(file);
4117 	if (ret)
4118 		return ret;
4119 
4120 	trans = btrfs_start_transaction(root, 0);
4121 	if (IS_ERR(trans)) {
4122 		ret = PTR_ERR(trans);
4123 		goto out_unlock;
4124 	}
4125 
4126 	spin_lock(&fs_info->super_lock);
4127 	strscpy(super_block->label, label);
4128 	spin_unlock(&fs_info->super_lock);
4129 	ret = btrfs_commit_transaction(trans);
4130 
4131 out_unlock:
4132 	mnt_drop_write_file(file);
4133 	return ret;
4134 }
4135 
4136 #define INIT_FEATURE_FLAGS(suffix) \
4137 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4138 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4139 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4140 
4141 int btrfs_ioctl_get_supported_features(void __user *arg)
4142 {
4143 	static const struct btrfs_ioctl_feature_flags features[3] = {
4144 		INIT_FEATURE_FLAGS(SUPP),
4145 		INIT_FEATURE_FLAGS(SAFE_SET),
4146 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4147 	};
4148 
4149 	if (copy_to_user(arg, &features, sizeof(features)))
4150 		return -EFAULT;
4151 
4152 	return 0;
4153 }
4154 
4155 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4156 					void __user *arg)
4157 {
4158 	struct btrfs_super_block *super_block = fs_info->super_copy;
4159 	struct btrfs_ioctl_feature_flags features;
4160 
4161 	features.compat_flags = btrfs_super_compat_flags(super_block);
4162 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4163 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4164 
4165 	if (copy_to_user(arg, &features, sizeof(features)))
4166 		return -EFAULT;
4167 
4168 	return 0;
4169 }
4170 
4171 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4172 			      enum btrfs_feature_set set,
4173 			      u64 change_mask, u64 flags, u64 supported_flags,
4174 			      u64 safe_set, u64 safe_clear)
4175 {
4176 	const char *type = btrfs_feature_set_name(set);
4177 	const char AUTO_KFREE(names);
4178 	u64 disallowed, unsupported;
4179 	u64 set_mask = flags & change_mask;
4180 	u64 clear_mask = ~flags & change_mask;
4181 
4182 	unsupported = set_mask & ~supported_flags;
4183 	if (unsupported) {
4184 		names = btrfs_printable_features(set, unsupported);
4185 		if (names)
4186 			btrfs_warn(fs_info,
4187 				   "this kernel does not support the %s feature bit%s",
4188 				   names, strchr(names, ',') ? "s" : "");
4189 		else
4190 			btrfs_warn(fs_info,
4191 				   "this kernel does not support %s bits 0x%llx",
4192 				   type, unsupported);
4193 		return -EOPNOTSUPP;
4194 	}
4195 
4196 	disallowed = set_mask & ~safe_set;
4197 	if (disallowed) {
4198 		names = btrfs_printable_features(set, disallowed);
4199 		if (names)
4200 			btrfs_warn(fs_info,
4201 				   "can't set the %s feature bit%s while mounted",
4202 				   names, strchr(names, ',') ? "s" : "");
4203 		else
4204 			btrfs_warn(fs_info,
4205 				   "can't set %s bits 0x%llx while mounted",
4206 				   type, disallowed);
4207 		return -EPERM;
4208 	}
4209 
4210 	disallowed = clear_mask & ~safe_clear;
4211 	if (disallowed) {
4212 		names = btrfs_printable_features(set, disallowed);
4213 		if (names)
4214 			btrfs_warn(fs_info,
4215 				   "can't clear the %s feature bit%s while mounted",
4216 				   names, strchr(names, ',') ? "s" : "");
4217 		else
4218 			btrfs_warn(fs_info,
4219 				   "can't clear %s bits 0x%llx while mounted",
4220 				   type, disallowed);
4221 		return -EPERM;
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4228 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4229 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4230 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4231 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4232 
4233 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4234 {
4235 	struct inode *inode = file_inode(file);
4236 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4237 	struct btrfs_root *root = BTRFS_I(inode)->root;
4238 	struct btrfs_super_block *super_block = fs_info->super_copy;
4239 	struct btrfs_ioctl_feature_flags flags[2];
4240 	struct btrfs_trans_handle *trans;
4241 	u64 newflags;
4242 	int ret;
4243 
4244 	if (!capable(CAP_SYS_ADMIN))
4245 		return -EPERM;
4246 
4247 	if (copy_from_user(flags, arg, sizeof(flags)))
4248 		return -EFAULT;
4249 
4250 	/* Nothing to do */
4251 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4252 	    !flags[0].incompat_flags)
4253 		return 0;
4254 
4255 	ret = check_feature(fs_info, flags[0].compat_flags,
4256 			    flags[1].compat_flags, COMPAT);
4257 	if (ret)
4258 		return ret;
4259 
4260 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4261 			    flags[1].compat_ro_flags, COMPAT_RO);
4262 	if (ret)
4263 		return ret;
4264 
4265 	ret = check_feature(fs_info, flags[0].incompat_flags,
4266 			    flags[1].incompat_flags, INCOMPAT);
4267 	if (ret)
4268 		return ret;
4269 
4270 	ret = mnt_want_write_file(file);
4271 	if (ret)
4272 		return ret;
4273 
4274 	trans = btrfs_start_transaction(root, 0);
4275 	if (IS_ERR(trans)) {
4276 		ret = PTR_ERR(trans);
4277 		goto out_drop_write;
4278 	}
4279 
4280 	spin_lock(&fs_info->super_lock);
4281 	newflags = btrfs_super_compat_flags(super_block);
4282 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4283 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4284 	btrfs_set_super_compat_flags(super_block, newflags);
4285 
4286 	newflags = btrfs_super_compat_ro_flags(super_block);
4287 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4288 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4289 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4290 
4291 	newflags = btrfs_super_incompat_flags(super_block);
4292 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4293 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4294 	btrfs_set_super_incompat_flags(super_block, newflags);
4295 	spin_unlock(&fs_info->super_lock);
4296 
4297 	ret = btrfs_commit_transaction(trans);
4298 out_drop_write:
4299 	mnt_drop_write_file(file);
4300 
4301 	return ret;
4302 }
4303 
4304 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4305 {
4306 	struct btrfs_ioctl_send_args *arg;
4307 	int ret;
4308 
4309 	if (compat) {
4310 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4311 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4312 
4313 		ret = copy_from_user(&args32, argp, sizeof(args32));
4314 		if (ret)
4315 			return -EFAULT;
4316 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4317 		if (!arg)
4318 			return -ENOMEM;
4319 		arg->send_fd = args32.send_fd;
4320 		arg->clone_sources_count = args32.clone_sources_count;
4321 		arg->clone_sources = compat_ptr(args32.clone_sources);
4322 		arg->parent_root = args32.parent_root;
4323 		arg->flags = args32.flags;
4324 		arg->version = args32.version;
4325 		memcpy(arg->reserved, args32.reserved,
4326 		       sizeof(args32.reserved));
4327 #else
4328 		return -ENOTTY;
4329 #endif
4330 	} else {
4331 		arg = memdup_user(argp, sizeof(*arg));
4332 		if (IS_ERR(arg))
4333 			return PTR_ERR(arg);
4334 	}
4335 	ret = btrfs_ioctl_send(root, arg);
4336 	kfree(arg);
4337 	return ret;
4338 }
4339 
4340 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4341 				    bool compat)
4342 {
4343 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4344 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4345 					     flags);
4346 	size_t copy_end;
4347 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4348 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4349 	struct extent_io_tree *io_tree = &inode->io_tree;
4350 	struct iovec iovstack[UIO_FASTIOV];
4351 	struct iovec *iov = iovstack;
4352 	struct iov_iter iter;
4353 	loff_t pos;
4354 	struct kiocb kiocb;
4355 	ssize_t ret;
4356 	u64 disk_bytenr, disk_io_size;
4357 	struct extent_state *cached_state = NULL;
4358 
4359 	if (!capable(CAP_SYS_ADMIN)) {
4360 		ret = -EPERM;
4361 		goto out_acct;
4362 	}
4363 
4364 	if (compat) {
4365 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4366 		struct btrfs_ioctl_encoded_io_args_32 args32;
4367 
4368 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4369 				       flags);
4370 		if (copy_from_user(&args32, argp, copy_end)) {
4371 			ret = -EFAULT;
4372 			goto out_acct;
4373 		}
4374 		args.iov = compat_ptr(args32.iov);
4375 		args.iovcnt = args32.iovcnt;
4376 		args.offset = args32.offset;
4377 		args.flags = args32.flags;
4378 #else
4379 		return -ENOTTY;
4380 #endif
4381 	} else {
4382 		copy_end = copy_end_kernel;
4383 		if (copy_from_user(&args, argp, copy_end)) {
4384 			ret = -EFAULT;
4385 			goto out_acct;
4386 		}
4387 	}
4388 	if (args.flags != 0) {
4389 		ret = -EINVAL;
4390 		goto out_acct;
4391 	}
4392 
4393 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4394 			   &iov, &iter);
4395 	if (ret < 0)
4396 		goto out_acct;
4397 
4398 	if (iov_iter_count(&iter) == 0) {
4399 		ret = 0;
4400 		goto out_iov;
4401 	}
4402 	pos = args.offset;
4403 	ret = rw_verify_area(READ, file, &pos, args.len);
4404 	if (ret < 0)
4405 		goto out_iov;
4406 
4407 	init_sync_kiocb(&kiocb, file);
4408 	kiocb.ki_pos = pos;
4409 
4410 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4411 				 &disk_bytenr, &disk_io_size);
4412 
4413 	if (ret == -EIOCBQUEUED) {
4414 		bool unlocked = false;
4415 		u64 start, lockend, count;
4416 
4417 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4418 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4419 
4420 		if (args.compression)
4421 			count = disk_io_size;
4422 		else
4423 			count = args.len;
4424 
4425 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4426 						 &cached_state, disk_bytenr,
4427 						 disk_io_size, count,
4428 						 args.compression, &unlocked);
4429 
4430 		if (!unlocked) {
4431 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4432 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4433 		}
4434 	}
4435 
4436 	if (ret >= 0) {
4437 		fsnotify_access(file);
4438 		if (copy_to_user(argp + copy_end,
4439 				 (char *)&args + copy_end_kernel,
4440 				 sizeof(args) - copy_end_kernel))
4441 			ret = -EFAULT;
4442 	}
4443 
4444 out_iov:
4445 	kfree(iov);
4446 out_acct:
4447 	if (ret > 0)
4448 		add_rchar(current, ret);
4449 	inc_syscr(current);
4450 	return ret;
4451 }
4452 
4453 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4454 {
4455 	struct btrfs_ioctl_encoded_io_args args;
4456 	struct iovec iovstack[UIO_FASTIOV];
4457 	struct iovec *iov = iovstack;
4458 	struct iov_iter iter;
4459 	loff_t pos;
4460 	struct kiocb kiocb;
4461 	ssize_t ret;
4462 
4463 	if (!capable(CAP_SYS_ADMIN)) {
4464 		ret = -EPERM;
4465 		goto out_acct;
4466 	}
4467 
4468 	if (!(file->f_mode & FMODE_WRITE)) {
4469 		ret = -EBADF;
4470 		goto out_acct;
4471 	}
4472 
4473 	if (compat) {
4474 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4475 		struct btrfs_ioctl_encoded_io_args_32 args32;
4476 
4477 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4478 			ret = -EFAULT;
4479 			goto out_acct;
4480 		}
4481 		args.iov = compat_ptr(args32.iov);
4482 		args.iovcnt = args32.iovcnt;
4483 		args.offset = args32.offset;
4484 		args.flags = args32.flags;
4485 		args.len = args32.len;
4486 		args.unencoded_len = args32.unencoded_len;
4487 		args.unencoded_offset = args32.unencoded_offset;
4488 		args.compression = args32.compression;
4489 		args.encryption = args32.encryption;
4490 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4491 #else
4492 		return -ENOTTY;
4493 #endif
4494 	} else {
4495 		if (copy_from_user(&args, argp, sizeof(args))) {
4496 			ret = -EFAULT;
4497 			goto out_acct;
4498 		}
4499 	}
4500 
4501 	ret = -EINVAL;
4502 	if (args.flags != 0)
4503 		goto out_acct;
4504 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4505 		goto out_acct;
4506 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4507 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4508 		goto out_acct;
4509 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4510 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4511 		goto out_acct;
4512 	if (args.unencoded_offset > args.unencoded_len)
4513 		goto out_acct;
4514 	if (args.len > args.unencoded_len - args.unencoded_offset)
4515 		goto out_acct;
4516 
4517 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4518 			   &iov, &iter);
4519 	if (ret < 0)
4520 		goto out_acct;
4521 
4522 	if (iov_iter_count(&iter) == 0) {
4523 		ret = 0;
4524 		goto out_iov;
4525 	}
4526 	pos = args.offset;
4527 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4528 	if (ret < 0)
4529 		goto out_iov;
4530 
4531 	init_sync_kiocb(&kiocb, file);
4532 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4533 	if (ret)
4534 		goto out_iov;
4535 	kiocb.ki_pos = pos;
4536 
4537 	file_start_write(file);
4538 
4539 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4540 	if (ret > 0)
4541 		fsnotify_modify(file);
4542 
4543 	file_end_write(file);
4544 out_iov:
4545 	kfree(iov);
4546 out_acct:
4547 	if (ret > 0)
4548 		add_wchar(current, ret);
4549 	inc_syscw(current);
4550 	return ret;
4551 }
4552 
4553 struct btrfs_uring_encoded_data {
4554 	struct btrfs_ioctl_encoded_io_args args;
4555 	struct iovec iovstack[UIO_FASTIOV];
4556 	struct iovec *iov;
4557 	struct iov_iter iter;
4558 };
4559 
4560 /*
4561  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4562  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4563  * off and cleanup the I/O in btrfs_uring_read_finished.
4564  */
4565 struct btrfs_uring_priv {
4566 	struct io_uring_cmd *cmd;
4567 	struct page **pages;
4568 	unsigned long nr_pages;
4569 	struct kiocb iocb;
4570 	struct iovec *iov;
4571 	struct iov_iter iter;
4572 	struct extent_state *cached_state;
4573 	u64 count;
4574 	u64 start;
4575 	u64 lockend;
4576 	int err;
4577 	bool compressed;
4578 };
4579 
4580 struct io_btrfs_cmd {
4581 	struct btrfs_uring_encoded_data *data;
4582 	struct btrfs_uring_priv *priv;
4583 };
4584 
4585 static void btrfs_uring_read_finished(struct io_tw_req tw_req, io_tw_token_t tw)
4586 {
4587 	struct io_uring_cmd *cmd = io_uring_cmd_from_tw(tw_req);
4588 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4589 	struct btrfs_uring_priv *priv = bc->priv;
4590 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4591 	struct extent_io_tree *io_tree = &inode->io_tree;
4592 	pgoff_t index;
4593 	u64 cur;
4594 	size_t page_offset;
4595 	ssize_t ret;
4596 
4597 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4598 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4599 
4600 	if (priv->err) {
4601 		ret = priv->err;
4602 		goto out;
4603 	}
4604 
4605 	if (priv->compressed) {
4606 		index = 0;
4607 		page_offset = 0;
4608 	} else {
4609 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4610 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4611 	}
4612 	cur = 0;
4613 	while (cur < priv->count) {
4614 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4615 
4616 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4617 				      &priv->iter) != bytes) {
4618 			ret = -EFAULT;
4619 			goto out;
4620 		}
4621 
4622 		index++;
4623 		cur += bytes;
4624 		page_offset = 0;
4625 	}
4626 	ret = priv->count;
4627 
4628 out:
4629 	btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4630 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4631 
4632 	io_uring_cmd_done(cmd, ret, IO_URING_CMD_TASK_WORK_ISSUE_FLAGS);
4633 	add_rchar(current, ret);
4634 
4635 	for (index = 0; index < priv->nr_pages; index++)
4636 		__free_page(priv->pages[index]);
4637 
4638 	kfree(priv->pages);
4639 	kfree(priv->iov);
4640 	kfree(priv);
4641 	kfree(bc->data);
4642 }
4643 
4644 void btrfs_uring_read_extent_endio(void *ctx, int err)
4645 {
4646 	struct btrfs_uring_priv *priv = ctx;
4647 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4648 
4649 	priv->err = err;
4650 	bc->priv = priv;
4651 
4652 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4653 }
4654 
4655 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4656 				   u64 start, u64 lockend,
4657 				   struct extent_state *cached_state,
4658 				   u64 disk_bytenr, u64 disk_io_size,
4659 				   size_t count, bool compressed,
4660 				   struct iovec *iov, struct io_uring_cmd *cmd)
4661 {
4662 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4663 	struct extent_io_tree *io_tree = &inode->io_tree;
4664 	struct page **pages;
4665 	struct btrfs_uring_priv *priv = NULL;
4666 	unsigned long nr_pages;
4667 	int ret;
4668 
4669 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4670 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4671 	if (!pages)
4672 		return -ENOMEM;
4673 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4674 	if (ret) {
4675 		ret = -ENOMEM;
4676 		goto out_fail;
4677 	}
4678 
4679 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4680 	if (!priv) {
4681 		ret = -ENOMEM;
4682 		goto out_fail;
4683 	}
4684 
4685 	priv->iocb = *iocb;
4686 	priv->iov = iov;
4687 	priv->iter = *iter;
4688 	priv->count = count;
4689 	priv->cmd = cmd;
4690 	priv->cached_state = cached_state;
4691 	priv->compressed = compressed;
4692 	priv->nr_pages = nr_pages;
4693 	priv->pages = pages;
4694 	priv->start = start;
4695 	priv->lockend = lockend;
4696 	priv->err = 0;
4697 
4698 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4699 						    disk_io_size, pages, priv);
4700 	if (ret && ret != -EIOCBQUEUED)
4701 		goto out_fail;
4702 
4703 	/*
4704 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4705 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4706 	 * and inode and freeing the allocations.
4707 	 */
4708 
4709 	/*
4710 	 * We're returning to userspace with the inode lock held, and that's
4711 	 * okay - it'll get unlocked in a worker thread.  Call
4712 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4713 	 */
4714 	btrfs_lockdep_inode_release(inode, i_rwsem);
4715 
4716 	return -EIOCBQUEUED;
4717 
4718 out_fail:
4719 	btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4720 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4721 	kfree(priv);
4722 	return ret;
4723 }
4724 
4725 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4726 {
4727 	struct file *file = cmd->file;
4728 	struct btrfs_inode *inode = BTRFS_I(file->f_inode);
4729 	struct extent_io_tree *io_tree = &inode->io_tree;
4730 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4731 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4732 	size_t copy_end;
4733 	int ret;
4734 	u64 disk_bytenr, disk_io_size;
4735 	loff_t pos;
4736 	struct kiocb kiocb;
4737 	struct extent_state *cached_state = NULL;
4738 	u64 start, lockend;
4739 	void __user *sqe_addr;
4740 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4741 	struct btrfs_uring_encoded_data *data = NULL;
4742 
4743 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4744 		data = bc->data;
4745 
4746 	if (!capable(CAP_SYS_ADMIN)) {
4747 		ret = -EPERM;
4748 		goto out_acct;
4749 	}
4750 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4751 
4752 	if (issue_flags & IO_URING_F_COMPAT) {
4753 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4754 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4755 #else
4756 		ret = -ENOTTY;
4757 		goto out_acct;
4758 #endif
4759 	} else {
4760 		copy_end = copy_end_kernel;
4761 	}
4762 
4763 	if (!data) {
4764 		data = kzalloc(sizeof(*data), GFP_NOFS);
4765 		if (!data) {
4766 			ret = -ENOMEM;
4767 			goto out_acct;
4768 		}
4769 
4770 		bc->data = data;
4771 
4772 		if (issue_flags & IO_URING_F_COMPAT) {
4773 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4774 			struct btrfs_ioctl_encoded_io_args_32 args32;
4775 
4776 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4777 				ret = -EFAULT;
4778 				goto out_acct;
4779 			}
4780 
4781 			data->args.iov = compat_ptr(args32.iov);
4782 			data->args.iovcnt = args32.iovcnt;
4783 			data->args.offset = args32.offset;
4784 			data->args.flags = args32.flags;
4785 #endif
4786 		} else {
4787 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4788 				ret = -EFAULT;
4789 				goto out_acct;
4790 			}
4791 		}
4792 
4793 		if (data->args.flags != 0) {
4794 			ret = -EINVAL;
4795 			goto out_acct;
4796 		}
4797 
4798 		data->iov = data->iovstack;
4799 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4800 				   ARRAY_SIZE(data->iovstack), &data->iov,
4801 				   &data->iter);
4802 		if (ret < 0)
4803 			goto out_acct;
4804 
4805 		if (iov_iter_count(&data->iter) == 0) {
4806 			ret = 0;
4807 			goto out_free;
4808 		}
4809 	}
4810 
4811 	pos = data->args.offset;
4812 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4813 	if (ret < 0)
4814 		goto out_free;
4815 
4816 	init_sync_kiocb(&kiocb, file);
4817 	kiocb.ki_pos = pos;
4818 
4819 	if (issue_flags & IO_URING_F_NONBLOCK)
4820 		kiocb.ki_flags |= IOCB_NOWAIT;
4821 
4822 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4823 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4824 
4825 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4826 				 &disk_bytenr, &disk_io_size);
4827 	if (ret == -EAGAIN)
4828 		goto out_acct;
4829 	if (ret < 0 && ret != -EIOCBQUEUED)
4830 		goto out_free;
4831 
4832 	file_accessed(file);
4833 
4834 	if (copy_to_user(sqe_addr + copy_end,
4835 			 (const char *)&data->args + copy_end_kernel,
4836 			 sizeof(data->args) - copy_end_kernel)) {
4837 		if (ret == -EIOCBQUEUED) {
4838 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4839 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4840 		}
4841 		ret = -EFAULT;
4842 		goto out_free;
4843 	}
4844 
4845 	if (ret == -EIOCBQUEUED) {
4846 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4847 
4848 		/* Match ioctl by not returning past EOF if uncompressed. */
4849 		if (!data->args.compression)
4850 			count = min_t(u64, count, data->args.len);
4851 
4852 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4853 					      cached_state, disk_bytenr, disk_io_size,
4854 					      count, data->args.compression,
4855 					      data->iov, cmd);
4856 
4857 		goto out_acct;
4858 	}
4859 
4860 out_free:
4861 	kfree(data->iov);
4862 
4863 out_acct:
4864 	if (ret > 0)
4865 		add_rchar(current, ret);
4866 	inc_syscr(current);
4867 
4868 	if (ret != -EIOCBQUEUED && ret != -EAGAIN)
4869 		kfree(data);
4870 
4871 	return ret;
4872 }
4873 
4874 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4875 {
4876 	struct file *file = cmd->file;
4877 	loff_t pos;
4878 	struct kiocb kiocb;
4879 	ssize_t ret;
4880 	void __user *sqe_addr;
4881 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4882 	struct btrfs_uring_encoded_data *data = NULL;
4883 
4884 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4885 		data = bc->data;
4886 
4887 	if (!capable(CAP_SYS_ADMIN)) {
4888 		ret = -EPERM;
4889 		goto out_acct;
4890 	}
4891 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4892 
4893 	if (!(file->f_mode & FMODE_WRITE)) {
4894 		ret = -EBADF;
4895 		goto out_acct;
4896 	}
4897 
4898 	if (!data) {
4899 		data = kzalloc(sizeof(*data), GFP_NOFS);
4900 		if (!data) {
4901 			ret = -ENOMEM;
4902 			goto out_acct;
4903 		}
4904 
4905 		bc->data = data;
4906 
4907 		if (issue_flags & IO_URING_F_COMPAT) {
4908 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4909 			struct btrfs_ioctl_encoded_io_args_32 args32;
4910 
4911 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4912 				ret = -EFAULT;
4913 				goto out_acct;
4914 			}
4915 			data->args.iov = compat_ptr(args32.iov);
4916 			data->args.iovcnt = args32.iovcnt;
4917 			data->args.offset = args32.offset;
4918 			data->args.flags = args32.flags;
4919 			data->args.len = args32.len;
4920 			data->args.unencoded_len = args32.unencoded_len;
4921 			data->args.unencoded_offset = args32.unencoded_offset;
4922 			data->args.compression = args32.compression;
4923 			data->args.encryption = args32.encryption;
4924 			memcpy(data->args.reserved, args32.reserved,
4925 			       sizeof(data->args.reserved));
4926 #else
4927 			ret = -ENOTTY;
4928 			goto out_acct;
4929 #endif
4930 		} else {
4931 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
4932 				ret = -EFAULT;
4933 				goto out_acct;
4934 			}
4935 		}
4936 
4937 		ret = -EINVAL;
4938 		if (data->args.flags != 0)
4939 			goto out_acct;
4940 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
4941 			goto out_acct;
4942 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4943 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4944 			goto out_acct;
4945 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4946 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4947 			goto out_acct;
4948 		if (data->args.unencoded_offset > data->args.unencoded_len)
4949 			goto out_acct;
4950 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
4951 			goto out_acct;
4952 
4953 		data->iov = data->iovstack;
4954 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
4955 				   ARRAY_SIZE(data->iovstack), &data->iov,
4956 				   &data->iter);
4957 		if (ret < 0)
4958 			goto out_acct;
4959 
4960 		if (iov_iter_count(&data->iter) == 0) {
4961 			ret = 0;
4962 			goto out_iov;
4963 		}
4964 	}
4965 
4966 	if (issue_flags & IO_URING_F_NONBLOCK) {
4967 		ret = -EAGAIN;
4968 		goto out_acct;
4969 	}
4970 
4971 	pos = data->args.offset;
4972 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
4973 	if (ret < 0)
4974 		goto out_iov;
4975 
4976 	init_sync_kiocb(&kiocb, file);
4977 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4978 	if (ret)
4979 		goto out_iov;
4980 	kiocb.ki_pos = pos;
4981 
4982 	file_start_write(file);
4983 
4984 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
4985 	if (ret > 0)
4986 		fsnotify_modify(file);
4987 
4988 	file_end_write(file);
4989 out_iov:
4990 	kfree(data->iov);
4991 out_acct:
4992 	if (ret > 0)
4993 		add_wchar(current, ret);
4994 	inc_syscw(current);
4995 
4996 	if (ret != -EAGAIN)
4997 		kfree(data);
4998 	return ret;
4999 }
5000 
5001 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5002 {
5003 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(cmd->file)))))
5004 		return -EIO;
5005 
5006 	switch (cmd->cmd_op) {
5007 	case BTRFS_IOC_ENCODED_READ:
5008 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5009 	case BTRFS_IOC_ENCODED_READ_32:
5010 #endif
5011 		return btrfs_uring_encoded_read(cmd, issue_flags);
5012 
5013 	case BTRFS_IOC_ENCODED_WRITE:
5014 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5015 	case BTRFS_IOC_ENCODED_WRITE_32:
5016 #endif
5017 		return btrfs_uring_encoded_write(cmd, issue_flags);
5018 	}
5019 
5020 	return -EINVAL;
5021 }
5022 
5023 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5024 {
5025 	struct btrfs_root *root;
5026 	struct btrfs_ioctl_subvol_wait args = { 0 };
5027 	signed long sched_ret;
5028 	int refs;
5029 	u64 root_flags;
5030 	bool wait_for_deletion = false;
5031 	bool found = false;
5032 
5033 	if (copy_from_user(&args, argp, sizeof(args)))
5034 		return -EFAULT;
5035 
5036 	switch (args.mode) {
5037 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5038 		/*
5039 		 * Wait for the first one deleted that waits until all previous
5040 		 * are cleaned.
5041 		 */
5042 		spin_lock(&fs_info->trans_lock);
5043 		if (!list_empty(&fs_info->dead_roots)) {
5044 			root = list_last_entry(&fs_info->dead_roots,
5045 					       struct btrfs_root, root_list);
5046 			args.subvolid = btrfs_root_id(root);
5047 			found = true;
5048 		}
5049 		spin_unlock(&fs_info->trans_lock);
5050 		if (!found)
5051 			return -ENOENT;
5052 
5053 		fallthrough;
5054 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5055 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5056 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5057 			return -EINVAL;
5058 		break;
5059 	case BTRFS_SUBVOL_SYNC_COUNT:
5060 		spin_lock(&fs_info->trans_lock);
5061 		args.count = list_count_nodes(&fs_info->dead_roots);
5062 		spin_unlock(&fs_info->trans_lock);
5063 		if (copy_to_user(argp, &args, sizeof(args)))
5064 			return -EFAULT;
5065 		return 0;
5066 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5067 		spin_lock(&fs_info->trans_lock);
5068 		/* Last in the list was deleted first. */
5069 		if (!list_empty(&fs_info->dead_roots)) {
5070 			root = list_last_entry(&fs_info->dead_roots,
5071 					       struct btrfs_root, root_list);
5072 			args.subvolid = btrfs_root_id(root);
5073 		} else {
5074 			args.subvolid = 0;
5075 		}
5076 		spin_unlock(&fs_info->trans_lock);
5077 		if (copy_to_user(argp, &args, sizeof(args)))
5078 			return -EFAULT;
5079 		return 0;
5080 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5081 		spin_lock(&fs_info->trans_lock);
5082 		/* First in the list was deleted last. */
5083 		if (!list_empty(&fs_info->dead_roots)) {
5084 			root = list_first_entry(&fs_info->dead_roots,
5085 						struct btrfs_root, root_list);
5086 			args.subvolid = btrfs_root_id(root);
5087 		} else {
5088 			args.subvolid = 0;
5089 		}
5090 		spin_unlock(&fs_info->trans_lock);
5091 		if (copy_to_user(argp, &args, sizeof(args)))
5092 			return -EFAULT;
5093 		return 0;
5094 	default:
5095 		return -EINVAL;
5096 	}
5097 
5098 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5099 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5100 		return -EOVERFLOW;
5101 
5102 	while (1) {
5103 		/* Wait for the specific one. */
5104 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5105 			return -EINTR;
5106 		refs = -1;
5107 		spin_lock(&fs_info->fs_roots_radix_lock);
5108 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5109 					 (unsigned long)args.subvolid);
5110 		if (root) {
5111 			spin_lock(&root->root_item_lock);
5112 			refs = btrfs_root_refs(&root->root_item);
5113 			root_flags = btrfs_root_flags(&root->root_item);
5114 			spin_unlock(&root->root_item_lock);
5115 		}
5116 		spin_unlock(&fs_info->fs_roots_radix_lock);
5117 		up_read(&fs_info->subvol_sem);
5118 
5119 		/* Subvolume does not exist. */
5120 		if (!root)
5121 			return -ENOENT;
5122 
5123 		/* Subvolume not deleted at all. */
5124 		if (refs > 0)
5125 			return -EEXIST;
5126 		/* We've waited and now the subvolume is gone. */
5127 		if (wait_for_deletion && refs == -1) {
5128 			/* Return the one we waited for as the last one. */
5129 			if (copy_to_user(argp, &args, sizeof(args)))
5130 				return -EFAULT;
5131 			return 0;
5132 		}
5133 
5134 		/* Subvolume not found on the first try (deleted or never existed). */
5135 		if (refs == -1)
5136 			return -ENOENT;
5137 
5138 		wait_for_deletion = true;
5139 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5140 		sched_ret = schedule_timeout_interruptible(HZ);
5141 		/* Early wake up or error. */
5142 		if (sched_ret != 0)
5143 			return -EINTR;
5144 	}
5145 
5146 	return 0;
5147 }
5148 
5149 #ifdef CONFIG_BTRFS_EXPERIMENTAL
5150 static int btrfs_ioctl_shutdown(struct btrfs_fs_info *fs_info, unsigned long arg)
5151 {
5152 	int ret = 0;
5153 	u32 flags;
5154 
5155 	if (!capable(CAP_SYS_ADMIN))
5156 		return -EPERM;
5157 
5158 	if (get_user(flags, (u32 __user *)arg))
5159 		return -EFAULT;
5160 
5161 	if (flags >= BTRFS_SHUTDOWN_FLAGS_LAST)
5162 		return -EINVAL;
5163 
5164 	if (btrfs_is_shutdown(fs_info))
5165 		return 0;
5166 
5167 	switch (flags) {
5168 	case BTRFS_SHUTDOWN_FLAGS_LOGFLUSH:
5169 	case BTRFS_SHUTDOWN_FLAGS_DEFAULT:
5170 		ret = freeze_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL);
5171 		if (ret)
5172 			return ret;
5173 		btrfs_force_shutdown(fs_info);
5174 		ret = thaw_super(fs_info->sb, FREEZE_HOLDER_KERNEL, NULL);
5175 		if (ret)
5176 			return ret;
5177 		break;
5178 	case BTRFS_SHUTDOWN_FLAGS_NOLOGFLUSH:
5179 		btrfs_force_shutdown(fs_info);
5180 		break;
5181 	}
5182 	return ret;
5183 }
5184 #endif
5185 
5186 long btrfs_ioctl(struct file *file, unsigned int
5187 		cmd, unsigned long arg)
5188 {
5189 	struct inode *inode = file_inode(file);
5190 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5191 	struct btrfs_root *root = BTRFS_I(inode)->root;
5192 	void __user *argp = (void __user *)arg;
5193 
5194 	switch (cmd) {
5195 	case FS_IOC_GETVERSION:
5196 		return btrfs_ioctl_getversion(inode, argp);
5197 	case FS_IOC_GETFSLABEL:
5198 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5199 	case FS_IOC_SETFSLABEL:
5200 		return btrfs_ioctl_set_fslabel(file, argp);
5201 	case FITRIM:
5202 		return btrfs_ioctl_fitrim(fs_info, argp);
5203 	case BTRFS_IOC_SNAP_CREATE:
5204 		return btrfs_ioctl_snap_create(file, argp, false);
5205 	case BTRFS_IOC_SNAP_CREATE_V2:
5206 		return btrfs_ioctl_snap_create_v2(file, argp, false);
5207 	case BTRFS_IOC_SUBVOL_CREATE:
5208 		return btrfs_ioctl_snap_create(file, argp, true);
5209 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5210 		return btrfs_ioctl_snap_create_v2(file, argp, true);
5211 	case BTRFS_IOC_SNAP_DESTROY:
5212 		return btrfs_ioctl_snap_destroy(file, argp, false);
5213 	case BTRFS_IOC_SNAP_DESTROY_V2:
5214 		return btrfs_ioctl_snap_destroy(file, argp, true);
5215 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5216 		return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5217 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5218 		return btrfs_ioctl_subvol_setflags(file, argp);
5219 	case BTRFS_IOC_DEFAULT_SUBVOL:
5220 		return btrfs_ioctl_default_subvol(file, argp);
5221 	case BTRFS_IOC_DEFRAG:
5222 		return btrfs_ioctl_defrag(file, NULL);
5223 	case BTRFS_IOC_DEFRAG_RANGE:
5224 		return btrfs_ioctl_defrag(file, argp);
5225 	case BTRFS_IOC_RESIZE:
5226 		return btrfs_ioctl_resize(file, argp);
5227 	case BTRFS_IOC_ADD_DEV:
5228 		return btrfs_ioctl_add_dev(fs_info, argp);
5229 	case BTRFS_IOC_RM_DEV:
5230 		return btrfs_ioctl_rm_dev(file, argp);
5231 	case BTRFS_IOC_RM_DEV_V2:
5232 		return btrfs_ioctl_rm_dev_v2(file, argp);
5233 	case BTRFS_IOC_FS_INFO:
5234 		return btrfs_ioctl_fs_info(fs_info, argp);
5235 	case BTRFS_IOC_DEV_INFO:
5236 		return btrfs_ioctl_dev_info(fs_info, argp);
5237 	case BTRFS_IOC_TREE_SEARCH:
5238 		return btrfs_ioctl_tree_search(root, argp);
5239 	case BTRFS_IOC_TREE_SEARCH_V2:
5240 		return btrfs_ioctl_tree_search_v2(root, argp);
5241 	case BTRFS_IOC_INO_LOOKUP:
5242 		return btrfs_ioctl_ino_lookup(root, argp);
5243 	case BTRFS_IOC_INO_PATHS:
5244 		return btrfs_ioctl_ino_to_path(root, argp);
5245 	case BTRFS_IOC_LOGICAL_INO:
5246 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5247 	case BTRFS_IOC_LOGICAL_INO_V2:
5248 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5249 	case BTRFS_IOC_SPACE_INFO:
5250 		return btrfs_ioctl_space_info(fs_info, argp);
5251 	case BTRFS_IOC_SYNC: {
5252 		int ret;
5253 
5254 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5255 		if (ret)
5256 			return ret;
5257 		ret = btrfs_sync_fs(inode->i_sb, 1);
5258 		/*
5259 		 * There may be work for the cleaner kthread to do (subvolume
5260 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5261 		 */
5262 		wake_up_process(fs_info->cleaner_kthread);
5263 		return ret;
5264 	}
5265 	case BTRFS_IOC_START_SYNC:
5266 		return btrfs_ioctl_start_sync(root, argp);
5267 	case BTRFS_IOC_WAIT_SYNC:
5268 		return btrfs_ioctl_wait_sync(fs_info, argp);
5269 	case BTRFS_IOC_SCRUB:
5270 		return btrfs_ioctl_scrub(file, argp);
5271 	case BTRFS_IOC_SCRUB_CANCEL:
5272 		return btrfs_ioctl_scrub_cancel(fs_info);
5273 	case BTRFS_IOC_SCRUB_PROGRESS:
5274 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5275 	case BTRFS_IOC_BALANCE_V2:
5276 		return btrfs_ioctl_balance(file, argp);
5277 	case BTRFS_IOC_BALANCE_CTL:
5278 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5279 	case BTRFS_IOC_BALANCE_PROGRESS:
5280 		return btrfs_ioctl_balance_progress(fs_info, argp);
5281 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5282 		return btrfs_ioctl_set_received_subvol(file, argp);
5283 #ifdef CONFIG_64BIT
5284 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5285 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5286 #endif
5287 	case BTRFS_IOC_SEND:
5288 		return _btrfs_ioctl_send(root, argp, false);
5289 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5290 	case BTRFS_IOC_SEND_32:
5291 		return _btrfs_ioctl_send(root, argp, true);
5292 #endif
5293 	case BTRFS_IOC_GET_DEV_STATS:
5294 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5295 	case BTRFS_IOC_QUOTA_CTL:
5296 		return btrfs_ioctl_quota_ctl(file, argp);
5297 	case BTRFS_IOC_QGROUP_ASSIGN:
5298 		return btrfs_ioctl_qgroup_assign(file, argp);
5299 	case BTRFS_IOC_QGROUP_CREATE:
5300 		return btrfs_ioctl_qgroup_create(file, argp);
5301 	case BTRFS_IOC_QGROUP_LIMIT:
5302 		return btrfs_ioctl_qgroup_limit(file, argp);
5303 	case BTRFS_IOC_QUOTA_RESCAN:
5304 		return btrfs_ioctl_quota_rescan(file, argp);
5305 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5306 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5307 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5308 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5309 	case BTRFS_IOC_DEV_REPLACE:
5310 		return btrfs_ioctl_dev_replace(fs_info, argp);
5311 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5312 		return btrfs_ioctl_get_supported_features(argp);
5313 	case BTRFS_IOC_GET_FEATURES:
5314 		return btrfs_ioctl_get_features(fs_info, argp);
5315 	case BTRFS_IOC_SET_FEATURES:
5316 		return btrfs_ioctl_set_features(file, argp);
5317 	case BTRFS_IOC_GET_SUBVOL_INFO:
5318 		return btrfs_ioctl_get_subvol_info(inode, argp);
5319 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5320 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5321 	case BTRFS_IOC_INO_LOOKUP_USER:
5322 		return btrfs_ioctl_ino_lookup_user(file, argp);
5323 	case FS_IOC_ENABLE_VERITY:
5324 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5325 	case FS_IOC_MEASURE_VERITY:
5326 		return fsverity_ioctl_measure(file, argp);
5327 	case FS_IOC_READ_VERITY_METADATA:
5328 		return fsverity_ioctl_read_metadata(file, argp);
5329 	case BTRFS_IOC_ENCODED_READ:
5330 		return btrfs_ioctl_encoded_read(file, argp, false);
5331 	case BTRFS_IOC_ENCODED_WRITE:
5332 		return btrfs_ioctl_encoded_write(file, argp, false);
5333 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5334 	case BTRFS_IOC_ENCODED_READ_32:
5335 		return btrfs_ioctl_encoded_read(file, argp, true);
5336 	case BTRFS_IOC_ENCODED_WRITE_32:
5337 		return btrfs_ioctl_encoded_write(file, argp, true);
5338 #endif
5339 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5340 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5341 #ifdef CONFIG_BTRFS_EXPERIMENTAL
5342 	case BTRFS_IOC_SHUTDOWN:
5343 		return btrfs_ioctl_shutdown(fs_info, arg);
5344 #endif
5345 	}
5346 
5347 	return -ENOTTY;
5348 }
5349 
5350 #ifdef CONFIG_COMPAT
5351 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5352 {
5353 	/*
5354 	 * These all access 32-bit values anyway so no further
5355 	 * handling is necessary.
5356 	 */
5357 	switch (cmd) {
5358 	case FS_IOC32_GETVERSION:
5359 		cmd = FS_IOC_GETVERSION;
5360 		break;
5361 	}
5362 
5363 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5364 }
5365 #endif
5366