1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12
42
43
44 static u16 bits_per_symbol[][2] = {
45 /* 20MHz 40MHz */
46 { 26, 54 }, /* 0: BPSK */
47 { 52, 108 }, /* 1: QPSK 1/2 */
48 { 78, 162 }, /* 2: QPSK 3/4 */
49 { 104, 216 }, /* 3: 16-QAM 1/2 */
50 { 156, 324 }, /* 4: 16-QAM 3/4 */
51 { 208, 432 }, /* 5: 64-QAM 2/3 */
52 { 234, 486 }, /* 6: 64-QAM 3/4 */
53 { 260, 540 }, /* 7: 64-QAM 5/6 */
54 };
55
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 int tx_flags, struct ath_txq *txq,
60 struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq, struct list_head *bf_q,
63 struct ieee80211_sta *sta,
64 struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 struct ath_tx_status *ts, int nframes, int nbad,
69 int txok);
70 static void ath_tx_update_baw(struct ath_atx_tid *tid, struct ath_buf *bf);
71 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
72 struct ath_txq *txq,
73 struct ath_atx_tid *tid,
74 struct sk_buff *skb);
75 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
76 struct ath_tx_control *txctl);
77
78 enum {
79 MCS_HT20,
80 MCS_HT20_SGI,
81 MCS_HT40,
82 MCS_HT40_SGI,
83 };
84
85 /*********************/
86 /* Aggregation logic */
87 /*********************/
88
ath_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb)89 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
90 {
91 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
92 struct ieee80211_sta *sta = info->status.status_driver_data[0];
93
94 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
95 IEEE80211_TX_STATUS_EOSP)) {
96 ieee80211_tx_status_skb(hw, skb);
97 return;
98 }
99
100 if (sta)
101 ieee80211_tx_status_noskb(hw, sta, info);
102
103 dev_kfree_skb(skb);
104 }
105
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)106 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
107 __releases(&txq->axq_lock)
108 {
109 struct ieee80211_hw *hw = sc->hw;
110 struct sk_buff_head q;
111 struct sk_buff *skb;
112
113 __skb_queue_head_init(&q);
114 skb_queue_splice_init(&txq->complete_q, &q);
115 spin_unlock_bh(&txq->axq_lock);
116
117 while ((skb = __skb_dequeue(&q)))
118 ath_tx_status(hw, skb);
119 }
120
ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)121 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
122 {
123 struct ieee80211_txq *queue =
124 container_of((void *)tid, struct ieee80211_txq, drv_priv);
125
126 ieee80211_schedule_txq(sc->hw, queue);
127 }
128
ath9k_wake_tx_queue(struct ieee80211_hw * hw,struct ieee80211_txq * queue)129 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
130 {
131 struct ath_softc *sc = hw->priv;
132 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
133 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
134 struct ath_txq *txq = tid->txq;
135
136 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
137 queue->sta ? queue->sta->addr : queue->vif->addr,
138 tid->tidno);
139
140 ath_txq_lock(sc, txq);
141 ath_txq_schedule(sc, txq);
142 ath_txq_unlock(sc, txq);
143 }
144
get_frame_info(struct sk_buff * skb)145 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
146 {
147 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
148 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
149 sizeof(tx_info->status.status_driver_data));
150 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
151 }
152
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)153 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
154 {
155 if (!tid->an->sta)
156 return;
157
158 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
159 seqno << IEEE80211_SEQ_SEQ_SHIFT);
160 }
161
ath_merge_ratetbl(struct ieee80211_sta * sta,struct ath_buf * bf,struct ieee80211_tx_info * tx_info)162 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
163 struct ieee80211_tx_info *tx_info)
164 {
165 struct ieee80211_sta_rates *ratetbl;
166 u8 i;
167
168 if (!sta)
169 return false;
170
171 ratetbl = rcu_dereference(sta->rates);
172 if (!ratetbl)
173 return false;
174
175 if (tx_info->control.rates[0].idx < 0 ||
176 tx_info->control.rates[0].count == 0)
177 {
178 i = 0;
179 } else {
180 bf->rates[0] = tx_info->control.rates[0];
181 i = 1;
182 }
183
184 for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
185 bf->rates[i].idx = ratetbl->rate[i].idx;
186 bf->rates[i].flags = ratetbl->rate[i].flags;
187 if (tx_info->control.use_rts)
188 bf->rates[i].count = ratetbl->rate[i].count_rts;
189 else if (tx_info->control.use_cts_prot)
190 bf->rates[i].count = ratetbl->rate[i].count_cts;
191 else
192 bf->rates[i].count = ratetbl->rate[i].count;
193 }
194
195 return true;
196 }
197
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)198 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
199 struct ath_buf *bf)
200 {
201 struct ieee80211_tx_info *tx_info;
202
203 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
204
205 if (!ath_merge_ratetbl(sta, bf, tx_info))
206 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
207 ARRAY_SIZE(bf->rates));
208 }
209
ath_txq_skb_done(struct ath_softc * sc,struct sk_buff * skb)210 static void ath_txq_skb_done(struct ath_softc *sc, struct sk_buff *skb)
211 {
212 struct ath_frame_info *fi = get_frame_info(skb);
213 struct ath_txq *txq;
214 int q = fi->txq;
215
216 if (q < 0)
217 return;
218
219 txq = sc->tx.txq_map[q];
220 if (WARN_ON(--txq->pending_frames < 0))
221 txq->pending_frames = 0;
222
223 }
224
225 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_node * an,struct sk_buff * skb)226 ath_get_skb_tid(struct ath_node *an, struct sk_buff *skb)
227 {
228 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
229 return ATH_AN_2_TID(an, tidno);
230 }
231
232 static int
ath_tid_pull(struct ath_atx_tid * tid,struct sk_buff ** skbuf)233 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
234 {
235 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
236 struct ath_softc *sc = tid->an->sc;
237 struct ieee80211_hw *hw = sc->hw;
238 struct ath_tx_control txctl = {
239 .txq = tid->txq,
240 .sta = tid->an->sta,
241 };
242 struct sk_buff *skb;
243 struct ath_frame_info *fi;
244 int q, ret;
245
246 skb = ieee80211_tx_dequeue(hw, txq);
247 if (!skb)
248 return -ENOENT;
249
250 ret = ath_tx_prepare(hw, skb, &txctl);
251 if (ret) {
252 ieee80211_free_txskb(hw, skb);
253 return ret;
254 }
255
256 q = skb_get_queue_mapping(skb);
257 if (tid->txq == sc->tx.txq_map[q]) {
258 fi = get_frame_info(skb);
259 fi->txq = q;
260 ++tid->txq->pending_frames;
261 }
262
263 *skbuf = skb;
264 return 0;
265 }
266
ath_tid_dequeue(struct ath_atx_tid * tid,struct sk_buff ** skb)267 static int ath_tid_dequeue(struct ath_atx_tid *tid,
268 struct sk_buff **skb)
269 {
270 int ret = 0;
271 *skb = __skb_dequeue(&tid->retry_q);
272 if (!*skb)
273 ret = ath_tid_pull(tid, skb);
274
275 return ret;
276 }
277
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)278 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
279 {
280 struct ath_txq *txq = tid->txq;
281 struct sk_buff *skb;
282 struct ath_buf *bf;
283 struct list_head bf_head;
284 struct ath_tx_status ts;
285 struct ath_frame_info *fi;
286 bool sendbar = false;
287
288 INIT_LIST_HEAD(&bf_head);
289
290 memset(&ts, 0, sizeof(ts));
291
292 while ((skb = __skb_dequeue(&tid->retry_q))) {
293 fi = get_frame_info(skb);
294 bf = fi->bf;
295 if (!bf) {
296 ath_txq_skb_done(sc, skb);
297 ieee80211_free_txskb(sc->hw, skb);
298 continue;
299 }
300
301 if (fi->baw_tracked) {
302 ath_tx_update_baw(tid, bf);
303 sendbar = true;
304 }
305
306 list_add_tail(&bf->list, &bf_head);
307 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
308 }
309
310 if (sendbar) {
311 ath_txq_unlock(sc, txq);
312 ath_send_bar(tid, tid->seq_start);
313 ath_txq_lock(sc, txq);
314 }
315 }
316
ath_tx_update_baw(struct ath_atx_tid * tid,struct ath_buf * bf)317 static void ath_tx_update_baw(struct ath_atx_tid *tid, struct ath_buf *bf)
318 {
319 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
320 u16 seqno = bf->bf_state.seqno;
321 int index, cindex;
322
323 if (!fi->baw_tracked)
324 return;
325
326 index = ATH_BA_INDEX(tid->seq_start, seqno);
327 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
328
329 __clear_bit(cindex, tid->tx_buf);
330
331 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
332 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
333 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
334 if (tid->bar_index >= 0)
335 tid->bar_index--;
336 }
337 }
338
ath_tx_addto_baw(struct ath_atx_tid * tid,struct ath_buf * bf)339 static void ath_tx_addto_baw(struct ath_atx_tid *tid, struct ath_buf *bf)
340 {
341 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
342 u16 seqno = bf->bf_state.seqno;
343 int index, cindex;
344
345 if (fi->baw_tracked)
346 return;
347
348 index = ATH_BA_INDEX(tid->seq_start, seqno);
349 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
350 __set_bit(cindex, tid->tx_buf);
351 fi->baw_tracked = 1;
352
353 if (index >= ((tid->baw_tail - tid->baw_head) &
354 (ATH_TID_MAX_BUFS - 1))) {
355 tid->baw_tail = cindex;
356 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
357 }
358 }
359
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)360 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
361 struct ath_atx_tid *tid)
362
363 {
364 struct sk_buff *skb;
365 struct ath_buf *bf;
366 struct list_head bf_head;
367 struct ath_tx_status ts;
368 struct ath_frame_info *fi;
369
370 memset(&ts, 0, sizeof(ts));
371 INIT_LIST_HEAD(&bf_head);
372
373 while (ath_tid_dequeue(tid, &skb) == 0) {
374 fi = get_frame_info(skb);
375 bf = fi->bf;
376
377 if (!bf) {
378 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
379 continue;
380 }
381
382 list_add_tail(&bf->list, &bf_head);
383 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
384 }
385 }
386
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)387 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
388 struct sk_buff *skb, int count)
389 {
390 struct ath_frame_info *fi = get_frame_info(skb);
391 struct ath_buf *bf = fi->bf;
392 struct ieee80211_hdr *hdr;
393 int prev = fi->retries;
394
395 TX_STAT_INC(sc, txq->axq_qnum, a_retries);
396 fi->retries += count;
397
398 if (prev > 0)
399 return;
400
401 hdr = (struct ieee80211_hdr *)skb->data;
402 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
403 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
404 sizeof(*hdr), DMA_TO_DEVICE);
405 }
406
ath_tx_get_buffer(struct ath_softc * sc)407 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
408 {
409 struct ath_buf *bf = NULL;
410
411 spin_lock_bh(&sc->tx.txbuflock);
412
413 if (unlikely(list_empty(&sc->tx.txbuf))) {
414 spin_unlock_bh(&sc->tx.txbuflock);
415 return NULL;
416 }
417
418 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
419 list_del(&bf->list);
420
421 spin_unlock_bh(&sc->tx.txbuflock);
422
423 return bf;
424 }
425
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)426 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
427 {
428 spin_lock_bh(&sc->tx.txbuflock);
429 list_add_tail(&bf->list, &sc->tx.txbuf);
430 spin_unlock_bh(&sc->tx.txbuflock);
431 }
432
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)433 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
434 {
435 struct ath_buf *tbf;
436
437 tbf = ath_tx_get_buffer(sc);
438 if (WARN_ON(!tbf))
439 return NULL;
440
441 ATH_TXBUF_RESET(tbf);
442
443 tbf->bf_mpdu = bf->bf_mpdu;
444 tbf->bf_buf_addr = bf->bf_buf_addr;
445 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
446 tbf->bf_state = bf->bf_state;
447 tbf->bf_state.stale = false;
448
449 return tbf;
450 }
451
ath_tx_count_frames(struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)452 static void ath_tx_count_frames(struct ath_buf *bf, struct ath_tx_status *ts,
453 int txok, int *nframes, int *nbad)
454 {
455 u16 seq_st = 0;
456 u32 ba[WME_BA_BMP_SIZE >> 5];
457 int ba_index;
458 int isaggr = 0;
459
460 *nbad = 0;
461 *nframes = 0;
462
463 isaggr = bf_isaggr(bf);
464 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
465
466 if (isaggr) {
467 seq_st = ts->ts_seqnum;
468 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
469 }
470
471 while (bf) {
472 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
473
474 (*nframes)++;
475 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
476 (*nbad)++;
477
478 bf = bf->bf_next;
479 }
480 }
481
482
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_atx_tid * tid,struct ath_tx_status * ts,int txok)483 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
484 struct ath_buf *bf, struct list_head *bf_q,
485 struct ieee80211_sta *sta,
486 struct ath_atx_tid *tid,
487 struct ath_tx_status *ts, int txok)
488 {
489 struct ath_node *an = NULL;
490 struct sk_buff *skb;
491 struct ieee80211_tx_info *tx_info;
492 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
493 struct list_head bf_head;
494 struct sk_buff_head bf_pending;
495 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
496 u32 ba[WME_BA_BMP_SIZE >> 5];
497 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
498 bool rc_update = true, isba;
499 struct ieee80211_tx_rate rates[4];
500 struct ath_frame_info *fi;
501 int nframes;
502 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
503 int i, retries;
504 int bar_index = -1;
505
506 skb = bf->bf_mpdu;
507 tx_info = IEEE80211_SKB_CB(skb);
508
509 memcpy(rates, bf->rates, sizeof(rates));
510
511 retries = ts->ts_longretry + 1;
512 for (i = 0; i < ts->ts_rateindex; i++)
513 retries += rates[i].count;
514
515 if (!sta) {
516 INIT_LIST_HEAD(&bf_head);
517 while (bf) {
518 bf_next = bf->bf_next;
519
520 if (!bf->bf_state.stale || bf_next != NULL)
521 list_move_tail(&bf->list, &bf_head);
522
523 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
524
525 bf = bf_next;
526 }
527 return;
528 }
529
530 an = (struct ath_node *)sta->drv_priv;
531 seq_first = tid->seq_start;
532 isba = ts->ts_flags & ATH9K_TX_BA;
533
534 /*
535 * The hardware occasionally sends a tx status for the wrong TID.
536 * In this case, the BA status cannot be considered valid and all
537 * subframes need to be retransmitted
538 *
539 * Only BlockAcks have a TID and therefore normal Acks cannot be
540 * checked
541 */
542 if (isba && tid->tidno != ts->tid)
543 txok = false;
544
545 isaggr = bf_isaggr(bf);
546 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
547
548 if (isaggr && txok) {
549 if (ts->ts_flags & ATH9K_TX_BA) {
550 seq_st = ts->ts_seqnum;
551 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
552 } else {
553 /*
554 * AR5416 can become deaf/mute when BA
555 * issue happens. Chip needs to be reset.
556 * But AP code may have synchronization issues
557 * when perform internal reset in this routine.
558 * Only enable reset in STA mode for now.
559 */
560 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
561 needreset = 1;
562 }
563 }
564
565 __skb_queue_head_init(&bf_pending);
566
567 ath_tx_count_frames(bf, ts, txok, &nframes, &nbad);
568 while (bf) {
569 u16 seqno = bf->bf_state.seqno;
570
571 txfail = txpending = sendbar = 0;
572 bf_next = bf->bf_next;
573
574 skb = bf->bf_mpdu;
575 tx_info = IEEE80211_SKB_CB(skb);
576 fi = get_frame_info(skb);
577
578 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
579 !tid->active) {
580 /*
581 * Outside of the current BlockAck window,
582 * maybe part of a previous session
583 */
584 txfail = 1;
585 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
586 /* transmit completion, subframe is
587 * acked by block ack */
588 acked_cnt++;
589 } else if (!isaggr && txok) {
590 /* transmit completion */
591 acked_cnt++;
592 } else if (flush) {
593 txpending = 1;
594 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
595 if (txok || !an->sleeping)
596 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
597 retries);
598
599 txpending = 1;
600 } else {
601 txfail = 1;
602 txfail_cnt++;
603 bar_index = max_t(int, bar_index,
604 ATH_BA_INDEX(seq_first, seqno));
605 }
606
607 /*
608 * Make sure the last desc is reclaimed if it
609 * not a holding desc.
610 */
611 INIT_LIST_HEAD(&bf_head);
612 if (bf_next != NULL || !bf_last->bf_state.stale)
613 list_move_tail(&bf->list, &bf_head);
614
615 if (!txpending) {
616 /*
617 * complete the acked-ones/xretried ones; update
618 * block-ack window
619 */
620 ath_tx_update_baw(tid, bf);
621
622 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
623 memcpy(tx_info->control.rates, rates, sizeof(rates));
624 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
625 rc_update = false;
626 if (bf == bf->bf_lastbf)
627 ath_dynack_sample_tx_ts(sc->sc_ah,
628 bf->bf_mpdu,
629 ts, sta);
630 }
631
632 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
633 !txfail);
634 } else {
635 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
636 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
637 ieee80211_sta_eosp(sta);
638 }
639 /* retry the un-acked ones */
640 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
641 struct ath_buf *tbf;
642
643 tbf = ath_clone_txbuf(sc, bf_last);
644 /*
645 * Update tx baw and complete the
646 * frame with failed status if we
647 * run out of tx buf.
648 */
649 if (!tbf) {
650 ath_tx_update_baw(tid, bf);
651
652 ath_tx_complete_buf(sc, bf, txq,
653 &bf_head, NULL, ts,
654 0);
655 bar_index = max_t(int, bar_index,
656 ATH_BA_INDEX(seq_first, seqno));
657 break;
658 }
659
660 fi->bf = tbf;
661 }
662
663 /*
664 * Put this buffer to the temporary pending
665 * queue to retain ordering
666 */
667 __skb_queue_tail(&bf_pending, skb);
668 }
669
670 bf = bf_next;
671 }
672
673 /* prepend un-acked frames to the beginning of the pending frame queue */
674 if (!skb_queue_empty(&bf_pending)) {
675 if (an->sleeping)
676 ieee80211_sta_set_buffered(sta, tid->tidno, true);
677
678 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
679 if (!an->sleeping) {
680 ath_tx_queue_tid(sc, tid);
681 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
682 tid->clear_ps_filter = true;
683 }
684 }
685
686 if (bar_index >= 0) {
687 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
688
689 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
690 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
691
692 ath_txq_unlock(sc, txq);
693 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
694 ath_txq_lock(sc, txq);
695 }
696
697 if (needreset)
698 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
699 }
700
bf_is_ampdu_not_probing(struct ath_buf * bf)701 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
702 {
703 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
704 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
705 }
706
ath_tx_count_airtime(struct ath_softc * sc,struct ieee80211_sta * sta,struct ath_buf * bf,struct ath_tx_status * ts,u8 tid)707 static void ath_tx_count_airtime(struct ath_softc *sc,
708 struct ieee80211_sta *sta,
709 struct ath_buf *bf,
710 struct ath_tx_status *ts,
711 u8 tid)
712 {
713 u32 airtime = 0;
714 int i;
715
716 airtime += ts->duration * (ts->ts_longretry + 1);
717 for(i = 0; i < ts->ts_rateindex; i++) {
718 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
719 airtime += rate_dur * bf->rates[i].count;
720 }
721
722 ieee80211_sta_register_airtime(sta, tid, airtime, 0);
723 }
724
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)725 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
726 struct ath_tx_status *ts, struct ath_buf *bf,
727 struct list_head *bf_head)
728 {
729 struct ieee80211_hw *hw = sc->hw;
730 struct ieee80211_tx_info *info;
731 struct ieee80211_sta *sta;
732 struct ieee80211_hdr *hdr;
733 struct ath_atx_tid *tid = NULL;
734 bool txok, flush;
735
736 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
737 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
738 txq->axq_tx_inprogress = false;
739
740 txq->axq_depth--;
741 if (bf_is_ampdu_not_probing(bf))
742 txq->axq_ampdu_depth--;
743
744 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
745 ts->ts_rateindex);
746
747 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
748 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
749 if (sta) {
750 struct ath_node *an = (struct ath_node *)sta->drv_priv;
751 tid = ath_get_skb_tid(an, bf->bf_mpdu);
752 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
753 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
754 tid->clear_ps_filter = true;
755 }
756
757 if (!bf_isampdu(bf)) {
758 if (!flush) {
759 info = IEEE80211_SKB_CB(bf->bf_mpdu);
760 memcpy(info->control.rates, bf->rates,
761 sizeof(info->control.rates));
762 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
763 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
764 sta);
765 }
766 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
767 } else
768 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
769
770 if (!flush)
771 ath_txq_schedule(sc, txq);
772 }
773
ath_lookup_legacy(struct ath_buf * bf)774 static bool ath_lookup_legacy(struct ath_buf *bf)
775 {
776 struct sk_buff *skb;
777 struct ieee80211_tx_info *tx_info;
778 struct ieee80211_tx_rate *rates;
779 int i;
780
781 skb = bf->bf_mpdu;
782 tx_info = IEEE80211_SKB_CB(skb);
783 rates = tx_info->control.rates;
784
785 for (i = 0; i < 4; i++) {
786 if (!rates[i].count || rates[i].idx < 0)
787 break;
788
789 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
790 return true;
791 }
792
793 return false;
794 }
795
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)796 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
797 struct ath_atx_tid *tid)
798 {
799 struct sk_buff *skb;
800 struct ieee80211_tx_info *tx_info;
801 struct ieee80211_tx_rate *rates;
802 u32 max_4ms_framelen, frmlen;
803 u16 aggr_limit, bt_aggr_limit, legacy = 0;
804 int q = tid->txq->mac80211_qnum;
805 int i;
806
807 skb = bf->bf_mpdu;
808 tx_info = IEEE80211_SKB_CB(skb);
809 rates = bf->rates;
810
811 /*
812 * Find the lowest frame length among the rate series that will have a
813 * 4ms (or TXOP limited) transmit duration.
814 */
815 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
816
817 for (i = 0; i < 4; i++) {
818 int modeidx;
819
820 if (!rates[i].count)
821 continue;
822
823 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
824 legacy = 1;
825 break;
826 }
827
828 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
829 modeidx = MCS_HT40;
830 else
831 modeidx = MCS_HT20;
832
833 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
834 modeidx++;
835
836 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
837 max_4ms_framelen = min(max_4ms_framelen, frmlen);
838 }
839
840 /*
841 * limit aggregate size by the minimum rate if rate selected is
842 * not a probe rate, if rate selected is a probe rate then
843 * avoid aggregation of this packet.
844 */
845 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
846 return 0;
847
848 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
849
850 /*
851 * Override the default aggregation limit for BTCOEX.
852 */
853 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
854 if (bt_aggr_limit)
855 aggr_limit = bt_aggr_limit;
856
857 if (tid->an->maxampdu)
858 aggr_limit = min(aggr_limit, tid->an->maxampdu);
859
860 return aggr_limit;
861 }
862
863 /*
864 * Returns the number of delimiters to be added to
865 * meet the minimum required mpdudensity.
866 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)867 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
868 struct ath_buf *bf, u16 frmlen,
869 bool first_subfrm)
870 {
871 #define FIRST_DESC_NDELIMS 60
872 u32 nsymbits, nsymbols;
873 u16 minlen;
874 u8 flags, rix;
875 int width, streams, half_gi, ndelim, mindelim;
876 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
877
878 /* Select standard number of delimiters based on frame length alone */
879 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
880
881 /*
882 * If encryption enabled, hardware requires some more padding between
883 * subframes.
884 * TODO - this could be improved to be dependent on the rate.
885 * The hardware can keep up at lower rates, but not higher rates
886 */
887 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
888 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
889 ndelim += ATH_AGGR_ENCRYPTDELIM;
890
891 /*
892 * Add delimiter when using RTS/CTS with aggregation
893 * and non enterprise AR9003 card
894 */
895 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
896 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
897 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
898
899 /*
900 * Convert desired mpdu density from microeconds to bytes based
901 * on highest rate in rate series (i.e. first rate) to determine
902 * required minimum length for subframe. Take into account
903 * whether high rate is 20 or 40Mhz and half or full GI.
904 *
905 * If there is no mpdu density restriction, no further calculation
906 * is needed.
907 */
908
909 if (tid->an->mpdudensity == 0)
910 return ndelim;
911
912 rix = bf->rates[0].idx;
913 flags = bf->rates[0].flags;
914 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
915 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
916
917 if (half_gi)
918 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
919 else
920 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
921
922 if (nsymbols == 0)
923 nsymbols = 1;
924
925 streams = HT_RC_2_STREAMS(rix);
926 nsymbits = bits_per_symbol[rix % 8][width] * streams;
927 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
928
929 if (frmlen < minlen) {
930 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
931 ndelim = max(mindelim, ndelim);
932 }
933
934 return ndelim;
935 }
936
937 static int
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct ath_buf ** buf)938 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
939 struct ath_atx_tid *tid, struct ath_buf **buf)
940 {
941 struct ieee80211_tx_info *tx_info;
942 struct ath_frame_info *fi;
943 struct ath_buf *bf;
944 struct sk_buff *skb, *first_skb = NULL;
945 u16 seqno;
946 int ret;
947
948 while (1) {
949 ret = ath_tid_dequeue(tid, &skb);
950 if (ret < 0)
951 return ret;
952
953 fi = get_frame_info(skb);
954 bf = fi->bf;
955 if (!fi->bf)
956 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
957 else
958 bf->bf_state.stale = false;
959
960 if (!bf) {
961 ath_txq_skb_done(sc, skb);
962 ieee80211_free_txskb(sc->hw, skb);
963 continue;
964 }
965
966 bf->bf_next = NULL;
967 bf->bf_lastbf = bf;
968
969 tx_info = IEEE80211_SKB_CB(skb);
970 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
971 IEEE80211_TX_STATUS_EOSP);
972
973 /*
974 * No aggregation session is running, but there may be frames
975 * from a previous session or a failed attempt in the queue.
976 * Send them out as normal data frames
977 */
978 if (!tid->active)
979 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
980
981 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
982 bf->bf_state.bf_type = 0;
983 break;
984 }
985
986 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
987 seqno = bf->bf_state.seqno;
988
989 /* do not step over block-ack window */
990 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
991 __skb_queue_tail(&tid->retry_q, skb);
992
993 /* If there are other skbs in the retry q, they are
994 * probably within the BAW, so loop immediately to get
995 * one of them. Otherwise the queue can get stuck. */
996 if (!skb_queue_is_first(&tid->retry_q, skb) &&
997 !WARN_ON(skb == first_skb)) {
998 if(!first_skb) /* infinite loop prevention */
999 first_skb = skb;
1000 continue;
1001 }
1002 return -EINPROGRESS;
1003 }
1004
1005 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1006 struct ath_tx_status ts = {};
1007 struct list_head bf_head;
1008
1009 INIT_LIST_HEAD(&bf_head);
1010 list_add(&bf->list, &bf_head);
1011 ath_tx_update_baw(tid, bf);
1012 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1013 continue;
1014 }
1015
1016 if (bf_isampdu(bf))
1017 ath_tx_addto_baw(tid, bf);
1018
1019 break;
1020 }
1021
1022 *buf = bf;
1023 return 0;
1024 }
1025
1026 static int
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1027 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1028 struct ath_atx_tid *tid, struct list_head *bf_q,
1029 struct ath_buf *bf_first)
1030 {
1031 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1032 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1033 int nframes = 0, ndelim, ret;
1034 u16 aggr_limit = 0, al = 0, bpad = 0,
1035 al_delta, h_baw = tid->baw_size / 2;
1036 struct ieee80211_tx_info *tx_info;
1037 struct ath_frame_info *fi;
1038 struct sk_buff *skb;
1039
1040
1041 bf = bf_first;
1042 aggr_limit = ath_lookup_rate(sc, bf, tid);
1043
1044 while (bf)
1045 {
1046 skb = bf->bf_mpdu;
1047 fi = get_frame_info(skb);
1048
1049 /* do not exceed aggregation limit */
1050 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1051 if (nframes) {
1052 if (aggr_limit < al + bpad + al_delta ||
1053 ath_lookup_legacy(bf) || nframes >= h_baw)
1054 goto stop;
1055
1056 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1057 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1058 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1059 goto stop;
1060 }
1061
1062 /* add padding for previous frame to aggregation length */
1063 al += bpad + al_delta;
1064
1065 /*
1066 * Get the delimiters needed to meet the MPDU
1067 * density for this node.
1068 */
1069 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1070 !nframes);
1071 bpad = PADBYTES(al_delta) + (ndelim << 2);
1072
1073 nframes++;
1074 bf->bf_next = NULL;
1075
1076 /* link buffers of this frame to the aggregate */
1077 bf->bf_state.ndelim = ndelim;
1078
1079 list_add_tail(&bf->list, bf_q);
1080 if (bf_prev)
1081 bf_prev->bf_next = bf;
1082
1083 bf_prev = bf;
1084
1085 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1086 if (ret < 0)
1087 break;
1088 }
1089 goto finish;
1090 stop:
1091 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1092 finish:
1093 bf = bf_first;
1094 bf->bf_lastbf = bf_prev;
1095
1096 if (bf == bf_prev) {
1097 al = get_frame_info(bf->bf_mpdu)->framelen;
1098 bf->bf_state.bf_type = BUF_AMPDU;
1099 } else {
1100 TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1101 }
1102
1103 return al;
1104 #undef PADBYTES
1105 }
1106
1107 /*
1108 * rix - rate index
1109 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1110 * width - 0 for 20 MHz, 1 for 40 MHz
1111 * half_gi - to use 4us v/s 3.6 us for symbol time
1112 */
ath_pkt_duration(u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1113 u32 ath_pkt_duration(u8 rix, int pktlen, int width,
1114 int half_gi, bool shortPreamble)
1115 {
1116 u32 nbits, nsymbits, duration, nsymbols;
1117 int streams;
1118
1119 /* find number of symbols: PLCP + data */
1120 streams = HT_RC_2_STREAMS(rix);
1121 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1122 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1123 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1124
1125 if (!half_gi)
1126 duration = SYMBOL_TIME(nsymbols);
1127 else
1128 duration = SYMBOL_TIME_HALFGI(nsymbols);
1129
1130 /* addup duration for legacy/ht training and signal fields */
1131 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1132
1133 return duration;
1134 }
1135
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1136 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1137 {
1138 int streams = HT_RC_2_STREAMS(mcs);
1139 int symbols, bits;
1140 int bytes = 0;
1141
1142 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1143 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1144 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1145 bits -= OFDM_PLCP_BITS;
1146 bytes = bits / 8;
1147 if (bytes > 65532)
1148 bytes = 65532;
1149
1150 return bytes;
1151 }
1152
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1153 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1154 {
1155 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1156 int mcs;
1157
1158 /* 4ms is the default (and maximum) duration */
1159 if (!txop || txop > 4096)
1160 txop = 4096;
1161
1162 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1163 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1164 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1165 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1166 for (mcs = 0; mcs < 32; mcs++) {
1167 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1168 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1169 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1170 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1171 }
1172 }
1173
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck,bool is_mcs)1174 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1175 u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1176 {
1177 u8 max_power;
1178 struct sk_buff *skb;
1179 struct ath_frame_info *fi;
1180 struct ieee80211_tx_info *info;
1181 struct ath_hw *ah = sc->sc_ah;
1182 bool is_2ghz, is_5ghz, use_stbc;
1183
1184 if (sc->tx99_state || !ah->tpc_enabled)
1185 return MAX_RATE_POWER;
1186
1187 skb = bf->bf_mpdu;
1188 fi = get_frame_info(skb);
1189 info = IEEE80211_SKB_CB(skb);
1190
1191 is_2ghz = info->band == NL80211_BAND_2GHZ;
1192 is_5ghz = info->band == NL80211_BAND_5GHZ;
1193 use_stbc = is_mcs && rateidx < 8 && (info->flags &
1194 IEEE80211_TX_CTL_STBC);
1195
1196 if (is_mcs)
1197 rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1198 : ATH9K_PWRTBL_11NG_HT_SHIFT;
1199 else if (is_2ghz && !is_cck)
1200 rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1201 else
1202 rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1203
1204 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1205 int txpower = fi->tx_power;
1206
1207 if (is_40) {
1208 u8 power_ht40delta;
1209 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1210 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1211
1212 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1213 struct modal_eep_header *pmodal;
1214
1215 pmodal = &eep->modalHeader[is_2ghz];
1216 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1217 } else {
1218 power_ht40delta = 2;
1219 }
1220 txpower += power_ht40delta;
1221 }
1222
1223 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1224 AR_SREV_9271(ah)) {
1225 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1226 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1227 s8 power_offset;
1228
1229 power_offset = ah->eep_ops->get_eeprom(ah,
1230 EEP_PWR_TABLE_OFFSET);
1231 txpower -= 2 * power_offset;
1232 }
1233
1234 if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1235 txpower -= 2;
1236
1237 txpower = max(txpower, 0);
1238 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1239
1240 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1241 * max_power is set to 0, frames are transmitted at max
1242 * TX power
1243 */
1244 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1245 max_power = 1;
1246 } else if (!bf->bf_state.bfs_paprd) {
1247 if (use_stbc)
1248 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1249 fi->tx_power);
1250 else
1251 max_power = min_t(u8, ah->tx_power[rateidx],
1252 fi->tx_power);
1253 } else {
1254 max_power = ah->paprd_training_power;
1255 }
1256
1257 return max_power;
1258 }
1259
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1260 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1261 struct ath_tx_info *info, int len, bool rts)
1262 {
1263 struct ath_hw *ah = sc->sc_ah;
1264 struct ath_common *common = ath9k_hw_common(ah);
1265 struct sk_buff *skb;
1266 struct ieee80211_tx_info *tx_info;
1267 struct ieee80211_tx_rate *rates;
1268 const struct ieee80211_rate *rate;
1269 struct ieee80211_hdr *hdr;
1270 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1271 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1272 int i;
1273 u8 rix = 0;
1274
1275 skb = bf->bf_mpdu;
1276 tx_info = IEEE80211_SKB_CB(skb);
1277 rates = bf->rates;
1278 hdr = (struct ieee80211_hdr *)skb->data;
1279
1280 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1281 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1282 info->rtscts_rate = fi->rtscts_rate;
1283
1284 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1285 bool is_40, is_sgi, is_sp, is_cck;
1286 int phy;
1287
1288 if (!rates[i].count || (rates[i].idx < 0))
1289 break;
1290
1291 rix = rates[i].idx;
1292 info->rates[i].Tries = rates[i].count;
1293
1294 /*
1295 * Handle RTS threshold for unaggregated HT frames.
1296 */
1297 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1298 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1299 unlikely(rts_thresh != (u32) -1)) {
1300 if (!rts_thresh || (len > rts_thresh))
1301 rts = true;
1302 }
1303
1304 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1305 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1306 info->flags |= ATH9K_TXDESC_RTSENA;
1307 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1308 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1309 info->flags |= ATH9K_TXDESC_CTSENA;
1310 }
1311
1312 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1313 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1314 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1315 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1316
1317 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1318 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1319 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1320
1321 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1322 /* MCS rates */
1323 info->rates[i].Rate = rix | 0x80;
1324 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1325 ah->txchainmask, info->rates[i].Rate);
1326 info->rates[i].PktDuration = ath_pkt_duration(rix, len,
1327 is_40, is_sgi, is_sp);
1328 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1329 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1330 if (rix >= 8 && fi->dyn_smps) {
1331 info->rates[i].RateFlags |=
1332 ATH9K_RATESERIES_RTS_CTS;
1333 info->flags |= ATH9K_TXDESC_CTSENA;
1334 }
1335
1336 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1337 is_40, false, true);
1338 continue;
1339 }
1340
1341 /* legacy rates */
1342 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1343 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1344 !(rate->flags & IEEE80211_RATE_ERP_G))
1345 phy = WLAN_RC_PHY_CCK;
1346 else
1347 phy = WLAN_RC_PHY_OFDM;
1348
1349 info->rates[i].Rate = rate->hw_value;
1350 if (rate->hw_value_short) {
1351 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1352 info->rates[i].Rate |= rate->hw_value_short;
1353 } else {
1354 is_sp = false;
1355 }
1356
1357 if (bf->bf_state.bfs_paprd)
1358 info->rates[i].ChSel = ah->txchainmask;
1359 else
1360 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1361 ah->txchainmask, info->rates[i].Rate);
1362
1363 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1364 phy, rate->bitrate * 100, len, rix, is_sp);
1365
1366 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1367 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1368 is_cck, false);
1369 }
1370
1371 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1372 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1373 info->flags &= ~ATH9K_TXDESC_RTSENA;
1374
1375 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1376 if (info->flags & ATH9K_TXDESC_RTSENA)
1377 info->flags &= ~ATH9K_TXDESC_CTSENA;
1378 }
1379
get_hw_packet_type(struct sk_buff * skb)1380 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1381 {
1382 struct ieee80211_hdr *hdr;
1383 enum ath9k_pkt_type htype;
1384 __le16 fc;
1385
1386 hdr = (struct ieee80211_hdr *)skb->data;
1387 fc = hdr->frame_control;
1388
1389 if (ieee80211_is_beacon(fc))
1390 htype = ATH9K_PKT_TYPE_BEACON;
1391 else if (ieee80211_is_probe_resp(fc))
1392 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1393 else if (ieee80211_is_atim(fc))
1394 htype = ATH9K_PKT_TYPE_ATIM;
1395 else if (ieee80211_is_pspoll(fc))
1396 htype = ATH9K_PKT_TYPE_PSPOLL;
1397 else
1398 htype = ATH9K_PKT_TYPE_NORMAL;
1399
1400 return htype;
1401 }
1402
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1403 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1404 struct ath_txq *txq, int len)
1405 {
1406 struct ath_hw *ah = sc->sc_ah;
1407 struct ath_buf *bf_first = NULL;
1408 struct ath_tx_info info;
1409 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1410 bool rts = false;
1411
1412 memset(&info, 0, sizeof(info));
1413 info.is_first = true;
1414 info.is_last = true;
1415 info.qcu = txq->axq_qnum;
1416
1417 while (bf) {
1418 struct sk_buff *skb = bf->bf_mpdu;
1419 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1420 struct ath_frame_info *fi = get_frame_info(skb);
1421 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1422
1423 info.type = get_hw_packet_type(skb);
1424 if (bf->bf_next)
1425 info.link = bf->bf_next->bf_daddr;
1426 else
1427 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1428
1429 if (!bf_first) {
1430 bf_first = bf;
1431
1432 if (!sc->tx99_state)
1433 info.flags = ATH9K_TXDESC_INTREQ;
1434 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1435 txq == sc->tx.uapsdq)
1436 info.flags |= ATH9K_TXDESC_CLRDMASK;
1437
1438 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1439 info.flags |= ATH9K_TXDESC_NOACK;
1440 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1441 info.flags |= ATH9K_TXDESC_LDPC;
1442
1443 if (bf->bf_state.bfs_paprd)
1444 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1445 ATH9K_TXDESC_PAPRD_S;
1446
1447 /*
1448 * mac80211 doesn't handle RTS threshold for HT because
1449 * the decision has to be taken based on AMPDU length
1450 * and aggregation is done entirely inside ath9k.
1451 * Set the RTS/CTS flag for the first subframe based
1452 * on the threshold.
1453 */
1454 if (aggr && (bf == bf_first) &&
1455 unlikely(rts_thresh != (u32) -1)) {
1456 /*
1457 * "len" is the size of the entire AMPDU.
1458 */
1459 if (!rts_thresh || (len > rts_thresh))
1460 rts = true;
1461 }
1462
1463 if (!aggr)
1464 len = fi->framelen;
1465
1466 ath_buf_set_rate(sc, bf, &info, len, rts);
1467 }
1468
1469 info.buf_addr[0] = bf->bf_buf_addr;
1470 info.buf_len[0] = skb->len;
1471 info.pkt_len = fi->framelen;
1472 info.keyix = fi->keyix;
1473 info.keytype = fi->keytype;
1474
1475 if (aggr) {
1476 if (bf == bf_first)
1477 info.aggr = AGGR_BUF_FIRST;
1478 else if (bf == bf_first->bf_lastbf)
1479 info.aggr = AGGR_BUF_LAST;
1480 else
1481 info.aggr = AGGR_BUF_MIDDLE;
1482
1483 info.ndelim = bf->bf_state.ndelim;
1484 info.aggr_len = len;
1485 }
1486
1487 if (bf == bf_first->bf_lastbf)
1488 bf_first = NULL;
1489
1490 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1491 bf = bf->bf_next;
1492 }
1493 }
1494
1495 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1496 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1497 struct ath_atx_tid *tid, struct list_head *bf_q,
1498 struct ath_buf *bf_first)
1499 {
1500 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1501 int nframes = 0, ret;
1502
1503 do {
1504 struct ieee80211_tx_info *tx_info;
1505
1506 nframes++;
1507 list_add_tail(&bf->list, bf_q);
1508 if (bf_prev)
1509 bf_prev->bf_next = bf;
1510 bf_prev = bf;
1511
1512 if (nframes >= 2)
1513 break;
1514
1515 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1516 if (ret < 0)
1517 break;
1518
1519 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1520 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1521 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1522 break;
1523 }
1524
1525 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1526 } while (1);
1527 }
1528
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)1529 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1530 struct ath_atx_tid *tid)
1531 {
1532 struct ath_buf *bf = NULL;
1533 struct ieee80211_tx_info *tx_info;
1534 struct list_head bf_q;
1535 int aggr_len = 0, ret;
1536 bool aggr;
1537
1538 INIT_LIST_HEAD(&bf_q);
1539
1540 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1541 if (ret < 0)
1542 return ret;
1543
1544 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1545 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1546 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1547 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1548 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1549 return -EBUSY;
1550 }
1551
1552 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1553 if (aggr)
1554 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1555 else
1556 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1557
1558 if (list_empty(&bf_q))
1559 return -EAGAIN;
1560
1561 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1562 tid->clear_ps_filter = false;
1563 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1564 }
1565
1566 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1567 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1568 return 0;
1569 }
1570
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1571 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1572 u16 tid, u16 *ssn)
1573 {
1574 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1575 struct ath_atx_tid *txtid;
1576 struct ath_txq *txq;
1577 struct ath_node *an;
1578 u8 density;
1579
1580 ath_dbg(common, XMIT, "%s called\n", __func__);
1581
1582 an = (struct ath_node *)sta->drv_priv;
1583 txtid = ATH_AN_2_TID(an, tid);
1584 txq = txtid->txq;
1585
1586 ath_txq_lock(sc, txq);
1587
1588 /* update ampdu factor/density, they may have changed. This may happen
1589 * in HT IBSS when a beacon with HT-info is received after the station
1590 * has already been added.
1591 */
1592 if (sta->deflink.ht_cap.ht_supported) {
1593 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1594 sta->deflink.ht_cap.ampdu_factor)) - 1;
1595 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1596 an->mpdudensity = density;
1597 }
1598
1599 txtid->active = true;
1600 *ssn = txtid->seq_start = txtid->seq_next;
1601 txtid->bar_index = -1;
1602
1603 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1604 txtid->baw_head = txtid->baw_tail = 0;
1605
1606 ath_txq_unlock_complete(sc, txq);
1607
1608 return 0;
1609 }
1610
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1611 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1612 {
1613 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1614 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1615 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1616 struct ath_txq *txq = txtid->txq;
1617
1618 ath_dbg(common, XMIT, "%s called\n", __func__);
1619
1620 ath_txq_lock(sc, txq);
1621 txtid->active = false;
1622 ath_tx_flush_tid(sc, txtid);
1623 ath_txq_unlock_complete(sc, txq);
1624 }
1625
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1626 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1627 struct ath_node *an)
1628 {
1629 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1630 struct ath_atx_tid *tid;
1631 int tidno;
1632
1633 ath_dbg(common, XMIT, "%s called\n", __func__);
1634
1635 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1636 tid = ath_node_to_tid(an, tidno);
1637
1638 if (!skb_queue_empty(&tid->retry_q))
1639 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1640
1641 }
1642 }
1643
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1644 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1645 {
1646 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1647 struct ath_atx_tid *tid;
1648 struct ath_txq *txq;
1649 int tidno;
1650
1651 ath_dbg(common, XMIT, "%s called\n", __func__);
1652
1653 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1654 tid = ath_node_to_tid(an, tidno);
1655 txq = tid->txq;
1656
1657 ath_txq_lock(sc, txq);
1658 tid->clear_ps_filter = true;
1659 if (!skb_queue_empty(&tid->retry_q)) {
1660 ath_tx_queue_tid(sc, tid);
1661 ath_txq_schedule(sc, txq);
1662 }
1663 ath_txq_unlock_complete(sc, txq);
1664
1665 }
1666 }
1667
1668
1669 static void
ath9k_set_moredata(struct ath_softc * sc,struct ath_buf * bf,bool val)1670 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1671 {
1672 struct ieee80211_hdr *hdr;
1673 __le16 mask, mask_val;
1674
1675 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1676
1677 if (val)
1678 mask_val = mask;
1679 else
1680 mask_val = 0;
1681
1682 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1683 if ((hdr->frame_control & mask) != mask_val) {
1684 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1685 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1686 sizeof(*hdr), DMA_TO_DEVICE);
1687 }
1688 }
1689
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1690 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1691 struct ieee80211_sta *sta,
1692 u16 tids, int nframes,
1693 enum ieee80211_frame_release_type reason,
1694 bool more_data)
1695 {
1696 struct ath_softc *sc = hw->priv;
1697 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1698 struct ath_txq *txq = sc->tx.uapsdq;
1699 struct ieee80211_tx_info *info;
1700 struct list_head bf_q;
1701 struct ath_buf *bf_tail = NULL, *bf = NULL;
1702 int i, ret;
1703
1704 INIT_LIST_HEAD(&bf_q);
1705 for (i = 0; tids && nframes; i++, tids >>= 1) {
1706 struct ath_atx_tid *tid;
1707
1708 if (!(tids & 1))
1709 continue;
1710
1711 tid = ATH_AN_2_TID(an, i);
1712
1713 ath_txq_lock(sc, tid->txq);
1714 while (nframes > 0) {
1715 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1716 tid, &bf);
1717 if (ret < 0)
1718 break;
1719
1720 ath9k_set_moredata(sc, bf, true);
1721 list_add_tail(&bf->list, &bf_q);
1722 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1723 if (bf_isampdu(bf))
1724 bf->bf_state.bf_type &= ~BUF_AGGR;
1725 if (bf_tail)
1726 bf_tail->bf_next = bf;
1727
1728 bf_tail = bf;
1729 nframes--;
1730 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1731
1732 if (an->sta && skb_queue_empty(&tid->retry_q))
1733 ieee80211_sta_set_buffered(an->sta, i, false);
1734 }
1735 ath_txq_unlock_complete(sc, tid->txq);
1736 }
1737
1738 if (list_empty(&bf_q))
1739 return;
1740
1741 if (!more_data)
1742 ath9k_set_moredata(sc, bf_tail, false);
1743
1744 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1745 info->flags |= IEEE80211_TX_STATUS_EOSP;
1746
1747 bf = list_first_entry(&bf_q, struct ath_buf, list);
1748 ath_txq_lock(sc, txq);
1749 ath_tx_fill_desc(sc, bf, txq, 0);
1750 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1751 ath_txq_unlock(sc, txq);
1752 }
1753
1754 /********************/
1755 /* Queue Management */
1756 /********************/
1757
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1758 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1759 {
1760 struct ath_hw *ah = sc->sc_ah;
1761 struct ath9k_tx_queue_info qi;
1762 static const int subtype_txq_to_hwq[] = {
1763 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1764 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1765 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1766 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1767 };
1768 int axq_qnum, i;
1769
1770 memset(&qi, 0, sizeof(qi));
1771 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1772 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1773 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1774 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1775 qi.tqi_physCompBuf = 0;
1776
1777 /*
1778 * Enable interrupts only for EOL and DESC conditions.
1779 * We mark tx descriptors to receive a DESC interrupt
1780 * when a tx queue gets deep; otherwise waiting for the
1781 * EOL to reap descriptors. Note that this is done to
1782 * reduce interrupt load and this only defers reaping
1783 * descriptors, never transmitting frames. Aside from
1784 * reducing interrupts this also permits more concurrency.
1785 * The only potential downside is if the tx queue backs
1786 * up in which case the top half of the kernel may backup
1787 * due to a lack of tx descriptors.
1788 *
1789 * The UAPSD queue is an exception, since we take a desc-
1790 * based intr on the EOSP frames.
1791 */
1792 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1793 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1794 } else {
1795 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1796 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1797 else
1798 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1799 TXQ_FLAG_TXDESCINT_ENABLE;
1800 }
1801 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1802 if (axq_qnum == -1) {
1803 /*
1804 * NB: don't print a message, this happens
1805 * normally on parts with too few tx queues
1806 */
1807 return NULL;
1808 }
1809 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1810 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1811
1812 txq->axq_qnum = axq_qnum;
1813 txq->mac80211_qnum = -1;
1814 txq->axq_link = NULL;
1815 __skb_queue_head_init(&txq->complete_q);
1816 INIT_LIST_HEAD(&txq->axq_q);
1817 spin_lock_init(&txq->axq_lock);
1818 txq->axq_depth = 0;
1819 txq->axq_ampdu_depth = 0;
1820 txq->axq_tx_inprogress = false;
1821 sc->tx.txqsetup |= 1<<axq_qnum;
1822
1823 txq->txq_headidx = txq->txq_tailidx = 0;
1824 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1825 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1826 }
1827 return &sc->tx.txq[axq_qnum];
1828 }
1829
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1830 int ath_txq_update(struct ath_softc *sc, int qnum,
1831 struct ath9k_tx_queue_info *qinfo)
1832 {
1833 struct ath_hw *ah = sc->sc_ah;
1834 int error = 0;
1835 struct ath9k_tx_queue_info qi;
1836
1837 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1838
1839 ath9k_hw_get_txq_props(ah, qnum, &qi);
1840 qi.tqi_aifs = qinfo->tqi_aifs;
1841 qi.tqi_cwmin = qinfo->tqi_cwmin;
1842 qi.tqi_cwmax = qinfo->tqi_cwmax;
1843 qi.tqi_burstTime = qinfo->tqi_burstTime;
1844 qi.tqi_readyTime = qinfo->tqi_readyTime;
1845
1846 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1847 ath_err(ath9k_hw_common(sc->sc_ah),
1848 "Unable to update hardware queue %u!\n", qnum);
1849 error = -EIO;
1850 } else {
1851 ath9k_hw_resettxqueue(ah, qnum);
1852 }
1853
1854 return error;
1855 }
1856
ath_cabq_update(struct ath_softc * sc)1857 int ath_cabq_update(struct ath_softc *sc)
1858 {
1859 struct ath9k_tx_queue_info qi;
1860 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1861 int qnum = sc->beacon.cabq->axq_qnum;
1862
1863 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1864
1865 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1866 ATH_CABQ_READY_TIME) / 100;
1867 ath_txq_update(sc, qnum, &qi);
1868
1869 return 0;
1870 }
1871
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1872 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1873 struct list_head *list)
1874 {
1875 struct ath_buf *bf, *lastbf;
1876 struct list_head bf_head;
1877 struct ath_tx_status ts;
1878
1879 memset(&ts, 0, sizeof(ts));
1880 ts.ts_status = ATH9K_TX_FLUSH;
1881 INIT_LIST_HEAD(&bf_head);
1882
1883 while (!list_empty(list)) {
1884 bf = list_first_entry(list, struct ath_buf, list);
1885
1886 if (bf->bf_state.stale) {
1887 list_del(&bf->list);
1888
1889 ath_tx_return_buffer(sc, bf);
1890 continue;
1891 }
1892
1893 lastbf = bf->bf_lastbf;
1894 list_cut_position(&bf_head, list, &lastbf->list);
1895 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1896 }
1897 }
1898
1899 /*
1900 * Drain a given TX queue (could be Beacon or Data)
1901 *
1902 * This assumes output has been stopped and
1903 * we do not need to block ath_tx_tasklet.
1904 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1905 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1906 {
1907 rcu_read_lock();
1908 ath_txq_lock(sc, txq);
1909
1910 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1911 int idx = txq->txq_tailidx;
1912
1913 while (!list_empty(&txq->txq_fifo[idx])) {
1914 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1915
1916 INCR(idx, ATH_TXFIFO_DEPTH);
1917 }
1918 txq->txq_tailidx = idx;
1919 }
1920
1921 txq->axq_link = NULL;
1922 txq->axq_tx_inprogress = false;
1923 ath_drain_txq_list(sc, txq, &txq->axq_q);
1924
1925 ath_txq_unlock_complete(sc, txq);
1926 rcu_read_unlock();
1927 }
1928
ath_drain_all_txq(struct ath_softc * sc)1929 bool ath_drain_all_txq(struct ath_softc *sc)
1930 {
1931 struct ath_hw *ah = sc->sc_ah;
1932 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1933 struct ath_txq *txq;
1934 int i;
1935 u32 npend = 0;
1936
1937 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1938 return true;
1939
1940 ath9k_hw_abort_tx_dma(ah);
1941
1942 /* Check if any queue remains active */
1943 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1944 if (!ATH_TXQ_SETUP(sc, i))
1945 continue;
1946
1947 if (!sc->tx.txq[i].axq_depth)
1948 continue;
1949
1950 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1951 npend |= BIT(i);
1952 }
1953
1954 if (npend) {
1955 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1956 ath_dbg(common, RESET,
1957 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1958 }
1959
1960 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1961 if (!ATH_TXQ_SETUP(sc, i))
1962 continue;
1963
1964 txq = &sc->tx.txq[i];
1965 ath_draintxq(sc, txq);
1966 }
1967
1968 return !npend;
1969 }
1970
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1971 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1972 {
1973 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1974 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1975 }
1976
1977 /* For each acq entry, for each tid, try to schedule packets
1978 * for transmit until ampdu_depth has reached min Q depth.
1979 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1980 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1981 {
1982 struct ieee80211_hw *hw = sc->hw;
1983 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1984 struct ieee80211_txq *queue;
1985 struct ath_atx_tid *tid;
1986 int ret;
1987
1988 if (txq->mac80211_qnum < 0)
1989 return;
1990
1991 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1992 return;
1993
1994 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1995 spin_lock_bh(&sc->chan_lock);
1996 rcu_read_lock();
1997
1998 if (sc->cur_chan->stopped)
1999 goto out;
2000
2001 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
2002 bool force;
2003
2004 tid = (struct ath_atx_tid *)queue->drv_priv;
2005
2006 ret = ath_tx_sched_aggr(sc, txq, tid);
2007 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2008
2009 force = !skb_queue_empty(&tid->retry_q);
2010 ieee80211_return_txq(hw, queue, force);
2011 }
2012
2013 out:
2014 rcu_read_unlock();
2015 spin_unlock_bh(&sc->chan_lock);
2016 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2017 }
2018
ath_txq_schedule_all(struct ath_softc * sc)2019 void ath_txq_schedule_all(struct ath_softc *sc)
2020 {
2021 struct ath_txq *txq;
2022 int i;
2023
2024 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2025 txq = sc->tx.txq_map[i];
2026
2027 spin_lock_bh(&txq->axq_lock);
2028 ath_txq_schedule(sc, txq);
2029 spin_unlock_bh(&txq->axq_lock);
2030 }
2031 }
2032
2033 /***********/
2034 /* TX, DMA */
2035 /***********/
2036
2037 /*
2038 * Insert a chain of ath_buf (descriptors) on a txq and
2039 * assume the descriptors are already chained together by caller.
2040 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2041 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2042 struct list_head *head, bool internal)
2043 {
2044 struct ath_hw *ah = sc->sc_ah;
2045 struct ath_common *common = ath9k_hw_common(ah);
2046 struct ath_buf *bf, *bf_last;
2047 bool puttxbuf = false;
2048 bool edma;
2049
2050 /*
2051 * Insert the frame on the outbound list and
2052 * pass it on to the hardware.
2053 */
2054
2055 if (list_empty(head))
2056 return;
2057
2058 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2059 bf = list_first_entry(head, struct ath_buf, list);
2060 bf_last = list_entry(head->prev, struct ath_buf, list);
2061
2062 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2063 txq->axq_qnum, txq->axq_depth);
2064
2065 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2066 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2067 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2068 puttxbuf = true;
2069 } else {
2070 list_splice_tail_init(head, &txq->axq_q);
2071
2072 if (txq->axq_link) {
2073 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2074 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2075 txq->axq_qnum, txq->axq_link,
2076 ito64(bf->bf_daddr), bf->bf_desc);
2077 } else if (!edma)
2078 puttxbuf = true;
2079
2080 txq->axq_link = bf_last->bf_desc;
2081 }
2082
2083 if (puttxbuf) {
2084 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2085 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2086 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2087 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2088 }
2089
2090 if (!edma || sc->tx99_state) {
2091 TX_STAT_INC(sc, txq->axq_qnum, txstart);
2092 ath9k_hw_txstart(ah, txq->axq_qnum);
2093 }
2094
2095 if (!internal) {
2096 while (bf) {
2097 txq->axq_depth++;
2098 if (bf_is_ampdu_not_probing(bf))
2099 txq->axq_ampdu_depth++;
2100
2101 bf_last = bf->bf_lastbf;
2102 bf = bf_last->bf_next;
2103 bf_last->bf_next = NULL;
2104 }
2105 }
2106 }
2107
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2108 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2109 struct ath_atx_tid *tid, struct sk_buff *skb)
2110 {
2111 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112 struct ath_frame_info *fi = get_frame_info(skb);
2113 struct list_head bf_head;
2114 struct ath_buf *bf = fi->bf;
2115
2116 INIT_LIST_HEAD(&bf_head);
2117 list_add_tail(&bf->list, &bf_head);
2118 bf->bf_state.bf_type = 0;
2119 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2120 bf->bf_state.bf_type = BUF_AMPDU;
2121 ath_tx_addto_baw(tid, bf);
2122 }
2123
2124 bf->bf_next = NULL;
2125 bf->bf_lastbf = bf;
2126 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2127 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2128 TX_STAT_INC(sc, txq->axq_qnum, queued);
2129 }
2130
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2131 static void setup_frame_info(struct ieee80211_hw *hw,
2132 struct ieee80211_sta *sta,
2133 struct sk_buff *skb,
2134 int framelen)
2135 {
2136 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2137 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2138 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2139 const struct ieee80211_rate *rate;
2140 struct ath_frame_info *fi = get_frame_info(skb);
2141 struct ath_node *an = NULL;
2142 enum ath9k_key_type keytype;
2143 bool short_preamble = false;
2144 u8 txpower;
2145
2146 /*
2147 * We check if Short Preamble is needed for the CTS rate by
2148 * checking the BSS's global flag.
2149 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2150 */
2151 if (tx_info->control.vif &&
2152 tx_info->control.vif->bss_conf.use_short_preamble)
2153 short_preamble = true;
2154
2155 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2156 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2157
2158 if (sta)
2159 an = (struct ath_node *) sta->drv_priv;
2160
2161 if (tx_info->control.vif) {
2162 struct ieee80211_vif *vif = tx_info->control.vif;
2163 if (vif->bss_conf.txpower == INT_MIN)
2164 goto nonvifpower;
2165 txpower = 2 * vif->bss_conf.txpower;
2166 } else {
2167 struct ath_softc *sc;
2168 nonvifpower:
2169 sc = hw->priv;
2170
2171 txpower = sc->cur_chan->cur_txpower;
2172 }
2173
2174 memset(fi, 0, sizeof(*fi));
2175 fi->txq = -1;
2176 if (hw_key)
2177 fi->keyix = hw_key->hw_key_idx;
2178 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2179 fi->keyix = an->ps_key;
2180 else
2181 fi->keyix = ATH9K_TXKEYIX_INVALID;
2182 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2183 fi->keytype = keytype;
2184 fi->framelen = framelen;
2185 fi->tx_power = txpower;
2186
2187 if (!rate)
2188 return;
2189 fi->rtscts_rate = rate->hw_value;
2190 if (short_preamble)
2191 fi->rtscts_rate |= rate->hw_value_short;
2192 }
2193
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2194 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2195 {
2196 struct ath_hw *ah = sc->sc_ah;
2197 struct ath9k_channel *curchan = ah->curchan;
2198
2199 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2200 (chainmask == 0x7) && (rate < 0x90))
2201 return 0x3;
2202 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2203 IS_CCK_RATE(rate))
2204 return 0x2;
2205 else
2206 return chainmask;
2207 }
2208
2209 /*
2210 * Assign a descriptor (and sequence number if necessary,
2211 * and map buffer for DMA. Frees skb on error
2212 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2213 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2214 struct ath_txq *txq,
2215 struct ath_atx_tid *tid,
2216 struct sk_buff *skb)
2217 {
2218 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2219 struct ath_frame_info *fi = get_frame_info(skb);
2220 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2221 struct ath_buf *bf;
2222 int fragno;
2223 u16 seqno;
2224
2225 bf = ath_tx_get_buffer(sc);
2226 if (!bf) {
2227 ath_dbg(common, XMIT, "TX buffers are full\n");
2228 return NULL;
2229 }
2230
2231 ATH_TXBUF_RESET(bf);
2232
2233 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2234 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2235 seqno = tid->seq_next;
2236 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2237
2238 if (fragno)
2239 hdr->seq_ctrl |= cpu_to_le16(fragno);
2240
2241 if (!ieee80211_has_morefrags(hdr->frame_control))
2242 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2243
2244 bf->bf_state.seqno = seqno;
2245 }
2246
2247 bf->bf_mpdu = skb;
2248
2249 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2250 skb->len, DMA_TO_DEVICE);
2251 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2252 bf->bf_mpdu = NULL;
2253 bf->bf_buf_addr = 0;
2254 ath_err(ath9k_hw_common(sc->sc_ah),
2255 "dma_mapping_error() on TX\n");
2256 ath_tx_return_buffer(sc, bf);
2257 return NULL;
2258 }
2259
2260 fi->bf = bf;
2261
2262 return bf;
2263 }
2264
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2265 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2266 {
2267 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2268 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2269 struct ieee80211_vif *vif = info->control.vif;
2270 struct ath_vif *avp;
2271
2272 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2273 return;
2274
2275 if (!vif)
2276 return;
2277
2278 avp = (struct ath_vif *)vif->drv_priv;
2279
2280 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2281 avp->seq_no += 0x10;
2282
2283 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2284 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2285 }
2286
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2287 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2288 struct ath_tx_control *txctl)
2289 {
2290 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2291 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2292 struct ieee80211_sta *sta = txctl->sta;
2293 struct ieee80211_vif *vif = info->control.vif;
2294 struct ath_softc *sc = hw->priv;
2295 int frmlen = skb->len + FCS_LEN;
2296 int padpos, padsize;
2297
2298 if (info->control.hw_key)
2299 frmlen += info->control.hw_key->icv_len;
2300
2301 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2302
2303 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2304 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2305 !ieee80211_is_data(hdr->frame_control))
2306 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2307
2308 /* Add the padding after the header if this is not already done */
2309 padpos = ieee80211_hdrlen(hdr->frame_control);
2310 padsize = padpos & 3;
2311 if (padsize && skb->len > padpos) {
2312 if (skb_headroom(skb) < padsize)
2313 return -ENOMEM;
2314
2315 skb_push(skb, padsize);
2316 memmove(skb->data, skb->data + padsize, padpos);
2317 }
2318
2319 setup_frame_info(hw, sta, skb, frmlen);
2320 return 0;
2321 }
2322
2323
2324 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2325 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2326 struct ath_tx_control *txctl)
2327 {
2328 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2329 struct ieee80211_sta *sta = txctl->sta;
2330 struct ieee80211_vif *vif = info->control.vif;
2331 struct ath_frame_info *fi = get_frame_info(skb);
2332 struct ath_softc *sc = hw->priv;
2333 struct ath_txq *txq = txctl->txq;
2334 struct ath_atx_tid *tid = NULL;
2335 struct ath_node *an = NULL;
2336 struct ath_buf *bf;
2337 bool ps_resp;
2338 int q, ret;
2339
2340 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2341
2342 ret = ath_tx_prepare(hw, skb, txctl);
2343 if (ret)
2344 return ret;
2345
2346 /*
2347 * At this point, the vif, hw_key and sta pointers in the tx control
2348 * info are no longer valid (overwritten by the ath_frame_info data.
2349 */
2350
2351 q = skb_get_queue_mapping(skb);
2352
2353 if (ps_resp)
2354 txq = sc->tx.uapsdq;
2355
2356 if (txctl->sta) {
2357 an = (struct ath_node *) sta->drv_priv;
2358 tid = ath_get_skb_tid(an, skb);
2359 }
2360
2361 ath_txq_lock(sc, txq);
2362 if (txq == sc->tx.txq_map[q]) {
2363 fi->txq = q;
2364 ++txq->pending_frames;
2365 }
2366
2367 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2368 if (!bf) {
2369 ath_txq_skb_done(sc, skb);
2370 if (txctl->paprd)
2371 dev_kfree_skb_any(skb);
2372 else
2373 ieee80211_free_txskb(sc->hw, skb);
2374 goto out;
2375 }
2376
2377 bf->bf_state.bfs_paprd = txctl->paprd;
2378
2379 if (txctl->paprd)
2380 bf->bf_state.bfs_paprd_timestamp = jiffies;
2381
2382 ath_set_rates(vif, sta, bf);
2383 ath_tx_send_normal(sc, txq, tid, skb);
2384
2385 out:
2386 ath_txq_unlock(sc, txq);
2387
2388 return 0;
2389 }
2390
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2391 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2392 struct sk_buff *skb)
2393 {
2394 struct ath_softc *sc = hw->priv;
2395 struct ath_tx_control txctl = {
2396 .txq = sc->beacon.cabq
2397 };
2398 struct ath_tx_info info = {};
2399 struct ath_buf *bf_tail = NULL;
2400 struct ath_buf *bf;
2401 LIST_HEAD(bf_q);
2402 int duration = 0;
2403 int max_duration;
2404
2405 max_duration =
2406 sc->cur_chan->beacon.beacon_interval * 1000 *
2407 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2408
2409 do {
2410 struct ath_frame_info *fi = get_frame_info(skb);
2411
2412 if (ath_tx_prepare(hw, skb, &txctl))
2413 break;
2414
2415 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2416 if (!bf)
2417 break;
2418
2419 bf->bf_lastbf = bf;
2420 ath_set_rates(vif, NULL, bf);
2421 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2422 duration += info.rates[0].PktDuration;
2423 if (bf_tail)
2424 bf_tail->bf_next = bf;
2425
2426 list_add_tail(&bf->list, &bf_q);
2427 bf_tail = bf;
2428 skb = NULL;
2429
2430 if (duration > max_duration)
2431 break;
2432
2433 skb = ieee80211_get_buffered_bc(hw, vif);
2434 } while(skb);
2435
2436 if (skb)
2437 ieee80211_free_txskb(hw, skb);
2438
2439 if (list_empty(&bf_q))
2440 return;
2441
2442 bf = list_last_entry(&bf_q, struct ath_buf, list);
2443 ath9k_set_moredata(sc, bf, false);
2444
2445 bf = list_first_entry(&bf_q, struct ath_buf, list);
2446 ath_txq_lock(sc, txctl.txq);
2447 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2448 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2449 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2450 ath_txq_unlock(sc, txctl.txq);
2451 }
2452
2453 /*****************/
2454 /* TX Completion */
2455 /*****************/
2456
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq,struct ieee80211_sta * sta)2457 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2458 int tx_flags, struct ath_txq *txq,
2459 struct ieee80211_sta *sta)
2460 {
2461 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2462 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2463 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2464 int padpos, padsize;
2465 unsigned long flags;
2466
2467 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2468
2469 if (sc->sc_ah->caldata)
2470 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2471
2472 if (!(tx_flags & ATH_TX_ERROR)) {
2473 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2474 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2475 else
2476 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2477 }
2478
2479 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2480 padpos = ieee80211_hdrlen(hdr->frame_control);
2481 padsize = padpos & 3;
2482 if (padsize && skb->len>padpos+padsize) {
2483 /*
2484 * Remove MAC header padding before giving the frame back to
2485 * mac80211.
2486 */
2487 memmove(skb->data + padsize, skb->data, padpos);
2488 skb_pull(skb, padsize);
2489 }
2490 }
2491
2492 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2493 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2494 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2495 ath_dbg(common, PS,
2496 "Going back to sleep after having received TX status (0x%lx)\n",
2497 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2498 PS_WAIT_FOR_CAB |
2499 PS_WAIT_FOR_PSPOLL_DATA |
2500 PS_WAIT_FOR_TX_ACK));
2501 }
2502 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2503
2504 ath_txq_skb_done(sc, skb);
2505 tx_info->status.status_driver_data[0] = sta;
2506 __skb_queue_tail(&txq->complete_q, skb);
2507 }
2508
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_tx_status * ts,int txok)2509 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2510 struct ath_txq *txq, struct list_head *bf_q,
2511 struct ieee80211_sta *sta,
2512 struct ath_tx_status *ts, int txok)
2513 {
2514 struct sk_buff *skb = bf->bf_mpdu;
2515 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2516 unsigned long flags;
2517 int tx_flags = 0;
2518
2519 if (!txok)
2520 tx_flags |= ATH_TX_ERROR;
2521
2522 if (ts->ts_status & ATH9K_TXERR_FILT)
2523 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2524
2525 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2526 bf->bf_buf_addr = 0;
2527 if (sc->tx99_state)
2528 goto skip_tx_complete;
2529
2530 if (bf->bf_state.bfs_paprd) {
2531 if (time_after(jiffies,
2532 bf->bf_state.bfs_paprd_timestamp +
2533 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2534 dev_kfree_skb_any(skb);
2535 else
2536 complete(&sc->paprd_complete);
2537 } else {
2538 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2539 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2540 }
2541 skip_tx_complete:
2542 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2543 * accidentally reference it later.
2544 */
2545 bf->bf_mpdu = NULL;
2546
2547 /*
2548 * Return the list of ath_buf of this mpdu to free queue
2549 */
2550 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2551 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2552 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2553 }
2554
ath_clear_tx_status(struct ieee80211_tx_info * tx_info)2555 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2556 {
2557 void *ptr = &tx_info->status;
2558
2559 memset(ptr + sizeof(tx_info->status.rates), 0,
2560 sizeof(tx_info->status) -
2561 sizeof(tx_info->status.rates) -
2562 sizeof(tx_info->status.status_driver_data));
2563 }
2564
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2565 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2566 struct ath_tx_status *ts, int nframes, int nbad,
2567 int txok)
2568 {
2569 struct sk_buff *skb = bf->bf_mpdu;
2570 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2571 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2572 struct ieee80211_hw *hw = sc->hw;
2573 struct ath_hw *ah = sc->sc_ah;
2574 u8 i, tx_rateindex;
2575
2576 ath_clear_tx_status(tx_info);
2577
2578 if (txok)
2579 tx_info->status.ack_signal = ts->ts_rssi;
2580
2581 tx_rateindex = ts->ts_rateindex;
2582 WARN_ON(tx_rateindex >= hw->max_rates);
2583
2584 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2585 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2586
2587 BUG_ON(nbad > nframes);
2588 }
2589 tx_info->status.ampdu_len = nframes;
2590 tx_info->status.ampdu_ack_len = nframes - nbad;
2591
2592 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2593
2594 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2595 tx_info->status.rates[i].count = 0;
2596 tx_info->status.rates[i].idx = -1;
2597 }
2598
2599 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2600 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2601 /*
2602 * If an underrun error is seen assume it as an excessive
2603 * retry only if max frame trigger level has been reached
2604 * (2 KB for single stream, and 4 KB for dual stream).
2605 * Adjust the long retry as if the frame was tried
2606 * hw->max_rate_tries times to affect how rate control updates
2607 * PER for the failed rate.
2608 * In case of congestion on the bus penalizing this type of
2609 * underruns should help hardware actually transmit new frames
2610 * successfully by eventually preferring slower rates.
2611 * This itself should also alleviate congestion on the bus.
2612 */
2613 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2614 ATH9K_TX_DELIM_UNDERRUN)) &&
2615 ieee80211_is_data(hdr->frame_control) &&
2616 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2617 tx_info->status.rates[tx_rateindex].count =
2618 hw->max_rate_tries;
2619 }
2620 }
2621
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2622 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2623 {
2624 struct ath_hw *ah = sc->sc_ah;
2625 struct ath_common *common = ath9k_hw_common(ah);
2626 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2627 struct list_head bf_head;
2628 struct ath_desc *ds;
2629 struct ath_tx_status ts;
2630 int status;
2631
2632 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2633 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2634 txq->axq_link);
2635
2636 ath_txq_lock(sc, txq);
2637 for (;;) {
2638 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2639 break;
2640
2641 if (list_empty(&txq->axq_q)) {
2642 txq->axq_link = NULL;
2643 ath_txq_schedule(sc, txq);
2644 break;
2645 }
2646 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2647
2648 /*
2649 * There is a race condition that a BH gets scheduled
2650 * after sw writes TxE and before hw re-load the last
2651 * descriptor to get the newly chained one.
2652 * Software must keep the last DONE descriptor as a
2653 * holding descriptor - software does so by marking
2654 * it with the STALE flag.
2655 */
2656 bf_held = NULL;
2657 if (bf->bf_state.stale) {
2658 bf_held = bf;
2659 if (list_is_last(&bf_held->list, &txq->axq_q))
2660 break;
2661
2662 bf = list_entry(bf_held->list.next, struct ath_buf,
2663 list);
2664 }
2665
2666 lastbf = bf->bf_lastbf;
2667 ds = lastbf->bf_desc;
2668
2669 memset(&ts, 0, sizeof(ts));
2670 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2671 if (status == -EINPROGRESS)
2672 break;
2673
2674 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2675
2676 /*
2677 * Remove ath_buf's of the same transmit unit from txq,
2678 * however leave the last descriptor back as the holding
2679 * descriptor for hw.
2680 */
2681 lastbf->bf_state.stale = true;
2682 INIT_LIST_HEAD(&bf_head);
2683 if (!list_is_singular(&lastbf->list))
2684 list_cut_position(&bf_head,
2685 &txq->axq_q, lastbf->list.prev);
2686
2687 if (bf_held) {
2688 list_del(&bf_held->list);
2689 ath_tx_return_buffer(sc, bf_held);
2690 }
2691
2692 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2693 }
2694 ath_txq_unlock_complete(sc, txq);
2695 }
2696
ath_tx_tasklet(struct ath_softc * sc)2697 void ath_tx_tasklet(struct ath_softc *sc)
2698 {
2699 struct ath_hw *ah = sc->sc_ah;
2700 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2701 int i;
2702
2703 rcu_read_lock();
2704 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2705 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2706 ath_tx_processq(sc, &sc->tx.txq[i]);
2707 }
2708 rcu_read_unlock();
2709 }
2710
ath_tx_edma_tasklet(struct ath_softc * sc)2711 void ath_tx_edma_tasklet(struct ath_softc *sc)
2712 {
2713 struct ath_tx_status ts;
2714 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2715 struct ath_hw *ah = sc->sc_ah;
2716 struct ath_txq *txq;
2717 struct ath_buf *bf, *lastbf;
2718 struct list_head bf_head;
2719 struct list_head *fifo_list;
2720 int status;
2721
2722 rcu_read_lock();
2723 for (;;) {
2724 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2725 break;
2726
2727 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2728 if (status == -EINPROGRESS)
2729 break;
2730 if (status == -EIO) {
2731 ath_dbg(common, XMIT, "Error processing tx status\n");
2732 break;
2733 }
2734
2735 /* Process beacon completions separately */
2736 if (ts.qid == sc->beacon.beaconq) {
2737 sc->beacon.tx_processed = true;
2738 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2739
2740 if (ath9k_is_chanctx_enabled()) {
2741 ath_chanctx_event(sc, NULL,
2742 ATH_CHANCTX_EVENT_BEACON_SENT);
2743 }
2744
2745 ath9k_csa_update(sc);
2746 continue;
2747 }
2748
2749 txq = &sc->tx.txq[ts.qid];
2750
2751 ath_txq_lock(sc, txq);
2752
2753 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2754
2755 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2756 if (list_empty(fifo_list)) {
2757 ath_txq_unlock(sc, txq);
2758 break;
2759 }
2760
2761 bf = list_first_entry(fifo_list, struct ath_buf, list);
2762 if (bf->bf_state.stale) {
2763 list_del(&bf->list);
2764 ath_tx_return_buffer(sc, bf);
2765 bf = list_first_entry(fifo_list, struct ath_buf, list);
2766 }
2767
2768 lastbf = bf->bf_lastbf;
2769
2770 INIT_LIST_HEAD(&bf_head);
2771 if (list_is_last(&lastbf->list, fifo_list)) {
2772 list_splice_tail_init(fifo_list, &bf_head);
2773 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2774
2775 if (!list_empty(&txq->axq_q)) {
2776 struct list_head bf_q;
2777
2778 INIT_LIST_HEAD(&bf_q);
2779 txq->axq_link = NULL;
2780 list_splice_tail_init(&txq->axq_q, &bf_q);
2781 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2782 }
2783 } else {
2784 lastbf->bf_state.stale = true;
2785 if (bf != lastbf)
2786 list_cut_position(&bf_head, fifo_list,
2787 lastbf->list.prev);
2788 }
2789
2790 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2791 ath_txq_unlock_complete(sc, txq);
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 /*****************/
2797 /* Init, Cleanup */
2798 /*****************/
2799
ath_txstatus_setup(struct ath_softc * sc,int size)2800 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2801 {
2802 struct ath_descdma *dd = &sc->txsdma;
2803 u8 txs_len = sc->sc_ah->caps.txs_len;
2804
2805 dd->dd_desc_len = size * txs_len;
2806 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2807 &dd->dd_desc_paddr, GFP_KERNEL);
2808 if (!dd->dd_desc)
2809 return -ENOMEM;
2810
2811 return 0;
2812 }
2813
ath_tx_edma_init(struct ath_softc * sc)2814 static int ath_tx_edma_init(struct ath_softc *sc)
2815 {
2816 int err;
2817
2818 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2819 if (!err)
2820 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2821 sc->txsdma.dd_desc_paddr,
2822 ATH_TXSTATUS_RING_SIZE);
2823
2824 return err;
2825 }
2826
ath_tx_init(struct ath_softc * sc,int nbufs)2827 int ath_tx_init(struct ath_softc *sc, int nbufs)
2828 {
2829 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2830 int error = 0;
2831
2832 spin_lock_init(&sc->tx.txbuflock);
2833
2834 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2835 "tx", nbufs, 1, 1);
2836 if (error != 0) {
2837 ath_err(common,
2838 "Failed to allocate tx descriptors: %d\n", error);
2839 return error;
2840 }
2841
2842 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2843 "beacon", ATH_BCBUF, 1, 1);
2844 if (error != 0) {
2845 ath_err(common,
2846 "Failed to allocate beacon descriptors: %d\n", error);
2847 return error;
2848 }
2849
2850 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2851 error = ath_tx_edma_init(sc);
2852
2853 return error;
2854 }
2855
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2856 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2857 {
2858 struct ath_atx_tid *tid;
2859 int tidno, acno;
2860
2861 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2862 tid = ath_node_to_tid(an, tidno);
2863 tid->an = an;
2864 tid->tidno = tidno;
2865 tid->seq_start = tid->seq_next = 0;
2866 tid->baw_size = WME_MAX_BA;
2867 tid->baw_head = tid->baw_tail = 0;
2868 tid->active = false;
2869 tid->clear_ps_filter = true;
2870 __skb_queue_head_init(&tid->retry_q);
2871 INIT_LIST_HEAD(&tid->list);
2872 acno = TID_TO_WME_AC(tidno);
2873 tid->txq = sc->tx.txq_map[acno];
2874
2875 if (!an->sta)
2876 break; /* just one multicast ath_atx_tid */
2877 }
2878 }
2879
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2880 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2881 {
2882 struct ath_atx_tid *tid;
2883 struct ath_txq *txq;
2884 int tidno;
2885
2886 rcu_read_lock();
2887
2888 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2889 tid = ath_node_to_tid(an, tidno);
2890 txq = tid->txq;
2891
2892 ath_txq_lock(sc, txq);
2893
2894 if (!list_empty(&tid->list))
2895 list_del_init(&tid->list);
2896
2897 ath_tid_drain(sc, txq, tid);
2898 tid->active = false;
2899
2900 ath_txq_unlock(sc, txq);
2901
2902 if (!an->sta)
2903 break; /* just one multicast ath_atx_tid */
2904 }
2905
2906 rcu_read_unlock();
2907 }
2908
2909 #ifdef CONFIG_ATH9K_TX99
2910
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2911 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2912 struct ath_tx_control *txctl)
2913 {
2914 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2915 struct ath_frame_info *fi = get_frame_info(skb);
2916 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2917 struct ath_buf *bf;
2918 int padpos, padsize;
2919
2920 padpos = ieee80211_hdrlen(hdr->frame_control);
2921 padsize = padpos & 3;
2922
2923 if (padsize && skb->len > padpos) {
2924 if (skb_headroom(skb) < padsize) {
2925 ath_dbg(common, XMIT,
2926 "tx99 padding failed\n");
2927 return -EINVAL;
2928 }
2929
2930 skb_push(skb, padsize);
2931 memmove(skb->data, skb->data + padsize, padpos);
2932 }
2933
2934 fi->keyix = ATH9K_TXKEYIX_INVALID;
2935 fi->framelen = skb->len + FCS_LEN;
2936 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2937
2938 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2939 if (!bf) {
2940 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2941 return -EINVAL;
2942 }
2943
2944 ath_set_rates(sc->tx99_vif, NULL, bf);
2945
2946 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2947 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2948
2949 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2950
2951 return 0;
2952 }
2953
2954 #endif /* CONFIG_ATH9K_TX99 */
2955