xref: /linux/net/core/dev.c (revision dbf8fe85a16a33d6b6bd01f2bc606fc017771465)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1167 
1168 /**
1169  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1170  *	@net: network namespace
1171  *	@name: a pointer to the buffer where the name will be stored.
1172  *	@ifindex: the ifindex of the interface to get the name from.
1173  */
netdev_get_name(struct net * net,char * name,int ifindex)1174 int netdev_get_name(struct net *net, char *name, int ifindex)
1175 {
1176 	struct net_device *dev;
1177 	int ret;
1178 
1179 	rcu_read_lock();
1180 
1181 	dev = dev_get_by_index_rcu(net, ifindex);
1182 	if (!dev) {
1183 		ret = -ENODEV;
1184 		goto out;
1185 	}
1186 
1187 	netdev_copy_name(dev, name);
1188 
1189 	ret = 0;
1190 out:
1191 	rcu_read_unlock();
1192 	return ret;
1193 }
1194 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1195 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1196 			 const char *ha)
1197 {
1198 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1199 }
1200 
1201 /**
1202  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1203  *	@net: the applicable net namespace
1204  *	@type: media type of device
1205  *	@ha: hardware address
1206  *
1207  *	Search for an interface by MAC address. Returns NULL if the device
1208  *	is not found or a pointer to the device.
1209  *	The caller must hold RCU.
1210  *	The returned device has not had its ref count increased
1211  *	and the caller must therefore be careful about locking
1212  *
1213  */
1214 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1215 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1216 				       const char *ha)
1217 {
1218 	struct net_device *dev;
1219 
1220 	for_each_netdev_rcu(net, dev)
1221 		if (dev_addr_cmp(dev, type, ha))
1222 			return dev;
1223 
1224 	return NULL;
1225 }
1226 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1227 
1228 /**
1229  * dev_getbyhwaddr() - find a device by its hardware address
1230  * @net: the applicable net namespace
1231  * @type: media type of device
1232  * @ha: hardware address
1233  *
1234  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1235  * rtnl_lock.
1236  *
1237  * Context: rtnl_lock() must be held.
1238  * Return: pointer to the net_device, or NULL if not found
1239  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1240 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1241 				   const char *ha)
1242 {
1243 	struct net_device *dev;
1244 
1245 	ASSERT_RTNL();
1246 	for_each_netdev(net, dev)
1247 		if (dev_addr_cmp(dev, type, ha))
1248 			return dev;
1249 
1250 	return NULL;
1251 }
1252 EXPORT_SYMBOL(dev_getbyhwaddr);
1253 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1254 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1255 {
1256 	struct net_device *dev, *ret = NULL;
1257 
1258 	rcu_read_lock();
1259 	for_each_netdev_rcu(net, dev)
1260 		if (dev->type == type) {
1261 			dev_hold(dev);
1262 			ret = dev;
1263 			break;
1264 		}
1265 	rcu_read_unlock();
1266 	return ret;
1267 }
1268 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1269 
1270 /**
1271  * netdev_get_by_flags_rcu - find any device with given flags
1272  * @net: the applicable net namespace
1273  * @tracker: tracking object for the acquired reference
1274  * @if_flags: IFF_* values
1275  * @mask: bitmask of bits in if_flags to check
1276  *
1277  * Search for any interface with the given flags.
1278  *
1279  * Context: rcu_read_lock() must be held.
1280  * Returns: NULL if a device is not found or a pointer to the device.
1281  */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1282 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1283 					   unsigned short if_flags, unsigned short mask)
1284 {
1285 	struct net_device *dev;
1286 
1287 	for_each_netdev_rcu(net, dev) {
1288 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1289 			netdev_hold(dev, tracker, GFP_ATOMIC);
1290 			return dev;
1291 		}
1292 	}
1293 
1294 	return NULL;
1295 }
1296 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1297 
1298 /**
1299  *	dev_valid_name - check if name is okay for network device
1300  *	@name: name string
1301  *
1302  *	Network device names need to be valid file names to
1303  *	allow sysfs to work.  We also disallow any kind of
1304  *	whitespace.
1305  */
dev_valid_name(const char * name)1306 bool dev_valid_name(const char *name)
1307 {
1308 	if (*name == '\0')
1309 		return false;
1310 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1311 		return false;
1312 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1313 		return false;
1314 
1315 	while (*name) {
1316 		if (*name == '/' || *name == ':' || isspace(*name))
1317 			return false;
1318 		name++;
1319 	}
1320 	return true;
1321 }
1322 EXPORT_SYMBOL(dev_valid_name);
1323 
1324 /**
1325  *	__dev_alloc_name - allocate a name for a device
1326  *	@net: network namespace to allocate the device name in
1327  *	@name: name format string
1328  *	@res: result name string
1329  *
1330  *	Passed a format string - eg "lt%d" it will try and find a suitable
1331  *	id. It scans list of devices to build up a free map, then chooses
1332  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1333  *	while allocating the name and adding the device in order to avoid
1334  *	duplicates.
1335  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1336  *	Returns the number of the unit assigned or a negative errno code.
1337  */
1338 
__dev_alloc_name(struct net * net,const char * name,char * res)1339 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1340 {
1341 	int i = 0;
1342 	const char *p;
1343 	const int max_netdevices = 8*PAGE_SIZE;
1344 	unsigned long *inuse;
1345 	struct net_device *d;
1346 	char buf[IFNAMSIZ];
1347 
1348 	/* Verify the string as this thing may have come from the user.
1349 	 * There must be one "%d" and no other "%" characters.
1350 	 */
1351 	p = strchr(name, '%');
1352 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1353 		return -EINVAL;
1354 
1355 	/* Use one page as a bit array of possible slots */
1356 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1357 	if (!inuse)
1358 		return -ENOMEM;
1359 
1360 	for_each_netdev(net, d) {
1361 		struct netdev_name_node *name_node;
1362 
1363 		netdev_for_each_altname(d, name_node) {
1364 			if (!sscanf(name_node->name, name, &i))
1365 				continue;
1366 			if (i < 0 || i >= max_netdevices)
1367 				continue;
1368 
1369 			/* avoid cases where sscanf is not exact inverse of printf */
1370 			snprintf(buf, IFNAMSIZ, name, i);
1371 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1372 				__set_bit(i, inuse);
1373 		}
1374 		if (!sscanf(d->name, name, &i))
1375 			continue;
1376 		if (i < 0 || i >= max_netdevices)
1377 			continue;
1378 
1379 		/* avoid cases where sscanf is not exact inverse of printf */
1380 		snprintf(buf, IFNAMSIZ, name, i);
1381 		if (!strncmp(buf, d->name, IFNAMSIZ))
1382 			__set_bit(i, inuse);
1383 	}
1384 
1385 	i = find_first_zero_bit(inuse, max_netdevices);
1386 	bitmap_free(inuse);
1387 	if (i == max_netdevices)
1388 		return -ENFILE;
1389 
1390 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1391 	strscpy(buf, name, IFNAMSIZ);
1392 	snprintf(res, IFNAMSIZ, buf, i);
1393 	return i;
1394 }
1395 
1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1398 			       const char *want_name, char *out_name,
1399 			       int dup_errno)
1400 {
1401 	if (!dev_valid_name(want_name))
1402 		return -EINVAL;
1403 
1404 	if (strchr(want_name, '%'))
1405 		return __dev_alloc_name(net, want_name, out_name);
1406 
1407 	if (netdev_name_in_use(net, want_name))
1408 		return -dup_errno;
1409 	if (out_name != want_name)
1410 		strscpy(out_name, want_name, IFNAMSIZ);
1411 	return 0;
1412 }
1413 
1414 /**
1415  *	dev_alloc_name - allocate a name for a device
1416  *	@dev: device
1417  *	@name: name format string
1418  *
1419  *	Passed a format string - eg "lt%d" it will try and find a suitable
1420  *	id. It scans list of devices to build up a free map, then chooses
1421  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1422  *	while allocating the name and adding the device in order to avoid
1423  *	duplicates.
1424  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1425  *	Returns the number of the unit assigned or a negative errno code.
1426  */
1427 
dev_alloc_name(struct net_device * dev,const char * name)1428 int dev_alloc_name(struct net_device *dev, const char *name)
1429 {
1430 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1431 }
1432 EXPORT_SYMBOL(dev_alloc_name);
1433 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1434 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1435 			      const char *name)
1436 {
1437 	int ret;
1438 
1439 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1440 	return ret < 0 ? ret : 0;
1441 }
1442 
netif_change_name(struct net_device * dev,const char * newname)1443 int netif_change_name(struct net_device *dev, const char *newname)
1444 {
1445 	struct net *net = dev_net(dev);
1446 	unsigned char old_assign_type;
1447 	char oldname[IFNAMSIZ];
1448 	int err = 0;
1449 	int ret;
1450 
1451 	ASSERT_RTNL_NET(net);
1452 
1453 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1454 		return 0;
1455 
1456 	memcpy(oldname, dev->name, IFNAMSIZ);
1457 
1458 	write_seqlock_bh(&netdev_rename_lock);
1459 	err = dev_get_valid_name(net, dev, newname);
1460 	write_sequnlock_bh(&netdev_rename_lock);
1461 
1462 	if (err < 0)
1463 		return err;
1464 
1465 	if (oldname[0] && !strchr(oldname, '%'))
1466 		netdev_info(dev, "renamed from %s%s\n", oldname,
1467 			    dev->flags & IFF_UP ? " (while UP)" : "");
1468 
1469 	old_assign_type = dev->name_assign_type;
1470 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1471 
1472 rollback:
1473 	ret = device_rename(&dev->dev, dev->name);
1474 	if (ret) {
1475 		write_seqlock_bh(&netdev_rename_lock);
1476 		memcpy(dev->name, oldname, IFNAMSIZ);
1477 		write_sequnlock_bh(&netdev_rename_lock);
1478 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1479 		return ret;
1480 	}
1481 
1482 	netdev_adjacent_rename_links(dev, oldname);
1483 
1484 	netdev_name_node_del(dev->name_node);
1485 
1486 	synchronize_net();
1487 
1488 	netdev_name_node_add(net, dev->name_node);
1489 
1490 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1491 	ret = notifier_to_errno(ret);
1492 
1493 	if (ret) {
1494 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1495 		if (err >= 0) {
1496 			err = ret;
1497 			write_seqlock_bh(&netdev_rename_lock);
1498 			memcpy(dev->name, oldname, IFNAMSIZ);
1499 			write_sequnlock_bh(&netdev_rename_lock);
1500 			memcpy(oldname, newname, IFNAMSIZ);
1501 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1502 			old_assign_type = NET_NAME_RENAMED;
1503 			goto rollback;
1504 		} else {
1505 			netdev_err(dev, "name change rollback failed: %d\n",
1506 				   ret);
1507 		}
1508 	}
1509 
1510 	return err;
1511 }
1512 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1514 {
1515 	struct dev_ifalias *new_alias = NULL;
1516 
1517 	if (len >= IFALIASZ)
1518 		return -EINVAL;
1519 
1520 	if (len) {
1521 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1522 		if (!new_alias)
1523 			return -ENOMEM;
1524 
1525 		memcpy(new_alias->ifalias, alias, len);
1526 		new_alias->ifalias[len] = 0;
1527 	}
1528 
1529 	mutex_lock(&ifalias_mutex);
1530 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1531 					mutex_is_locked(&ifalias_mutex));
1532 	mutex_unlock(&ifalias_mutex);
1533 
1534 	if (new_alias)
1535 		kfree_rcu(new_alias, rcuhead);
1536 
1537 	return len;
1538 }
1539 
1540 /**
1541  *	dev_get_alias - get ifalias of a device
1542  *	@dev: device
1543  *	@name: buffer to store name of ifalias
1544  *	@len: size of buffer
1545  *
1546  *	get ifalias for a device.  Caller must make sure dev cannot go
1547  *	away,  e.g. rcu read lock or own a reference count to device.
1548  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1550 {
1551 	const struct dev_ifalias *alias;
1552 	int ret = 0;
1553 
1554 	rcu_read_lock();
1555 	alias = rcu_dereference(dev->ifalias);
1556 	if (alias)
1557 		ret = snprintf(name, len, "%s", alias->ifalias);
1558 	rcu_read_unlock();
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  *	netdev_features_change - device changes features
1565  *	@dev: device to cause notification
1566  *
1567  *	Called to indicate a device has changed features.
1568  */
netdev_features_change(struct net_device * dev)1569 void netdev_features_change(struct net_device *dev)
1570 {
1571 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1572 }
1573 EXPORT_SYMBOL(netdev_features_change);
1574 
netif_state_change(struct net_device * dev)1575 void netif_state_change(struct net_device *dev)
1576 {
1577 	netdev_ops_assert_locked_or_invisible(dev);
1578 
1579 	if (dev->flags & IFF_UP) {
1580 		struct netdev_notifier_change_info change_info = {
1581 			.info.dev = dev,
1582 		};
1583 
1584 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1585 					      &change_info.info);
1586 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1587 	}
1588 }
1589 
1590 /**
1591  * __netdev_notify_peers - notify network peers about existence of @dev,
1592  * to be called when rtnl lock is already held.
1593  * @dev: network device
1594  *
1595  * Generate traffic such that interested network peers are aware of
1596  * @dev, such as by generating a gratuitous ARP. This may be used when
1597  * a device wants to inform the rest of the network about some sort of
1598  * reconfiguration such as a failover event or virtual machine
1599  * migration.
1600  */
__netdev_notify_peers(struct net_device * dev)1601 void __netdev_notify_peers(struct net_device *dev)
1602 {
1603 	ASSERT_RTNL();
1604 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1605 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1606 }
1607 EXPORT_SYMBOL(__netdev_notify_peers);
1608 
1609 /**
1610  * netdev_notify_peers - notify network peers about existence of @dev
1611  * @dev: network device
1612  *
1613  * Generate traffic such that interested network peers are aware of
1614  * @dev, such as by generating a gratuitous ARP. This may be used when
1615  * a device wants to inform the rest of the network about some sort of
1616  * reconfiguration such as a failover event or virtual machine
1617  * migration.
1618  */
netdev_notify_peers(struct net_device * dev)1619 void netdev_notify_peers(struct net_device *dev)
1620 {
1621 	rtnl_lock();
1622 	__netdev_notify_peers(dev);
1623 	rtnl_unlock();
1624 }
1625 EXPORT_SYMBOL(netdev_notify_peers);
1626 
1627 static int napi_threaded_poll(void *data);
1628 
napi_kthread_create(struct napi_struct * n)1629 static int napi_kthread_create(struct napi_struct *n)
1630 {
1631 	int err = 0;
1632 
1633 	/* Create and wake up the kthread once to put it in
1634 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1635 	 * warning and work with loadavg.
1636 	 */
1637 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1638 				n->dev->name, n->napi_id);
1639 	if (IS_ERR(n->thread)) {
1640 		err = PTR_ERR(n->thread);
1641 		pr_err("kthread_run failed with err %d\n", err);
1642 		n->thread = NULL;
1643 	}
1644 
1645 	return err;
1646 }
1647 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1649 {
1650 	const struct net_device_ops *ops = dev->netdev_ops;
1651 	int ret;
1652 
1653 	ASSERT_RTNL();
1654 	dev_addr_check(dev);
1655 
1656 	if (!netif_device_present(dev)) {
1657 		/* may be detached because parent is runtime-suspended */
1658 		if (dev->dev.parent)
1659 			pm_runtime_resume(dev->dev.parent);
1660 		if (!netif_device_present(dev))
1661 			return -ENODEV;
1662 	}
1663 
1664 	/* Block netpoll from trying to do any rx path servicing.
1665 	 * If we don't do this there is a chance ndo_poll_controller
1666 	 * or ndo_poll may be running while we open the device
1667 	 */
1668 	netpoll_poll_disable(dev);
1669 
1670 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1671 	ret = notifier_to_errno(ret);
1672 	if (ret)
1673 		return ret;
1674 
1675 	set_bit(__LINK_STATE_START, &dev->state);
1676 
1677 	netdev_ops_assert_locked(dev);
1678 
1679 	if (ops->ndo_validate_addr)
1680 		ret = ops->ndo_validate_addr(dev);
1681 
1682 	if (!ret && ops->ndo_open)
1683 		ret = ops->ndo_open(dev);
1684 
1685 	netpoll_poll_enable(dev);
1686 
1687 	if (ret)
1688 		clear_bit(__LINK_STATE_START, &dev->state);
1689 	else {
1690 		netif_set_up(dev, true);
1691 		dev_set_rx_mode(dev);
1692 		dev_activate(dev);
1693 		add_device_randomness(dev->dev_addr, dev->addr_len);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1700 {
1701 	int ret;
1702 
1703 	if (dev->flags & IFF_UP)
1704 		return 0;
1705 
1706 	ret = __dev_open(dev, extack);
1707 	if (ret < 0)
1708 		return ret;
1709 
1710 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1711 	call_netdevice_notifiers(NETDEV_UP, dev);
1712 
1713 	return ret;
1714 }
1715 
__dev_close_many(struct list_head * head)1716 static void __dev_close_many(struct list_head *head)
1717 {
1718 	struct net_device *dev;
1719 
1720 	ASSERT_RTNL();
1721 	might_sleep();
1722 
1723 	list_for_each_entry(dev, head, close_list) {
1724 		/* Temporarily disable netpoll until the interface is down */
1725 		netpoll_poll_disable(dev);
1726 
1727 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1728 
1729 		clear_bit(__LINK_STATE_START, &dev->state);
1730 
1731 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1732 		 * can be even on different cpu. So just clear netif_running().
1733 		 *
1734 		 * dev->stop() will invoke napi_disable() on all of it's
1735 		 * napi_struct instances on this device.
1736 		 */
1737 		smp_mb__after_atomic(); /* Commit netif_running(). */
1738 	}
1739 
1740 	dev_deactivate_many(head);
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		const struct net_device_ops *ops = dev->netdev_ops;
1744 
1745 		/*
1746 		 *	Call the device specific close. This cannot fail.
1747 		 *	Only if device is UP
1748 		 *
1749 		 *	We allow it to be called even after a DETACH hot-plug
1750 		 *	event.
1751 		 */
1752 
1753 		netdev_ops_assert_locked(dev);
1754 
1755 		if (ops->ndo_stop)
1756 			ops->ndo_stop(dev);
1757 
1758 		netif_set_up(dev, false);
1759 		netpoll_poll_enable(dev);
1760 	}
1761 }
1762 
__dev_close(struct net_device * dev)1763 static void __dev_close(struct net_device *dev)
1764 {
1765 	LIST_HEAD(single);
1766 
1767 	list_add(&dev->close_list, &single);
1768 	__dev_close_many(&single);
1769 	list_del(&single);
1770 }
1771 
netif_close_many(struct list_head * head,bool unlink)1772 void netif_close_many(struct list_head *head, bool unlink)
1773 {
1774 	struct net_device *dev, *tmp;
1775 
1776 	/* Remove the devices that don't need to be closed */
1777 	list_for_each_entry_safe(dev, tmp, head, close_list)
1778 		if (!(dev->flags & IFF_UP))
1779 			list_del_init(&dev->close_list);
1780 
1781 	__dev_close_many(head);
1782 
1783 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1784 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1785 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1786 		if (unlink)
1787 			list_del_init(&dev->close_list);
1788 	}
1789 }
1790 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1791 
netif_close(struct net_device * dev)1792 void netif_close(struct net_device *dev)
1793 {
1794 	if (dev->flags & IFF_UP) {
1795 		LIST_HEAD(single);
1796 
1797 		list_add(&dev->close_list, &single);
1798 		netif_close_many(&single, true);
1799 		list_del(&single);
1800 	}
1801 }
1802 EXPORT_SYMBOL(netif_close);
1803 
netif_disable_lro(struct net_device * dev)1804 void netif_disable_lro(struct net_device *dev)
1805 {
1806 	struct net_device *lower_dev;
1807 	struct list_head *iter;
1808 
1809 	dev->wanted_features &= ~NETIF_F_LRO;
1810 	netdev_update_features(dev);
1811 
1812 	if (unlikely(dev->features & NETIF_F_LRO))
1813 		netdev_WARN(dev, "failed to disable LRO!\n");
1814 
1815 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1816 		netdev_lock_ops(lower_dev);
1817 		netif_disable_lro(lower_dev);
1818 		netdev_unlock_ops(lower_dev);
1819 	}
1820 }
1821 EXPORT_IPV6_MOD(netif_disable_lro);
1822 
1823 /**
1824  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1825  *	@dev: device
1826  *
1827  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1828  *	called under RTNL.  This is needed if Generic XDP is installed on
1829  *	the device.
1830  */
dev_disable_gro_hw(struct net_device * dev)1831 static void dev_disable_gro_hw(struct net_device *dev)
1832 {
1833 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1834 	netdev_update_features(dev);
1835 
1836 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1837 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1838 }
1839 
netdev_cmd_to_name(enum netdev_cmd cmd)1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1841 {
1842 #define N(val) 						\
1843 	case NETDEV_##val:				\
1844 		return "NETDEV_" __stringify(val);
1845 	switch (cmd) {
1846 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1847 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1848 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1849 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1850 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1851 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1852 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1853 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1854 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1855 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1856 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1857 	N(XDP_FEAT_CHANGE)
1858 	}
1859 #undef N
1860 	return "UNKNOWN_NETDEV_EVENT";
1861 }
1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1863 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1865 				   struct net_device *dev)
1866 {
1867 	struct netdev_notifier_info info = {
1868 		.dev = dev,
1869 	};
1870 
1871 	return nb->notifier_call(nb, val, &info);
1872 }
1873 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1874 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1875 					     struct net_device *dev)
1876 {
1877 	int err;
1878 
1879 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1880 	err = notifier_to_errno(err);
1881 	if (err)
1882 		return err;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return 0;
1886 
1887 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1888 	return 0;
1889 }
1890 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1892 						struct net_device *dev)
1893 {
1894 	if (dev->flags & IFF_UP) {
1895 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1896 					dev);
1897 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1898 	}
1899 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1900 }
1901 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1903 						 struct net *net)
1904 {
1905 	struct net_device *dev;
1906 	int err;
1907 
1908 	for_each_netdev(net, dev) {
1909 		netdev_lock_ops(dev);
1910 		err = call_netdevice_register_notifiers(nb, dev);
1911 		netdev_unlock_ops(dev);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 	return 0;
1916 
1917 rollback:
1918 	for_each_netdev_continue_reverse(net, dev)
1919 		call_netdevice_unregister_notifiers(nb, dev);
1920 	return err;
1921 }
1922 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1924 						    struct net *net)
1925 {
1926 	struct net_device *dev;
1927 
1928 	for_each_netdev(net, dev)
1929 		call_netdevice_unregister_notifiers(nb, dev);
1930 }
1931 
1932 static int dev_boot_phase = 1;
1933 
1934 /**
1935  * register_netdevice_notifier - register a network notifier block
1936  * @nb: notifier
1937  *
1938  * Register a notifier to be called when network device events occur.
1939  * The notifier passed is linked into the kernel structures and must
1940  * not be reused until it has been unregistered. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * When registered all registration and up events are replayed
1944  * to the new notifier to allow device to have a race free
1945  * view of the network device list.
1946  */
1947 
register_netdevice_notifier(struct notifier_block * nb)1948 int register_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 
1956 	/* When RTNL is removed, we need protection for netdev_chain. */
1957 	rtnl_lock();
1958 
1959 	err = raw_notifier_chain_register(&netdev_chain, nb);
1960 	if (err)
1961 		goto unlock;
1962 	if (dev_boot_phase)
1963 		goto unlock;
1964 	for_each_net(net) {
1965 		__rtnl_net_lock(net);
1966 		err = call_netdevice_register_net_notifiers(nb, net);
1967 		__rtnl_net_unlock(net);
1968 		if (err)
1969 			goto rollback;
1970 	}
1971 
1972 unlock:
1973 	rtnl_unlock();
1974 	up_write(&pernet_ops_rwsem);
1975 	return err;
1976 
1977 rollback:
1978 	for_each_net_continue_reverse(net) {
1979 		__rtnl_net_lock(net);
1980 		call_netdevice_unregister_net_notifiers(nb, net);
1981 		__rtnl_net_unlock(net);
1982 	}
1983 
1984 	raw_notifier_chain_unregister(&netdev_chain, nb);
1985 	goto unlock;
1986 }
1987 EXPORT_SYMBOL(register_netdevice_notifier);
1988 
1989 /**
1990  * unregister_netdevice_notifier - unregister a network notifier block
1991  * @nb: notifier
1992  *
1993  * Unregister a notifier previously registered by
1994  * register_netdevice_notifier(). The notifier is unlinked into the
1995  * kernel structures and may then be reused. A negative errno code
1996  * is returned on a failure.
1997  *
1998  * After unregistering unregister and down device events are synthesized
1999  * for all devices on the device list to the removed notifier to remove
2000  * the need for special case cleanup code.
2001  */
2002 
unregister_netdevice_notifier(struct notifier_block * nb)2003 int unregister_netdevice_notifier(struct notifier_block *nb)
2004 {
2005 	struct net *net;
2006 	int err;
2007 
2008 	/* Close race with setup_net() and cleanup_net() */
2009 	down_write(&pernet_ops_rwsem);
2010 	rtnl_lock();
2011 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2012 	if (err)
2013 		goto unlock;
2014 
2015 	for_each_net(net) {
2016 		__rtnl_net_lock(net);
2017 		call_netdevice_unregister_net_notifiers(nb, net);
2018 		__rtnl_net_unlock(net);
2019 	}
2020 
2021 unlock:
2022 	rtnl_unlock();
2023 	up_write(&pernet_ops_rwsem);
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier);
2027 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2028 static int __register_netdevice_notifier_net(struct net *net,
2029 					     struct notifier_block *nb,
2030 					     bool ignore_call_fail)
2031 {
2032 	int err;
2033 
2034 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2035 	if (err)
2036 		return err;
2037 	if (dev_boot_phase)
2038 		return 0;
2039 
2040 	err = call_netdevice_register_net_notifiers(nb, net);
2041 	if (err && !ignore_call_fail)
2042 		goto chain_unregister;
2043 
2044 	return 0;
2045 
2046 chain_unregister:
2047 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2048 	return err;
2049 }
2050 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2051 static int __unregister_netdevice_notifier_net(struct net *net,
2052 					       struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2057 	if (err)
2058 		return err;
2059 
2060 	call_netdevice_unregister_net_notifiers(nb, net);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * register_netdevice_notifier_net - register a per-netns network notifier block
2066  * @net: network namespace
2067  * @nb: notifier
2068  *
2069  * Register a notifier to be called when network device events occur.
2070  * The notifier passed is linked into the kernel structures and must
2071  * not be reused until it has been unregistered. A negative errno code
2072  * is returned on a failure.
2073  *
2074  * When registered all registration and up events are replayed
2075  * to the new notifier to allow device to have a race free
2076  * view of the network device list.
2077  */
2078 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2080 {
2081 	int err;
2082 
2083 	rtnl_net_lock(net);
2084 	err = __register_netdevice_notifier_net(net, nb, false);
2085 	rtnl_net_unlock(net);
2086 
2087 	return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_net);
2090 
2091 /**
2092  * unregister_netdevice_notifier_net - unregister a per-netns
2093  *                                     network notifier block
2094  * @net: network namespace
2095  * @nb: notifier
2096  *
2097  * Unregister a notifier previously registered by
2098  * register_netdevice_notifier_net(). The notifier is unlinked from the
2099  * kernel structures and may then be reused. A negative errno code
2100  * is returned on a failure.
2101  *
2102  * After unregistering unregister and down device events are synthesized
2103  * for all devices on the device list to the removed notifier to remove
2104  * the need for special case cleanup code.
2105  */
2106 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2107 int unregister_netdevice_notifier_net(struct net *net,
2108 				      struct notifier_block *nb)
2109 {
2110 	int err;
2111 
2112 	rtnl_net_lock(net);
2113 	err = __unregister_netdevice_notifier_net(net, nb);
2114 	rtnl_net_unlock(net);
2115 
2116 	return err;
2117 }
2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2119 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2120 static void __move_netdevice_notifier_net(struct net *src_net,
2121 					  struct net *dst_net,
2122 					  struct notifier_block *nb)
2123 {
2124 	__unregister_netdevice_notifier_net(src_net, nb);
2125 	__register_netdevice_notifier_net(dst_net, nb, true);
2126 }
2127 
rtnl_net_dev_lock(struct net_device * dev)2128 static void rtnl_net_dev_lock(struct net_device *dev)
2129 {
2130 	bool again;
2131 
2132 	do {
2133 		struct net *net;
2134 
2135 		again = false;
2136 
2137 		/* netns might be being dismantled. */
2138 		rcu_read_lock();
2139 		net = dev_net_rcu(dev);
2140 		net_passive_inc(net);
2141 		rcu_read_unlock();
2142 
2143 		rtnl_net_lock(net);
2144 
2145 #ifdef CONFIG_NET_NS
2146 		/* dev might have been moved to another netns. */
2147 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2148 			rtnl_net_unlock(net);
2149 			net_passive_dec(net);
2150 			again = true;
2151 		}
2152 #endif
2153 	} while (again);
2154 }
2155 
rtnl_net_dev_unlock(struct net_device * dev)2156 static void rtnl_net_dev_unlock(struct net_device *dev)
2157 {
2158 	struct net *net = dev_net(dev);
2159 
2160 	rtnl_net_unlock(net);
2161 	net_passive_dec(net);
2162 }
2163 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2164 int register_netdevice_notifier_dev_net(struct net_device *dev,
2165 					struct notifier_block *nb,
2166 					struct netdev_net_notifier *nn)
2167 {
2168 	int err;
2169 
2170 	rtnl_net_dev_lock(dev);
2171 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2172 	if (!err) {
2173 		nn->nb = nb;
2174 		list_add(&nn->list, &dev->net_notifier_list);
2175 	}
2176 	rtnl_net_dev_unlock(dev);
2177 
2178 	return err;
2179 }
2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2181 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2183 					  struct notifier_block *nb,
2184 					  struct netdev_net_notifier *nn)
2185 {
2186 	int err;
2187 
2188 	rtnl_net_dev_lock(dev);
2189 	list_del(&nn->list);
2190 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2191 	rtnl_net_dev_unlock(dev);
2192 
2193 	return err;
2194 }
2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2196 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2198 					     struct net *net)
2199 {
2200 	struct netdev_net_notifier *nn;
2201 
2202 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2203 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2204 }
2205 
2206 /**
2207  *	call_netdevice_notifiers_info - call all network notifier blocks
2208  *	@val: value passed unmodified to notifier function
2209  *	@info: notifier information data
2210  *
2211  *	Call all network notifier blocks.  Parameters and return value
2212  *	are as for raw_notifier_call_chain().
2213  */
2214 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2215 int call_netdevice_notifiers_info(unsigned long val,
2216 				  struct netdev_notifier_info *info)
2217 {
2218 	struct net *net = dev_net(info->dev);
2219 	int ret;
2220 
2221 	ASSERT_RTNL();
2222 
2223 	/* Run per-netns notifier block chain first, then run the global one.
2224 	 * Hopefully, one day, the global one is going to be removed after
2225 	 * all notifier block registrators get converted to be per-netns.
2226 	 */
2227 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2228 	if (ret & NOTIFY_STOP_MASK)
2229 		return ret;
2230 	return raw_notifier_call_chain(&netdev_chain, val, info);
2231 }
2232 
2233 /**
2234  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2235  *	                                       for and rollback on error
2236  *	@val_up: value passed unmodified to notifier function
2237  *	@val_down: value passed unmodified to the notifier function when
2238  *	           recovering from an error on @val_up
2239  *	@info: notifier information data
2240  *
2241  *	Call all per-netns network notifier blocks, but not notifier blocks on
2242  *	the global notifier chain. Parameters and return value are as for
2243  *	raw_notifier_call_chain_robust().
2244  */
2245 
2246 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2247 call_netdevice_notifiers_info_robust(unsigned long val_up,
2248 				     unsigned long val_down,
2249 				     struct netdev_notifier_info *info)
2250 {
2251 	struct net *net = dev_net(info->dev);
2252 
2253 	ASSERT_RTNL();
2254 
2255 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2256 					      val_up, val_down, info);
2257 }
2258 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2259 static int call_netdevice_notifiers_extack(unsigned long val,
2260 					   struct net_device *dev,
2261 					   struct netlink_ext_ack *extack)
2262 {
2263 	struct netdev_notifier_info info = {
2264 		.dev = dev,
2265 		.extack = extack,
2266 	};
2267 
2268 	return call_netdevice_notifiers_info(val, &info);
2269 }
2270 
2271 /**
2272  *	call_netdevice_notifiers - call all network notifier blocks
2273  *      @val: value passed unmodified to notifier function
2274  *      @dev: net_device pointer passed unmodified to notifier function
2275  *
2276  *	Call all network notifier blocks.  Parameters and return value
2277  *	are as for raw_notifier_call_chain().
2278  */
2279 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2281 {
2282 	return call_netdevice_notifiers_extack(val, dev, NULL);
2283 }
2284 EXPORT_SYMBOL(call_netdevice_notifiers);
2285 
2286 /**
2287  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2288  *	@val: value passed unmodified to notifier function
2289  *	@dev: net_device pointer passed unmodified to notifier function
2290  *	@arg: additional u32 argument passed to the notifier function
2291  *
2292  *	Call all network notifier blocks.  Parameters and return value
2293  *	are as for raw_notifier_call_chain().
2294  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2295 static int call_netdevice_notifiers_mtu(unsigned long val,
2296 					struct net_device *dev, u32 arg)
2297 {
2298 	struct netdev_notifier_info_ext info = {
2299 		.info.dev = dev,
2300 		.ext.mtu = arg,
2301 	};
2302 
2303 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2304 
2305 	return call_netdevice_notifiers_info(val, &info.info);
2306 }
2307 
2308 #ifdef CONFIG_NET_INGRESS
2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2310 
net_inc_ingress_queue(void)2311 void net_inc_ingress_queue(void)
2312 {
2313 	static_branch_inc(&ingress_needed_key);
2314 }
2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2316 
net_dec_ingress_queue(void)2317 void net_dec_ingress_queue(void)
2318 {
2319 	static_branch_dec(&ingress_needed_key);
2320 }
2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2322 #endif
2323 
2324 #ifdef CONFIG_NET_EGRESS
2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2326 
net_inc_egress_queue(void)2327 void net_inc_egress_queue(void)
2328 {
2329 	static_branch_inc(&egress_needed_key);
2330 }
2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2332 
net_dec_egress_queue(void)2333 void net_dec_egress_queue(void)
2334 {
2335 	static_branch_dec(&egress_needed_key);
2336 }
2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2338 #endif
2339 
2340 #ifdef CONFIG_NET_CLS_ACT
2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2342 EXPORT_SYMBOL(tcf_sw_enabled_key);
2343 #endif
2344 
2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2346 EXPORT_SYMBOL(netstamp_needed_key);
2347 #ifdef CONFIG_JUMP_LABEL
2348 static atomic_t netstamp_needed_deferred;
2349 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2350 static void netstamp_clear(struct work_struct *work)
2351 {
2352 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2353 	int wanted;
2354 
2355 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2356 	if (wanted > 0)
2357 		static_branch_enable(&netstamp_needed_key);
2358 	else
2359 		static_branch_disable(&netstamp_needed_key);
2360 }
2361 static DECLARE_WORK(netstamp_work, netstamp_clear);
2362 #endif
2363 
net_enable_timestamp(void)2364 void net_enable_timestamp(void)
2365 {
2366 #ifdef CONFIG_JUMP_LABEL
2367 	int wanted = atomic_read(&netstamp_wanted);
2368 
2369 	while (wanted > 0) {
2370 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2371 			return;
2372 	}
2373 	atomic_inc(&netstamp_needed_deferred);
2374 	schedule_work(&netstamp_work);
2375 #else
2376 	static_branch_inc(&netstamp_needed_key);
2377 #endif
2378 }
2379 EXPORT_SYMBOL(net_enable_timestamp);
2380 
net_disable_timestamp(void)2381 void net_disable_timestamp(void)
2382 {
2383 #ifdef CONFIG_JUMP_LABEL
2384 	int wanted = atomic_read(&netstamp_wanted);
2385 
2386 	while (wanted > 1) {
2387 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2388 			return;
2389 	}
2390 	atomic_dec(&netstamp_needed_deferred);
2391 	schedule_work(&netstamp_work);
2392 #else
2393 	static_branch_dec(&netstamp_needed_key);
2394 #endif
2395 }
2396 EXPORT_SYMBOL(net_disable_timestamp);
2397 
net_timestamp_set(struct sk_buff * skb)2398 static inline void net_timestamp_set(struct sk_buff *skb)
2399 {
2400 	skb->tstamp = 0;
2401 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2402 	if (static_branch_unlikely(&netstamp_needed_key))
2403 		skb->tstamp = ktime_get_real();
2404 }
2405 
2406 #define net_timestamp_check(COND, SKB)				\
2407 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2408 		if ((COND) && !(SKB)->tstamp)			\
2409 			(SKB)->tstamp = ktime_get_real();	\
2410 	}							\
2411 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2413 {
2414 	return __is_skb_forwardable(dev, skb, true);
2415 }
2416 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2417 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2419 			      bool check_mtu)
2420 {
2421 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2422 
2423 	if (likely(!ret)) {
2424 		skb->protocol = eth_type_trans(skb, dev);
2425 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2426 	}
2427 
2428 	return ret;
2429 }
2430 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 	return __dev_forward_skb2(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2436 
2437 /**
2438  * dev_forward_skb - loopback an skb to another netif
2439  *
2440  * @dev: destination network device
2441  * @skb: buffer to forward
2442  *
2443  * return values:
2444  *	NET_RX_SUCCESS	(no congestion)
2445  *	NET_RX_DROP     (packet was dropped, but freed)
2446  *
2447  * dev_forward_skb can be used for injecting an skb from the
2448  * start_xmit function of one device into the receive queue
2449  * of another device.
2450  *
2451  * The receiving device may be in another namespace, so
2452  * we have to clear all information in the skb that could
2453  * impact namespace isolation.
2454  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2456 {
2457 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_forward_skb);
2460 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2462 {
2463 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2464 }
2465 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2466 static int deliver_skb(struct sk_buff *skb,
2467 		       struct packet_type *pt_prev,
2468 		       struct net_device *orig_dev)
2469 {
2470 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2471 		return -ENOMEM;
2472 	refcount_inc(&skb->users);
2473 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2474 }
2475 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2477 					  struct packet_type **pt,
2478 					  struct net_device *orig_dev,
2479 					  __be16 type,
2480 					  struct list_head *ptype_list)
2481 {
2482 	struct packet_type *ptype, *pt_prev = *pt;
2483 
2484 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 		if (ptype->type != type)
2486 			continue;
2487 		if (unlikely(pt_prev))
2488 			deliver_skb(skb, pt_prev, orig_dev);
2489 		pt_prev = ptype;
2490 	}
2491 	*pt = pt_prev;
2492 }
2493 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2495 {
2496 	if (!ptype->af_packet_priv || !skb->sk)
2497 		return false;
2498 
2499 	if (ptype->id_match)
2500 		return ptype->id_match(ptype, skb->sk);
2501 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2502 		return true;
2503 
2504 	return false;
2505 }
2506 
2507 /**
2508  * dev_nit_active_rcu - return true if any network interface taps are in use
2509  *
2510  * The caller must hold the RCU lock
2511  *
2512  * @dev: network device to check for the presence of taps
2513  */
dev_nit_active_rcu(const struct net_device * dev)2514 bool dev_nit_active_rcu(const struct net_device *dev)
2515 {
2516 	/* Callers may hold either RCU or RCU BH lock */
2517 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2518 
2519 	return !list_empty(&dev_net(dev)->ptype_all) ||
2520 	       !list_empty(&dev->ptype_all);
2521 }
2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2523 
2524 /*
2525  *	Support routine. Sends outgoing frames to any network
2526  *	taps currently in use.
2527  */
2528 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2530 {
2531 	struct packet_type *ptype, *pt_prev = NULL;
2532 	struct list_head *ptype_list;
2533 	struct sk_buff *skb2 = NULL;
2534 
2535 	rcu_read_lock();
2536 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2537 again:
2538 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2539 		if (READ_ONCE(ptype->ignore_outgoing))
2540 			continue;
2541 
2542 		/* Never send packets back to the socket
2543 		 * they originated from - MvS (miquels@drinkel.ow.org)
2544 		 */
2545 		if (skb_loop_sk(ptype, skb))
2546 			continue;
2547 
2548 		if (unlikely(pt_prev)) {
2549 			deliver_skb(skb2, pt_prev, skb->dev);
2550 			pt_prev = ptype;
2551 			continue;
2552 		}
2553 
2554 		/* need to clone skb, done only once */
2555 		skb2 = skb_clone(skb, GFP_ATOMIC);
2556 		if (!skb2)
2557 			goto out_unlock;
2558 
2559 		net_timestamp_set(skb2);
2560 
2561 		/* skb->nh should be correctly
2562 		 * set by sender, so that the second statement is
2563 		 * just protection against buggy protocols.
2564 		 */
2565 		skb_reset_mac_header(skb2);
2566 
2567 		if (skb_network_header(skb2) < skb2->data ||
2568 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2569 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2570 					     ntohs(skb2->protocol),
2571 					     dev->name);
2572 			skb_reset_network_header(skb2);
2573 		}
2574 
2575 		skb2->transport_header = skb2->network_header;
2576 		skb2->pkt_type = PACKET_OUTGOING;
2577 		pt_prev = ptype;
2578 	}
2579 
2580 	if (ptype_list != &dev->ptype_all) {
2581 		ptype_list = &dev->ptype_all;
2582 		goto again;
2583 	}
2584 out_unlock:
2585 	if (pt_prev) {
2586 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2587 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2588 		else
2589 			kfree_skb(skb2);
2590 	}
2591 	rcu_read_unlock();
2592 }
2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2594 
2595 /**
2596  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2597  * @dev: Network device
2598  * @txq: number of queues available
2599  *
2600  * If real_num_tx_queues is changed the tc mappings may no longer be
2601  * valid. To resolve this verify the tc mapping remains valid and if
2602  * not NULL the mapping. With no priorities mapping to this
2603  * offset/count pair it will no longer be used. In the worst case TC0
2604  * is invalid nothing can be done so disable priority mappings. If is
2605  * expected that drivers will fix this mapping if they can before
2606  * calling netif_set_real_num_tx_queues.
2607  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2609 {
2610 	int i;
2611 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2612 
2613 	/* If TC0 is invalidated disable TC mapping */
2614 	if (tc->offset + tc->count > txq) {
2615 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2616 		dev->num_tc = 0;
2617 		return;
2618 	}
2619 
2620 	/* Invalidated prio to tc mappings set to TC0 */
2621 	for (i = 1; i < TC_BITMASK + 1; i++) {
2622 		int q = netdev_get_prio_tc_map(dev, i);
2623 
2624 		tc = &dev->tc_to_txq[q];
2625 		if (tc->offset + tc->count > txq) {
2626 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2627 				    i, q);
2628 			netdev_set_prio_tc_map(dev, i, 0);
2629 		}
2630 	}
2631 }
2632 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2634 {
2635 	if (dev->num_tc) {
2636 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2637 		int i;
2638 
2639 		/* walk through the TCs and see if it falls into any of them */
2640 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2641 			if ((txq - tc->offset) < tc->count)
2642 				return i;
2643 		}
2644 
2645 		/* didn't find it, just return -1 to indicate no match */
2646 		return -1;
2647 	}
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_txq_to_tc);
2652 
2653 #ifdef CONFIG_XPS
2654 static struct static_key xps_needed __read_mostly;
2655 static struct static_key xps_rxqs_needed __read_mostly;
2656 static DEFINE_MUTEX(xps_map_mutex);
2657 #define xmap_dereference(P)		\
2658 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2659 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2661 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2662 {
2663 	struct xps_map *map = NULL;
2664 	int pos;
2665 
2666 	map = xmap_dereference(dev_maps->attr_map[tci]);
2667 	if (!map)
2668 		return false;
2669 
2670 	for (pos = map->len; pos--;) {
2671 		if (map->queues[pos] != index)
2672 			continue;
2673 
2674 		if (map->len > 1) {
2675 			map->queues[pos] = map->queues[--map->len];
2676 			break;
2677 		}
2678 
2679 		if (old_maps)
2680 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2681 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2682 		kfree_rcu(map, rcu);
2683 		return false;
2684 	}
2685 
2686 	return true;
2687 }
2688 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2689 static bool remove_xps_queue_cpu(struct net_device *dev,
2690 				 struct xps_dev_maps *dev_maps,
2691 				 int cpu, u16 offset, u16 count)
2692 {
2693 	int num_tc = dev_maps->num_tc;
2694 	bool active = false;
2695 	int tci;
2696 
2697 	for (tci = cpu * num_tc; num_tc--; tci++) {
2698 		int i, j;
2699 
2700 		for (i = count, j = offset; i--; j++) {
2701 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2702 				break;
2703 		}
2704 
2705 		active |= i < 0;
2706 	}
2707 
2708 	return active;
2709 }
2710 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2711 static void reset_xps_maps(struct net_device *dev,
2712 			   struct xps_dev_maps *dev_maps,
2713 			   enum xps_map_type type)
2714 {
2715 	static_key_slow_dec_cpuslocked(&xps_needed);
2716 	if (type == XPS_RXQS)
2717 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2718 
2719 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2720 
2721 	kfree_rcu(dev_maps, rcu);
2722 }
2723 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2725 			   u16 offset, u16 count)
2726 {
2727 	struct xps_dev_maps *dev_maps;
2728 	bool active = false;
2729 	int i, j;
2730 
2731 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2732 	if (!dev_maps)
2733 		return;
2734 
2735 	for (j = 0; j < dev_maps->nr_ids; j++)
2736 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2737 	if (!active)
2738 		reset_xps_maps(dev, dev_maps, type);
2739 
2740 	if (type == XPS_CPUS) {
2741 		for (i = offset + (count - 1); count--; i--)
2742 			netdev_queue_numa_node_write(
2743 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2744 	}
2745 }
2746 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2748 				   u16 count)
2749 {
2750 	if (!static_key_false(&xps_needed))
2751 		return;
2752 
2753 	cpus_read_lock();
2754 	mutex_lock(&xps_map_mutex);
2755 
2756 	if (static_key_false(&xps_rxqs_needed))
2757 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2758 
2759 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2760 
2761 	mutex_unlock(&xps_map_mutex);
2762 	cpus_read_unlock();
2763 }
2764 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2766 {
2767 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2768 }
2769 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2771 				      u16 index, bool is_rxqs_map)
2772 {
2773 	struct xps_map *new_map;
2774 	int alloc_len = XPS_MIN_MAP_ALLOC;
2775 	int i, pos;
2776 
2777 	for (pos = 0; map && pos < map->len; pos++) {
2778 		if (map->queues[pos] != index)
2779 			continue;
2780 		return map;
2781 	}
2782 
2783 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2784 	if (map) {
2785 		if (pos < map->alloc_len)
2786 			return map;
2787 
2788 		alloc_len = map->alloc_len * 2;
2789 	}
2790 
2791 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2792 	 *  map
2793 	 */
2794 	if (is_rxqs_map)
2795 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2796 	else
2797 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2798 				       cpu_to_node(attr_index));
2799 	if (!new_map)
2800 		return NULL;
2801 
2802 	for (i = 0; i < pos; i++)
2803 		new_map->queues[i] = map->queues[i];
2804 	new_map->alloc_len = alloc_len;
2805 	new_map->len = pos;
2806 
2807 	return new_map;
2808 }
2809 
2810 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2812 			      struct xps_dev_maps *new_dev_maps, int index,
2813 			      int tc, bool skip_tc)
2814 {
2815 	int i, tci = index * dev_maps->num_tc;
2816 	struct xps_map *map;
2817 
2818 	/* copy maps belonging to foreign traffic classes */
2819 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2820 		if (i == tc && skip_tc)
2821 			continue;
2822 
2823 		/* fill in the new device map from the old device map */
2824 		map = xmap_dereference(dev_maps->attr_map[tci]);
2825 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2826 	}
2827 }
2828 
2829 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2831 			  u16 index, enum xps_map_type type)
2832 {
2833 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2834 	const unsigned long *online_mask = NULL;
2835 	bool active = false, copy = false;
2836 	int i, j, tci, numa_node_id = -2;
2837 	int maps_sz, num_tc = 1, tc = 0;
2838 	struct xps_map *map, *new_map;
2839 	unsigned int nr_ids;
2840 
2841 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2842 
2843 	if (dev->num_tc) {
2844 		/* Do not allow XPS on subordinate device directly */
2845 		num_tc = dev->num_tc;
2846 		if (num_tc < 0)
2847 			return -EINVAL;
2848 
2849 		/* If queue belongs to subordinate dev use its map */
2850 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2851 
2852 		tc = netdev_txq_to_tc(dev, index);
2853 		if (tc < 0)
2854 			return -EINVAL;
2855 	}
2856 
2857 	mutex_lock(&xps_map_mutex);
2858 
2859 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2860 	if (type == XPS_RXQS) {
2861 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2862 		nr_ids = dev->num_rx_queues;
2863 	} else {
2864 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2865 		if (num_possible_cpus() > 1)
2866 			online_mask = cpumask_bits(cpu_online_mask);
2867 		nr_ids = nr_cpu_ids;
2868 	}
2869 
2870 	if (maps_sz < L1_CACHE_BYTES)
2871 		maps_sz = L1_CACHE_BYTES;
2872 
2873 	/* The old dev_maps could be larger or smaller than the one we're
2874 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2875 	 * between. We could try to be smart, but let's be safe instead and only
2876 	 * copy foreign traffic classes if the two map sizes match.
2877 	 */
2878 	if (dev_maps &&
2879 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2880 		copy = true;
2881 
2882 	/* allocate memory for queue storage */
2883 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2884 	     j < nr_ids;) {
2885 		if (!new_dev_maps) {
2886 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2887 			if (!new_dev_maps) {
2888 				mutex_unlock(&xps_map_mutex);
2889 				return -ENOMEM;
2890 			}
2891 
2892 			new_dev_maps->nr_ids = nr_ids;
2893 			new_dev_maps->num_tc = num_tc;
2894 		}
2895 
2896 		tci = j * num_tc + tc;
2897 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2898 
2899 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2900 		if (!map)
2901 			goto error;
2902 
2903 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2904 	}
2905 
2906 	if (!new_dev_maps)
2907 		goto out_no_new_maps;
2908 
2909 	if (!dev_maps) {
2910 		/* Increment static keys at most once per type */
2911 		static_key_slow_inc_cpuslocked(&xps_needed);
2912 		if (type == XPS_RXQS)
2913 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2914 	}
2915 
2916 	for (j = 0; j < nr_ids; j++) {
2917 		bool skip_tc = false;
2918 
2919 		tci = j * num_tc + tc;
2920 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2921 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2922 			/* add tx-queue to CPU/rx-queue maps */
2923 			int pos = 0;
2924 
2925 			skip_tc = true;
2926 
2927 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2928 			while ((pos < map->len) && (map->queues[pos] != index))
2929 				pos++;
2930 
2931 			if (pos == map->len)
2932 				map->queues[map->len++] = index;
2933 #ifdef CONFIG_NUMA
2934 			if (type == XPS_CPUS) {
2935 				if (numa_node_id == -2)
2936 					numa_node_id = cpu_to_node(j);
2937 				else if (numa_node_id != cpu_to_node(j))
2938 					numa_node_id = -1;
2939 			}
2940 #endif
2941 		}
2942 
2943 		if (copy)
2944 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2945 					  skip_tc);
2946 	}
2947 
2948 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2949 
2950 	/* Cleanup old maps */
2951 	if (!dev_maps)
2952 		goto out_no_old_maps;
2953 
2954 	for (j = 0; j < dev_maps->nr_ids; j++) {
2955 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2956 			map = xmap_dereference(dev_maps->attr_map[tci]);
2957 			if (!map)
2958 				continue;
2959 
2960 			if (copy) {
2961 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2962 				if (map == new_map)
2963 					continue;
2964 			}
2965 
2966 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2967 			kfree_rcu(map, rcu);
2968 		}
2969 	}
2970 
2971 	old_dev_maps = dev_maps;
2972 
2973 out_no_old_maps:
2974 	dev_maps = new_dev_maps;
2975 	active = true;
2976 
2977 out_no_new_maps:
2978 	if (type == XPS_CPUS)
2979 		/* update Tx queue numa node */
2980 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2981 					     (numa_node_id >= 0) ?
2982 					     numa_node_id : NUMA_NO_NODE);
2983 
2984 	if (!dev_maps)
2985 		goto out_no_maps;
2986 
2987 	/* removes tx-queue from unused CPUs/rx-queues */
2988 	for (j = 0; j < dev_maps->nr_ids; j++) {
2989 		tci = j * dev_maps->num_tc;
2990 
2991 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2992 			if (i == tc &&
2993 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2994 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2995 				continue;
2996 
2997 			active |= remove_xps_queue(dev_maps,
2998 						   copy ? old_dev_maps : NULL,
2999 						   tci, index);
3000 		}
3001 	}
3002 
3003 	if (old_dev_maps)
3004 		kfree_rcu(old_dev_maps, rcu);
3005 
3006 	/* free map if not active */
3007 	if (!active)
3008 		reset_xps_maps(dev, dev_maps, type);
3009 
3010 out_no_maps:
3011 	mutex_unlock(&xps_map_mutex);
3012 
3013 	return 0;
3014 error:
3015 	/* remove any maps that we added */
3016 	for (j = 0; j < nr_ids; j++) {
3017 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3018 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3019 			map = copy ?
3020 			      xmap_dereference(dev_maps->attr_map[tci]) :
3021 			      NULL;
3022 			if (new_map && new_map != map)
3023 				kfree(new_map);
3024 		}
3025 	}
3026 
3027 	mutex_unlock(&xps_map_mutex);
3028 
3029 	kfree(new_dev_maps);
3030 	return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3033 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 			u16 index)
3036 {
3037 	int ret;
3038 
3039 	cpus_read_lock();
3040 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3041 	cpus_read_unlock();
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL(netif_set_xps_queue);
3046 
3047 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3048 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3049 {
3050 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051 
3052 	/* Unbind any subordinate channels */
3053 	while (txq-- != &dev->_tx[0]) {
3054 		if (txq->sb_dev)
3055 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3056 	}
3057 }
3058 
netdev_reset_tc(struct net_device * dev)3059 void netdev_reset_tc(struct net_device *dev)
3060 {
3061 #ifdef CONFIG_XPS
3062 	netif_reset_xps_queues_gt(dev, 0);
3063 #endif
3064 	netdev_unbind_all_sb_channels(dev);
3065 
3066 	/* Reset TC configuration of device */
3067 	dev->num_tc = 0;
3068 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3069 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3070 }
3071 EXPORT_SYMBOL(netdev_reset_tc);
3072 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3074 {
3075 	if (tc >= dev->num_tc)
3076 		return -EINVAL;
3077 
3078 #ifdef CONFIG_XPS
3079 	netif_reset_xps_queues(dev, offset, count);
3080 #endif
3081 	dev->tc_to_txq[tc].count = count;
3082 	dev->tc_to_txq[tc].offset = offset;
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(netdev_set_tc_queue);
3086 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3088 {
3089 	if (num_tc > TC_MAX_QUEUE)
3090 		return -EINVAL;
3091 
3092 #ifdef CONFIG_XPS
3093 	netif_reset_xps_queues_gt(dev, 0);
3094 #endif
3095 	netdev_unbind_all_sb_channels(dev);
3096 
3097 	dev->num_tc = num_tc;
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(netdev_set_num_tc);
3101 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3102 void netdev_unbind_sb_channel(struct net_device *dev,
3103 			      struct net_device *sb_dev)
3104 {
3105 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3106 
3107 #ifdef CONFIG_XPS
3108 	netif_reset_xps_queues_gt(sb_dev, 0);
3109 #endif
3110 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3111 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3112 
3113 	while (txq-- != &dev->_tx[0]) {
3114 		if (txq->sb_dev == sb_dev)
3115 			txq->sb_dev = NULL;
3116 	}
3117 }
3118 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3119 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3120 int netdev_bind_sb_channel_queue(struct net_device *dev,
3121 				 struct net_device *sb_dev,
3122 				 u8 tc, u16 count, u16 offset)
3123 {
3124 	/* Make certain the sb_dev and dev are already configured */
3125 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3126 		return -EINVAL;
3127 
3128 	/* We cannot hand out queues we don't have */
3129 	if ((offset + count) > dev->real_num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	/* Record the mapping */
3133 	sb_dev->tc_to_txq[tc].count = count;
3134 	sb_dev->tc_to_txq[tc].offset = offset;
3135 
3136 	/* Provide a way for Tx queue to find the tc_to_txq map or
3137 	 * XPS map for itself.
3138 	 */
3139 	while (count--)
3140 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3141 
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3145 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3147 {
3148 	/* Do not use a multiqueue device to represent a subordinate channel */
3149 	if (netif_is_multiqueue(dev))
3150 		return -ENODEV;
3151 
3152 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3153 	 * Channel 0 is meant to be "native" mode and used only to represent
3154 	 * the main root device. We allow writing 0 to reset the device back
3155 	 * to normal mode after being used as a subordinate channel.
3156 	 */
3157 	if (channel > S16_MAX)
3158 		return -EINVAL;
3159 
3160 	dev->num_tc = -channel;
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netdev_set_sb_channel);
3165 
3166 /*
3167  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3168  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3169  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3171 {
3172 	bool disabling;
3173 	int rc;
3174 
3175 	disabling = txq < dev->real_num_tx_queues;
3176 
3177 	if (txq < 1 || txq > dev->num_tx_queues)
3178 		return -EINVAL;
3179 
3180 	if (dev->reg_state == NETREG_REGISTERED ||
3181 	    dev->reg_state == NETREG_UNREGISTERING) {
3182 		netdev_ops_assert_locked(dev);
3183 
3184 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3185 						  txq);
3186 		if (rc)
3187 			return rc;
3188 
3189 		if (dev->num_tc)
3190 			netif_setup_tc(dev, txq);
3191 
3192 		net_shaper_set_real_num_tx_queues(dev, txq);
3193 
3194 		dev_qdisc_change_real_num_tx(dev, txq);
3195 
3196 		dev->real_num_tx_queues = txq;
3197 
3198 		if (disabling) {
3199 			synchronize_net();
3200 			qdisc_reset_all_tx_gt(dev, txq);
3201 #ifdef CONFIG_XPS
3202 			netif_reset_xps_queues_gt(dev, txq);
3203 #endif
3204 		}
3205 	} else {
3206 		dev->real_num_tx_queues = txq;
3207 	}
3208 
3209 	return 0;
3210 }
3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3212 
3213 /**
3214  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3215  *	@dev: Network device
3216  *	@rxq: Actual number of RX queues
3217  *
3218  *	This must be called either with the rtnl_lock held or before
3219  *	registration of the net device.  Returns 0 on success, or a
3220  *	negative error code.  If called before registration, it always
3221  *	succeeds.
3222  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3224 {
3225 	int rc;
3226 
3227 	if (rxq < 1 || rxq > dev->num_rx_queues)
3228 		return -EINVAL;
3229 
3230 	if (dev->reg_state == NETREG_REGISTERED) {
3231 		netdev_ops_assert_locked(dev);
3232 
3233 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3234 						  rxq);
3235 		if (rc)
3236 			return rc;
3237 	}
3238 
3239 	dev->real_num_rx_queues = rxq;
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3243 
3244 /**
3245  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3246  *	@dev: Network device
3247  *	@txq: Actual number of TX queues
3248  *	@rxq: Actual number of RX queues
3249  *
3250  *	Set the real number of both TX and RX queues.
3251  *	Does nothing if the number of queues is already correct.
3252  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3253 int netif_set_real_num_queues(struct net_device *dev,
3254 			      unsigned int txq, unsigned int rxq)
3255 {
3256 	unsigned int old_rxq = dev->real_num_rx_queues;
3257 	int err;
3258 
3259 	if (txq < 1 || txq > dev->num_tx_queues ||
3260 	    rxq < 1 || rxq > dev->num_rx_queues)
3261 		return -EINVAL;
3262 
3263 	/* Start from increases, so the error path only does decreases -
3264 	 * decreases can't fail.
3265 	 */
3266 	if (rxq > dev->real_num_rx_queues) {
3267 		err = netif_set_real_num_rx_queues(dev, rxq);
3268 		if (err)
3269 			return err;
3270 	}
3271 	if (txq > dev->real_num_tx_queues) {
3272 		err = netif_set_real_num_tx_queues(dev, txq);
3273 		if (err)
3274 			goto undo_rx;
3275 	}
3276 	if (rxq < dev->real_num_rx_queues)
3277 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3278 	if (txq < dev->real_num_tx_queues)
3279 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3280 
3281 	return 0;
3282 undo_rx:
3283 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3284 	return err;
3285 }
3286 EXPORT_SYMBOL(netif_set_real_num_queues);
3287 
3288 /**
3289  * netif_set_tso_max_size() - set the max size of TSO frames supported
3290  * @dev:	netdev to update
3291  * @size:	max skb->len of a TSO frame
3292  *
3293  * Set the limit on the size of TSO super-frames the device can handle.
3294  * Unless explicitly set the stack will assume the value of
3295  * %GSO_LEGACY_MAX_SIZE.
3296  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3298 {
3299 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3300 	if (size < READ_ONCE(dev->gso_max_size))
3301 		netif_set_gso_max_size(dev, size);
3302 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3303 		netif_set_gso_ipv4_max_size(dev, size);
3304 }
3305 EXPORT_SYMBOL(netif_set_tso_max_size);
3306 
3307 /**
3308  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3309  * @dev:	netdev to update
3310  * @segs:	max number of TCP segments
3311  *
3312  * Set the limit on the number of TCP segments the device can generate from
3313  * a single TSO super-frame.
3314  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3315  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3317 {
3318 	dev->tso_max_segs = segs;
3319 	if (segs < READ_ONCE(dev->gso_max_segs))
3320 		netif_set_gso_max_segs(dev, segs);
3321 }
3322 EXPORT_SYMBOL(netif_set_tso_max_segs);
3323 
3324 /**
3325  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3326  * @to:		netdev to update
3327  * @from:	netdev from which to copy the limits
3328  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3330 {
3331 	netif_set_tso_max_size(to, from->tso_max_size);
3332 	netif_set_tso_max_segs(to, from->tso_max_segs);
3333 }
3334 EXPORT_SYMBOL(netif_inherit_tso_max);
3335 
3336 /**
3337  * netif_get_num_default_rss_queues - default number of RSS queues
3338  *
3339  * Default value is the number of physical cores if there are only 1 or 2, or
3340  * divided by 2 if there are more.
3341  */
netif_get_num_default_rss_queues(void)3342 int netif_get_num_default_rss_queues(void)
3343 {
3344 	cpumask_var_t cpus;
3345 	int cpu, count = 0;
3346 
3347 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3348 		return 1;
3349 
3350 	cpumask_copy(cpus, cpu_online_mask);
3351 	for_each_cpu(cpu, cpus) {
3352 		++count;
3353 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3354 	}
3355 	free_cpumask_var(cpus);
3356 
3357 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3358 }
3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3360 
__netif_reschedule(struct Qdisc * q)3361 static void __netif_reschedule(struct Qdisc *q)
3362 {
3363 	struct softnet_data *sd;
3364 	unsigned long flags;
3365 
3366 	local_irq_save(flags);
3367 	sd = this_cpu_ptr(&softnet_data);
3368 	q->next_sched = NULL;
3369 	*sd->output_queue_tailp = q;
3370 	sd->output_queue_tailp = &q->next_sched;
3371 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3372 	local_irq_restore(flags);
3373 }
3374 
__netif_schedule(struct Qdisc * q)3375 void __netif_schedule(struct Qdisc *q)
3376 {
3377 	/* If q->defer_list is not empty, at least one thread is
3378 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3379 	 * This thread will attempt to run the queue.
3380 	 */
3381 	if (!llist_empty(&q->defer_list))
3382 		return;
3383 
3384 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3385 		__netif_reschedule(q);
3386 }
3387 EXPORT_SYMBOL(__netif_schedule);
3388 
3389 struct dev_kfree_skb_cb {
3390 	enum skb_drop_reason reason;
3391 };
3392 
get_kfree_skb_cb(const struct sk_buff * skb)3393 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3394 {
3395 	return (struct dev_kfree_skb_cb *)skb->cb;
3396 }
3397 
netif_schedule_queue(struct netdev_queue * txq)3398 void netif_schedule_queue(struct netdev_queue *txq)
3399 {
3400 	rcu_read_lock();
3401 	if (!netif_xmit_stopped(txq)) {
3402 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3403 
3404 		__netif_schedule(q);
3405 	}
3406 	rcu_read_unlock();
3407 }
3408 EXPORT_SYMBOL(netif_schedule_queue);
3409 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3410 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3411 {
3412 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3413 		struct Qdisc *q;
3414 
3415 		rcu_read_lock();
3416 		q = rcu_dereference(dev_queue->qdisc);
3417 		__netif_schedule(q);
3418 		rcu_read_unlock();
3419 	}
3420 }
3421 EXPORT_SYMBOL(netif_tx_wake_queue);
3422 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3423 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3424 {
3425 	unsigned long flags;
3426 
3427 	if (unlikely(!skb))
3428 		return;
3429 
3430 	if (likely(refcount_read(&skb->users) == 1)) {
3431 		smp_rmb();
3432 		refcount_set(&skb->users, 0);
3433 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3434 		return;
3435 	}
3436 	get_kfree_skb_cb(skb)->reason = reason;
3437 	local_irq_save(flags);
3438 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3439 	__this_cpu_write(softnet_data.completion_queue, skb);
3440 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3441 	local_irq_restore(flags);
3442 }
3443 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3444 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3445 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3446 {
3447 	if (in_hardirq() || irqs_disabled())
3448 		dev_kfree_skb_irq_reason(skb, reason);
3449 	else
3450 		kfree_skb_reason(skb, reason);
3451 }
3452 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3453 
3454 
3455 /**
3456  * netif_device_detach - mark device as removed
3457  * @dev: network device
3458  *
3459  * Mark device as removed from system and therefore no longer available.
3460  */
netif_device_detach(struct net_device * dev)3461 void netif_device_detach(struct net_device *dev)
3462 {
3463 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3464 	    netif_running(dev)) {
3465 		netif_tx_stop_all_queues(dev);
3466 	}
3467 }
3468 EXPORT_SYMBOL(netif_device_detach);
3469 
3470 /**
3471  * netif_device_attach - mark device as attached
3472  * @dev: network device
3473  *
3474  * Mark device as attached from system and restart if needed.
3475  */
netif_device_attach(struct net_device * dev)3476 void netif_device_attach(struct net_device *dev)
3477 {
3478 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3479 	    netif_running(dev)) {
3480 		netif_tx_wake_all_queues(dev);
3481 		netdev_watchdog_up(dev);
3482 	}
3483 }
3484 EXPORT_SYMBOL(netif_device_attach);
3485 
3486 /*
3487  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3488  * to be used as a distribution range.
3489  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3490 static u16 skb_tx_hash(const struct net_device *dev,
3491 		       const struct net_device *sb_dev,
3492 		       struct sk_buff *skb)
3493 {
3494 	u32 hash;
3495 	u16 qoffset = 0;
3496 	u16 qcount = dev->real_num_tx_queues;
3497 
3498 	if (dev->num_tc) {
3499 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3500 
3501 		qoffset = sb_dev->tc_to_txq[tc].offset;
3502 		qcount = sb_dev->tc_to_txq[tc].count;
3503 		if (unlikely(!qcount)) {
3504 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3505 					     sb_dev->name, qoffset, tc);
3506 			qoffset = 0;
3507 			qcount = dev->real_num_tx_queues;
3508 		}
3509 	}
3510 
3511 	if (skb_rx_queue_recorded(skb)) {
3512 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3513 		hash = skb_get_rx_queue(skb);
3514 		if (hash >= qoffset)
3515 			hash -= qoffset;
3516 		while (unlikely(hash >= qcount))
3517 			hash -= qcount;
3518 		return hash + qoffset;
3519 	}
3520 
3521 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3522 }
3523 
skb_warn_bad_offload(const struct sk_buff * skb)3524 void skb_warn_bad_offload(const struct sk_buff *skb)
3525 {
3526 	static const netdev_features_t null_features;
3527 	struct net_device *dev = skb->dev;
3528 	const char *name = "";
3529 
3530 	if (!net_ratelimit())
3531 		return;
3532 
3533 	if (dev) {
3534 		if (dev->dev.parent)
3535 			name = dev_driver_string(dev->dev.parent);
3536 		else
3537 			name = netdev_name(dev);
3538 	}
3539 	skb_dump(KERN_WARNING, skb, false);
3540 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3541 	     name, dev ? &dev->features : &null_features,
3542 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3543 }
3544 
3545 /*
3546  * Invalidate hardware checksum when packet is to be mangled, and
3547  * complete checksum manually on outgoing path.
3548  */
skb_checksum_help(struct sk_buff * skb)3549 int skb_checksum_help(struct sk_buff *skb)
3550 {
3551 	__wsum csum;
3552 	int ret = 0, offset;
3553 
3554 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3555 		goto out_set_summed;
3556 
3557 	if (unlikely(skb_is_gso(skb))) {
3558 		skb_warn_bad_offload(skb);
3559 		return -EINVAL;
3560 	}
3561 
3562 	if (!skb_frags_readable(skb)) {
3563 		return -EFAULT;
3564 	}
3565 
3566 	/* Before computing a checksum, we should make sure no frag could
3567 	 * be modified by an external entity : checksum could be wrong.
3568 	 */
3569 	if (skb_has_shared_frag(skb)) {
3570 		ret = __skb_linearize(skb);
3571 		if (ret)
3572 			goto out;
3573 	}
3574 
3575 	offset = skb_checksum_start_offset(skb);
3576 	ret = -EINVAL;
3577 	if (unlikely(offset >= skb_headlen(skb))) {
3578 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3579 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3580 			  offset, skb_headlen(skb));
3581 		goto out;
3582 	}
3583 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3584 
3585 	offset += skb->csum_offset;
3586 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3587 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3588 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3589 			  offset + sizeof(__sum16), skb_headlen(skb));
3590 		goto out;
3591 	}
3592 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3593 	if (ret)
3594 		goto out;
3595 
3596 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3597 out_set_summed:
3598 	skb->ip_summed = CHECKSUM_NONE;
3599 out:
3600 	return ret;
3601 }
3602 EXPORT_SYMBOL(skb_checksum_help);
3603 
3604 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3605 int skb_crc32c_csum_help(struct sk_buff *skb)
3606 {
3607 	u32 crc;
3608 	int ret = 0, offset, start;
3609 
3610 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3611 		goto out;
3612 
3613 	if (unlikely(skb_is_gso(skb)))
3614 		goto out;
3615 
3616 	/* Before computing a checksum, we should make sure no frag could
3617 	 * be modified by an external entity : checksum could be wrong.
3618 	 */
3619 	if (unlikely(skb_has_shared_frag(skb))) {
3620 		ret = __skb_linearize(skb);
3621 		if (ret)
3622 			goto out;
3623 	}
3624 	start = skb_checksum_start_offset(skb);
3625 	offset = start + offsetof(struct sctphdr, checksum);
3626 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3632 	if (ret)
3633 		goto out;
3634 
3635 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3636 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3637 	skb_reset_csum_not_inet(skb);
3638 out:
3639 	return ret;
3640 }
3641 EXPORT_SYMBOL(skb_crc32c_csum_help);
3642 #endif /* CONFIG_NET_CRC32C */
3643 
skb_network_protocol(struct sk_buff * skb,int * depth)3644 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3645 {
3646 	__be16 type = skb->protocol;
3647 
3648 	/* Tunnel gso handlers can set protocol to ethernet. */
3649 	if (type == htons(ETH_P_TEB)) {
3650 		struct ethhdr *eth;
3651 
3652 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3653 			return 0;
3654 
3655 		eth = (struct ethhdr *)skb->data;
3656 		type = eth->h_proto;
3657 	}
3658 
3659 	return vlan_get_protocol_and_depth(skb, type, depth);
3660 }
3661 
3662 
3663 /* Take action when hardware reception checksum errors are detected. */
3664 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3665 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3666 {
3667 	netdev_err(dev, "hw csum failure\n");
3668 	skb_dump(KERN_ERR, skb, true);
3669 	dump_stack();
3670 }
3671 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3672 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3675 }
3676 EXPORT_SYMBOL(netdev_rx_csum_fault);
3677 #endif
3678 
3679 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3680 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3681 {
3682 #ifdef CONFIG_HIGHMEM
3683 	int i;
3684 
3685 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3686 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3687 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3688 			struct page *page = skb_frag_page(frag);
3689 
3690 			if (page && PageHighMem(page))
3691 				return 1;
3692 		}
3693 	}
3694 #endif
3695 	return 0;
3696 }
3697 
3698 /* If MPLS offload request, verify we are testing hardware MPLS features
3699  * instead of standard features for the netdev.
3700  */
3701 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3702 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3703 					   netdev_features_t features,
3704 					   __be16 type)
3705 {
3706 	if (eth_p_mpls(type))
3707 		features &= skb->dev->mpls_features;
3708 
3709 	return features;
3710 }
3711 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3712 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3713 					   netdev_features_t features,
3714 					   __be16 type)
3715 {
3716 	return features;
3717 }
3718 #endif
3719 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3720 static netdev_features_t harmonize_features(struct sk_buff *skb,
3721 	netdev_features_t features)
3722 {
3723 	__be16 type;
3724 
3725 	type = skb_network_protocol(skb, NULL);
3726 	features = net_mpls_features(skb, features, type);
3727 
3728 	if (skb->ip_summed != CHECKSUM_NONE &&
3729 	    !can_checksum_protocol(features, type)) {
3730 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3731 	}
3732 	if (illegal_highdma(skb->dev, skb))
3733 		features &= ~NETIF_F_SG;
3734 
3735 	return features;
3736 }
3737 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 netdev_features_t passthru_features_check(struct sk_buff *skb,
3739 					  struct net_device *dev,
3740 					  netdev_features_t features)
3741 {
3742 	return features;
3743 }
3744 EXPORT_SYMBOL(passthru_features_check);
3745 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3746 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3747 					     struct net_device *dev,
3748 					     netdev_features_t features)
3749 {
3750 	return vlan_features_check(skb, features);
3751 }
3752 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3753 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3754 					    struct net_device *dev,
3755 					    netdev_features_t features)
3756 {
3757 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3758 
3759 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3760 		return features & ~NETIF_F_GSO_MASK;
3761 
3762 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3763 		return features & ~NETIF_F_GSO_MASK;
3764 
3765 	if (!skb_shinfo(skb)->gso_type) {
3766 		skb_warn_bad_offload(skb);
3767 		return features & ~NETIF_F_GSO_MASK;
3768 	}
3769 
3770 	/* Support for GSO partial features requires software
3771 	 * intervention before we can actually process the packets
3772 	 * so we need to strip support for any partial features now
3773 	 * and we can pull them back in after we have partially
3774 	 * segmented the frame.
3775 	 */
3776 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3777 		features &= ~dev->gso_partial_features;
3778 
3779 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3780 	 * has the potential to be fragmented so that TSO does not generate
3781 	 * segments with the same ID. For encapsulated packets, the ID mangling
3782 	 * feature is guaranteed not to use the same ID for the outer IPv4
3783 	 * headers of the generated segments if the headers have the potential
3784 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3785 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3786 	 * segmentation-offloads.rst).
3787 	 */
3788 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3789 		struct iphdr *iph = skb->encapsulation ?
3790 				    inner_ip_hdr(skb) : ip_hdr(skb);
3791 
3792 		if (!(iph->frag_off & htons(IP_DF)))
3793 			features &= ~NETIF_F_TSO_MANGLEID;
3794 	}
3795 
3796 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3797 	 * so neither does TSO that depends on it.
3798 	 */
3799 	if (features & NETIF_F_IPV6_CSUM &&
3800 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3801 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3802 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3803 	    skb_transport_header_was_set(skb) &&
3804 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3805 	    !ipv6_has_hopopt_jumbo(skb))
3806 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3807 
3808 	return features;
3809 }
3810 
netif_skb_features(struct sk_buff * skb)3811 netdev_features_t netif_skb_features(struct sk_buff *skb)
3812 {
3813 	struct net_device *dev = skb->dev;
3814 	netdev_features_t features = dev->features;
3815 
3816 	if (skb_is_gso(skb))
3817 		features = gso_features_check(skb, dev, features);
3818 
3819 	/* If encapsulation offload request, verify we are testing
3820 	 * hardware encapsulation features instead of standard
3821 	 * features for the netdev
3822 	 */
3823 	if (skb->encapsulation)
3824 		features &= dev->hw_enc_features;
3825 
3826 	if (skb_vlan_tagged(skb))
3827 		features = netdev_intersect_features(features,
3828 						     dev->vlan_features |
3829 						     NETIF_F_HW_VLAN_CTAG_TX |
3830 						     NETIF_F_HW_VLAN_STAG_TX);
3831 
3832 	if (dev->netdev_ops->ndo_features_check)
3833 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3834 								features);
3835 	else
3836 		features &= dflt_features_check(skb, dev, features);
3837 
3838 	return harmonize_features(skb, features);
3839 }
3840 EXPORT_SYMBOL(netif_skb_features);
3841 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3842 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3843 		    struct netdev_queue *txq, bool more)
3844 {
3845 	unsigned int len;
3846 	int rc;
3847 
3848 	if (dev_nit_active_rcu(dev))
3849 		dev_queue_xmit_nit(skb, dev);
3850 
3851 	len = skb->len;
3852 	trace_net_dev_start_xmit(skb, dev);
3853 	rc = netdev_start_xmit(skb, dev, txq, more);
3854 	trace_net_dev_xmit(skb, rc, dev, len);
3855 
3856 	return rc;
3857 }
3858 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3859 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3860 				    struct netdev_queue *txq, int *ret)
3861 {
3862 	struct sk_buff *skb = first;
3863 	int rc = NETDEV_TX_OK;
3864 
3865 	while (skb) {
3866 		struct sk_buff *next = skb->next;
3867 
3868 		skb_mark_not_on_list(skb);
3869 		rc = xmit_one(skb, dev, txq, next != NULL);
3870 		if (unlikely(!dev_xmit_complete(rc))) {
3871 			skb->next = next;
3872 			goto out;
3873 		}
3874 
3875 		skb = next;
3876 		if (netif_tx_queue_stopped(txq) && skb) {
3877 			rc = NETDEV_TX_BUSY;
3878 			break;
3879 		}
3880 	}
3881 
3882 out:
3883 	*ret = rc;
3884 	return skb;
3885 }
3886 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3887 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3888 					  netdev_features_t features)
3889 {
3890 	if (skb_vlan_tag_present(skb) &&
3891 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3892 		skb = __vlan_hwaccel_push_inside(skb);
3893 	return skb;
3894 }
3895 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3896 int skb_csum_hwoffload_help(struct sk_buff *skb,
3897 			    const netdev_features_t features)
3898 {
3899 	if (unlikely(skb_csum_is_sctp(skb)))
3900 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3901 			skb_crc32c_csum_help(skb);
3902 
3903 	if (features & NETIF_F_HW_CSUM)
3904 		return 0;
3905 
3906 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3907 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3908 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3909 		    !ipv6_has_hopopt_jumbo(skb))
3910 			goto sw_checksum;
3911 
3912 		switch (skb->csum_offset) {
3913 		case offsetof(struct tcphdr, check):
3914 		case offsetof(struct udphdr, check):
3915 			return 0;
3916 		}
3917 	}
3918 
3919 sw_checksum:
3920 	return skb_checksum_help(skb);
3921 }
3922 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3923 
3924 /* Checks if this SKB belongs to an HW offloaded socket
3925  * and whether any SW fallbacks are required based on dev.
3926  * Check decrypted mark in case skb_orphan() cleared socket.
3927  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3928 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3929 					    struct net_device *dev)
3930 {
3931 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3932 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3933 				       struct sk_buff *skb);
3934 	struct sock *sk = skb->sk;
3935 
3936 	sk_validate = NULL;
3937 	if (sk) {
3938 		if (sk_fullsock(sk))
3939 			sk_validate = sk->sk_validate_xmit_skb;
3940 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3941 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3942 	}
3943 
3944 	if (sk_validate) {
3945 		skb = sk_validate(sk, dev, skb);
3946 	} else if (unlikely(skb_is_decrypted(skb))) {
3947 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3948 		kfree_skb(skb);
3949 		skb = NULL;
3950 	}
3951 #endif
3952 
3953 	return skb;
3954 }
3955 
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3956 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3957 						    struct net_device *dev)
3958 {
3959 	struct skb_shared_info *shinfo;
3960 	struct net_iov *niov;
3961 
3962 	if (likely(skb_frags_readable(skb)))
3963 		goto out;
3964 
3965 	if (!dev->netmem_tx)
3966 		goto out_free;
3967 
3968 	shinfo = skb_shinfo(skb);
3969 
3970 	if (shinfo->nr_frags > 0) {
3971 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3972 		if (net_is_devmem_iov(niov) &&
3973 		    net_devmem_iov_binding(niov)->dev != dev)
3974 			goto out_free;
3975 	}
3976 
3977 out:
3978 	return skb;
3979 
3980 out_free:
3981 	kfree_skb(skb);
3982 	return NULL;
3983 }
3984 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3985 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3986 {
3987 	netdev_features_t features;
3988 
3989 	skb = validate_xmit_unreadable_skb(skb, dev);
3990 	if (unlikely(!skb))
3991 		goto out_null;
3992 
3993 	features = netif_skb_features(skb);
3994 	skb = validate_xmit_vlan(skb, features);
3995 	if (unlikely(!skb))
3996 		goto out_null;
3997 
3998 	skb = sk_validate_xmit_skb(skb, dev);
3999 	if (unlikely(!skb))
4000 		goto out_null;
4001 
4002 	if (netif_needs_gso(skb, features)) {
4003 		struct sk_buff *segs;
4004 
4005 		segs = skb_gso_segment(skb, features);
4006 		if (IS_ERR(segs)) {
4007 			goto out_kfree_skb;
4008 		} else if (segs) {
4009 			consume_skb(skb);
4010 			skb = segs;
4011 		}
4012 	} else {
4013 		if (skb_needs_linearize(skb, features) &&
4014 		    __skb_linearize(skb))
4015 			goto out_kfree_skb;
4016 
4017 		/* If packet is not checksummed and device does not
4018 		 * support checksumming for this protocol, complete
4019 		 * checksumming here.
4020 		 */
4021 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4022 			if (skb->encapsulation)
4023 				skb_set_inner_transport_header(skb,
4024 							       skb_checksum_start_offset(skb));
4025 			else
4026 				skb_set_transport_header(skb,
4027 							 skb_checksum_start_offset(skb));
4028 			if (skb_csum_hwoffload_help(skb, features))
4029 				goto out_kfree_skb;
4030 		}
4031 	}
4032 
4033 	skb = validate_xmit_xfrm(skb, features, again);
4034 
4035 	return skb;
4036 
4037 out_kfree_skb:
4038 	kfree_skb(skb);
4039 out_null:
4040 	dev_core_stats_tx_dropped_inc(dev);
4041 	return NULL;
4042 }
4043 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4044 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4045 {
4046 	struct sk_buff *next, *head = NULL, *tail;
4047 
4048 	for (; skb != NULL; skb = next) {
4049 		next = skb->next;
4050 		skb_mark_not_on_list(skb);
4051 
4052 		/* in case skb won't be segmented, point to itself */
4053 		skb->prev = skb;
4054 
4055 		skb = validate_xmit_skb(skb, dev, again);
4056 		if (!skb)
4057 			continue;
4058 
4059 		if (!head)
4060 			head = skb;
4061 		else
4062 			tail->next = skb;
4063 		/* If skb was segmented, skb->prev points to
4064 		 * the last segment. If not, it still contains skb.
4065 		 */
4066 		tail = skb->prev;
4067 	}
4068 	return head;
4069 }
4070 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4071 
qdisc_pkt_len_segs_init(struct sk_buff * skb)4072 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4073 {
4074 	struct skb_shared_info *shinfo = skb_shinfo(skb);
4075 	u16 gso_segs;
4076 
4077 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4078 	if (!shinfo->gso_size) {
4079 		qdisc_skb_cb(skb)->pkt_segs = 1;
4080 		return;
4081 	}
4082 
4083 	qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4084 
4085 	/* To get more precise estimation of bytes sent on wire,
4086 	 * we add to pkt_len the headers size of all segments
4087 	 */
4088 	if (skb_transport_header_was_set(skb)) {
4089 		unsigned int hdr_len;
4090 
4091 		/* mac layer + network layer */
4092 		if (!skb->encapsulation)
4093 			hdr_len = skb_transport_offset(skb);
4094 		else
4095 			hdr_len = skb_inner_transport_offset(skb);
4096 
4097 		/* + transport layer */
4098 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4099 			const struct tcphdr *th;
4100 			struct tcphdr _tcphdr;
4101 
4102 			th = skb_header_pointer(skb, hdr_len,
4103 						sizeof(_tcphdr), &_tcphdr);
4104 			if (likely(th))
4105 				hdr_len += __tcp_hdrlen(th);
4106 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4107 			struct udphdr _udphdr;
4108 
4109 			if (skb_header_pointer(skb, hdr_len,
4110 					       sizeof(_udphdr), &_udphdr))
4111 				hdr_len += sizeof(struct udphdr);
4112 		}
4113 
4114 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4115 			int payload = skb->len - hdr_len;
4116 
4117 			/* Malicious packet. */
4118 			if (payload <= 0)
4119 				return;
4120 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4121 			shinfo->gso_segs = gso_segs;
4122 			qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4123 		}
4124 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4125 	}
4126 }
4127 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4128 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4129 			     struct sk_buff **to_free,
4130 			     struct netdev_queue *txq)
4131 {
4132 	int rc;
4133 
4134 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4135 	if (rc == NET_XMIT_SUCCESS)
4136 		trace_qdisc_enqueue(q, txq, skb);
4137 	return rc;
4138 }
4139 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4141 				 struct net_device *dev,
4142 				 struct netdev_queue *txq)
4143 {
4144 	struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4145 	spinlock_t *root_lock = qdisc_lock(q);
4146 	struct llist_node *ll_list, *first_n;
4147 	unsigned long defer_count = 0;
4148 	int rc;
4149 
4150 	qdisc_calculate_pkt_len(skb, q);
4151 
4152 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4153 
4154 	if (q->flags & TCQ_F_NOLOCK) {
4155 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4156 		    qdisc_run_begin(q)) {
4157 			/* Retest nolock_qdisc_is_empty() within the protection
4158 			 * of q->seqlock to protect from racing with requeuing.
4159 			 */
4160 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4161 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4162 				__qdisc_run(q);
4163 				to_free2 = qdisc_run_end(q);
4164 
4165 				goto free_skbs;
4166 			}
4167 
4168 			qdisc_bstats_cpu_update(q, skb);
4169 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4170 			    !nolock_qdisc_is_empty(q))
4171 				__qdisc_run(q);
4172 
4173 			to_free2 = qdisc_run_end(q);
4174 			rc = NET_XMIT_SUCCESS;
4175 			goto free_skbs;
4176 		}
4177 
4178 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 		to_free2 = qdisc_run(q);
4180 		goto free_skbs;
4181 	}
4182 
4183 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4184 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4185 	 * at most once to limit the number of skbs in defer_list.
4186 	 * We perform the defer_count increment only if the list is not empty,
4187 	 * because some arches have slow atomic_long_inc_return().
4188 	 */
4189 	first_n = READ_ONCE(q->defer_list.first);
4190 	do {
4191 		if (first_n && !defer_count) {
4192 			defer_count = atomic_long_inc_return(&q->defer_count);
4193 			if (unlikely(defer_count > READ_ONCE(q->limit))) {
4194 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4195 				return NET_XMIT_DROP;
4196 			}
4197 		}
4198 		skb->ll_node.next = first_n;
4199 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4200 
4201 	/* If defer_list was not empty, we know the cpu which queued
4202 	 * the first skb will process the whole list for us.
4203 	 */
4204 	if (first_n)
4205 		return NET_XMIT_SUCCESS;
4206 
4207 	spin_lock(root_lock);
4208 
4209 	ll_list = llist_del_all(&q->defer_list);
4210 	/* There is a small race because we clear defer_count not atomically
4211 	 * with the prior llist_del_all(). This means defer_list could grow
4212 	 * over q->limit.
4213 	 */
4214 	atomic_long_set(&q->defer_count, 0);
4215 
4216 	ll_list = llist_reverse_order(ll_list);
4217 
4218 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4219 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4220 			__qdisc_drop(skb, &to_free);
4221 		rc = NET_XMIT_DROP;
4222 		goto unlock;
4223 	}
4224 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4225 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4226 		/*
4227 		 * This is a work-conserving queue; there are no old skbs
4228 		 * waiting to be sent out; and the qdisc is not running -
4229 		 * xmit the skb directly.
4230 		 */
4231 
4232 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4233 							  struct sk_buff,
4234 							  ll_node));
4235 		qdisc_bstats_update(q, skb);
4236 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4237 			__qdisc_run(q);
4238 		to_free2 = qdisc_run_end(q);
4239 		rc = NET_XMIT_SUCCESS;
4240 	} else {
4241 		int count = 0;
4242 
4243 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4244 			if (next) {
4245 				prefetch(next);
4246 				prefetch(&next->priority);
4247 				skb_mark_not_on_list(skb);
4248 			}
4249 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4250 			count++;
4251 		}
4252 		to_free2 = qdisc_run(q);
4253 		if (count != 1)
4254 			rc = NET_XMIT_SUCCESS;
4255 	}
4256 unlock:
4257 	spin_unlock(root_lock);
4258 
4259 free_skbs:
4260 	tcf_kfree_skb_list(to_free);
4261 	tcf_kfree_skb_list(to_free2);
4262 	return rc;
4263 }
4264 
4265 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4266 static void skb_update_prio(struct sk_buff *skb)
4267 {
4268 	const struct netprio_map *map;
4269 	const struct sock *sk;
4270 	unsigned int prioidx;
4271 
4272 	if (skb->priority)
4273 		return;
4274 	map = rcu_dereference_bh(skb->dev->priomap);
4275 	if (!map)
4276 		return;
4277 	sk = skb_to_full_sk(skb);
4278 	if (!sk)
4279 		return;
4280 
4281 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4282 
4283 	if (prioidx < map->priomap_len)
4284 		skb->priority = map->priomap[prioidx];
4285 }
4286 #else
4287 #define skb_update_prio(skb)
4288 #endif
4289 
4290 /**
4291  *	dev_loopback_xmit - loop back @skb
4292  *	@net: network namespace this loopback is happening in
4293  *	@sk:  sk needed to be a netfilter okfn
4294  *	@skb: buffer to transmit
4295  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4296 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4297 {
4298 	skb_reset_mac_header(skb);
4299 	__skb_pull(skb, skb_network_offset(skb));
4300 	skb->pkt_type = PACKET_LOOPBACK;
4301 	if (skb->ip_summed == CHECKSUM_NONE)
4302 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4303 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4304 	skb_dst_force(skb);
4305 	netif_rx(skb);
4306 	return 0;
4307 }
4308 EXPORT_SYMBOL(dev_loopback_xmit);
4309 
4310 #ifdef CONFIG_NET_EGRESS
4311 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4312 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4313 {
4314 	int qm = skb_get_queue_mapping(skb);
4315 
4316 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4317 }
4318 
4319 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4320 static bool netdev_xmit_txqueue_skipped(void)
4321 {
4322 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4323 }
4324 
netdev_xmit_skip_txqueue(bool skip)4325 void netdev_xmit_skip_txqueue(bool skip)
4326 {
4327 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4328 }
4329 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4330 
4331 #else
netdev_xmit_txqueue_skipped(void)4332 static bool netdev_xmit_txqueue_skipped(void)
4333 {
4334 	return current->net_xmit.skip_txqueue;
4335 }
4336 
netdev_xmit_skip_txqueue(bool skip)4337 void netdev_xmit_skip_txqueue(bool skip)
4338 {
4339 	current->net_xmit.skip_txqueue = skip;
4340 }
4341 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4342 #endif
4343 #endif /* CONFIG_NET_EGRESS */
4344 
4345 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4346 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4347 		  enum skb_drop_reason *drop_reason)
4348 {
4349 	int ret = TC_ACT_UNSPEC;
4350 #ifdef CONFIG_NET_CLS_ACT
4351 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4352 	struct tcf_result res;
4353 
4354 	if (!miniq)
4355 		return ret;
4356 
4357 	/* Global bypass */
4358 	if (!static_branch_likely(&tcf_sw_enabled_key))
4359 		return ret;
4360 
4361 	/* Block-wise bypass */
4362 	if (tcf_block_bypass_sw(miniq->block))
4363 		return ret;
4364 
4365 	tc_skb_cb(skb)->mru = 0;
4366 	qdisc_skb_cb(skb)->post_ct = false;
4367 	tcf_set_drop_reason(skb, *drop_reason);
4368 
4369 	mini_qdisc_bstats_cpu_update(miniq, skb);
4370 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4371 	/* Only tcf related quirks below. */
4372 	switch (ret) {
4373 	case TC_ACT_SHOT:
4374 		*drop_reason = tcf_get_drop_reason(skb);
4375 		mini_qdisc_qstats_cpu_drop(miniq);
4376 		break;
4377 	case TC_ACT_OK:
4378 	case TC_ACT_RECLASSIFY:
4379 		skb->tc_index = TC_H_MIN(res.classid);
4380 		break;
4381 	}
4382 #endif /* CONFIG_NET_CLS_ACT */
4383 	return ret;
4384 }
4385 
4386 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4387 
tcx_inc(void)4388 void tcx_inc(void)
4389 {
4390 	static_branch_inc(&tcx_needed_key);
4391 }
4392 
tcx_dec(void)4393 void tcx_dec(void)
4394 {
4395 	static_branch_dec(&tcx_needed_key);
4396 }
4397 
4398 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4399 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4400 	const bool needs_mac)
4401 {
4402 	const struct bpf_mprog_fp *fp;
4403 	const struct bpf_prog *prog;
4404 	int ret = TCX_NEXT;
4405 
4406 	if (needs_mac)
4407 		__skb_push(skb, skb->mac_len);
4408 	bpf_mprog_foreach_prog(entry, fp, prog) {
4409 		bpf_compute_data_pointers(skb);
4410 		ret = bpf_prog_run(prog, skb);
4411 		if (ret != TCX_NEXT)
4412 			break;
4413 	}
4414 	if (needs_mac)
4415 		__skb_pull(skb, skb->mac_len);
4416 	return tcx_action_code(skb, ret);
4417 }
4418 
4419 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4420 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4421 		   struct net_device *orig_dev, bool *another)
4422 {
4423 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4424 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4425 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4426 	int sch_ret;
4427 
4428 	if (!entry)
4429 		return skb;
4430 
4431 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4432 	if (unlikely(*pt_prev)) {
4433 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4434 		*pt_prev = NULL;
4435 	}
4436 
4437 	qdisc_pkt_len_segs_init(skb);
4438 	tcx_set_ingress(skb, true);
4439 
4440 	if (static_branch_unlikely(&tcx_needed_key)) {
4441 		sch_ret = tcx_run(entry, skb, true);
4442 		if (sch_ret != TC_ACT_UNSPEC)
4443 			goto ingress_verdict;
4444 	}
4445 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4446 ingress_verdict:
4447 	switch (sch_ret) {
4448 	case TC_ACT_REDIRECT:
4449 		/* skb_mac_header check was done by BPF, so we can safely
4450 		 * push the L2 header back before redirecting to another
4451 		 * netdev.
4452 		 */
4453 		__skb_push(skb, skb->mac_len);
4454 		if (skb_do_redirect(skb) == -EAGAIN) {
4455 			__skb_pull(skb, skb->mac_len);
4456 			*another = true;
4457 			break;
4458 		}
4459 		*ret = NET_RX_SUCCESS;
4460 		bpf_net_ctx_clear(bpf_net_ctx);
4461 		return NULL;
4462 	case TC_ACT_SHOT:
4463 		kfree_skb_reason(skb, drop_reason);
4464 		*ret = NET_RX_DROP;
4465 		bpf_net_ctx_clear(bpf_net_ctx);
4466 		return NULL;
4467 	/* used by tc_run */
4468 	case TC_ACT_STOLEN:
4469 	case TC_ACT_QUEUED:
4470 	case TC_ACT_TRAP:
4471 		consume_skb(skb);
4472 		fallthrough;
4473 	case TC_ACT_CONSUMED:
4474 		*ret = NET_RX_SUCCESS;
4475 		bpf_net_ctx_clear(bpf_net_ctx);
4476 		return NULL;
4477 	}
4478 	bpf_net_ctx_clear(bpf_net_ctx);
4479 
4480 	return skb;
4481 }
4482 
4483 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4484 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4485 {
4486 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4487 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4488 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4489 	int sch_ret;
4490 
4491 	if (!entry)
4492 		return skb;
4493 
4494 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4495 
4496 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4497 	 * already set by the caller.
4498 	 */
4499 	if (static_branch_unlikely(&tcx_needed_key)) {
4500 		sch_ret = tcx_run(entry, skb, false);
4501 		if (sch_ret != TC_ACT_UNSPEC)
4502 			goto egress_verdict;
4503 	}
4504 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4505 egress_verdict:
4506 	switch (sch_ret) {
4507 	case TC_ACT_REDIRECT:
4508 		/* No need to push/pop skb's mac_header here on egress! */
4509 		skb_do_redirect(skb);
4510 		*ret = NET_XMIT_SUCCESS;
4511 		bpf_net_ctx_clear(bpf_net_ctx);
4512 		return NULL;
4513 	case TC_ACT_SHOT:
4514 		kfree_skb_reason(skb, drop_reason);
4515 		*ret = NET_XMIT_DROP;
4516 		bpf_net_ctx_clear(bpf_net_ctx);
4517 		return NULL;
4518 	/* used by tc_run */
4519 	case TC_ACT_STOLEN:
4520 	case TC_ACT_QUEUED:
4521 	case TC_ACT_TRAP:
4522 		consume_skb(skb);
4523 		fallthrough;
4524 	case TC_ACT_CONSUMED:
4525 		*ret = NET_XMIT_SUCCESS;
4526 		bpf_net_ctx_clear(bpf_net_ctx);
4527 		return NULL;
4528 	}
4529 	bpf_net_ctx_clear(bpf_net_ctx);
4530 
4531 	return skb;
4532 }
4533 #else
4534 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4535 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4536 		   struct net_device *orig_dev, bool *another)
4537 {
4538 	return skb;
4539 }
4540 
4541 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4542 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4543 {
4544 	return skb;
4545 }
4546 #endif /* CONFIG_NET_XGRESS */
4547 
4548 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4549 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4550 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4551 {
4552 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4553 	struct xps_map *map;
4554 	int queue_index = -1;
4555 
4556 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4557 		return queue_index;
4558 
4559 	tci *= dev_maps->num_tc;
4560 	tci += tc;
4561 
4562 	map = rcu_dereference(dev_maps->attr_map[tci]);
4563 	if (map) {
4564 		if (map->len == 1)
4565 			queue_index = map->queues[0];
4566 		else
4567 			queue_index = map->queues[reciprocal_scale(
4568 						skb_get_hash(skb), map->len)];
4569 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4570 			queue_index = -1;
4571 	}
4572 	return queue_index;
4573 }
4574 #endif
4575 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4576 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4577 			 struct sk_buff *skb)
4578 {
4579 #ifdef CONFIG_XPS
4580 	struct xps_dev_maps *dev_maps;
4581 	struct sock *sk = skb->sk;
4582 	int queue_index = -1;
4583 
4584 	if (!static_key_false(&xps_needed))
4585 		return -1;
4586 
4587 	rcu_read_lock();
4588 	if (!static_key_false(&xps_rxqs_needed))
4589 		goto get_cpus_map;
4590 
4591 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4592 	if (dev_maps) {
4593 		int tci = sk_rx_queue_get(sk);
4594 
4595 		if (tci >= 0)
4596 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4597 							  tci);
4598 	}
4599 
4600 get_cpus_map:
4601 	if (queue_index < 0) {
4602 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4603 		if (dev_maps) {
4604 			unsigned int tci = skb->sender_cpu - 1;
4605 
4606 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4607 							  tci);
4608 		}
4609 	}
4610 	rcu_read_unlock();
4611 
4612 	return queue_index;
4613 #else
4614 	return -1;
4615 #endif
4616 }
4617 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4618 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4619 		     struct net_device *sb_dev)
4620 {
4621 	return 0;
4622 }
4623 EXPORT_SYMBOL(dev_pick_tx_zero);
4624 
sk_tx_queue_get(const struct sock * sk)4625 int sk_tx_queue_get(const struct sock *sk)
4626 {
4627 	int resel, val;
4628 
4629 	if (!sk)
4630 		return -1;
4631 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4632 	 * and sk_tx_queue_set().
4633 	 */
4634 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4635 
4636 	if (val == NO_QUEUE_MAPPING)
4637 		return -1;
4638 
4639 	if (!sk_fullsock(sk))
4640 		return val;
4641 
4642 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4643 	if (resel && time_is_before_jiffies(
4644 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4645 		return -1;
4646 
4647 	return val;
4648 }
4649 EXPORT_SYMBOL(sk_tx_queue_get);
4650 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4651 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4652 		     struct net_device *sb_dev)
4653 {
4654 	struct sock *sk = skb->sk;
4655 	int queue_index = sk_tx_queue_get(sk);
4656 
4657 	sb_dev = sb_dev ? : dev;
4658 
4659 	if (queue_index < 0 || skb->ooo_okay ||
4660 	    queue_index >= dev->real_num_tx_queues) {
4661 		int new_index = get_xps_queue(dev, sb_dev, skb);
4662 
4663 		if (new_index < 0)
4664 			new_index = skb_tx_hash(dev, sb_dev, skb);
4665 
4666 		if (sk && sk_fullsock(sk) &&
4667 		    rcu_access_pointer(sk->sk_dst_cache))
4668 			sk_tx_queue_set(sk, new_index);
4669 
4670 		queue_index = new_index;
4671 	}
4672 
4673 	return queue_index;
4674 }
4675 EXPORT_SYMBOL(netdev_pick_tx);
4676 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4677 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4678 					 struct sk_buff *skb,
4679 					 struct net_device *sb_dev)
4680 {
4681 	int queue_index = 0;
4682 
4683 #ifdef CONFIG_XPS
4684 	u32 sender_cpu = skb->sender_cpu - 1;
4685 
4686 	if (sender_cpu >= (u32)NR_CPUS)
4687 		skb->sender_cpu = raw_smp_processor_id() + 1;
4688 #endif
4689 
4690 	if (dev->real_num_tx_queues != 1) {
4691 		const struct net_device_ops *ops = dev->netdev_ops;
4692 
4693 		if (ops->ndo_select_queue)
4694 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4695 		else
4696 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4697 
4698 		queue_index = netdev_cap_txqueue(dev, queue_index);
4699 	}
4700 
4701 	skb_set_queue_mapping(skb, queue_index);
4702 	return netdev_get_tx_queue(dev, queue_index);
4703 }
4704 
4705 /**
4706  * __dev_queue_xmit() - transmit a buffer
4707  * @skb:	buffer to transmit
4708  * @sb_dev:	suboordinate device used for L2 forwarding offload
4709  *
4710  * Queue a buffer for transmission to a network device. The caller must
4711  * have set the device and priority and built the buffer before calling
4712  * this function. The function can be called from an interrupt.
4713  *
4714  * When calling this method, interrupts MUST be enabled. This is because
4715  * the BH enable code must have IRQs enabled so that it will not deadlock.
4716  *
4717  * Regardless of the return value, the skb is consumed, so it is currently
4718  * difficult to retry a send to this method. (You can bump the ref count
4719  * before sending to hold a reference for retry if you are careful.)
4720  *
4721  * Return:
4722  * * 0				- buffer successfully transmitted
4723  * * positive qdisc return code	- NET_XMIT_DROP etc.
4724  * * negative errno		- other errors
4725  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4726 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4727 {
4728 	struct net_device *dev = skb->dev;
4729 	struct netdev_queue *txq = NULL;
4730 	struct Qdisc *q;
4731 	int rc = -ENOMEM;
4732 	bool again = false;
4733 
4734 	skb_reset_mac_header(skb);
4735 	skb_assert_len(skb);
4736 
4737 	if (unlikely(skb_shinfo(skb)->tx_flags &
4738 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4739 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4740 
4741 	/* Disable soft irqs for various locks below. Also
4742 	 * stops preemption for RCU.
4743 	 */
4744 	rcu_read_lock_bh();
4745 
4746 	skb_update_prio(skb);
4747 
4748 	qdisc_pkt_len_segs_init(skb);
4749 	tcx_set_ingress(skb, false);
4750 #ifdef CONFIG_NET_EGRESS
4751 	if (static_branch_unlikely(&egress_needed_key)) {
4752 		if (nf_hook_egress_active()) {
4753 			skb = nf_hook_egress(skb, &rc, dev);
4754 			if (!skb)
4755 				goto out;
4756 		}
4757 
4758 		netdev_xmit_skip_txqueue(false);
4759 
4760 		nf_skip_egress(skb, true);
4761 		skb = sch_handle_egress(skb, &rc, dev);
4762 		if (!skb)
4763 			goto out;
4764 		nf_skip_egress(skb, false);
4765 
4766 		if (netdev_xmit_txqueue_skipped())
4767 			txq = netdev_tx_queue_mapping(dev, skb);
4768 	}
4769 #endif
4770 	/* If device/qdisc don't need skb->dst, release it right now while
4771 	 * its hot in this cpu cache.
4772 	 */
4773 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4774 		skb_dst_drop(skb);
4775 	else
4776 		skb_dst_force(skb);
4777 
4778 	if (!txq)
4779 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4780 
4781 	q = rcu_dereference_bh(txq->qdisc);
4782 
4783 	trace_net_dev_queue(skb);
4784 	if (q->enqueue) {
4785 		rc = __dev_xmit_skb(skb, q, dev, txq);
4786 		goto out;
4787 	}
4788 
4789 	/* The device has no queue. Common case for software devices:
4790 	 * loopback, all the sorts of tunnels...
4791 
4792 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4793 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4794 	 * counters.)
4795 	 * However, it is possible, that they rely on protection
4796 	 * made by us here.
4797 
4798 	 * Check this and shot the lock. It is not prone from deadlocks.
4799 	 *Either shot noqueue qdisc, it is even simpler 8)
4800 	 */
4801 	if (dev->flags & IFF_UP) {
4802 		int cpu = smp_processor_id(); /* ok because BHs are off */
4803 
4804 		/* Other cpus might concurrently change txq->xmit_lock_owner
4805 		 * to -1 or to their cpu id, but not to our id.
4806 		 */
4807 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4808 			if (dev_xmit_recursion())
4809 				goto recursion_alert;
4810 
4811 			skb = validate_xmit_skb(skb, dev, &again);
4812 			if (!skb)
4813 				goto out;
4814 
4815 			HARD_TX_LOCK(dev, txq, cpu);
4816 
4817 			if (!netif_xmit_stopped(txq)) {
4818 				dev_xmit_recursion_inc();
4819 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4820 				dev_xmit_recursion_dec();
4821 				if (dev_xmit_complete(rc)) {
4822 					HARD_TX_UNLOCK(dev, txq);
4823 					goto out;
4824 				}
4825 			}
4826 			HARD_TX_UNLOCK(dev, txq);
4827 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4828 					     dev->name);
4829 		} else {
4830 			/* Recursion is detected! It is possible,
4831 			 * unfortunately
4832 			 */
4833 recursion_alert:
4834 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4835 					     dev->name);
4836 		}
4837 	}
4838 
4839 	rc = -ENETDOWN;
4840 	rcu_read_unlock_bh();
4841 
4842 	dev_core_stats_tx_dropped_inc(dev);
4843 	kfree_skb_list(skb);
4844 	return rc;
4845 out:
4846 	rcu_read_unlock_bh();
4847 	return rc;
4848 }
4849 EXPORT_SYMBOL(__dev_queue_xmit);
4850 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4851 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4852 {
4853 	struct net_device *dev = skb->dev;
4854 	struct sk_buff *orig_skb = skb;
4855 	struct netdev_queue *txq;
4856 	int ret = NETDEV_TX_BUSY;
4857 	bool again = false;
4858 
4859 	if (unlikely(!netif_running(dev) ||
4860 		     !netif_carrier_ok(dev)))
4861 		goto drop;
4862 
4863 	skb = validate_xmit_skb_list(skb, dev, &again);
4864 	if (skb != orig_skb)
4865 		goto drop;
4866 
4867 	skb_set_queue_mapping(skb, queue_id);
4868 	txq = skb_get_tx_queue(dev, skb);
4869 
4870 	local_bh_disable();
4871 
4872 	dev_xmit_recursion_inc();
4873 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4874 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4875 		ret = netdev_start_xmit(skb, dev, txq, false);
4876 	HARD_TX_UNLOCK(dev, txq);
4877 	dev_xmit_recursion_dec();
4878 
4879 	local_bh_enable();
4880 	return ret;
4881 drop:
4882 	dev_core_stats_tx_dropped_inc(dev);
4883 	kfree_skb_list(skb);
4884 	return NET_XMIT_DROP;
4885 }
4886 EXPORT_SYMBOL(__dev_direct_xmit);
4887 
4888 /*************************************************************************
4889  *			Receiver routines
4890  *************************************************************************/
4891 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4892 
4893 int weight_p __read_mostly = 64;           /* old backlog weight */
4894 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4895 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4896 
4897 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4898 static inline void ____napi_schedule(struct softnet_data *sd,
4899 				     struct napi_struct *napi)
4900 {
4901 	struct task_struct *thread;
4902 
4903 	lockdep_assert_irqs_disabled();
4904 
4905 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4906 		/* Paired with smp_mb__before_atomic() in
4907 		 * napi_enable()/netif_set_threaded().
4908 		 * Use READ_ONCE() to guarantee a complete
4909 		 * read on napi->thread. Only call
4910 		 * wake_up_process() when it's not NULL.
4911 		 */
4912 		thread = READ_ONCE(napi->thread);
4913 		if (thread) {
4914 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4915 				goto use_local_napi;
4916 
4917 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4918 			wake_up_process(thread);
4919 			return;
4920 		}
4921 	}
4922 
4923 use_local_napi:
4924 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4925 	list_add_tail(&napi->poll_list, &sd->poll_list);
4926 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4927 	/* If not called from net_rx_action()
4928 	 * we have to raise NET_RX_SOFTIRQ.
4929 	 */
4930 	if (!sd->in_net_rx_action)
4931 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4932 }
4933 
4934 #ifdef CONFIG_RPS
4935 
4936 struct static_key_false rps_needed __read_mostly;
4937 EXPORT_SYMBOL(rps_needed);
4938 struct static_key_false rfs_needed __read_mostly;
4939 EXPORT_SYMBOL(rfs_needed);
4940 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4941 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4942 {
4943 	return hash_32(hash, flow_table->log);
4944 }
4945 
4946 #ifdef CONFIG_RFS_ACCEL
4947 /**
4948  * rps_flow_is_active - check whether the flow is recently active.
4949  * @rflow: Specific flow to check activity.
4950  * @flow_table: per-queue flowtable that @rflow belongs to.
4951  * @cpu: CPU saved in @rflow.
4952  *
4953  * If the CPU has processed many packets since the flow's last activity
4954  * (beyond 10 times the table size), the flow is considered stale.
4955  *
4956  * Return: true if flow was recently active.
4957  */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4958 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4959 			       struct rps_dev_flow_table *flow_table,
4960 			       unsigned int cpu)
4961 {
4962 	unsigned int flow_last_active;
4963 	unsigned int sd_input_head;
4964 
4965 	if (cpu >= nr_cpu_ids)
4966 		return false;
4967 
4968 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4969 	flow_last_active = READ_ONCE(rflow->last_qtail);
4970 
4971 	return (int)(sd_input_head - flow_last_active) <
4972 		(int)(10 << flow_table->log);
4973 }
4974 #endif
4975 
4976 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4977 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4978 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4979 	    u32 flow_id)
4980 {
4981 	if (next_cpu < nr_cpu_ids) {
4982 		u32 head;
4983 #ifdef CONFIG_RFS_ACCEL
4984 		struct netdev_rx_queue *rxqueue;
4985 		struct rps_dev_flow_table *flow_table;
4986 		struct rps_dev_flow *old_rflow;
4987 		struct rps_dev_flow *tmp_rflow;
4988 		unsigned int tmp_cpu;
4989 		u16 rxq_index;
4990 		int rc;
4991 
4992 		/* Should we steer this flow to a different hardware queue? */
4993 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4994 		    !(dev->features & NETIF_F_NTUPLE))
4995 			goto out;
4996 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4997 		if (rxq_index == skb_get_rx_queue(skb))
4998 			goto out;
4999 
5000 		rxqueue = dev->_rx + rxq_index;
5001 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
5002 		if (!flow_table)
5003 			goto out;
5004 
5005 		tmp_rflow = &flow_table->flows[flow_id];
5006 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5007 
5008 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5009 			if (rps_flow_is_active(tmp_rflow, flow_table,
5010 					       tmp_cpu)) {
5011 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5012 				    next_cpu == tmp_cpu)
5013 					goto out;
5014 			}
5015 		}
5016 
5017 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5018 							rxq_index, flow_id);
5019 		if (rc < 0)
5020 			goto out;
5021 
5022 		old_rflow = rflow;
5023 		rflow = tmp_rflow;
5024 		WRITE_ONCE(rflow->filter, rc);
5025 		WRITE_ONCE(rflow->hash, hash);
5026 
5027 		if (old_rflow->filter == rc)
5028 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5029 	out:
5030 #endif
5031 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5032 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5033 	}
5034 
5035 	WRITE_ONCE(rflow->cpu, next_cpu);
5036 	return rflow;
5037 }
5038 
5039 /*
5040  * get_rps_cpu is called from netif_receive_skb and returns the target
5041  * CPU from the RPS map of the receiving queue for a given skb.
5042  * rcu_read_lock must be held on entry.
5043  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5044 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5045 		       struct rps_dev_flow **rflowp)
5046 {
5047 	const struct rps_sock_flow_table *sock_flow_table;
5048 	struct netdev_rx_queue *rxqueue = dev->_rx;
5049 	struct rps_dev_flow_table *flow_table;
5050 	struct rps_map *map;
5051 	int cpu = -1;
5052 	u32 flow_id;
5053 	u32 tcpu;
5054 	u32 hash;
5055 
5056 	if (skb_rx_queue_recorded(skb)) {
5057 		u16 index = skb_get_rx_queue(skb);
5058 
5059 		if (unlikely(index >= dev->real_num_rx_queues)) {
5060 			WARN_ONCE(dev->real_num_rx_queues > 1,
5061 				  "%s received packet on queue %u, but number "
5062 				  "of RX queues is %u\n",
5063 				  dev->name, index, dev->real_num_rx_queues);
5064 			goto done;
5065 		}
5066 		rxqueue += index;
5067 	}
5068 
5069 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5070 
5071 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5072 	map = rcu_dereference(rxqueue->rps_map);
5073 	if (!flow_table && !map)
5074 		goto done;
5075 
5076 	skb_reset_network_header(skb);
5077 	hash = skb_get_hash(skb);
5078 	if (!hash)
5079 		goto done;
5080 
5081 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5082 	if (flow_table && sock_flow_table) {
5083 		struct rps_dev_flow *rflow;
5084 		u32 next_cpu;
5085 		u32 ident;
5086 
5087 		/* First check into global flow table if there is a match.
5088 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5089 		 */
5090 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5091 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5092 			goto try_rps;
5093 
5094 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5095 
5096 		/* OK, now we know there is a match,
5097 		 * we can look at the local (per receive queue) flow table
5098 		 */
5099 		flow_id = rfs_slot(hash, flow_table);
5100 		rflow = &flow_table->flows[flow_id];
5101 		tcpu = rflow->cpu;
5102 
5103 		/*
5104 		 * If the desired CPU (where last recvmsg was done) is
5105 		 * different from current CPU (one in the rx-queue flow
5106 		 * table entry), switch if one of the following holds:
5107 		 *   - Current CPU is unset (>= nr_cpu_ids).
5108 		 *   - Current CPU is offline.
5109 		 *   - The current CPU's queue tail has advanced beyond the
5110 		 *     last packet that was enqueued using this table entry.
5111 		 *     This guarantees that all previous packets for the flow
5112 		 *     have been dequeued, thus preserving in order delivery.
5113 		 */
5114 		if (unlikely(tcpu != next_cpu) &&
5115 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5116 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5117 		      rflow->last_qtail)) >= 0)) {
5118 			tcpu = next_cpu;
5119 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5120 					    flow_id);
5121 		}
5122 
5123 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5124 			*rflowp = rflow;
5125 			cpu = tcpu;
5126 			goto done;
5127 		}
5128 	}
5129 
5130 try_rps:
5131 
5132 	if (map) {
5133 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5134 		if (cpu_online(tcpu)) {
5135 			cpu = tcpu;
5136 			goto done;
5137 		}
5138 	}
5139 
5140 done:
5141 	return cpu;
5142 }
5143 
5144 #ifdef CONFIG_RFS_ACCEL
5145 
5146 /**
5147  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5148  * @dev: Device on which the filter was set
5149  * @rxq_index: RX queue index
5150  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5151  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5152  *
5153  * Drivers that implement ndo_rx_flow_steer() should periodically call
5154  * this function for each installed filter and remove the filters for
5155  * which it returns %true.
5156  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5157 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5158 			 u32 flow_id, u16 filter_id)
5159 {
5160 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5161 	struct rps_dev_flow_table *flow_table;
5162 	struct rps_dev_flow *rflow;
5163 	bool expire = true;
5164 
5165 	rcu_read_lock();
5166 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5167 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5168 		unsigned int cpu;
5169 
5170 		rflow = &flow_table->flows[flow_id];
5171 		cpu = READ_ONCE(rflow->cpu);
5172 		if (READ_ONCE(rflow->filter) == filter_id &&
5173 		    rps_flow_is_active(rflow, flow_table, cpu))
5174 			expire = false;
5175 	}
5176 	rcu_read_unlock();
5177 	return expire;
5178 }
5179 EXPORT_SYMBOL(rps_may_expire_flow);
5180 
5181 #endif /* CONFIG_RFS_ACCEL */
5182 
5183 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5184 static void rps_trigger_softirq(void *data)
5185 {
5186 	struct softnet_data *sd = data;
5187 
5188 	____napi_schedule(sd, &sd->backlog);
5189 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5190 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5191 }
5192 
5193 #endif /* CONFIG_RPS */
5194 
5195 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5196 static void trigger_rx_softirq(void *data)
5197 {
5198 	struct softnet_data *sd = data;
5199 
5200 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5201 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5202 }
5203 
5204 /*
5205  * After we queued a packet into sd->input_pkt_queue,
5206  * we need to make sure this queue is serviced soon.
5207  *
5208  * - If this is another cpu queue, link it to our rps_ipi_list,
5209  *   and make sure we will process rps_ipi_list from net_rx_action().
5210  *
5211  * - If this is our own queue, NAPI schedule our backlog.
5212  *   Note that this also raises NET_RX_SOFTIRQ.
5213  */
napi_schedule_rps(struct softnet_data * sd)5214 static void napi_schedule_rps(struct softnet_data *sd)
5215 {
5216 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5217 
5218 #ifdef CONFIG_RPS
5219 	if (sd != mysd) {
5220 		if (use_backlog_threads()) {
5221 			__napi_schedule_irqoff(&sd->backlog);
5222 			return;
5223 		}
5224 
5225 		sd->rps_ipi_next = mysd->rps_ipi_list;
5226 		mysd->rps_ipi_list = sd;
5227 
5228 		/* If not called from net_rx_action() or napi_threaded_poll()
5229 		 * we have to raise NET_RX_SOFTIRQ.
5230 		 */
5231 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5232 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5233 		return;
5234 	}
5235 #endif /* CONFIG_RPS */
5236 	__napi_schedule_irqoff(&mysd->backlog);
5237 }
5238 
kick_defer_list_purge(unsigned int cpu)5239 void kick_defer_list_purge(unsigned int cpu)
5240 {
5241 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5242 	unsigned long flags;
5243 
5244 	if (use_backlog_threads()) {
5245 		backlog_lock_irq_save(sd, &flags);
5246 
5247 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5248 			__napi_schedule_irqoff(&sd->backlog);
5249 
5250 		backlog_unlock_irq_restore(sd, &flags);
5251 
5252 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5253 		smp_call_function_single_async(cpu, &sd->defer_csd);
5254 	}
5255 }
5256 
5257 #ifdef CONFIG_NET_FLOW_LIMIT
5258 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5259 #endif
5260 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5261 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5262 			   int max_backlog)
5263 {
5264 #ifdef CONFIG_NET_FLOW_LIMIT
5265 	unsigned int old_flow, new_flow;
5266 	const struct softnet_data *sd;
5267 	struct sd_flow_limit *fl;
5268 
5269 	if (likely(qlen < (max_backlog >> 1)))
5270 		return false;
5271 
5272 	sd = this_cpu_ptr(&softnet_data);
5273 
5274 	rcu_read_lock();
5275 	fl = rcu_dereference(sd->flow_limit);
5276 	if (fl) {
5277 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5278 		old_flow = fl->history[fl->history_head];
5279 		fl->history[fl->history_head] = new_flow;
5280 
5281 		fl->history_head++;
5282 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5283 
5284 		if (likely(fl->buckets[old_flow]))
5285 			fl->buckets[old_flow]--;
5286 
5287 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5288 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5289 			WRITE_ONCE(fl->count, fl->count + 1);
5290 			rcu_read_unlock();
5291 			return true;
5292 		}
5293 	}
5294 	rcu_read_unlock();
5295 #endif
5296 	return false;
5297 }
5298 
5299 /*
5300  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5301  * queue (may be a remote CPU queue).
5302  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5303 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5304 			      unsigned int *qtail)
5305 {
5306 	enum skb_drop_reason reason;
5307 	struct softnet_data *sd;
5308 	unsigned long flags;
5309 	unsigned int qlen;
5310 	int max_backlog;
5311 	u32 tail;
5312 
5313 	reason = SKB_DROP_REASON_DEV_READY;
5314 	if (unlikely(!netif_running(skb->dev)))
5315 		goto bad_dev;
5316 
5317 	sd = &per_cpu(softnet_data, cpu);
5318 
5319 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5320 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5321 	if (unlikely(qlen > max_backlog) ||
5322 	    skb_flow_limit(skb, qlen, max_backlog))
5323 		goto cpu_backlog_drop;
5324 	backlog_lock_irq_save(sd, &flags);
5325 	qlen = skb_queue_len(&sd->input_pkt_queue);
5326 	if (likely(qlen <= max_backlog)) {
5327 		if (!qlen) {
5328 			/* Schedule NAPI for backlog device. We can use
5329 			 * non atomic operation as we own the queue lock.
5330 			 */
5331 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5332 						&sd->backlog.state))
5333 				napi_schedule_rps(sd);
5334 		}
5335 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5336 		tail = rps_input_queue_tail_incr(sd);
5337 		backlog_unlock_irq_restore(sd, &flags);
5338 
5339 		/* save the tail outside of the critical section */
5340 		rps_input_queue_tail_save(qtail, tail);
5341 		return NET_RX_SUCCESS;
5342 	}
5343 
5344 	backlog_unlock_irq_restore(sd, &flags);
5345 
5346 cpu_backlog_drop:
5347 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5348 	numa_drop_add(&sd->drop_counters, 1);
5349 bad_dev:
5350 	dev_core_stats_rx_dropped_inc(skb->dev);
5351 	kfree_skb_reason(skb, reason);
5352 	return NET_RX_DROP;
5353 }
5354 
netif_get_rxqueue(struct sk_buff * skb)5355 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5356 {
5357 	struct net_device *dev = skb->dev;
5358 	struct netdev_rx_queue *rxqueue;
5359 
5360 	rxqueue = dev->_rx;
5361 
5362 	if (skb_rx_queue_recorded(skb)) {
5363 		u16 index = skb_get_rx_queue(skb);
5364 
5365 		if (unlikely(index >= dev->real_num_rx_queues)) {
5366 			WARN_ONCE(dev->real_num_rx_queues > 1,
5367 				  "%s received packet on queue %u, but number "
5368 				  "of RX queues is %u\n",
5369 				  dev->name, index, dev->real_num_rx_queues);
5370 
5371 			return rxqueue; /* Return first rxqueue */
5372 		}
5373 		rxqueue += index;
5374 	}
5375 	return rxqueue;
5376 }
5377 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5378 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5379 			     const struct bpf_prog *xdp_prog)
5380 {
5381 	void *orig_data, *orig_data_end, *hard_start;
5382 	struct netdev_rx_queue *rxqueue;
5383 	bool orig_bcast, orig_host;
5384 	u32 mac_len, frame_sz;
5385 	__be16 orig_eth_type;
5386 	struct ethhdr *eth;
5387 	u32 metalen, act;
5388 	int off;
5389 
5390 	/* The XDP program wants to see the packet starting at the MAC
5391 	 * header.
5392 	 */
5393 	mac_len = skb->data - skb_mac_header(skb);
5394 	hard_start = skb->data - skb_headroom(skb);
5395 
5396 	/* SKB "head" area always have tailroom for skb_shared_info */
5397 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5398 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5399 
5400 	rxqueue = netif_get_rxqueue(skb);
5401 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5402 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5403 			 skb_headlen(skb) + mac_len, true);
5404 	if (skb_is_nonlinear(skb)) {
5405 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5406 		xdp_buff_set_frags_flag(xdp);
5407 	} else {
5408 		xdp_buff_clear_frags_flag(xdp);
5409 	}
5410 
5411 	orig_data_end = xdp->data_end;
5412 	orig_data = xdp->data;
5413 	eth = (struct ethhdr *)xdp->data;
5414 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5415 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5416 	orig_eth_type = eth->h_proto;
5417 
5418 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5419 
5420 	/* check if bpf_xdp_adjust_head was used */
5421 	off = xdp->data - orig_data;
5422 	if (off) {
5423 		if (off > 0)
5424 			__skb_pull(skb, off);
5425 		else if (off < 0)
5426 			__skb_push(skb, -off);
5427 
5428 		skb->mac_header += off;
5429 		skb_reset_network_header(skb);
5430 	}
5431 
5432 	/* check if bpf_xdp_adjust_tail was used */
5433 	off = xdp->data_end - orig_data_end;
5434 	if (off != 0) {
5435 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5436 		skb->len += off; /* positive on grow, negative on shrink */
5437 	}
5438 
5439 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5440 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5441 	 */
5442 	if (xdp_buff_has_frags(xdp))
5443 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5444 	else
5445 		skb->data_len = 0;
5446 
5447 	/* check if XDP changed eth hdr such SKB needs update */
5448 	eth = (struct ethhdr *)xdp->data;
5449 	if ((orig_eth_type != eth->h_proto) ||
5450 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5451 						  skb->dev->dev_addr)) ||
5452 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5453 		__skb_push(skb, ETH_HLEN);
5454 		skb->pkt_type = PACKET_HOST;
5455 		skb->protocol = eth_type_trans(skb, skb->dev);
5456 	}
5457 
5458 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5459 	 * before calling us again on redirect path. We do not call do_redirect
5460 	 * as we leave that up to the caller.
5461 	 *
5462 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5463 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5464 	 */
5465 	switch (act) {
5466 	case XDP_REDIRECT:
5467 	case XDP_TX:
5468 		__skb_push(skb, mac_len);
5469 		break;
5470 	case XDP_PASS:
5471 		metalen = xdp->data - xdp->data_meta;
5472 		if (metalen)
5473 			skb_metadata_set(skb, metalen);
5474 		break;
5475 	}
5476 
5477 	return act;
5478 }
5479 
5480 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5481 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5482 {
5483 	struct sk_buff *skb = *pskb;
5484 	int err, hroom, troom;
5485 
5486 	local_lock_nested_bh(&system_page_pool.bh_lock);
5487 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5488 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5489 	if (!err)
5490 		return 0;
5491 
5492 	/* In case we have to go down the path and also linearize,
5493 	 * then lets do the pskb_expand_head() work just once here.
5494 	 */
5495 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5496 	troom = skb->tail + skb->data_len - skb->end;
5497 	err = pskb_expand_head(skb,
5498 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5499 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5500 	if (err)
5501 		return err;
5502 
5503 	return skb_linearize(skb);
5504 }
5505 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5506 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5507 				     struct xdp_buff *xdp,
5508 				     const struct bpf_prog *xdp_prog)
5509 {
5510 	struct sk_buff *skb = *pskb;
5511 	u32 mac_len, act = XDP_DROP;
5512 
5513 	/* Reinjected packets coming from act_mirred or similar should
5514 	 * not get XDP generic processing.
5515 	 */
5516 	if (skb_is_redirected(skb))
5517 		return XDP_PASS;
5518 
5519 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5520 	 * bytes. This is the guarantee that also native XDP provides,
5521 	 * thus we need to do it here as well.
5522 	 */
5523 	mac_len = skb->data - skb_mac_header(skb);
5524 	__skb_push(skb, mac_len);
5525 
5526 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5527 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5528 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5529 			goto do_drop;
5530 	}
5531 
5532 	__skb_pull(*pskb, mac_len);
5533 
5534 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5535 	switch (act) {
5536 	case XDP_REDIRECT:
5537 	case XDP_TX:
5538 	case XDP_PASS:
5539 		break;
5540 	default:
5541 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5542 		fallthrough;
5543 	case XDP_ABORTED:
5544 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5545 		fallthrough;
5546 	case XDP_DROP:
5547 	do_drop:
5548 		kfree_skb(*pskb);
5549 		break;
5550 	}
5551 
5552 	return act;
5553 }
5554 
5555 /* When doing generic XDP we have to bypass the qdisc layer and the
5556  * network taps in order to match in-driver-XDP behavior. This also means
5557  * that XDP packets are able to starve other packets going through a qdisc,
5558  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5559  * queues, so they do not have this starvation issue.
5560  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5561 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5562 {
5563 	struct net_device *dev = skb->dev;
5564 	struct netdev_queue *txq;
5565 	bool free_skb = true;
5566 	int cpu, rc;
5567 
5568 	txq = netdev_core_pick_tx(dev, skb, NULL);
5569 	cpu = smp_processor_id();
5570 	HARD_TX_LOCK(dev, txq, cpu);
5571 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5572 		rc = netdev_start_xmit(skb, dev, txq, 0);
5573 		if (dev_xmit_complete(rc))
5574 			free_skb = false;
5575 	}
5576 	HARD_TX_UNLOCK(dev, txq);
5577 	if (free_skb) {
5578 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5579 		dev_core_stats_tx_dropped_inc(dev);
5580 		kfree_skb(skb);
5581 	}
5582 }
5583 
5584 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5585 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5586 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5587 {
5588 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5589 
5590 	if (xdp_prog) {
5591 		struct xdp_buff xdp;
5592 		u32 act;
5593 		int err;
5594 
5595 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5596 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5597 		if (act != XDP_PASS) {
5598 			switch (act) {
5599 			case XDP_REDIRECT:
5600 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5601 							      &xdp, xdp_prog);
5602 				if (err)
5603 					goto out_redir;
5604 				break;
5605 			case XDP_TX:
5606 				generic_xdp_tx(*pskb, xdp_prog);
5607 				break;
5608 			}
5609 			bpf_net_ctx_clear(bpf_net_ctx);
5610 			return XDP_DROP;
5611 		}
5612 		bpf_net_ctx_clear(bpf_net_ctx);
5613 	}
5614 	return XDP_PASS;
5615 out_redir:
5616 	bpf_net_ctx_clear(bpf_net_ctx);
5617 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5618 	return XDP_DROP;
5619 }
5620 EXPORT_SYMBOL_GPL(do_xdp_generic);
5621 
netif_rx_internal(struct sk_buff * skb)5622 static int netif_rx_internal(struct sk_buff *skb)
5623 {
5624 	int ret;
5625 
5626 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5627 
5628 	trace_netif_rx(skb);
5629 
5630 #ifdef CONFIG_RPS
5631 	if (static_branch_unlikely(&rps_needed)) {
5632 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5633 		int cpu;
5634 
5635 		rcu_read_lock();
5636 
5637 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5638 		if (cpu < 0)
5639 			cpu = smp_processor_id();
5640 
5641 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5642 
5643 		rcu_read_unlock();
5644 	} else
5645 #endif
5646 	{
5647 		unsigned int qtail;
5648 
5649 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5650 	}
5651 	return ret;
5652 }
5653 
5654 /**
5655  *	__netif_rx	-	Slightly optimized version of netif_rx
5656  *	@skb: buffer to post
5657  *
5658  *	This behaves as netif_rx except that it does not disable bottom halves.
5659  *	As a result this function may only be invoked from the interrupt context
5660  *	(either hard or soft interrupt).
5661  */
__netif_rx(struct sk_buff * skb)5662 int __netif_rx(struct sk_buff *skb)
5663 {
5664 	int ret;
5665 
5666 	lockdep_assert_once(hardirq_count() | softirq_count());
5667 
5668 	trace_netif_rx_entry(skb);
5669 	ret = netif_rx_internal(skb);
5670 	trace_netif_rx_exit(ret);
5671 	return ret;
5672 }
5673 EXPORT_SYMBOL(__netif_rx);
5674 
5675 /**
5676  *	netif_rx	-	post buffer to the network code
5677  *	@skb: buffer to post
5678  *
5679  *	This function receives a packet from a device driver and queues it for
5680  *	the upper (protocol) levels to process via the backlog NAPI device. It
5681  *	always succeeds. The buffer may be dropped during processing for
5682  *	congestion control or by the protocol layers.
5683  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5684  *	driver should use NAPI and GRO.
5685  *	This function can used from interrupt and from process context. The
5686  *	caller from process context must not disable interrupts before invoking
5687  *	this function.
5688  *
5689  *	return values:
5690  *	NET_RX_SUCCESS	(no congestion)
5691  *	NET_RX_DROP     (packet was dropped)
5692  *
5693  */
netif_rx(struct sk_buff * skb)5694 int netif_rx(struct sk_buff *skb)
5695 {
5696 	bool need_bh_off = !(hardirq_count() | softirq_count());
5697 	int ret;
5698 
5699 	if (need_bh_off)
5700 		local_bh_disable();
5701 	trace_netif_rx_entry(skb);
5702 	ret = netif_rx_internal(skb);
5703 	trace_netif_rx_exit(ret);
5704 	if (need_bh_off)
5705 		local_bh_enable();
5706 	return ret;
5707 }
5708 EXPORT_SYMBOL(netif_rx);
5709 
net_tx_action(void)5710 static __latent_entropy void net_tx_action(void)
5711 {
5712 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5713 
5714 	if (sd->completion_queue) {
5715 		struct sk_buff *clist;
5716 
5717 		local_irq_disable();
5718 		clist = sd->completion_queue;
5719 		sd->completion_queue = NULL;
5720 		local_irq_enable();
5721 
5722 		while (clist) {
5723 			struct sk_buff *skb = clist;
5724 
5725 			clist = clist->next;
5726 
5727 			WARN_ON(refcount_read(&skb->users));
5728 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5729 				trace_consume_skb(skb, net_tx_action);
5730 			else
5731 				trace_kfree_skb(skb, net_tx_action,
5732 						get_kfree_skb_cb(skb)->reason, NULL);
5733 
5734 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5735 				__kfree_skb(skb);
5736 			else
5737 				__napi_kfree_skb(skb,
5738 						 get_kfree_skb_cb(skb)->reason);
5739 		}
5740 	}
5741 
5742 	if (sd->output_queue) {
5743 		struct Qdisc *head;
5744 
5745 		local_irq_disable();
5746 		head = sd->output_queue;
5747 		sd->output_queue = NULL;
5748 		sd->output_queue_tailp = &sd->output_queue;
5749 		local_irq_enable();
5750 
5751 		rcu_read_lock();
5752 
5753 		while (head) {
5754 			spinlock_t *root_lock = NULL;
5755 			struct sk_buff *to_free;
5756 			struct Qdisc *q = head;
5757 
5758 			head = head->next_sched;
5759 
5760 			/* We need to make sure head->next_sched is read
5761 			 * before clearing __QDISC_STATE_SCHED
5762 			 */
5763 			smp_mb__before_atomic();
5764 
5765 			if (!(q->flags & TCQ_F_NOLOCK)) {
5766 				root_lock = qdisc_lock(q);
5767 				spin_lock(root_lock);
5768 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5769 						     &q->state))) {
5770 				/* There is a synchronize_net() between
5771 				 * STATE_DEACTIVATED flag being set and
5772 				 * qdisc_reset()/some_qdisc_is_busy() in
5773 				 * dev_deactivate(), so we can safely bail out
5774 				 * early here to avoid data race between
5775 				 * qdisc_deactivate() and some_qdisc_is_busy()
5776 				 * for lockless qdisc.
5777 				 */
5778 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5779 				continue;
5780 			}
5781 
5782 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5783 			to_free = qdisc_run(q);
5784 			if (root_lock)
5785 				spin_unlock(root_lock);
5786 			tcf_kfree_skb_list(to_free);
5787 		}
5788 
5789 		rcu_read_unlock();
5790 	}
5791 
5792 	xfrm_dev_backlog(sd);
5793 }
5794 
5795 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5796 /* This hook is defined here for ATM LANE */
5797 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5798 			     unsigned char *addr) __read_mostly;
5799 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5800 #endif
5801 
5802 /**
5803  *	netdev_is_rx_handler_busy - check if receive handler is registered
5804  *	@dev: device to check
5805  *
5806  *	Check if a receive handler is already registered for a given device.
5807  *	Return true if there one.
5808  *
5809  *	The caller must hold the rtnl_mutex.
5810  */
netdev_is_rx_handler_busy(struct net_device * dev)5811 bool netdev_is_rx_handler_busy(struct net_device *dev)
5812 {
5813 	ASSERT_RTNL();
5814 	return dev && rtnl_dereference(dev->rx_handler);
5815 }
5816 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5817 
5818 /**
5819  *	netdev_rx_handler_register - register receive handler
5820  *	@dev: device to register a handler for
5821  *	@rx_handler: receive handler to register
5822  *	@rx_handler_data: data pointer that is used by rx handler
5823  *
5824  *	Register a receive handler for a device. This handler will then be
5825  *	called from __netif_receive_skb. A negative errno code is returned
5826  *	on a failure.
5827  *
5828  *	The caller must hold the rtnl_mutex.
5829  *
5830  *	For a general description of rx_handler, see enum rx_handler_result.
5831  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5832 int netdev_rx_handler_register(struct net_device *dev,
5833 			       rx_handler_func_t *rx_handler,
5834 			       void *rx_handler_data)
5835 {
5836 	if (netdev_is_rx_handler_busy(dev))
5837 		return -EBUSY;
5838 
5839 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5840 		return -EINVAL;
5841 
5842 	/* Note: rx_handler_data must be set before rx_handler */
5843 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5844 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5845 
5846 	return 0;
5847 }
5848 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5849 
5850 /**
5851  *	netdev_rx_handler_unregister - unregister receive handler
5852  *	@dev: device to unregister a handler from
5853  *
5854  *	Unregister a receive handler from a device.
5855  *
5856  *	The caller must hold the rtnl_mutex.
5857  */
netdev_rx_handler_unregister(struct net_device * dev)5858 void netdev_rx_handler_unregister(struct net_device *dev)
5859 {
5860 
5861 	ASSERT_RTNL();
5862 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5863 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5864 	 * section has a guarantee to see a non NULL rx_handler_data
5865 	 * as well.
5866 	 */
5867 	synchronize_net();
5868 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5869 }
5870 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5871 
5872 /*
5873  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5874  * the special handling of PFMEMALLOC skbs.
5875  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5876 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5877 {
5878 	switch (skb->protocol) {
5879 	case htons(ETH_P_ARP):
5880 	case htons(ETH_P_IP):
5881 	case htons(ETH_P_IPV6):
5882 	case htons(ETH_P_8021Q):
5883 	case htons(ETH_P_8021AD):
5884 		return true;
5885 	default:
5886 		return false;
5887 	}
5888 }
5889 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5890 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5891 			     int *ret, struct net_device *orig_dev)
5892 {
5893 	if (nf_hook_ingress_active(skb)) {
5894 		int ingress_retval;
5895 
5896 		if (unlikely(*pt_prev)) {
5897 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5898 			*pt_prev = NULL;
5899 		}
5900 
5901 		rcu_read_lock();
5902 		ingress_retval = nf_hook_ingress(skb);
5903 		rcu_read_unlock();
5904 		return ingress_retval;
5905 	}
5906 	return 0;
5907 }
5908 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5909 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5910 				    struct packet_type **ppt_prev)
5911 {
5912 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5913 	struct packet_type *ptype, *pt_prev;
5914 	rx_handler_func_t *rx_handler;
5915 	struct sk_buff *skb = *pskb;
5916 	struct net_device *orig_dev;
5917 	bool deliver_exact = false;
5918 	int ret = NET_RX_DROP;
5919 	__be16 type;
5920 
5921 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5922 
5923 	trace_netif_receive_skb(skb);
5924 
5925 	orig_dev = skb->dev;
5926 
5927 	skb_reset_network_header(skb);
5928 #if !defined(CONFIG_DEBUG_NET)
5929 	/* We plan to no longer reset the transport header here.
5930 	 * Give some time to fuzzers and dev build to catch bugs
5931 	 * in network stacks.
5932 	 */
5933 	if (!skb_transport_header_was_set(skb))
5934 		skb_reset_transport_header(skb);
5935 #endif
5936 	skb_reset_mac_len(skb);
5937 
5938 	pt_prev = NULL;
5939 
5940 another_round:
5941 	skb->skb_iif = skb->dev->ifindex;
5942 
5943 	__this_cpu_inc(softnet_data.processed);
5944 
5945 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5946 		int ret2;
5947 
5948 		migrate_disable();
5949 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5950 				      &skb);
5951 		migrate_enable();
5952 
5953 		if (ret2 != XDP_PASS) {
5954 			ret = NET_RX_DROP;
5955 			goto out;
5956 		}
5957 	}
5958 
5959 	if (eth_type_vlan(skb->protocol)) {
5960 		skb = skb_vlan_untag(skb);
5961 		if (unlikely(!skb))
5962 			goto out;
5963 	}
5964 
5965 	if (skb_skip_tc_classify(skb))
5966 		goto skip_classify;
5967 
5968 	if (pfmemalloc)
5969 		goto skip_taps;
5970 
5971 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5972 				list) {
5973 		if (unlikely(pt_prev))
5974 			ret = deliver_skb(skb, pt_prev, orig_dev);
5975 		pt_prev = ptype;
5976 	}
5977 
5978 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5979 		if (unlikely(pt_prev))
5980 			ret = deliver_skb(skb, pt_prev, orig_dev);
5981 		pt_prev = ptype;
5982 	}
5983 
5984 skip_taps:
5985 #ifdef CONFIG_NET_INGRESS
5986 	if (static_branch_unlikely(&ingress_needed_key)) {
5987 		bool another = false;
5988 
5989 		nf_skip_egress(skb, true);
5990 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5991 					 &another);
5992 		if (another)
5993 			goto another_round;
5994 		if (!skb)
5995 			goto out;
5996 
5997 		nf_skip_egress(skb, false);
5998 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5999 			goto out;
6000 	}
6001 #endif
6002 	skb_reset_redirect(skb);
6003 skip_classify:
6004 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6005 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6006 		goto drop;
6007 	}
6008 
6009 	if (skb_vlan_tag_present(skb)) {
6010 		if (unlikely(pt_prev)) {
6011 			ret = deliver_skb(skb, pt_prev, orig_dev);
6012 			pt_prev = NULL;
6013 		}
6014 		if (vlan_do_receive(&skb))
6015 			goto another_round;
6016 		else if (unlikely(!skb))
6017 			goto out;
6018 	}
6019 
6020 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6021 	if (rx_handler) {
6022 		if (unlikely(pt_prev)) {
6023 			ret = deliver_skb(skb, pt_prev, orig_dev);
6024 			pt_prev = NULL;
6025 		}
6026 		switch (rx_handler(&skb)) {
6027 		case RX_HANDLER_CONSUMED:
6028 			ret = NET_RX_SUCCESS;
6029 			goto out;
6030 		case RX_HANDLER_ANOTHER:
6031 			goto another_round;
6032 		case RX_HANDLER_EXACT:
6033 			deliver_exact = true;
6034 			break;
6035 		case RX_HANDLER_PASS:
6036 			break;
6037 		default:
6038 			BUG();
6039 		}
6040 	}
6041 
6042 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6043 check_vlan_id:
6044 		if (skb_vlan_tag_get_id(skb)) {
6045 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6046 			 * find vlan device.
6047 			 */
6048 			skb->pkt_type = PACKET_OTHERHOST;
6049 		} else if (eth_type_vlan(skb->protocol)) {
6050 			/* Outer header is 802.1P with vlan 0, inner header is
6051 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6052 			 * not find vlan dev for vlan id 0.
6053 			 */
6054 			__vlan_hwaccel_clear_tag(skb);
6055 			skb = skb_vlan_untag(skb);
6056 			if (unlikely(!skb))
6057 				goto out;
6058 			if (vlan_do_receive(&skb))
6059 				/* After stripping off 802.1P header with vlan 0
6060 				 * vlan dev is found for inner header.
6061 				 */
6062 				goto another_round;
6063 			else if (unlikely(!skb))
6064 				goto out;
6065 			else
6066 				/* We have stripped outer 802.1P vlan 0 header.
6067 				 * But could not find vlan dev.
6068 				 * check again for vlan id to set OTHERHOST.
6069 				 */
6070 				goto check_vlan_id;
6071 		}
6072 		/* Note: we might in the future use prio bits
6073 		 * and set skb->priority like in vlan_do_receive()
6074 		 * For the time being, just ignore Priority Code Point
6075 		 */
6076 		__vlan_hwaccel_clear_tag(skb);
6077 	}
6078 
6079 	type = skb->protocol;
6080 
6081 	/* deliver only exact match when indicated */
6082 	if (likely(!deliver_exact)) {
6083 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6084 				       &ptype_base[ntohs(type) &
6085 						   PTYPE_HASH_MASK]);
6086 
6087 		/* orig_dev and skb->dev could belong to different netns;
6088 		 * Even in such case we need to traverse only the list
6089 		 * coming from skb->dev, as the ptype owner (packet socket)
6090 		 * will use dev_net(skb->dev) to do namespace filtering.
6091 		 */
6092 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6093 				       &dev_net_rcu(skb->dev)->ptype_specific);
6094 	}
6095 
6096 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6097 			       &orig_dev->ptype_specific);
6098 
6099 	if (unlikely(skb->dev != orig_dev)) {
6100 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6101 				       &skb->dev->ptype_specific);
6102 	}
6103 
6104 	if (pt_prev) {
6105 		*ppt_prev = pt_prev;
6106 	} else {
6107 drop:
6108 		if (!deliver_exact)
6109 			dev_core_stats_rx_dropped_inc(skb->dev);
6110 		else
6111 			dev_core_stats_rx_nohandler_inc(skb->dev);
6112 
6113 		kfree_skb_reason(skb, drop_reason);
6114 		/* Jamal, now you will not able to escape explaining
6115 		 * me how you were going to use this. :-)
6116 		 */
6117 		ret = NET_RX_DROP;
6118 	}
6119 
6120 out:
6121 	/* The invariant here is that if *ppt_prev is not NULL
6122 	 * then skb should also be non-NULL.
6123 	 *
6124 	 * Apparently *ppt_prev assignment above holds this invariant due to
6125 	 * skb dereferencing near it.
6126 	 */
6127 	*pskb = skb;
6128 	return ret;
6129 }
6130 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6131 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6132 {
6133 	struct net_device *orig_dev = skb->dev;
6134 	struct packet_type *pt_prev = NULL;
6135 	int ret;
6136 
6137 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6138 	if (pt_prev)
6139 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6140 					 skb->dev, pt_prev, orig_dev);
6141 	return ret;
6142 }
6143 
6144 /**
6145  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6146  *	@skb: buffer to process
6147  *
6148  *	More direct receive version of netif_receive_skb().  It should
6149  *	only be used by callers that have a need to skip RPS and Generic XDP.
6150  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6151  *
6152  *	This function may only be called from softirq context and interrupts
6153  *	should be enabled.
6154  *
6155  *	Return values (usually ignored):
6156  *	NET_RX_SUCCESS: no congestion
6157  *	NET_RX_DROP: packet was dropped
6158  */
netif_receive_skb_core(struct sk_buff * skb)6159 int netif_receive_skb_core(struct sk_buff *skb)
6160 {
6161 	int ret;
6162 
6163 	rcu_read_lock();
6164 	ret = __netif_receive_skb_one_core(skb, false);
6165 	rcu_read_unlock();
6166 
6167 	return ret;
6168 }
6169 EXPORT_SYMBOL(netif_receive_skb_core);
6170 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6171 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6172 						  struct packet_type *pt_prev,
6173 						  struct net_device *orig_dev)
6174 {
6175 	struct sk_buff *skb, *next;
6176 
6177 	if (!pt_prev)
6178 		return;
6179 	if (list_empty(head))
6180 		return;
6181 	if (pt_prev->list_func != NULL)
6182 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6183 				   ip_list_rcv, head, pt_prev, orig_dev);
6184 	else
6185 		list_for_each_entry_safe(skb, next, head, list) {
6186 			skb_list_del_init(skb);
6187 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6188 		}
6189 }
6190 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6191 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6192 {
6193 	/* Fast-path assumptions:
6194 	 * - There is no RX handler.
6195 	 * - Only one packet_type matches.
6196 	 * If either of these fails, we will end up doing some per-packet
6197 	 * processing in-line, then handling the 'last ptype' for the whole
6198 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6199 	 * because the 'last ptype' must be constant across the sublist, and all
6200 	 * other ptypes are handled per-packet.
6201 	 */
6202 	/* Current (common) ptype of sublist */
6203 	struct packet_type *pt_curr = NULL;
6204 	/* Current (common) orig_dev of sublist */
6205 	struct net_device *od_curr = NULL;
6206 	struct sk_buff *skb, *next;
6207 	LIST_HEAD(sublist);
6208 
6209 	list_for_each_entry_safe(skb, next, head, list) {
6210 		struct net_device *orig_dev = skb->dev;
6211 		struct packet_type *pt_prev = NULL;
6212 
6213 		skb_list_del_init(skb);
6214 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6215 		if (!pt_prev)
6216 			continue;
6217 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6218 			/* dispatch old sublist */
6219 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6220 			/* start new sublist */
6221 			INIT_LIST_HEAD(&sublist);
6222 			pt_curr = pt_prev;
6223 			od_curr = orig_dev;
6224 		}
6225 		list_add_tail(&skb->list, &sublist);
6226 	}
6227 
6228 	/* dispatch final sublist */
6229 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6230 }
6231 
__netif_receive_skb(struct sk_buff * skb)6232 static int __netif_receive_skb(struct sk_buff *skb)
6233 {
6234 	int ret;
6235 
6236 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6237 		unsigned int noreclaim_flag;
6238 
6239 		/*
6240 		 * PFMEMALLOC skbs are special, they should
6241 		 * - be delivered to SOCK_MEMALLOC sockets only
6242 		 * - stay away from userspace
6243 		 * - have bounded memory usage
6244 		 *
6245 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6246 		 * context down to all allocation sites.
6247 		 */
6248 		noreclaim_flag = memalloc_noreclaim_save();
6249 		ret = __netif_receive_skb_one_core(skb, true);
6250 		memalloc_noreclaim_restore(noreclaim_flag);
6251 	} else
6252 		ret = __netif_receive_skb_one_core(skb, false);
6253 
6254 	return ret;
6255 }
6256 
__netif_receive_skb_list(struct list_head * head)6257 static void __netif_receive_skb_list(struct list_head *head)
6258 {
6259 	unsigned long noreclaim_flag = 0;
6260 	struct sk_buff *skb, *next;
6261 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6262 
6263 	list_for_each_entry_safe(skb, next, head, list) {
6264 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6265 			struct list_head sublist;
6266 
6267 			/* Handle the previous sublist */
6268 			list_cut_before(&sublist, head, &skb->list);
6269 			if (!list_empty(&sublist))
6270 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6271 			pfmemalloc = !pfmemalloc;
6272 			/* See comments in __netif_receive_skb */
6273 			if (pfmemalloc)
6274 				noreclaim_flag = memalloc_noreclaim_save();
6275 			else
6276 				memalloc_noreclaim_restore(noreclaim_flag);
6277 		}
6278 	}
6279 	/* Handle the remaining sublist */
6280 	if (!list_empty(head))
6281 		__netif_receive_skb_list_core(head, pfmemalloc);
6282 	/* Restore pflags */
6283 	if (pfmemalloc)
6284 		memalloc_noreclaim_restore(noreclaim_flag);
6285 }
6286 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6287 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6288 {
6289 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6290 	struct bpf_prog *new = xdp->prog;
6291 	int ret = 0;
6292 
6293 	switch (xdp->command) {
6294 	case XDP_SETUP_PROG:
6295 		rcu_assign_pointer(dev->xdp_prog, new);
6296 		if (old)
6297 			bpf_prog_put(old);
6298 
6299 		if (old && !new) {
6300 			static_branch_dec(&generic_xdp_needed_key);
6301 		} else if (new && !old) {
6302 			static_branch_inc(&generic_xdp_needed_key);
6303 			netif_disable_lro(dev);
6304 			dev_disable_gro_hw(dev);
6305 		}
6306 		break;
6307 
6308 	default:
6309 		ret = -EINVAL;
6310 		break;
6311 	}
6312 
6313 	return ret;
6314 }
6315 
netif_receive_skb_internal(struct sk_buff * skb)6316 static int netif_receive_skb_internal(struct sk_buff *skb)
6317 {
6318 	int ret;
6319 
6320 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6321 
6322 	if (skb_defer_rx_timestamp(skb))
6323 		return NET_RX_SUCCESS;
6324 
6325 	rcu_read_lock();
6326 #ifdef CONFIG_RPS
6327 	if (static_branch_unlikely(&rps_needed)) {
6328 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6329 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6330 
6331 		if (cpu >= 0) {
6332 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6333 			rcu_read_unlock();
6334 			return ret;
6335 		}
6336 	}
6337 #endif
6338 	ret = __netif_receive_skb(skb);
6339 	rcu_read_unlock();
6340 	return ret;
6341 }
6342 
netif_receive_skb_list_internal(struct list_head * head)6343 void netif_receive_skb_list_internal(struct list_head *head)
6344 {
6345 	struct sk_buff *skb, *next;
6346 	LIST_HEAD(sublist);
6347 
6348 	list_for_each_entry_safe(skb, next, head, list) {
6349 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6350 				    skb);
6351 		skb_list_del_init(skb);
6352 		if (!skb_defer_rx_timestamp(skb))
6353 			list_add_tail(&skb->list, &sublist);
6354 	}
6355 	list_splice_init(&sublist, head);
6356 
6357 	rcu_read_lock();
6358 #ifdef CONFIG_RPS
6359 	if (static_branch_unlikely(&rps_needed)) {
6360 		list_for_each_entry_safe(skb, next, head, list) {
6361 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6362 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6363 
6364 			if (cpu >= 0) {
6365 				/* Will be handled, remove from list */
6366 				skb_list_del_init(skb);
6367 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6368 			}
6369 		}
6370 	}
6371 #endif
6372 	__netif_receive_skb_list(head);
6373 	rcu_read_unlock();
6374 }
6375 
6376 /**
6377  *	netif_receive_skb - process receive buffer from network
6378  *	@skb: buffer to process
6379  *
6380  *	netif_receive_skb() is the main receive data processing function.
6381  *	It always succeeds. The buffer may be dropped during processing
6382  *	for congestion control or by the protocol layers.
6383  *
6384  *	This function may only be called from softirq context and interrupts
6385  *	should be enabled.
6386  *
6387  *	Return values (usually ignored):
6388  *	NET_RX_SUCCESS: no congestion
6389  *	NET_RX_DROP: packet was dropped
6390  */
netif_receive_skb(struct sk_buff * skb)6391 int netif_receive_skb(struct sk_buff *skb)
6392 {
6393 	int ret;
6394 
6395 	trace_netif_receive_skb_entry(skb);
6396 
6397 	ret = netif_receive_skb_internal(skb);
6398 	trace_netif_receive_skb_exit(ret);
6399 
6400 	return ret;
6401 }
6402 EXPORT_SYMBOL(netif_receive_skb);
6403 
6404 /**
6405  *	netif_receive_skb_list - process many receive buffers from network
6406  *	@head: list of skbs to process.
6407  *
6408  *	Since return value of netif_receive_skb() is normally ignored, and
6409  *	wouldn't be meaningful for a list, this function returns void.
6410  *
6411  *	This function may only be called from softirq context and interrupts
6412  *	should be enabled.
6413  */
netif_receive_skb_list(struct list_head * head)6414 void netif_receive_skb_list(struct list_head *head)
6415 {
6416 	struct sk_buff *skb;
6417 
6418 	if (list_empty(head))
6419 		return;
6420 	if (trace_netif_receive_skb_list_entry_enabled()) {
6421 		list_for_each_entry(skb, head, list)
6422 			trace_netif_receive_skb_list_entry(skb);
6423 	}
6424 	netif_receive_skb_list_internal(head);
6425 	trace_netif_receive_skb_list_exit(0);
6426 }
6427 EXPORT_SYMBOL(netif_receive_skb_list);
6428 
6429 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6430 static void flush_backlog(struct work_struct *work)
6431 {
6432 	struct sk_buff *skb, *tmp;
6433 	struct sk_buff_head list;
6434 	struct softnet_data *sd;
6435 
6436 	__skb_queue_head_init(&list);
6437 	local_bh_disable();
6438 	sd = this_cpu_ptr(&softnet_data);
6439 
6440 	backlog_lock_irq_disable(sd);
6441 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6442 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6443 			__skb_unlink(skb, &sd->input_pkt_queue);
6444 			__skb_queue_tail(&list, skb);
6445 			rps_input_queue_head_incr(sd);
6446 		}
6447 	}
6448 	backlog_unlock_irq_enable(sd);
6449 
6450 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6451 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6452 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6453 			__skb_unlink(skb, &sd->process_queue);
6454 			__skb_queue_tail(&list, skb);
6455 			rps_input_queue_head_incr(sd);
6456 		}
6457 	}
6458 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6459 	local_bh_enable();
6460 
6461 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6462 }
6463 
flush_required(int cpu)6464 static bool flush_required(int cpu)
6465 {
6466 #if IS_ENABLED(CONFIG_RPS)
6467 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6468 	bool do_flush;
6469 
6470 	backlog_lock_irq_disable(sd);
6471 
6472 	/* as insertion into process_queue happens with the rps lock held,
6473 	 * process_queue access may race only with dequeue
6474 	 */
6475 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6476 		   !skb_queue_empty_lockless(&sd->process_queue);
6477 	backlog_unlock_irq_enable(sd);
6478 
6479 	return do_flush;
6480 #endif
6481 	/* without RPS we can't safely check input_pkt_queue: during a
6482 	 * concurrent remote skb_queue_splice() we can detect as empty both
6483 	 * input_pkt_queue and process_queue even if the latter could end-up
6484 	 * containing a lot of packets.
6485 	 */
6486 	return true;
6487 }
6488 
6489 struct flush_backlogs {
6490 	cpumask_t		flush_cpus;
6491 	struct work_struct	w[];
6492 };
6493 
flush_backlogs_alloc(void)6494 static struct flush_backlogs *flush_backlogs_alloc(void)
6495 {
6496 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6497 		       GFP_KERNEL);
6498 }
6499 
6500 static struct flush_backlogs *flush_backlogs_fallback;
6501 static DEFINE_MUTEX(flush_backlogs_mutex);
6502 
flush_all_backlogs(void)6503 static void flush_all_backlogs(void)
6504 {
6505 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6506 	unsigned int cpu;
6507 
6508 	if (!ptr) {
6509 		mutex_lock(&flush_backlogs_mutex);
6510 		ptr = flush_backlogs_fallback;
6511 	}
6512 	cpumask_clear(&ptr->flush_cpus);
6513 
6514 	cpus_read_lock();
6515 
6516 	for_each_online_cpu(cpu) {
6517 		if (flush_required(cpu)) {
6518 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6519 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6520 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6521 		}
6522 	}
6523 
6524 	/* we can have in flight packet[s] on the cpus we are not flushing,
6525 	 * synchronize_net() in unregister_netdevice_many() will take care of
6526 	 * them.
6527 	 */
6528 	for_each_cpu(cpu, &ptr->flush_cpus)
6529 		flush_work(&ptr->w[cpu]);
6530 
6531 	cpus_read_unlock();
6532 
6533 	if (ptr != flush_backlogs_fallback)
6534 		kfree(ptr);
6535 	else
6536 		mutex_unlock(&flush_backlogs_mutex);
6537 }
6538 
net_rps_send_ipi(struct softnet_data * remsd)6539 static void net_rps_send_ipi(struct softnet_data *remsd)
6540 {
6541 #ifdef CONFIG_RPS
6542 	while (remsd) {
6543 		struct softnet_data *next = remsd->rps_ipi_next;
6544 
6545 		if (cpu_online(remsd->cpu))
6546 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6547 		remsd = next;
6548 	}
6549 #endif
6550 }
6551 
6552 /*
6553  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6554  * Note: called with local irq disabled, but exits with local irq enabled.
6555  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6556 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6557 {
6558 #ifdef CONFIG_RPS
6559 	struct softnet_data *remsd = sd->rps_ipi_list;
6560 
6561 	if (!use_backlog_threads() && remsd) {
6562 		sd->rps_ipi_list = NULL;
6563 
6564 		local_irq_enable();
6565 
6566 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6567 		net_rps_send_ipi(remsd);
6568 	} else
6569 #endif
6570 		local_irq_enable();
6571 }
6572 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6573 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6574 {
6575 #ifdef CONFIG_RPS
6576 	return !use_backlog_threads() && sd->rps_ipi_list;
6577 #else
6578 	return false;
6579 #endif
6580 }
6581 
process_backlog(struct napi_struct * napi,int quota)6582 static int process_backlog(struct napi_struct *napi, int quota)
6583 {
6584 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6585 	bool again = true;
6586 	int work = 0;
6587 
6588 	/* Check if we have pending ipi, its better to send them now,
6589 	 * not waiting net_rx_action() end.
6590 	 */
6591 	if (sd_has_rps_ipi_waiting(sd)) {
6592 		local_irq_disable();
6593 		net_rps_action_and_irq_enable(sd);
6594 	}
6595 
6596 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6597 	while (again) {
6598 		struct sk_buff *skb;
6599 
6600 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6601 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6602 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6603 			rcu_read_lock();
6604 			__netif_receive_skb(skb);
6605 			rcu_read_unlock();
6606 			if (++work >= quota) {
6607 				rps_input_queue_head_add(sd, work);
6608 				return work;
6609 			}
6610 
6611 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6612 		}
6613 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6614 
6615 		backlog_lock_irq_disable(sd);
6616 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6617 			/*
6618 			 * Inline a custom version of __napi_complete().
6619 			 * only current cpu owns and manipulates this napi,
6620 			 * and NAPI_STATE_SCHED is the only possible flag set
6621 			 * on backlog.
6622 			 * We can use a plain write instead of clear_bit(),
6623 			 * and we dont need an smp_mb() memory barrier.
6624 			 */
6625 			napi->state &= NAPIF_STATE_THREADED;
6626 			again = false;
6627 		} else {
6628 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6629 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6630 						   &sd->process_queue);
6631 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6632 		}
6633 		backlog_unlock_irq_enable(sd);
6634 	}
6635 
6636 	if (work)
6637 		rps_input_queue_head_add(sd, work);
6638 	return work;
6639 }
6640 
6641 /**
6642  * __napi_schedule - schedule for receive
6643  * @n: entry to schedule
6644  *
6645  * The entry's receive function will be scheduled to run.
6646  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6647  */
__napi_schedule(struct napi_struct * n)6648 void __napi_schedule(struct napi_struct *n)
6649 {
6650 	unsigned long flags;
6651 
6652 	local_irq_save(flags);
6653 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6654 	local_irq_restore(flags);
6655 }
6656 EXPORT_SYMBOL(__napi_schedule);
6657 
6658 /**
6659  *	napi_schedule_prep - check if napi can be scheduled
6660  *	@n: napi context
6661  *
6662  * Test if NAPI routine is already running, and if not mark
6663  * it as running.  This is used as a condition variable to
6664  * insure only one NAPI poll instance runs.  We also make
6665  * sure there is no pending NAPI disable.
6666  */
napi_schedule_prep(struct napi_struct * n)6667 bool napi_schedule_prep(struct napi_struct *n)
6668 {
6669 	unsigned long new, val = READ_ONCE(n->state);
6670 
6671 	do {
6672 		if (unlikely(val & NAPIF_STATE_DISABLE))
6673 			return false;
6674 		new = val | NAPIF_STATE_SCHED;
6675 
6676 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6677 		 * This was suggested by Alexander Duyck, as compiler
6678 		 * emits better code than :
6679 		 * if (val & NAPIF_STATE_SCHED)
6680 		 *     new |= NAPIF_STATE_MISSED;
6681 		 */
6682 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6683 						   NAPIF_STATE_MISSED;
6684 	} while (!try_cmpxchg(&n->state, &val, new));
6685 
6686 	return !(val & NAPIF_STATE_SCHED);
6687 }
6688 EXPORT_SYMBOL(napi_schedule_prep);
6689 
6690 /**
6691  * __napi_schedule_irqoff - schedule for receive
6692  * @n: entry to schedule
6693  *
6694  * Variant of __napi_schedule() assuming hard irqs are masked.
6695  *
6696  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6697  * because the interrupt disabled assumption might not be true
6698  * due to force-threaded interrupts and spinlock substitution.
6699  */
__napi_schedule_irqoff(struct napi_struct * n)6700 void __napi_schedule_irqoff(struct napi_struct *n)
6701 {
6702 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6703 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6704 	else
6705 		__napi_schedule(n);
6706 }
6707 EXPORT_SYMBOL(__napi_schedule_irqoff);
6708 
napi_complete_done(struct napi_struct * n,int work_done)6709 bool napi_complete_done(struct napi_struct *n, int work_done)
6710 {
6711 	unsigned long flags, val, new, timeout = 0;
6712 	bool ret = true;
6713 
6714 	/*
6715 	 * 1) Don't let napi dequeue from the cpu poll list
6716 	 *    just in case its running on a different cpu.
6717 	 * 2) If we are busy polling, do nothing here, we have
6718 	 *    the guarantee we will be called later.
6719 	 */
6720 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6721 				 NAPIF_STATE_IN_BUSY_POLL)))
6722 		return false;
6723 
6724 	if (work_done) {
6725 		if (n->gro.bitmask)
6726 			timeout = napi_get_gro_flush_timeout(n);
6727 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6728 	}
6729 	if (n->defer_hard_irqs_count > 0) {
6730 		n->defer_hard_irqs_count--;
6731 		timeout = napi_get_gro_flush_timeout(n);
6732 		if (timeout)
6733 			ret = false;
6734 	}
6735 
6736 	/*
6737 	 * When the NAPI instance uses a timeout and keeps postponing
6738 	 * it, we need to bound somehow the time packets are kept in
6739 	 * the GRO layer.
6740 	 */
6741 	gro_flush_normal(&n->gro, !!timeout);
6742 
6743 	if (unlikely(!list_empty(&n->poll_list))) {
6744 		/* If n->poll_list is not empty, we need to mask irqs */
6745 		local_irq_save(flags);
6746 		list_del_init(&n->poll_list);
6747 		local_irq_restore(flags);
6748 	}
6749 	WRITE_ONCE(n->list_owner, -1);
6750 
6751 	val = READ_ONCE(n->state);
6752 	do {
6753 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6754 
6755 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6756 			      NAPIF_STATE_SCHED_THREADED |
6757 			      NAPIF_STATE_PREFER_BUSY_POLL);
6758 
6759 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6760 		 * because we will call napi->poll() one more time.
6761 		 * This C code was suggested by Alexander Duyck to help gcc.
6762 		 */
6763 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6764 						    NAPIF_STATE_SCHED;
6765 	} while (!try_cmpxchg(&n->state, &val, new));
6766 
6767 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6768 		__napi_schedule(n);
6769 		return false;
6770 	}
6771 
6772 	if (timeout)
6773 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6774 			      HRTIMER_MODE_REL_PINNED);
6775 	return ret;
6776 }
6777 EXPORT_SYMBOL(napi_complete_done);
6778 
skb_defer_free_flush(void)6779 static void skb_defer_free_flush(void)
6780 {
6781 	struct llist_node *free_list;
6782 	struct sk_buff *skb, *next;
6783 	struct skb_defer_node *sdn;
6784 	int node;
6785 
6786 	for_each_node(node) {
6787 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6788 
6789 		if (llist_empty(&sdn->defer_list))
6790 			continue;
6791 		atomic_long_set(&sdn->defer_count, 0);
6792 		free_list = llist_del_all(&sdn->defer_list);
6793 
6794 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6795 			prefetch(next);
6796 			napi_consume_skb(skb, 1);
6797 		}
6798 	}
6799 }
6800 
6801 #if defined(CONFIG_NET_RX_BUSY_POLL)
6802 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6803 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6804 {
6805 	if (!skip_schedule) {
6806 		gro_normal_list(&napi->gro);
6807 		__napi_schedule(napi);
6808 		return;
6809 	}
6810 
6811 	/* Flush too old packets. If HZ < 1000, flush all packets */
6812 	gro_flush_normal(&napi->gro, HZ >= 1000);
6813 
6814 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6815 }
6816 
6817 enum {
6818 	NAPI_F_PREFER_BUSY_POLL	= 1,
6819 	NAPI_F_END_ON_RESCHED	= 2,
6820 };
6821 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6822 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6823 			   unsigned flags, u16 budget)
6824 {
6825 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6826 	bool skip_schedule = false;
6827 	unsigned long timeout;
6828 	int rc;
6829 
6830 	/* Busy polling means there is a high chance device driver hard irq
6831 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6832 	 * set in napi_schedule_prep().
6833 	 * Since we are about to call napi->poll() once more, we can safely
6834 	 * clear NAPI_STATE_MISSED.
6835 	 *
6836 	 * Note: x86 could use a single "lock and ..." instruction
6837 	 * to perform these two clear_bit()
6838 	 */
6839 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6840 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6841 
6842 	local_bh_disable();
6843 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6844 
6845 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6846 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6847 		timeout = napi_get_gro_flush_timeout(napi);
6848 		if (napi->defer_hard_irqs_count && timeout) {
6849 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6850 			skip_schedule = true;
6851 		}
6852 	}
6853 
6854 	/* All we really want here is to re-enable device interrupts.
6855 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6856 	 */
6857 	rc = napi->poll(napi, budget);
6858 	/* We can't gro_normal_list() here, because napi->poll() might have
6859 	 * rearmed the napi (napi_complete_done()) in which case it could
6860 	 * already be running on another CPU.
6861 	 */
6862 	trace_napi_poll(napi, rc, budget);
6863 	netpoll_poll_unlock(have_poll_lock);
6864 	if (rc == budget)
6865 		__busy_poll_stop(napi, skip_schedule);
6866 	bpf_net_ctx_clear(bpf_net_ctx);
6867 	local_bh_enable();
6868 }
6869 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6870 static void __napi_busy_loop(unsigned int napi_id,
6871 		      bool (*loop_end)(void *, unsigned long),
6872 		      void *loop_end_arg, unsigned flags, u16 budget)
6873 {
6874 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6875 	int (*napi_poll)(struct napi_struct *napi, int budget);
6876 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6877 	void *have_poll_lock = NULL;
6878 	struct napi_struct *napi;
6879 
6880 	WARN_ON_ONCE(!rcu_read_lock_held());
6881 
6882 restart:
6883 	napi_poll = NULL;
6884 
6885 	napi = napi_by_id(napi_id);
6886 	if (!napi)
6887 		return;
6888 
6889 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6890 		preempt_disable();
6891 	for (;;) {
6892 		int work = 0;
6893 
6894 		local_bh_disable();
6895 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6896 		if (!napi_poll) {
6897 			unsigned long val = READ_ONCE(napi->state);
6898 
6899 			/* If multiple threads are competing for this napi,
6900 			 * we avoid dirtying napi->state as much as we can.
6901 			 */
6902 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6903 				   NAPIF_STATE_IN_BUSY_POLL)) {
6904 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6905 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6906 				goto count;
6907 			}
6908 			if (cmpxchg(&napi->state, val,
6909 				    val | NAPIF_STATE_IN_BUSY_POLL |
6910 					  NAPIF_STATE_SCHED) != val) {
6911 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6912 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6913 				goto count;
6914 			}
6915 			have_poll_lock = netpoll_poll_lock(napi);
6916 			napi_poll = napi->poll;
6917 		}
6918 		work = napi_poll(napi, budget);
6919 		trace_napi_poll(napi, work, budget);
6920 		gro_normal_list(&napi->gro);
6921 count:
6922 		if (work > 0)
6923 			__NET_ADD_STATS(dev_net(napi->dev),
6924 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6925 		skb_defer_free_flush();
6926 		bpf_net_ctx_clear(bpf_net_ctx);
6927 		local_bh_enable();
6928 
6929 		if (!loop_end || loop_end(loop_end_arg, start_time))
6930 			break;
6931 
6932 		if (unlikely(need_resched())) {
6933 			if (flags & NAPI_F_END_ON_RESCHED)
6934 				break;
6935 			if (napi_poll)
6936 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6937 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6938 				preempt_enable();
6939 			rcu_read_unlock();
6940 			cond_resched();
6941 			rcu_read_lock();
6942 			if (loop_end(loop_end_arg, start_time))
6943 				return;
6944 			goto restart;
6945 		}
6946 		cpu_relax();
6947 	}
6948 	if (napi_poll)
6949 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6950 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6951 		preempt_enable();
6952 }
6953 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6954 void napi_busy_loop_rcu(unsigned int napi_id,
6955 			bool (*loop_end)(void *, unsigned long),
6956 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6957 {
6958 	unsigned flags = NAPI_F_END_ON_RESCHED;
6959 
6960 	if (prefer_busy_poll)
6961 		flags |= NAPI_F_PREFER_BUSY_POLL;
6962 
6963 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6964 }
6965 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6966 void napi_busy_loop(unsigned int napi_id,
6967 		    bool (*loop_end)(void *, unsigned long),
6968 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6969 {
6970 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6971 
6972 	rcu_read_lock();
6973 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6974 	rcu_read_unlock();
6975 }
6976 EXPORT_SYMBOL(napi_busy_loop);
6977 
napi_suspend_irqs(unsigned int napi_id)6978 void napi_suspend_irqs(unsigned int napi_id)
6979 {
6980 	struct napi_struct *napi;
6981 
6982 	rcu_read_lock();
6983 	napi = napi_by_id(napi_id);
6984 	if (napi) {
6985 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6986 
6987 		if (timeout)
6988 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6989 				      HRTIMER_MODE_REL_PINNED);
6990 	}
6991 	rcu_read_unlock();
6992 }
6993 
napi_resume_irqs(unsigned int napi_id)6994 void napi_resume_irqs(unsigned int napi_id)
6995 {
6996 	struct napi_struct *napi;
6997 
6998 	rcu_read_lock();
6999 	napi = napi_by_id(napi_id);
7000 	if (napi) {
7001 		/* If irq_suspend_timeout is set to 0 between the call to
7002 		 * napi_suspend_irqs and now, the original value still
7003 		 * determines the safety timeout as intended and napi_watchdog
7004 		 * will resume irq processing.
7005 		 */
7006 		if (napi_get_irq_suspend_timeout(napi)) {
7007 			local_bh_disable();
7008 			napi_schedule(napi);
7009 			local_bh_enable();
7010 		}
7011 	}
7012 	rcu_read_unlock();
7013 }
7014 
7015 #endif /* CONFIG_NET_RX_BUSY_POLL */
7016 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7017 static void __napi_hash_add_with_id(struct napi_struct *napi,
7018 				    unsigned int napi_id)
7019 {
7020 	napi->gro.cached_napi_id = napi_id;
7021 
7022 	WRITE_ONCE(napi->napi_id, napi_id);
7023 	hlist_add_head_rcu(&napi->napi_hash_node,
7024 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7025 }
7026 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7027 static void napi_hash_add_with_id(struct napi_struct *napi,
7028 				  unsigned int napi_id)
7029 {
7030 	unsigned long flags;
7031 
7032 	spin_lock_irqsave(&napi_hash_lock, flags);
7033 	WARN_ON_ONCE(napi_by_id(napi_id));
7034 	__napi_hash_add_with_id(napi, napi_id);
7035 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7036 }
7037 
napi_hash_add(struct napi_struct * napi)7038 static void napi_hash_add(struct napi_struct *napi)
7039 {
7040 	unsigned long flags;
7041 
7042 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7043 		return;
7044 
7045 	spin_lock_irqsave(&napi_hash_lock, flags);
7046 
7047 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7048 	do {
7049 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7050 			napi_gen_id = MIN_NAPI_ID;
7051 	} while (napi_by_id(napi_gen_id));
7052 
7053 	__napi_hash_add_with_id(napi, napi_gen_id);
7054 
7055 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7056 }
7057 
7058 /* Warning : caller is responsible to make sure rcu grace period
7059  * is respected before freeing memory containing @napi
7060  */
napi_hash_del(struct napi_struct * napi)7061 static void napi_hash_del(struct napi_struct *napi)
7062 {
7063 	unsigned long flags;
7064 
7065 	spin_lock_irqsave(&napi_hash_lock, flags);
7066 
7067 	hlist_del_init_rcu(&napi->napi_hash_node);
7068 
7069 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7070 }
7071 
napi_watchdog(struct hrtimer * timer)7072 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7073 {
7074 	struct napi_struct *napi;
7075 
7076 	napi = container_of(timer, struct napi_struct, timer);
7077 
7078 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7079 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7080 	 */
7081 	if (!napi_disable_pending(napi) &&
7082 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7083 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7084 		__napi_schedule_irqoff(napi);
7085 	}
7086 
7087 	return HRTIMER_NORESTART;
7088 }
7089 
napi_stop_kthread(struct napi_struct * napi)7090 static void napi_stop_kthread(struct napi_struct *napi)
7091 {
7092 	unsigned long val, new;
7093 
7094 	/* Wait until the napi STATE_THREADED is unset. */
7095 	while (true) {
7096 		val = READ_ONCE(napi->state);
7097 
7098 		/* If napi kthread own this napi or the napi is idle,
7099 		 * STATE_THREADED can be unset here.
7100 		 */
7101 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7102 		    !(val & NAPIF_STATE_SCHED)) {
7103 			new = val & (~(NAPIF_STATE_THREADED |
7104 				       NAPIF_STATE_THREADED_BUSY_POLL));
7105 		} else {
7106 			msleep(20);
7107 			continue;
7108 		}
7109 
7110 		if (try_cmpxchg(&napi->state, &val, new))
7111 			break;
7112 	}
7113 
7114 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7115 	 * the kthread.
7116 	 */
7117 	while (true) {
7118 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7119 			break;
7120 
7121 		msleep(20);
7122 	}
7123 
7124 	kthread_stop(napi->thread);
7125 	napi->thread = NULL;
7126 }
7127 
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7128 static void napi_set_threaded_state(struct napi_struct *napi,
7129 				    enum netdev_napi_threaded threaded_mode)
7130 {
7131 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7132 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7133 
7134 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7135 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7136 }
7137 
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7138 int napi_set_threaded(struct napi_struct *napi,
7139 		      enum netdev_napi_threaded threaded)
7140 {
7141 	if (threaded) {
7142 		if (!napi->thread) {
7143 			int err = napi_kthread_create(napi);
7144 
7145 			if (err)
7146 				return err;
7147 		}
7148 	}
7149 
7150 	if (napi->config)
7151 		napi->config->threaded = threaded;
7152 
7153 	/* Setting/unsetting threaded mode on a napi might not immediately
7154 	 * take effect, if the current napi instance is actively being
7155 	 * polled. In this case, the switch between threaded mode and
7156 	 * softirq mode will happen in the next round of napi_schedule().
7157 	 * This should not cause hiccups/stalls to the live traffic.
7158 	 */
7159 	if (!threaded && napi->thread) {
7160 		napi_stop_kthread(napi);
7161 	} else {
7162 		/* Make sure kthread is created before THREADED bit is set. */
7163 		smp_mb__before_atomic();
7164 		napi_set_threaded_state(napi, threaded);
7165 	}
7166 
7167 	return 0;
7168 }
7169 
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7170 int netif_set_threaded(struct net_device *dev,
7171 		       enum netdev_napi_threaded threaded)
7172 {
7173 	struct napi_struct *napi;
7174 	int i, err = 0;
7175 
7176 	netdev_assert_locked_or_invisible(dev);
7177 
7178 	if (threaded) {
7179 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7180 			if (!napi->thread) {
7181 				err = napi_kthread_create(napi);
7182 				if (err) {
7183 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7184 					break;
7185 				}
7186 			}
7187 		}
7188 	}
7189 
7190 	WRITE_ONCE(dev->threaded, threaded);
7191 
7192 	/* The error should not occur as the kthreads are already created. */
7193 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7194 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7195 
7196 	/* Override the config for all NAPIs even if currently not listed */
7197 	for (i = 0; i < dev->num_napi_configs; i++)
7198 		dev->napi_config[i].threaded = threaded;
7199 
7200 	return err;
7201 }
7202 
7203 /**
7204  * netif_threaded_enable() - enable threaded NAPIs
7205  * @dev: net_device instance
7206  *
7207  * Enable threaded mode for the NAPI instances of the device. This may be useful
7208  * for devices where multiple NAPI instances get scheduled by a single
7209  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7210  * than the core where IRQ is mapped.
7211  *
7212  * This function should be called before @dev is registered.
7213  */
netif_threaded_enable(struct net_device * dev)7214 void netif_threaded_enable(struct net_device *dev)
7215 {
7216 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7217 }
7218 EXPORT_SYMBOL(netif_threaded_enable);
7219 
7220 /**
7221  * netif_queue_set_napi - Associate queue with the napi
7222  * @dev: device to which NAPI and queue belong
7223  * @queue_index: Index of queue
7224  * @type: queue type as RX or TX
7225  * @napi: NAPI context, pass NULL to clear previously set NAPI
7226  *
7227  * Set queue with its corresponding napi context. This should be done after
7228  * registering the NAPI handler for the queue-vector and the queues have been
7229  * mapped to the corresponding interrupt vector.
7230  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7231 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7232 			  enum netdev_queue_type type, struct napi_struct *napi)
7233 {
7234 	struct netdev_rx_queue *rxq;
7235 	struct netdev_queue *txq;
7236 
7237 	if (WARN_ON_ONCE(napi && !napi->dev))
7238 		return;
7239 	netdev_ops_assert_locked_or_invisible(dev);
7240 
7241 	switch (type) {
7242 	case NETDEV_QUEUE_TYPE_RX:
7243 		rxq = __netif_get_rx_queue(dev, queue_index);
7244 		rxq->napi = napi;
7245 		return;
7246 	case NETDEV_QUEUE_TYPE_TX:
7247 		txq = netdev_get_tx_queue(dev, queue_index);
7248 		txq->napi = napi;
7249 		return;
7250 	default:
7251 		return;
7252 	}
7253 }
7254 EXPORT_SYMBOL(netif_queue_set_napi);
7255 
7256 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7257 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7258 		      const cpumask_t *mask)
7259 {
7260 	struct napi_struct *napi =
7261 		container_of(notify, struct napi_struct, notify);
7262 #ifdef CONFIG_RFS_ACCEL
7263 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7264 	int err;
7265 #endif
7266 
7267 	if (napi->config && napi->dev->irq_affinity_auto)
7268 		cpumask_copy(&napi->config->affinity_mask, mask);
7269 
7270 #ifdef CONFIG_RFS_ACCEL
7271 	if (napi->dev->rx_cpu_rmap_auto) {
7272 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7273 		if (err)
7274 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7275 				    err);
7276 	}
7277 #endif
7278 }
7279 
7280 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7281 static void netif_napi_affinity_release(struct kref *ref)
7282 {
7283 	struct napi_struct *napi =
7284 		container_of(ref, struct napi_struct, notify.kref);
7285 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7286 
7287 	netdev_assert_locked(napi->dev);
7288 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7289 				   &napi->state));
7290 
7291 	if (!napi->dev->rx_cpu_rmap_auto)
7292 		return;
7293 	rmap->obj[napi->napi_rmap_idx] = NULL;
7294 	napi->napi_rmap_idx = -1;
7295 	cpu_rmap_put(rmap);
7296 }
7297 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7298 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7299 {
7300 	if (dev->rx_cpu_rmap_auto)
7301 		return 0;
7302 
7303 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7304 	if (!dev->rx_cpu_rmap)
7305 		return -ENOMEM;
7306 
7307 	dev->rx_cpu_rmap_auto = true;
7308 	return 0;
7309 }
7310 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7311 
netif_del_cpu_rmap(struct net_device * dev)7312 static void netif_del_cpu_rmap(struct net_device *dev)
7313 {
7314 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7315 
7316 	if (!dev->rx_cpu_rmap_auto)
7317 		return;
7318 
7319 	/* Free the rmap */
7320 	cpu_rmap_put(rmap);
7321 	dev->rx_cpu_rmap = NULL;
7322 	dev->rx_cpu_rmap_auto = false;
7323 }
7324 
7325 #else
netif_napi_affinity_release(struct kref * ref)7326 static void netif_napi_affinity_release(struct kref *ref)
7327 {
7328 }
7329 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7330 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7331 {
7332 	return 0;
7333 }
7334 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7335 
netif_del_cpu_rmap(struct net_device * dev)7336 static void netif_del_cpu_rmap(struct net_device *dev)
7337 {
7338 }
7339 #endif
7340 
netif_set_affinity_auto(struct net_device * dev)7341 void netif_set_affinity_auto(struct net_device *dev)
7342 {
7343 	unsigned int i, maxqs, numa;
7344 
7345 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7346 	numa = dev_to_node(&dev->dev);
7347 
7348 	for (i = 0; i < maxqs; i++)
7349 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7350 				&dev->napi_config[i].affinity_mask);
7351 
7352 	dev->irq_affinity_auto = true;
7353 }
7354 EXPORT_SYMBOL(netif_set_affinity_auto);
7355 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7356 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7357 {
7358 	int rc;
7359 
7360 	netdev_assert_locked_or_invisible(napi->dev);
7361 
7362 	if (napi->irq == irq)
7363 		return;
7364 
7365 	/* Remove existing resources */
7366 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7367 		irq_set_affinity_notifier(napi->irq, NULL);
7368 
7369 	napi->irq = irq;
7370 	if (irq < 0 ||
7371 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7372 		return;
7373 
7374 	/* Abort for buggy drivers */
7375 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7376 		return;
7377 
7378 #ifdef CONFIG_RFS_ACCEL
7379 	if (napi->dev->rx_cpu_rmap_auto) {
7380 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7381 		if (rc < 0)
7382 			return;
7383 
7384 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7385 		napi->napi_rmap_idx = rc;
7386 	}
7387 #endif
7388 
7389 	/* Use core IRQ notifier */
7390 	napi->notify.notify = netif_napi_irq_notify;
7391 	napi->notify.release = netif_napi_affinity_release;
7392 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7393 	if (rc) {
7394 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7395 			    rc);
7396 		goto put_rmap;
7397 	}
7398 
7399 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7400 	return;
7401 
7402 put_rmap:
7403 #ifdef CONFIG_RFS_ACCEL
7404 	if (napi->dev->rx_cpu_rmap_auto) {
7405 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7406 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7407 		napi->napi_rmap_idx = -1;
7408 	}
7409 #endif
7410 	napi->notify.notify = NULL;
7411 	napi->notify.release = NULL;
7412 }
7413 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7414 
napi_restore_config(struct napi_struct * n)7415 static void napi_restore_config(struct napi_struct *n)
7416 {
7417 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7418 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7419 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7420 
7421 	if (n->dev->irq_affinity_auto &&
7422 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7423 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7424 
7425 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7426 	 * napi_hash_add to generate one for us.
7427 	 */
7428 	if (n->config->napi_id) {
7429 		napi_hash_add_with_id(n, n->config->napi_id);
7430 	} else {
7431 		napi_hash_add(n);
7432 		n->config->napi_id = n->napi_id;
7433 	}
7434 
7435 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7436 }
7437 
napi_save_config(struct napi_struct * n)7438 static void napi_save_config(struct napi_struct *n)
7439 {
7440 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7441 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7442 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7443 	napi_hash_del(n);
7444 }
7445 
7446 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7447  * inherit an existing ID try to insert it at the right position.
7448  */
7449 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7450 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7451 {
7452 	unsigned int new_id, pos_id;
7453 	struct list_head *higher;
7454 	struct napi_struct *pos;
7455 
7456 	new_id = UINT_MAX;
7457 	if (napi->config && napi->config->napi_id)
7458 		new_id = napi->config->napi_id;
7459 
7460 	higher = &dev->napi_list;
7461 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7462 		if (napi_id_valid(pos->napi_id))
7463 			pos_id = pos->napi_id;
7464 		else if (pos->config)
7465 			pos_id = pos->config->napi_id;
7466 		else
7467 			pos_id = UINT_MAX;
7468 
7469 		if (pos_id <= new_id)
7470 			break;
7471 		higher = &pos->dev_list;
7472 	}
7473 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7474 }
7475 
7476 /* Double check that napi_get_frags() allocates skbs with
7477  * skb->head being backed by slab, not a page fragment.
7478  * This is to make sure bug fixed in 3226b158e67c
7479  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7480  * does not accidentally come back.
7481  */
napi_get_frags_check(struct napi_struct * napi)7482 static void napi_get_frags_check(struct napi_struct *napi)
7483 {
7484 	struct sk_buff *skb;
7485 
7486 	local_bh_disable();
7487 	skb = napi_get_frags(napi);
7488 	WARN_ON_ONCE(skb && skb->head_frag);
7489 	napi_free_frags(napi);
7490 	local_bh_enable();
7491 }
7492 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7493 void netif_napi_add_weight_locked(struct net_device *dev,
7494 				  struct napi_struct *napi,
7495 				  int (*poll)(struct napi_struct *, int),
7496 				  int weight)
7497 {
7498 	netdev_assert_locked(dev);
7499 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7500 		return;
7501 
7502 	INIT_LIST_HEAD(&napi->poll_list);
7503 	INIT_HLIST_NODE(&napi->napi_hash_node);
7504 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7505 	gro_init(&napi->gro);
7506 	napi->skb = NULL;
7507 	napi->poll = poll;
7508 	if (weight > NAPI_POLL_WEIGHT)
7509 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7510 				weight);
7511 	napi->weight = weight;
7512 	napi->dev = dev;
7513 #ifdef CONFIG_NETPOLL
7514 	napi->poll_owner = -1;
7515 #endif
7516 	napi->list_owner = -1;
7517 	set_bit(NAPI_STATE_SCHED, &napi->state);
7518 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7519 	netif_napi_dev_list_add(dev, napi);
7520 
7521 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7522 	 * configuration will be loaded in napi_enable
7523 	 */
7524 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7525 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7526 
7527 	napi_get_frags_check(napi);
7528 	/* Create kthread for this napi if dev->threaded is set.
7529 	 * Clear dev->threaded if kthread creation failed so that
7530 	 * threaded mode will not be enabled in napi_enable().
7531 	 */
7532 	if (napi_get_threaded_config(dev, napi))
7533 		if (napi_kthread_create(napi))
7534 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7535 	netif_napi_set_irq_locked(napi, -1);
7536 }
7537 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7538 
napi_disable_locked(struct napi_struct * n)7539 void napi_disable_locked(struct napi_struct *n)
7540 {
7541 	unsigned long val, new;
7542 
7543 	might_sleep();
7544 	netdev_assert_locked(n->dev);
7545 
7546 	set_bit(NAPI_STATE_DISABLE, &n->state);
7547 
7548 	val = READ_ONCE(n->state);
7549 	do {
7550 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7551 			usleep_range(20, 200);
7552 			val = READ_ONCE(n->state);
7553 		}
7554 
7555 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7556 		new &= ~(NAPIF_STATE_THREADED |
7557 			 NAPIF_STATE_THREADED_BUSY_POLL |
7558 			 NAPIF_STATE_PREFER_BUSY_POLL);
7559 	} while (!try_cmpxchg(&n->state, &val, new));
7560 
7561 	hrtimer_cancel(&n->timer);
7562 
7563 	if (n->config)
7564 		napi_save_config(n);
7565 	else
7566 		napi_hash_del(n);
7567 
7568 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7569 }
7570 EXPORT_SYMBOL(napi_disable_locked);
7571 
7572 /**
7573  * napi_disable() - prevent NAPI from scheduling
7574  * @n: NAPI context
7575  *
7576  * Stop NAPI from being scheduled on this context.
7577  * Waits till any outstanding processing completes.
7578  * Takes netdev_lock() for associated net_device.
7579  */
napi_disable(struct napi_struct * n)7580 void napi_disable(struct napi_struct *n)
7581 {
7582 	netdev_lock(n->dev);
7583 	napi_disable_locked(n);
7584 	netdev_unlock(n->dev);
7585 }
7586 EXPORT_SYMBOL(napi_disable);
7587 
napi_enable_locked(struct napi_struct * n)7588 void napi_enable_locked(struct napi_struct *n)
7589 {
7590 	unsigned long new, val = READ_ONCE(n->state);
7591 
7592 	if (n->config)
7593 		napi_restore_config(n);
7594 	else
7595 		napi_hash_add(n);
7596 
7597 	do {
7598 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7599 
7600 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7601 		if (n->dev->threaded && n->thread)
7602 			new |= NAPIF_STATE_THREADED;
7603 	} while (!try_cmpxchg(&n->state, &val, new));
7604 }
7605 EXPORT_SYMBOL(napi_enable_locked);
7606 
7607 /**
7608  * napi_enable() - enable NAPI scheduling
7609  * @n: NAPI context
7610  *
7611  * Enable scheduling of a NAPI instance.
7612  * Must be paired with napi_disable().
7613  * Takes netdev_lock() for associated net_device.
7614  */
napi_enable(struct napi_struct * n)7615 void napi_enable(struct napi_struct *n)
7616 {
7617 	netdev_lock(n->dev);
7618 	napi_enable_locked(n);
7619 	netdev_unlock(n->dev);
7620 }
7621 EXPORT_SYMBOL(napi_enable);
7622 
7623 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7624 void __netif_napi_del_locked(struct napi_struct *napi)
7625 {
7626 	netdev_assert_locked(napi->dev);
7627 
7628 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7629 		return;
7630 
7631 	/* Make sure NAPI is disabled (or was never enabled). */
7632 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7633 
7634 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7635 		irq_set_affinity_notifier(napi->irq, NULL);
7636 
7637 	if (napi->config) {
7638 		napi->index = -1;
7639 		napi->config = NULL;
7640 	}
7641 
7642 	list_del_rcu(&napi->dev_list);
7643 	napi_free_frags(napi);
7644 
7645 	gro_cleanup(&napi->gro);
7646 
7647 	if (napi->thread) {
7648 		kthread_stop(napi->thread);
7649 		napi->thread = NULL;
7650 	}
7651 }
7652 EXPORT_SYMBOL(__netif_napi_del_locked);
7653 
__napi_poll(struct napi_struct * n,bool * repoll)7654 static int __napi_poll(struct napi_struct *n, bool *repoll)
7655 {
7656 	int work, weight;
7657 
7658 	weight = n->weight;
7659 
7660 	/* This NAPI_STATE_SCHED test is for avoiding a race
7661 	 * with netpoll's poll_napi().  Only the entity which
7662 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7663 	 * actually make the ->poll() call.  Therefore we avoid
7664 	 * accidentally calling ->poll() when NAPI is not scheduled.
7665 	 */
7666 	work = 0;
7667 	if (napi_is_scheduled(n)) {
7668 		work = n->poll(n, weight);
7669 		trace_napi_poll(n, work, weight);
7670 
7671 		xdp_do_check_flushed(n);
7672 	}
7673 
7674 	if (unlikely(work > weight))
7675 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7676 				n->poll, work, weight);
7677 
7678 	if (likely(work < weight))
7679 		return work;
7680 
7681 	/* Drivers must not modify the NAPI state if they
7682 	 * consume the entire weight.  In such cases this code
7683 	 * still "owns" the NAPI instance and therefore can
7684 	 * move the instance around on the list at-will.
7685 	 */
7686 	if (unlikely(napi_disable_pending(n))) {
7687 		napi_complete(n);
7688 		return work;
7689 	}
7690 
7691 	/* The NAPI context has more processing work, but busy-polling
7692 	 * is preferred. Exit early.
7693 	 */
7694 	if (napi_prefer_busy_poll(n)) {
7695 		if (napi_complete_done(n, work)) {
7696 			/* If timeout is not set, we need to make sure
7697 			 * that the NAPI is re-scheduled.
7698 			 */
7699 			napi_schedule(n);
7700 		}
7701 		return work;
7702 	}
7703 
7704 	/* Flush too old packets. If HZ < 1000, flush all packets */
7705 	gro_flush_normal(&n->gro, HZ >= 1000);
7706 
7707 	/* Some drivers may have called napi_schedule
7708 	 * prior to exhausting their budget.
7709 	 */
7710 	if (unlikely(!list_empty(&n->poll_list))) {
7711 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7712 			     n->dev ? n->dev->name : "backlog");
7713 		return work;
7714 	}
7715 
7716 	*repoll = true;
7717 
7718 	return work;
7719 }
7720 
napi_poll(struct napi_struct * n,struct list_head * repoll)7721 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7722 {
7723 	bool do_repoll = false;
7724 	void *have;
7725 	int work;
7726 
7727 	list_del_init(&n->poll_list);
7728 
7729 	have = netpoll_poll_lock(n);
7730 
7731 	work = __napi_poll(n, &do_repoll);
7732 
7733 	if (do_repoll) {
7734 #if defined(CONFIG_DEBUG_NET)
7735 		if (unlikely(!napi_is_scheduled(n)))
7736 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7737 				n->dev->name, n->poll);
7738 #endif
7739 		list_add_tail(&n->poll_list, repoll);
7740 	}
7741 	netpoll_poll_unlock(have);
7742 
7743 	return work;
7744 }
7745 
napi_thread_wait(struct napi_struct * napi)7746 static int napi_thread_wait(struct napi_struct *napi)
7747 {
7748 	set_current_state(TASK_INTERRUPTIBLE);
7749 
7750 	while (!kthread_should_stop()) {
7751 		/* Testing SCHED_THREADED bit here to make sure the current
7752 		 * kthread owns this napi and could poll on this napi.
7753 		 * Testing SCHED bit is not enough because SCHED bit might be
7754 		 * set by some other busy poll thread or by napi_disable().
7755 		 */
7756 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7757 			WARN_ON(!list_empty(&napi->poll_list));
7758 			__set_current_state(TASK_RUNNING);
7759 			return 0;
7760 		}
7761 
7762 		schedule();
7763 		set_current_state(TASK_INTERRUPTIBLE);
7764 	}
7765 	__set_current_state(TASK_RUNNING);
7766 
7767 	return -1;
7768 }
7769 
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7770 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7771 {
7772 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7773 	struct softnet_data *sd;
7774 	unsigned long last_qs = jiffies;
7775 
7776 	for (;;) {
7777 		bool repoll = false;
7778 		void *have;
7779 
7780 		local_bh_disable();
7781 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7782 
7783 		sd = this_cpu_ptr(&softnet_data);
7784 		sd->in_napi_threaded_poll = true;
7785 
7786 		have = netpoll_poll_lock(napi);
7787 		__napi_poll(napi, &repoll);
7788 		netpoll_poll_unlock(have);
7789 
7790 		sd->in_napi_threaded_poll = false;
7791 		barrier();
7792 
7793 		if (sd_has_rps_ipi_waiting(sd)) {
7794 			local_irq_disable();
7795 			net_rps_action_and_irq_enable(sd);
7796 		}
7797 		skb_defer_free_flush();
7798 		bpf_net_ctx_clear(bpf_net_ctx);
7799 
7800 		/* When busy poll is enabled, the old packets are not flushed in
7801 		 * napi_complete_done. So flush them here.
7802 		 */
7803 		if (busy_poll)
7804 			gro_flush_normal(&napi->gro, HZ >= 1000);
7805 		local_bh_enable();
7806 
7807 		/* Call cond_resched here to avoid watchdog warnings. */
7808 		if (repoll || busy_poll) {
7809 			rcu_softirq_qs_periodic(last_qs);
7810 			cond_resched();
7811 		}
7812 
7813 		if (!repoll)
7814 			break;
7815 	}
7816 }
7817 
napi_threaded_poll(void * data)7818 static int napi_threaded_poll(void *data)
7819 {
7820 	struct napi_struct *napi = data;
7821 	bool want_busy_poll;
7822 	bool in_busy_poll;
7823 	unsigned long val;
7824 
7825 	while (!napi_thread_wait(napi)) {
7826 		val = READ_ONCE(napi->state);
7827 
7828 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7829 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7830 
7831 		if (unlikely(val & NAPIF_STATE_DISABLE))
7832 			want_busy_poll = false;
7833 
7834 		if (want_busy_poll != in_busy_poll)
7835 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7836 				   want_busy_poll);
7837 
7838 		napi_threaded_poll_loop(napi, want_busy_poll);
7839 	}
7840 
7841 	return 0;
7842 }
7843 
net_rx_action(void)7844 static __latent_entropy void net_rx_action(void)
7845 {
7846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7847 	unsigned long time_limit = jiffies +
7848 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7849 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7850 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7851 	LIST_HEAD(list);
7852 	LIST_HEAD(repoll);
7853 
7854 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7855 start:
7856 	sd->in_net_rx_action = true;
7857 	local_irq_disable();
7858 	list_splice_init(&sd->poll_list, &list);
7859 	local_irq_enable();
7860 
7861 	for (;;) {
7862 		struct napi_struct *n;
7863 
7864 		skb_defer_free_flush();
7865 
7866 		if (list_empty(&list)) {
7867 			if (list_empty(&repoll)) {
7868 				sd->in_net_rx_action = false;
7869 				barrier();
7870 				/* We need to check if ____napi_schedule()
7871 				 * had refilled poll_list while
7872 				 * sd->in_net_rx_action was true.
7873 				 */
7874 				if (!list_empty(&sd->poll_list))
7875 					goto start;
7876 				if (!sd_has_rps_ipi_waiting(sd))
7877 					goto end;
7878 			}
7879 			break;
7880 		}
7881 
7882 		n = list_first_entry(&list, struct napi_struct, poll_list);
7883 		budget -= napi_poll(n, &repoll);
7884 
7885 		/* If softirq window is exhausted then punt.
7886 		 * Allow this to run for 2 jiffies since which will allow
7887 		 * an average latency of 1.5/HZ.
7888 		 */
7889 		if (unlikely(budget <= 0 ||
7890 			     time_after_eq(jiffies, time_limit))) {
7891 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7892 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7893 			break;
7894 		}
7895 	}
7896 
7897 	local_irq_disable();
7898 
7899 	list_splice_tail_init(&sd->poll_list, &list);
7900 	list_splice_tail(&repoll, &list);
7901 	list_splice(&list, &sd->poll_list);
7902 	if (!list_empty(&sd->poll_list))
7903 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7904 	else
7905 		sd->in_net_rx_action = false;
7906 
7907 	net_rps_action_and_irq_enable(sd);
7908 end:
7909 	bpf_net_ctx_clear(bpf_net_ctx);
7910 }
7911 
7912 struct netdev_adjacent {
7913 	struct net_device *dev;
7914 	netdevice_tracker dev_tracker;
7915 
7916 	/* upper master flag, there can only be one master device per list */
7917 	bool master;
7918 
7919 	/* lookup ignore flag */
7920 	bool ignore;
7921 
7922 	/* counter for the number of times this device was added to us */
7923 	u16 ref_nr;
7924 
7925 	/* private field for the users */
7926 	void *private;
7927 
7928 	struct list_head list;
7929 	struct rcu_head rcu;
7930 };
7931 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7932 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7933 						 struct list_head *adj_list)
7934 {
7935 	struct netdev_adjacent *adj;
7936 
7937 	list_for_each_entry(adj, adj_list, list) {
7938 		if (adj->dev == adj_dev)
7939 			return adj;
7940 	}
7941 	return NULL;
7942 }
7943 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7944 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7945 				    struct netdev_nested_priv *priv)
7946 {
7947 	struct net_device *dev = (struct net_device *)priv->data;
7948 
7949 	return upper_dev == dev;
7950 }
7951 
7952 /**
7953  * netdev_has_upper_dev - Check if device is linked to an upper device
7954  * @dev: device
7955  * @upper_dev: upper device to check
7956  *
7957  * Find out if a device is linked to specified upper device and return true
7958  * in case it is. Note that this checks only immediate upper device,
7959  * not through a complete stack of devices. The caller must hold the RTNL lock.
7960  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7961 bool netdev_has_upper_dev(struct net_device *dev,
7962 			  struct net_device *upper_dev)
7963 {
7964 	struct netdev_nested_priv priv = {
7965 		.data = (void *)upper_dev,
7966 	};
7967 
7968 	ASSERT_RTNL();
7969 
7970 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7971 					     &priv);
7972 }
7973 EXPORT_SYMBOL(netdev_has_upper_dev);
7974 
7975 /**
7976  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7977  * @dev: device
7978  * @upper_dev: upper device to check
7979  *
7980  * Find out if a device is linked to specified upper device and return true
7981  * in case it is. Note that this checks the entire upper device chain.
7982  * The caller must hold rcu lock.
7983  */
7984 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7985 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7986 				  struct net_device *upper_dev)
7987 {
7988 	struct netdev_nested_priv priv = {
7989 		.data = (void *)upper_dev,
7990 	};
7991 
7992 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7993 					       &priv);
7994 }
7995 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7996 
7997 /**
7998  * netdev_has_any_upper_dev - Check if device is linked to some device
7999  * @dev: device
8000  *
8001  * Find out if a device is linked to an upper device and return true in case
8002  * it is. The caller must hold the RTNL lock.
8003  */
netdev_has_any_upper_dev(struct net_device * dev)8004 bool netdev_has_any_upper_dev(struct net_device *dev)
8005 {
8006 	ASSERT_RTNL();
8007 
8008 	return !list_empty(&dev->adj_list.upper);
8009 }
8010 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8011 
8012 /**
8013  * netdev_master_upper_dev_get - Get master upper device
8014  * @dev: device
8015  *
8016  * Find a master upper device and return pointer to it or NULL in case
8017  * it's not there. The caller must hold the RTNL lock.
8018  */
netdev_master_upper_dev_get(struct net_device * dev)8019 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8020 {
8021 	struct netdev_adjacent *upper;
8022 
8023 	ASSERT_RTNL();
8024 
8025 	if (list_empty(&dev->adj_list.upper))
8026 		return NULL;
8027 
8028 	upper = list_first_entry(&dev->adj_list.upper,
8029 				 struct netdev_adjacent, list);
8030 	if (likely(upper->master))
8031 		return upper->dev;
8032 	return NULL;
8033 }
8034 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8035 
__netdev_master_upper_dev_get(struct net_device * dev)8036 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8037 {
8038 	struct netdev_adjacent *upper;
8039 
8040 	ASSERT_RTNL();
8041 
8042 	if (list_empty(&dev->adj_list.upper))
8043 		return NULL;
8044 
8045 	upper = list_first_entry(&dev->adj_list.upper,
8046 				 struct netdev_adjacent, list);
8047 	if (likely(upper->master) && !upper->ignore)
8048 		return upper->dev;
8049 	return NULL;
8050 }
8051 
8052 /**
8053  * netdev_has_any_lower_dev - Check if device is linked to some device
8054  * @dev: device
8055  *
8056  * Find out if a device is linked to a lower device and return true in case
8057  * it is. The caller must hold the RTNL lock.
8058  */
netdev_has_any_lower_dev(struct net_device * dev)8059 static bool netdev_has_any_lower_dev(struct net_device *dev)
8060 {
8061 	ASSERT_RTNL();
8062 
8063 	return !list_empty(&dev->adj_list.lower);
8064 }
8065 
netdev_adjacent_get_private(struct list_head * adj_list)8066 void *netdev_adjacent_get_private(struct list_head *adj_list)
8067 {
8068 	struct netdev_adjacent *adj;
8069 
8070 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8071 
8072 	return adj->private;
8073 }
8074 EXPORT_SYMBOL(netdev_adjacent_get_private);
8075 
8076 /**
8077  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8078  * @dev: device
8079  * @iter: list_head ** of the current position
8080  *
8081  * Gets the next device from the dev's upper list, starting from iter
8082  * position. The caller must hold RCU read lock.
8083  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8084 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8085 						 struct list_head **iter)
8086 {
8087 	struct netdev_adjacent *upper;
8088 
8089 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8090 
8091 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8092 
8093 	if (&upper->list == &dev->adj_list.upper)
8094 		return NULL;
8095 
8096 	*iter = &upper->list;
8097 
8098 	return upper->dev;
8099 }
8100 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8101 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8102 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8103 						  struct list_head **iter,
8104 						  bool *ignore)
8105 {
8106 	struct netdev_adjacent *upper;
8107 
8108 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8109 
8110 	if (&upper->list == &dev->adj_list.upper)
8111 		return NULL;
8112 
8113 	*iter = &upper->list;
8114 	*ignore = upper->ignore;
8115 
8116 	return upper->dev;
8117 }
8118 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8119 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8120 						    struct list_head **iter)
8121 {
8122 	struct netdev_adjacent *upper;
8123 
8124 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8125 
8126 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8127 
8128 	if (&upper->list == &dev->adj_list.upper)
8129 		return NULL;
8130 
8131 	*iter = &upper->list;
8132 
8133 	return upper->dev;
8134 }
8135 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8136 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8137 				       int (*fn)(struct net_device *dev,
8138 					 struct netdev_nested_priv *priv),
8139 				       struct netdev_nested_priv *priv)
8140 {
8141 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8142 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8143 	int ret, cur = 0;
8144 	bool ignore;
8145 
8146 	now = dev;
8147 	iter = &dev->adj_list.upper;
8148 
8149 	while (1) {
8150 		if (now != dev) {
8151 			ret = fn(now, priv);
8152 			if (ret)
8153 				return ret;
8154 		}
8155 
8156 		next = NULL;
8157 		while (1) {
8158 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8159 			if (!udev)
8160 				break;
8161 			if (ignore)
8162 				continue;
8163 
8164 			next = udev;
8165 			niter = &udev->adj_list.upper;
8166 			dev_stack[cur] = now;
8167 			iter_stack[cur++] = iter;
8168 			break;
8169 		}
8170 
8171 		if (!next) {
8172 			if (!cur)
8173 				return 0;
8174 			next = dev_stack[--cur];
8175 			niter = iter_stack[cur];
8176 		}
8177 
8178 		now = next;
8179 		iter = niter;
8180 	}
8181 
8182 	return 0;
8183 }
8184 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8185 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8186 				  int (*fn)(struct net_device *dev,
8187 					    struct netdev_nested_priv *priv),
8188 				  struct netdev_nested_priv *priv)
8189 {
8190 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8191 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8192 	int ret, cur = 0;
8193 
8194 	now = dev;
8195 	iter = &dev->adj_list.upper;
8196 
8197 	while (1) {
8198 		if (now != dev) {
8199 			ret = fn(now, priv);
8200 			if (ret)
8201 				return ret;
8202 		}
8203 
8204 		next = NULL;
8205 		while (1) {
8206 			udev = netdev_next_upper_dev_rcu(now, &iter);
8207 			if (!udev)
8208 				break;
8209 
8210 			next = udev;
8211 			niter = &udev->adj_list.upper;
8212 			dev_stack[cur] = now;
8213 			iter_stack[cur++] = iter;
8214 			break;
8215 		}
8216 
8217 		if (!next) {
8218 			if (!cur)
8219 				return 0;
8220 			next = dev_stack[--cur];
8221 			niter = iter_stack[cur];
8222 		}
8223 
8224 		now = next;
8225 		iter = niter;
8226 	}
8227 
8228 	return 0;
8229 }
8230 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8231 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8232 static bool __netdev_has_upper_dev(struct net_device *dev,
8233 				   struct net_device *upper_dev)
8234 {
8235 	struct netdev_nested_priv priv = {
8236 		.flags = 0,
8237 		.data = (void *)upper_dev,
8238 	};
8239 
8240 	ASSERT_RTNL();
8241 
8242 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8243 					   &priv);
8244 }
8245 
8246 /**
8247  * netdev_lower_get_next_private - Get the next ->private from the
8248  *				   lower neighbour list
8249  * @dev: device
8250  * @iter: list_head ** of the current position
8251  *
8252  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8253  * list, starting from iter position. The caller must hold either hold the
8254  * RTNL lock or its own locking that guarantees that the neighbour lower
8255  * list will remain unchanged.
8256  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8257 void *netdev_lower_get_next_private(struct net_device *dev,
8258 				    struct list_head **iter)
8259 {
8260 	struct netdev_adjacent *lower;
8261 
8262 	lower = list_entry(*iter, struct netdev_adjacent, list);
8263 
8264 	if (&lower->list == &dev->adj_list.lower)
8265 		return NULL;
8266 
8267 	*iter = lower->list.next;
8268 
8269 	return lower->private;
8270 }
8271 EXPORT_SYMBOL(netdev_lower_get_next_private);
8272 
8273 /**
8274  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8275  *				       lower neighbour list, RCU
8276  *				       variant
8277  * @dev: device
8278  * @iter: list_head ** of the current position
8279  *
8280  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8281  * list, starting from iter position. The caller must hold RCU read lock.
8282  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8283 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8284 					struct list_head **iter)
8285 {
8286 	struct netdev_adjacent *lower;
8287 
8288 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8289 
8290 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8291 
8292 	if (&lower->list == &dev->adj_list.lower)
8293 		return NULL;
8294 
8295 	*iter = &lower->list;
8296 
8297 	return lower->private;
8298 }
8299 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8300 
8301 /**
8302  * netdev_lower_get_next - Get the next device from the lower neighbour
8303  *                         list
8304  * @dev: device
8305  * @iter: list_head ** of the current position
8306  *
8307  * Gets the next netdev_adjacent from the dev's lower neighbour
8308  * list, starting from iter position. The caller must hold RTNL lock or
8309  * its own locking that guarantees that the neighbour lower
8310  * list will remain unchanged.
8311  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8312 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8313 {
8314 	struct netdev_adjacent *lower;
8315 
8316 	lower = list_entry(*iter, struct netdev_adjacent, list);
8317 
8318 	if (&lower->list == &dev->adj_list.lower)
8319 		return NULL;
8320 
8321 	*iter = lower->list.next;
8322 
8323 	return lower->dev;
8324 }
8325 EXPORT_SYMBOL(netdev_lower_get_next);
8326 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8327 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8328 						struct list_head **iter)
8329 {
8330 	struct netdev_adjacent *lower;
8331 
8332 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8333 
8334 	if (&lower->list == &dev->adj_list.lower)
8335 		return NULL;
8336 
8337 	*iter = &lower->list;
8338 
8339 	return lower->dev;
8340 }
8341 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8342 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8343 						  struct list_head **iter,
8344 						  bool *ignore)
8345 {
8346 	struct netdev_adjacent *lower;
8347 
8348 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8349 
8350 	if (&lower->list == &dev->adj_list.lower)
8351 		return NULL;
8352 
8353 	*iter = &lower->list;
8354 	*ignore = lower->ignore;
8355 
8356 	return lower->dev;
8357 }
8358 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8359 int netdev_walk_all_lower_dev(struct net_device *dev,
8360 			      int (*fn)(struct net_device *dev,
8361 					struct netdev_nested_priv *priv),
8362 			      struct netdev_nested_priv *priv)
8363 {
8364 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8365 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8366 	int ret, cur = 0;
8367 
8368 	now = dev;
8369 	iter = &dev->adj_list.lower;
8370 
8371 	while (1) {
8372 		if (now != dev) {
8373 			ret = fn(now, priv);
8374 			if (ret)
8375 				return ret;
8376 		}
8377 
8378 		next = NULL;
8379 		while (1) {
8380 			ldev = netdev_next_lower_dev(now, &iter);
8381 			if (!ldev)
8382 				break;
8383 
8384 			next = ldev;
8385 			niter = &ldev->adj_list.lower;
8386 			dev_stack[cur] = now;
8387 			iter_stack[cur++] = iter;
8388 			break;
8389 		}
8390 
8391 		if (!next) {
8392 			if (!cur)
8393 				return 0;
8394 			next = dev_stack[--cur];
8395 			niter = iter_stack[cur];
8396 		}
8397 
8398 		now = next;
8399 		iter = niter;
8400 	}
8401 
8402 	return 0;
8403 }
8404 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8405 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8406 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8407 				       int (*fn)(struct net_device *dev,
8408 					 struct netdev_nested_priv *priv),
8409 				       struct netdev_nested_priv *priv)
8410 {
8411 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8412 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8413 	int ret, cur = 0;
8414 	bool ignore;
8415 
8416 	now = dev;
8417 	iter = &dev->adj_list.lower;
8418 
8419 	while (1) {
8420 		if (now != dev) {
8421 			ret = fn(now, priv);
8422 			if (ret)
8423 				return ret;
8424 		}
8425 
8426 		next = NULL;
8427 		while (1) {
8428 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8429 			if (!ldev)
8430 				break;
8431 			if (ignore)
8432 				continue;
8433 
8434 			next = ldev;
8435 			niter = &ldev->adj_list.lower;
8436 			dev_stack[cur] = now;
8437 			iter_stack[cur++] = iter;
8438 			break;
8439 		}
8440 
8441 		if (!next) {
8442 			if (!cur)
8443 				return 0;
8444 			next = dev_stack[--cur];
8445 			niter = iter_stack[cur];
8446 		}
8447 
8448 		now = next;
8449 		iter = niter;
8450 	}
8451 
8452 	return 0;
8453 }
8454 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8455 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8456 					     struct list_head **iter)
8457 {
8458 	struct netdev_adjacent *lower;
8459 
8460 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8461 	if (&lower->list == &dev->adj_list.lower)
8462 		return NULL;
8463 
8464 	*iter = &lower->list;
8465 
8466 	return lower->dev;
8467 }
8468 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8469 
__netdev_upper_depth(struct net_device * dev)8470 static u8 __netdev_upper_depth(struct net_device *dev)
8471 {
8472 	struct net_device *udev;
8473 	struct list_head *iter;
8474 	u8 max_depth = 0;
8475 	bool ignore;
8476 
8477 	for (iter = &dev->adj_list.upper,
8478 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8479 	     udev;
8480 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8481 		if (ignore)
8482 			continue;
8483 		if (max_depth < udev->upper_level)
8484 			max_depth = udev->upper_level;
8485 	}
8486 
8487 	return max_depth;
8488 }
8489 
__netdev_lower_depth(struct net_device * dev)8490 static u8 __netdev_lower_depth(struct net_device *dev)
8491 {
8492 	struct net_device *ldev;
8493 	struct list_head *iter;
8494 	u8 max_depth = 0;
8495 	bool ignore;
8496 
8497 	for (iter = &dev->adj_list.lower,
8498 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8499 	     ldev;
8500 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8501 		if (ignore)
8502 			continue;
8503 		if (max_depth < ldev->lower_level)
8504 			max_depth = ldev->lower_level;
8505 	}
8506 
8507 	return max_depth;
8508 }
8509 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8510 static int __netdev_update_upper_level(struct net_device *dev,
8511 				       struct netdev_nested_priv *__unused)
8512 {
8513 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8514 	return 0;
8515 }
8516 
8517 #ifdef CONFIG_LOCKDEP
8518 static LIST_HEAD(net_unlink_list);
8519 
net_unlink_todo(struct net_device * dev)8520 static void net_unlink_todo(struct net_device *dev)
8521 {
8522 	if (list_empty(&dev->unlink_list))
8523 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8524 }
8525 #endif
8526 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8527 static int __netdev_update_lower_level(struct net_device *dev,
8528 				       struct netdev_nested_priv *priv)
8529 {
8530 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8531 
8532 #ifdef CONFIG_LOCKDEP
8533 	if (!priv)
8534 		return 0;
8535 
8536 	if (priv->flags & NESTED_SYNC_IMM)
8537 		dev->nested_level = dev->lower_level - 1;
8538 	if (priv->flags & NESTED_SYNC_TODO)
8539 		net_unlink_todo(dev);
8540 #endif
8541 	return 0;
8542 }
8543 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8544 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8545 				  int (*fn)(struct net_device *dev,
8546 					    struct netdev_nested_priv *priv),
8547 				  struct netdev_nested_priv *priv)
8548 {
8549 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8550 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8551 	int ret, cur = 0;
8552 
8553 	now = dev;
8554 	iter = &dev->adj_list.lower;
8555 
8556 	while (1) {
8557 		if (now != dev) {
8558 			ret = fn(now, priv);
8559 			if (ret)
8560 				return ret;
8561 		}
8562 
8563 		next = NULL;
8564 		while (1) {
8565 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8566 			if (!ldev)
8567 				break;
8568 
8569 			next = ldev;
8570 			niter = &ldev->adj_list.lower;
8571 			dev_stack[cur] = now;
8572 			iter_stack[cur++] = iter;
8573 			break;
8574 		}
8575 
8576 		if (!next) {
8577 			if (!cur)
8578 				return 0;
8579 			next = dev_stack[--cur];
8580 			niter = iter_stack[cur];
8581 		}
8582 
8583 		now = next;
8584 		iter = niter;
8585 	}
8586 
8587 	return 0;
8588 }
8589 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8590 
8591 /**
8592  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8593  *				       lower neighbour list, RCU
8594  *				       variant
8595  * @dev: device
8596  *
8597  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8598  * list. The caller must hold RCU read lock.
8599  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8600 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8601 {
8602 	struct netdev_adjacent *lower;
8603 
8604 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8605 			struct netdev_adjacent, list);
8606 	if (lower)
8607 		return lower->private;
8608 	return NULL;
8609 }
8610 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8611 
8612 /**
8613  * netdev_master_upper_dev_get_rcu - Get master upper device
8614  * @dev: device
8615  *
8616  * Find a master upper device and return pointer to it or NULL in case
8617  * it's not there. The caller must hold the RCU read lock.
8618  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8619 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8620 {
8621 	struct netdev_adjacent *upper;
8622 
8623 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8624 				       struct netdev_adjacent, list);
8625 	if (upper && likely(upper->master))
8626 		return upper->dev;
8627 	return NULL;
8628 }
8629 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8630 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8631 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8632 			      struct net_device *adj_dev,
8633 			      struct list_head *dev_list)
8634 {
8635 	char linkname[IFNAMSIZ+7];
8636 
8637 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8638 		"upper_%s" : "lower_%s", adj_dev->name);
8639 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8640 				 linkname);
8641 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8642 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8643 			       char *name,
8644 			       struct list_head *dev_list)
8645 {
8646 	char linkname[IFNAMSIZ+7];
8647 
8648 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8649 		"upper_%s" : "lower_%s", name);
8650 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8651 }
8652 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8653 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8654 						 struct net_device *adj_dev,
8655 						 struct list_head *dev_list)
8656 {
8657 	return (dev_list == &dev->adj_list.upper ||
8658 		dev_list == &dev->adj_list.lower) &&
8659 		net_eq(dev_net(dev), dev_net(adj_dev));
8660 }
8661 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8662 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8663 					struct net_device *adj_dev,
8664 					struct list_head *dev_list,
8665 					void *private, bool master)
8666 {
8667 	struct netdev_adjacent *adj;
8668 	int ret;
8669 
8670 	adj = __netdev_find_adj(adj_dev, dev_list);
8671 
8672 	if (adj) {
8673 		adj->ref_nr += 1;
8674 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8675 			 dev->name, adj_dev->name, adj->ref_nr);
8676 
8677 		return 0;
8678 	}
8679 
8680 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8681 	if (!adj)
8682 		return -ENOMEM;
8683 
8684 	adj->dev = adj_dev;
8685 	adj->master = master;
8686 	adj->ref_nr = 1;
8687 	adj->private = private;
8688 	adj->ignore = false;
8689 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8690 
8691 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8692 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8693 
8694 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8695 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8696 		if (ret)
8697 			goto free_adj;
8698 	}
8699 
8700 	/* Ensure that master link is always the first item in list. */
8701 	if (master) {
8702 		ret = sysfs_create_link(&(dev->dev.kobj),
8703 					&(adj_dev->dev.kobj), "master");
8704 		if (ret)
8705 			goto remove_symlinks;
8706 
8707 		list_add_rcu(&adj->list, dev_list);
8708 	} else {
8709 		list_add_tail_rcu(&adj->list, dev_list);
8710 	}
8711 
8712 	return 0;
8713 
8714 remove_symlinks:
8715 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8716 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8717 free_adj:
8718 	netdev_put(adj_dev, &adj->dev_tracker);
8719 	kfree(adj);
8720 
8721 	return ret;
8722 }
8723 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8724 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8725 					 struct net_device *adj_dev,
8726 					 u16 ref_nr,
8727 					 struct list_head *dev_list)
8728 {
8729 	struct netdev_adjacent *adj;
8730 
8731 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8732 		 dev->name, adj_dev->name, ref_nr);
8733 
8734 	adj = __netdev_find_adj(adj_dev, dev_list);
8735 
8736 	if (!adj) {
8737 		pr_err("Adjacency does not exist for device %s from %s\n",
8738 		       dev->name, adj_dev->name);
8739 		WARN_ON(1);
8740 		return;
8741 	}
8742 
8743 	if (adj->ref_nr > ref_nr) {
8744 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8745 			 dev->name, adj_dev->name, ref_nr,
8746 			 adj->ref_nr - ref_nr);
8747 		adj->ref_nr -= ref_nr;
8748 		return;
8749 	}
8750 
8751 	if (adj->master)
8752 		sysfs_remove_link(&(dev->dev.kobj), "master");
8753 
8754 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8755 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8756 
8757 	list_del_rcu(&adj->list);
8758 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8759 		 adj_dev->name, dev->name, adj_dev->name);
8760 	netdev_put(adj_dev, &adj->dev_tracker);
8761 	kfree_rcu(adj, rcu);
8762 }
8763 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8764 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8765 					    struct net_device *upper_dev,
8766 					    struct list_head *up_list,
8767 					    struct list_head *down_list,
8768 					    void *private, bool master)
8769 {
8770 	int ret;
8771 
8772 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8773 					   private, master);
8774 	if (ret)
8775 		return ret;
8776 
8777 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8778 					   private, false);
8779 	if (ret) {
8780 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8781 		return ret;
8782 	}
8783 
8784 	return 0;
8785 }
8786 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8787 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8788 					       struct net_device *upper_dev,
8789 					       u16 ref_nr,
8790 					       struct list_head *up_list,
8791 					       struct list_head *down_list)
8792 {
8793 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8794 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8795 }
8796 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8797 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8798 						struct net_device *upper_dev,
8799 						void *private, bool master)
8800 {
8801 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8802 						&dev->adj_list.upper,
8803 						&upper_dev->adj_list.lower,
8804 						private, master);
8805 }
8806 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8807 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8808 						   struct net_device *upper_dev)
8809 {
8810 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8811 					   &dev->adj_list.upper,
8812 					   &upper_dev->adj_list.lower);
8813 }
8814 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8815 static int __netdev_upper_dev_link(struct net_device *dev,
8816 				   struct net_device *upper_dev, bool master,
8817 				   void *upper_priv, void *upper_info,
8818 				   struct netdev_nested_priv *priv,
8819 				   struct netlink_ext_ack *extack)
8820 {
8821 	struct netdev_notifier_changeupper_info changeupper_info = {
8822 		.info = {
8823 			.dev = dev,
8824 			.extack = extack,
8825 		},
8826 		.upper_dev = upper_dev,
8827 		.master = master,
8828 		.linking = true,
8829 		.upper_info = upper_info,
8830 	};
8831 	struct net_device *master_dev;
8832 	int ret = 0;
8833 
8834 	ASSERT_RTNL();
8835 
8836 	if (dev == upper_dev)
8837 		return -EBUSY;
8838 
8839 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8840 	if (__netdev_has_upper_dev(upper_dev, dev))
8841 		return -EBUSY;
8842 
8843 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8844 		return -EMLINK;
8845 
8846 	if (!master) {
8847 		if (__netdev_has_upper_dev(dev, upper_dev))
8848 			return -EEXIST;
8849 	} else {
8850 		master_dev = __netdev_master_upper_dev_get(dev);
8851 		if (master_dev)
8852 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8853 	}
8854 
8855 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8856 					    &changeupper_info.info);
8857 	ret = notifier_to_errno(ret);
8858 	if (ret)
8859 		return ret;
8860 
8861 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8862 						   master);
8863 	if (ret)
8864 		return ret;
8865 
8866 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8867 					    &changeupper_info.info);
8868 	ret = notifier_to_errno(ret);
8869 	if (ret)
8870 		goto rollback;
8871 
8872 	__netdev_update_upper_level(dev, NULL);
8873 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8874 
8875 	__netdev_update_lower_level(upper_dev, priv);
8876 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8877 				    priv);
8878 
8879 	return 0;
8880 
8881 rollback:
8882 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8883 
8884 	return ret;
8885 }
8886 
8887 /**
8888  * netdev_upper_dev_link - Add a link to the upper device
8889  * @dev: device
8890  * @upper_dev: new upper device
8891  * @extack: netlink extended ack
8892  *
8893  * Adds a link to device which is upper to this one. The caller must hold
8894  * the RTNL lock. On a failure a negative errno code is returned.
8895  * On success the reference counts are adjusted and the function
8896  * returns zero.
8897  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8898 int netdev_upper_dev_link(struct net_device *dev,
8899 			  struct net_device *upper_dev,
8900 			  struct netlink_ext_ack *extack)
8901 {
8902 	struct netdev_nested_priv priv = {
8903 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8904 		.data = NULL,
8905 	};
8906 
8907 	return __netdev_upper_dev_link(dev, upper_dev, false,
8908 				       NULL, NULL, &priv, extack);
8909 }
8910 EXPORT_SYMBOL(netdev_upper_dev_link);
8911 
8912 /**
8913  * netdev_master_upper_dev_link - Add a master link to the upper device
8914  * @dev: device
8915  * @upper_dev: new upper device
8916  * @upper_priv: upper device private
8917  * @upper_info: upper info to be passed down via notifier
8918  * @extack: netlink extended ack
8919  *
8920  * Adds a link to device which is upper to this one. In this case, only
8921  * one master upper device can be linked, although other non-master devices
8922  * might be linked as well. The caller must hold the RTNL lock.
8923  * On a failure a negative errno code is returned. On success the reference
8924  * counts are adjusted and the function returns zero.
8925  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8926 int netdev_master_upper_dev_link(struct net_device *dev,
8927 				 struct net_device *upper_dev,
8928 				 void *upper_priv, void *upper_info,
8929 				 struct netlink_ext_ack *extack)
8930 {
8931 	struct netdev_nested_priv priv = {
8932 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8933 		.data = NULL,
8934 	};
8935 
8936 	return __netdev_upper_dev_link(dev, upper_dev, true,
8937 				       upper_priv, upper_info, &priv, extack);
8938 }
8939 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8940 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8941 static void __netdev_upper_dev_unlink(struct net_device *dev,
8942 				      struct net_device *upper_dev,
8943 				      struct netdev_nested_priv *priv)
8944 {
8945 	struct netdev_notifier_changeupper_info changeupper_info = {
8946 		.info = {
8947 			.dev = dev,
8948 		},
8949 		.upper_dev = upper_dev,
8950 		.linking = false,
8951 	};
8952 
8953 	ASSERT_RTNL();
8954 
8955 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8956 
8957 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8958 				      &changeupper_info.info);
8959 
8960 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8961 
8962 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8963 				      &changeupper_info.info);
8964 
8965 	__netdev_update_upper_level(dev, NULL);
8966 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8967 
8968 	__netdev_update_lower_level(upper_dev, priv);
8969 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8970 				    priv);
8971 }
8972 
8973 /**
8974  * netdev_upper_dev_unlink - Removes a link to upper device
8975  * @dev: device
8976  * @upper_dev: new upper device
8977  *
8978  * Removes a link to device which is upper to this one. The caller must hold
8979  * the RTNL lock.
8980  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8981 void netdev_upper_dev_unlink(struct net_device *dev,
8982 			     struct net_device *upper_dev)
8983 {
8984 	struct netdev_nested_priv priv = {
8985 		.flags = NESTED_SYNC_TODO,
8986 		.data = NULL,
8987 	};
8988 
8989 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8990 }
8991 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8992 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8993 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8994 				      struct net_device *lower_dev,
8995 				      bool val)
8996 {
8997 	struct netdev_adjacent *adj;
8998 
8999 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9000 	if (adj)
9001 		adj->ignore = val;
9002 
9003 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9004 	if (adj)
9005 		adj->ignore = val;
9006 }
9007 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9008 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9009 					struct net_device *lower_dev)
9010 {
9011 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9012 }
9013 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9014 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9015 				       struct net_device *lower_dev)
9016 {
9017 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9018 }
9019 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9020 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9021 				   struct net_device *new_dev,
9022 				   struct net_device *dev,
9023 				   struct netlink_ext_ack *extack)
9024 {
9025 	struct netdev_nested_priv priv = {
9026 		.flags = 0,
9027 		.data = NULL,
9028 	};
9029 	int err;
9030 
9031 	if (!new_dev)
9032 		return 0;
9033 
9034 	if (old_dev && new_dev != old_dev)
9035 		netdev_adjacent_dev_disable(dev, old_dev);
9036 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9037 				      extack);
9038 	if (err) {
9039 		if (old_dev && new_dev != old_dev)
9040 			netdev_adjacent_dev_enable(dev, old_dev);
9041 		return err;
9042 	}
9043 
9044 	return 0;
9045 }
9046 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9047 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9048 void netdev_adjacent_change_commit(struct net_device *old_dev,
9049 				   struct net_device *new_dev,
9050 				   struct net_device *dev)
9051 {
9052 	struct netdev_nested_priv priv = {
9053 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9054 		.data = NULL,
9055 	};
9056 
9057 	if (!new_dev || !old_dev)
9058 		return;
9059 
9060 	if (new_dev == old_dev)
9061 		return;
9062 
9063 	netdev_adjacent_dev_enable(dev, old_dev);
9064 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9065 }
9066 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9067 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9068 void netdev_adjacent_change_abort(struct net_device *old_dev,
9069 				  struct net_device *new_dev,
9070 				  struct net_device *dev)
9071 {
9072 	struct netdev_nested_priv priv = {
9073 		.flags = 0,
9074 		.data = NULL,
9075 	};
9076 
9077 	if (!new_dev)
9078 		return;
9079 
9080 	if (old_dev && new_dev != old_dev)
9081 		netdev_adjacent_dev_enable(dev, old_dev);
9082 
9083 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9084 }
9085 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9086 
9087 /**
9088  * netdev_bonding_info_change - Dispatch event about slave change
9089  * @dev: device
9090  * @bonding_info: info to dispatch
9091  *
9092  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9093  * The caller must hold the RTNL lock.
9094  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9095 void netdev_bonding_info_change(struct net_device *dev,
9096 				struct netdev_bonding_info *bonding_info)
9097 {
9098 	struct netdev_notifier_bonding_info info = {
9099 		.info.dev = dev,
9100 	};
9101 
9102 	memcpy(&info.bonding_info, bonding_info,
9103 	       sizeof(struct netdev_bonding_info));
9104 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9105 				      &info.info);
9106 }
9107 EXPORT_SYMBOL(netdev_bonding_info_change);
9108 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9109 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9110 					   struct netlink_ext_ack *extack)
9111 {
9112 	struct netdev_notifier_offload_xstats_info info = {
9113 		.info.dev = dev,
9114 		.info.extack = extack,
9115 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9116 	};
9117 	int err;
9118 	int rc;
9119 
9120 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9121 					 GFP_KERNEL);
9122 	if (!dev->offload_xstats_l3)
9123 		return -ENOMEM;
9124 
9125 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9126 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9127 						  &info.info);
9128 	err = notifier_to_errno(rc);
9129 	if (err)
9130 		goto free_stats;
9131 
9132 	return 0;
9133 
9134 free_stats:
9135 	kfree(dev->offload_xstats_l3);
9136 	dev->offload_xstats_l3 = NULL;
9137 	return err;
9138 }
9139 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9140 int netdev_offload_xstats_enable(struct net_device *dev,
9141 				 enum netdev_offload_xstats_type type,
9142 				 struct netlink_ext_ack *extack)
9143 {
9144 	ASSERT_RTNL();
9145 
9146 	if (netdev_offload_xstats_enabled(dev, type))
9147 		return -EALREADY;
9148 
9149 	switch (type) {
9150 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9151 		return netdev_offload_xstats_enable_l3(dev, extack);
9152 	}
9153 
9154 	WARN_ON(1);
9155 	return -EINVAL;
9156 }
9157 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9158 
netdev_offload_xstats_disable_l3(struct net_device * dev)9159 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9160 {
9161 	struct netdev_notifier_offload_xstats_info info = {
9162 		.info.dev = dev,
9163 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9164 	};
9165 
9166 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9167 				      &info.info);
9168 	kfree(dev->offload_xstats_l3);
9169 	dev->offload_xstats_l3 = NULL;
9170 }
9171 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9172 int netdev_offload_xstats_disable(struct net_device *dev,
9173 				  enum netdev_offload_xstats_type type)
9174 {
9175 	ASSERT_RTNL();
9176 
9177 	if (!netdev_offload_xstats_enabled(dev, type))
9178 		return -EALREADY;
9179 
9180 	switch (type) {
9181 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9182 		netdev_offload_xstats_disable_l3(dev);
9183 		return 0;
9184 	}
9185 
9186 	WARN_ON(1);
9187 	return -EINVAL;
9188 }
9189 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9190 
netdev_offload_xstats_disable_all(struct net_device * dev)9191 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9192 {
9193 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9194 }
9195 
9196 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9197 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9198 			      enum netdev_offload_xstats_type type)
9199 {
9200 	switch (type) {
9201 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9202 		return dev->offload_xstats_l3;
9203 	}
9204 
9205 	WARN_ON(1);
9206 	return NULL;
9207 }
9208 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9209 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9210 				   enum netdev_offload_xstats_type type)
9211 {
9212 	ASSERT_RTNL();
9213 
9214 	return netdev_offload_xstats_get_ptr(dev, type);
9215 }
9216 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9217 
9218 struct netdev_notifier_offload_xstats_ru {
9219 	bool used;
9220 };
9221 
9222 struct netdev_notifier_offload_xstats_rd {
9223 	struct rtnl_hw_stats64 stats;
9224 	bool used;
9225 };
9226 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9227 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9228 				  const struct rtnl_hw_stats64 *src)
9229 {
9230 	dest->rx_packets	  += src->rx_packets;
9231 	dest->tx_packets	  += src->tx_packets;
9232 	dest->rx_bytes		  += src->rx_bytes;
9233 	dest->tx_bytes		  += src->tx_bytes;
9234 	dest->rx_errors		  += src->rx_errors;
9235 	dest->tx_errors		  += src->tx_errors;
9236 	dest->rx_dropped	  += src->rx_dropped;
9237 	dest->tx_dropped	  += src->tx_dropped;
9238 	dest->multicast		  += src->multicast;
9239 }
9240 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9241 static int netdev_offload_xstats_get_used(struct net_device *dev,
9242 					  enum netdev_offload_xstats_type type,
9243 					  bool *p_used,
9244 					  struct netlink_ext_ack *extack)
9245 {
9246 	struct netdev_notifier_offload_xstats_ru report_used = {};
9247 	struct netdev_notifier_offload_xstats_info info = {
9248 		.info.dev = dev,
9249 		.info.extack = extack,
9250 		.type = type,
9251 		.report_used = &report_used,
9252 	};
9253 	int rc;
9254 
9255 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9256 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9257 					   &info.info);
9258 	*p_used = report_used.used;
9259 	return notifier_to_errno(rc);
9260 }
9261 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9262 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9263 					   enum netdev_offload_xstats_type type,
9264 					   struct rtnl_hw_stats64 *p_stats,
9265 					   bool *p_used,
9266 					   struct netlink_ext_ack *extack)
9267 {
9268 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9269 	struct netdev_notifier_offload_xstats_info info = {
9270 		.info.dev = dev,
9271 		.info.extack = extack,
9272 		.type = type,
9273 		.report_delta = &report_delta,
9274 	};
9275 	struct rtnl_hw_stats64 *stats;
9276 	int rc;
9277 
9278 	stats = netdev_offload_xstats_get_ptr(dev, type);
9279 	if (WARN_ON(!stats))
9280 		return -EINVAL;
9281 
9282 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9283 					   &info.info);
9284 
9285 	/* Cache whatever we got, even if there was an error, otherwise the
9286 	 * successful stats retrievals would get lost.
9287 	 */
9288 	netdev_hw_stats64_add(stats, &report_delta.stats);
9289 
9290 	if (p_stats)
9291 		*p_stats = *stats;
9292 	*p_used = report_delta.used;
9293 
9294 	return notifier_to_errno(rc);
9295 }
9296 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9297 int netdev_offload_xstats_get(struct net_device *dev,
9298 			      enum netdev_offload_xstats_type type,
9299 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9300 			      struct netlink_ext_ack *extack)
9301 {
9302 	ASSERT_RTNL();
9303 
9304 	if (p_stats)
9305 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9306 						       p_used, extack);
9307 	else
9308 		return netdev_offload_xstats_get_used(dev, type, p_used,
9309 						      extack);
9310 }
9311 EXPORT_SYMBOL(netdev_offload_xstats_get);
9312 
9313 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9314 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9315 				   const struct rtnl_hw_stats64 *stats)
9316 {
9317 	report_delta->used = true;
9318 	netdev_hw_stats64_add(&report_delta->stats, stats);
9319 }
9320 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9321 
9322 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9323 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9324 {
9325 	report_used->used = true;
9326 }
9327 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9328 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9329 void netdev_offload_xstats_push_delta(struct net_device *dev,
9330 				      enum netdev_offload_xstats_type type,
9331 				      const struct rtnl_hw_stats64 *p_stats)
9332 {
9333 	struct rtnl_hw_stats64 *stats;
9334 
9335 	ASSERT_RTNL();
9336 
9337 	stats = netdev_offload_xstats_get_ptr(dev, type);
9338 	if (WARN_ON(!stats))
9339 		return;
9340 
9341 	netdev_hw_stats64_add(stats, p_stats);
9342 }
9343 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9344 
9345 /**
9346  * netdev_get_xmit_slave - Get the xmit slave of master device
9347  * @dev: device
9348  * @skb: The packet
9349  * @all_slaves: assume all the slaves are active
9350  *
9351  * The reference counters are not incremented so the caller must be
9352  * careful with locks. The caller must hold RCU lock.
9353  * %NULL is returned if no slave is found.
9354  */
9355 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9356 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9357 					 struct sk_buff *skb,
9358 					 bool all_slaves)
9359 {
9360 	const struct net_device_ops *ops = dev->netdev_ops;
9361 
9362 	if (!ops->ndo_get_xmit_slave)
9363 		return NULL;
9364 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9365 }
9366 EXPORT_SYMBOL(netdev_get_xmit_slave);
9367 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9368 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9369 						  struct sock *sk)
9370 {
9371 	const struct net_device_ops *ops = dev->netdev_ops;
9372 
9373 	if (!ops->ndo_sk_get_lower_dev)
9374 		return NULL;
9375 	return ops->ndo_sk_get_lower_dev(dev, sk);
9376 }
9377 
9378 /**
9379  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9380  * @dev: device
9381  * @sk: the socket
9382  *
9383  * %NULL is returned if no lower device is found.
9384  */
9385 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9386 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9387 					    struct sock *sk)
9388 {
9389 	struct net_device *lower;
9390 
9391 	lower = netdev_sk_get_lower_dev(dev, sk);
9392 	while (lower) {
9393 		dev = lower;
9394 		lower = netdev_sk_get_lower_dev(dev, sk);
9395 	}
9396 
9397 	return dev;
9398 }
9399 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9400 
netdev_adjacent_add_links(struct net_device * dev)9401 static void netdev_adjacent_add_links(struct net_device *dev)
9402 {
9403 	struct netdev_adjacent *iter;
9404 
9405 	struct net *net = dev_net(dev);
9406 
9407 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9408 		if (!net_eq(net, dev_net(iter->dev)))
9409 			continue;
9410 		netdev_adjacent_sysfs_add(iter->dev, dev,
9411 					  &iter->dev->adj_list.lower);
9412 		netdev_adjacent_sysfs_add(dev, iter->dev,
9413 					  &dev->adj_list.upper);
9414 	}
9415 
9416 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9417 		if (!net_eq(net, dev_net(iter->dev)))
9418 			continue;
9419 		netdev_adjacent_sysfs_add(iter->dev, dev,
9420 					  &iter->dev->adj_list.upper);
9421 		netdev_adjacent_sysfs_add(dev, iter->dev,
9422 					  &dev->adj_list.lower);
9423 	}
9424 }
9425 
netdev_adjacent_del_links(struct net_device * dev)9426 static void netdev_adjacent_del_links(struct net_device *dev)
9427 {
9428 	struct netdev_adjacent *iter;
9429 
9430 	struct net *net = dev_net(dev);
9431 
9432 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9433 		if (!net_eq(net, dev_net(iter->dev)))
9434 			continue;
9435 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9436 					  &iter->dev->adj_list.lower);
9437 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9438 					  &dev->adj_list.upper);
9439 	}
9440 
9441 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9442 		if (!net_eq(net, dev_net(iter->dev)))
9443 			continue;
9444 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9445 					  &iter->dev->adj_list.upper);
9446 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9447 					  &dev->adj_list.lower);
9448 	}
9449 }
9450 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9451 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9452 {
9453 	struct netdev_adjacent *iter;
9454 
9455 	struct net *net = dev_net(dev);
9456 
9457 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9458 		if (!net_eq(net, dev_net(iter->dev)))
9459 			continue;
9460 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9461 					  &iter->dev->adj_list.lower);
9462 		netdev_adjacent_sysfs_add(iter->dev, dev,
9463 					  &iter->dev->adj_list.lower);
9464 	}
9465 
9466 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9467 		if (!net_eq(net, dev_net(iter->dev)))
9468 			continue;
9469 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9470 					  &iter->dev->adj_list.upper);
9471 		netdev_adjacent_sysfs_add(iter->dev, dev,
9472 					  &iter->dev->adj_list.upper);
9473 	}
9474 }
9475 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9476 void *netdev_lower_dev_get_private(struct net_device *dev,
9477 				   struct net_device *lower_dev)
9478 {
9479 	struct netdev_adjacent *lower;
9480 
9481 	if (!lower_dev)
9482 		return NULL;
9483 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9484 	if (!lower)
9485 		return NULL;
9486 
9487 	return lower->private;
9488 }
9489 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9490 
9491 
9492 /**
9493  * netdev_lower_state_changed - Dispatch event about lower device state change
9494  * @lower_dev: device
9495  * @lower_state_info: state to dispatch
9496  *
9497  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9498  * The caller must hold the RTNL lock.
9499  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9500 void netdev_lower_state_changed(struct net_device *lower_dev,
9501 				void *lower_state_info)
9502 {
9503 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9504 		.info.dev = lower_dev,
9505 	};
9506 
9507 	ASSERT_RTNL();
9508 	changelowerstate_info.lower_state_info = lower_state_info;
9509 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9510 				      &changelowerstate_info.info);
9511 }
9512 EXPORT_SYMBOL(netdev_lower_state_changed);
9513 
dev_change_rx_flags(struct net_device * dev,int flags)9514 static void dev_change_rx_flags(struct net_device *dev, int flags)
9515 {
9516 	const struct net_device_ops *ops = dev->netdev_ops;
9517 
9518 	if (ops->ndo_change_rx_flags)
9519 		ops->ndo_change_rx_flags(dev, flags);
9520 }
9521 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9522 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9523 {
9524 	unsigned int old_flags = dev->flags;
9525 	unsigned int promiscuity, flags;
9526 	kuid_t uid;
9527 	kgid_t gid;
9528 
9529 	ASSERT_RTNL();
9530 
9531 	promiscuity = dev->promiscuity + inc;
9532 	if (promiscuity == 0) {
9533 		/*
9534 		 * Avoid overflow.
9535 		 * If inc causes overflow, untouch promisc and return error.
9536 		 */
9537 		if (unlikely(inc > 0)) {
9538 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9539 			return -EOVERFLOW;
9540 		}
9541 		flags = old_flags & ~IFF_PROMISC;
9542 	} else {
9543 		flags = old_flags | IFF_PROMISC;
9544 	}
9545 	WRITE_ONCE(dev->promiscuity, promiscuity);
9546 	if (flags != old_flags) {
9547 		WRITE_ONCE(dev->flags, flags);
9548 		netdev_info(dev, "%s promiscuous mode\n",
9549 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9550 		if (audit_enabled) {
9551 			current_uid_gid(&uid, &gid);
9552 			audit_log(audit_context(), GFP_ATOMIC,
9553 				  AUDIT_ANOM_PROMISCUOUS,
9554 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9555 				  dev->name, (dev->flags & IFF_PROMISC),
9556 				  (old_flags & IFF_PROMISC),
9557 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9558 				  from_kuid(&init_user_ns, uid),
9559 				  from_kgid(&init_user_ns, gid),
9560 				  audit_get_sessionid(current));
9561 		}
9562 
9563 		dev_change_rx_flags(dev, IFF_PROMISC);
9564 	}
9565 	if (notify) {
9566 		/* The ops lock is only required to ensure consistent locking
9567 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9568 		 * called without the lock, even for devices that are ops
9569 		 * locked, such as in `dev_uc_sync_multiple` when using
9570 		 * bonding or teaming.
9571 		 */
9572 		netdev_ops_assert_locked(dev);
9573 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9574 	}
9575 	return 0;
9576 }
9577 
netif_set_promiscuity(struct net_device * dev,int inc)9578 int netif_set_promiscuity(struct net_device *dev, int inc)
9579 {
9580 	unsigned int old_flags = dev->flags;
9581 	int err;
9582 
9583 	err = __dev_set_promiscuity(dev, inc, true);
9584 	if (err < 0)
9585 		return err;
9586 	if (dev->flags != old_flags)
9587 		dev_set_rx_mode(dev);
9588 	return err;
9589 }
9590 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9591 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9592 {
9593 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9594 	unsigned int allmulti, flags;
9595 
9596 	ASSERT_RTNL();
9597 
9598 	allmulti = dev->allmulti + inc;
9599 	if (allmulti == 0) {
9600 		/*
9601 		 * Avoid overflow.
9602 		 * If inc causes overflow, untouch allmulti and return error.
9603 		 */
9604 		if (unlikely(inc > 0)) {
9605 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9606 			return -EOVERFLOW;
9607 		}
9608 		flags = old_flags & ~IFF_ALLMULTI;
9609 	} else {
9610 		flags = old_flags | IFF_ALLMULTI;
9611 	}
9612 	WRITE_ONCE(dev->allmulti, allmulti);
9613 	if (flags != old_flags) {
9614 		WRITE_ONCE(dev->flags, flags);
9615 		netdev_info(dev, "%s allmulticast mode\n",
9616 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9617 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9618 		dev_set_rx_mode(dev);
9619 		if (notify)
9620 			__dev_notify_flags(dev, old_flags,
9621 					   dev->gflags ^ old_gflags, 0, NULL);
9622 	}
9623 	return 0;
9624 }
9625 
9626 /*
9627  *	Upload unicast and multicast address lists to device and
9628  *	configure RX filtering. When the device doesn't support unicast
9629  *	filtering it is put in promiscuous mode while unicast addresses
9630  *	are present.
9631  */
__dev_set_rx_mode(struct net_device * dev)9632 void __dev_set_rx_mode(struct net_device *dev)
9633 {
9634 	const struct net_device_ops *ops = dev->netdev_ops;
9635 
9636 	/* dev_open will call this function so the list will stay sane. */
9637 	if (!(dev->flags&IFF_UP))
9638 		return;
9639 
9640 	if (!netif_device_present(dev))
9641 		return;
9642 
9643 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9644 		/* Unicast addresses changes may only happen under the rtnl,
9645 		 * therefore calling __dev_set_promiscuity here is safe.
9646 		 */
9647 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9648 			__dev_set_promiscuity(dev, 1, false);
9649 			dev->uc_promisc = true;
9650 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9651 			__dev_set_promiscuity(dev, -1, false);
9652 			dev->uc_promisc = false;
9653 		}
9654 	}
9655 
9656 	if (ops->ndo_set_rx_mode)
9657 		ops->ndo_set_rx_mode(dev);
9658 }
9659 
dev_set_rx_mode(struct net_device * dev)9660 void dev_set_rx_mode(struct net_device *dev)
9661 {
9662 	netif_addr_lock_bh(dev);
9663 	__dev_set_rx_mode(dev);
9664 	netif_addr_unlock_bh(dev);
9665 }
9666 
9667 /**
9668  * netif_get_flags() - get flags reported to userspace
9669  * @dev: device
9670  *
9671  * Get the combination of flag bits exported through APIs to userspace.
9672  */
netif_get_flags(const struct net_device * dev)9673 unsigned int netif_get_flags(const struct net_device *dev)
9674 {
9675 	unsigned int flags;
9676 
9677 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9678 				IFF_ALLMULTI |
9679 				IFF_RUNNING |
9680 				IFF_LOWER_UP |
9681 				IFF_DORMANT)) |
9682 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9683 				IFF_ALLMULTI));
9684 
9685 	if (netif_running(dev)) {
9686 		if (netif_oper_up(dev))
9687 			flags |= IFF_RUNNING;
9688 		if (netif_carrier_ok(dev))
9689 			flags |= IFF_LOWER_UP;
9690 		if (netif_dormant(dev))
9691 			flags |= IFF_DORMANT;
9692 	}
9693 
9694 	return flags;
9695 }
9696 EXPORT_SYMBOL(netif_get_flags);
9697 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9698 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9699 		       struct netlink_ext_ack *extack)
9700 {
9701 	unsigned int old_flags = dev->flags;
9702 	int ret;
9703 
9704 	ASSERT_RTNL();
9705 
9706 	/*
9707 	 *	Set the flags on our device.
9708 	 */
9709 
9710 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9711 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9712 			       IFF_AUTOMEDIA)) |
9713 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9714 				    IFF_ALLMULTI));
9715 
9716 	/*
9717 	 *	Load in the correct multicast list now the flags have changed.
9718 	 */
9719 
9720 	if ((old_flags ^ flags) & IFF_MULTICAST)
9721 		dev_change_rx_flags(dev, IFF_MULTICAST);
9722 
9723 	dev_set_rx_mode(dev);
9724 
9725 	/*
9726 	 *	Have we downed the interface. We handle IFF_UP ourselves
9727 	 *	according to user attempts to set it, rather than blindly
9728 	 *	setting it.
9729 	 */
9730 
9731 	ret = 0;
9732 	if ((old_flags ^ flags) & IFF_UP) {
9733 		if (old_flags & IFF_UP)
9734 			__dev_close(dev);
9735 		else
9736 			ret = __dev_open(dev, extack);
9737 	}
9738 
9739 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9740 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9741 		old_flags = dev->flags;
9742 
9743 		dev->gflags ^= IFF_PROMISC;
9744 
9745 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9746 			if (dev->flags != old_flags)
9747 				dev_set_rx_mode(dev);
9748 	}
9749 
9750 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9751 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9752 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9753 	 */
9754 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9755 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9756 
9757 		dev->gflags ^= IFF_ALLMULTI;
9758 		netif_set_allmulti(dev, inc, false);
9759 	}
9760 
9761 	return ret;
9762 }
9763 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9764 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9765 			unsigned int gchanges, u32 portid,
9766 			const struct nlmsghdr *nlh)
9767 {
9768 	unsigned int changes = dev->flags ^ old_flags;
9769 
9770 	if (gchanges)
9771 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9772 
9773 	if (changes & IFF_UP) {
9774 		if (dev->flags & IFF_UP)
9775 			call_netdevice_notifiers(NETDEV_UP, dev);
9776 		else
9777 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9778 	}
9779 
9780 	if (dev->flags & IFF_UP &&
9781 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9782 		struct netdev_notifier_change_info change_info = {
9783 			.info = {
9784 				.dev = dev,
9785 			},
9786 			.flags_changed = changes,
9787 		};
9788 
9789 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9790 	}
9791 }
9792 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9793 int netif_change_flags(struct net_device *dev, unsigned int flags,
9794 		       struct netlink_ext_ack *extack)
9795 {
9796 	int ret;
9797 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9798 
9799 	ret = __dev_change_flags(dev, flags, extack);
9800 	if (ret < 0)
9801 		return ret;
9802 
9803 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9804 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9805 	return ret;
9806 }
9807 
__netif_set_mtu(struct net_device * dev,int new_mtu)9808 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9809 {
9810 	const struct net_device_ops *ops = dev->netdev_ops;
9811 
9812 	if (ops->ndo_change_mtu)
9813 		return ops->ndo_change_mtu(dev, new_mtu);
9814 
9815 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9816 	WRITE_ONCE(dev->mtu, new_mtu);
9817 	return 0;
9818 }
9819 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9820 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9821 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9822 		     struct netlink_ext_ack *extack)
9823 {
9824 	/* MTU must be positive, and in range */
9825 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9826 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9827 		return -EINVAL;
9828 	}
9829 
9830 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9831 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9832 		return -EINVAL;
9833 	}
9834 	return 0;
9835 }
9836 
9837 /**
9838  * netif_set_mtu_ext() - Change maximum transfer unit
9839  * @dev: device
9840  * @new_mtu: new transfer unit
9841  * @extack: netlink extended ack
9842  *
9843  * Change the maximum transfer size of the network device.
9844  *
9845  * Return: 0 on success, -errno on failure.
9846  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9847 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9848 		      struct netlink_ext_ack *extack)
9849 {
9850 	int err, orig_mtu;
9851 
9852 	netdev_ops_assert_locked(dev);
9853 
9854 	if (new_mtu == dev->mtu)
9855 		return 0;
9856 
9857 	err = dev_validate_mtu(dev, new_mtu, extack);
9858 	if (err)
9859 		return err;
9860 
9861 	if (!netif_device_present(dev))
9862 		return -ENODEV;
9863 
9864 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9865 	err = notifier_to_errno(err);
9866 	if (err)
9867 		return err;
9868 
9869 	orig_mtu = dev->mtu;
9870 	err = __netif_set_mtu(dev, new_mtu);
9871 
9872 	if (!err) {
9873 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9874 						   orig_mtu);
9875 		err = notifier_to_errno(err);
9876 		if (err) {
9877 			/* setting mtu back and notifying everyone again,
9878 			 * so that they have a chance to revert changes.
9879 			 */
9880 			__netif_set_mtu(dev, orig_mtu);
9881 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9882 						     new_mtu);
9883 		}
9884 	}
9885 	return err;
9886 }
9887 
netif_set_mtu(struct net_device * dev,int new_mtu)9888 int netif_set_mtu(struct net_device *dev, int new_mtu)
9889 {
9890 	struct netlink_ext_ack extack;
9891 	int err;
9892 
9893 	memset(&extack, 0, sizeof(extack));
9894 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9895 	if (err && extack._msg)
9896 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9897 	return err;
9898 }
9899 EXPORT_SYMBOL(netif_set_mtu);
9900 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9901 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9902 {
9903 	unsigned int orig_len = dev->tx_queue_len;
9904 	int res;
9905 
9906 	if (new_len != (unsigned int)new_len)
9907 		return -ERANGE;
9908 
9909 	if (new_len != orig_len) {
9910 		WRITE_ONCE(dev->tx_queue_len, new_len);
9911 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9912 		res = notifier_to_errno(res);
9913 		if (res)
9914 			goto err_rollback;
9915 		res = dev_qdisc_change_tx_queue_len(dev);
9916 		if (res)
9917 			goto err_rollback;
9918 	}
9919 
9920 	return 0;
9921 
9922 err_rollback:
9923 	netdev_err(dev, "refused to change device tx_queue_len\n");
9924 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9925 	return res;
9926 }
9927 
netif_set_group(struct net_device * dev,int new_group)9928 void netif_set_group(struct net_device *dev, int new_group)
9929 {
9930 	dev->group = new_group;
9931 }
9932 
9933 /**
9934  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9935  * @dev: device
9936  * @addr: new address
9937  * @extack: netlink extended ack
9938  *
9939  * Return: 0 on success, -errno on failure.
9940  */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9941 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9942 				struct netlink_ext_ack *extack)
9943 {
9944 	struct netdev_notifier_pre_changeaddr_info info = {
9945 		.info.dev = dev,
9946 		.info.extack = extack,
9947 		.dev_addr = addr,
9948 	};
9949 	int rc;
9950 
9951 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9952 	return notifier_to_errno(rc);
9953 }
9954 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9955 
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9956 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9957 			  struct netlink_ext_ack *extack)
9958 {
9959 	const struct net_device_ops *ops = dev->netdev_ops;
9960 	int err;
9961 
9962 	if (!ops->ndo_set_mac_address)
9963 		return -EOPNOTSUPP;
9964 	if (ss->ss_family != dev->type)
9965 		return -EINVAL;
9966 	if (!netif_device_present(dev))
9967 		return -ENODEV;
9968 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9969 	if (err)
9970 		return err;
9971 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9972 		err = ops->ndo_set_mac_address(dev, ss);
9973 		if (err)
9974 			return err;
9975 	}
9976 	dev->addr_assign_type = NET_ADDR_SET;
9977 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9978 	add_device_randomness(dev->dev_addr, dev->addr_len);
9979 	return 0;
9980 }
9981 
9982 DECLARE_RWSEM(dev_addr_sem);
9983 
9984 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9985 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9986 {
9987 	size_t size = sizeof(sa->sa_data);
9988 	struct net_device *dev;
9989 	int ret = 0;
9990 
9991 	down_read(&dev_addr_sem);
9992 	rcu_read_lock();
9993 
9994 	dev = dev_get_by_name_rcu(net, dev_name);
9995 	if (!dev) {
9996 		ret = -ENODEV;
9997 		goto unlock;
9998 	}
9999 	if (!dev->addr_len)
10000 		memset(sa->sa_data, 0, size);
10001 	else
10002 		memcpy(sa->sa_data, dev->dev_addr,
10003 		       min_t(size_t, size, dev->addr_len));
10004 	sa->sa_family = dev->type;
10005 
10006 unlock:
10007 	rcu_read_unlock();
10008 	up_read(&dev_addr_sem);
10009 	return ret;
10010 }
10011 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10012 
netif_change_carrier(struct net_device * dev,bool new_carrier)10013 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10014 {
10015 	const struct net_device_ops *ops = dev->netdev_ops;
10016 
10017 	if (!ops->ndo_change_carrier)
10018 		return -EOPNOTSUPP;
10019 	if (!netif_device_present(dev))
10020 		return -ENODEV;
10021 	return ops->ndo_change_carrier(dev, new_carrier);
10022 }
10023 
10024 /**
10025  *	dev_get_phys_port_id - Get device physical port ID
10026  *	@dev: device
10027  *	@ppid: port ID
10028  *
10029  *	Get device physical port ID
10030  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10031 int dev_get_phys_port_id(struct net_device *dev,
10032 			 struct netdev_phys_item_id *ppid)
10033 {
10034 	const struct net_device_ops *ops = dev->netdev_ops;
10035 
10036 	if (!ops->ndo_get_phys_port_id)
10037 		return -EOPNOTSUPP;
10038 	return ops->ndo_get_phys_port_id(dev, ppid);
10039 }
10040 
10041 /**
10042  *	dev_get_phys_port_name - Get device physical port name
10043  *	@dev: device
10044  *	@name: port name
10045  *	@len: limit of bytes to copy to name
10046  *
10047  *	Get device physical port name
10048  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10049 int dev_get_phys_port_name(struct net_device *dev,
10050 			   char *name, size_t len)
10051 {
10052 	const struct net_device_ops *ops = dev->netdev_ops;
10053 	int err;
10054 
10055 	if (ops->ndo_get_phys_port_name) {
10056 		err = ops->ndo_get_phys_port_name(dev, name, len);
10057 		if (err != -EOPNOTSUPP)
10058 			return err;
10059 	}
10060 	return devlink_compat_phys_port_name_get(dev, name, len);
10061 }
10062 
10063 /**
10064  * netif_get_port_parent_id() - Get the device's port parent identifier
10065  * @dev: network device
10066  * @ppid: pointer to a storage for the port's parent identifier
10067  * @recurse: allow/disallow recursion to lower devices
10068  *
10069  * Get the devices's port parent identifier.
10070  *
10071  * Return: 0 on success, -errno on failure.
10072  */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10073 int netif_get_port_parent_id(struct net_device *dev,
10074 			     struct netdev_phys_item_id *ppid, bool recurse)
10075 {
10076 	const struct net_device_ops *ops = dev->netdev_ops;
10077 	struct netdev_phys_item_id first = { };
10078 	struct net_device *lower_dev;
10079 	struct list_head *iter;
10080 	int err;
10081 
10082 	if (ops->ndo_get_port_parent_id) {
10083 		err = ops->ndo_get_port_parent_id(dev, ppid);
10084 		if (err != -EOPNOTSUPP)
10085 			return err;
10086 	}
10087 
10088 	err = devlink_compat_switch_id_get(dev, ppid);
10089 	if (!recurse || err != -EOPNOTSUPP)
10090 		return err;
10091 
10092 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10093 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10094 		if (err)
10095 			break;
10096 		if (!first.id_len)
10097 			first = *ppid;
10098 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10099 			return -EOPNOTSUPP;
10100 	}
10101 
10102 	return err;
10103 }
10104 EXPORT_SYMBOL(netif_get_port_parent_id);
10105 
10106 /**
10107  *	netdev_port_same_parent_id - Indicate if two network devices have
10108  *	the same port parent identifier
10109  *	@a: first network device
10110  *	@b: second network device
10111  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10112 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10113 {
10114 	struct netdev_phys_item_id a_id = { };
10115 	struct netdev_phys_item_id b_id = { };
10116 
10117 	if (netif_get_port_parent_id(a, &a_id, true) ||
10118 	    netif_get_port_parent_id(b, &b_id, true))
10119 		return false;
10120 
10121 	return netdev_phys_item_id_same(&a_id, &b_id);
10122 }
10123 EXPORT_SYMBOL(netdev_port_same_parent_id);
10124 
netif_change_proto_down(struct net_device * dev,bool proto_down)10125 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10126 {
10127 	if (!dev->change_proto_down)
10128 		return -EOPNOTSUPP;
10129 	if (!netif_device_present(dev))
10130 		return -ENODEV;
10131 	if (proto_down)
10132 		netif_carrier_off(dev);
10133 	else
10134 		netif_carrier_on(dev);
10135 	WRITE_ONCE(dev->proto_down, proto_down);
10136 	return 0;
10137 }
10138 
10139 /**
10140  *	netdev_change_proto_down_reason_locked - proto down reason
10141  *
10142  *	@dev: device
10143  *	@mask: proto down mask
10144  *	@value: proto down value
10145  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10146 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10147 					    unsigned long mask, u32 value)
10148 {
10149 	u32 proto_down_reason;
10150 	int b;
10151 
10152 	if (!mask) {
10153 		proto_down_reason = value;
10154 	} else {
10155 		proto_down_reason = dev->proto_down_reason;
10156 		for_each_set_bit(b, &mask, 32) {
10157 			if (value & (1 << b))
10158 				proto_down_reason |= BIT(b);
10159 			else
10160 				proto_down_reason &= ~BIT(b);
10161 		}
10162 	}
10163 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10164 }
10165 
10166 struct bpf_xdp_link {
10167 	struct bpf_link link;
10168 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10169 	int flags;
10170 };
10171 
dev_xdp_mode(struct net_device * dev,u32 flags)10172 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10173 {
10174 	if (flags & XDP_FLAGS_HW_MODE)
10175 		return XDP_MODE_HW;
10176 	if (flags & XDP_FLAGS_DRV_MODE)
10177 		return XDP_MODE_DRV;
10178 	if (flags & XDP_FLAGS_SKB_MODE)
10179 		return XDP_MODE_SKB;
10180 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10181 }
10182 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10183 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10184 {
10185 	switch (mode) {
10186 	case XDP_MODE_SKB:
10187 		return generic_xdp_install;
10188 	case XDP_MODE_DRV:
10189 	case XDP_MODE_HW:
10190 		return dev->netdev_ops->ndo_bpf;
10191 	default:
10192 		return NULL;
10193 	}
10194 }
10195 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10196 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10197 					 enum bpf_xdp_mode mode)
10198 {
10199 	return dev->xdp_state[mode].link;
10200 }
10201 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10202 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10203 				     enum bpf_xdp_mode mode)
10204 {
10205 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10206 
10207 	if (link)
10208 		return link->link.prog;
10209 	return dev->xdp_state[mode].prog;
10210 }
10211 
dev_xdp_prog_count(struct net_device * dev)10212 u8 dev_xdp_prog_count(struct net_device *dev)
10213 {
10214 	u8 count = 0;
10215 	int i;
10216 
10217 	for (i = 0; i < __MAX_XDP_MODE; i++)
10218 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10219 			count++;
10220 	return count;
10221 }
10222 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10223 
dev_xdp_sb_prog_count(struct net_device * dev)10224 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10225 {
10226 	u8 count = 0;
10227 	int i;
10228 
10229 	for (i = 0; i < __MAX_XDP_MODE; i++)
10230 		if (dev->xdp_state[i].prog &&
10231 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10232 			count++;
10233 	return count;
10234 }
10235 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10236 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10237 {
10238 	if (!dev->netdev_ops->ndo_bpf)
10239 		return -EOPNOTSUPP;
10240 
10241 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10242 	    bpf->command == XDP_SETUP_PROG &&
10243 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10244 		NL_SET_ERR_MSG(bpf->extack,
10245 			       "unable to propagate XDP to device using tcp-data-split");
10246 		return -EBUSY;
10247 	}
10248 
10249 	if (dev_get_min_mp_channel_count(dev)) {
10250 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10251 		return -EBUSY;
10252 	}
10253 
10254 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10255 }
10256 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10257 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10258 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10259 {
10260 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10261 
10262 	return prog ? prog->aux->id : 0;
10263 }
10264 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10265 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10266 			     struct bpf_xdp_link *link)
10267 {
10268 	dev->xdp_state[mode].link = link;
10269 	dev->xdp_state[mode].prog = NULL;
10270 }
10271 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10272 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10273 			     struct bpf_prog *prog)
10274 {
10275 	dev->xdp_state[mode].link = NULL;
10276 	dev->xdp_state[mode].prog = prog;
10277 }
10278 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10279 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10280 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10281 			   u32 flags, struct bpf_prog *prog)
10282 {
10283 	struct netdev_bpf xdp;
10284 	int err;
10285 
10286 	netdev_ops_assert_locked(dev);
10287 
10288 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10289 	    prog && !prog->aux->xdp_has_frags) {
10290 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10291 		return -EBUSY;
10292 	}
10293 
10294 	if (dev_get_min_mp_channel_count(dev)) {
10295 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10296 		return -EBUSY;
10297 	}
10298 
10299 	memset(&xdp, 0, sizeof(xdp));
10300 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10301 	xdp.extack = extack;
10302 	xdp.flags = flags;
10303 	xdp.prog = prog;
10304 
10305 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10306 	 * "moved" into driver), so they don't increment it on their own, but
10307 	 * they do decrement refcnt when program is detached or replaced.
10308 	 * Given net_device also owns link/prog, we need to bump refcnt here
10309 	 * to prevent drivers from underflowing it.
10310 	 */
10311 	if (prog)
10312 		bpf_prog_inc(prog);
10313 	err = bpf_op(dev, &xdp);
10314 	if (err) {
10315 		if (prog)
10316 			bpf_prog_put(prog);
10317 		return err;
10318 	}
10319 
10320 	if (mode != XDP_MODE_HW)
10321 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10322 
10323 	return 0;
10324 }
10325 
dev_xdp_uninstall(struct net_device * dev)10326 static void dev_xdp_uninstall(struct net_device *dev)
10327 {
10328 	struct bpf_xdp_link *link;
10329 	struct bpf_prog *prog;
10330 	enum bpf_xdp_mode mode;
10331 	bpf_op_t bpf_op;
10332 
10333 	ASSERT_RTNL();
10334 
10335 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10336 		prog = dev_xdp_prog(dev, mode);
10337 		if (!prog)
10338 			continue;
10339 
10340 		bpf_op = dev_xdp_bpf_op(dev, mode);
10341 		if (!bpf_op)
10342 			continue;
10343 
10344 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10345 
10346 		/* auto-detach link from net device */
10347 		link = dev_xdp_link(dev, mode);
10348 		if (link)
10349 			link->dev = NULL;
10350 		else
10351 			bpf_prog_put(prog);
10352 
10353 		dev_xdp_set_link(dev, mode, NULL);
10354 	}
10355 }
10356 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10357 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10358 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10359 			  struct bpf_prog *old_prog, u32 flags)
10360 {
10361 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10362 	struct bpf_prog *cur_prog;
10363 	struct net_device *upper;
10364 	struct list_head *iter;
10365 	enum bpf_xdp_mode mode;
10366 	bpf_op_t bpf_op;
10367 	int err;
10368 
10369 	ASSERT_RTNL();
10370 
10371 	/* either link or prog attachment, never both */
10372 	if (link && (new_prog || old_prog))
10373 		return -EINVAL;
10374 	/* link supports only XDP mode flags */
10375 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10376 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10377 		return -EINVAL;
10378 	}
10379 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10380 	if (num_modes > 1) {
10381 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10382 		return -EINVAL;
10383 	}
10384 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10385 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10386 		NL_SET_ERR_MSG(extack,
10387 			       "More than one program loaded, unset mode is ambiguous");
10388 		return -EINVAL;
10389 	}
10390 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10391 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10392 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10393 		return -EINVAL;
10394 	}
10395 
10396 	mode = dev_xdp_mode(dev, flags);
10397 	/* can't replace attached link */
10398 	if (dev_xdp_link(dev, mode)) {
10399 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10400 		return -EBUSY;
10401 	}
10402 
10403 	/* don't allow if an upper device already has a program */
10404 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10405 		if (dev_xdp_prog_count(upper) > 0) {
10406 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10407 			return -EEXIST;
10408 		}
10409 	}
10410 
10411 	cur_prog = dev_xdp_prog(dev, mode);
10412 	/* can't replace attached prog with link */
10413 	if (link && cur_prog) {
10414 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10415 		return -EBUSY;
10416 	}
10417 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10418 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10419 		return -EEXIST;
10420 	}
10421 
10422 	/* put effective new program into new_prog */
10423 	if (link)
10424 		new_prog = link->link.prog;
10425 
10426 	if (new_prog) {
10427 		bool offload = mode == XDP_MODE_HW;
10428 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10429 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10430 
10431 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10432 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10433 			return -EBUSY;
10434 		}
10435 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10436 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10437 			return -EEXIST;
10438 		}
10439 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10440 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10441 			return -EINVAL;
10442 		}
10443 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10444 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10445 			return -EINVAL;
10446 		}
10447 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10448 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10449 			return -EINVAL;
10450 		}
10451 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10452 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10453 			return -EINVAL;
10454 		}
10455 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10456 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10457 			return -EINVAL;
10458 		}
10459 	}
10460 
10461 	/* don't call drivers if the effective program didn't change */
10462 	if (new_prog != cur_prog) {
10463 		bpf_op = dev_xdp_bpf_op(dev, mode);
10464 		if (!bpf_op) {
10465 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10466 			return -EOPNOTSUPP;
10467 		}
10468 
10469 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10470 		if (err)
10471 			return err;
10472 	}
10473 
10474 	if (link)
10475 		dev_xdp_set_link(dev, mode, link);
10476 	else
10477 		dev_xdp_set_prog(dev, mode, new_prog);
10478 	if (cur_prog)
10479 		bpf_prog_put(cur_prog);
10480 
10481 	return 0;
10482 }
10483 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10484 static int dev_xdp_attach_link(struct net_device *dev,
10485 			       struct netlink_ext_ack *extack,
10486 			       struct bpf_xdp_link *link)
10487 {
10488 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10489 }
10490 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10491 static int dev_xdp_detach_link(struct net_device *dev,
10492 			       struct netlink_ext_ack *extack,
10493 			       struct bpf_xdp_link *link)
10494 {
10495 	enum bpf_xdp_mode mode;
10496 	bpf_op_t bpf_op;
10497 
10498 	ASSERT_RTNL();
10499 
10500 	mode = dev_xdp_mode(dev, link->flags);
10501 	if (dev_xdp_link(dev, mode) != link)
10502 		return -EINVAL;
10503 
10504 	bpf_op = dev_xdp_bpf_op(dev, mode);
10505 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10506 	dev_xdp_set_link(dev, mode, NULL);
10507 	return 0;
10508 }
10509 
bpf_xdp_link_release(struct bpf_link * link)10510 static void bpf_xdp_link_release(struct bpf_link *link)
10511 {
10512 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10513 
10514 	rtnl_lock();
10515 
10516 	/* if racing with net_device's tear down, xdp_link->dev might be
10517 	 * already NULL, in which case link was already auto-detached
10518 	 */
10519 	if (xdp_link->dev) {
10520 		netdev_lock_ops(xdp_link->dev);
10521 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10522 		netdev_unlock_ops(xdp_link->dev);
10523 		xdp_link->dev = NULL;
10524 	}
10525 
10526 	rtnl_unlock();
10527 }
10528 
bpf_xdp_link_detach(struct bpf_link * link)10529 static int bpf_xdp_link_detach(struct bpf_link *link)
10530 {
10531 	bpf_xdp_link_release(link);
10532 	return 0;
10533 }
10534 
bpf_xdp_link_dealloc(struct bpf_link * link)10535 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10536 {
10537 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10538 
10539 	kfree(xdp_link);
10540 }
10541 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10542 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10543 				     struct seq_file *seq)
10544 {
10545 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10546 	u32 ifindex = 0;
10547 
10548 	rtnl_lock();
10549 	if (xdp_link->dev)
10550 		ifindex = xdp_link->dev->ifindex;
10551 	rtnl_unlock();
10552 
10553 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10554 }
10555 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10556 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10557 				       struct bpf_link_info *info)
10558 {
10559 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10560 	u32 ifindex = 0;
10561 
10562 	rtnl_lock();
10563 	if (xdp_link->dev)
10564 		ifindex = xdp_link->dev->ifindex;
10565 	rtnl_unlock();
10566 
10567 	info->xdp.ifindex = ifindex;
10568 	return 0;
10569 }
10570 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10571 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10572 			       struct bpf_prog *old_prog)
10573 {
10574 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10575 	enum bpf_xdp_mode mode;
10576 	bpf_op_t bpf_op;
10577 	int err = 0;
10578 
10579 	rtnl_lock();
10580 
10581 	/* link might have been auto-released already, so fail */
10582 	if (!xdp_link->dev) {
10583 		err = -ENOLINK;
10584 		goto out_unlock;
10585 	}
10586 
10587 	if (old_prog && link->prog != old_prog) {
10588 		err = -EPERM;
10589 		goto out_unlock;
10590 	}
10591 	old_prog = link->prog;
10592 	if (old_prog->type != new_prog->type ||
10593 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10594 		err = -EINVAL;
10595 		goto out_unlock;
10596 	}
10597 
10598 	if (old_prog == new_prog) {
10599 		/* no-op, don't disturb drivers */
10600 		bpf_prog_put(new_prog);
10601 		goto out_unlock;
10602 	}
10603 
10604 	netdev_lock_ops(xdp_link->dev);
10605 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10606 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10607 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10608 			      xdp_link->flags, new_prog);
10609 	netdev_unlock_ops(xdp_link->dev);
10610 	if (err)
10611 		goto out_unlock;
10612 
10613 	old_prog = xchg(&link->prog, new_prog);
10614 	bpf_prog_put(old_prog);
10615 
10616 out_unlock:
10617 	rtnl_unlock();
10618 	return err;
10619 }
10620 
10621 static const struct bpf_link_ops bpf_xdp_link_lops = {
10622 	.release = bpf_xdp_link_release,
10623 	.dealloc = bpf_xdp_link_dealloc,
10624 	.detach = bpf_xdp_link_detach,
10625 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10626 	.fill_link_info = bpf_xdp_link_fill_link_info,
10627 	.update_prog = bpf_xdp_link_update,
10628 };
10629 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10630 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10631 {
10632 	struct net *net = current->nsproxy->net_ns;
10633 	struct bpf_link_primer link_primer;
10634 	struct netlink_ext_ack extack = {};
10635 	struct bpf_xdp_link *link;
10636 	struct net_device *dev;
10637 	int err, fd;
10638 
10639 	rtnl_lock();
10640 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10641 	if (!dev) {
10642 		rtnl_unlock();
10643 		return -EINVAL;
10644 	}
10645 
10646 	link = kzalloc(sizeof(*link), GFP_USER);
10647 	if (!link) {
10648 		err = -ENOMEM;
10649 		goto unlock;
10650 	}
10651 
10652 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10653 		      attr->link_create.attach_type);
10654 	link->dev = dev;
10655 	link->flags = attr->link_create.flags;
10656 
10657 	err = bpf_link_prime(&link->link, &link_primer);
10658 	if (err) {
10659 		kfree(link);
10660 		goto unlock;
10661 	}
10662 
10663 	netdev_lock_ops(dev);
10664 	err = dev_xdp_attach_link(dev, &extack, link);
10665 	netdev_unlock_ops(dev);
10666 	rtnl_unlock();
10667 
10668 	if (err) {
10669 		link->dev = NULL;
10670 		bpf_link_cleanup(&link_primer);
10671 		trace_bpf_xdp_link_attach_failed(extack._msg);
10672 		goto out_put_dev;
10673 	}
10674 
10675 	fd = bpf_link_settle(&link_primer);
10676 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10677 	dev_put(dev);
10678 	return fd;
10679 
10680 unlock:
10681 	rtnl_unlock();
10682 
10683 out_put_dev:
10684 	dev_put(dev);
10685 	return err;
10686 }
10687 
10688 /**
10689  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10690  *	@dev: device
10691  *	@extack: netlink extended ack
10692  *	@fd: new program fd or negative value to clear
10693  *	@expected_fd: old program fd that userspace expects to replace or clear
10694  *	@flags: xdp-related flags
10695  *
10696  *	Set or clear a bpf program for a device
10697  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10698 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10699 		      int fd, int expected_fd, u32 flags)
10700 {
10701 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10702 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10703 	int err;
10704 
10705 	ASSERT_RTNL();
10706 
10707 	if (fd >= 0) {
10708 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10709 						 mode != XDP_MODE_SKB);
10710 		if (IS_ERR(new_prog))
10711 			return PTR_ERR(new_prog);
10712 	}
10713 
10714 	if (expected_fd >= 0) {
10715 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10716 						 mode != XDP_MODE_SKB);
10717 		if (IS_ERR(old_prog)) {
10718 			err = PTR_ERR(old_prog);
10719 			old_prog = NULL;
10720 			goto err_out;
10721 		}
10722 	}
10723 
10724 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10725 
10726 err_out:
10727 	if (err && new_prog)
10728 		bpf_prog_put(new_prog);
10729 	if (old_prog)
10730 		bpf_prog_put(old_prog);
10731 	return err;
10732 }
10733 
dev_get_min_mp_channel_count(const struct net_device * dev)10734 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10735 {
10736 	int i;
10737 
10738 	netdev_ops_assert_locked(dev);
10739 
10740 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10741 		if (dev->_rx[i].mp_params.mp_priv)
10742 			/* The channel count is the idx plus 1. */
10743 			return i + 1;
10744 
10745 	return 0;
10746 }
10747 
10748 /**
10749  * dev_index_reserve() - allocate an ifindex in a namespace
10750  * @net: the applicable net namespace
10751  * @ifindex: requested ifindex, pass %0 to get one allocated
10752  *
10753  * Allocate a ifindex for a new device. Caller must either use the ifindex
10754  * to store the device (via list_netdevice()) or call dev_index_release()
10755  * to give the index up.
10756  *
10757  * Return: a suitable unique value for a new device interface number or -errno.
10758  */
dev_index_reserve(struct net * net,u32 ifindex)10759 static int dev_index_reserve(struct net *net, u32 ifindex)
10760 {
10761 	int err;
10762 
10763 	if (ifindex > INT_MAX) {
10764 		DEBUG_NET_WARN_ON_ONCE(1);
10765 		return -EINVAL;
10766 	}
10767 
10768 	if (!ifindex)
10769 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10770 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10771 	else
10772 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10773 	if (err < 0)
10774 		return err;
10775 
10776 	return ifindex;
10777 }
10778 
dev_index_release(struct net * net,int ifindex)10779 static void dev_index_release(struct net *net, int ifindex)
10780 {
10781 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10782 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10783 }
10784 
from_cleanup_net(void)10785 static bool from_cleanup_net(void)
10786 {
10787 #ifdef CONFIG_NET_NS
10788 	return current == READ_ONCE(cleanup_net_task);
10789 #else
10790 	return false;
10791 #endif
10792 }
10793 
10794 /* Delayed registration/unregisteration */
10795 LIST_HEAD(net_todo_list);
10796 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10797 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10798 
net_set_todo(struct net_device * dev)10799 static void net_set_todo(struct net_device *dev)
10800 {
10801 	list_add_tail(&dev->todo_list, &net_todo_list);
10802 }
10803 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10804 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10805 	struct net_device *upper, netdev_features_t features)
10806 {
10807 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10808 	netdev_features_t feature;
10809 	int feature_bit;
10810 
10811 	for_each_netdev_feature(upper_disables, feature_bit) {
10812 		feature = __NETIF_F_BIT(feature_bit);
10813 		if (!(upper->wanted_features & feature)
10814 		    && (features & feature)) {
10815 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10816 				   &feature, upper->name);
10817 			features &= ~feature;
10818 		}
10819 	}
10820 
10821 	return features;
10822 }
10823 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10824 static void netdev_sync_lower_features(struct net_device *upper,
10825 	struct net_device *lower, netdev_features_t features)
10826 {
10827 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10828 	netdev_features_t feature;
10829 	int feature_bit;
10830 
10831 	for_each_netdev_feature(upper_disables, feature_bit) {
10832 		feature = __NETIF_F_BIT(feature_bit);
10833 		if (!(features & feature) && (lower->features & feature)) {
10834 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10835 				   &feature, lower->name);
10836 			netdev_lock_ops(lower);
10837 			lower->wanted_features &= ~feature;
10838 			__netdev_update_features(lower);
10839 
10840 			if (unlikely(lower->features & feature))
10841 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10842 					    &feature, lower->name);
10843 			else
10844 				netdev_features_change(lower);
10845 			netdev_unlock_ops(lower);
10846 		}
10847 	}
10848 }
10849 
netdev_has_ip_or_hw_csum(netdev_features_t features)10850 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10851 {
10852 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10853 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10854 	bool hw_csum = features & NETIF_F_HW_CSUM;
10855 
10856 	return ip_csum || hw_csum;
10857 }
10858 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10859 static netdev_features_t netdev_fix_features(struct net_device *dev,
10860 	netdev_features_t features)
10861 {
10862 	/* Fix illegal checksum combinations */
10863 	if ((features & NETIF_F_HW_CSUM) &&
10864 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10865 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10866 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10867 	}
10868 
10869 	/* TSO requires that SG is present as well. */
10870 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10871 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10872 		features &= ~NETIF_F_ALL_TSO;
10873 	}
10874 
10875 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10876 					!(features & NETIF_F_IP_CSUM)) {
10877 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10878 		features &= ~NETIF_F_TSO;
10879 		features &= ~NETIF_F_TSO_ECN;
10880 	}
10881 
10882 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10883 					 !(features & NETIF_F_IPV6_CSUM)) {
10884 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10885 		features &= ~NETIF_F_TSO6;
10886 	}
10887 
10888 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10889 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10890 		features &= ~NETIF_F_TSO_MANGLEID;
10891 
10892 	/* TSO ECN requires that TSO is present as well. */
10893 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10894 		features &= ~NETIF_F_TSO_ECN;
10895 
10896 	/* Software GSO depends on SG. */
10897 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10898 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10899 		features &= ~NETIF_F_GSO;
10900 	}
10901 
10902 	/* GSO partial features require GSO partial be set */
10903 	if ((features & dev->gso_partial_features) &&
10904 	    !(features & NETIF_F_GSO_PARTIAL)) {
10905 		netdev_dbg(dev,
10906 			   "Dropping partially supported GSO features since no GSO partial.\n");
10907 		features &= ~dev->gso_partial_features;
10908 	}
10909 
10910 	if (!(features & NETIF_F_RXCSUM)) {
10911 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10912 		 * successfully merged by hardware must also have the
10913 		 * checksum verified by hardware.  If the user does not
10914 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10915 		 */
10916 		if (features & NETIF_F_GRO_HW) {
10917 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10918 			features &= ~NETIF_F_GRO_HW;
10919 		}
10920 	}
10921 
10922 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10923 	if (features & NETIF_F_RXFCS) {
10924 		if (features & NETIF_F_LRO) {
10925 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10926 			features &= ~NETIF_F_LRO;
10927 		}
10928 
10929 		if (features & NETIF_F_GRO_HW) {
10930 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10931 			features &= ~NETIF_F_GRO_HW;
10932 		}
10933 	}
10934 
10935 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10936 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10937 		features &= ~NETIF_F_LRO;
10938 	}
10939 
10940 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10941 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10942 		features &= ~NETIF_F_HW_TLS_TX;
10943 	}
10944 
10945 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10946 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10947 		features &= ~NETIF_F_HW_TLS_RX;
10948 	}
10949 
10950 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10951 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10952 		features &= ~NETIF_F_GSO_UDP_L4;
10953 	}
10954 
10955 	return features;
10956 }
10957 
__netdev_update_features(struct net_device * dev)10958 int __netdev_update_features(struct net_device *dev)
10959 {
10960 	struct net_device *upper, *lower;
10961 	netdev_features_t features;
10962 	struct list_head *iter;
10963 	int err = -1;
10964 
10965 	ASSERT_RTNL();
10966 	netdev_ops_assert_locked(dev);
10967 
10968 	features = netdev_get_wanted_features(dev);
10969 
10970 	if (dev->netdev_ops->ndo_fix_features)
10971 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10972 
10973 	/* driver might be less strict about feature dependencies */
10974 	features = netdev_fix_features(dev, features);
10975 
10976 	/* some features can't be enabled if they're off on an upper device */
10977 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10978 		features = netdev_sync_upper_features(dev, upper, features);
10979 
10980 	if (dev->features == features)
10981 		goto sync_lower;
10982 
10983 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10984 		&dev->features, &features);
10985 
10986 	if (dev->netdev_ops->ndo_set_features)
10987 		err = dev->netdev_ops->ndo_set_features(dev, features);
10988 	else
10989 		err = 0;
10990 
10991 	if (unlikely(err < 0)) {
10992 		netdev_err(dev,
10993 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10994 			err, &features, &dev->features);
10995 		/* return non-0 since some features might have changed and
10996 		 * it's better to fire a spurious notification than miss it
10997 		 */
10998 		return -1;
10999 	}
11000 
11001 sync_lower:
11002 	/* some features must be disabled on lower devices when disabled
11003 	 * on an upper device (think: bonding master or bridge)
11004 	 */
11005 	netdev_for_each_lower_dev(dev, lower, iter)
11006 		netdev_sync_lower_features(dev, lower, features);
11007 
11008 	if (!err) {
11009 		netdev_features_t diff = features ^ dev->features;
11010 
11011 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11012 			/* udp_tunnel_{get,drop}_rx_info both need
11013 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11014 			 * device, or they won't do anything.
11015 			 * Thus we need to update dev->features
11016 			 * *before* calling udp_tunnel_get_rx_info,
11017 			 * but *after* calling udp_tunnel_drop_rx_info.
11018 			 */
11019 			udp_tunnel_nic_lock(dev);
11020 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11021 				dev->features = features;
11022 				udp_tunnel_get_rx_info(dev);
11023 			} else {
11024 				udp_tunnel_drop_rx_info(dev);
11025 			}
11026 			udp_tunnel_nic_unlock(dev);
11027 		}
11028 
11029 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11030 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11031 				dev->features = features;
11032 				err |= vlan_get_rx_ctag_filter_info(dev);
11033 			} else {
11034 				vlan_drop_rx_ctag_filter_info(dev);
11035 			}
11036 		}
11037 
11038 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11039 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11040 				dev->features = features;
11041 				err |= vlan_get_rx_stag_filter_info(dev);
11042 			} else {
11043 				vlan_drop_rx_stag_filter_info(dev);
11044 			}
11045 		}
11046 
11047 		dev->features = features;
11048 	}
11049 
11050 	return err < 0 ? 0 : 1;
11051 }
11052 
11053 /**
11054  *	netdev_update_features - recalculate device features
11055  *	@dev: the device to check
11056  *
11057  *	Recalculate dev->features set and send notifications if it
11058  *	has changed. Should be called after driver or hardware dependent
11059  *	conditions might have changed that influence the features.
11060  */
netdev_update_features(struct net_device * dev)11061 void netdev_update_features(struct net_device *dev)
11062 {
11063 	if (__netdev_update_features(dev))
11064 		netdev_features_change(dev);
11065 }
11066 EXPORT_SYMBOL(netdev_update_features);
11067 
11068 /**
11069  *	netdev_change_features - recalculate device features
11070  *	@dev: the device to check
11071  *
11072  *	Recalculate dev->features set and send notifications even
11073  *	if they have not changed. Should be called instead of
11074  *	netdev_update_features() if also dev->vlan_features might
11075  *	have changed to allow the changes to be propagated to stacked
11076  *	VLAN devices.
11077  */
netdev_change_features(struct net_device * dev)11078 void netdev_change_features(struct net_device *dev)
11079 {
11080 	__netdev_update_features(dev);
11081 	netdev_features_change(dev);
11082 }
11083 EXPORT_SYMBOL(netdev_change_features);
11084 
11085 /**
11086  *	netif_stacked_transfer_operstate -	transfer operstate
11087  *	@rootdev: the root or lower level device to transfer state from
11088  *	@dev: the device to transfer operstate to
11089  *
11090  *	Transfer operational state from root to device. This is normally
11091  *	called when a stacking relationship exists between the root
11092  *	device and the device(a leaf device).
11093  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11094 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11095 					struct net_device *dev)
11096 {
11097 	if (rootdev->operstate == IF_OPER_DORMANT)
11098 		netif_dormant_on(dev);
11099 	else
11100 		netif_dormant_off(dev);
11101 
11102 	if (rootdev->operstate == IF_OPER_TESTING)
11103 		netif_testing_on(dev);
11104 	else
11105 		netif_testing_off(dev);
11106 
11107 	if (netif_carrier_ok(rootdev))
11108 		netif_carrier_on(dev);
11109 	else
11110 		netif_carrier_off(dev);
11111 }
11112 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11113 
netif_alloc_rx_queues(struct net_device * dev)11114 static int netif_alloc_rx_queues(struct net_device *dev)
11115 {
11116 	unsigned int i, count = dev->num_rx_queues;
11117 	struct netdev_rx_queue *rx;
11118 	size_t sz = count * sizeof(*rx);
11119 	int err = 0;
11120 
11121 	BUG_ON(count < 1);
11122 
11123 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11124 	if (!rx)
11125 		return -ENOMEM;
11126 
11127 	dev->_rx = rx;
11128 
11129 	for (i = 0; i < count; i++) {
11130 		rx[i].dev = dev;
11131 
11132 		/* XDP RX-queue setup */
11133 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11134 		if (err < 0)
11135 			goto err_rxq_info;
11136 	}
11137 	return 0;
11138 
11139 err_rxq_info:
11140 	/* Rollback successful reg's and free other resources */
11141 	while (i--)
11142 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11143 	kvfree(dev->_rx);
11144 	dev->_rx = NULL;
11145 	return err;
11146 }
11147 
netif_free_rx_queues(struct net_device * dev)11148 static void netif_free_rx_queues(struct net_device *dev)
11149 {
11150 	unsigned int i, count = dev->num_rx_queues;
11151 
11152 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11153 	if (!dev->_rx)
11154 		return;
11155 
11156 	for (i = 0; i < count; i++)
11157 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11158 
11159 	kvfree(dev->_rx);
11160 }
11161 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11162 static void netdev_init_one_queue(struct net_device *dev,
11163 				  struct netdev_queue *queue, void *_unused)
11164 {
11165 	/* Initialize queue lock */
11166 	spin_lock_init(&queue->_xmit_lock);
11167 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11168 	queue->xmit_lock_owner = -1;
11169 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11170 	queue->dev = dev;
11171 #ifdef CONFIG_BQL
11172 	dql_init(&queue->dql, HZ);
11173 #endif
11174 }
11175 
netif_free_tx_queues(struct net_device * dev)11176 static void netif_free_tx_queues(struct net_device *dev)
11177 {
11178 	kvfree(dev->_tx);
11179 }
11180 
netif_alloc_netdev_queues(struct net_device * dev)11181 static int netif_alloc_netdev_queues(struct net_device *dev)
11182 {
11183 	unsigned int count = dev->num_tx_queues;
11184 	struct netdev_queue *tx;
11185 	size_t sz = count * sizeof(*tx);
11186 
11187 	if (count < 1 || count > 0xffff)
11188 		return -EINVAL;
11189 
11190 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11191 	if (!tx)
11192 		return -ENOMEM;
11193 
11194 	dev->_tx = tx;
11195 
11196 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11197 	spin_lock_init(&dev->tx_global_lock);
11198 
11199 	return 0;
11200 }
11201 
netif_tx_stop_all_queues(struct net_device * dev)11202 void netif_tx_stop_all_queues(struct net_device *dev)
11203 {
11204 	unsigned int i;
11205 
11206 	for (i = 0; i < dev->num_tx_queues; i++) {
11207 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11208 
11209 		netif_tx_stop_queue(txq);
11210 	}
11211 }
11212 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11213 
netdev_do_alloc_pcpu_stats(struct net_device * dev)11214 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11215 {
11216 	void __percpu *v;
11217 
11218 	/* Drivers implementing ndo_get_peer_dev must support tstat
11219 	 * accounting, so that skb_do_redirect() can bump the dev's
11220 	 * RX stats upon network namespace switch.
11221 	 */
11222 	if (dev->netdev_ops->ndo_get_peer_dev &&
11223 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11224 		return -EOPNOTSUPP;
11225 
11226 	switch (dev->pcpu_stat_type) {
11227 	case NETDEV_PCPU_STAT_NONE:
11228 		return 0;
11229 	case NETDEV_PCPU_STAT_LSTATS:
11230 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11231 		break;
11232 	case NETDEV_PCPU_STAT_TSTATS:
11233 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11234 		break;
11235 	case NETDEV_PCPU_STAT_DSTATS:
11236 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11237 		break;
11238 	default:
11239 		return -EINVAL;
11240 	}
11241 
11242 	return v ? 0 : -ENOMEM;
11243 }
11244 
netdev_do_free_pcpu_stats(struct net_device * dev)11245 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11246 {
11247 	switch (dev->pcpu_stat_type) {
11248 	case NETDEV_PCPU_STAT_NONE:
11249 		return;
11250 	case NETDEV_PCPU_STAT_LSTATS:
11251 		free_percpu(dev->lstats);
11252 		break;
11253 	case NETDEV_PCPU_STAT_TSTATS:
11254 		free_percpu(dev->tstats);
11255 		break;
11256 	case NETDEV_PCPU_STAT_DSTATS:
11257 		free_percpu(dev->dstats);
11258 		break;
11259 	}
11260 }
11261 
netdev_free_phy_link_topology(struct net_device * dev)11262 static void netdev_free_phy_link_topology(struct net_device *dev)
11263 {
11264 	struct phy_link_topology *topo = dev->link_topo;
11265 
11266 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11267 		xa_destroy(&topo->phys);
11268 		kfree(topo);
11269 		dev->link_topo = NULL;
11270 	}
11271 }
11272 
11273 /**
11274  * register_netdevice() - register a network device
11275  * @dev: device to register
11276  *
11277  * Take a prepared network device structure and make it externally accessible.
11278  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11279  * Callers must hold the rtnl lock - you may want register_netdev()
11280  * instead of this.
11281  */
register_netdevice(struct net_device * dev)11282 int register_netdevice(struct net_device *dev)
11283 {
11284 	int ret;
11285 	struct net *net = dev_net(dev);
11286 
11287 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11288 		     NETDEV_FEATURE_COUNT);
11289 	BUG_ON(dev_boot_phase);
11290 	ASSERT_RTNL();
11291 
11292 	might_sleep();
11293 
11294 	/* When net_device's are persistent, this will be fatal. */
11295 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11296 	BUG_ON(!net);
11297 
11298 	ret = ethtool_check_ops(dev->ethtool_ops);
11299 	if (ret)
11300 		return ret;
11301 
11302 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11303 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11304 	mutex_init(&dev->ethtool->rss_lock);
11305 
11306 	spin_lock_init(&dev->addr_list_lock);
11307 	netdev_set_addr_lockdep_class(dev);
11308 
11309 	ret = dev_get_valid_name(net, dev, dev->name);
11310 	if (ret < 0)
11311 		goto out;
11312 
11313 	ret = -ENOMEM;
11314 	dev->name_node = netdev_name_node_head_alloc(dev);
11315 	if (!dev->name_node)
11316 		goto out;
11317 
11318 	/* Init, if this function is available */
11319 	if (dev->netdev_ops->ndo_init) {
11320 		ret = dev->netdev_ops->ndo_init(dev);
11321 		if (ret) {
11322 			if (ret > 0)
11323 				ret = -EIO;
11324 			goto err_free_name;
11325 		}
11326 	}
11327 
11328 	if (((dev->hw_features | dev->features) &
11329 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11330 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11331 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11332 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11333 		ret = -EINVAL;
11334 		goto err_uninit;
11335 	}
11336 
11337 	ret = netdev_do_alloc_pcpu_stats(dev);
11338 	if (ret)
11339 		goto err_uninit;
11340 
11341 	ret = dev_index_reserve(net, dev->ifindex);
11342 	if (ret < 0)
11343 		goto err_free_pcpu;
11344 	dev->ifindex = ret;
11345 
11346 	/* Transfer changeable features to wanted_features and enable
11347 	 * software offloads (GSO and GRO).
11348 	 */
11349 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11350 	dev->features |= NETIF_F_SOFT_FEATURES;
11351 
11352 	if (dev->udp_tunnel_nic_info) {
11353 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11354 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11355 	}
11356 
11357 	dev->wanted_features = dev->features & dev->hw_features;
11358 
11359 	if (!(dev->flags & IFF_LOOPBACK))
11360 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11361 
11362 	/* If IPv4 TCP segmentation offload is supported we should also
11363 	 * allow the device to enable segmenting the frame with the option
11364 	 * of ignoring a static IP ID value.  This doesn't enable the
11365 	 * feature itself but allows the user to enable it later.
11366 	 */
11367 	if (dev->hw_features & NETIF_F_TSO)
11368 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11369 	if (dev->vlan_features & NETIF_F_TSO)
11370 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11371 	if (dev->mpls_features & NETIF_F_TSO)
11372 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11373 	if (dev->hw_enc_features & NETIF_F_TSO)
11374 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11375 
11376 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11377 	 */
11378 	dev->vlan_features |= NETIF_F_HIGHDMA;
11379 
11380 	/* Make NETIF_F_SG inheritable to tunnel devices.
11381 	 */
11382 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11383 
11384 	/* Make NETIF_F_SG inheritable to MPLS.
11385 	 */
11386 	dev->mpls_features |= NETIF_F_SG;
11387 
11388 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11389 	ret = notifier_to_errno(ret);
11390 	if (ret)
11391 		goto err_ifindex_release;
11392 
11393 	ret = netdev_register_kobject(dev);
11394 
11395 	netdev_lock(dev);
11396 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11397 	netdev_unlock(dev);
11398 
11399 	if (ret)
11400 		goto err_uninit_notify;
11401 
11402 	netdev_lock_ops(dev);
11403 	__netdev_update_features(dev);
11404 	netdev_unlock_ops(dev);
11405 
11406 	/*
11407 	 *	Default initial state at registry is that the
11408 	 *	device is present.
11409 	 */
11410 
11411 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11412 
11413 	linkwatch_init_dev(dev);
11414 
11415 	dev_init_scheduler(dev);
11416 
11417 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11418 	list_netdevice(dev);
11419 
11420 	add_device_randomness(dev->dev_addr, dev->addr_len);
11421 
11422 	/* If the device has permanent device address, driver should
11423 	 * set dev_addr and also addr_assign_type should be set to
11424 	 * NET_ADDR_PERM (default value).
11425 	 */
11426 	if (dev->addr_assign_type == NET_ADDR_PERM)
11427 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11428 
11429 	/* Notify protocols, that a new device appeared. */
11430 	netdev_lock_ops(dev);
11431 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11432 	netdev_unlock_ops(dev);
11433 	ret = notifier_to_errno(ret);
11434 	if (ret) {
11435 		/* Expect explicit free_netdev() on failure */
11436 		dev->needs_free_netdev = false;
11437 		unregister_netdevice_queue(dev, NULL);
11438 		goto out;
11439 	}
11440 	/*
11441 	 *	Prevent userspace races by waiting until the network
11442 	 *	device is fully setup before sending notifications.
11443 	 */
11444 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11445 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11446 
11447 out:
11448 	return ret;
11449 
11450 err_uninit_notify:
11451 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11452 err_ifindex_release:
11453 	dev_index_release(net, dev->ifindex);
11454 err_free_pcpu:
11455 	netdev_do_free_pcpu_stats(dev);
11456 err_uninit:
11457 	if (dev->netdev_ops->ndo_uninit)
11458 		dev->netdev_ops->ndo_uninit(dev);
11459 	if (dev->priv_destructor)
11460 		dev->priv_destructor(dev);
11461 err_free_name:
11462 	netdev_name_node_free(dev->name_node);
11463 	goto out;
11464 }
11465 EXPORT_SYMBOL(register_netdevice);
11466 
11467 /* Initialize the core of a dummy net device.
11468  * The setup steps dummy netdevs need which normal netdevs get by going
11469  * through register_netdevice().
11470  */
init_dummy_netdev(struct net_device * dev)11471 static void init_dummy_netdev(struct net_device *dev)
11472 {
11473 	/* make sure we BUG if trying to hit standard
11474 	 * register/unregister code path
11475 	 */
11476 	dev->reg_state = NETREG_DUMMY;
11477 
11478 	/* a dummy interface is started by default */
11479 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11480 	set_bit(__LINK_STATE_START, &dev->state);
11481 
11482 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11483 	 * because users of this 'device' dont need to change
11484 	 * its refcount.
11485 	 */
11486 }
11487 
11488 /**
11489  *	register_netdev	- register a network device
11490  *	@dev: device to register
11491  *
11492  *	Take a completed network device structure and add it to the kernel
11493  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11494  *	chain. 0 is returned on success. A negative errno code is returned
11495  *	on a failure to set up the device, or if the name is a duplicate.
11496  *
11497  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11498  *	and expands the device name if you passed a format string to
11499  *	alloc_netdev.
11500  */
register_netdev(struct net_device * dev)11501 int register_netdev(struct net_device *dev)
11502 {
11503 	struct net *net = dev_net(dev);
11504 	int err;
11505 
11506 	if (rtnl_net_lock_killable(net))
11507 		return -EINTR;
11508 
11509 	err = register_netdevice(dev);
11510 
11511 	rtnl_net_unlock(net);
11512 
11513 	return err;
11514 }
11515 EXPORT_SYMBOL(register_netdev);
11516 
netdev_refcnt_read(const struct net_device * dev)11517 int netdev_refcnt_read(const struct net_device *dev)
11518 {
11519 #ifdef CONFIG_PCPU_DEV_REFCNT
11520 	int i, refcnt = 0;
11521 
11522 	for_each_possible_cpu(i)
11523 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11524 	return refcnt;
11525 #else
11526 	return refcount_read(&dev->dev_refcnt);
11527 #endif
11528 }
11529 EXPORT_SYMBOL(netdev_refcnt_read);
11530 
11531 int netdev_unregister_timeout_secs __read_mostly = 10;
11532 
11533 #define WAIT_REFS_MIN_MSECS 1
11534 #define WAIT_REFS_MAX_MSECS 250
11535 /**
11536  * netdev_wait_allrefs_any - wait until all references are gone.
11537  * @list: list of net_devices to wait on
11538  *
11539  * This is called when unregistering network devices.
11540  *
11541  * Any protocol or device that holds a reference should register
11542  * for netdevice notification, and cleanup and put back the
11543  * reference if they receive an UNREGISTER event.
11544  * We can get stuck here if buggy protocols don't correctly
11545  * call dev_put.
11546  */
netdev_wait_allrefs_any(struct list_head * list)11547 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11548 {
11549 	unsigned long rebroadcast_time, warning_time;
11550 	struct net_device *dev;
11551 	int wait = 0;
11552 
11553 	rebroadcast_time = warning_time = jiffies;
11554 
11555 	list_for_each_entry(dev, list, todo_list)
11556 		if (netdev_refcnt_read(dev) == 1)
11557 			return dev;
11558 
11559 	while (true) {
11560 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11561 			rtnl_lock();
11562 
11563 			/* Rebroadcast unregister notification */
11564 			list_for_each_entry(dev, list, todo_list)
11565 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11566 
11567 			__rtnl_unlock();
11568 			rcu_barrier();
11569 			rtnl_lock();
11570 
11571 			list_for_each_entry(dev, list, todo_list)
11572 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11573 					     &dev->state)) {
11574 					/* We must not have linkwatch events
11575 					 * pending on unregister. If this
11576 					 * happens, we simply run the queue
11577 					 * unscheduled, resulting in a noop
11578 					 * for this device.
11579 					 */
11580 					linkwatch_run_queue();
11581 					break;
11582 				}
11583 
11584 			__rtnl_unlock();
11585 
11586 			rebroadcast_time = jiffies;
11587 		}
11588 
11589 		rcu_barrier();
11590 
11591 		if (!wait) {
11592 			wait = WAIT_REFS_MIN_MSECS;
11593 		} else {
11594 			msleep(wait);
11595 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11596 		}
11597 
11598 		list_for_each_entry(dev, list, todo_list)
11599 			if (netdev_refcnt_read(dev) == 1)
11600 				return dev;
11601 
11602 		if (time_after(jiffies, warning_time +
11603 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11604 			list_for_each_entry(dev, list, todo_list) {
11605 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11606 					 dev->name, netdev_refcnt_read(dev));
11607 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11608 			}
11609 
11610 			warning_time = jiffies;
11611 		}
11612 	}
11613 }
11614 
11615 /* The sequence is:
11616  *
11617  *	rtnl_lock();
11618  *	...
11619  *	register_netdevice(x1);
11620  *	register_netdevice(x2);
11621  *	...
11622  *	unregister_netdevice(y1);
11623  *	unregister_netdevice(y2);
11624  *      ...
11625  *	rtnl_unlock();
11626  *	free_netdev(y1);
11627  *	free_netdev(y2);
11628  *
11629  * We are invoked by rtnl_unlock().
11630  * This allows us to deal with problems:
11631  * 1) We can delete sysfs objects which invoke hotplug
11632  *    without deadlocking with linkwatch via keventd.
11633  * 2) Since we run with the RTNL semaphore not held, we can sleep
11634  *    safely in order to wait for the netdev refcnt to drop to zero.
11635  *
11636  * We must not return until all unregister events added during
11637  * the interval the lock was held have been completed.
11638  */
netdev_run_todo(void)11639 void netdev_run_todo(void)
11640 {
11641 	struct net_device *dev, *tmp;
11642 	struct list_head list;
11643 	int cnt;
11644 #ifdef CONFIG_LOCKDEP
11645 	struct list_head unlink_list;
11646 
11647 	list_replace_init(&net_unlink_list, &unlink_list);
11648 
11649 	while (!list_empty(&unlink_list)) {
11650 		dev = list_first_entry(&unlink_list, struct net_device,
11651 				       unlink_list);
11652 		list_del_init(&dev->unlink_list);
11653 		dev->nested_level = dev->lower_level - 1;
11654 	}
11655 #endif
11656 
11657 	/* Snapshot list, allow later requests */
11658 	list_replace_init(&net_todo_list, &list);
11659 
11660 	__rtnl_unlock();
11661 
11662 	/* Wait for rcu callbacks to finish before next phase */
11663 	if (!list_empty(&list))
11664 		rcu_barrier();
11665 
11666 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11667 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11668 			netdev_WARN(dev, "run_todo but not unregistering\n");
11669 			list_del(&dev->todo_list);
11670 			continue;
11671 		}
11672 
11673 		netdev_lock(dev);
11674 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11675 		netdev_unlock(dev);
11676 		linkwatch_sync_dev(dev);
11677 	}
11678 
11679 	cnt = 0;
11680 	while (!list_empty(&list)) {
11681 		dev = netdev_wait_allrefs_any(&list);
11682 		list_del(&dev->todo_list);
11683 
11684 		/* paranoia */
11685 		BUG_ON(netdev_refcnt_read(dev) != 1);
11686 		BUG_ON(!list_empty(&dev->ptype_all));
11687 		BUG_ON(!list_empty(&dev->ptype_specific));
11688 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11689 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11690 
11691 		netdev_do_free_pcpu_stats(dev);
11692 		if (dev->priv_destructor)
11693 			dev->priv_destructor(dev);
11694 		if (dev->needs_free_netdev)
11695 			free_netdev(dev);
11696 
11697 		cnt++;
11698 
11699 		/* Free network device */
11700 		kobject_put(&dev->dev.kobj);
11701 	}
11702 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11703 		wake_up(&netdev_unregistering_wq);
11704 }
11705 
11706 /* Collate per-cpu network dstats statistics
11707  *
11708  * Read per-cpu network statistics from dev->dstats and populate the related
11709  * fields in @s.
11710  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11711 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11712 			     const struct pcpu_dstats __percpu *dstats)
11713 {
11714 	int cpu;
11715 
11716 	for_each_possible_cpu(cpu) {
11717 		u64 rx_packets, rx_bytes, rx_drops;
11718 		u64 tx_packets, tx_bytes, tx_drops;
11719 		const struct pcpu_dstats *stats;
11720 		unsigned int start;
11721 
11722 		stats = per_cpu_ptr(dstats, cpu);
11723 		do {
11724 			start = u64_stats_fetch_begin(&stats->syncp);
11725 			rx_packets = u64_stats_read(&stats->rx_packets);
11726 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11727 			rx_drops   = u64_stats_read(&stats->rx_drops);
11728 			tx_packets = u64_stats_read(&stats->tx_packets);
11729 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11730 			tx_drops   = u64_stats_read(&stats->tx_drops);
11731 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11732 
11733 		s->rx_packets += rx_packets;
11734 		s->rx_bytes   += rx_bytes;
11735 		s->rx_dropped += rx_drops;
11736 		s->tx_packets += tx_packets;
11737 		s->tx_bytes   += tx_bytes;
11738 		s->tx_dropped += tx_drops;
11739 	}
11740 }
11741 
11742 /* ndo_get_stats64 implementation for dtstats-based accounting.
11743  *
11744  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11745  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11746  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11747 static void dev_get_dstats64(const struct net_device *dev,
11748 			     struct rtnl_link_stats64 *s)
11749 {
11750 	netdev_stats_to_stats64(s, &dev->stats);
11751 	dev_fetch_dstats(s, dev->dstats);
11752 }
11753 
11754 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11755  * all the same fields in the same order as net_device_stats, with only
11756  * the type differing, but rtnl_link_stats64 may have additional fields
11757  * at the end for newer counters.
11758  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11759 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11760 			     const struct net_device_stats *netdev_stats)
11761 {
11762 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11763 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11764 	u64 *dst = (u64 *)stats64;
11765 
11766 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11767 	for (i = 0; i < n; i++)
11768 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11769 	/* zero out counters that only exist in rtnl_link_stats64 */
11770 	memset((char *)stats64 + n * sizeof(u64), 0,
11771 	       sizeof(*stats64) - n * sizeof(u64));
11772 }
11773 EXPORT_SYMBOL(netdev_stats_to_stats64);
11774 
netdev_core_stats_alloc(struct net_device * dev)11775 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11776 		struct net_device *dev)
11777 {
11778 	struct net_device_core_stats __percpu *p;
11779 
11780 	p = alloc_percpu_gfp(struct net_device_core_stats,
11781 			     GFP_ATOMIC | __GFP_NOWARN);
11782 
11783 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11784 		free_percpu(p);
11785 
11786 	/* This READ_ONCE() pairs with the cmpxchg() above */
11787 	return READ_ONCE(dev->core_stats);
11788 }
11789 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11790 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11791 {
11792 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11793 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11794 	unsigned long __percpu *field;
11795 
11796 	if (unlikely(!p)) {
11797 		p = netdev_core_stats_alloc(dev);
11798 		if (!p)
11799 			return;
11800 	}
11801 
11802 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11803 	this_cpu_inc(*field);
11804 }
11805 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11806 
11807 /**
11808  *	dev_get_stats	- get network device statistics
11809  *	@dev: device to get statistics from
11810  *	@storage: place to store stats
11811  *
11812  *	Get network statistics from device. Return @storage.
11813  *	The device driver may provide its own method by setting
11814  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11815  *	otherwise the internal statistics structure is used.
11816  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11817 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11818 					struct rtnl_link_stats64 *storage)
11819 {
11820 	const struct net_device_ops *ops = dev->netdev_ops;
11821 	const struct net_device_core_stats __percpu *p;
11822 
11823 	/*
11824 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11825 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11826 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11827 	 */
11828 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11829 		     offsetof(struct pcpu_dstats, rx_bytes));
11830 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11831 		     offsetof(struct pcpu_dstats, rx_packets));
11832 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11833 		     offsetof(struct pcpu_dstats, tx_bytes));
11834 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11835 		     offsetof(struct pcpu_dstats, tx_packets));
11836 
11837 	if (ops->ndo_get_stats64) {
11838 		memset(storage, 0, sizeof(*storage));
11839 		ops->ndo_get_stats64(dev, storage);
11840 	} else if (ops->ndo_get_stats) {
11841 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11842 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11843 		dev_get_tstats64(dev, storage);
11844 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11845 		dev_get_dstats64(dev, storage);
11846 	} else {
11847 		netdev_stats_to_stats64(storage, &dev->stats);
11848 	}
11849 
11850 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11851 	p = READ_ONCE(dev->core_stats);
11852 	if (p) {
11853 		const struct net_device_core_stats *core_stats;
11854 		int i;
11855 
11856 		for_each_possible_cpu(i) {
11857 			core_stats = per_cpu_ptr(p, i);
11858 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11859 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11860 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11861 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11862 		}
11863 	}
11864 	return storage;
11865 }
11866 EXPORT_SYMBOL(dev_get_stats);
11867 
11868 /**
11869  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11870  *	@s: place to store stats
11871  *	@netstats: per-cpu network stats to read from
11872  *
11873  *	Read per-cpu network statistics and populate the related fields in @s.
11874  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11875 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11876 			   const struct pcpu_sw_netstats __percpu *netstats)
11877 {
11878 	int cpu;
11879 
11880 	for_each_possible_cpu(cpu) {
11881 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11882 		const struct pcpu_sw_netstats *stats;
11883 		unsigned int start;
11884 
11885 		stats = per_cpu_ptr(netstats, cpu);
11886 		do {
11887 			start = u64_stats_fetch_begin(&stats->syncp);
11888 			rx_packets = u64_stats_read(&stats->rx_packets);
11889 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11890 			tx_packets = u64_stats_read(&stats->tx_packets);
11891 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11892 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11893 
11894 		s->rx_packets += rx_packets;
11895 		s->rx_bytes   += rx_bytes;
11896 		s->tx_packets += tx_packets;
11897 		s->tx_bytes   += tx_bytes;
11898 	}
11899 }
11900 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11901 
11902 /**
11903  *	dev_get_tstats64 - ndo_get_stats64 implementation
11904  *	@dev: device to get statistics from
11905  *	@s: place to store stats
11906  *
11907  *	Populate @s from dev->stats and dev->tstats. Can be used as
11908  *	ndo_get_stats64() callback.
11909  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11910 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11911 {
11912 	netdev_stats_to_stats64(s, &dev->stats);
11913 	dev_fetch_sw_netstats(s, dev->tstats);
11914 }
11915 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11916 
dev_ingress_queue_create(struct net_device * dev)11917 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11918 {
11919 	struct netdev_queue *queue = dev_ingress_queue(dev);
11920 
11921 #ifdef CONFIG_NET_CLS_ACT
11922 	if (queue)
11923 		return queue;
11924 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11925 	if (!queue)
11926 		return NULL;
11927 	netdev_init_one_queue(dev, queue, NULL);
11928 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11929 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11930 	rcu_assign_pointer(dev->ingress_queue, queue);
11931 #endif
11932 	return queue;
11933 }
11934 
11935 static const struct ethtool_ops default_ethtool_ops;
11936 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11937 void netdev_set_default_ethtool_ops(struct net_device *dev,
11938 				    const struct ethtool_ops *ops)
11939 {
11940 	if (dev->ethtool_ops == &default_ethtool_ops)
11941 		dev->ethtool_ops = ops;
11942 }
11943 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11944 
11945 /**
11946  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11947  * @dev: netdev to enable the IRQ coalescing on
11948  *
11949  * Sets a conservative default for SW IRQ coalescing. Users can use
11950  * sysfs attributes to override the default values.
11951  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11952 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11953 {
11954 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11955 
11956 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11957 		netdev_set_gro_flush_timeout(dev, 20000);
11958 		netdev_set_defer_hard_irqs(dev, 1);
11959 	}
11960 }
11961 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11962 
11963 /**
11964  * alloc_netdev_mqs - allocate network device
11965  * @sizeof_priv: size of private data to allocate space for
11966  * @name: device name format string
11967  * @name_assign_type: origin of device name
11968  * @setup: callback to initialize device
11969  * @txqs: the number of TX subqueues to allocate
11970  * @rxqs: the number of RX subqueues to allocate
11971  *
11972  * Allocates a struct net_device with private data area for driver use
11973  * and performs basic initialization.  Also allocates subqueue structs
11974  * for each queue on the device.
11975  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11976 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11977 		unsigned char name_assign_type,
11978 		void (*setup)(struct net_device *),
11979 		unsigned int txqs, unsigned int rxqs)
11980 {
11981 	struct net_device *dev;
11982 	size_t napi_config_sz;
11983 	unsigned int maxqs;
11984 
11985 	BUG_ON(strlen(name) >= sizeof(dev->name));
11986 
11987 	if (txqs < 1) {
11988 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11989 		return NULL;
11990 	}
11991 
11992 	if (rxqs < 1) {
11993 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11994 		return NULL;
11995 	}
11996 
11997 	maxqs = max(txqs, rxqs);
11998 
11999 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
12000 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12001 	if (!dev)
12002 		return NULL;
12003 
12004 	dev->priv_len = sizeof_priv;
12005 
12006 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12007 #ifdef CONFIG_PCPU_DEV_REFCNT
12008 	dev->pcpu_refcnt = alloc_percpu(int);
12009 	if (!dev->pcpu_refcnt)
12010 		goto free_dev;
12011 	__dev_hold(dev);
12012 #else
12013 	refcount_set(&dev->dev_refcnt, 1);
12014 #endif
12015 
12016 	if (dev_addr_init(dev))
12017 		goto free_pcpu;
12018 
12019 	dev_mc_init(dev);
12020 	dev_uc_init(dev);
12021 
12022 	dev_net_set(dev, &init_net);
12023 
12024 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12025 	dev->xdp_zc_max_segs = 1;
12026 	dev->gso_max_segs = GSO_MAX_SEGS;
12027 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12028 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12029 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12030 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12031 	dev->tso_max_segs = TSO_MAX_SEGS;
12032 	dev->upper_level = 1;
12033 	dev->lower_level = 1;
12034 #ifdef CONFIG_LOCKDEP
12035 	dev->nested_level = 0;
12036 	INIT_LIST_HEAD(&dev->unlink_list);
12037 #endif
12038 
12039 	INIT_LIST_HEAD(&dev->napi_list);
12040 	INIT_LIST_HEAD(&dev->unreg_list);
12041 	INIT_LIST_HEAD(&dev->close_list);
12042 	INIT_LIST_HEAD(&dev->link_watch_list);
12043 	INIT_LIST_HEAD(&dev->adj_list.upper);
12044 	INIT_LIST_HEAD(&dev->adj_list.lower);
12045 	INIT_LIST_HEAD(&dev->ptype_all);
12046 	INIT_LIST_HEAD(&dev->ptype_specific);
12047 	INIT_LIST_HEAD(&dev->net_notifier_list);
12048 #ifdef CONFIG_NET_SCHED
12049 	hash_init(dev->qdisc_hash);
12050 #endif
12051 
12052 	mutex_init(&dev->lock);
12053 
12054 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12055 	setup(dev);
12056 
12057 	if (!dev->tx_queue_len) {
12058 		dev->priv_flags |= IFF_NO_QUEUE;
12059 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12060 	}
12061 
12062 	dev->num_tx_queues = txqs;
12063 	dev->real_num_tx_queues = txqs;
12064 	if (netif_alloc_netdev_queues(dev))
12065 		goto free_all;
12066 
12067 	dev->num_rx_queues = rxqs;
12068 	dev->real_num_rx_queues = rxqs;
12069 	if (netif_alloc_rx_queues(dev))
12070 		goto free_all;
12071 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12072 	if (!dev->ethtool)
12073 		goto free_all;
12074 
12075 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12076 	if (!dev->cfg)
12077 		goto free_all;
12078 	dev->cfg_pending = dev->cfg;
12079 
12080 	dev->num_napi_configs = maxqs;
12081 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12082 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12083 	if (!dev->napi_config)
12084 		goto free_all;
12085 
12086 	strscpy(dev->name, name);
12087 	dev->name_assign_type = name_assign_type;
12088 	dev->group = INIT_NETDEV_GROUP;
12089 	if (!dev->ethtool_ops)
12090 		dev->ethtool_ops = &default_ethtool_ops;
12091 
12092 	nf_hook_netdev_init(dev);
12093 
12094 	return dev;
12095 
12096 free_all:
12097 	free_netdev(dev);
12098 	return NULL;
12099 
12100 free_pcpu:
12101 #ifdef CONFIG_PCPU_DEV_REFCNT
12102 	free_percpu(dev->pcpu_refcnt);
12103 free_dev:
12104 #endif
12105 	kvfree(dev);
12106 	return NULL;
12107 }
12108 EXPORT_SYMBOL(alloc_netdev_mqs);
12109 
netdev_napi_exit(struct net_device * dev)12110 static void netdev_napi_exit(struct net_device *dev)
12111 {
12112 	if (!list_empty(&dev->napi_list)) {
12113 		struct napi_struct *p, *n;
12114 
12115 		netdev_lock(dev);
12116 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12117 			__netif_napi_del_locked(p);
12118 		netdev_unlock(dev);
12119 
12120 		synchronize_net();
12121 	}
12122 
12123 	kvfree(dev->napi_config);
12124 }
12125 
12126 /**
12127  * free_netdev - free network device
12128  * @dev: device
12129  *
12130  * This function does the last stage of destroying an allocated device
12131  * interface. The reference to the device object is released. If this
12132  * is the last reference then it will be freed.Must be called in process
12133  * context.
12134  */
free_netdev(struct net_device * dev)12135 void free_netdev(struct net_device *dev)
12136 {
12137 	might_sleep();
12138 
12139 	/* When called immediately after register_netdevice() failed the unwind
12140 	 * handling may still be dismantling the device. Handle that case by
12141 	 * deferring the free.
12142 	 */
12143 	if (dev->reg_state == NETREG_UNREGISTERING) {
12144 		ASSERT_RTNL();
12145 		dev->needs_free_netdev = true;
12146 		return;
12147 	}
12148 
12149 	WARN_ON(dev->cfg != dev->cfg_pending);
12150 	kfree(dev->cfg);
12151 	kfree(dev->ethtool);
12152 	netif_free_tx_queues(dev);
12153 	netif_free_rx_queues(dev);
12154 
12155 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12156 
12157 	/* Flush device addresses */
12158 	dev_addr_flush(dev);
12159 
12160 	netdev_napi_exit(dev);
12161 
12162 	netif_del_cpu_rmap(dev);
12163 
12164 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12165 #ifdef CONFIG_PCPU_DEV_REFCNT
12166 	free_percpu(dev->pcpu_refcnt);
12167 	dev->pcpu_refcnt = NULL;
12168 #endif
12169 	free_percpu(dev->core_stats);
12170 	dev->core_stats = NULL;
12171 	free_percpu(dev->xdp_bulkq);
12172 	dev->xdp_bulkq = NULL;
12173 
12174 	netdev_free_phy_link_topology(dev);
12175 
12176 	mutex_destroy(&dev->lock);
12177 
12178 	/*  Compatibility with error handling in drivers */
12179 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12180 	    dev->reg_state == NETREG_DUMMY) {
12181 		kvfree(dev);
12182 		return;
12183 	}
12184 
12185 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12186 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12187 
12188 	/* will free via device release */
12189 	put_device(&dev->dev);
12190 }
12191 EXPORT_SYMBOL(free_netdev);
12192 
12193 /**
12194  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12195  * @sizeof_priv: size of private data to allocate space for
12196  *
12197  * Return: the allocated net_device on success, NULL otherwise
12198  */
alloc_netdev_dummy(int sizeof_priv)12199 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12200 {
12201 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12202 			    init_dummy_netdev);
12203 }
12204 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12205 
12206 /**
12207  *	synchronize_net -  Synchronize with packet receive processing
12208  *
12209  *	Wait for packets currently being received to be done.
12210  *	Does not block later packets from starting.
12211  */
synchronize_net(void)12212 void synchronize_net(void)
12213 {
12214 	might_sleep();
12215 	if (from_cleanup_net() || rtnl_is_locked())
12216 		synchronize_rcu_expedited();
12217 	else
12218 		synchronize_rcu();
12219 }
12220 EXPORT_SYMBOL(synchronize_net);
12221 
netdev_rss_contexts_free(struct net_device * dev)12222 static void netdev_rss_contexts_free(struct net_device *dev)
12223 {
12224 	struct ethtool_rxfh_context *ctx;
12225 	unsigned long context;
12226 
12227 	mutex_lock(&dev->ethtool->rss_lock);
12228 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12229 		xa_erase(&dev->ethtool->rss_ctx, context);
12230 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12231 		kfree(ctx);
12232 	}
12233 	xa_destroy(&dev->ethtool->rss_ctx);
12234 	mutex_unlock(&dev->ethtool->rss_lock);
12235 }
12236 
12237 /**
12238  *	unregister_netdevice_queue - remove device from the kernel
12239  *	@dev: device
12240  *	@head: list
12241  *
12242  *	This function shuts down a device interface and removes it
12243  *	from the kernel tables.
12244  *	If head not NULL, device is queued to be unregistered later.
12245  *
12246  *	Callers must hold the rtnl semaphore.  You may want
12247  *	unregister_netdev() instead of this.
12248  */
12249 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12250 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12251 {
12252 	ASSERT_RTNL();
12253 
12254 	if (head) {
12255 		list_move_tail(&dev->unreg_list, head);
12256 	} else {
12257 		LIST_HEAD(single);
12258 
12259 		list_add(&dev->unreg_list, &single);
12260 		unregister_netdevice_many(&single);
12261 	}
12262 }
12263 EXPORT_SYMBOL(unregister_netdevice_queue);
12264 
dev_memory_provider_uninstall(struct net_device * dev)12265 static void dev_memory_provider_uninstall(struct net_device *dev)
12266 {
12267 	unsigned int i;
12268 
12269 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12270 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12271 		struct pp_memory_provider_params *p = &rxq->mp_params;
12272 
12273 		if (p->mp_ops && p->mp_ops->uninstall)
12274 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12275 	}
12276 }
12277 
12278 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12279 static void netif_close_many_and_unlock(struct list_head *close_head)
12280 {
12281 	struct net_device *dev, *tmp;
12282 
12283 	netif_close_many(close_head, false);
12284 
12285 	/* ... now unlock them */
12286 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12287 		netdev_unlock(dev);
12288 		list_del_init(&dev->close_list);
12289 	}
12290 }
12291 
netif_close_many_and_unlock_cond(struct list_head * close_head)12292 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12293 {
12294 #ifdef CONFIG_LOCKDEP
12295 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12296 	 *
12297 	 * Reserve half the available slots for additional locks possibly
12298 	 * taken by notifiers and (soft)irqs.
12299 	 */
12300 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12301 
12302 	if (lockdep_depth(current) > limit)
12303 		netif_close_many_and_unlock(close_head);
12304 #endif
12305 }
12306 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12307 void unregister_netdevice_many_notify(struct list_head *head,
12308 				      u32 portid, const struct nlmsghdr *nlh)
12309 {
12310 	struct net_device *dev, *tmp;
12311 	LIST_HEAD(close_head);
12312 	int cnt = 0;
12313 
12314 	BUG_ON(dev_boot_phase);
12315 	ASSERT_RTNL();
12316 
12317 	if (list_empty(head))
12318 		return;
12319 
12320 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12321 		/* Some devices call without registering
12322 		 * for initialization unwind. Remove those
12323 		 * devices and proceed with the remaining.
12324 		 */
12325 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12326 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12327 				 dev->name, dev);
12328 
12329 			WARN_ON(1);
12330 			list_del(&dev->unreg_list);
12331 			continue;
12332 		}
12333 		dev->dismantle = true;
12334 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12335 	}
12336 
12337 	/* If device is running, close it first. Start with ops locked... */
12338 	list_for_each_entry(dev, head, unreg_list) {
12339 		if (!(dev->flags & IFF_UP))
12340 			continue;
12341 		if (netdev_need_ops_lock(dev)) {
12342 			list_add_tail(&dev->close_list, &close_head);
12343 			netdev_lock(dev);
12344 		}
12345 		netif_close_many_and_unlock_cond(&close_head);
12346 	}
12347 	netif_close_many_and_unlock(&close_head);
12348 	/* ... now go over the rest. */
12349 	list_for_each_entry(dev, head, unreg_list) {
12350 		if (!netdev_need_ops_lock(dev))
12351 			list_add_tail(&dev->close_list, &close_head);
12352 	}
12353 	netif_close_many(&close_head, true);
12354 
12355 	list_for_each_entry(dev, head, unreg_list) {
12356 		/* And unlink it from device chain. */
12357 		unlist_netdevice(dev);
12358 		netdev_lock(dev);
12359 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12360 		netdev_unlock(dev);
12361 	}
12362 	flush_all_backlogs();
12363 
12364 	synchronize_net();
12365 
12366 	list_for_each_entry(dev, head, unreg_list) {
12367 		struct sk_buff *skb = NULL;
12368 
12369 		/* Shutdown queueing discipline. */
12370 		netdev_lock_ops(dev);
12371 		dev_shutdown(dev);
12372 		dev_tcx_uninstall(dev);
12373 		dev_xdp_uninstall(dev);
12374 		dev_memory_provider_uninstall(dev);
12375 		netdev_unlock_ops(dev);
12376 		bpf_dev_bound_netdev_unregister(dev);
12377 
12378 		netdev_offload_xstats_disable_all(dev);
12379 
12380 		/* Notify protocols, that we are about to destroy
12381 		 * this device. They should clean all the things.
12382 		 */
12383 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12384 
12385 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12386 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12387 						     GFP_KERNEL, NULL, 0,
12388 						     portid, nlh);
12389 
12390 		/*
12391 		 *	Flush the unicast and multicast chains
12392 		 */
12393 		dev_uc_flush(dev);
12394 		dev_mc_flush(dev);
12395 
12396 		netdev_name_node_alt_flush(dev);
12397 		netdev_name_node_free(dev->name_node);
12398 
12399 		netdev_rss_contexts_free(dev);
12400 
12401 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12402 
12403 		if (dev->netdev_ops->ndo_uninit)
12404 			dev->netdev_ops->ndo_uninit(dev);
12405 
12406 		mutex_destroy(&dev->ethtool->rss_lock);
12407 
12408 		net_shaper_flush_netdev(dev);
12409 
12410 		if (skb)
12411 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12412 
12413 		/* Notifier chain MUST detach us all upper devices. */
12414 		WARN_ON(netdev_has_any_upper_dev(dev));
12415 		WARN_ON(netdev_has_any_lower_dev(dev));
12416 
12417 		/* Remove entries from kobject tree */
12418 		netdev_unregister_kobject(dev);
12419 #ifdef CONFIG_XPS
12420 		/* Remove XPS queueing entries */
12421 		netif_reset_xps_queues_gt(dev, 0);
12422 #endif
12423 	}
12424 
12425 	synchronize_net();
12426 
12427 	list_for_each_entry(dev, head, unreg_list) {
12428 		netdev_put(dev, &dev->dev_registered_tracker);
12429 		net_set_todo(dev);
12430 		cnt++;
12431 	}
12432 	atomic_add(cnt, &dev_unreg_count);
12433 
12434 	list_del(head);
12435 }
12436 
12437 /**
12438  *	unregister_netdevice_many - unregister many devices
12439  *	@head: list of devices
12440  *
12441  *  Note: As most callers use a stack allocated list_head,
12442  *  we force a list_del() to make sure stack won't be corrupted later.
12443  */
unregister_netdevice_many(struct list_head * head)12444 void unregister_netdevice_many(struct list_head *head)
12445 {
12446 	unregister_netdevice_many_notify(head, 0, NULL);
12447 }
12448 EXPORT_SYMBOL(unregister_netdevice_many);
12449 
12450 /**
12451  *	unregister_netdev - remove device from the kernel
12452  *	@dev: device
12453  *
12454  *	This function shuts down a device interface and removes it
12455  *	from the kernel tables.
12456  *
12457  *	This is just a wrapper for unregister_netdevice that takes
12458  *	the rtnl semaphore.  In general you want to use this and not
12459  *	unregister_netdevice.
12460  */
unregister_netdev(struct net_device * dev)12461 void unregister_netdev(struct net_device *dev)
12462 {
12463 	rtnl_net_dev_lock(dev);
12464 	unregister_netdevice(dev);
12465 	rtnl_net_dev_unlock(dev);
12466 }
12467 EXPORT_SYMBOL(unregister_netdev);
12468 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12469 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12470 			       const char *pat, int new_ifindex,
12471 			       struct netlink_ext_ack *extack)
12472 {
12473 	struct netdev_name_node *name_node;
12474 	struct net *net_old = dev_net(dev);
12475 	char new_name[IFNAMSIZ] = {};
12476 	int err, new_nsid;
12477 
12478 	ASSERT_RTNL();
12479 
12480 	/* Don't allow namespace local devices to be moved. */
12481 	err = -EINVAL;
12482 	if (dev->netns_immutable) {
12483 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12484 		goto out;
12485 	}
12486 
12487 	/* Ensure the device has been registered */
12488 	if (dev->reg_state != NETREG_REGISTERED) {
12489 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12490 		goto out;
12491 	}
12492 
12493 	/* Get out if there is nothing todo */
12494 	err = 0;
12495 	if (net_eq(net_old, net))
12496 		goto out;
12497 
12498 	/* Pick the destination device name, and ensure
12499 	 * we can use it in the destination network namespace.
12500 	 */
12501 	err = -EEXIST;
12502 	if (netdev_name_in_use(net, dev->name)) {
12503 		/* We get here if we can't use the current device name */
12504 		if (!pat) {
12505 			NL_SET_ERR_MSG(extack,
12506 				       "An interface with the same name exists in the target netns");
12507 			goto out;
12508 		}
12509 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12510 		if (err < 0) {
12511 			NL_SET_ERR_MSG_FMT(extack,
12512 					   "Unable to use '%s' for the new interface name in the target netns",
12513 					   pat);
12514 			goto out;
12515 		}
12516 	}
12517 	/* Check that none of the altnames conflicts. */
12518 	err = -EEXIST;
12519 	netdev_for_each_altname(dev, name_node) {
12520 		if (netdev_name_in_use(net, name_node->name)) {
12521 			NL_SET_ERR_MSG_FMT(extack,
12522 					   "An interface with the altname %s exists in the target netns",
12523 					   name_node->name);
12524 			goto out;
12525 		}
12526 	}
12527 
12528 	/* Check that new_ifindex isn't used yet. */
12529 	if (new_ifindex) {
12530 		err = dev_index_reserve(net, new_ifindex);
12531 		if (err < 0) {
12532 			NL_SET_ERR_MSG_FMT(extack,
12533 					   "The ifindex %d is not available in the target netns",
12534 					   new_ifindex);
12535 			goto out;
12536 		}
12537 	} else {
12538 		/* If there is an ifindex conflict assign a new one */
12539 		err = dev_index_reserve(net, dev->ifindex);
12540 		if (err == -EBUSY)
12541 			err = dev_index_reserve(net, 0);
12542 		if (err < 0) {
12543 			NL_SET_ERR_MSG(extack,
12544 				       "Unable to allocate a new ifindex in the target netns");
12545 			goto out;
12546 		}
12547 		new_ifindex = err;
12548 	}
12549 
12550 	/*
12551 	 * And now a mini version of register_netdevice unregister_netdevice.
12552 	 */
12553 
12554 	netdev_lock_ops(dev);
12555 	/* If device is running close it first. */
12556 	netif_close(dev);
12557 	/* And unlink it from device chain */
12558 	unlist_netdevice(dev);
12559 
12560 	if (!netdev_need_ops_lock(dev))
12561 		netdev_lock(dev);
12562 	dev->moving_ns = true;
12563 	netdev_unlock(dev);
12564 
12565 	synchronize_net();
12566 
12567 	/* Shutdown queueing discipline. */
12568 	netdev_lock_ops(dev);
12569 	dev_shutdown(dev);
12570 	netdev_unlock_ops(dev);
12571 
12572 	/* Notify protocols, that we are about to destroy
12573 	 * this device. They should clean all the things.
12574 	 *
12575 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12576 	 * This is wanted because this way 8021q and macvlan know
12577 	 * the device is just moving and can keep their slaves up.
12578 	 */
12579 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12580 	rcu_barrier();
12581 
12582 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12583 
12584 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12585 			    new_ifindex);
12586 
12587 	/*
12588 	 *	Flush the unicast and multicast chains
12589 	 */
12590 	dev_uc_flush(dev);
12591 	dev_mc_flush(dev);
12592 
12593 	/* Send a netdev-removed uevent to the old namespace */
12594 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12595 	netdev_adjacent_del_links(dev);
12596 
12597 	/* Move per-net netdevice notifiers that are following the netdevice */
12598 	move_netdevice_notifiers_dev_net(dev, net);
12599 
12600 	/* Actually switch the network namespace */
12601 	netdev_lock(dev);
12602 	dev_net_set(dev, net);
12603 	netdev_unlock(dev);
12604 	dev->ifindex = new_ifindex;
12605 
12606 	if (new_name[0]) {
12607 		/* Rename the netdev to prepared name */
12608 		write_seqlock_bh(&netdev_rename_lock);
12609 		strscpy(dev->name, new_name, IFNAMSIZ);
12610 		write_sequnlock_bh(&netdev_rename_lock);
12611 	}
12612 
12613 	/* Fixup kobjects */
12614 	dev_set_uevent_suppress(&dev->dev, 1);
12615 	err = device_rename(&dev->dev, dev->name);
12616 	dev_set_uevent_suppress(&dev->dev, 0);
12617 	WARN_ON(err);
12618 
12619 	/* Send a netdev-add uevent to the new namespace */
12620 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12621 	netdev_adjacent_add_links(dev);
12622 
12623 	/* Adapt owner in case owning user namespace of target network
12624 	 * namespace is different from the original one.
12625 	 */
12626 	err = netdev_change_owner(dev, net_old, net);
12627 	WARN_ON(err);
12628 
12629 	netdev_lock(dev);
12630 	dev->moving_ns = false;
12631 	if (!netdev_need_ops_lock(dev))
12632 		netdev_unlock(dev);
12633 
12634 	/* Add the device back in the hashes */
12635 	list_netdevice(dev);
12636 	/* Notify protocols, that a new device appeared. */
12637 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12638 	netdev_unlock_ops(dev);
12639 
12640 	/*
12641 	 *	Prevent userspace races by waiting until the network
12642 	 *	device is fully setup before sending notifications.
12643 	 */
12644 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12645 
12646 	synchronize_net();
12647 	err = 0;
12648 out:
12649 	return err;
12650 }
12651 
dev_cpu_dead(unsigned int oldcpu)12652 static int dev_cpu_dead(unsigned int oldcpu)
12653 {
12654 	struct sk_buff **list_skb;
12655 	struct sk_buff *skb;
12656 	unsigned int cpu;
12657 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12658 
12659 	local_irq_disable();
12660 	cpu = smp_processor_id();
12661 	sd = &per_cpu(softnet_data, cpu);
12662 	oldsd = &per_cpu(softnet_data, oldcpu);
12663 
12664 	/* Find end of our completion_queue. */
12665 	list_skb = &sd->completion_queue;
12666 	while (*list_skb)
12667 		list_skb = &(*list_skb)->next;
12668 	/* Append completion queue from offline CPU. */
12669 	*list_skb = oldsd->completion_queue;
12670 	oldsd->completion_queue = NULL;
12671 
12672 	/* Append output queue from offline CPU. */
12673 	if (oldsd->output_queue) {
12674 		*sd->output_queue_tailp = oldsd->output_queue;
12675 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12676 		oldsd->output_queue = NULL;
12677 		oldsd->output_queue_tailp = &oldsd->output_queue;
12678 	}
12679 	/* Append NAPI poll list from offline CPU, with one exception :
12680 	 * process_backlog() must be called by cpu owning percpu backlog.
12681 	 * We properly handle process_queue & input_pkt_queue later.
12682 	 */
12683 	while (!list_empty(&oldsd->poll_list)) {
12684 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12685 							    struct napi_struct,
12686 							    poll_list);
12687 
12688 		list_del_init(&napi->poll_list);
12689 		if (napi->poll == process_backlog)
12690 			napi->state &= NAPIF_STATE_THREADED;
12691 		else
12692 			____napi_schedule(sd, napi);
12693 	}
12694 
12695 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12696 	local_irq_enable();
12697 
12698 	if (!use_backlog_threads()) {
12699 #ifdef CONFIG_RPS
12700 		remsd = oldsd->rps_ipi_list;
12701 		oldsd->rps_ipi_list = NULL;
12702 #endif
12703 		/* send out pending IPI's on offline CPU */
12704 		net_rps_send_ipi(remsd);
12705 	}
12706 
12707 	/* Process offline CPU's input_pkt_queue */
12708 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12709 		netif_rx(skb);
12710 		rps_input_queue_head_incr(oldsd);
12711 	}
12712 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12713 		netif_rx(skb);
12714 		rps_input_queue_head_incr(oldsd);
12715 	}
12716 
12717 	return 0;
12718 }
12719 
12720 /**
12721  *	netdev_increment_features - increment feature set by one
12722  *	@all: current feature set
12723  *	@one: new feature set
12724  *	@mask: mask feature set
12725  *
12726  *	Computes a new feature set after adding a device with feature set
12727  *	@one to the master device with current feature set @all.  Will not
12728  *	enable anything that is off in @mask. Returns the new feature set.
12729  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12730 netdev_features_t netdev_increment_features(netdev_features_t all,
12731 	netdev_features_t one, netdev_features_t mask)
12732 {
12733 	if (mask & NETIF_F_HW_CSUM)
12734 		mask |= NETIF_F_CSUM_MASK;
12735 	mask |= NETIF_F_VLAN_CHALLENGED;
12736 
12737 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12738 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12739 
12740 	/* If one device supports hw checksumming, set for all. */
12741 	if (all & NETIF_F_HW_CSUM)
12742 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12743 
12744 	return all;
12745 }
12746 EXPORT_SYMBOL(netdev_increment_features);
12747 
12748 /**
12749  *	netdev_compute_master_upper_features - compute feature from lowers
12750  *	@dev: the upper device
12751  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12752  *
12753  *	Recompute the upper device's feature based on all lower devices.
12754  */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12755 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12756 {
12757 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12758 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12759 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12760 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12761 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12762 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12763 	unsigned short max_header_len = ETH_HLEN;
12764 	unsigned int tso_max_size = TSO_MAX_SIZE;
12765 	unsigned short max_headroom = 0;
12766 	unsigned short max_tailroom = 0;
12767 	u16 tso_max_segs = TSO_MAX_SEGS;
12768 	struct net_device *lower_dev;
12769 	struct list_head *iter;
12770 
12771 	mpls_features = netdev_base_features(mpls_features);
12772 	vlan_features = netdev_base_features(vlan_features);
12773 	enc_features = netdev_base_features(enc_features);
12774 
12775 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12776 		gso_partial_features = netdev_increment_features(gso_partial_features,
12777 								 lower_dev->gso_partial_features,
12778 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12779 
12780 		vlan_features = netdev_increment_features(vlan_features,
12781 							  lower_dev->vlan_features,
12782 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12783 
12784 		enc_features = netdev_increment_features(enc_features,
12785 							 lower_dev->hw_enc_features,
12786 							 MASTER_UPPER_DEV_ENC_FEATURES);
12787 
12788 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12789 			xfrm_features = netdev_increment_features(xfrm_features,
12790 								  lower_dev->hw_enc_features,
12791 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12792 
12793 		mpls_features = netdev_increment_features(mpls_features,
12794 							  lower_dev->mpls_features,
12795 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12796 
12797 		dst_release_flag &= lower_dev->priv_flags;
12798 
12799 		if (update_header) {
12800 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12801 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12802 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12803 		}
12804 
12805 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12806 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12807 	}
12808 
12809 	dev->gso_partial_features = gso_partial_features;
12810 	dev->vlan_features = vlan_features;
12811 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12812 			       NETIF_F_HW_VLAN_CTAG_TX |
12813 			       NETIF_F_HW_VLAN_STAG_TX;
12814 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12815 		dev->hw_enc_features |= xfrm_features;
12816 	dev->mpls_features = mpls_features;
12817 
12818 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12819 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12820 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12821 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12822 
12823 	if (update_header) {
12824 		dev->hard_header_len = max_header_len;
12825 		dev->needed_headroom = max_headroom;
12826 		dev->needed_tailroom = max_tailroom;
12827 	}
12828 
12829 	netif_set_tso_max_segs(dev, tso_max_segs);
12830 	netif_set_tso_max_size(dev, tso_max_size);
12831 
12832 	netdev_change_features(dev);
12833 }
12834 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12835 
netdev_create_hash(void)12836 static struct hlist_head * __net_init netdev_create_hash(void)
12837 {
12838 	int i;
12839 	struct hlist_head *hash;
12840 
12841 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12842 	if (hash != NULL)
12843 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12844 			INIT_HLIST_HEAD(&hash[i]);
12845 
12846 	return hash;
12847 }
12848 
12849 /* Initialize per network namespace state */
netdev_init(struct net * net)12850 static int __net_init netdev_init(struct net *net)
12851 {
12852 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12853 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12854 
12855 	INIT_LIST_HEAD(&net->dev_base_head);
12856 
12857 	net->dev_name_head = netdev_create_hash();
12858 	if (net->dev_name_head == NULL)
12859 		goto err_name;
12860 
12861 	net->dev_index_head = netdev_create_hash();
12862 	if (net->dev_index_head == NULL)
12863 		goto err_idx;
12864 
12865 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12866 
12867 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12868 
12869 	return 0;
12870 
12871 err_idx:
12872 	kfree(net->dev_name_head);
12873 err_name:
12874 	return -ENOMEM;
12875 }
12876 
12877 /**
12878  *	netdev_drivername - network driver for the device
12879  *	@dev: network device
12880  *
12881  *	Determine network driver for device.
12882  */
netdev_drivername(const struct net_device * dev)12883 const char *netdev_drivername(const struct net_device *dev)
12884 {
12885 	const struct device_driver *driver;
12886 	const struct device *parent;
12887 	const char *empty = "";
12888 
12889 	parent = dev->dev.parent;
12890 	if (!parent)
12891 		return empty;
12892 
12893 	driver = parent->driver;
12894 	if (driver && driver->name)
12895 		return driver->name;
12896 	return empty;
12897 }
12898 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12899 static void __netdev_printk(const char *level, const struct net_device *dev,
12900 			    struct va_format *vaf)
12901 {
12902 	if (dev && dev->dev.parent) {
12903 		dev_printk_emit(level[1] - '0',
12904 				dev->dev.parent,
12905 				"%s %s %s%s: %pV",
12906 				dev_driver_string(dev->dev.parent),
12907 				dev_name(dev->dev.parent),
12908 				netdev_name(dev), netdev_reg_state(dev),
12909 				vaf);
12910 	} else if (dev) {
12911 		printk("%s%s%s: %pV",
12912 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12913 	} else {
12914 		printk("%s(NULL net_device): %pV", level, vaf);
12915 	}
12916 }
12917 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12918 void netdev_printk(const char *level, const struct net_device *dev,
12919 		   const char *format, ...)
12920 {
12921 	struct va_format vaf;
12922 	va_list args;
12923 
12924 	va_start(args, format);
12925 
12926 	vaf.fmt = format;
12927 	vaf.va = &args;
12928 
12929 	__netdev_printk(level, dev, &vaf);
12930 
12931 	va_end(args);
12932 }
12933 EXPORT_SYMBOL(netdev_printk);
12934 
12935 #define define_netdev_printk_level(func, level)			\
12936 void func(const struct net_device *dev, const char *fmt, ...)	\
12937 {								\
12938 	struct va_format vaf;					\
12939 	va_list args;						\
12940 								\
12941 	va_start(args, fmt);					\
12942 								\
12943 	vaf.fmt = fmt;						\
12944 	vaf.va = &args;						\
12945 								\
12946 	__netdev_printk(level, dev, &vaf);			\
12947 								\
12948 	va_end(args);						\
12949 }								\
12950 EXPORT_SYMBOL(func);
12951 
12952 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12953 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12954 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12955 define_netdev_printk_level(netdev_err, KERN_ERR);
12956 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12957 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12958 define_netdev_printk_level(netdev_info, KERN_INFO);
12959 
netdev_exit(struct net * net)12960 static void __net_exit netdev_exit(struct net *net)
12961 {
12962 	kfree(net->dev_name_head);
12963 	kfree(net->dev_index_head);
12964 	xa_destroy(&net->dev_by_index);
12965 	if (net != &init_net)
12966 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12967 }
12968 
12969 static struct pernet_operations __net_initdata netdev_net_ops = {
12970 	.init = netdev_init,
12971 	.exit = netdev_exit,
12972 };
12973 
default_device_exit_net(struct net * net)12974 static void __net_exit default_device_exit_net(struct net *net)
12975 {
12976 	struct netdev_name_node *name_node, *tmp;
12977 	struct net_device *dev, *aux;
12978 	/*
12979 	 * Push all migratable network devices back to the
12980 	 * initial network namespace
12981 	 */
12982 	ASSERT_RTNL();
12983 	for_each_netdev_safe(net, dev, aux) {
12984 		int err;
12985 		char fb_name[IFNAMSIZ];
12986 
12987 		/* Ignore unmoveable devices (i.e. loopback) */
12988 		if (dev->netns_immutable)
12989 			continue;
12990 
12991 		/* Leave virtual devices for the generic cleanup */
12992 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12993 			continue;
12994 
12995 		/* Push remaining network devices to init_net */
12996 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12997 		if (netdev_name_in_use(&init_net, fb_name))
12998 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12999 
13000 		netdev_for_each_altname_safe(dev, name_node, tmp)
13001 			if (netdev_name_in_use(&init_net, name_node->name))
13002 				__netdev_name_node_alt_destroy(name_node);
13003 
13004 		err = dev_change_net_namespace(dev, &init_net, fb_name);
13005 		if (err) {
13006 			pr_emerg("%s: failed to move %s to init_net: %d\n",
13007 				 __func__, dev->name, err);
13008 			BUG();
13009 		}
13010 	}
13011 }
13012 
default_device_exit_batch(struct list_head * net_list)13013 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13014 {
13015 	/* At exit all network devices most be removed from a network
13016 	 * namespace.  Do this in the reverse order of registration.
13017 	 * Do this across as many network namespaces as possible to
13018 	 * improve batching efficiency.
13019 	 */
13020 	struct net_device *dev;
13021 	struct net *net;
13022 	LIST_HEAD(dev_kill_list);
13023 
13024 	rtnl_lock();
13025 	list_for_each_entry(net, net_list, exit_list) {
13026 		default_device_exit_net(net);
13027 		cond_resched();
13028 	}
13029 
13030 	list_for_each_entry(net, net_list, exit_list) {
13031 		for_each_netdev_reverse(net, dev) {
13032 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13033 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13034 			else
13035 				unregister_netdevice_queue(dev, &dev_kill_list);
13036 		}
13037 	}
13038 	unregister_netdevice_many(&dev_kill_list);
13039 	rtnl_unlock();
13040 }
13041 
13042 static struct pernet_operations __net_initdata default_device_ops = {
13043 	.exit_batch = default_device_exit_batch,
13044 };
13045 
net_dev_struct_check(void)13046 static void __init net_dev_struct_check(void)
13047 {
13048 	/* TX read-mostly hotpath */
13049 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13050 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13051 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13052 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13053 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13054 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13055 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13056 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13057 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13058 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13059 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13060 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13061 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13062 #ifdef CONFIG_XPS
13063 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13064 #endif
13065 #ifdef CONFIG_NETFILTER_EGRESS
13066 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13067 #endif
13068 #ifdef CONFIG_NET_XGRESS
13069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13070 #endif
13071 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13072 
13073 	/* TXRX read-mostly hotpath */
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13075 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13078 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13080 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13081 
13082 	/* RX read-mostly hotpath */
13083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13084 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13085 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13090 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13091 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13092 #ifdef CONFIG_NETPOLL
13093 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13094 #endif
13095 #ifdef CONFIG_NET_XGRESS
13096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13097 #endif
13098 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13099 }
13100 
13101 /*
13102  *	Initialize the DEV module. At boot time this walks the device list and
13103  *	unhooks any devices that fail to initialise (normally hardware not
13104  *	present) and leaves us with a valid list of present and active devices.
13105  *
13106  */
13107 
13108 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13109 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13110 
net_page_pool_create(int cpuid)13111 static int net_page_pool_create(int cpuid)
13112 {
13113 #if IS_ENABLED(CONFIG_PAGE_POOL)
13114 	struct page_pool_params page_pool_params = {
13115 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13116 		.flags = PP_FLAG_SYSTEM_POOL,
13117 		.nid = cpu_to_mem(cpuid),
13118 	};
13119 	struct page_pool *pp_ptr;
13120 	int err;
13121 
13122 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13123 	if (IS_ERR(pp_ptr))
13124 		return -ENOMEM;
13125 
13126 	err = xdp_reg_page_pool(pp_ptr);
13127 	if (err) {
13128 		page_pool_destroy(pp_ptr);
13129 		return err;
13130 	}
13131 
13132 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13133 #endif
13134 	return 0;
13135 }
13136 
backlog_napi_should_run(unsigned int cpu)13137 static int backlog_napi_should_run(unsigned int cpu)
13138 {
13139 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13140 	struct napi_struct *napi = &sd->backlog;
13141 
13142 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13143 }
13144 
run_backlog_napi(unsigned int cpu)13145 static void run_backlog_napi(unsigned int cpu)
13146 {
13147 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13148 
13149 	napi_threaded_poll_loop(&sd->backlog, false);
13150 }
13151 
backlog_napi_setup(unsigned int cpu)13152 static void backlog_napi_setup(unsigned int cpu)
13153 {
13154 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13155 	struct napi_struct *napi = &sd->backlog;
13156 
13157 	napi->thread = this_cpu_read(backlog_napi);
13158 	set_bit(NAPI_STATE_THREADED, &napi->state);
13159 }
13160 
13161 static struct smp_hotplug_thread backlog_threads = {
13162 	.store			= &backlog_napi,
13163 	.thread_should_run	= backlog_napi_should_run,
13164 	.thread_fn		= run_backlog_napi,
13165 	.thread_comm		= "backlog_napi/%u",
13166 	.setup			= backlog_napi_setup,
13167 };
13168 
13169 /*
13170  *       This is called single threaded during boot, so no need
13171  *       to take the rtnl semaphore.
13172  */
net_dev_init(void)13173 static int __init net_dev_init(void)
13174 {
13175 	int i, rc = -ENOMEM;
13176 
13177 	BUG_ON(!dev_boot_phase);
13178 
13179 	net_dev_struct_check();
13180 
13181 	if (dev_proc_init())
13182 		goto out;
13183 
13184 	if (netdev_kobject_init())
13185 		goto out;
13186 
13187 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13188 		INIT_LIST_HEAD(&ptype_base[i]);
13189 
13190 	if (register_pernet_subsys(&netdev_net_ops))
13191 		goto out;
13192 
13193 	/*
13194 	 *	Initialise the packet receive queues.
13195 	 */
13196 
13197 	flush_backlogs_fallback = flush_backlogs_alloc();
13198 	if (!flush_backlogs_fallback)
13199 		goto out;
13200 
13201 	for_each_possible_cpu(i) {
13202 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13203 
13204 		skb_queue_head_init(&sd->input_pkt_queue);
13205 		skb_queue_head_init(&sd->process_queue);
13206 #ifdef CONFIG_XFRM_OFFLOAD
13207 		skb_queue_head_init(&sd->xfrm_backlog);
13208 #endif
13209 		INIT_LIST_HEAD(&sd->poll_list);
13210 		sd->output_queue_tailp = &sd->output_queue;
13211 #ifdef CONFIG_RPS
13212 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13213 		sd->cpu = i;
13214 #endif
13215 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13216 
13217 		gro_init(&sd->backlog.gro);
13218 		sd->backlog.poll = process_backlog;
13219 		sd->backlog.weight = weight_p;
13220 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13221 
13222 		if (net_page_pool_create(i))
13223 			goto out;
13224 	}
13225 	net_hotdata.skb_defer_nodes =
13226 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13227 				__alignof__(struct skb_defer_node));
13228 	if (!net_hotdata.skb_defer_nodes)
13229 		goto out;
13230 	if (use_backlog_threads())
13231 		smpboot_register_percpu_thread(&backlog_threads);
13232 
13233 	dev_boot_phase = 0;
13234 
13235 	/* The loopback device is special if any other network devices
13236 	 * is present in a network namespace the loopback device must
13237 	 * be present. Since we now dynamically allocate and free the
13238 	 * loopback device ensure this invariant is maintained by
13239 	 * keeping the loopback device as the first device on the
13240 	 * list of network devices.  Ensuring the loopback devices
13241 	 * is the first device that appears and the last network device
13242 	 * that disappears.
13243 	 */
13244 	if (register_pernet_device(&loopback_net_ops))
13245 		goto out;
13246 
13247 	if (register_pernet_device(&default_device_ops))
13248 		goto out;
13249 
13250 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13251 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13252 
13253 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13254 				       NULL, dev_cpu_dead);
13255 	WARN_ON(rc < 0);
13256 	rc = 0;
13257 
13258 	/* avoid static key IPIs to isolated CPUs */
13259 	if (housekeeping_enabled(HK_TYPE_MISC))
13260 		net_enable_timestamp();
13261 out:
13262 	if (rc < 0) {
13263 		for_each_possible_cpu(i) {
13264 			struct page_pool *pp_ptr;
13265 
13266 			pp_ptr = per_cpu(system_page_pool.pool, i);
13267 			if (!pp_ptr)
13268 				continue;
13269 
13270 			xdp_unreg_page_pool(pp_ptr);
13271 			page_pool_destroy(pp_ptr);
13272 			per_cpu(system_page_pool.pool, i) = NULL;
13273 		}
13274 	}
13275 
13276 	return rc;
13277 }
13278 
13279 subsys_initcall(net_dev_init);
13280