xref: /linux/net/core/dev.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *      NET3    Protocol independent device support routines.
4   *
5   *	Derived from the non IP parts of dev.c 1.0.19
6   *              Authors:	Ross Biro
7   *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8   *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9   *
10   *	Additional Authors:
11   *		Florian la Roche <rzsfl@rz.uni-sb.de>
12   *		Alan Cox <gw4pts@gw4pts.ampr.org>
13   *		David Hinds <dahinds@users.sourceforge.net>
14   *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15   *		Adam Sulmicki <adam@cfar.umd.edu>
16   *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17   *
18   *	Changes:
19   *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20   *                                      to 2 if register_netdev gets called
21   *                                      before net_dev_init & also removed a
22   *                                      few lines of code in the process.
23   *		Alan Cox	:	device private ioctl copies fields back.
24   *		Alan Cox	:	Transmit queue code does relevant
25   *					stunts to keep the queue safe.
26   *		Alan Cox	:	Fixed double lock.
27   *		Alan Cox	:	Fixed promisc NULL pointer trap
28   *		????????	:	Support the full private ioctl range
29   *		Alan Cox	:	Moved ioctl permission check into
30   *					drivers
31   *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32   *		Alan Cox	:	100 backlog just doesn't cut it when
33   *					you start doing multicast video 8)
34   *		Alan Cox	:	Rewrote net_bh and list manager.
35   *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36   *		Alan Cox	:	Took out transmit every packet pass
37   *					Saved a few bytes in the ioctl handler
38   *		Alan Cox	:	Network driver sets packet type before
39   *					calling netif_rx. Saves a function
40   *					call a packet.
41   *		Alan Cox	:	Hashed net_bh()
42   *		Richard Kooijman:	Timestamp fixes.
43   *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44   *		Alan Cox	:	Device lock protection.
45   *              Alan Cox        :       Fixed nasty side effect of device close
46   *					changes.
47   *		Rudi Cilibrasi	:	Pass the right thing to
48   *					set_mac_address()
49   *		Dave Miller	:	32bit quantity for the device lock to
50   *					make it work out on a Sparc.
51   *		Bjorn Ekwall	:	Added KERNELD hack.
52   *		Alan Cox	:	Cleaned up the backlog initialise.
53   *		Craig Metz	:	SIOCGIFCONF fix if space for under
54   *					1 device.
55   *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56   *					is no device open function.
57   *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58   *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59   *		Cyrus Durgin	:	Cleaned for KMOD
60   *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61   *					A network device unload needs to purge
62   *					the backlog queue.
63   *	Paul Rusty Russell	:	SIOCSIFNAME
64   *              Pekka Riikonen  :	Netdev boot-time settings code
65   *              Andrew Morton   :       Make unregister_netdevice wait
66   *                                      indefinitely on dev->refcnt
67   *              J Hadi Salim    :       - Backlog queue sampling
68   *				        - netif_rx() feedback
69   */
70  
71  #include <linux/uaccess.h>
72  #include <linux/bitmap.h>
73  #include <linux/capability.h>
74  #include <linux/cpu.h>
75  #include <linux/types.h>
76  #include <linux/kernel.h>
77  #include <linux/hash.h>
78  #include <linux/slab.h>
79  #include <linux/sched.h>
80  #include <linux/sched/isolation.h>
81  #include <linux/sched/mm.h>
82  #include <linux/smpboot.h>
83  #include <linux/mutex.h>
84  #include <linux/rwsem.h>
85  #include <linux/string.h>
86  #include <linux/mm.h>
87  #include <linux/socket.h>
88  #include <linux/sockios.h>
89  #include <linux/errno.h>
90  #include <linux/interrupt.h>
91  #include <linux/if_ether.h>
92  #include <linux/netdevice.h>
93  #include <linux/etherdevice.h>
94  #include <linux/ethtool.h>
95  #include <linux/ethtool_netlink.h>
96  #include <linux/skbuff.h>
97  #include <linux/kthread.h>
98  #include <linux/bpf.h>
99  #include <linux/bpf_trace.h>
100  #include <net/net_namespace.h>
101  #include <net/sock.h>
102  #include <net/busy_poll.h>
103  #include <linux/rtnetlink.h>
104  #include <linux/stat.h>
105  #include <net/dsa.h>
106  #include <net/dst.h>
107  #include <net/dst_metadata.h>
108  #include <net/gro.h>
109  #include <net/netdev_queues.h>
110  #include <net/pkt_sched.h>
111  #include <net/pkt_cls.h>
112  #include <net/checksum.h>
113  #include <net/xfrm.h>
114  #include <net/tcx.h>
115  #include <linux/highmem.h>
116  #include <linux/init.h>
117  #include <linux/module.h>
118  #include <linux/netpoll.h>
119  #include <linux/rcupdate.h>
120  #include <linux/delay.h>
121  #include <net/iw_handler.h>
122  #include <asm/current.h>
123  #include <linux/audit.h>
124  #include <linux/dmaengine.h>
125  #include <linux/err.h>
126  #include <linux/ctype.h>
127  #include <linux/if_arp.h>
128  #include <linux/if_vlan.h>
129  #include <linux/ip.h>
130  #include <net/ip.h>
131  #include <net/mpls.h>
132  #include <linux/ipv6.h>
133  #include <linux/in.h>
134  #include <linux/jhash.h>
135  #include <linux/random.h>
136  #include <trace/events/napi.h>
137  #include <trace/events/net.h>
138  #include <trace/events/skb.h>
139  #include <trace/events/qdisc.h>
140  #include <trace/events/xdp.h>
141  #include <linux/inetdevice.h>
142  #include <linux/cpu_rmap.h>
143  #include <linux/static_key.h>
144  #include <linux/hashtable.h>
145  #include <linux/vmalloc.h>
146  #include <linux/if_macvlan.h>
147  #include <linux/errqueue.h>
148  #include <linux/hrtimer.h>
149  #include <linux/netfilter_netdev.h>
150  #include <linux/crash_dump.h>
151  #include <linux/sctp.h>
152  #include <net/udp_tunnel.h>
153  #include <linux/net_namespace.h>
154  #include <linux/indirect_call_wrapper.h>
155  #include <net/devlink.h>
156  #include <linux/pm_runtime.h>
157  #include <linux/prandom.h>
158  #include <linux/once_lite.h>
159  #include <net/netdev_lock.h>
160  #include <net/netdev_rx_queue.h>
161  #include <net/page_pool/types.h>
162  #include <net/page_pool/helpers.h>
163  #include <net/page_pool/memory_provider.h>
164  #include <net/rps.h>
165  #include <linux/phy_link_topology.h>
166  
167  #include "dev.h"
168  #include "devmem.h"
169  #include "net-sysfs.h"
170  
171  static DEFINE_SPINLOCK(ptype_lock);
172  struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173  
174  static int netif_rx_internal(struct sk_buff *skb);
175  static int call_netdevice_notifiers_extack(unsigned long val,
176  					   struct net_device *dev,
177  					   struct netlink_ext_ack *extack);
178  
179  static DEFINE_MUTEX(ifalias_mutex);
180  
181  /* protects napi_hash addition/deletion and napi_gen_id */
182  static DEFINE_SPINLOCK(napi_hash_lock);
183  
184  static unsigned int napi_gen_id = NR_CPUS;
185  static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186  
dev_base_seq_inc(struct net * net)187  static inline void dev_base_seq_inc(struct net *net)
188  {
189  	unsigned int val = net->dev_base_seq + 1;
190  
191  	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192  }
193  
dev_name_hash(struct net * net,const char * name)194  static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195  {
196  	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197  
198  	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199  }
200  
dev_index_hash(struct net * net,int ifindex)201  static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202  {
203  	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204  }
205  
206  #ifndef CONFIG_PREEMPT_RT
207  
208  static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209  
setup_backlog_napi_threads(char * arg)210  static int __init setup_backlog_napi_threads(char *arg)
211  {
212  	static_branch_enable(&use_backlog_threads_key);
213  	return 0;
214  }
215  early_param("thread_backlog_napi", setup_backlog_napi_threads);
216  
use_backlog_threads(void)217  static bool use_backlog_threads(void)
218  {
219  	return static_branch_unlikely(&use_backlog_threads_key);
220  }
221  
222  #else
223  
use_backlog_threads(void)224  static bool use_backlog_threads(void)
225  {
226  	return true;
227  }
228  
229  #endif
230  
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231  static inline void backlog_lock_irq_save(struct softnet_data *sd,
232  					 unsigned long *flags)
233  {
234  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235  		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236  	else
237  		local_irq_save(*flags);
238  }
239  
backlog_lock_irq_disable(struct softnet_data * sd)240  static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241  {
242  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243  		spin_lock_irq(&sd->input_pkt_queue.lock);
244  	else
245  		local_irq_disable();
246  }
247  
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248  static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249  					      unsigned long *flags)
250  {
251  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252  		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253  	else
254  		local_irq_restore(*flags);
255  }
256  
backlog_unlock_irq_enable(struct softnet_data * sd)257  static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258  {
259  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260  		spin_unlock_irq(&sd->input_pkt_queue.lock);
261  	else
262  		local_irq_enable();
263  }
264  
netdev_name_node_alloc(struct net_device * dev,const char * name)265  static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266  						       const char *name)
267  {
268  	struct netdev_name_node *name_node;
269  
270  	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271  	if (!name_node)
272  		return NULL;
273  	INIT_HLIST_NODE(&name_node->hlist);
274  	name_node->dev = dev;
275  	name_node->name = name;
276  	return name_node;
277  }
278  
279  static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280  netdev_name_node_head_alloc(struct net_device *dev)
281  {
282  	struct netdev_name_node *name_node;
283  
284  	name_node = netdev_name_node_alloc(dev, dev->name);
285  	if (!name_node)
286  		return NULL;
287  	INIT_LIST_HEAD(&name_node->list);
288  	return name_node;
289  }
290  
netdev_name_node_free(struct netdev_name_node * name_node)291  static void netdev_name_node_free(struct netdev_name_node *name_node)
292  {
293  	kfree(name_node);
294  }
295  
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296  static void netdev_name_node_add(struct net *net,
297  				 struct netdev_name_node *name_node)
298  {
299  	hlist_add_head_rcu(&name_node->hlist,
300  			   dev_name_hash(net, name_node->name));
301  }
302  
netdev_name_node_del(struct netdev_name_node * name_node)303  static void netdev_name_node_del(struct netdev_name_node *name_node)
304  {
305  	hlist_del_rcu(&name_node->hlist);
306  }
307  
netdev_name_node_lookup(struct net * net,const char * name)308  static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309  							const char *name)
310  {
311  	struct hlist_head *head = dev_name_hash(net, name);
312  	struct netdev_name_node *name_node;
313  
314  	hlist_for_each_entry(name_node, head, hlist)
315  		if (!strcmp(name_node->name, name))
316  			return name_node;
317  	return NULL;
318  }
319  
netdev_name_node_lookup_rcu(struct net * net,const char * name)320  static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321  							    const char *name)
322  {
323  	struct hlist_head *head = dev_name_hash(net, name);
324  	struct netdev_name_node *name_node;
325  
326  	hlist_for_each_entry_rcu(name_node, head, hlist)
327  		if (!strcmp(name_node->name, name))
328  			return name_node;
329  	return NULL;
330  }
331  
netdev_name_in_use(struct net * net,const char * name)332  bool netdev_name_in_use(struct net *net, const char *name)
333  {
334  	return netdev_name_node_lookup(net, name);
335  }
336  EXPORT_SYMBOL(netdev_name_in_use);
337  
netdev_name_node_alt_create(struct net_device * dev,const char * name)338  int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339  {
340  	struct netdev_name_node *name_node;
341  	struct net *net = dev_net(dev);
342  
343  	name_node = netdev_name_node_lookup(net, name);
344  	if (name_node)
345  		return -EEXIST;
346  	name_node = netdev_name_node_alloc(dev, name);
347  	if (!name_node)
348  		return -ENOMEM;
349  	netdev_name_node_add(net, name_node);
350  	/* The node that holds dev->name acts as a head of per-device list. */
351  	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352  
353  	return 0;
354  }
355  
netdev_name_node_alt_free(struct rcu_head * head)356  static void netdev_name_node_alt_free(struct rcu_head *head)
357  {
358  	struct netdev_name_node *name_node =
359  		container_of(head, struct netdev_name_node, rcu);
360  
361  	kfree(name_node->name);
362  	netdev_name_node_free(name_node);
363  }
364  
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365  static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366  {
367  	netdev_name_node_del(name_node);
368  	list_del(&name_node->list);
369  	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370  }
371  
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372  int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373  {
374  	struct netdev_name_node *name_node;
375  	struct net *net = dev_net(dev);
376  
377  	name_node = netdev_name_node_lookup(net, name);
378  	if (!name_node)
379  		return -ENOENT;
380  	/* lookup might have found our primary name or a name belonging
381  	 * to another device.
382  	 */
383  	if (name_node == dev->name_node || name_node->dev != dev)
384  		return -EINVAL;
385  
386  	__netdev_name_node_alt_destroy(name_node);
387  	return 0;
388  }
389  
netdev_name_node_alt_flush(struct net_device * dev)390  static void netdev_name_node_alt_flush(struct net_device *dev)
391  {
392  	struct netdev_name_node *name_node, *tmp;
393  
394  	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395  		list_del(&name_node->list);
396  		netdev_name_node_alt_free(&name_node->rcu);
397  	}
398  }
399  
400  /* Device list insertion */
list_netdevice(struct net_device * dev)401  static void list_netdevice(struct net_device *dev)
402  {
403  	struct netdev_name_node *name_node;
404  	struct net *net = dev_net(dev);
405  
406  	ASSERT_RTNL();
407  
408  	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409  	netdev_name_node_add(net, dev->name_node);
410  	hlist_add_head_rcu(&dev->index_hlist,
411  			   dev_index_hash(net, dev->ifindex));
412  
413  	netdev_for_each_altname(dev, name_node)
414  		netdev_name_node_add(net, name_node);
415  
416  	/* We reserved the ifindex, this can't fail */
417  	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418  
419  	dev_base_seq_inc(net);
420  }
421  
422  /* Device list removal
423   * caller must respect a RCU grace period before freeing/reusing dev
424   */
unlist_netdevice(struct net_device * dev)425  static void unlist_netdevice(struct net_device *dev)
426  {
427  	struct netdev_name_node *name_node;
428  	struct net *net = dev_net(dev);
429  
430  	ASSERT_RTNL();
431  
432  	xa_erase(&net->dev_by_index, dev->ifindex);
433  
434  	netdev_for_each_altname(dev, name_node)
435  		netdev_name_node_del(name_node);
436  
437  	/* Unlink dev from the device chain */
438  	list_del_rcu(&dev->dev_list);
439  	netdev_name_node_del(dev->name_node);
440  	hlist_del_rcu(&dev->index_hlist);
441  
442  	dev_base_seq_inc(dev_net(dev));
443  }
444  
445  /*
446   *	Our notifier list
447   */
448  
449  static RAW_NOTIFIER_HEAD(netdev_chain);
450  
451  /*
452   *	Device drivers call our routines to queue packets here. We empty the
453   *	queue in the local softnet handler.
454   */
455  
456  DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457  	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458  };
459  EXPORT_PER_CPU_SYMBOL(softnet_data);
460  
461  /* Page_pool has a lockless array/stack to alloc/recycle pages.
462   * PP consumers must pay attention to run APIs in the appropriate context
463   * (e.g. NAPI context).
464   */
465  DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466  
467  #ifdef CONFIG_LOCKDEP
468  /*
469   * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470   * according to dev->type
471   */
472  static const unsigned short netdev_lock_type[] = {
473  	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474  	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475  	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476  	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477  	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478  	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479  	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480  	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481  	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482  	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483  	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484  	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485  	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486  	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487  	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488  
489  static const char *const netdev_lock_name[] = {
490  	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491  	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492  	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493  	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494  	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495  	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496  	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497  	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498  	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499  	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500  	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501  	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502  	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503  	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504  	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505  
506  static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507  static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508  
netdev_lock_pos(unsigned short dev_type)509  static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510  {
511  	int i;
512  
513  	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514  		if (netdev_lock_type[i] == dev_type)
515  			return i;
516  	/* the last key is used by default */
517  	return ARRAY_SIZE(netdev_lock_type) - 1;
518  }
519  
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521  						 unsigned short dev_type)
522  {
523  	int i;
524  
525  	i = netdev_lock_pos(dev_type);
526  	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527  				   netdev_lock_name[i]);
528  }
529  
netdev_set_addr_lockdep_class(struct net_device * dev)530  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531  {
532  	int i;
533  
534  	i = netdev_lock_pos(dev->type);
535  	lockdep_set_class_and_name(&dev->addr_list_lock,
536  				   &netdev_addr_lock_key[i],
537  				   netdev_lock_name[i]);
538  }
539  #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541  						 unsigned short dev_type)
542  {
543  }
544  
netdev_set_addr_lockdep_class(struct net_device * dev)545  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546  {
547  }
548  #endif
549  
550  /*******************************************************************************
551   *
552   *		Protocol management and registration routines
553   *
554   *******************************************************************************/
555  
556  
557  /*
558   *	Add a protocol ID to the list. Now that the input handler is
559   *	smarter we can dispense with all the messy stuff that used to be
560   *	here.
561   *
562   *	BEWARE!!! Protocol handlers, mangling input packets,
563   *	MUST BE last in hash buckets and checking protocol handlers
564   *	MUST start from promiscuous ptype_all chain in net_bh.
565   *	It is true now, do not change it.
566   *	Explanation follows: if protocol handler, mangling packet, will
567   *	be the first on list, it is not able to sense, that packet
568   *	is cloned and should be copied-on-write, so that it will
569   *	change it and subsequent readers will get broken packet.
570   *							--ANK (980803)
571   */
572  
ptype_head(const struct packet_type * pt)573  static inline struct list_head *ptype_head(const struct packet_type *pt)
574  {
575  	if (pt->type == htons(ETH_P_ALL)) {
576  		if (!pt->af_packet_net && !pt->dev)
577  			return NULL;
578  
579  		return pt->dev ? &pt->dev->ptype_all :
580  				 &pt->af_packet_net->ptype_all;
581  	}
582  
583  	if (pt->dev)
584  		return &pt->dev->ptype_specific;
585  
586  	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587  				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588  }
589  
590  /**
591   *	dev_add_pack - add packet handler
592   *	@pt: packet type declaration
593   *
594   *	Add a protocol handler to the networking stack. The passed &packet_type
595   *	is linked into kernel lists and may not be freed until it has been
596   *	removed from the kernel lists.
597   *
598   *	This call does not sleep therefore it can not
599   *	guarantee all CPU's that are in middle of receiving packets
600   *	will see the new packet type (until the next received packet).
601   */
602  
dev_add_pack(struct packet_type * pt)603  void dev_add_pack(struct packet_type *pt)
604  {
605  	struct list_head *head = ptype_head(pt);
606  
607  	if (WARN_ON_ONCE(!head))
608  		return;
609  
610  	spin_lock(&ptype_lock);
611  	list_add_rcu(&pt->list, head);
612  	spin_unlock(&ptype_lock);
613  }
614  EXPORT_SYMBOL(dev_add_pack);
615  
616  /**
617   *	__dev_remove_pack	 - remove packet handler
618   *	@pt: packet type declaration
619   *
620   *	Remove a protocol handler that was previously added to the kernel
621   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622   *	from the kernel lists and can be freed or reused once this function
623   *	returns.
624   *
625   *      The packet type might still be in use by receivers
626   *	and must not be freed until after all the CPU's have gone
627   *	through a quiescent state.
628   */
__dev_remove_pack(struct packet_type * pt)629  void __dev_remove_pack(struct packet_type *pt)
630  {
631  	struct list_head *head = ptype_head(pt);
632  	struct packet_type *pt1;
633  
634  	if (!head)
635  		return;
636  
637  	spin_lock(&ptype_lock);
638  
639  	list_for_each_entry(pt1, head, list) {
640  		if (pt == pt1) {
641  			list_del_rcu(&pt->list);
642  			goto out;
643  		}
644  	}
645  
646  	pr_warn("dev_remove_pack: %p not found\n", pt);
647  out:
648  	spin_unlock(&ptype_lock);
649  }
650  EXPORT_SYMBOL(__dev_remove_pack);
651  
652  /**
653   *	dev_remove_pack	 - remove packet handler
654   *	@pt: packet type declaration
655   *
656   *	Remove a protocol handler that was previously added to the kernel
657   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658   *	from the kernel lists and can be freed or reused once this function
659   *	returns.
660   *
661   *	This call sleeps to guarantee that no CPU is looking at the packet
662   *	type after return.
663   */
dev_remove_pack(struct packet_type * pt)664  void dev_remove_pack(struct packet_type *pt)
665  {
666  	__dev_remove_pack(pt);
667  
668  	synchronize_net();
669  }
670  EXPORT_SYMBOL(dev_remove_pack);
671  
672  
673  /*******************************************************************************
674   *
675   *			    Device Interface Subroutines
676   *
677   *******************************************************************************/
678  
679  /**
680   *	dev_get_iflink	- get 'iflink' value of a interface
681   *	@dev: targeted interface
682   *
683   *	Indicates the ifindex the interface is linked to.
684   *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685   */
686  
dev_get_iflink(const struct net_device * dev)687  int dev_get_iflink(const struct net_device *dev)
688  {
689  	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690  		return dev->netdev_ops->ndo_get_iflink(dev);
691  
692  	return READ_ONCE(dev->ifindex);
693  }
694  EXPORT_SYMBOL(dev_get_iflink);
695  
696  /**
697   *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698   *	@dev: targeted interface
699   *	@skb: The packet.
700   *
701   *	For better visibility of tunnel traffic OVS needs to retrieve
702   *	egress tunnel information for a packet. Following API allows
703   *	user to get this info.
704   */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705  int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706  {
707  	struct ip_tunnel_info *info;
708  
709  	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710  		return -EINVAL;
711  
712  	info = skb_tunnel_info_unclone(skb);
713  	if (!info)
714  		return -ENOMEM;
715  	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716  		return -EINVAL;
717  
718  	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719  }
720  EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721  
dev_fwd_path(struct net_device_path_stack * stack)722  static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723  {
724  	int k = stack->num_paths++;
725  
726  	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727  		return NULL;
728  
729  	return &stack->path[k];
730  }
731  
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732  int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733  			  struct net_device_path_stack *stack)
734  {
735  	const struct net_device *last_dev;
736  	struct net_device_path_ctx ctx = {
737  		.dev	= dev,
738  	};
739  	struct net_device_path *path;
740  	int ret = 0;
741  
742  	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743  	stack->num_paths = 0;
744  	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745  		last_dev = ctx.dev;
746  		path = dev_fwd_path(stack);
747  		if (!path)
748  			return -1;
749  
750  		memset(path, 0, sizeof(struct net_device_path));
751  		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752  		if (ret < 0)
753  			return -1;
754  
755  		if (WARN_ON_ONCE(last_dev == ctx.dev))
756  			return -1;
757  	}
758  
759  	if (!ctx.dev)
760  		return ret;
761  
762  	path = dev_fwd_path(stack);
763  	if (!path)
764  		return -1;
765  	path->type = DEV_PATH_ETHERNET;
766  	path->dev = ctx.dev;
767  
768  	return ret;
769  }
770  EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771  
772  /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773  static struct napi_struct *napi_by_id(unsigned int napi_id)
774  {
775  	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776  	struct napi_struct *napi;
777  
778  	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779  		if (napi->napi_id == napi_id)
780  			return napi;
781  
782  	return NULL;
783  }
784  
785  /* must be called under rcu_read_lock(), as we dont take a reference */
786  static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787  netdev_napi_by_id(struct net *net, unsigned int napi_id)
788  {
789  	struct napi_struct *napi;
790  
791  	napi = napi_by_id(napi_id);
792  	if (!napi)
793  		return NULL;
794  
795  	if (WARN_ON_ONCE(!napi->dev))
796  		return NULL;
797  	if (!net_eq(net, dev_net(napi->dev)))
798  		return NULL;
799  
800  	return napi;
801  }
802  
803  /**
804   *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805   *	@net: the applicable net namespace
806   *	@napi_id: ID of a NAPI of a target device
807   *
808   *	Find a NAPI instance with @napi_id. Lock its device.
809   *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810   *	netdev_unlock() must be called to release it.
811   *
812   *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813   */
814  struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815  netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816  {
817  	struct napi_struct *napi;
818  	struct net_device *dev;
819  
820  	rcu_read_lock();
821  	napi = netdev_napi_by_id(net, napi_id);
822  	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823  		rcu_read_unlock();
824  		return NULL;
825  	}
826  
827  	dev = napi->dev;
828  	dev_hold(dev);
829  	rcu_read_unlock();
830  
831  	dev = __netdev_put_lock(dev);
832  	if (!dev)
833  		return NULL;
834  
835  	rcu_read_lock();
836  	napi = netdev_napi_by_id(net, napi_id);
837  	if (napi && napi->dev != dev)
838  		napi = NULL;
839  	rcu_read_unlock();
840  
841  	if (!napi)
842  		netdev_unlock(dev);
843  	return napi;
844  }
845  
846  /**
847   *	__dev_get_by_name	- find a device by its name
848   *	@net: the applicable net namespace
849   *	@name: name to find
850   *
851   *	Find an interface by name. Must be called under RTNL semaphore.
852   *	If the name is found a pointer to the device is returned.
853   *	If the name is not found then %NULL is returned. The
854   *	reference counters are not incremented so the caller must be
855   *	careful with locks.
856   */
857  
__dev_get_by_name(struct net * net,const char * name)858  struct net_device *__dev_get_by_name(struct net *net, const char *name)
859  {
860  	struct netdev_name_node *node_name;
861  
862  	node_name = netdev_name_node_lookup(net, name);
863  	return node_name ? node_name->dev : NULL;
864  }
865  EXPORT_SYMBOL(__dev_get_by_name);
866  
867  /**
868   * dev_get_by_name_rcu	- find a device by its name
869   * @net: the applicable net namespace
870   * @name: name to find
871   *
872   * Find an interface by name.
873   * If the name is found a pointer to the device is returned.
874   * If the name is not found then %NULL is returned.
875   * The reference counters are not incremented so the caller must be
876   * careful with locks. The caller must hold RCU lock.
877   */
878  
dev_get_by_name_rcu(struct net * net,const char * name)879  struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880  {
881  	struct netdev_name_node *node_name;
882  
883  	node_name = netdev_name_node_lookup_rcu(net, name);
884  	return node_name ? node_name->dev : NULL;
885  }
886  EXPORT_SYMBOL(dev_get_by_name_rcu);
887  
888  /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889  struct net_device *dev_get_by_name(struct net *net, const char *name)
890  {
891  	struct net_device *dev;
892  
893  	rcu_read_lock();
894  	dev = dev_get_by_name_rcu(net, name);
895  	dev_hold(dev);
896  	rcu_read_unlock();
897  	return dev;
898  }
899  EXPORT_SYMBOL(dev_get_by_name);
900  
901  /**
902   *	netdev_get_by_name() - find a device by its name
903   *	@net: the applicable net namespace
904   *	@name: name to find
905   *	@tracker: tracking object for the acquired reference
906   *	@gfp: allocation flags for the tracker
907   *
908   *	Find an interface by name. This can be called from any
909   *	context and does its own locking. The returned handle has
910   *	the usage count incremented and the caller must use netdev_put() to
911   *	release it when it is no longer needed. %NULL is returned if no
912   *	matching device is found.
913   */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914  struct net_device *netdev_get_by_name(struct net *net, const char *name,
915  				      netdevice_tracker *tracker, gfp_t gfp)
916  {
917  	struct net_device *dev;
918  
919  	dev = dev_get_by_name(net, name);
920  	if (dev)
921  		netdev_tracker_alloc(dev, tracker, gfp);
922  	return dev;
923  }
924  EXPORT_SYMBOL(netdev_get_by_name);
925  
926  /**
927   *	__dev_get_by_index - find a device by its ifindex
928   *	@net: the applicable net namespace
929   *	@ifindex: index of device
930   *
931   *	Search for an interface by index. Returns %NULL if the device
932   *	is not found or a pointer to the device. The device has not
933   *	had its reference counter increased so the caller must be careful
934   *	about locking. The caller must hold the RTNL semaphore.
935   */
936  
__dev_get_by_index(struct net * net,int ifindex)937  struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938  {
939  	struct net_device *dev;
940  	struct hlist_head *head = dev_index_hash(net, ifindex);
941  
942  	hlist_for_each_entry(dev, head, index_hlist)
943  		if (dev->ifindex == ifindex)
944  			return dev;
945  
946  	return NULL;
947  }
948  EXPORT_SYMBOL(__dev_get_by_index);
949  
950  /**
951   *	dev_get_by_index_rcu - find a device by its ifindex
952   *	@net: the applicable net namespace
953   *	@ifindex: index of device
954   *
955   *	Search for an interface by index. Returns %NULL if the device
956   *	is not found or a pointer to the device. The device has not
957   *	had its reference counter increased so the caller must be careful
958   *	about locking. The caller must hold RCU lock.
959   */
960  
dev_get_by_index_rcu(struct net * net,int ifindex)961  struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962  {
963  	struct net_device *dev;
964  	struct hlist_head *head = dev_index_hash(net, ifindex);
965  
966  	hlist_for_each_entry_rcu(dev, head, index_hlist)
967  		if (dev->ifindex == ifindex)
968  			return dev;
969  
970  	return NULL;
971  }
972  EXPORT_SYMBOL(dev_get_by_index_rcu);
973  
974  /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975  struct net_device *dev_get_by_index(struct net *net, int ifindex)
976  {
977  	struct net_device *dev;
978  
979  	rcu_read_lock();
980  	dev = dev_get_by_index_rcu(net, ifindex);
981  	dev_hold(dev);
982  	rcu_read_unlock();
983  	return dev;
984  }
985  EXPORT_SYMBOL(dev_get_by_index);
986  
987  /**
988   *	netdev_get_by_index() - find a device by its ifindex
989   *	@net: the applicable net namespace
990   *	@ifindex: index of device
991   *	@tracker: tracking object for the acquired reference
992   *	@gfp: allocation flags for the tracker
993   *
994   *	Search for an interface by index. Returns NULL if the device
995   *	is not found or a pointer to the device. The device returned has
996   *	had a reference added and the pointer is safe until the user calls
997   *	netdev_put() to indicate they have finished with it.
998   */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999  struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000  				       netdevice_tracker *tracker, gfp_t gfp)
1001  {
1002  	struct net_device *dev;
1003  
1004  	dev = dev_get_by_index(net, ifindex);
1005  	if (dev)
1006  		netdev_tracker_alloc(dev, tracker, gfp);
1007  	return dev;
1008  }
1009  EXPORT_SYMBOL(netdev_get_by_index);
1010  
1011  /**
1012   *	dev_get_by_napi_id - find a device by napi_id
1013   *	@napi_id: ID of the NAPI struct
1014   *
1015   *	Search for an interface by NAPI ID. Returns %NULL if the device
1016   *	is not found or a pointer to the device. The device has not had
1017   *	its reference counter increased so the caller must be careful
1018   *	about locking. The caller must hold RCU lock.
1019   */
dev_get_by_napi_id(unsigned int napi_id)1020  struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021  {
1022  	struct napi_struct *napi;
1023  
1024  	WARN_ON_ONCE(!rcu_read_lock_held());
1025  
1026  	if (!napi_id_valid(napi_id))
1027  		return NULL;
1028  
1029  	napi = napi_by_id(napi_id);
1030  
1031  	return napi ? napi->dev : NULL;
1032  }
1033  
1034  /* Release the held reference on the net_device, and if the net_device
1035   * is still registered try to lock the instance lock. If device is being
1036   * unregistered NULL will be returned (but the reference has been released,
1037   * either way!)
1038   *
1039   * This helper is intended for locking net_device after it has been looked up
1040   * using a lockless lookup helper. Lock prevents the instance from going away.
1041   */
__netdev_put_lock(struct net_device * dev)1042  struct net_device *__netdev_put_lock(struct net_device *dev)
1043  {
1044  	netdev_lock(dev);
1045  	if (dev->reg_state > NETREG_REGISTERED) {
1046  		netdev_unlock(dev);
1047  		dev_put(dev);
1048  		return NULL;
1049  	}
1050  	dev_put(dev);
1051  	return dev;
1052  }
1053  
1054  /**
1055   *	netdev_get_by_index_lock() - find a device by its ifindex
1056   *	@net: the applicable net namespace
1057   *	@ifindex: index of device
1058   *
1059   *	Search for an interface by index. If a valid device
1060   *	with @ifindex is found it will be returned with netdev->lock held.
1061   *	netdev_unlock() must be called to release it.
1062   *
1063   *	Return: pointer to a device with lock held, NULL if not found.
1064   */
netdev_get_by_index_lock(struct net * net,int ifindex)1065  struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066  {
1067  	struct net_device *dev;
1068  
1069  	dev = dev_get_by_index(net, ifindex);
1070  	if (!dev)
1071  		return NULL;
1072  
1073  	return __netdev_put_lock(dev);
1074  }
1075  
1076  struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077  netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078  		    unsigned long *index)
1079  {
1080  	if (dev)
1081  		netdev_unlock(dev);
1082  
1083  	do {
1084  		rcu_read_lock();
1085  		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086  		if (!dev) {
1087  			rcu_read_unlock();
1088  			return NULL;
1089  		}
1090  		dev_hold(dev);
1091  		rcu_read_unlock();
1092  
1093  		dev = __netdev_put_lock(dev);
1094  		if (dev)
1095  			return dev;
1096  
1097  		(*index)++;
1098  	} while (true);
1099  }
1100  
1101  static DEFINE_SEQLOCK(netdev_rename_lock);
1102  
netdev_copy_name(struct net_device * dev,char * name)1103  void netdev_copy_name(struct net_device *dev, char *name)
1104  {
1105  	unsigned int seq;
1106  
1107  	do {
1108  		seq = read_seqbegin(&netdev_rename_lock);
1109  		strscpy(name, dev->name, IFNAMSIZ);
1110  	} while (read_seqretry(&netdev_rename_lock, seq));
1111  }
1112  
1113  /**
1114   *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115   *	@net: network namespace
1116   *	@name: a pointer to the buffer where the name will be stored.
1117   *	@ifindex: the ifindex of the interface to get the name from.
1118   */
netdev_get_name(struct net * net,char * name,int ifindex)1119  int netdev_get_name(struct net *net, char *name, int ifindex)
1120  {
1121  	struct net_device *dev;
1122  	int ret;
1123  
1124  	rcu_read_lock();
1125  
1126  	dev = dev_get_by_index_rcu(net, ifindex);
1127  	if (!dev) {
1128  		ret = -ENODEV;
1129  		goto out;
1130  	}
1131  
1132  	netdev_copy_name(dev, name);
1133  
1134  	ret = 0;
1135  out:
1136  	rcu_read_unlock();
1137  	return ret;
1138  }
1139  
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140  static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141  			 const char *ha)
1142  {
1143  	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144  }
1145  
1146  /**
1147   *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148   *	@net: the applicable net namespace
1149   *	@type: media type of device
1150   *	@ha: hardware address
1151   *
1152   *	Search for an interface by MAC address. Returns NULL if the device
1153   *	is not found or a pointer to the device.
1154   *	The caller must hold RCU.
1155   *	The returned device has not had its ref count increased
1156   *	and the caller must therefore be careful about locking
1157   *
1158   */
1159  
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160  struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161  				       const char *ha)
1162  {
1163  	struct net_device *dev;
1164  
1165  	for_each_netdev_rcu(net, dev)
1166  		if (dev_addr_cmp(dev, type, ha))
1167  			return dev;
1168  
1169  	return NULL;
1170  }
1171  EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172  
1173  /**
1174   * dev_getbyhwaddr() - find a device by its hardware address
1175   * @net: the applicable net namespace
1176   * @type: media type of device
1177   * @ha: hardware address
1178   *
1179   * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180   * rtnl_lock.
1181   *
1182   * Context: rtnl_lock() must be held.
1183   * Return: pointer to the net_device, or NULL if not found
1184   */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185  struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186  				   const char *ha)
1187  {
1188  	struct net_device *dev;
1189  
1190  	ASSERT_RTNL();
1191  	for_each_netdev(net, dev)
1192  		if (dev_addr_cmp(dev, type, ha))
1193  			return dev;
1194  
1195  	return NULL;
1196  }
1197  EXPORT_SYMBOL(dev_getbyhwaddr);
1198  
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199  struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200  {
1201  	struct net_device *dev, *ret = NULL;
1202  
1203  	rcu_read_lock();
1204  	for_each_netdev_rcu(net, dev)
1205  		if (dev->type == type) {
1206  			dev_hold(dev);
1207  			ret = dev;
1208  			break;
1209  		}
1210  	rcu_read_unlock();
1211  	return ret;
1212  }
1213  EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214  
1215  /**
1216   *	__dev_get_by_flags - find any device with given flags
1217   *	@net: the applicable net namespace
1218   *	@if_flags: IFF_* values
1219   *	@mask: bitmask of bits in if_flags to check
1220   *
1221   *	Search for any interface with the given flags. Returns NULL if a device
1222   *	is not found or a pointer to the device. Must be called inside
1223   *	rtnl_lock(), and result refcount is unchanged.
1224   */
1225  
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226  struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227  				      unsigned short mask)
1228  {
1229  	struct net_device *dev, *ret;
1230  
1231  	ASSERT_RTNL();
1232  
1233  	ret = NULL;
1234  	for_each_netdev(net, dev) {
1235  		if (((dev->flags ^ if_flags) & mask) == 0) {
1236  			ret = dev;
1237  			break;
1238  		}
1239  	}
1240  	return ret;
1241  }
1242  EXPORT_SYMBOL(__dev_get_by_flags);
1243  
1244  /**
1245   *	dev_valid_name - check if name is okay for network device
1246   *	@name: name string
1247   *
1248   *	Network device names need to be valid file names to
1249   *	allow sysfs to work.  We also disallow any kind of
1250   *	whitespace.
1251   */
dev_valid_name(const char * name)1252  bool dev_valid_name(const char *name)
1253  {
1254  	if (*name == '\0')
1255  		return false;
1256  	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257  		return false;
1258  	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259  		return false;
1260  
1261  	while (*name) {
1262  		if (*name == '/' || *name == ':' || isspace(*name))
1263  			return false;
1264  		name++;
1265  	}
1266  	return true;
1267  }
1268  EXPORT_SYMBOL(dev_valid_name);
1269  
1270  /**
1271   *	__dev_alloc_name - allocate a name for a device
1272   *	@net: network namespace to allocate the device name in
1273   *	@name: name format string
1274   *	@res: result name string
1275   *
1276   *	Passed a format string - eg "lt%d" it will try and find a suitable
1277   *	id. It scans list of devices to build up a free map, then chooses
1278   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279   *	while allocating the name and adding the device in order to avoid
1280   *	duplicates.
1281   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282   *	Returns the number of the unit assigned or a negative errno code.
1283   */
1284  
__dev_alloc_name(struct net * net,const char * name,char * res)1285  static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286  {
1287  	int i = 0;
1288  	const char *p;
1289  	const int max_netdevices = 8*PAGE_SIZE;
1290  	unsigned long *inuse;
1291  	struct net_device *d;
1292  	char buf[IFNAMSIZ];
1293  
1294  	/* Verify the string as this thing may have come from the user.
1295  	 * There must be one "%d" and no other "%" characters.
1296  	 */
1297  	p = strchr(name, '%');
1298  	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299  		return -EINVAL;
1300  
1301  	/* Use one page as a bit array of possible slots */
1302  	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303  	if (!inuse)
1304  		return -ENOMEM;
1305  
1306  	for_each_netdev(net, d) {
1307  		struct netdev_name_node *name_node;
1308  
1309  		netdev_for_each_altname(d, name_node) {
1310  			if (!sscanf(name_node->name, name, &i))
1311  				continue;
1312  			if (i < 0 || i >= max_netdevices)
1313  				continue;
1314  
1315  			/* avoid cases where sscanf is not exact inverse of printf */
1316  			snprintf(buf, IFNAMSIZ, name, i);
1317  			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318  				__set_bit(i, inuse);
1319  		}
1320  		if (!sscanf(d->name, name, &i))
1321  			continue;
1322  		if (i < 0 || i >= max_netdevices)
1323  			continue;
1324  
1325  		/* avoid cases where sscanf is not exact inverse of printf */
1326  		snprintf(buf, IFNAMSIZ, name, i);
1327  		if (!strncmp(buf, d->name, IFNAMSIZ))
1328  			__set_bit(i, inuse);
1329  	}
1330  
1331  	i = find_first_zero_bit(inuse, max_netdevices);
1332  	bitmap_free(inuse);
1333  	if (i == max_netdevices)
1334  		return -ENFILE;
1335  
1336  	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337  	strscpy(buf, name, IFNAMSIZ);
1338  	snprintf(res, IFNAMSIZ, buf, i);
1339  	return i;
1340  }
1341  
1342  /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343  static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344  			       const char *want_name, char *out_name,
1345  			       int dup_errno)
1346  {
1347  	if (!dev_valid_name(want_name))
1348  		return -EINVAL;
1349  
1350  	if (strchr(want_name, '%'))
1351  		return __dev_alloc_name(net, want_name, out_name);
1352  
1353  	if (netdev_name_in_use(net, want_name))
1354  		return -dup_errno;
1355  	if (out_name != want_name)
1356  		strscpy(out_name, want_name, IFNAMSIZ);
1357  	return 0;
1358  }
1359  
1360  /**
1361   *	dev_alloc_name - allocate a name for a device
1362   *	@dev: device
1363   *	@name: name format string
1364   *
1365   *	Passed a format string - eg "lt%d" it will try and find a suitable
1366   *	id. It scans list of devices to build up a free map, then chooses
1367   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368   *	while allocating the name and adding the device in order to avoid
1369   *	duplicates.
1370   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371   *	Returns the number of the unit assigned or a negative errno code.
1372   */
1373  
dev_alloc_name(struct net_device * dev,const char * name)1374  int dev_alloc_name(struct net_device *dev, const char *name)
1375  {
1376  	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377  }
1378  EXPORT_SYMBOL(dev_alloc_name);
1379  
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380  static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381  			      const char *name)
1382  {
1383  	int ret;
1384  
1385  	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386  	return ret < 0 ? ret : 0;
1387  }
1388  
netif_change_name(struct net_device * dev,const char * newname)1389  int netif_change_name(struct net_device *dev, const char *newname)
1390  {
1391  	struct net *net = dev_net(dev);
1392  	unsigned char old_assign_type;
1393  	char oldname[IFNAMSIZ];
1394  	int err = 0;
1395  	int ret;
1396  
1397  	ASSERT_RTNL_NET(net);
1398  
1399  	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400  		return 0;
1401  
1402  	memcpy(oldname, dev->name, IFNAMSIZ);
1403  
1404  	write_seqlock_bh(&netdev_rename_lock);
1405  	err = dev_get_valid_name(net, dev, newname);
1406  	write_sequnlock_bh(&netdev_rename_lock);
1407  
1408  	if (err < 0)
1409  		return err;
1410  
1411  	if (oldname[0] && !strchr(oldname, '%'))
1412  		netdev_info(dev, "renamed from %s%s\n", oldname,
1413  			    dev->flags & IFF_UP ? " (while UP)" : "");
1414  
1415  	old_assign_type = dev->name_assign_type;
1416  	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417  
1418  rollback:
1419  	ret = device_rename(&dev->dev, dev->name);
1420  	if (ret) {
1421  		write_seqlock_bh(&netdev_rename_lock);
1422  		memcpy(dev->name, oldname, IFNAMSIZ);
1423  		write_sequnlock_bh(&netdev_rename_lock);
1424  		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425  		return ret;
1426  	}
1427  
1428  	netdev_adjacent_rename_links(dev, oldname);
1429  
1430  	netdev_name_node_del(dev->name_node);
1431  
1432  	synchronize_net();
1433  
1434  	netdev_name_node_add(net, dev->name_node);
1435  
1436  	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437  	ret = notifier_to_errno(ret);
1438  
1439  	if (ret) {
1440  		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441  		if (err >= 0) {
1442  			err = ret;
1443  			write_seqlock_bh(&netdev_rename_lock);
1444  			memcpy(dev->name, oldname, IFNAMSIZ);
1445  			write_sequnlock_bh(&netdev_rename_lock);
1446  			memcpy(oldname, newname, IFNAMSIZ);
1447  			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448  			old_assign_type = NET_NAME_RENAMED;
1449  			goto rollback;
1450  		} else {
1451  			netdev_err(dev, "name change rollback failed: %d\n",
1452  				   ret);
1453  		}
1454  	}
1455  
1456  	return err;
1457  }
1458  
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459  int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460  {
1461  	struct dev_ifalias *new_alias = NULL;
1462  
1463  	if (len >= IFALIASZ)
1464  		return -EINVAL;
1465  
1466  	if (len) {
1467  		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468  		if (!new_alias)
1469  			return -ENOMEM;
1470  
1471  		memcpy(new_alias->ifalias, alias, len);
1472  		new_alias->ifalias[len] = 0;
1473  	}
1474  
1475  	mutex_lock(&ifalias_mutex);
1476  	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477  					mutex_is_locked(&ifalias_mutex));
1478  	mutex_unlock(&ifalias_mutex);
1479  
1480  	if (new_alias)
1481  		kfree_rcu(new_alias, rcuhead);
1482  
1483  	return len;
1484  }
1485  
1486  /**
1487   *	dev_get_alias - get ifalias of a device
1488   *	@dev: device
1489   *	@name: buffer to store name of ifalias
1490   *	@len: size of buffer
1491   *
1492   *	get ifalias for a device.  Caller must make sure dev cannot go
1493   *	away,  e.g. rcu read lock or own a reference count to device.
1494   */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495  int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496  {
1497  	const struct dev_ifalias *alias;
1498  	int ret = 0;
1499  
1500  	rcu_read_lock();
1501  	alias = rcu_dereference(dev->ifalias);
1502  	if (alias)
1503  		ret = snprintf(name, len, "%s", alias->ifalias);
1504  	rcu_read_unlock();
1505  
1506  	return ret;
1507  }
1508  
1509  /**
1510   *	netdev_features_change - device changes features
1511   *	@dev: device to cause notification
1512   *
1513   *	Called to indicate a device has changed features.
1514   */
netdev_features_change(struct net_device * dev)1515  void netdev_features_change(struct net_device *dev)
1516  {
1517  	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518  }
1519  EXPORT_SYMBOL(netdev_features_change);
1520  
1521  /**
1522   *	netdev_state_change - device changes state
1523   *	@dev: device to cause notification
1524   *
1525   *	Called to indicate a device has changed state. This function calls
1526   *	the notifier chains for netdev_chain and sends a NEWLINK message
1527   *	to the routing socket.
1528   */
netdev_state_change(struct net_device * dev)1529  void netdev_state_change(struct net_device *dev)
1530  {
1531  	if (dev->flags & IFF_UP) {
1532  		struct netdev_notifier_change_info change_info = {
1533  			.info.dev = dev,
1534  		};
1535  
1536  		call_netdevice_notifiers_info(NETDEV_CHANGE,
1537  					      &change_info.info);
1538  		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539  	}
1540  }
1541  EXPORT_SYMBOL(netdev_state_change);
1542  
1543  /**
1544   * __netdev_notify_peers - notify network peers about existence of @dev,
1545   * to be called when rtnl lock is already held.
1546   * @dev: network device
1547   *
1548   * Generate traffic such that interested network peers are aware of
1549   * @dev, such as by generating a gratuitous ARP. This may be used when
1550   * a device wants to inform the rest of the network about some sort of
1551   * reconfiguration such as a failover event or virtual machine
1552   * migration.
1553   */
__netdev_notify_peers(struct net_device * dev)1554  void __netdev_notify_peers(struct net_device *dev)
1555  {
1556  	ASSERT_RTNL();
1557  	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558  	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559  }
1560  EXPORT_SYMBOL(__netdev_notify_peers);
1561  
1562  /**
1563   * netdev_notify_peers - notify network peers about existence of @dev
1564   * @dev: network device
1565   *
1566   * Generate traffic such that interested network peers are aware of
1567   * @dev, such as by generating a gratuitous ARP. This may be used when
1568   * a device wants to inform the rest of the network about some sort of
1569   * reconfiguration such as a failover event or virtual machine
1570   * migration.
1571   */
netdev_notify_peers(struct net_device * dev)1572  void netdev_notify_peers(struct net_device *dev)
1573  {
1574  	rtnl_lock();
1575  	__netdev_notify_peers(dev);
1576  	rtnl_unlock();
1577  }
1578  EXPORT_SYMBOL(netdev_notify_peers);
1579  
1580  static int napi_threaded_poll(void *data);
1581  
napi_kthread_create(struct napi_struct * n)1582  static int napi_kthread_create(struct napi_struct *n)
1583  {
1584  	int err = 0;
1585  
1586  	/* Create and wake up the kthread once to put it in
1587  	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588  	 * warning and work with loadavg.
1589  	 */
1590  	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591  				n->dev->name, n->napi_id);
1592  	if (IS_ERR(n->thread)) {
1593  		err = PTR_ERR(n->thread);
1594  		pr_err("kthread_run failed with err %d\n", err);
1595  		n->thread = NULL;
1596  	}
1597  
1598  	return err;
1599  }
1600  
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1601  static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602  {
1603  	const struct net_device_ops *ops = dev->netdev_ops;
1604  	int ret;
1605  
1606  	ASSERT_RTNL();
1607  	dev_addr_check(dev);
1608  
1609  	if (!netif_device_present(dev)) {
1610  		/* may be detached because parent is runtime-suspended */
1611  		if (dev->dev.parent)
1612  			pm_runtime_resume(dev->dev.parent);
1613  		if (!netif_device_present(dev))
1614  			return -ENODEV;
1615  	}
1616  
1617  	/* Block netpoll from trying to do any rx path servicing.
1618  	 * If we don't do this there is a chance ndo_poll_controller
1619  	 * or ndo_poll may be running while we open the device
1620  	 */
1621  	netpoll_poll_disable(dev);
1622  
1623  	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624  	ret = notifier_to_errno(ret);
1625  	if (ret)
1626  		return ret;
1627  
1628  	set_bit(__LINK_STATE_START, &dev->state);
1629  
1630  	netdev_ops_assert_locked(dev);
1631  
1632  	if (ops->ndo_validate_addr)
1633  		ret = ops->ndo_validate_addr(dev);
1634  
1635  	if (!ret && ops->ndo_open)
1636  		ret = ops->ndo_open(dev);
1637  
1638  	netpoll_poll_enable(dev);
1639  
1640  	if (ret)
1641  		clear_bit(__LINK_STATE_START, &dev->state);
1642  	else {
1643  		netif_set_up(dev, true);
1644  		dev_set_rx_mode(dev);
1645  		dev_activate(dev);
1646  		add_device_randomness(dev->dev_addr, dev->addr_len);
1647  	}
1648  
1649  	return ret;
1650  }
1651  
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1652  int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653  {
1654  	int ret;
1655  
1656  	if (dev->flags & IFF_UP)
1657  		return 0;
1658  
1659  	ret = __dev_open(dev, extack);
1660  	if (ret < 0)
1661  		return ret;
1662  
1663  	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664  	call_netdevice_notifiers(NETDEV_UP, dev);
1665  
1666  	return ret;
1667  }
1668  
__dev_close_many(struct list_head * head)1669  static void __dev_close_many(struct list_head *head)
1670  {
1671  	struct net_device *dev;
1672  
1673  	ASSERT_RTNL();
1674  	might_sleep();
1675  
1676  	list_for_each_entry(dev, head, close_list) {
1677  		/* Temporarily disable netpoll until the interface is down */
1678  		netpoll_poll_disable(dev);
1679  
1680  		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681  
1682  		clear_bit(__LINK_STATE_START, &dev->state);
1683  
1684  		/* Synchronize to scheduled poll. We cannot touch poll list, it
1685  		 * can be even on different cpu. So just clear netif_running().
1686  		 *
1687  		 * dev->stop() will invoke napi_disable() on all of it's
1688  		 * napi_struct instances on this device.
1689  		 */
1690  		smp_mb__after_atomic(); /* Commit netif_running(). */
1691  	}
1692  
1693  	dev_deactivate_many(head);
1694  
1695  	list_for_each_entry(dev, head, close_list) {
1696  		const struct net_device_ops *ops = dev->netdev_ops;
1697  
1698  		/*
1699  		 *	Call the device specific close. This cannot fail.
1700  		 *	Only if device is UP
1701  		 *
1702  		 *	We allow it to be called even after a DETACH hot-plug
1703  		 *	event.
1704  		 */
1705  
1706  		netdev_ops_assert_locked(dev);
1707  
1708  		if (ops->ndo_stop)
1709  			ops->ndo_stop(dev);
1710  
1711  		netif_set_up(dev, false);
1712  		netpoll_poll_enable(dev);
1713  	}
1714  }
1715  
__dev_close(struct net_device * dev)1716  static void __dev_close(struct net_device *dev)
1717  {
1718  	LIST_HEAD(single);
1719  
1720  	list_add(&dev->close_list, &single);
1721  	__dev_close_many(&single);
1722  	list_del(&single);
1723  }
1724  
dev_close_many(struct list_head * head,bool unlink)1725  void dev_close_many(struct list_head *head, bool unlink)
1726  {
1727  	struct net_device *dev, *tmp;
1728  
1729  	/* Remove the devices that don't need to be closed */
1730  	list_for_each_entry_safe(dev, tmp, head, close_list)
1731  		if (!(dev->flags & IFF_UP))
1732  			list_del_init(&dev->close_list);
1733  
1734  	__dev_close_many(head);
1735  
1736  	list_for_each_entry_safe(dev, tmp, head, close_list) {
1737  		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738  		call_netdevice_notifiers(NETDEV_DOWN, dev);
1739  		if (unlink)
1740  			list_del_init(&dev->close_list);
1741  	}
1742  }
1743  EXPORT_SYMBOL(dev_close_many);
1744  
netif_close(struct net_device * dev)1745  void netif_close(struct net_device *dev)
1746  {
1747  	if (dev->flags & IFF_UP) {
1748  		LIST_HEAD(single);
1749  
1750  		list_add(&dev->close_list, &single);
1751  		dev_close_many(&single, true);
1752  		list_del(&single);
1753  	}
1754  }
1755  EXPORT_SYMBOL(netif_close);
1756  
netif_disable_lro(struct net_device * dev)1757  void netif_disable_lro(struct net_device *dev)
1758  {
1759  	struct net_device *lower_dev;
1760  	struct list_head *iter;
1761  
1762  	dev->wanted_features &= ~NETIF_F_LRO;
1763  	netdev_update_features(dev);
1764  
1765  	if (unlikely(dev->features & NETIF_F_LRO))
1766  		netdev_WARN(dev, "failed to disable LRO!\n");
1767  
1768  	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769  		netdev_lock_ops(lower_dev);
1770  		netif_disable_lro(lower_dev);
1771  		netdev_unlock_ops(lower_dev);
1772  	}
1773  }
1774  
1775  /**
1776   *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777   *	@dev: device
1778   *
1779   *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780   *	called under RTNL.  This is needed if Generic XDP is installed on
1781   *	the device.
1782   */
dev_disable_gro_hw(struct net_device * dev)1783  static void dev_disable_gro_hw(struct net_device *dev)
1784  {
1785  	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786  	netdev_update_features(dev);
1787  
1788  	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789  		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790  }
1791  
netdev_cmd_to_name(enum netdev_cmd cmd)1792  const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793  {
1794  #define N(val) 						\
1795  	case NETDEV_##val:				\
1796  		return "NETDEV_" __stringify(val);
1797  	switch (cmd) {
1798  	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799  	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800  	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801  	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1802  	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1803  	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1804  	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805  	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806  	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807  	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1808  	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1809  	N(XDP_FEAT_CHANGE)
1810  	}
1811  #undef N
1812  	return "UNKNOWN_NETDEV_EVENT";
1813  }
1814  EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815  
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1816  static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817  				   struct net_device *dev)
1818  {
1819  	struct netdev_notifier_info info = {
1820  		.dev = dev,
1821  	};
1822  
1823  	return nb->notifier_call(nb, val, &info);
1824  }
1825  
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1826  static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827  					     struct net_device *dev)
1828  {
1829  	int err;
1830  
1831  	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832  	err = notifier_to_errno(err);
1833  	if (err)
1834  		return err;
1835  
1836  	if (!(dev->flags & IFF_UP))
1837  		return 0;
1838  
1839  	call_netdevice_notifier(nb, NETDEV_UP, dev);
1840  	return 0;
1841  }
1842  
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1843  static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844  						struct net_device *dev)
1845  {
1846  	if (dev->flags & IFF_UP) {
1847  		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848  					dev);
1849  		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850  	}
1851  	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852  }
1853  
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1854  static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855  						 struct net *net)
1856  {
1857  	struct net_device *dev;
1858  	int err;
1859  
1860  	for_each_netdev(net, dev) {
1861  		err = call_netdevice_register_notifiers(nb, dev);
1862  		if (err)
1863  			goto rollback;
1864  	}
1865  	return 0;
1866  
1867  rollback:
1868  	for_each_netdev_continue_reverse(net, dev)
1869  		call_netdevice_unregister_notifiers(nb, dev);
1870  	return err;
1871  }
1872  
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1873  static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874  						    struct net *net)
1875  {
1876  	struct net_device *dev;
1877  
1878  	for_each_netdev(net, dev)
1879  		call_netdevice_unregister_notifiers(nb, dev);
1880  }
1881  
1882  static int dev_boot_phase = 1;
1883  
1884  /**
1885   * register_netdevice_notifier - register a network notifier block
1886   * @nb: notifier
1887   *
1888   * Register a notifier to be called when network device events occur.
1889   * The notifier passed is linked into the kernel structures and must
1890   * not be reused until it has been unregistered. A negative errno code
1891   * is returned on a failure.
1892   *
1893   * When registered all registration and up events are replayed
1894   * to the new notifier to allow device to have a race free
1895   * view of the network device list.
1896   */
1897  
register_netdevice_notifier(struct notifier_block * nb)1898  int register_netdevice_notifier(struct notifier_block *nb)
1899  {
1900  	struct net *net;
1901  	int err;
1902  
1903  	/* Close race with setup_net() and cleanup_net() */
1904  	down_write(&pernet_ops_rwsem);
1905  
1906  	/* When RTNL is removed, we need protection for netdev_chain. */
1907  	rtnl_lock();
1908  
1909  	err = raw_notifier_chain_register(&netdev_chain, nb);
1910  	if (err)
1911  		goto unlock;
1912  	if (dev_boot_phase)
1913  		goto unlock;
1914  	for_each_net(net) {
1915  		__rtnl_net_lock(net);
1916  		err = call_netdevice_register_net_notifiers(nb, net);
1917  		__rtnl_net_unlock(net);
1918  		if (err)
1919  			goto rollback;
1920  	}
1921  
1922  unlock:
1923  	rtnl_unlock();
1924  	up_write(&pernet_ops_rwsem);
1925  	return err;
1926  
1927  rollback:
1928  	for_each_net_continue_reverse(net) {
1929  		__rtnl_net_lock(net);
1930  		call_netdevice_unregister_net_notifiers(nb, net);
1931  		__rtnl_net_unlock(net);
1932  	}
1933  
1934  	raw_notifier_chain_unregister(&netdev_chain, nb);
1935  	goto unlock;
1936  }
1937  EXPORT_SYMBOL(register_netdevice_notifier);
1938  
1939  /**
1940   * unregister_netdevice_notifier - unregister a network notifier block
1941   * @nb: notifier
1942   *
1943   * Unregister a notifier previously registered by
1944   * register_netdevice_notifier(). The notifier is unlinked into the
1945   * kernel structures and may then be reused. A negative errno code
1946   * is returned on a failure.
1947   *
1948   * After unregistering unregister and down device events are synthesized
1949   * for all devices on the device list to the removed notifier to remove
1950   * the need for special case cleanup code.
1951   */
1952  
unregister_netdevice_notifier(struct notifier_block * nb)1953  int unregister_netdevice_notifier(struct notifier_block *nb)
1954  {
1955  	struct net *net;
1956  	int err;
1957  
1958  	/* Close race with setup_net() and cleanup_net() */
1959  	down_write(&pernet_ops_rwsem);
1960  	rtnl_lock();
1961  	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1962  	if (err)
1963  		goto unlock;
1964  
1965  	for_each_net(net) {
1966  		__rtnl_net_lock(net);
1967  		call_netdevice_unregister_net_notifiers(nb, net);
1968  		__rtnl_net_unlock(net);
1969  	}
1970  
1971  unlock:
1972  	rtnl_unlock();
1973  	up_write(&pernet_ops_rwsem);
1974  	return err;
1975  }
1976  EXPORT_SYMBOL(unregister_netdevice_notifier);
1977  
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1978  static int __register_netdevice_notifier_net(struct net *net,
1979  					     struct notifier_block *nb,
1980  					     bool ignore_call_fail)
1981  {
1982  	int err;
1983  
1984  	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1985  	if (err)
1986  		return err;
1987  	if (dev_boot_phase)
1988  		return 0;
1989  
1990  	err = call_netdevice_register_net_notifiers(nb, net);
1991  	if (err && !ignore_call_fail)
1992  		goto chain_unregister;
1993  
1994  	return 0;
1995  
1996  chain_unregister:
1997  	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1998  	return err;
1999  }
2000  
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2001  static int __unregister_netdevice_notifier_net(struct net *net,
2002  					       struct notifier_block *nb)
2003  {
2004  	int err;
2005  
2006  	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2007  	if (err)
2008  		return err;
2009  
2010  	call_netdevice_unregister_net_notifiers(nb, net);
2011  	return 0;
2012  }
2013  
2014  /**
2015   * register_netdevice_notifier_net - register a per-netns network notifier block
2016   * @net: network namespace
2017   * @nb: notifier
2018   *
2019   * Register a notifier to be called when network device events occur.
2020   * The notifier passed is linked into the kernel structures and must
2021   * not be reused until it has been unregistered. A negative errno code
2022   * is returned on a failure.
2023   *
2024   * When registered all registration and up events are replayed
2025   * to the new notifier to allow device to have a race free
2026   * view of the network device list.
2027   */
2028  
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2029  int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2030  {
2031  	int err;
2032  
2033  	rtnl_net_lock(net);
2034  	err = __register_netdevice_notifier_net(net, nb, false);
2035  	rtnl_net_unlock(net);
2036  
2037  	return err;
2038  }
2039  EXPORT_SYMBOL(register_netdevice_notifier_net);
2040  
2041  /**
2042   * unregister_netdevice_notifier_net - unregister a per-netns
2043   *                                     network notifier block
2044   * @net: network namespace
2045   * @nb: notifier
2046   *
2047   * Unregister a notifier previously registered by
2048   * register_netdevice_notifier_net(). The notifier is unlinked from the
2049   * kernel structures and may then be reused. A negative errno code
2050   * is returned on a failure.
2051   *
2052   * After unregistering unregister and down device events are synthesized
2053   * for all devices on the device list to the removed notifier to remove
2054   * the need for special case cleanup code.
2055   */
2056  
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2057  int unregister_netdevice_notifier_net(struct net *net,
2058  				      struct notifier_block *nb)
2059  {
2060  	int err;
2061  
2062  	rtnl_net_lock(net);
2063  	err = __unregister_netdevice_notifier_net(net, nb);
2064  	rtnl_net_unlock(net);
2065  
2066  	return err;
2067  }
2068  EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2069  
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2070  static void __move_netdevice_notifier_net(struct net *src_net,
2071  					  struct net *dst_net,
2072  					  struct notifier_block *nb)
2073  {
2074  	__unregister_netdevice_notifier_net(src_net, nb);
2075  	__register_netdevice_notifier_net(dst_net, nb, true);
2076  }
2077  
rtnl_net_dev_lock(struct net_device * dev)2078  static void rtnl_net_dev_lock(struct net_device *dev)
2079  {
2080  	bool again;
2081  
2082  	do {
2083  		struct net *net;
2084  
2085  		again = false;
2086  
2087  		/* netns might be being dismantled. */
2088  		rcu_read_lock();
2089  		net = dev_net_rcu(dev);
2090  		net_passive_inc(net);
2091  		rcu_read_unlock();
2092  
2093  		rtnl_net_lock(net);
2094  
2095  #ifdef CONFIG_NET_NS
2096  		/* dev might have been moved to another netns. */
2097  		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2098  			rtnl_net_unlock(net);
2099  			net_passive_dec(net);
2100  			again = true;
2101  		}
2102  #endif
2103  	} while (again);
2104  }
2105  
rtnl_net_dev_unlock(struct net_device * dev)2106  static void rtnl_net_dev_unlock(struct net_device *dev)
2107  {
2108  	struct net *net = dev_net(dev);
2109  
2110  	rtnl_net_unlock(net);
2111  	net_passive_dec(net);
2112  }
2113  
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2114  int register_netdevice_notifier_dev_net(struct net_device *dev,
2115  					struct notifier_block *nb,
2116  					struct netdev_net_notifier *nn)
2117  {
2118  	int err;
2119  
2120  	rtnl_net_dev_lock(dev);
2121  	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2122  	if (!err) {
2123  		nn->nb = nb;
2124  		list_add(&nn->list, &dev->net_notifier_list);
2125  	}
2126  	rtnl_net_dev_unlock(dev);
2127  
2128  	return err;
2129  }
2130  EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2131  
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2132  int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2133  					  struct notifier_block *nb,
2134  					  struct netdev_net_notifier *nn)
2135  {
2136  	int err;
2137  
2138  	rtnl_net_dev_lock(dev);
2139  	list_del(&nn->list);
2140  	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2141  	rtnl_net_dev_unlock(dev);
2142  
2143  	return err;
2144  }
2145  EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2146  
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2147  static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2148  					     struct net *net)
2149  {
2150  	struct netdev_net_notifier *nn;
2151  
2152  	list_for_each_entry(nn, &dev->net_notifier_list, list)
2153  		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2154  }
2155  
2156  /**
2157   *	call_netdevice_notifiers_info - call all network notifier blocks
2158   *	@val: value passed unmodified to notifier function
2159   *	@info: notifier information data
2160   *
2161   *	Call all network notifier blocks.  Parameters and return value
2162   *	are as for raw_notifier_call_chain().
2163   */
2164  
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2165  int call_netdevice_notifiers_info(unsigned long val,
2166  				  struct netdev_notifier_info *info)
2167  {
2168  	struct net *net = dev_net(info->dev);
2169  	int ret;
2170  
2171  	ASSERT_RTNL();
2172  
2173  	/* Run per-netns notifier block chain first, then run the global one.
2174  	 * Hopefully, one day, the global one is going to be removed after
2175  	 * all notifier block registrators get converted to be per-netns.
2176  	 */
2177  	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2178  	if (ret & NOTIFY_STOP_MASK)
2179  		return ret;
2180  	return raw_notifier_call_chain(&netdev_chain, val, info);
2181  }
2182  
2183  /**
2184   *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2185   *	                                       for and rollback on error
2186   *	@val_up: value passed unmodified to notifier function
2187   *	@val_down: value passed unmodified to the notifier function when
2188   *	           recovering from an error on @val_up
2189   *	@info: notifier information data
2190   *
2191   *	Call all per-netns network notifier blocks, but not notifier blocks on
2192   *	the global notifier chain. Parameters and return value are as for
2193   *	raw_notifier_call_chain_robust().
2194   */
2195  
2196  static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2197  call_netdevice_notifiers_info_robust(unsigned long val_up,
2198  				     unsigned long val_down,
2199  				     struct netdev_notifier_info *info)
2200  {
2201  	struct net *net = dev_net(info->dev);
2202  
2203  	ASSERT_RTNL();
2204  
2205  	return raw_notifier_call_chain_robust(&net->netdev_chain,
2206  					      val_up, val_down, info);
2207  }
2208  
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2209  static int call_netdevice_notifiers_extack(unsigned long val,
2210  					   struct net_device *dev,
2211  					   struct netlink_ext_ack *extack)
2212  {
2213  	struct netdev_notifier_info info = {
2214  		.dev = dev,
2215  		.extack = extack,
2216  	};
2217  
2218  	return call_netdevice_notifiers_info(val, &info);
2219  }
2220  
2221  /**
2222   *	call_netdevice_notifiers - call all network notifier blocks
2223   *      @val: value passed unmodified to notifier function
2224   *      @dev: net_device pointer passed unmodified to notifier function
2225   *
2226   *	Call all network notifier blocks.  Parameters and return value
2227   *	are as for raw_notifier_call_chain().
2228   */
2229  
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2230  int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2231  {
2232  	return call_netdevice_notifiers_extack(val, dev, NULL);
2233  }
2234  EXPORT_SYMBOL(call_netdevice_notifiers);
2235  
2236  /**
2237   *	call_netdevice_notifiers_mtu - call all network notifier blocks
2238   *	@val: value passed unmodified to notifier function
2239   *	@dev: net_device pointer passed unmodified to notifier function
2240   *	@arg: additional u32 argument passed to the notifier function
2241   *
2242   *	Call all network notifier blocks.  Parameters and return value
2243   *	are as for raw_notifier_call_chain().
2244   */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2245  static int call_netdevice_notifiers_mtu(unsigned long val,
2246  					struct net_device *dev, u32 arg)
2247  {
2248  	struct netdev_notifier_info_ext info = {
2249  		.info.dev = dev,
2250  		.ext.mtu = arg,
2251  	};
2252  
2253  	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2254  
2255  	return call_netdevice_notifiers_info(val, &info.info);
2256  }
2257  
2258  #ifdef CONFIG_NET_INGRESS
2259  static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2260  
net_inc_ingress_queue(void)2261  void net_inc_ingress_queue(void)
2262  {
2263  	static_branch_inc(&ingress_needed_key);
2264  }
2265  EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2266  
net_dec_ingress_queue(void)2267  void net_dec_ingress_queue(void)
2268  {
2269  	static_branch_dec(&ingress_needed_key);
2270  }
2271  EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2272  #endif
2273  
2274  #ifdef CONFIG_NET_EGRESS
2275  static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2276  
net_inc_egress_queue(void)2277  void net_inc_egress_queue(void)
2278  {
2279  	static_branch_inc(&egress_needed_key);
2280  }
2281  EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2282  
net_dec_egress_queue(void)2283  void net_dec_egress_queue(void)
2284  {
2285  	static_branch_dec(&egress_needed_key);
2286  }
2287  EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2288  #endif
2289  
2290  #ifdef CONFIG_NET_CLS_ACT
2291  DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2292  EXPORT_SYMBOL(tcf_sw_enabled_key);
2293  #endif
2294  
2295  DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2296  EXPORT_SYMBOL(netstamp_needed_key);
2297  #ifdef CONFIG_JUMP_LABEL
2298  static atomic_t netstamp_needed_deferred;
2299  static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2300  static void netstamp_clear(struct work_struct *work)
2301  {
2302  	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2303  	int wanted;
2304  
2305  	wanted = atomic_add_return(deferred, &netstamp_wanted);
2306  	if (wanted > 0)
2307  		static_branch_enable(&netstamp_needed_key);
2308  	else
2309  		static_branch_disable(&netstamp_needed_key);
2310  }
2311  static DECLARE_WORK(netstamp_work, netstamp_clear);
2312  #endif
2313  
net_enable_timestamp(void)2314  void net_enable_timestamp(void)
2315  {
2316  #ifdef CONFIG_JUMP_LABEL
2317  	int wanted = atomic_read(&netstamp_wanted);
2318  
2319  	while (wanted > 0) {
2320  		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2321  			return;
2322  	}
2323  	atomic_inc(&netstamp_needed_deferred);
2324  	schedule_work(&netstamp_work);
2325  #else
2326  	static_branch_inc(&netstamp_needed_key);
2327  #endif
2328  }
2329  EXPORT_SYMBOL(net_enable_timestamp);
2330  
net_disable_timestamp(void)2331  void net_disable_timestamp(void)
2332  {
2333  #ifdef CONFIG_JUMP_LABEL
2334  	int wanted = atomic_read(&netstamp_wanted);
2335  
2336  	while (wanted > 1) {
2337  		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2338  			return;
2339  	}
2340  	atomic_dec(&netstamp_needed_deferred);
2341  	schedule_work(&netstamp_work);
2342  #else
2343  	static_branch_dec(&netstamp_needed_key);
2344  #endif
2345  }
2346  EXPORT_SYMBOL(net_disable_timestamp);
2347  
net_timestamp_set(struct sk_buff * skb)2348  static inline void net_timestamp_set(struct sk_buff *skb)
2349  {
2350  	skb->tstamp = 0;
2351  	skb->tstamp_type = SKB_CLOCK_REALTIME;
2352  	if (static_branch_unlikely(&netstamp_needed_key))
2353  		skb->tstamp = ktime_get_real();
2354  }
2355  
2356  #define net_timestamp_check(COND, SKB)				\
2357  	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2358  		if ((COND) && !(SKB)->tstamp)			\
2359  			(SKB)->tstamp = ktime_get_real();	\
2360  	}							\
2361  
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2362  bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2363  {
2364  	return __is_skb_forwardable(dev, skb, true);
2365  }
2366  EXPORT_SYMBOL_GPL(is_skb_forwardable);
2367  
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2368  static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2369  			      bool check_mtu)
2370  {
2371  	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2372  
2373  	if (likely(!ret)) {
2374  		skb->protocol = eth_type_trans(skb, dev);
2375  		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2376  	}
2377  
2378  	return ret;
2379  }
2380  
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2381  int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2382  {
2383  	return __dev_forward_skb2(dev, skb, true);
2384  }
2385  EXPORT_SYMBOL_GPL(__dev_forward_skb);
2386  
2387  /**
2388   * dev_forward_skb - loopback an skb to another netif
2389   *
2390   * @dev: destination network device
2391   * @skb: buffer to forward
2392   *
2393   * return values:
2394   *	NET_RX_SUCCESS	(no congestion)
2395   *	NET_RX_DROP     (packet was dropped, but freed)
2396   *
2397   * dev_forward_skb can be used for injecting an skb from the
2398   * start_xmit function of one device into the receive queue
2399   * of another device.
2400   *
2401   * The receiving device may be in another namespace, so
2402   * we have to clear all information in the skb that could
2403   * impact namespace isolation.
2404   */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2405  int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2406  {
2407  	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2408  }
2409  EXPORT_SYMBOL_GPL(dev_forward_skb);
2410  
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2411  int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2412  {
2413  	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2414  }
2415  
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2416  static inline int deliver_skb(struct sk_buff *skb,
2417  			      struct packet_type *pt_prev,
2418  			      struct net_device *orig_dev)
2419  {
2420  	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2421  		return -ENOMEM;
2422  	refcount_inc(&skb->users);
2423  	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2424  }
2425  
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2426  static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2427  					  struct packet_type **pt,
2428  					  struct net_device *orig_dev,
2429  					  __be16 type,
2430  					  struct list_head *ptype_list)
2431  {
2432  	struct packet_type *ptype, *pt_prev = *pt;
2433  
2434  	list_for_each_entry_rcu(ptype, ptype_list, list) {
2435  		if (ptype->type != type)
2436  			continue;
2437  		if (pt_prev)
2438  			deliver_skb(skb, pt_prev, orig_dev);
2439  		pt_prev = ptype;
2440  	}
2441  	*pt = pt_prev;
2442  }
2443  
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2444  static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2445  {
2446  	if (!ptype->af_packet_priv || !skb->sk)
2447  		return false;
2448  
2449  	if (ptype->id_match)
2450  		return ptype->id_match(ptype, skb->sk);
2451  	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2452  		return true;
2453  
2454  	return false;
2455  }
2456  
2457  /**
2458   * dev_nit_active_rcu - return true if any network interface taps are in use
2459   *
2460   * The caller must hold the RCU lock
2461   *
2462   * @dev: network device to check for the presence of taps
2463   */
dev_nit_active_rcu(const struct net_device * dev)2464  bool dev_nit_active_rcu(const struct net_device *dev)
2465  {
2466  	/* Callers may hold either RCU or RCU BH lock */
2467  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2468  
2469  	return !list_empty(&dev_net(dev)->ptype_all) ||
2470  	       !list_empty(&dev->ptype_all);
2471  }
2472  EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2473  
2474  /*
2475   *	Support routine. Sends outgoing frames to any network
2476   *	taps currently in use.
2477   */
2478  
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2479  void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2480  {
2481  	struct packet_type *ptype, *pt_prev = NULL;
2482  	struct list_head *ptype_list;
2483  	struct sk_buff *skb2 = NULL;
2484  
2485  	rcu_read_lock();
2486  	ptype_list = &dev_net_rcu(dev)->ptype_all;
2487  again:
2488  	list_for_each_entry_rcu(ptype, ptype_list, list) {
2489  		if (READ_ONCE(ptype->ignore_outgoing))
2490  			continue;
2491  
2492  		/* Never send packets back to the socket
2493  		 * they originated from - MvS (miquels@drinkel.ow.org)
2494  		 */
2495  		if (skb_loop_sk(ptype, skb))
2496  			continue;
2497  
2498  		if (pt_prev) {
2499  			deliver_skb(skb2, pt_prev, skb->dev);
2500  			pt_prev = ptype;
2501  			continue;
2502  		}
2503  
2504  		/* need to clone skb, done only once */
2505  		skb2 = skb_clone(skb, GFP_ATOMIC);
2506  		if (!skb2)
2507  			goto out_unlock;
2508  
2509  		net_timestamp_set(skb2);
2510  
2511  		/* skb->nh should be correctly
2512  		 * set by sender, so that the second statement is
2513  		 * just protection against buggy protocols.
2514  		 */
2515  		skb_reset_mac_header(skb2);
2516  
2517  		if (skb_network_header(skb2) < skb2->data ||
2518  		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2519  			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2520  					     ntohs(skb2->protocol),
2521  					     dev->name);
2522  			skb_reset_network_header(skb2);
2523  		}
2524  
2525  		skb2->transport_header = skb2->network_header;
2526  		skb2->pkt_type = PACKET_OUTGOING;
2527  		pt_prev = ptype;
2528  	}
2529  
2530  	if (ptype_list != &dev->ptype_all) {
2531  		ptype_list = &dev->ptype_all;
2532  		goto again;
2533  	}
2534  out_unlock:
2535  	if (pt_prev) {
2536  		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2537  			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2538  		else
2539  			kfree_skb(skb2);
2540  	}
2541  	rcu_read_unlock();
2542  }
2543  EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2544  
2545  /**
2546   * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2547   * @dev: Network device
2548   * @txq: number of queues available
2549   *
2550   * If real_num_tx_queues is changed the tc mappings may no longer be
2551   * valid. To resolve this verify the tc mapping remains valid and if
2552   * not NULL the mapping. With no priorities mapping to this
2553   * offset/count pair it will no longer be used. In the worst case TC0
2554   * is invalid nothing can be done so disable priority mappings. If is
2555   * expected that drivers will fix this mapping if they can before
2556   * calling netif_set_real_num_tx_queues.
2557   */
netif_setup_tc(struct net_device * dev,unsigned int txq)2558  static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2559  {
2560  	int i;
2561  	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2562  
2563  	/* If TC0 is invalidated disable TC mapping */
2564  	if (tc->offset + tc->count > txq) {
2565  		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2566  		dev->num_tc = 0;
2567  		return;
2568  	}
2569  
2570  	/* Invalidated prio to tc mappings set to TC0 */
2571  	for (i = 1; i < TC_BITMASK + 1; i++) {
2572  		int q = netdev_get_prio_tc_map(dev, i);
2573  
2574  		tc = &dev->tc_to_txq[q];
2575  		if (tc->offset + tc->count > txq) {
2576  			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2577  				    i, q);
2578  			netdev_set_prio_tc_map(dev, i, 0);
2579  		}
2580  	}
2581  }
2582  
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2583  int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2584  {
2585  	if (dev->num_tc) {
2586  		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2587  		int i;
2588  
2589  		/* walk through the TCs and see if it falls into any of them */
2590  		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2591  			if ((txq - tc->offset) < tc->count)
2592  				return i;
2593  		}
2594  
2595  		/* didn't find it, just return -1 to indicate no match */
2596  		return -1;
2597  	}
2598  
2599  	return 0;
2600  }
2601  EXPORT_SYMBOL(netdev_txq_to_tc);
2602  
2603  #ifdef CONFIG_XPS
2604  static struct static_key xps_needed __read_mostly;
2605  static struct static_key xps_rxqs_needed __read_mostly;
2606  static DEFINE_MUTEX(xps_map_mutex);
2607  #define xmap_dereference(P)		\
2608  	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2609  
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2610  static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2611  			     struct xps_dev_maps *old_maps, int tci, u16 index)
2612  {
2613  	struct xps_map *map = NULL;
2614  	int pos;
2615  
2616  	map = xmap_dereference(dev_maps->attr_map[tci]);
2617  	if (!map)
2618  		return false;
2619  
2620  	for (pos = map->len; pos--;) {
2621  		if (map->queues[pos] != index)
2622  			continue;
2623  
2624  		if (map->len > 1) {
2625  			map->queues[pos] = map->queues[--map->len];
2626  			break;
2627  		}
2628  
2629  		if (old_maps)
2630  			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2631  		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2632  		kfree_rcu(map, rcu);
2633  		return false;
2634  	}
2635  
2636  	return true;
2637  }
2638  
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2639  static bool remove_xps_queue_cpu(struct net_device *dev,
2640  				 struct xps_dev_maps *dev_maps,
2641  				 int cpu, u16 offset, u16 count)
2642  {
2643  	int num_tc = dev_maps->num_tc;
2644  	bool active = false;
2645  	int tci;
2646  
2647  	for (tci = cpu * num_tc; num_tc--; tci++) {
2648  		int i, j;
2649  
2650  		for (i = count, j = offset; i--; j++) {
2651  			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2652  				break;
2653  		}
2654  
2655  		active |= i < 0;
2656  	}
2657  
2658  	return active;
2659  }
2660  
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2661  static void reset_xps_maps(struct net_device *dev,
2662  			   struct xps_dev_maps *dev_maps,
2663  			   enum xps_map_type type)
2664  {
2665  	static_key_slow_dec_cpuslocked(&xps_needed);
2666  	if (type == XPS_RXQS)
2667  		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2668  
2669  	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2670  
2671  	kfree_rcu(dev_maps, rcu);
2672  }
2673  
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2674  static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2675  			   u16 offset, u16 count)
2676  {
2677  	struct xps_dev_maps *dev_maps;
2678  	bool active = false;
2679  	int i, j;
2680  
2681  	dev_maps = xmap_dereference(dev->xps_maps[type]);
2682  	if (!dev_maps)
2683  		return;
2684  
2685  	for (j = 0; j < dev_maps->nr_ids; j++)
2686  		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2687  	if (!active)
2688  		reset_xps_maps(dev, dev_maps, type);
2689  
2690  	if (type == XPS_CPUS) {
2691  		for (i = offset + (count - 1); count--; i--)
2692  			netdev_queue_numa_node_write(
2693  				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2694  	}
2695  }
2696  
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2697  static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2698  				   u16 count)
2699  {
2700  	if (!static_key_false(&xps_needed))
2701  		return;
2702  
2703  	cpus_read_lock();
2704  	mutex_lock(&xps_map_mutex);
2705  
2706  	if (static_key_false(&xps_rxqs_needed))
2707  		clean_xps_maps(dev, XPS_RXQS, offset, count);
2708  
2709  	clean_xps_maps(dev, XPS_CPUS, offset, count);
2710  
2711  	mutex_unlock(&xps_map_mutex);
2712  	cpus_read_unlock();
2713  }
2714  
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2715  static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2716  {
2717  	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2718  }
2719  
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2720  static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2721  				      u16 index, bool is_rxqs_map)
2722  {
2723  	struct xps_map *new_map;
2724  	int alloc_len = XPS_MIN_MAP_ALLOC;
2725  	int i, pos;
2726  
2727  	for (pos = 0; map && pos < map->len; pos++) {
2728  		if (map->queues[pos] != index)
2729  			continue;
2730  		return map;
2731  	}
2732  
2733  	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2734  	if (map) {
2735  		if (pos < map->alloc_len)
2736  			return map;
2737  
2738  		alloc_len = map->alloc_len * 2;
2739  	}
2740  
2741  	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2742  	 *  map
2743  	 */
2744  	if (is_rxqs_map)
2745  		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2746  	else
2747  		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2748  				       cpu_to_node(attr_index));
2749  	if (!new_map)
2750  		return NULL;
2751  
2752  	for (i = 0; i < pos; i++)
2753  		new_map->queues[i] = map->queues[i];
2754  	new_map->alloc_len = alloc_len;
2755  	new_map->len = pos;
2756  
2757  	return new_map;
2758  }
2759  
2760  /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2761  static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2762  			      struct xps_dev_maps *new_dev_maps, int index,
2763  			      int tc, bool skip_tc)
2764  {
2765  	int i, tci = index * dev_maps->num_tc;
2766  	struct xps_map *map;
2767  
2768  	/* copy maps belonging to foreign traffic classes */
2769  	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2770  		if (i == tc && skip_tc)
2771  			continue;
2772  
2773  		/* fill in the new device map from the old device map */
2774  		map = xmap_dereference(dev_maps->attr_map[tci]);
2775  		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2776  	}
2777  }
2778  
2779  /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2780  int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2781  			  u16 index, enum xps_map_type type)
2782  {
2783  	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2784  	const unsigned long *online_mask = NULL;
2785  	bool active = false, copy = false;
2786  	int i, j, tci, numa_node_id = -2;
2787  	int maps_sz, num_tc = 1, tc = 0;
2788  	struct xps_map *map, *new_map;
2789  	unsigned int nr_ids;
2790  
2791  	WARN_ON_ONCE(index >= dev->num_tx_queues);
2792  
2793  	if (dev->num_tc) {
2794  		/* Do not allow XPS on subordinate device directly */
2795  		num_tc = dev->num_tc;
2796  		if (num_tc < 0)
2797  			return -EINVAL;
2798  
2799  		/* If queue belongs to subordinate dev use its map */
2800  		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2801  
2802  		tc = netdev_txq_to_tc(dev, index);
2803  		if (tc < 0)
2804  			return -EINVAL;
2805  	}
2806  
2807  	mutex_lock(&xps_map_mutex);
2808  
2809  	dev_maps = xmap_dereference(dev->xps_maps[type]);
2810  	if (type == XPS_RXQS) {
2811  		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2812  		nr_ids = dev->num_rx_queues;
2813  	} else {
2814  		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2815  		if (num_possible_cpus() > 1)
2816  			online_mask = cpumask_bits(cpu_online_mask);
2817  		nr_ids = nr_cpu_ids;
2818  	}
2819  
2820  	if (maps_sz < L1_CACHE_BYTES)
2821  		maps_sz = L1_CACHE_BYTES;
2822  
2823  	/* The old dev_maps could be larger or smaller than the one we're
2824  	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2825  	 * between. We could try to be smart, but let's be safe instead and only
2826  	 * copy foreign traffic classes if the two map sizes match.
2827  	 */
2828  	if (dev_maps &&
2829  	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2830  		copy = true;
2831  
2832  	/* allocate memory for queue storage */
2833  	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2834  	     j < nr_ids;) {
2835  		if (!new_dev_maps) {
2836  			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2837  			if (!new_dev_maps) {
2838  				mutex_unlock(&xps_map_mutex);
2839  				return -ENOMEM;
2840  			}
2841  
2842  			new_dev_maps->nr_ids = nr_ids;
2843  			new_dev_maps->num_tc = num_tc;
2844  		}
2845  
2846  		tci = j * num_tc + tc;
2847  		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2848  
2849  		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2850  		if (!map)
2851  			goto error;
2852  
2853  		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2854  	}
2855  
2856  	if (!new_dev_maps)
2857  		goto out_no_new_maps;
2858  
2859  	if (!dev_maps) {
2860  		/* Increment static keys at most once per type */
2861  		static_key_slow_inc_cpuslocked(&xps_needed);
2862  		if (type == XPS_RXQS)
2863  			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2864  	}
2865  
2866  	for (j = 0; j < nr_ids; j++) {
2867  		bool skip_tc = false;
2868  
2869  		tci = j * num_tc + tc;
2870  		if (netif_attr_test_mask(j, mask, nr_ids) &&
2871  		    netif_attr_test_online(j, online_mask, nr_ids)) {
2872  			/* add tx-queue to CPU/rx-queue maps */
2873  			int pos = 0;
2874  
2875  			skip_tc = true;
2876  
2877  			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878  			while ((pos < map->len) && (map->queues[pos] != index))
2879  				pos++;
2880  
2881  			if (pos == map->len)
2882  				map->queues[map->len++] = index;
2883  #ifdef CONFIG_NUMA
2884  			if (type == XPS_CPUS) {
2885  				if (numa_node_id == -2)
2886  					numa_node_id = cpu_to_node(j);
2887  				else if (numa_node_id != cpu_to_node(j))
2888  					numa_node_id = -1;
2889  			}
2890  #endif
2891  		}
2892  
2893  		if (copy)
2894  			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2895  					  skip_tc);
2896  	}
2897  
2898  	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2899  
2900  	/* Cleanup old maps */
2901  	if (!dev_maps)
2902  		goto out_no_old_maps;
2903  
2904  	for (j = 0; j < dev_maps->nr_ids; j++) {
2905  		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2906  			map = xmap_dereference(dev_maps->attr_map[tci]);
2907  			if (!map)
2908  				continue;
2909  
2910  			if (copy) {
2911  				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2912  				if (map == new_map)
2913  					continue;
2914  			}
2915  
2916  			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2917  			kfree_rcu(map, rcu);
2918  		}
2919  	}
2920  
2921  	old_dev_maps = dev_maps;
2922  
2923  out_no_old_maps:
2924  	dev_maps = new_dev_maps;
2925  	active = true;
2926  
2927  out_no_new_maps:
2928  	if (type == XPS_CPUS)
2929  		/* update Tx queue numa node */
2930  		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2931  					     (numa_node_id >= 0) ?
2932  					     numa_node_id : NUMA_NO_NODE);
2933  
2934  	if (!dev_maps)
2935  		goto out_no_maps;
2936  
2937  	/* removes tx-queue from unused CPUs/rx-queues */
2938  	for (j = 0; j < dev_maps->nr_ids; j++) {
2939  		tci = j * dev_maps->num_tc;
2940  
2941  		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2942  			if (i == tc &&
2943  			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2944  			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2945  				continue;
2946  
2947  			active |= remove_xps_queue(dev_maps,
2948  						   copy ? old_dev_maps : NULL,
2949  						   tci, index);
2950  		}
2951  	}
2952  
2953  	if (old_dev_maps)
2954  		kfree_rcu(old_dev_maps, rcu);
2955  
2956  	/* free map if not active */
2957  	if (!active)
2958  		reset_xps_maps(dev, dev_maps, type);
2959  
2960  out_no_maps:
2961  	mutex_unlock(&xps_map_mutex);
2962  
2963  	return 0;
2964  error:
2965  	/* remove any maps that we added */
2966  	for (j = 0; j < nr_ids; j++) {
2967  		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2968  			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2969  			map = copy ?
2970  			      xmap_dereference(dev_maps->attr_map[tci]) :
2971  			      NULL;
2972  			if (new_map && new_map != map)
2973  				kfree(new_map);
2974  		}
2975  	}
2976  
2977  	mutex_unlock(&xps_map_mutex);
2978  
2979  	kfree(new_dev_maps);
2980  	return -ENOMEM;
2981  }
2982  EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2983  
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2984  int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2985  			u16 index)
2986  {
2987  	int ret;
2988  
2989  	cpus_read_lock();
2990  	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2991  	cpus_read_unlock();
2992  
2993  	return ret;
2994  }
2995  EXPORT_SYMBOL(netif_set_xps_queue);
2996  
2997  #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2998  static void netdev_unbind_all_sb_channels(struct net_device *dev)
2999  {
3000  	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3001  
3002  	/* Unbind any subordinate channels */
3003  	while (txq-- != &dev->_tx[0]) {
3004  		if (txq->sb_dev)
3005  			netdev_unbind_sb_channel(dev, txq->sb_dev);
3006  	}
3007  }
3008  
netdev_reset_tc(struct net_device * dev)3009  void netdev_reset_tc(struct net_device *dev)
3010  {
3011  #ifdef CONFIG_XPS
3012  	netif_reset_xps_queues_gt(dev, 0);
3013  #endif
3014  	netdev_unbind_all_sb_channels(dev);
3015  
3016  	/* Reset TC configuration of device */
3017  	dev->num_tc = 0;
3018  	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3019  	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3020  }
3021  EXPORT_SYMBOL(netdev_reset_tc);
3022  
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3023  int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3024  {
3025  	if (tc >= dev->num_tc)
3026  		return -EINVAL;
3027  
3028  #ifdef CONFIG_XPS
3029  	netif_reset_xps_queues(dev, offset, count);
3030  #endif
3031  	dev->tc_to_txq[tc].count = count;
3032  	dev->tc_to_txq[tc].offset = offset;
3033  	return 0;
3034  }
3035  EXPORT_SYMBOL(netdev_set_tc_queue);
3036  
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3037  int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3038  {
3039  	if (num_tc > TC_MAX_QUEUE)
3040  		return -EINVAL;
3041  
3042  #ifdef CONFIG_XPS
3043  	netif_reset_xps_queues_gt(dev, 0);
3044  #endif
3045  	netdev_unbind_all_sb_channels(dev);
3046  
3047  	dev->num_tc = num_tc;
3048  	return 0;
3049  }
3050  EXPORT_SYMBOL(netdev_set_num_tc);
3051  
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3052  void netdev_unbind_sb_channel(struct net_device *dev,
3053  			      struct net_device *sb_dev)
3054  {
3055  	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3056  
3057  #ifdef CONFIG_XPS
3058  	netif_reset_xps_queues_gt(sb_dev, 0);
3059  #endif
3060  	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3061  	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3062  
3063  	while (txq-- != &dev->_tx[0]) {
3064  		if (txq->sb_dev == sb_dev)
3065  			txq->sb_dev = NULL;
3066  	}
3067  }
3068  EXPORT_SYMBOL(netdev_unbind_sb_channel);
3069  
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3070  int netdev_bind_sb_channel_queue(struct net_device *dev,
3071  				 struct net_device *sb_dev,
3072  				 u8 tc, u16 count, u16 offset)
3073  {
3074  	/* Make certain the sb_dev and dev are already configured */
3075  	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3076  		return -EINVAL;
3077  
3078  	/* We cannot hand out queues we don't have */
3079  	if ((offset + count) > dev->real_num_tx_queues)
3080  		return -EINVAL;
3081  
3082  	/* Record the mapping */
3083  	sb_dev->tc_to_txq[tc].count = count;
3084  	sb_dev->tc_to_txq[tc].offset = offset;
3085  
3086  	/* Provide a way for Tx queue to find the tc_to_txq map or
3087  	 * XPS map for itself.
3088  	 */
3089  	while (count--)
3090  		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3091  
3092  	return 0;
3093  }
3094  EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3095  
netdev_set_sb_channel(struct net_device * dev,u16 channel)3096  int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3097  {
3098  	/* Do not use a multiqueue device to represent a subordinate channel */
3099  	if (netif_is_multiqueue(dev))
3100  		return -ENODEV;
3101  
3102  	/* We allow channels 1 - 32767 to be used for subordinate channels.
3103  	 * Channel 0 is meant to be "native" mode and used only to represent
3104  	 * the main root device. We allow writing 0 to reset the device back
3105  	 * to normal mode after being used as a subordinate channel.
3106  	 */
3107  	if (channel > S16_MAX)
3108  		return -EINVAL;
3109  
3110  	dev->num_tc = -channel;
3111  
3112  	return 0;
3113  }
3114  EXPORT_SYMBOL(netdev_set_sb_channel);
3115  
3116  /*
3117   * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3118   * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3119   */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3120  int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3121  {
3122  	bool disabling;
3123  	int rc;
3124  
3125  	disabling = txq < dev->real_num_tx_queues;
3126  
3127  	if (txq < 1 || txq > dev->num_tx_queues)
3128  		return -EINVAL;
3129  
3130  	if (dev->reg_state == NETREG_REGISTERED ||
3131  	    dev->reg_state == NETREG_UNREGISTERING) {
3132  		ASSERT_RTNL();
3133  		netdev_ops_assert_locked(dev);
3134  
3135  		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3136  						  txq);
3137  		if (rc)
3138  			return rc;
3139  
3140  		if (dev->num_tc)
3141  			netif_setup_tc(dev, txq);
3142  
3143  		net_shaper_set_real_num_tx_queues(dev, txq);
3144  
3145  		dev_qdisc_change_real_num_tx(dev, txq);
3146  
3147  		dev->real_num_tx_queues = txq;
3148  
3149  		if (disabling) {
3150  			synchronize_net();
3151  			qdisc_reset_all_tx_gt(dev, txq);
3152  #ifdef CONFIG_XPS
3153  			netif_reset_xps_queues_gt(dev, txq);
3154  #endif
3155  		}
3156  	} else {
3157  		dev->real_num_tx_queues = txq;
3158  	}
3159  
3160  	return 0;
3161  }
3162  EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3163  
3164  /**
3165   *	netif_set_real_num_rx_queues - set actual number of RX queues used
3166   *	@dev: Network device
3167   *	@rxq: Actual number of RX queues
3168   *
3169   *	This must be called either with the rtnl_lock held or before
3170   *	registration of the net device.  Returns 0 on success, or a
3171   *	negative error code.  If called before registration, it always
3172   *	succeeds.
3173   */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3174  int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3175  {
3176  	int rc;
3177  
3178  	if (rxq < 1 || rxq > dev->num_rx_queues)
3179  		return -EINVAL;
3180  
3181  	if (dev->reg_state == NETREG_REGISTERED) {
3182  		ASSERT_RTNL();
3183  		netdev_ops_assert_locked(dev);
3184  
3185  		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3186  						  rxq);
3187  		if (rc)
3188  			return rc;
3189  	}
3190  
3191  	dev->real_num_rx_queues = rxq;
3192  	return 0;
3193  }
3194  EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3195  
3196  /**
3197   *	netif_set_real_num_queues - set actual number of RX and TX queues used
3198   *	@dev: Network device
3199   *	@txq: Actual number of TX queues
3200   *	@rxq: Actual number of RX queues
3201   *
3202   *	Set the real number of both TX and RX queues.
3203   *	Does nothing if the number of queues is already correct.
3204   */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3205  int netif_set_real_num_queues(struct net_device *dev,
3206  			      unsigned int txq, unsigned int rxq)
3207  {
3208  	unsigned int old_rxq = dev->real_num_rx_queues;
3209  	int err;
3210  
3211  	if (txq < 1 || txq > dev->num_tx_queues ||
3212  	    rxq < 1 || rxq > dev->num_rx_queues)
3213  		return -EINVAL;
3214  
3215  	/* Start from increases, so the error path only does decreases -
3216  	 * decreases can't fail.
3217  	 */
3218  	if (rxq > dev->real_num_rx_queues) {
3219  		err = netif_set_real_num_rx_queues(dev, rxq);
3220  		if (err)
3221  			return err;
3222  	}
3223  	if (txq > dev->real_num_tx_queues) {
3224  		err = netif_set_real_num_tx_queues(dev, txq);
3225  		if (err)
3226  			goto undo_rx;
3227  	}
3228  	if (rxq < dev->real_num_rx_queues)
3229  		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3230  	if (txq < dev->real_num_tx_queues)
3231  		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3232  
3233  	return 0;
3234  undo_rx:
3235  	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3236  	return err;
3237  }
3238  EXPORT_SYMBOL(netif_set_real_num_queues);
3239  
3240  /**
3241   * netif_set_tso_max_size() - set the max size of TSO frames supported
3242   * @dev:	netdev to update
3243   * @size:	max skb->len of a TSO frame
3244   *
3245   * Set the limit on the size of TSO super-frames the device can handle.
3246   * Unless explicitly set the stack will assume the value of
3247   * %GSO_LEGACY_MAX_SIZE.
3248   */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3249  void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3250  {
3251  	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3252  	if (size < READ_ONCE(dev->gso_max_size))
3253  		netif_set_gso_max_size(dev, size);
3254  	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3255  		netif_set_gso_ipv4_max_size(dev, size);
3256  }
3257  EXPORT_SYMBOL(netif_set_tso_max_size);
3258  
3259  /**
3260   * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3261   * @dev:	netdev to update
3262   * @segs:	max number of TCP segments
3263   *
3264   * Set the limit on the number of TCP segments the device can generate from
3265   * a single TSO super-frame.
3266   * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3267   */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3268  void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3269  {
3270  	dev->tso_max_segs = segs;
3271  	if (segs < READ_ONCE(dev->gso_max_segs))
3272  		netif_set_gso_max_segs(dev, segs);
3273  }
3274  EXPORT_SYMBOL(netif_set_tso_max_segs);
3275  
3276  /**
3277   * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3278   * @to:		netdev to update
3279   * @from:	netdev from which to copy the limits
3280   */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3281  void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3282  {
3283  	netif_set_tso_max_size(to, from->tso_max_size);
3284  	netif_set_tso_max_segs(to, from->tso_max_segs);
3285  }
3286  EXPORT_SYMBOL(netif_inherit_tso_max);
3287  
3288  /**
3289   * netif_get_num_default_rss_queues - default number of RSS queues
3290   *
3291   * Default value is the number of physical cores if there are only 1 or 2, or
3292   * divided by 2 if there are more.
3293   */
netif_get_num_default_rss_queues(void)3294  int netif_get_num_default_rss_queues(void)
3295  {
3296  	cpumask_var_t cpus;
3297  	int cpu, count = 0;
3298  
3299  	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3300  		return 1;
3301  
3302  	cpumask_copy(cpus, cpu_online_mask);
3303  	for_each_cpu(cpu, cpus) {
3304  		++count;
3305  		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3306  	}
3307  	free_cpumask_var(cpus);
3308  
3309  	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3310  }
3311  EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3312  
__netif_reschedule(struct Qdisc * q)3313  static void __netif_reschedule(struct Qdisc *q)
3314  {
3315  	struct softnet_data *sd;
3316  	unsigned long flags;
3317  
3318  	local_irq_save(flags);
3319  	sd = this_cpu_ptr(&softnet_data);
3320  	q->next_sched = NULL;
3321  	*sd->output_queue_tailp = q;
3322  	sd->output_queue_tailp = &q->next_sched;
3323  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3324  	local_irq_restore(flags);
3325  }
3326  
__netif_schedule(struct Qdisc * q)3327  void __netif_schedule(struct Qdisc *q)
3328  {
3329  	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3330  		__netif_reschedule(q);
3331  }
3332  EXPORT_SYMBOL(__netif_schedule);
3333  
3334  struct dev_kfree_skb_cb {
3335  	enum skb_drop_reason reason;
3336  };
3337  
get_kfree_skb_cb(const struct sk_buff * skb)3338  static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3339  {
3340  	return (struct dev_kfree_skb_cb *)skb->cb;
3341  }
3342  
netif_schedule_queue(struct netdev_queue * txq)3343  void netif_schedule_queue(struct netdev_queue *txq)
3344  {
3345  	rcu_read_lock();
3346  	if (!netif_xmit_stopped(txq)) {
3347  		struct Qdisc *q = rcu_dereference(txq->qdisc);
3348  
3349  		__netif_schedule(q);
3350  	}
3351  	rcu_read_unlock();
3352  }
3353  EXPORT_SYMBOL(netif_schedule_queue);
3354  
netif_tx_wake_queue(struct netdev_queue * dev_queue)3355  void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3356  {
3357  	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3358  		struct Qdisc *q;
3359  
3360  		rcu_read_lock();
3361  		q = rcu_dereference(dev_queue->qdisc);
3362  		__netif_schedule(q);
3363  		rcu_read_unlock();
3364  	}
3365  }
3366  EXPORT_SYMBOL(netif_tx_wake_queue);
3367  
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3368  void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3369  {
3370  	unsigned long flags;
3371  
3372  	if (unlikely(!skb))
3373  		return;
3374  
3375  	if (likely(refcount_read(&skb->users) == 1)) {
3376  		smp_rmb();
3377  		refcount_set(&skb->users, 0);
3378  	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3379  		return;
3380  	}
3381  	get_kfree_skb_cb(skb)->reason = reason;
3382  	local_irq_save(flags);
3383  	skb->next = __this_cpu_read(softnet_data.completion_queue);
3384  	__this_cpu_write(softnet_data.completion_queue, skb);
3385  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3386  	local_irq_restore(flags);
3387  }
3388  EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3389  
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3390  void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3391  {
3392  	if (in_hardirq() || irqs_disabled())
3393  		dev_kfree_skb_irq_reason(skb, reason);
3394  	else
3395  		kfree_skb_reason(skb, reason);
3396  }
3397  EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3398  
3399  
3400  /**
3401   * netif_device_detach - mark device as removed
3402   * @dev: network device
3403   *
3404   * Mark device as removed from system and therefore no longer available.
3405   */
netif_device_detach(struct net_device * dev)3406  void netif_device_detach(struct net_device *dev)
3407  {
3408  	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3409  	    netif_running(dev)) {
3410  		netif_tx_stop_all_queues(dev);
3411  	}
3412  }
3413  EXPORT_SYMBOL(netif_device_detach);
3414  
3415  /**
3416   * netif_device_attach - mark device as attached
3417   * @dev: network device
3418   *
3419   * Mark device as attached from system and restart if needed.
3420   */
netif_device_attach(struct net_device * dev)3421  void netif_device_attach(struct net_device *dev)
3422  {
3423  	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3424  	    netif_running(dev)) {
3425  		netif_tx_wake_all_queues(dev);
3426  		netdev_watchdog_up(dev);
3427  	}
3428  }
3429  EXPORT_SYMBOL(netif_device_attach);
3430  
3431  /*
3432   * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3433   * to be used as a distribution range.
3434   */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3435  static u16 skb_tx_hash(const struct net_device *dev,
3436  		       const struct net_device *sb_dev,
3437  		       struct sk_buff *skb)
3438  {
3439  	u32 hash;
3440  	u16 qoffset = 0;
3441  	u16 qcount = dev->real_num_tx_queues;
3442  
3443  	if (dev->num_tc) {
3444  		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3445  
3446  		qoffset = sb_dev->tc_to_txq[tc].offset;
3447  		qcount = sb_dev->tc_to_txq[tc].count;
3448  		if (unlikely(!qcount)) {
3449  			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3450  					     sb_dev->name, qoffset, tc);
3451  			qoffset = 0;
3452  			qcount = dev->real_num_tx_queues;
3453  		}
3454  	}
3455  
3456  	if (skb_rx_queue_recorded(skb)) {
3457  		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3458  		hash = skb_get_rx_queue(skb);
3459  		if (hash >= qoffset)
3460  			hash -= qoffset;
3461  		while (unlikely(hash >= qcount))
3462  			hash -= qcount;
3463  		return hash + qoffset;
3464  	}
3465  
3466  	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3467  }
3468  
skb_warn_bad_offload(const struct sk_buff * skb)3469  void skb_warn_bad_offload(const struct sk_buff *skb)
3470  {
3471  	static const netdev_features_t null_features;
3472  	struct net_device *dev = skb->dev;
3473  	const char *name = "";
3474  
3475  	if (!net_ratelimit())
3476  		return;
3477  
3478  	if (dev) {
3479  		if (dev->dev.parent)
3480  			name = dev_driver_string(dev->dev.parent);
3481  		else
3482  			name = netdev_name(dev);
3483  	}
3484  	skb_dump(KERN_WARNING, skb, false);
3485  	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3486  	     name, dev ? &dev->features : &null_features,
3487  	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3488  }
3489  
3490  /*
3491   * Invalidate hardware checksum when packet is to be mangled, and
3492   * complete checksum manually on outgoing path.
3493   */
skb_checksum_help(struct sk_buff * skb)3494  int skb_checksum_help(struct sk_buff *skb)
3495  {
3496  	__wsum csum;
3497  	int ret = 0, offset;
3498  
3499  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3500  		goto out_set_summed;
3501  
3502  	if (unlikely(skb_is_gso(skb))) {
3503  		skb_warn_bad_offload(skb);
3504  		return -EINVAL;
3505  	}
3506  
3507  	if (!skb_frags_readable(skb)) {
3508  		return -EFAULT;
3509  	}
3510  
3511  	/* Before computing a checksum, we should make sure no frag could
3512  	 * be modified by an external entity : checksum could be wrong.
3513  	 */
3514  	if (skb_has_shared_frag(skb)) {
3515  		ret = __skb_linearize(skb);
3516  		if (ret)
3517  			goto out;
3518  	}
3519  
3520  	offset = skb_checksum_start_offset(skb);
3521  	ret = -EINVAL;
3522  	if (unlikely(offset >= skb_headlen(skb))) {
3523  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3524  		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3525  			  offset, skb_headlen(skb));
3526  		goto out;
3527  	}
3528  	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3529  
3530  	offset += skb->csum_offset;
3531  	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3532  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3533  		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3534  			  offset + sizeof(__sum16), skb_headlen(skb));
3535  		goto out;
3536  	}
3537  	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3538  	if (ret)
3539  		goto out;
3540  
3541  	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3542  out_set_summed:
3543  	skb->ip_summed = CHECKSUM_NONE;
3544  out:
3545  	return ret;
3546  }
3547  EXPORT_SYMBOL(skb_checksum_help);
3548  
skb_crc32c_csum_help(struct sk_buff * skb)3549  int skb_crc32c_csum_help(struct sk_buff *skb)
3550  {
3551  	__le32 crc32c_csum;
3552  	int ret = 0, offset, start;
3553  
3554  	if (skb->ip_summed != CHECKSUM_PARTIAL)
3555  		goto out;
3556  
3557  	if (unlikely(skb_is_gso(skb)))
3558  		goto out;
3559  
3560  	/* Before computing a checksum, we should make sure no frag could
3561  	 * be modified by an external entity : checksum could be wrong.
3562  	 */
3563  	if (unlikely(skb_has_shared_frag(skb))) {
3564  		ret = __skb_linearize(skb);
3565  		if (ret)
3566  			goto out;
3567  	}
3568  	start = skb_checksum_start_offset(skb);
3569  	offset = start + offsetof(struct sctphdr, checksum);
3570  	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3571  		ret = -EINVAL;
3572  		goto out;
3573  	}
3574  
3575  	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3576  	if (ret)
3577  		goto out;
3578  
3579  	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3580  						  skb->len - start, ~(__u32)0,
3581  						  crc32c_csum_stub));
3582  	*(__le32 *)(skb->data + offset) = crc32c_csum;
3583  	skb_reset_csum_not_inet(skb);
3584  out:
3585  	return ret;
3586  }
3587  EXPORT_SYMBOL(skb_crc32c_csum_help);
3588  
skb_network_protocol(struct sk_buff * skb,int * depth)3589  __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3590  {
3591  	__be16 type = skb->protocol;
3592  
3593  	/* Tunnel gso handlers can set protocol to ethernet. */
3594  	if (type == htons(ETH_P_TEB)) {
3595  		struct ethhdr *eth;
3596  
3597  		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3598  			return 0;
3599  
3600  		eth = (struct ethhdr *)skb->data;
3601  		type = eth->h_proto;
3602  	}
3603  
3604  	return vlan_get_protocol_and_depth(skb, type, depth);
3605  }
3606  
3607  
3608  /* Take action when hardware reception checksum errors are detected. */
3609  #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3610  static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3611  {
3612  	netdev_err(dev, "hw csum failure\n");
3613  	skb_dump(KERN_ERR, skb, true);
3614  	dump_stack();
3615  }
3616  
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3617  void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3618  {
3619  	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3620  }
3621  EXPORT_SYMBOL(netdev_rx_csum_fault);
3622  #endif
3623  
3624  /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3625  static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3626  {
3627  #ifdef CONFIG_HIGHMEM
3628  	int i;
3629  
3630  	if (!(dev->features & NETIF_F_HIGHDMA)) {
3631  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3632  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3633  			struct page *page = skb_frag_page(frag);
3634  
3635  			if (page && PageHighMem(page))
3636  				return 1;
3637  		}
3638  	}
3639  #endif
3640  	return 0;
3641  }
3642  
3643  /* If MPLS offload request, verify we are testing hardware MPLS features
3644   * instead of standard features for the netdev.
3645   */
3646  #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3647  static netdev_features_t net_mpls_features(struct sk_buff *skb,
3648  					   netdev_features_t features,
3649  					   __be16 type)
3650  {
3651  	if (eth_p_mpls(type))
3652  		features &= skb->dev->mpls_features;
3653  
3654  	return features;
3655  }
3656  #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3657  static netdev_features_t net_mpls_features(struct sk_buff *skb,
3658  					   netdev_features_t features,
3659  					   __be16 type)
3660  {
3661  	return features;
3662  }
3663  #endif
3664  
harmonize_features(struct sk_buff * skb,netdev_features_t features)3665  static netdev_features_t harmonize_features(struct sk_buff *skb,
3666  	netdev_features_t features)
3667  {
3668  	__be16 type;
3669  
3670  	type = skb_network_protocol(skb, NULL);
3671  	features = net_mpls_features(skb, features, type);
3672  
3673  	if (skb->ip_summed != CHECKSUM_NONE &&
3674  	    !can_checksum_protocol(features, type)) {
3675  		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3676  	}
3677  	if (illegal_highdma(skb->dev, skb))
3678  		features &= ~NETIF_F_SG;
3679  
3680  	return features;
3681  }
3682  
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3683  netdev_features_t passthru_features_check(struct sk_buff *skb,
3684  					  struct net_device *dev,
3685  					  netdev_features_t features)
3686  {
3687  	return features;
3688  }
3689  EXPORT_SYMBOL(passthru_features_check);
3690  
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3691  static netdev_features_t dflt_features_check(struct sk_buff *skb,
3692  					     struct net_device *dev,
3693  					     netdev_features_t features)
3694  {
3695  	return vlan_features_check(skb, features);
3696  }
3697  
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3698  static netdev_features_t gso_features_check(const struct sk_buff *skb,
3699  					    struct net_device *dev,
3700  					    netdev_features_t features)
3701  {
3702  	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3703  
3704  	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3705  		return features & ~NETIF_F_GSO_MASK;
3706  
3707  	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3708  		return features & ~NETIF_F_GSO_MASK;
3709  
3710  	if (!skb_shinfo(skb)->gso_type) {
3711  		skb_warn_bad_offload(skb);
3712  		return features & ~NETIF_F_GSO_MASK;
3713  	}
3714  
3715  	/* Support for GSO partial features requires software
3716  	 * intervention before we can actually process the packets
3717  	 * so we need to strip support for any partial features now
3718  	 * and we can pull them back in after we have partially
3719  	 * segmented the frame.
3720  	 */
3721  	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3722  		features &= ~dev->gso_partial_features;
3723  
3724  	/* Make sure to clear the IPv4 ID mangling feature if the
3725  	 * IPv4 header has the potential to be fragmented.
3726  	 */
3727  	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3728  		struct iphdr *iph = skb->encapsulation ?
3729  				    inner_ip_hdr(skb) : ip_hdr(skb);
3730  
3731  		if (!(iph->frag_off & htons(IP_DF)))
3732  			features &= ~NETIF_F_TSO_MANGLEID;
3733  	}
3734  
3735  	return features;
3736  }
3737  
netif_skb_features(struct sk_buff * skb)3738  netdev_features_t netif_skb_features(struct sk_buff *skb)
3739  {
3740  	struct net_device *dev = skb->dev;
3741  	netdev_features_t features = dev->features;
3742  
3743  	if (skb_is_gso(skb))
3744  		features = gso_features_check(skb, dev, features);
3745  
3746  	/* If encapsulation offload request, verify we are testing
3747  	 * hardware encapsulation features instead of standard
3748  	 * features for the netdev
3749  	 */
3750  	if (skb->encapsulation)
3751  		features &= dev->hw_enc_features;
3752  
3753  	if (skb_vlan_tagged(skb))
3754  		features = netdev_intersect_features(features,
3755  						     dev->vlan_features |
3756  						     NETIF_F_HW_VLAN_CTAG_TX |
3757  						     NETIF_F_HW_VLAN_STAG_TX);
3758  
3759  	if (dev->netdev_ops->ndo_features_check)
3760  		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3761  								features);
3762  	else
3763  		features &= dflt_features_check(skb, dev, features);
3764  
3765  	return harmonize_features(skb, features);
3766  }
3767  EXPORT_SYMBOL(netif_skb_features);
3768  
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3769  static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3770  		    struct netdev_queue *txq, bool more)
3771  {
3772  	unsigned int len;
3773  	int rc;
3774  
3775  	if (dev_nit_active_rcu(dev))
3776  		dev_queue_xmit_nit(skb, dev);
3777  
3778  	len = skb->len;
3779  	trace_net_dev_start_xmit(skb, dev);
3780  	rc = netdev_start_xmit(skb, dev, txq, more);
3781  	trace_net_dev_xmit(skb, rc, dev, len);
3782  
3783  	return rc;
3784  }
3785  
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3786  struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3787  				    struct netdev_queue *txq, int *ret)
3788  {
3789  	struct sk_buff *skb = first;
3790  	int rc = NETDEV_TX_OK;
3791  
3792  	while (skb) {
3793  		struct sk_buff *next = skb->next;
3794  
3795  		skb_mark_not_on_list(skb);
3796  		rc = xmit_one(skb, dev, txq, next != NULL);
3797  		if (unlikely(!dev_xmit_complete(rc))) {
3798  			skb->next = next;
3799  			goto out;
3800  		}
3801  
3802  		skb = next;
3803  		if (netif_tx_queue_stopped(txq) && skb) {
3804  			rc = NETDEV_TX_BUSY;
3805  			break;
3806  		}
3807  	}
3808  
3809  out:
3810  	*ret = rc;
3811  	return skb;
3812  }
3813  
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3814  static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3815  					  netdev_features_t features)
3816  {
3817  	if (skb_vlan_tag_present(skb) &&
3818  	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3819  		skb = __vlan_hwaccel_push_inside(skb);
3820  	return skb;
3821  }
3822  
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3823  int skb_csum_hwoffload_help(struct sk_buff *skb,
3824  			    const netdev_features_t features)
3825  {
3826  	if (unlikely(skb_csum_is_sctp(skb)))
3827  		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3828  			skb_crc32c_csum_help(skb);
3829  
3830  	if (features & NETIF_F_HW_CSUM)
3831  		return 0;
3832  
3833  	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3834  		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3835  		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3836  		    !ipv6_has_hopopt_jumbo(skb))
3837  			goto sw_checksum;
3838  
3839  		switch (skb->csum_offset) {
3840  		case offsetof(struct tcphdr, check):
3841  		case offsetof(struct udphdr, check):
3842  			return 0;
3843  		}
3844  	}
3845  
3846  sw_checksum:
3847  	return skb_checksum_help(skb);
3848  }
3849  EXPORT_SYMBOL(skb_csum_hwoffload_help);
3850  
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3851  static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3852  {
3853  	netdev_features_t features;
3854  
3855  	if (!skb_frags_readable(skb))
3856  		goto out_kfree_skb;
3857  
3858  	features = netif_skb_features(skb);
3859  	skb = validate_xmit_vlan(skb, features);
3860  	if (unlikely(!skb))
3861  		goto out_null;
3862  
3863  	skb = sk_validate_xmit_skb(skb, dev);
3864  	if (unlikely(!skb))
3865  		goto out_null;
3866  
3867  	if (netif_needs_gso(skb, features)) {
3868  		struct sk_buff *segs;
3869  
3870  		segs = skb_gso_segment(skb, features);
3871  		if (IS_ERR(segs)) {
3872  			goto out_kfree_skb;
3873  		} else if (segs) {
3874  			consume_skb(skb);
3875  			skb = segs;
3876  		}
3877  	} else {
3878  		if (skb_needs_linearize(skb, features) &&
3879  		    __skb_linearize(skb))
3880  			goto out_kfree_skb;
3881  
3882  		/* If packet is not checksummed and device does not
3883  		 * support checksumming for this protocol, complete
3884  		 * checksumming here.
3885  		 */
3886  		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3887  			if (skb->encapsulation)
3888  				skb_set_inner_transport_header(skb,
3889  							       skb_checksum_start_offset(skb));
3890  			else
3891  				skb_set_transport_header(skb,
3892  							 skb_checksum_start_offset(skb));
3893  			if (skb_csum_hwoffload_help(skb, features))
3894  				goto out_kfree_skb;
3895  		}
3896  	}
3897  
3898  	skb = validate_xmit_xfrm(skb, features, again);
3899  
3900  	return skb;
3901  
3902  out_kfree_skb:
3903  	kfree_skb(skb);
3904  out_null:
3905  	dev_core_stats_tx_dropped_inc(dev);
3906  	return NULL;
3907  }
3908  
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3909  struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3910  {
3911  	struct sk_buff *next, *head = NULL, *tail;
3912  
3913  	for (; skb != NULL; skb = next) {
3914  		next = skb->next;
3915  		skb_mark_not_on_list(skb);
3916  
3917  		/* in case skb won't be segmented, point to itself */
3918  		skb->prev = skb;
3919  
3920  		skb = validate_xmit_skb(skb, dev, again);
3921  		if (!skb)
3922  			continue;
3923  
3924  		if (!head)
3925  			head = skb;
3926  		else
3927  			tail->next = skb;
3928  		/* If skb was segmented, skb->prev points to
3929  		 * the last segment. If not, it still contains skb.
3930  		 */
3931  		tail = skb->prev;
3932  	}
3933  	return head;
3934  }
3935  EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3936  
qdisc_pkt_len_init(struct sk_buff * skb)3937  static void qdisc_pkt_len_init(struct sk_buff *skb)
3938  {
3939  	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3940  
3941  	qdisc_skb_cb(skb)->pkt_len = skb->len;
3942  
3943  	/* To get more precise estimation of bytes sent on wire,
3944  	 * we add to pkt_len the headers size of all segments
3945  	 */
3946  	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3947  		u16 gso_segs = shinfo->gso_segs;
3948  		unsigned int hdr_len;
3949  
3950  		/* mac layer + network layer */
3951  		hdr_len = skb_transport_offset(skb);
3952  
3953  		/* + transport layer */
3954  		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3955  			const struct tcphdr *th;
3956  			struct tcphdr _tcphdr;
3957  
3958  			th = skb_header_pointer(skb, hdr_len,
3959  						sizeof(_tcphdr), &_tcphdr);
3960  			if (likely(th))
3961  				hdr_len += __tcp_hdrlen(th);
3962  		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3963  			struct udphdr _udphdr;
3964  
3965  			if (skb_header_pointer(skb, hdr_len,
3966  					       sizeof(_udphdr), &_udphdr))
3967  				hdr_len += sizeof(struct udphdr);
3968  		}
3969  
3970  		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3971  			int payload = skb->len - hdr_len;
3972  
3973  			/* Malicious packet. */
3974  			if (payload <= 0)
3975  				return;
3976  			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3977  		}
3978  		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3979  	}
3980  }
3981  
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3982  static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3983  			     struct sk_buff **to_free,
3984  			     struct netdev_queue *txq)
3985  {
3986  	int rc;
3987  
3988  	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3989  	if (rc == NET_XMIT_SUCCESS)
3990  		trace_qdisc_enqueue(q, txq, skb);
3991  	return rc;
3992  }
3993  
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3994  static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3995  				 struct net_device *dev,
3996  				 struct netdev_queue *txq)
3997  {
3998  	spinlock_t *root_lock = qdisc_lock(q);
3999  	struct sk_buff *to_free = NULL;
4000  	bool contended;
4001  	int rc;
4002  
4003  	qdisc_calculate_pkt_len(skb, q);
4004  
4005  	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4006  
4007  	if (q->flags & TCQ_F_NOLOCK) {
4008  		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4009  		    qdisc_run_begin(q)) {
4010  			/* Retest nolock_qdisc_is_empty() within the protection
4011  			 * of q->seqlock to protect from racing with requeuing.
4012  			 */
4013  			if (unlikely(!nolock_qdisc_is_empty(q))) {
4014  				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4015  				__qdisc_run(q);
4016  				qdisc_run_end(q);
4017  
4018  				goto no_lock_out;
4019  			}
4020  
4021  			qdisc_bstats_cpu_update(q, skb);
4022  			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4023  			    !nolock_qdisc_is_empty(q))
4024  				__qdisc_run(q);
4025  
4026  			qdisc_run_end(q);
4027  			return NET_XMIT_SUCCESS;
4028  		}
4029  
4030  		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4031  		qdisc_run(q);
4032  
4033  no_lock_out:
4034  		if (unlikely(to_free))
4035  			kfree_skb_list_reason(to_free,
4036  					      tcf_get_drop_reason(to_free));
4037  		return rc;
4038  	}
4039  
4040  	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4041  		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4042  		return NET_XMIT_DROP;
4043  	}
4044  	/*
4045  	 * Heuristic to force contended enqueues to serialize on a
4046  	 * separate lock before trying to get qdisc main lock.
4047  	 * This permits qdisc->running owner to get the lock more
4048  	 * often and dequeue packets faster.
4049  	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4050  	 * and then other tasks will only enqueue packets. The packets will be
4051  	 * sent after the qdisc owner is scheduled again. To prevent this
4052  	 * scenario the task always serialize on the lock.
4053  	 */
4054  	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4055  	if (unlikely(contended))
4056  		spin_lock(&q->busylock);
4057  
4058  	spin_lock(root_lock);
4059  	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4060  		__qdisc_drop(skb, &to_free);
4061  		rc = NET_XMIT_DROP;
4062  	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4063  		   qdisc_run_begin(q)) {
4064  		/*
4065  		 * This is a work-conserving queue; there are no old skbs
4066  		 * waiting to be sent out; and the qdisc is not running -
4067  		 * xmit the skb directly.
4068  		 */
4069  
4070  		qdisc_bstats_update(q, skb);
4071  
4072  		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4073  			if (unlikely(contended)) {
4074  				spin_unlock(&q->busylock);
4075  				contended = false;
4076  			}
4077  			__qdisc_run(q);
4078  		}
4079  
4080  		qdisc_run_end(q);
4081  		rc = NET_XMIT_SUCCESS;
4082  	} else {
4083  		WRITE_ONCE(q->owner, smp_processor_id());
4084  		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4085  		WRITE_ONCE(q->owner, -1);
4086  		if (qdisc_run_begin(q)) {
4087  			if (unlikely(contended)) {
4088  				spin_unlock(&q->busylock);
4089  				contended = false;
4090  			}
4091  			__qdisc_run(q);
4092  			qdisc_run_end(q);
4093  		}
4094  	}
4095  	spin_unlock(root_lock);
4096  	if (unlikely(to_free))
4097  		kfree_skb_list_reason(to_free,
4098  				      tcf_get_drop_reason(to_free));
4099  	if (unlikely(contended))
4100  		spin_unlock(&q->busylock);
4101  	return rc;
4102  }
4103  
4104  #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4105  static void skb_update_prio(struct sk_buff *skb)
4106  {
4107  	const struct netprio_map *map;
4108  	const struct sock *sk;
4109  	unsigned int prioidx;
4110  
4111  	if (skb->priority)
4112  		return;
4113  	map = rcu_dereference_bh(skb->dev->priomap);
4114  	if (!map)
4115  		return;
4116  	sk = skb_to_full_sk(skb);
4117  	if (!sk)
4118  		return;
4119  
4120  	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4121  
4122  	if (prioidx < map->priomap_len)
4123  		skb->priority = map->priomap[prioidx];
4124  }
4125  #else
4126  #define skb_update_prio(skb)
4127  #endif
4128  
4129  /**
4130   *	dev_loopback_xmit - loop back @skb
4131   *	@net: network namespace this loopback is happening in
4132   *	@sk:  sk needed to be a netfilter okfn
4133   *	@skb: buffer to transmit
4134   */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4135  int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4136  {
4137  	skb_reset_mac_header(skb);
4138  	__skb_pull(skb, skb_network_offset(skb));
4139  	skb->pkt_type = PACKET_LOOPBACK;
4140  	if (skb->ip_summed == CHECKSUM_NONE)
4141  		skb->ip_summed = CHECKSUM_UNNECESSARY;
4142  	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4143  	skb_dst_force(skb);
4144  	netif_rx(skb);
4145  	return 0;
4146  }
4147  EXPORT_SYMBOL(dev_loopback_xmit);
4148  
4149  #ifdef CONFIG_NET_EGRESS
4150  static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4151  netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4152  {
4153  	int qm = skb_get_queue_mapping(skb);
4154  
4155  	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4156  }
4157  
4158  #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4159  static bool netdev_xmit_txqueue_skipped(void)
4160  {
4161  	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4162  }
4163  
netdev_xmit_skip_txqueue(bool skip)4164  void netdev_xmit_skip_txqueue(bool skip)
4165  {
4166  	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4167  }
4168  EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4169  
4170  #else
netdev_xmit_txqueue_skipped(void)4171  static bool netdev_xmit_txqueue_skipped(void)
4172  {
4173  	return current->net_xmit.skip_txqueue;
4174  }
4175  
netdev_xmit_skip_txqueue(bool skip)4176  void netdev_xmit_skip_txqueue(bool skip)
4177  {
4178  	current->net_xmit.skip_txqueue = skip;
4179  }
4180  EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4181  #endif
4182  #endif /* CONFIG_NET_EGRESS */
4183  
4184  #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4185  static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4186  		  enum skb_drop_reason *drop_reason)
4187  {
4188  	int ret = TC_ACT_UNSPEC;
4189  #ifdef CONFIG_NET_CLS_ACT
4190  	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4191  	struct tcf_result res;
4192  
4193  	if (!miniq)
4194  		return ret;
4195  
4196  	/* Global bypass */
4197  	if (!static_branch_likely(&tcf_sw_enabled_key))
4198  		return ret;
4199  
4200  	/* Block-wise bypass */
4201  	if (tcf_block_bypass_sw(miniq->block))
4202  		return ret;
4203  
4204  	tc_skb_cb(skb)->mru = 0;
4205  	tc_skb_cb(skb)->post_ct = false;
4206  	tcf_set_drop_reason(skb, *drop_reason);
4207  
4208  	mini_qdisc_bstats_cpu_update(miniq, skb);
4209  	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4210  	/* Only tcf related quirks below. */
4211  	switch (ret) {
4212  	case TC_ACT_SHOT:
4213  		*drop_reason = tcf_get_drop_reason(skb);
4214  		mini_qdisc_qstats_cpu_drop(miniq);
4215  		break;
4216  	case TC_ACT_OK:
4217  	case TC_ACT_RECLASSIFY:
4218  		skb->tc_index = TC_H_MIN(res.classid);
4219  		break;
4220  	}
4221  #endif /* CONFIG_NET_CLS_ACT */
4222  	return ret;
4223  }
4224  
4225  static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4226  
tcx_inc(void)4227  void tcx_inc(void)
4228  {
4229  	static_branch_inc(&tcx_needed_key);
4230  }
4231  
tcx_dec(void)4232  void tcx_dec(void)
4233  {
4234  	static_branch_dec(&tcx_needed_key);
4235  }
4236  
4237  static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4238  tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4239  	const bool needs_mac)
4240  {
4241  	const struct bpf_mprog_fp *fp;
4242  	const struct bpf_prog *prog;
4243  	int ret = TCX_NEXT;
4244  
4245  	if (needs_mac)
4246  		__skb_push(skb, skb->mac_len);
4247  	bpf_mprog_foreach_prog(entry, fp, prog) {
4248  		bpf_compute_data_pointers(skb);
4249  		ret = bpf_prog_run(prog, skb);
4250  		if (ret != TCX_NEXT)
4251  			break;
4252  	}
4253  	if (needs_mac)
4254  		__skb_pull(skb, skb->mac_len);
4255  	return tcx_action_code(skb, ret);
4256  }
4257  
4258  static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4259  sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4260  		   struct net_device *orig_dev, bool *another)
4261  {
4262  	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4263  	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4264  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4265  	int sch_ret;
4266  
4267  	if (!entry)
4268  		return skb;
4269  
4270  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4271  	if (*pt_prev) {
4272  		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4273  		*pt_prev = NULL;
4274  	}
4275  
4276  	qdisc_skb_cb(skb)->pkt_len = skb->len;
4277  	tcx_set_ingress(skb, true);
4278  
4279  	if (static_branch_unlikely(&tcx_needed_key)) {
4280  		sch_ret = tcx_run(entry, skb, true);
4281  		if (sch_ret != TC_ACT_UNSPEC)
4282  			goto ingress_verdict;
4283  	}
4284  	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4285  ingress_verdict:
4286  	switch (sch_ret) {
4287  	case TC_ACT_REDIRECT:
4288  		/* skb_mac_header check was done by BPF, so we can safely
4289  		 * push the L2 header back before redirecting to another
4290  		 * netdev.
4291  		 */
4292  		__skb_push(skb, skb->mac_len);
4293  		if (skb_do_redirect(skb) == -EAGAIN) {
4294  			__skb_pull(skb, skb->mac_len);
4295  			*another = true;
4296  			break;
4297  		}
4298  		*ret = NET_RX_SUCCESS;
4299  		bpf_net_ctx_clear(bpf_net_ctx);
4300  		return NULL;
4301  	case TC_ACT_SHOT:
4302  		kfree_skb_reason(skb, drop_reason);
4303  		*ret = NET_RX_DROP;
4304  		bpf_net_ctx_clear(bpf_net_ctx);
4305  		return NULL;
4306  	/* used by tc_run */
4307  	case TC_ACT_STOLEN:
4308  	case TC_ACT_QUEUED:
4309  	case TC_ACT_TRAP:
4310  		consume_skb(skb);
4311  		fallthrough;
4312  	case TC_ACT_CONSUMED:
4313  		*ret = NET_RX_SUCCESS;
4314  		bpf_net_ctx_clear(bpf_net_ctx);
4315  		return NULL;
4316  	}
4317  	bpf_net_ctx_clear(bpf_net_ctx);
4318  
4319  	return skb;
4320  }
4321  
4322  static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4323  sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4324  {
4325  	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4326  	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4327  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4328  	int sch_ret;
4329  
4330  	if (!entry)
4331  		return skb;
4332  
4333  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4334  
4335  	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4336  	 * already set by the caller.
4337  	 */
4338  	if (static_branch_unlikely(&tcx_needed_key)) {
4339  		sch_ret = tcx_run(entry, skb, false);
4340  		if (sch_ret != TC_ACT_UNSPEC)
4341  			goto egress_verdict;
4342  	}
4343  	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4344  egress_verdict:
4345  	switch (sch_ret) {
4346  	case TC_ACT_REDIRECT:
4347  		/* No need to push/pop skb's mac_header here on egress! */
4348  		skb_do_redirect(skb);
4349  		*ret = NET_XMIT_SUCCESS;
4350  		bpf_net_ctx_clear(bpf_net_ctx);
4351  		return NULL;
4352  	case TC_ACT_SHOT:
4353  		kfree_skb_reason(skb, drop_reason);
4354  		*ret = NET_XMIT_DROP;
4355  		bpf_net_ctx_clear(bpf_net_ctx);
4356  		return NULL;
4357  	/* used by tc_run */
4358  	case TC_ACT_STOLEN:
4359  	case TC_ACT_QUEUED:
4360  	case TC_ACT_TRAP:
4361  		consume_skb(skb);
4362  		fallthrough;
4363  	case TC_ACT_CONSUMED:
4364  		*ret = NET_XMIT_SUCCESS;
4365  		bpf_net_ctx_clear(bpf_net_ctx);
4366  		return NULL;
4367  	}
4368  	bpf_net_ctx_clear(bpf_net_ctx);
4369  
4370  	return skb;
4371  }
4372  #else
4373  static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4374  sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4375  		   struct net_device *orig_dev, bool *another)
4376  {
4377  	return skb;
4378  }
4379  
4380  static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4381  sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4382  {
4383  	return skb;
4384  }
4385  #endif /* CONFIG_NET_XGRESS */
4386  
4387  #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4388  static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4389  			       struct xps_dev_maps *dev_maps, unsigned int tci)
4390  {
4391  	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4392  	struct xps_map *map;
4393  	int queue_index = -1;
4394  
4395  	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4396  		return queue_index;
4397  
4398  	tci *= dev_maps->num_tc;
4399  	tci += tc;
4400  
4401  	map = rcu_dereference(dev_maps->attr_map[tci]);
4402  	if (map) {
4403  		if (map->len == 1)
4404  			queue_index = map->queues[0];
4405  		else
4406  			queue_index = map->queues[reciprocal_scale(
4407  						skb_get_hash(skb), map->len)];
4408  		if (unlikely(queue_index >= dev->real_num_tx_queues))
4409  			queue_index = -1;
4410  	}
4411  	return queue_index;
4412  }
4413  #endif
4414  
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4415  static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4416  			 struct sk_buff *skb)
4417  {
4418  #ifdef CONFIG_XPS
4419  	struct xps_dev_maps *dev_maps;
4420  	struct sock *sk = skb->sk;
4421  	int queue_index = -1;
4422  
4423  	if (!static_key_false(&xps_needed))
4424  		return -1;
4425  
4426  	rcu_read_lock();
4427  	if (!static_key_false(&xps_rxqs_needed))
4428  		goto get_cpus_map;
4429  
4430  	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4431  	if (dev_maps) {
4432  		int tci = sk_rx_queue_get(sk);
4433  
4434  		if (tci >= 0)
4435  			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4436  							  tci);
4437  	}
4438  
4439  get_cpus_map:
4440  	if (queue_index < 0) {
4441  		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4442  		if (dev_maps) {
4443  			unsigned int tci = skb->sender_cpu - 1;
4444  
4445  			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4446  							  tci);
4447  		}
4448  	}
4449  	rcu_read_unlock();
4450  
4451  	return queue_index;
4452  #else
4453  	return -1;
4454  #endif
4455  }
4456  
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4457  u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4458  		     struct net_device *sb_dev)
4459  {
4460  	return 0;
4461  }
4462  EXPORT_SYMBOL(dev_pick_tx_zero);
4463  
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4464  u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4465  		     struct net_device *sb_dev)
4466  {
4467  	struct sock *sk = skb->sk;
4468  	int queue_index = sk_tx_queue_get(sk);
4469  
4470  	sb_dev = sb_dev ? : dev;
4471  
4472  	if (queue_index < 0 || skb->ooo_okay ||
4473  	    queue_index >= dev->real_num_tx_queues) {
4474  		int new_index = get_xps_queue(dev, sb_dev, skb);
4475  
4476  		if (new_index < 0)
4477  			new_index = skb_tx_hash(dev, sb_dev, skb);
4478  
4479  		if (queue_index != new_index && sk &&
4480  		    sk_fullsock(sk) &&
4481  		    rcu_access_pointer(sk->sk_dst_cache))
4482  			sk_tx_queue_set(sk, new_index);
4483  
4484  		queue_index = new_index;
4485  	}
4486  
4487  	return queue_index;
4488  }
4489  EXPORT_SYMBOL(netdev_pick_tx);
4490  
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4491  struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4492  					 struct sk_buff *skb,
4493  					 struct net_device *sb_dev)
4494  {
4495  	int queue_index = 0;
4496  
4497  #ifdef CONFIG_XPS
4498  	u32 sender_cpu = skb->sender_cpu - 1;
4499  
4500  	if (sender_cpu >= (u32)NR_CPUS)
4501  		skb->sender_cpu = raw_smp_processor_id() + 1;
4502  #endif
4503  
4504  	if (dev->real_num_tx_queues != 1) {
4505  		const struct net_device_ops *ops = dev->netdev_ops;
4506  
4507  		if (ops->ndo_select_queue)
4508  			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4509  		else
4510  			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4511  
4512  		queue_index = netdev_cap_txqueue(dev, queue_index);
4513  	}
4514  
4515  	skb_set_queue_mapping(skb, queue_index);
4516  	return netdev_get_tx_queue(dev, queue_index);
4517  }
4518  
4519  /**
4520   * __dev_queue_xmit() - transmit a buffer
4521   * @skb:	buffer to transmit
4522   * @sb_dev:	suboordinate device used for L2 forwarding offload
4523   *
4524   * Queue a buffer for transmission to a network device. The caller must
4525   * have set the device and priority and built the buffer before calling
4526   * this function. The function can be called from an interrupt.
4527   *
4528   * When calling this method, interrupts MUST be enabled. This is because
4529   * the BH enable code must have IRQs enabled so that it will not deadlock.
4530   *
4531   * Regardless of the return value, the skb is consumed, so it is currently
4532   * difficult to retry a send to this method. (You can bump the ref count
4533   * before sending to hold a reference for retry if you are careful.)
4534   *
4535   * Return:
4536   * * 0				- buffer successfully transmitted
4537   * * positive qdisc return code	- NET_XMIT_DROP etc.
4538   * * negative errno		- other errors
4539   */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4540  int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4541  {
4542  	struct net_device *dev = skb->dev;
4543  	struct netdev_queue *txq = NULL;
4544  	struct Qdisc *q;
4545  	int rc = -ENOMEM;
4546  	bool again = false;
4547  
4548  	skb_reset_mac_header(skb);
4549  	skb_assert_len(skb);
4550  
4551  	if (unlikely(skb_shinfo(skb)->tx_flags &
4552  		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4553  		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4554  
4555  	/* Disable soft irqs for various locks below. Also
4556  	 * stops preemption for RCU.
4557  	 */
4558  	rcu_read_lock_bh();
4559  
4560  	skb_update_prio(skb);
4561  
4562  	qdisc_pkt_len_init(skb);
4563  	tcx_set_ingress(skb, false);
4564  #ifdef CONFIG_NET_EGRESS
4565  	if (static_branch_unlikely(&egress_needed_key)) {
4566  		if (nf_hook_egress_active()) {
4567  			skb = nf_hook_egress(skb, &rc, dev);
4568  			if (!skb)
4569  				goto out;
4570  		}
4571  
4572  		netdev_xmit_skip_txqueue(false);
4573  
4574  		nf_skip_egress(skb, true);
4575  		skb = sch_handle_egress(skb, &rc, dev);
4576  		if (!skb)
4577  			goto out;
4578  		nf_skip_egress(skb, false);
4579  
4580  		if (netdev_xmit_txqueue_skipped())
4581  			txq = netdev_tx_queue_mapping(dev, skb);
4582  	}
4583  #endif
4584  	/* If device/qdisc don't need skb->dst, release it right now while
4585  	 * its hot in this cpu cache.
4586  	 */
4587  	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4588  		skb_dst_drop(skb);
4589  	else
4590  		skb_dst_force(skb);
4591  
4592  	if (!txq)
4593  		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4594  
4595  	q = rcu_dereference_bh(txq->qdisc);
4596  
4597  	trace_net_dev_queue(skb);
4598  	if (q->enqueue) {
4599  		rc = __dev_xmit_skb(skb, q, dev, txq);
4600  		goto out;
4601  	}
4602  
4603  	/* The device has no queue. Common case for software devices:
4604  	 * loopback, all the sorts of tunnels...
4605  
4606  	 * Really, it is unlikely that netif_tx_lock protection is necessary
4607  	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4608  	 * counters.)
4609  	 * However, it is possible, that they rely on protection
4610  	 * made by us here.
4611  
4612  	 * Check this and shot the lock. It is not prone from deadlocks.
4613  	 *Either shot noqueue qdisc, it is even simpler 8)
4614  	 */
4615  	if (dev->flags & IFF_UP) {
4616  		int cpu = smp_processor_id(); /* ok because BHs are off */
4617  
4618  		/* Other cpus might concurrently change txq->xmit_lock_owner
4619  		 * to -1 or to their cpu id, but not to our id.
4620  		 */
4621  		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4622  			if (dev_xmit_recursion())
4623  				goto recursion_alert;
4624  
4625  			skb = validate_xmit_skb(skb, dev, &again);
4626  			if (!skb)
4627  				goto out;
4628  
4629  			HARD_TX_LOCK(dev, txq, cpu);
4630  
4631  			if (!netif_xmit_stopped(txq)) {
4632  				dev_xmit_recursion_inc();
4633  				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4634  				dev_xmit_recursion_dec();
4635  				if (dev_xmit_complete(rc)) {
4636  					HARD_TX_UNLOCK(dev, txq);
4637  					goto out;
4638  				}
4639  			}
4640  			HARD_TX_UNLOCK(dev, txq);
4641  			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4642  					     dev->name);
4643  		} else {
4644  			/* Recursion is detected! It is possible,
4645  			 * unfortunately
4646  			 */
4647  recursion_alert:
4648  			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4649  					     dev->name);
4650  		}
4651  	}
4652  
4653  	rc = -ENETDOWN;
4654  	rcu_read_unlock_bh();
4655  
4656  	dev_core_stats_tx_dropped_inc(dev);
4657  	kfree_skb_list(skb);
4658  	return rc;
4659  out:
4660  	rcu_read_unlock_bh();
4661  	return rc;
4662  }
4663  EXPORT_SYMBOL(__dev_queue_xmit);
4664  
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4665  int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4666  {
4667  	struct net_device *dev = skb->dev;
4668  	struct sk_buff *orig_skb = skb;
4669  	struct netdev_queue *txq;
4670  	int ret = NETDEV_TX_BUSY;
4671  	bool again = false;
4672  
4673  	if (unlikely(!netif_running(dev) ||
4674  		     !netif_carrier_ok(dev)))
4675  		goto drop;
4676  
4677  	skb = validate_xmit_skb_list(skb, dev, &again);
4678  	if (skb != orig_skb)
4679  		goto drop;
4680  
4681  	skb_set_queue_mapping(skb, queue_id);
4682  	txq = skb_get_tx_queue(dev, skb);
4683  
4684  	local_bh_disable();
4685  
4686  	dev_xmit_recursion_inc();
4687  	HARD_TX_LOCK(dev, txq, smp_processor_id());
4688  	if (!netif_xmit_frozen_or_drv_stopped(txq))
4689  		ret = netdev_start_xmit(skb, dev, txq, false);
4690  	HARD_TX_UNLOCK(dev, txq);
4691  	dev_xmit_recursion_dec();
4692  
4693  	local_bh_enable();
4694  	return ret;
4695  drop:
4696  	dev_core_stats_tx_dropped_inc(dev);
4697  	kfree_skb_list(skb);
4698  	return NET_XMIT_DROP;
4699  }
4700  EXPORT_SYMBOL(__dev_direct_xmit);
4701  
4702  /*************************************************************************
4703   *			Receiver routines
4704   *************************************************************************/
4705  static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4706  
4707  int weight_p __read_mostly = 64;           /* old backlog weight */
4708  int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4709  int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4710  
4711  /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4712  static inline void ____napi_schedule(struct softnet_data *sd,
4713  				     struct napi_struct *napi)
4714  {
4715  	struct task_struct *thread;
4716  
4717  	lockdep_assert_irqs_disabled();
4718  
4719  	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4720  		/* Paired with smp_mb__before_atomic() in
4721  		 * napi_enable()/dev_set_threaded().
4722  		 * Use READ_ONCE() to guarantee a complete
4723  		 * read on napi->thread. Only call
4724  		 * wake_up_process() when it's not NULL.
4725  		 */
4726  		thread = READ_ONCE(napi->thread);
4727  		if (thread) {
4728  			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4729  				goto use_local_napi;
4730  
4731  			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4732  			wake_up_process(thread);
4733  			return;
4734  		}
4735  	}
4736  
4737  use_local_napi:
4738  	list_add_tail(&napi->poll_list, &sd->poll_list);
4739  	WRITE_ONCE(napi->list_owner, smp_processor_id());
4740  	/* If not called from net_rx_action()
4741  	 * we have to raise NET_RX_SOFTIRQ.
4742  	 */
4743  	if (!sd->in_net_rx_action)
4744  		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745  }
4746  
4747  #ifdef CONFIG_RPS
4748  
4749  struct static_key_false rps_needed __read_mostly;
4750  EXPORT_SYMBOL(rps_needed);
4751  struct static_key_false rfs_needed __read_mostly;
4752  EXPORT_SYMBOL(rfs_needed);
4753  
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4754  static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4755  {
4756  	return hash_32(hash, flow_table->log);
4757  }
4758  
4759  static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4760  set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4761  	    struct rps_dev_flow *rflow, u16 next_cpu)
4762  {
4763  	if (next_cpu < nr_cpu_ids) {
4764  		u32 head;
4765  #ifdef CONFIG_RFS_ACCEL
4766  		struct netdev_rx_queue *rxqueue;
4767  		struct rps_dev_flow_table *flow_table;
4768  		struct rps_dev_flow *old_rflow;
4769  		u16 rxq_index;
4770  		u32 flow_id;
4771  		int rc;
4772  
4773  		/* Should we steer this flow to a different hardware queue? */
4774  		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4775  		    !(dev->features & NETIF_F_NTUPLE))
4776  			goto out;
4777  		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4778  		if (rxq_index == skb_get_rx_queue(skb))
4779  			goto out;
4780  
4781  		rxqueue = dev->_rx + rxq_index;
4782  		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4783  		if (!flow_table)
4784  			goto out;
4785  		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4786  		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4787  							rxq_index, flow_id);
4788  		if (rc < 0)
4789  			goto out;
4790  		old_rflow = rflow;
4791  		rflow = &flow_table->flows[flow_id];
4792  		WRITE_ONCE(rflow->filter, rc);
4793  		if (old_rflow->filter == rc)
4794  			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4795  	out:
4796  #endif
4797  		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4798  		rps_input_queue_tail_save(&rflow->last_qtail, head);
4799  	}
4800  
4801  	WRITE_ONCE(rflow->cpu, next_cpu);
4802  	return rflow;
4803  }
4804  
4805  /*
4806   * get_rps_cpu is called from netif_receive_skb and returns the target
4807   * CPU from the RPS map of the receiving queue for a given skb.
4808   * rcu_read_lock must be held on entry.
4809   */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4810  static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4811  		       struct rps_dev_flow **rflowp)
4812  {
4813  	const struct rps_sock_flow_table *sock_flow_table;
4814  	struct netdev_rx_queue *rxqueue = dev->_rx;
4815  	struct rps_dev_flow_table *flow_table;
4816  	struct rps_map *map;
4817  	int cpu = -1;
4818  	u32 tcpu;
4819  	u32 hash;
4820  
4821  	if (skb_rx_queue_recorded(skb)) {
4822  		u16 index = skb_get_rx_queue(skb);
4823  
4824  		if (unlikely(index >= dev->real_num_rx_queues)) {
4825  			WARN_ONCE(dev->real_num_rx_queues > 1,
4826  				  "%s received packet on queue %u, but number "
4827  				  "of RX queues is %u\n",
4828  				  dev->name, index, dev->real_num_rx_queues);
4829  			goto done;
4830  		}
4831  		rxqueue += index;
4832  	}
4833  
4834  	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4835  
4836  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4837  	map = rcu_dereference(rxqueue->rps_map);
4838  	if (!flow_table && !map)
4839  		goto done;
4840  
4841  	skb_reset_network_header(skb);
4842  	hash = skb_get_hash(skb);
4843  	if (!hash)
4844  		goto done;
4845  
4846  	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4847  	if (flow_table && sock_flow_table) {
4848  		struct rps_dev_flow *rflow;
4849  		u32 next_cpu;
4850  		u32 ident;
4851  
4852  		/* First check into global flow table if there is a match.
4853  		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4854  		 */
4855  		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4856  		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4857  			goto try_rps;
4858  
4859  		next_cpu = ident & net_hotdata.rps_cpu_mask;
4860  
4861  		/* OK, now we know there is a match,
4862  		 * we can look at the local (per receive queue) flow table
4863  		 */
4864  		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4865  		tcpu = rflow->cpu;
4866  
4867  		/*
4868  		 * If the desired CPU (where last recvmsg was done) is
4869  		 * different from current CPU (one in the rx-queue flow
4870  		 * table entry), switch if one of the following holds:
4871  		 *   - Current CPU is unset (>= nr_cpu_ids).
4872  		 *   - Current CPU is offline.
4873  		 *   - The current CPU's queue tail has advanced beyond the
4874  		 *     last packet that was enqueued using this table entry.
4875  		 *     This guarantees that all previous packets for the flow
4876  		 *     have been dequeued, thus preserving in order delivery.
4877  		 */
4878  		if (unlikely(tcpu != next_cpu) &&
4879  		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4880  		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4881  		      rflow->last_qtail)) >= 0)) {
4882  			tcpu = next_cpu;
4883  			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4884  		}
4885  
4886  		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4887  			*rflowp = rflow;
4888  			cpu = tcpu;
4889  			goto done;
4890  		}
4891  	}
4892  
4893  try_rps:
4894  
4895  	if (map) {
4896  		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4897  		if (cpu_online(tcpu)) {
4898  			cpu = tcpu;
4899  			goto done;
4900  		}
4901  	}
4902  
4903  done:
4904  	return cpu;
4905  }
4906  
4907  #ifdef CONFIG_RFS_ACCEL
4908  
4909  /**
4910   * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4911   * @dev: Device on which the filter was set
4912   * @rxq_index: RX queue index
4913   * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4914   * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4915   *
4916   * Drivers that implement ndo_rx_flow_steer() should periodically call
4917   * this function for each installed filter and remove the filters for
4918   * which it returns %true.
4919   */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4920  bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4921  			 u32 flow_id, u16 filter_id)
4922  {
4923  	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4924  	struct rps_dev_flow_table *flow_table;
4925  	struct rps_dev_flow *rflow;
4926  	bool expire = true;
4927  	unsigned int cpu;
4928  
4929  	rcu_read_lock();
4930  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4931  	if (flow_table && flow_id < (1UL << flow_table->log)) {
4932  		rflow = &flow_table->flows[flow_id];
4933  		cpu = READ_ONCE(rflow->cpu);
4934  		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4935  		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4936  			   READ_ONCE(rflow->last_qtail)) <
4937  		     (int)(10 << flow_table->log)))
4938  			expire = false;
4939  	}
4940  	rcu_read_unlock();
4941  	return expire;
4942  }
4943  EXPORT_SYMBOL(rps_may_expire_flow);
4944  
4945  #endif /* CONFIG_RFS_ACCEL */
4946  
4947  /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4948  static void rps_trigger_softirq(void *data)
4949  {
4950  	struct softnet_data *sd = data;
4951  
4952  	____napi_schedule(sd, &sd->backlog);
4953  	sd->received_rps++;
4954  }
4955  
4956  #endif /* CONFIG_RPS */
4957  
4958  /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4959  static void trigger_rx_softirq(void *data)
4960  {
4961  	struct softnet_data *sd = data;
4962  
4963  	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4964  	smp_store_release(&sd->defer_ipi_scheduled, 0);
4965  }
4966  
4967  /*
4968   * After we queued a packet into sd->input_pkt_queue,
4969   * we need to make sure this queue is serviced soon.
4970   *
4971   * - If this is another cpu queue, link it to our rps_ipi_list,
4972   *   and make sure we will process rps_ipi_list from net_rx_action().
4973   *
4974   * - If this is our own queue, NAPI schedule our backlog.
4975   *   Note that this also raises NET_RX_SOFTIRQ.
4976   */
napi_schedule_rps(struct softnet_data * sd)4977  static void napi_schedule_rps(struct softnet_data *sd)
4978  {
4979  	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4980  
4981  #ifdef CONFIG_RPS
4982  	if (sd != mysd) {
4983  		if (use_backlog_threads()) {
4984  			__napi_schedule_irqoff(&sd->backlog);
4985  			return;
4986  		}
4987  
4988  		sd->rps_ipi_next = mysd->rps_ipi_list;
4989  		mysd->rps_ipi_list = sd;
4990  
4991  		/* If not called from net_rx_action() or napi_threaded_poll()
4992  		 * we have to raise NET_RX_SOFTIRQ.
4993  		 */
4994  		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4995  			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4996  		return;
4997  	}
4998  #endif /* CONFIG_RPS */
4999  	__napi_schedule_irqoff(&mysd->backlog);
5000  }
5001  
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5002  void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5003  {
5004  	unsigned long flags;
5005  
5006  	if (use_backlog_threads()) {
5007  		backlog_lock_irq_save(sd, &flags);
5008  
5009  		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5010  			__napi_schedule_irqoff(&sd->backlog);
5011  
5012  		backlog_unlock_irq_restore(sd, &flags);
5013  
5014  	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5015  		smp_call_function_single_async(cpu, &sd->defer_csd);
5016  	}
5017  }
5018  
5019  #ifdef CONFIG_NET_FLOW_LIMIT
5020  int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5021  #endif
5022  
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5023  static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5024  {
5025  #ifdef CONFIG_NET_FLOW_LIMIT
5026  	struct sd_flow_limit *fl;
5027  	struct softnet_data *sd;
5028  	unsigned int old_flow, new_flow;
5029  
5030  	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5031  		return false;
5032  
5033  	sd = this_cpu_ptr(&softnet_data);
5034  
5035  	rcu_read_lock();
5036  	fl = rcu_dereference(sd->flow_limit);
5037  	if (fl) {
5038  		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5039  		old_flow = fl->history[fl->history_head];
5040  		fl->history[fl->history_head] = new_flow;
5041  
5042  		fl->history_head++;
5043  		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5044  
5045  		if (likely(fl->buckets[old_flow]))
5046  			fl->buckets[old_flow]--;
5047  
5048  		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5049  			fl->count++;
5050  			rcu_read_unlock();
5051  			return true;
5052  		}
5053  	}
5054  	rcu_read_unlock();
5055  #endif
5056  	return false;
5057  }
5058  
5059  /*
5060   * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5061   * queue (may be a remote CPU queue).
5062   */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5063  static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5064  			      unsigned int *qtail)
5065  {
5066  	enum skb_drop_reason reason;
5067  	struct softnet_data *sd;
5068  	unsigned long flags;
5069  	unsigned int qlen;
5070  	int max_backlog;
5071  	u32 tail;
5072  
5073  	reason = SKB_DROP_REASON_DEV_READY;
5074  	if (!netif_running(skb->dev))
5075  		goto bad_dev;
5076  
5077  	reason = SKB_DROP_REASON_CPU_BACKLOG;
5078  	sd = &per_cpu(softnet_data, cpu);
5079  
5080  	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5081  	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5082  	if (unlikely(qlen > max_backlog))
5083  		goto cpu_backlog_drop;
5084  	backlog_lock_irq_save(sd, &flags);
5085  	qlen = skb_queue_len(&sd->input_pkt_queue);
5086  	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5087  		if (!qlen) {
5088  			/* Schedule NAPI for backlog device. We can use
5089  			 * non atomic operation as we own the queue lock.
5090  			 */
5091  			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5092  						&sd->backlog.state))
5093  				napi_schedule_rps(sd);
5094  		}
5095  		__skb_queue_tail(&sd->input_pkt_queue, skb);
5096  		tail = rps_input_queue_tail_incr(sd);
5097  		backlog_unlock_irq_restore(sd, &flags);
5098  
5099  		/* save the tail outside of the critical section */
5100  		rps_input_queue_tail_save(qtail, tail);
5101  		return NET_RX_SUCCESS;
5102  	}
5103  
5104  	backlog_unlock_irq_restore(sd, &flags);
5105  
5106  cpu_backlog_drop:
5107  	atomic_inc(&sd->dropped);
5108  bad_dev:
5109  	dev_core_stats_rx_dropped_inc(skb->dev);
5110  	kfree_skb_reason(skb, reason);
5111  	return NET_RX_DROP;
5112  }
5113  
netif_get_rxqueue(struct sk_buff * skb)5114  static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5115  {
5116  	struct net_device *dev = skb->dev;
5117  	struct netdev_rx_queue *rxqueue;
5118  
5119  	rxqueue = dev->_rx;
5120  
5121  	if (skb_rx_queue_recorded(skb)) {
5122  		u16 index = skb_get_rx_queue(skb);
5123  
5124  		if (unlikely(index >= dev->real_num_rx_queues)) {
5125  			WARN_ONCE(dev->real_num_rx_queues > 1,
5126  				  "%s received packet on queue %u, but number "
5127  				  "of RX queues is %u\n",
5128  				  dev->name, index, dev->real_num_rx_queues);
5129  
5130  			return rxqueue; /* Return first rxqueue */
5131  		}
5132  		rxqueue += index;
5133  	}
5134  	return rxqueue;
5135  }
5136  
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5137  u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5138  			     const struct bpf_prog *xdp_prog)
5139  {
5140  	void *orig_data, *orig_data_end, *hard_start;
5141  	struct netdev_rx_queue *rxqueue;
5142  	bool orig_bcast, orig_host;
5143  	u32 mac_len, frame_sz;
5144  	__be16 orig_eth_type;
5145  	struct ethhdr *eth;
5146  	u32 metalen, act;
5147  	int off;
5148  
5149  	/* The XDP program wants to see the packet starting at the MAC
5150  	 * header.
5151  	 */
5152  	mac_len = skb->data - skb_mac_header(skb);
5153  	hard_start = skb->data - skb_headroom(skb);
5154  
5155  	/* SKB "head" area always have tailroom for skb_shared_info */
5156  	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5157  	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5158  
5159  	rxqueue = netif_get_rxqueue(skb);
5160  	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5161  	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5162  			 skb_headlen(skb) + mac_len, true);
5163  	if (skb_is_nonlinear(skb)) {
5164  		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5165  		xdp_buff_set_frags_flag(xdp);
5166  	} else {
5167  		xdp_buff_clear_frags_flag(xdp);
5168  	}
5169  
5170  	orig_data_end = xdp->data_end;
5171  	orig_data = xdp->data;
5172  	eth = (struct ethhdr *)xdp->data;
5173  	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5174  	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5175  	orig_eth_type = eth->h_proto;
5176  
5177  	act = bpf_prog_run_xdp(xdp_prog, xdp);
5178  
5179  	/* check if bpf_xdp_adjust_head was used */
5180  	off = xdp->data - orig_data;
5181  	if (off) {
5182  		if (off > 0)
5183  			__skb_pull(skb, off);
5184  		else if (off < 0)
5185  			__skb_push(skb, -off);
5186  
5187  		skb->mac_header += off;
5188  		skb_reset_network_header(skb);
5189  	}
5190  
5191  	/* check if bpf_xdp_adjust_tail was used */
5192  	off = xdp->data_end - orig_data_end;
5193  	if (off != 0) {
5194  		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5195  		skb->len += off; /* positive on grow, negative on shrink */
5196  	}
5197  
5198  	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5199  	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5200  	 */
5201  	if (xdp_buff_has_frags(xdp))
5202  		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5203  	else
5204  		skb->data_len = 0;
5205  
5206  	/* check if XDP changed eth hdr such SKB needs update */
5207  	eth = (struct ethhdr *)xdp->data;
5208  	if ((orig_eth_type != eth->h_proto) ||
5209  	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5210  						  skb->dev->dev_addr)) ||
5211  	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5212  		__skb_push(skb, ETH_HLEN);
5213  		skb->pkt_type = PACKET_HOST;
5214  		skb->protocol = eth_type_trans(skb, skb->dev);
5215  	}
5216  
5217  	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5218  	 * before calling us again on redirect path. We do not call do_redirect
5219  	 * as we leave that up to the caller.
5220  	 *
5221  	 * Caller is responsible for managing lifetime of skb (i.e. calling
5222  	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5223  	 */
5224  	switch (act) {
5225  	case XDP_REDIRECT:
5226  	case XDP_TX:
5227  		__skb_push(skb, mac_len);
5228  		break;
5229  	case XDP_PASS:
5230  		metalen = xdp->data - xdp->data_meta;
5231  		if (metalen)
5232  			skb_metadata_set(skb, metalen);
5233  		break;
5234  	}
5235  
5236  	return act;
5237  }
5238  
5239  static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5240  netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5241  {
5242  	struct sk_buff *skb = *pskb;
5243  	int err, hroom, troom;
5244  
5245  	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5246  		return 0;
5247  
5248  	/* In case we have to go down the path and also linearize,
5249  	 * then lets do the pskb_expand_head() work just once here.
5250  	 */
5251  	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5252  	troom = skb->tail + skb->data_len - skb->end;
5253  	err = pskb_expand_head(skb,
5254  			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5255  			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5256  	if (err)
5257  		return err;
5258  
5259  	return skb_linearize(skb);
5260  }
5261  
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5262  static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5263  				     struct xdp_buff *xdp,
5264  				     const struct bpf_prog *xdp_prog)
5265  {
5266  	struct sk_buff *skb = *pskb;
5267  	u32 mac_len, act = XDP_DROP;
5268  
5269  	/* Reinjected packets coming from act_mirred or similar should
5270  	 * not get XDP generic processing.
5271  	 */
5272  	if (skb_is_redirected(skb))
5273  		return XDP_PASS;
5274  
5275  	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5276  	 * bytes. This is the guarantee that also native XDP provides,
5277  	 * thus we need to do it here as well.
5278  	 */
5279  	mac_len = skb->data - skb_mac_header(skb);
5280  	__skb_push(skb, mac_len);
5281  
5282  	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5283  	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5284  		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5285  			goto do_drop;
5286  	}
5287  
5288  	__skb_pull(*pskb, mac_len);
5289  
5290  	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5291  	switch (act) {
5292  	case XDP_REDIRECT:
5293  	case XDP_TX:
5294  	case XDP_PASS:
5295  		break;
5296  	default:
5297  		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5298  		fallthrough;
5299  	case XDP_ABORTED:
5300  		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5301  		fallthrough;
5302  	case XDP_DROP:
5303  	do_drop:
5304  		kfree_skb(*pskb);
5305  		break;
5306  	}
5307  
5308  	return act;
5309  }
5310  
5311  /* When doing generic XDP we have to bypass the qdisc layer and the
5312   * network taps in order to match in-driver-XDP behavior. This also means
5313   * that XDP packets are able to starve other packets going through a qdisc,
5314   * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5315   * queues, so they do not have this starvation issue.
5316   */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5317  void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5318  {
5319  	struct net_device *dev = skb->dev;
5320  	struct netdev_queue *txq;
5321  	bool free_skb = true;
5322  	int cpu, rc;
5323  
5324  	txq = netdev_core_pick_tx(dev, skb, NULL);
5325  	cpu = smp_processor_id();
5326  	HARD_TX_LOCK(dev, txq, cpu);
5327  	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5328  		rc = netdev_start_xmit(skb, dev, txq, 0);
5329  		if (dev_xmit_complete(rc))
5330  			free_skb = false;
5331  	}
5332  	HARD_TX_UNLOCK(dev, txq);
5333  	if (free_skb) {
5334  		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5335  		dev_core_stats_tx_dropped_inc(dev);
5336  		kfree_skb(skb);
5337  	}
5338  }
5339  
5340  static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5341  
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5342  int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5343  {
5344  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5345  
5346  	if (xdp_prog) {
5347  		struct xdp_buff xdp;
5348  		u32 act;
5349  		int err;
5350  
5351  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5352  		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5353  		if (act != XDP_PASS) {
5354  			switch (act) {
5355  			case XDP_REDIRECT:
5356  				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5357  							      &xdp, xdp_prog);
5358  				if (err)
5359  					goto out_redir;
5360  				break;
5361  			case XDP_TX:
5362  				generic_xdp_tx(*pskb, xdp_prog);
5363  				break;
5364  			}
5365  			bpf_net_ctx_clear(bpf_net_ctx);
5366  			return XDP_DROP;
5367  		}
5368  		bpf_net_ctx_clear(bpf_net_ctx);
5369  	}
5370  	return XDP_PASS;
5371  out_redir:
5372  	bpf_net_ctx_clear(bpf_net_ctx);
5373  	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5374  	return XDP_DROP;
5375  }
5376  EXPORT_SYMBOL_GPL(do_xdp_generic);
5377  
netif_rx_internal(struct sk_buff * skb)5378  static int netif_rx_internal(struct sk_buff *skb)
5379  {
5380  	int ret;
5381  
5382  	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5383  
5384  	trace_netif_rx(skb);
5385  
5386  #ifdef CONFIG_RPS
5387  	if (static_branch_unlikely(&rps_needed)) {
5388  		struct rps_dev_flow voidflow, *rflow = &voidflow;
5389  		int cpu;
5390  
5391  		rcu_read_lock();
5392  
5393  		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394  		if (cpu < 0)
5395  			cpu = smp_processor_id();
5396  
5397  		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5398  
5399  		rcu_read_unlock();
5400  	} else
5401  #endif
5402  	{
5403  		unsigned int qtail;
5404  
5405  		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5406  	}
5407  	return ret;
5408  }
5409  
5410  /**
5411   *	__netif_rx	-	Slightly optimized version of netif_rx
5412   *	@skb: buffer to post
5413   *
5414   *	This behaves as netif_rx except that it does not disable bottom halves.
5415   *	As a result this function may only be invoked from the interrupt context
5416   *	(either hard or soft interrupt).
5417   */
__netif_rx(struct sk_buff * skb)5418  int __netif_rx(struct sk_buff *skb)
5419  {
5420  	int ret;
5421  
5422  	lockdep_assert_once(hardirq_count() | softirq_count());
5423  
5424  	trace_netif_rx_entry(skb);
5425  	ret = netif_rx_internal(skb);
5426  	trace_netif_rx_exit(ret);
5427  	return ret;
5428  }
5429  EXPORT_SYMBOL(__netif_rx);
5430  
5431  /**
5432   *	netif_rx	-	post buffer to the network code
5433   *	@skb: buffer to post
5434   *
5435   *	This function receives a packet from a device driver and queues it for
5436   *	the upper (protocol) levels to process via the backlog NAPI device. It
5437   *	always succeeds. The buffer may be dropped during processing for
5438   *	congestion control or by the protocol layers.
5439   *	The network buffer is passed via the backlog NAPI device. Modern NIC
5440   *	driver should use NAPI and GRO.
5441   *	This function can used from interrupt and from process context. The
5442   *	caller from process context must not disable interrupts before invoking
5443   *	this function.
5444   *
5445   *	return values:
5446   *	NET_RX_SUCCESS	(no congestion)
5447   *	NET_RX_DROP     (packet was dropped)
5448   *
5449   */
netif_rx(struct sk_buff * skb)5450  int netif_rx(struct sk_buff *skb)
5451  {
5452  	bool need_bh_off = !(hardirq_count() | softirq_count());
5453  	int ret;
5454  
5455  	if (need_bh_off)
5456  		local_bh_disable();
5457  	trace_netif_rx_entry(skb);
5458  	ret = netif_rx_internal(skb);
5459  	trace_netif_rx_exit(ret);
5460  	if (need_bh_off)
5461  		local_bh_enable();
5462  	return ret;
5463  }
5464  EXPORT_SYMBOL(netif_rx);
5465  
net_tx_action(void)5466  static __latent_entropy void net_tx_action(void)
5467  {
5468  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5469  
5470  	if (sd->completion_queue) {
5471  		struct sk_buff *clist;
5472  
5473  		local_irq_disable();
5474  		clist = sd->completion_queue;
5475  		sd->completion_queue = NULL;
5476  		local_irq_enable();
5477  
5478  		while (clist) {
5479  			struct sk_buff *skb = clist;
5480  
5481  			clist = clist->next;
5482  
5483  			WARN_ON(refcount_read(&skb->users));
5484  			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5485  				trace_consume_skb(skb, net_tx_action);
5486  			else
5487  				trace_kfree_skb(skb, net_tx_action,
5488  						get_kfree_skb_cb(skb)->reason, NULL);
5489  
5490  			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5491  				__kfree_skb(skb);
5492  			else
5493  				__napi_kfree_skb(skb,
5494  						 get_kfree_skb_cb(skb)->reason);
5495  		}
5496  	}
5497  
5498  	if (sd->output_queue) {
5499  		struct Qdisc *head;
5500  
5501  		local_irq_disable();
5502  		head = sd->output_queue;
5503  		sd->output_queue = NULL;
5504  		sd->output_queue_tailp = &sd->output_queue;
5505  		local_irq_enable();
5506  
5507  		rcu_read_lock();
5508  
5509  		while (head) {
5510  			struct Qdisc *q = head;
5511  			spinlock_t *root_lock = NULL;
5512  
5513  			head = head->next_sched;
5514  
5515  			/* We need to make sure head->next_sched is read
5516  			 * before clearing __QDISC_STATE_SCHED
5517  			 */
5518  			smp_mb__before_atomic();
5519  
5520  			if (!(q->flags & TCQ_F_NOLOCK)) {
5521  				root_lock = qdisc_lock(q);
5522  				spin_lock(root_lock);
5523  			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5524  						     &q->state))) {
5525  				/* There is a synchronize_net() between
5526  				 * STATE_DEACTIVATED flag being set and
5527  				 * qdisc_reset()/some_qdisc_is_busy() in
5528  				 * dev_deactivate(), so we can safely bail out
5529  				 * early here to avoid data race between
5530  				 * qdisc_deactivate() and some_qdisc_is_busy()
5531  				 * for lockless qdisc.
5532  				 */
5533  				clear_bit(__QDISC_STATE_SCHED, &q->state);
5534  				continue;
5535  			}
5536  
5537  			clear_bit(__QDISC_STATE_SCHED, &q->state);
5538  			qdisc_run(q);
5539  			if (root_lock)
5540  				spin_unlock(root_lock);
5541  		}
5542  
5543  		rcu_read_unlock();
5544  	}
5545  
5546  	xfrm_dev_backlog(sd);
5547  }
5548  
5549  #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5550  /* This hook is defined here for ATM LANE */
5551  int (*br_fdb_test_addr_hook)(struct net_device *dev,
5552  			     unsigned char *addr) __read_mostly;
5553  EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5554  #endif
5555  
5556  /**
5557   *	netdev_is_rx_handler_busy - check if receive handler is registered
5558   *	@dev: device to check
5559   *
5560   *	Check if a receive handler is already registered for a given device.
5561   *	Return true if there one.
5562   *
5563   *	The caller must hold the rtnl_mutex.
5564   */
netdev_is_rx_handler_busy(struct net_device * dev)5565  bool netdev_is_rx_handler_busy(struct net_device *dev)
5566  {
5567  	ASSERT_RTNL();
5568  	return dev && rtnl_dereference(dev->rx_handler);
5569  }
5570  EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5571  
5572  /**
5573   *	netdev_rx_handler_register - register receive handler
5574   *	@dev: device to register a handler for
5575   *	@rx_handler: receive handler to register
5576   *	@rx_handler_data: data pointer that is used by rx handler
5577   *
5578   *	Register a receive handler for a device. This handler will then be
5579   *	called from __netif_receive_skb. A negative errno code is returned
5580   *	on a failure.
5581   *
5582   *	The caller must hold the rtnl_mutex.
5583   *
5584   *	For a general description of rx_handler, see enum rx_handler_result.
5585   */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5586  int netdev_rx_handler_register(struct net_device *dev,
5587  			       rx_handler_func_t *rx_handler,
5588  			       void *rx_handler_data)
5589  {
5590  	if (netdev_is_rx_handler_busy(dev))
5591  		return -EBUSY;
5592  
5593  	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5594  		return -EINVAL;
5595  
5596  	/* Note: rx_handler_data must be set before rx_handler */
5597  	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5598  	rcu_assign_pointer(dev->rx_handler, rx_handler);
5599  
5600  	return 0;
5601  }
5602  EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5603  
5604  /**
5605   *	netdev_rx_handler_unregister - unregister receive handler
5606   *	@dev: device to unregister a handler from
5607   *
5608   *	Unregister a receive handler from a device.
5609   *
5610   *	The caller must hold the rtnl_mutex.
5611   */
netdev_rx_handler_unregister(struct net_device * dev)5612  void netdev_rx_handler_unregister(struct net_device *dev)
5613  {
5614  
5615  	ASSERT_RTNL();
5616  	RCU_INIT_POINTER(dev->rx_handler, NULL);
5617  	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5618  	 * section has a guarantee to see a non NULL rx_handler_data
5619  	 * as well.
5620  	 */
5621  	synchronize_net();
5622  	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5623  }
5624  EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5625  
5626  /*
5627   * Limit the use of PFMEMALLOC reserves to those protocols that implement
5628   * the special handling of PFMEMALLOC skbs.
5629   */
skb_pfmemalloc_protocol(struct sk_buff * skb)5630  static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5631  {
5632  	switch (skb->protocol) {
5633  	case htons(ETH_P_ARP):
5634  	case htons(ETH_P_IP):
5635  	case htons(ETH_P_IPV6):
5636  	case htons(ETH_P_8021Q):
5637  	case htons(ETH_P_8021AD):
5638  		return true;
5639  	default:
5640  		return false;
5641  	}
5642  }
5643  
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5644  static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5645  			     int *ret, struct net_device *orig_dev)
5646  {
5647  	if (nf_hook_ingress_active(skb)) {
5648  		int ingress_retval;
5649  
5650  		if (*pt_prev) {
5651  			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5652  			*pt_prev = NULL;
5653  		}
5654  
5655  		rcu_read_lock();
5656  		ingress_retval = nf_hook_ingress(skb);
5657  		rcu_read_unlock();
5658  		return ingress_retval;
5659  	}
5660  	return 0;
5661  }
5662  
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5663  static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5664  				    struct packet_type **ppt_prev)
5665  {
5666  	struct packet_type *ptype, *pt_prev;
5667  	rx_handler_func_t *rx_handler;
5668  	struct sk_buff *skb = *pskb;
5669  	struct net_device *orig_dev;
5670  	bool deliver_exact = false;
5671  	int ret = NET_RX_DROP;
5672  	__be16 type;
5673  
5674  	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5675  
5676  	trace_netif_receive_skb(skb);
5677  
5678  	orig_dev = skb->dev;
5679  
5680  	skb_reset_network_header(skb);
5681  #if !defined(CONFIG_DEBUG_NET)
5682  	/* We plan to no longer reset the transport header here.
5683  	 * Give some time to fuzzers and dev build to catch bugs
5684  	 * in network stacks.
5685  	 */
5686  	if (!skb_transport_header_was_set(skb))
5687  		skb_reset_transport_header(skb);
5688  #endif
5689  	skb_reset_mac_len(skb);
5690  
5691  	pt_prev = NULL;
5692  
5693  another_round:
5694  	skb->skb_iif = skb->dev->ifindex;
5695  
5696  	__this_cpu_inc(softnet_data.processed);
5697  
5698  	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5699  		int ret2;
5700  
5701  		migrate_disable();
5702  		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5703  				      &skb);
5704  		migrate_enable();
5705  
5706  		if (ret2 != XDP_PASS) {
5707  			ret = NET_RX_DROP;
5708  			goto out;
5709  		}
5710  	}
5711  
5712  	if (eth_type_vlan(skb->protocol)) {
5713  		skb = skb_vlan_untag(skb);
5714  		if (unlikely(!skb))
5715  			goto out;
5716  	}
5717  
5718  	if (skb_skip_tc_classify(skb))
5719  		goto skip_classify;
5720  
5721  	if (pfmemalloc)
5722  		goto skip_taps;
5723  
5724  	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5725  				list) {
5726  		if (pt_prev)
5727  			ret = deliver_skb(skb, pt_prev, orig_dev);
5728  		pt_prev = ptype;
5729  	}
5730  
5731  	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5732  		if (pt_prev)
5733  			ret = deliver_skb(skb, pt_prev, orig_dev);
5734  		pt_prev = ptype;
5735  	}
5736  
5737  skip_taps:
5738  #ifdef CONFIG_NET_INGRESS
5739  	if (static_branch_unlikely(&ingress_needed_key)) {
5740  		bool another = false;
5741  
5742  		nf_skip_egress(skb, true);
5743  		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5744  					 &another);
5745  		if (another)
5746  			goto another_round;
5747  		if (!skb)
5748  			goto out;
5749  
5750  		nf_skip_egress(skb, false);
5751  		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5752  			goto out;
5753  	}
5754  #endif
5755  	skb_reset_redirect(skb);
5756  skip_classify:
5757  	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5758  		goto drop;
5759  
5760  	if (skb_vlan_tag_present(skb)) {
5761  		if (pt_prev) {
5762  			ret = deliver_skb(skb, pt_prev, orig_dev);
5763  			pt_prev = NULL;
5764  		}
5765  		if (vlan_do_receive(&skb))
5766  			goto another_round;
5767  		else if (unlikely(!skb))
5768  			goto out;
5769  	}
5770  
5771  	rx_handler = rcu_dereference(skb->dev->rx_handler);
5772  	if (rx_handler) {
5773  		if (pt_prev) {
5774  			ret = deliver_skb(skb, pt_prev, orig_dev);
5775  			pt_prev = NULL;
5776  		}
5777  		switch (rx_handler(&skb)) {
5778  		case RX_HANDLER_CONSUMED:
5779  			ret = NET_RX_SUCCESS;
5780  			goto out;
5781  		case RX_HANDLER_ANOTHER:
5782  			goto another_round;
5783  		case RX_HANDLER_EXACT:
5784  			deliver_exact = true;
5785  			break;
5786  		case RX_HANDLER_PASS:
5787  			break;
5788  		default:
5789  			BUG();
5790  		}
5791  	}
5792  
5793  	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5794  check_vlan_id:
5795  		if (skb_vlan_tag_get_id(skb)) {
5796  			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5797  			 * find vlan device.
5798  			 */
5799  			skb->pkt_type = PACKET_OTHERHOST;
5800  		} else if (eth_type_vlan(skb->protocol)) {
5801  			/* Outer header is 802.1P with vlan 0, inner header is
5802  			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5803  			 * not find vlan dev for vlan id 0.
5804  			 */
5805  			__vlan_hwaccel_clear_tag(skb);
5806  			skb = skb_vlan_untag(skb);
5807  			if (unlikely(!skb))
5808  				goto out;
5809  			if (vlan_do_receive(&skb))
5810  				/* After stripping off 802.1P header with vlan 0
5811  				 * vlan dev is found for inner header.
5812  				 */
5813  				goto another_round;
5814  			else if (unlikely(!skb))
5815  				goto out;
5816  			else
5817  				/* We have stripped outer 802.1P vlan 0 header.
5818  				 * But could not find vlan dev.
5819  				 * check again for vlan id to set OTHERHOST.
5820  				 */
5821  				goto check_vlan_id;
5822  		}
5823  		/* Note: we might in the future use prio bits
5824  		 * and set skb->priority like in vlan_do_receive()
5825  		 * For the time being, just ignore Priority Code Point
5826  		 */
5827  		__vlan_hwaccel_clear_tag(skb);
5828  	}
5829  
5830  	type = skb->protocol;
5831  
5832  	/* deliver only exact match when indicated */
5833  	if (likely(!deliver_exact)) {
5834  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5835  				       &ptype_base[ntohs(type) &
5836  						   PTYPE_HASH_MASK]);
5837  
5838  		/* orig_dev and skb->dev could belong to different netns;
5839  		 * Even in such case we need to traverse only the list
5840  		 * coming from skb->dev, as the ptype owner (packet socket)
5841  		 * will use dev_net(skb->dev) to do namespace filtering.
5842  		 */
5843  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5844  				       &dev_net_rcu(skb->dev)->ptype_specific);
5845  	}
5846  
5847  	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5848  			       &orig_dev->ptype_specific);
5849  
5850  	if (unlikely(skb->dev != orig_dev)) {
5851  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5852  				       &skb->dev->ptype_specific);
5853  	}
5854  
5855  	if (pt_prev) {
5856  		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5857  			goto drop;
5858  		*ppt_prev = pt_prev;
5859  	} else {
5860  drop:
5861  		if (!deliver_exact)
5862  			dev_core_stats_rx_dropped_inc(skb->dev);
5863  		else
5864  			dev_core_stats_rx_nohandler_inc(skb->dev);
5865  		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5866  		/* Jamal, now you will not able to escape explaining
5867  		 * me how you were going to use this. :-)
5868  		 */
5869  		ret = NET_RX_DROP;
5870  	}
5871  
5872  out:
5873  	/* The invariant here is that if *ppt_prev is not NULL
5874  	 * then skb should also be non-NULL.
5875  	 *
5876  	 * Apparently *ppt_prev assignment above holds this invariant due to
5877  	 * skb dereferencing near it.
5878  	 */
5879  	*pskb = skb;
5880  	return ret;
5881  }
5882  
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5883  static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5884  {
5885  	struct net_device *orig_dev = skb->dev;
5886  	struct packet_type *pt_prev = NULL;
5887  	int ret;
5888  
5889  	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5890  	if (pt_prev)
5891  		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5892  					 skb->dev, pt_prev, orig_dev);
5893  	return ret;
5894  }
5895  
5896  /**
5897   *	netif_receive_skb_core - special purpose version of netif_receive_skb
5898   *	@skb: buffer to process
5899   *
5900   *	More direct receive version of netif_receive_skb().  It should
5901   *	only be used by callers that have a need to skip RPS and Generic XDP.
5902   *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5903   *
5904   *	This function may only be called from softirq context and interrupts
5905   *	should be enabled.
5906   *
5907   *	Return values (usually ignored):
5908   *	NET_RX_SUCCESS: no congestion
5909   *	NET_RX_DROP: packet was dropped
5910   */
netif_receive_skb_core(struct sk_buff * skb)5911  int netif_receive_skb_core(struct sk_buff *skb)
5912  {
5913  	int ret;
5914  
5915  	rcu_read_lock();
5916  	ret = __netif_receive_skb_one_core(skb, false);
5917  	rcu_read_unlock();
5918  
5919  	return ret;
5920  }
5921  EXPORT_SYMBOL(netif_receive_skb_core);
5922  
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5923  static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5924  						  struct packet_type *pt_prev,
5925  						  struct net_device *orig_dev)
5926  {
5927  	struct sk_buff *skb, *next;
5928  
5929  	if (!pt_prev)
5930  		return;
5931  	if (list_empty(head))
5932  		return;
5933  	if (pt_prev->list_func != NULL)
5934  		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5935  				   ip_list_rcv, head, pt_prev, orig_dev);
5936  	else
5937  		list_for_each_entry_safe(skb, next, head, list) {
5938  			skb_list_del_init(skb);
5939  			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5940  		}
5941  }
5942  
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5943  static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5944  {
5945  	/* Fast-path assumptions:
5946  	 * - There is no RX handler.
5947  	 * - Only one packet_type matches.
5948  	 * If either of these fails, we will end up doing some per-packet
5949  	 * processing in-line, then handling the 'last ptype' for the whole
5950  	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5951  	 * because the 'last ptype' must be constant across the sublist, and all
5952  	 * other ptypes are handled per-packet.
5953  	 */
5954  	/* Current (common) ptype of sublist */
5955  	struct packet_type *pt_curr = NULL;
5956  	/* Current (common) orig_dev of sublist */
5957  	struct net_device *od_curr = NULL;
5958  	struct sk_buff *skb, *next;
5959  	LIST_HEAD(sublist);
5960  
5961  	list_for_each_entry_safe(skb, next, head, list) {
5962  		struct net_device *orig_dev = skb->dev;
5963  		struct packet_type *pt_prev = NULL;
5964  
5965  		skb_list_del_init(skb);
5966  		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5967  		if (!pt_prev)
5968  			continue;
5969  		if (pt_curr != pt_prev || od_curr != orig_dev) {
5970  			/* dispatch old sublist */
5971  			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5972  			/* start new sublist */
5973  			INIT_LIST_HEAD(&sublist);
5974  			pt_curr = pt_prev;
5975  			od_curr = orig_dev;
5976  		}
5977  		list_add_tail(&skb->list, &sublist);
5978  	}
5979  
5980  	/* dispatch final sublist */
5981  	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5982  }
5983  
__netif_receive_skb(struct sk_buff * skb)5984  static int __netif_receive_skb(struct sk_buff *skb)
5985  {
5986  	int ret;
5987  
5988  	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5989  		unsigned int noreclaim_flag;
5990  
5991  		/*
5992  		 * PFMEMALLOC skbs are special, they should
5993  		 * - be delivered to SOCK_MEMALLOC sockets only
5994  		 * - stay away from userspace
5995  		 * - have bounded memory usage
5996  		 *
5997  		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5998  		 * context down to all allocation sites.
5999  		 */
6000  		noreclaim_flag = memalloc_noreclaim_save();
6001  		ret = __netif_receive_skb_one_core(skb, true);
6002  		memalloc_noreclaim_restore(noreclaim_flag);
6003  	} else
6004  		ret = __netif_receive_skb_one_core(skb, false);
6005  
6006  	return ret;
6007  }
6008  
__netif_receive_skb_list(struct list_head * head)6009  static void __netif_receive_skb_list(struct list_head *head)
6010  {
6011  	unsigned long noreclaim_flag = 0;
6012  	struct sk_buff *skb, *next;
6013  	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6014  
6015  	list_for_each_entry_safe(skb, next, head, list) {
6016  		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6017  			struct list_head sublist;
6018  
6019  			/* Handle the previous sublist */
6020  			list_cut_before(&sublist, head, &skb->list);
6021  			if (!list_empty(&sublist))
6022  				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6023  			pfmemalloc = !pfmemalloc;
6024  			/* See comments in __netif_receive_skb */
6025  			if (pfmemalloc)
6026  				noreclaim_flag = memalloc_noreclaim_save();
6027  			else
6028  				memalloc_noreclaim_restore(noreclaim_flag);
6029  		}
6030  	}
6031  	/* Handle the remaining sublist */
6032  	if (!list_empty(head))
6033  		__netif_receive_skb_list_core(head, pfmemalloc);
6034  	/* Restore pflags */
6035  	if (pfmemalloc)
6036  		memalloc_noreclaim_restore(noreclaim_flag);
6037  }
6038  
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6039  static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6040  {
6041  	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6042  	struct bpf_prog *new = xdp->prog;
6043  	int ret = 0;
6044  
6045  	switch (xdp->command) {
6046  	case XDP_SETUP_PROG:
6047  		rcu_assign_pointer(dev->xdp_prog, new);
6048  		if (old)
6049  			bpf_prog_put(old);
6050  
6051  		if (old && !new) {
6052  			static_branch_dec(&generic_xdp_needed_key);
6053  		} else if (new && !old) {
6054  			static_branch_inc(&generic_xdp_needed_key);
6055  			netif_disable_lro(dev);
6056  			dev_disable_gro_hw(dev);
6057  		}
6058  		break;
6059  
6060  	default:
6061  		ret = -EINVAL;
6062  		break;
6063  	}
6064  
6065  	return ret;
6066  }
6067  
netif_receive_skb_internal(struct sk_buff * skb)6068  static int netif_receive_skb_internal(struct sk_buff *skb)
6069  {
6070  	int ret;
6071  
6072  	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6073  
6074  	if (skb_defer_rx_timestamp(skb))
6075  		return NET_RX_SUCCESS;
6076  
6077  	rcu_read_lock();
6078  #ifdef CONFIG_RPS
6079  	if (static_branch_unlikely(&rps_needed)) {
6080  		struct rps_dev_flow voidflow, *rflow = &voidflow;
6081  		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6082  
6083  		if (cpu >= 0) {
6084  			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6085  			rcu_read_unlock();
6086  			return ret;
6087  		}
6088  	}
6089  #endif
6090  	ret = __netif_receive_skb(skb);
6091  	rcu_read_unlock();
6092  	return ret;
6093  }
6094  
netif_receive_skb_list_internal(struct list_head * head)6095  void netif_receive_skb_list_internal(struct list_head *head)
6096  {
6097  	struct sk_buff *skb, *next;
6098  	LIST_HEAD(sublist);
6099  
6100  	list_for_each_entry_safe(skb, next, head, list) {
6101  		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6102  				    skb);
6103  		skb_list_del_init(skb);
6104  		if (!skb_defer_rx_timestamp(skb))
6105  			list_add_tail(&skb->list, &sublist);
6106  	}
6107  	list_splice_init(&sublist, head);
6108  
6109  	rcu_read_lock();
6110  #ifdef CONFIG_RPS
6111  	if (static_branch_unlikely(&rps_needed)) {
6112  		list_for_each_entry_safe(skb, next, head, list) {
6113  			struct rps_dev_flow voidflow, *rflow = &voidflow;
6114  			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6115  
6116  			if (cpu >= 0) {
6117  				/* Will be handled, remove from list */
6118  				skb_list_del_init(skb);
6119  				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6120  			}
6121  		}
6122  	}
6123  #endif
6124  	__netif_receive_skb_list(head);
6125  	rcu_read_unlock();
6126  }
6127  
6128  /**
6129   *	netif_receive_skb - process receive buffer from network
6130   *	@skb: buffer to process
6131   *
6132   *	netif_receive_skb() is the main receive data processing function.
6133   *	It always succeeds. The buffer may be dropped during processing
6134   *	for congestion control or by the protocol layers.
6135   *
6136   *	This function may only be called from softirq context and interrupts
6137   *	should be enabled.
6138   *
6139   *	Return values (usually ignored):
6140   *	NET_RX_SUCCESS: no congestion
6141   *	NET_RX_DROP: packet was dropped
6142   */
netif_receive_skb(struct sk_buff * skb)6143  int netif_receive_skb(struct sk_buff *skb)
6144  {
6145  	int ret;
6146  
6147  	trace_netif_receive_skb_entry(skb);
6148  
6149  	ret = netif_receive_skb_internal(skb);
6150  	trace_netif_receive_skb_exit(ret);
6151  
6152  	return ret;
6153  }
6154  EXPORT_SYMBOL(netif_receive_skb);
6155  
6156  /**
6157   *	netif_receive_skb_list - process many receive buffers from network
6158   *	@head: list of skbs to process.
6159   *
6160   *	Since return value of netif_receive_skb() is normally ignored, and
6161   *	wouldn't be meaningful for a list, this function returns void.
6162   *
6163   *	This function may only be called from softirq context and interrupts
6164   *	should be enabled.
6165   */
netif_receive_skb_list(struct list_head * head)6166  void netif_receive_skb_list(struct list_head *head)
6167  {
6168  	struct sk_buff *skb;
6169  
6170  	if (list_empty(head))
6171  		return;
6172  	if (trace_netif_receive_skb_list_entry_enabled()) {
6173  		list_for_each_entry(skb, head, list)
6174  			trace_netif_receive_skb_list_entry(skb);
6175  	}
6176  	netif_receive_skb_list_internal(head);
6177  	trace_netif_receive_skb_list_exit(0);
6178  }
6179  EXPORT_SYMBOL(netif_receive_skb_list);
6180  
6181  /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6182  static void flush_backlog(struct work_struct *work)
6183  {
6184  	struct sk_buff *skb, *tmp;
6185  	struct sk_buff_head list;
6186  	struct softnet_data *sd;
6187  
6188  	__skb_queue_head_init(&list);
6189  	local_bh_disable();
6190  	sd = this_cpu_ptr(&softnet_data);
6191  
6192  	backlog_lock_irq_disable(sd);
6193  	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6194  		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6195  			__skb_unlink(skb, &sd->input_pkt_queue);
6196  			__skb_queue_tail(&list, skb);
6197  			rps_input_queue_head_incr(sd);
6198  		}
6199  	}
6200  	backlog_unlock_irq_enable(sd);
6201  
6202  	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6203  	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6204  		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6205  			__skb_unlink(skb, &sd->process_queue);
6206  			__skb_queue_tail(&list, skb);
6207  			rps_input_queue_head_incr(sd);
6208  		}
6209  	}
6210  	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6211  	local_bh_enable();
6212  
6213  	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6214  }
6215  
flush_required(int cpu)6216  static bool flush_required(int cpu)
6217  {
6218  #if IS_ENABLED(CONFIG_RPS)
6219  	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6220  	bool do_flush;
6221  
6222  	backlog_lock_irq_disable(sd);
6223  
6224  	/* as insertion into process_queue happens with the rps lock held,
6225  	 * process_queue access may race only with dequeue
6226  	 */
6227  	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6228  		   !skb_queue_empty_lockless(&sd->process_queue);
6229  	backlog_unlock_irq_enable(sd);
6230  
6231  	return do_flush;
6232  #endif
6233  	/* without RPS we can't safely check input_pkt_queue: during a
6234  	 * concurrent remote skb_queue_splice() we can detect as empty both
6235  	 * input_pkt_queue and process_queue even if the latter could end-up
6236  	 * containing a lot of packets.
6237  	 */
6238  	return true;
6239  }
6240  
6241  struct flush_backlogs {
6242  	cpumask_t		flush_cpus;
6243  	struct work_struct	w[];
6244  };
6245  
flush_backlogs_alloc(void)6246  static struct flush_backlogs *flush_backlogs_alloc(void)
6247  {
6248  	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6249  		       GFP_KERNEL);
6250  }
6251  
6252  static struct flush_backlogs *flush_backlogs_fallback;
6253  static DEFINE_MUTEX(flush_backlogs_mutex);
6254  
flush_all_backlogs(void)6255  static void flush_all_backlogs(void)
6256  {
6257  	struct flush_backlogs *ptr = flush_backlogs_alloc();
6258  	unsigned int cpu;
6259  
6260  	if (!ptr) {
6261  		mutex_lock(&flush_backlogs_mutex);
6262  		ptr = flush_backlogs_fallback;
6263  	}
6264  	cpumask_clear(&ptr->flush_cpus);
6265  
6266  	cpus_read_lock();
6267  
6268  	for_each_online_cpu(cpu) {
6269  		if (flush_required(cpu)) {
6270  			INIT_WORK(&ptr->w[cpu], flush_backlog);
6271  			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6272  			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6273  		}
6274  	}
6275  
6276  	/* we can have in flight packet[s] on the cpus we are not flushing,
6277  	 * synchronize_net() in unregister_netdevice_many() will take care of
6278  	 * them.
6279  	 */
6280  	for_each_cpu(cpu, &ptr->flush_cpus)
6281  		flush_work(&ptr->w[cpu]);
6282  
6283  	cpus_read_unlock();
6284  
6285  	if (ptr != flush_backlogs_fallback)
6286  		kfree(ptr);
6287  	else
6288  		mutex_unlock(&flush_backlogs_mutex);
6289  }
6290  
net_rps_send_ipi(struct softnet_data * remsd)6291  static void net_rps_send_ipi(struct softnet_data *remsd)
6292  {
6293  #ifdef CONFIG_RPS
6294  	while (remsd) {
6295  		struct softnet_data *next = remsd->rps_ipi_next;
6296  
6297  		if (cpu_online(remsd->cpu))
6298  			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6299  		remsd = next;
6300  	}
6301  #endif
6302  }
6303  
6304  /*
6305   * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6306   * Note: called with local irq disabled, but exits with local irq enabled.
6307   */
net_rps_action_and_irq_enable(struct softnet_data * sd)6308  static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6309  {
6310  #ifdef CONFIG_RPS
6311  	struct softnet_data *remsd = sd->rps_ipi_list;
6312  
6313  	if (!use_backlog_threads() && remsd) {
6314  		sd->rps_ipi_list = NULL;
6315  
6316  		local_irq_enable();
6317  
6318  		/* Send pending IPI's to kick RPS processing on remote cpus. */
6319  		net_rps_send_ipi(remsd);
6320  	} else
6321  #endif
6322  		local_irq_enable();
6323  }
6324  
sd_has_rps_ipi_waiting(struct softnet_data * sd)6325  static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6326  {
6327  #ifdef CONFIG_RPS
6328  	return !use_backlog_threads() && sd->rps_ipi_list;
6329  #else
6330  	return false;
6331  #endif
6332  }
6333  
process_backlog(struct napi_struct * napi,int quota)6334  static int process_backlog(struct napi_struct *napi, int quota)
6335  {
6336  	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6337  	bool again = true;
6338  	int work = 0;
6339  
6340  	/* Check if we have pending ipi, its better to send them now,
6341  	 * not waiting net_rx_action() end.
6342  	 */
6343  	if (sd_has_rps_ipi_waiting(sd)) {
6344  		local_irq_disable();
6345  		net_rps_action_and_irq_enable(sd);
6346  	}
6347  
6348  	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6349  	while (again) {
6350  		struct sk_buff *skb;
6351  
6352  		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6353  		while ((skb = __skb_dequeue(&sd->process_queue))) {
6354  			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6355  			rcu_read_lock();
6356  			__netif_receive_skb(skb);
6357  			rcu_read_unlock();
6358  			if (++work >= quota) {
6359  				rps_input_queue_head_add(sd, work);
6360  				return work;
6361  			}
6362  
6363  			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6364  		}
6365  		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6366  
6367  		backlog_lock_irq_disable(sd);
6368  		if (skb_queue_empty(&sd->input_pkt_queue)) {
6369  			/*
6370  			 * Inline a custom version of __napi_complete().
6371  			 * only current cpu owns and manipulates this napi,
6372  			 * and NAPI_STATE_SCHED is the only possible flag set
6373  			 * on backlog.
6374  			 * We can use a plain write instead of clear_bit(),
6375  			 * and we dont need an smp_mb() memory barrier.
6376  			 */
6377  			napi->state &= NAPIF_STATE_THREADED;
6378  			again = false;
6379  		} else {
6380  			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6381  			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6382  						   &sd->process_queue);
6383  			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6384  		}
6385  		backlog_unlock_irq_enable(sd);
6386  	}
6387  
6388  	if (work)
6389  		rps_input_queue_head_add(sd, work);
6390  	return work;
6391  }
6392  
6393  /**
6394   * __napi_schedule - schedule for receive
6395   * @n: entry to schedule
6396   *
6397   * The entry's receive function will be scheduled to run.
6398   * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6399   */
__napi_schedule(struct napi_struct * n)6400  void __napi_schedule(struct napi_struct *n)
6401  {
6402  	unsigned long flags;
6403  
6404  	local_irq_save(flags);
6405  	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406  	local_irq_restore(flags);
6407  }
6408  EXPORT_SYMBOL(__napi_schedule);
6409  
6410  /**
6411   *	napi_schedule_prep - check if napi can be scheduled
6412   *	@n: napi context
6413   *
6414   * Test if NAPI routine is already running, and if not mark
6415   * it as running.  This is used as a condition variable to
6416   * insure only one NAPI poll instance runs.  We also make
6417   * sure there is no pending NAPI disable.
6418   */
napi_schedule_prep(struct napi_struct * n)6419  bool napi_schedule_prep(struct napi_struct *n)
6420  {
6421  	unsigned long new, val = READ_ONCE(n->state);
6422  
6423  	do {
6424  		if (unlikely(val & NAPIF_STATE_DISABLE))
6425  			return false;
6426  		new = val | NAPIF_STATE_SCHED;
6427  
6428  		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6429  		 * This was suggested by Alexander Duyck, as compiler
6430  		 * emits better code than :
6431  		 * if (val & NAPIF_STATE_SCHED)
6432  		 *     new |= NAPIF_STATE_MISSED;
6433  		 */
6434  		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6435  						   NAPIF_STATE_MISSED;
6436  	} while (!try_cmpxchg(&n->state, &val, new));
6437  
6438  	return !(val & NAPIF_STATE_SCHED);
6439  }
6440  EXPORT_SYMBOL(napi_schedule_prep);
6441  
6442  /**
6443   * __napi_schedule_irqoff - schedule for receive
6444   * @n: entry to schedule
6445   *
6446   * Variant of __napi_schedule() assuming hard irqs are masked.
6447   *
6448   * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6449   * because the interrupt disabled assumption might not be true
6450   * due to force-threaded interrupts and spinlock substitution.
6451   */
__napi_schedule_irqoff(struct napi_struct * n)6452  void __napi_schedule_irqoff(struct napi_struct *n)
6453  {
6454  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6455  		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6456  	else
6457  		__napi_schedule(n);
6458  }
6459  EXPORT_SYMBOL(__napi_schedule_irqoff);
6460  
napi_complete_done(struct napi_struct * n,int work_done)6461  bool napi_complete_done(struct napi_struct *n, int work_done)
6462  {
6463  	unsigned long flags, val, new, timeout = 0;
6464  	bool ret = true;
6465  
6466  	/*
6467  	 * 1) Don't let napi dequeue from the cpu poll list
6468  	 *    just in case its running on a different cpu.
6469  	 * 2) If we are busy polling, do nothing here, we have
6470  	 *    the guarantee we will be called later.
6471  	 */
6472  	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6473  				 NAPIF_STATE_IN_BUSY_POLL)))
6474  		return false;
6475  
6476  	if (work_done) {
6477  		if (n->gro.bitmask)
6478  			timeout = napi_get_gro_flush_timeout(n);
6479  		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6480  	}
6481  	if (n->defer_hard_irqs_count > 0) {
6482  		n->defer_hard_irqs_count--;
6483  		timeout = napi_get_gro_flush_timeout(n);
6484  		if (timeout)
6485  			ret = false;
6486  	}
6487  
6488  	/*
6489  	 * When the NAPI instance uses a timeout and keeps postponing
6490  	 * it, we need to bound somehow the time packets are kept in
6491  	 * the GRO layer.
6492  	 */
6493  	gro_flush(&n->gro, !!timeout);
6494  	gro_normal_list(&n->gro);
6495  
6496  	if (unlikely(!list_empty(&n->poll_list))) {
6497  		/* If n->poll_list is not empty, we need to mask irqs */
6498  		local_irq_save(flags);
6499  		list_del_init(&n->poll_list);
6500  		local_irq_restore(flags);
6501  	}
6502  	WRITE_ONCE(n->list_owner, -1);
6503  
6504  	val = READ_ONCE(n->state);
6505  	do {
6506  		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6507  
6508  		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6509  			      NAPIF_STATE_SCHED_THREADED |
6510  			      NAPIF_STATE_PREFER_BUSY_POLL);
6511  
6512  		/* If STATE_MISSED was set, leave STATE_SCHED set,
6513  		 * because we will call napi->poll() one more time.
6514  		 * This C code was suggested by Alexander Duyck to help gcc.
6515  		 */
6516  		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6517  						    NAPIF_STATE_SCHED;
6518  	} while (!try_cmpxchg(&n->state, &val, new));
6519  
6520  	if (unlikely(val & NAPIF_STATE_MISSED)) {
6521  		__napi_schedule(n);
6522  		return false;
6523  	}
6524  
6525  	if (timeout)
6526  		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6527  			      HRTIMER_MODE_REL_PINNED);
6528  	return ret;
6529  }
6530  EXPORT_SYMBOL(napi_complete_done);
6531  
skb_defer_free_flush(struct softnet_data * sd)6532  static void skb_defer_free_flush(struct softnet_data *sd)
6533  {
6534  	struct sk_buff *skb, *next;
6535  
6536  	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6537  	if (!READ_ONCE(sd->defer_list))
6538  		return;
6539  
6540  	spin_lock(&sd->defer_lock);
6541  	skb = sd->defer_list;
6542  	sd->defer_list = NULL;
6543  	sd->defer_count = 0;
6544  	spin_unlock(&sd->defer_lock);
6545  
6546  	while (skb != NULL) {
6547  		next = skb->next;
6548  		napi_consume_skb(skb, 1);
6549  		skb = next;
6550  	}
6551  }
6552  
6553  #if defined(CONFIG_NET_RX_BUSY_POLL)
6554  
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6555  static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6556  {
6557  	if (!skip_schedule) {
6558  		gro_normal_list(&napi->gro);
6559  		__napi_schedule(napi);
6560  		return;
6561  	}
6562  
6563  	/* Flush too old packets. If HZ < 1000, flush all packets */
6564  	gro_flush(&napi->gro, HZ >= 1000);
6565  	gro_normal_list(&napi->gro);
6566  
6567  	clear_bit(NAPI_STATE_SCHED, &napi->state);
6568  }
6569  
6570  enum {
6571  	NAPI_F_PREFER_BUSY_POLL	= 1,
6572  	NAPI_F_END_ON_RESCHED	= 2,
6573  };
6574  
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6575  static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6576  			   unsigned flags, u16 budget)
6577  {
6578  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6579  	bool skip_schedule = false;
6580  	unsigned long timeout;
6581  	int rc;
6582  
6583  	/* Busy polling means there is a high chance device driver hard irq
6584  	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6585  	 * set in napi_schedule_prep().
6586  	 * Since we are about to call napi->poll() once more, we can safely
6587  	 * clear NAPI_STATE_MISSED.
6588  	 *
6589  	 * Note: x86 could use a single "lock and ..." instruction
6590  	 * to perform these two clear_bit()
6591  	 */
6592  	clear_bit(NAPI_STATE_MISSED, &napi->state);
6593  	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6594  
6595  	local_bh_disable();
6596  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6597  
6598  	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6599  		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6600  		timeout = napi_get_gro_flush_timeout(napi);
6601  		if (napi->defer_hard_irqs_count && timeout) {
6602  			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6603  			skip_schedule = true;
6604  		}
6605  	}
6606  
6607  	/* All we really want here is to re-enable device interrupts.
6608  	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6609  	 */
6610  	rc = napi->poll(napi, budget);
6611  	/* We can't gro_normal_list() here, because napi->poll() might have
6612  	 * rearmed the napi (napi_complete_done()) in which case it could
6613  	 * already be running on another CPU.
6614  	 */
6615  	trace_napi_poll(napi, rc, budget);
6616  	netpoll_poll_unlock(have_poll_lock);
6617  	if (rc == budget)
6618  		__busy_poll_stop(napi, skip_schedule);
6619  	bpf_net_ctx_clear(bpf_net_ctx);
6620  	local_bh_enable();
6621  }
6622  
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6623  static void __napi_busy_loop(unsigned int napi_id,
6624  		      bool (*loop_end)(void *, unsigned long),
6625  		      void *loop_end_arg, unsigned flags, u16 budget)
6626  {
6627  	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6628  	int (*napi_poll)(struct napi_struct *napi, int budget);
6629  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6630  	void *have_poll_lock = NULL;
6631  	struct napi_struct *napi;
6632  
6633  	WARN_ON_ONCE(!rcu_read_lock_held());
6634  
6635  restart:
6636  	napi_poll = NULL;
6637  
6638  	napi = napi_by_id(napi_id);
6639  	if (!napi)
6640  		return;
6641  
6642  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6643  		preempt_disable();
6644  	for (;;) {
6645  		int work = 0;
6646  
6647  		local_bh_disable();
6648  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6649  		if (!napi_poll) {
6650  			unsigned long val = READ_ONCE(napi->state);
6651  
6652  			/* If multiple threads are competing for this napi,
6653  			 * we avoid dirtying napi->state as much as we can.
6654  			 */
6655  			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6656  				   NAPIF_STATE_IN_BUSY_POLL)) {
6657  				if (flags & NAPI_F_PREFER_BUSY_POLL)
6658  					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6659  				goto count;
6660  			}
6661  			if (cmpxchg(&napi->state, val,
6662  				    val | NAPIF_STATE_IN_BUSY_POLL |
6663  					  NAPIF_STATE_SCHED) != val) {
6664  				if (flags & NAPI_F_PREFER_BUSY_POLL)
6665  					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6666  				goto count;
6667  			}
6668  			have_poll_lock = netpoll_poll_lock(napi);
6669  			napi_poll = napi->poll;
6670  		}
6671  		work = napi_poll(napi, budget);
6672  		trace_napi_poll(napi, work, budget);
6673  		gro_normal_list(&napi->gro);
6674  count:
6675  		if (work > 0)
6676  			__NET_ADD_STATS(dev_net(napi->dev),
6677  					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6678  		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6679  		bpf_net_ctx_clear(bpf_net_ctx);
6680  		local_bh_enable();
6681  
6682  		if (!loop_end || loop_end(loop_end_arg, start_time))
6683  			break;
6684  
6685  		if (unlikely(need_resched())) {
6686  			if (flags & NAPI_F_END_ON_RESCHED)
6687  				break;
6688  			if (napi_poll)
6689  				busy_poll_stop(napi, have_poll_lock, flags, budget);
6690  			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6691  				preempt_enable();
6692  			rcu_read_unlock();
6693  			cond_resched();
6694  			rcu_read_lock();
6695  			if (loop_end(loop_end_arg, start_time))
6696  				return;
6697  			goto restart;
6698  		}
6699  		cpu_relax();
6700  	}
6701  	if (napi_poll)
6702  		busy_poll_stop(napi, have_poll_lock, flags, budget);
6703  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6704  		preempt_enable();
6705  }
6706  
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6707  void napi_busy_loop_rcu(unsigned int napi_id,
6708  			bool (*loop_end)(void *, unsigned long),
6709  			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710  {
6711  	unsigned flags = NAPI_F_END_ON_RESCHED;
6712  
6713  	if (prefer_busy_poll)
6714  		flags |= NAPI_F_PREFER_BUSY_POLL;
6715  
6716  	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6717  }
6718  
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6719  void napi_busy_loop(unsigned int napi_id,
6720  		    bool (*loop_end)(void *, unsigned long),
6721  		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6722  {
6723  	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6724  
6725  	rcu_read_lock();
6726  	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6727  	rcu_read_unlock();
6728  }
6729  EXPORT_SYMBOL(napi_busy_loop);
6730  
napi_suspend_irqs(unsigned int napi_id)6731  void napi_suspend_irqs(unsigned int napi_id)
6732  {
6733  	struct napi_struct *napi;
6734  
6735  	rcu_read_lock();
6736  	napi = napi_by_id(napi_id);
6737  	if (napi) {
6738  		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6739  
6740  		if (timeout)
6741  			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6742  				      HRTIMER_MODE_REL_PINNED);
6743  	}
6744  	rcu_read_unlock();
6745  }
6746  
napi_resume_irqs(unsigned int napi_id)6747  void napi_resume_irqs(unsigned int napi_id)
6748  {
6749  	struct napi_struct *napi;
6750  
6751  	rcu_read_lock();
6752  	napi = napi_by_id(napi_id);
6753  	if (napi) {
6754  		/* If irq_suspend_timeout is set to 0 between the call to
6755  		 * napi_suspend_irqs and now, the original value still
6756  		 * determines the safety timeout as intended and napi_watchdog
6757  		 * will resume irq processing.
6758  		 */
6759  		if (napi_get_irq_suspend_timeout(napi)) {
6760  			local_bh_disable();
6761  			napi_schedule(napi);
6762  			local_bh_enable();
6763  		}
6764  	}
6765  	rcu_read_unlock();
6766  }
6767  
6768  #endif /* CONFIG_NET_RX_BUSY_POLL */
6769  
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6770  static void __napi_hash_add_with_id(struct napi_struct *napi,
6771  				    unsigned int napi_id)
6772  {
6773  	napi->gro.cached_napi_id = napi_id;
6774  
6775  	WRITE_ONCE(napi->napi_id, napi_id);
6776  	hlist_add_head_rcu(&napi->napi_hash_node,
6777  			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6778  }
6779  
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6780  static void napi_hash_add_with_id(struct napi_struct *napi,
6781  				  unsigned int napi_id)
6782  {
6783  	unsigned long flags;
6784  
6785  	spin_lock_irqsave(&napi_hash_lock, flags);
6786  	WARN_ON_ONCE(napi_by_id(napi_id));
6787  	__napi_hash_add_with_id(napi, napi_id);
6788  	spin_unlock_irqrestore(&napi_hash_lock, flags);
6789  }
6790  
napi_hash_add(struct napi_struct * napi)6791  static void napi_hash_add(struct napi_struct *napi)
6792  {
6793  	unsigned long flags;
6794  
6795  	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6796  		return;
6797  
6798  	spin_lock_irqsave(&napi_hash_lock, flags);
6799  
6800  	/* 0..NR_CPUS range is reserved for sender_cpu use */
6801  	do {
6802  		if (unlikely(!napi_id_valid(++napi_gen_id)))
6803  			napi_gen_id = MIN_NAPI_ID;
6804  	} while (napi_by_id(napi_gen_id));
6805  
6806  	__napi_hash_add_with_id(napi, napi_gen_id);
6807  
6808  	spin_unlock_irqrestore(&napi_hash_lock, flags);
6809  }
6810  
6811  /* Warning : caller is responsible to make sure rcu grace period
6812   * is respected before freeing memory containing @napi
6813   */
napi_hash_del(struct napi_struct * napi)6814  static void napi_hash_del(struct napi_struct *napi)
6815  {
6816  	unsigned long flags;
6817  
6818  	spin_lock_irqsave(&napi_hash_lock, flags);
6819  
6820  	hlist_del_init_rcu(&napi->napi_hash_node);
6821  
6822  	spin_unlock_irqrestore(&napi_hash_lock, flags);
6823  }
6824  
napi_watchdog(struct hrtimer * timer)6825  static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6826  {
6827  	struct napi_struct *napi;
6828  
6829  	napi = container_of(timer, struct napi_struct, timer);
6830  
6831  	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6832  	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6833  	 */
6834  	if (!napi_disable_pending(napi) &&
6835  	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6836  		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6837  		__napi_schedule_irqoff(napi);
6838  	}
6839  
6840  	return HRTIMER_NORESTART;
6841  }
6842  
dev_set_threaded(struct net_device * dev,bool threaded)6843  int dev_set_threaded(struct net_device *dev, bool threaded)
6844  {
6845  	struct napi_struct *napi;
6846  	int err = 0;
6847  
6848  	netdev_assert_locked_or_invisible(dev);
6849  
6850  	if (dev->threaded == threaded)
6851  		return 0;
6852  
6853  	if (threaded) {
6854  		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855  			if (!napi->thread) {
6856  				err = napi_kthread_create(napi);
6857  				if (err) {
6858  					threaded = false;
6859  					break;
6860  				}
6861  			}
6862  		}
6863  	}
6864  
6865  	WRITE_ONCE(dev->threaded, threaded);
6866  
6867  	/* Make sure kthread is created before THREADED bit
6868  	 * is set.
6869  	 */
6870  	smp_mb__before_atomic();
6871  
6872  	/* Setting/unsetting threaded mode on a napi might not immediately
6873  	 * take effect, if the current napi instance is actively being
6874  	 * polled. In this case, the switch between threaded mode and
6875  	 * softirq mode will happen in the next round of napi_schedule().
6876  	 * This should not cause hiccups/stalls to the live traffic.
6877  	 */
6878  	list_for_each_entry(napi, &dev->napi_list, dev_list)
6879  		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6880  
6881  	return err;
6882  }
6883  EXPORT_SYMBOL(dev_set_threaded);
6884  
6885  /**
6886   * netif_queue_set_napi - Associate queue with the napi
6887   * @dev: device to which NAPI and queue belong
6888   * @queue_index: Index of queue
6889   * @type: queue type as RX or TX
6890   * @napi: NAPI context, pass NULL to clear previously set NAPI
6891   *
6892   * Set queue with its corresponding napi context. This should be done after
6893   * registering the NAPI handler for the queue-vector and the queues have been
6894   * mapped to the corresponding interrupt vector.
6895   */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6896  void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6897  			  enum netdev_queue_type type, struct napi_struct *napi)
6898  {
6899  	struct netdev_rx_queue *rxq;
6900  	struct netdev_queue *txq;
6901  
6902  	if (WARN_ON_ONCE(napi && !napi->dev))
6903  		return;
6904  	netdev_ops_assert_locked_or_invisible(dev);
6905  
6906  	switch (type) {
6907  	case NETDEV_QUEUE_TYPE_RX:
6908  		rxq = __netif_get_rx_queue(dev, queue_index);
6909  		rxq->napi = napi;
6910  		return;
6911  	case NETDEV_QUEUE_TYPE_TX:
6912  		txq = netdev_get_tx_queue(dev, queue_index);
6913  		txq->napi = napi;
6914  		return;
6915  	default:
6916  		return;
6917  	}
6918  }
6919  EXPORT_SYMBOL(netif_queue_set_napi);
6920  
6921  static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6922  netif_napi_irq_notify(struct irq_affinity_notify *notify,
6923  		      const cpumask_t *mask)
6924  {
6925  	struct napi_struct *napi =
6926  		container_of(notify, struct napi_struct, notify);
6927  #ifdef CONFIG_RFS_ACCEL
6928  	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6929  	int err;
6930  #endif
6931  
6932  	if (napi->config && napi->dev->irq_affinity_auto)
6933  		cpumask_copy(&napi->config->affinity_mask, mask);
6934  
6935  #ifdef CONFIG_RFS_ACCEL
6936  	if (napi->dev->rx_cpu_rmap_auto) {
6937  		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6938  		if (err)
6939  			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6940  				    err);
6941  	}
6942  #endif
6943  }
6944  
6945  #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6946  static void netif_napi_affinity_release(struct kref *ref)
6947  {
6948  	struct napi_struct *napi =
6949  		container_of(ref, struct napi_struct, notify.kref);
6950  	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6951  
6952  	netdev_assert_locked(napi->dev);
6953  	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6954  				   &napi->state));
6955  
6956  	if (!napi->dev->rx_cpu_rmap_auto)
6957  		return;
6958  	rmap->obj[napi->napi_rmap_idx] = NULL;
6959  	napi->napi_rmap_idx = -1;
6960  	cpu_rmap_put(rmap);
6961  }
6962  
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6963  int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6964  {
6965  	if (dev->rx_cpu_rmap_auto)
6966  		return 0;
6967  
6968  	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6969  	if (!dev->rx_cpu_rmap)
6970  		return -ENOMEM;
6971  
6972  	dev->rx_cpu_rmap_auto = true;
6973  	return 0;
6974  }
6975  EXPORT_SYMBOL(netif_enable_cpu_rmap);
6976  
netif_del_cpu_rmap(struct net_device * dev)6977  static void netif_del_cpu_rmap(struct net_device *dev)
6978  {
6979  	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6980  
6981  	if (!dev->rx_cpu_rmap_auto)
6982  		return;
6983  
6984  	/* Free the rmap */
6985  	cpu_rmap_put(rmap);
6986  	dev->rx_cpu_rmap = NULL;
6987  	dev->rx_cpu_rmap_auto = false;
6988  }
6989  
6990  #else
netif_napi_affinity_release(struct kref * ref)6991  static void netif_napi_affinity_release(struct kref *ref)
6992  {
6993  }
6994  
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6995  int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6996  {
6997  	return 0;
6998  }
6999  EXPORT_SYMBOL(netif_enable_cpu_rmap);
7000  
netif_del_cpu_rmap(struct net_device * dev)7001  static void netif_del_cpu_rmap(struct net_device *dev)
7002  {
7003  }
7004  #endif
7005  
netif_set_affinity_auto(struct net_device * dev)7006  void netif_set_affinity_auto(struct net_device *dev)
7007  {
7008  	unsigned int i, maxqs, numa;
7009  
7010  	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7011  	numa = dev_to_node(&dev->dev);
7012  
7013  	for (i = 0; i < maxqs; i++)
7014  		cpumask_set_cpu(cpumask_local_spread(i, numa),
7015  				&dev->napi_config[i].affinity_mask);
7016  
7017  	dev->irq_affinity_auto = true;
7018  }
7019  EXPORT_SYMBOL(netif_set_affinity_auto);
7020  
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7021  void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7022  {
7023  	int rc;
7024  
7025  	netdev_assert_locked_or_invisible(napi->dev);
7026  
7027  	if (napi->irq == irq)
7028  		return;
7029  
7030  	/* Remove existing resources */
7031  	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7032  		irq_set_affinity_notifier(napi->irq, NULL);
7033  
7034  	napi->irq = irq;
7035  	if (irq < 0 ||
7036  	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7037  		return;
7038  
7039  	/* Abort for buggy drivers */
7040  	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7041  		return;
7042  
7043  #ifdef CONFIG_RFS_ACCEL
7044  	if (napi->dev->rx_cpu_rmap_auto) {
7045  		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7046  		if (rc < 0)
7047  			return;
7048  
7049  		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7050  		napi->napi_rmap_idx = rc;
7051  	}
7052  #endif
7053  
7054  	/* Use core IRQ notifier */
7055  	napi->notify.notify = netif_napi_irq_notify;
7056  	napi->notify.release = netif_napi_affinity_release;
7057  	rc = irq_set_affinity_notifier(irq, &napi->notify);
7058  	if (rc) {
7059  		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7060  			    rc);
7061  		goto put_rmap;
7062  	}
7063  
7064  	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7065  	return;
7066  
7067  put_rmap:
7068  #ifdef CONFIG_RFS_ACCEL
7069  	if (napi->dev->rx_cpu_rmap_auto) {
7070  		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7071  		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7072  		napi->napi_rmap_idx = -1;
7073  	}
7074  #endif
7075  	napi->notify.notify = NULL;
7076  	napi->notify.release = NULL;
7077  }
7078  EXPORT_SYMBOL(netif_napi_set_irq_locked);
7079  
napi_restore_config(struct napi_struct * n)7080  static void napi_restore_config(struct napi_struct *n)
7081  {
7082  	n->defer_hard_irqs = n->config->defer_hard_irqs;
7083  	n->gro_flush_timeout = n->config->gro_flush_timeout;
7084  	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7085  
7086  	if (n->dev->irq_affinity_auto &&
7087  	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7088  		irq_set_affinity(n->irq, &n->config->affinity_mask);
7089  
7090  	/* a NAPI ID might be stored in the config, if so use it. if not, use
7091  	 * napi_hash_add to generate one for us.
7092  	 */
7093  	if (n->config->napi_id) {
7094  		napi_hash_add_with_id(n, n->config->napi_id);
7095  	} else {
7096  		napi_hash_add(n);
7097  		n->config->napi_id = n->napi_id;
7098  	}
7099  }
7100  
napi_save_config(struct napi_struct * n)7101  static void napi_save_config(struct napi_struct *n)
7102  {
7103  	n->config->defer_hard_irqs = n->defer_hard_irqs;
7104  	n->config->gro_flush_timeout = n->gro_flush_timeout;
7105  	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7106  	napi_hash_del(n);
7107  }
7108  
7109  /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7110   * inherit an existing ID try to insert it at the right position.
7111   */
7112  static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7113  netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7114  {
7115  	unsigned int new_id, pos_id;
7116  	struct list_head *higher;
7117  	struct napi_struct *pos;
7118  
7119  	new_id = UINT_MAX;
7120  	if (napi->config && napi->config->napi_id)
7121  		new_id = napi->config->napi_id;
7122  
7123  	higher = &dev->napi_list;
7124  	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7125  		if (napi_id_valid(pos->napi_id))
7126  			pos_id = pos->napi_id;
7127  		else if (pos->config)
7128  			pos_id = pos->config->napi_id;
7129  		else
7130  			pos_id = UINT_MAX;
7131  
7132  		if (pos_id <= new_id)
7133  			break;
7134  		higher = &pos->dev_list;
7135  	}
7136  	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7137  }
7138  
7139  /* Double check that napi_get_frags() allocates skbs with
7140   * skb->head being backed by slab, not a page fragment.
7141   * This is to make sure bug fixed in 3226b158e67c
7142   * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7143   * does not accidentally come back.
7144   */
napi_get_frags_check(struct napi_struct * napi)7145  static void napi_get_frags_check(struct napi_struct *napi)
7146  {
7147  	struct sk_buff *skb;
7148  
7149  	local_bh_disable();
7150  	skb = napi_get_frags(napi);
7151  	WARN_ON_ONCE(skb && skb->head_frag);
7152  	napi_free_frags(napi);
7153  	local_bh_enable();
7154  }
7155  
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7156  void netif_napi_add_weight_locked(struct net_device *dev,
7157  				  struct napi_struct *napi,
7158  				  int (*poll)(struct napi_struct *, int),
7159  				  int weight)
7160  {
7161  	netdev_assert_locked(dev);
7162  	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7163  		return;
7164  
7165  	INIT_LIST_HEAD(&napi->poll_list);
7166  	INIT_HLIST_NODE(&napi->napi_hash_node);
7167  	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7168  	gro_init(&napi->gro);
7169  	napi->skb = NULL;
7170  	napi->poll = poll;
7171  	if (weight > NAPI_POLL_WEIGHT)
7172  		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7173  				weight);
7174  	napi->weight = weight;
7175  	napi->dev = dev;
7176  #ifdef CONFIG_NETPOLL
7177  	napi->poll_owner = -1;
7178  #endif
7179  	napi->list_owner = -1;
7180  	set_bit(NAPI_STATE_SCHED, &napi->state);
7181  	set_bit(NAPI_STATE_NPSVC, &napi->state);
7182  	netif_napi_dev_list_add(dev, napi);
7183  
7184  	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7185  	 * configuration will be loaded in napi_enable
7186  	 */
7187  	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7188  	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7189  
7190  	napi_get_frags_check(napi);
7191  	/* Create kthread for this napi if dev->threaded is set.
7192  	 * Clear dev->threaded if kthread creation failed so that
7193  	 * threaded mode will not be enabled in napi_enable().
7194  	 */
7195  	if (dev->threaded && napi_kthread_create(napi))
7196  		dev->threaded = false;
7197  	netif_napi_set_irq_locked(napi, -1);
7198  }
7199  EXPORT_SYMBOL(netif_napi_add_weight_locked);
7200  
napi_disable_locked(struct napi_struct * n)7201  void napi_disable_locked(struct napi_struct *n)
7202  {
7203  	unsigned long val, new;
7204  
7205  	might_sleep();
7206  	netdev_assert_locked(n->dev);
7207  
7208  	set_bit(NAPI_STATE_DISABLE, &n->state);
7209  
7210  	val = READ_ONCE(n->state);
7211  	do {
7212  		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7213  			usleep_range(20, 200);
7214  			val = READ_ONCE(n->state);
7215  		}
7216  
7217  		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7218  		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7219  	} while (!try_cmpxchg(&n->state, &val, new));
7220  
7221  	hrtimer_cancel(&n->timer);
7222  
7223  	if (n->config)
7224  		napi_save_config(n);
7225  	else
7226  		napi_hash_del(n);
7227  
7228  	clear_bit(NAPI_STATE_DISABLE, &n->state);
7229  }
7230  EXPORT_SYMBOL(napi_disable_locked);
7231  
7232  /**
7233   * napi_disable() - prevent NAPI from scheduling
7234   * @n: NAPI context
7235   *
7236   * Stop NAPI from being scheduled on this context.
7237   * Waits till any outstanding processing completes.
7238   * Takes netdev_lock() for associated net_device.
7239   */
napi_disable(struct napi_struct * n)7240  void napi_disable(struct napi_struct *n)
7241  {
7242  	netdev_lock(n->dev);
7243  	napi_disable_locked(n);
7244  	netdev_unlock(n->dev);
7245  }
7246  EXPORT_SYMBOL(napi_disable);
7247  
napi_enable_locked(struct napi_struct * n)7248  void napi_enable_locked(struct napi_struct *n)
7249  {
7250  	unsigned long new, val = READ_ONCE(n->state);
7251  
7252  	if (n->config)
7253  		napi_restore_config(n);
7254  	else
7255  		napi_hash_add(n);
7256  
7257  	do {
7258  		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7259  
7260  		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7261  		if (n->dev->threaded && n->thread)
7262  			new |= NAPIF_STATE_THREADED;
7263  	} while (!try_cmpxchg(&n->state, &val, new));
7264  }
7265  EXPORT_SYMBOL(napi_enable_locked);
7266  
7267  /**
7268   * napi_enable() - enable NAPI scheduling
7269   * @n: NAPI context
7270   *
7271   * Enable scheduling of a NAPI instance.
7272   * Must be paired with napi_disable().
7273   * Takes netdev_lock() for associated net_device.
7274   */
napi_enable(struct napi_struct * n)7275  void napi_enable(struct napi_struct *n)
7276  {
7277  	netdev_lock(n->dev);
7278  	napi_enable_locked(n);
7279  	netdev_unlock(n->dev);
7280  }
7281  EXPORT_SYMBOL(napi_enable);
7282  
7283  /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7284  void __netif_napi_del_locked(struct napi_struct *napi)
7285  {
7286  	netdev_assert_locked(napi->dev);
7287  
7288  	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7289  		return;
7290  
7291  	/* Make sure NAPI is disabled (or was never enabled). */
7292  	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7293  
7294  	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7295  		irq_set_affinity_notifier(napi->irq, NULL);
7296  
7297  	if (napi->config) {
7298  		napi->index = -1;
7299  		napi->config = NULL;
7300  	}
7301  
7302  	list_del_rcu(&napi->dev_list);
7303  	napi_free_frags(napi);
7304  
7305  	gro_cleanup(&napi->gro);
7306  
7307  	if (napi->thread) {
7308  		kthread_stop(napi->thread);
7309  		napi->thread = NULL;
7310  	}
7311  }
7312  EXPORT_SYMBOL(__netif_napi_del_locked);
7313  
__napi_poll(struct napi_struct * n,bool * repoll)7314  static int __napi_poll(struct napi_struct *n, bool *repoll)
7315  {
7316  	int work, weight;
7317  
7318  	weight = n->weight;
7319  
7320  	/* This NAPI_STATE_SCHED test is for avoiding a race
7321  	 * with netpoll's poll_napi().  Only the entity which
7322  	 * obtains the lock and sees NAPI_STATE_SCHED set will
7323  	 * actually make the ->poll() call.  Therefore we avoid
7324  	 * accidentally calling ->poll() when NAPI is not scheduled.
7325  	 */
7326  	work = 0;
7327  	if (napi_is_scheduled(n)) {
7328  		work = n->poll(n, weight);
7329  		trace_napi_poll(n, work, weight);
7330  
7331  		xdp_do_check_flushed(n);
7332  	}
7333  
7334  	if (unlikely(work > weight))
7335  		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7336  				n->poll, work, weight);
7337  
7338  	if (likely(work < weight))
7339  		return work;
7340  
7341  	/* Drivers must not modify the NAPI state if they
7342  	 * consume the entire weight.  In such cases this code
7343  	 * still "owns" the NAPI instance and therefore can
7344  	 * move the instance around on the list at-will.
7345  	 */
7346  	if (unlikely(napi_disable_pending(n))) {
7347  		napi_complete(n);
7348  		return work;
7349  	}
7350  
7351  	/* The NAPI context has more processing work, but busy-polling
7352  	 * is preferred. Exit early.
7353  	 */
7354  	if (napi_prefer_busy_poll(n)) {
7355  		if (napi_complete_done(n, work)) {
7356  			/* If timeout is not set, we need to make sure
7357  			 * that the NAPI is re-scheduled.
7358  			 */
7359  			napi_schedule(n);
7360  		}
7361  		return work;
7362  	}
7363  
7364  	/* Flush too old packets. If HZ < 1000, flush all packets */
7365  	gro_flush(&n->gro, HZ >= 1000);
7366  	gro_normal_list(&n->gro);
7367  
7368  	/* Some drivers may have called napi_schedule
7369  	 * prior to exhausting their budget.
7370  	 */
7371  	if (unlikely(!list_empty(&n->poll_list))) {
7372  		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7373  			     n->dev ? n->dev->name : "backlog");
7374  		return work;
7375  	}
7376  
7377  	*repoll = true;
7378  
7379  	return work;
7380  }
7381  
napi_poll(struct napi_struct * n,struct list_head * repoll)7382  static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7383  {
7384  	bool do_repoll = false;
7385  	void *have;
7386  	int work;
7387  
7388  	list_del_init(&n->poll_list);
7389  
7390  	have = netpoll_poll_lock(n);
7391  
7392  	work = __napi_poll(n, &do_repoll);
7393  
7394  	if (do_repoll)
7395  		list_add_tail(&n->poll_list, repoll);
7396  
7397  	netpoll_poll_unlock(have);
7398  
7399  	return work;
7400  }
7401  
napi_thread_wait(struct napi_struct * napi)7402  static int napi_thread_wait(struct napi_struct *napi)
7403  {
7404  	set_current_state(TASK_INTERRUPTIBLE);
7405  
7406  	while (!kthread_should_stop()) {
7407  		/* Testing SCHED_THREADED bit here to make sure the current
7408  		 * kthread owns this napi and could poll on this napi.
7409  		 * Testing SCHED bit is not enough because SCHED bit might be
7410  		 * set by some other busy poll thread or by napi_disable().
7411  		 */
7412  		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7413  			WARN_ON(!list_empty(&napi->poll_list));
7414  			__set_current_state(TASK_RUNNING);
7415  			return 0;
7416  		}
7417  
7418  		schedule();
7419  		set_current_state(TASK_INTERRUPTIBLE);
7420  	}
7421  	__set_current_state(TASK_RUNNING);
7422  
7423  	return -1;
7424  }
7425  
napi_threaded_poll_loop(struct napi_struct * napi)7426  static void napi_threaded_poll_loop(struct napi_struct *napi)
7427  {
7428  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7429  	struct softnet_data *sd;
7430  	unsigned long last_qs = jiffies;
7431  
7432  	for (;;) {
7433  		bool repoll = false;
7434  		void *have;
7435  
7436  		local_bh_disable();
7437  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7438  
7439  		sd = this_cpu_ptr(&softnet_data);
7440  		sd->in_napi_threaded_poll = true;
7441  
7442  		have = netpoll_poll_lock(napi);
7443  		__napi_poll(napi, &repoll);
7444  		netpoll_poll_unlock(have);
7445  
7446  		sd->in_napi_threaded_poll = false;
7447  		barrier();
7448  
7449  		if (sd_has_rps_ipi_waiting(sd)) {
7450  			local_irq_disable();
7451  			net_rps_action_and_irq_enable(sd);
7452  		}
7453  		skb_defer_free_flush(sd);
7454  		bpf_net_ctx_clear(bpf_net_ctx);
7455  		local_bh_enable();
7456  
7457  		if (!repoll)
7458  			break;
7459  
7460  		rcu_softirq_qs_periodic(last_qs);
7461  		cond_resched();
7462  	}
7463  }
7464  
napi_threaded_poll(void * data)7465  static int napi_threaded_poll(void *data)
7466  {
7467  	struct napi_struct *napi = data;
7468  
7469  	while (!napi_thread_wait(napi))
7470  		napi_threaded_poll_loop(napi);
7471  
7472  	return 0;
7473  }
7474  
net_rx_action(void)7475  static __latent_entropy void net_rx_action(void)
7476  {
7477  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7478  	unsigned long time_limit = jiffies +
7479  		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7480  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7481  	int budget = READ_ONCE(net_hotdata.netdev_budget);
7482  	LIST_HEAD(list);
7483  	LIST_HEAD(repoll);
7484  
7485  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7486  start:
7487  	sd->in_net_rx_action = true;
7488  	local_irq_disable();
7489  	list_splice_init(&sd->poll_list, &list);
7490  	local_irq_enable();
7491  
7492  	for (;;) {
7493  		struct napi_struct *n;
7494  
7495  		skb_defer_free_flush(sd);
7496  
7497  		if (list_empty(&list)) {
7498  			if (list_empty(&repoll)) {
7499  				sd->in_net_rx_action = false;
7500  				barrier();
7501  				/* We need to check if ____napi_schedule()
7502  				 * had refilled poll_list while
7503  				 * sd->in_net_rx_action was true.
7504  				 */
7505  				if (!list_empty(&sd->poll_list))
7506  					goto start;
7507  				if (!sd_has_rps_ipi_waiting(sd))
7508  					goto end;
7509  			}
7510  			break;
7511  		}
7512  
7513  		n = list_first_entry(&list, struct napi_struct, poll_list);
7514  		budget -= napi_poll(n, &repoll);
7515  
7516  		/* If softirq window is exhausted then punt.
7517  		 * Allow this to run for 2 jiffies since which will allow
7518  		 * an average latency of 1.5/HZ.
7519  		 */
7520  		if (unlikely(budget <= 0 ||
7521  			     time_after_eq(jiffies, time_limit))) {
7522  			sd->time_squeeze++;
7523  			break;
7524  		}
7525  	}
7526  
7527  	local_irq_disable();
7528  
7529  	list_splice_tail_init(&sd->poll_list, &list);
7530  	list_splice_tail(&repoll, &list);
7531  	list_splice(&list, &sd->poll_list);
7532  	if (!list_empty(&sd->poll_list))
7533  		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7534  	else
7535  		sd->in_net_rx_action = false;
7536  
7537  	net_rps_action_and_irq_enable(sd);
7538  end:
7539  	bpf_net_ctx_clear(bpf_net_ctx);
7540  }
7541  
7542  struct netdev_adjacent {
7543  	struct net_device *dev;
7544  	netdevice_tracker dev_tracker;
7545  
7546  	/* upper master flag, there can only be one master device per list */
7547  	bool master;
7548  
7549  	/* lookup ignore flag */
7550  	bool ignore;
7551  
7552  	/* counter for the number of times this device was added to us */
7553  	u16 ref_nr;
7554  
7555  	/* private field for the users */
7556  	void *private;
7557  
7558  	struct list_head list;
7559  	struct rcu_head rcu;
7560  };
7561  
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7562  static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7563  						 struct list_head *adj_list)
7564  {
7565  	struct netdev_adjacent *adj;
7566  
7567  	list_for_each_entry(adj, adj_list, list) {
7568  		if (adj->dev == adj_dev)
7569  			return adj;
7570  	}
7571  	return NULL;
7572  }
7573  
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7574  static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7575  				    struct netdev_nested_priv *priv)
7576  {
7577  	struct net_device *dev = (struct net_device *)priv->data;
7578  
7579  	return upper_dev == dev;
7580  }
7581  
7582  /**
7583   * netdev_has_upper_dev - Check if device is linked to an upper device
7584   * @dev: device
7585   * @upper_dev: upper device to check
7586   *
7587   * Find out if a device is linked to specified upper device and return true
7588   * in case it is. Note that this checks only immediate upper device,
7589   * not through a complete stack of devices. The caller must hold the RTNL lock.
7590   */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7591  bool netdev_has_upper_dev(struct net_device *dev,
7592  			  struct net_device *upper_dev)
7593  {
7594  	struct netdev_nested_priv priv = {
7595  		.data = (void *)upper_dev,
7596  	};
7597  
7598  	ASSERT_RTNL();
7599  
7600  	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7601  					     &priv);
7602  }
7603  EXPORT_SYMBOL(netdev_has_upper_dev);
7604  
7605  /**
7606   * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7607   * @dev: device
7608   * @upper_dev: upper device to check
7609   *
7610   * Find out if a device is linked to specified upper device and return true
7611   * in case it is. Note that this checks the entire upper device chain.
7612   * The caller must hold rcu lock.
7613   */
7614  
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7615  bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7616  				  struct net_device *upper_dev)
7617  {
7618  	struct netdev_nested_priv priv = {
7619  		.data = (void *)upper_dev,
7620  	};
7621  
7622  	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7623  					       &priv);
7624  }
7625  EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7626  
7627  /**
7628   * netdev_has_any_upper_dev - Check if device is linked to some device
7629   * @dev: device
7630   *
7631   * Find out if a device is linked to an upper device and return true in case
7632   * it is. The caller must hold the RTNL lock.
7633   */
netdev_has_any_upper_dev(struct net_device * dev)7634  bool netdev_has_any_upper_dev(struct net_device *dev)
7635  {
7636  	ASSERT_RTNL();
7637  
7638  	return !list_empty(&dev->adj_list.upper);
7639  }
7640  EXPORT_SYMBOL(netdev_has_any_upper_dev);
7641  
7642  /**
7643   * netdev_master_upper_dev_get - Get master upper device
7644   * @dev: device
7645   *
7646   * Find a master upper device and return pointer to it or NULL in case
7647   * it's not there. The caller must hold the RTNL lock.
7648   */
netdev_master_upper_dev_get(struct net_device * dev)7649  struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7650  {
7651  	struct netdev_adjacent *upper;
7652  
7653  	ASSERT_RTNL();
7654  
7655  	if (list_empty(&dev->adj_list.upper))
7656  		return NULL;
7657  
7658  	upper = list_first_entry(&dev->adj_list.upper,
7659  				 struct netdev_adjacent, list);
7660  	if (likely(upper->master))
7661  		return upper->dev;
7662  	return NULL;
7663  }
7664  EXPORT_SYMBOL(netdev_master_upper_dev_get);
7665  
__netdev_master_upper_dev_get(struct net_device * dev)7666  static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7667  {
7668  	struct netdev_adjacent *upper;
7669  
7670  	ASSERT_RTNL();
7671  
7672  	if (list_empty(&dev->adj_list.upper))
7673  		return NULL;
7674  
7675  	upper = list_first_entry(&dev->adj_list.upper,
7676  				 struct netdev_adjacent, list);
7677  	if (likely(upper->master) && !upper->ignore)
7678  		return upper->dev;
7679  	return NULL;
7680  }
7681  
7682  /**
7683   * netdev_has_any_lower_dev - Check if device is linked to some device
7684   * @dev: device
7685   *
7686   * Find out if a device is linked to a lower device and return true in case
7687   * it is. The caller must hold the RTNL lock.
7688   */
netdev_has_any_lower_dev(struct net_device * dev)7689  static bool netdev_has_any_lower_dev(struct net_device *dev)
7690  {
7691  	ASSERT_RTNL();
7692  
7693  	return !list_empty(&dev->adj_list.lower);
7694  }
7695  
netdev_adjacent_get_private(struct list_head * adj_list)7696  void *netdev_adjacent_get_private(struct list_head *adj_list)
7697  {
7698  	struct netdev_adjacent *adj;
7699  
7700  	adj = list_entry(adj_list, struct netdev_adjacent, list);
7701  
7702  	return adj->private;
7703  }
7704  EXPORT_SYMBOL(netdev_adjacent_get_private);
7705  
7706  /**
7707   * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7708   * @dev: device
7709   * @iter: list_head ** of the current position
7710   *
7711   * Gets the next device from the dev's upper list, starting from iter
7712   * position. The caller must hold RCU read lock.
7713   */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7714  struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7715  						 struct list_head **iter)
7716  {
7717  	struct netdev_adjacent *upper;
7718  
7719  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7720  
7721  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7722  
7723  	if (&upper->list == &dev->adj_list.upper)
7724  		return NULL;
7725  
7726  	*iter = &upper->list;
7727  
7728  	return upper->dev;
7729  }
7730  EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7731  
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7732  static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7733  						  struct list_head **iter,
7734  						  bool *ignore)
7735  {
7736  	struct netdev_adjacent *upper;
7737  
7738  	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7739  
7740  	if (&upper->list == &dev->adj_list.upper)
7741  		return NULL;
7742  
7743  	*iter = &upper->list;
7744  	*ignore = upper->ignore;
7745  
7746  	return upper->dev;
7747  }
7748  
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7749  static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7750  						    struct list_head **iter)
7751  {
7752  	struct netdev_adjacent *upper;
7753  
7754  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7755  
7756  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7757  
7758  	if (&upper->list == &dev->adj_list.upper)
7759  		return NULL;
7760  
7761  	*iter = &upper->list;
7762  
7763  	return upper->dev;
7764  }
7765  
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7766  static int __netdev_walk_all_upper_dev(struct net_device *dev,
7767  				       int (*fn)(struct net_device *dev,
7768  					 struct netdev_nested_priv *priv),
7769  				       struct netdev_nested_priv *priv)
7770  {
7771  	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7772  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7773  	int ret, cur = 0;
7774  	bool ignore;
7775  
7776  	now = dev;
7777  	iter = &dev->adj_list.upper;
7778  
7779  	while (1) {
7780  		if (now != dev) {
7781  			ret = fn(now, priv);
7782  			if (ret)
7783  				return ret;
7784  		}
7785  
7786  		next = NULL;
7787  		while (1) {
7788  			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7789  			if (!udev)
7790  				break;
7791  			if (ignore)
7792  				continue;
7793  
7794  			next = udev;
7795  			niter = &udev->adj_list.upper;
7796  			dev_stack[cur] = now;
7797  			iter_stack[cur++] = iter;
7798  			break;
7799  		}
7800  
7801  		if (!next) {
7802  			if (!cur)
7803  				return 0;
7804  			next = dev_stack[--cur];
7805  			niter = iter_stack[cur];
7806  		}
7807  
7808  		now = next;
7809  		iter = niter;
7810  	}
7811  
7812  	return 0;
7813  }
7814  
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7815  int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7816  				  int (*fn)(struct net_device *dev,
7817  					    struct netdev_nested_priv *priv),
7818  				  struct netdev_nested_priv *priv)
7819  {
7820  	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7821  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7822  	int ret, cur = 0;
7823  
7824  	now = dev;
7825  	iter = &dev->adj_list.upper;
7826  
7827  	while (1) {
7828  		if (now != dev) {
7829  			ret = fn(now, priv);
7830  			if (ret)
7831  				return ret;
7832  		}
7833  
7834  		next = NULL;
7835  		while (1) {
7836  			udev = netdev_next_upper_dev_rcu(now, &iter);
7837  			if (!udev)
7838  				break;
7839  
7840  			next = udev;
7841  			niter = &udev->adj_list.upper;
7842  			dev_stack[cur] = now;
7843  			iter_stack[cur++] = iter;
7844  			break;
7845  		}
7846  
7847  		if (!next) {
7848  			if (!cur)
7849  				return 0;
7850  			next = dev_stack[--cur];
7851  			niter = iter_stack[cur];
7852  		}
7853  
7854  		now = next;
7855  		iter = niter;
7856  	}
7857  
7858  	return 0;
7859  }
7860  EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7861  
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7862  static bool __netdev_has_upper_dev(struct net_device *dev,
7863  				   struct net_device *upper_dev)
7864  {
7865  	struct netdev_nested_priv priv = {
7866  		.flags = 0,
7867  		.data = (void *)upper_dev,
7868  	};
7869  
7870  	ASSERT_RTNL();
7871  
7872  	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7873  					   &priv);
7874  }
7875  
7876  /**
7877   * netdev_lower_get_next_private - Get the next ->private from the
7878   *				   lower neighbour list
7879   * @dev: device
7880   * @iter: list_head ** of the current position
7881   *
7882   * Gets the next netdev_adjacent->private from the dev's lower neighbour
7883   * list, starting from iter position. The caller must hold either hold the
7884   * RTNL lock or its own locking that guarantees that the neighbour lower
7885   * list will remain unchanged.
7886   */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7887  void *netdev_lower_get_next_private(struct net_device *dev,
7888  				    struct list_head **iter)
7889  {
7890  	struct netdev_adjacent *lower;
7891  
7892  	lower = list_entry(*iter, struct netdev_adjacent, list);
7893  
7894  	if (&lower->list == &dev->adj_list.lower)
7895  		return NULL;
7896  
7897  	*iter = lower->list.next;
7898  
7899  	return lower->private;
7900  }
7901  EXPORT_SYMBOL(netdev_lower_get_next_private);
7902  
7903  /**
7904   * netdev_lower_get_next_private_rcu - Get the next ->private from the
7905   *				       lower neighbour list, RCU
7906   *				       variant
7907   * @dev: device
7908   * @iter: list_head ** of the current position
7909   *
7910   * Gets the next netdev_adjacent->private from the dev's lower neighbour
7911   * list, starting from iter position. The caller must hold RCU read lock.
7912   */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7913  void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7914  					struct list_head **iter)
7915  {
7916  	struct netdev_adjacent *lower;
7917  
7918  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7919  
7920  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7921  
7922  	if (&lower->list == &dev->adj_list.lower)
7923  		return NULL;
7924  
7925  	*iter = &lower->list;
7926  
7927  	return lower->private;
7928  }
7929  EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7930  
7931  /**
7932   * netdev_lower_get_next - Get the next device from the lower neighbour
7933   *                         list
7934   * @dev: device
7935   * @iter: list_head ** of the current position
7936   *
7937   * Gets the next netdev_adjacent from the dev's lower neighbour
7938   * list, starting from iter position. The caller must hold RTNL lock or
7939   * its own locking that guarantees that the neighbour lower
7940   * list will remain unchanged.
7941   */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7942  void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7943  {
7944  	struct netdev_adjacent *lower;
7945  
7946  	lower = list_entry(*iter, struct netdev_adjacent, list);
7947  
7948  	if (&lower->list == &dev->adj_list.lower)
7949  		return NULL;
7950  
7951  	*iter = lower->list.next;
7952  
7953  	return lower->dev;
7954  }
7955  EXPORT_SYMBOL(netdev_lower_get_next);
7956  
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7957  static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7958  						struct list_head **iter)
7959  {
7960  	struct netdev_adjacent *lower;
7961  
7962  	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7963  
7964  	if (&lower->list == &dev->adj_list.lower)
7965  		return NULL;
7966  
7967  	*iter = &lower->list;
7968  
7969  	return lower->dev;
7970  }
7971  
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7972  static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7973  						  struct list_head **iter,
7974  						  bool *ignore)
7975  {
7976  	struct netdev_adjacent *lower;
7977  
7978  	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7979  
7980  	if (&lower->list == &dev->adj_list.lower)
7981  		return NULL;
7982  
7983  	*iter = &lower->list;
7984  	*ignore = lower->ignore;
7985  
7986  	return lower->dev;
7987  }
7988  
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7989  int netdev_walk_all_lower_dev(struct net_device *dev,
7990  			      int (*fn)(struct net_device *dev,
7991  					struct netdev_nested_priv *priv),
7992  			      struct netdev_nested_priv *priv)
7993  {
7994  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7995  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7996  	int ret, cur = 0;
7997  
7998  	now = dev;
7999  	iter = &dev->adj_list.lower;
8000  
8001  	while (1) {
8002  		if (now != dev) {
8003  			ret = fn(now, priv);
8004  			if (ret)
8005  				return ret;
8006  		}
8007  
8008  		next = NULL;
8009  		while (1) {
8010  			ldev = netdev_next_lower_dev(now, &iter);
8011  			if (!ldev)
8012  				break;
8013  
8014  			next = ldev;
8015  			niter = &ldev->adj_list.lower;
8016  			dev_stack[cur] = now;
8017  			iter_stack[cur++] = iter;
8018  			break;
8019  		}
8020  
8021  		if (!next) {
8022  			if (!cur)
8023  				return 0;
8024  			next = dev_stack[--cur];
8025  			niter = iter_stack[cur];
8026  		}
8027  
8028  		now = next;
8029  		iter = niter;
8030  	}
8031  
8032  	return 0;
8033  }
8034  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8035  
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8036  static int __netdev_walk_all_lower_dev(struct net_device *dev,
8037  				       int (*fn)(struct net_device *dev,
8038  					 struct netdev_nested_priv *priv),
8039  				       struct netdev_nested_priv *priv)
8040  {
8041  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8042  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8043  	int ret, cur = 0;
8044  	bool ignore;
8045  
8046  	now = dev;
8047  	iter = &dev->adj_list.lower;
8048  
8049  	while (1) {
8050  		if (now != dev) {
8051  			ret = fn(now, priv);
8052  			if (ret)
8053  				return ret;
8054  		}
8055  
8056  		next = NULL;
8057  		while (1) {
8058  			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8059  			if (!ldev)
8060  				break;
8061  			if (ignore)
8062  				continue;
8063  
8064  			next = ldev;
8065  			niter = &ldev->adj_list.lower;
8066  			dev_stack[cur] = now;
8067  			iter_stack[cur++] = iter;
8068  			break;
8069  		}
8070  
8071  		if (!next) {
8072  			if (!cur)
8073  				return 0;
8074  			next = dev_stack[--cur];
8075  			niter = iter_stack[cur];
8076  		}
8077  
8078  		now = next;
8079  		iter = niter;
8080  	}
8081  
8082  	return 0;
8083  }
8084  
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8085  struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8086  					     struct list_head **iter)
8087  {
8088  	struct netdev_adjacent *lower;
8089  
8090  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8091  	if (&lower->list == &dev->adj_list.lower)
8092  		return NULL;
8093  
8094  	*iter = &lower->list;
8095  
8096  	return lower->dev;
8097  }
8098  EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8099  
__netdev_upper_depth(struct net_device * dev)8100  static u8 __netdev_upper_depth(struct net_device *dev)
8101  {
8102  	struct net_device *udev;
8103  	struct list_head *iter;
8104  	u8 max_depth = 0;
8105  	bool ignore;
8106  
8107  	for (iter = &dev->adj_list.upper,
8108  	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8109  	     udev;
8110  	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8111  		if (ignore)
8112  			continue;
8113  		if (max_depth < udev->upper_level)
8114  			max_depth = udev->upper_level;
8115  	}
8116  
8117  	return max_depth;
8118  }
8119  
__netdev_lower_depth(struct net_device * dev)8120  static u8 __netdev_lower_depth(struct net_device *dev)
8121  {
8122  	struct net_device *ldev;
8123  	struct list_head *iter;
8124  	u8 max_depth = 0;
8125  	bool ignore;
8126  
8127  	for (iter = &dev->adj_list.lower,
8128  	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8129  	     ldev;
8130  	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8131  		if (ignore)
8132  			continue;
8133  		if (max_depth < ldev->lower_level)
8134  			max_depth = ldev->lower_level;
8135  	}
8136  
8137  	return max_depth;
8138  }
8139  
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8140  static int __netdev_update_upper_level(struct net_device *dev,
8141  				       struct netdev_nested_priv *__unused)
8142  {
8143  	dev->upper_level = __netdev_upper_depth(dev) + 1;
8144  	return 0;
8145  }
8146  
8147  #ifdef CONFIG_LOCKDEP
8148  static LIST_HEAD(net_unlink_list);
8149  
net_unlink_todo(struct net_device * dev)8150  static void net_unlink_todo(struct net_device *dev)
8151  {
8152  	if (list_empty(&dev->unlink_list))
8153  		list_add_tail(&dev->unlink_list, &net_unlink_list);
8154  }
8155  #endif
8156  
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8157  static int __netdev_update_lower_level(struct net_device *dev,
8158  				       struct netdev_nested_priv *priv)
8159  {
8160  	dev->lower_level = __netdev_lower_depth(dev) + 1;
8161  
8162  #ifdef CONFIG_LOCKDEP
8163  	if (!priv)
8164  		return 0;
8165  
8166  	if (priv->flags & NESTED_SYNC_IMM)
8167  		dev->nested_level = dev->lower_level - 1;
8168  	if (priv->flags & NESTED_SYNC_TODO)
8169  		net_unlink_todo(dev);
8170  #endif
8171  	return 0;
8172  }
8173  
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8174  int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8175  				  int (*fn)(struct net_device *dev,
8176  					    struct netdev_nested_priv *priv),
8177  				  struct netdev_nested_priv *priv)
8178  {
8179  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8180  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8181  	int ret, cur = 0;
8182  
8183  	now = dev;
8184  	iter = &dev->adj_list.lower;
8185  
8186  	while (1) {
8187  		if (now != dev) {
8188  			ret = fn(now, priv);
8189  			if (ret)
8190  				return ret;
8191  		}
8192  
8193  		next = NULL;
8194  		while (1) {
8195  			ldev = netdev_next_lower_dev_rcu(now, &iter);
8196  			if (!ldev)
8197  				break;
8198  
8199  			next = ldev;
8200  			niter = &ldev->adj_list.lower;
8201  			dev_stack[cur] = now;
8202  			iter_stack[cur++] = iter;
8203  			break;
8204  		}
8205  
8206  		if (!next) {
8207  			if (!cur)
8208  				return 0;
8209  			next = dev_stack[--cur];
8210  			niter = iter_stack[cur];
8211  		}
8212  
8213  		now = next;
8214  		iter = niter;
8215  	}
8216  
8217  	return 0;
8218  }
8219  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8220  
8221  /**
8222   * netdev_lower_get_first_private_rcu - Get the first ->private from the
8223   *				       lower neighbour list, RCU
8224   *				       variant
8225   * @dev: device
8226   *
8227   * Gets the first netdev_adjacent->private from the dev's lower neighbour
8228   * list. The caller must hold RCU read lock.
8229   */
netdev_lower_get_first_private_rcu(struct net_device * dev)8230  void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8231  {
8232  	struct netdev_adjacent *lower;
8233  
8234  	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8235  			struct netdev_adjacent, list);
8236  	if (lower)
8237  		return lower->private;
8238  	return NULL;
8239  }
8240  EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8241  
8242  /**
8243   * netdev_master_upper_dev_get_rcu - Get master upper device
8244   * @dev: device
8245   *
8246   * Find a master upper device and return pointer to it or NULL in case
8247   * it's not there. The caller must hold the RCU read lock.
8248   */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8249  struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8250  {
8251  	struct netdev_adjacent *upper;
8252  
8253  	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8254  				       struct netdev_adjacent, list);
8255  	if (upper && likely(upper->master))
8256  		return upper->dev;
8257  	return NULL;
8258  }
8259  EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8260  
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8261  static int netdev_adjacent_sysfs_add(struct net_device *dev,
8262  			      struct net_device *adj_dev,
8263  			      struct list_head *dev_list)
8264  {
8265  	char linkname[IFNAMSIZ+7];
8266  
8267  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8268  		"upper_%s" : "lower_%s", adj_dev->name);
8269  	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8270  				 linkname);
8271  }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8272  static void netdev_adjacent_sysfs_del(struct net_device *dev,
8273  			       char *name,
8274  			       struct list_head *dev_list)
8275  {
8276  	char linkname[IFNAMSIZ+7];
8277  
8278  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8279  		"upper_%s" : "lower_%s", name);
8280  	sysfs_remove_link(&(dev->dev.kobj), linkname);
8281  }
8282  
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8283  static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8284  						 struct net_device *adj_dev,
8285  						 struct list_head *dev_list)
8286  {
8287  	return (dev_list == &dev->adj_list.upper ||
8288  		dev_list == &dev->adj_list.lower) &&
8289  		net_eq(dev_net(dev), dev_net(adj_dev));
8290  }
8291  
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8292  static int __netdev_adjacent_dev_insert(struct net_device *dev,
8293  					struct net_device *adj_dev,
8294  					struct list_head *dev_list,
8295  					void *private, bool master)
8296  {
8297  	struct netdev_adjacent *adj;
8298  	int ret;
8299  
8300  	adj = __netdev_find_adj(adj_dev, dev_list);
8301  
8302  	if (adj) {
8303  		adj->ref_nr += 1;
8304  		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8305  			 dev->name, adj_dev->name, adj->ref_nr);
8306  
8307  		return 0;
8308  	}
8309  
8310  	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8311  	if (!adj)
8312  		return -ENOMEM;
8313  
8314  	adj->dev = adj_dev;
8315  	adj->master = master;
8316  	adj->ref_nr = 1;
8317  	adj->private = private;
8318  	adj->ignore = false;
8319  	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8320  
8321  	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8322  		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8323  
8324  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8325  		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8326  		if (ret)
8327  			goto free_adj;
8328  	}
8329  
8330  	/* Ensure that master link is always the first item in list. */
8331  	if (master) {
8332  		ret = sysfs_create_link(&(dev->dev.kobj),
8333  					&(adj_dev->dev.kobj), "master");
8334  		if (ret)
8335  			goto remove_symlinks;
8336  
8337  		list_add_rcu(&adj->list, dev_list);
8338  	} else {
8339  		list_add_tail_rcu(&adj->list, dev_list);
8340  	}
8341  
8342  	return 0;
8343  
8344  remove_symlinks:
8345  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8346  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8347  free_adj:
8348  	netdev_put(adj_dev, &adj->dev_tracker);
8349  	kfree(adj);
8350  
8351  	return ret;
8352  }
8353  
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8354  static void __netdev_adjacent_dev_remove(struct net_device *dev,
8355  					 struct net_device *adj_dev,
8356  					 u16 ref_nr,
8357  					 struct list_head *dev_list)
8358  {
8359  	struct netdev_adjacent *adj;
8360  
8361  	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8362  		 dev->name, adj_dev->name, ref_nr);
8363  
8364  	adj = __netdev_find_adj(adj_dev, dev_list);
8365  
8366  	if (!adj) {
8367  		pr_err("Adjacency does not exist for device %s from %s\n",
8368  		       dev->name, adj_dev->name);
8369  		WARN_ON(1);
8370  		return;
8371  	}
8372  
8373  	if (adj->ref_nr > ref_nr) {
8374  		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8375  			 dev->name, adj_dev->name, ref_nr,
8376  			 adj->ref_nr - ref_nr);
8377  		adj->ref_nr -= ref_nr;
8378  		return;
8379  	}
8380  
8381  	if (adj->master)
8382  		sysfs_remove_link(&(dev->dev.kobj), "master");
8383  
8384  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8385  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8386  
8387  	list_del_rcu(&adj->list);
8388  	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8389  		 adj_dev->name, dev->name, adj_dev->name);
8390  	netdev_put(adj_dev, &adj->dev_tracker);
8391  	kfree_rcu(adj, rcu);
8392  }
8393  
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8394  static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8395  					    struct net_device *upper_dev,
8396  					    struct list_head *up_list,
8397  					    struct list_head *down_list,
8398  					    void *private, bool master)
8399  {
8400  	int ret;
8401  
8402  	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8403  					   private, master);
8404  	if (ret)
8405  		return ret;
8406  
8407  	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8408  					   private, false);
8409  	if (ret) {
8410  		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8411  		return ret;
8412  	}
8413  
8414  	return 0;
8415  }
8416  
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8417  static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8418  					       struct net_device *upper_dev,
8419  					       u16 ref_nr,
8420  					       struct list_head *up_list,
8421  					       struct list_head *down_list)
8422  {
8423  	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8424  	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8425  }
8426  
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8427  static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8428  						struct net_device *upper_dev,
8429  						void *private, bool master)
8430  {
8431  	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8432  						&dev->adj_list.upper,
8433  						&upper_dev->adj_list.lower,
8434  						private, master);
8435  }
8436  
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8437  static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8438  						   struct net_device *upper_dev)
8439  {
8440  	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8441  					   &dev->adj_list.upper,
8442  					   &upper_dev->adj_list.lower);
8443  }
8444  
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8445  static int __netdev_upper_dev_link(struct net_device *dev,
8446  				   struct net_device *upper_dev, bool master,
8447  				   void *upper_priv, void *upper_info,
8448  				   struct netdev_nested_priv *priv,
8449  				   struct netlink_ext_ack *extack)
8450  {
8451  	struct netdev_notifier_changeupper_info changeupper_info = {
8452  		.info = {
8453  			.dev = dev,
8454  			.extack = extack,
8455  		},
8456  		.upper_dev = upper_dev,
8457  		.master = master,
8458  		.linking = true,
8459  		.upper_info = upper_info,
8460  	};
8461  	struct net_device *master_dev;
8462  	int ret = 0;
8463  
8464  	ASSERT_RTNL();
8465  
8466  	if (dev == upper_dev)
8467  		return -EBUSY;
8468  
8469  	/* To prevent loops, check if dev is not upper device to upper_dev. */
8470  	if (__netdev_has_upper_dev(upper_dev, dev))
8471  		return -EBUSY;
8472  
8473  	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8474  		return -EMLINK;
8475  
8476  	if (!master) {
8477  		if (__netdev_has_upper_dev(dev, upper_dev))
8478  			return -EEXIST;
8479  	} else {
8480  		master_dev = __netdev_master_upper_dev_get(dev);
8481  		if (master_dev)
8482  			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8483  	}
8484  
8485  	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8486  					    &changeupper_info.info);
8487  	ret = notifier_to_errno(ret);
8488  	if (ret)
8489  		return ret;
8490  
8491  	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8492  						   master);
8493  	if (ret)
8494  		return ret;
8495  
8496  	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8497  					    &changeupper_info.info);
8498  	ret = notifier_to_errno(ret);
8499  	if (ret)
8500  		goto rollback;
8501  
8502  	__netdev_update_upper_level(dev, NULL);
8503  	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8504  
8505  	__netdev_update_lower_level(upper_dev, priv);
8506  	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8507  				    priv);
8508  
8509  	return 0;
8510  
8511  rollback:
8512  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8513  
8514  	return ret;
8515  }
8516  
8517  /**
8518   * netdev_upper_dev_link - Add a link to the upper device
8519   * @dev: device
8520   * @upper_dev: new upper device
8521   * @extack: netlink extended ack
8522   *
8523   * Adds a link to device which is upper to this one. The caller must hold
8524   * the RTNL lock. On a failure a negative errno code is returned.
8525   * On success the reference counts are adjusted and the function
8526   * returns zero.
8527   */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8528  int netdev_upper_dev_link(struct net_device *dev,
8529  			  struct net_device *upper_dev,
8530  			  struct netlink_ext_ack *extack)
8531  {
8532  	struct netdev_nested_priv priv = {
8533  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8534  		.data = NULL,
8535  	};
8536  
8537  	return __netdev_upper_dev_link(dev, upper_dev, false,
8538  				       NULL, NULL, &priv, extack);
8539  }
8540  EXPORT_SYMBOL(netdev_upper_dev_link);
8541  
8542  /**
8543   * netdev_master_upper_dev_link - Add a master link to the upper device
8544   * @dev: device
8545   * @upper_dev: new upper device
8546   * @upper_priv: upper device private
8547   * @upper_info: upper info to be passed down via notifier
8548   * @extack: netlink extended ack
8549   *
8550   * Adds a link to device which is upper to this one. In this case, only
8551   * one master upper device can be linked, although other non-master devices
8552   * might be linked as well. The caller must hold the RTNL lock.
8553   * On a failure a negative errno code is returned. On success the reference
8554   * counts are adjusted and the function returns zero.
8555   */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8556  int netdev_master_upper_dev_link(struct net_device *dev,
8557  				 struct net_device *upper_dev,
8558  				 void *upper_priv, void *upper_info,
8559  				 struct netlink_ext_ack *extack)
8560  {
8561  	struct netdev_nested_priv priv = {
8562  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8563  		.data = NULL,
8564  	};
8565  
8566  	return __netdev_upper_dev_link(dev, upper_dev, true,
8567  				       upper_priv, upper_info, &priv, extack);
8568  }
8569  EXPORT_SYMBOL(netdev_master_upper_dev_link);
8570  
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8571  static void __netdev_upper_dev_unlink(struct net_device *dev,
8572  				      struct net_device *upper_dev,
8573  				      struct netdev_nested_priv *priv)
8574  {
8575  	struct netdev_notifier_changeupper_info changeupper_info = {
8576  		.info = {
8577  			.dev = dev,
8578  		},
8579  		.upper_dev = upper_dev,
8580  		.linking = false,
8581  	};
8582  
8583  	ASSERT_RTNL();
8584  
8585  	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8586  
8587  	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8588  				      &changeupper_info.info);
8589  
8590  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8591  
8592  	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8593  				      &changeupper_info.info);
8594  
8595  	__netdev_update_upper_level(dev, NULL);
8596  	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8597  
8598  	__netdev_update_lower_level(upper_dev, priv);
8599  	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8600  				    priv);
8601  }
8602  
8603  /**
8604   * netdev_upper_dev_unlink - Removes a link to upper device
8605   * @dev: device
8606   * @upper_dev: new upper device
8607   *
8608   * Removes a link to device which is upper to this one. The caller must hold
8609   * the RTNL lock.
8610   */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8611  void netdev_upper_dev_unlink(struct net_device *dev,
8612  			     struct net_device *upper_dev)
8613  {
8614  	struct netdev_nested_priv priv = {
8615  		.flags = NESTED_SYNC_TODO,
8616  		.data = NULL,
8617  	};
8618  
8619  	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8620  }
8621  EXPORT_SYMBOL(netdev_upper_dev_unlink);
8622  
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8623  static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8624  				      struct net_device *lower_dev,
8625  				      bool val)
8626  {
8627  	struct netdev_adjacent *adj;
8628  
8629  	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8630  	if (adj)
8631  		adj->ignore = val;
8632  
8633  	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8634  	if (adj)
8635  		adj->ignore = val;
8636  }
8637  
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8638  static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8639  					struct net_device *lower_dev)
8640  {
8641  	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8642  }
8643  
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8644  static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8645  				       struct net_device *lower_dev)
8646  {
8647  	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8648  }
8649  
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8650  int netdev_adjacent_change_prepare(struct net_device *old_dev,
8651  				   struct net_device *new_dev,
8652  				   struct net_device *dev,
8653  				   struct netlink_ext_ack *extack)
8654  {
8655  	struct netdev_nested_priv priv = {
8656  		.flags = 0,
8657  		.data = NULL,
8658  	};
8659  	int err;
8660  
8661  	if (!new_dev)
8662  		return 0;
8663  
8664  	if (old_dev && new_dev != old_dev)
8665  		netdev_adjacent_dev_disable(dev, old_dev);
8666  	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8667  				      extack);
8668  	if (err) {
8669  		if (old_dev && new_dev != old_dev)
8670  			netdev_adjacent_dev_enable(dev, old_dev);
8671  		return err;
8672  	}
8673  
8674  	return 0;
8675  }
8676  EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8677  
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8678  void netdev_adjacent_change_commit(struct net_device *old_dev,
8679  				   struct net_device *new_dev,
8680  				   struct net_device *dev)
8681  {
8682  	struct netdev_nested_priv priv = {
8683  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8684  		.data = NULL,
8685  	};
8686  
8687  	if (!new_dev || !old_dev)
8688  		return;
8689  
8690  	if (new_dev == old_dev)
8691  		return;
8692  
8693  	netdev_adjacent_dev_enable(dev, old_dev);
8694  	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8695  }
8696  EXPORT_SYMBOL(netdev_adjacent_change_commit);
8697  
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8698  void netdev_adjacent_change_abort(struct net_device *old_dev,
8699  				  struct net_device *new_dev,
8700  				  struct net_device *dev)
8701  {
8702  	struct netdev_nested_priv priv = {
8703  		.flags = 0,
8704  		.data = NULL,
8705  	};
8706  
8707  	if (!new_dev)
8708  		return;
8709  
8710  	if (old_dev && new_dev != old_dev)
8711  		netdev_adjacent_dev_enable(dev, old_dev);
8712  
8713  	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8714  }
8715  EXPORT_SYMBOL(netdev_adjacent_change_abort);
8716  
8717  /**
8718   * netdev_bonding_info_change - Dispatch event about slave change
8719   * @dev: device
8720   * @bonding_info: info to dispatch
8721   *
8722   * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8723   * The caller must hold the RTNL lock.
8724   */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8725  void netdev_bonding_info_change(struct net_device *dev,
8726  				struct netdev_bonding_info *bonding_info)
8727  {
8728  	struct netdev_notifier_bonding_info info = {
8729  		.info.dev = dev,
8730  	};
8731  
8732  	memcpy(&info.bonding_info, bonding_info,
8733  	       sizeof(struct netdev_bonding_info));
8734  	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8735  				      &info.info);
8736  }
8737  EXPORT_SYMBOL(netdev_bonding_info_change);
8738  
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8739  static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8740  					   struct netlink_ext_ack *extack)
8741  {
8742  	struct netdev_notifier_offload_xstats_info info = {
8743  		.info.dev = dev,
8744  		.info.extack = extack,
8745  		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8746  	};
8747  	int err;
8748  	int rc;
8749  
8750  	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8751  					 GFP_KERNEL);
8752  	if (!dev->offload_xstats_l3)
8753  		return -ENOMEM;
8754  
8755  	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8756  						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8757  						  &info.info);
8758  	err = notifier_to_errno(rc);
8759  	if (err)
8760  		goto free_stats;
8761  
8762  	return 0;
8763  
8764  free_stats:
8765  	kfree(dev->offload_xstats_l3);
8766  	dev->offload_xstats_l3 = NULL;
8767  	return err;
8768  }
8769  
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8770  int netdev_offload_xstats_enable(struct net_device *dev,
8771  				 enum netdev_offload_xstats_type type,
8772  				 struct netlink_ext_ack *extack)
8773  {
8774  	ASSERT_RTNL();
8775  
8776  	if (netdev_offload_xstats_enabled(dev, type))
8777  		return -EALREADY;
8778  
8779  	switch (type) {
8780  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8781  		return netdev_offload_xstats_enable_l3(dev, extack);
8782  	}
8783  
8784  	WARN_ON(1);
8785  	return -EINVAL;
8786  }
8787  EXPORT_SYMBOL(netdev_offload_xstats_enable);
8788  
netdev_offload_xstats_disable_l3(struct net_device * dev)8789  static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8790  {
8791  	struct netdev_notifier_offload_xstats_info info = {
8792  		.info.dev = dev,
8793  		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8794  	};
8795  
8796  	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8797  				      &info.info);
8798  	kfree(dev->offload_xstats_l3);
8799  	dev->offload_xstats_l3 = NULL;
8800  }
8801  
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8802  int netdev_offload_xstats_disable(struct net_device *dev,
8803  				  enum netdev_offload_xstats_type type)
8804  {
8805  	ASSERT_RTNL();
8806  
8807  	if (!netdev_offload_xstats_enabled(dev, type))
8808  		return -EALREADY;
8809  
8810  	switch (type) {
8811  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8812  		netdev_offload_xstats_disable_l3(dev);
8813  		return 0;
8814  	}
8815  
8816  	WARN_ON(1);
8817  	return -EINVAL;
8818  }
8819  EXPORT_SYMBOL(netdev_offload_xstats_disable);
8820  
netdev_offload_xstats_disable_all(struct net_device * dev)8821  static void netdev_offload_xstats_disable_all(struct net_device *dev)
8822  {
8823  	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8824  }
8825  
8826  static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8827  netdev_offload_xstats_get_ptr(const struct net_device *dev,
8828  			      enum netdev_offload_xstats_type type)
8829  {
8830  	switch (type) {
8831  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8832  		return dev->offload_xstats_l3;
8833  	}
8834  
8835  	WARN_ON(1);
8836  	return NULL;
8837  }
8838  
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8839  bool netdev_offload_xstats_enabled(const struct net_device *dev,
8840  				   enum netdev_offload_xstats_type type)
8841  {
8842  	ASSERT_RTNL();
8843  
8844  	return netdev_offload_xstats_get_ptr(dev, type);
8845  }
8846  EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8847  
8848  struct netdev_notifier_offload_xstats_ru {
8849  	bool used;
8850  };
8851  
8852  struct netdev_notifier_offload_xstats_rd {
8853  	struct rtnl_hw_stats64 stats;
8854  	bool used;
8855  };
8856  
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8857  static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8858  				  const struct rtnl_hw_stats64 *src)
8859  {
8860  	dest->rx_packets	  += src->rx_packets;
8861  	dest->tx_packets	  += src->tx_packets;
8862  	dest->rx_bytes		  += src->rx_bytes;
8863  	dest->tx_bytes		  += src->tx_bytes;
8864  	dest->rx_errors		  += src->rx_errors;
8865  	dest->tx_errors		  += src->tx_errors;
8866  	dest->rx_dropped	  += src->rx_dropped;
8867  	dest->tx_dropped	  += src->tx_dropped;
8868  	dest->multicast		  += src->multicast;
8869  }
8870  
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8871  static int netdev_offload_xstats_get_used(struct net_device *dev,
8872  					  enum netdev_offload_xstats_type type,
8873  					  bool *p_used,
8874  					  struct netlink_ext_ack *extack)
8875  {
8876  	struct netdev_notifier_offload_xstats_ru report_used = {};
8877  	struct netdev_notifier_offload_xstats_info info = {
8878  		.info.dev = dev,
8879  		.info.extack = extack,
8880  		.type = type,
8881  		.report_used = &report_used,
8882  	};
8883  	int rc;
8884  
8885  	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8886  	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8887  					   &info.info);
8888  	*p_used = report_used.used;
8889  	return notifier_to_errno(rc);
8890  }
8891  
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8892  static int netdev_offload_xstats_get_stats(struct net_device *dev,
8893  					   enum netdev_offload_xstats_type type,
8894  					   struct rtnl_hw_stats64 *p_stats,
8895  					   bool *p_used,
8896  					   struct netlink_ext_ack *extack)
8897  {
8898  	struct netdev_notifier_offload_xstats_rd report_delta = {};
8899  	struct netdev_notifier_offload_xstats_info info = {
8900  		.info.dev = dev,
8901  		.info.extack = extack,
8902  		.type = type,
8903  		.report_delta = &report_delta,
8904  	};
8905  	struct rtnl_hw_stats64 *stats;
8906  	int rc;
8907  
8908  	stats = netdev_offload_xstats_get_ptr(dev, type);
8909  	if (WARN_ON(!stats))
8910  		return -EINVAL;
8911  
8912  	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8913  					   &info.info);
8914  
8915  	/* Cache whatever we got, even if there was an error, otherwise the
8916  	 * successful stats retrievals would get lost.
8917  	 */
8918  	netdev_hw_stats64_add(stats, &report_delta.stats);
8919  
8920  	if (p_stats)
8921  		*p_stats = *stats;
8922  	*p_used = report_delta.used;
8923  
8924  	return notifier_to_errno(rc);
8925  }
8926  
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8927  int netdev_offload_xstats_get(struct net_device *dev,
8928  			      enum netdev_offload_xstats_type type,
8929  			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8930  			      struct netlink_ext_ack *extack)
8931  {
8932  	ASSERT_RTNL();
8933  
8934  	if (p_stats)
8935  		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8936  						       p_used, extack);
8937  	else
8938  		return netdev_offload_xstats_get_used(dev, type, p_used,
8939  						      extack);
8940  }
8941  EXPORT_SYMBOL(netdev_offload_xstats_get);
8942  
8943  void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8944  netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8945  				   const struct rtnl_hw_stats64 *stats)
8946  {
8947  	report_delta->used = true;
8948  	netdev_hw_stats64_add(&report_delta->stats, stats);
8949  }
8950  EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8951  
8952  void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8953  netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8954  {
8955  	report_used->used = true;
8956  }
8957  EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8958  
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8959  void netdev_offload_xstats_push_delta(struct net_device *dev,
8960  				      enum netdev_offload_xstats_type type,
8961  				      const struct rtnl_hw_stats64 *p_stats)
8962  {
8963  	struct rtnl_hw_stats64 *stats;
8964  
8965  	ASSERT_RTNL();
8966  
8967  	stats = netdev_offload_xstats_get_ptr(dev, type);
8968  	if (WARN_ON(!stats))
8969  		return;
8970  
8971  	netdev_hw_stats64_add(stats, p_stats);
8972  }
8973  EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8974  
8975  /**
8976   * netdev_get_xmit_slave - Get the xmit slave of master device
8977   * @dev: device
8978   * @skb: The packet
8979   * @all_slaves: assume all the slaves are active
8980   *
8981   * The reference counters are not incremented so the caller must be
8982   * careful with locks. The caller must hold RCU lock.
8983   * %NULL is returned if no slave is found.
8984   */
8985  
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8986  struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8987  					 struct sk_buff *skb,
8988  					 bool all_slaves)
8989  {
8990  	const struct net_device_ops *ops = dev->netdev_ops;
8991  
8992  	if (!ops->ndo_get_xmit_slave)
8993  		return NULL;
8994  	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8995  }
8996  EXPORT_SYMBOL(netdev_get_xmit_slave);
8997  
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8998  static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8999  						  struct sock *sk)
9000  {
9001  	const struct net_device_ops *ops = dev->netdev_ops;
9002  
9003  	if (!ops->ndo_sk_get_lower_dev)
9004  		return NULL;
9005  	return ops->ndo_sk_get_lower_dev(dev, sk);
9006  }
9007  
9008  /**
9009   * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9010   * @dev: device
9011   * @sk: the socket
9012   *
9013   * %NULL is returned if no lower device is found.
9014   */
9015  
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9016  struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9017  					    struct sock *sk)
9018  {
9019  	struct net_device *lower;
9020  
9021  	lower = netdev_sk_get_lower_dev(dev, sk);
9022  	while (lower) {
9023  		dev = lower;
9024  		lower = netdev_sk_get_lower_dev(dev, sk);
9025  	}
9026  
9027  	return dev;
9028  }
9029  EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9030  
netdev_adjacent_add_links(struct net_device * dev)9031  static void netdev_adjacent_add_links(struct net_device *dev)
9032  {
9033  	struct netdev_adjacent *iter;
9034  
9035  	struct net *net = dev_net(dev);
9036  
9037  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9038  		if (!net_eq(net, dev_net(iter->dev)))
9039  			continue;
9040  		netdev_adjacent_sysfs_add(iter->dev, dev,
9041  					  &iter->dev->adj_list.lower);
9042  		netdev_adjacent_sysfs_add(dev, iter->dev,
9043  					  &dev->adj_list.upper);
9044  	}
9045  
9046  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9047  		if (!net_eq(net, dev_net(iter->dev)))
9048  			continue;
9049  		netdev_adjacent_sysfs_add(iter->dev, dev,
9050  					  &iter->dev->adj_list.upper);
9051  		netdev_adjacent_sysfs_add(dev, iter->dev,
9052  					  &dev->adj_list.lower);
9053  	}
9054  }
9055  
netdev_adjacent_del_links(struct net_device * dev)9056  static void netdev_adjacent_del_links(struct net_device *dev)
9057  {
9058  	struct netdev_adjacent *iter;
9059  
9060  	struct net *net = dev_net(dev);
9061  
9062  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9063  		if (!net_eq(net, dev_net(iter->dev)))
9064  			continue;
9065  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9066  					  &iter->dev->adj_list.lower);
9067  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9068  					  &dev->adj_list.upper);
9069  	}
9070  
9071  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9072  		if (!net_eq(net, dev_net(iter->dev)))
9073  			continue;
9074  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9075  					  &iter->dev->adj_list.upper);
9076  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9077  					  &dev->adj_list.lower);
9078  	}
9079  }
9080  
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9081  void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9082  {
9083  	struct netdev_adjacent *iter;
9084  
9085  	struct net *net = dev_net(dev);
9086  
9087  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9088  		if (!net_eq(net, dev_net(iter->dev)))
9089  			continue;
9090  		netdev_adjacent_sysfs_del(iter->dev, oldname,
9091  					  &iter->dev->adj_list.lower);
9092  		netdev_adjacent_sysfs_add(iter->dev, dev,
9093  					  &iter->dev->adj_list.lower);
9094  	}
9095  
9096  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9097  		if (!net_eq(net, dev_net(iter->dev)))
9098  			continue;
9099  		netdev_adjacent_sysfs_del(iter->dev, oldname,
9100  					  &iter->dev->adj_list.upper);
9101  		netdev_adjacent_sysfs_add(iter->dev, dev,
9102  					  &iter->dev->adj_list.upper);
9103  	}
9104  }
9105  
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9106  void *netdev_lower_dev_get_private(struct net_device *dev,
9107  				   struct net_device *lower_dev)
9108  {
9109  	struct netdev_adjacent *lower;
9110  
9111  	if (!lower_dev)
9112  		return NULL;
9113  	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9114  	if (!lower)
9115  		return NULL;
9116  
9117  	return lower->private;
9118  }
9119  EXPORT_SYMBOL(netdev_lower_dev_get_private);
9120  
9121  
9122  /**
9123   * netdev_lower_state_changed - Dispatch event about lower device state change
9124   * @lower_dev: device
9125   * @lower_state_info: state to dispatch
9126   *
9127   * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9128   * The caller must hold the RTNL lock.
9129   */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9130  void netdev_lower_state_changed(struct net_device *lower_dev,
9131  				void *lower_state_info)
9132  {
9133  	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9134  		.info.dev = lower_dev,
9135  	};
9136  
9137  	ASSERT_RTNL();
9138  	changelowerstate_info.lower_state_info = lower_state_info;
9139  	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9140  				      &changelowerstate_info.info);
9141  }
9142  EXPORT_SYMBOL(netdev_lower_state_changed);
9143  
dev_change_rx_flags(struct net_device * dev,int flags)9144  static void dev_change_rx_flags(struct net_device *dev, int flags)
9145  {
9146  	const struct net_device_ops *ops = dev->netdev_ops;
9147  
9148  	if (ops->ndo_change_rx_flags)
9149  		ops->ndo_change_rx_flags(dev, flags);
9150  }
9151  
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9152  static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9153  {
9154  	unsigned int old_flags = dev->flags;
9155  	unsigned int promiscuity, flags;
9156  	kuid_t uid;
9157  	kgid_t gid;
9158  
9159  	ASSERT_RTNL();
9160  
9161  	promiscuity = dev->promiscuity + inc;
9162  	if (promiscuity == 0) {
9163  		/*
9164  		 * Avoid overflow.
9165  		 * If inc causes overflow, untouch promisc and return error.
9166  		 */
9167  		if (unlikely(inc > 0)) {
9168  			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9169  			return -EOVERFLOW;
9170  		}
9171  		flags = old_flags & ~IFF_PROMISC;
9172  	} else {
9173  		flags = old_flags | IFF_PROMISC;
9174  	}
9175  	WRITE_ONCE(dev->promiscuity, promiscuity);
9176  	if (flags != old_flags) {
9177  		WRITE_ONCE(dev->flags, flags);
9178  		netdev_info(dev, "%s promiscuous mode\n",
9179  			    dev->flags & IFF_PROMISC ? "entered" : "left");
9180  		if (audit_enabled) {
9181  			current_uid_gid(&uid, &gid);
9182  			audit_log(audit_context(), GFP_ATOMIC,
9183  				  AUDIT_ANOM_PROMISCUOUS,
9184  				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9185  				  dev->name, (dev->flags & IFF_PROMISC),
9186  				  (old_flags & IFF_PROMISC),
9187  				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9188  				  from_kuid(&init_user_ns, uid),
9189  				  from_kgid(&init_user_ns, gid),
9190  				  audit_get_sessionid(current));
9191  		}
9192  
9193  		dev_change_rx_flags(dev, IFF_PROMISC);
9194  	}
9195  	if (notify)
9196  		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9197  	return 0;
9198  }
9199  
9200  /**
9201   *	dev_set_promiscuity	- update promiscuity count on a device
9202   *	@dev: device
9203   *	@inc: modifier
9204   *
9205   *	Add or remove promiscuity from a device. While the count in the device
9206   *	remains above zero the interface remains promiscuous. Once it hits zero
9207   *	the device reverts back to normal filtering operation. A negative inc
9208   *	value is used to drop promiscuity on the device.
9209   *	Return 0 if successful or a negative errno code on error.
9210   */
dev_set_promiscuity(struct net_device * dev,int inc)9211  int dev_set_promiscuity(struct net_device *dev, int inc)
9212  {
9213  	unsigned int old_flags = dev->flags;
9214  	int err;
9215  
9216  	err = __dev_set_promiscuity(dev, inc, true);
9217  	if (err < 0)
9218  		return err;
9219  	if (dev->flags != old_flags)
9220  		dev_set_rx_mode(dev);
9221  	return err;
9222  }
9223  EXPORT_SYMBOL(dev_set_promiscuity);
9224  
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9225  int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9226  {
9227  	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9228  	unsigned int allmulti, flags;
9229  
9230  	ASSERT_RTNL();
9231  
9232  	allmulti = dev->allmulti + inc;
9233  	if (allmulti == 0) {
9234  		/*
9235  		 * Avoid overflow.
9236  		 * If inc causes overflow, untouch allmulti and return error.
9237  		 */
9238  		if (unlikely(inc > 0)) {
9239  			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9240  			return -EOVERFLOW;
9241  		}
9242  		flags = old_flags & ~IFF_ALLMULTI;
9243  	} else {
9244  		flags = old_flags | IFF_ALLMULTI;
9245  	}
9246  	WRITE_ONCE(dev->allmulti, allmulti);
9247  	if (flags != old_flags) {
9248  		WRITE_ONCE(dev->flags, flags);
9249  		netdev_info(dev, "%s allmulticast mode\n",
9250  			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9251  		dev_change_rx_flags(dev, IFF_ALLMULTI);
9252  		dev_set_rx_mode(dev);
9253  		if (notify)
9254  			__dev_notify_flags(dev, old_flags,
9255  					   dev->gflags ^ old_gflags, 0, NULL);
9256  	}
9257  	return 0;
9258  }
9259  
9260  /*
9261   *	Upload unicast and multicast address lists to device and
9262   *	configure RX filtering. When the device doesn't support unicast
9263   *	filtering it is put in promiscuous mode while unicast addresses
9264   *	are present.
9265   */
__dev_set_rx_mode(struct net_device * dev)9266  void __dev_set_rx_mode(struct net_device *dev)
9267  {
9268  	const struct net_device_ops *ops = dev->netdev_ops;
9269  
9270  	/* dev_open will call this function so the list will stay sane. */
9271  	if (!(dev->flags&IFF_UP))
9272  		return;
9273  
9274  	if (!netif_device_present(dev))
9275  		return;
9276  
9277  	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9278  		/* Unicast addresses changes may only happen under the rtnl,
9279  		 * therefore calling __dev_set_promiscuity here is safe.
9280  		 */
9281  		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9282  			__dev_set_promiscuity(dev, 1, false);
9283  			dev->uc_promisc = true;
9284  		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9285  			__dev_set_promiscuity(dev, -1, false);
9286  			dev->uc_promisc = false;
9287  		}
9288  	}
9289  
9290  	if (ops->ndo_set_rx_mode)
9291  		ops->ndo_set_rx_mode(dev);
9292  }
9293  
dev_set_rx_mode(struct net_device * dev)9294  void dev_set_rx_mode(struct net_device *dev)
9295  {
9296  	netif_addr_lock_bh(dev);
9297  	__dev_set_rx_mode(dev);
9298  	netif_addr_unlock_bh(dev);
9299  }
9300  
9301  /**
9302   *	dev_get_flags - get flags reported to userspace
9303   *	@dev: device
9304   *
9305   *	Get the combination of flag bits exported through APIs to userspace.
9306   */
dev_get_flags(const struct net_device * dev)9307  unsigned int dev_get_flags(const struct net_device *dev)
9308  {
9309  	unsigned int flags;
9310  
9311  	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9312  				IFF_ALLMULTI |
9313  				IFF_RUNNING |
9314  				IFF_LOWER_UP |
9315  				IFF_DORMANT)) |
9316  		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9317  				IFF_ALLMULTI));
9318  
9319  	if (netif_running(dev)) {
9320  		if (netif_oper_up(dev))
9321  			flags |= IFF_RUNNING;
9322  		if (netif_carrier_ok(dev))
9323  			flags |= IFF_LOWER_UP;
9324  		if (netif_dormant(dev))
9325  			flags |= IFF_DORMANT;
9326  	}
9327  
9328  	return flags;
9329  }
9330  EXPORT_SYMBOL(dev_get_flags);
9331  
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9332  int __dev_change_flags(struct net_device *dev, unsigned int flags,
9333  		       struct netlink_ext_ack *extack)
9334  {
9335  	unsigned int old_flags = dev->flags;
9336  	int ret;
9337  
9338  	ASSERT_RTNL();
9339  
9340  	/*
9341  	 *	Set the flags on our device.
9342  	 */
9343  
9344  	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9345  			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9346  			       IFF_AUTOMEDIA)) |
9347  		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9348  				    IFF_ALLMULTI));
9349  
9350  	/*
9351  	 *	Load in the correct multicast list now the flags have changed.
9352  	 */
9353  
9354  	if ((old_flags ^ flags) & IFF_MULTICAST)
9355  		dev_change_rx_flags(dev, IFF_MULTICAST);
9356  
9357  	dev_set_rx_mode(dev);
9358  
9359  	/*
9360  	 *	Have we downed the interface. We handle IFF_UP ourselves
9361  	 *	according to user attempts to set it, rather than blindly
9362  	 *	setting it.
9363  	 */
9364  
9365  	ret = 0;
9366  	if ((old_flags ^ flags) & IFF_UP) {
9367  		if (old_flags & IFF_UP)
9368  			__dev_close(dev);
9369  		else
9370  			ret = __dev_open(dev, extack);
9371  	}
9372  
9373  	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9374  		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9375  		old_flags = dev->flags;
9376  
9377  		dev->gflags ^= IFF_PROMISC;
9378  
9379  		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9380  			if (dev->flags != old_flags)
9381  				dev_set_rx_mode(dev);
9382  	}
9383  
9384  	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9385  	 * is important. Some (broken) drivers set IFF_PROMISC, when
9386  	 * IFF_ALLMULTI is requested not asking us and not reporting.
9387  	 */
9388  	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9389  		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9390  
9391  		dev->gflags ^= IFF_ALLMULTI;
9392  		netif_set_allmulti(dev, inc, false);
9393  	}
9394  
9395  	return ret;
9396  }
9397  
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9398  void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9399  			unsigned int gchanges, u32 portid,
9400  			const struct nlmsghdr *nlh)
9401  {
9402  	unsigned int changes = dev->flags ^ old_flags;
9403  
9404  	if (gchanges)
9405  		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9406  
9407  	if (changes & IFF_UP) {
9408  		if (dev->flags & IFF_UP)
9409  			call_netdevice_notifiers(NETDEV_UP, dev);
9410  		else
9411  			call_netdevice_notifiers(NETDEV_DOWN, dev);
9412  	}
9413  
9414  	if (dev->flags & IFF_UP &&
9415  	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9416  		struct netdev_notifier_change_info change_info = {
9417  			.info = {
9418  				.dev = dev,
9419  			},
9420  			.flags_changed = changes,
9421  		};
9422  
9423  		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9424  	}
9425  }
9426  
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9427  int netif_change_flags(struct net_device *dev, unsigned int flags,
9428  		       struct netlink_ext_ack *extack)
9429  {
9430  	int ret;
9431  	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9432  
9433  	ret = __dev_change_flags(dev, flags, extack);
9434  	if (ret < 0)
9435  		return ret;
9436  
9437  	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9438  	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9439  	return ret;
9440  }
9441  
__dev_set_mtu(struct net_device * dev,int new_mtu)9442  int __dev_set_mtu(struct net_device *dev, int new_mtu)
9443  {
9444  	const struct net_device_ops *ops = dev->netdev_ops;
9445  
9446  	if (ops->ndo_change_mtu)
9447  		return ops->ndo_change_mtu(dev, new_mtu);
9448  
9449  	/* Pairs with all the lockless reads of dev->mtu in the stack */
9450  	WRITE_ONCE(dev->mtu, new_mtu);
9451  	return 0;
9452  }
9453  EXPORT_SYMBOL(__dev_set_mtu);
9454  
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9455  int dev_validate_mtu(struct net_device *dev, int new_mtu,
9456  		     struct netlink_ext_ack *extack)
9457  {
9458  	/* MTU must be positive, and in range */
9459  	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9460  		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9461  		return -EINVAL;
9462  	}
9463  
9464  	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9465  		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9466  		return -EINVAL;
9467  	}
9468  	return 0;
9469  }
9470  
9471  /**
9472   *	netif_set_mtu_ext - Change maximum transfer unit
9473   *	@dev: device
9474   *	@new_mtu: new transfer unit
9475   *	@extack: netlink extended ack
9476   *
9477   *	Change the maximum transfer size of the network device.
9478   */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9479  int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9480  		      struct netlink_ext_ack *extack)
9481  {
9482  	int err, orig_mtu;
9483  
9484  	if (new_mtu == dev->mtu)
9485  		return 0;
9486  
9487  	err = dev_validate_mtu(dev, new_mtu, extack);
9488  	if (err)
9489  		return err;
9490  
9491  	if (!netif_device_present(dev))
9492  		return -ENODEV;
9493  
9494  	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9495  	err = notifier_to_errno(err);
9496  	if (err)
9497  		return err;
9498  
9499  	orig_mtu = dev->mtu;
9500  	err = __dev_set_mtu(dev, new_mtu);
9501  
9502  	if (!err) {
9503  		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9504  						   orig_mtu);
9505  		err = notifier_to_errno(err);
9506  		if (err) {
9507  			/* setting mtu back and notifying everyone again,
9508  			 * so that they have a chance to revert changes.
9509  			 */
9510  			__dev_set_mtu(dev, orig_mtu);
9511  			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9512  						     new_mtu);
9513  		}
9514  	}
9515  	return err;
9516  }
9517  
netif_set_mtu(struct net_device * dev,int new_mtu)9518  int netif_set_mtu(struct net_device *dev, int new_mtu)
9519  {
9520  	struct netlink_ext_ack extack;
9521  	int err;
9522  
9523  	memset(&extack, 0, sizeof(extack));
9524  	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9525  	if (err && extack._msg)
9526  		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9527  	return err;
9528  }
9529  EXPORT_SYMBOL(netif_set_mtu);
9530  
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9531  int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9532  {
9533  	unsigned int orig_len = dev->tx_queue_len;
9534  	int res;
9535  
9536  	if (new_len != (unsigned int)new_len)
9537  		return -ERANGE;
9538  
9539  	if (new_len != orig_len) {
9540  		WRITE_ONCE(dev->tx_queue_len, new_len);
9541  		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9542  		res = notifier_to_errno(res);
9543  		if (res)
9544  			goto err_rollback;
9545  		res = dev_qdisc_change_tx_queue_len(dev);
9546  		if (res)
9547  			goto err_rollback;
9548  	}
9549  
9550  	return 0;
9551  
9552  err_rollback:
9553  	netdev_err(dev, "refused to change device tx_queue_len\n");
9554  	WRITE_ONCE(dev->tx_queue_len, orig_len);
9555  	return res;
9556  }
9557  
netif_set_group(struct net_device * dev,int new_group)9558  void netif_set_group(struct net_device *dev, int new_group)
9559  {
9560  	dev->group = new_group;
9561  }
9562  
9563  /**
9564   *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9565   *	@dev: device
9566   *	@addr: new address
9567   *	@extack: netlink extended ack
9568   */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9569  int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9570  			      struct netlink_ext_ack *extack)
9571  {
9572  	struct netdev_notifier_pre_changeaddr_info info = {
9573  		.info.dev = dev,
9574  		.info.extack = extack,
9575  		.dev_addr = addr,
9576  	};
9577  	int rc;
9578  
9579  	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9580  	return notifier_to_errno(rc);
9581  }
9582  EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9583  
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9584  int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9585  			  struct netlink_ext_ack *extack)
9586  {
9587  	const struct net_device_ops *ops = dev->netdev_ops;
9588  	int err;
9589  
9590  	if (!ops->ndo_set_mac_address)
9591  		return -EOPNOTSUPP;
9592  	if (sa->sa_family != dev->type)
9593  		return -EINVAL;
9594  	if (!netif_device_present(dev))
9595  		return -ENODEV;
9596  	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9597  	if (err)
9598  		return err;
9599  	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9600  		err = ops->ndo_set_mac_address(dev, sa);
9601  		if (err)
9602  			return err;
9603  	}
9604  	dev->addr_assign_type = NET_ADDR_SET;
9605  	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9606  	add_device_randomness(dev->dev_addr, dev->addr_len);
9607  	return 0;
9608  }
9609  
9610  DECLARE_RWSEM(dev_addr_sem);
9611  
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9612  int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9613  {
9614  	size_t size = sizeof(sa->sa_data_min);
9615  	struct net_device *dev;
9616  	int ret = 0;
9617  
9618  	down_read(&dev_addr_sem);
9619  	rcu_read_lock();
9620  
9621  	dev = dev_get_by_name_rcu(net, dev_name);
9622  	if (!dev) {
9623  		ret = -ENODEV;
9624  		goto unlock;
9625  	}
9626  	if (!dev->addr_len)
9627  		memset(sa->sa_data, 0, size);
9628  	else
9629  		memcpy(sa->sa_data, dev->dev_addr,
9630  		       min_t(size_t, size, dev->addr_len));
9631  	sa->sa_family = dev->type;
9632  
9633  unlock:
9634  	rcu_read_unlock();
9635  	up_read(&dev_addr_sem);
9636  	return ret;
9637  }
9638  EXPORT_SYMBOL(dev_get_mac_address);
9639  
netif_change_carrier(struct net_device * dev,bool new_carrier)9640  int netif_change_carrier(struct net_device *dev, bool new_carrier)
9641  {
9642  	const struct net_device_ops *ops = dev->netdev_ops;
9643  
9644  	if (!ops->ndo_change_carrier)
9645  		return -EOPNOTSUPP;
9646  	if (!netif_device_present(dev))
9647  		return -ENODEV;
9648  	return ops->ndo_change_carrier(dev, new_carrier);
9649  }
9650  
9651  /**
9652   *	dev_get_phys_port_id - Get device physical port ID
9653   *	@dev: device
9654   *	@ppid: port ID
9655   *
9656   *	Get device physical port ID
9657   */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9658  int dev_get_phys_port_id(struct net_device *dev,
9659  			 struct netdev_phys_item_id *ppid)
9660  {
9661  	const struct net_device_ops *ops = dev->netdev_ops;
9662  
9663  	if (!ops->ndo_get_phys_port_id)
9664  		return -EOPNOTSUPP;
9665  	return ops->ndo_get_phys_port_id(dev, ppid);
9666  }
9667  
9668  /**
9669   *	dev_get_phys_port_name - Get device physical port name
9670   *	@dev: device
9671   *	@name: port name
9672   *	@len: limit of bytes to copy to name
9673   *
9674   *	Get device physical port name
9675   */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9676  int dev_get_phys_port_name(struct net_device *dev,
9677  			   char *name, size_t len)
9678  {
9679  	const struct net_device_ops *ops = dev->netdev_ops;
9680  	int err;
9681  
9682  	if (ops->ndo_get_phys_port_name) {
9683  		err = ops->ndo_get_phys_port_name(dev, name, len);
9684  		if (err != -EOPNOTSUPP)
9685  			return err;
9686  	}
9687  	return devlink_compat_phys_port_name_get(dev, name, len);
9688  }
9689  
9690  /**
9691   *	dev_get_port_parent_id - Get the device's port parent identifier
9692   *	@dev: network device
9693   *	@ppid: pointer to a storage for the port's parent identifier
9694   *	@recurse: allow/disallow recursion to lower devices
9695   *
9696   *	Get the devices's port parent identifier
9697   */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9698  int dev_get_port_parent_id(struct net_device *dev,
9699  			   struct netdev_phys_item_id *ppid,
9700  			   bool recurse)
9701  {
9702  	const struct net_device_ops *ops = dev->netdev_ops;
9703  	struct netdev_phys_item_id first = { };
9704  	struct net_device *lower_dev;
9705  	struct list_head *iter;
9706  	int err;
9707  
9708  	if (ops->ndo_get_port_parent_id) {
9709  		err = ops->ndo_get_port_parent_id(dev, ppid);
9710  		if (err != -EOPNOTSUPP)
9711  			return err;
9712  	}
9713  
9714  	err = devlink_compat_switch_id_get(dev, ppid);
9715  	if (!recurse || err != -EOPNOTSUPP)
9716  		return err;
9717  
9718  	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9719  		err = dev_get_port_parent_id(lower_dev, ppid, true);
9720  		if (err)
9721  			break;
9722  		if (!first.id_len)
9723  			first = *ppid;
9724  		else if (memcmp(&first, ppid, sizeof(*ppid)))
9725  			return -EOPNOTSUPP;
9726  	}
9727  
9728  	return err;
9729  }
9730  EXPORT_SYMBOL(dev_get_port_parent_id);
9731  
9732  /**
9733   *	netdev_port_same_parent_id - Indicate if two network devices have
9734   *	the same port parent identifier
9735   *	@a: first network device
9736   *	@b: second network device
9737   */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9738  bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9739  {
9740  	struct netdev_phys_item_id a_id = { };
9741  	struct netdev_phys_item_id b_id = { };
9742  
9743  	if (dev_get_port_parent_id(a, &a_id, true) ||
9744  	    dev_get_port_parent_id(b, &b_id, true))
9745  		return false;
9746  
9747  	return netdev_phys_item_id_same(&a_id, &b_id);
9748  }
9749  EXPORT_SYMBOL(netdev_port_same_parent_id);
9750  
netif_change_proto_down(struct net_device * dev,bool proto_down)9751  int netif_change_proto_down(struct net_device *dev, bool proto_down)
9752  {
9753  	if (!dev->change_proto_down)
9754  		return -EOPNOTSUPP;
9755  	if (!netif_device_present(dev))
9756  		return -ENODEV;
9757  	if (proto_down)
9758  		netif_carrier_off(dev);
9759  	else
9760  		netif_carrier_on(dev);
9761  	WRITE_ONCE(dev->proto_down, proto_down);
9762  	return 0;
9763  }
9764  
9765  /**
9766   *	netdev_change_proto_down_reason_locked - proto down reason
9767   *
9768   *	@dev: device
9769   *	@mask: proto down mask
9770   *	@value: proto down value
9771   */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9772  void netdev_change_proto_down_reason_locked(struct net_device *dev,
9773  					    unsigned long mask, u32 value)
9774  {
9775  	u32 proto_down_reason;
9776  	int b;
9777  
9778  	if (!mask) {
9779  		proto_down_reason = value;
9780  	} else {
9781  		proto_down_reason = dev->proto_down_reason;
9782  		for_each_set_bit(b, &mask, 32) {
9783  			if (value & (1 << b))
9784  				proto_down_reason |= BIT(b);
9785  			else
9786  				proto_down_reason &= ~BIT(b);
9787  		}
9788  	}
9789  	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9790  }
9791  
9792  struct bpf_xdp_link {
9793  	struct bpf_link link;
9794  	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9795  	int flags;
9796  };
9797  
dev_xdp_mode(struct net_device * dev,u32 flags)9798  static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9799  {
9800  	if (flags & XDP_FLAGS_HW_MODE)
9801  		return XDP_MODE_HW;
9802  	if (flags & XDP_FLAGS_DRV_MODE)
9803  		return XDP_MODE_DRV;
9804  	if (flags & XDP_FLAGS_SKB_MODE)
9805  		return XDP_MODE_SKB;
9806  	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9807  }
9808  
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9809  static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9810  {
9811  	switch (mode) {
9812  	case XDP_MODE_SKB:
9813  		return generic_xdp_install;
9814  	case XDP_MODE_DRV:
9815  	case XDP_MODE_HW:
9816  		return dev->netdev_ops->ndo_bpf;
9817  	default:
9818  		return NULL;
9819  	}
9820  }
9821  
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9822  static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9823  					 enum bpf_xdp_mode mode)
9824  {
9825  	return dev->xdp_state[mode].link;
9826  }
9827  
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9828  static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9829  				     enum bpf_xdp_mode mode)
9830  {
9831  	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9832  
9833  	if (link)
9834  		return link->link.prog;
9835  	return dev->xdp_state[mode].prog;
9836  }
9837  
dev_xdp_prog_count(struct net_device * dev)9838  u8 dev_xdp_prog_count(struct net_device *dev)
9839  {
9840  	u8 count = 0;
9841  	int i;
9842  
9843  	for (i = 0; i < __MAX_XDP_MODE; i++)
9844  		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9845  			count++;
9846  	return count;
9847  }
9848  EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9849  
dev_xdp_sb_prog_count(struct net_device * dev)9850  u8 dev_xdp_sb_prog_count(struct net_device *dev)
9851  {
9852  	u8 count = 0;
9853  	int i;
9854  
9855  	for (i = 0; i < __MAX_XDP_MODE; i++)
9856  		if (dev->xdp_state[i].prog &&
9857  		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9858  			count++;
9859  	return count;
9860  }
9861  
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9862  int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9863  {
9864  	if (!dev->netdev_ops->ndo_bpf)
9865  		return -EOPNOTSUPP;
9866  
9867  	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9868  	    bpf->command == XDP_SETUP_PROG &&
9869  	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9870  		NL_SET_ERR_MSG(bpf->extack,
9871  			       "unable to propagate XDP to device using tcp-data-split");
9872  		return -EBUSY;
9873  	}
9874  
9875  	if (dev_get_min_mp_channel_count(dev)) {
9876  		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9877  		return -EBUSY;
9878  	}
9879  
9880  	return dev->netdev_ops->ndo_bpf(dev, bpf);
9881  }
9882  
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9883  u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9884  {
9885  	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9886  
9887  	return prog ? prog->aux->id : 0;
9888  }
9889  
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9890  static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9891  			     struct bpf_xdp_link *link)
9892  {
9893  	dev->xdp_state[mode].link = link;
9894  	dev->xdp_state[mode].prog = NULL;
9895  }
9896  
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9897  static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9898  			     struct bpf_prog *prog)
9899  {
9900  	dev->xdp_state[mode].link = NULL;
9901  	dev->xdp_state[mode].prog = prog;
9902  }
9903  
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9904  static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9905  			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9906  			   u32 flags, struct bpf_prog *prog)
9907  {
9908  	struct netdev_bpf xdp;
9909  	int err;
9910  
9911  	netdev_ops_assert_locked(dev);
9912  
9913  	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9914  	    prog && !prog->aux->xdp_has_frags) {
9915  		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9916  		return -EBUSY;
9917  	}
9918  
9919  	if (dev_get_min_mp_channel_count(dev)) {
9920  		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9921  		return -EBUSY;
9922  	}
9923  
9924  	memset(&xdp, 0, sizeof(xdp));
9925  	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9926  	xdp.extack = extack;
9927  	xdp.flags = flags;
9928  	xdp.prog = prog;
9929  
9930  	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9931  	 * "moved" into driver), so they don't increment it on their own, but
9932  	 * they do decrement refcnt when program is detached or replaced.
9933  	 * Given net_device also owns link/prog, we need to bump refcnt here
9934  	 * to prevent drivers from underflowing it.
9935  	 */
9936  	if (prog)
9937  		bpf_prog_inc(prog);
9938  	err = bpf_op(dev, &xdp);
9939  	if (err) {
9940  		if (prog)
9941  			bpf_prog_put(prog);
9942  		return err;
9943  	}
9944  
9945  	if (mode != XDP_MODE_HW)
9946  		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9947  
9948  	return 0;
9949  }
9950  
dev_xdp_uninstall(struct net_device * dev)9951  static void dev_xdp_uninstall(struct net_device *dev)
9952  {
9953  	struct bpf_xdp_link *link;
9954  	struct bpf_prog *prog;
9955  	enum bpf_xdp_mode mode;
9956  	bpf_op_t bpf_op;
9957  
9958  	ASSERT_RTNL();
9959  
9960  	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9961  		prog = dev_xdp_prog(dev, mode);
9962  		if (!prog)
9963  			continue;
9964  
9965  		bpf_op = dev_xdp_bpf_op(dev, mode);
9966  		if (!bpf_op)
9967  			continue;
9968  
9969  		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9970  
9971  		/* auto-detach link from net device */
9972  		link = dev_xdp_link(dev, mode);
9973  		if (link)
9974  			link->dev = NULL;
9975  		else
9976  			bpf_prog_put(prog);
9977  
9978  		dev_xdp_set_link(dev, mode, NULL);
9979  	}
9980  }
9981  
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9982  static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9983  			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9984  			  struct bpf_prog *old_prog, u32 flags)
9985  {
9986  	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9987  	struct bpf_prog *cur_prog;
9988  	struct net_device *upper;
9989  	struct list_head *iter;
9990  	enum bpf_xdp_mode mode;
9991  	bpf_op_t bpf_op;
9992  	int err;
9993  
9994  	ASSERT_RTNL();
9995  
9996  	/* either link or prog attachment, never both */
9997  	if (link && (new_prog || old_prog))
9998  		return -EINVAL;
9999  	/* link supports only XDP mode flags */
10000  	if (link && (flags & ~XDP_FLAGS_MODES)) {
10001  		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10002  		return -EINVAL;
10003  	}
10004  	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10005  	if (num_modes > 1) {
10006  		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10007  		return -EINVAL;
10008  	}
10009  	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10010  	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10011  		NL_SET_ERR_MSG(extack,
10012  			       "More than one program loaded, unset mode is ambiguous");
10013  		return -EINVAL;
10014  	}
10015  	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10016  	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10017  		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10018  		return -EINVAL;
10019  	}
10020  
10021  	mode = dev_xdp_mode(dev, flags);
10022  	/* can't replace attached link */
10023  	if (dev_xdp_link(dev, mode)) {
10024  		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10025  		return -EBUSY;
10026  	}
10027  
10028  	/* don't allow if an upper device already has a program */
10029  	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10030  		if (dev_xdp_prog_count(upper) > 0) {
10031  			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10032  			return -EEXIST;
10033  		}
10034  	}
10035  
10036  	cur_prog = dev_xdp_prog(dev, mode);
10037  	/* can't replace attached prog with link */
10038  	if (link && cur_prog) {
10039  		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10040  		return -EBUSY;
10041  	}
10042  	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10043  		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10044  		return -EEXIST;
10045  	}
10046  
10047  	/* put effective new program into new_prog */
10048  	if (link)
10049  		new_prog = link->link.prog;
10050  
10051  	if (new_prog) {
10052  		bool offload = mode == XDP_MODE_HW;
10053  		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10054  					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10055  
10056  		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10057  			NL_SET_ERR_MSG(extack, "XDP program already attached");
10058  			return -EBUSY;
10059  		}
10060  		if (!offload && dev_xdp_prog(dev, other_mode)) {
10061  			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10062  			return -EEXIST;
10063  		}
10064  		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10065  			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10066  			return -EINVAL;
10067  		}
10068  		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10069  			NL_SET_ERR_MSG(extack, "Program bound to different device");
10070  			return -EINVAL;
10071  		}
10072  		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10073  			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10074  			return -EINVAL;
10075  		}
10076  		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10077  			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10078  			return -EINVAL;
10079  		}
10080  		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10081  			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10082  			return -EINVAL;
10083  		}
10084  	}
10085  
10086  	/* don't call drivers if the effective program didn't change */
10087  	if (new_prog != cur_prog) {
10088  		bpf_op = dev_xdp_bpf_op(dev, mode);
10089  		if (!bpf_op) {
10090  			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10091  			return -EOPNOTSUPP;
10092  		}
10093  
10094  		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10095  		if (err)
10096  			return err;
10097  	}
10098  
10099  	if (link)
10100  		dev_xdp_set_link(dev, mode, link);
10101  	else
10102  		dev_xdp_set_prog(dev, mode, new_prog);
10103  	if (cur_prog)
10104  		bpf_prog_put(cur_prog);
10105  
10106  	return 0;
10107  }
10108  
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10109  static int dev_xdp_attach_link(struct net_device *dev,
10110  			       struct netlink_ext_ack *extack,
10111  			       struct bpf_xdp_link *link)
10112  {
10113  	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10114  }
10115  
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10116  static int dev_xdp_detach_link(struct net_device *dev,
10117  			       struct netlink_ext_ack *extack,
10118  			       struct bpf_xdp_link *link)
10119  {
10120  	enum bpf_xdp_mode mode;
10121  	bpf_op_t bpf_op;
10122  
10123  	ASSERT_RTNL();
10124  
10125  	mode = dev_xdp_mode(dev, link->flags);
10126  	if (dev_xdp_link(dev, mode) != link)
10127  		return -EINVAL;
10128  
10129  	bpf_op = dev_xdp_bpf_op(dev, mode);
10130  	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10131  	dev_xdp_set_link(dev, mode, NULL);
10132  	return 0;
10133  }
10134  
bpf_xdp_link_release(struct bpf_link * link)10135  static void bpf_xdp_link_release(struct bpf_link *link)
10136  {
10137  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10138  
10139  	rtnl_lock();
10140  
10141  	/* if racing with net_device's tear down, xdp_link->dev might be
10142  	 * already NULL, in which case link was already auto-detached
10143  	 */
10144  	if (xdp_link->dev) {
10145  		netdev_lock_ops(xdp_link->dev);
10146  		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10147  		netdev_unlock_ops(xdp_link->dev);
10148  		xdp_link->dev = NULL;
10149  	}
10150  
10151  	rtnl_unlock();
10152  }
10153  
bpf_xdp_link_detach(struct bpf_link * link)10154  static int bpf_xdp_link_detach(struct bpf_link *link)
10155  {
10156  	bpf_xdp_link_release(link);
10157  	return 0;
10158  }
10159  
bpf_xdp_link_dealloc(struct bpf_link * link)10160  static void bpf_xdp_link_dealloc(struct bpf_link *link)
10161  {
10162  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10163  
10164  	kfree(xdp_link);
10165  }
10166  
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10167  static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10168  				     struct seq_file *seq)
10169  {
10170  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10171  	u32 ifindex = 0;
10172  
10173  	rtnl_lock();
10174  	if (xdp_link->dev)
10175  		ifindex = xdp_link->dev->ifindex;
10176  	rtnl_unlock();
10177  
10178  	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10179  }
10180  
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10181  static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10182  				       struct bpf_link_info *info)
10183  {
10184  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10185  	u32 ifindex = 0;
10186  
10187  	rtnl_lock();
10188  	if (xdp_link->dev)
10189  		ifindex = xdp_link->dev->ifindex;
10190  	rtnl_unlock();
10191  
10192  	info->xdp.ifindex = ifindex;
10193  	return 0;
10194  }
10195  
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10196  static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10197  			       struct bpf_prog *old_prog)
10198  {
10199  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10200  	enum bpf_xdp_mode mode;
10201  	bpf_op_t bpf_op;
10202  	int err = 0;
10203  
10204  	rtnl_lock();
10205  
10206  	/* link might have been auto-released already, so fail */
10207  	if (!xdp_link->dev) {
10208  		err = -ENOLINK;
10209  		goto out_unlock;
10210  	}
10211  
10212  	if (old_prog && link->prog != old_prog) {
10213  		err = -EPERM;
10214  		goto out_unlock;
10215  	}
10216  	old_prog = link->prog;
10217  	if (old_prog->type != new_prog->type ||
10218  	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10219  		err = -EINVAL;
10220  		goto out_unlock;
10221  	}
10222  
10223  	if (old_prog == new_prog) {
10224  		/* no-op, don't disturb drivers */
10225  		bpf_prog_put(new_prog);
10226  		goto out_unlock;
10227  	}
10228  
10229  	netdev_lock_ops(xdp_link->dev);
10230  	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10231  	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10232  	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10233  			      xdp_link->flags, new_prog);
10234  	netdev_unlock_ops(xdp_link->dev);
10235  	if (err)
10236  		goto out_unlock;
10237  
10238  	old_prog = xchg(&link->prog, new_prog);
10239  	bpf_prog_put(old_prog);
10240  
10241  out_unlock:
10242  	rtnl_unlock();
10243  	return err;
10244  }
10245  
10246  static const struct bpf_link_ops bpf_xdp_link_lops = {
10247  	.release = bpf_xdp_link_release,
10248  	.dealloc = bpf_xdp_link_dealloc,
10249  	.detach = bpf_xdp_link_detach,
10250  	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10251  	.fill_link_info = bpf_xdp_link_fill_link_info,
10252  	.update_prog = bpf_xdp_link_update,
10253  };
10254  
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10255  int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10256  {
10257  	struct net *net = current->nsproxy->net_ns;
10258  	struct bpf_link_primer link_primer;
10259  	struct netlink_ext_ack extack = {};
10260  	struct bpf_xdp_link *link;
10261  	struct net_device *dev;
10262  	int err, fd;
10263  
10264  	rtnl_lock();
10265  	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10266  	if (!dev) {
10267  		rtnl_unlock();
10268  		return -EINVAL;
10269  	}
10270  
10271  	link = kzalloc(sizeof(*link), GFP_USER);
10272  	if (!link) {
10273  		err = -ENOMEM;
10274  		goto unlock;
10275  	}
10276  
10277  	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10278  	link->dev = dev;
10279  	link->flags = attr->link_create.flags;
10280  
10281  	err = bpf_link_prime(&link->link, &link_primer);
10282  	if (err) {
10283  		kfree(link);
10284  		goto unlock;
10285  	}
10286  
10287  	err = dev_xdp_attach_link(dev, &extack, link);
10288  	rtnl_unlock();
10289  
10290  	if (err) {
10291  		link->dev = NULL;
10292  		bpf_link_cleanup(&link_primer);
10293  		trace_bpf_xdp_link_attach_failed(extack._msg);
10294  		goto out_put_dev;
10295  	}
10296  
10297  	fd = bpf_link_settle(&link_primer);
10298  	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10299  	dev_put(dev);
10300  	return fd;
10301  
10302  unlock:
10303  	rtnl_unlock();
10304  
10305  out_put_dev:
10306  	dev_put(dev);
10307  	return err;
10308  }
10309  
10310  /**
10311   *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10312   *	@dev: device
10313   *	@extack: netlink extended ack
10314   *	@fd: new program fd or negative value to clear
10315   *	@expected_fd: old program fd that userspace expects to replace or clear
10316   *	@flags: xdp-related flags
10317   *
10318   *	Set or clear a bpf program for a device
10319   */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10320  int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10321  		      int fd, int expected_fd, u32 flags)
10322  {
10323  	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10324  	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10325  	int err;
10326  
10327  	ASSERT_RTNL();
10328  
10329  	if (fd >= 0) {
10330  		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10331  						 mode != XDP_MODE_SKB);
10332  		if (IS_ERR(new_prog))
10333  			return PTR_ERR(new_prog);
10334  	}
10335  
10336  	if (expected_fd >= 0) {
10337  		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10338  						 mode != XDP_MODE_SKB);
10339  		if (IS_ERR(old_prog)) {
10340  			err = PTR_ERR(old_prog);
10341  			old_prog = NULL;
10342  			goto err_out;
10343  		}
10344  	}
10345  
10346  	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10347  
10348  err_out:
10349  	if (err && new_prog)
10350  		bpf_prog_put(new_prog);
10351  	if (old_prog)
10352  		bpf_prog_put(old_prog);
10353  	return err;
10354  }
10355  
dev_get_min_mp_channel_count(const struct net_device * dev)10356  u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10357  {
10358  	int i;
10359  
10360  	netdev_ops_assert_locked(dev);
10361  
10362  	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10363  		if (dev->_rx[i].mp_params.mp_priv)
10364  			/* The channel count is the idx plus 1. */
10365  			return i + 1;
10366  
10367  	return 0;
10368  }
10369  
10370  /**
10371   * dev_index_reserve() - allocate an ifindex in a namespace
10372   * @net: the applicable net namespace
10373   * @ifindex: requested ifindex, pass %0 to get one allocated
10374   *
10375   * Allocate a ifindex for a new device. Caller must either use the ifindex
10376   * to store the device (via list_netdevice()) or call dev_index_release()
10377   * to give the index up.
10378   *
10379   * Return: a suitable unique value for a new device interface number or -errno.
10380   */
dev_index_reserve(struct net * net,u32 ifindex)10381  static int dev_index_reserve(struct net *net, u32 ifindex)
10382  {
10383  	int err;
10384  
10385  	if (ifindex > INT_MAX) {
10386  		DEBUG_NET_WARN_ON_ONCE(1);
10387  		return -EINVAL;
10388  	}
10389  
10390  	if (!ifindex)
10391  		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10392  				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10393  	else
10394  		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10395  	if (err < 0)
10396  		return err;
10397  
10398  	return ifindex;
10399  }
10400  
dev_index_release(struct net * net,int ifindex)10401  static void dev_index_release(struct net *net, int ifindex)
10402  {
10403  	/* Expect only unused indexes, unlist_netdevice() removes the used */
10404  	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10405  }
10406  
from_cleanup_net(void)10407  static bool from_cleanup_net(void)
10408  {
10409  #ifdef CONFIG_NET_NS
10410  	return current == cleanup_net_task;
10411  #else
10412  	return false;
10413  #endif
10414  }
10415  
10416  /* Delayed registration/unregisteration */
10417  LIST_HEAD(net_todo_list);
10418  DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10419  atomic_t dev_unreg_count = ATOMIC_INIT(0);
10420  
net_set_todo(struct net_device * dev)10421  static void net_set_todo(struct net_device *dev)
10422  {
10423  	list_add_tail(&dev->todo_list, &net_todo_list);
10424  }
10425  
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10426  static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10427  	struct net_device *upper, netdev_features_t features)
10428  {
10429  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10430  	netdev_features_t feature;
10431  	int feature_bit;
10432  
10433  	for_each_netdev_feature(upper_disables, feature_bit) {
10434  		feature = __NETIF_F_BIT(feature_bit);
10435  		if (!(upper->wanted_features & feature)
10436  		    && (features & feature)) {
10437  			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10438  				   &feature, upper->name);
10439  			features &= ~feature;
10440  		}
10441  	}
10442  
10443  	return features;
10444  }
10445  
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10446  static void netdev_sync_lower_features(struct net_device *upper,
10447  	struct net_device *lower, netdev_features_t features)
10448  {
10449  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10450  	netdev_features_t feature;
10451  	int feature_bit;
10452  
10453  	for_each_netdev_feature(upper_disables, feature_bit) {
10454  		feature = __NETIF_F_BIT(feature_bit);
10455  		if (!(features & feature) && (lower->features & feature)) {
10456  			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10457  				   &feature, lower->name);
10458  			lower->wanted_features &= ~feature;
10459  			__netdev_update_features(lower);
10460  
10461  			if (unlikely(lower->features & feature))
10462  				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10463  					    &feature, lower->name);
10464  			else
10465  				netdev_features_change(lower);
10466  		}
10467  	}
10468  }
10469  
netdev_has_ip_or_hw_csum(netdev_features_t features)10470  static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10471  {
10472  	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10473  	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10474  	bool hw_csum = features & NETIF_F_HW_CSUM;
10475  
10476  	return ip_csum || hw_csum;
10477  }
10478  
netdev_fix_features(struct net_device * dev,netdev_features_t features)10479  static netdev_features_t netdev_fix_features(struct net_device *dev,
10480  	netdev_features_t features)
10481  {
10482  	/* Fix illegal checksum combinations */
10483  	if ((features & NETIF_F_HW_CSUM) &&
10484  	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10485  		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10486  		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10487  	}
10488  
10489  	/* TSO requires that SG is present as well. */
10490  	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10491  		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10492  		features &= ~NETIF_F_ALL_TSO;
10493  	}
10494  
10495  	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10496  					!(features & NETIF_F_IP_CSUM)) {
10497  		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10498  		features &= ~NETIF_F_TSO;
10499  		features &= ~NETIF_F_TSO_ECN;
10500  	}
10501  
10502  	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10503  					 !(features & NETIF_F_IPV6_CSUM)) {
10504  		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10505  		features &= ~NETIF_F_TSO6;
10506  	}
10507  
10508  	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10509  	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10510  		features &= ~NETIF_F_TSO_MANGLEID;
10511  
10512  	/* TSO ECN requires that TSO is present as well. */
10513  	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10514  		features &= ~NETIF_F_TSO_ECN;
10515  
10516  	/* Software GSO depends on SG. */
10517  	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10518  		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10519  		features &= ~NETIF_F_GSO;
10520  	}
10521  
10522  	/* GSO partial features require GSO partial be set */
10523  	if ((features & dev->gso_partial_features) &&
10524  	    !(features & NETIF_F_GSO_PARTIAL)) {
10525  		netdev_dbg(dev,
10526  			   "Dropping partially supported GSO features since no GSO partial.\n");
10527  		features &= ~dev->gso_partial_features;
10528  	}
10529  
10530  	if (!(features & NETIF_F_RXCSUM)) {
10531  		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10532  		 * successfully merged by hardware must also have the
10533  		 * checksum verified by hardware.  If the user does not
10534  		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10535  		 */
10536  		if (features & NETIF_F_GRO_HW) {
10537  			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10538  			features &= ~NETIF_F_GRO_HW;
10539  		}
10540  	}
10541  
10542  	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10543  	if (features & NETIF_F_RXFCS) {
10544  		if (features & NETIF_F_LRO) {
10545  			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10546  			features &= ~NETIF_F_LRO;
10547  		}
10548  
10549  		if (features & NETIF_F_GRO_HW) {
10550  			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10551  			features &= ~NETIF_F_GRO_HW;
10552  		}
10553  	}
10554  
10555  	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10556  		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10557  		features &= ~NETIF_F_LRO;
10558  	}
10559  
10560  	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10561  		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10562  		features &= ~NETIF_F_HW_TLS_TX;
10563  	}
10564  
10565  	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10566  		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10567  		features &= ~NETIF_F_HW_TLS_RX;
10568  	}
10569  
10570  	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10571  		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10572  		features &= ~NETIF_F_GSO_UDP_L4;
10573  	}
10574  
10575  	return features;
10576  }
10577  
__netdev_update_features(struct net_device * dev)10578  int __netdev_update_features(struct net_device *dev)
10579  {
10580  	struct net_device *upper, *lower;
10581  	netdev_features_t features;
10582  	struct list_head *iter;
10583  	int err = -1;
10584  
10585  	ASSERT_RTNL();
10586  	netdev_ops_assert_locked(dev);
10587  
10588  	features = netdev_get_wanted_features(dev);
10589  
10590  	if (dev->netdev_ops->ndo_fix_features)
10591  		features = dev->netdev_ops->ndo_fix_features(dev, features);
10592  
10593  	/* driver might be less strict about feature dependencies */
10594  	features = netdev_fix_features(dev, features);
10595  
10596  	/* some features can't be enabled if they're off on an upper device */
10597  	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10598  		features = netdev_sync_upper_features(dev, upper, features);
10599  
10600  	if (dev->features == features)
10601  		goto sync_lower;
10602  
10603  	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10604  		&dev->features, &features);
10605  
10606  	if (dev->netdev_ops->ndo_set_features)
10607  		err = dev->netdev_ops->ndo_set_features(dev, features);
10608  	else
10609  		err = 0;
10610  
10611  	if (unlikely(err < 0)) {
10612  		netdev_err(dev,
10613  			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10614  			err, &features, &dev->features);
10615  		/* return non-0 since some features might have changed and
10616  		 * it's better to fire a spurious notification than miss it
10617  		 */
10618  		return -1;
10619  	}
10620  
10621  sync_lower:
10622  	/* some features must be disabled on lower devices when disabled
10623  	 * on an upper device (think: bonding master or bridge)
10624  	 */
10625  	netdev_for_each_lower_dev(dev, lower, iter)
10626  		netdev_sync_lower_features(dev, lower, features);
10627  
10628  	if (!err) {
10629  		netdev_features_t diff = features ^ dev->features;
10630  
10631  		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10632  			/* udp_tunnel_{get,drop}_rx_info both need
10633  			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10634  			 * device, or they won't do anything.
10635  			 * Thus we need to update dev->features
10636  			 * *before* calling udp_tunnel_get_rx_info,
10637  			 * but *after* calling udp_tunnel_drop_rx_info.
10638  			 */
10639  			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10640  				dev->features = features;
10641  				udp_tunnel_get_rx_info(dev);
10642  			} else {
10643  				udp_tunnel_drop_rx_info(dev);
10644  			}
10645  		}
10646  
10647  		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10648  			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10649  				dev->features = features;
10650  				err |= vlan_get_rx_ctag_filter_info(dev);
10651  			} else {
10652  				vlan_drop_rx_ctag_filter_info(dev);
10653  			}
10654  		}
10655  
10656  		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10657  			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10658  				dev->features = features;
10659  				err |= vlan_get_rx_stag_filter_info(dev);
10660  			} else {
10661  				vlan_drop_rx_stag_filter_info(dev);
10662  			}
10663  		}
10664  
10665  		dev->features = features;
10666  	}
10667  
10668  	return err < 0 ? 0 : 1;
10669  }
10670  
10671  /**
10672   *	netdev_update_features - recalculate device features
10673   *	@dev: the device to check
10674   *
10675   *	Recalculate dev->features set and send notifications if it
10676   *	has changed. Should be called after driver or hardware dependent
10677   *	conditions might have changed that influence the features.
10678   */
netdev_update_features(struct net_device * dev)10679  void netdev_update_features(struct net_device *dev)
10680  {
10681  	if (__netdev_update_features(dev))
10682  		netdev_features_change(dev);
10683  }
10684  EXPORT_SYMBOL(netdev_update_features);
10685  
10686  /**
10687   *	netdev_change_features - recalculate device features
10688   *	@dev: the device to check
10689   *
10690   *	Recalculate dev->features set and send notifications even
10691   *	if they have not changed. Should be called instead of
10692   *	netdev_update_features() if also dev->vlan_features might
10693   *	have changed to allow the changes to be propagated to stacked
10694   *	VLAN devices.
10695   */
netdev_change_features(struct net_device * dev)10696  void netdev_change_features(struct net_device *dev)
10697  {
10698  	__netdev_update_features(dev);
10699  	netdev_features_change(dev);
10700  }
10701  EXPORT_SYMBOL(netdev_change_features);
10702  
10703  /**
10704   *	netif_stacked_transfer_operstate -	transfer operstate
10705   *	@rootdev: the root or lower level device to transfer state from
10706   *	@dev: the device to transfer operstate to
10707   *
10708   *	Transfer operational state from root to device. This is normally
10709   *	called when a stacking relationship exists between the root
10710   *	device and the device(a leaf device).
10711   */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10712  void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10713  					struct net_device *dev)
10714  {
10715  	if (rootdev->operstate == IF_OPER_DORMANT)
10716  		netif_dormant_on(dev);
10717  	else
10718  		netif_dormant_off(dev);
10719  
10720  	if (rootdev->operstate == IF_OPER_TESTING)
10721  		netif_testing_on(dev);
10722  	else
10723  		netif_testing_off(dev);
10724  
10725  	if (netif_carrier_ok(rootdev))
10726  		netif_carrier_on(dev);
10727  	else
10728  		netif_carrier_off(dev);
10729  }
10730  EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10731  
netif_alloc_rx_queues(struct net_device * dev)10732  static int netif_alloc_rx_queues(struct net_device *dev)
10733  {
10734  	unsigned int i, count = dev->num_rx_queues;
10735  	struct netdev_rx_queue *rx;
10736  	size_t sz = count * sizeof(*rx);
10737  	int err = 0;
10738  
10739  	BUG_ON(count < 1);
10740  
10741  	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10742  	if (!rx)
10743  		return -ENOMEM;
10744  
10745  	dev->_rx = rx;
10746  
10747  	for (i = 0; i < count; i++) {
10748  		rx[i].dev = dev;
10749  
10750  		/* XDP RX-queue setup */
10751  		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10752  		if (err < 0)
10753  			goto err_rxq_info;
10754  	}
10755  	return 0;
10756  
10757  err_rxq_info:
10758  	/* Rollback successful reg's and free other resources */
10759  	while (i--)
10760  		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10761  	kvfree(dev->_rx);
10762  	dev->_rx = NULL;
10763  	return err;
10764  }
10765  
netif_free_rx_queues(struct net_device * dev)10766  static void netif_free_rx_queues(struct net_device *dev)
10767  {
10768  	unsigned int i, count = dev->num_rx_queues;
10769  
10770  	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10771  	if (!dev->_rx)
10772  		return;
10773  
10774  	for (i = 0; i < count; i++)
10775  		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10776  
10777  	kvfree(dev->_rx);
10778  }
10779  
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10780  static void netdev_init_one_queue(struct net_device *dev,
10781  				  struct netdev_queue *queue, void *_unused)
10782  {
10783  	/* Initialize queue lock */
10784  	spin_lock_init(&queue->_xmit_lock);
10785  	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10786  	queue->xmit_lock_owner = -1;
10787  	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10788  	queue->dev = dev;
10789  #ifdef CONFIG_BQL
10790  	dql_init(&queue->dql, HZ);
10791  #endif
10792  }
10793  
netif_free_tx_queues(struct net_device * dev)10794  static void netif_free_tx_queues(struct net_device *dev)
10795  {
10796  	kvfree(dev->_tx);
10797  }
10798  
netif_alloc_netdev_queues(struct net_device * dev)10799  static int netif_alloc_netdev_queues(struct net_device *dev)
10800  {
10801  	unsigned int count = dev->num_tx_queues;
10802  	struct netdev_queue *tx;
10803  	size_t sz = count * sizeof(*tx);
10804  
10805  	if (count < 1 || count > 0xffff)
10806  		return -EINVAL;
10807  
10808  	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10809  	if (!tx)
10810  		return -ENOMEM;
10811  
10812  	dev->_tx = tx;
10813  
10814  	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10815  	spin_lock_init(&dev->tx_global_lock);
10816  
10817  	return 0;
10818  }
10819  
netif_tx_stop_all_queues(struct net_device * dev)10820  void netif_tx_stop_all_queues(struct net_device *dev)
10821  {
10822  	unsigned int i;
10823  
10824  	for (i = 0; i < dev->num_tx_queues; i++) {
10825  		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10826  
10827  		netif_tx_stop_queue(txq);
10828  	}
10829  }
10830  EXPORT_SYMBOL(netif_tx_stop_all_queues);
10831  
netdev_do_alloc_pcpu_stats(struct net_device * dev)10832  static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10833  {
10834  	void __percpu *v;
10835  
10836  	/* Drivers implementing ndo_get_peer_dev must support tstat
10837  	 * accounting, so that skb_do_redirect() can bump the dev's
10838  	 * RX stats upon network namespace switch.
10839  	 */
10840  	if (dev->netdev_ops->ndo_get_peer_dev &&
10841  	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10842  		return -EOPNOTSUPP;
10843  
10844  	switch (dev->pcpu_stat_type) {
10845  	case NETDEV_PCPU_STAT_NONE:
10846  		return 0;
10847  	case NETDEV_PCPU_STAT_LSTATS:
10848  		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10849  		break;
10850  	case NETDEV_PCPU_STAT_TSTATS:
10851  		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10852  		break;
10853  	case NETDEV_PCPU_STAT_DSTATS:
10854  		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10855  		break;
10856  	default:
10857  		return -EINVAL;
10858  	}
10859  
10860  	return v ? 0 : -ENOMEM;
10861  }
10862  
netdev_do_free_pcpu_stats(struct net_device * dev)10863  static void netdev_do_free_pcpu_stats(struct net_device *dev)
10864  {
10865  	switch (dev->pcpu_stat_type) {
10866  	case NETDEV_PCPU_STAT_NONE:
10867  		return;
10868  	case NETDEV_PCPU_STAT_LSTATS:
10869  		free_percpu(dev->lstats);
10870  		break;
10871  	case NETDEV_PCPU_STAT_TSTATS:
10872  		free_percpu(dev->tstats);
10873  		break;
10874  	case NETDEV_PCPU_STAT_DSTATS:
10875  		free_percpu(dev->dstats);
10876  		break;
10877  	}
10878  }
10879  
netdev_free_phy_link_topology(struct net_device * dev)10880  static void netdev_free_phy_link_topology(struct net_device *dev)
10881  {
10882  	struct phy_link_topology *topo = dev->link_topo;
10883  
10884  	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10885  		xa_destroy(&topo->phys);
10886  		kfree(topo);
10887  		dev->link_topo = NULL;
10888  	}
10889  }
10890  
10891  /**
10892   * register_netdevice() - register a network device
10893   * @dev: device to register
10894   *
10895   * Take a prepared network device structure and make it externally accessible.
10896   * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10897   * Callers must hold the rtnl lock - you may want register_netdev()
10898   * instead of this.
10899   */
register_netdevice(struct net_device * dev)10900  int register_netdevice(struct net_device *dev)
10901  {
10902  	int ret;
10903  	struct net *net = dev_net(dev);
10904  
10905  	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10906  		     NETDEV_FEATURE_COUNT);
10907  	BUG_ON(dev_boot_phase);
10908  	ASSERT_RTNL();
10909  
10910  	might_sleep();
10911  
10912  	/* When net_device's are persistent, this will be fatal. */
10913  	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10914  	BUG_ON(!net);
10915  
10916  	ret = ethtool_check_ops(dev->ethtool_ops);
10917  	if (ret)
10918  		return ret;
10919  
10920  	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10921  	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10922  	mutex_init(&dev->ethtool->rss_lock);
10923  
10924  	spin_lock_init(&dev->addr_list_lock);
10925  	netdev_set_addr_lockdep_class(dev);
10926  
10927  	ret = dev_get_valid_name(net, dev, dev->name);
10928  	if (ret < 0)
10929  		goto out;
10930  
10931  	ret = -ENOMEM;
10932  	dev->name_node = netdev_name_node_head_alloc(dev);
10933  	if (!dev->name_node)
10934  		goto out;
10935  
10936  	/* Init, if this function is available */
10937  	if (dev->netdev_ops->ndo_init) {
10938  		ret = dev->netdev_ops->ndo_init(dev);
10939  		if (ret) {
10940  			if (ret > 0)
10941  				ret = -EIO;
10942  			goto err_free_name;
10943  		}
10944  	}
10945  
10946  	if (((dev->hw_features | dev->features) &
10947  	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10948  	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10949  	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10950  		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10951  		ret = -EINVAL;
10952  		goto err_uninit;
10953  	}
10954  
10955  	ret = netdev_do_alloc_pcpu_stats(dev);
10956  	if (ret)
10957  		goto err_uninit;
10958  
10959  	ret = dev_index_reserve(net, dev->ifindex);
10960  	if (ret < 0)
10961  		goto err_free_pcpu;
10962  	dev->ifindex = ret;
10963  
10964  	/* Transfer changeable features to wanted_features and enable
10965  	 * software offloads (GSO and GRO).
10966  	 */
10967  	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10968  	dev->features |= NETIF_F_SOFT_FEATURES;
10969  
10970  	if (dev->udp_tunnel_nic_info) {
10971  		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10972  		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10973  	}
10974  
10975  	dev->wanted_features = dev->features & dev->hw_features;
10976  
10977  	if (!(dev->flags & IFF_LOOPBACK))
10978  		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10979  
10980  	/* If IPv4 TCP segmentation offload is supported we should also
10981  	 * allow the device to enable segmenting the frame with the option
10982  	 * of ignoring a static IP ID value.  This doesn't enable the
10983  	 * feature itself but allows the user to enable it later.
10984  	 */
10985  	if (dev->hw_features & NETIF_F_TSO)
10986  		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10987  	if (dev->vlan_features & NETIF_F_TSO)
10988  		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10989  	if (dev->mpls_features & NETIF_F_TSO)
10990  		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10991  	if (dev->hw_enc_features & NETIF_F_TSO)
10992  		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10993  
10994  	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10995  	 */
10996  	dev->vlan_features |= NETIF_F_HIGHDMA;
10997  
10998  	/* Make NETIF_F_SG inheritable to tunnel devices.
10999  	 */
11000  	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11001  
11002  	/* Make NETIF_F_SG inheritable to MPLS.
11003  	 */
11004  	dev->mpls_features |= NETIF_F_SG;
11005  
11006  	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11007  	ret = notifier_to_errno(ret);
11008  	if (ret)
11009  		goto err_ifindex_release;
11010  
11011  	ret = netdev_register_kobject(dev);
11012  
11013  	netdev_lock(dev);
11014  	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11015  	netdev_unlock(dev);
11016  
11017  	if (ret)
11018  		goto err_uninit_notify;
11019  
11020  	netdev_lock_ops(dev);
11021  	__netdev_update_features(dev);
11022  	netdev_unlock_ops(dev);
11023  
11024  	/*
11025  	 *	Default initial state at registry is that the
11026  	 *	device is present.
11027  	 */
11028  
11029  	set_bit(__LINK_STATE_PRESENT, &dev->state);
11030  
11031  	linkwatch_init_dev(dev);
11032  
11033  	dev_init_scheduler(dev);
11034  
11035  	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11036  	list_netdevice(dev);
11037  
11038  	add_device_randomness(dev->dev_addr, dev->addr_len);
11039  
11040  	/* If the device has permanent device address, driver should
11041  	 * set dev_addr and also addr_assign_type should be set to
11042  	 * NET_ADDR_PERM (default value).
11043  	 */
11044  	if (dev->addr_assign_type == NET_ADDR_PERM)
11045  		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11046  
11047  	/* Notify protocols, that a new device appeared. */
11048  	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11049  	ret = notifier_to_errno(ret);
11050  	if (ret) {
11051  		/* Expect explicit free_netdev() on failure */
11052  		dev->needs_free_netdev = false;
11053  		unregister_netdevice_queue(dev, NULL);
11054  		goto out;
11055  	}
11056  	/*
11057  	 *	Prevent userspace races by waiting until the network
11058  	 *	device is fully setup before sending notifications.
11059  	 */
11060  	if (!dev->rtnl_link_ops ||
11061  	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11062  		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11063  
11064  out:
11065  	return ret;
11066  
11067  err_uninit_notify:
11068  	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11069  err_ifindex_release:
11070  	dev_index_release(net, dev->ifindex);
11071  err_free_pcpu:
11072  	netdev_do_free_pcpu_stats(dev);
11073  err_uninit:
11074  	if (dev->netdev_ops->ndo_uninit)
11075  		dev->netdev_ops->ndo_uninit(dev);
11076  	if (dev->priv_destructor)
11077  		dev->priv_destructor(dev);
11078  err_free_name:
11079  	netdev_name_node_free(dev->name_node);
11080  	goto out;
11081  }
11082  EXPORT_SYMBOL(register_netdevice);
11083  
11084  /* Initialize the core of a dummy net device.
11085   * The setup steps dummy netdevs need which normal netdevs get by going
11086   * through register_netdevice().
11087   */
init_dummy_netdev(struct net_device * dev)11088  static void init_dummy_netdev(struct net_device *dev)
11089  {
11090  	/* make sure we BUG if trying to hit standard
11091  	 * register/unregister code path
11092  	 */
11093  	dev->reg_state = NETREG_DUMMY;
11094  
11095  	/* a dummy interface is started by default */
11096  	set_bit(__LINK_STATE_PRESENT, &dev->state);
11097  	set_bit(__LINK_STATE_START, &dev->state);
11098  
11099  	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11100  	 * because users of this 'device' dont need to change
11101  	 * its refcount.
11102  	 */
11103  }
11104  
11105  /**
11106   *	register_netdev	- register a network device
11107   *	@dev: device to register
11108   *
11109   *	Take a completed network device structure and add it to the kernel
11110   *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11111   *	chain. 0 is returned on success. A negative errno code is returned
11112   *	on a failure to set up the device, or if the name is a duplicate.
11113   *
11114   *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11115   *	and expands the device name if you passed a format string to
11116   *	alloc_netdev.
11117   */
register_netdev(struct net_device * dev)11118  int register_netdev(struct net_device *dev)
11119  {
11120  	struct net *net = dev_net(dev);
11121  	int err;
11122  
11123  	if (rtnl_net_lock_killable(net))
11124  		return -EINTR;
11125  
11126  	err = register_netdevice(dev);
11127  
11128  	rtnl_net_unlock(net);
11129  
11130  	return err;
11131  }
11132  EXPORT_SYMBOL(register_netdev);
11133  
netdev_refcnt_read(const struct net_device * dev)11134  int netdev_refcnt_read(const struct net_device *dev)
11135  {
11136  #ifdef CONFIG_PCPU_DEV_REFCNT
11137  	int i, refcnt = 0;
11138  
11139  	for_each_possible_cpu(i)
11140  		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11141  	return refcnt;
11142  #else
11143  	return refcount_read(&dev->dev_refcnt);
11144  #endif
11145  }
11146  EXPORT_SYMBOL(netdev_refcnt_read);
11147  
11148  int netdev_unregister_timeout_secs __read_mostly = 10;
11149  
11150  #define WAIT_REFS_MIN_MSECS 1
11151  #define WAIT_REFS_MAX_MSECS 250
11152  /**
11153   * netdev_wait_allrefs_any - wait until all references are gone.
11154   * @list: list of net_devices to wait on
11155   *
11156   * This is called when unregistering network devices.
11157   *
11158   * Any protocol or device that holds a reference should register
11159   * for netdevice notification, and cleanup and put back the
11160   * reference if they receive an UNREGISTER event.
11161   * We can get stuck here if buggy protocols don't correctly
11162   * call dev_put.
11163   */
netdev_wait_allrefs_any(struct list_head * list)11164  static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11165  {
11166  	unsigned long rebroadcast_time, warning_time;
11167  	struct net_device *dev;
11168  	int wait = 0;
11169  
11170  	rebroadcast_time = warning_time = jiffies;
11171  
11172  	list_for_each_entry(dev, list, todo_list)
11173  		if (netdev_refcnt_read(dev) == 1)
11174  			return dev;
11175  
11176  	while (true) {
11177  		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11178  			rtnl_lock();
11179  
11180  			/* Rebroadcast unregister notification */
11181  			list_for_each_entry(dev, list, todo_list)
11182  				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11183  
11184  			__rtnl_unlock();
11185  			rcu_barrier();
11186  			rtnl_lock();
11187  
11188  			list_for_each_entry(dev, list, todo_list)
11189  				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11190  					     &dev->state)) {
11191  					/* We must not have linkwatch events
11192  					 * pending on unregister. If this
11193  					 * happens, we simply run the queue
11194  					 * unscheduled, resulting in a noop
11195  					 * for this device.
11196  					 */
11197  					linkwatch_run_queue();
11198  					break;
11199  				}
11200  
11201  			__rtnl_unlock();
11202  
11203  			rebroadcast_time = jiffies;
11204  		}
11205  
11206  		rcu_barrier();
11207  
11208  		if (!wait) {
11209  			wait = WAIT_REFS_MIN_MSECS;
11210  		} else {
11211  			msleep(wait);
11212  			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11213  		}
11214  
11215  		list_for_each_entry(dev, list, todo_list)
11216  			if (netdev_refcnt_read(dev) == 1)
11217  				return dev;
11218  
11219  		if (time_after(jiffies, warning_time +
11220  			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11221  			list_for_each_entry(dev, list, todo_list) {
11222  				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11223  					 dev->name, netdev_refcnt_read(dev));
11224  				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11225  			}
11226  
11227  			warning_time = jiffies;
11228  		}
11229  	}
11230  }
11231  
11232  /* The sequence is:
11233   *
11234   *	rtnl_lock();
11235   *	...
11236   *	register_netdevice(x1);
11237   *	register_netdevice(x2);
11238   *	...
11239   *	unregister_netdevice(y1);
11240   *	unregister_netdevice(y2);
11241   *      ...
11242   *	rtnl_unlock();
11243   *	free_netdev(y1);
11244   *	free_netdev(y2);
11245   *
11246   * We are invoked by rtnl_unlock().
11247   * This allows us to deal with problems:
11248   * 1) We can delete sysfs objects which invoke hotplug
11249   *    without deadlocking with linkwatch via keventd.
11250   * 2) Since we run with the RTNL semaphore not held, we can sleep
11251   *    safely in order to wait for the netdev refcnt to drop to zero.
11252   *
11253   * We must not return until all unregister events added during
11254   * the interval the lock was held have been completed.
11255   */
netdev_run_todo(void)11256  void netdev_run_todo(void)
11257  {
11258  	struct net_device *dev, *tmp;
11259  	struct list_head list;
11260  	int cnt;
11261  #ifdef CONFIG_LOCKDEP
11262  	struct list_head unlink_list;
11263  
11264  	list_replace_init(&net_unlink_list, &unlink_list);
11265  
11266  	while (!list_empty(&unlink_list)) {
11267  		dev = list_first_entry(&unlink_list, struct net_device,
11268  				       unlink_list);
11269  		list_del_init(&dev->unlink_list);
11270  		dev->nested_level = dev->lower_level - 1;
11271  	}
11272  #endif
11273  
11274  	/* Snapshot list, allow later requests */
11275  	list_replace_init(&net_todo_list, &list);
11276  
11277  	__rtnl_unlock();
11278  
11279  	/* Wait for rcu callbacks to finish before next phase */
11280  	if (!list_empty(&list))
11281  		rcu_barrier();
11282  
11283  	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11284  		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11285  			netdev_WARN(dev, "run_todo but not unregistering\n");
11286  			list_del(&dev->todo_list);
11287  			continue;
11288  		}
11289  
11290  		netdev_lock(dev);
11291  		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11292  		netdev_unlock(dev);
11293  		linkwatch_sync_dev(dev);
11294  	}
11295  
11296  	cnt = 0;
11297  	while (!list_empty(&list)) {
11298  		dev = netdev_wait_allrefs_any(&list);
11299  		list_del(&dev->todo_list);
11300  
11301  		/* paranoia */
11302  		BUG_ON(netdev_refcnt_read(dev) != 1);
11303  		BUG_ON(!list_empty(&dev->ptype_all));
11304  		BUG_ON(!list_empty(&dev->ptype_specific));
11305  		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11306  		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11307  
11308  		netdev_do_free_pcpu_stats(dev);
11309  		if (dev->priv_destructor)
11310  			dev->priv_destructor(dev);
11311  		if (dev->needs_free_netdev)
11312  			free_netdev(dev);
11313  
11314  		cnt++;
11315  
11316  		/* Free network device */
11317  		kobject_put(&dev->dev.kobj);
11318  	}
11319  	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11320  		wake_up(&netdev_unregistering_wq);
11321  }
11322  
11323  /* Collate per-cpu network dstats statistics
11324   *
11325   * Read per-cpu network statistics from dev->dstats and populate the related
11326   * fields in @s.
11327   */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11328  static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11329  			     const struct pcpu_dstats __percpu *dstats)
11330  {
11331  	int cpu;
11332  
11333  	for_each_possible_cpu(cpu) {
11334  		u64 rx_packets, rx_bytes, rx_drops;
11335  		u64 tx_packets, tx_bytes, tx_drops;
11336  		const struct pcpu_dstats *stats;
11337  		unsigned int start;
11338  
11339  		stats = per_cpu_ptr(dstats, cpu);
11340  		do {
11341  			start = u64_stats_fetch_begin(&stats->syncp);
11342  			rx_packets = u64_stats_read(&stats->rx_packets);
11343  			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11344  			rx_drops   = u64_stats_read(&stats->rx_drops);
11345  			tx_packets = u64_stats_read(&stats->tx_packets);
11346  			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11347  			tx_drops   = u64_stats_read(&stats->tx_drops);
11348  		} while (u64_stats_fetch_retry(&stats->syncp, start));
11349  
11350  		s->rx_packets += rx_packets;
11351  		s->rx_bytes   += rx_bytes;
11352  		s->rx_dropped += rx_drops;
11353  		s->tx_packets += tx_packets;
11354  		s->tx_bytes   += tx_bytes;
11355  		s->tx_dropped += tx_drops;
11356  	}
11357  }
11358  
11359  /* ndo_get_stats64 implementation for dtstats-based accounting.
11360   *
11361   * Populate @s from dev->stats and dev->dstats. This is used internally by the
11362   * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11363   */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11364  static void dev_get_dstats64(const struct net_device *dev,
11365  			     struct rtnl_link_stats64 *s)
11366  {
11367  	netdev_stats_to_stats64(s, &dev->stats);
11368  	dev_fetch_dstats(s, dev->dstats);
11369  }
11370  
11371  /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11372   * all the same fields in the same order as net_device_stats, with only
11373   * the type differing, but rtnl_link_stats64 may have additional fields
11374   * at the end for newer counters.
11375   */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11376  void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11377  			     const struct net_device_stats *netdev_stats)
11378  {
11379  	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11380  	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11381  	u64 *dst = (u64 *)stats64;
11382  
11383  	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11384  	for (i = 0; i < n; i++)
11385  		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11386  	/* zero out counters that only exist in rtnl_link_stats64 */
11387  	memset((char *)stats64 + n * sizeof(u64), 0,
11388  	       sizeof(*stats64) - n * sizeof(u64));
11389  }
11390  EXPORT_SYMBOL(netdev_stats_to_stats64);
11391  
netdev_core_stats_alloc(struct net_device * dev)11392  static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11393  		struct net_device *dev)
11394  {
11395  	struct net_device_core_stats __percpu *p;
11396  
11397  	p = alloc_percpu_gfp(struct net_device_core_stats,
11398  			     GFP_ATOMIC | __GFP_NOWARN);
11399  
11400  	if (p && cmpxchg(&dev->core_stats, NULL, p))
11401  		free_percpu(p);
11402  
11403  	/* This READ_ONCE() pairs with the cmpxchg() above */
11404  	return READ_ONCE(dev->core_stats);
11405  }
11406  
netdev_core_stats_inc(struct net_device * dev,u32 offset)11407  noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11408  {
11409  	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11410  	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11411  	unsigned long __percpu *field;
11412  
11413  	if (unlikely(!p)) {
11414  		p = netdev_core_stats_alloc(dev);
11415  		if (!p)
11416  			return;
11417  	}
11418  
11419  	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11420  	this_cpu_inc(*field);
11421  }
11422  EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11423  
11424  /**
11425   *	dev_get_stats	- get network device statistics
11426   *	@dev: device to get statistics from
11427   *	@storage: place to store stats
11428   *
11429   *	Get network statistics from device. Return @storage.
11430   *	The device driver may provide its own method by setting
11431   *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11432   *	otherwise the internal statistics structure is used.
11433   */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11434  struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11435  					struct rtnl_link_stats64 *storage)
11436  {
11437  	const struct net_device_ops *ops = dev->netdev_ops;
11438  	const struct net_device_core_stats __percpu *p;
11439  
11440  	/*
11441  	 * IPv{4,6} and udp tunnels share common stat helpers and use
11442  	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11443  	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11444  	 */
11445  	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11446  		     offsetof(struct pcpu_dstats, rx_bytes));
11447  	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11448  		     offsetof(struct pcpu_dstats, rx_packets));
11449  	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11450  		     offsetof(struct pcpu_dstats, tx_bytes));
11451  	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11452  		     offsetof(struct pcpu_dstats, tx_packets));
11453  
11454  	if (ops->ndo_get_stats64) {
11455  		memset(storage, 0, sizeof(*storage));
11456  		ops->ndo_get_stats64(dev, storage);
11457  	} else if (ops->ndo_get_stats) {
11458  		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11459  	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11460  		dev_get_tstats64(dev, storage);
11461  	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11462  		dev_get_dstats64(dev, storage);
11463  	} else {
11464  		netdev_stats_to_stats64(storage, &dev->stats);
11465  	}
11466  
11467  	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11468  	p = READ_ONCE(dev->core_stats);
11469  	if (p) {
11470  		const struct net_device_core_stats *core_stats;
11471  		int i;
11472  
11473  		for_each_possible_cpu(i) {
11474  			core_stats = per_cpu_ptr(p, i);
11475  			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11476  			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11477  			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11478  			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11479  		}
11480  	}
11481  	return storage;
11482  }
11483  EXPORT_SYMBOL(dev_get_stats);
11484  
11485  /**
11486   *	dev_fetch_sw_netstats - get per-cpu network device statistics
11487   *	@s: place to store stats
11488   *	@netstats: per-cpu network stats to read from
11489   *
11490   *	Read per-cpu network statistics and populate the related fields in @s.
11491   */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11492  void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11493  			   const struct pcpu_sw_netstats __percpu *netstats)
11494  {
11495  	int cpu;
11496  
11497  	for_each_possible_cpu(cpu) {
11498  		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11499  		const struct pcpu_sw_netstats *stats;
11500  		unsigned int start;
11501  
11502  		stats = per_cpu_ptr(netstats, cpu);
11503  		do {
11504  			start = u64_stats_fetch_begin(&stats->syncp);
11505  			rx_packets = u64_stats_read(&stats->rx_packets);
11506  			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11507  			tx_packets = u64_stats_read(&stats->tx_packets);
11508  			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11509  		} while (u64_stats_fetch_retry(&stats->syncp, start));
11510  
11511  		s->rx_packets += rx_packets;
11512  		s->rx_bytes   += rx_bytes;
11513  		s->tx_packets += tx_packets;
11514  		s->tx_bytes   += tx_bytes;
11515  	}
11516  }
11517  EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11518  
11519  /**
11520   *	dev_get_tstats64 - ndo_get_stats64 implementation
11521   *	@dev: device to get statistics from
11522   *	@s: place to store stats
11523   *
11524   *	Populate @s from dev->stats and dev->tstats. Can be used as
11525   *	ndo_get_stats64() callback.
11526   */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11527  void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11528  {
11529  	netdev_stats_to_stats64(s, &dev->stats);
11530  	dev_fetch_sw_netstats(s, dev->tstats);
11531  }
11532  EXPORT_SYMBOL_GPL(dev_get_tstats64);
11533  
dev_ingress_queue_create(struct net_device * dev)11534  struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11535  {
11536  	struct netdev_queue *queue = dev_ingress_queue(dev);
11537  
11538  #ifdef CONFIG_NET_CLS_ACT
11539  	if (queue)
11540  		return queue;
11541  	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11542  	if (!queue)
11543  		return NULL;
11544  	netdev_init_one_queue(dev, queue, NULL);
11545  	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11546  	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11547  	rcu_assign_pointer(dev->ingress_queue, queue);
11548  #endif
11549  	return queue;
11550  }
11551  
11552  static const struct ethtool_ops default_ethtool_ops;
11553  
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11554  void netdev_set_default_ethtool_ops(struct net_device *dev,
11555  				    const struct ethtool_ops *ops)
11556  {
11557  	if (dev->ethtool_ops == &default_ethtool_ops)
11558  		dev->ethtool_ops = ops;
11559  }
11560  EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11561  
11562  /**
11563   * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11564   * @dev: netdev to enable the IRQ coalescing on
11565   *
11566   * Sets a conservative default for SW IRQ coalescing. Users can use
11567   * sysfs attributes to override the default values.
11568   */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11569  void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11570  {
11571  	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11572  
11573  	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11574  		netdev_set_gro_flush_timeout(dev, 20000);
11575  		netdev_set_defer_hard_irqs(dev, 1);
11576  	}
11577  }
11578  EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11579  
11580  /**
11581   * alloc_netdev_mqs - allocate network device
11582   * @sizeof_priv: size of private data to allocate space for
11583   * @name: device name format string
11584   * @name_assign_type: origin of device name
11585   * @setup: callback to initialize device
11586   * @txqs: the number of TX subqueues to allocate
11587   * @rxqs: the number of RX subqueues to allocate
11588   *
11589   * Allocates a struct net_device with private data area for driver use
11590   * and performs basic initialization.  Also allocates subqueue structs
11591   * for each queue on the device.
11592   */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11593  struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11594  		unsigned char name_assign_type,
11595  		void (*setup)(struct net_device *),
11596  		unsigned int txqs, unsigned int rxqs)
11597  {
11598  	struct net_device *dev;
11599  	size_t napi_config_sz;
11600  	unsigned int maxqs;
11601  
11602  	BUG_ON(strlen(name) >= sizeof(dev->name));
11603  
11604  	if (txqs < 1) {
11605  		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11606  		return NULL;
11607  	}
11608  
11609  	if (rxqs < 1) {
11610  		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11611  		return NULL;
11612  	}
11613  
11614  	maxqs = max(txqs, rxqs);
11615  
11616  	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11617  		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11618  	if (!dev)
11619  		return NULL;
11620  
11621  	dev->priv_len = sizeof_priv;
11622  
11623  	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11624  #ifdef CONFIG_PCPU_DEV_REFCNT
11625  	dev->pcpu_refcnt = alloc_percpu(int);
11626  	if (!dev->pcpu_refcnt)
11627  		goto free_dev;
11628  	__dev_hold(dev);
11629  #else
11630  	refcount_set(&dev->dev_refcnt, 1);
11631  #endif
11632  
11633  	if (dev_addr_init(dev))
11634  		goto free_pcpu;
11635  
11636  	dev_mc_init(dev);
11637  	dev_uc_init(dev);
11638  
11639  	dev_net_set(dev, &init_net);
11640  
11641  	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11642  	dev->xdp_zc_max_segs = 1;
11643  	dev->gso_max_segs = GSO_MAX_SEGS;
11644  	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11645  	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11646  	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11647  	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11648  	dev->tso_max_segs = TSO_MAX_SEGS;
11649  	dev->upper_level = 1;
11650  	dev->lower_level = 1;
11651  #ifdef CONFIG_LOCKDEP
11652  	dev->nested_level = 0;
11653  	INIT_LIST_HEAD(&dev->unlink_list);
11654  #endif
11655  
11656  	INIT_LIST_HEAD(&dev->napi_list);
11657  	INIT_LIST_HEAD(&dev->unreg_list);
11658  	INIT_LIST_HEAD(&dev->close_list);
11659  	INIT_LIST_HEAD(&dev->link_watch_list);
11660  	INIT_LIST_HEAD(&dev->adj_list.upper);
11661  	INIT_LIST_HEAD(&dev->adj_list.lower);
11662  	INIT_LIST_HEAD(&dev->ptype_all);
11663  	INIT_LIST_HEAD(&dev->ptype_specific);
11664  	INIT_LIST_HEAD(&dev->net_notifier_list);
11665  #ifdef CONFIG_NET_SCHED
11666  	hash_init(dev->qdisc_hash);
11667  #endif
11668  
11669  	mutex_init(&dev->lock);
11670  
11671  	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11672  	setup(dev);
11673  
11674  	if (!dev->tx_queue_len) {
11675  		dev->priv_flags |= IFF_NO_QUEUE;
11676  		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11677  	}
11678  
11679  	dev->num_tx_queues = txqs;
11680  	dev->real_num_tx_queues = txqs;
11681  	if (netif_alloc_netdev_queues(dev))
11682  		goto free_all;
11683  
11684  	dev->num_rx_queues = rxqs;
11685  	dev->real_num_rx_queues = rxqs;
11686  	if (netif_alloc_rx_queues(dev))
11687  		goto free_all;
11688  	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11689  	if (!dev->ethtool)
11690  		goto free_all;
11691  
11692  	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11693  	if (!dev->cfg)
11694  		goto free_all;
11695  	dev->cfg_pending = dev->cfg;
11696  
11697  	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11698  	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11699  	if (!dev->napi_config)
11700  		goto free_all;
11701  
11702  	strscpy(dev->name, name);
11703  	dev->name_assign_type = name_assign_type;
11704  	dev->group = INIT_NETDEV_GROUP;
11705  	if (!dev->ethtool_ops)
11706  		dev->ethtool_ops = &default_ethtool_ops;
11707  
11708  	nf_hook_netdev_init(dev);
11709  
11710  	return dev;
11711  
11712  free_all:
11713  	free_netdev(dev);
11714  	return NULL;
11715  
11716  free_pcpu:
11717  #ifdef CONFIG_PCPU_DEV_REFCNT
11718  	free_percpu(dev->pcpu_refcnt);
11719  free_dev:
11720  #endif
11721  	kvfree(dev);
11722  	return NULL;
11723  }
11724  EXPORT_SYMBOL(alloc_netdev_mqs);
11725  
netdev_napi_exit(struct net_device * dev)11726  static void netdev_napi_exit(struct net_device *dev)
11727  {
11728  	if (!list_empty(&dev->napi_list)) {
11729  		struct napi_struct *p, *n;
11730  
11731  		netdev_lock(dev);
11732  		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11733  			__netif_napi_del_locked(p);
11734  		netdev_unlock(dev);
11735  
11736  		synchronize_net();
11737  	}
11738  
11739  	kvfree(dev->napi_config);
11740  }
11741  
11742  /**
11743   * free_netdev - free network device
11744   * @dev: device
11745   *
11746   * This function does the last stage of destroying an allocated device
11747   * interface. The reference to the device object is released. If this
11748   * is the last reference then it will be freed.Must be called in process
11749   * context.
11750   */
free_netdev(struct net_device * dev)11751  void free_netdev(struct net_device *dev)
11752  {
11753  	might_sleep();
11754  
11755  	/* When called immediately after register_netdevice() failed the unwind
11756  	 * handling may still be dismantling the device. Handle that case by
11757  	 * deferring the free.
11758  	 */
11759  	if (dev->reg_state == NETREG_UNREGISTERING) {
11760  		ASSERT_RTNL();
11761  		dev->needs_free_netdev = true;
11762  		return;
11763  	}
11764  
11765  	WARN_ON(dev->cfg != dev->cfg_pending);
11766  	kfree(dev->cfg);
11767  	kfree(dev->ethtool);
11768  	netif_free_tx_queues(dev);
11769  	netif_free_rx_queues(dev);
11770  
11771  	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11772  
11773  	/* Flush device addresses */
11774  	dev_addr_flush(dev);
11775  
11776  	netdev_napi_exit(dev);
11777  
11778  	netif_del_cpu_rmap(dev);
11779  
11780  	ref_tracker_dir_exit(&dev->refcnt_tracker);
11781  #ifdef CONFIG_PCPU_DEV_REFCNT
11782  	free_percpu(dev->pcpu_refcnt);
11783  	dev->pcpu_refcnt = NULL;
11784  #endif
11785  	free_percpu(dev->core_stats);
11786  	dev->core_stats = NULL;
11787  	free_percpu(dev->xdp_bulkq);
11788  	dev->xdp_bulkq = NULL;
11789  
11790  	netdev_free_phy_link_topology(dev);
11791  
11792  	mutex_destroy(&dev->lock);
11793  
11794  	/*  Compatibility with error handling in drivers */
11795  	if (dev->reg_state == NETREG_UNINITIALIZED ||
11796  	    dev->reg_state == NETREG_DUMMY) {
11797  		kvfree(dev);
11798  		return;
11799  	}
11800  
11801  	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11802  	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11803  
11804  	/* will free via device release */
11805  	put_device(&dev->dev);
11806  }
11807  EXPORT_SYMBOL(free_netdev);
11808  
11809  /**
11810   * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11811   * @sizeof_priv: size of private data to allocate space for
11812   *
11813   * Return: the allocated net_device on success, NULL otherwise
11814   */
alloc_netdev_dummy(int sizeof_priv)11815  struct net_device *alloc_netdev_dummy(int sizeof_priv)
11816  {
11817  	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11818  			    init_dummy_netdev);
11819  }
11820  EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11821  
11822  /**
11823   *	synchronize_net -  Synchronize with packet receive processing
11824   *
11825   *	Wait for packets currently being received to be done.
11826   *	Does not block later packets from starting.
11827   */
synchronize_net(void)11828  void synchronize_net(void)
11829  {
11830  	might_sleep();
11831  	if (from_cleanup_net() || rtnl_is_locked())
11832  		synchronize_rcu_expedited();
11833  	else
11834  		synchronize_rcu();
11835  }
11836  EXPORT_SYMBOL(synchronize_net);
11837  
netdev_rss_contexts_free(struct net_device * dev)11838  static void netdev_rss_contexts_free(struct net_device *dev)
11839  {
11840  	struct ethtool_rxfh_context *ctx;
11841  	unsigned long context;
11842  
11843  	mutex_lock(&dev->ethtool->rss_lock);
11844  	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11845  		struct ethtool_rxfh_param rxfh;
11846  
11847  		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11848  		rxfh.key = ethtool_rxfh_context_key(ctx);
11849  		rxfh.hfunc = ctx->hfunc;
11850  		rxfh.input_xfrm = ctx->input_xfrm;
11851  		rxfh.rss_context = context;
11852  		rxfh.rss_delete = true;
11853  
11854  		xa_erase(&dev->ethtool->rss_ctx, context);
11855  		if (dev->ethtool_ops->create_rxfh_context)
11856  			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11857  							      context, NULL);
11858  		else
11859  			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11860  		kfree(ctx);
11861  	}
11862  	xa_destroy(&dev->ethtool->rss_ctx);
11863  	mutex_unlock(&dev->ethtool->rss_lock);
11864  }
11865  
11866  /**
11867   *	unregister_netdevice_queue - remove device from the kernel
11868   *	@dev: device
11869   *	@head: list
11870   *
11871   *	This function shuts down a device interface and removes it
11872   *	from the kernel tables.
11873   *	If head not NULL, device is queued to be unregistered later.
11874   *
11875   *	Callers must hold the rtnl semaphore.  You may want
11876   *	unregister_netdev() instead of this.
11877   */
11878  
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11879  void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11880  {
11881  	ASSERT_RTNL();
11882  
11883  	if (head) {
11884  		list_move_tail(&dev->unreg_list, head);
11885  	} else {
11886  		LIST_HEAD(single);
11887  
11888  		list_add(&dev->unreg_list, &single);
11889  		unregister_netdevice_many(&single);
11890  	}
11891  }
11892  EXPORT_SYMBOL(unregister_netdevice_queue);
11893  
dev_memory_provider_uninstall(struct net_device * dev)11894  static void dev_memory_provider_uninstall(struct net_device *dev)
11895  {
11896  	unsigned int i;
11897  
11898  	for (i = 0; i < dev->real_num_rx_queues; i++) {
11899  		struct netdev_rx_queue *rxq = &dev->_rx[i];
11900  		struct pp_memory_provider_params *p = &rxq->mp_params;
11901  
11902  		if (p->mp_ops && p->mp_ops->uninstall)
11903  			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11904  	}
11905  }
11906  
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11907  void unregister_netdevice_many_notify(struct list_head *head,
11908  				      u32 portid, const struct nlmsghdr *nlh)
11909  {
11910  	struct net_device *dev, *tmp;
11911  	LIST_HEAD(close_head);
11912  	int cnt = 0;
11913  
11914  	BUG_ON(dev_boot_phase);
11915  	ASSERT_RTNL();
11916  
11917  	if (list_empty(head))
11918  		return;
11919  
11920  	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11921  		/* Some devices call without registering
11922  		 * for initialization unwind. Remove those
11923  		 * devices and proceed with the remaining.
11924  		 */
11925  		if (dev->reg_state == NETREG_UNINITIALIZED) {
11926  			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11927  				 dev->name, dev);
11928  
11929  			WARN_ON(1);
11930  			list_del(&dev->unreg_list);
11931  			continue;
11932  		}
11933  		dev->dismantle = true;
11934  		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11935  	}
11936  
11937  	/* If device is running, close it first. */
11938  	list_for_each_entry(dev, head, unreg_list) {
11939  		list_add_tail(&dev->close_list, &close_head);
11940  		netdev_lock_ops(dev);
11941  	}
11942  	dev_close_many(&close_head, true);
11943  
11944  	list_for_each_entry(dev, head, unreg_list) {
11945  		netdev_unlock_ops(dev);
11946  		/* And unlink it from device chain. */
11947  		unlist_netdevice(dev);
11948  		netdev_lock(dev);
11949  		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11950  		netdev_unlock(dev);
11951  	}
11952  	flush_all_backlogs();
11953  
11954  	synchronize_net();
11955  
11956  	list_for_each_entry(dev, head, unreg_list) {
11957  		struct sk_buff *skb = NULL;
11958  
11959  		/* Shutdown queueing discipline. */
11960  		dev_shutdown(dev);
11961  		dev_tcx_uninstall(dev);
11962  		netdev_lock_ops(dev);
11963  		dev_xdp_uninstall(dev);
11964  		dev_memory_provider_uninstall(dev);
11965  		netdev_unlock_ops(dev);
11966  		bpf_dev_bound_netdev_unregister(dev);
11967  
11968  		netdev_offload_xstats_disable_all(dev);
11969  
11970  		/* Notify protocols, that we are about to destroy
11971  		 * this device. They should clean all the things.
11972  		 */
11973  		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11974  
11975  		if (!dev->rtnl_link_ops ||
11976  		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11977  			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11978  						     GFP_KERNEL, NULL, 0,
11979  						     portid, nlh);
11980  
11981  		/*
11982  		 *	Flush the unicast and multicast chains
11983  		 */
11984  		dev_uc_flush(dev);
11985  		dev_mc_flush(dev);
11986  
11987  		netdev_name_node_alt_flush(dev);
11988  		netdev_name_node_free(dev->name_node);
11989  
11990  		netdev_rss_contexts_free(dev);
11991  
11992  		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11993  
11994  		if (dev->netdev_ops->ndo_uninit)
11995  			dev->netdev_ops->ndo_uninit(dev);
11996  
11997  		mutex_destroy(&dev->ethtool->rss_lock);
11998  
11999  		net_shaper_flush_netdev(dev);
12000  
12001  		if (skb)
12002  			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12003  
12004  		/* Notifier chain MUST detach us all upper devices. */
12005  		WARN_ON(netdev_has_any_upper_dev(dev));
12006  		WARN_ON(netdev_has_any_lower_dev(dev));
12007  
12008  		/* Remove entries from kobject tree */
12009  		netdev_unregister_kobject(dev);
12010  #ifdef CONFIG_XPS
12011  		/* Remove XPS queueing entries */
12012  		netif_reset_xps_queues_gt(dev, 0);
12013  #endif
12014  	}
12015  
12016  	synchronize_net();
12017  
12018  	list_for_each_entry(dev, head, unreg_list) {
12019  		netdev_put(dev, &dev->dev_registered_tracker);
12020  		net_set_todo(dev);
12021  		cnt++;
12022  	}
12023  	atomic_add(cnt, &dev_unreg_count);
12024  
12025  	list_del(head);
12026  }
12027  
12028  /**
12029   *	unregister_netdevice_many - unregister many devices
12030   *	@head: list of devices
12031   *
12032   *  Note: As most callers use a stack allocated list_head,
12033   *  we force a list_del() to make sure stack won't be corrupted later.
12034   */
unregister_netdevice_many(struct list_head * head)12035  void unregister_netdevice_many(struct list_head *head)
12036  {
12037  	unregister_netdevice_many_notify(head, 0, NULL);
12038  }
12039  EXPORT_SYMBOL(unregister_netdevice_many);
12040  
12041  /**
12042   *	unregister_netdev - remove device from the kernel
12043   *	@dev: device
12044   *
12045   *	This function shuts down a device interface and removes it
12046   *	from the kernel tables.
12047   *
12048   *	This is just a wrapper for unregister_netdevice that takes
12049   *	the rtnl semaphore.  In general you want to use this and not
12050   *	unregister_netdevice.
12051   */
unregister_netdev(struct net_device * dev)12052  void unregister_netdev(struct net_device *dev)
12053  {
12054  	rtnl_net_dev_lock(dev);
12055  	unregister_netdevice(dev);
12056  	rtnl_net_dev_unlock(dev);
12057  }
12058  EXPORT_SYMBOL(unregister_netdev);
12059  
netif_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12060  int netif_change_net_namespace(struct net_device *dev, struct net *net,
12061  			       const char *pat, int new_ifindex,
12062  			       struct netlink_ext_ack *extack)
12063  {
12064  	struct netdev_name_node *name_node;
12065  	struct net *net_old = dev_net(dev);
12066  	char new_name[IFNAMSIZ] = {};
12067  	int err, new_nsid;
12068  
12069  	ASSERT_RTNL();
12070  
12071  	/* Don't allow namespace local devices to be moved. */
12072  	err = -EINVAL;
12073  	if (dev->netns_immutable) {
12074  		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12075  		goto out;
12076  	}
12077  
12078  	/* Ensure the device has been registered */
12079  	if (dev->reg_state != NETREG_REGISTERED) {
12080  		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12081  		goto out;
12082  	}
12083  
12084  	/* Get out if there is nothing todo */
12085  	err = 0;
12086  	if (net_eq(net_old, net))
12087  		goto out;
12088  
12089  	/* Pick the destination device name, and ensure
12090  	 * we can use it in the destination network namespace.
12091  	 */
12092  	err = -EEXIST;
12093  	if (netdev_name_in_use(net, dev->name)) {
12094  		/* We get here if we can't use the current device name */
12095  		if (!pat) {
12096  			NL_SET_ERR_MSG(extack,
12097  				       "An interface with the same name exists in the target netns");
12098  			goto out;
12099  		}
12100  		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12101  		if (err < 0) {
12102  			NL_SET_ERR_MSG_FMT(extack,
12103  					   "Unable to use '%s' for the new interface name in the target netns",
12104  					   pat);
12105  			goto out;
12106  		}
12107  	}
12108  	/* Check that none of the altnames conflicts. */
12109  	err = -EEXIST;
12110  	netdev_for_each_altname(dev, name_node) {
12111  		if (netdev_name_in_use(net, name_node->name)) {
12112  			NL_SET_ERR_MSG_FMT(extack,
12113  					   "An interface with the altname %s exists in the target netns",
12114  					   name_node->name);
12115  			goto out;
12116  		}
12117  	}
12118  
12119  	/* Check that new_ifindex isn't used yet. */
12120  	if (new_ifindex) {
12121  		err = dev_index_reserve(net, new_ifindex);
12122  		if (err < 0) {
12123  			NL_SET_ERR_MSG_FMT(extack,
12124  					   "The ifindex %d is not available in the target netns",
12125  					   new_ifindex);
12126  			goto out;
12127  		}
12128  	} else {
12129  		/* If there is an ifindex conflict assign a new one */
12130  		err = dev_index_reserve(net, dev->ifindex);
12131  		if (err == -EBUSY)
12132  			err = dev_index_reserve(net, 0);
12133  		if (err < 0) {
12134  			NL_SET_ERR_MSG(extack,
12135  				       "Unable to allocate a new ifindex in the target netns");
12136  			goto out;
12137  		}
12138  		new_ifindex = err;
12139  	}
12140  
12141  	/*
12142  	 * And now a mini version of register_netdevice unregister_netdevice.
12143  	 */
12144  
12145  	/* If device is running close it first. */
12146  	netif_close(dev);
12147  
12148  	/* And unlink it from device chain */
12149  	unlist_netdevice(dev);
12150  
12151  	synchronize_net();
12152  
12153  	/* Shutdown queueing discipline. */
12154  	dev_shutdown(dev);
12155  
12156  	/* Notify protocols, that we are about to destroy
12157  	 * this device. They should clean all the things.
12158  	 *
12159  	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12160  	 * This is wanted because this way 8021q and macvlan know
12161  	 * the device is just moving and can keep their slaves up.
12162  	 */
12163  	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12164  	rcu_barrier();
12165  
12166  	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12167  
12168  	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12169  			    new_ifindex);
12170  
12171  	/*
12172  	 *	Flush the unicast and multicast chains
12173  	 */
12174  	dev_uc_flush(dev);
12175  	dev_mc_flush(dev);
12176  
12177  	/* Send a netdev-removed uevent to the old namespace */
12178  	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12179  	netdev_adjacent_del_links(dev);
12180  
12181  	/* Move per-net netdevice notifiers that are following the netdevice */
12182  	move_netdevice_notifiers_dev_net(dev, net);
12183  
12184  	/* Actually switch the network namespace */
12185  	dev_net_set(dev, net);
12186  	dev->ifindex = new_ifindex;
12187  
12188  	if (new_name[0]) {
12189  		/* Rename the netdev to prepared name */
12190  		write_seqlock_bh(&netdev_rename_lock);
12191  		strscpy(dev->name, new_name, IFNAMSIZ);
12192  		write_sequnlock_bh(&netdev_rename_lock);
12193  	}
12194  
12195  	/* Fixup kobjects */
12196  	dev_set_uevent_suppress(&dev->dev, 1);
12197  	err = device_rename(&dev->dev, dev->name);
12198  	dev_set_uevent_suppress(&dev->dev, 0);
12199  	WARN_ON(err);
12200  
12201  	/* Send a netdev-add uevent to the new namespace */
12202  	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12203  	netdev_adjacent_add_links(dev);
12204  
12205  	/* Adapt owner in case owning user namespace of target network
12206  	 * namespace is different from the original one.
12207  	 */
12208  	err = netdev_change_owner(dev, net_old, net);
12209  	WARN_ON(err);
12210  
12211  	/* Add the device back in the hashes */
12212  	list_netdevice(dev);
12213  
12214  	/* Notify protocols, that a new device appeared. */
12215  	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12216  
12217  	/*
12218  	 *	Prevent userspace races by waiting until the network
12219  	 *	device is fully setup before sending notifications.
12220  	 */
12221  	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12222  
12223  	synchronize_net();
12224  	err = 0;
12225  out:
12226  	return err;
12227  }
12228  
dev_cpu_dead(unsigned int oldcpu)12229  static int dev_cpu_dead(unsigned int oldcpu)
12230  {
12231  	struct sk_buff **list_skb;
12232  	struct sk_buff *skb;
12233  	unsigned int cpu;
12234  	struct softnet_data *sd, *oldsd, *remsd = NULL;
12235  
12236  	local_irq_disable();
12237  	cpu = smp_processor_id();
12238  	sd = &per_cpu(softnet_data, cpu);
12239  	oldsd = &per_cpu(softnet_data, oldcpu);
12240  
12241  	/* Find end of our completion_queue. */
12242  	list_skb = &sd->completion_queue;
12243  	while (*list_skb)
12244  		list_skb = &(*list_skb)->next;
12245  	/* Append completion queue from offline CPU. */
12246  	*list_skb = oldsd->completion_queue;
12247  	oldsd->completion_queue = NULL;
12248  
12249  	/* Append output queue from offline CPU. */
12250  	if (oldsd->output_queue) {
12251  		*sd->output_queue_tailp = oldsd->output_queue;
12252  		sd->output_queue_tailp = oldsd->output_queue_tailp;
12253  		oldsd->output_queue = NULL;
12254  		oldsd->output_queue_tailp = &oldsd->output_queue;
12255  	}
12256  	/* Append NAPI poll list from offline CPU, with one exception :
12257  	 * process_backlog() must be called by cpu owning percpu backlog.
12258  	 * We properly handle process_queue & input_pkt_queue later.
12259  	 */
12260  	while (!list_empty(&oldsd->poll_list)) {
12261  		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12262  							    struct napi_struct,
12263  							    poll_list);
12264  
12265  		list_del_init(&napi->poll_list);
12266  		if (napi->poll == process_backlog)
12267  			napi->state &= NAPIF_STATE_THREADED;
12268  		else
12269  			____napi_schedule(sd, napi);
12270  	}
12271  
12272  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12273  	local_irq_enable();
12274  
12275  	if (!use_backlog_threads()) {
12276  #ifdef CONFIG_RPS
12277  		remsd = oldsd->rps_ipi_list;
12278  		oldsd->rps_ipi_list = NULL;
12279  #endif
12280  		/* send out pending IPI's on offline CPU */
12281  		net_rps_send_ipi(remsd);
12282  	}
12283  
12284  	/* Process offline CPU's input_pkt_queue */
12285  	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12286  		netif_rx(skb);
12287  		rps_input_queue_head_incr(oldsd);
12288  	}
12289  	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12290  		netif_rx(skb);
12291  		rps_input_queue_head_incr(oldsd);
12292  	}
12293  
12294  	return 0;
12295  }
12296  
12297  /**
12298   *	netdev_increment_features - increment feature set by one
12299   *	@all: current feature set
12300   *	@one: new feature set
12301   *	@mask: mask feature set
12302   *
12303   *	Computes a new feature set after adding a device with feature set
12304   *	@one to the master device with current feature set @all.  Will not
12305   *	enable anything that is off in @mask. Returns the new feature set.
12306   */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12307  netdev_features_t netdev_increment_features(netdev_features_t all,
12308  	netdev_features_t one, netdev_features_t mask)
12309  {
12310  	if (mask & NETIF_F_HW_CSUM)
12311  		mask |= NETIF_F_CSUM_MASK;
12312  	mask |= NETIF_F_VLAN_CHALLENGED;
12313  
12314  	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12315  	all &= one | ~NETIF_F_ALL_FOR_ALL;
12316  
12317  	/* If one device supports hw checksumming, set for all. */
12318  	if (all & NETIF_F_HW_CSUM)
12319  		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12320  
12321  	return all;
12322  }
12323  EXPORT_SYMBOL(netdev_increment_features);
12324  
netdev_create_hash(void)12325  static struct hlist_head * __net_init netdev_create_hash(void)
12326  {
12327  	int i;
12328  	struct hlist_head *hash;
12329  
12330  	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12331  	if (hash != NULL)
12332  		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12333  			INIT_HLIST_HEAD(&hash[i]);
12334  
12335  	return hash;
12336  }
12337  
12338  /* Initialize per network namespace state */
netdev_init(struct net * net)12339  static int __net_init netdev_init(struct net *net)
12340  {
12341  	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12342  		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12343  
12344  	INIT_LIST_HEAD(&net->dev_base_head);
12345  
12346  	net->dev_name_head = netdev_create_hash();
12347  	if (net->dev_name_head == NULL)
12348  		goto err_name;
12349  
12350  	net->dev_index_head = netdev_create_hash();
12351  	if (net->dev_index_head == NULL)
12352  		goto err_idx;
12353  
12354  	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12355  
12356  	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12357  
12358  	return 0;
12359  
12360  err_idx:
12361  	kfree(net->dev_name_head);
12362  err_name:
12363  	return -ENOMEM;
12364  }
12365  
12366  /**
12367   *	netdev_drivername - network driver for the device
12368   *	@dev: network device
12369   *
12370   *	Determine network driver for device.
12371   */
netdev_drivername(const struct net_device * dev)12372  const char *netdev_drivername(const struct net_device *dev)
12373  {
12374  	const struct device_driver *driver;
12375  	const struct device *parent;
12376  	const char *empty = "";
12377  
12378  	parent = dev->dev.parent;
12379  	if (!parent)
12380  		return empty;
12381  
12382  	driver = parent->driver;
12383  	if (driver && driver->name)
12384  		return driver->name;
12385  	return empty;
12386  }
12387  
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12388  static void __netdev_printk(const char *level, const struct net_device *dev,
12389  			    struct va_format *vaf)
12390  {
12391  	if (dev && dev->dev.parent) {
12392  		dev_printk_emit(level[1] - '0',
12393  				dev->dev.parent,
12394  				"%s %s %s%s: %pV",
12395  				dev_driver_string(dev->dev.parent),
12396  				dev_name(dev->dev.parent),
12397  				netdev_name(dev), netdev_reg_state(dev),
12398  				vaf);
12399  	} else if (dev) {
12400  		printk("%s%s%s: %pV",
12401  		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12402  	} else {
12403  		printk("%s(NULL net_device): %pV", level, vaf);
12404  	}
12405  }
12406  
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12407  void netdev_printk(const char *level, const struct net_device *dev,
12408  		   const char *format, ...)
12409  {
12410  	struct va_format vaf;
12411  	va_list args;
12412  
12413  	va_start(args, format);
12414  
12415  	vaf.fmt = format;
12416  	vaf.va = &args;
12417  
12418  	__netdev_printk(level, dev, &vaf);
12419  
12420  	va_end(args);
12421  }
12422  EXPORT_SYMBOL(netdev_printk);
12423  
12424  #define define_netdev_printk_level(func, level)			\
12425  void func(const struct net_device *dev, const char *fmt, ...)	\
12426  {								\
12427  	struct va_format vaf;					\
12428  	va_list args;						\
12429  								\
12430  	va_start(args, fmt);					\
12431  								\
12432  	vaf.fmt = fmt;						\
12433  	vaf.va = &args;						\
12434  								\
12435  	__netdev_printk(level, dev, &vaf);			\
12436  								\
12437  	va_end(args);						\
12438  }								\
12439  EXPORT_SYMBOL(func);
12440  
12441  define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12442  define_netdev_printk_level(netdev_alert, KERN_ALERT);
12443  define_netdev_printk_level(netdev_crit, KERN_CRIT);
12444  define_netdev_printk_level(netdev_err, KERN_ERR);
12445  define_netdev_printk_level(netdev_warn, KERN_WARNING);
12446  define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12447  define_netdev_printk_level(netdev_info, KERN_INFO);
12448  
netdev_exit(struct net * net)12449  static void __net_exit netdev_exit(struct net *net)
12450  {
12451  	kfree(net->dev_name_head);
12452  	kfree(net->dev_index_head);
12453  	xa_destroy(&net->dev_by_index);
12454  	if (net != &init_net)
12455  		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12456  }
12457  
12458  static struct pernet_operations __net_initdata netdev_net_ops = {
12459  	.init = netdev_init,
12460  	.exit = netdev_exit,
12461  };
12462  
default_device_exit_net(struct net * net)12463  static void __net_exit default_device_exit_net(struct net *net)
12464  {
12465  	struct netdev_name_node *name_node, *tmp;
12466  	struct net_device *dev, *aux;
12467  	/*
12468  	 * Push all migratable network devices back to the
12469  	 * initial network namespace
12470  	 */
12471  	ASSERT_RTNL();
12472  	for_each_netdev_safe(net, dev, aux) {
12473  		int err;
12474  		char fb_name[IFNAMSIZ];
12475  
12476  		/* Ignore unmoveable devices (i.e. loopback) */
12477  		if (dev->netns_immutable)
12478  			continue;
12479  
12480  		/* Leave virtual devices for the generic cleanup */
12481  		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12482  			continue;
12483  
12484  		/* Push remaining network devices to init_net */
12485  		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12486  		if (netdev_name_in_use(&init_net, fb_name))
12487  			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12488  
12489  		netdev_for_each_altname_safe(dev, name_node, tmp)
12490  			if (netdev_name_in_use(&init_net, name_node->name))
12491  				__netdev_name_node_alt_destroy(name_node);
12492  
12493  		err = dev_change_net_namespace(dev, &init_net, fb_name);
12494  		if (err) {
12495  			pr_emerg("%s: failed to move %s to init_net: %d\n",
12496  				 __func__, dev->name, err);
12497  			BUG();
12498  		}
12499  	}
12500  }
12501  
default_device_exit_batch(struct list_head * net_list)12502  static void __net_exit default_device_exit_batch(struct list_head *net_list)
12503  {
12504  	/* At exit all network devices most be removed from a network
12505  	 * namespace.  Do this in the reverse order of registration.
12506  	 * Do this across as many network namespaces as possible to
12507  	 * improve batching efficiency.
12508  	 */
12509  	struct net_device *dev;
12510  	struct net *net;
12511  	LIST_HEAD(dev_kill_list);
12512  
12513  	rtnl_lock();
12514  	list_for_each_entry(net, net_list, exit_list) {
12515  		default_device_exit_net(net);
12516  		cond_resched();
12517  	}
12518  
12519  	list_for_each_entry(net, net_list, exit_list) {
12520  		for_each_netdev_reverse(net, dev) {
12521  			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12522  				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12523  			else
12524  				unregister_netdevice_queue(dev, &dev_kill_list);
12525  		}
12526  	}
12527  	unregister_netdevice_many(&dev_kill_list);
12528  	rtnl_unlock();
12529  }
12530  
12531  static struct pernet_operations __net_initdata default_device_ops = {
12532  	.exit_batch = default_device_exit_batch,
12533  };
12534  
net_dev_struct_check(void)12535  static void __init net_dev_struct_check(void)
12536  {
12537  	/* TX read-mostly hotpath */
12538  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12539  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12540  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12541  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12542  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12543  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12544  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12545  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12546  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12547  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12548  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12549  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12550  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12551  #ifdef CONFIG_XPS
12552  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12553  #endif
12554  #ifdef CONFIG_NETFILTER_EGRESS
12555  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12556  #endif
12557  #ifdef CONFIG_NET_XGRESS
12558  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12559  #endif
12560  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12561  
12562  	/* TXRX read-mostly hotpath */
12563  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12564  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12565  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12566  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12567  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12568  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12569  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12570  
12571  	/* RX read-mostly hotpath */
12572  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12573  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12574  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12575  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12576  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12577  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12578  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12579  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12580  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12581  #ifdef CONFIG_NETPOLL
12582  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12583  #endif
12584  #ifdef CONFIG_NET_XGRESS
12585  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12586  #endif
12587  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12588  }
12589  
12590  /*
12591   *	Initialize the DEV module. At boot time this walks the device list and
12592   *	unhooks any devices that fail to initialise (normally hardware not
12593   *	present) and leaves us with a valid list of present and active devices.
12594   *
12595   */
12596  
12597  /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12598  #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12599  
net_page_pool_create(int cpuid)12600  static int net_page_pool_create(int cpuid)
12601  {
12602  #if IS_ENABLED(CONFIG_PAGE_POOL)
12603  	struct page_pool_params page_pool_params = {
12604  		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12605  		.flags = PP_FLAG_SYSTEM_POOL,
12606  		.nid = cpu_to_mem(cpuid),
12607  	};
12608  	struct page_pool *pp_ptr;
12609  	int err;
12610  
12611  	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12612  	if (IS_ERR(pp_ptr))
12613  		return -ENOMEM;
12614  
12615  	err = xdp_reg_page_pool(pp_ptr);
12616  	if (err) {
12617  		page_pool_destroy(pp_ptr);
12618  		return err;
12619  	}
12620  
12621  	per_cpu(system_page_pool, cpuid) = pp_ptr;
12622  #endif
12623  	return 0;
12624  }
12625  
backlog_napi_should_run(unsigned int cpu)12626  static int backlog_napi_should_run(unsigned int cpu)
12627  {
12628  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12629  	struct napi_struct *napi = &sd->backlog;
12630  
12631  	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12632  }
12633  
run_backlog_napi(unsigned int cpu)12634  static void run_backlog_napi(unsigned int cpu)
12635  {
12636  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12637  
12638  	napi_threaded_poll_loop(&sd->backlog);
12639  }
12640  
backlog_napi_setup(unsigned int cpu)12641  static void backlog_napi_setup(unsigned int cpu)
12642  {
12643  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12644  	struct napi_struct *napi = &sd->backlog;
12645  
12646  	napi->thread = this_cpu_read(backlog_napi);
12647  	set_bit(NAPI_STATE_THREADED, &napi->state);
12648  }
12649  
12650  static struct smp_hotplug_thread backlog_threads = {
12651  	.store			= &backlog_napi,
12652  	.thread_should_run	= backlog_napi_should_run,
12653  	.thread_fn		= run_backlog_napi,
12654  	.thread_comm		= "backlog_napi/%u",
12655  	.setup			= backlog_napi_setup,
12656  };
12657  
12658  /*
12659   *       This is called single threaded during boot, so no need
12660   *       to take the rtnl semaphore.
12661   */
net_dev_init(void)12662  static int __init net_dev_init(void)
12663  {
12664  	int i, rc = -ENOMEM;
12665  
12666  	BUG_ON(!dev_boot_phase);
12667  
12668  	net_dev_struct_check();
12669  
12670  	if (dev_proc_init())
12671  		goto out;
12672  
12673  	if (netdev_kobject_init())
12674  		goto out;
12675  
12676  	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12677  		INIT_LIST_HEAD(&ptype_base[i]);
12678  
12679  	if (register_pernet_subsys(&netdev_net_ops))
12680  		goto out;
12681  
12682  	/*
12683  	 *	Initialise the packet receive queues.
12684  	 */
12685  
12686  	flush_backlogs_fallback = flush_backlogs_alloc();
12687  	if (!flush_backlogs_fallback)
12688  		goto out;
12689  
12690  	for_each_possible_cpu(i) {
12691  		struct softnet_data *sd = &per_cpu(softnet_data, i);
12692  
12693  		skb_queue_head_init(&sd->input_pkt_queue);
12694  		skb_queue_head_init(&sd->process_queue);
12695  #ifdef CONFIG_XFRM_OFFLOAD
12696  		skb_queue_head_init(&sd->xfrm_backlog);
12697  #endif
12698  		INIT_LIST_HEAD(&sd->poll_list);
12699  		sd->output_queue_tailp = &sd->output_queue;
12700  #ifdef CONFIG_RPS
12701  		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12702  		sd->cpu = i;
12703  #endif
12704  		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12705  		spin_lock_init(&sd->defer_lock);
12706  
12707  		gro_init(&sd->backlog.gro);
12708  		sd->backlog.poll = process_backlog;
12709  		sd->backlog.weight = weight_p;
12710  		INIT_LIST_HEAD(&sd->backlog.poll_list);
12711  
12712  		if (net_page_pool_create(i))
12713  			goto out;
12714  	}
12715  	if (use_backlog_threads())
12716  		smpboot_register_percpu_thread(&backlog_threads);
12717  
12718  	dev_boot_phase = 0;
12719  
12720  	/* The loopback device is special if any other network devices
12721  	 * is present in a network namespace the loopback device must
12722  	 * be present. Since we now dynamically allocate and free the
12723  	 * loopback device ensure this invariant is maintained by
12724  	 * keeping the loopback device as the first device on the
12725  	 * list of network devices.  Ensuring the loopback devices
12726  	 * is the first device that appears and the last network device
12727  	 * that disappears.
12728  	 */
12729  	if (register_pernet_device(&loopback_net_ops))
12730  		goto out;
12731  
12732  	if (register_pernet_device(&default_device_ops))
12733  		goto out;
12734  
12735  	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12736  	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12737  
12738  	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12739  				       NULL, dev_cpu_dead);
12740  	WARN_ON(rc < 0);
12741  	rc = 0;
12742  
12743  	/* avoid static key IPIs to isolated CPUs */
12744  	if (housekeeping_enabled(HK_TYPE_MISC))
12745  		net_enable_timestamp();
12746  out:
12747  	if (rc < 0) {
12748  		for_each_possible_cpu(i) {
12749  			struct page_pool *pp_ptr;
12750  
12751  			pp_ptr = per_cpu(system_page_pool, i);
12752  			if (!pp_ptr)
12753  				continue;
12754  
12755  			xdp_unreg_page_pool(pp_ptr);
12756  			page_pool_destroy(pp_ptr);
12757  			per_cpu(system_page_pool, i) = NULL;
12758  		}
12759  	}
12760  
12761  	return rc;
12762  }
12763  
12764  subsys_initcall(net_dev_init);
12765