1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491 static const char *const netdev_lock_name[] = {
492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 int i;
514
515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 if (netdev_lock_type[i] == dev_type)
517 return i;
518 /* the last key is used by default */
519 return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 unsigned short dev_type)
524 {
525 int i;
526
527 i = netdev_lock_pos(dev_type);
528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 netdev_lock_name[i]);
530 }
531
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 int i;
535
536 i = netdev_lock_pos(dev->type);
537 lockdep_set_class_and_name(&dev->addr_list_lock,
538 &netdev_addr_lock_key[i],
539 netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 unsigned short dev_type)
544 {
545 }
546
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551
552 /*******************************************************************************
553 *
554 * Protocol management and registration routines
555 *
556 *******************************************************************************/
557
558
559 /*
560 * Add a protocol ID to the list. Now that the input handler is
561 * smarter we can dispense with all the messy stuff that used to be
562 * here.
563 *
564 * BEWARE!!! Protocol handlers, mangling input packets,
565 * MUST BE last in hash buckets and checking protocol handlers
566 * MUST start from promiscuous ptype_all chain in net_bh.
567 * It is true now, do not change it.
568 * Explanation follows: if protocol handler, mangling packet, will
569 * be the first on list, it is not able to sense, that packet
570 * is cloned and should be copied-on-write, so that it will
571 * change it and subsequent readers will get broken packet.
572 * --ANK (980803)
573 */
574
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 if (pt->type == htons(ETH_P_ALL)) {
578 if (!pt->af_packet_net && !pt->dev)
579 return NULL;
580
581 return pt->dev ? &pt->dev->ptype_all :
582 &pt->af_packet_net->ptype_all;
583 }
584
585 if (pt->dev)
586 return &pt->dev->ptype_specific;
587
588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591
592 /**
593 * dev_add_pack - add packet handler
594 * @pt: packet type declaration
595 *
596 * Add a protocol handler to the networking stack. The passed &packet_type
597 * is linked into kernel lists and may not be freed until it has been
598 * removed from the kernel lists.
599 *
600 * This call does not sleep therefore it can not
601 * guarantee all CPU's that are in middle of receiving packets
602 * will see the new packet type (until the next received packet).
603 */
604
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 struct list_head *head = ptype_head(pt);
608
609 if (WARN_ON_ONCE(!head))
610 return;
611
612 spin_lock(&ptype_lock);
613 list_add_rcu(&pt->list, head);
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617
618 /**
619 * __dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * The packet type might still be in use by receivers
628 * and must not be freed until after all the CPU's have gone
629 * through a quiescent state.
630 */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 struct list_head *head = ptype_head(pt);
634 struct packet_type *pt1;
635
636 if (!head)
637 return;
638
639 spin_lock(&ptype_lock);
640
641 list_for_each_entry(pt1, head, list) {
642 if (pt == pt1) {
643 list_del_rcu(&pt->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653
654 /**
655 * dev_remove_pack - remove packet handler
656 * @pt: packet type declaration
657 *
658 * Remove a protocol handler that was previously added to the kernel
659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
660 * from the kernel lists and can be freed or reused once this function
661 * returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 __dev_remove_pack(pt);
669
670 synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 int k = stack->num_paths++;
727
728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 return NULL;
730
731 return &stack->path[k];
732 }
733
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 struct net_device_path_stack *stack)
736 {
737 const struct net_device *last_dev;
738 struct net_device_path_ctx ctx = {
739 .dev = dev,
740 };
741 struct net_device_path *path;
742 int ret = 0;
743
744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 stack->num_paths = 0;
746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 last_dev = ctx.dev;
748 path = dev_fwd_path(stack);
749 if (!path)
750 return -1;
751
752 memset(path, 0, sizeof(struct net_device_path));
753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 if (ret < 0)
755 return -1;
756
757 if (WARN_ON_ONCE(last_dev == ctx.dev))
758 return -1;
759 }
760
761 if (!ctx.dev)
762 return ret;
763
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 struct napi_struct *napi;
779
780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 if (napi->napi_id == napi_id)
782 return napi;
783
784 return NULL;
785 }
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 struct napi_struct *napi;
792
793 napi = napi_by_id(napi_id);
794 if (!napi)
795 return NULL;
796
797 if (WARN_ON_ONCE(!napi->dev))
798 return NULL;
799 if (!net_eq(net, dev_net(napi->dev)))
800 return NULL;
801
802 return napi;
803 }
804
805 /**
806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807 * @net: the applicable net namespace
808 * @napi_id: ID of a NAPI of a target device
809 *
810 * Find a NAPI instance with @napi_id. Lock its device.
811 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
812 * netdev_unlock() must be called to release it.
813 *
814 * Return: pointer to NAPI, its device with lock held, NULL if not found.
815 */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 struct napi_struct *napi;
820 struct net_device *dev;
821
822 rcu_read_lock();
823 napi = netdev_napi_by_id(net, napi_id);
824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 rcu_read_unlock();
826 return NULL;
827 }
828
829 dev = napi->dev;
830 dev_hold(dev);
831 rcu_read_unlock();
832
833 dev = __netdev_put_lock(dev, net);
834 if (!dev)
835 return NULL;
836
837 rcu_read_lock();
838 napi = netdev_napi_by_id(net, napi_id);
839 if (napi && napi->dev != dev)
840 napi = NULL;
841 rcu_read_unlock();
842
843 if (!napi)
844 netdev_unlock(dev);
845 return napi;
846 }
847
848 /**
849 * __dev_get_by_name - find a device by its name
850 * @net: the applicable net namespace
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore.
854 * If the name is found a pointer to the device is returned.
855 * If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 struct netdev_name_node *node_name;
863
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
879 */
880
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 struct netdev_name_node *node_name;
884
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 struct net_device *dev;
894
895 rcu_read_lock();
896 dev = dev_get_by_name_rcu(net, name);
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902
903 /**
904 * netdev_get_by_name() - find a device by its name
905 * @net: the applicable net namespace
906 * @name: name to find
907 * @tracker: tracking object for the acquired reference
908 * @gfp: allocation flags for the tracker
909 *
910 * Find an interface by name. This can be called from any
911 * context and does its own locking. The returned handle has
912 * the usage count incremented and the caller must use netdev_put() to
913 * release it when it is no longer needed. %NULL is returned if no
914 * matching device is found.
915 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 netdevice_tracker *tracker, gfp_t gfp)
918 {
919 struct net_device *dev;
920
921 dev = dev_get_by_name(net, name);
922 if (dev)
923 netdev_tracker_alloc(dev, tracker, gfp);
924 return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927
928 /**
929 * __dev_get_by_index - find a device by its ifindex
930 * @net: the applicable net namespace
931 * @ifindex: index of device
932 *
933 * Search for an interface by index. Returns %NULL if the device
934 * is not found or a pointer to the device. The device has not
935 * had its reference counter increased so the caller must be careful
936 * about locking. The caller must hold the RTNL semaphore.
937 */
938
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 struct net_device *dev;
942 struct hlist_head *head = dev_index_hash(net, ifindex);
943
944 hlist_for_each_entry(dev, head, index_hlist)
945 if (dev->ifindex == ifindex)
946 return dev;
947
948 return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951
952 /**
953 * dev_get_by_index_rcu - find a device by its ifindex
954 * @net: the applicable net namespace
955 * @ifindex: index of device
956 *
957 * Search for an interface by index. Returns %NULL if the device
958 * is not found or a pointer to the device. The device has not
959 * had its reference counter increased so the caller must be careful
960 * about locking. The caller must hold RCU lock.
961 */
962
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 struct net_device *dev;
966 struct hlist_head *head = dev_index_hash(net, ifindex);
967
968 hlist_for_each_entry_rcu(dev, head, index_hlist)
969 if (dev->ifindex == ifindex)
970 return dev;
971
972 return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 dev_hold(dev);
984 rcu_read_unlock();
985 return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990 * netdev_get_by_index() - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 * @tracker: tracking object for the acquired reference
994 * @gfp: allocation flags for the tracker
995 *
996 * Search for an interface by index. Returns NULL if the device
997 * is not found or a pointer to the device. The device returned has
998 * had a reference added and the pointer is safe until the user calls
999 * netdev_put() to indicate they have finished with it.
1000 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 struct net_device *dev;
1005
1006 dev = dev_get_by_index(net, ifindex);
1007 if (dev)
1008 netdev_tracker_alloc(dev, tracker, gfp);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012
1013 /**
1014 * dev_get_by_napi_id - find a device by napi_id
1015 * @napi_id: ID of the NAPI struct
1016 *
1017 * Search for an interface by NAPI ID. Returns %NULL if the device
1018 * is not found or a pointer to the device. The device has not had
1019 * its reference counter increased so the caller must be careful
1020 * about locking. The caller must hold RCU lock.
1021 */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 struct napi_struct *napi;
1025
1026 WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028 if (!napi_id_valid(napi_id))
1029 return NULL;
1030
1031 napi = napi_by_id(napi_id);
1032
1033 return napi ? napi->dev : NULL;
1034 }
1035
1036 /* Release the held reference on the net_device, and if the net_device
1037 * is still registered try to lock the instance lock. If device is being
1038 * unregistered NULL will be returned (but the reference has been released,
1039 * either way!)
1040 *
1041 * This helper is intended for locking net_device after it has been looked up
1042 * using a lockless lookup helper. Lock prevents the instance from going away.
1043 */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 netdev_lock(dev);
1047 if (dev->reg_state > NETREG_REGISTERED ||
1048 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 netdev_unlock(dev);
1050 dev_put(dev);
1051 return NULL;
1052 }
1053 dev_put(dev);
1054 return dev;
1055 }
1056
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 netdev_lock_ops_compat(dev);
1061 if (dev->reg_state > NETREG_REGISTERED ||
1062 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 netdev_unlock_ops_compat(dev);
1064 dev_put(dev);
1065 return NULL;
1066 }
1067 dev_put(dev);
1068 return dev;
1069 }
1070
1071 /**
1072 * netdev_get_by_index_lock() - find a device by its ifindex
1073 * @net: the applicable net namespace
1074 * @ifindex: index of device
1075 *
1076 * Search for an interface by index. If a valid device
1077 * with @ifindex is found it will be returned with netdev->lock held.
1078 * netdev_unlock() must be called to release it.
1079 *
1080 * Return: pointer to a device with lock held, NULL if not found.
1081 */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 struct net_device *dev;
1085
1086 dev = dev_get_by_index(net, ifindex);
1087 if (!dev)
1088 return NULL;
1089
1090 return __netdev_put_lock(dev, net);
1091 }
1092
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 struct net_device *dev;
1097
1098 dev = dev_get_by_index(net, ifindex);
1099 if (!dev)
1100 return NULL;
1101
1102 return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 unsigned long *index)
1108 {
1109 if (dev)
1110 netdev_unlock(dev);
1111
1112 do {
1113 rcu_read_lock();
1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 if (!dev) {
1116 rcu_read_unlock();
1117 return NULL;
1118 }
1119 dev_hold(dev);
1120 rcu_read_unlock();
1121
1122 dev = __netdev_put_lock(dev, net);
1123 if (dev)
1124 return dev;
1125
1126 (*index)++;
1127 } while (true);
1128 }
1129
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 unsigned long *index)
1133 {
1134 if (dev)
1135 netdev_unlock_ops_compat(dev);
1136
1137 do {
1138 rcu_read_lock();
1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 if (!dev) {
1141 rcu_read_unlock();
1142 return NULL;
1143 }
1144 dev_hold(dev);
1145 rcu_read_unlock();
1146
1147 dev = __netdev_put_lock_ops_compat(dev, net);
1148 if (dev)
1149 return dev;
1150
1151 (*index)++;
1152 } while (true);
1153 }
1154
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 unsigned int seq;
1160
1161 do {
1162 seq = read_seqbegin(&netdev_rename_lock);
1163 strscpy(name, dev->name, IFNAMSIZ);
1164 } while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166
1167 /**
1168 * netdev_get_name - get a netdevice name, knowing its ifindex.
1169 * @net: network namespace
1170 * @name: a pointer to the buffer where the name will be stored.
1171 * @ifindex: the ifindex of the interface to get the name from.
1172 */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 struct net_device *dev;
1176 int ret;
1177
1178 rcu_read_lock();
1179
1180 dev = dev_get_by_index_rcu(net, ifindex);
1181 if (!dev) {
1182 ret = -ENODEV;
1183 goto out;
1184 }
1185
1186 netdev_copy_name(dev, name);
1187
1188 ret = 0;
1189 out:
1190 rcu_read_unlock();
1191 return ret;
1192 }
1193
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 const char *ha)
1196 {
1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199
1200 /**
1201 * dev_getbyhwaddr_rcu - find a device by its hardware address
1202 * @net: the applicable net namespace
1203 * @type: media type of device
1204 * @ha: hardware address
1205 *
1206 * Search for an interface by MAC address. Returns NULL if the device
1207 * is not found or a pointer to the device.
1208 * The caller must hold RCU.
1209 * The returned device has not had its ref count increased
1210 * and the caller must therefore be careful about locking
1211 *
1212 */
1213
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 const char *ha)
1216 {
1217 struct net_device *dev;
1218
1219 for_each_netdev_rcu(net, dev)
1220 if (dev_addr_cmp(dev, type, ha))
1221 return dev;
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227 /**
1228 * dev_getbyhwaddr() - find a device by its hardware address
1229 * @net: the applicable net namespace
1230 * @type: media type of device
1231 * @ha: hardware address
1232 *
1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234 * rtnl_lock.
1235 *
1236 * Context: rtnl_lock() must be held.
1237 * Return: pointer to the net_device, or NULL if not found
1238 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 const char *ha)
1241 {
1242 struct net_device *dev;
1243
1244 ASSERT_RTNL();
1245 for_each_netdev(net, dev)
1246 if (dev_addr_cmp(dev, type, ha))
1247 return dev;
1248
1249 return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 struct net_device *dev, *ret = NULL;
1256
1257 rcu_read_lock();
1258 for_each_netdev_rcu(net, dev)
1259 if (dev->type == type) {
1260 dev_hold(dev);
1261 ret = dev;
1262 break;
1263 }
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269 /**
1270 * netdev_get_by_flags_rcu - find any device with given flags
1271 * @net: the applicable net namespace
1272 * @tracker: tracking object for the acquired reference
1273 * @if_flags: IFF_* values
1274 * @mask: bitmask of bits in if_flags to check
1275 *
1276 * Search for any interface with the given flags.
1277 *
1278 * Context: rcu_read_lock() must be held.
1279 * Returns: NULL if a device is not found or a pointer to the device.
1280 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 unsigned short if_flags, unsigned short mask)
1283 {
1284 struct net_device *dev;
1285
1286 for_each_netdev_rcu(net, dev) {
1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 netdev_hold(dev, tracker, GFP_ATOMIC);
1289 return dev;
1290 }
1291 }
1292
1293 return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297 /**
1298 * dev_valid_name - check if name is okay for network device
1299 * @name: name string
1300 *
1301 * Network device names need to be valid file names to
1302 * allow sysfs to work. We also disallow any kind of
1303 * whitespace.
1304 */
dev_valid_name(const char * name)1305 bool dev_valid_name(const char *name)
1306 {
1307 if (*name == '\0')
1308 return false;
1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 return false;
1311 if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 return false;
1313
1314 while (*name) {
1315 if (*name == '/' || *name == ':' || isspace(*name))
1316 return false;
1317 name++;
1318 }
1319 return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322
1323 /**
1324 * __dev_alloc_name - allocate a name for a device
1325 * @net: network namespace to allocate the device name in
1326 * @name: name format string
1327 * @res: result name string
1328 *
1329 * Passed a format string - eg "lt%d" it will try and find a suitable
1330 * id. It scans list of devices to build up a free map, then chooses
1331 * the first empty slot. The caller must hold the dev_base or rtnl lock
1332 * while allocating the name and adding the device in order to avoid
1333 * duplicates.
1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335 * Returns the number of the unit assigned or a negative errno code.
1336 */
1337
__dev_alloc_name(struct net * net,const char * name,char * res)1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 int i = 0;
1341 const char *p;
1342 const int max_netdevices = 8*PAGE_SIZE;
1343 unsigned long *inuse;
1344 struct net_device *d;
1345 char buf[IFNAMSIZ];
1346
1347 /* Verify the string as this thing may have come from the user.
1348 * There must be one "%d" and no other "%" characters.
1349 */
1350 p = strchr(name, '%');
1351 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 return -EINVAL;
1353
1354 /* Use one page as a bit array of possible slots */
1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 if (!inuse)
1357 return -ENOMEM;
1358
1359 for_each_netdev(net, d) {
1360 struct netdev_name_node *name_node;
1361
1362 netdev_for_each_altname(d, name_node) {
1363 if (!sscanf(name_node->name, name, &i))
1364 continue;
1365 if (i < 0 || i >= max_netdevices)
1366 continue;
1367
1368 /* avoid cases where sscanf is not exact inverse of printf */
1369 snprintf(buf, IFNAMSIZ, name, i);
1370 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 __set_bit(i, inuse);
1372 }
1373 if (!sscanf(d->name, name, &i))
1374 continue;
1375 if (i < 0 || i >= max_netdevices)
1376 continue;
1377
1378 /* avoid cases where sscanf is not exact inverse of printf */
1379 snprintf(buf, IFNAMSIZ, name, i);
1380 if (!strncmp(buf, d->name, IFNAMSIZ))
1381 __set_bit(i, inuse);
1382 }
1383
1384 i = find_first_zero_bit(inuse, max_netdevices);
1385 bitmap_free(inuse);
1386 if (i == max_netdevices)
1387 return -ENFILE;
1388
1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 strscpy(buf, name, IFNAMSIZ);
1391 snprintf(res, IFNAMSIZ, buf, i);
1392 return i;
1393 }
1394
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 const char *want_name, char *out_name,
1398 int dup_errno)
1399 {
1400 if (!dev_valid_name(want_name))
1401 return -EINVAL;
1402
1403 if (strchr(want_name, '%'))
1404 return __dev_alloc_name(net, want_name, out_name);
1405
1406 if (netdev_name_in_use(net, want_name))
1407 return -dup_errno;
1408 if (out_name != want_name)
1409 strscpy(out_name, want_name, IFNAMSIZ);
1410 return 0;
1411 }
1412
1413 /**
1414 * dev_alloc_name - allocate a name for a device
1415 * @dev: device
1416 * @name: name format string
1417 *
1418 * Passed a format string - eg "lt%d" it will try and find a suitable
1419 * id. It scans list of devices to build up a free map, then chooses
1420 * the first empty slot. The caller must hold the dev_base or rtnl lock
1421 * while allocating the name and adding the device in order to avoid
1422 * duplicates.
1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424 * Returns the number of the unit assigned or a negative errno code.
1425 */
1426
dev_alloc_name(struct net_device * dev,const char * name)1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 const char *name)
1435 {
1436 int ret;
1437
1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 return ret < 0 ? ret : 0;
1440 }
1441
netif_change_name(struct net_device * dev,const char * newname)1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 struct net *net = dev_net(dev);
1445 unsigned char old_assign_type;
1446 char oldname[IFNAMSIZ];
1447 int err = 0;
1448 int ret;
1449
1450 ASSERT_RTNL_NET(net);
1451
1452 if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 return 0;
1454
1455 memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457 write_seqlock_bh(&netdev_rename_lock);
1458 err = dev_get_valid_name(net, dev, newname);
1459 write_sequnlock_bh(&netdev_rename_lock);
1460
1461 if (err < 0)
1462 return err;
1463
1464 if (oldname[0] && !strchr(oldname, '%'))
1465 netdev_info(dev, "renamed from %s%s\n", oldname,
1466 dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468 old_assign_type = dev->name_assign_type;
1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471 rollback:
1472 ret = device_rename(&dev->dev, dev->name);
1473 if (ret) {
1474 write_seqlock_bh(&netdev_rename_lock);
1475 memcpy(dev->name, oldname, IFNAMSIZ);
1476 write_sequnlock_bh(&netdev_rename_lock);
1477 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 return ret;
1479 }
1480
1481 netdev_adjacent_rename_links(dev, oldname);
1482
1483 netdev_name_node_del(dev->name_node);
1484
1485 synchronize_net();
1486
1487 netdev_name_node_add(net, dev->name_node);
1488
1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 ret = notifier_to_errno(ret);
1491
1492 if (ret) {
1493 /* err >= 0 after dev_alloc_name() or stores the first errno */
1494 if (err >= 0) {
1495 err = ret;
1496 write_seqlock_bh(&netdev_rename_lock);
1497 memcpy(dev->name, oldname, IFNAMSIZ);
1498 write_sequnlock_bh(&netdev_rename_lock);
1499 memcpy(oldname, newname, IFNAMSIZ);
1500 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 old_assign_type = NET_NAME_RENAMED;
1502 goto rollback;
1503 } else {
1504 netdev_err(dev, "name change rollback failed: %d\n",
1505 ret);
1506 }
1507 }
1508
1509 return err;
1510 }
1511
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 struct dev_ifalias *new_alias = NULL;
1515
1516 if (len >= IFALIASZ)
1517 return -EINVAL;
1518
1519 if (len) {
1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 if (!new_alias)
1522 return -ENOMEM;
1523
1524 memcpy(new_alias->ifalias, alias, len);
1525 new_alias->ifalias[len] = 0;
1526 }
1527
1528 mutex_lock(&ifalias_mutex);
1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 mutex_is_locked(&ifalias_mutex));
1531 mutex_unlock(&ifalias_mutex);
1532
1533 if (new_alias)
1534 kfree_rcu(new_alias, rcuhead);
1535
1536 return len;
1537 }
1538
1539 /**
1540 * dev_get_alias - get ifalias of a device
1541 * @dev: device
1542 * @name: buffer to store name of ifalias
1543 * @len: size of buffer
1544 *
1545 * get ifalias for a device. Caller must make sure dev cannot go
1546 * away, e.g. rcu read lock or own a reference count to device.
1547 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 const struct dev_ifalias *alias;
1551 int ret = 0;
1552
1553 rcu_read_lock();
1554 alias = rcu_dereference(dev->ifalias);
1555 if (alias)
1556 ret = snprintf(name, len, "%s", alias->ifalias);
1557 rcu_read_unlock();
1558
1559 return ret;
1560 }
1561
1562 /**
1563 * netdev_features_change - device changes features
1564 * @dev: device to cause notification
1565 *
1566 * Called to indicate a device has changed features.
1567 */
netdev_features_change(struct net_device * dev)1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573
netif_state_change(struct net_device * dev)1574 void netif_state_change(struct net_device *dev)
1575 {
1576 netdev_ops_assert_locked_or_invisible(dev);
1577
1578 if (dev->flags & IFF_UP) {
1579 struct netdev_notifier_change_info change_info = {
1580 .info.dev = dev,
1581 };
1582
1583 call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 &change_info.info);
1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 }
1587 }
1588
1589 /**
1590 * __netdev_notify_peers - notify network peers about existence of @dev,
1591 * to be called when rtnl lock is already held.
1592 * @dev: network device
1593 *
1594 * Generate traffic such that interested network peers are aware of
1595 * @dev, such as by generating a gratuitous ARP. This may be used when
1596 * a device wants to inform the rest of the network about some sort of
1597 * reconfiguration such as a failover event or virtual machine
1598 * migration.
1599 */
__netdev_notify_peers(struct net_device * dev)1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 ASSERT_RTNL();
1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608 /**
1609 * netdev_notify_peers - notify network peers about existence of @dev
1610 * @dev: network device
1611 *
1612 * Generate traffic such that interested network peers are aware of
1613 * @dev, such as by generating a gratuitous ARP. This may be used when
1614 * a device wants to inform the rest of the network about some sort of
1615 * reconfiguration such as a failover event or virtual machine
1616 * migration.
1617 */
netdev_notify_peers(struct net_device * dev)1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 rtnl_lock();
1621 __netdev_notify_peers(dev);
1622 rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625
1626 static int napi_threaded_poll(void *data);
1627
napi_kthread_create(struct napi_struct * n)1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 int err = 0;
1631
1632 /* Create and wake up the kthread once to put it in
1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 * warning and work with loadavg.
1635 */
1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 n->dev->name, n->napi_id);
1638 if (IS_ERR(n->thread)) {
1639 err = PTR_ERR(n->thread);
1640 pr_err("kthread_run failed with err %d\n", err);
1641 n->thread = NULL;
1642 }
1643
1644 return err;
1645 }
1646
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 const struct net_device_ops *ops = dev->netdev_ops;
1650 int ret;
1651
1652 ASSERT_RTNL();
1653 dev_addr_check(dev);
1654
1655 if (!netif_device_present(dev)) {
1656 /* may be detached because parent is runtime-suspended */
1657 if (dev->dev.parent)
1658 pm_runtime_resume(dev->dev.parent);
1659 if (!netif_device_present(dev))
1660 return -ENODEV;
1661 }
1662
1663 /* Block netpoll from trying to do any rx path servicing.
1664 * If we don't do this there is a chance ndo_poll_controller
1665 * or ndo_poll may be running while we open the device
1666 */
1667 netpoll_poll_disable(dev);
1668
1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 ret = notifier_to_errno(ret);
1671 if (ret)
1672 return ret;
1673
1674 set_bit(__LINK_STATE_START, &dev->state);
1675
1676 netdev_ops_assert_locked(dev);
1677
1678 if (ops->ndo_validate_addr)
1679 ret = ops->ndo_validate_addr(dev);
1680
1681 if (!ret && ops->ndo_open)
1682 ret = ops->ndo_open(dev);
1683
1684 netpoll_poll_enable(dev);
1685
1686 if (ret)
1687 clear_bit(__LINK_STATE_START, &dev->state);
1688 else {
1689 netif_set_up(dev, true);
1690 dev_set_rx_mode(dev);
1691 dev_activate(dev);
1692 add_device_randomness(dev->dev_addr, dev->addr_len);
1693 }
1694
1695 return ret;
1696 }
1697
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 int ret;
1701
1702 if (dev->flags & IFF_UP)
1703 return 0;
1704
1705 ret = __dev_open(dev, extack);
1706 if (ret < 0)
1707 return ret;
1708
1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712 return ret;
1713 }
1714
__dev_close_many(struct list_head * head)1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 struct net_device *dev;
1718
1719 ASSERT_RTNL();
1720 might_sleep();
1721
1722 list_for_each_entry(dev, head, close_list) {
1723 /* Temporarily disable netpoll until the interface is down */
1724 netpoll_poll_disable(dev);
1725
1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728 clear_bit(__LINK_STATE_START, &dev->state);
1729
1730 /* Synchronize to scheduled poll. We cannot touch poll list, it
1731 * can be even on different cpu. So just clear netif_running().
1732 *
1733 * dev->stop() will invoke napi_disable() on all of it's
1734 * napi_struct instances on this device.
1735 */
1736 smp_mb__after_atomic(); /* Commit netif_running(). */
1737 }
1738
1739 dev_deactivate_many(head);
1740
1741 list_for_each_entry(dev, head, close_list) {
1742 const struct net_device_ops *ops = dev->netdev_ops;
1743
1744 /*
1745 * Call the device specific close. This cannot fail.
1746 * Only if device is UP
1747 *
1748 * We allow it to be called even after a DETACH hot-plug
1749 * event.
1750 */
1751
1752 netdev_ops_assert_locked(dev);
1753
1754 if (ops->ndo_stop)
1755 ops->ndo_stop(dev);
1756
1757 netif_set_up(dev, false);
1758 netpoll_poll_enable(dev);
1759 }
1760 }
1761
__dev_close(struct net_device * dev)1762 static void __dev_close(struct net_device *dev)
1763 {
1764 LIST_HEAD(single);
1765
1766 list_add(&dev->close_list, &single);
1767 __dev_close_many(&single);
1768 list_del(&single);
1769 }
1770
netif_close_many(struct list_head * head,bool unlink)1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 struct net_device *dev, *tmp;
1774
1775 /* Remove the devices that don't need to be closed */
1776 list_for_each_entry_safe(dev, tmp, head, close_list)
1777 if (!(dev->flags & IFF_UP))
1778 list_del_init(&dev->close_list);
1779
1780 __dev_close_many(head);
1781
1782 list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 if (unlink)
1786 list_del_init(&dev->close_list);
1787 }
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
netif_close(struct net_device * dev)1791 void netif_close(struct net_device *dev)
1792 {
1793 if (dev->flags & IFF_UP) {
1794 LIST_HEAD(single);
1795
1796 list_add(&dev->close_list, &single);
1797 netif_close_many(&single, true);
1798 list_del(&single);
1799 }
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802
netif_disable_lro(struct net_device * dev)1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 struct net_device *lower_dev;
1806 struct list_head *iter;
1807
1808 dev->wanted_features &= ~NETIF_F_LRO;
1809 netdev_update_features(dev);
1810
1811 if (unlikely(dev->features & NETIF_F_LRO))
1812 netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 netdev_lock_ops(lower_dev);
1816 netif_disable_lro(lower_dev);
1817 netdev_unlock_ops(lower_dev);
1818 }
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822 /**
1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824 * @dev: device
1825 *
1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827 * called under RTNL. This is needed if Generic XDP is installed on
1828 * the device.
1829 */
dev_disable_gro_hw(struct net_device * dev)1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 netdev_update_features(dev);
1834
1835 if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838
netdev_cmd_to_name(enum netdev_cmd cmd)1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) \
1842 case NETDEV_##val: \
1843 return "NETDEV_" __stringify(val);
1844 switch (cmd) {
1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 N(XDP_FEAT_CHANGE)
1857 }
1858 #undef N
1859 return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 struct net_device *dev)
1865 {
1866 struct netdev_notifier_info info = {
1867 .dev = dev,
1868 };
1869
1870 return nb->notifier_call(nb, val, &info);
1871 }
1872
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 struct net_device *dev)
1875 {
1876 int err;
1877
1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 err = notifier_to_errno(err);
1880 if (err)
1881 return err;
1882
1883 if (!(dev->flags & IFF_UP))
1884 return 0;
1885
1886 call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 return 0;
1888 }
1889
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 struct net_device *dev)
1892 {
1893 if (dev->flags & IFF_UP) {
1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 dev);
1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 }
1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 struct net *net)
1903 {
1904 struct net_device *dev;
1905 int err;
1906
1907 for_each_netdev(net, dev) {
1908 netdev_lock_ops(dev);
1909 err = call_netdevice_register_notifiers(nb, dev);
1910 netdev_unlock_ops(dev);
1911 if (err)
1912 goto rollback;
1913 }
1914 return 0;
1915
1916 rollback:
1917 for_each_netdev_continue_reverse(net, dev)
1918 call_netdevice_unregister_notifiers(nb, dev);
1919 return err;
1920 }
1921
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 struct net *net)
1924 {
1925 struct net_device *dev;
1926
1927 for_each_netdev(net, dev)
1928 call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930
1931 static int dev_boot_phase = 1;
1932
1933 /**
1934 * register_netdevice_notifier - register a network notifier block
1935 * @nb: notifier
1936 *
1937 * Register a notifier to be called when network device events occur.
1938 * The notifier passed is linked into the kernel structures and must
1939 * not be reused until it has been unregistered. A negative errno code
1940 * is returned on a failure.
1941 *
1942 * When registered all registration and up events are replayed
1943 * to the new notifier to allow device to have a race free
1944 * view of the network device list.
1945 */
1946
register_netdevice_notifier(struct notifier_block * nb)1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 struct net *net;
1950 int err;
1951
1952 /* Close race with setup_net() and cleanup_net() */
1953 down_write(&pernet_ops_rwsem);
1954
1955 /* When RTNL is removed, we need protection for netdev_chain. */
1956 rtnl_lock();
1957
1958 err = raw_notifier_chain_register(&netdev_chain, nb);
1959 if (err)
1960 goto unlock;
1961 if (dev_boot_phase)
1962 goto unlock;
1963 for_each_net(net) {
1964 __rtnl_net_lock(net);
1965 err = call_netdevice_register_net_notifiers(nb, net);
1966 __rtnl_net_unlock(net);
1967 if (err)
1968 goto rollback;
1969 }
1970
1971 unlock:
1972 rtnl_unlock();
1973 up_write(&pernet_ops_rwsem);
1974 return err;
1975
1976 rollback:
1977 for_each_net_continue_reverse(net) {
1978 __rtnl_net_lock(net);
1979 call_netdevice_unregister_net_notifiers(nb, net);
1980 __rtnl_net_unlock(net);
1981 }
1982
1983 raw_notifier_chain_unregister(&netdev_chain, nb);
1984 goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988 /**
1989 * unregister_netdevice_notifier - unregister a network notifier block
1990 * @nb: notifier
1991 *
1992 * Unregister a notifier previously registered by
1993 * register_netdevice_notifier(). The notifier is unlinked into the
1994 * kernel structures and may then be reused. A negative errno code
1995 * is returned on a failure.
1996 *
1997 * After unregistering unregister and down device events are synthesized
1998 * for all devices on the device list to the removed notifier to remove
1999 * the need for special case cleanup code.
2000 */
2001
unregister_netdevice_notifier(struct notifier_block * nb)2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 struct net *net;
2005 int err;
2006
2007 /* Close race with setup_net() and cleanup_net() */
2008 down_write(&pernet_ops_rwsem);
2009 rtnl_lock();
2010 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 if (err)
2012 goto unlock;
2013
2014 for_each_net(net) {
2015 __rtnl_net_lock(net);
2016 call_netdevice_unregister_net_notifiers(nb, net);
2017 __rtnl_net_unlock(net);
2018 }
2019
2020 unlock:
2021 rtnl_unlock();
2022 up_write(&pernet_ops_rwsem);
2023 return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2027 static int __register_netdevice_notifier_net(struct net *net,
2028 struct notifier_block *nb,
2029 bool ignore_call_fail)
2030 {
2031 int err;
2032
2033 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 if (err)
2035 return err;
2036 if (dev_boot_phase)
2037 return 0;
2038
2039 err = call_netdevice_register_net_notifiers(nb, net);
2040 if (err && !ignore_call_fail)
2041 goto chain_unregister;
2042
2043 return 0;
2044
2045 chain_unregister:
2046 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 return err;
2048 }
2049
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 struct notifier_block *nb)
2052 {
2053 int err;
2054
2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 if (err)
2057 return err;
2058
2059 call_netdevice_unregister_net_notifiers(nb, net);
2060 return 0;
2061 }
2062
2063 /**
2064 * register_netdevice_notifier_net - register a per-netns network notifier block
2065 * @net: network namespace
2066 * @nb: notifier
2067 *
2068 * Register a notifier to be called when network device events occur.
2069 * The notifier passed is linked into the kernel structures and must
2070 * not be reused until it has been unregistered. A negative errno code
2071 * is returned on a failure.
2072 *
2073 * When registered all registration and up events are replayed
2074 * to the new notifier to allow device to have a race free
2075 * view of the network device list.
2076 */
2077
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 int err;
2081
2082 rtnl_net_lock(net);
2083 err = __register_netdevice_notifier_net(net, nb, false);
2084 rtnl_net_unlock(net);
2085
2086 return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090 /**
2091 * unregister_netdevice_notifier_net - unregister a per-netns
2092 * network notifier block
2093 * @net: network namespace
2094 * @nb: notifier
2095 *
2096 * Unregister a notifier previously registered by
2097 * register_netdevice_notifier_net(). The notifier is unlinked from the
2098 * kernel structures and may then be reused. A negative errno code
2099 * is returned on a failure.
2100 *
2101 * After unregistering unregister and down device events are synthesized
2102 * for all devices on the device list to the removed notifier to remove
2103 * the need for special case cleanup code.
2104 */
2105
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2106 int unregister_netdevice_notifier_net(struct net *net,
2107 struct notifier_block *nb)
2108 {
2109 int err;
2110
2111 rtnl_net_lock(net);
2112 err = __unregister_netdevice_notifier_net(net, nb);
2113 rtnl_net_unlock(net);
2114
2115 return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 struct net *dst_net,
2121 struct notifier_block *nb)
2122 {
2123 __unregister_netdevice_notifier_net(src_net, nb);
2124 __register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126
rtnl_net_dev_lock(struct net_device * dev)2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 bool again;
2130
2131 do {
2132 struct net *net;
2133
2134 again = false;
2135
2136 /* netns might be being dismantled. */
2137 rcu_read_lock();
2138 net = dev_net_rcu(dev);
2139 net_passive_inc(net);
2140 rcu_read_unlock();
2141
2142 rtnl_net_lock(net);
2143
2144 #ifdef CONFIG_NET_NS
2145 /* dev might have been moved to another netns. */
2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 rtnl_net_unlock(net);
2148 net_passive_dec(net);
2149 again = true;
2150 }
2151 #endif
2152 } while (again);
2153 }
2154
rtnl_net_dev_unlock(struct net_device * dev)2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 struct net *net = dev_net(dev);
2158
2159 rtnl_net_unlock(net);
2160 net_passive_dec(net);
2161 }
2162
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 struct notifier_block *nb,
2165 struct netdev_net_notifier *nn)
2166 {
2167 int err;
2168
2169 rtnl_net_dev_lock(dev);
2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 if (!err) {
2172 nn->nb = nb;
2173 list_add(&nn->list, &dev->net_notifier_list);
2174 }
2175 rtnl_net_dev_unlock(dev);
2176
2177 return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 struct notifier_block *nb,
2183 struct netdev_net_notifier *nn)
2184 {
2185 int err;
2186
2187 rtnl_net_dev_lock(dev);
2188 list_del(&nn->list);
2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 rtnl_net_dev_unlock(dev);
2191
2192 return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 struct net *net)
2198 {
2199 struct netdev_net_notifier *nn;
2200
2201 list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204
2205 /**
2206 * call_netdevice_notifiers_info - call all network notifier blocks
2207 * @val: value passed unmodified to notifier function
2208 * @info: notifier information data
2209 *
2210 * Call all network notifier blocks. Parameters and return value
2211 * are as for raw_notifier_call_chain().
2212 */
2213
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2214 int call_netdevice_notifiers_info(unsigned long val,
2215 struct netdev_notifier_info *info)
2216 {
2217 struct net *net = dev_net(info->dev);
2218 int ret;
2219
2220 ASSERT_RTNL();
2221
2222 /* Run per-netns notifier block chain first, then run the global one.
2223 * Hopefully, one day, the global one is going to be removed after
2224 * all notifier block registrators get converted to be per-netns.
2225 */
2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 if (ret & NOTIFY_STOP_MASK)
2228 return ret;
2229 return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231
2232 /**
2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234 * for and rollback on error
2235 * @val_up: value passed unmodified to notifier function
2236 * @val_down: value passed unmodified to the notifier function when
2237 * recovering from an error on @val_up
2238 * @info: notifier information data
2239 *
2240 * Call all per-netns network notifier blocks, but not notifier blocks on
2241 * the global notifier chain. Parameters and return value are as for
2242 * raw_notifier_call_chain_robust().
2243 */
2244
2245 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 unsigned long val_down,
2248 struct netdev_notifier_info *info)
2249 {
2250 struct net *net = dev_net(info->dev);
2251
2252 ASSERT_RTNL();
2253
2254 return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 val_up, val_down, info);
2256 }
2257
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 struct net_device *dev,
2260 struct netlink_ext_ack *extack)
2261 {
2262 struct netdev_notifier_info info = {
2263 .dev = dev,
2264 .extack = extack,
2265 };
2266
2267 return call_netdevice_notifiers_info(val, &info);
2268 }
2269
2270 /**
2271 * call_netdevice_notifiers - call all network notifier blocks
2272 * @val: value passed unmodified to notifier function
2273 * @dev: net_device pointer passed unmodified to notifier function
2274 *
2275 * Call all network notifier blocks. Parameters and return value
2276 * are as for raw_notifier_call_chain().
2277 */
2278
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285 /**
2286 * call_netdevice_notifiers_mtu - call all network notifier blocks
2287 * @val: value passed unmodified to notifier function
2288 * @dev: net_device pointer passed unmodified to notifier function
2289 * @arg: additional u32 argument passed to the notifier function
2290 *
2291 * Call all network notifier blocks. Parameters and return value
2292 * are as for raw_notifier_call_chain().
2293 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 struct net_device *dev, u32 arg)
2296 {
2297 struct netdev_notifier_info_ext info = {
2298 .info.dev = dev,
2299 .ext.mtu = arg,
2300 };
2301
2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304 return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
net_inc_ingress_queue(void)2310 void net_inc_ingress_queue(void)
2311 {
2312 static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
net_dec_ingress_queue(void)2316 void net_dec_ingress_queue(void)
2317 {
2318 static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
net_inc_egress_queue(void)2326 void net_inc_egress_queue(void)
2327 {
2328 static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
net_dec_egress_queue(void)2332 void net_dec_egress_queue(void)
2333 {
2334 static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 int wanted;
2353
2354 wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 if (wanted > 0)
2356 static_branch_enable(&netstamp_needed_key);
2357 else
2358 static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362
net_enable_timestamp(void)2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 int wanted = atomic_read(&netstamp_wanted);
2367
2368 while (wanted > 0) {
2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 return;
2371 }
2372 atomic_inc(&netstamp_needed_deferred);
2373 schedule_work(&netstamp_work);
2374 #else
2375 static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379
net_disable_timestamp(void)2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 int wanted = atomic_read(&netstamp_wanted);
2384
2385 while (wanted > 1) {
2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 return;
2388 }
2389 atomic_dec(&netstamp_needed_deferred);
2390 schedule_work(&netstamp_work);
2391 #else
2392 static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396
net_timestamp_set(struct sk_buff * skb)2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 skb->tstamp = 0;
2400 skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 if (static_branch_unlikely(&netstamp_needed_key))
2402 skb->tstamp = ktime_get_real();
2403 }
2404
2405 #define net_timestamp_check(COND, SKB) \
2406 if (static_branch_unlikely(&netstamp_needed_key)) { \
2407 if ((COND) && !(SKB)->tstamp) \
2408 (SKB)->tstamp = ktime_get_real(); \
2409 } \
2410
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 bool check_mtu)
2419 {
2420 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422 if (likely(!ret)) {
2423 skb->protocol = eth_type_trans(skb, dev);
2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 }
2426
2427 return ret;
2428 }
2429
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436 /**
2437 * dev_forward_skb - loopback an skb to another netif
2438 *
2439 * @dev: destination network device
2440 * @skb: buffer to forward
2441 *
2442 * return values:
2443 * NET_RX_SUCCESS (no congestion)
2444 * NET_RX_DROP (packet was dropped, but freed)
2445 *
2446 * dev_forward_skb can be used for injecting an skb from the
2447 * start_xmit function of one device into the receive queue
2448 * of another device.
2449 *
2450 * The receiving device may be in another namespace, so
2451 * we have to clear all information in the skb that could
2452 * impact namespace isolation.
2453 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2465 static inline int deliver_skb(struct sk_buff *skb,
2466 struct packet_type *pt_prev,
2467 struct net_device *orig_dev)
2468 {
2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 return -ENOMEM;
2471 refcount_inc(&skb->users);
2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 struct packet_type **pt,
2477 struct net_device *orig_dev,
2478 __be16 type,
2479 struct list_head *ptype_list)
2480 {
2481 struct packet_type *ptype, *pt_prev = *pt;
2482
2483 list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 if (ptype->type != type)
2485 continue;
2486 if (pt_prev)
2487 deliver_skb(skb, pt_prev, orig_dev);
2488 pt_prev = ptype;
2489 }
2490 *pt = pt_prev;
2491 }
2492
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 if (!ptype->af_packet_priv || !skb->sk)
2496 return false;
2497
2498 if (ptype->id_match)
2499 return ptype->id_match(ptype, skb->sk);
2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 return true;
2502
2503 return false;
2504 }
2505
2506 /**
2507 * dev_nit_active_rcu - return true if any network interface taps are in use
2508 *
2509 * The caller must hold the RCU lock
2510 *
2511 * @dev: network device to check for the presence of taps
2512 */
dev_nit_active_rcu(const struct net_device * dev)2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 /* Callers may hold either RCU or RCU BH lock */
2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518 return !list_empty(&dev_net(dev)->ptype_all) ||
2519 !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523 /*
2524 * Support routine. Sends outgoing frames to any network
2525 * taps currently in use.
2526 */
2527
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 struct packet_type *ptype, *pt_prev = NULL;
2531 struct list_head *ptype_list;
2532 struct sk_buff *skb2 = NULL;
2533
2534 rcu_read_lock();
2535 ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 if (READ_ONCE(ptype->ignore_outgoing))
2539 continue;
2540
2541 /* Never send packets back to the socket
2542 * they originated from - MvS (miquels@drinkel.ow.org)
2543 */
2544 if (skb_loop_sk(ptype, skb))
2545 continue;
2546
2547 if (pt_prev) {
2548 deliver_skb(skb2, pt_prev, skb->dev);
2549 pt_prev = ptype;
2550 continue;
2551 }
2552
2553 /* need to clone skb, done only once */
2554 skb2 = skb_clone(skb, GFP_ATOMIC);
2555 if (!skb2)
2556 goto out_unlock;
2557
2558 net_timestamp_set(skb2);
2559
2560 /* skb->nh should be correctly
2561 * set by sender, so that the second statement is
2562 * just protection against buggy protocols.
2563 */
2564 skb_reset_mac_header(skb2);
2565
2566 if (skb_network_header(skb2) < skb2->data ||
2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 ntohs(skb2->protocol),
2570 dev->name);
2571 skb_reset_network_header(skb2);
2572 }
2573
2574 skb2->transport_header = skb2->network_header;
2575 skb2->pkt_type = PACKET_OUTGOING;
2576 pt_prev = ptype;
2577 }
2578
2579 if (ptype_list != &dev->ptype_all) {
2580 ptype_list = &dev->ptype_all;
2581 goto again;
2582 }
2583 out_unlock:
2584 if (pt_prev) {
2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 else
2588 kfree_skb(skb2);
2589 }
2590 rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594 /**
2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596 * @dev: Network device
2597 * @txq: number of queues available
2598 *
2599 * If real_num_tx_queues is changed the tc mappings may no longer be
2600 * valid. To resolve this verify the tc mapping remains valid and if
2601 * not NULL the mapping. With no priorities mapping to this
2602 * offset/count pair it will no longer be used. In the worst case TC0
2603 * is invalid nothing can be done so disable priority mappings. If is
2604 * expected that drivers will fix this mapping if they can before
2605 * calling netif_set_real_num_tx_queues.
2606 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 int i;
2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612 /* If TC0 is invalidated disable TC mapping */
2613 if (tc->offset + tc->count > txq) {
2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 dev->num_tc = 0;
2616 return;
2617 }
2618
2619 /* Invalidated prio to tc mappings set to TC0 */
2620 for (i = 1; i < TC_BITMASK + 1; i++) {
2621 int q = netdev_get_prio_tc_map(dev, i);
2622
2623 tc = &dev->tc_to_txq[q];
2624 if (tc->offset + tc->count > txq) {
2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 i, q);
2627 netdev_set_prio_tc_map(dev, i, 0);
2628 }
2629 }
2630 }
2631
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 if (dev->num_tc) {
2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 int i;
2637
2638 /* walk through the TCs and see if it falls into any of them */
2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 if ((txq - tc->offset) < tc->count)
2641 return i;
2642 }
2643
2644 /* didn't find it, just return -1 to indicate no match */
2645 return -1;
2646 }
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P) \
2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 struct xps_map *map = NULL;
2663 int pos;
2664
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 return false;
2668
2669 for (pos = map->len; pos--;) {
2670 if (map->queues[pos] != index)
2671 continue;
2672
2673 if (map->len > 1) {
2674 map->queues[pos] = map->queues[--map->len];
2675 break;
2676 }
2677
2678 if (old_maps)
2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 kfree_rcu(map, rcu);
2682 return false;
2683 }
2684
2685 return true;
2686 }
2687
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 struct xps_dev_maps *dev_maps,
2690 int cpu, u16 offset, u16 count)
2691 {
2692 int num_tc = dev_maps->num_tc;
2693 bool active = false;
2694 int tci;
2695
2696 for (tci = cpu * num_tc; num_tc--; tci++) {
2697 int i, j;
2698
2699 for (i = count, j = offset; i--; j++) {
2700 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 break;
2702 }
2703
2704 active |= i < 0;
2705 }
2706
2707 return active;
2708 }
2709
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2710 static void reset_xps_maps(struct net_device *dev,
2711 struct xps_dev_maps *dev_maps,
2712 enum xps_map_type type)
2713 {
2714 static_key_slow_dec_cpuslocked(&xps_needed);
2715 if (type == XPS_RXQS)
2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720 kfree_rcu(dev_maps, rcu);
2721 }
2722
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 u16 offset, u16 count)
2725 {
2726 struct xps_dev_maps *dev_maps;
2727 bool active = false;
2728 int i, j;
2729
2730 dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 if (!dev_maps)
2732 return;
2733
2734 for (j = 0; j < dev_maps->nr_ids; j++)
2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739 if (type == XPS_CPUS) {
2740 for (i = offset + (count - 1); count--; i--)
2741 netdev_queue_numa_node_write(
2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 }
2744 }
2745
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 u16 count)
2748 {
2749 if (!static_key_false(&xps_needed))
2750 return;
2751
2752 cpus_read_lock();
2753 mutex_lock(&xps_map_mutex);
2754
2755 if (static_key_false(&xps_rxqs_needed))
2756 clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758 clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760 mutex_unlock(&xps_map_mutex);
2761 cpus_read_unlock();
2762 }
2763
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 u16 index, bool is_rxqs_map)
2771 {
2772 struct xps_map *new_map;
2773 int alloc_len = XPS_MIN_MAP_ALLOC;
2774 int i, pos;
2775
2776 for (pos = 0; map && pos < map->len; pos++) {
2777 if (map->queues[pos] != index)
2778 continue;
2779 return map;
2780 }
2781
2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 if (map) {
2784 if (pos < map->alloc_len)
2785 return map;
2786
2787 alloc_len = map->alloc_len * 2;
2788 }
2789
2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 * map
2792 */
2793 if (is_rxqs_map)
2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 else
2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 cpu_to_node(attr_index));
2798 if (!new_map)
2799 return NULL;
2800
2801 for (i = 0; i < pos; i++)
2802 new_map->queues[i] = map->queues[i];
2803 new_map->alloc_len = alloc_len;
2804 new_map->len = pos;
2805
2806 return new_map;
2807 }
2808
2809 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 struct xps_dev_maps *new_dev_maps, int index,
2812 int tc, bool skip_tc)
2813 {
2814 int i, tci = index * dev_maps->num_tc;
2815 struct xps_map *map;
2816
2817 /* copy maps belonging to foreign traffic classes */
2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 if (i == tc && skip_tc)
2820 continue;
2821
2822 /* fill in the new device map from the old device map */
2823 map = xmap_dereference(dev_maps->attr_map[tci]);
2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 }
2826 }
2827
2828 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 u16 index, enum xps_map_type type)
2831 {
2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 const unsigned long *online_mask = NULL;
2834 bool active = false, copy = false;
2835 int i, j, tci, numa_node_id = -2;
2836 int maps_sz, num_tc = 1, tc = 0;
2837 struct xps_map *map, *new_map;
2838 unsigned int nr_ids;
2839
2840 WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842 if (dev->num_tc) {
2843 /* Do not allow XPS on subordinate device directly */
2844 num_tc = dev->num_tc;
2845 if (num_tc < 0)
2846 return -EINVAL;
2847
2848 /* If queue belongs to subordinate dev use its map */
2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851 tc = netdev_txq_to_tc(dev, index);
2852 if (tc < 0)
2853 return -EINVAL;
2854 }
2855
2856 mutex_lock(&xps_map_mutex);
2857
2858 dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 if (type == XPS_RXQS) {
2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 nr_ids = dev->num_rx_queues;
2862 } else {
2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 if (num_possible_cpus() > 1)
2865 online_mask = cpumask_bits(cpu_online_mask);
2866 nr_ids = nr_cpu_ids;
2867 }
2868
2869 if (maps_sz < L1_CACHE_BYTES)
2870 maps_sz = L1_CACHE_BYTES;
2871
2872 /* The old dev_maps could be larger or smaller than the one we're
2873 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 * between. We could try to be smart, but let's be safe instead and only
2875 * copy foreign traffic classes if the two map sizes match.
2876 */
2877 if (dev_maps &&
2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 copy = true;
2880
2881 /* allocate memory for queue storage */
2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 j < nr_ids;) {
2884 if (!new_dev_maps) {
2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 if (!new_dev_maps) {
2887 mutex_unlock(&xps_map_mutex);
2888 return -ENOMEM;
2889 }
2890
2891 new_dev_maps->nr_ids = nr_ids;
2892 new_dev_maps->num_tc = num_tc;
2893 }
2894
2895 tci = j * num_tc + tc;
2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 if (!map)
2900 goto error;
2901
2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 }
2904
2905 if (!new_dev_maps)
2906 goto out_no_new_maps;
2907
2908 if (!dev_maps) {
2909 /* Increment static keys at most once per type */
2910 static_key_slow_inc_cpuslocked(&xps_needed);
2911 if (type == XPS_RXQS)
2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 }
2914
2915 for (j = 0; j < nr_ids; j++) {
2916 bool skip_tc = false;
2917
2918 tci = j * num_tc + tc;
2919 if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 netif_attr_test_online(j, online_mask, nr_ids)) {
2921 /* add tx-queue to CPU/rx-queue maps */
2922 int pos = 0;
2923
2924 skip_tc = true;
2925
2926 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 while ((pos < map->len) && (map->queues[pos] != index))
2928 pos++;
2929
2930 if (pos == map->len)
2931 map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 if (type == XPS_CPUS) {
2934 if (numa_node_id == -2)
2935 numa_node_id = cpu_to_node(j);
2936 else if (numa_node_id != cpu_to_node(j))
2937 numa_node_id = -1;
2938 }
2939 #endif
2940 }
2941
2942 if (copy)
2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 skip_tc);
2945 }
2946
2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949 /* Cleanup old maps */
2950 if (!dev_maps)
2951 goto out_no_old_maps;
2952
2953 for (j = 0; j < dev_maps->nr_ids; j++) {
2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 map = xmap_dereference(dev_maps->attr_map[tci]);
2956 if (!map)
2957 continue;
2958
2959 if (copy) {
2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 if (map == new_map)
2962 continue;
2963 }
2964
2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 kfree_rcu(map, rcu);
2967 }
2968 }
2969
2970 old_dev_maps = dev_maps;
2971
2972 out_no_old_maps:
2973 dev_maps = new_dev_maps;
2974 active = true;
2975
2976 out_no_new_maps:
2977 if (type == XPS_CPUS)
2978 /* update Tx queue numa node */
2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 (numa_node_id >= 0) ?
2981 numa_node_id : NUMA_NO_NODE);
2982
2983 if (!dev_maps)
2984 goto out_no_maps;
2985
2986 /* removes tx-queue from unused CPUs/rx-queues */
2987 for (j = 0; j < dev_maps->nr_ids; j++) {
2988 tci = j * dev_maps->num_tc;
2989
2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 if (i == tc &&
2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 continue;
2995
2996 active |= remove_xps_queue(dev_maps,
2997 copy ? old_dev_maps : NULL,
2998 tci, index);
2999 }
3000 }
3001
3002 if (old_dev_maps)
3003 kfree_rcu(old_dev_maps, rcu);
3004
3005 /* free map if not active */
3006 if (!active)
3007 reset_xps_maps(dev, dev_maps, type);
3008
3009 out_no_maps:
3010 mutex_unlock(&xps_map_mutex);
3011
3012 return 0;
3013 error:
3014 /* remove any maps that we added */
3015 for (j = 0; j < nr_ids; j++) {
3016 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 map = copy ?
3019 xmap_dereference(dev_maps->attr_map[tci]) :
3020 NULL;
3021 if (new_map && new_map != map)
3022 kfree(new_map);
3023 }
3024 }
3025
3026 mutex_unlock(&xps_map_mutex);
3027
3028 kfree(new_dev_maps);
3029 return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 u16 index)
3035 {
3036 int ret;
3037
3038 cpus_read_lock();
3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 cpus_read_unlock();
3041
3042 return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051 /* Unbind any subordinate channels */
3052 while (txq-- != &dev->_tx[0]) {
3053 if (txq->sb_dev)
3054 netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 }
3056 }
3057
netdev_reset_tc(struct net_device * dev)3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 netdev_unbind_all_sb_channels(dev);
3064
3065 /* Reset TC configuration of device */
3066 dev->num_tc = 0;
3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 if (tc >= dev->num_tc)
3075 return -EINVAL;
3076
3077 #ifdef CONFIG_XPS
3078 netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 dev->tc_to_txq[tc].count = count;
3081 dev->tc_to_txq[tc].offset = offset;
3082 return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 if (num_tc > TC_MAX_QUEUE)
3089 return -EINVAL;
3090
3091 #ifdef CONFIG_XPS
3092 netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 netdev_unbind_all_sb_channels(dev);
3095
3096 dev->num_tc = num_tc;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 struct net_device *sb_dev)
3103 {
3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106 #ifdef CONFIG_XPS
3107 netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112 while (txq-- != &dev->_tx[0]) {
3113 if (txq->sb_dev == sb_dev)
3114 txq->sb_dev = NULL;
3115 }
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 struct net_device *sb_dev,
3121 u8 tc, u16 count, u16 offset)
3122 {
3123 /* Make certain the sb_dev and dev are already configured */
3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 return -EINVAL;
3126
3127 /* We cannot hand out queues we don't have */
3128 if ((offset + count) > dev->real_num_tx_queues)
3129 return -EINVAL;
3130
3131 /* Record the mapping */
3132 sb_dev->tc_to_txq[tc].count = count;
3133 sb_dev->tc_to_txq[tc].offset = offset;
3134
3135 /* Provide a way for Tx queue to find the tc_to_txq map or
3136 * XPS map for itself.
3137 */
3138 while (count--)
3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
netdev_set_sb_channel(struct net_device * dev,u16 channel)3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 /* Do not use a multiqueue device to represent a subordinate channel */
3148 if (netif_is_multiqueue(dev))
3149 return -ENODEV;
3150
3151 /* We allow channels 1 - 32767 to be used for subordinate channels.
3152 * Channel 0 is meant to be "native" mode and used only to represent
3153 * the main root device. We allow writing 0 to reset the device back
3154 * to normal mode after being used as a subordinate channel.
3155 */
3156 if (channel > S16_MAX)
3157 return -EINVAL;
3158
3159 dev->num_tc = -channel;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165 /*
3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 bool disabling;
3172 int rc;
3173
3174 disabling = txq < dev->real_num_tx_queues;
3175
3176 if (txq < 1 || txq > dev->num_tx_queues)
3177 return -EINVAL;
3178
3179 if (dev->reg_state == NETREG_REGISTERED ||
3180 dev->reg_state == NETREG_UNREGISTERING) {
3181 netdev_ops_assert_locked(dev);
3182
3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 txq);
3185 if (rc)
3186 return rc;
3187
3188 if (dev->num_tc)
3189 netif_setup_tc(dev, txq);
3190
3191 net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193 dev_qdisc_change_real_num_tx(dev, txq);
3194
3195 dev->real_num_tx_queues = txq;
3196
3197 if (disabling) {
3198 synchronize_net();
3199 qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 }
3204 } else {
3205 dev->real_num_tx_queues = txq;
3206 }
3207
3208 return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212 /**
3213 * netif_set_real_num_rx_queues - set actual number of RX queues used
3214 * @dev: Network device
3215 * @rxq: Actual number of RX queues
3216 *
3217 * This must be called either with the rtnl_lock held or before
3218 * registration of the net device. Returns 0 on success, or a
3219 * negative error code. If called before registration, it always
3220 * succeeds.
3221 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 int rc;
3225
3226 if (rxq < 1 || rxq > dev->num_rx_queues)
3227 return -EINVAL;
3228
3229 if (dev->reg_state == NETREG_REGISTERED) {
3230 netdev_ops_assert_locked(dev);
3231
3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 rxq);
3234 if (rc)
3235 return rc;
3236 }
3237
3238 dev->real_num_rx_queues = rxq;
3239 return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243 /**
3244 * netif_set_real_num_queues - set actual number of RX and TX queues used
3245 * @dev: Network device
3246 * @txq: Actual number of TX queues
3247 * @rxq: Actual number of RX queues
3248 *
3249 * Set the real number of both TX and RX queues.
3250 * Does nothing if the number of queues is already correct.
3251 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3252 int netif_set_real_num_queues(struct net_device *dev,
3253 unsigned int txq, unsigned int rxq)
3254 {
3255 unsigned int old_rxq = dev->real_num_rx_queues;
3256 int err;
3257
3258 if (txq < 1 || txq > dev->num_tx_queues ||
3259 rxq < 1 || rxq > dev->num_rx_queues)
3260 return -EINVAL;
3261
3262 /* Start from increases, so the error path only does decreases -
3263 * decreases can't fail.
3264 */
3265 if (rxq > dev->real_num_rx_queues) {
3266 err = netif_set_real_num_rx_queues(dev, rxq);
3267 if (err)
3268 return err;
3269 }
3270 if (txq > dev->real_num_tx_queues) {
3271 err = netif_set_real_num_tx_queues(dev, txq);
3272 if (err)
3273 goto undo_rx;
3274 }
3275 if (rxq < dev->real_num_rx_queues)
3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 if (txq < dev->real_num_tx_queues)
3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280 return 0;
3281 undo_rx:
3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287 /**
3288 * netif_set_tso_max_size() - set the max size of TSO frames supported
3289 * @dev: netdev to update
3290 * @size: max skb->len of a TSO frame
3291 *
3292 * Set the limit on the size of TSO super-frames the device can handle.
3293 * Unless explicitly set the stack will assume the value of
3294 * %GSO_LEGACY_MAX_SIZE.
3295 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 if (size < READ_ONCE(dev->gso_max_size))
3300 netif_set_gso_max_size(dev, size);
3301 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306 /**
3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308 * @dev: netdev to update
3309 * @segs: max number of TCP segments
3310 *
3311 * Set the limit on the number of TCP segments the device can generate from
3312 * a single TSO super-frame.
3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 dev->tso_max_segs = segs;
3318 if (segs < READ_ONCE(dev->gso_max_segs))
3319 netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323 /**
3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325 * @to: netdev to update
3326 * @from: netdev from which to copy the limits
3327 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 netif_set_tso_max_size(to, from->tso_max_size);
3331 netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335 /**
3336 * netif_get_num_default_rss_queues - default number of RSS queues
3337 *
3338 * Default value is the number of physical cores if there are only 1 or 2, or
3339 * divided by 2 if there are more.
3340 */
netif_get_num_default_rss_queues(void)3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 cpumask_var_t cpus;
3344 int cpu, count = 0;
3345
3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 return 1;
3348
3349 cpumask_copy(cpus, cpu_online_mask);
3350 for_each_cpu(cpu, cpus) {
3351 ++count;
3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 }
3354 free_cpumask_var(cpus);
3355
3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
__netif_reschedule(struct Qdisc * q)3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 struct softnet_data *sd;
3363 unsigned long flags;
3364
3365 local_irq_save(flags);
3366 sd = this_cpu_ptr(&softnet_data);
3367 q->next_sched = NULL;
3368 *sd->output_queue_tailp = q;
3369 sd->output_queue_tailp = &q->next_sched;
3370 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 local_irq_restore(flags);
3372 }
3373
__netif_schedule(struct Qdisc * q)3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 __netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380
3381 struct dev_kfree_skb_cb {
3382 enum skb_drop_reason reason;
3383 };
3384
get_kfree_skb_cb(const struct sk_buff * skb)3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389
netif_schedule_queue(struct netdev_queue * txq)3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 rcu_read_lock();
3393 if (!netif_xmit_stopped(txq)) {
3394 struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396 __netif_schedule(q);
3397 }
3398 rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401
netif_tx_wake_queue(struct netdev_queue * dev_queue)3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 struct Qdisc *q;
3406
3407 rcu_read_lock();
3408 q = rcu_dereference(dev_queue->qdisc);
3409 __netif_schedule(q);
3410 rcu_read_unlock();
3411 }
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 unsigned long flags;
3418
3419 if (unlikely(!skb))
3420 return;
3421
3422 if (likely(refcount_read(&skb->users) == 1)) {
3423 smp_rmb();
3424 refcount_set(&skb->users, 0);
3425 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 return;
3427 }
3428 get_kfree_skb_cb(skb)->reason = reason;
3429 local_irq_save(flags);
3430 skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 __this_cpu_write(softnet_data.completion_queue, skb);
3432 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 if (in_hardirq() || irqs_disabled())
3440 dev_kfree_skb_irq_reason(skb, reason);
3441 else
3442 kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447 /**
3448 * netif_device_detach - mark device as removed
3449 * @dev: network device
3450 *
3451 * Mark device as removed from system and therefore no longer available.
3452 */
netif_device_detach(struct net_device * dev)3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 netif_running(dev)) {
3457 netif_tx_stop_all_queues(dev);
3458 }
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461
3462 /**
3463 * netif_device_attach - mark device as attached
3464 * @dev: network device
3465 *
3466 * Mark device as attached from system and restart if needed.
3467 */
netif_device_attach(struct net_device * dev)3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 netif_running(dev)) {
3472 netif_tx_wake_all_queues(dev);
3473 netdev_watchdog_up(dev);
3474 }
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477
3478 /*
3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480 * to be used as a distribution range.
3481 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 const struct net_device *sb_dev,
3484 struct sk_buff *skb)
3485 {
3486 u32 hash;
3487 u16 qoffset = 0;
3488 u16 qcount = dev->real_num_tx_queues;
3489
3490 if (dev->num_tc) {
3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493 qoffset = sb_dev->tc_to_txq[tc].offset;
3494 qcount = sb_dev->tc_to_txq[tc].count;
3495 if (unlikely(!qcount)) {
3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 sb_dev->name, qoffset, tc);
3498 qoffset = 0;
3499 qcount = dev->real_num_tx_queues;
3500 }
3501 }
3502
3503 if (skb_rx_queue_recorded(skb)) {
3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 hash = skb_get_rx_queue(skb);
3506 if (hash >= qoffset)
3507 hash -= qoffset;
3508 while (unlikely(hash >= qcount))
3509 hash -= qcount;
3510 return hash + qoffset;
3511 }
3512
3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515
skb_warn_bad_offload(const struct sk_buff * skb)3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 static const netdev_features_t null_features;
3519 struct net_device *dev = skb->dev;
3520 const char *name = "";
3521
3522 if (!net_ratelimit())
3523 return;
3524
3525 if (dev) {
3526 if (dev->dev.parent)
3527 name = dev_driver_string(dev->dev.parent);
3528 else
3529 name = netdev_name(dev);
3530 }
3531 skb_dump(KERN_WARNING, skb, false);
3532 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 name, dev ? &dev->features : &null_features,
3534 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536
3537 /*
3538 * Invalidate hardware checksum when packet is to be mangled, and
3539 * complete checksum manually on outgoing path.
3540 */
skb_checksum_help(struct sk_buff * skb)3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 __wsum csum;
3544 int ret = 0, offset;
3545
3546 if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 goto out_set_summed;
3548
3549 if (unlikely(skb_is_gso(skb))) {
3550 skb_warn_bad_offload(skb);
3551 return -EINVAL;
3552 }
3553
3554 if (!skb_frags_readable(skb)) {
3555 return -EFAULT;
3556 }
3557
3558 /* Before computing a checksum, we should make sure no frag could
3559 * be modified by an external entity : checksum could be wrong.
3560 */
3561 if (skb_has_shared_frag(skb)) {
3562 ret = __skb_linearize(skb);
3563 if (ret)
3564 goto out;
3565 }
3566
3567 offset = skb_checksum_start_offset(skb);
3568 ret = -EINVAL;
3569 if (unlikely(offset >= skb_headlen(skb))) {
3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 offset, skb_headlen(skb));
3573 goto out;
3574 }
3575 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577 offset += skb->csum_offset;
3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 offset + sizeof(__sum16), skb_headlen(skb));
3582 goto out;
3583 }
3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 if (ret)
3586 goto out;
3587
3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595
3596 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 u32 crc;
3600 int ret = 0, offset, start;
3601
3602 if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 goto out;
3604
3605 if (unlikely(skb_is_gso(skb)))
3606 goto out;
3607
3608 /* Before computing a checksum, we should make sure no frag could
3609 * be modified by an external entity : checksum could be wrong.
3610 */
3611 if (unlikely(skb_has_shared_frag(skb))) {
3612 ret = __skb_linearize(skb);
3613 if (ret)
3614 goto out;
3615 }
3616 start = skb_checksum_start_offset(skb);
3617 offset = start + offsetof(struct sctphdr, checksum);
3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 ret = -EINVAL;
3620 goto out;
3621 }
3622
3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 if (ret)
3625 goto out;
3626
3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 skb_reset_csum_not_inet(skb);
3630 out:
3631 return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635
skb_network_protocol(struct sk_buff * skb,int * depth)3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 __be16 type = skb->protocol;
3639
3640 /* Tunnel gso handlers can set protocol to ethernet. */
3641 if (type == htons(ETH_P_TEB)) {
3642 struct ethhdr *eth;
3643
3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 return 0;
3646
3647 eth = (struct ethhdr *)skb->data;
3648 type = eth->h_proto;
3649 }
3650
3651 return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653
3654
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 netdev_err(dev, "hw csum failure\n");
3660 skb_dump(KERN_ERR, skb, true);
3661 dump_stack();
3662 }
3663
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670
3671 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 int i;
3676
3677 if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 struct page *page = skb_frag_page(frag);
3681
3682 if (page && PageHighMem(page))
3683 return 1;
3684 }
3685 }
3686 #endif
3687 return 0;
3688 }
3689
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691 * instead of standard features for the netdev.
3692 */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 netdev_features_t features,
3696 __be16 type)
3697 {
3698 if (eth_p_mpls(type))
3699 features &= skb->dev->mpls_features;
3700
3701 return features;
3702 }
3703 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 netdev_features_t features,
3706 __be16 type)
3707 {
3708 return features;
3709 }
3710 #endif
3711
harmonize_features(struct sk_buff * skb,netdev_features_t features)3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 netdev_features_t features)
3714 {
3715 __be16 type;
3716
3717 type = skb_network_protocol(skb, NULL);
3718 features = net_mpls_features(skb, features, type);
3719
3720 if (skb->ip_summed != CHECKSUM_NONE &&
3721 !can_checksum_protocol(features, type)) {
3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 }
3724 if (illegal_highdma(skb->dev, skb))
3725 features &= ~NETIF_F_SG;
3726
3727 return features;
3728 }
3729
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 struct net_device *dev,
3732 netdev_features_t features)
3733 {
3734 return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 struct net_device *dev,
3740 netdev_features_t features)
3741 {
3742 return vlan_features_check(skb, features);
3743 }
3744
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 struct net_device *dev,
3747 netdev_features_t features)
3748 {
3749 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 return features & ~NETIF_F_GSO_MASK;
3753
3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 return features & ~NETIF_F_GSO_MASK;
3756
3757 if (!skb_shinfo(skb)->gso_type) {
3758 skb_warn_bad_offload(skb);
3759 return features & ~NETIF_F_GSO_MASK;
3760 }
3761
3762 /* Support for GSO partial features requires software
3763 * intervention before we can actually process the packets
3764 * so we need to strip support for any partial features now
3765 * and we can pull them back in after we have partially
3766 * segmented the frame.
3767 */
3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 features &= ~dev->gso_partial_features;
3770
3771 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3772 * has the potential to be fragmented so that TSO does not generate
3773 * segments with the same ID. For encapsulated packets, the ID mangling
3774 * feature is guaranteed not to use the same ID for the outer IPv4
3775 * headers of the generated segments if the headers have the potential
3776 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3777 * feature (see the section about NETIF_F_TSO_MANGLEID in
3778 * segmentation-offloads.rst).
3779 */
3780 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3781 struct iphdr *iph = skb->encapsulation ?
3782 inner_ip_hdr(skb) : ip_hdr(skb);
3783
3784 if (!(iph->frag_off & htons(IP_DF)))
3785 features &= ~NETIF_F_TSO_MANGLEID;
3786 }
3787
3788 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3789 * so neither does TSO that depends on it.
3790 */
3791 if (features & NETIF_F_IPV6_CSUM &&
3792 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3793 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3794 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3795 skb_transport_header_was_set(skb) &&
3796 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3797 !ipv6_has_hopopt_jumbo(skb))
3798 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3799
3800 return features;
3801 }
3802
netif_skb_features(struct sk_buff * skb)3803 netdev_features_t netif_skb_features(struct sk_buff *skb)
3804 {
3805 struct net_device *dev = skb->dev;
3806 netdev_features_t features = dev->features;
3807
3808 if (skb_is_gso(skb))
3809 features = gso_features_check(skb, dev, features);
3810
3811 /* If encapsulation offload request, verify we are testing
3812 * hardware encapsulation features instead of standard
3813 * features for the netdev
3814 */
3815 if (skb->encapsulation)
3816 features &= dev->hw_enc_features;
3817
3818 if (skb_vlan_tagged(skb))
3819 features = netdev_intersect_features(features,
3820 dev->vlan_features |
3821 NETIF_F_HW_VLAN_CTAG_TX |
3822 NETIF_F_HW_VLAN_STAG_TX);
3823
3824 if (dev->netdev_ops->ndo_features_check)
3825 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3826 features);
3827 else
3828 features &= dflt_features_check(skb, dev, features);
3829
3830 return harmonize_features(skb, features);
3831 }
3832 EXPORT_SYMBOL(netif_skb_features);
3833
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3834 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3835 struct netdev_queue *txq, bool more)
3836 {
3837 unsigned int len;
3838 int rc;
3839
3840 if (dev_nit_active_rcu(dev))
3841 dev_queue_xmit_nit(skb, dev);
3842
3843 len = skb->len;
3844 trace_net_dev_start_xmit(skb, dev);
3845 rc = netdev_start_xmit(skb, dev, txq, more);
3846 trace_net_dev_xmit(skb, rc, dev, len);
3847
3848 return rc;
3849 }
3850
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3851 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3852 struct netdev_queue *txq, int *ret)
3853 {
3854 struct sk_buff *skb = first;
3855 int rc = NETDEV_TX_OK;
3856
3857 while (skb) {
3858 struct sk_buff *next = skb->next;
3859
3860 skb_mark_not_on_list(skb);
3861 rc = xmit_one(skb, dev, txq, next != NULL);
3862 if (unlikely(!dev_xmit_complete(rc))) {
3863 skb->next = next;
3864 goto out;
3865 }
3866
3867 skb = next;
3868 if (netif_tx_queue_stopped(txq) && skb) {
3869 rc = NETDEV_TX_BUSY;
3870 break;
3871 }
3872 }
3873
3874 out:
3875 *ret = rc;
3876 return skb;
3877 }
3878
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3879 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3880 netdev_features_t features)
3881 {
3882 if (skb_vlan_tag_present(skb) &&
3883 !vlan_hw_offload_capable(features, skb->vlan_proto))
3884 skb = __vlan_hwaccel_push_inside(skb);
3885 return skb;
3886 }
3887
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3888 int skb_csum_hwoffload_help(struct sk_buff *skb,
3889 const netdev_features_t features)
3890 {
3891 if (unlikely(skb_csum_is_sctp(skb)))
3892 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3893 skb_crc32c_csum_help(skb);
3894
3895 if (features & NETIF_F_HW_CSUM)
3896 return 0;
3897
3898 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3899 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3900 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3901 !ipv6_has_hopopt_jumbo(skb))
3902 goto sw_checksum;
3903
3904 switch (skb->csum_offset) {
3905 case offsetof(struct tcphdr, check):
3906 case offsetof(struct udphdr, check):
3907 return 0;
3908 }
3909 }
3910
3911 sw_checksum:
3912 return skb_checksum_help(skb);
3913 }
3914 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3915
3916 /* Checks if this SKB belongs to an HW offloaded socket
3917 * and whether any SW fallbacks are required based on dev.
3918 * Check decrypted mark in case skb_orphan() cleared socket.
3919 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3920 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3921 struct net_device *dev)
3922 {
3923 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3924 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3925 struct sk_buff *skb);
3926 struct sock *sk = skb->sk;
3927
3928 sk_validate = NULL;
3929 if (sk) {
3930 if (sk_fullsock(sk))
3931 sk_validate = sk->sk_validate_xmit_skb;
3932 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3933 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3934 }
3935
3936 if (sk_validate) {
3937 skb = sk_validate(sk, dev, skb);
3938 } else if (unlikely(skb_is_decrypted(skb))) {
3939 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3940 kfree_skb(skb);
3941 skb = NULL;
3942 }
3943 #endif
3944
3945 return skb;
3946 }
3947
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3948 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3949 struct net_device *dev)
3950 {
3951 struct skb_shared_info *shinfo;
3952 struct net_iov *niov;
3953
3954 if (likely(skb_frags_readable(skb)))
3955 goto out;
3956
3957 if (!dev->netmem_tx)
3958 goto out_free;
3959
3960 shinfo = skb_shinfo(skb);
3961
3962 if (shinfo->nr_frags > 0) {
3963 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3964 if (net_is_devmem_iov(niov) &&
3965 net_devmem_iov_binding(niov)->dev != dev)
3966 goto out_free;
3967 }
3968
3969 out:
3970 return skb;
3971
3972 out_free:
3973 kfree_skb(skb);
3974 return NULL;
3975 }
3976
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3977 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3978 {
3979 netdev_features_t features;
3980
3981 skb = validate_xmit_unreadable_skb(skb, dev);
3982 if (unlikely(!skb))
3983 goto out_null;
3984
3985 features = netif_skb_features(skb);
3986 skb = validate_xmit_vlan(skb, features);
3987 if (unlikely(!skb))
3988 goto out_null;
3989
3990 skb = sk_validate_xmit_skb(skb, dev);
3991 if (unlikely(!skb))
3992 goto out_null;
3993
3994 if (netif_needs_gso(skb, features)) {
3995 struct sk_buff *segs;
3996
3997 segs = skb_gso_segment(skb, features);
3998 if (IS_ERR(segs)) {
3999 goto out_kfree_skb;
4000 } else if (segs) {
4001 consume_skb(skb);
4002 skb = segs;
4003 }
4004 } else {
4005 if (skb_needs_linearize(skb, features) &&
4006 __skb_linearize(skb))
4007 goto out_kfree_skb;
4008
4009 /* If packet is not checksummed and device does not
4010 * support checksumming for this protocol, complete
4011 * checksumming here.
4012 */
4013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4014 if (skb->encapsulation)
4015 skb_set_inner_transport_header(skb,
4016 skb_checksum_start_offset(skb));
4017 else
4018 skb_set_transport_header(skb,
4019 skb_checksum_start_offset(skb));
4020 if (skb_csum_hwoffload_help(skb, features))
4021 goto out_kfree_skb;
4022 }
4023 }
4024
4025 skb = validate_xmit_xfrm(skb, features, again);
4026
4027 return skb;
4028
4029 out_kfree_skb:
4030 kfree_skb(skb);
4031 out_null:
4032 dev_core_stats_tx_dropped_inc(dev);
4033 return NULL;
4034 }
4035
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4037 {
4038 struct sk_buff *next, *head = NULL, *tail;
4039
4040 for (; skb != NULL; skb = next) {
4041 next = skb->next;
4042 skb_mark_not_on_list(skb);
4043
4044 /* in case skb won't be segmented, point to itself */
4045 skb->prev = skb;
4046
4047 skb = validate_xmit_skb(skb, dev, again);
4048 if (!skb)
4049 continue;
4050
4051 if (!head)
4052 head = skb;
4053 else
4054 tail->next = skb;
4055 /* If skb was segmented, skb->prev points to
4056 * the last segment. If not, it still contains skb.
4057 */
4058 tail = skb->prev;
4059 }
4060 return head;
4061 }
4062 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4063
qdisc_pkt_len_init(struct sk_buff * skb)4064 static void qdisc_pkt_len_init(struct sk_buff *skb)
4065 {
4066 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4067
4068 qdisc_skb_cb(skb)->pkt_len = skb->len;
4069
4070 /* To get more precise estimation of bytes sent on wire,
4071 * we add to pkt_len the headers size of all segments
4072 */
4073 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4074 u16 gso_segs = shinfo->gso_segs;
4075 unsigned int hdr_len;
4076
4077 /* mac layer + network layer */
4078 if (!skb->encapsulation)
4079 hdr_len = skb_transport_offset(skb);
4080 else
4081 hdr_len = skb_inner_transport_offset(skb);
4082
4083 /* + transport layer */
4084 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4085 const struct tcphdr *th;
4086 struct tcphdr _tcphdr;
4087
4088 th = skb_header_pointer(skb, hdr_len,
4089 sizeof(_tcphdr), &_tcphdr);
4090 if (likely(th))
4091 hdr_len += __tcp_hdrlen(th);
4092 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4093 struct udphdr _udphdr;
4094
4095 if (skb_header_pointer(skb, hdr_len,
4096 sizeof(_udphdr), &_udphdr))
4097 hdr_len += sizeof(struct udphdr);
4098 }
4099
4100 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4101 int payload = skb->len - hdr_len;
4102
4103 /* Malicious packet. */
4104 if (payload <= 0)
4105 return;
4106 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4107 }
4108 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4109 }
4110 }
4111
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4112 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4113 struct sk_buff **to_free,
4114 struct netdev_queue *txq)
4115 {
4116 int rc;
4117
4118 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4119 if (rc == NET_XMIT_SUCCESS)
4120 trace_qdisc_enqueue(q, txq, skb);
4121 return rc;
4122 }
4123
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4124 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4125 struct net_device *dev,
4126 struct netdev_queue *txq)
4127 {
4128 spinlock_t *root_lock = qdisc_lock(q);
4129 struct sk_buff *to_free = NULL;
4130 bool contended;
4131 int rc;
4132
4133 qdisc_calculate_pkt_len(skb, q);
4134
4135 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4136
4137 if (q->flags & TCQ_F_NOLOCK) {
4138 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4139 qdisc_run_begin(q)) {
4140 /* Retest nolock_qdisc_is_empty() within the protection
4141 * of q->seqlock to protect from racing with requeuing.
4142 */
4143 if (unlikely(!nolock_qdisc_is_empty(q))) {
4144 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4145 __qdisc_run(q);
4146 qdisc_run_end(q);
4147
4148 goto no_lock_out;
4149 }
4150
4151 qdisc_bstats_cpu_update(q, skb);
4152 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4153 !nolock_qdisc_is_empty(q))
4154 __qdisc_run(q);
4155
4156 qdisc_run_end(q);
4157 return NET_XMIT_SUCCESS;
4158 }
4159
4160 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4161 qdisc_run(q);
4162
4163 no_lock_out:
4164 if (unlikely(to_free))
4165 kfree_skb_list_reason(to_free,
4166 tcf_get_drop_reason(to_free));
4167 return rc;
4168 }
4169
4170 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4171 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4172 return NET_XMIT_DROP;
4173 }
4174 /*
4175 * Heuristic to force contended enqueues to serialize on a
4176 * separate lock before trying to get qdisc main lock.
4177 * This permits qdisc->running owner to get the lock more
4178 * often and dequeue packets faster.
4179 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4180 * and then other tasks will only enqueue packets. The packets will be
4181 * sent after the qdisc owner is scheduled again. To prevent this
4182 * scenario the task always serialize on the lock.
4183 */
4184 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4185 if (unlikely(contended))
4186 spin_lock(&q->busylock);
4187
4188 spin_lock(root_lock);
4189 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4190 __qdisc_drop(skb, &to_free);
4191 rc = NET_XMIT_DROP;
4192 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4193 qdisc_run_begin(q)) {
4194 /*
4195 * This is a work-conserving queue; there are no old skbs
4196 * waiting to be sent out; and the qdisc is not running -
4197 * xmit the skb directly.
4198 */
4199
4200 qdisc_bstats_update(q, skb);
4201
4202 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4203 if (unlikely(contended)) {
4204 spin_unlock(&q->busylock);
4205 contended = false;
4206 }
4207 __qdisc_run(q);
4208 }
4209
4210 qdisc_run_end(q);
4211 rc = NET_XMIT_SUCCESS;
4212 } else {
4213 WRITE_ONCE(q->owner, smp_processor_id());
4214 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4215 WRITE_ONCE(q->owner, -1);
4216 if (qdisc_run_begin(q)) {
4217 if (unlikely(contended)) {
4218 spin_unlock(&q->busylock);
4219 contended = false;
4220 }
4221 __qdisc_run(q);
4222 qdisc_run_end(q);
4223 }
4224 }
4225 spin_unlock(root_lock);
4226 if (unlikely(to_free))
4227 kfree_skb_list_reason(to_free,
4228 tcf_get_drop_reason(to_free));
4229 if (unlikely(contended))
4230 spin_unlock(&q->busylock);
4231 return rc;
4232 }
4233
4234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4235 static void skb_update_prio(struct sk_buff *skb)
4236 {
4237 const struct netprio_map *map;
4238 const struct sock *sk;
4239 unsigned int prioidx;
4240
4241 if (skb->priority)
4242 return;
4243 map = rcu_dereference_bh(skb->dev->priomap);
4244 if (!map)
4245 return;
4246 sk = skb_to_full_sk(skb);
4247 if (!sk)
4248 return;
4249
4250 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4251
4252 if (prioidx < map->priomap_len)
4253 skb->priority = map->priomap[prioidx];
4254 }
4255 #else
4256 #define skb_update_prio(skb)
4257 #endif
4258
4259 /**
4260 * dev_loopback_xmit - loop back @skb
4261 * @net: network namespace this loopback is happening in
4262 * @sk: sk needed to be a netfilter okfn
4263 * @skb: buffer to transmit
4264 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4265 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4266 {
4267 skb_reset_mac_header(skb);
4268 __skb_pull(skb, skb_network_offset(skb));
4269 skb->pkt_type = PACKET_LOOPBACK;
4270 if (skb->ip_summed == CHECKSUM_NONE)
4271 skb->ip_summed = CHECKSUM_UNNECESSARY;
4272 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4273 skb_dst_force(skb);
4274 netif_rx(skb);
4275 return 0;
4276 }
4277 EXPORT_SYMBOL(dev_loopback_xmit);
4278
4279 #ifdef CONFIG_NET_EGRESS
4280 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4281 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4282 {
4283 int qm = skb_get_queue_mapping(skb);
4284
4285 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4286 }
4287
4288 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4289 static bool netdev_xmit_txqueue_skipped(void)
4290 {
4291 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4292 }
4293
netdev_xmit_skip_txqueue(bool skip)4294 void netdev_xmit_skip_txqueue(bool skip)
4295 {
4296 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4297 }
4298 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4299
4300 #else
netdev_xmit_txqueue_skipped(void)4301 static bool netdev_xmit_txqueue_skipped(void)
4302 {
4303 return current->net_xmit.skip_txqueue;
4304 }
4305
netdev_xmit_skip_txqueue(bool skip)4306 void netdev_xmit_skip_txqueue(bool skip)
4307 {
4308 current->net_xmit.skip_txqueue = skip;
4309 }
4310 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4311 #endif
4312 #endif /* CONFIG_NET_EGRESS */
4313
4314 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4315 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4316 enum skb_drop_reason *drop_reason)
4317 {
4318 int ret = TC_ACT_UNSPEC;
4319 #ifdef CONFIG_NET_CLS_ACT
4320 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4321 struct tcf_result res;
4322
4323 if (!miniq)
4324 return ret;
4325
4326 /* Global bypass */
4327 if (!static_branch_likely(&tcf_sw_enabled_key))
4328 return ret;
4329
4330 /* Block-wise bypass */
4331 if (tcf_block_bypass_sw(miniq->block))
4332 return ret;
4333
4334 tc_skb_cb(skb)->mru = 0;
4335 tc_skb_cb(skb)->post_ct = false;
4336 tcf_set_drop_reason(skb, *drop_reason);
4337
4338 mini_qdisc_bstats_cpu_update(miniq, skb);
4339 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4340 /* Only tcf related quirks below. */
4341 switch (ret) {
4342 case TC_ACT_SHOT:
4343 *drop_reason = tcf_get_drop_reason(skb);
4344 mini_qdisc_qstats_cpu_drop(miniq);
4345 break;
4346 case TC_ACT_OK:
4347 case TC_ACT_RECLASSIFY:
4348 skb->tc_index = TC_H_MIN(res.classid);
4349 break;
4350 }
4351 #endif /* CONFIG_NET_CLS_ACT */
4352 return ret;
4353 }
4354
4355 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4356
tcx_inc(void)4357 void tcx_inc(void)
4358 {
4359 static_branch_inc(&tcx_needed_key);
4360 }
4361
tcx_dec(void)4362 void tcx_dec(void)
4363 {
4364 static_branch_dec(&tcx_needed_key);
4365 }
4366
4367 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4368 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4369 const bool needs_mac)
4370 {
4371 const struct bpf_mprog_fp *fp;
4372 const struct bpf_prog *prog;
4373 int ret = TCX_NEXT;
4374
4375 if (needs_mac)
4376 __skb_push(skb, skb->mac_len);
4377 bpf_mprog_foreach_prog(entry, fp, prog) {
4378 bpf_compute_data_pointers(skb);
4379 ret = bpf_prog_run(prog, skb);
4380 if (ret != TCX_NEXT)
4381 break;
4382 }
4383 if (needs_mac)
4384 __skb_pull(skb, skb->mac_len);
4385 return tcx_action_code(skb, ret);
4386 }
4387
4388 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4389 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4390 struct net_device *orig_dev, bool *another)
4391 {
4392 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4393 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4394 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4395 int sch_ret;
4396
4397 if (!entry)
4398 return skb;
4399
4400 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4401 if (*pt_prev) {
4402 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4403 *pt_prev = NULL;
4404 }
4405
4406 qdisc_skb_cb(skb)->pkt_len = skb->len;
4407 tcx_set_ingress(skb, true);
4408
4409 if (static_branch_unlikely(&tcx_needed_key)) {
4410 sch_ret = tcx_run(entry, skb, true);
4411 if (sch_ret != TC_ACT_UNSPEC)
4412 goto ingress_verdict;
4413 }
4414 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4415 ingress_verdict:
4416 switch (sch_ret) {
4417 case TC_ACT_REDIRECT:
4418 /* skb_mac_header check was done by BPF, so we can safely
4419 * push the L2 header back before redirecting to another
4420 * netdev.
4421 */
4422 __skb_push(skb, skb->mac_len);
4423 if (skb_do_redirect(skb) == -EAGAIN) {
4424 __skb_pull(skb, skb->mac_len);
4425 *another = true;
4426 break;
4427 }
4428 *ret = NET_RX_SUCCESS;
4429 bpf_net_ctx_clear(bpf_net_ctx);
4430 return NULL;
4431 case TC_ACT_SHOT:
4432 kfree_skb_reason(skb, drop_reason);
4433 *ret = NET_RX_DROP;
4434 bpf_net_ctx_clear(bpf_net_ctx);
4435 return NULL;
4436 /* used by tc_run */
4437 case TC_ACT_STOLEN:
4438 case TC_ACT_QUEUED:
4439 case TC_ACT_TRAP:
4440 consume_skb(skb);
4441 fallthrough;
4442 case TC_ACT_CONSUMED:
4443 *ret = NET_RX_SUCCESS;
4444 bpf_net_ctx_clear(bpf_net_ctx);
4445 return NULL;
4446 }
4447 bpf_net_ctx_clear(bpf_net_ctx);
4448
4449 return skb;
4450 }
4451
4452 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4453 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4454 {
4455 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4456 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4457 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4458 int sch_ret;
4459
4460 if (!entry)
4461 return skb;
4462
4463 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4464
4465 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4466 * already set by the caller.
4467 */
4468 if (static_branch_unlikely(&tcx_needed_key)) {
4469 sch_ret = tcx_run(entry, skb, false);
4470 if (sch_ret != TC_ACT_UNSPEC)
4471 goto egress_verdict;
4472 }
4473 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4474 egress_verdict:
4475 switch (sch_ret) {
4476 case TC_ACT_REDIRECT:
4477 /* No need to push/pop skb's mac_header here on egress! */
4478 skb_do_redirect(skb);
4479 *ret = NET_XMIT_SUCCESS;
4480 bpf_net_ctx_clear(bpf_net_ctx);
4481 return NULL;
4482 case TC_ACT_SHOT:
4483 kfree_skb_reason(skb, drop_reason);
4484 *ret = NET_XMIT_DROP;
4485 bpf_net_ctx_clear(bpf_net_ctx);
4486 return NULL;
4487 /* used by tc_run */
4488 case TC_ACT_STOLEN:
4489 case TC_ACT_QUEUED:
4490 case TC_ACT_TRAP:
4491 consume_skb(skb);
4492 fallthrough;
4493 case TC_ACT_CONSUMED:
4494 *ret = NET_XMIT_SUCCESS;
4495 bpf_net_ctx_clear(bpf_net_ctx);
4496 return NULL;
4497 }
4498 bpf_net_ctx_clear(bpf_net_ctx);
4499
4500 return skb;
4501 }
4502 #else
4503 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4504 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4505 struct net_device *orig_dev, bool *another)
4506 {
4507 return skb;
4508 }
4509
4510 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4511 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4512 {
4513 return skb;
4514 }
4515 #endif /* CONFIG_NET_XGRESS */
4516
4517 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4518 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4519 struct xps_dev_maps *dev_maps, unsigned int tci)
4520 {
4521 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4522 struct xps_map *map;
4523 int queue_index = -1;
4524
4525 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4526 return queue_index;
4527
4528 tci *= dev_maps->num_tc;
4529 tci += tc;
4530
4531 map = rcu_dereference(dev_maps->attr_map[tci]);
4532 if (map) {
4533 if (map->len == 1)
4534 queue_index = map->queues[0];
4535 else
4536 queue_index = map->queues[reciprocal_scale(
4537 skb_get_hash(skb), map->len)];
4538 if (unlikely(queue_index >= dev->real_num_tx_queues))
4539 queue_index = -1;
4540 }
4541 return queue_index;
4542 }
4543 #endif
4544
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4545 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4546 struct sk_buff *skb)
4547 {
4548 #ifdef CONFIG_XPS
4549 struct xps_dev_maps *dev_maps;
4550 struct sock *sk = skb->sk;
4551 int queue_index = -1;
4552
4553 if (!static_key_false(&xps_needed))
4554 return -1;
4555
4556 rcu_read_lock();
4557 if (!static_key_false(&xps_rxqs_needed))
4558 goto get_cpus_map;
4559
4560 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4561 if (dev_maps) {
4562 int tci = sk_rx_queue_get(sk);
4563
4564 if (tci >= 0)
4565 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4566 tci);
4567 }
4568
4569 get_cpus_map:
4570 if (queue_index < 0) {
4571 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4572 if (dev_maps) {
4573 unsigned int tci = skb->sender_cpu - 1;
4574
4575 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4576 tci);
4577 }
4578 }
4579 rcu_read_unlock();
4580
4581 return queue_index;
4582 #else
4583 return -1;
4584 #endif
4585 }
4586
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4587 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4588 struct net_device *sb_dev)
4589 {
4590 return 0;
4591 }
4592 EXPORT_SYMBOL(dev_pick_tx_zero);
4593
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4594 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4595 struct net_device *sb_dev)
4596 {
4597 struct sock *sk = skb->sk;
4598 int queue_index = sk_tx_queue_get(sk);
4599
4600 sb_dev = sb_dev ? : dev;
4601
4602 if (queue_index < 0 || skb->ooo_okay ||
4603 queue_index >= dev->real_num_tx_queues) {
4604 int new_index = get_xps_queue(dev, sb_dev, skb);
4605
4606 if (new_index < 0)
4607 new_index = skb_tx_hash(dev, sb_dev, skb);
4608
4609 if (queue_index != new_index && sk &&
4610 sk_fullsock(sk) &&
4611 rcu_access_pointer(sk->sk_dst_cache))
4612 sk_tx_queue_set(sk, new_index);
4613
4614 queue_index = new_index;
4615 }
4616
4617 return queue_index;
4618 }
4619 EXPORT_SYMBOL(netdev_pick_tx);
4620
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4621 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4622 struct sk_buff *skb,
4623 struct net_device *sb_dev)
4624 {
4625 int queue_index = 0;
4626
4627 #ifdef CONFIG_XPS
4628 u32 sender_cpu = skb->sender_cpu - 1;
4629
4630 if (sender_cpu >= (u32)NR_CPUS)
4631 skb->sender_cpu = raw_smp_processor_id() + 1;
4632 #endif
4633
4634 if (dev->real_num_tx_queues != 1) {
4635 const struct net_device_ops *ops = dev->netdev_ops;
4636
4637 if (ops->ndo_select_queue)
4638 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4639 else
4640 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4641
4642 queue_index = netdev_cap_txqueue(dev, queue_index);
4643 }
4644
4645 skb_set_queue_mapping(skb, queue_index);
4646 return netdev_get_tx_queue(dev, queue_index);
4647 }
4648
4649 /**
4650 * __dev_queue_xmit() - transmit a buffer
4651 * @skb: buffer to transmit
4652 * @sb_dev: suboordinate device used for L2 forwarding offload
4653 *
4654 * Queue a buffer for transmission to a network device. The caller must
4655 * have set the device and priority and built the buffer before calling
4656 * this function. The function can be called from an interrupt.
4657 *
4658 * When calling this method, interrupts MUST be enabled. This is because
4659 * the BH enable code must have IRQs enabled so that it will not deadlock.
4660 *
4661 * Regardless of the return value, the skb is consumed, so it is currently
4662 * difficult to retry a send to this method. (You can bump the ref count
4663 * before sending to hold a reference for retry if you are careful.)
4664 *
4665 * Return:
4666 * * 0 - buffer successfully transmitted
4667 * * positive qdisc return code - NET_XMIT_DROP etc.
4668 * * negative errno - other errors
4669 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4670 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4671 {
4672 struct net_device *dev = skb->dev;
4673 struct netdev_queue *txq = NULL;
4674 struct Qdisc *q;
4675 int rc = -ENOMEM;
4676 bool again = false;
4677
4678 skb_reset_mac_header(skb);
4679 skb_assert_len(skb);
4680
4681 if (unlikely(skb_shinfo(skb)->tx_flags &
4682 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4683 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4684
4685 /* Disable soft irqs for various locks below. Also
4686 * stops preemption for RCU.
4687 */
4688 rcu_read_lock_bh();
4689
4690 skb_update_prio(skb);
4691
4692 qdisc_pkt_len_init(skb);
4693 tcx_set_ingress(skb, false);
4694 #ifdef CONFIG_NET_EGRESS
4695 if (static_branch_unlikely(&egress_needed_key)) {
4696 if (nf_hook_egress_active()) {
4697 skb = nf_hook_egress(skb, &rc, dev);
4698 if (!skb)
4699 goto out;
4700 }
4701
4702 netdev_xmit_skip_txqueue(false);
4703
4704 nf_skip_egress(skb, true);
4705 skb = sch_handle_egress(skb, &rc, dev);
4706 if (!skb)
4707 goto out;
4708 nf_skip_egress(skb, false);
4709
4710 if (netdev_xmit_txqueue_skipped())
4711 txq = netdev_tx_queue_mapping(dev, skb);
4712 }
4713 #endif
4714 /* If device/qdisc don't need skb->dst, release it right now while
4715 * its hot in this cpu cache.
4716 */
4717 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4718 skb_dst_drop(skb);
4719 else
4720 skb_dst_force(skb);
4721
4722 if (!txq)
4723 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4724
4725 q = rcu_dereference_bh(txq->qdisc);
4726
4727 trace_net_dev_queue(skb);
4728 if (q->enqueue) {
4729 rc = __dev_xmit_skb(skb, q, dev, txq);
4730 goto out;
4731 }
4732
4733 /* The device has no queue. Common case for software devices:
4734 * loopback, all the sorts of tunnels...
4735
4736 * Really, it is unlikely that netif_tx_lock protection is necessary
4737 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4738 * counters.)
4739 * However, it is possible, that they rely on protection
4740 * made by us here.
4741
4742 * Check this and shot the lock. It is not prone from deadlocks.
4743 *Either shot noqueue qdisc, it is even simpler 8)
4744 */
4745 if (dev->flags & IFF_UP) {
4746 int cpu = smp_processor_id(); /* ok because BHs are off */
4747
4748 /* Other cpus might concurrently change txq->xmit_lock_owner
4749 * to -1 or to their cpu id, but not to our id.
4750 */
4751 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4752 if (dev_xmit_recursion())
4753 goto recursion_alert;
4754
4755 skb = validate_xmit_skb(skb, dev, &again);
4756 if (!skb)
4757 goto out;
4758
4759 HARD_TX_LOCK(dev, txq, cpu);
4760
4761 if (!netif_xmit_stopped(txq)) {
4762 dev_xmit_recursion_inc();
4763 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4764 dev_xmit_recursion_dec();
4765 if (dev_xmit_complete(rc)) {
4766 HARD_TX_UNLOCK(dev, txq);
4767 goto out;
4768 }
4769 }
4770 HARD_TX_UNLOCK(dev, txq);
4771 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4772 dev->name);
4773 } else {
4774 /* Recursion is detected! It is possible,
4775 * unfortunately
4776 */
4777 recursion_alert:
4778 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4779 dev->name);
4780 }
4781 }
4782
4783 rc = -ENETDOWN;
4784 rcu_read_unlock_bh();
4785
4786 dev_core_stats_tx_dropped_inc(dev);
4787 kfree_skb_list(skb);
4788 return rc;
4789 out:
4790 rcu_read_unlock_bh();
4791 return rc;
4792 }
4793 EXPORT_SYMBOL(__dev_queue_xmit);
4794
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4795 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4796 {
4797 struct net_device *dev = skb->dev;
4798 struct sk_buff *orig_skb = skb;
4799 struct netdev_queue *txq;
4800 int ret = NETDEV_TX_BUSY;
4801 bool again = false;
4802
4803 if (unlikely(!netif_running(dev) ||
4804 !netif_carrier_ok(dev)))
4805 goto drop;
4806
4807 skb = validate_xmit_skb_list(skb, dev, &again);
4808 if (skb != orig_skb)
4809 goto drop;
4810
4811 skb_set_queue_mapping(skb, queue_id);
4812 txq = skb_get_tx_queue(dev, skb);
4813
4814 local_bh_disable();
4815
4816 dev_xmit_recursion_inc();
4817 HARD_TX_LOCK(dev, txq, smp_processor_id());
4818 if (!netif_xmit_frozen_or_drv_stopped(txq))
4819 ret = netdev_start_xmit(skb, dev, txq, false);
4820 HARD_TX_UNLOCK(dev, txq);
4821 dev_xmit_recursion_dec();
4822
4823 local_bh_enable();
4824 return ret;
4825 drop:
4826 dev_core_stats_tx_dropped_inc(dev);
4827 kfree_skb_list(skb);
4828 return NET_XMIT_DROP;
4829 }
4830 EXPORT_SYMBOL(__dev_direct_xmit);
4831
4832 /*************************************************************************
4833 * Receiver routines
4834 *************************************************************************/
4835 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4836
4837 int weight_p __read_mostly = 64; /* old backlog weight */
4838 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4839 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4840
4841 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4842 static inline void ____napi_schedule(struct softnet_data *sd,
4843 struct napi_struct *napi)
4844 {
4845 struct task_struct *thread;
4846
4847 lockdep_assert_irqs_disabled();
4848
4849 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4850 /* Paired with smp_mb__before_atomic() in
4851 * napi_enable()/netif_set_threaded().
4852 * Use READ_ONCE() to guarantee a complete
4853 * read on napi->thread. Only call
4854 * wake_up_process() when it's not NULL.
4855 */
4856 thread = READ_ONCE(napi->thread);
4857 if (thread) {
4858 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4859 goto use_local_napi;
4860
4861 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4862 wake_up_process(thread);
4863 return;
4864 }
4865 }
4866
4867 use_local_napi:
4868 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4869 list_add_tail(&napi->poll_list, &sd->poll_list);
4870 WRITE_ONCE(napi->list_owner, smp_processor_id());
4871 /* If not called from net_rx_action()
4872 * we have to raise NET_RX_SOFTIRQ.
4873 */
4874 if (!sd->in_net_rx_action)
4875 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4876 }
4877
4878 #ifdef CONFIG_RPS
4879
4880 struct static_key_false rps_needed __read_mostly;
4881 EXPORT_SYMBOL(rps_needed);
4882 struct static_key_false rfs_needed __read_mostly;
4883 EXPORT_SYMBOL(rfs_needed);
4884
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4885 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4886 {
4887 return hash_32(hash, flow_table->log);
4888 }
4889
4890 #ifdef CONFIG_RFS_ACCEL
4891 /**
4892 * rps_flow_is_active - check whether the flow is recently active.
4893 * @rflow: Specific flow to check activity.
4894 * @flow_table: per-queue flowtable that @rflow belongs to.
4895 * @cpu: CPU saved in @rflow.
4896 *
4897 * If the CPU has processed many packets since the flow's last activity
4898 * (beyond 10 times the table size), the flow is considered stale.
4899 *
4900 * Return: true if flow was recently active.
4901 */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4902 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4903 struct rps_dev_flow_table *flow_table,
4904 unsigned int cpu)
4905 {
4906 unsigned int flow_last_active;
4907 unsigned int sd_input_head;
4908
4909 if (cpu >= nr_cpu_ids)
4910 return false;
4911
4912 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4913 flow_last_active = READ_ONCE(rflow->last_qtail);
4914
4915 return (int)(sd_input_head - flow_last_active) <
4916 (int)(10 << flow_table->log);
4917 }
4918 #endif
4919
4920 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4921 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4922 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4923 u32 flow_id)
4924 {
4925 if (next_cpu < nr_cpu_ids) {
4926 u32 head;
4927 #ifdef CONFIG_RFS_ACCEL
4928 struct netdev_rx_queue *rxqueue;
4929 struct rps_dev_flow_table *flow_table;
4930 struct rps_dev_flow *old_rflow;
4931 struct rps_dev_flow *tmp_rflow;
4932 unsigned int tmp_cpu;
4933 u16 rxq_index;
4934 int rc;
4935
4936 /* Should we steer this flow to a different hardware queue? */
4937 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4938 !(dev->features & NETIF_F_NTUPLE))
4939 goto out;
4940 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4941 if (rxq_index == skb_get_rx_queue(skb))
4942 goto out;
4943
4944 rxqueue = dev->_rx + rxq_index;
4945 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4946 if (!flow_table)
4947 goto out;
4948
4949 tmp_rflow = &flow_table->flows[flow_id];
4950 tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4951
4952 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
4953 if (rps_flow_is_active(tmp_rflow, flow_table,
4954 tmp_cpu)) {
4955 if (hash != READ_ONCE(tmp_rflow->hash) ||
4956 next_cpu == tmp_cpu)
4957 goto out;
4958 }
4959 }
4960
4961 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4962 rxq_index, flow_id);
4963 if (rc < 0)
4964 goto out;
4965
4966 old_rflow = rflow;
4967 rflow = tmp_rflow;
4968 WRITE_ONCE(rflow->filter, rc);
4969 WRITE_ONCE(rflow->hash, hash);
4970
4971 if (old_rflow->filter == rc)
4972 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4973 out:
4974 #endif
4975 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4976 rps_input_queue_tail_save(&rflow->last_qtail, head);
4977 }
4978
4979 WRITE_ONCE(rflow->cpu, next_cpu);
4980 return rflow;
4981 }
4982
4983 /*
4984 * get_rps_cpu is called from netif_receive_skb and returns the target
4985 * CPU from the RPS map of the receiving queue for a given skb.
4986 * rcu_read_lock must be held on entry.
4987 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4988 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4989 struct rps_dev_flow **rflowp)
4990 {
4991 const struct rps_sock_flow_table *sock_flow_table;
4992 struct netdev_rx_queue *rxqueue = dev->_rx;
4993 struct rps_dev_flow_table *flow_table;
4994 struct rps_map *map;
4995 int cpu = -1;
4996 u32 flow_id;
4997 u32 tcpu;
4998 u32 hash;
4999
5000 if (skb_rx_queue_recorded(skb)) {
5001 u16 index = skb_get_rx_queue(skb);
5002
5003 if (unlikely(index >= dev->real_num_rx_queues)) {
5004 WARN_ONCE(dev->real_num_rx_queues > 1,
5005 "%s received packet on queue %u, but number "
5006 "of RX queues is %u\n",
5007 dev->name, index, dev->real_num_rx_queues);
5008 goto done;
5009 }
5010 rxqueue += index;
5011 }
5012
5013 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5014
5015 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5016 map = rcu_dereference(rxqueue->rps_map);
5017 if (!flow_table && !map)
5018 goto done;
5019
5020 skb_reset_network_header(skb);
5021 hash = skb_get_hash(skb);
5022 if (!hash)
5023 goto done;
5024
5025 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5026 if (flow_table && sock_flow_table) {
5027 struct rps_dev_flow *rflow;
5028 u32 next_cpu;
5029 u32 ident;
5030
5031 /* First check into global flow table if there is a match.
5032 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5033 */
5034 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5035 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5036 goto try_rps;
5037
5038 next_cpu = ident & net_hotdata.rps_cpu_mask;
5039
5040 /* OK, now we know there is a match,
5041 * we can look at the local (per receive queue) flow table
5042 */
5043 flow_id = rfs_slot(hash, flow_table);
5044 rflow = &flow_table->flows[flow_id];
5045 tcpu = rflow->cpu;
5046
5047 /*
5048 * If the desired CPU (where last recvmsg was done) is
5049 * different from current CPU (one in the rx-queue flow
5050 * table entry), switch if one of the following holds:
5051 * - Current CPU is unset (>= nr_cpu_ids).
5052 * - Current CPU is offline.
5053 * - The current CPU's queue tail has advanced beyond the
5054 * last packet that was enqueued using this table entry.
5055 * This guarantees that all previous packets for the flow
5056 * have been dequeued, thus preserving in order delivery.
5057 */
5058 if (unlikely(tcpu != next_cpu) &&
5059 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5060 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5061 rflow->last_qtail)) >= 0)) {
5062 tcpu = next_cpu;
5063 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5064 flow_id);
5065 }
5066
5067 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5068 *rflowp = rflow;
5069 cpu = tcpu;
5070 goto done;
5071 }
5072 }
5073
5074 try_rps:
5075
5076 if (map) {
5077 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5078 if (cpu_online(tcpu)) {
5079 cpu = tcpu;
5080 goto done;
5081 }
5082 }
5083
5084 done:
5085 return cpu;
5086 }
5087
5088 #ifdef CONFIG_RFS_ACCEL
5089
5090 /**
5091 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5092 * @dev: Device on which the filter was set
5093 * @rxq_index: RX queue index
5094 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5095 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5096 *
5097 * Drivers that implement ndo_rx_flow_steer() should periodically call
5098 * this function for each installed filter and remove the filters for
5099 * which it returns %true.
5100 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5102 u32 flow_id, u16 filter_id)
5103 {
5104 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5105 struct rps_dev_flow_table *flow_table;
5106 struct rps_dev_flow *rflow;
5107 bool expire = true;
5108
5109 rcu_read_lock();
5110 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5111 if (flow_table && flow_id < (1UL << flow_table->log)) {
5112 unsigned int cpu;
5113
5114 rflow = &flow_table->flows[flow_id];
5115 cpu = READ_ONCE(rflow->cpu);
5116 if (READ_ONCE(rflow->filter) == filter_id &&
5117 rps_flow_is_active(rflow, flow_table, cpu))
5118 expire = false;
5119 }
5120 rcu_read_unlock();
5121 return expire;
5122 }
5123 EXPORT_SYMBOL(rps_may_expire_flow);
5124
5125 #endif /* CONFIG_RFS_ACCEL */
5126
5127 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5128 static void rps_trigger_softirq(void *data)
5129 {
5130 struct softnet_data *sd = data;
5131
5132 ____napi_schedule(sd, &sd->backlog);
5133 /* Pairs with READ_ONCE() in softnet_seq_show() */
5134 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5135 }
5136
5137 #endif /* CONFIG_RPS */
5138
5139 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5140 static void trigger_rx_softirq(void *data)
5141 {
5142 struct softnet_data *sd = data;
5143
5144 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5145 smp_store_release(&sd->defer_ipi_scheduled, 0);
5146 }
5147
5148 /*
5149 * After we queued a packet into sd->input_pkt_queue,
5150 * we need to make sure this queue is serviced soon.
5151 *
5152 * - If this is another cpu queue, link it to our rps_ipi_list,
5153 * and make sure we will process rps_ipi_list from net_rx_action().
5154 *
5155 * - If this is our own queue, NAPI schedule our backlog.
5156 * Note that this also raises NET_RX_SOFTIRQ.
5157 */
napi_schedule_rps(struct softnet_data * sd)5158 static void napi_schedule_rps(struct softnet_data *sd)
5159 {
5160 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5161
5162 #ifdef CONFIG_RPS
5163 if (sd != mysd) {
5164 if (use_backlog_threads()) {
5165 __napi_schedule_irqoff(&sd->backlog);
5166 return;
5167 }
5168
5169 sd->rps_ipi_next = mysd->rps_ipi_list;
5170 mysd->rps_ipi_list = sd;
5171
5172 /* If not called from net_rx_action() or napi_threaded_poll()
5173 * we have to raise NET_RX_SOFTIRQ.
5174 */
5175 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5176 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5177 return;
5178 }
5179 #endif /* CONFIG_RPS */
5180 __napi_schedule_irqoff(&mysd->backlog);
5181 }
5182
kick_defer_list_purge(unsigned int cpu)5183 void kick_defer_list_purge(unsigned int cpu)
5184 {
5185 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5186 unsigned long flags;
5187
5188 if (use_backlog_threads()) {
5189 backlog_lock_irq_save(sd, &flags);
5190
5191 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5192 __napi_schedule_irqoff(&sd->backlog);
5193
5194 backlog_unlock_irq_restore(sd, &flags);
5195
5196 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5197 smp_call_function_single_async(cpu, &sd->defer_csd);
5198 }
5199 }
5200
5201 #ifdef CONFIG_NET_FLOW_LIMIT
5202 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5203 #endif
5204
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5205 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5206 {
5207 #ifdef CONFIG_NET_FLOW_LIMIT
5208 struct sd_flow_limit *fl;
5209 struct softnet_data *sd;
5210 unsigned int old_flow, new_flow;
5211
5212 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5213 return false;
5214
5215 sd = this_cpu_ptr(&softnet_data);
5216
5217 rcu_read_lock();
5218 fl = rcu_dereference(sd->flow_limit);
5219 if (fl) {
5220 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5221 old_flow = fl->history[fl->history_head];
5222 fl->history[fl->history_head] = new_flow;
5223
5224 fl->history_head++;
5225 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5226
5227 if (likely(fl->buckets[old_flow]))
5228 fl->buckets[old_flow]--;
5229
5230 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5231 /* Pairs with READ_ONCE() in softnet_seq_show() */
5232 WRITE_ONCE(fl->count, fl->count + 1);
5233 rcu_read_unlock();
5234 return true;
5235 }
5236 }
5237 rcu_read_unlock();
5238 #endif
5239 return false;
5240 }
5241
5242 /*
5243 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5244 * queue (may be a remote CPU queue).
5245 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5246 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5247 unsigned int *qtail)
5248 {
5249 enum skb_drop_reason reason;
5250 struct softnet_data *sd;
5251 unsigned long flags;
5252 unsigned int qlen;
5253 int max_backlog;
5254 u32 tail;
5255
5256 reason = SKB_DROP_REASON_DEV_READY;
5257 if (!netif_running(skb->dev))
5258 goto bad_dev;
5259
5260 reason = SKB_DROP_REASON_CPU_BACKLOG;
5261 sd = &per_cpu(softnet_data, cpu);
5262
5263 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5264 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5265 if (unlikely(qlen > max_backlog))
5266 goto cpu_backlog_drop;
5267 backlog_lock_irq_save(sd, &flags);
5268 qlen = skb_queue_len(&sd->input_pkt_queue);
5269 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5270 if (!qlen) {
5271 /* Schedule NAPI for backlog device. We can use
5272 * non atomic operation as we own the queue lock.
5273 */
5274 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5275 &sd->backlog.state))
5276 napi_schedule_rps(sd);
5277 }
5278 __skb_queue_tail(&sd->input_pkt_queue, skb);
5279 tail = rps_input_queue_tail_incr(sd);
5280 backlog_unlock_irq_restore(sd, &flags);
5281
5282 /* save the tail outside of the critical section */
5283 rps_input_queue_tail_save(qtail, tail);
5284 return NET_RX_SUCCESS;
5285 }
5286
5287 backlog_unlock_irq_restore(sd, &flags);
5288
5289 cpu_backlog_drop:
5290 numa_drop_add(&sd->drop_counters, 1);
5291 bad_dev:
5292 dev_core_stats_rx_dropped_inc(skb->dev);
5293 kfree_skb_reason(skb, reason);
5294 return NET_RX_DROP;
5295 }
5296
netif_get_rxqueue(struct sk_buff * skb)5297 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5298 {
5299 struct net_device *dev = skb->dev;
5300 struct netdev_rx_queue *rxqueue;
5301
5302 rxqueue = dev->_rx;
5303
5304 if (skb_rx_queue_recorded(skb)) {
5305 u16 index = skb_get_rx_queue(skb);
5306
5307 if (unlikely(index >= dev->real_num_rx_queues)) {
5308 WARN_ONCE(dev->real_num_rx_queues > 1,
5309 "%s received packet on queue %u, but number "
5310 "of RX queues is %u\n",
5311 dev->name, index, dev->real_num_rx_queues);
5312
5313 return rxqueue; /* Return first rxqueue */
5314 }
5315 rxqueue += index;
5316 }
5317 return rxqueue;
5318 }
5319
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5320 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5321 const struct bpf_prog *xdp_prog)
5322 {
5323 void *orig_data, *orig_data_end, *hard_start;
5324 struct netdev_rx_queue *rxqueue;
5325 bool orig_bcast, orig_host;
5326 u32 mac_len, frame_sz;
5327 __be16 orig_eth_type;
5328 struct ethhdr *eth;
5329 u32 metalen, act;
5330 int off;
5331
5332 /* The XDP program wants to see the packet starting at the MAC
5333 * header.
5334 */
5335 mac_len = skb->data - skb_mac_header(skb);
5336 hard_start = skb->data - skb_headroom(skb);
5337
5338 /* SKB "head" area always have tailroom for skb_shared_info */
5339 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5340 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5341
5342 rxqueue = netif_get_rxqueue(skb);
5343 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5344 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5345 skb_headlen(skb) + mac_len, true);
5346 if (skb_is_nonlinear(skb)) {
5347 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5348 xdp_buff_set_frags_flag(xdp);
5349 } else {
5350 xdp_buff_clear_frags_flag(xdp);
5351 }
5352
5353 orig_data_end = xdp->data_end;
5354 orig_data = xdp->data;
5355 eth = (struct ethhdr *)xdp->data;
5356 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5357 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5358 orig_eth_type = eth->h_proto;
5359
5360 act = bpf_prog_run_xdp(xdp_prog, xdp);
5361
5362 /* check if bpf_xdp_adjust_head was used */
5363 off = xdp->data - orig_data;
5364 if (off) {
5365 if (off > 0)
5366 __skb_pull(skb, off);
5367 else if (off < 0)
5368 __skb_push(skb, -off);
5369
5370 skb->mac_header += off;
5371 skb_reset_network_header(skb);
5372 }
5373
5374 /* check if bpf_xdp_adjust_tail was used */
5375 off = xdp->data_end - orig_data_end;
5376 if (off != 0) {
5377 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5378 skb->len += off; /* positive on grow, negative on shrink */
5379 }
5380
5381 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5382 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5383 */
5384 if (xdp_buff_has_frags(xdp))
5385 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5386 else
5387 skb->data_len = 0;
5388
5389 /* check if XDP changed eth hdr such SKB needs update */
5390 eth = (struct ethhdr *)xdp->data;
5391 if ((orig_eth_type != eth->h_proto) ||
5392 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5393 skb->dev->dev_addr)) ||
5394 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5395 __skb_push(skb, ETH_HLEN);
5396 skb->pkt_type = PACKET_HOST;
5397 skb->protocol = eth_type_trans(skb, skb->dev);
5398 }
5399
5400 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5401 * before calling us again on redirect path. We do not call do_redirect
5402 * as we leave that up to the caller.
5403 *
5404 * Caller is responsible for managing lifetime of skb (i.e. calling
5405 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5406 */
5407 switch (act) {
5408 case XDP_REDIRECT:
5409 case XDP_TX:
5410 __skb_push(skb, mac_len);
5411 break;
5412 case XDP_PASS:
5413 metalen = xdp->data - xdp->data_meta;
5414 if (metalen)
5415 skb_metadata_set(skb, metalen);
5416 break;
5417 }
5418
5419 return act;
5420 }
5421
5422 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5423 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5424 {
5425 struct sk_buff *skb = *pskb;
5426 int err, hroom, troom;
5427
5428 local_lock_nested_bh(&system_page_pool.bh_lock);
5429 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5430 local_unlock_nested_bh(&system_page_pool.bh_lock);
5431 if (!err)
5432 return 0;
5433
5434 /* In case we have to go down the path and also linearize,
5435 * then lets do the pskb_expand_head() work just once here.
5436 */
5437 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5438 troom = skb->tail + skb->data_len - skb->end;
5439 err = pskb_expand_head(skb,
5440 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5441 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5442 if (err)
5443 return err;
5444
5445 return skb_linearize(skb);
5446 }
5447
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5448 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5449 struct xdp_buff *xdp,
5450 const struct bpf_prog *xdp_prog)
5451 {
5452 struct sk_buff *skb = *pskb;
5453 u32 mac_len, act = XDP_DROP;
5454
5455 /* Reinjected packets coming from act_mirred or similar should
5456 * not get XDP generic processing.
5457 */
5458 if (skb_is_redirected(skb))
5459 return XDP_PASS;
5460
5461 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5462 * bytes. This is the guarantee that also native XDP provides,
5463 * thus we need to do it here as well.
5464 */
5465 mac_len = skb->data - skb_mac_header(skb);
5466 __skb_push(skb, mac_len);
5467
5468 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5469 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5470 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5471 goto do_drop;
5472 }
5473
5474 __skb_pull(*pskb, mac_len);
5475
5476 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5477 switch (act) {
5478 case XDP_REDIRECT:
5479 case XDP_TX:
5480 case XDP_PASS:
5481 break;
5482 default:
5483 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5484 fallthrough;
5485 case XDP_ABORTED:
5486 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5487 fallthrough;
5488 case XDP_DROP:
5489 do_drop:
5490 kfree_skb(*pskb);
5491 break;
5492 }
5493
5494 return act;
5495 }
5496
5497 /* When doing generic XDP we have to bypass the qdisc layer and the
5498 * network taps in order to match in-driver-XDP behavior. This also means
5499 * that XDP packets are able to starve other packets going through a qdisc,
5500 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5501 * queues, so they do not have this starvation issue.
5502 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5503 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5504 {
5505 struct net_device *dev = skb->dev;
5506 struct netdev_queue *txq;
5507 bool free_skb = true;
5508 int cpu, rc;
5509
5510 txq = netdev_core_pick_tx(dev, skb, NULL);
5511 cpu = smp_processor_id();
5512 HARD_TX_LOCK(dev, txq, cpu);
5513 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5514 rc = netdev_start_xmit(skb, dev, txq, 0);
5515 if (dev_xmit_complete(rc))
5516 free_skb = false;
5517 }
5518 HARD_TX_UNLOCK(dev, txq);
5519 if (free_skb) {
5520 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5521 dev_core_stats_tx_dropped_inc(dev);
5522 kfree_skb(skb);
5523 }
5524 }
5525
5526 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5527
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5528 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5529 {
5530 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5531
5532 if (xdp_prog) {
5533 struct xdp_buff xdp;
5534 u32 act;
5535 int err;
5536
5537 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5538 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5539 if (act != XDP_PASS) {
5540 switch (act) {
5541 case XDP_REDIRECT:
5542 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5543 &xdp, xdp_prog);
5544 if (err)
5545 goto out_redir;
5546 break;
5547 case XDP_TX:
5548 generic_xdp_tx(*pskb, xdp_prog);
5549 break;
5550 }
5551 bpf_net_ctx_clear(bpf_net_ctx);
5552 return XDP_DROP;
5553 }
5554 bpf_net_ctx_clear(bpf_net_ctx);
5555 }
5556 return XDP_PASS;
5557 out_redir:
5558 bpf_net_ctx_clear(bpf_net_ctx);
5559 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5560 return XDP_DROP;
5561 }
5562 EXPORT_SYMBOL_GPL(do_xdp_generic);
5563
netif_rx_internal(struct sk_buff * skb)5564 static int netif_rx_internal(struct sk_buff *skb)
5565 {
5566 int ret;
5567
5568 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5569
5570 trace_netif_rx(skb);
5571
5572 #ifdef CONFIG_RPS
5573 if (static_branch_unlikely(&rps_needed)) {
5574 struct rps_dev_flow voidflow, *rflow = &voidflow;
5575 int cpu;
5576
5577 rcu_read_lock();
5578
5579 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5580 if (cpu < 0)
5581 cpu = smp_processor_id();
5582
5583 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5584
5585 rcu_read_unlock();
5586 } else
5587 #endif
5588 {
5589 unsigned int qtail;
5590
5591 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5592 }
5593 return ret;
5594 }
5595
5596 /**
5597 * __netif_rx - Slightly optimized version of netif_rx
5598 * @skb: buffer to post
5599 *
5600 * This behaves as netif_rx except that it does not disable bottom halves.
5601 * As a result this function may only be invoked from the interrupt context
5602 * (either hard or soft interrupt).
5603 */
__netif_rx(struct sk_buff * skb)5604 int __netif_rx(struct sk_buff *skb)
5605 {
5606 int ret;
5607
5608 lockdep_assert_once(hardirq_count() | softirq_count());
5609
5610 trace_netif_rx_entry(skb);
5611 ret = netif_rx_internal(skb);
5612 trace_netif_rx_exit(ret);
5613 return ret;
5614 }
5615 EXPORT_SYMBOL(__netif_rx);
5616
5617 /**
5618 * netif_rx - post buffer to the network code
5619 * @skb: buffer to post
5620 *
5621 * This function receives a packet from a device driver and queues it for
5622 * the upper (protocol) levels to process via the backlog NAPI device. It
5623 * always succeeds. The buffer may be dropped during processing for
5624 * congestion control or by the protocol layers.
5625 * The network buffer is passed via the backlog NAPI device. Modern NIC
5626 * driver should use NAPI and GRO.
5627 * This function can used from interrupt and from process context. The
5628 * caller from process context must not disable interrupts before invoking
5629 * this function.
5630 *
5631 * return values:
5632 * NET_RX_SUCCESS (no congestion)
5633 * NET_RX_DROP (packet was dropped)
5634 *
5635 */
netif_rx(struct sk_buff * skb)5636 int netif_rx(struct sk_buff *skb)
5637 {
5638 bool need_bh_off = !(hardirq_count() | softirq_count());
5639 int ret;
5640
5641 if (need_bh_off)
5642 local_bh_disable();
5643 trace_netif_rx_entry(skb);
5644 ret = netif_rx_internal(skb);
5645 trace_netif_rx_exit(ret);
5646 if (need_bh_off)
5647 local_bh_enable();
5648 return ret;
5649 }
5650 EXPORT_SYMBOL(netif_rx);
5651
net_tx_action(void)5652 static __latent_entropy void net_tx_action(void)
5653 {
5654 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5655
5656 if (sd->completion_queue) {
5657 struct sk_buff *clist;
5658
5659 local_irq_disable();
5660 clist = sd->completion_queue;
5661 sd->completion_queue = NULL;
5662 local_irq_enable();
5663
5664 while (clist) {
5665 struct sk_buff *skb = clist;
5666
5667 clist = clist->next;
5668
5669 WARN_ON(refcount_read(&skb->users));
5670 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5671 trace_consume_skb(skb, net_tx_action);
5672 else
5673 trace_kfree_skb(skb, net_tx_action,
5674 get_kfree_skb_cb(skb)->reason, NULL);
5675
5676 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5677 __kfree_skb(skb);
5678 else
5679 __napi_kfree_skb(skb,
5680 get_kfree_skb_cb(skb)->reason);
5681 }
5682 }
5683
5684 if (sd->output_queue) {
5685 struct Qdisc *head;
5686
5687 local_irq_disable();
5688 head = sd->output_queue;
5689 sd->output_queue = NULL;
5690 sd->output_queue_tailp = &sd->output_queue;
5691 local_irq_enable();
5692
5693 rcu_read_lock();
5694
5695 while (head) {
5696 struct Qdisc *q = head;
5697 spinlock_t *root_lock = NULL;
5698
5699 head = head->next_sched;
5700
5701 /* We need to make sure head->next_sched is read
5702 * before clearing __QDISC_STATE_SCHED
5703 */
5704 smp_mb__before_atomic();
5705
5706 if (!(q->flags & TCQ_F_NOLOCK)) {
5707 root_lock = qdisc_lock(q);
5708 spin_lock(root_lock);
5709 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5710 &q->state))) {
5711 /* There is a synchronize_net() between
5712 * STATE_DEACTIVATED flag being set and
5713 * qdisc_reset()/some_qdisc_is_busy() in
5714 * dev_deactivate(), so we can safely bail out
5715 * early here to avoid data race between
5716 * qdisc_deactivate() and some_qdisc_is_busy()
5717 * for lockless qdisc.
5718 */
5719 clear_bit(__QDISC_STATE_SCHED, &q->state);
5720 continue;
5721 }
5722
5723 clear_bit(__QDISC_STATE_SCHED, &q->state);
5724 qdisc_run(q);
5725 if (root_lock)
5726 spin_unlock(root_lock);
5727 }
5728
5729 rcu_read_unlock();
5730 }
5731
5732 xfrm_dev_backlog(sd);
5733 }
5734
5735 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5736 /* This hook is defined here for ATM LANE */
5737 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5738 unsigned char *addr) __read_mostly;
5739 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5740 #endif
5741
5742 /**
5743 * netdev_is_rx_handler_busy - check if receive handler is registered
5744 * @dev: device to check
5745 *
5746 * Check if a receive handler is already registered for a given device.
5747 * Return true if there one.
5748 *
5749 * The caller must hold the rtnl_mutex.
5750 */
netdev_is_rx_handler_busy(struct net_device * dev)5751 bool netdev_is_rx_handler_busy(struct net_device *dev)
5752 {
5753 ASSERT_RTNL();
5754 return dev && rtnl_dereference(dev->rx_handler);
5755 }
5756 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5757
5758 /**
5759 * netdev_rx_handler_register - register receive handler
5760 * @dev: device to register a handler for
5761 * @rx_handler: receive handler to register
5762 * @rx_handler_data: data pointer that is used by rx handler
5763 *
5764 * Register a receive handler for a device. This handler will then be
5765 * called from __netif_receive_skb. A negative errno code is returned
5766 * on a failure.
5767 *
5768 * The caller must hold the rtnl_mutex.
5769 *
5770 * For a general description of rx_handler, see enum rx_handler_result.
5771 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5772 int netdev_rx_handler_register(struct net_device *dev,
5773 rx_handler_func_t *rx_handler,
5774 void *rx_handler_data)
5775 {
5776 if (netdev_is_rx_handler_busy(dev))
5777 return -EBUSY;
5778
5779 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5780 return -EINVAL;
5781
5782 /* Note: rx_handler_data must be set before rx_handler */
5783 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5784 rcu_assign_pointer(dev->rx_handler, rx_handler);
5785
5786 return 0;
5787 }
5788 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5789
5790 /**
5791 * netdev_rx_handler_unregister - unregister receive handler
5792 * @dev: device to unregister a handler from
5793 *
5794 * Unregister a receive handler from a device.
5795 *
5796 * The caller must hold the rtnl_mutex.
5797 */
netdev_rx_handler_unregister(struct net_device * dev)5798 void netdev_rx_handler_unregister(struct net_device *dev)
5799 {
5800
5801 ASSERT_RTNL();
5802 RCU_INIT_POINTER(dev->rx_handler, NULL);
5803 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5804 * section has a guarantee to see a non NULL rx_handler_data
5805 * as well.
5806 */
5807 synchronize_net();
5808 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5809 }
5810 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5811
5812 /*
5813 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5814 * the special handling of PFMEMALLOC skbs.
5815 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5816 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5817 {
5818 switch (skb->protocol) {
5819 case htons(ETH_P_ARP):
5820 case htons(ETH_P_IP):
5821 case htons(ETH_P_IPV6):
5822 case htons(ETH_P_8021Q):
5823 case htons(ETH_P_8021AD):
5824 return true;
5825 default:
5826 return false;
5827 }
5828 }
5829
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5830 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5831 int *ret, struct net_device *orig_dev)
5832 {
5833 if (nf_hook_ingress_active(skb)) {
5834 int ingress_retval;
5835
5836 if (*pt_prev) {
5837 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5838 *pt_prev = NULL;
5839 }
5840
5841 rcu_read_lock();
5842 ingress_retval = nf_hook_ingress(skb);
5843 rcu_read_unlock();
5844 return ingress_retval;
5845 }
5846 return 0;
5847 }
5848
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5849 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5850 struct packet_type **ppt_prev)
5851 {
5852 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5853 struct packet_type *ptype, *pt_prev;
5854 rx_handler_func_t *rx_handler;
5855 struct sk_buff *skb = *pskb;
5856 struct net_device *orig_dev;
5857 bool deliver_exact = false;
5858 int ret = NET_RX_DROP;
5859 __be16 type;
5860
5861 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5862
5863 trace_netif_receive_skb(skb);
5864
5865 orig_dev = skb->dev;
5866
5867 skb_reset_network_header(skb);
5868 #if !defined(CONFIG_DEBUG_NET)
5869 /* We plan to no longer reset the transport header here.
5870 * Give some time to fuzzers and dev build to catch bugs
5871 * in network stacks.
5872 */
5873 if (!skb_transport_header_was_set(skb))
5874 skb_reset_transport_header(skb);
5875 #endif
5876 skb_reset_mac_len(skb);
5877
5878 pt_prev = NULL;
5879
5880 another_round:
5881 skb->skb_iif = skb->dev->ifindex;
5882
5883 __this_cpu_inc(softnet_data.processed);
5884
5885 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5886 int ret2;
5887
5888 migrate_disable();
5889 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5890 &skb);
5891 migrate_enable();
5892
5893 if (ret2 != XDP_PASS) {
5894 ret = NET_RX_DROP;
5895 goto out;
5896 }
5897 }
5898
5899 if (eth_type_vlan(skb->protocol)) {
5900 skb = skb_vlan_untag(skb);
5901 if (unlikely(!skb))
5902 goto out;
5903 }
5904
5905 if (skb_skip_tc_classify(skb))
5906 goto skip_classify;
5907
5908 if (pfmemalloc)
5909 goto skip_taps;
5910
5911 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5912 list) {
5913 if (pt_prev)
5914 ret = deliver_skb(skb, pt_prev, orig_dev);
5915 pt_prev = ptype;
5916 }
5917
5918 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5919 if (pt_prev)
5920 ret = deliver_skb(skb, pt_prev, orig_dev);
5921 pt_prev = ptype;
5922 }
5923
5924 skip_taps:
5925 #ifdef CONFIG_NET_INGRESS
5926 if (static_branch_unlikely(&ingress_needed_key)) {
5927 bool another = false;
5928
5929 nf_skip_egress(skb, true);
5930 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5931 &another);
5932 if (another)
5933 goto another_round;
5934 if (!skb)
5935 goto out;
5936
5937 nf_skip_egress(skb, false);
5938 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5939 goto out;
5940 }
5941 #endif
5942 skb_reset_redirect(skb);
5943 skip_classify:
5944 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5945 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5946 goto drop;
5947 }
5948
5949 if (skb_vlan_tag_present(skb)) {
5950 if (pt_prev) {
5951 ret = deliver_skb(skb, pt_prev, orig_dev);
5952 pt_prev = NULL;
5953 }
5954 if (vlan_do_receive(&skb))
5955 goto another_round;
5956 else if (unlikely(!skb))
5957 goto out;
5958 }
5959
5960 rx_handler = rcu_dereference(skb->dev->rx_handler);
5961 if (rx_handler) {
5962 if (pt_prev) {
5963 ret = deliver_skb(skb, pt_prev, orig_dev);
5964 pt_prev = NULL;
5965 }
5966 switch (rx_handler(&skb)) {
5967 case RX_HANDLER_CONSUMED:
5968 ret = NET_RX_SUCCESS;
5969 goto out;
5970 case RX_HANDLER_ANOTHER:
5971 goto another_round;
5972 case RX_HANDLER_EXACT:
5973 deliver_exact = true;
5974 break;
5975 case RX_HANDLER_PASS:
5976 break;
5977 default:
5978 BUG();
5979 }
5980 }
5981
5982 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5983 check_vlan_id:
5984 if (skb_vlan_tag_get_id(skb)) {
5985 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5986 * find vlan device.
5987 */
5988 skb->pkt_type = PACKET_OTHERHOST;
5989 } else if (eth_type_vlan(skb->protocol)) {
5990 /* Outer header is 802.1P with vlan 0, inner header is
5991 * 802.1Q or 802.1AD and vlan_do_receive() above could
5992 * not find vlan dev for vlan id 0.
5993 */
5994 __vlan_hwaccel_clear_tag(skb);
5995 skb = skb_vlan_untag(skb);
5996 if (unlikely(!skb))
5997 goto out;
5998 if (vlan_do_receive(&skb))
5999 /* After stripping off 802.1P header with vlan 0
6000 * vlan dev is found for inner header.
6001 */
6002 goto another_round;
6003 else if (unlikely(!skb))
6004 goto out;
6005 else
6006 /* We have stripped outer 802.1P vlan 0 header.
6007 * But could not find vlan dev.
6008 * check again for vlan id to set OTHERHOST.
6009 */
6010 goto check_vlan_id;
6011 }
6012 /* Note: we might in the future use prio bits
6013 * and set skb->priority like in vlan_do_receive()
6014 * For the time being, just ignore Priority Code Point
6015 */
6016 __vlan_hwaccel_clear_tag(skb);
6017 }
6018
6019 type = skb->protocol;
6020
6021 /* deliver only exact match when indicated */
6022 if (likely(!deliver_exact)) {
6023 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6024 &ptype_base[ntohs(type) &
6025 PTYPE_HASH_MASK]);
6026
6027 /* orig_dev and skb->dev could belong to different netns;
6028 * Even in such case we need to traverse only the list
6029 * coming from skb->dev, as the ptype owner (packet socket)
6030 * will use dev_net(skb->dev) to do namespace filtering.
6031 */
6032 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6033 &dev_net_rcu(skb->dev)->ptype_specific);
6034 }
6035
6036 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6037 &orig_dev->ptype_specific);
6038
6039 if (unlikely(skb->dev != orig_dev)) {
6040 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6041 &skb->dev->ptype_specific);
6042 }
6043
6044 if (pt_prev) {
6045 *ppt_prev = pt_prev;
6046 } else {
6047 drop:
6048 if (!deliver_exact)
6049 dev_core_stats_rx_dropped_inc(skb->dev);
6050 else
6051 dev_core_stats_rx_nohandler_inc(skb->dev);
6052
6053 kfree_skb_reason(skb, drop_reason);
6054 /* Jamal, now you will not able to escape explaining
6055 * me how you were going to use this. :-)
6056 */
6057 ret = NET_RX_DROP;
6058 }
6059
6060 out:
6061 /* The invariant here is that if *ppt_prev is not NULL
6062 * then skb should also be non-NULL.
6063 *
6064 * Apparently *ppt_prev assignment above holds this invariant due to
6065 * skb dereferencing near it.
6066 */
6067 *pskb = skb;
6068 return ret;
6069 }
6070
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6071 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6072 {
6073 struct net_device *orig_dev = skb->dev;
6074 struct packet_type *pt_prev = NULL;
6075 int ret;
6076
6077 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6078 if (pt_prev)
6079 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6080 skb->dev, pt_prev, orig_dev);
6081 return ret;
6082 }
6083
6084 /**
6085 * netif_receive_skb_core - special purpose version of netif_receive_skb
6086 * @skb: buffer to process
6087 *
6088 * More direct receive version of netif_receive_skb(). It should
6089 * only be used by callers that have a need to skip RPS and Generic XDP.
6090 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6091 *
6092 * This function may only be called from softirq context and interrupts
6093 * should be enabled.
6094 *
6095 * Return values (usually ignored):
6096 * NET_RX_SUCCESS: no congestion
6097 * NET_RX_DROP: packet was dropped
6098 */
netif_receive_skb_core(struct sk_buff * skb)6099 int netif_receive_skb_core(struct sk_buff *skb)
6100 {
6101 int ret;
6102
6103 rcu_read_lock();
6104 ret = __netif_receive_skb_one_core(skb, false);
6105 rcu_read_unlock();
6106
6107 return ret;
6108 }
6109 EXPORT_SYMBOL(netif_receive_skb_core);
6110
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6111 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6112 struct packet_type *pt_prev,
6113 struct net_device *orig_dev)
6114 {
6115 struct sk_buff *skb, *next;
6116
6117 if (!pt_prev)
6118 return;
6119 if (list_empty(head))
6120 return;
6121 if (pt_prev->list_func != NULL)
6122 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6123 ip_list_rcv, head, pt_prev, orig_dev);
6124 else
6125 list_for_each_entry_safe(skb, next, head, list) {
6126 skb_list_del_init(skb);
6127 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6128 }
6129 }
6130
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6131 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6132 {
6133 /* Fast-path assumptions:
6134 * - There is no RX handler.
6135 * - Only one packet_type matches.
6136 * If either of these fails, we will end up doing some per-packet
6137 * processing in-line, then handling the 'last ptype' for the whole
6138 * sublist. This can't cause out-of-order delivery to any single ptype,
6139 * because the 'last ptype' must be constant across the sublist, and all
6140 * other ptypes are handled per-packet.
6141 */
6142 /* Current (common) ptype of sublist */
6143 struct packet_type *pt_curr = NULL;
6144 /* Current (common) orig_dev of sublist */
6145 struct net_device *od_curr = NULL;
6146 struct sk_buff *skb, *next;
6147 LIST_HEAD(sublist);
6148
6149 list_for_each_entry_safe(skb, next, head, list) {
6150 struct net_device *orig_dev = skb->dev;
6151 struct packet_type *pt_prev = NULL;
6152
6153 skb_list_del_init(skb);
6154 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155 if (!pt_prev)
6156 continue;
6157 if (pt_curr != pt_prev || od_curr != orig_dev) {
6158 /* dispatch old sublist */
6159 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6160 /* start new sublist */
6161 INIT_LIST_HEAD(&sublist);
6162 pt_curr = pt_prev;
6163 od_curr = orig_dev;
6164 }
6165 list_add_tail(&skb->list, &sublist);
6166 }
6167
6168 /* dispatch final sublist */
6169 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6170 }
6171
__netif_receive_skb(struct sk_buff * skb)6172 static int __netif_receive_skb(struct sk_buff *skb)
6173 {
6174 int ret;
6175
6176 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6177 unsigned int noreclaim_flag;
6178
6179 /*
6180 * PFMEMALLOC skbs are special, they should
6181 * - be delivered to SOCK_MEMALLOC sockets only
6182 * - stay away from userspace
6183 * - have bounded memory usage
6184 *
6185 * Use PF_MEMALLOC as this saves us from propagating the allocation
6186 * context down to all allocation sites.
6187 */
6188 noreclaim_flag = memalloc_noreclaim_save();
6189 ret = __netif_receive_skb_one_core(skb, true);
6190 memalloc_noreclaim_restore(noreclaim_flag);
6191 } else
6192 ret = __netif_receive_skb_one_core(skb, false);
6193
6194 return ret;
6195 }
6196
__netif_receive_skb_list(struct list_head * head)6197 static void __netif_receive_skb_list(struct list_head *head)
6198 {
6199 unsigned long noreclaim_flag = 0;
6200 struct sk_buff *skb, *next;
6201 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6202
6203 list_for_each_entry_safe(skb, next, head, list) {
6204 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6205 struct list_head sublist;
6206
6207 /* Handle the previous sublist */
6208 list_cut_before(&sublist, head, &skb->list);
6209 if (!list_empty(&sublist))
6210 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6211 pfmemalloc = !pfmemalloc;
6212 /* See comments in __netif_receive_skb */
6213 if (pfmemalloc)
6214 noreclaim_flag = memalloc_noreclaim_save();
6215 else
6216 memalloc_noreclaim_restore(noreclaim_flag);
6217 }
6218 }
6219 /* Handle the remaining sublist */
6220 if (!list_empty(head))
6221 __netif_receive_skb_list_core(head, pfmemalloc);
6222 /* Restore pflags */
6223 if (pfmemalloc)
6224 memalloc_noreclaim_restore(noreclaim_flag);
6225 }
6226
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6227 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6228 {
6229 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6230 struct bpf_prog *new = xdp->prog;
6231 int ret = 0;
6232
6233 switch (xdp->command) {
6234 case XDP_SETUP_PROG:
6235 rcu_assign_pointer(dev->xdp_prog, new);
6236 if (old)
6237 bpf_prog_put(old);
6238
6239 if (old && !new) {
6240 static_branch_dec(&generic_xdp_needed_key);
6241 } else if (new && !old) {
6242 static_branch_inc(&generic_xdp_needed_key);
6243 netif_disable_lro(dev);
6244 dev_disable_gro_hw(dev);
6245 }
6246 break;
6247
6248 default:
6249 ret = -EINVAL;
6250 break;
6251 }
6252
6253 return ret;
6254 }
6255
netif_receive_skb_internal(struct sk_buff * skb)6256 static int netif_receive_skb_internal(struct sk_buff *skb)
6257 {
6258 int ret;
6259
6260 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6261
6262 if (skb_defer_rx_timestamp(skb))
6263 return NET_RX_SUCCESS;
6264
6265 rcu_read_lock();
6266 #ifdef CONFIG_RPS
6267 if (static_branch_unlikely(&rps_needed)) {
6268 struct rps_dev_flow voidflow, *rflow = &voidflow;
6269 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6270
6271 if (cpu >= 0) {
6272 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6273 rcu_read_unlock();
6274 return ret;
6275 }
6276 }
6277 #endif
6278 ret = __netif_receive_skb(skb);
6279 rcu_read_unlock();
6280 return ret;
6281 }
6282
netif_receive_skb_list_internal(struct list_head * head)6283 void netif_receive_skb_list_internal(struct list_head *head)
6284 {
6285 struct sk_buff *skb, *next;
6286 LIST_HEAD(sublist);
6287
6288 list_for_each_entry_safe(skb, next, head, list) {
6289 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6290 skb);
6291 skb_list_del_init(skb);
6292 if (!skb_defer_rx_timestamp(skb))
6293 list_add_tail(&skb->list, &sublist);
6294 }
6295 list_splice_init(&sublist, head);
6296
6297 rcu_read_lock();
6298 #ifdef CONFIG_RPS
6299 if (static_branch_unlikely(&rps_needed)) {
6300 list_for_each_entry_safe(skb, next, head, list) {
6301 struct rps_dev_flow voidflow, *rflow = &voidflow;
6302 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6303
6304 if (cpu >= 0) {
6305 /* Will be handled, remove from list */
6306 skb_list_del_init(skb);
6307 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6308 }
6309 }
6310 }
6311 #endif
6312 __netif_receive_skb_list(head);
6313 rcu_read_unlock();
6314 }
6315
6316 /**
6317 * netif_receive_skb - process receive buffer from network
6318 * @skb: buffer to process
6319 *
6320 * netif_receive_skb() is the main receive data processing function.
6321 * It always succeeds. The buffer may be dropped during processing
6322 * for congestion control or by the protocol layers.
6323 *
6324 * This function may only be called from softirq context and interrupts
6325 * should be enabled.
6326 *
6327 * Return values (usually ignored):
6328 * NET_RX_SUCCESS: no congestion
6329 * NET_RX_DROP: packet was dropped
6330 */
netif_receive_skb(struct sk_buff * skb)6331 int netif_receive_skb(struct sk_buff *skb)
6332 {
6333 int ret;
6334
6335 trace_netif_receive_skb_entry(skb);
6336
6337 ret = netif_receive_skb_internal(skb);
6338 trace_netif_receive_skb_exit(ret);
6339
6340 return ret;
6341 }
6342 EXPORT_SYMBOL(netif_receive_skb);
6343
6344 /**
6345 * netif_receive_skb_list - process many receive buffers from network
6346 * @head: list of skbs to process.
6347 *
6348 * Since return value of netif_receive_skb() is normally ignored, and
6349 * wouldn't be meaningful for a list, this function returns void.
6350 *
6351 * This function may only be called from softirq context and interrupts
6352 * should be enabled.
6353 */
netif_receive_skb_list(struct list_head * head)6354 void netif_receive_skb_list(struct list_head *head)
6355 {
6356 struct sk_buff *skb;
6357
6358 if (list_empty(head))
6359 return;
6360 if (trace_netif_receive_skb_list_entry_enabled()) {
6361 list_for_each_entry(skb, head, list)
6362 trace_netif_receive_skb_list_entry(skb);
6363 }
6364 netif_receive_skb_list_internal(head);
6365 trace_netif_receive_skb_list_exit(0);
6366 }
6367 EXPORT_SYMBOL(netif_receive_skb_list);
6368
6369 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6370 static void flush_backlog(struct work_struct *work)
6371 {
6372 struct sk_buff *skb, *tmp;
6373 struct sk_buff_head list;
6374 struct softnet_data *sd;
6375
6376 __skb_queue_head_init(&list);
6377 local_bh_disable();
6378 sd = this_cpu_ptr(&softnet_data);
6379
6380 backlog_lock_irq_disable(sd);
6381 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6382 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6383 __skb_unlink(skb, &sd->input_pkt_queue);
6384 __skb_queue_tail(&list, skb);
6385 rps_input_queue_head_incr(sd);
6386 }
6387 }
6388 backlog_unlock_irq_enable(sd);
6389
6390 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6391 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6392 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6393 __skb_unlink(skb, &sd->process_queue);
6394 __skb_queue_tail(&list, skb);
6395 rps_input_queue_head_incr(sd);
6396 }
6397 }
6398 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6399 local_bh_enable();
6400
6401 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6402 }
6403
flush_required(int cpu)6404 static bool flush_required(int cpu)
6405 {
6406 #if IS_ENABLED(CONFIG_RPS)
6407 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6408 bool do_flush;
6409
6410 backlog_lock_irq_disable(sd);
6411
6412 /* as insertion into process_queue happens with the rps lock held,
6413 * process_queue access may race only with dequeue
6414 */
6415 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6416 !skb_queue_empty_lockless(&sd->process_queue);
6417 backlog_unlock_irq_enable(sd);
6418
6419 return do_flush;
6420 #endif
6421 /* without RPS we can't safely check input_pkt_queue: during a
6422 * concurrent remote skb_queue_splice() we can detect as empty both
6423 * input_pkt_queue and process_queue even if the latter could end-up
6424 * containing a lot of packets.
6425 */
6426 return true;
6427 }
6428
6429 struct flush_backlogs {
6430 cpumask_t flush_cpus;
6431 struct work_struct w[];
6432 };
6433
flush_backlogs_alloc(void)6434 static struct flush_backlogs *flush_backlogs_alloc(void)
6435 {
6436 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6437 GFP_KERNEL);
6438 }
6439
6440 static struct flush_backlogs *flush_backlogs_fallback;
6441 static DEFINE_MUTEX(flush_backlogs_mutex);
6442
flush_all_backlogs(void)6443 static void flush_all_backlogs(void)
6444 {
6445 struct flush_backlogs *ptr = flush_backlogs_alloc();
6446 unsigned int cpu;
6447
6448 if (!ptr) {
6449 mutex_lock(&flush_backlogs_mutex);
6450 ptr = flush_backlogs_fallback;
6451 }
6452 cpumask_clear(&ptr->flush_cpus);
6453
6454 cpus_read_lock();
6455
6456 for_each_online_cpu(cpu) {
6457 if (flush_required(cpu)) {
6458 INIT_WORK(&ptr->w[cpu], flush_backlog);
6459 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6460 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6461 }
6462 }
6463
6464 /* we can have in flight packet[s] on the cpus we are not flushing,
6465 * synchronize_net() in unregister_netdevice_many() will take care of
6466 * them.
6467 */
6468 for_each_cpu(cpu, &ptr->flush_cpus)
6469 flush_work(&ptr->w[cpu]);
6470
6471 cpus_read_unlock();
6472
6473 if (ptr != flush_backlogs_fallback)
6474 kfree(ptr);
6475 else
6476 mutex_unlock(&flush_backlogs_mutex);
6477 }
6478
net_rps_send_ipi(struct softnet_data * remsd)6479 static void net_rps_send_ipi(struct softnet_data *remsd)
6480 {
6481 #ifdef CONFIG_RPS
6482 while (remsd) {
6483 struct softnet_data *next = remsd->rps_ipi_next;
6484
6485 if (cpu_online(remsd->cpu))
6486 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6487 remsd = next;
6488 }
6489 #endif
6490 }
6491
6492 /*
6493 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6494 * Note: called with local irq disabled, but exits with local irq enabled.
6495 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6496 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6497 {
6498 #ifdef CONFIG_RPS
6499 struct softnet_data *remsd = sd->rps_ipi_list;
6500
6501 if (!use_backlog_threads() && remsd) {
6502 sd->rps_ipi_list = NULL;
6503
6504 local_irq_enable();
6505
6506 /* Send pending IPI's to kick RPS processing on remote cpus. */
6507 net_rps_send_ipi(remsd);
6508 } else
6509 #endif
6510 local_irq_enable();
6511 }
6512
sd_has_rps_ipi_waiting(struct softnet_data * sd)6513 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6514 {
6515 #ifdef CONFIG_RPS
6516 return !use_backlog_threads() && sd->rps_ipi_list;
6517 #else
6518 return false;
6519 #endif
6520 }
6521
process_backlog(struct napi_struct * napi,int quota)6522 static int process_backlog(struct napi_struct *napi, int quota)
6523 {
6524 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6525 bool again = true;
6526 int work = 0;
6527
6528 /* Check if we have pending ipi, its better to send them now,
6529 * not waiting net_rx_action() end.
6530 */
6531 if (sd_has_rps_ipi_waiting(sd)) {
6532 local_irq_disable();
6533 net_rps_action_and_irq_enable(sd);
6534 }
6535
6536 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6537 while (again) {
6538 struct sk_buff *skb;
6539
6540 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6541 while ((skb = __skb_dequeue(&sd->process_queue))) {
6542 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6543 rcu_read_lock();
6544 __netif_receive_skb(skb);
6545 rcu_read_unlock();
6546 if (++work >= quota) {
6547 rps_input_queue_head_add(sd, work);
6548 return work;
6549 }
6550
6551 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6552 }
6553 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6554
6555 backlog_lock_irq_disable(sd);
6556 if (skb_queue_empty(&sd->input_pkt_queue)) {
6557 /*
6558 * Inline a custom version of __napi_complete().
6559 * only current cpu owns and manipulates this napi,
6560 * and NAPI_STATE_SCHED is the only possible flag set
6561 * on backlog.
6562 * We can use a plain write instead of clear_bit(),
6563 * and we dont need an smp_mb() memory barrier.
6564 */
6565 napi->state &= NAPIF_STATE_THREADED;
6566 again = false;
6567 } else {
6568 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6569 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6570 &sd->process_queue);
6571 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6572 }
6573 backlog_unlock_irq_enable(sd);
6574 }
6575
6576 if (work)
6577 rps_input_queue_head_add(sd, work);
6578 return work;
6579 }
6580
6581 /**
6582 * __napi_schedule - schedule for receive
6583 * @n: entry to schedule
6584 *
6585 * The entry's receive function will be scheduled to run.
6586 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6587 */
__napi_schedule(struct napi_struct * n)6588 void __napi_schedule(struct napi_struct *n)
6589 {
6590 unsigned long flags;
6591
6592 local_irq_save(flags);
6593 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6594 local_irq_restore(flags);
6595 }
6596 EXPORT_SYMBOL(__napi_schedule);
6597
6598 /**
6599 * napi_schedule_prep - check if napi can be scheduled
6600 * @n: napi context
6601 *
6602 * Test if NAPI routine is already running, and if not mark
6603 * it as running. This is used as a condition variable to
6604 * insure only one NAPI poll instance runs. We also make
6605 * sure there is no pending NAPI disable.
6606 */
napi_schedule_prep(struct napi_struct * n)6607 bool napi_schedule_prep(struct napi_struct *n)
6608 {
6609 unsigned long new, val = READ_ONCE(n->state);
6610
6611 do {
6612 if (unlikely(val & NAPIF_STATE_DISABLE))
6613 return false;
6614 new = val | NAPIF_STATE_SCHED;
6615
6616 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6617 * This was suggested by Alexander Duyck, as compiler
6618 * emits better code than :
6619 * if (val & NAPIF_STATE_SCHED)
6620 * new |= NAPIF_STATE_MISSED;
6621 */
6622 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6623 NAPIF_STATE_MISSED;
6624 } while (!try_cmpxchg(&n->state, &val, new));
6625
6626 return !(val & NAPIF_STATE_SCHED);
6627 }
6628 EXPORT_SYMBOL(napi_schedule_prep);
6629
6630 /**
6631 * __napi_schedule_irqoff - schedule for receive
6632 * @n: entry to schedule
6633 *
6634 * Variant of __napi_schedule() assuming hard irqs are masked.
6635 *
6636 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6637 * because the interrupt disabled assumption might not be true
6638 * due to force-threaded interrupts and spinlock substitution.
6639 */
__napi_schedule_irqoff(struct napi_struct * n)6640 void __napi_schedule_irqoff(struct napi_struct *n)
6641 {
6642 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6643 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6644 else
6645 __napi_schedule(n);
6646 }
6647 EXPORT_SYMBOL(__napi_schedule_irqoff);
6648
napi_complete_done(struct napi_struct * n,int work_done)6649 bool napi_complete_done(struct napi_struct *n, int work_done)
6650 {
6651 unsigned long flags, val, new, timeout = 0;
6652 bool ret = true;
6653
6654 /*
6655 * 1) Don't let napi dequeue from the cpu poll list
6656 * just in case its running on a different cpu.
6657 * 2) If we are busy polling, do nothing here, we have
6658 * the guarantee we will be called later.
6659 */
6660 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6661 NAPIF_STATE_IN_BUSY_POLL)))
6662 return false;
6663
6664 if (work_done) {
6665 if (n->gro.bitmask)
6666 timeout = napi_get_gro_flush_timeout(n);
6667 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6668 }
6669 if (n->defer_hard_irqs_count > 0) {
6670 n->defer_hard_irqs_count--;
6671 timeout = napi_get_gro_flush_timeout(n);
6672 if (timeout)
6673 ret = false;
6674 }
6675
6676 /*
6677 * When the NAPI instance uses a timeout and keeps postponing
6678 * it, we need to bound somehow the time packets are kept in
6679 * the GRO layer.
6680 */
6681 gro_flush_normal(&n->gro, !!timeout);
6682
6683 if (unlikely(!list_empty(&n->poll_list))) {
6684 /* If n->poll_list is not empty, we need to mask irqs */
6685 local_irq_save(flags);
6686 list_del_init(&n->poll_list);
6687 local_irq_restore(flags);
6688 }
6689 WRITE_ONCE(n->list_owner, -1);
6690
6691 val = READ_ONCE(n->state);
6692 do {
6693 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6694
6695 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6696 NAPIF_STATE_SCHED_THREADED |
6697 NAPIF_STATE_PREFER_BUSY_POLL);
6698
6699 /* If STATE_MISSED was set, leave STATE_SCHED set,
6700 * because we will call napi->poll() one more time.
6701 * This C code was suggested by Alexander Duyck to help gcc.
6702 */
6703 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6704 NAPIF_STATE_SCHED;
6705 } while (!try_cmpxchg(&n->state, &val, new));
6706
6707 if (unlikely(val & NAPIF_STATE_MISSED)) {
6708 __napi_schedule(n);
6709 return false;
6710 }
6711
6712 if (timeout)
6713 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6714 HRTIMER_MODE_REL_PINNED);
6715 return ret;
6716 }
6717 EXPORT_SYMBOL(napi_complete_done);
6718
skb_defer_free_flush(void)6719 static void skb_defer_free_flush(void)
6720 {
6721 struct llist_node *free_list;
6722 struct sk_buff *skb, *next;
6723 struct skb_defer_node *sdn;
6724 int node;
6725
6726 for_each_node(node) {
6727 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6728
6729 if (llist_empty(&sdn->defer_list))
6730 continue;
6731 atomic_long_set(&sdn->defer_count, 0);
6732 free_list = llist_del_all(&sdn->defer_list);
6733
6734 llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6735 napi_consume_skb(skb, 1);
6736 }
6737 }
6738 }
6739
6740 #if defined(CONFIG_NET_RX_BUSY_POLL)
6741
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6742 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6743 {
6744 if (!skip_schedule) {
6745 gro_normal_list(&napi->gro);
6746 __napi_schedule(napi);
6747 return;
6748 }
6749
6750 /* Flush too old packets. If HZ < 1000, flush all packets */
6751 gro_flush_normal(&napi->gro, HZ >= 1000);
6752
6753 clear_bit(NAPI_STATE_SCHED, &napi->state);
6754 }
6755
6756 enum {
6757 NAPI_F_PREFER_BUSY_POLL = 1,
6758 NAPI_F_END_ON_RESCHED = 2,
6759 };
6760
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6761 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6762 unsigned flags, u16 budget)
6763 {
6764 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6765 bool skip_schedule = false;
6766 unsigned long timeout;
6767 int rc;
6768
6769 /* Busy polling means there is a high chance device driver hard irq
6770 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6771 * set in napi_schedule_prep().
6772 * Since we are about to call napi->poll() once more, we can safely
6773 * clear NAPI_STATE_MISSED.
6774 *
6775 * Note: x86 could use a single "lock and ..." instruction
6776 * to perform these two clear_bit()
6777 */
6778 clear_bit(NAPI_STATE_MISSED, &napi->state);
6779 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6780
6781 local_bh_disable();
6782 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6783
6784 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6785 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6786 timeout = napi_get_gro_flush_timeout(napi);
6787 if (napi->defer_hard_irqs_count && timeout) {
6788 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6789 skip_schedule = true;
6790 }
6791 }
6792
6793 /* All we really want here is to re-enable device interrupts.
6794 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6795 */
6796 rc = napi->poll(napi, budget);
6797 /* We can't gro_normal_list() here, because napi->poll() might have
6798 * rearmed the napi (napi_complete_done()) in which case it could
6799 * already be running on another CPU.
6800 */
6801 trace_napi_poll(napi, rc, budget);
6802 netpoll_poll_unlock(have_poll_lock);
6803 if (rc == budget)
6804 __busy_poll_stop(napi, skip_schedule);
6805 bpf_net_ctx_clear(bpf_net_ctx);
6806 local_bh_enable();
6807 }
6808
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6809 static void __napi_busy_loop(unsigned int napi_id,
6810 bool (*loop_end)(void *, unsigned long),
6811 void *loop_end_arg, unsigned flags, u16 budget)
6812 {
6813 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6814 int (*napi_poll)(struct napi_struct *napi, int budget);
6815 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6816 void *have_poll_lock = NULL;
6817 struct napi_struct *napi;
6818
6819 WARN_ON_ONCE(!rcu_read_lock_held());
6820
6821 restart:
6822 napi_poll = NULL;
6823
6824 napi = napi_by_id(napi_id);
6825 if (!napi)
6826 return;
6827
6828 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6829 preempt_disable();
6830 for (;;) {
6831 int work = 0;
6832
6833 local_bh_disable();
6834 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6835 if (!napi_poll) {
6836 unsigned long val = READ_ONCE(napi->state);
6837
6838 /* If multiple threads are competing for this napi,
6839 * we avoid dirtying napi->state as much as we can.
6840 */
6841 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6842 NAPIF_STATE_IN_BUSY_POLL)) {
6843 if (flags & NAPI_F_PREFER_BUSY_POLL)
6844 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6845 goto count;
6846 }
6847 if (cmpxchg(&napi->state, val,
6848 val | NAPIF_STATE_IN_BUSY_POLL |
6849 NAPIF_STATE_SCHED) != val) {
6850 if (flags & NAPI_F_PREFER_BUSY_POLL)
6851 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6852 goto count;
6853 }
6854 have_poll_lock = netpoll_poll_lock(napi);
6855 napi_poll = napi->poll;
6856 }
6857 work = napi_poll(napi, budget);
6858 trace_napi_poll(napi, work, budget);
6859 gro_normal_list(&napi->gro);
6860 count:
6861 if (work > 0)
6862 __NET_ADD_STATS(dev_net(napi->dev),
6863 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6864 skb_defer_free_flush();
6865 bpf_net_ctx_clear(bpf_net_ctx);
6866 local_bh_enable();
6867
6868 if (!loop_end || loop_end(loop_end_arg, start_time))
6869 break;
6870
6871 if (unlikely(need_resched())) {
6872 if (flags & NAPI_F_END_ON_RESCHED)
6873 break;
6874 if (napi_poll)
6875 busy_poll_stop(napi, have_poll_lock, flags, budget);
6876 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6877 preempt_enable();
6878 rcu_read_unlock();
6879 cond_resched();
6880 rcu_read_lock();
6881 if (loop_end(loop_end_arg, start_time))
6882 return;
6883 goto restart;
6884 }
6885 cpu_relax();
6886 }
6887 if (napi_poll)
6888 busy_poll_stop(napi, have_poll_lock, flags, budget);
6889 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6890 preempt_enable();
6891 }
6892
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6893 void napi_busy_loop_rcu(unsigned int napi_id,
6894 bool (*loop_end)(void *, unsigned long),
6895 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6896 {
6897 unsigned flags = NAPI_F_END_ON_RESCHED;
6898
6899 if (prefer_busy_poll)
6900 flags |= NAPI_F_PREFER_BUSY_POLL;
6901
6902 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6903 }
6904
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6905 void napi_busy_loop(unsigned int napi_id,
6906 bool (*loop_end)(void *, unsigned long),
6907 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6908 {
6909 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6910
6911 rcu_read_lock();
6912 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6913 rcu_read_unlock();
6914 }
6915 EXPORT_SYMBOL(napi_busy_loop);
6916
napi_suspend_irqs(unsigned int napi_id)6917 void napi_suspend_irqs(unsigned int napi_id)
6918 {
6919 struct napi_struct *napi;
6920
6921 rcu_read_lock();
6922 napi = napi_by_id(napi_id);
6923 if (napi) {
6924 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6925
6926 if (timeout)
6927 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6928 HRTIMER_MODE_REL_PINNED);
6929 }
6930 rcu_read_unlock();
6931 }
6932
napi_resume_irqs(unsigned int napi_id)6933 void napi_resume_irqs(unsigned int napi_id)
6934 {
6935 struct napi_struct *napi;
6936
6937 rcu_read_lock();
6938 napi = napi_by_id(napi_id);
6939 if (napi) {
6940 /* If irq_suspend_timeout is set to 0 between the call to
6941 * napi_suspend_irqs and now, the original value still
6942 * determines the safety timeout as intended and napi_watchdog
6943 * will resume irq processing.
6944 */
6945 if (napi_get_irq_suspend_timeout(napi)) {
6946 local_bh_disable();
6947 napi_schedule(napi);
6948 local_bh_enable();
6949 }
6950 }
6951 rcu_read_unlock();
6952 }
6953
6954 #endif /* CONFIG_NET_RX_BUSY_POLL */
6955
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6956 static void __napi_hash_add_with_id(struct napi_struct *napi,
6957 unsigned int napi_id)
6958 {
6959 napi->gro.cached_napi_id = napi_id;
6960
6961 WRITE_ONCE(napi->napi_id, napi_id);
6962 hlist_add_head_rcu(&napi->napi_hash_node,
6963 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6964 }
6965
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6966 static void napi_hash_add_with_id(struct napi_struct *napi,
6967 unsigned int napi_id)
6968 {
6969 unsigned long flags;
6970
6971 spin_lock_irqsave(&napi_hash_lock, flags);
6972 WARN_ON_ONCE(napi_by_id(napi_id));
6973 __napi_hash_add_with_id(napi, napi_id);
6974 spin_unlock_irqrestore(&napi_hash_lock, flags);
6975 }
6976
napi_hash_add(struct napi_struct * napi)6977 static void napi_hash_add(struct napi_struct *napi)
6978 {
6979 unsigned long flags;
6980
6981 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6982 return;
6983
6984 spin_lock_irqsave(&napi_hash_lock, flags);
6985
6986 /* 0..NR_CPUS range is reserved for sender_cpu use */
6987 do {
6988 if (unlikely(!napi_id_valid(++napi_gen_id)))
6989 napi_gen_id = MIN_NAPI_ID;
6990 } while (napi_by_id(napi_gen_id));
6991
6992 __napi_hash_add_with_id(napi, napi_gen_id);
6993
6994 spin_unlock_irqrestore(&napi_hash_lock, flags);
6995 }
6996
6997 /* Warning : caller is responsible to make sure rcu grace period
6998 * is respected before freeing memory containing @napi
6999 */
napi_hash_del(struct napi_struct * napi)7000 static void napi_hash_del(struct napi_struct *napi)
7001 {
7002 unsigned long flags;
7003
7004 spin_lock_irqsave(&napi_hash_lock, flags);
7005
7006 hlist_del_init_rcu(&napi->napi_hash_node);
7007
7008 spin_unlock_irqrestore(&napi_hash_lock, flags);
7009 }
7010
napi_watchdog(struct hrtimer * timer)7011 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7012 {
7013 struct napi_struct *napi;
7014
7015 napi = container_of(timer, struct napi_struct, timer);
7016
7017 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
7018 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7019 */
7020 if (!napi_disable_pending(napi) &&
7021 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7022 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7023 __napi_schedule_irqoff(napi);
7024 }
7025
7026 return HRTIMER_NORESTART;
7027 }
7028
napi_stop_kthread(struct napi_struct * napi)7029 static void napi_stop_kthread(struct napi_struct *napi)
7030 {
7031 unsigned long val, new;
7032
7033 /* Wait until the napi STATE_THREADED is unset. */
7034 while (true) {
7035 val = READ_ONCE(napi->state);
7036
7037 /* If napi kthread own this napi or the napi is idle,
7038 * STATE_THREADED can be unset here.
7039 */
7040 if ((val & NAPIF_STATE_SCHED_THREADED) ||
7041 !(val & NAPIF_STATE_SCHED)) {
7042 new = val & (~NAPIF_STATE_THREADED);
7043 } else {
7044 msleep(20);
7045 continue;
7046 }
7047
7048 if (try_cmpxchg(&napi->state, &val, new))
7049 break;
7050 }
7051
7052 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7053 * the kthread.
7054 */
7055 while (true) {
7056 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7057 break;
7058
7059 msleep(20);
7060 }
7061
7062 kthread_stop(napi->thread);
7063 napi->thread = NULL;
7064 }
7065
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7066 int napi_set_threaded(struct napi_struct *napi,
7067 enum netdev_napi_threaded threaded)
7068 {
7069 if (threaded) {
7070 if (!napi->thread) {
7071 int err = napi_kthread_create(napi);
7072
7073 if (err)
7074 return err;
7075 }
7076 }
7077
7078 if (napi->config)
7079 napi->config->threaded = threaded;
7080
7081 /* Setting/unsetting threaded mode on a napi might not immediately
7082 * take effect, if the current napi instance is actively being
7083 * polled. In this case, the switch between threaded mode and
7084 * softirq mode will happen in the next round of napi_schedule().
7085 * This should not cause hiccups/stalls to the live traffic.
7086 */
7087 if (!threaded && napi->thread) {
7088 napi_stop_kthread(napi);
7089 } else {
7090 /* Make sure kthread is created before THREADED bit is set. */
7091 smp_mb__before_atomic();
7092 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7093 }
7094
7095 return 0;
7096 }
7097
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7098 int netif_set_threaded(struct net_device *dev,
7099 enum netdev_napi_threaded threaded)
7100 {
7101 struct napi_struct *napi;
7102 int i, err = 0;
7103
7104 netdev_assert_locked_or_invisible(dev);
7105
7106 if (threaded) {
7107 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7108 if (!napi->thread) {
7109 err = napi_kthread_create(napi);
7110 if (err) {
7111 threaded = NETDEV_NAPI_THREADED_DISABLED;
7112 break;
7113 }
7114 }
7115 }
7116 }
7117
7118 WRITE_ONCE(dev->threaded, threaded);
7119
7120 /* The error should not occur as the kthreads are already created. */
7121 list_for_each_entry(napi, &dev->napi_list, dev_list)
7122 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7123
7124 /* Override the config for all NAPIs even if currently not listed */
7125 for (i = 0; i < dev->num_napi_configs; i++)
7126 dev->napi_config[i].threaded = threaded;
7127
7128 return err;
7129 }
7130
7131 /**
7132 * netif_threaded_enable() - enable threaded NAPIs
7133 * @dev: net_device instance
7134 *
7135 * Enable threaded mode for the NAPI instances of the device. This may be useful
7136 * for devices where multiple NAPI instances get scheduled by a single
7137 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7138 * than the core where IRQ is mapped.
7139 *
7140 * This function should be called before @dev is registered.
7141 */
netif_threaded_enable(struct net_device * dev)7142 void netif_threaded_enable(struct net_device *dev)
7143 {
7144 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7145 }
7146 EXPORT_SYMBOL(netif_threaded_enable);
7147
7148 /**
7149 * netif_queue_set_napi - Associate queue with the napi
7150 * @dev: device to which NAPI and queue belong
7151 * @queue_index: Index of queue
7152 * @type: queue type as RX or TX
7153 * @napi: NAPI context, pass NULL to clear previously set NAPI
7154 *
7155 * Set queue with its corresponding napi context. This should be done after
7156 * registering the NAPI handler for the queue-vector and the queues have been
7157 * mapped to the corresponding interrupt vector.
7158 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7159 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7160 enum netdev_queue_type type, struct napi_struct *napi)
7161 {
7162 struct netdev_rx_queue *rxq;
7163 struct netdev_queue *txq;
7164
7165 if (WARN_ON_ONCE(napi && !napi->dev))
7166 return;
7167 netdev_ops_assert_locked_or_invisible(dev);
7168
7169 switch (type) {
7170 case NETDEV_QUEUE_TYPE_RX:
7171 rxq = __netif_get_rx_queue(dev, queue_index);
7172 rxq->napi = napi;
7173 return;
7174 case NETDEV_QUEUE_TYPE_TX:
7175 txq = netdev_get_tx_queue(dev, queue_index);
7176 txq->napi = napi;
7177 return;
7178 default:
7179 return;
7180 }
7181 }
7182 EXPORT_SYMBOL(netif_queue_set_napi);
7183
7184 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7185 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7186 const cpumask_t *mask)
7187 {
7188 struct napi_struct *napi =
7189 container_of(notify, struct napi_struct, notify);
7190 #ifdef CONFIG_RFS_ACCEL
7191 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7192 int err;
7193 #endif
7194
7195 if (napi->config && napi->dev->irq_affinity_auto)
7196 cpumask_copy(&napi->config->affinity_mask, mask);
7197
7198 #ifdef CONFIG_RFS_ACCEL
7199 if (napi->dev->rx_cpu_rmap_auto) {
7200 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7201 if (err)
7202 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7203 err);
7204 }
7205 #endif
7206 }
7207
7208 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7209 static void netif_napi_affinity_release(struct kref *ref)
7210 {
7211 struct napi_struct *napi =
7212 container_of(ref, struct napi_struct, notify.kref);
7213 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7214
7215 netdev_assert_locked(napi->dev);
7216 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7217 &napi->state));
7218
7219 if (!napi->dev->rx_cpu_rmap_auto)
7220 return;
7221 rmap->obj[napi->napi_rmap_idx] = NULL;
7222 napi->napi_rmap_idx = -1;
7223 cpu_rmap_put(rmap);
7224 }
7225
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7226 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7227 {
7228 if (dev->rx_cpu_rmap_auto)
7229 return 0;
7230
7231 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7232 if (!dev->rx_cpu_rmap)
7233 return -ENOMEM;
7234
7235 dev->rx_cpu_rmap_auto = true;
7236 return 0;
7237 }
7238 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7239
netif_del_cpu_rmap(struct net_device * dev)7240 static void netif_del_cpu_rmap(struct net_device *dev)
7241 {
7242 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7243
7244 if (!dev->rx_cpu_rmap_auto)
7245 return;
7246
7247 /* Free the rmap */
7248 cpu_rmap_put(rmap);
7249 dev->rx_cpu_rmap = NULL;
7250 dev->rx_cpu_rmap_auto = false;
7251 }
7252
7253 #else
netif_napi_affinity_release(struct kref * ref)7254 static void netif_napi_affinity_release(struct kref *ref)
7255 {
7256 }
7257
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7258 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7259 {
7260 return 0;
7261 }
7262 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7263
netif_del_cpu_rmap(struct net_device * dev)7264 static void netif_del_cpu_rmap(struct net_device *dev)
7265 {
7266 }
7267 #endif
7268
netif_set_affinity_auto(struct net_device * dev)7269 void netif_set_affinity_auto(struct net_device *dev)
7270 {
7271 unsigned int i, maxqs, numa;
7272
7273 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7274 numa = dev_to_node(&dev->dev);
7275
7276 for (i = 0; i < maxqs; i++)
7277 cpumask_set_cpu(cpumask_local_spread(i, numa),
7278 &dev->napi_config[i].affinity_mask);
7279
7280 dev->irq_affinity_auto = true;
7281 }
7282 EXPORT_SYMBOL(netif_set_affinity_auto);
7283
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7284 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7285 {
7286 int rc;
7287
7288 netdev_assert_locked_or_invisible(napi->dev);
7289
7290 if (napi->irq == irq)
7291 return;
7292
7293 /* Remove existing resources */
7294 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7295 irq_set_affinity_notifier(napi->irq, NULL);
7296
7297 napi->irq = irq;
7298 if (irq < 0 ||
7299 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7300 return;
7301
7302 /* Abort for buggy drivers */
7303 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7304 return;
7305
7306 #ifdef CONFIG_RFS_ACCEL
7307 if (napi->dev->rx_cpu_rmap_auto) {
7308 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7309 if (rc < 0)
7310 return;
7311
7312 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7313 napi->napi_rmap_idx = rc;
7314 }
7315 #endif
7316
7317 /* Use core IRQ notifier */
7318 napi->notify.notify = netif_napi_irq_notify;
7319 napi->notify.release = netif_napi_affinity_release;
7320 rc = irq_set_affinity_notifier(irq, &napi->notify);
7321 if (rc) {
7322 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7323 rc);
7324 goto put_rmap;
7325 }
7326
7327 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7328 return;
7329
7330 put_rmap:
7331 #ifdef CONFIG_RFS_ACCEL
7332 if (napi->dev->rx_cpu_rmap_auto) {
7333 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7334 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7335 napi->napi_rmap_idx = -1;
7336 }
7337 #endif
7338 napi->notify.notify = NULL;
7339 napi->notify.release = NULL;
7340 }
7341 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7342
napi_restore_config(struct napi_struct * n)7343 static void napi_restore_config(struct napi_struct *n)
7344 {
7345 n->defer_hard_irqs = n->config->defer_hard_irqs;
7346 n->gro_flush_timeout = n->config->gro_flush_timeout;
7347 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7348
7349 if (n->dev->irq_affinity_auto &&
7350 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7351 irq_set_affinity(n->irq, &n->config->affinity_mask);
7352
7353 /* a NAPI ID might be stored in the config, if so use it. if not, use
7354 * napi_hash_add to generate one for us.
7355 */
7356 if (n->config->napi_id) {
7357 napi_hash_add_with_id(n, n->config->napi_id);
7358 } else {
7359 napi_hash_add(n);
7360 n->config->napi_id = n->napi_id;
7361 }
7362
7363 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7364 }
7365
napi_save_config(struct napi_struct * n)7366 static void napi_save_config(struct napi_struct *n)
7367 {
7368 n->config->defer_hard_irqs = n->defer_hard_irqs;
7369 n->config->gro_flush_timeout = n->gro_flush_timeout;
7370 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7371 napi_hash_del(n);
7372 }
7373
7374 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7375 * inherit an existing ID try to insert it at the right position.
7376 */
7377 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7378 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7379 {
7380 unsigned int new_id, pos_id;
7381 struct list_head *higher;
7382 struct napi_struct *pos;
7383
7384 new_id = UINT_MAX;
7385 if (napi->config && napi->config->napi_id)
7386 new_id = napi->config->napi_id;
7387
7388 higher = &dev->napi_list;
7389 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7390 if (napi_id_valid(pos->napi_id))
7391 pos_id = pos->napi_id;
7392 else if (pos->config)
7393 pos_id = pos->config->napi_id;
7394 else
7395 pos_id = UINT_MAX;
7396
7397 if (pos_id <= new_id)
7398 break;
7399 higher = &pos->dev_list;
7400 }
7401 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7402 }
7403
7404 /* Double check that napi_get_frags() allocates skbs with
7405 * skb->head being backed by slab, not a page fragment.
7406 * This is to make sure bug fixed in 3226b158e67c
7407 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7408 * does not accidentally come back.
7409 */
napi_get_frags_check(struct napi_struct * napi)7410 static void napi_get_frags_check(struct napi_struct *napi)
7411 {
7412 struct sk_buff *skb;
7413
7414 local_bh_disable();
7415 skb = napi_get_frags(napi);
7416 WARN_ON_ONCE(skb && skb->head_frag);
7417 napi_free_frags(napi);
7418 local_bh_enable();
7419 }
7420
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7421 void netif_napi_add_weight_locked(struct net_device *dev,
7422 struct napi_struct *napi,
7423 int (*poll)(struct napi_struct *, int),
7424 int weight)
7425 {
7426 netdev_assert_locked(dev);
7427 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7428 return;
7429
7430 INIT_LIST_HEAD(&napi->poll_list);
7431 INIT_HLIST_NODE(&napi->napi_hash_node);
7432 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7433 gro_init(&napi->gro);
7434 napi->skb = NULL;
7435 napi->poll = poll;
7436 if (weight > NAPI_POLL_WEIGHT)
7437 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7438 weight);
7439 napi->weight = weight;
7440 napi->dev = dev;
7441 #ifdef CONFIG_NETPOLL
7442 napi->poll_owner = -1;
7443 #endif
7444 napi->list_owner = -1;
7445 set_bit(NAPI_STATE_SCHED, &napi->state);
7446 set_bit(NAPI_STATE_NPSVC, &napi->state);
7447 netif_napi_dev_list_add(dev, napi);
7448
7449 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7450 * configuration will be loaded in napi_enable
7451 */
7452 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7453 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7454
7455 napi_get_frags_check(napi);
7456 /* Create kthread for this napi if dev->threaded is set.
7457 * Clear dev->threaded if kthread creation failed so that
7458 * threaded mode will not be enabled in napi_enable().
7459 */
7460 if (napi_get_threaded_config(dev, napi))
7461 if (napi_kthread_create(napi))
7462 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7463 netif_napi_set_irq_locked(napi, -1);
7464 }
7465 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7466
napi_disable_locked(struct napi_struct * n)7467 void napi_disable_locked(struct napi_struct *n)
7468 {
7469 unsigned long val, new;
7470
7471 might_sleep();
7472 netdev_assert_locked(n->dev);
7473
7474 set_bit(NAPI_STATE_DISABLE, &n->state);
7475
7476 val = READ_ONCE(n->state);
7477 do {
7478 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7479 usleep_range(20, 200);
7480 val = READ_ONCE(n->state);
7481 }
7482
7483 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7484 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7485 } while (!try_cmpxchg(&n->state, &val, new));
7486
7487 hrtimer_cancel(&n->timer);
7488
7489 if (n->config)
7490 napi_save_config(n);
7491 else
7492 napi_hash_del(n);
7493
7494 clear_bit(NAPI_STATE_DISABLE, &n->state);
7495 }
7496 EXPORT_SYMBOL(napi_disable_locked);
7497
7498 /**
7499 * napi_disable() - prevent NAPI from scheduling
7500 * @n: NAPI context
7501 *
7502 * Stop NAPI from being scheduled on this context.
7503 * Waits till any outstanding processing completes.
7504 * Takes netdev_lock() for associated net_device.
7505 */
napi_disable(struct napi_struct * n)7506 void napi_disable(struct napi_struct *n)
7507 {
7508 netdev_lock(n->dev);
7509 napi_disable_locked(n);
7510 netdev_unlock(n->dev);
7511 }
7512 EXPORT_SYMBOL(napi_disable);
7513
napi_enable_locked(struct napi_struct * n)7514 void napi_enable_locked(struct napi_struct *n)
7515 {
7516 unsigned long new, val = READ_ONCE(n->state);
7517
7518 if (n->config)
7519 napi_restore_config(n);
7520 else
7521 napi_hash_add(n);
7522
7523 do {
7524 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7525
7526 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7527 if (n->dev->threaded && n->thread)
7528 new |= NAPIF_STATE_THREADED;
7529 } while (!try_cmpxchg(&n->state, &val, new));
7530 }
7531 EXPORT_SYMBOL(napi_enable_locked);
7532
7533 /**
7534 * napi_enable() - enable NAPI scheduling
7535 * @n: NAPI context
7536 *
7537 * Enable scheduling of a NAPI instance.
7538 * Must be paired with napi_disable().
7539 * Takes netdev_lock() for associated net_device.
7540 */
napi_enable(struct napi_struct * n)7541 void napi_enable(struct napi_struct *n)
7542 {
7543 netdev_lock(n->dev);
7544 napi_enable_locked(n);
7545 netdev_unlock(n->dev);
7546 }
7547 EXPORT_SYMBOL(napi_enable);
7548
7549 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7550 void __netif_napi_del_locked(struct napi_struct *napi)
7551 {
7552 netdev_assert_locked(napi->dev);
7553
7554 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7555 return;
7556
7557 /* Make sure NAPI is disabled (or was never enabled). */
7558 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7559
7560 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7561 irq_set_affinity_notifier(napi->irq, NULL);
7562
7563 if (napi->config) {
7564 napi->index = -1;
7565 napi->config = NULL;
7566 }
7567
7568 list_del_rcu(&napi->dev_list);
7569 napi_free_frags(napi);
7570
7571 gro_cleanup(&napi->gro);
7572
7573 if (napi->thread) {
7574 kthread_stop(napi->thread);
7575 napi->thread = NULL;
7576 }
7577 }
7578 EXPORT_SYMBOL(__netif_napi_del_locked);
7579
__napi_poll(struct napi_struct * n,bool * repoll)7580 static int __napi_poll(struct napi_struct *n, bool *repoll)
7581 {
7582 int work, weight;
7583
7584 weight = n->weight;
7585
7586 /* This NAPI_STATE_SCHED test is for avoiding a race
7587 * with netpoll's poll_napi(). Only the entity which
7588 * obtains the lock and sees NAPI_STATE_SCHED set will
7589 * actually make the ->poll() call. Therefore we avoid
7590 * accidentally calling ->poll() when NAPI is not scheduled.
7591 */
7592 work = 0;
7593 if (napi_is_scheduled(n)) {
7594 work = n->poll(n, weight);
7595 trace_napi_poll(n, work, weight);
7596
7597 xdp_do_check_flushed(n);
7598 }
7599
7600 if (unlikely(work > weight))
7601 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7602 n->poll, work, weight);
7603
7604 if (likely(work < weight))
7605 return work;
7606
7607 /* Drivers must not modify the NAPI state if they
7608 * consume the entire weight. In such cases this code
7609 * still "owns" the NAPI instance and therefore can
7610 * move the instance around on the list at-will.
7611 */
7612 if (unlikely(napi_disable_pending(n))) {
7613 napi_complete(n);
7614 return work;
7615 }
7616
7617 /* The NAPI context has more processing work, but busy-polling
7618 * is preferred. Exit early.
7619 */
7620 if (napi_prefer_busy_poll(n)) {
7621 if (napi_complete_done(n, work)) {
7622 /* If timeout is not set, we need to make sure
7623 * that the NAPI is re-scheduled.
7624 */
7625 napi_schedule(n);
7626 }
7627 return work;
7628 }
7629
7630 /* Flush too old packets. If HZ < 1000, flush all packets */
7631 gro_flush_normal(&n->gro, HZ >= 1000);
7632
7633 /* Some drivers may have called napi_schedule
7634 * prior to exhausting their budget.
7635 */
7636 if (unlikely(!list_empty(&n->poll_list))) {
7637 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7638 n->dev ? n->dev->name : "backlog");
7639 return work;
7640 }
7641
7642 *repoll = true;
7643
7644 return work;
7645 }
7646
napi_poll(struct napi_struct * n,struct list_head * repoll)7647 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7648 {
7649 bool do_repoll = false;
7650 void *have;
7651 int work;
7652
7653 list_del_init(&n->poll_list);
7654
7655 have = netpoll_poll_lock(n);
7656
7657 work = __napi_poll(n, &do_repoll);
7658
7659 if (do_repoll) {
7660 #if defined(CONFIG_DEBUG_NET)
7661 if (unlikely(!napi_is_scheduled(n)))
7662 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7663 n->dev->name, n->poll);
7664 #endif
7665 list_add_tail(&n->poll_list, repoll);
7666 }
7667 netpoll_poll_unlock(have);
7668
7669 return work;
7670 }
7671
napi_thread_wait(struct napi_struct * napi)7672 static int napi_thread_wait(struct napi_struct *napi)
7673 {
7674 set_current_state(TASK_INTERRUPTIBLE);
7675
7676 while (!kthread_should_stop()) {
7677 /* Testing SCHED_THREADED bit here to make sure the current
7678 * kthread owns this napi and could poll on this napi.
7679 * Testing SCHED bit is not enough because SCHED bit might be
7680 * set by some other busy poll thread or by napi_disable().
7681 */
7682 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7683 WARN_ON(!list_empty(&napi->poll_list));
7684 __set_current_state(TASK_RUNNING);
7685 return 0;
7686 }
7687
7688 schedule();
7689 set_current_state(TASK_INTERRUPTIBLE);
7690 }
7691 __set_current_state(TASK_RUNNING);
7692
7693 return -1;
7694 }
7695
napi_threaded_poll_loop(struct napi_struct * napi)7696 static void napi_threaded_poll_loop(struct napi_struct *napi)
7697 {
7698 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7699 struct softnet_data *sd;
7700 unsigned long last_qs = jiffies;
7701
7702 for (;;) {
7703 bool repoll = false;
7704 void *have;
7705
7706 local_bh_disable();
7707 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7708
7709 sd = this_cpu_ptr(&softnet_data);
7710 sd->in_napi_threaded_poll = true;
7711
7712 have = netpoll_poll_lock(napi);
7713 __napi_poll(napi, &repoll);
7714 netpoll_poll_unlock(have);
7715
7716 sd->in_napi_threaded_poll = false;
7717 barrier();
7718
7719 if (sd_has_rps_ipi_waiting(sd)) {
7720 local_irq_disable();
7721 net_rps_action_and_irq_enable(sd);
7722 }
7723 skb_defer_free_flush();
7724 bpf_net_ctx_clear(bpf_net_ctx);
7725 local_bh_enable();
7726
7727 if (!repoll)
7728 break;
7729
7730 rcu_softirq_qs_periodic(last_qs);
7731 cond_resched();
7732 }
7733 }
7734
napi_threaded_poll(void * data)7735 static int napi_threaded_poll(void *data)
7736 {
7737 struct napi_struct *napi = data;
7738
7739 while (!napi_thread_wait(napi))
7740 napi_threaded_poll_loop(napi);
7741
7742 return 0;
7743 }
7744
net_rx_action(void)7745 static __latent_entropy void net_rx_action(void)
7746 {
7747 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7748 unsigned long time_limit = jiffies +
7749 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7750 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7751 int budget = READ_ONCE(net_hotdata.netdev_budget);
7752 LIST_HEAD(list);
7753 LIST_HEAD(repoll);
7754
7755 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7756 start:
7757 sd->in_net_rx_action = true;
7758 local_irq_disable();
7759 list_splice_init(&sd->poll_list, &list);
7760 local_irq_enable();
7761
7762 for (;;) {
7763 struct napi_struct *n;
7764
7765 skb_defer_free_flush();
7766
7767 if (list_empty(&list)) {
7768 if (list_empty(&repoll)) {
7769 sd->in_net_rx_action = false;
7770 barrier();
7771 /* We need to check if ____napi_schedule()
7772 * had refilled poll_list while
7773 * sd->in_net_rx_action was true.
7774 */
7775 if (!list_empty(&sd->poll_list))
7776 goto start;
7777 if (!sd_has_rps_ipi_waiting(sd))
7778 goto end;
7779 }
7780 break;
7781 }
7782
7783 n = list_first_entry(&list, struct napi_struct, poll_list);
7784 budget -= napi_poll(n, &repoll);
7785
7786 /* If softirq window is exhausted then punt.
7787 * Allow this to run for 2 jiffies since which will allow
7788 * an average latency of 1.5/HZ.
7789 */
7790 if (unlikely(budget <= 0 ||
7791 time_after_eq(jiffies, time_limit))) {
7792 /* Pairs with READ_ONCE() in softnet_seq_show() */
7793 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7794 break;
7795 }
7796 }
7797
7798 local_irq_disable();
7799
7800 list_splice_tail_init(&sd->poll_list, &list);
7801 list_splice_tail(&repoll, &list);
7802 list_splice(&list, &sd->poll_list);
7803 if (!list_empty(&sd->poll_list))
7804 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7805 else
7806 sd->in_net_rx_action = false;
7807
7808 net_rps_action_and_irq_enable(sd);
7809 end:
7810 bpf_net_ctx_clear(bpf_net_ctx);
7811 }
7812
7813 struct netdev_adjacent {
7814 struct net_device *dev;
7815 netdevice_tracker dev_tracker;
7816
7817 /* upper master flag, there can only be one master device per list */
7818 bool master;
7819
7820 /* lookup ignore flag */
7821 bool ignore;
7822
7823 /* counter for the number of times this device was added to us */
7824 u16 ref_nr;
7825
7826 /* private field for the users */
7827 void *private;
7828
7829 struct list_head list;
7830 struct rcu_head rcu;
7831 };
7832
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7833 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7834 struct list_head *adj_list)
7835 {
7836 struct netdev_adjacent *adj;
7837
7838 list_for_each_entry(adj, adj_list, list) {
7839 if (adj->dev == adj_dev)
7840 return adj;
7841 }
7842 return NULL;
7843 }
7844
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7845 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7846 struct netdev_nested_priv *priv)
7847 {
7848 struct net_device *dev = (struct net_device *)priv->data;
7849
7850 return upper_dev == dev;
7851 }
7852
7853 /**
7854 * netdev_has_upper_dev - Check if device is linked to an upper device
7855 * @dev: device
7856 * @upper_dev: upper device to check
7857 *
7858 * Find out if a device is linked to specified upper device and return true
7859 * in case it is. Note that this checks only immediate upper device,
7860 * not through a complete stack of devices. The caller must hold the RTNL lock.
7861 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7862 bool netdev_has_upper_dev(struct net_device *dev,
7863 struct net_device *upper_dev)
7864 {
7865 struct netdev_nested_priv priv = {
7866 .data = (void *)upper_dev,
7867 };
7868
7869 ASSERT_RTNL();
7870
7871 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7872 &priv);
7873 }
7874 EXPORT_SYMBOL(netdev_has_upper_dev);
7875
7876 /**
7877 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7878 * @dev: device
7879 * @upper_dev: upper device to check
7880 *
7881 * Find out if a device is linked to specified upper device and return true
7882 * in case it is. Note that this checks the entire upper device chain.
7883 * The caller must hold rcu lock.
7884 */
7885
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7886 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7887 struct net_device *upper_dev)
7888 {
7889 struct netdev_nested_priv priv = {
7890 .data = (void *)upper_dev,
7891 };
7892
7893 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7894 &priv);
7895 }
7896 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7897
7898 /**
7899 * netdev_has_any_upper_dev - Check if device is linked to some device
7900 * @dev: device
7901 *
7902 * Find out if a device is linked to an upper device and return true in case
7903 * it is. The caller must hold the RTNL lock.
7904 */
netdev_has_any_upper_dev(struct net_device * dev)7905 bool netdev_has_any_upper_dev(struct net_device *dev)
7906 {
7907 ASSERT_RTNL();
7908
7909 return !list_empty(&dev->adj_list.upper);
7910 }
7911 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7912
7913 /**
7914 * netdev_master_upper_dev_get - Get master upper device
7915 * @dev: device
7916 *
7917 * Find a master upper device and return pointer to it or NULL in case
7918 * it's not there. The caller must hold the RTNL lock.
7919 */
netdev_master_upper_dev_get(struct net_device * dev)7920 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7921 {
7922 struct netdev_adjacent *upper;
7923
7924 ASSERT_RTNL();
7925
7926 if (list_empty(&dev->adj_list.upper))
7927 return NULL;
7928
7929 upper = list_first_entry(&dev->adj_list.upper,
7930 struct netdev_adjacent, list);
7931 if (likely(upper->master))
7932 return upper->dev;
7933 return NULL;
7934 }
7935 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7936
__netdev_master_upper_dev_get(struct net_device * dev)7937 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7938 {
7939 struct netdev_adjacent *upper;
7940
7941 ASSERT_RTNL();
7942
7943 if (list_empty(&dev->adj_list.upper))
7944 return NULL;
7945
7946 upper = list_first_entry(&dev->adj_list.upper,
7947 struct netdev_adjacent, list);
7948 if (likely(upper->master) && !upper->ignore)
7949 return upper->dev;
7950 return NULL;
7951 }
7952
7953 /**
7954 * netdev_has_any_lower_dev - Check if device is linked to some device
7955 * @dev: device
7956 *
7957 * Find out if a device is linked to a lower device and return true in case
7958 * it is. The caller must hold the RTNL lock.
7959 */
netdev_has_any_lower_dev(struct net_device * dev)7960 static bool netdev_has_any_lower_dev(struct net_device *dev)
7961 {
7962 ASSERT_RTNL();
7963
7964 return !list_empty(&dev->adj_list.lower);
7965 }
7966
netdev_adjacent_get_private(struct list_head * adj_list)7967 void *netdev_adjacent_get_private(struct list_head *adj_list)
7968 {
7969 struct netdev_adjacent *adj;
7970
7971 adj = list_entry(adj_list, struct netdev_adjacent, list);
7972
7973 return adj->private;
7974 }
7975 EXPORT_SYMBOL(netdev_adjacent_get_private);
7976
7977 /**
7978 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7979 * @dev: device
7980 * @iter: list_head ** of the current position
7981 *
7982 * Gets the next device from the dev's upper list, starting from iter
7983 * position. The caller must hold RCU read lock.
7984 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7985 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7986 struct list_head **iter)
7987 {
7988 struct netdev_adjacent *upper;
7989
7990 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7991
7992 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7993
7994 if (&upper->list == &dev->adj_list.upper)
7995 return NULL;
7996
7997 *iter = &upper->list;
7998
7999 return upper->dev;
8000 }
8001 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8002
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8003 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8004 struct list_head **iter,
8005 bool *ignore)
8006 {
8007 struct netdev_adjacent *upper;
8008
8009 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8010
8011 if (&upper->list == &dev->adj_list.upper)
8012 return NULL;
8013
8014 *iter = &upper->list;
8015 *ignore = upper->ignore;
8016
8017 return upper->dev;
8018 }
8019
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8020 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8021 struct list_head **iter)
8022 {
8023 struct netdev_adjacent *upper;
8024
8025 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8026
8027 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8028
8029 if (&upper->list == &dev->adj_list.upper)
8030 return NULL;
8031
8032 *iter = &upper->list;
8033
8034 return upper->dev;
8035 }
8036
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8037 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8038 int (*fn)(struct net_device *dev,
8039 struct netdev_nested_priv *priv),
8040 struct netdev_nested_priv *priv)
8041 {
8042 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8043 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8044 int ret, cur = 0;
8045 bool ignore;
8046
8047 now = dev;
8048 iter = &dev->adj_list.upper;
8049
8050 while (1) {
8051 if (now != dev) {
8052 ret = fn(now, priv);
8053 if (ret)
8054 return ret;
8055 }
8056
8057 next = NULL;
8058 while (1) {
8059 udev = __netdev_next_upper_dev(now, &iter, &ignore);
8060 if (!udev)
8061 break;
8062 if (ignore)
8063 continue;
8064
8065 next = udev;
8066 niter = &udev->adj_list.upper;
8067 dev_stack[cur] = now;
8068 iter_stack[cur++] = iter;
8069 break;
8070 }
8071
8072 if (!next) {
8073 if (!cur)
8074 return 0;
8075 next = dev_stack[--cur];
8076 niter = iter_stack[cur];
8077 }
8078
8079 now = next;
8080 iter = niter;
8081 }
8082
8083 return 0;
8084 }
8085
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8086 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8087 int (*fn)(struct net_device *dev,
8088 struct netdev_nested_priv *priv),
8089 struct netdev_nested_priv *priv)
8090 {
8091 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8092 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8093 int ret, cur = 0;
8094
8095 now = dev;
8096 iter = &dev->adj_list.upper;
8097
8098 while (1) {
8099 if (now != dev) {
8100 ret = fn(now, priv);
8101 if (ret)
8102 return ret;
8103 }
8104
8105 next = NULL;
8106 while (1) {
8107 udev = netdev_next_upper_dev_rcu(now, &iter);
8108 if (!udev)
8109 break;
8110
8111 next = udev;
8112 niter = &udev->adj_list.upper;
8113 dev_stack[cur] = now;
8114 iter_stack[cur++] = iter;
8115 break;
8116 }
8117
8118 if (!next) {
8119 if (!cur)
8120 return 0;
8121 next = dev_stack[--cur];
8122 niter = iter_stack[cur];
8123 }
8124
8125 now = next;
8126 iter = niter;
8127 }
8128
8129 return 0;
8130 }
8131 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8132
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8133 static bool __netdev_has_upper_dev(struct net_device *dev,
8134 struct net_device *upper_dev)
8135 {
8136 struct netdev_nested_priv priv = {
8137 .flags = 0,
8138 .data = (void *)upper_dev,
8139 };
8140
8141 ASSERT_RTNL();
8142
8143 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8144 &priv);
8145 }
8146
8147 /**
8148 * netdev_lower_get_next_private - Get the next ->private from the
8149 * lower neighbour list
8150 * @dev: device
8151 * @iter: list_head ** of the current position
8152 *
8153 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8154 * list, starting from iter position. The caller must hold either hold the
8155 * RTNL lock or its own locking that guarantees that the neighbour lower
8156 * list will remain unchanged.
8157 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8158 void *netdev_lower_get_next_private(struct net_device *dev,
8159 struct list_head **iter)
8160 {
8161 struct netdev_adjacent *lower;
8162
8163 lower = list_entry(*iter, struct netdev_adjacent, list);
8164
8165 if (&lower->list == &dev->adj_list.lower)
8166 return NULL;
8167
8168 *iter = lower->list.next;
8169
8170 return lower->private;
8171 }
8172 EXPORT_SYMBOL(netdev_lower_get_next_private);
8173
8174 /**
8175 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8176 * lower neighbour list, RCU
8177 * variant
8178 * @dev: device
8179 * @iter: list_head ** of the current position
8180 *
8181 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8182 * list, starting from iter position. The caller must hold RCU read lock.
8183 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8184 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8185 struct list_head **iter)
8186 {
8187 struct netdev_adjacent *lower;
8188
8189 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8190
8191 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8192
8193 if (&lower->list == &dev->adj_list.lower)
8194 return NULL;
8195
8196 *iter = &lower->list;
8197
8198 return lower->private;
8199 }
8200 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8201
8202 /**
8203 * netdev_lower_get_next - Get the next device from the lower neighbour
8204 * list
8205 * @dev: device
8206 * @iter: list_head ** of the current position
8207 *
8208 * Gets the next netdev_adjacent from the dev's lower neighbour
8209 * list, starting from iter position. The caller must hold RTNL lock or
8210 * its own locking that guarantees that the neighbour lower
8211 * list will remain unchanged.
8212 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8213 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8214 {
8215 struct netdev_adjacent *lower;
8216
8217 lower = list_entry(*iter, struct netdev_adjacent, list);
8218
8219 if (&lower->list == &dev->adj_list.lower)
8220 return NULL;
8221
8222 *iter = lower->list.next;
8223
8224 return lower->dev;
8225 }
8226 EXPORT_SYMBOL(netdev_lower_get_next);
8227
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8228 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8229 struct list_head **iter)
8230 {
8231 struct netdev_adjacent *lower;
8232
8233 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8234
8235 if (&lower->list == &dev->adj_list.lower)
8236 return NULL;
8237
8238 *iter = &lower->list;
8239
8240 return lower->dev;
8241 }
8242
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8243 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8244 struct list_head **iter,
8245 bool *ignore)
8246 {
8247 struct netdev_adjacent *lower;
8248
8249 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8250
8251 if (&lower->list == &dev->adj_list.lower)
8252 return NULL;
8253
8254 *iter = &lower->list;
8255 *ignore = lower->ignore;
8256
8257 return lower->dev;
8258 }
8259
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8260 int netdev_walk_all_lower_dev(struct net_device *dev,
8261 int (*fn)(struct net_device *dev,
8262 struct netdev_nested_priv *priv),
8263 struct netdev_nested_priv *priv)
8264 {
8265 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8266 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8267 int ret, cur = 0;
8268
8269 now = dev;
8270 iter = &dev->adj_list.lower;
8271
8272 while (1) {
8273 if (now != dev) {
8274 ret = fn(now, priv);
8275 if (ret)
8276 return ret;
8277 }
8278
8279 next = NULL;
8280 while (1) {
8281 ldev = netdev_next_lower_dev(now, &iter);
8282 if (!ldev)
8283 break;
8284
8285 next = ldev;
8286 niter = &ldev->adj_list.lower;
8287 dev_stack[cur] = now;
8288 iter_stack[cur++] = iter;
8289 break;
8290 }
8291
8292 if (!next) {
8293 if (!cur)
8294 return 0;
8295 next = dev_stack[--cur];
8296 niter = iter_stack[cur];
8297 }
8298
8299 now = next;
8300 iter = niter;
8301 }
8302
8303 return 0;
8304 }
8305 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8306
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8307 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8308 int (*fn)(struct net_device *dev,
8309 struct netdev_nested_priv *priv),
8310 struct netdev_nested_priv *priv)
8311 {
8312 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8313 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8314 int ret, cur = 0;
8315 bool ignore;
8316
8317 now = dev;
8318 iter = &dev->adj_list.lower;
8319
8320 while (1) {
8321 if (now != dev) {
8322 ret = fn(now, priv);
8323 if (ret)
8324 return ret;
8325 }
8326
8327 next = NULL;
8328 while (1) {
8329 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8330 if (!ldev)
8331 break;
8332 if (ignore)
8333 continue;
8334
8335 next = ldev;
8336 niter = &ldev->adj_list.lower;
8337 dev_stack[cur] = now;
8338 iter_stack[cur++] = iter;
8339 break;
8340 }
8341
8342 if (!next) {
8343 if (!cur)
8344 return 0;
8345 next = dev_stack[--cur];
8346 niter = iter_stack[cur];
8347 }
8348
8349 now = next;
8350 iter = niter;
8351 }
8352
8353 return 0;
8354 }
8355
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8356 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8357 struct list_head **iter)
8358 {
8359 struct netdev_adjacent *lower;
8360
8361 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8362 if (&lower->list == &dev->adj_list.lower)
8363 return NULL;
8364
8365 *iter = &lower->list;
8366
8367 return lower->dev;
8368 }
8369 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8370
__netdev_upper_depth(struct net_device * dev)8371 static u8 __netdev_upper_depth(struct net_device *dev)
8372 {
8373 struct net_device *udev;
8374 struct list_head *iter;
8375 u8 max_depth = 0;
8376 bool ignore;
8377
8378 for (iter = &dev->adj_list.upper,
8379 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8380 udev;
8381 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8382 if (ignore)
8383 continue;
8384 if (max_depth < udev->upper_level)
8385 max_depth = udev->upper_level;
8386 }
8387
8388 return max_depth;
8389 }
8390
__netdev_lower_depth(struct net_device * dev)8391 static u8 __netdev_lower_depth(struct net_device *dev)
8392 {
8393 struct net_device *ldev;
8394 struct list_head *iter;
8395 u8 max_depth = 0;
8396 bool ignore;
8397
8398 for (iter = &dev->adj_list.lower,
8399 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8400 ldev;
8401 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8402 if (ignore)
8403 continue;
8404 if (max_depth < ldev->lower_level)
8405 max_depth = ldev->lower_level;
8406 }
8407
8408 return max_depth;
8409 }
8410
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8411 static int __netdev_update_upper_level(struct net_device *dev,
8412 struct netdev_nested_priv *__unused)
8413 {
8414 dev->upper_level = __netdev_upper_depth(dev) + 1;
8415 return 0;
8416 }
8417
8418 #ifdef CONFIG_LOCKDEP
8419 static LIST_HEAD(net_unlink_list);
8420
net_unlink_todo(struct net_device * dev)8421 static void net_unlink_todo(struct net_device *dev)
8422 {
8423 if (list_empty(&dev->unlink_list))
8424 list_add_tail(&dev->unlink_list, &net_unlink_list);
8425 }
8426 #endif
8427
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8428 static int __netdev_update_lower_level(struct net_device *dev,
8429 struct netdev_nested_priv *priv)
8430 {
8431 dev->lower_level = __netdev_lower_depth(dev) + 1;
8432
8433 #ifdef CONFIG_LOCKDEP
8434 if (!priv)
8435 return 0;
8436
8437 if (priv->flags & NESTED_SYNC_IMM)
8438 dev->nested_level = dev->lower_level - 1;
8439 if (priv->flags & NESTED_SYNC_TODO)
8440 net_unlink_todo(dev);
8441 #endif
8442 return 0;
8443 }
8444
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8445 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8446 int (*fn)(struct net_device *dev,
8447 struct netdev_nested_priv *priv),
8448 struct netdev_nested_priv *priv)
8449 {
8450 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8451 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8452 int ret, cur = 0;
8453
8454 now = dev;
8455 iter = &dev->adj_list.lower;
8456
8457 while (1) {
8458 if (now != dev) {
8459 ret = fn(now, priv);
8460 if (ret)
8461 return ret;
8462 }
8463
8464 next = NULL;
8465 while (1) {
8466 ldev = netdev_next_lower_dev_rcu(now, &iter);
8467 if (!ldev)
8468 break;
8469
8470 next = ldev;
8471 niter = &ldev->adj_list.lower;
8472 dev_stack[cur] = now;
8473 iter_stack[cur++] = iter;
8474 break;
8475 }
8476
8477 if (!next) {
8478 if (!cur)
8479 return 0;
8480 next = dev_stack[--cur];
8481 niter = iter_stack[cur];
8482 }
8483
8484 now = next;
8485 iter = niter;
8486 }
8487
8488 return 0;
8489 }
8490 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8491
8492 /**
8493 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8494 * lower neighbour list, RCU
8495 * variant
8496 * @dev: device
8497 *
8498 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8499 * list. The caller must hold RCU read lock.
8500 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8501 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8502 {
8503 struct netdev_adjacent *lower;
8504
8505 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8506 struct netdev_adjacent, list);
8507 if (lower)
8508 return lower->private;
8509 return NULL;
8510 }
8511 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8512
8513 /**
8514 * netdev_master_upper_dev_get_rcu - Get master upper device
8515 * @dev: device
8516 *
8517 * Find a master upper device and return pointer to it or NULL in case
8518 * it's not there. The caller must hold the RCU read lock.
8519 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8520 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8521 {
8522 struct netdev_adjacent *upper;
8523
8524 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8525 struct netdev_adjacent, list);
8526 if (upper && likely(upper->master))
8527 return upper->dev;
8528 return NULL;
8529 }
8530 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8531
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8532 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8533 struct net_device *adj_dev,
8534 struct list_head *dev_list)
8535 {
8536 char linkname[IFNAMSIZ+7];
8537
8538 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8539 "upper_%s" : "lower_%s", adj_dev->name);
8540 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8541 linkname);
8542 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8543 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8544 char *name,
8545 struct list_head *dev_list)
8546 {
8547 char linkname[IFNAMSIZ+7];
8548
8549 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8550 "upper_%s" : "lower_%s", name);
8551 sysfs_remove_link(&(dev->dev.kobj), linkname);
8552 }
8553
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8555 struct net_device *adj_dev,
8556 struct list_head *dev_list)
8557 {
8558 return (dev_list == &dev->adj_list.upper ||
8559 dev_list == &dev->adj_list.lower) &&
8560 net_eq(dev_net(dev), dev_net(adj_dev));
8561 }
8562
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8563 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8564 struct net_device *adj_dev,
8565 struct list_head *dev_list,
8566 void *private, bool master)
8567 {
8568 struct netdev_adjacent *adj;
8569 int ret;
8570
8571 adj = __netdev_find_adj(adj_dev, dev_list);
8572
8573 if (adj) {
8574 adj->ref_nr += 1;
8575 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8576 dev->name, adj_dev->name, adj->ref_nr);
8577
8578 return 0;
8579 }
8580
8581 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8582 if (!adj)
8583 return -ENOMEM;
8584
8585 adj->dev = adj_dev;
8586 adj->master = master;
8587 adj->ref_nr = 1;
8588 adj->private = private;
8589 adj->ignore = false;
8590 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8591
8592 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8593 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8594
8595 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8596 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8597 if (ret)
8598 goto free_adj;
8599 }
8600
8601 /* Ensure that master link is always the first item in list. */
8602 if (master) {
8603 ret = sysfs_create_link(&(dev->dev.kobj),
8604 &(adj_dev->dev.kobj), "master");
8605 if (ret)
8606 goto remove_symlinks;
8607
8608 list_add_rcu(&adj->list, dev_list);
8609 } else {
8610 list_add_tail_rcu(&adj->list, dev_list);
8611 }
8612
8613 return 0;
8614
8615 remove_symlinks:
8616 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8617 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8618 free_adj:
8619 netdev_put(adj_dev, &adj->dev_tracker);
8620 kfree(adj);
8621
8622 return ret;
8623 }
8624
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8625 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8626 struct net_device *adj_dev,
8627 u16 ref_nr,
8628 struct list_head *dev_list)
8629 {
8630 struct netdev_adjacent *adj;
8631
8632 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8633 dev->name, adj_dev->name, ref_nr);
8634
8635 adj = __netdev_find_adj(adj_dev, dev_list);
8636
8637 if (!adj) {
8638 pr_err("Adjacency does not exist for device %s from %s\n",
8639 dev->name, adj_dev->name);
8640 WARN_ON(1);
8641 return;
8642 }
8643
8644 if (adj->ref_nr > ref_nr) {
8645 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8646 dev->name, adj_dev->name, ref_nr,
8647 adj->ref_nr - ref_nr);
8648 adj->ref_nr -= ref_nr;
8649 return;
8650 }
8651
8652 if (adj->master)
8653 sysfs_remove_link(&(dev->dev.kobj), "master");
8654
8655 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8656 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8657
8658 list_del_rcu(&adj->list);
8659 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8660 adj_dev->name, dev->name, adj_dev->name);
8661 netdev_put(adj_dev, &adj->dev_tracker);
8662 kfree_rcu(adj, rcu);
8663 }
8664
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8665 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8666 struct net_device *upper_dev,
8667 struct list_head *up_list,
8668 struct list_head *down_list,
8669 void *private, bool master)
8670 {
8671 int ret;
8672
8673 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8674 private, master);
8675 if (ret)
8676 return ret;
8677
8678 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8679 private, false);
8680 if (ret) {
8681 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8682 return ret;
8683 }
8684
8685 return 0;
8686 }
8687
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8688 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8689 struct net_device *upper_dev,
8690 u16 ref_nr,
8691 struct list_head *up_list,
8692 struct list_head *down_list)
8693 {
8694 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8695 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8696 }
8697
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8698 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8699 struct net_device *upper_dev,
8700 void *private, bool master)
8701 {
8702 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8703 &dev->adj_list.upper,
8704 &upper_dev->adj_list.lower,
8705 private, master);
8706 }
8707
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8708 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8709 struct net_device *upper_dev)
8710 {
8711 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8712 &dev->adj_list.upper,
8713 &upper_dev->adj_list.lower);
8714 }
8715
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8716 static int __netdev_upper_dev_link(struct net_device *dev,
8717 struct net_device *upper_dev, bool master,
8718 void *upper_priv, void *upper_info,
8719 struct netdev_nested_priv *priv,
8720 struct netlink_ext_ack *extack)
8721 {
8722 struct netdev_notifier_changeupper_info changeupper_info = {
8723 .info = {
8724 .dev = dev,
8725 .extack = extack,
8726 },
8727 .upper_dev = upper_dev,
8728 .master = master,
8729 .linking = true,
8730 .upper_info = upper_info,
8731 };
8732 struct net_device *master_dev;
8733 int ret = 0;
8734
8735 ASSERT_RTNL();
8736
8737 if (dev == upper_dev)
8738 return -EBUSY;
8739
8740 /* To prevent loops, check if dev is not upper device to upper_dev. */
8741 if (__netdev_has_upper_dev(upper_dev, dev))
8742 return -EBUSY;
8743
8744 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8745 return -EMLINK;
8746
8747 if (!master) {
8748 if (__netdev_has_upper_dev(dev, upper_dev))
8749 return -EEXIST;
8750 } else {
8751 master_dev = __netdev_master_upper_dev_get(dev);
8752 if (master_dev)
8753 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8754 }
8755
8756 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8757 &changeupper_info.info);
8758 ret = notifier_to_errno(ret);
8759 if (ret)
8760 return ret;
8761
8762 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8763 master);
8764 if (ret)
8765 return ret;
8766
8767 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8768 &changeupper_info.info);
8769 ret = notifier_to_errno(ret);
8770 if (ret)
8771 goto rollback;
8772
8773 __netdev_update_upper_level(dev, NULL);
8774 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8775
8776 __netdev_update_lower_level(upper_dev, priv);
8777 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8778 priv);
8779
8780 return 0;
8781
8782 rollback:
8783 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8784
8785 return ret;
8786 }
8787
8788 /**
8789 * netdev_upper_dev_link - Add a link to the upper device
8790 * @dev: device
8791 * @upper_dev: new upper device
8792 * @extack: netlink extended ack
8793 *
8794 * Adds a link to device which is upper to this one. The caller must hold
8795 * the RTNL lock. On a failure a negative errno code is returned.
8796 * On success the reference counts are adjusted and the function
8797 * returns zero.
8798 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8799 int netdev_upper_dev_link(struct net_device *dev,
8800 struct net_device *upper_dev,
8801 struct netlink_ext_ack *extack)
8802 {
8803 struct netdev_nested_priv priv = {
8804 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8805 .data = NULL,
8806 };
8807
8808 return __netdev_upper_dev_link(dev, upper_dev, false,
8809 NULL, NULL, &priv, extack);
8810 }
8811 EXPORT_SYMBOL(netdev_upper_dev_link);
8812
8813 /**
8814 * netdev_master_upper_dev_link - Add a master link to the upper device
8815 * @dev: device
8816 * @upper_dev: new upper device
8817 * @upper_priv: upper device private
8818 * @upper_info: upper info to be passed down via notifier
8819 * @extack: netlink extended ack
8820 *
8821 * Adds a link to device which is upper to this one. In this case, only
8822 * one master upper device can be linked, although other non-master devices
8823 * might be linked as well. The caller must hold the RTNL lock.
8824 * On a failure a negative errno code is returned. On success the reference
8825 * counts are adjusted and the function returns zero.
8826 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8827 int netdev_master_upper_dev_link(struct net_device *dev,
8828 struct net_device *upper_dev,
8829 void *upper_priv, void *upper_info,
8830 struct netlink_ext_ack *extack)
8831 {
8832 struct netdev_nested_priv priv = {
8833 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8834 .data = NULL,
8835 };
8836
8837 return __netdev_upper_dev_link(dev, upper_dev, true,
8838 upper_priv, upper_info, &priv, extack);
8839 }
8840 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8841
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8842 static void __netdev_upper_dev_unlink(struct net_device *dev,
8843 struct net_device *upper_dev,
8844 struct netdev_nested_priv *priv)
8845 {
8846 struct netdev_notifier_changeupper_info changeupper_info = {
8847 .info = {
8848 .dev = dev,
8849 },
8850 .upper_dev = upper_dev,
8851 .linking = false,
8852 };
8853
8854 ASSERT_RTNL();
8855
8856 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8857
8858 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8859 &changeupper_info.info);
8860
8861 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8862
8863 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8864 &changeupper_info.info);
8865
8866 __netdev_update_upper_level(dev, NULL);
8867 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8868
8869 __netdev_update_lower_level(upper_dev, priv);
8870 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8871 priv);
8872 }
8873
8874 /**
8875 * netdev_upper_dev_unlink - Removes a link to upper device
8876 * @dev: device
8877 * @upper_dev: new upper device
8878 *
8879 * Removes a link to device which is upper to this one. The caller must hold
8880 * the RTNL lock.
8881 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8882 void netdev_upper_dev_unlink(struct net_device *dev,
8883 struct net_device *upper_dev)
8884 {
8885 struct netdev_nested_priv priv = {
8886 .flags = NESTED_SYNC_TODO,
8887 .data = NULL,
8888 };
8889
8890 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8891 }
8892 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8893
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8894 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8895 struct net_device *lower_dev,
8896 bool val)
8897 {
8898 struct netdev_adjacent *adj;
8899
8900 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8901 if (adj)
8902 adj->ignore = val;
8903
8904 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8905 if (adj)
8906 adj->ignore = val;
8907 }
8908
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8909 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8910 struct net_device *lower_dev)
8911 {
8912 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8913 }
8914
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8915 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8916 struct net_device *lower_dev)
8917 {
8918 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8919 }
8920
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8921 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8922 struct net_device *new_dev,
8923 struct net_device *dev,
8924 struct netlink_ext_ack *extack)
8925 {
8926 struct netdev_nested_priv priv = {
8927 .flags = 0,
8928 .data = NULL,
8929 };
8930 int err;
8931
8932 if (!new_dev)
8933 return 0;
8934
8935 if (old_dev && new_dev != old_dev)
8936 netdev_adjacent_dev_disable(dev, old_dev);
8937 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8938 extack);
8939 if (err) {
8940 if (old_dev && new_dev != old_dev)
8941 netdev_adjacent_dev_enable(dev, old_dev);
8942 return err;
8943 }
8944
8945 return 0;
8946 }
8947 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8948
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8949 void netdev_adjacent_change_commit(struct net_device *old_dev,
8950 struct net_device *new_dev,
8951 struct net_device *dev)
8952 {
8953 struct netdev_nested_priv priv = {
8954 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8955 .data = NULL,
8956 };
8957
8958 if (!new_dev || !old_dev)
8959 return;
8960
8961 if (new_dev == old_dev)
8962 return;
8963
8964 netdev_adjacent_dev_enable(dev, old_dev);
8965 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8966 }
8967 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8968
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8969 void netdev_adjacent_change_abort(struct net_device *old_dev,
8970 struct net_device *new_dev,
8971 struct net_device *dev)
8972 {
8973 struct netdev_nested_priv priv = {
8974 .flags = 0,
8975 .data = NULL,
8976 };
8977
8978 if (!new_dev)
8979 return;
8980
8981 if (old_dev && new_dev != old_dev)
8982 netdev_adjacent_dev_enable(dev, old_dev);
8983
8984 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8985 }
8986 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8987
8988 /**
8989 * netdev_bonding_info_change - Dispatch event about slave change
8990 * @dev: device
8991 * @bonding_info: info to dispatch
8992 *
8993 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8994 * The caller must hold the RTNL lock.
8995 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8996 void netdev_bonding_info_change(struct net_device *dev,
8997 struct netdev_bonding_info *bonding_info)
8998 {
8999 struct netdev_notifier_bonding_info info = {
9000 .info.dev = dev,
9001 };
9002
9003 memcpy(&info.bonding_info, bonding_info,
9004 sizeof(struct netdev_bonding_info));
9005 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9006 &info.info);
9007 }
9008 EXPORT_SYMBOL(netdev_bonding_info_change);
9009
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9010 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9011 struct netlink_ext_ack *extack)
9012 {
9013 struct netdev_notifier_offload_xstats_info info = {
9014 .info.dev = dev,
9015 .info.extack = extack,
9016 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9017 };
9018 int err;
9019 int rc;
9020
9021 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9022 GFP_KERNEL);
9023 if (!dev->offload_xstats_l3)
9024 return -ENOMEM;
9025
9026 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9027 NETDEV_OFFLOAD_XSTATS_DISABLE,
9028 &info.info);
9029 err = notifier_to_errno(rc);
9030 if (err)
9031 goto free_stats;
9032
9033 return 0;
9034
9035 free_stats:
9036 kfree(dev->offload_xstats_l3);
9037 dev->offload_xstats_l3 = NULL;
9038 return err;
9039 }
9040
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9041 int netdev_offload_xstats_enable(struct net_device *dev,
9042 enum netdev_offload_xstats_type type,
9043 struct netlink_ext_ack *extack)
9044 {
9045 ASSERT_RTNL();
9046
9047 if (netdev_offload_xstats_enabled(dev, type))
9048 return -EALREADY;
9049
9050 switch (type) {
9051 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9052 return netdev_offload_xstats_enable_l3(dev, extack);
9053 }
9054
9055 WARN_ON(1);
9056 return -EINVAL;
9057 }
9058 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9059
netdev_offload_xstats_disable_l3(struct net_device * dev)9060 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9061 {
9062 struct netdev_notifier_offload_xstats_info info = {
9063 .info.dev = dev,
9064 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9065 };
9066
9067 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9068 &info.info);
9069 kfree(dev->offload_xstats_l3);
9070 dev->offload_xstats_l3 = NULL;
9071 }
9072
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9073 int netdev_offload_xstats_disable(struct net_device *dev,
9074 enum netdev_offload_xstats_type type)
9075 {
9076 ASSERT_RTNL();
9077
9078 if (!netdev_offload_xstats_enabled(dev, type))
9079 return -EALREADY;
9080
9081 switch (type) {
9082 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9083 netdev_offload_xstats_disable_l3(dev);
9084 return 0;
9085 }
9086
9087 WARN_ON(1);
9088 return -EINVAL;
9089 }
9090 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9091
netdev_offload_xstats_disable_all(struct net_device * dev)9092 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9093 {
9094 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9095 }
9096
9097 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9098 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9099 enum netdev_offload_xstats_type type)
9100 {
9101 switch (type) {
9102 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9103 return dev->offload_xstats_l3;
9104 }
9105
9106 WARN_ON(1);
9107 return NULL;
9108 }
9109
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9110 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9111 enum netdev_offload_xstats_type type)
9112 {
9113 ASSERT_RTNL();
9114
9115 return netdev_offload_xstats_get_ptr(dev, type);
9116 }
9117 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9118
9119 struct netdev_notifier_offload_xstats_ru {
9120 bool used;
9121 };
9122
9123 struct netdev_notifier_offload_xstats_rd {
9124 struct rtnl_hw_stats64 stats;
9125 bool used;
9126 };
9127
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9128 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9129 const struct rtnl_hw_stats64 *src)
9130 {
9131 dest->rx_packets += src->rx_packets;
9132 dest->tx_packets += src->tx_packets;
9133 dest->rx_bytes += src->rx_bytes;
9134 dest->tx_bytes += src->tx_bytes;
9135 dest->rx_errors += src->rx_errors;
9136 dest->tx_errors += src->tx_errors;
9137 dest->rx_dropped += src->rx_dropped;
9138 dest->tx_dropped += src->tx_dropped;
9139 dest->multicast += src->multicast;
9140 }
9141
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9142 static int netdev_offload_xstats_get_used(struct net_device *dev,
9143 enum netdev_offload_xstats_type type,
9144 bool *p_used,
9145 struct netlink_ext_ack *extack)
9146 {
9147 struct netdev_notifier_offload_xstats_ru report_used = {};
9148 struct netdev_notifier_offload_xstats_info info = {
9149 .info.dev = dev,
9150 .info.extack = extack,
9151 .type = type,
9152 .report_used = &report_used,
9153 };
9154 int rc;
9155
9156 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9157 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9158 &info.info);
9159 *p_used = report_used.used;
9160 return notifier_to_errno(rc);
9161 }
9162
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9163 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9164 enum netdev_offload_xstats_type type,
9165 struct rtnl_hw_stats64 *p_stats,
9166 bool *p_used,
9167 struct netlink_ext_ack *extack)
9168 {
9169 struct netdev_notifier_offload_xstats_rd report_delta = {};
9170 struct netdev_notifier_offload_xstats_info info = {
9171 .info.dev = dev,
9172 .info.extack = extack,
9173 .type = type,
9174 .report_delta = &report_delta,
9175 };
9176 struct rtnl_hw_stats64 *stats;
9177 int rc;
9178
9179 stats = netdev_offload_xstats_get_ptr(dev, type);
9180 if (WARN_ON(!stats))
9181 return -EINVAL;
9182
9183 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9184 &info.info);
9185
9186 /* Cache whatever we got, even if there was an error, otherwise the
9187 * successful stats retrievals would get lost.
9188 */
9189 netdev_hw_stats64_add(stats, &report_delta.stats);
9190
9191 if (p_stats)
9192 *p_stats = *stats;
9193 *p_used = report_delta.used;
9194
9195 return notifier_to_errno(rc);
9196 }
9197
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9198 int netdev_offload_xstats_get(struct net_device *dev,
9199 enum netdev_offload_xstats_type type,
9200 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9201 struct netlink_ext_ack *extack)
9202 {
9203 ASSERT_RTNL();
9204
9205 if (p_stats)
9206 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9207 p_used, extack);
9208 else
9209 return netdev_offload_xstats_get_used(dev, type, p_used,
9210 extack);
9211 }
9212 EXPORT_SYMBOL(netdev_offload_xstats_get);
9213
9214 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9215 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9216 const struct rtnl_hw_stats64 *stats)
9217 {
9218 report_delta->used = true;
9219 netdev_hw_stats64_add(&report_delta->stats, stats);
9220 }
9221 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9222
9223 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9224 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9225 {
9226 report_used->used = true;
9227 }
9228 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9229
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9230 void netdev_offload_xstats_push_delta(struct net_device *dev,
9231 enum netdev_offload_xstats_type type,
9232 const struct rtnl_hw_stats64 *p_stats)
9233 {
9234 struct rtnl_hw_stats64 *stats;
9235
9236 ASSERT_RTNL();
9237
9238 stats = netdev_offload_xstats_get_ptr(dev, type);
9239 if (WARN_ON(!stats))
9240 return;
9241
9242 netdev_hw_stats64_add(stats, p_stats);
9243 }
9244 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9245
9246 /**
9247 * netdev_get_xmit_slave - Get the xmit slave of master device
9248 * @dev: device
9249 * @skb: The packet
9250 * @all_slaves: assume all the slaves are active
9251 *
9252 * The reference counters are not incremented so the caller must be
9253 * careful with locks. The caller must hold RCU lock.
9254 * %NULL is returned if no slave is found.
9255 */
9256
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9257 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9258 struct sk_buff *skb,
9259 bool all_slaves)
9260 {
9261 const struct net_device_ops *ops = dev->netdev_ops;
9262
9263 if (!ops->ndo_get_xmit_slave)
9264 return NULL;
9265 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9266 }
9267 EXPORT_SYMBOL(netdev_get_xmit_slave);
9268
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9269 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9270 struct sock *sk)
9271 {
9272 const struct net_device_ops *ops = dev->netdev_ops;
9273
9274 if (!ops->ndo_sk_get_lower_dev)
9275 return NULL;
9276 return ops->ndo_sk_get_lower_dev(dev, sk);
9277 }
9278
9279 /**
9280 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9281 * @dev: device
9282 * @sk: the socket
9283 *
9284 * %NULL is returned if no lower device is found.
9285 */
9286
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9287 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9288 struct sock *sk)
9289 {
9290 struct net_device *lower;
9291
9292 lower = netdev_sk_get_lower_dev(dev, sk);
9293 while (lower) {
9294 dev = lower;
9295 lower = netdev_sk_get_lower_dev(dev, sk);
9296 }
9297
9298 return dev;
9299 }
9300 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9301
netdev_adjacent_add_links(struct net_device * dev)9302 static void netdev_adjacent_add_links(struct net_device *dev)
9303 {
9304 struct netdev_adjacent *iter;
9305
9306 struct net *net = dev_net(dev);
9307
9308 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9309 if (!net_eq(net, dev_net(iter->dev)))
9310 continue;
9311 netdev_adjacent_sysfs_add(iter->dev, dev,
9312 &iter->dev->adj_list.lower);
9313 netdev_adjacent_sysfs_add(dev, iter->dev,
9314 &dev->adj_list.upper);
9315 }
9316
9317 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9318 if (!net_eq(net, dev_net(iter->dev)))
9319 continue;
9320 netdev_adjacent_sysfs_add(iter->dev, dev,
9321 &iter->dev->adj_list.upper);
9322 netdev_adjacent_sysfs_add(dev, iter->dev,
9323 &dev->adj_list.lower);
9324 }
9325 }
9326
netdev_adjacent_del_links(struct net_device * dev)9327 static void netdev_adjacent_del_links(struct net_device *dev)
9328 {
9329 struct netdev_adjacent *iter;
9330
9331 struct net *net = dev_net(dev);
9332
9333 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9334 if (!net_eq(net, dev_net(iter->dev)))
9335 continue;
9336 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9337 &iter->dev->adj_list.lower);
9338 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9339 &dev->adj_list.upper);
9340 }
9341
9342 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9343 if (!net_eq(net, dev_net(iter->dev)))
9344 continue;
9345 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9346 &iter->dev->adj_list.upper);
9347 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9348 &dev->adj_list.lower);
9349 }
9350 }
9351
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9352 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9353 {
9354 struct netdev_adjacent *iter;
9355
9356 struct net *net = dev_net(dev);
9357
9358 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9359 if (!net_eq(net, dev_net(iter->dev)))
9360 continue;
9361 netdev_adjacent_sysfs_del(iter->dev, oldname,
9362 &iter->dev->adj_list.lower);
9363 netdev_adjacent_sysfs_add(iter->dev, dev,
9364 &iter->dev->adj_list.lower);
9365 }
9366
9367 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9368 if (!net_eq(net, dev_net(iter->dev)))
9369 continue;
9370 netdev_adjacent_sysfs_del(iter->dev, oldname,
9371 &iter->dev->adj_list.upper);
9372 netdev_adjacent_sysfs_add(iter->dev, dev,
9373 &iter->dev->adj_list.upper);
9374 }
9375 }
9376
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9377 void *netdev_lower_dev_get_private(struct net_device *dev,
9378 struct net_device *lower_dev)
9379 {
9380 struct netdev_adjacent *lower;
9381
9382 if (!lower_dev)
9383 return NULL;
9384 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9385 if (!lower)
9386 return NULL;
9387
9388 return lower->private;
9389 }
9390 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9391
9392
9393 /**
9394 * netdev_lower_state_changed - Dispatch event about lower device state change
9395 * @lower_dev: device
9396 * @lower_state_info: state to dispatch
9397 *
9398 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9399 * The caller must hold the RTNL lock.
9400 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9401 void netdev_lower_state_changed(struct net_device *lower_dev,
9402 void *lower_state_info)
9403 {
9404 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9405 .info.dev = lower_dev,
9406 };
9407
9408 ASSERT_RTNL();
9409 changelowerstate_info.lower_state_info = lower_state_info;
9410 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9411 &changelowerstate_info.info);
9412 }
9413 EXPORT_SYMBOL(netdev_lower_state_changed);
9414
dev_change_rx_flags(struct net_device * dev,int flags)9415 static void dev_change_rx_flags(struct net_device *dev, int flags)
9416 {
9417 const struct net_device_ops *ops = dev->netdev_ops;
9418
9419 if (ops->ndo_change_rx_flags)
9420 ops->ndo_change_rx_flags(dev, flags);
9421 }
9422
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9424 {
9425 unsigned int old_flags = dev->flags;
9426 unsigned int promiscuity, flags;
9427 kuid_t uid;
9428 kgid_t gid;
9429
9430 ASSERT_RTNL();
9431
9432 promiscuity = dev->promiscuity + inc;
9433 if (promiscuity == 0) {
9434 /*
9435 * Avoid overflow.
9436 * If inc causes overflow, untouch promisc and return error.
9437 */
9438 if (unlikely(inc > 0)) {
9439 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9440 return -EOVERFLOW;
9441 }
9442 flags = old_flags & ~IFF_PROMISC;
9443 } else {
9444 flags = old_flags | IFF_PROMISC;
9445 }
9446 WRITE_ONCE(dev->promiscuity, promiscuity);
9447 if (flags != old_flags) {
9448 WRITE_ONCE(dev->flags, flags);
9449 netdev_info(dev, "%s promiscuous mode\n",
9450 dev->flags & IFF_PROMISC ? "entered" : "left");
9451 if (audit_enabled) {
9452 current_uid_gid(&uid, &gid);
9453 audit_log(audit_context(), GFP_ATOMIC,
9454 AUDIT_ANOM_PROMISCUOUS,
9455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9456 dev->name, (dev->flags & IFF_PROMISC),
9457 (old_flags & IFF_PROMISC),
9458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9459 from_kuid(&init_user_ns, uid),
9460 from_kgid(&init_user_ns, gid),
9461 audit_get_sessionid(current));
9462 }
9463
9464 dev_change_rx_flags(dev, IFF_PROMISC);
9465 }
9466 if (notify) {
9467 /* The ops lock is only required to ensure consistent locking
9468 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9469 * called without the lock, even for devices that are ops
9470 * locked, such as in `dev_uc_sync_multiple` when using
9471 * bonding or teaming.
9472 */
9473 netdev_ops_assert_locked(dev);
9474 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9475 }
9476 return 0;
9477 }
9478
netif_set_promiscuity(struct net_device * dev,int inc)9479 int netif_set_promiscuity(struct net_device *dev, int inc)
9480 {
9481 unsigned int old_flags = dev->flags;
9482 int err;
9483
9484 err = __dev_set_promiscuity(dev, inc, true);
9485 if (err < 0)
9486 return err;
9487 if (dev->flags != old_flags)
9488 dev_set_rx_mode(dev);
9489 return err;
9490 }
9491
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9492 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9493 {
9494 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9495 unsigned int allmulti, flags;
9496
9497 ASSERT_RTNL();
9498
9499 allmulti = dev->allmulti + inc;
9500 if (allmulti == 0) {
9501 /*
9502 * Avoid overflow.
9503 * If inc causes overflow, untouch allmulti and return error.
9504 */
9505 if (unlikely(inc > 0)) {
9506 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9507 return -EOVERFLOW;
9508 }
9509 flags = old_flags & ~IFF_ALLMULTI;
9510 } else {
9511 flags = old_flags | IFF_ALLMULTI;
9512 }
9513 WRITE_ONCE(dev->allmulti, allmulti);
9514 if (flags != old_flags) {
9515 WRITE_ONCE(dev->flags, flags);
9516 netdev_info(dev, "%s allmulticast mode\n",
9517 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9518 dev_change_rx_flags(dev, IFF_ALLMULTI);
9519 dev_set_rx_mode(dev);
9520 if (notify)
9521 __dev_notify_flags(dev, old_flags,
9522 dev->gflags ^ old_gflags, 0, NULL);
9523 }
9524 return 0;
9525 }
9526
9527 /*
9528 * Upload unicast and multicast address lists to device and
9529 * configure RX filtering. When the device doesn't support unicast
9530 * filtering it is put in promiscuous mode while unicast addresses
9531 * are present.
9532 */
__dev_set_rx_mode(struct net_device * dev)9533 void __dev_set_rx_mode(struct net_device *dev)
9534 {
9535 const struct net_device_ops *ops = dev->netdev_ops;
9536
9537 /* dev_open will call this function so the list will stay sane. */
9538 if (!(dev->flags&IFF_UP))
9539 return;
9540
9541 if (!netif_device_present(dev))
9542 return;
9543
9544 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9545 /* Unicast addresses changes may only happen under the rtnl,
9546 * therefore calling __dev_set_promiscuity here is safe.
9547 */
9548 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9549 __dev_set_promiscuity(dev, 1, false);
9550 dev->uc_promisc = true;
9551 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9552 __dev_set_promiscuity(dev, -1, false);
9553 dev->uc_promisc = false;
9554 }
9555 }
9556
9557 if (ops->ndo_set_rx_mode)
9558 ops->ndo_set_rx_mode(dev);
9559 }
9560
dev_set_rx_mode(struct net_device * dev)9561 void dev_set_rx_mode(struct net_device *dev)
9562 {
9563 netif_addr_lock_bh(dev);
9564 __dev_set_rx_mode(dev);
9565 netif_addr_unlock_bh(dev);
9566 }
9567
9568 /**
9569 * netif_get_flags() - get flags reported to userspace
9570 * @dev: device
9571 *
9572 * Get the combination of flag bits exported through APIs to userspace.
9573 */
netif_get_flags(const struct net_device * dev)9574 unsigned int netif_get_flags(const struct net_device *dev)
9575 {
9576 unsigned int flags;
9577
9578 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9579 IFF_ALLMULTI |
9580 IFF_RUNNING |
9581 IFF_LOWER_UP |
9582 IFF_DORMANT)) |
9583 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9584 IFF_ALLMULTI));
9585
9586 if (netif_running(dev)) {
9587 if (netif_oper_up(dev))
9588 flags |= IFF_RUNNING;
9589 if (netif_carrier_ok(dev))
9590 flags |= IFF_LOWER_UP;
9591 if (netif_dormant(dev))
9592 flags |= IFF_DORMANT;
9593 }
9594
9595 return flags;
9596 }
9597 EXPORT_SYMBOL(netif_get_flags);
9598
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9599 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9600 struct netlink_ext_ack *extack)
9601 {
9602 unsigned int old_flags = dev->flags;
9603 int ret;
9604
9605 ASSERT_RTNL();
9606
9607 /*
9608 * Set the flags on our device.
9609 */
9610
9611 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9612 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9613 IFF_AUTOMEDIA)) |
9614 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9615 IFF_ALLMULTI));
9616
9617 /*
9618 * Load in the correct multicast list now the flags have changed.
9619 */
9620
9621 if ((old_flags ^ flags) & IFF_MULTICAST)
9622 dev_change_rx_flags(dev, IFF_MULTICAST);
9623
9624 dev_set_rx_mode(dev);
9625
9626 /*
9627 * Have we downed the interface. We handle IFF_UP ourselves
9628 * according to user attempts to set it, rather than blindly
9629 * setting it.
9630 */
9631
9632 ret = 0;
9633 if ((old_flags ^ flags) & IFF_UP) {
9634 if (old_flags & IFF_UP)
9635 __dev_close(dev);
9636 else
9637 ret = __dev_open(dev, extack);
9638 }
9639
9640 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9641 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9642 old_flags = dev->flags;
9643
9644 dev->gflags ^= IFF_PROMISC;
9645
9646 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9647 if (dev->flags != old_flags)
9648 dev_set_rx_mode(dev);
9649 }
9650
9651 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9652 * is important. Some (broken) drivers set IFF_PROMISC, when
9653 * IFF_ALLMULTI is requested not asking us and not reporting.
9654 */
9655 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9656 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9657
9658 dev->gflags ^= IFF_ALLMULTI;
9659 netif_set_allmulti(dev, inc, false);
9660 }
9661
9662 return ret;
9663 }
9664
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9665 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9666 unsigned int gchanges, u32 portid,
9667 const struct nlmsghdr *nlh)
9668 {
9669 unsigned int changes = dev->flags ^ old_flags;
9670
9671 if (gchanges)
9672 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9673
9674 if (changes & IFF_UP) {
9675 if (dev->flags & IFF_UP)
9676 call_netdevice_notifiers(NETDEV_UP, dev);
9677 else
9678 call_netdevice_notifiers(NETDEV_DOWN, dev);
9679 }
9680
9681 if (dev->flags & IFF_UP &&
9682 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9683 struct netdev_notifier_change_info change_info = {
9684 .info = {
9685 .dev = dev,
9686 },
9687 .flags_changed = changes,
9688 };
9689
9690 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9691 }
9692 }
9693
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9694 int netif_change_flags(struct net_device *dev, unsigned int flags,
9695 struct netlink_ext_ack *extack)
9696 {
9697 int ret;
9698 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9699
9700 ret = __dev_change_flags(dev, flags, extack);
9701 if (ret < 0)
9702 return ret;
9703
9704 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9705 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9706 return ret;
9707 }
9708
__netif_set_mtu(struct net_device * dev,int new_mtu)9709 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9710 {
9711 const struct net_device_ops *ops = dev->netdev_ops;
9712
9713 if (ops->ndo_change_mtu)
9714 return ops->ndo_change_mtu(dev, new_mtu);
9715
9716 /* Pairs with all the lockless reads of dev->mtu in the stack */
9717 WRITE_ONCE(dev->mtu, new_mtu);
9718 return 0;
9719 }
9720 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9721
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9722 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9723 struct netlink_ext_ack *extack)
9724 {
9725 /* MTU must be positive, and in range */
9726 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9727 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9728 return -EINVAL;
9729 }
9730
9731 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9732 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9733 return -EINVAL;
9734 }
9735 return 0;
9736 }
9737
9738 /**
9739 * netif_set_mtu_ext() - Change maximum transfer unit
9740 * @dev: device
9741 * @new_mtu: new transfer unit
9742 * @extack: netlink extended ack
9743 *
9744 * Change the maximum transfer size of the network device.
9745 *
9746 * Return: 0 on success, -errno on failure.
9747 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9748 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9749 struct netlink_ext_ack *extack)
9750 {
9751 int err, orig_mtu;
9752
9753 netdev_ops_assert_locked(dev);
9754
9755 if (new_mtu == dev->mtu)
9756 return 0;
9757
9758 err = dev_validate_mtu(dev, new_mtu, extack);
9759 if (err)
9760 return err;
9761
9762 if (!netif_device_present(dev))
9763 return -ENODEV;
9764
9765 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9766 err = notifier_to_errno(err);
9767 if (err)
9768 return err;
9769
9770 orig_mtu = dev->mtu;
9771 err = __netif_set_mtu(dev, new_mtu);
9772
9773 if (!err) {
9774 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9775 orig_mtu);
9776 err = notifier_to_errno(err);
9777 if (err) {
9778 /* setting mtu back and notifying everyone again,
9779 * so that they have a chance to revert changes.
9780 */
9781 __netif_set_mtu(dev, orig_mtu);
9782 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9783 new_mtu);
9784 }
9785 }
9786 return err;
9787 }
9788
netif_set_mtu(struct net_device * dev,int new_mtu)9789 int netif_set_mtu(struct net_device *dev, int new_mtu)
9790 {
9791 struct netlink_ext_ack extack;
9792 int err;
9793
9794 memset(&extack, 0, sizeof(extack));
9795 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9796 if (err && extack._msg)
9797 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9798 return err;
9799 }
9800 EXPORT_SYMBOL(netif_set_mtu);
9801
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9802 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9803 {
9804 unsigned int orig_len = dev->tx_queue_len;
9805 int res;
9806
9807 if (new_len != (unsigned int)new_len)
9808 return -ERANGE;
9809
9810 if (new_len != orig_len) {
9811 WRITE_ONCE(dev->tx_queue_len, new_len);
9812 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9813 res = notifier_to_errno(res);
9814 if (res)
9815 goto err_rollback;
9816 res = dev_qdisc_change_tx_queue_len(dev);
9817 if (res)
9818 goto err_rollback;
9819 }
9820
9821 return 0;
9822
9823 err_rollback:
9824 netdev_err(dev, "refused to change device tx_queue_len\n");
9825 WRITE_ONCE(dev->tx_queue_len, orig_len);
9826 return res;
9827 }
9828
netif_set_group(struct net_device * dev,int new_group)9829 void netif_set_group(struct net_device *dev, int new_group)
9830 {
9831 dev->group = new_group;
9832 }
9833
9834 /**
9835 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9836 * @dev: device
9837 * @addr: new address
9838 * @extack: netlink extended ack
9839 *
9840 * Return: 0 on success, -errno on failure.
9841 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9842 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9843 struct netlink_ext_ack *extack)
9844 {
9845 struct netdev_notifier_pre_changeaddr_info info = {
9846 .info.dev = dev,
9847 .info.extack = extack,
9848 .dev_addr = addr,
9849 };
9850 int rc;
9851
9852 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9853 return notifier_to_errno(rc);
9854 }
9855 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9856
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9857 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9858 struct netlink_ext_ack *extack)
9859 {
9860 const struct net_device_ops *ops = dev->netdev_ops;
9861 int err;
9862
9863 if (!ops->ndo_set_mac_address)
9864 return -EOPNOTSUPP;
9865 if (ss->ss_family != dev->type)
9866 return -EINVAL;
9867 if (!netif_device_present(dev))
9868 return -ENODEV;
9869 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9870 if (err)
9871 return err;
9872 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9873 err = ops->ndo_set_mac_address(dev, ss);
9874 if (err)
9875 return err;
9876 }
9877 dev->addr_assign_type = NET_ADDR_SET;
9878 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9879 add_device_randomness(dev->dev_addr, dev->addr_len);
9880 return 0;
9881 }
9882
9883 DECLARE_RWSEM(dev_addr_sem);
9884
9885 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9886 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9887 {
9888 size_t size = sizeof(sa->sa_data_min);
9889 struct net_device *dev;
9890 int ret = 0;
9891
9892 down_read(&dev_addr_sem);
9893 rcu_read_lock();
9894
9895 dev = dev_get_by_name_rcu(net, dev_name);
9896 if (!dev) {
9897 ret = -ENODEV;
9898 goto unlock;
9899 }
9900 if (!dev->addr_len)
9901 memset(sa->sa_data, 0, size);
9902 else
9903 memcpy(sa->sa_data, dev->dev_addr,
9904 min_t(size_t, size, dev->addr_len));
9905 sa->sa_family = dev->type;
9906
9907 unlock:
9908 rcu_read_unlock();
9909 up_read(&dev_addr_sem);
9910 return ret;
9911 }
9912 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9913
netif_change_carrier(struct net_device * dev,bool new_carrier)9914 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9915 {
9916 const struct net_device_ops *ops = dev->netdev_ops;
9917
9918 if (!ops->ndo_change_carrier)
9919 return -EOPNOTSUPP;
9920 if (!netif_device_present(dev))
9921 return -ENODEV;
9922 return ops->ndo_change_carrier(dev, new_carrier);
9923 }
9924
9925 /**
9926 * dev_get_phys_port_id - Get device physical port ID
9927 * @dev: device
9928 * @ppid: port ID
9929 *
9930 * Get device physical port ID
9931 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9932 int dev_get_phys_port_id(struct net_device *dev,
9933 struct netdev_phys_item_id *ppid)
9934 {
9935 const struct net_device_ops *ops = dev->netdev_ops;
9936
9937 if (!ops->ndo_get_phys_port_id)
9938 return -EOPNOTSUPP;
9939 return ops->ndo_get_phys_port_id(dev, ppid);
9940 }
9941
9942 /**
9943 * dev_get_phys_port_name - Get device physical port name
9944 * @dev: device
9945 * @name: port name
9946 * @len: limit of bytes to copy to name
9947 *
9948 * Get device physical port name
9949 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9950 int dev_get_phys_port_name(struct net_device *dev,
9951 char *name, size_t len)
9952 {
9953 const struct net_device_ops *ops = dev->netdev_ops;
9954 int err;
9955
9956 if (ops->ndo_get_phys_port_name) {
9957 err = ops->ndo_get_phys_port_name(dev, name, len);
9958 if (err != -EOPNOTSUPP)
9959 return err;
9960 }
9961 return devlink_compat_phys_port_name_get(dev, name, len);
9962 }
9963
9964 /**
9965 * netif_get_port_parent_id() - Get the device's port parent identifier
9966 * @dev: network device
9967 * @ppid: pointer to a storage for the port's parent identifier
9968 * @recurse: allow/disallow recursion to lower devices
9969 *
9970 * Get the devices's port parent identifier.
9971 *
9972 * Return: 0 on success, -errno on failure.
9973 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9974 int netif_get_port_parent_id(struct net_device *dev,
9975 struct netdev_phys_item_id *ppid, bool recurse)
9976 {
9977 const struct net_device_ops *ops = dev->netdev_ops;
9978 struct netdev_phys_item_id first = { };
9979 struct net_device *lower_dev;
9980 struct list_head *iter;
9981 int err;
9982
9983 if (ops->ndo_get_port_parent_id) {
9984 err = ops->ndo_get_port_parent_id(dev, ppid);
9985 if (err != -EOPNOTSUPP)
9986 return err;
9987 }
9988
9989 err = devlink_compat_switch_id_get(dev, ppid);
9990 if (!recurse || err != -EOPNOTSUPP)
9991 return err;
9992
9993 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9994 err = netif_get_port_parent_id(lower_dev, ppid, true);
9995 if (err)
9996 break;
9997 if (!first.id_len)
9998 first = *ppid;
9999 else if (memcmp(&first, ppid, sizeof(*ppid)))
10000 return -EOPNOTSUPP;
10001 }
10002
10003 return err;
10004 }
10005 EXPORT_SYMBOL(netif_get_port_parent_id);
10006
10007 /**
10008 * netdev_port_same_parent_id - Indicate if two network devices have
10009 * the same port parent identifier
10010 * @a: first network device
10011 * @b: second network device
10012 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10013 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10014 {
10015 struct netdev_phys_item_id a_id = { };
10016 struct netdev_phys_item_id b_id = { };
10017
10018 if (netif_get_port_parent_id(a, &a_id, true) ||
10019 netif_get_port_parent_id(b, &b_id, true))
10020 return false;
10021
10022 return netdev_phys_item_id_same(&a_id, &b_id);
10023 }
10024 EXPORT_SYMBOL(netdev_port_same_parent_id);
10025
netif_change_proto_down(struct net_device * dev,bool proto_down)10026 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10027 {
10028 if (!dev->change_proto_down)
10029 return -EOPNOTSUPP;
10030 if (!netif_device_present(dev))
10031 return -ENODEV;
10032 if (proto_down)
10033 netif_carrier_off(dev);
10034 else
10035 netif_carrier_on(dev);
10036 WRITE_ONCE(dev->proto_down, proto_down);
10037 return 0;
10038 }
10039
10040 /**
10041 * netdev_change_proto_down_reason_locked - proto down reason
10042 *
10043 * @dev: device
10044 * @mask: proto down mask
10045 * @value: proto down value
10046 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10047 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10048 unsigned long mask, u32 value)
10049 {
10050 u32 proto_down_reason;
10051 int b;
10052
10053 if (!mask) {
10054 proto_down_reason = value;
10055 } else {
10056 proto_down_reason = dev->proto_down_reason;
10057 for_each_set_bit(b, &mask, 32) {
10058 if (value & (1 << b))
10059 proto_down_reason |= BIT(b);
10060 else
10061 proto_down_reason &= ~BIT(b);
10062 }
10063 }
10064 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10065 }
10066
10067 struct bpf_xdp_link {
10068 struct bpf_link link;
10069 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10070 int flags;
10071 };
10072
dev_xdp_mode(struct net_device * dev,u32 flags)10073 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10074 {
10075 if (flags & XDP_FLAGS_HW_MODE)
10076 return XDP_MODE_HW;
10077 if (flags & XDP_FLAGS_DRV_MODE)
10078 return XDP_MODE_DRV;
10079 if (flags & XDP_FLAGS_SKB_MODE)
10080 return XDP_MODE_SKB;
10081 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10082 }
10083
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10084 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10085 {
10086 switch (mode) {
10087 case XDP_MODE_SKB:
10088 return generic_xdp_install;
10089 case XDP_MODE_DRV:
10090 case XDP_MODE_HW:
10091 return dev->netdev_ops->ndo_bpf;
10092 default:
10093 return NULL;
10094 }
10095 }
10096
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10097 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10098 enum bpf_xdp_mode mode)
10099 {
10100 return dev->xdp_state[mode].link;
10101 }
10102
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10103 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10104 enum bpf_xdp_mode mode)
10105 {
10106 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10107
10108 if (link)
10109 return link->link.prog;
10110 return dev->xdp_state[mode].prog;
10111 }
10112
dev_xdp_prog_count(struct net_device * dev)10113 u8 dev_xdp_prog_count(struct net_device *dev)
10114 {
10115 u8 count = 0;
10116 int i;
10117
10118 for (i = 0; i < __MAX_XDP_MODE; i++)
10119 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10120 count++;
10121 return count;
10122 }
10123 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10124
dev_xdp_sb_prog_count(struct net_device * dev)10125 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10126 {
10127 u8 count = 0;
10128 int i;
10129
10130 for (i = 0; i < __MAX_XDP_MODE; i++)
10131 if (dev->xdp_state[i].prog &&
10132 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10133 count++;
10134 return count;
10135 }
10136
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10137 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10138 {
10139 if (!dev->netdev_ops->ndo_bpf)
10140 return -EOPNOTSUPP;
10141
10142 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10143 bpf->command == XDP_SETUP_PROG &&
10144 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10145 NL_SET_ERR_MSG(bpf->extack,
10146 "unable to propagate XDP to device using tcp-data-split");
10147 return -EBUSY;
10148 }
10149
10150 if (dev_get_min_mp_channel_count(dev)) {
10151 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10152 return -EBUSY;
10153 }
10154
10155 return dev->netdev_ops->ndo_bpf(dev, bpf);
10156 }
10157 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10158
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10159 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10160 {
10161 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10162
10163 return prog ? prog->aux->id : 0;
10164 }
10165
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10166 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10167 struct bpf_xdp_link *link)
10168 {
10169 dev->xdp_state[mode].link = link;
10170 dev->xdp_state[mode].prog = NULL;
10171 }
10172
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10173 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10174 struct bpf_prog *prog)
10175 {
10176 dev->xdp_state[mode].link = NULL;
10177 dev->xdp_state[mode].prog = prog;
10178 }
10179
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10180 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10181 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10182 u32 flags, struct bpf_prog *prog)
10183 {
10184 struct netdev_bpf xdp;
10185 int err;
10186
10187 netdev_ops_assert_locked(dev);
10188
10189 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10190 prog && !prog->aux->xdp_has_frags) {
10191 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10192 return -EBUSY;
10193 }
10194
10195 if (dev_get_min_mp_channel_count(dev)) {
10196 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10197 return -EBUSY;
10198 }
10199
10200 memset(&xdp, 0, sizeof(xdp));
10201 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10202 xdp.extack = extack;
10203 xdp.flags = flags;
10204 xdp.prog = prog;
10205
10206 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10207 * "moved" into driver), so they don't increment it on their own, but
10208 * they do decrement refcnt when program is detached or replaced.
10209 * Given net_device also owns link/prog, we need to bump refcnt here
10210 * to prevent drivers from underflowing it.
10211 */
10212 if (prog)
10213 bpf_prog_inc(prog);
10214 err = bpf_op(dev, &xdp);
10215 if (err) {
10216 if (prog)
10217 bpf_prog_put(prog);
10218 return err;
10219 }
10220
10221 if (mode != XDP_MODE_HW)
10222 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10223
10224 return 0;
10225 }
10226
dev_xdp_uninstall(struct net_device * dev)10227 static void dev_xdp_uninstall(struct net_device *dev)
10228 {
10229 struct bpf_xdp_link *link;
10230 struct bpf_prog *prog;
10231 enum bpf_xdp_mode mode;
10232 bpf_op_t bpf_op;
10233
10234 ASSERT_RTNL();
10235
10236 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10237 prog = dev_xdp_prog(dev, mode);
10238 if (!prog)
10239 continue;
10240
10241 bpf_op = dev_xdp_bpf_op(dev, mode);
10242 if (!bpf_op)
10243 continue;
10244
10245 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10246
10247 /* auto-detach link from net device */
10248 link = dev_xdp_link(dev, mode);
10249 if (link)
10250 link->dev = NULL;
10251 else
10252 bpf_prog_put(prog);
10253
10254 dev_xdp_set_link(dev, mode, NULL);
10255 }
10256 }
10257
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10258 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10259 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10260 struct bpf_prog *old_prog, u32 flags)
10261 {
10262 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10263 struct bpf_prog *cur_prog;
10264 struct net_device *upper;
10265 struct list_head *iter;
10266 enum bpf_xdp_mode mode;
10267 bpf_op_t bpf_op;
10268 int err;
10269
10270 ASSERT_RTNL();
10271
10272 /* either link or prog attachment, never both */
10273 if (link && (new_prog || old_prog))
10274 return -EINVAL;
10275 /* link supports only XDP mode flags */
10276 if (link && (flags & ~XDP_FLAGS_MODES)) {
10277 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10278 return -EINVAL;
10279 }
10280 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10281 if (num_modes > 1) {
10282 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10283 return -EINVAL;
10284 }
10285 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10286 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10287 NL_SET_ERR_MSG(extack,
10288 "More than one program loaded, unset mode is ambiguous");
10289 return -EINVAL;
10290 }
10291 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10292 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10293 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10294 return -EINVAL;
10295 }
10296
10297 mode = dev_xdp_mode(dev, flags);
10298 /* can't replace attached link */
10299 if (dev_xdp_link(dev, mode)) {
10300 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10301 return -EBUSY;
10302 }
10303
10304 /* don't allow if an upper device already has a program */
10305 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10306 if (dev_xdp_prog_count(upper) > 0) {
10307 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10308 return -EEXIST;
10309 }
10310 }
10311
10312 cur_prog = dev_xdp_prog(dev, mode);
10313 /* can't replace attached prog with link */
10314 if (link && cur_prog) {
10315 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10316 return -EBUSY;
10317 }
10318 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10319 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10320 return -EEXIST;
10321 }
10322
10323 /* put effective new program into new_prog */
10324 if (link)
10325 new_prog = link->link.prog;
10326
10327 if (new_prog) {
10328 bool offload = mode == XDP_MODE_HW;
10329 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10330 ? XDP_MODE_DRV : XDP_MODE_SKB;
10331
10332 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10333 NL_SET_ERR_MSG(extack, "XDP program already attached");
10334 return -EBUSY;
10335 }
10336 if (!offload && dev_xdp_prog(dev, other_mode)) {
10337 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10338 return -EEXIST;
10339 }
10340 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10341 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10342 return -EINVAL;
10343 }
10344 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10345 NL_SET_ERR_MSG(extack, "Program bound to different device");
10346 return -EINVAL;
10347 }
10348 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10349 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10350 return -EINVAL;
10351 }
10352 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10353 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10354 return -EINVAL;
10355 }
10356 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10357 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10358 return -EINVAL;
10359 }
10360 }
10361
10362 /* don't call drivers if the effective program didn't change */
10363 if (new_prog != cur_prog) {
10364 bpf_op = dev_xdp_bpf_op(dev, mode);
10365 if (!bpf_op) {
10366 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10367 return -EOPNOTSUPP;
10368 }
10369
10370 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10371 if (err)
10372 return err;
10373 }
10374
10375 if (link)
10376 dev_xdp_set_link(dev, mode, link);
10377 else
10378 dev_xdp_set_prog(dev, mode, new_prog);
10379 if (cur_prog)
10380 bpf_prog_put(cur_prog);
10381
10382 return 0;
10383 }
10384
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10385 static int dev_xdp_attach_link(struct net_device *dev,
10386 struct netlink_ext_ack *extack,
10387 struct bpf_xdp_link *link)
10388 {
10389 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10390 }
10391
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10392 static int dev_xdp_detach_link(struct net_device *dev,
10393 struct netlink_ext_ack *extack,
10394 struct bpf_xdp_link *link)
10395 {
10396 enum bpf_xdp_mode mode;
10397 bpf_op_t bpf_op;
10398
10399 ASSERT_RTNL();
10400
10401 mode = dev_xdp_mode(dev, link->flags);
10402 if (dev_xdp_link(dev, mode) != link)
10403 return -EINVAL;
10404
10405 bpf_op = dev_xdp_bpf_op(dev, mode);
10406 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10407 dev_xdp_set_link(dev, mode, NULL);
10408 return 0;
10409 }
10410
bpf_xdp_link_release(struct bpf_link * link)10411 static void bpf_xdp_link_release(struct bpf_link *link)
10412 {
10413 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10414
10415 rtnl_lock();
10416
10417 /* if racing with net_device's tear down, xdp_link->dev might be
10418 * already NULL, in which case link was already auto-detached
10419 */
10420 if (xdp_link->dev) {
10421 netdev_lock_ops(xdp_link->dev);
10422 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10423 netdev_unlock_ops(xdp_link->dev);
10424 xdp_link->dev = NULL;
10425 }
10426
10427 rtnl_unlock();
10428 }
10429
bpf_xdp_link_detach(struct bpf_link * link)10430 static int bpf_xdp_link_detach(struct bpf_link *link)
10431 {
10432 bpf_xdp_link_release(link);
10433 return 0;
10434 }
10435
bpf_xdp_link_dealloc(struct bpf_link * link)10436 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10437 {
10438 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10439
10440 kfree(xdp_link);
10441 }
10442
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10443 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10444 struct seq_file *seq)
10445 {
10446 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10447 u32 ifindex = 0;
10448
10449 rtnl_lock();
10450 if (xdp_link->dev)
10451 ifindex = xdp_link->dev->ifindex;
10452 rtnl_unlock();
10453
10454 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10455 }
10456
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10457 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10458 struct bpf_link_info *info)
10459 {
10460 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10461 u32 ifindex = 0;
10462
10463 rtnl_lock();
10464 if (xdp_link->dev)
10465 ifindex = xdp_link->dev->ifindex;
10466 rtnl_unlock();
10467
10468 info->xdp.ifindex = ifindex;
10469 return 0;
10470 }
10471
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10472 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10473 struct bpf_prog *old_prog)
10474 {
10475 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10476 enum bpf_xdp_mode mode;
10477 bpf_op_t bpf_op;
10478 int err = 0;
10479
10480 rtnl_lock();
10481
10482 /* link might have been auto-released already, so fail */
10483 if (!xdp_link->dev) {
10484 err = -ENOLINK;
10485 goto out_unlock;
10486 }
10487
10488 if (old_prog && link->prog != old_prog) {
10489 err = -EPERM;
10490 goto out_unlock;
10491 }
10492 old_prog = link->prog;
10493 if (old_prog->type != new_prog->type ||
10494 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10495 err = -EINVAL;
10496 goto out_unlock;
10497 }
10498
10499 if (old_prog == new_prog) {
10500 /* no-op, don't disturb drivers */
10501 bpf_prog_put(new_prog);
10502 goto out_unlock;
10503 }
10504
10505 netdev_lock_ops(xdp_link->dev);
10506 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10507 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10508 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10509 xdp_link->flags, new_prog);
10510 netdev_unlock_ops(xdp_link->dev);
10511 if (err)
10512 goto out_unlock;
10513
10514 old_prog = xchg(&link->prog, new_prog);
10515 bpf_prog_put(old_prog);
10516
10517 out_unlock:
10518 rtnl_unlock();
10519 return err;
10520 }
10521
10522 static const struct bpf_link_ops bpf_xdp_link_lops = {
10523 .release = bpf_xdp_link_release,
10524 .dealloc = bpf_xdp_link_dealloc,
10525 .detach = bpf_xdp_link_detach,
10526 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10527 .fill_link_info = bpf_xdp_link_fill_link_info,
10528 .update_prog = bpf_xdp_link_update,
10529 };
10530
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10531 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10532 {
10533 struct net *net = current->nsproxy->net_ns;
10534 struct bpf_link_primer link_primer;
10535 struct netlink_ext_ack extack = {};
10536 struct bpf_xdp_link *link;
10537 struct net_device *dev;
10538 int err, fd;
10539
10540 rtnl_lock();
10541 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10542 if (!dev) {
10543 rtnl_unlock();
10544 return -EINVAL;
10545 }
10546
10547 link = kzalloc(sizeof(*link), GFP_USER);
10548 if (!link) {
10549 err = -ENOMEM;
10550 goto unlock;
10551 }
10552
10553 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10554 attr->link_create.attach_type);
10555 link->dev = dev;
10556 link->flags = attr->link_create.flags;
10557
10558 err = bpf_link_prime(&link->link, &link_primer);
10559 if (err) {
10560 kfree(link);
10561 goto unlock;
10562 }
10563
10564 netdev_lock_ops(dev);
10565 err = dev_xdp_attach_link(dev, &extack, link);
10566 netdev_unlock_ops(dev);
10567 rtnl_unlock();
10568
10569 if (err) {
10570 link->dev = NULL;
10571 bpf_link_cleanup(&link_primer);
10572 trace_bpf_xdp_link_attach_failed(extack._msg);
10573 goto out_put_dev;
10574 }
10575
10576 fd = bpf_link_settle(&link_primer);
10577 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10578 dev_put(dev);
10579 return fd;
10580
10581 unlock:
10582 rtnl_unlock();
10583
10584 out_put_dev:
10585 dev_put(dev);
10586 return err;
10587 }
10588
10589 /**
10590 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10591 * @dev: device
10592 * @extack: netlink extended ack
10593 * @fd: new program fd or negative value to clear
10594 * @expected_fd: old program fd that userspace expects to replace or clear
10595 * @flags: xdp-related flags
10596 *
10597 * Set or clear a bpf program for a device
10598 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10599 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10600 int fd, int expected_fd, u32 flags)
10601 {
10602 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10603 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10604 int err;
10605
10606 ASSERT_RTNL();
10607
10608 if (fd >= 0) {
10609 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10610 mode != XDP_MODE_SKB);
10611 if (IS_ERR(new_prog))
10612 return PTR_ERR(new_prog);
10613 }
10614
10615 if (expected_fd >= 0) {
10616 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10617 mode != XDP_MODE_SKB);
10618 if (IS_ERR(old_prog)) {
10619 err = PTR_ERR(old_prog);
10620 old_prog = NULL;
10621 goto err_out;
10622 }
10623 }
10624
10625 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10626
10627 err_out:
10628 if (err && new_prog)
10629 bpf_prog_put(new_prog);
10630 if (old_prog)
10631 bpf_prog_put(old_prog);
10632 return err;
10633 }
10634
dev_get_min_mp_channel_count(const struct net_device * dev)10635 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10636 {
10637 int i;
10638
10639 netdev_ops_assert_locked(dev);
10640
10641 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10642 if (dev->_rx[i].mp_params.mp_priv)
10643 /* The channel count is the idx plus 1. */
10644 return i + 1;
10645
10646 return 0;
10647 }
10648
10649 /**
10650 * dev_index_reserve() - allocate an ifindex in a namespace
10651 * @net: the applicable net namespace
10652 * @ifindex: requested ifindex, pass %0 to get one allocated
10653 *
10654 * Allocate a ifindex for a new device. Caller must either use the ifindex
10655 * to store the device (via list_netdevice()) or call dev_index_release()
10656 * to give the index up.
10657 *
10658 * Return: a suitable unique value for a new device interface number or -errno.
10659 */
dev_index_reserve(struct net * net,u32 ifindex)10660 static int dev_index_reserve(struct net *net, u32 ifindex)
10661 {
10662 int err;
10663
10664 if (ifindex > INT_MAX) {
10665 DEBUG_NET_WARN_ON_ONCE(1);
10666 return -EINVAL;
10667 }
10668
10669 if (!ifindex)
10670 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10671 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10672 else
10673 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10674 if (err < 0)
10675 return err;
10676
10677 return ifindex;
10678 }
10679
dev_index_release(struct net * net,int ifindex)10680 static void dev_index_release(struct net *net, int ifindex)
10681 {
10682 /* Expect only unused indexes, unlist_netdevice() removes the used */
10683 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10684 }
10685
from_cleanup_net(void)10686 static bool from_cleanup_net(void)
10687 {
10688 #ifdef CONFIG_NET_NS
10689 return current == READ_ONCE(cleanup_net_task);
10690 #else
10691 return false;
10692 #endif
10693 }
10694
10695 /* Delayed registration/unregisteration */
10696 LIST_HEAD(net_todo_list);
10697 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10698 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10699
net_set_todo(struct net_device * dev)10700 static void net_set_todo(struct net_device *dev)
10701 {
10702 list_add_tail(&dev->todo_list, &net_todo_list);
10703 }
10704
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10705 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10706 struct net_device *upper, netdev_features_t features)
10707 {
10708 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10709 netdev_features_t feature;
10710 int feature_bit;
10711
10712 for_each_netdev_feature(upper_disables, feature_bit) {
10713 feature = __NETIF_F_BIT(feature_bit);
10714 if (!(upper->wanted_features & feature)
10715 && (features & feature)) {
10716 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10717 &feature, upper->name);
10718 features &= ~feature;
10719 }
10720 }
10721
10722 return features;
10723 }
10724
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10725 static void netdev_sync_lower_features(struct net_device *upper,
10726 struct net_device *lower, netdev_features_t features)
10727 {
10728 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10729 netdev_features_t feature;
10730 int feature_bit;
10731
10732 for_each_netdev_feature(upper_disables, feature_bit) {
10733 feature = __NETIF_F_BIT(feature_bit);
10734 if (!(features & feature) && (lower->features & feature)) {
10735 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10736 &feature, lower->name);
10737 netdev_lock_ops(lower);
10738 lower->wanted_features &= ~feature;
10739 __netdev_update_features(lower);
10740
10741 if (unlikely(lower->features & feature))
10742 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10743 &feature, lower->name);
10744 else
10745 netdev_features_change(lower);
10746 netdev_unlock_ops(lower);
10747 }
10748 }
10749 }
10750
netdev_has_ip_or_hw_csum(netdev_features_t features)10751 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10752 {
10753 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10754 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10755 bool hw_csum = features & NETIF_F_HW_CSUM;
10756
10757 return ip_csum || hw_csum;
10758 }
10759
netdev_fix_features(struct net_device * dev,netdev_features_t features)10760 static netdev_features_t netdev_fix_features(struct net_device *dev,
10761 netdev_features_t features)
10762 {
10763 /* Fix illegal checksum combinations */
10764 if ((features & NETIF_F_HW_CSUM) &&
10765 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10766 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10767 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10768 }
10769
10770 /* TSO requires that SG is present as well. */
10771 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10772 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10773 features &= ~NETIF_F_ALL_TSO;
10774 }
10775
10776 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10777 !(features & NETIF_F_IP_CSUM)) {
10778 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10779 features &= ~NETIF_F_TSO;
10780 features &= ~NETIF_F_TSO_ECN;
10781 }
10782
10783 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10784 !(features & NETIF_F_IPV6_CSUM)) {
10785 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10786 features &= ~NETIF_F_TSO6;
10787 }
10788
10789 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10790 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10791 features &= ~NETIF_F_TSO_MANGLEID;
10792
10793 /* TSO ECN requires that TSO is present as well. */
10794 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10795 features &= ~NETIF_F_TSO_ECN;
10796
10797 /* Software GSO depends on SG. */
10798 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10799 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10800 features &= ~NETIF_F_GSO;
10801 }
10802
10803 /* GSO partial features require GSO partial be set */
10804 if ((features & dev->gso_partial_features) &&
10805 !(features & NETIF_F_GSO_PARTIAL)) {
10806 netdev_dbg(dev,
10807 "Dropping partially supported GSO features since no GSO partial.\n");
10808 features &= ~dev->gso_partial_features;
10809 }
10810
10811 if (!(features & NETIF_F_RXCSUM)) {
10812 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10813 * successfully merged by hardware must also have the
10814 * checksum verified by hardware. If the user does not
10815 * want to enable RXCSUM, logically, we should disable GRO_HW.
10816 */
10817 if (features & NETIF_F_GRO_HW) {
10818 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10819 features &= ~NETIF_F_GRO_HW;
10820 }
10821 }
10822
10823 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10824 if (features & NETIF_F_RXFCS) {
10825 if (features & NETIF_F_LRO) {
10826 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10827 features &= ~NETIF_F_LRO;
10828 }
10829
10830 if (features & NETIF_F_GRO_HW) {
10831 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10832 features &= ~NETIF_F_GRO_HW;
10833 }
10834 }
10835
10836 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10837 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10838 features &= ~NETIF_F_LRO;
10839 }
10840
10841 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10842 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10843 features &= ~NETIF_F_HW_TLS_TX;
10844 }
10845
10846 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10847 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10848 features &= ~NETIF_F_HW_TLS_RX;
10849 }
10850
10851 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10852 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10853 features &= ~NETIF_F_GSO_UDP_L4;
10854 }
10855
10856 return features;
10857 }
10858
__netdev_update_features(struct net_device * dev)10859 int __netdev_update_features(struct net_device *dev)
10860 {
10861 struct net_device *upper, *lower;
10862 netdev_features_t features;
10863 struct list_head *iter;
10864 int err = -1;
10865
10866 ASSERT_RTNL();
10867 netdev_ops_assert_locked(dev);
10868
10869 features = netdev_get_wanted_features(dev);
10870
10871 if (dev->netdev_ops->ndo_fix_features)
10872 features = dev->netdev_ops->ndo_fix_features(dev, features);
10873
10874 /* driver might be less strict about feature dependencies */
10875 features = netdev_fix_features(dev, features);
10876
10877 /* some features can't be enabled if they're off on an upper device */
10878 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10879 features = netdev_sync_upper_features(dev, upper, features);
10880
10881 if (dev->features == features)
10882 goto sync_lower;
10883
10884 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10885 &dev->features, &features);
10886
10887 if (dev->netdev_ops->ndo_set_features)
10888 err = dev->netdev_ops->ndo_set_features(dev, features);
10889 else
10890 err = 0;
10891
10892 if (unlikely(err < 0)) {
10893 netdev_err(dev,
10894 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10895 err, &features, &dev->features);
10896 /* return non-0 since some features might have changed and
10897 * it's better to fire a spurious notification than miss it
10898 */
10899 return -1;
10900 }
10901
10902 sync_lower:
10903 /* some features must be disabled on lower devices when disabled
10904 * on an upper device (think: bonding master or bridge)
10905 */
10906 netdev_for_each_lower_dev(dev, lower, iter)
10907 netdev_sync_lower_features(dev, lower, features);
10908
10909 if (!err) {
10910 netdev_features_t diff = features ^ dev->features;
10911
10912 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10913 /* udp_tunnel_{get,drop}_rx_info both need
10914 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10915 * device, or they won't do anything.
10916 * Thus we need to update dev->features
10917 * *before* calling udp_tunnel_get_rx_info,
10918 * but *after* calling udp_tunnel_drop_rx_info.
10919 */
10920 udp_tunnel_nic_lock(dev);
10921 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10922 dev->features = features;
10923 udp_tunnel_get_rx_info(dev);
10924 } else {
10925 udp_tunnel_drop_rx_info(dev);
10926 }
10927 udp_tunnel_nic_unlock(dev);
10928 }
10929
10930 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10931 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10932 dev->features = features;
10933 err |= vlan_get_rx_ctag_filter_info(dev);
10934 } else {
10935 vlan_drop_rx_ctag_filter_info(dev);
10936 }
10937 }
10938
10939 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10940 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10941 dev->features = features;
10942 err |= vlan_get_rx_stag_filter_info(dev);
10943 } else {
10944 vlan_drop_rx_stag_filter_info(dev);
10945 }
10946 }
10947
10948 dev->features = features;
10949 }
10950
10951 return err < 0 ? 0 : 1;
10952 }
10953
10954 /**
10955 * netdev_update_features - recalculate device features
10956 * @dev: the device to check
10957 *
10958 * Recalculate dev->features set and send notifications if it
10959 * has changed. Should be called after driver or hardware dependent
10960 * conditions might have changed that influence the features.
10961 */
netdev_update_features(struct net_device * dev)10962 void netdev_update_features(struct net_device *dev)
10963 {
10964 if (__netdev_update_features(dev))
10965 netdev_features_change(dev);
10966 }
10967 EXPORT_SYMBOL(netdev_update_features);
10968
10969 /**
10970 * netdev_change_features - recalculate device features
10971 * @dev: the device to check
10972 *
10973 * Recalculate dev->features set and send notifications even
10974 * if they have not changed. Should be called instead of
10975 * netdev_update_features() if also dev->vlan_features might
10976 * have changed to allow the changes to be propagated to stacked
10977 * VLAN devices.
10978 */
netdev_change_features(struct net_device * dev)10979 void netdev_change_features(struct net_device *dev)
10980 {
10981 __netdev_update_features(dev);
10982 netdev_features_change(dev);
10983 }
10984 EXPORT_SYMBOL(netdev_change_features);
10985
10986 /**
10987 * netif_stacked_transfer_operstate - transfer operstate
10988 * @rootdev: the root or lower level device to transfer state from
10989 * @dev: the device to transfer operstate to
10990 *
10991 * Transfer operational state from root to device. This is normally
10992 * called when a stacking relationship exists between the root
10993 * device and the device(a leaf device).
10994 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10995 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10996 struct net_device *dev)
10997 {
10998 if (rootdev->operstate == IF_OPER_DORMANT)
10999 netif_dormant_on(dev);
11000 else
11001 netif_dormant_off(dev);
11002
11003 if (rootdev->operstate == IF_OPER_TESTING)
11004 netif_testing_on(dev);
11005 else
11006 netif_testing_off(dev);
11007
11008 if (netif_carrier_ok(rootdev))
11009 netif_carrier_on(dev);
11010 else
11011 netif_carrier_off(dev);
11012 }
11013 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11014
netif_alloc_rx_queues(struct net_device * dev)11015 static int netif_alloc_rx_queues(struct net_device *dev)
11016 {
11017 unsigned int i, count = dev->num_rx_queues;
11018 struct netdev_rx_queue *rx;
11019 size_t sz = count * sizeof(*rx);
11020 int err = 0;
11021
11022 BUG_ON(count < 1);
11023
11024 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11025 if (!rx)
11026 return -ENOMEM;
11027
11028 dev->_rx = rx;
11029
11030 for (i = 0; i < count; i++) {
11031 rx[i].dev = dev;
11032
11033 /* XDP RX-queue setup */
11034 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11035 if (err < 0)
11036 goto err_rxq_info;
11037 }
11038 return 0;
11039
11040 err_rxq_info:
11041 /* Rollback successful reg's and free other resources */
11042 while (i--)
11043 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11044 kvfree(dev->_rx);
11045 dev->_rx = NULL;
11046 return err;
11047 }
11048
netif_free_rx_queues(struct net_device * dev)11049 static void netif_free_rx_queues(struct net_device *dev)
11050 {
11051 unsigned int i, count = dev->num_rx_queues;
11052
11053 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11054 if (!dev->_rx)
11055 return;
11056
11057 for (i = 0; i < count; i++)
11058 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11059
11060 kvfree(dev->_rx);
11061 }
11062
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11063 static void netdev_init_one_queue(struct net_device *dev,
11064 struct netdev_queue *queue, void *_unused)
11065 {
11066 /* Initialize queue lock */
11067 spin_lock_init(&queue->_xmit_lock);
11068 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11069 queue->xmit_lock_owner = -1;
11070 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11071 queue->dev = dev;
11072 #ifdef CONFIG_BQL
11073 dql_init(&queue->dql, HZ);
11074 #endif
11075 }
11076
netif_free_tx_queues(struct net_device * dev)11077 static void netif_free_tx_queues(struct net_device *dev)
11078 {
11079 kvfree(dev->_tx);
11080 }
11081
netif_alloc_netdev_queues(struct net_device * dev)11082 static int netif_alloc_netdev_queues(struct net_device *dev)
11083 {
11084 unsigned int count = dev->num_tx_queues;
11085 struct netdev_queue *tx;
11086 size_t sz = count * sizeof(*tx);
11087
11088 if (count < 1 || count > 0xffff)
11089 return -EINVAL;
11090
11091 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11092 if (!tx)
11093 return -ENOMEM;
11094
11095 dev->_tx = tx;
11096
11097 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11098 spin_lock_init(&dev->tx_global_lock);
11099
11100 return 0;
11101 }
11102
netif_tx_stop_all_queues(struct net_device * dev)11103 void netif_tx_stop_all_queues(struct net_device *dev)
11104 {
11105 unsigned int i;
11106
11107 for (i = 0; i < dev->num_tx_queues; i++) {
11108 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11109
11110 netif_tx_stop_queue(txq);
11111 }
11112 }
11113 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11114
netdev_do_alloc_pcpu_stats(struct net_device * dev)11115 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11116 {
11117 void __percpu *v;
11118
11119 /* Drivers implementing ndo_get_peer_dev must support tstat
11120 * accounting, so that skb_do_redirect() can bump the dev's
11121 * RX stats upon network namespace switch.
11122 */
11123 if (dev->netdev_ops->ndo_get_peer_dev &&
11124 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11125 return -EOPNOTSUPP;
11126
11127 switch (dev->pcpu_stat_type) {
11128 case NETDEV_PCPU_STAT_NONE:
11129 return 0;
11130 case NETDEV_PCPU_STAT_LSTATS:
11131 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11132 break;
11133 case NETDEV_PCPU_STAT_TSTATS:
11134 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11135 break;
11136 case NETDEV_PCPU_STAT_DSTATS:
11137 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11138 break;
11139 default:
11140 return -EINVAL;
11141 }
11142
11143 return v ? 0 : -ENOMEM;
11144 }
11145
netdev_do_free_pcpu_stats(struct net_device * dev)11146 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11147 {
11148 switch (dev->pcpu_stat_type) {
11149 case NETDEV_PCPU_STAT_NONE:
11150 return;
11151 case NETDEV_PCPU_STAT_LSTATS:
11152 free_percpu(dev->lstats);
11153 break;
11154 case NETDEV_PCPU_STAT_TSTATS:
11155 free_percpu(dev->tstats);
11156 break;
11157 case NETDEV_PCPU_STAT_DSTATS:
11158 free_percpu(dev->dstats);
11159 break;
11160 }
11161 }
11162
netdev_free_phy_link_topology(struct net_device * dev)11163 static void netdev_free_phy_link_topology(struct net_device *dev)
11164 {
11165 struct phy_link_topology *topo = dev->link_topo;
11166
11167 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11168 xa_destroy(&topo->phys);
11169 kfree(topo);
11170 dev->link_topo = NULL;
11171 }
11172 }
11173
11174 /**
11175 * register_netdevice() - register a network device
11176 * @dev: device to register
11177 *
11178 * Take a prepared network device structure and make it externally accessible.
11179 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11180 * Callers must hold the rtnl lock - you may want register_netdev()
11181 * instead of this.
11182 */
register_netdevice(struct net_device * dev)11183 int register_netdevice(struct net_device *dev)
11184 {
11185 int ret;
11186 struct net *net = dev_net(dev);
11187
11188 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11189 NETDEV_FEATURE_COUNT);
11190 BUG_ON(dev_boot_phase);
11191 ASSERT_RTNL();
11192
11193 might_sleep();
11194
11195 /* When net_device's are persistent, this will be fatal. */
11196 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11197 BUG_ON(!net);
11198
11199 ret = ethtool_check_ops(dev->ethtool_ops);
11200 if (ret)
11201 return ret;
11202
11203 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11204 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11205 mutex_init(&dev->ethtool->rss_lock);
11206
11207 spin_lock_init(&dev->addr_list_lock);
11208 netdev_set_addr_lockdep_class(dev);
11209
11210 ret = dev_get_valid_name(net, dev, dev->name);
11211 if (ret < 0)
11212 goto out;
11213
11214 ret = -ENOMEM;
11215 dev->name_node = netdev_name_node_head_alloc(dev);
11216 if (!dev->name_node)
11217 goto out;
11218
11219 /* Init, if this function is available */
11220 if (dev->netdev_ops->ndo_init) {
11221 ret = dev->netdev_ops->ndo_init(dev);
11222 if (ret) {
11223 if (ret > 0)
11224 ret = -EIO;
11225 goto err_free_name;
11226 }
11227 }
11228
11229 if (((dev->hw_features | dev->features) &
11230 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11231 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11232 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11233 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11234 ret = -EINVAL;
11235 goto err_uninit;
11236 }
11237
11238 ret = netdev_do_alloc_pcpu_stats(dev);
11239 if (ret)
11240 goto err_uninit;
11241
11242 ret = dev_index_reserve(net, dev->ifindex);
11243 if (ret < 0)
11244 goto err_free_pcpu;
11245 dev->ifindex = ret;
11246
11247 /* Transfer changeable features to wanted_features and enable
11248 * software offloads (GSO and GRO).
11249 */
11250 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11251 dev->features |= NETIF_F_SOFT_FEATURES;
11252
11253 if (dev->udp_tunnel_nic_info) {
11254 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11255 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11256 }
11257
11258 dev->wanted_features = dev->features & dev->hw_features;
11259
11260 if (!(dev->flags & IFF_LOOPBACK))
11261 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11262
11263 /* If IPv4 TCP segmentation offload is supported we should also
11264 * allow the device to enable segmenting the frame with the option
11265 * of ignoring a static IP ID value. This doesn't enable the
11266 * feature itself but allows the user to enable it later.
11267 */
11268 if (dev->hw_features & NETIF_F_TSO)
11269 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11270 if (dev->vlan_features & NETIF_F_TSO)
11271 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11272 if (dev->mpls_features & NETIF_F_TSO)
11273 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11274 if (dev->hw_enc_features & NETIF_F_TSO)
11275 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11276
11277 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11278 */
11279 dev->vlan_features |= NETIF_F_HIGHDMA;
11280
11281 /* Make NETIF_F_SG inheritable to tunnel devices.
11282 */
11283 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11284
11285 /* Make NETIF_F_SG inheritable to MPLS.
11286 */
11287 dev->mpls_features |= NETIF_F_SG;
11288
11289 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11290 ret = notifier_to_errno(ret);
11291 if (ret)
11292 goto err_ifindex_release;
11293
11294 ret = netdev_register_kobject(dev);
11295
11296 netdev_lock(dev);
11297 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11298 netdev_unlock(dev);
11299
11300 if (ret)
11301 goto err_uninit_notify;
11302
11303 netdev_lock_ops(dev);
11304 __netdev_update_features(dev);
11305 netdev_unlock_ops(dev);
11306
11307 /*
11308 * Default initial state at registry is that the
11309 * device is present.
11310 */
11311
11312 set_bit(__LINK_STATE_PRESENT, &dev->state);
11313
11314 linkwatch_init_dev(dev);
11315
11316 dev_init_scheduler(dev);
11317
11318 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11319 list_netdevice(dev);
11320
11321 add_device_randomness(dev->dev_addr, dev->addr_len);
11322
11323 /* If the device has permanent device address, driver should
11324 * set dev_addr and also addr_assign_type should be set to
11325 * NET_ADDR_PERM (default value).
11326 */
11327 if (dev->addr_assign_type == NET_ADDR_PERM)
11328 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11329
11330 /* Notify protocols, that a new device appeared. */
11331 netdev_lock_ops(dev);
11332 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11333 netdev_unlock_ops(dev);
11334 ret = notifier_to_errno(ret);
11335 if (ret) {
11336 /* Expect explicit free_netdev() on failure */
11337 dev->needs_free_netdev = false;
11338 unregister_netdevice_queue(dev, NULL);
11339 goto out;
11340 }
11341 /*
11342 * Prevent userspace races by waiting until the network
11343 * device is fully setup before sending notifications.
11344 */
11345 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11346 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11347
11348 out:
11349 return ret;
11350
11351 err_uninit_notify:
11352 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11353 err_ifindex_release:
11354 dev_index_release(net, dev->ifindex);
11355 err_free_pcpu:
11356 netdev_do_free_pcpu_stats(dev);
11357 err_uninit:
11358 if (dev->netdev_ops->ndo_uninit)
11359 dev->netdev_ops->ndo_uninit(dev);
11360 if (dev->priv_destructor)
11361 dev->priv_destructor(dev);
11362 err_free_name:
11363 netdev_name_node_free(dev->name_node);
11364 goto out;
11365 }
11366 EXPORT_SYMBOL(register_netdevice);
11367
11368 /* Initialize the core of a dummy net device.
11369 * The setup steps dummy netdevs need which normal netdevs get by going
11370 * through register_netdevice().
11371 */
init_dummy_netdev(struct net_device * dev)11372 static void init_dummy_netdev(struct net_device *dev)
11373 {
11374 /* make sure we BUG if trying to hit standard
11375 * register/unregister code path
11376 */
11377 dev->reg_state = NETREG_DUMMY;
11378
11379 /* a dummy interface is started by default */
11380 set_bit(__LINK_STATE_PRESENT, &dev->state);
11381 set_bit(__LINK_STATE_START, &dev->state);
11382
11383 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11384 * because users of this 'device' dont need to change
11385 * its refcount.
11386 */
11387 }
11388
11389 /**
11390 * register_netdev - register a network device
11391 * @dev: device to register
11392 *
11393 * Take a completed network device structure and add it to the kernel
11394 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11395 * chain. 0 is returned on success. A negative errno code is returned
11396 * on a failure to set up the device, or if the name is a duplicate.
11397 *
11398 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11399 * and expands the device name if you passed a format string to
11400 * alloc_netdev.
11401 */
register_netdev(struct net_device * dev)11402 int register_netdev(struct net_device *dev)
11403 {
11404 struct net *net = dev_net(dev);
11405 int err;
11406
11407 if (rtnl_net_lock_killable(net))
11408 return -EINTR;
11409
11410 err = register_netdevice(dev);
11411
11412 rtnl_net_unlock(net);
11413
11414 return err;
11415 }
11416 EXPORT_SYMBOL(register_netdev);
11417
netdev_refcnt_read(const struct net_device * dev)11418 int netdev_refcnt_read(const struct net_device *dev)
11419 {
11420 #ifdef CONFIG_PCPU_DEV_REFCNT
11421 int i, refcnt = 0;
11422
11423 for_each_possible_cpu(i)
11424 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11425 return refcnt;
11426 #else
11427 return refcount_read(&dev->dev_refcnt);
11428 #endif
11429 }
11430 EXPORT_SYMBOL(netdev_refcnt_read);
11431
11432 int netdev_unregister_timeout_secs __read_mostly = 10;
11433
11434 #define WAIT_REFS_MIN_MSECS 1
11435 #define WAIT_REFS_MAX_MSECS 250
11436 /**
11437 * netdev_wait_allrefs_any - wait until all references are gone.
11438 * @list: list of net_devices to wait on
11439 *
11440 * This is called when unregistering network devices.
11441 *
11442 * Any protocol or device that holds a reference should register
11443 * for netdevice notification, and cleanup and put back the
11444 * reference if they receive an UNREGISTER event.
11445 * We can get stuck here if buggy protocols don't correctly
11446 * call dev_put.
11447 */
netdev_wait_allrefs_any(struct list_head * list)11448 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11449 {
11450 unsigned long rebroadcast_time, warning_time;
11451 struct net_device *dev;
11452 int wait = 0;
11453
11454 rebroadcast_time = warning_time = jiffies;
11455
11456 list_for_each_entry(dev, list, todo_list)
11457 if (netdev_refcnt_read(dev) == 1)
11458 return dev;
11459
11460 while (true) {
11461 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11462 rtnl_lock();
11463
11464 /* Rebroadcast unregister notification */
11465 list_for_each_entry(dev, list, todo_list)
11466 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11467
11468 __rtnl_unlock();
11469 rcu_barrier();
11470 rtnl_lock();
11471
11472 list_for_each_entry(dev, list, todo_list)
11473 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11474 &dev->state)) {
11475 /* We must not have linkwatch events
11476 * pending on unregister. If this
11477 * happens, we simply run the queue
11478 * unscheduled, resulting in a noop
11479 * for this device.
11480 */
11481 linkwatch_run_queue();
11482 break;
11483 }
11484
11485 __rtnl_unlock();
11486
11487 rebroadcast_time = jiffies;
11488 }
11489
11490 rcu_barrier();
11491
11492 if (!wait) {
11493 wait = WAIT_REFS_MIN_MSECS;
11494 } else {
11495 msleep(wait);
11496 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11497 }
11498
11499 list_for_each_entry(dev, list, todo_list)
11500 if (netdev_refcnt_read(dev) == 1)
11501 return dev;
11502
11503 if (time_after(jiffies, warning_time +
11504 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11505 list_for_each_entry(dev, list, todo_list) {
11506 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11507 dev->name, netdev_refcnt_read(dev));
11508 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11509 }
11510
11511 warning_time = jiffies;
11512 }
11513 }
11514 }
11515
11516 /* The sequence is:
11517 *
11518 * rtnl_lock();
11519 * ...
11520 * register_netdevice(x1);
11521 * register_netdevice(x2);
11522 * ...
11523 * unregister_netdevice(y1);
11524 * unregister_netdevice(y2);
11525 * ...
11526 * rtnl_unlock();
11527 * free_netdev(y1);
11528 * free_netdev(y2);
11529 *
11530 * We are invoked by rtnl_unlock().
11531 * This allows us to deal with problems:
11532 * 1) We can delete sysfs objects which invoke hotplug
11533 * without deadlocking with linkwatch via keventd.
11534 * 2) Since we run with the RTNL semaphore not held, we can sleep
11535 * safely in order to wait for the netdev refcnt to drop to zero.
11536 *
11537 * We must not return until all unregister events added during
11538 * the interval the lock was held have been completed.
11539 */
netdev_run_todo(void)11540 void netdev_run_todo(void)
11541 {
11542 struct net_device *dev, *tmp;
11543 struct list_head list;
11544 int cnt;
11545 #ifdef CONFIG_LOCKDEP
11546 struct list_head unlink_list;
11547
11548 list_replace_init(&net_unlink_list, &unlink_list);
11549
11550 while (!list_empty(&unlink_list)) {
11551 dev = list_first_entry(&unlink_list, struct net_device,
11552 unlink_list);
11553 list_del_init(&dev->unlink_list);
11554 dev->nested_level = dev->lower_level - 1;
11555 }
11556 #endif
11557
11558 /* Snapshot list, allow later requests */
11559 list_replace_init(&net_todo_list, &list);
11560
11561 __rtnl_unlock();
11562
11563 /* Wait for rcu callbacks to finish before next phase */
11564 if (!list_empty(&list))
11565 rcu_barrier();
11566
11567 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11568 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11569 netdev_WARN(dev, "run_todo but not unregistering\n");
11570 list_del(&dev->todo_list);
11571 continue;
11572 }
11573
11574 netdev_lock(dev);
11575 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11576 netdev_unlock(dev);
11577 linkwatch_sync_dev(dev);
11578 }
11579
11580 cnt = 0;
11581 while (!list_empty(&list)) {
11582 dev = netdev_wait_allrefs_any(&list);
11583 list_del(&dev->todo_list);
11584
11585 /* paranoia */
11586 BUG_ON(netdev_refcnt_read(dev) != 1);
11587 BUG_ON(!list_empty(&dev->ptype_all));
11588 BUG_ON(!list_empty(&dev->ptype_specific));
11589 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11590 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11591
11592 netdev_do_free_pcpu_stats(dev);
11593 if (dev->priv_destructor)
11594 dev->priv_destructor(dev);
11595 if (dev->needs_free_netdev)
11596 free_netdev(dev);
11597
11598 cnt++;
11599
11600 /* Free network device */
11601 kobject_put(&dev->dev.kobj);
11602 }
11603 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11604 wake_up(&netdev_unregistering_wq);
11605 }
11606
11607 /* Collate per-cpu network dstats statistics
11608 *
11609 * Read per-cpu network statistics from dev->dstats and populate the related
11610 * fields in @s.
11611 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11612 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11613 const struct pcpu_dstats __percpu *dstats)
11614 {
11615 int cpu;
11616
11617 for_each_possible_cpu(cpu) {
11618 u64 rx_packets, rx_bytes, rx_drops;
11619 u64 tx_packets, tx_bytes, tx_drops;
11620 const struct pcpu_dstats *stats;
11621 unsigned int start;
11622
11623 stats = per_cpu_ptr(dstats, cpu);
11624 do {
11625 start = u64_stats_fetch_begin(&stats->syncp);
11626 rx_packets = u64_stats_read(&stats->rx_packets);
11627 rx_bytes = u64_stats_read(&stats->rx_bytes);
11628 rx_drops = u64_stats_read(&stats->rx_drops);
11629 tx_packets = u64_stats_read(&stats->tx_packets);
11630 tx_bytes = u64_stats_read(&stats->tx_bytes);
11631 tx_drops = u64_stats_read(&stats->tx_drops);
11632 } while (u64_stats_fetch_retry(&stats->syncp, start));
11633
11634 s->rx_packets += rx_packets;
11635 s->rx_bytes += rx_bytes;
11636 s->rx_dropped += rx_drops;
11637 s->tx_packets += tx_packets;
11638 s->tx_bytes += tx_bytes;
11639 s->tx_dropped += tx_drops;
11640 }
11641 }
11642
11643 /* ndo_get_stats64 implementation for dtstats-based accounting.
11644 *
11645 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11646 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11647 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11648 static void dev_get_dstats64(const struct net_device *dev,
11649 struct rtnl_link_stats64 *s)
11650 {
11651 netdev_stats_to_stats64(s, &dev->stats);
11652 dev_fetch_dstats(s, dev->dstats);
11653 }
11654
11655 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11656 * all the same fields in the same order as net_device_stats, with only
11657 * the type differing, but rtnl_link_stats64 may have additional fields
11658 * at the end for newer counters.
11659 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11660 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11661 const struct net_device_stats *netdev_stats)
11662 {
11663 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11664 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11665 u64 *dst = (u64 *)stats64;
11666
11667 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11668 for (i = 0; i < n; i++)
11669 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11670 /* zero out counters that only exist in rtnl_link_stats64 */
11671 memset((char *)stats64 + n * sizeof(u64), 0,
11672 sizeof(*stats64) - n * sizeof(u64));
11673 }
11674 EXPORT_SYMBOL(netdev_stats_to_stats64);
11675
netdev_core_stats_alloc(struct net_device * dev)11676 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11677 struct net_device *dev)
11678 {
11679 struct net_device_core_stats __percpu *p;
11680
11681 p = alloc_percpu_gfp(struct net_device_core_stats,
11682 GFP_ATOMIC | __GFP_NOWARN);
11683
11684 if (p && cmpxchg(&dev->core_stats, NULL, p))
11685 free_percpu(p);
11686
11687 /* This READ_ONCE() pairs with the cmpxchg() above */
11688 return READ_ONCE(dev->core_stats);
11689 }
11690
netdev_core_stats_inc(struct net_device * dev,u32 offset)11691 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11692 {
11693 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11694 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11695 unsigned long __percpu *field;
11696
11697 if (unlikely(!p)) {
11698 p = netdev_core_stats_alloc(dev);
11699 if (!p)
11700 return;
11701 }
11702
11703 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11704 this_cpu_inc(*field);
11705 }
11706 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11707
11708 /**
11709 * dev_get_stats - get network device statistics
11710 * @dev: device to get statistics from
11711 * @storage: place to store stats
11712 *
11713 * Get network statistics from device. Return @storage.
11714 * The device driver may provide its own method by setting
11715 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11716 * otherwise the internal statistics structure is used.
11717 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11718 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11719 struct rtnl_link_stats64 *storage)
11720 {
11721 const struct net_device_ops *ops = dev->netdev_ops;
11722 const struct net_device_core_stats __percpu *p;
11723
11724 /*
11725 * IPv{4,6} and udp tunnels share common stat helpers and use
11726 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11727 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11728 */
11729 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11730 offsetof(struct pcpu_dstats, rx_bytes));
11731 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11732 offsetof(struct pcpu_dstats, rx_packets));
11733 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11734 offsetof(struct pcpu_dstats, tx_bytes));
11735 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11736 offsetof(struct pcpu_dstats, tx_packets));
11737
11738 if (ops->ndo_get_stats64) {
11739 memset(storage, 0, sizeof(*storage));
11740 ops->ndo_get_stats64(dev, storage);
11741 } else if (ops->ndo_get_stats) {
11742 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11743 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11744 dev_get_tstats64(dev, storage);
11745 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11746 dev_get_dstats64(dev, storage);
11747 } else {
11748 netdev_stats_to_stats64(storage, &dev->stats);
11749 }
11750
11751 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11752 p = READ_ONCE(dev->core_stats);
11753 if (p) {
11754 const struct net_device_core_stats *core_stats;
11755 int i;
11756
11757 for_each_possible_cpu(i) {
11758 core_stats = per_cpu_ptr(p, i);
11759 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11760 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11761 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11762 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11763 }
11764 }
11765 return storage;
11766 }
11767 EXPORT_SYMBOL(dev_get_stats);
11768
11769 /**
11770 * dev_fetch_sw_netstats - get per-cpu network device statistics
11771 * @s: place to store stats
11772 * @netstats: per-cpu network stats to read from
11773 *
11774 * Read per-cpu network statistics and populate the related fields in @s.
11775 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11776 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11777 const struct pcpu_sw_netstats __percpu *netstats)
11778 {
11779 int cpu;
11780
11781 for_each_possible_cpu(cpu) {
11782 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11783 const struct pcpu_sw_netstats *stats;
11784 unsigned int start;
11785
11786 stats = per_cpu_ptr(netstats, cpu);
11787 do {
11788 start = u64_stats_fetch_begin(&stats->syncp);
11789 rx_packets = u64_stats_read(&stats->rx_packets);
11790 rx_bytes = u64_stats_read(&stats->rx_bytes);
11791 tx_packets = u64_stats_read(&stats->tx_packets);
11792 tx_bytes = u64_stats_read(&stats->tx_bytes);
11793 } while (u64_stats_fetch_retry(&stats->syncp, start));
11794
11795 s->rx_packets += rx_packets;
11796 s->rx_bytes += rx_bytes;
11797 s->tx_packets += tx_packets;
11798 s->tx_bytes += tx_bytes;
11799 }
11800 }
11801 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11802
11803 /**
11804 * dev_get_tstats64 - ndo_get_stats64 implementation
11805 * @dev: device to get statistics from
11806 * @s: place to store stats
11807 *
11808 * Populate @s from dev->stats and dev->tstats. Can be used as
11809 * ndo_get_stats64() callback.
11810 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11811 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11812 {
11813 netdev_stats_to_stats64(s, &dev->stats);
11814 dev_fetch_sw_netstats(s, dev->tstats);
11815 }
11816 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11817
dev_ingress_queue_create(struct net_device * dev)11818 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11819 {
11820 struct netdev_queue *queue = dev_ingress_queue(dev);
11821
11822 #ifdef CONFIG_NET_CLS_ACT
11823 if (queue)
11824 return queue;
11825 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11826 if (!queue)
11827 return NULL;
11828 netdev_init_one_queue(dev, queue, NULL);
11829 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11830 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11831 rcu_assign_pointer(dev->ingress_queue, queue);
11832 #endif
11833 return queue;
11834 }
11835
11836 static const struct ethtool_ops default_ethtool_ops;
11837
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11838 void netdev_set_default_ethtool_ops(struct net_device *dev,
11839 const struct ethtool_ops *ops)
11840 {
11841 if (dev->ethtool_ops == &default_ethtool_ops)
11842 dev->ethtool_ops = ops;
11843 }
11844 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11845
11846 /**
11847 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11848 * @dev: netdev to enable the IRQ coalescing on
11849 *
11850 * Sets a conservative default for SW IRQ coalescing. Users can use
11851 * sysfs attributes to override the default values.
11852 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11853 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11854 {
11855 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11856
11857 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11858 netdev_set_gro_flush_timeout(dev, 20000);
11859 netdev_set_defer_hard_irqs(dev, 1);
11860 }
11861 }
11862 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11863
11864 /**
11865 * alloc_netdev_mqs - allocate network device
11866 * @sizeof_priv: size of private data to allocate space for
11867 * @name: device name format string
11868 * @name_assign_type: origin of device name
11869 * @setup: callback to initialize device
11870 * @txqs: the number of TX subqueues to allocate
11871 * @rxqs: the number of RX subqueues to allocate
11872 *
11873 * Allocates a struct net_device with private data area for driver use
11874 * and performs basic initialization. Also allocates subqueue structs
11875 * for each queue on the device.
11876 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11877 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11878 unsigned char name_assign_type,
11879 void (*setup)(struct net_device *),
11880 unsigned int txqs, unsigned int rxqs)
11881 {
11882 struct net_device *dev;
11883 size_t napi_config_sz;
11884 unsigned int maxqs;
11885
11886 BUG_ON(strlen(name) >= sizeof(dev->name));
11887
11888 if (txqs < 1) {
11889 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11890 return NULL;
11891 }
11892
11893 if (rxqs < 1) {
11894 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11895 return NULL;
11896 }
11897
11898 maxqs = max(txqs, rxqs);
11899
11900 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11901 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11902 if (!dev)
11903 return NULL;
11904
11905 dev->priv_len = sizeof_priv;
11906
11907 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11908 #ifdef CONFIG_PCPU_DEV_REFCNT
11909 dev->pcpu_refcnt = alloc_percpu(int);
11910 if (!dev->pcpu_refcnt)
11911 goto free_dev;
11912 __dev_hold(dev);
11913 #else
11914 refcount_set(&dev->dev_refcnt, 1);
11915 #endif
11916
11917 if (dev_addr_init(dev))
11918 goto free_pcpu;
11919
11920 dev_mc_init(dev);
11921 dev_uc_init(dev);
11922
11923 dev_net_set(dev, &init_net);
11924
11925 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11926 dev->xdp_zc_max_segs = 1;
11927 dev->gso_max_segs = GSO_MAX_SEGS;
11928 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11929 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11930 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11931 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11932 dev->tso_max_segs = TSO_MAX_SEGS;
11933 dev->upper_level = 1;
11934 dev->lower_level = 1;
11935 #ifdef CONFIG_LOCKDEP
11936 dev->nested_level = 0;
11937 INIT_LIST_HEAD(&dev->unlink_list);
11938 #endif
11939
11940 INIT_LIST_HEAD(&dev->napi_list);
11941 INIT_LIST_HEAD(&dev->unreg_list);
11942 INIT_LIST_HEAD(&dev->close_list);
11943 INIT_LIST_HEAD(&dev->link_watch_list);
11944 INIT_LIST_HEAD(&dev->adj_list.upper);
11945 INIT_LIST_HEAD(&dev->adj_list.lower);
11946 INIT_LIST_HEAD(&dev->ptype_all);
11947 INIT_LIST_HEAD(&dev->ptype_specific);
11948 INIT_LIST_HEAD(&dev->net_notifier_list);
11949 #ifdef CONFIG_NET_SCHED
11950 hash_init(dev->qdisc_hash);
11951 #endif
11952
11953 mutex_init(&dev->lock);
11954
11955 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11956 setup(dev);
11957
11958 if (!dev->tx_queue_len) {
11959 dev->priv_flags |= IFF_NO_QUEUE;
11960 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11961 }
11962
11963 dev->num_tx_queues = txqs;
11964 dev->real_num_tx_queues = txqs;
11965 if (netif_alloc_netdev_queues(dev))
11966 goto free_all;
11967
11968 dev->num_rx_queues = rxqs;
11969 dev->real_num_rx_queues = rxqs;
11970 if (netif_alloc_rx_queues(dev))
11971 goto free_all;
11972 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11973 if (!dev->ethtool)
11974 goto free_all;
11975
11976 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11977 if (!dev->cfg)
11978 goto free_all;
11979 dev->cfg_pending = dev->cfg;
11980
11981 dev->num_napi_configs = maxqs;
11982 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11983 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11984 if (!dev->napi_config)
11985 goto free_all;
11986
11987 strscpy(dev->name, name);
11988 dev->name_assign_type = name_assign_type;
11989 dev->group = INIT_NETDEV_GROUP;
11990 if (!dev->ethtool_ops)
11991 dev->ethtool_ops = &default_ethtool_ops;
11992
11993 nf_hook_netdev_init(dev);
11994
11995 return dev;
11996
11997 free_all:
11998 free_netdev(dev);
11999 return NULL;
12000
12001 free_pcpu:
12002 #ifdef CONFIG_PCPU_DEV_REFCNT
12003 free_percpu(dev->pcpu_refcnt);
12004 free_dev:
12005 #endif
12006 kvfree(dev);
12007 return NULL;
12008 }
12009 EXPORT_SYMBOL(alloc_netdev_mqs);
12010
netdev_napi_exit(struct net_device * dev)12011 static void netdev_napi_exit(struct net_device *dev)
12012 {
12013 if (!list_empty(&dev->napi_list)) {
12014 struct napi_struct *p, *n;
12015
12016 netdev_lock(dev);
12017 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12018 __netif_napi_del_locked(p);
12019 netdev_unlock(dev);
12020
12021 synchronize_net();
12022 }
12023
12024 kvfree(dev->napi_config);
12025 }
12026
12027 /**
12028 * free_netdev - free network device
12029 * @dev: device
12030 *
12031 * This function does the last stage of destroying an allocated device
12032 * interface. The reference to the device object is released. If this
12033 * is the last reference then it will be freed.Must be called in process
12034 * context.
12035 */
free_netdev(struct net_device * dev)12036 void free_netdev(struct net_device *dev)
12037 {
12038 might_sleep();
12039
12040 /* When called immediately after register_netdevice() failed the unwind
12041 * handling may still be dismantling the device. Handle that case by
12042 * deferring the free.
12043 */
12044 if (dev->reg_state == NETREG_UNREGISTERING) {
12045 ASSERT_RTNL();
12046 dev->needs_free_netdev = true;
12047 return;
12048 }
12049
12050 WARN_ON(dev->cfg != dev->cfg_pending);
12051 kfree(dev->cfg);
12052 kfree(dev->ethtool);
12053 netif_free_tx_queues(dev);
12054 netif_free_rx_queues(dev);
12055
12056 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12057
12058 /* Flush device addresses */
12059 dev_addr_flush(dev);
12060
12061 netdev_napi_exit(dev);
12062
12063 netif_del_cpu_rmap(dev);
12064
12065 ref_tracker_dir_exit(&dev->refcnt_tracker);
12066 #ifdef CONFIG_PCPU_DEV_REFCNT
12067 free_percpu(dev->pcpu_refcnt);
12068 dev->pcpu_refcnt = NULL;
12069 #endif
12070 free_percpu(dev->core_stats);
12071 dev->core_stats = NULL;
12072 free_percpu(dev->xdp_bulkq);
12073 dev->xdp_bulkq = NULL;
12074
12075 netdev_free_phy_link_topology(dev);
12076
12077 mutex_destroy(&dev->lock);
12078
12079 /* Compatibility with error handling in drivers */
12080 if (dev->reg_state == NETREG_UNINITIALIZED ||
12081 dev->reg_state == NETREG_DUMMY) {
12082 kvfree(dev);
12083 return;
12084 }
12085
12086 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12087 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12088
12089 /* will free via device release */
12090 put_device(&dev->dev);
12091 }
12092 EXPORT_SYMBOL(free_netdev);
12093
12094 /**
12095 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12096 * @sizeof_priv: size of private data to allocate space for
12097 *
12098 * Return: the allocated net_device on success, NULL otherwise
12099 */
alloc_netdev_dummy(int sizeof_priv)12100 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12101 {
12102 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12103 init_dummy_netdev);
12104 }
12105 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12106
12107 /**
12108 * synchronize_net - Synchronize with packet receive processing
12109 *
12110 * Wait for packets currently being received to be done.
12111 * Does not block later packets from starting.
12112 */
synchronize_net(void)12113 void synchronize_net(void)
12114 {
12115 might_sleep();
12116 if (from_cleanup_net() || rtnl_is_locked())
12117 synchronize_rcu_expedited();
12118 else
12119 synchronize_rcu();
12120 }
12121 EXPORT_SYMBOL(synchronize_net);
12122
netdev_rss_contexts_free(struct net_device * dev)12123 static void netdev_rss_contexts_free(struct net_device *dev)
12124 {
12125 struct ethtool_rxfh_context *ctx;
12126 unsigned long context;
12127
12128 mutex_lock(&dev->ethtool->rss_lock);
12129 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12130 xa_erase(&dev->ethtool->rss_ctx, context);
12131 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12132 kfree(ctx);
12133 }
12134 xa_destroy(&dev->ethtool->rss_ctx);
12135 mutex_unlock(&dev->ethtool->rss_lock);
12136 }
12137
12138 /**
12139 * unregister_netdevice_queue - remove device from the kernel
12140 * @dev: device
12141 * @head: list
12142 *
12143 * This function shuts down a device interface and removes it
12144 * from the kernel tables.
12145 * If head not NULL, device is queued to be unregistered later.
12146 *
12147 * Callers must hold the rtnl semaphore. You may want
12148 * unregister_netdev() instead of this.
12149 */
12150
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12151 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12152 {
12153 ASSERT_RTNL();
12154
12155 if (head) {
12156 list_move_tail(&dev->unreg_list, head);
12157 } else {
12158 LIST_HEAD(single);
12159
12160 list_add(&dev->unreg_list, &single);
12161 unregister_netdevice_many(&single);
12162 }
12163 }
12164 EXPORT_SYMBOL(unregister_netdevice_queue);
12165
dev_memory_provider_uninstall(struct net_device * dev)12166 static void dev_memory_provider_uninstall(struct net_device *dev)
12167 {
12168 unsigned int i;
12169
12170 for (i = 0; i < dev->real_num_rx_queues; i++) {
12171 struct netdev_rx_queue *rxq = &dev->_rx[i];
12172 struct pp_memory_provider_params *p = &rxq->mp_params;
12173
12174 if (p->mp_ops && p->mp_ops->uninstall)
12175 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12176 }
12177 }
12178
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12179 void unregister_netdevice_many_notify(struct list_head *head,
12180 u32 portid, const struct nlmsghdr *nlh)
12181 {
12182 struct net_device *dev, *tmp;
12183 LIST_HEAD(close_head);
12184 int cnt = 0;
12185
12186 BUG_ON(dev_boot_phase);
12187 ASSERT_RTNL();
12188
12189 if (list_empty(head))
12190 return;
12191
12192 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12193 /* Some devices call without registering
12194 * for initialization unwind. Remove those
12195 * devices and proceed with the remaining.
12196 */
12197 if (dev->reg_state == NETREG_UNINITIALIZED) {
12198 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12199 dev->name, dev);
12200
12201 WARN_ON(1);
12202 list_del(&dev->unreg_list);
12203 continue;
12204 }
12205 dev->dismantle = true;
12206 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12207 }
12208
12209 /* If device is running, close it first. Start with ops locked... */
12210 list_for_each_entry(dev, head, unreg_list) {
12211 if (netdev_need_ops_lock(dev)) {
12212 list_add_tail(&dev->close_list, &close_head);
12213 netdev_lock(dev);
12214 }
12215 }
12216 netif_close_many(&close_head, true);
12217 /* ... now unlock them and go over the rest. */
12218 list_for_each_entry(dev, head, unreg_list) {
12219 if (netdev_need_ops_lock(dev))
12220 netdev_unlock(dev);
12221 else
12222 list_add_tail(&dev->close_list, &close_head);
12223 }
12224 netif_close_many(&close_head, true);
12225
12226 list_for_each_entry(dev, head, unreg_list) {
12227 /* And unlink it from device chain. */
12228 unlist_netdevice(dev);
12229 netdev_lock(dev);
12230 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12231 netdev_unlock(dev);
12232 }
12233 flush_all_backlogs();
12234
12235 synchronize_net();
12236
12237 list_for_each_entry(dev, head, unreg_list) {
12238 struct sk_buff *skb = NULL;
12239
12240 /* Shutdown queueing discipline. */
12241 netdev_lock_ops(dev);
12242 dev_shutdown(dev);
12243 dev_tcx_uninstall(dev);
12244 dev_xdp_uninstall(dev);
12245 dev_memory_provider_uninstall(dev);
12246 netdev_unlock_ops(dev);
12247 bpf_dev_bound_netdev_unregister(dev);
12248
12249 netdev_offload_xstats_disable_all(dev);
12250
12251 /* Notify protocols, that we are about to destroy
12252 * this device. They should clean all the things.
12253 */
12254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12255
12256 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12257 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12258 GFP_KERNEL, NULL, 0,
12259 portid, nlh);
12260
12261 /*
12262 * Flush the unicast and multicast chains
12263 */
12264 dev_uc_flush(dev);
12265 dev_mc_flush(dev);
12266
12267 netdev_name_node_alt_flush(dev);
12268 netdev_name_node_free(dev->name_node);
12269
12270 netdev_rss_contexts_free(dev);
12271
12272 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12273
12274 if (dev->netdev_ops->ndo_uninit)
12275 dev->netdev_ops->ndo_uninit(dev);
12276
12277 mutex_destroy(&dev->ethtool->rss_lock);
12278
12279 net_shaper_flush_netdev(dev);
12280
12281 if (skb)
12282 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12283
12284 /* Notifier chain MUST detach us all upper devices. */
12285 WARN_ON(netdev_has_any_upper_dev(dev));
12286 WARN_ON(netdev_has_any_lower_dev(dev));
12287
12288 /* Remove entries from kobject tree */
12289 netdev_unregister_kobject(dev);
12290 #ifdef CONFIG_XPS
12291 /* Remove XPS queueing entries */
12292 netif_reset_xps_queues_gt(dev, 0);
12293 #endif
12294 }
12295
12296 synchronize_net();
12297
12298 list_for_each_entry(dev, head, unreg_list) {
12299 netdev_put(dev, &dev->dev_registered_tracker);
12300 net_set_todo(dev);
12301 cnt++;
12302 }
12303 atomic_add(cnt, &dev_unreg_count);
12304
12305 list_del(head);
12306 }
12307
12308 /**
12309 * unregister_netdevice_many - unregister many devices
12310 * @head: list of devices
12311 *
12312 * Note: As most callers use a stack allocated list_head,
12313 * we force a list_del() to make sure stack won't be corrupted later.
12314 */
unregister_netdevice_many(struct list_head * head)12315 void unregister_netdevice_many(struct list_head *head)
12316 {
12317 unregister_netdevice_many_notify(head, 0, NULL);
12318 }
12319 EXPORT_SYMBOL(unregister_netdevice_many);
12320
12321 /**
12322 * unregister_netdev - remove device from the kernel
12323 * @dev: device
12324 *
12325 * This function shuts down a device interface and removes it
12326 * from the kernel tables.
12327 *
12328 * This is just a wrapper for unregister_netdevice that takes
12329 * the rtnl semaphore. In general you want to use this and not
12330 * unregister_netdevice.
12331 */
unregister_netdev(struct net_device * dev)12332 void unregister_netdev(struct net_device *dev)
12333 {
12334 rtnl_net_dev_lock(dev);
12335 unregister_netdevice(dev);
12336 rtnl_net_dev_unlock(dev);
12337 }
12338 EXPORT_SYMBOL(unregister_netdev);
12339
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12340 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12341 const char *pat, int new_ifindex,
12342 struct netlink_ext_ack *extack)
12343 {
12344 struct netdev_name_node *name_node;
12345 struct net *net_old = dev_net(dev);
12346 char new_name[IFNAMSIZ] = {};
12347 int err, new_nsid;
12348
12349 ASSERT_RTNL();
12350
12351 /* Don't allow namespace local devices to be moved. */
12352 err = -EINVAL;
12353 if (dev->netns_immutable) {
12354 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12355 goto out;
12356 }
12357
12358 /* Ensure the device has been registered */
12359 if (dev->reg_state != NETREG_REGISTERED) {
12360 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12361 goto out;
12362 }
12363
12364 /* Get out if there is nothing todo */
12365 err = 0;
12366 if (net_eq(net_old, net))
12367 goto out;
12368
12369 /* Pick the destination device name, and ensure
12370 * we can use it in the destination network namespace.
12371 */
12372 err = -EEXIST;
12373 if (netdev_name_in_use(net, dev->name)) {
12374 /* We get here if we can't use the current device name */
12375 if (!pat) {
12376 NL_SET_ERR_MSG(extack,
12377 "An interface with the same name exists in the target netns");
12378 goto out;
12379 }
12380 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12381 if (err < 0) {
12382 NL_SET_ERR_MSG_FMT(extack,
12383 "Unable to use '%s' for the new interface name in the target netns",
12384 pat);
12385 goto out;
12386 }
12387 }
12388 /* Check that none of the altnames conflicts. */
12389 err = -EEXIST;
12390 netdev_for_each_altname(dev, name_node) {
12391 if (netdev_name_in_use(net, name_node->name)) {
12392 NL_SET_ERR_MSG_FMT(extack,
12393 "An interface with the altname %s exists in the target netns",
12394 name_node->name);
12395 goto out;
12396 }
12397 }
12398
12399 /* Check that new_ifindex isn't used yet. */
12400 if (new_ifindex) {
12401 err = dev_index_reserve(net, new_ifindex);
12402 if (err < 0) {
12403 NL_SET_ERR_MSG_FMT(extack,
12404 "The ifindex %d is not available in the target netns",
12405 new_ifindex);
12406 goto out;
12407 }
12408 } else {
12409 /* If there is an ifindex conflict assign a new one */
12410 err = dev_index_reserve(net, dev->ifindex);
12411 if (err == -EBUSY)
12412 err = dev_index_reserve(net, 0);
12413 if (err < 0) {
12414 NL_SET_ERR_MSG(extack,
12415 "Unable to allocate a new ifindex in the target netns");
12416 goto out;
12417 }
12418 new_ifindex = err;
12419 }
12420
12421 /*
12422 * And now a mini version of register_netdevice unregister_netdevice.
12423 */
12424
12425 netdev_lock_ops(dev);
12426 /* If device is running close it first. */
12427 netif_close(dev);
12428 /* And unlink it from device chain */
12429 unlist_netdevice(dev);
12430
12431 if (!netdev_need_ops_lock(dev))
12432 netdev_lock(dev);
12433 dev->moving_ns = true;
12434 netdev_unlock(dev);
12435
12436 synchronize_net();
12437
12438 /* Shutdown queueing discipline. */
12439 netdev_lock_ops(dev);
12440 dev_shutdown(dev);
12441 netdev_unlock_ops(dev);
12442
12443 /* Notify protocols, that we are about to destroy
12444 * this device. They should clean all the things.
12445 *
12446 * Note that dev->reg_state stays at NETREG_REGISTERED.
12447 * This is wanted because this way 8021q and macvlan know
12448 * the device is just moving and can keep their slaves up.
12449 */
12450 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12451 rcu_barrier();
12452
12453 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12454
12455 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12456 new_ifindex);
12457
12458 /*
12459 * Flush the unicast and multicast chains
12460 */
12461 dev_uc_flush(dev);
12462 dev_mc_flush(dev);
12463
12464 /* Send a netdev-removed uevent to the old namespace */
12465 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12466 netdev_adjacent_del_links(dev);
12467
12468 /* Move per-net netdevice notifiers that are following the netdevice */
12469 move_netdevice_notifiers_dev_net(dev, net);
12470
12471 /* Actually switch the network namespace */
12472 netdev_lock(dev);
12473 dev_net_set(dev, net);
12474 netdev_unlock(dev);
12475 dev->ifindex = new_ifindex;
12476
12477 if (new_name[0]) {
12478 /* Rename the netdev to prepared name */
12479 write_seqlock_bh(&netdev_rename_lock);
12480 strscpy(dev->name, new_name, IFNAMSIZ);
12481 write_sequnlock_bh(&netdev_rename_lock);
12482 }
12483
12484 /* Fixup kobjects */
12485 dev_set_uevent_suppress(&dev->dev, 1);
12486 err = device_rename(&dev->dev, dev->name);
12487 dev_set_uevent_suppress(&dev->dev, 0);
12488 WARN_ON(err);
12489
12490 /* Send a netdev-add uevent to the new namespace */
12491 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12492 netdev_adjacent_add_links(dev);
12493
12494 /* Adapt owner in case owning user namespace of target network
12495 * namespace is different from the original one.
12496 */
12497 err = netdev_change_owner(dev, net_old, net);
12498 WARN_ON(err);
12499
12500 netdev_lock(dev);
12501 dev->moving_ns = false;
12502 if (!netdev_need_ops_lock(dev))
12503 netdev_unlock(dev);
12504
12505 /* Add the device back in the hashes */
12506 list_netdevice(dev);
12507 /* Notify protocols, that a new device appeared. */
12508 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12509 netdev_unlock_ops(dev);
12510
12511 /*
12512 * Prevent userspace races by waiting until the network
12513 * device is fully setup before sending notifications.
12514 */
12515 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12516
12517 synchronize_net();
12518 err = 0;
12519 out:
12520 return err;
12521 }
12522
dev_cpu_dead(unsigned int oldcpu)12523 static int dev_cpu_dead(unsigned int oldcpu)
12524 {
12525 struct sk_buff **list_skb;
12526 struct sk_buff *skb;
12527 unsigned int cpu;
12528 struct softnet_data *sd, *oldsd, *remsd = NULL;
12529
12530 local_irq_disable();
12531 cpu = smp_processor_id();
12532 sd = &per_cpu(softnet_data, cpu);
12533 oldsd = &per_cpu(softnet_data, oldcpu);
12534
12535 /* Find end of our completion_queue. */
12536 list_skb = &sd->completion_queue;
12537 while (*list_skb)
12538 list_skb = &(*list_skb)->next;
12539 /* Append completion queue from offline CPU. */
12540 *list_skb = oldsd->completion_queue;
12541 oldsd->completion_queue = NULL;
12542
12543 /* Append output queue from offline CPU. */
12544 if (oldsd->output_queue) {
12545 *sd->output_queue_tailp = oldsd->output_queue;
12546 sd->output_queue_tailp = oldsd->output_queue_tailp;
12547 oldsd->output_queue = NULL;
12548 oldsd->output_queue_tailp = &oldsd->output_queue;
12549 }
12550 /* Append NAPI poll list from offline CPU, with one exception :
12551 * process_backlog() must be called by cpu owning percpu backlog.
12552 * We properly handle process_queue & input_pkt_queue later.
12553 */
12554 while (!list_empty(&oldsd->poll_list)) {
12555 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12556 struct napi_struct,
12557 poll_list);
12558
12559 list_del_init(&napi->poll_list);
12560 if (napi->poll == process_backlog)
12561 napi->state &= NAPIF_STATE_THREADED;
12562 else
12563 ____napi_schedule(sd, napi);
12564 }
12565
12566 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12567 local_irq_enable();
12568
12569 if (!use_backlog_threads()) {
12570 #ifdef CONFIG_RPS
12571 remsd = oldsd->rps_ipi_list;
12572 oldsd->rps_ipi_list = NULL;
12573 #endif
12574 /* send out pending IPI's on offline CPU */
12575 net_rps_send_ipi(remsd);
12576 }
12577
12578 /* Process offline CPU's input_pkt_queue */
12579 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12580 netif_rx(skb);
12581 rps_input_queue_head_incr(oldsd);
12582 }
12583 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12584 netif_rx(skb);
12585 rps_input_queue_head_incr(oldsd);
12586 }
12587
12588 return 0;
12589 }
12590
12591 /**
12592 * netdev_increment_features - increment feature set by one
12593 * @all: current feature set
12594 * @one: new feature set
12595 * @mask: mask feature set
12596 *
12597 * Computes a new feature set after adding a device with feature set
12598 * @one to the master device with current feature set @all. Will not
12599 * enable anything that is off in @mask. Returns the new feature set.
12600 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12601 netdev_features_t netdev_increment_features(netdev_features_t all,
12602 netdev_features_t one, netdev_features_t mask)
12603 {
12604 if (mask & NETIF_F_HW_CSUM)
12605 mask |= NETIF_F_CSUM_MASK;
12606 mask |= NETIF_F_VLAN_CHALLENGED;
12607
12608 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12609 all &= one | ~NETIF_F_ALL_FOR_ALL;
12610
12611 /* If one device supports hw checksumming, set for all. */
12612 if (all & NETIF_F_HW_CSUM)
12613 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12614
12615 return all;
12616 }
12617 EXPORT_SYMBOL(netdev_increment_features);
12618
netdev_create_hash(void)12619 static struct hlist_head * __net_init netdev_create_hash(void)
12620 {
12621 int i;
12622 struct hlist_head *hash;
12623
12624 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12625 if (hash != NULL)
12626 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12627 INIT_HLIST_HEAD(&hash[i]);
12628
12629 return hash;
12630 }
12631
12632 /* Initialize per network namespace state */
netdev_init(struct net * net)12633 static int __net_init netdev_init(struct net *net)
12634 {
12635 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12636 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12637
12638 INIT_LIST_HEAD(&net->dev_base_head);
12639
12640 net->dev_name_head = netdev_create_hash();
12641 if (net->dev_name_head == NULL)
12642 goto err_name;
12643
12644 net->dev_index_head = netdev_create_hash();
12645 if (net->dev_index_head == NULL)
12646 goto err_idx;
12647
12648 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12649
12650 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12651
12652 return 0;
12653
12654 err_idx:
12655 kfree(net->dev_name_head);
12656 err_name:
12657 return -ENOMEM;
12658 }
12659
12660 /**
12661 * netdev_drivername - network driver for the device
12662 * @dev: network device
12663 *
12664 * Determine network driver for device.
12665 */
netdev_drivername(const struct net_device * dev)12666 const char *netdev_drivername(const struct net_device *dev)
12667 {
12668 const struct device_driver *driver;
12669 const struct device *parent;
12670 const char *empty = "";
12671
12672 parent = dev->dev.parent;
12673 if (!parent)
12674 return empty;
12675
12676 driver = parent->driver;
12677 if (driver && driver->name)
12678 return driver->name;
12679 return empty;
12680 }
12681
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12682 static void __netdev_printk(const char *level, const struct net_device *dev,
12683 struct va_format *vaf)
12684 {
12685 if (dev && dev->dev.parent) {
12686 dev_printk_emit(level[1] - '0',
12687 dev->dev.parent,
12688 "%s %s %s%s: %pV",
12689 dev_driver_string(dev->dev.parent),
12690 dev_name(dev->dev.parent),
12691 netdev_name(dev), netdev_reg_state(dev),
12692 vaf);
12693 } else if (dev) {
12694 printk("%s%s%s: %pV",
12695 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12696 } else {
12697 printk("%s(NULL net_device): %pV", level, vaf);
12698 }
12699 }
12700
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12701 void netdev_printk(const char *level, const struct net_device *dev,
12702 const char *format, ...)
12703 {
12704 struct va_format vaf;
12705 va_list args;
12706
12707 va_start(args, format);
12708
12709 vaf.fmt = format;
12710 vaf.va = &args;
12711
12712 __netdev_printk(level, dev, &vaf);
12713
12714 va_end(args);
12715 }
12716 EXPORT_SYMBOL(netdev_printk);
12717
12718 #define define_netdev_printk_level(func, level) \
12719 void func(const struct net_device *dev, const char *fmt, ...) \
12720 { \
12721 struct va_format vaf; \
12722 va_list args; \
12723 \
12724 va_start(args, fmt); \
12725 \
12726 vaf.fmt = fmt; \
12727 vaf.va = &args; \
12728 \
12729 __netdev_printk(level, dev, &vaf); \
12730 \
12731 va_end(args); \
12732 } \
12733 EXPORT_SYMBOL(func);
12734
12735 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12736 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12737 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12738 define_netdev_printk_level(netdev_err, KERN_ERR);
12739 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12740 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12741 define_netdev_printk_level(netdev_info, KERN_INFO);
12742
netdev_exit(struct net * net)12743 static void __net_exit netdev_exit(struct net *net)
12744 {
12745 kfree(net->dev_name_head);
12746 kfree(net->dev_index_head);
12747 xa_destroy(&net->dev_by_index);
12748 if (net != &init_net)
12749 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12750 }
12751
12752 static struct pernet_operations __net_initdata netdev_net_ops = {
12753 .init = netdev_init,
12754 .exit = netdev_exit,
12755 };
12756
default_device_exit_net(struct net * net)12757 static void __net_exit default_device_exit_net(struct net *net)
12758 {
12759 struct netdev_name_node *name_node, *tmp;
12760 struct net_device *dev, *aux;
12761 /*
12762 * Push all migratable network devices back to the
12763 * initial network namespace
12764 */
12765 ASSERT_RTNL();
12766 for_each_netdev_safe(net, dev, aux) {
12767 int err;
12768 char fb_name[IFNAMSIZ];
12769
12770 /* Ignore unmoveable devices (i.e. loopback) */
12771 if (dev->netns_immutable)
12772 continue;
12773
12774 /* Leave virtual devices for the generic cleanup */
12775 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12776 continue;
12777
12778 /* Push remaining network devices to init_net */
12779 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12780 if (netdev_name_in_use(&init_net, fb_name))
12781 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12782
12783 netdev_for_each_altname_safe(dev, name_node, tmp)
12784 if (netdev_name_in_use(&init_net, name_node->name))
12785 __netdev_name_node_alt_destroy(name_node);
12786
12787 err = dev_change_net_namespace(dev, &init_net, fb_name);
12788 if (err) {
12789 pr_emerg("%s: failed to move %s to init_net: %d\n",
12790 __func__, dev->name, err);
12791 BUG();
12792 }
12793 }
12794 }
12795
default_device_exit_batch(struct list_head * net_list)12796 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12797 {
12798 /* At exit all network devices most be removed from a network
12799 * namespace. Do this in the reverse order of registration.
12800 * Do this across as many network namespaces as possible to
12801 * improve batching efficiency.
12802 */
12803 struct net_device *dev;
12804 struct net *net;
12805 LIST_HEAD(dev_kill_list);
12806
12807 rtnl_lock();
12808 list_for_each_entry(net, net_list, exit_list) {
12809 default_device_exit_net(net);
12810 cond_resched();
12811 }
12812
12813 list_for_each_entry(net, net_list, exit_list) {
12814 for_each_netdev_reverse(net, dev) {
12815 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12816 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12817 else
12818 unregister_netdevice_queue(dev, &dev_kill_list);
12819 }
12820 }
12821 unregister_netdevice_many(&dev_kill_list);
12822 rtnl_unlock();
12823 }
12824
12825 static struct pernet_operations __net_initdata default_device_ops = {
12826 .exit_batch = default_device_exit_batch,
12827 };
12828
net_dev_struct_check(void)12829 static void __init net_dev_struct_check(void)
12830 {
12831 /* TX read-mostly hotpath */
12832 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12833 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12834 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12835 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12836 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12837 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12838 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12839 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12840 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12841 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12842 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12843 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12844 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12845 #ifdef CONFIG_XPS
12846 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12847 #endif
12848 #ifdef CONFIG_NETFILTER_EGRESS
12849 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12850 #endif
12851 #ifdef CONFIG_NET_XGRESS
12852 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12853 #endif
12854 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12855
12856 /* TXRX read-mostly hotpath */
12857 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12858 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12859 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12860 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12861 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12862 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12863 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12864
12865 /* RX read-mostly hotpath */
12866 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12867 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12868 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12869 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12870 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12871 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12872 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12873 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12874 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12875 #ifdef CONFIG_NETPOLL
12876 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12877 #endif
12878 #ifdef CONFIG_NET_XGRESS
12879 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12880 #endif
12881 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12882 }
12883
12884 /*
12885 * Initialize the DEV module. At boot time this walks the device list and
12886 * unhooks any devices that fail to initialise (normally hardware not
12887 * present) and leaves us with a valid list of present and active devices.
12888 *
12889 */
12890
12891 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12892 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12893
net_page_pool_create(int cpuid)12894 static int net_page_pool_create(int cpuid)
12895 {
12896 #if IS_ENABLED(CONFIG_PAGE_POOL)
12897 struct page_pool_params page_pool_params = {
12898 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12899 .flags = PP_FLAG_SYSTEM_POOL,
12900 .nid = cpu_to_mem(cpuid),
12901 };
12902 struct page_pool *pp_ptr;
12903 int err;
12904
12905 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12906 if (IS_ERR(pp_ptr))
12907 return -ENOMEM;
12908
12909 err = xdp_reg_page_pool(pp_ptr);
12910 if (err) {
12911 page_pool_destroy(pp_ptr);
12912 return err;
12913 }
12914
12915 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12916 #endif
12917 return 0;
12918 }
12919
backlog_napi_should_run(unsigned int cpu)12920 static int backlog_napi_should_run(unsigned int cpu)
12921 {
12922 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12923 struct napi_struct *napi = &sd->backlog;
12924
12925 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12926 }
12927
run_backlog_napi(unsigned int cpu)12928 static void run_backlog_napi(unsigned int cpu)
12929 {
12930 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12931
12932 napi_threaded_poll_loop(&sd->backlog);
12933 }
12934
backlog_napi_setup(unsigned int cpu)12935 static void backlog_napi_setup(unsigned int cpu)
12936 {
12937 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12938 struct napi_struct *napi = &sd->backlog;
12939
12940 napi->thread = this_cpu_read(backlog_napi);
12941 set_bit(NAPI_STATE_THREADED, &napi->state);
12942 }
12943
12944 static struct smp_hotplug_thread backlog_threads = {
12945 .store = &backlog_napi,
12946 .thread_should_run = backlog_napi_should_run,
12947 .thread_fn = run_backlog_napi,
12948 .thread_comm = "backlog_napi/%u",
12949 .setup = backlog_napi_setup,
12950 };
12951
12952 /*
12953 * This is called single threaded during boot, so no need
12954 * to take the rtnl semaphore.
12955 */
net_dev_init(void)12956 static int __init net_dev_init(void)
12957 {
12958 int i, rc = -ENOMEM;
12959
12960 BUG_ON(!dev_boot_phase);
12961
12962 net_dev_struct_check();
12963
12964 if (dev_proc_init())
12965 goto out;
12966
12967 if (netdev_kobject_init())
12968 goto out;
12969
12970 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12971 INIT_LIST_HEAD(&ptype_base[i]);
12972
12973 if (register_pernet_subsys(&netdev_net_ops))
12974 goto out;
12975
12976 /*
12977 * Initialise the packet receive queues.
12978 */
12979
12980 flush_backlogs_fallback = flush_backlogs_alloc();
12981 if (!flush_backlogs_fallback)
12982 goto out;
12983
12984 for_each_possible_cpu(i) {
12985 struct softnet_data *sd = &per_cpu(softnet_data, i);
12986
12987 skb_queue_head_init(&sd->input_pkt_queue);
12988 skb_queue_head_init(&sd->process_queue);
12989 #ifdef CONFIG_XFRM_OFFLOAD
12990 skb_queue_head_init(&sd->xfrm_backlog);
12991 #endif
12992 INIT_LIST_HEAD(&sd->poll_list);
12993 sd->output_queue_tailp = &sd->output_queue;
12994 #ifdef CONFIG_RPS
12995 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12996 sd->cpu = i;
12997 #endif
12998 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12999
13000 gro_init(&sd->backlog.gro);
13001 sd->backlog.poll = process_backlog;
13002 sd->backlog.weight = weight_p;
13003 INIT_LIST_HEAD(&sd->backlog.poll_list);
13004
13005 if (net_page_pool_create(i))
13006 goto out;
13007 }
13008 net_hotdata.skb_defer_nodes =
13009 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13010 __alignof__(struct skb_defer_node));
13011 if (!net_hotdata.skb_defer_nodes)
13012 goto out;
13013 if (use_backlog_threads())
13014 smpboot_register_percpu_thread(&backlog_threads);
13015
13016 dev_boot_phase = 0;
13017
13018 /* The loopback device is special if any other network devices
13019 * is present in a network namespace the loopback device must
13020 * be present. Since we now dynamically allocate and free the
13021 * loopback device ensure this invariant is maintained by
13022 * keeping the loopback device as the first device on the
13023 * list of network devices. Ensuring the loopback devices
13024 * is the first device that appears and the last network device
13025 * that disappears.
13026 */
13027 if (register_pernet_device(&loopback_net_ops))
13028 goto out;
13029
13030 if (register_pernet_device(&default_device_ops))
13031 goto out;
13032
13033 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13034 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13035
13036 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13037 NULL, dev_cpu_dead);
13038 WARN_ON(rc < 0);
13039 rc = 0;
13040
13041 /* avoid static key IPIs to isolated CPUs */
13042 if (housekeeping_enabled(HK_TYPE_MISC))
13043 net_enable_timestamp();
13044 out:
13045 if (rc < 0) {
13046 for_each_possible_cpu(i) {
13047 struct page_pool *pp_ptr;
13048
13049 pp_ptr = per_cpu(system_page_pool.pool, i);
13050 if (!pp_ptr)
13051 continue;
13052
13053 xdp_unreg_page_pool(pp_ptr);
13054 page_pool_destroy(pp_ptr);
13055 per_cpu(system_page_pool.pool, i) = NULL;
13056 }
13057 }
13058
13059 return rc;
13060 }
13061
13062 subsys_initcall(net_dev_init);
13063