1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60
61 __initdata nodemask_t hugetlb_bootmem_nodes;
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
64
65 /*
66 * Due to ordering constraints across the init code for various
67 * architectures, hugetlb hstate cmdline parameters can't simply
68 * be early_param. early_param might call the setup function
69 * before valid hugetlb page sizes are determined, leading to
70 * incorrect rejection of valid hugepagesz= options.
71 *
72 * So, record the parameters early and consume them whenever the
73 * init code is ready for them, by calling hugetlb_parse_params().
74 */
75
76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
77 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
78 struct hugetlb_cmdline {
79 char *val;
80 int (*setup)(char *val);
81 };
82
83 /* for command line parsing */
84 static struct hstate * __initdata parsed_hstate;
85 static unsigned long __initdata default_hstate_max_huge_pages;
86 static bool __initdata parsed_valid_hugepagesz = true;
87 static bool __initdata parsed_default_hugepagesz;
88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
89 static unsigned long hugepage_allocation_threads __initdata;
90
91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
92 static int hstate_cmdline_index __initdata;
93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
94 static int hugetlb_param_index __initdata;
95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
96 static __init void hugetlb_parse_params(void);
97
98 #define hugetlb_early_param(str, func) \
99 static __init int func##args(char *s) \
100 { \
101 return hugetlb_add_param(s, func); \
102 } \
103 early_param(str, func##args)
104
105 /*
106 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
107 * free_huge_pages, and surplus_huge_pages.
108 */
109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
110
111 /*
112 * Serializes faults on the same logical page. This is used to
113 * prevent spurious OOMs when the hugepage pool is fully utilized.
114 */
115 static int num_fault_mutexes __ro_after_init;
116 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
117
118 /* Forward declaration */
119 static int hugetlb_acct_memory(struct hstate *h, long delta);
120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
124 unsigned long start, unsigned long end, bool take_locks);
125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
126
hugetlb_free_folio(struct folio * folio)127 static void hugetlb_free_folio(struct folio *folio)
128 {
129 if (folio_test_hugetlb_cma(folio)) {
130 hugetlb_cma_free_folio(folio);
131 return;
132 }
133
134 folio_put(folio);
135 }
136
subpool_is_free(struct hugepage_subpool * spool)137 static inline bool subpool_is_free(struct hugepage_subpool *spool)
138 {
139 if (spool->count)
140 return false;
141 if (spool->max_hpages != -1)
142 return spool->used_hpages == 0;
143 if (spool->min_hpages != -1)
144 return spool->rsv_hpages == spool->min_hpages;
145
146 return true;
147 }
148
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
150 unsigned long irq_flags)
151 {
152 spin_unlock_irqrestore(&spool->lock, irq_flags);
153
154 /* If no pages are used, and no other handles to the subpool
155 * remain, give up any reservations based on minimum size and
156 * free the subpool */
157 if (subpool_is_free(spool)) {
158 if (spool->min_hpages != -1)
159 hugetlb_acct_memory(spool->hstate,
160 -spool->min_hpages);
161 kfree(spool);
162 }
163 }
164
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
166 long min_hpages)
167 {
168 struct hugepage_subpool *spool;
169
170 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
171 if (!spool)
172 return NULL;
173
174 spin_lock_init(&spool->lock);
175 spool->count = 1;
176 spool->max_hpages = max_hpages;
177 spool->hstate = h;
178 spool->min_hpages = min_hpages;
179
180 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
181 kfree(spool);
182 return NULL;
183 }
184 spool->rsv_hpages = min_hpages;
185
186 return spool;
187 }
188
hugepage_put_subpool(struct hugepage_subpool * spool)189 void hugepage_put_subpool(struct hugepage_subpool *spool)
190 {
191 unsigned long flags;
192
193 spin_lock_irqsave(&spool->lock, flags);
194 BUG_ON(!spool->count);
195 spool->count--;
196 unlock_or_release_subpool(spool, flags);
197 }
198
199 /*
200 * Subpool accounting for allocating and reserving pages.
201 * Return -ENOMEM if there are not enough resources to satisfy the
202 * request. Otherwise, return the number of pages by which the
203 * global pools must be adjusted (upward). The returned value may
204 * only be different than the passed value (delta) in the case where
205 * a subpool minimum size must be maintained.
206 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
208 long delta)
209 {
210 long ret = delta;
211
212 if (!spool)
213 return ret;
214
215 spin_lock_irq(&spool->lock);
216
217 if (spool->max_hpages != -1) { /* maximum size accounting */
218 if ((spool->used_hpages + delta) <= spool->max_hpages)
219 spool->used_hpages += delta;
220 else {
221 ret = -ENOMEM;
222 goto unlock_ret;
223 }
224 }
225
226 /* minimum size accounting */
227 if (spool->min_hpages != -1 && spool->rsv_hpages) {
228 if (delta > spool->rsv_hpages) {
229 /*
230 * Asking for more reserves than those already taken on
231 * behalf of subpool. Return difference.
232 */
233 ret = delta - spool->rsv_hpages;
234 spool->rsv_hpages = 0;
235 } else {
236 ret = 0; /* reserves already accounted for */
237 spool->rsv_hpages -= delta;
238 }
239 }
240
241 unlock_ret:
242 spin_unlock_irq(&spool->lock);
243 return ret;
244 }
245
246 /*
247 * Subpool accounting for freeing and unreserving pages.
248 * Return the number of global page reservations that must be dropped.
249 * The return value may only be different than the passed value (delta)
250 * in the case where a subpool minimum size must be maintained.
251 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
253 long delta)
254 {
255 long ret = delta;
256 unsigned long flags;
257
258 if (!spool)
259 return delta;
260
261 spin_lock_irqsave(&spool->lock, flags);
262
263 if (spool->max_hpages != -1) /* maximum size accounting */
264 spool->used_hpages -= delta;
265
266 /* minimum size accounting */
267 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
268 if (spool->rsv_hpages + delta <= spool->min_hpages)
269 ret = 0;
270 else
271 ret = spool->rsv_hpages + delta - spool->min_hpages;
272
273 spool->rsv_hpages += delta;
274 if (spool->rsv_hpages > spool->min_hpages)
275 spool->rsv_hpages = spool->min_hpages;
276 }
277
278 /*
279 * If hugetlbfs_put_super couldn't free spool due to an outstanding
280 * quota reference, free it now.
281 */
282 unlock_or_release_subpool(spool, flags);
283
284 return ret;
285 }
286
subpool_inode(struct inode * inode)287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
288 {
289 return HUGETLBFS_SB(inode->i_sb)->spool;
290 }
291
subpool_vma(struct vm_area_struct * vma)292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
293 {
294 return subpool_inode(file_inode(vma->vm_file));
295 }
296
297 /*
298 * hugetlb vma_lock helper routines
299 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)300 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
301 {
302 if (__vma_shareable_lock(vma)) {
303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304
305 down_read(&vma_lock->rw_sema);
306 } else if (__vma_private_lock(vma)) {
307 struct resv_map *resv_map = vma_resv_map(vma);
308
309 down_read(&resv_map->rw_sema);
310 }
311 }
312
hugetlb_vma_unlock_read(struct vm_area_struct * vma)313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
314 {
315 if (__vma_shareable_lock(vma)) {
316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317
318 up_read(&vma_lock->rw_sema);
319 } else if (__vma_private_lock(vma)) {
320 struct resv_map *resv_map = vma_resv_map(vma);
321
322 up_read(&resv_map->rw_sema);
323 }
324 }
325
hugetlb_vma_lock_write(struct vm_area_struct * vma)326 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
327 {
328 if (__vma_shareable_lock(vma)) {
329 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
330
331 down_write(&vma_lock->rw_sema);
332 } else if (__vma_private_lock(vma)) {
333 struct resv_map *resv_map = vma_resv_map(vma);
334
335 down_write(&resv_map->rw_sema);
336 }
337 }
338
hugetlb_vma_unlock_write(struct vm_area_struct * vma)339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
340 {
341 if (__vma_shareable_lock(vma)) {
342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
343
344 up_write(&vma_lock->rw_sema);
345 } else if (__vma_private_lock(vma)) {
346 struct resv_map *resv_map = vma_resv_map(vma);
347
348 up_write(&resv_map->rw_sema);
349 }
350 }
351
hugetlb_vma_trylock_write(struct vm_area_struct * vma)352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
353 {
354
355 if (__vma_shareable_lock(vma)) {
356 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
357
358 return down_write_trylock(&vma_lock->rw_sema);
359 } else if (__vma_private_lock(vma)) {
360 struct resv_map *resv_map = vma_resv_map(vma);
361
362 return down_write_trylock(&resv_map->rw_sema);
363 }
364
365 return 1;
366 }
367
hugetlb_vma_assert_locked(struct vm_area_struct * vma)368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
369 {
370 if (__vma_shareable_lock(vma)) {
371 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
372
373 lockdep_assert_held(&vma_lock->rw_sema);
374 } else if (__vma_private_lock(vma)) {
375 struct resv_map *resv_map = vma_resv_map(vma);
376
377 lockdep_assert_held(&resv_map->rw_sema);
378 }
379 }
380
hugetlb_vma_lock_release(struct kref * kref)381 void hugetlb_vma_lock_release(struct kref *kref)
382 {
383 struct hugetlb_vma_lock *vma_lock = container_of(kref,
384 struct hugetlb_vma_lock, refs);
385
386 kfree(vma_lock);
387 }
388
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
390 {
391 struct vm_area_struct *vma = vma_lock->vma;
392
393 /*
394 * vma_lock structure may or not be released as a result of put,
395 * it certainly will no longer be attached to vma so clear pointer.
396 * Semaphore synchronizes access to vma_lock->vma field.
397 */
398 vma_lock->vma = NULL;
399 vma->vm_private_data = NULL;
400 up_write(&vma_lock->rw_sema);
401 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
402 }
403
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
405 {
406 if (__vma_shareable_lock(vma)) {
407 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
408
409 __hugetlb_vma_unlock_write_put(vma_lock);
410 } else if (__vma_private_lock(vma)) {
411 struct resv_map *resv_map = vma_resv_map(vma);
412
413 /* no free for anon vmas, but still need to unlock */
414 up_write(&resv_map->rw_sema);
415 }
416 }
417
hugetlb_vma_lock_free(struct vm_area_struct * vma)418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
419 {
420 /*
421 * Only present in sharable vmas.
422 */
423 if (!vma || !__vma_shareable_lock(vma))
424 return;
425
426 if (vma->vm_private_data) {
427 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
428
429 down_write(&vma_lock->rw_sema);
430 __hugetlb_vma_unlock_write_put(vma_lock);
431 }
432 }
433
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
435 {
436 struct hugetlb_vma_lock *vma_lock;
437
438 /* Only establish in (flags) sharable vmas */
439 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
440 return;
441
442 /* Should never get here with non-NULL vm_private_data */
443 if (vma->vm_private_data)
444 return;
445
446 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
447 if (!vma_lock) {
448 /*
449 * If we can not allocate structure, then vma can not
450 * participate in pmd sharing. This is only a possible
451 * performance enhancement and memory saving issue.
452 * However, the lock is also used to synchronize page
453 * faults with truncation. If the lock is not present,
454 * unlikely races could leave pages in a file past i_size
455 * until the file is removed. Warn in the unlikely case of
456 * allocation failure.
457 */
458 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
459 return;
460 }
461
462 kref_init(&vma_lock->refs);
463 init_rwsem(&vma_lock->rw_sema);
464 vma_lock->vma = vma;
465 vma->vm_private_data = vma_lock;
466 }
467
468 /* Helper that removes a struct file_region from the resv_map cache and returns
469 * it for use.
470 */
471 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
473 {
474 struct file_region *nrg;
475
476 VM_BUG_ON(resv->region_cache_count <= 0);
477
478 resv->region_cache_count--;
479 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
480 list_del(&nrg->link);
481
482 nrg->from = from;
483 nrg->to = to;
484
485 return nrg;
486 }
487
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
489 struct file_region *rg)
490 {
491 #ifdef CONFIG_CGROUP_HUGETLB
492 nrg->reservation_counter = rg->reservation_counter;
493 nrg->css = rg->css;
494 if (rg->css)
495 css_get(rg->css);
496 #endif
497 }
498
499 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
501 struct hstate *h,
502 struct resv_map *resv,
503 struct file_region *nrg)
504 {
505 #ifdef CONFIG_CGROUP_HUGETLB
506 if (h_cg) {
507 nrg->reservation_counter =
508 &h_cg->rsvd_hugepage[hstate_index(h)];
509 nrg->css = &h_cg->css;
510 /*
511 * The caller will hold exactly one h_cg->css reference for the
512 * whole contiguous reservation region. But this area might be
513 * scattered when there are already some file_regions reside in
514 * it. As a result, many file_regions may share only one css
515 * reference. In order to ensure that one file_region must hold
516 * exactly one h_cg->css reference, we should do css_get for
517 * each file_region and leave the reference held by caller
518 * untouched.
519 */
520 css_get(&h_cg->css);
521 if (!resv->pages_per_hpage)
522 resv->pages_per_hpage = pages_per_huge_page(h);
523 /* pages_per_hpage should be the same for all entries in
524 * a resv_map.
525 */
526 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
527 } else {
528 nrg->reservation_counter = NULL;
529 nrg->css = NULL;
530 }
531 #endif
532 }
533
put_uncharge_info(struct file_region * rg)534 static void put_uncharge_info(struct file_region *rg)
535 {
536 #ifdef CONFIG_CGROUP_HUGETLB
537 if (rg->css)
538 css_put(rg->css);
539 #endif
540 }
541
has_same_uncharge_info(struct file_region * rg,struct file_region * org)542 static bool has_same_uncharge_info(struct file_region *rg,
543 struct file_region *org)
544 {
545 #ifdef CONFIG_CGROUP_HUGETLB
546 return rg->reservation_counter == org->reservation_counter &&
547 rg->css == org->css;
548
549 #else
550 return true;
551 #endif
552 }
553
coalesce_file_region(struct resv_map * resv,struct file_region * rg)554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
555 {
556 struct file_region *nrg, *prg;
557
558 prg = list_prev_entry(rg, link);
559 if (&prg->link != &resv->regions && prg->to == rg->from &&
560 has_same_uncharge_info(prg, rg)) {
561 prg->to = rg->to;
562
563 list_del(&rg->link);
564 put_uncharge_info(rg);
565 kfree(rg);
566
567 rg = prg;
568 }
569
570 nrg = list_next_entry(rg, link);
571 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
572 has_same_uncharge_info(nrg, rg)) {
573 nrg->from = rg->from;
574
575 list_del(&rg->link);
576 put_uncharge_info(rg);
577 kfree(rg);
578 }
579 }
580
581 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
583 long to, struct hstate *h, struct hugetlb_cgroup *cg,
584 long *regions_needed)
585 {
586 struct file_region *nrg;
587
588 if (!regions_needed) {
589 nrg = get_file_region_entry_from_cache(map, from, to);
590 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
591 list_add(&nrg->link, rg);
592 coalesce_file_region(map, nrg);
593 } else
594 *regions_needed += 1;
595
596 return to - from;
597 }
598
599 /*
600 * Must be called with resv->lock held.
601 *
602 * Calling this with regions_needed != NULL will count the number of pages
603 * to be added but will not modify the linked list. And regions_needed will
604 * indicate the number of file_regions needed in the cache to carry out to add
605 * the regions for this range.
606 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)607 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
608 struct hugetlb_cgroup *h_cg,
609 struct hstate *h, long *regions_needed)
610 {
611 long add = 0;
612 struct list_head *head = &resv->regions;
613 long last_accounted_offset = f;
614 struct file_region *iter, *trg = NULL;
615 struct list_head *rg = NULL;
616
617 if (regions_needed)
618 *regions_needed = 0;
619
620 /* In this loop, we essentially handle an entry for the range
621 * [last_accounted_offset, iter->from), at every iteration, with some
622 * bounds checking.
623 */
624 list_for_each_entry_safe(iter, trg, head, link) {
625 /* Skip irrelevant regions that start before our range. */
626 if (iter->from < f) {
627 /* If this region ends after the last accounted offset,
628 * then we need to update last_accounted_offset.
629 */
630 if (iter->to > last_accounted_offset)
631 last_accounted_offset = iter->to;
632 continue;
633 }
634
635 /* When we find a region that starts beyond our range, we've
636 * finished.
637 */
638 if (iter->from >= t) {
639 rg = iter->link.prev;
640 break;
641 }
642
643 /* Add an entry for last_accounted_offset -> iter->from, and
644 * update last_accounted_offset.
645 */
646 if (iter->from > last_accounted_offset)
647 add += hugetlb_resv_map_add(resv, iter->link.prev,
648 last_accounted_offset,
649 iter->from, h, h_cg,
650 regions_needed);
651
652 last_accounted_offset = iter->to;
653 }
654
655 /* Handle the case where our range extends beyond
656 * last_accounted_offset.
657 */
658 if (!rg)
659 rg = head->prev;
660 if (last_accounted_offset < t)
661 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
662 t, h, h_cg, regions_needed);
663
664 return add;
665 }
666
667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
668 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)669 static int allocate_file_region_entries(struct resv_map *resv,
670 int regions_needed)
671 __must_hold(&resv->lock)
672 {
673 LIST_HEAD(allocated_regions);
674 int to_allocate = 0, i = 0;
675 struct file_region *trg = NULL, *rg = NULL;
676
677 VM_BUG_ON(regions_needed < 0);
678
679 /*
680 * Check for sufficient descriptors in the cache to accommodate
681 * the number of in progress add operations plus regions_needed.
682 *
683 * This is a while loop because when we drop the lock, some other call
684 * to region_add or region_del may have consumed some region_entries,
685 * so we keep looping here until we finally have enough entries for
686 * (adds_in_progress + regions_needed).
687 */
688 while (resv->region_cache_count <
689 (resv->adds_in_progress + regions_needed)) {
690 to_allocate = resv->adds_in_progress + regions_needed -
691 resv->region_cache_count;
692
693 /* At this point, we should have enough entries in the cache
694 * for all the existing adds_in_progress. We should only be
695 * needing to allocate for regions_needed.
696 */
697 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
698
699 spin_unlock(&resv->lock);
700 for (i = 0; i < to_allocate; i++) {
701 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
702 if (!trg)
703 goto out_of_memory;
704 list_add(&trg->link, &allocated_regions);
705 }
706
707 spin_lock(&resv->lock);
708
709 list_splice(&allocated_regions, &resv->region_cache);
710 resv->region_cache_count += to_allocate;
711 }
712
713 return 0;
714
715 out_of_memory:
716 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
717 list_del(&rg->link);
718 kfree(rg);
719 }
720 return -ENOMEM;
721 }
722
723 /*
724 * Add the huge page range represented by [f, t) to the reserve
725 * map. Regions will be taken from the cache to fill in this range.
726 * Sufficient regions should exist in the cache due to the previous
727 * call to region_chg with the same range, but in some cases the cache will not
728 * have sufficient entries due to races with other code doing region_add or
729 * region_del. The extra needed entries will be allocated.
730 *
731 * regions_needed is the out value provided by a previous call to region_chg.
732 *
733 * Return the number of new huge pages added to the map. This number is greater
734 * than or equal to zero. If file_region entries needed to be allocated for
735 * this operation and we were not able to allocate, it returns -ENOMEM.
736 * region_add of regions of length 1 never allocate file_regions and cannot
737 * fail; region_chg will always allocate at least 1 entry and a region_add for
738 * 1 page will only require at most 1 entry.
739 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)740 static long region_add(struct resv_map *resv, long f, long t,
741 long in_regions_needed, struct hstate *h,
742 struct hugetlb_cgroup *h_cg)
743 {
744 long add = 0, actual_regions_needed = 0;
745
746 spin_lock(&resv->lock);
747 retry:
748
749 /* Count how many regions are actually needed to execute this add. */
750 add_reservation_in_range(resv, f, t, NULL, NULL,
751 &actual_regions_needed);
752
753 /*
754 * Check for sufficient descriptors in the cache to accommodate
755 * this add operation. Note that actual_regions_needed may be greater
756 * than in_regions_needed, as the resv_map may have been modified since
757 * the region_chg call. In this case, we need to make sure that we
758 * allocate extra entries, such that we have enough for all the
759 * existing adds_in_progress, plus the excess needed for this
760 * operation.
761 */
762 if (actual_regions_needed > in_regions_needed &&
763 resv->region_cache_count <
764 resv->adds_in_progress +
765 (actual_regions_needed - in_regions_needed)) {
766 /* region_add operation of range 1 should never need to
767 * allocate file_region entries.
768 */
769 VM_BUG_ON(t - f <= 1);
770
771 if (allocate_file_region_entries(
772 resv, actual_regions_needed - in_regions_needed)) {
773 return -ENOMEM;
774 }
775
776 goto retry;
777 }
778
779 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
780
781 resv->adds_in_progress -= in_regions_needed;
782
783 spin_unlock(&resv->lock);
784 return add;
785 }
786
787 /*
788 * Examine the existing reserve map and determine how many
789 * huge pages in the specified range [f, t) are NOT currently
790 * represented. This routine is called before a subsequent
791 * call to region_add that will actually modify the reserve
792 * map to add the specified range [f, t). region_chg does
793 * not change the number of huge pages represented by the
794 * map. A number of new file_region structures is added to the cache as a
795 * placeholder, for the subsequent region_add call to use. At least 1
796 * file_region structure is added.
797 *
798 * out_regions_needed is the number of regions added to the
799 * resv->adds_in_progress. This value needs to be provided to a follow up call
800 * to region_add or region_abort for proper accounting.
801 *
802 * Returns the number of huge pages that need to be added to the existing
803 * reservation map for the range [f, t). This number is greater or equal to
804 * zero. -ENOMEM is returned if a new file_region structure or cache entry
805 * is needed and can not be allocated.
806 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)807 static long region_chg(struct resv_map *resv, long f, long t,
808 long *out_regions_needed)
809 {
810 long chg = 0;
811
812 spin_lock(&resv->lock);
813
814 /* Count how many hugepages in this range are NOT represented. */
815 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
816 out_regions_needed);
817
818 if (*out_regions_needed == 0)
819 *out_regions_needed = 1;
820
821 if (allocate_file_region_entries(resv, *out_regions_needed))
822 return -ENOMEM;
823
824 resv->adds_in_progress += *out_regions_needed;
825
826 spin_unlock(&resv->lock);
827 return chg;
828 }
829
830 /*
831 * Abort the in progress add operation. The adds_in_progress field
832 * of the resv_map keeps track of the operations in progress between
833 * calls to region_chg and region_add. Operations are sometimes
834 * aborted after the call to region_chg. In such cases, region_abort
835 * is called to decrement the adds_in_progress counter. regions_needed
836 * is the value returned by the region_chg call, it is used to decrement
837 * the adds_in_progress counter.
838 *
839 * NOTE: The range arguments [f, t) are not needed or used in this
840 * routine. They are kept to make reading the calling code easier as
841 * arguments will match the associated region_chg call.
842 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)843 static void region_abort(struct resv_map *resv, long f, long t,
844 long regions_needed)
845 {
846 spin_lock(&resv->lock);
847 VM_BUG_ON(!resv->region_cache_count);
848 resv->adds_in_progress -= regions_needed;
849 spin_unlock(&resv->lock);
850 }
851
852 /*
853 * Delete the specified range [f, t) from the reserve map. If the
854 * t parameter is LONG_MAX, this indicates that ALL regions after f
855 * should be deleted. Locate the regions which intersect [f, t)
856 * and either trim, delete or split the existing regions.
857 *
858 * Returns the number of huge pages deleted from the reserve map.
859 * In the normal case, the return value is zero or more. In the
860 * case where a region must be split, a new region descriptor must
861 * be allocated. If the allocation fails, -ENOMEM will be returned.
862 * NOTE: If the parameter t == LONG_MAX, then we will never split
863 * a region and possibly return -ENOMEM. Callers specifying
864 * t == LONG_MAX do not need to check for -ENOMEM error.
865 */
region_del(struct resv_map * resv,long f,long t)866 static long region_del(struct resv_map *resv, long f, long t)
867 {
868 struct list_head *head = &resv->regions;
869 struct file_region *rg, *trg;
870 struct file_region *nrg = NULL;
871 long del = 0;
872
873 retry:
874 spin_lock(&resv->lock);
875 list_for_each_entry_safe(rg, trg, head, link) {
876 /*
877 * Skip regions before the range to be deleted. file_region
878 * ranges are normally of the form [from, to). However, there
879 * may be a "placeholder" entry in the map which is of the form
880 * (from, to) with from == to. Check for placeholder entries
881 * at the beginning of the range to be deleted.
882 */
883 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
884 continue;
885
886 if (rg->from >= t)
887 break;
888
889 if (f > rg->from && t < rg->to) { /* Must split region */
890 /*
891 * Check for an entry in the cache before dropping
892 * lock and attempting allocation.
893 */
894 if (!nrg &&
895 resv->region_cache_count > resv->adds_in_progress) {
896 nrg = list_first_entry(&resv->region_cache,
897 struct file_region,
898 link);
899 list_del(&nrg->link);
900 resv->region_cache_count--;
901 }
902
903 if (!nrg) {
904 spin_unlock(&resv->lock);
905 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
906 if (!nrg)
907 return -ENOMEM;
908 goto retry;
909 }
910
911 del += t - f;
912 hugetlb_cgroup_uncharge_file_region(
913 resv, rg, t - f, false);
914
915 /* New entry for end of split region */
916 nrg->from = t;
917 nrg->to = rg->to;
918
919 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
920
921 INIT_LIST_HEAD(&nrg->link);
922
923 /* Original entry is trimmed */
924 rg->to = f;
925
926 list_add(&nrg->link, &rg->link);
927 nrg = NULL;
928 break;
929 }
930
931 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
932 del += rg->to - rg->from;
933 hugetlb_cgroup_uncharge_file_region(resv, rg,
934 rg->to - rg->from, true);
935 list_del(&rg->link);
936 kfree(rg);
937 continue;
938 }
939
940 if (f <= rg->from) { /* Trim beginning of region */
941 hugetlb_cgroup_uncharge_file_region(resv, rg,
942 t - rg->from, false);
943
944 del += t - rg->from;
945 rg->from = t;
946 } else { /* Trim end of region */
947 hugetlb_cgroup_uncharge_file_region(resv, rg,
948 rg->to - f, false);
949
950 del += rg->to - f;
951 rg->to = f;
952 }
953 }
954
955 spin_unlock(&resv->lock);
956 kfree(nrg);
957 return del;
958 }
959
960 /*
961 * A rare out of memory error was encountered which prevented removal of
962 * the reserve map region for a page. The huge page itself was free'ed
963 * and removed from the page cache. This routine will adjust the subpool
964 * usage count, and the global reserve count if needed. By incrementing
965 * these counts, the reserve map entry which could not be deleted will
966 * appear as a "reserved" entry instead of simply dangling with incorrect
967 * counts.
968 */
hugetlb_fix_reserve_counts(struct inode * inode)969 void hugetlb_fix_reserve_counts(struct inode *inode)
970 {
971 struct hugepage_subpool *spool = subpool_inode(inode);
972 long rsv_adjust;
973 bool reserved = false;
974
975 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
976 if (rsv_adjust > 0) {
977 struct hstate *h = hstate_inode(inode);
978
979 if (!hugetlb_acct_memory(h, 1))
980 reserved = true;
981 } else if (!rsv_adjust) {
982 reserved = true;
983 }
984
985 if (!reserved)
986 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
987 }
988
989 /*
990 * Count and return the number of huge pages in the reserve map
991 * that intersect with the range [f, t).
992 */
region_count(struct resv_map * resv,long f,long t)993 static long region_count(struct resv_map *resv, long f, long t)
994 {
995 struct list_head *head = &resv->regions;
996 struct file_region *rg;
997 long chg = 0;
998
999 spin_lock(&resv->lock);
1000 /* Locate each segment we overlap with, and count that overlap. */
1001 list_for_each_entry(rg, head, link) {
1002 long seg_from;
1003 long seg_to;
1004
1005 if (rg->to <= f)
1006 continue;
1007 if (rg->from >= t)
1008 break;
1009
1010 seg_from = max(rg->from, f);
1011 seg_to = min(rg->to, t);
1012
1013 chg += seg_to - seg_from;
1014 }
1015 spin_unlock(&resv->lock);
1016
1017 return chg;
1018 }
1019
1020 /*
1021 * Convert the address within this vma to the page offset within
1022 * the mapping, huge page units here.
1023 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1024 static pgoff_t vma_hugecache_offset(struct hstate *h,
1025 struct vm_area_struct *vma, unsigned long address)
1026 {
1027 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1028 (vma->vm_pgoff >> huge_page_order(h));
1029 }
1030
1031 /**
1032 * vma_kernel_pagesize - Page size granularity for this VMA.
1033 * @vma: The user mapping.
1034 *
1035 * Folios in this VMA will be aligned to, and at least the size of the
1036 * number of bytes returned by this function.
1037 *
1038 * Return: The default size of the folios allocated when backing a VMA.
1039 */
vma_kernel_pagesize(struct vm_area_struct * vma)1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1041 {
1042 if (vma->vm_ops && vma->vm_ops->pagesize)
1043 return vma->vm_ops->pagesize(vma);
1044 return PAGE_SIZE;
1045 }
1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1047
1048 /*
1049 * Return the page size being used by the MMU to back a VMA. In the majority
1050 * of cases, the page size used by the kernel matches the MMU size. On
1051 * architectures where it differs, an architecture-specific 'strong'
1052 * version of this symbol is required.
1053 */
vma_mmu_pagesize(struct vm_area_struct * vma)1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1055 {
1056 return vma_kernel_pagesize(vma);
1057 }
1058
1059 /*
1060 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1061 * bits of the reservation map pointer, which are always clear due to
1062 * alignment.
1063 */
1064 #define HPAGE_RESV_OWNER (1UL << 0)
1065 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1067
1068 /*
1069 * These helpers are used to track how many pages are reserved for
1070 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1071 * is guaranteed to have their future faults succeed.
1072 *
1073 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1074 * the reserve counters are updated with the hugetlb_lock held. It is safe
1075 * to reset the VMA at fork() time as it is not in use yet and there is no
1076 * chance of the global counters getting corrupted as a result of the values.
1077 *
1078 * The private mapping reservation is represented in a subtly different
1079 * manner to a shared mapping. A shared mapping has a region map associated
1080 * with the underlying file, this region map represents the backing file
1081 * pages which have ever had a reservation assigned which this persists even
1082 * after the page is instantiated. A private mapping has a region map
1083 * associated with the original mmap which is attached to all VMAs which
1084 * reference it, this region map represents those offsets which have consumed
1085 * reservation ie. where pages have been instantiated.
1086 */
get_vma_private_data(struct vm_area_struct * vma)1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1088 {
1089 return (unsigned long)vma->vm_private_data;
1090 }
1091
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1092 static void set_vma_private_data(struct vm_area_struct *vma,
1093 unsigned long value)
1094 {
1095 vma->vm_private_data = (void *)value;
1096 }
1097
1098 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1100 struct hugetlb_cgroup *h_cg,
1101 struct hstate *h)
1102 {
1103 #ifdef CONFIG_CGROUP_HUGETLB
1104 if (!h_cg || !h) {
1105 resv_map->reservation_counter = NULL;
1106 resv_map->pages_per_hpage = 0;
1107 resv_map->css = NULL;
1108 } else {
1109 resv_map->reservation_counter =
1110 &h_cg->rsvd_hugepage[hstate_index(h)];
1111 resv_map->pages_per_hpage = pages_per_huge_page(h);
1112 resv_map->css = &h_cg->css;
1113 }
1114 #endif
1115 }
1116
resv_map_alloc(void)1117 struct resv_map *resv_map_alloc(void)
1118 {
1119 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1120 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1121
1122 if (!resv_map || !rg) {
1123 kfree(resv_map);
1124 kfree(rg);
1125 return NULL;
1126 }
1127
1128 kref_init(&resv_map->refs);
1129 spin_lock_init(&resv_map->lock);
1130 INIT_LIST_HEAD(&resv_map->regions);
1131 init_rwsem(&resv_map->rw_sema);
1132
1133 resv_map->adds_in_progress = 0;
1134 /*
1135 * Initialize these to 0. On shared mappings, 0's here indicate these
1136 * fields don't do cgroup accounting. On private mappings, these will be
1137 * re-initialized to the proper values, to indicate that hugetlb cgroup
1138 * reservations are to be un-charged from here.
1139 */
1140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1141
1142 INIT_LIST_HEAD(&resv_map->region_cache);
1143 list_add(&rg->link, &resv_map->region_cache);
1144 resv_map->region_cache_count = 1;
1145
1146 return resv_map;
1147 }
1148
resv_map_release(struct kref * ref)1149 void resv_map_release(struct kref *ref)
1150 {
1151 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1152 struct list_head *head = &resv_map->region_cache;
1153 struct file_region *rg, *trg;
1154
1155 /* Clear out any active regions before we release the map. */
1156 region_del(resv_map, 0, LONG_MAX);
1157
1158 /* ... and any entries left in the cache */
1159 list_for_each_entry_safe(rg, trg, head, link) {
1160 list_del(&rg->link);
1161 kfree(rg);
1162 }
1163
1164 VM_BUG_ON(resv_map->adds_in_progress);
1165
1166 kfree(resv_map);
1167 }
1168
inode_resv_map(struct inode * inode)1169 static inline struct resv_map *inode_resv_map(struct inode *inode)
1170 {
1171 /*
1172 * At inode evict time, i_mapping may not point to the original
1173 * address space within the inode. This original address space
1174 * contains the pointer to the resv_map. So, always use the
1175 * address space embedded within the inode.
1176 * The VERY common case is inode->mapping == &inode->i_data but,
1177 * this may not be true for device special inodes.
1178 */
1179 return (struct resv_map *)(&inode->i_data)->i_private_data;
1180 }
1181
vma_resv_map(struct vm_area_struct * vma)1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1183 {
1184 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1185 if (vma->vm_flags & VM_MAYSHARE) {
1186 struct address_space *mapping = vma->vm_file->f_mapping;
1187 struct inode *inode = mapping->host;
1188
1189 return inode_resv_map(inode);
1190
1191 } else {
1192 return (struct resv_map *)(get_vma_private_data(vma) &
1193 ~HPAGE_RESV_MASK);
1194 }
1195 }
1196
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1198 {
1199 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1200 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1201
1202 set_vma_private_data(vma, (unsigned long)map);
1203 }
1204
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1206 {
1207 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1208 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1209
1210 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1211 }
1212
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1214 {
1215 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1216
1217 return (get_vma_private_data(vma) & flag) != 0;
1218 }
1219
__vma_private_lock(struct vm_area_struct * vma)1220 bool __vma_private_lock(struct vm_area_struct *vma)
1221 {
1222 return !(vma->vm_flags & VM_MAYSHARE) &&
1223 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1224 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1225 }
1226
hugetlb_dup_vma_private(struct vm_area_struct * vma)1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1228 {
1229 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1230 /*
1231 * Clear vm_private_data
1232 * - For shared mappings this is a per-vma semaphore that may be
1233 * allocated in a subsequent call to hugetlb_vm_op_open.
1234 * Before clearing, make sure pointer is not associated with vma
1235 * as this will leak the structure. This is the case when called
1236 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1237 * been called to allocate a new structure.
1238 * - For MAP_PRIVATE mappings, this is the reserve map which does
1239 * not apply to children. Faults generated by the children are
1240 * not guaranteed to succeed, even if read-only.
1241 */
1242 if (vma->vm_flags & VM_MAYSHARE) {
1243 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1244
1245 if (vma_lock && vma_lock->vma != vma)
1246 vma->vm_private_data = NULL;
1247 } else
1248 vma->vm_private_data = NULL;
1249 }
1250
1251 /*
1252 * Reset and decrement one ref on hugepage private reservation.
1253 * Called with mm->mmap_lock writer semaphore held.
1254 * This function should be only used by mremap and operate on
1255 * same sized vma. It should never come here with last ref on the
1256 * reservation.
1257 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1259 {
1260 /*
1261 * Clear the old hugetlb private page reservation.
1262 * It has already been transferred to new_vma.
1263 *
1264 * During a mremap() operation of a hugetlb vma we call move_vma()
1265 * which copies vma into new_vma and unmaps vma. After the copy
1266 * operation both new_vma and vma share a reference to the resv_map
1267 * struct, and at that point vma is about to be unmapped. We don't
1268 * want to return the reservation to the pool at unmap of vma because
1269 * the reservation still lives on in new_vma, so simply decrement the
1270 * ref here and remove the resv_map reference from this vma.
1271 */
1272 struct resv_map *reservations = vma_resv_map(vma);
1273
1274 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1275 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1276 kref_put(&reservations->refs, resv_map_release);
1277 }
1278
1279 hugetlb_dup_vma_private(vma);
1280 }
1281
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1283 {
1284 int nid = folio_nid(folio);
1285
1286 lockdep_assert_held(&hugetlb_lock);
1287 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1288
1289 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1290 h->free_huge_pages++;
1291 h->free_huge_pages_node[nid]++;
1292 folio_set_hugetlb_freed(folio);
1293 }
1294
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1296 int nid)
1297 {
1298 struct folio *folio;
1299 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1300
1301 lockdep_assert_held(&hugetlb_lock);
1302 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1303 if (pin && !folio_is_longterm_pinnable(folio))
1304 continue;
1305
1306 if (folio_test_hwpoison(folio))
1307 continue;
1308
1309 if (is_migrate_isolate_page(&folio->page))
1310 continue;
1311
1312 list_move(&folio->lru, &h->hugepage_activelist);
1313 folio_ref_unfreeze(folio, 1);
1314 folio_clear_hugetlb_freed(folio);
1315 h->free_huge_pages--;
1316 h->free_huge_pages_node[nid]--;
1317 return folio;
1318 }
1319
1320 return NULL;
1321 }
1322
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1324 int nid, nodemask_t *nmask)
1325 {
1326 unsigned int cpuset_mems_cookie;
1327 struct zonelist *zonelist;
1328 struct zone *zone;
1329 struct zoneref *z;
1330 int node = NUMA_NO_NODE;
1331
1332 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1333 if (nid == NUMA_NO_NODE)
1334 nid = numa_node_id();
1335
1336 zonelist = node_zonelist(nid, gfp_mask);
1337
1338 retry_cpuset:
1339 cpuset_mems_cookie = read_mems_allowed_begin();
1340 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1341 struct folio *folio;
1342
1343 if (!cpuset_zone_allowed(zone, gfp_mask))
1344 continue;
1345 /*
1346 * no need to ask again on the same node. Pool is node rather than
1347 * zone aware
1348 */
1349 if (zone_to_nid(zone) == node)
1350 continue;
1351 node = zone_to_nid(zone);
1352
1353 folio = dequeue_hugetlb_folio_node_exact(h, node);
1354 if (folio)
1355 return folio;
1356 }
1357 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1358 goto retry_cpuset;
1359
1360 return NULL;
1361 }
1362
available_huge_pages(struct hstate * h)1363 static unsigned long available_huge_pages(struct hstate *h)
1364 {
1365 return h->free_huge_pages - h->resv_huge_pages;
1366 }
1367
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1369 struct vm_area_struct *vma,
1370 unsigned long address, long gbl_chg)
1371 {
1372 struct folio *folio = NULL;
1373 struct mempolicy *mpol;
1374 gfp_t gfp_mask;
1375 nodemask_t *nodemask;
1376 int nid;
1377
1378 /*
1379 * gbl_chg==1 means the allocation requires a new page that was not
1380 * reserved before. Making sure there's at least one free page.
1381 */
1382 if (gbl_chg && !available_huge_pages(h))
1383 goto err;
1384
1385 gfp_mask = htlb_alloc_mask(h);
1386 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1387
1388 if (mpol_is_preferred_many(mpol)) {
1389 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1390 nid, nodemask);
1391
1392 /* Fallback to all nodes if page==NULL */
1393 nodemask = NULL;
1394 }
1395
1396 if (!folio)
1397 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1398 nid, nodemask);
1399
1400 mpol_cond_put(mpol);
1401 return folio;
1402
1403 err:
1404 return NULL;
1405 }
1406
1407 /*
1408 * common helper functions for hstate_next_node_to_{alloc|free}.
1409 * We may have allocated or freed a huge page based on a different
1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411 * be outside of *nodes_allowed. Ensure that we use an allowed
1412 * node for alloc or free.
1413 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 {
1416 nid = next_node_in(nid, *nodes_allowed);
1417 VM_BUG_ON(nid >= MAX_NUMNODES);
1418
1419 return nid;
1420 }
1421
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1423 {
1424 if (!node_isset(nid, *nodes_allowed))
1425 nid = next_node_allowed(nid, nodes_allowed);
1426 return nid;
1427 }
1428
1429 /*
1430 * returns the previously saved node ["this node"] from which to
1431 * allocate a persistent huge page for the pool and advance the
1432 * next node from which to allocate, handling wrap at end of node
1433 * mask.
1434 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1435 static int hstate_next_node_to_alloc(int *next_node,
1436 nodemask_t *nodes_allowed)
1437 {
1438 int nid;
1439
1440 VM_BUG_ON(!nodes_allowed);
1441
1442 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1443 *next_node = next_node_allowed(nid, nodes_allowed);
1444
1445 return nid;
1446 }
1447
1448 /*
1449 * helper for remove_pool_hugetlb_folio() - return the previously saved
1450 * node ["this node"] from which to free a huge page. Advance the
1451 * next node id whether or not we find a free huge page to free so
1452 * that the next attempt to free addresses the next node.
1453 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1455 {
1456 int nid;
1457
1458 VM_BUG_ON(!nodes_allowed);
1459
1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1462
1463 return nid;
1464 }
1465
1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1468 nr_nodes > 0 && \
1469 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1470 nr_nodes--)
1471
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1473 for (nr_nodes = nodes_weight(*mask); \
1474 nr_nodes > 0 && \
1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1476 nr_nodes--)
1477
1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1479 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1481 int nid, nodemask_t *nodemask)
1482 {
1483 struct folio *folio;
1484 int order = huge_page_order(h);
1485 bool retried = false;
1486
1487 if (nid == NUMA_NO_NODE)
1488 nid = numa_mem_id();
1489 retry:
1490 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1491 if (!folio) {
1492 if (hugetlb_cma_exclusive_alloc())
1493 return NULL;
1494
1495 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1496 if (!folio)
1497 return NULL;
1498 }
1499
1500 if (folio_ref_freeze(folio, 1))
1501 return folio;
1502
1503 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1504 hugetlb_free_folio(folio);
1505 if (!retried) {
1506 retried = true;
1507 goto retry;
1508 }
1509 return NULL;
1510 }
1511
1512 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 int nid, nodemask_t *nodemask)
1515 {
1516 return NULL;
1517 }
1518 #endif /* CONFIG_CONTIG_ALLOC */
1519
1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1522 int nid, nodemask_t *nodemask)
1523 {
1524 return NULL;
1525 }
1526 #endif
1527
1528 /*
1529 * Remove hugetlb folio from lists.
1530 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1531 * folio appears as just a compound page. Otherwise, wait until after
1532 * allocating vmemmap to clear the flag.
1533 *
1534 * Must be called with hugetlb lock held.
1535 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1537 bool adjust_surplus)
1538 {
1539 int nid = folio_nid(folio);
1540
1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1542 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1543
1544 lockdep_assert_held(&hugetlb_lock);
1545 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1546 return;
1547
1548 list_del(&folio->lru);
1549
1550 if (folio_test_hugetlb_freed(folio)) {
1551 folio_clear_hugetlb_freed(folio);
1552 h->free_huge_pages--;
1553 h->free_huge_pages_node[nid]--;
1554 }
1555 if (adjust_surplus) {
1556 h->surplus_huge_pages--;
1557 h->surplus_huge_pages_node[nid]--;
1558 }
1559
1560 /*
1561 * We can only clear the hugetlb flag after allocating vmemmap
1562 * pages. Otherwise, someone (memory error handling) may try to write
1563 * to tail struct pages.
1564 */
1565 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1566 __folio_clear_hugetlb(folio);
1567
1568 h->nr_huge_pages--;
1569 h->nr_huge_pages_node[nid]--;
1570 }
1571
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1573 bool adjust_surplus)
1574 {
1575 int nid = folio_nid(folio);
1576
1577 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1578
1579 lockdep_assert_held(&hugetlb_lock);
1580
1581 INIT_LIST_HEAD(&folio->lru);
1582 h->nr_huge_pages++;
1583 h->nr_huge_pages_node[nid]++;
1584
1585 if (adjust_surplus) {
1586 h->surplus_huge_pages++;
1587 h->surplus_huge_pages_node[nid]++;
1588 }
1589
1590 __folio_set_hugetlb(folio);
1591 folio_change_private(folio, NULL);
1592 /*
1593 * We have to set hugetlb_vmemmap_optimized again as above
1594 * folio_change_private(folio, NULL) cleared it.
1595 */
1596 folio_set_hugetlb_vmemmap_optimized(folio);
1597
1598 arch_clear_hugetlb_flags(folio);
1599 enqueue_hugetlb_folio(h, folio);
1600 }
1601
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1602 static void __update_and_free_hugetlb_folio(struct hstate *h,
1603 struct folio *folio)
1604 {
1605 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1606
1607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1608 return;
1609
1610 /*
1611 * If we don't know which subpages are hwpoisoned, we can't free
1612 * the hugepage, so it's leaked intentionally.
1613 */
1614 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1615 return;
1616
1617 /*
1618 * If folio is not vmemmap optimized (!clear_flag), then the folio
1619 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1620 * can only be passed hugetlb pages and will BUG otherwise.
1621 */
1622 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1623 spin_lock_irq(&hugetlb_lock);
1624 /*
1625 * If we cannot allocate vmemmap pages, just refuse to free the
1626 * page and put the page back on the hugetlb free list and treat
1627 * as a surplus page.
1628 */
1629 add_hugetlb_folio(h, folio, true);
1630 spin_unlock_irq(&hugetlb_lock);
1631 return;
1632 }
1633
1634 /*
1635 * If vmemmap pages were allocated above, then we need to clear the
1636 * hugetlb flag under the hugetlb lock.
1637 */
1638 if (folio_test_hugetlb(folio)) {
1639 spin_lock_irq(&hugetlb_lock);
1640 __folio_clear_hugetlb(folio);
1641 spin_unlock_irq(&hugetlb_lock);
1642 }
1643
1644 /*
1645 * Move PageHWPoison flag from head page to the raw error pages,
1646 * which makes any healthy subpages reusable.
1647 */
1648 if (unlikely(folio_test_hwpoison(folio)))
1649 folio_clear_hugetlb_hwpoison(folio);
1650
1651 folio_ref_unfreeze(folio, 1);
1652
1653 hugetlb_free_folio(folio);
1654 }
1655
1656 /*
1657 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1658 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1659 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1660 * the vmemmap pages.
1661 *
1662 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1663 * freed and frees them one-by-one. As the page->mapping pointer is going
1664 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1665 * structure of a lockless linked list of huge pages to be freed.
1666 */
1667 static LLIST_HEAD(hpage_freelist);
1668
free_hpage_workfn(struct work_struct * work)1669 static void free_hpage_workfn(struct work_struct *work)
1670 {
1671 struct llist_node *node;
1672
1673 node = llist_del_all(&hpage_freelist);
1674
1675 while (node) {
1676 struct folio *folio;
1677 struct hstate *h;
1678
1679 folio = container_of((struct address_space **)node,
1680 struct folio, mapping);
1681 node = node->next;
1682 folio->mapping = NULL;
1683 /*
1684 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1685 * folio_hstate() is going to trigger because a previous call to
1686 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1687 * not use folio_hstate() directly.
1688 */
1689 h = size_to_hstate(folio_size(folio));
1690
1691 __update_and_free_hugetlb_folio(h, folio);
1692
1693 cond_resched();
1694 }
1695 }
1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1697
flush_free_hpage_work(struct hstate * h)1698 static inline void flush_free_hpage_work(struct hstate *h)
1699 {
1700 if (hugetlb_vmemmap_optimizable(h))
1701 flush_work(&free_hpage_work);
1702 }
1703
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1705 bool atomic)
1706 {
1707 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1708 __update_and_free_hugetlb_folio(h, folio);
1709 return;
1710 }
1711
1712 /*
1713 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1714 *
1715 * Only call schedule_work() if hpage_freelist is previously
1716 * empty. Otherwise, schedule_work() had been called but the workfn
1717 * hasn't retrieved the list yet.
1718 */
1719 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1720 schedule_work(&free_hpage_work);
1721 }
1722
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1723 static void bulk_vmemmap_restore_error(struct hstate *h,
1724 struct list_head *folio_list,
1725 struct list_head *non_hvo_folios)
1726 {
1727 struct folio *folio, *t_folio;
1728
1729 if (!list_empty(non_hvo_folios)) {
1730 /*
1731 * Free any restored hugetlb pages so that restore of the
1732 * entire list can be retried.
1733 * The idea is that in the common case of ENOMEM errors freeing
1734 * hugetlb pages with vmemmap we will free up memory so that we
1735 * can allocate vmemmap for more hugetlb pages.
1736 */
1737 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1738 list_del(&folio->lru);
1739 spin_lock_irq(&hugetlb_lock);
1740 __folio_clear_hugetlb(folio);
1741 spin_unlock_irq(&hugetlb_lock);
1742 update_and_free_hugetlb_folio(h, folio, false);
1743 cond_resched();
1744 }
1745 } else {
1746 /*
1747 * In the case where there are no folios which can be
1748 * immediately freed, we loop through the list trying to restore
1749 * vmemmap individually in the hope that someone elsewhere may
1750 * have done something to cause success (such as freeing some
1751 * memory). If unable to restore a hugetlb page, the hugetlb
1752 * page is made a surplus page and removed from the list.
1753 * If are able to restore vmemmap and free one hugetlb page, we
1754 * quit processing the list to retry the bulk operation.
1755 */
1756 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1757 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1758 list_del(&folio->lru);
1759 spin_lock_irq(&hugetlb_lock);
1760 add_hugetlb_folio(h, folio, true);
1761 spin_unlock_irq(&hugetlb_lock);
1762 } else {
1763 list_del(&folio->lru);
1764 spin_lock_irq(&hugetlb_lock);
1765 __folio_clear_hugetlb(folio);
1766 spin_unlock_irq(&hugetlb_lock);
1767 update_and_free_hugetlb_folio(h, folio, false);
1768 cond_resched();
1769 break;
1770 }
1771 }
1772 }
1773
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1774 static void update_and_free_pages_bulk(struct hstate *h,
1775 struct list_head *folio_list)
1776 {
1777 long ret;
1778 struct folio *folio, *t_folio;
1779 LIST_HEAD(non_hvo_folios);
1780
1781 /*
1782 * First allocate required vmemmmap (if necessary) for all folios.
1783 * Carefully handle errors and free up any available hugetlb pages
1784 * in an effort to make forward progress.
1785 */
1786 retry:
1787 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1788 if (ret < 0) {
1789 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1790 goto retry;
1791 }
1792
1793 /*
1794 * At this point, list should be empty, ret should be >= 0 and there
1795 * should only be pages on the non_hvo_folios list.
1796 * Do note that the non_hvo_folios list could be empty.
1797 * Without HVO enabled, ret will be 0 and there is no need to call
1798 * __folio_clear_hugetlb as this was done previously.
1799 */
1800 VM_WARN_ON(!list_empty(folio_list));
1801 VM_WARN_ON(ret < 0);
1802 if (!list_empty(&non_hvo_folios) && ret) {
1803 spin_lock_irq(&hugetlb_lock);
1804 list_for_each_entry(folio, &non_hvo_folios, lru)
1805 __folio_clear_hugetlb(folio);
1806 spin_unlock_irq(&hugetlb_lock);
1807 }
1808
1809 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1810 update_and_free_hugetlb_folio(h, folio, false);
1811 cond_resched();
1812 }
1813 }
1814
size_to_hstate(unsigned long size)1815 struct hstate *size_to_hstate(unsigned long size)
1816 {
1817 struct hstate *h;
1818
1819 for_each_hstate(h) {
1820 if (huge_page_size(h) == size)
1821 return h;
1822 }
1823 return NULL;
1824 }
1825
free_huge_folio(struct folio * folio)1826 void free_huge_folio(struct folio *folio)
1827 {
1828 /*
1829 * Can't pass hstate in here because it is called from the
1830 * generic mm code.
1831 */
1832 struct hstate *h = folio_hstate(folio);
1833 int nid = folio_nid(folio);
1834 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1835 bool restore_reserve;
1836 unsigned long flags;
1837
1838 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1839 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1840
1841 hugetlb_set_folio_subpool(folio, NULL);
1842 if (folio_test_anon(folio))
1843 __ClearPageAnonExclusive(&folio->page);
1844 folio->mapping = NULL;
1845 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1846 folio_clear_hugetlb_restore_reserve(folio);
1847
1848 /*
1849 * If HPageRestoreReserve was set on page, page allocation consumed a
1850 * reservation. If the page was associated with a subpool, there
1851 * would have been a page reserved in the subpool before allocation
1852 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1853 * reservation, do not call hugepage_subpool_put_pages() as this will
1854 * remove the reserved page from the subpool.
1855 */
1856 if (!restore_reserve) {
1857 /*
1858 * A return code of zero implies that the subpool will be
1859 * under its minimum size if the reservation is not restored
1860 * after page is free. Therefore, force restore_reserve
1861 * operation.
1862 */
1863 if (hugepage_subpool_put_pages(spool, 1) == 0)
1864 restore_reserve = true;
1865 }
1866
1867 spin_lock_irqsave(&hugetlb_lock, flags);
1868 folio_clear_hugetlb_migratable(folio);
1869 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1870 pages_per_huge_page(h), folio);
1871 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1872 pages_per_huge_page(h), folio);
1873 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1874 mem_cgroup_uncharge(folio);
1875 if (restore_reserve)
1876 h->resv_huge_pages++;
1877
1878 if (folio_test_hugetlb_temporary(folio)) {
1879 remove_hugetlb_folio(h, folio, false);
1880 spin_unlock_irqrestore(&hugetlb_lock, flags);
1881 update_and_free_hugetlb_folio(h, folio, true);
1882 } else if (h->surplus_huge_pages_node[nid]) {
1883 /* remove the page from active list */
1884 remove_hugetlb_folio(h, folio, true);
1885 spin_unlock_irqrestore(&hugetlb_lock, flags);
1886 update_and_free_hugetlb_folio(h, folio, true);
1887 } else {
1888 arch_clear_hugetlb_flags(folio);
1889 enqueue_hugetlb_folio(h, folio);
1890 spin_unlock_irqrestore(&hugetlb_lock, flags);
1891 }
1892 }
1893
1894 /*
1895 * Must be called with the hugetlb lock held
1896 */
__prep_account_new_huge_page(struct hstate * h,int nid)1897 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1898 {
1899 lockdep_assert_held(&hugetlb_lock);
1900 h->nr_huge_pages++;
1901 h->nr_huge_pages_node[nid]++;
1902 }
1903
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1905 {
1906 __folio_set_hugetlb(folio);
1907 INIT_LIST_HEAD(&folio->lru);
1908 hugetlb_set_folio_subpool(folio, NULL);
1909 set_hugetlb_cgroup(folio, NULL);
1910 set_hugetlb_cgroup_rsvd(folio, NULL);
1911 }
1912
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1914 {
1915 init_new_hugetlb_folio(h, folio);
1916 hugetlb_vmemmap_optimize_folio(h, folio);
1917 }
1918
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1920 {
1921 __prep_new_hugetlb_folio(h, folio);
1922 spin_lock_irq(&hugetlb_lock);
1923 __prep_account_new_huge_page(h, nid);
1924 spin_unlock_irq(&hugetlb_lock);
1925 }
1926
1927 /*
1928 * Find and lock address space (mapping) in write mode.
1929 *
1930 * Upon entry, the folio is locked which means that folio_mapping() is
1931 * stable. Due to locking order, we can only trylock_write. If we can
1932 * not get the lock, simply return NULL to caller.
1933 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1935 {
1936 struct address_space *mapping = folio_mapping(folio);
1937
1938 if (!mapping)
1939 return mapping;
1940
1941 if (i_mmap_trylock_write(mapping))
1942 return mapping;
1943
1944 return NULL;
1945 }
1946
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1948 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1949 nodemask_t *node_alloc_noretry)
1950 {
1951 int order = huge_page_order(h);
1952 struct folio *folio;
1953 bool alloc_try_hard = true;
1954
1955 /*
1956 * By default we always try hard to allocate the folio with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 if (alloc_try_hard)
1965 gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 if (nid == NUMA_NO_NODE)
1967 nid = numa_mem_id();
1968
1969 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1970
1971 /*
1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 * folio this indicates an overall state change. Clear bit so
1974 * that we resume normal 'try hard' allocations.
1975 */
1976 if (node_alloc_noretry && folio && !alloc_try_hard)
1977 node_clear(nid, *node_alloc_noretry);
1978
1979 /*
1980 * If we tried hard to get a folio but failed, set bit so that
1981 * subsequent attempts will not try as hard until there is an
1982 * overall state change.
1983 */
1984 if (node_alloc_noretry && !folio && alloc_try_hard)
1985 node_set(nid, *node_alloc_noretry);
1986
1987 if (!folio) {
1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 return NULL;
1990 }
1991
1992 __count_vm_event(HTLB_BUDDY_PGALLOC);
1993 return folio;
1994 }
1995
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 nodemask_t *node_alloc_noretry)
1999 {
2000 struct folio *folio;
2001
2002 if (hstate_is_gigantic(h))
2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 else
2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 if (folio)
2007 init_new_hugetlb_folio(h, folio);
2008 return folio;
2009 }
2010
2011 /*
2012 * Common helper to allocate a fresh hugetlb page. All specific allocators
2013 * should use this function to get new hugetlb pages
2014 *
2015 * Note that returned page is 'frozen': ref count of head page and all tail
2016 * pages is zero.
2017 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 struct folio *folio;
2022
2023 if (hstate_is_gigantic(h))
2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 else
2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 if (!folio)
2028 return NULL;
2029
2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 return folio;
2032 }
2033
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 struct list_head *folio_list)
2036 {
2037 unsigned long flags;
2038 struct folio *folio, *tmp_f;
2039
2040 /* Send list for bulk vmemmap optimization processing */
2041 hugetlb_vmemmap_optimize_folios(h, folio_list);
2042
2043 /* Add all new pool pages to free lists in one lock cycle */
2044 spin_lock_irqsave(&hugetlb_lock, flags);
2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 __prep_account_new_huge_page(h, folio_nid(folio));
2047 enqueue_hugetlb_folio(h, folio);
2048 }
2049 spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051
2052 /*
2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2054 * will later be added to the appropriate hugetlb pool.
2055 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 nodemask_t *nodes_allowed,
2058 nodemask_t *node_alloc_noretry,
2059 int *next_node)
2060 {
2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 int nr_nodes, node;
2063
2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 struct folio *folio;
2066
2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 nodes_allowed, node_alloc_noretry);
2069 if (folio)
2070 return folio;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 /*
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
2081 * Called with hugetlb_lock locked.
2082 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 int nr_nodes, node;
2087 struct folio *folio = NULL;
2088
2089 lockdep_assert_held(&hugetlb_lock);
2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 /*
2092 * If we're returning unused surplus pages, only examine
2093 * nodes with surplus pages.
2094 */
2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 !list_empty(&h->hugepage_freelists[node])) {
2097 folio = list_entry(h->hugepage_freelists[node].next,
2098 struct folio, lru);
2099 remove_hugetlb_folio(h, folio, acct_surplus);
2100 break;
2101 }
2102 }
2103
2104 return folio;
2105 }
2106
2107 /*
2108 * Dissolve a given free hugetlb folio into free buddy pages. This function
2109 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110 * This function returns values like below:
2111 *
2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113 * when the system is under memory pressure and the feature of
2114 * freeing unused vmemmap pages associated with each hugetlb page
2115 * is enabled.
2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2117 * (allocated or reserved.)
2118 * 0: successfully dissolved free hugepages or the page is not a
2119 * hugepage (considered as already dissolved)
2120 */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 int rc = -EBUSY;
2124
2125 retry:
2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 if (!folio_test_hugetlb(folio))
2128 return 0;
2129
2130 spin_lock_irq(&hugetlb_lock);
2131 if (!folio_test_hugetlb(folio)) {
2132 rc = 0;
2133 goto out;
2134 }
2135
2136 if (!folio_ref_count(folio)) {
2137 struct hstate *h = folio_hstate(folio);
2138 bool adjust_surplus = false;
2139
2140 if (!available_huge_pages(h))
2141 goto out;
2142
2143 /*
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2146 */
2147 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2148 spin_unlock_irq(&hugetlb_lock);
2149 cond_resched();
2150
2151 /*
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2158 */
2159 goto retry;
2160 }
2161
2162 if (h->surplus_huge_pages_node[folio_nid(folio)])
2163 adjust_surplus = true;
2164 remove_hugetlb_folio(h, folio, adjust_surplus);
2165 h->max_huge_pages--;
2166 spin_unlock_irq(&hugetlb_lock);
2167
2168 /*
2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2170 * before freeing the page. update_and_free_hugtlb_folio will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2175 *
2176 * The folio_test_hugetlb check here is because
2177 * remove_hugetlb_folio will clear hugetlb folio flag for
2178 * non-vmemmap optimized hugetlb folios.
2179 */
2180 if (folio_test_hugetlb(folio)) {
2181 rc = hugetlb_vmemmap_restore_folio(h, folio);
2182 if (rc) {
2183 spin_lock_irq(&hugetlb_lock);
2184 add_hugetlb_folio(h, folio, adjust_surplus);
2185 h->max_huge_pages++;
2186 goto out;
2187 }
2188 } else
2189 rc = 0;
2190
2191 update_and_free_hugetlb_folio(h, folio, false);
2192 return rc;
2193 }
2194 out:
2195 spin_unlock_irq(&hugetlb_lock);
2196 return rc;
2197 }
2198
2199 /*
2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201 * make specified memory blocks removable from the system.
2202 * Note that this will dissolve a free gigantic hugepage completely, if any
2203 * part of it lies within the given range.
2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2205 * free hugetlb folios that were dissolved before that error are lost.
2206 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209 unsigned long pfn;
2210 struct folio *folio;
2211 int rc = 0;
2212 unsigned int order;
2213 struct hstate *h;
2214
2215 if (!hugepages_supported())
2216 return rc;
2217
2218 order = huge_page_order(&default_hstate);
2219 for_each_hstate(h)
2220 order = min(order, huge_page_order(h));
2221
2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223 folio = pfn_folio(pfn);
2224 rc = dissolve_free_hugetlb_folio(folio);
2225 if (rc)
2226 break;
2227 }
2228
2229 return rc;
2230 }
2231
2232 /*
2233 * Allocates a fresh surplus page from the page allocator.
2234 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2236 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2237 {
2238 struct folio *folio = NULL;
2239
2240 if (hstate_is_gigantic(h))
2241 return NULL;
2242
2243 spin_lock_irq(&hugetlb_lock);
2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 goto out_unlock;
2246 spin_unlock_irq(&hugetlb_lock);
2247
2248 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2249 if (!folio)
2250 return NULL;
2251
2252 hugetlb_vmemmap_optimize_folio(h, folio);
2253
2254 spin_lock_irq(&hugetlb_lock);
2255 /*
2256 * nr_huge_pages needs to be adjusted within the same lock cycle
2257 * as surplus_pages, otherwise it might confuse
2258 * persistent_huge_pages() momentarily.
2259 */
2260 __prep_account_new_huge_page(h, folio_nid(folio));
2261
2262 /*
2263 * We could have raced with the pool size change.
2264 * Double check that and simply deallocate the new page
2265 * if we would end up overcommiting the surpluses. Abuse
2266 * temporary page to workaround the nasty free_huge_folio
2267 * codeflow
2268 */
2269 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2270 folio_set_hugetlb_temporary(folio);
2271 spin_unlock_irq(&hugetlb_lock);
2272 free_huge_folio(folio);
2273 return NULL;
2274 }
2275
2276 h->surplus_huge_pages++;
2277 h->surplus_huge_pages_node[folio_nid(folio)]++;
2278
2279 out_unlock:
2280 spin_unlock_irq(&hugetlb_lock);
2281
2282 return folio;
2283 }
2284
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2286 int nid, nodemask_t *nmask)
2287 {
2288 struct folio *folio;
2289
2290 if (hstate_is_gigantic(h))
2291 return NULL;
2292
2293 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2294 if (!folio)
2295 return NULL;
2296
2297 /* fresh huge pages are frozen */
2298 folio_ref_unfreeze(folio, 1);
2299 /*
2300 * We do not account these pages as surplus because they are only
2301 * temporary and will be released properly on the last reference
2302 */
2303 folio_set_hugetlb_temporary(folio);
2304
2305 return folio;
2306 }
2307
2308 /*
2309 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2310 */
2311 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2313 struct vm_area_struct *vma, unsigned long addr)
2314 {
2315 struct folio *folio = NULL;
2316 struct mempolicy *mpol;
2317 gfp_t gfp_mask = htlb_alloc_mask(h);
2318 int nid;
2319 nodemask_t *nodemask;
2320
2321 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2322 if (mpol_is_preferred_many(mpol)) {
2323 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2324
2325 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2326
2327 /* Fallback to all nodes if page==NULL */
2328 nodemask = NULL;
2329 }
2330
2331 if (!folio)
2332 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2333 mpol_cond_put(mpol);
2334 return folio;
2335 }
2336
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2338 nodemask_t *nmask, gfp_t gfp_mask)
2339 {
2340 struct folio *folio;
2341
2342 spin_lock_irq(&hugetlb_lock);
2343 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2344 nmask);
2345 if (folio) {
2346 VM_BUG_ON(!h->resv_huge_pages);
2347 h->resv_huge_pages--;
2348 }
2349
2350 spin_unlock_irq(&hugetlb_lock);
2351 return folio;
2352 }
2353
2354 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2355 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2356 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2357 {
2358 spin_lock_irq(&hugetlb_lock);
2359 if (available_huge_pages(h)) {
2360 struct folio *folio;
2361
2362 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2363 preferred_nid, nmask);
2364 if (folio) {
2365 spin_unlock_irq(&hugetlb_lock);
2366 return folio;
2367 }
2368 }
2369 spin_unlock_irq(&hugetlb_lock);
2370
2371 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2372 if (!allow_alloc_fallback)
2373 gfp_mask |= __GFP_THISNODE;
2374
2375 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2376 }
2377
policy_mbind_nodemask(gfp_t gfp)2378 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2379 {
2380 #ifdef CONFIG_NUMA
2381 struct mempolicy *mpol = get_task_policy(current);
2382
2383 /*
2384 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2385 * (from policy_nodemask) specifically for hugetlb case
2386 */
2387 if (mpol->mode == MPOL_BIND &&
2388 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2389 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2390 return &mpol->nodes;
2391 #endif
2392 return NULL;
2393 }
2394
2395 /*
2396 * Increase the hugetlb pool such that it can accommodate a reservation
2397 * of size 'delta'.
2398 */
gather_surplus_pages(struct hstate * h,long delta)2399 static int gather_surplus_pages(struct hstate *h, long delta)
2400 __must_hold(&hugetlb_lock)
2401 {
2402 LIST_HEAD(surplus_list);
2403 struct folio *folio, *tmp;
2404 int ret;
2405 long i;
2406 long needed, allocated;
2407 bool alloc_ok = true;
2408 nodemask_t *mbind_nodemask, alloc_nodemask;
2409
2410 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2411 if (mbind_nodemask)
2412 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2413 else
2414 alloc_nodemask = cpuset_current_mems_allowed;
2415
2416 lockdep_assert_held(&hugetlb_lock);
2417 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2418 if (needed <= 0) {
2419 h->resv_huge_pages += delta;
2420 return 0;
2421 }
2422
2423 allocated = 0;
2424
2425 ret = -ENOMEM;
2426 retry:
2427 spin_unlock_irq(&hugetlb_lock);
2428 for (i = 0; i < needed; i++) {
2429 folio = NULL;
2430
2431 /*
2432 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2433 * down the road to pick the current node if that is the case.
2434 */
2435 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2436 NUMA_NO_NODE, &alloc_nodemask);
2437 if (!folio) {
2438 alloc_ok = false;
2439 break;
2440 }
2441 list_add(&folio->lru, &surplus_list);
2442 cond_resched();
2443 }
2444 allocated += i;
2445
2446 /*
2447 * After retaking hugetlb_lock, we need to recalculate 'needed'
2448 * because either resv_huge_pages or free_huge_pages may have changed.
2449 */
2450 spin_lock_irq(&hugetlb_lock);
2451 needed = (h->resv_huge_pages + delta) -
2452 (h->free_huge_pages + allocated);
2453 if (needed > 0) {
2454 if (alloc_ok)
2455 goto retry;
2456 /*
2457 * We were not able to allocate enough pages to
2458 * satisfy the entire reservation so we free what
2459 * we've allocated so far.
2460 */
2461 goto free;
2462 }
2463 /*
2464 * The surplus_list now contains _at_least_ the number of extra pages
2465 * needed to accommodate the reservation. Add the appropriate number
2466 * of pages to the hugetlb pool and free the extras back to the buddy
2467 * allocator. Commit the entire reservation here to prevent another
2468 * process from stealing the pages as they are added to the pool but
2469 * before they are reserved.
2470 */
2471 needed += allocated;
2472 h->resv_huge_pages += delta;
2473 ret = 0;
2474
2475 /* Free the needed pages to the hugetlb pool */
2476 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2477 if ((--needed) < 0)
2478 break;
2479 /* Add the page to the hugetlb allocator */
2480 enqueue_hugetlb_folio(h, folio);
2481 }
2482 free:
2483 spin_unlock_irq(&hugetlb_lock);
2484
2485 /*
2486 * Free unnecessary surplus pages to the buddy allocator.
2487 * Pages have no ref count, call free_huge_folio directly.
2488 */
2489 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2490 free_huge_folio(folio);
2491 spin_lock_irq(&hugetlb_lock);
2492
2493 return ret;
2494 }
2495
2496 /*
2497 * This routine has two main purposes:
2498 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2499 * in unused_resv_pages. This corresponds to the prior adjustments made
2500 * to the associated reservation map.
2501 * 2) Free any unused surplus pages that may have been allocated to satisfy
2502 * the reservation. As many as unused_resv_pages may be freed.
2503 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2504 static void return_unused_surplus_pages(struct hstate *h,
2505 unsigned long unused_resv_pages)
2506 {
2507 unsigned long nr_pages;
2508 LIST_HEAD(page_list);
2509
2510 lockdep_assert_held(&hugetlb_lock);
2511 /* Uncommit the reservation */
2512 h->resv_huge_pages -= unused_resv_pages;
2513
2514 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2515 goto out;
2516
2517 /*
2518 * Part (or even all) of the reservation could have been backed
2519 * by pre-allocated pages. Only free surplus pages.
2520 */
2521 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2522
2523 /*
2524 * We want to release as many surplus pages as possible, spread
2525 * evenly across all nodes with memory. Iterate across these nodes
2526 * until we can no longer free unreserved surplus pages. This occurs
2527 * when the nodes with surplus pages have no free pages.
2528 * remove_pool_hugetlb_folio() will balance the freed pages across the
2529 * on-line nodes with memory and will handle the hstate accounting.
2530 */
2531 while (nr_pages--) {
2532 struct folio *folio;
2533
2534 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2535 if (!folio)
2536 goto out;
2537
2538 list_add(&folio->lru, &page_list);
2539 }
2540
2541 out:
2542 spin_unlock_irq(&hugetlb_lock);
2543 update_and_free_pages_bulk(h, &page_list);
2544 spin_lock_irq(&hugetlb_lock);
2545 }
2546
2547
2548 /*
2549 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2550 * are used by the huge page allocation routines to manage reservations.
2551 *
2552 * vma_needs_reservation is called to determine if the huge page at addr
2553 * within the vma has an associated reservation. If a reservation is
2554 * needed, the value 1 is returned. The caller is then responsible for
2555 * managing the global reservation and subpool usage counts. After
2556 * the huge page has been allocated, vma_commit_reservation is called
2557 * to add the page to the reservation map. If the page allocation fails,
2558 * the reservation must be ended instead of committed. vma_end_reservation
2559 * is called in such cases.
2560 *
2561 * In the normal case, vma_commit_reservation returns the same value
2562 * as the preceding vma_needs_reservation call. The only time this
2563 * is not the case is if a reserve map was changed between calls. It
2564 * is the responsibility of the caller to notice the difference and
2565 * take appropriate action.
2566 *
2567 * vma_add_reservation is used in error paths where a reservation must
2568 * be restored when a newly allocated huge page must be freed. It is
2569 * to be called after calling vma_needs_reservation to determine if a
2570 * reservation exists.
2571 *
2572 * vma_del_reservation is used in error paths where an entry in the reserve
2573 * map was created during huge page allocation and must be removed. It is to
2574 * be called after calling vma_needs_reservation to determine if a reservation
2575 * exists.
2576 */
2577 enum vma_resv_mode {
2578 VMA_NEEDS_RESV,
2579 VMA_COMMIT_RESV,
2580 VMA_END_RESV,
2581 VMA_ADD_RESV,
2582 VMA_DEL_RESV,
2583 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2584 static long __vma_reservation_common(struct hstate *h,
2585 struct vm_area_struct *vma, unsigned long addr,
2586 enum vma_resv_mode mode)
2587 {
2588 struct resv_map *resv;
2589 pgoff_t idx;
2590 long ret;
2591 long dummy_out_regions_needed;
2592
2593 resv = vma_resv_map(vma);
2594 if (!resv)
2595 return 1;
2596
2597 idx = vma_hugecache_offset(h, vma, addr);
2598 switch (mode) {
2599 case VMA_NEEDS_RESV:
2600 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2601 /* We assume that vma_reservation_* routines always operate on
2602 * 1 page, and that adding to resv map a 1 page entry can only
2603 * ever require 1 region.
2604 */
2605 VM_BUG_ON(dummy_out_regions_needed != 1);
2606 break;
2607 case VMA_COMMIT_RESV:
2608 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2609 /* region_add calls of range 1 should never fail. */
2610 VM_BUG_ON(ret < 0);
2611 break;
2612 case VMA_END_RESV:
2613 region_abort(resv, idx, idx + 1, 1);
2614 ret = 0;
2615 break;
2616 case VMA_ADD_RESV:
2617 if (vma->vm_flags & VM_MAYSHARE) {
2618 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2619 /* region_add calls of range 1 should never fail. */
2620 VM_BUG_ON(ret < 0);
2621 } else {
2622 region_abort(resv, idx, idx + 1, 1);
2623 ret = region_del(resv, idx, idx + 1);
2624 }
2625 break;
2626 case VMA_DEL_RESV:
2627 if (vma->vm_flags & VM_MAYSHARE) {
2628 region_abort(resv, idx, idx + 1, 1);
2629 ret = region_del(resv, idx, idx + 1);
2630 } else {
2631 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2632 /* region_add calls of range 1 should never fail. */
2633 VM_BUG_ON(ret < 0);
2634 }
2635 break;
2636 default:
2637 BUG();
2638 }
2639
2640 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2641 return ret;
2642 /*
2643 * We know private mapping must have HPAGE_RESV_OWNER set.
2644 *
2645 * In most cases, reserves always exist for private mappings.
2646 * However, a file associated with mapping could have been
2647 * hole punched or truncated after reserves were consumed.
2648 * As subsequent fault on such a range will not use reserves.
2649 * Subtle - The reserve map for private mappings has the
2650 * opposite meaning than that of shared mappings. If NO
2651 * entry is in the reserve map, it means a reservation exists.
2652 * If an entry exists in the reserve map, it means the
2653 * reservation has already been consumed. As a result, the
2654 * return value of this routine is the opposite of the
2655 * value returned from reserve map manipulation routines above.
2656 */
2657 if (ret > 0)
2658 return 0;
2659 if (ret == 0)
2660 return 1;
2661 return ret;
2662 }
2663
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2664 static long vma_needs_reservation(struct hstate *h,
2665 struct vm_area_struct *vma, unsigned long addr)
2666 {
2667 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2668 }
2669
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2670 static long vma_commit_reservation(struct hstate *h,
2671 struct vm_area_struct *vma, unsigned long addr)
2672 {
2673 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2674 }
2675
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2676 static void vma_end_reservation(struct hstate *h,
2677 struct vm_area_struct *vma, unsigned long addr)
2678 {
2679 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2680 }
2681
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2682 static long vma_add_reservation(struct hstate *h,
2683 struct vm_area_struct *vma, unsigned long addr)
2684 {
2685 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2686 }
2687
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2688 static long vma_del_reservation(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2692 }
2693
2694 /*
2695 * This routine is called to restore reservation information on error paths.
2696 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2697 * and the hugetlb mutex should remain held when calling this routine.
2698 *
2699 * It handles two specific cases:
2700 * 1) A reservation was in place and the folio consumed the reservation.
2701 * hugetlb_restore_reserve is set in the folio.
2702 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2703 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2704 *
2705 * In case 1, free_huge_folio later in the error path will increment the
2706 * global reserve count. But, free_huge_folio does not have enough context
2707 * to adjust the reservation map. This case deals primarily with private
2708 * mappings. Adjust the reserve map here to be consistent with global
2709 * reserve count adjustments to be made by free_huge_folio. Make sure the
2710 * reserve map indicates there is a reservation present.
2711 *
2712 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2713 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2714 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2715 unsigned long address, struct folio *folio)
2716 {
2717 long rc = vma_needs_reservation(h, vma, address);
2718
2719 if (folio_test_hugetlb_restore_reserve(folio)) {
2720 if (unlikely(rc < 0))
2721 /*
2722 * Rare out of memory condition in reserve map
2723 * manipulation. Clear hugetlb_restore_reserve so
2724 * that global reserve count will not be incremented
2725 * by free_huge_folio. This will make it appear
2726 * as though the reservation for this folio was
2727 * consumed. This may prevent the task from
2728 * faulting in the folio at a later time. This
2729 * is better than inconsistent global huge page
2730 * accounting of reserve counts.
2731 */
2732 folio_clear_hugetlb_restore_reserve(folio);
2733 else if (rc)
2734 (void)vma_add_reservation(h, vma, address);
2735 else
2736 vma_end_reservation(h, vma, address);
2737 } else {
2738 if (!rc) {
2739 /*
2740 * This indicates there is an entry in the reserve map
2741 * not added by alloc_hugetlb_folio. We know it was added
2742 * before the alloc_hugetlb_folio call, otherwise
2743 * hugetlb_restore_reserve would be set on the folio.
2744 * Remove the entry so that a subsequent allocation
2745 * does not consume a reservation.
2746 */
2747 rc = vma_del_reservation(h, vma, address);
2748 if (rc < 0)
2749 /*
2750 * VERY rare out of memory condition. Since
2751 * we can not delete the entry, set
2752 * hugetlb_restore_reserve so that the reserve
2753 * count will be incremented when the folio
2754 * is freed. This reserve will be consumed
2755 * on a subsequent allocation.
2756 */
2757 folio_set_hugetlb_restore_reserve(folio);
2758 } else if (rc < 0) {
2759 /*
2760 * Rare out of memory condition from
2761 * vma_needs_reservation call. Memory allocation is
2762 * only attempted if a new entry is needed. Therefore,
2763 * this implies there is not an entry in the
2764 * reserve map.
2765 *
2766 * For shared mappings, no entry in the map indicates
2767 * no reservation. We are done.
2768 */
2769 if (!(vma->vm_flags & VM_MAYSHARE))
2770 /*
2771 * For private mappings, no entry indicates
2772 * a reservation is present. Since we can
2773 * not add an entry, set hugetlb_restore_reserve
2774 * on the folio so reserve count will be
2775 * incremented when freed. This reserve will
2776 * be consumed on a subsequent allocation.
2777 */
2778 folio_set_hugetlb_restore_reserve(folio);
2779 } else
2780 /*
2781 * No reservation present, do nothing
2782 */
2783 vma_end_reservation(h, vma, address);
2784 }
2785 }
2786
2787 /*
2788 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2789 * the old one
2790 * @h: struct hstate old page belongs to
2791 * @old_folio: Old folio to dissolve
2792 * @list: List to isolate the page in case we need to
2793 * Returns 0 on success, otherwise negated error.
2794 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2795 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2796 struct folio *old_folio, struct list_head *list)
2797 {
2798 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2799 int nid = folio_nid(old_folio);
2800 struct folio *new_folio = NULL;
2801 int ret = 0;
2802
2803 retry:
2804 spin_lock_irq(&hugetlb_lock);
2805 if (!folio_test_hugetlb(old_folio)) {
2806 /*
2807 * Freed from under us. Drop new_folio too.
2808 */
2809 goto free_new;
2810 } else if (folio_ref_count(old_folio)) {
2811 bool isolated;
2812
2813 /*
2814 * Someone has grabbed the folio, try to isolate it here.
2815 * Fail with -EBUSY if not possible.
2816 */
2817 spin_unlock_irq(&hugetlb_lock);
2818 isolated = folio_isolate_hugetlb(old_folio, list);
2819 ret = isolated ? 0 : -EBUSY;
2820 spin_lock_irq(&hugetlb_lock);
2821 goto free_new;
2822 } else if (!folio_test_hugetlb_freed(old_folio)) {
2823 /*
2824 * Folio's refcount is 0 but it has not been enqueued in the
2825 * freelist yet. Race window is small, so we can succeed here if
2826 * we retry.
2827 */
2828 spin_unlock_irq(&hugetlb_lock);
2829 cond_resched();
2830 goto retry;
2831 } else {
2832 if (!new_folio) {
2833 spin_unlock_irq(&hugetlb_lock);
2834 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2835 NULL, NULL);
2836 if (!new_folio)
2837 return -ENOMEM;
2838 __prep_new_hugetlb_folio(h, new_folio);
2839 goto retry;
2840 }
2841
2842 /*
2843 * Ok, old_folio is still a genuine free hugepage. Remove it from
2844 * the freelist and decrease the counters. These will be
2845 * incremented again when calling __prep_account_new_huge_page()
2846 * and enqueue_hugetlb_folio() for new_folio. The counters will
2847 * remain stable since this happens under the lock.
2848 */
2849 remove_hugetlb_folio(h, old_folio, false);
2850
2851 /*
2852 * Ref count on new_folio is already zero as it was dropped
2853 * earlier. It can be directly added to the pool free list.
2854 */
2855 __prep_account_new_huge_page(h, nid);
2856 enqueue_hugetlb_folio(h, new_folio);
2857
2858 /*
2859 * Folio has been replaced, we can safely free the old one.
2860 */
2861 spin_unlock_irq(&hugetlb_lock);
2862 update_and_free_hugetlb_folio(h, old_folio, false);
2863 }
2864
2865 return ret;
2866
2867 free_new:
2868 spin_unlock_irq(&hugetlb_lock);
2869 if (new_folio)
2870 update_and_free_hugetlb_folio(h, new_folio, false);
2871
2872 return ret;
2873 }
2874
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2875 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2876 {
2877 struct hstate *h;
2878 int ret = -EBUSY;
2879
2880 /*
2881 * The page might have been dissolved from under our feet, so make sure
2882 * to carefully check the state under the lock.
2883 * Return success when racing as if we dissolved the page ourselves.
2884 */
2885 spin_lock_irq(&hugetlb_lock);
2886 if (folio_test_hugetlb(folio)) {
2887 h = folio_hstate(folio);
2888 } else {
2889 spin_unlock_irq(&hugetlb_lock);
2890 return 0;
2891 }
2892 spin_unlock_irq(&hugetlb_lock);
2893
2894 /*
2895 * Fence off gigantic pages as there is a cyclic dependency between
2896 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2897 * of bailing out right away without further retrying.
2898 */
2899 if (hstate_is_gigantic(h))
2900 return -ENOMEM;
2901
2902 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2903 ret = 0;
2904 else if (!folio_ref_count(folio))
2905 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2906
2907 return ret;
2908 }
2909
2910 /*
2911 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2912 * range with new folios.
2913 * @start_pfn: start pfn of the given pfn range
2914 * @end_pfn: end pfn of the given pfn range
2915 * Returns 0 on success, otherwise negated error.
2916 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2917 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2918 {
2919 struct hstate *h;
2920 struct folio *folio;
2921 int ret = 0;
2922
2923 LIST_HEAD(isolate_list);
2924
2925 while (start_pfn < end_pfn) {
2926 folio = pfn_folio(start_pfn);
2927
2928 /*
2929 * The folio might have been dissolved from under our feet, so make sure
2930 * to carefully check the state under the lock.
2931 */
2932 spin_lock_irq(&hugetlb_lock);
2933 if (folio_test_hugetlb(folio)) {
2934 h = folio_hstate(folio);
2935 } else {
2936 spin_unlock_irq(&hugetlb_lock);
2937 start_pfn++;
2938 continue;
2939 }
2940 spin_unlock_irq(&hugetlb_lock);
2941
2942 if (!folio_ref_count(folio)) {
2943 ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2944 &isolate_list);
2945 if (ret)
2946 break;
2947
2948 putback_movable_pages(&isolate_list);
2949 }
2950 start_pfn++;
2951 }
2952
2953 return ret;
2954 }
2955
wait_for_freed_hugetlb_folios(void)2956 void wait_for_freed_hugetlb_folios(void)
2957 {
2958 if (llist_empty(&hpage_freelist))
2959 return;
2960
2961 flush_work(&free_hpage_work);
2962 }
2963
2964 typedef enum {
2965 /*
2966 * For either 0/1: we checked the per-vma resv map, and one resv
2967 * count either can be reused (0), or an extra needed (1).
2968 */
2969 MAP_CHG_REUSE = 0,
2970 MAP_CHG_NEEDED = 1,
2971 /*
2972 * Cannot use per-vma resv count can be used, hence a new resv
2973 * count is enforced.
2974 *
2975 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2976 * that currently vma_needs_reservation() has an unwanted side
2977 * effect to either use end() or commit() to complete the
2978 * transaction. Hence it needs to differenciate from NEEDED.
2979 */
2980 MAP_CHG_ENFORCED = 2,
2981 } map_chg_state;
2982
2983 /*
2984 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2985 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2986 * which case even if there's a private vma resv map it won't cover such
2987 * allocation). New call sites should (probably) never set it to true!!
2988 * When it's set, the allocation will bypass all vma level reservations.
2989 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2990 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2991 unsigned long addr, bool cow_from_owner)
2992 {
2993 struct hugepage_subpool *spool = subpool_vma(vma);
2994 struct hstate *h = hstate_vma(vma);
2995 struct folio *folio;
2996 long retval, gbl_chg, gbl_reserve;
2997 map_chg_state map_chg;
2998 int ret, idx;
2999 struct hugetlb_cgroup *h_cg = NULL;
3000 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3001
3002 idx = hstate_index(h);
3003
3004 /* Whether we need a separate per-vma reservation? */
3005 if (cow_from_owner) {
3006 /*
3007 * Special case! Since it's a CoW on top of a reserved
3008 * page, the private resv map doesn't count. So it cannot
3009 * consume the per-vma resv map even if it's reserved.
3010 */
3011 map_chg = MAP_CHG_ENFORCED;
3012 } else {
3013 /*
3014 * Examine the region/reserve map to determine if the process
3015 * has a reservation for the page to be allocated. A return
3016 * code of zero indicates a reservation exists (no change).
3017 */
3018 retval = vma_needs_reservation(h, vma, addr);
3019 if (retval < 0)
3020 return ERR_PTR(-ENOMEM);
3021 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3022 }
3023
3024 /*
3025 * Whether we need a separate global reservation?
3026 *
3027 * Processes that did not create the mapping will have no
3028 * reserves as indicated by the region/reserve map. Check
3029 * that the allocation will not exceed the subpool limit.
3030 * Or if it can get one from the pool reservation directly.
3031 */
3032 if (map_chg) {
3033 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3034 if (gbl_chg < 0)
3035 goto out_end_reservation;
3036 } else {
3037 /*
3038 * If we have the vma reservation ready, no need for extra
3039 * global reservation.
3040 */
3041 gbl_chg = 0;
3042 }
3043
3044 /*
3045 * If this allocation is not consuming a per-vma reservation,
3046 * charge the hugetlb cgroup now.
3047 */
3048 if (map_chg) {
3049 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3050 idx, pages_per_huge_page(h), &h_cg);
3051 if (ret)
3052 goto out_subpool_put;
3053 }
3054
3055 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3056 if (ret)
3057 goto out_uncharge_cgroup_reservation;
3058
3059 spin_lock_irq(&hugetlb_lock);
3060 /*
3061 * glb_chg is passed to indicate whether or not a page must be taken
3062 * from the global free pool (global change). gbl_chg == 0 indicates
3063 * a reservation exists for the allocation.
3064 */
3065 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3066 if (!folio) {
3067 spin_unlock_irq(&hugetlb_lock);
3068 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3069 if (!folio)
3070 goto out_uncharge_cgroup;
3071 spin_lock_irq(&hugetlb_lock);
3072 list_add(&folio->lru, &h->hugepage_activelist);
3073 folio_ref_unfreeze(folio, 1);
3074 /* Fall through */
3075 }
3076
3077 /*
3078 * Either dequeued or buddy-allocated folio needs to add special
3079 * mark to the folio when it consumes a global reservation.
3080 */
3081 if (!gbl_chg) {
3082 folio_set_hugetlb_restore_reserve(folio);
3083 h->resv_huge_pages--;
3084 }
3085
3086 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3087 /* If allocation is not consuming a reservation, also store the
3088 * hugetlb_cgroup pointer on the page.
3089 */
3090 if (map_chg) {
3091 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3092 h_cg, folio);
3093 }
3094
3095 spin_unlock_irq(&hugetlb_lock);
3096
3097 hugetlb_set_folio_subpool(folio, spool);
3098
3099 if (map_chg != MAP_CHG_ENFORCED) {
3100 /* commit() is only needed if the map_chg is not enforced */
3101 retval = vma_commit_reservation(h, vma, addr);
3102 /*
3103 * Check for possible race conditions. When it happens..
3104 * The page was added to the reservation map between
3105 * vma_needs_reservation and vma_commit_reservation.
3106 * This indicates a race with hugetlb_reserve_pages.
3107 * Adjust for the subpool count incremented above AND
3108 * in hugetlb_reserve_pages for the same page. Also,
3109 * the reservation count added in hugetlb_reserve_pages
3110 * no longer applies.
3111 */
3112 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3113 long rsv_adjust;
3114
3115 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3116 hugetlb_acct_memory(h, -rsv_adjust);
3117 if (map_chg) {
3118 spin_lock_irq(&hugetlb_lock);
3119 hugetlb_cgroup_uncharge_folio_rsvd(
3120 hstate_index(h), pages_per_huge_page(h),
3121 folio);
3122 spin_unlock_irq(&hugetlb_lock);
3123 }
3124 }
3125 }
3126
3127 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3128 /*
3129 * Unconditionally increment NR_HUGETLB here. If it turns out that
3130 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3131 * decrement NR_HUGETLB.
3132 */
3133 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3134
3135 if (ret == -ENOMEM) {
3136 free_huge_folio(folio);
3137 return ERR_PTR(-ENOMEM);
3138 }
3139
3140 return folio;
3141
3142 out_uncharge_cgroup:
3143 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3144 out_uncharge_cgroup_reservation:
3145 if (map_chg)
3146 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3147 h_cg);
3148 out_subpool_put:
3149 /*
3150 * put page to subpool iff the quota of subpool's rsv_hpages is used
3151 * during hugepage_subpool_get_pages.
3152 */
3153 if (map_chg && !gbl_chg) {
3154 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3155 hugetlb_acct_memory(h, -gbl_reserve);
3156 }
3157
3158
3159 out_end_reservation:
3160 if (map_chg != MAP_CHG_ENFORCED)
3161 vma_end_reservation(h, vma, addr);
3162 return ERR_PTR(-ENOSPC);
3163 }
3164
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3165 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3166 {
3167 struct huge_bootmem_page *m;
3168 int listnode = nid;
3169
3170 if (hugetlb_early_cma(h))
3171 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3172 else {
3173 if (node_exact)
3174 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3175 huge_page_size(h), 0,
3176 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3177 else {
3178 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3179 huge_page_size(h), 0,
3180 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3181 /*
3182 * For pre-HVO to work correctly, pages need to be on
3183 * the list for the node they were actually allocated
3184 * from. That node may be different in the case of
3185 * fallback by memblock_alloc_try_nid_raw. So,
3186 * extract the actual node first.
3187 */
3188 if (m)
3189 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3190 }
3191
3192 if (m) {
3193 m->flags = 0;
3194 m->cma = NULL;
3195 }
3196 }
3197
3198 if (m) {
3199 /*
3200 * Use the beginning of the huge page to store the
3201 * huge_bootmem_page struct (until gather_bootmem
3202 * puts them into the mem_map).
3203 *
3204 * Put them into a private list first because mem_map
3205 * is not up yet.
3206 */
3207 INIT_LIST_HEAD(&m->list);
3208 list_add(&m->list, &huge_boot_pages[listnode]);
3209 m->hstate = h;
3210 }
3211
3212 return m;
3213 }
3214
3215 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3216 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3217 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3218 {
3219 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3220 int nr_nodes, node = nid;
3221
3222 /* do node specific alloc */
3223 if (nid != NUMA_NO_NODE) {
3224 m = alloc_bootmem(h, node, true);
3225 if (!m)
3226 return 0;
3227 goto found;
3228 }
3229
3230 /* allocate from next node when distributing huge pages */
3231 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3232 &hugetlb_bootmem_nodes) {
3233 m = alloc_bootmem(h, node, false);
3234 if (!m)
3235 return 0;
3236 goto found;
3237 }
3238
3239 found:
3240
3241 /*
3242 * Only initialize the head struct page in memmap_init_reserved_pages,
3243 * rest of the struct pages will be initialized by the HugeTLB
3244 * subsystem itself.
3245 * The head struct page is used to get folio information by the HugeTLB
3246 * subsystem like zone id and node id.
3247 */
3248 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3249 huge_page_size(h) - PAGE_SIZE);
3250
3251 return 1;
3252 }
3253
3254 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3255 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3256 unsigned long start_page_number,
3257 unsigned long end_page_number)
3258 {
3259 enum zone_type zone = zone_idx(folio_zone(folio));
3260 int nid = folio_nid(folio);
3261 unsigned long head_pfn = folio_pfn(folio);
3262 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3263 int ret;
3264
3265 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3266 struct page *page = pfn_to_page(pfn);
3267
3268 __init_single_page(page, pfn, zone, nid);
3269 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3270 ret = page_ref_freeze(page, 1);
3271 VM_BUG_ON(!ret);
3272 }
3273 }
3274
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3275 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3276 struct hstate *h,
3277 unsigned long nr_pages)
3278 {
3279 int ret;
3280
3281 /* Prepare folio head */
3282 __folio_clear_reserved(folio);
3283 __folio_set_head(folio);
3284 ret = folio_ref_freeze(folio, 1);
3285 VM_BUG_ON(!ret);
3286 /* Initialize the necessary tail struct pages */
3287 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3288 prep_compound_head((struct page *)folio, huge_page_order(h));
3289 }
3290
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3291 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3292 {
3293 return m->flags & HUGE_BOOTMEM_HVO;
3294 }
3295
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3296 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3297 {
3298 return m->flags & HUGE_BOOTMEM_CMA;
3299 }
3300
3301 /*
3302 * memblock-allocated pageblocks might not have the migrate type set
3303 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3304 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3305 * reservation.
3306 *
3307 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3308 * read-only, but that's ok - for sparse vmemmap this does not write to
3309 * the page structure.
3310 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3311 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3312 struct hstate *h)
3313 {
3314 unsigned long nr_pages = pages_per_huge_page(h), i;
3315
3316 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3317
3318 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3319 if (folio_test_hugetlb_cma(folio))
3320 init_cma_pageblock(folio_page(folio, i));
3321 else
3322 set_pageblock_migratetype(folio_page(folio, i),
3323 MIGRATE_MOVABLE);
3324 }
3325 }
3326
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3327 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3328 struct list_head *folio_list)
3329 {
3330 unsigned long flags;
3331 struct folio *folio, *tmp_f;
3332
3333 /* Send list for bulk vmemmap optimization processing */
3334 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3335
3336 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3337 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3338 /*
3339 * If HVO fails, initialize all tail struct pages
3340 * We do not worry about potential long lock hold
3341 * time as this is early in boot and there should
3342 * be no contention.
3343 */
3344 hugetlb_folio_init_tail_vmemmap(folio,
3345 HUGETLB_VMEMMAP_RESERVE_PAGES,
3346 pages_per_huge_page(h));
3347 }
3348 hugetlb_bootmem_init_migratetype(folio, h);
3349 /* Subdivide locks to achieve better parallel performance */
3350 spin_lock_irqsave(&hugetlb_lock, flags);
3351 __prep_account_new_huge_page(h, folio_nid(folio));
3352 enqueue_hugetlb_folio(h, folio);
3353 spin_unlock_irqrestore(&hugetlb_lock, flags);
3354 }
3355 }
3356
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3357 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3358 struct huge_bootmem_page *m)
3359 {
3360 unsigned long start_pfn;
3361 bool valid;
3362
3363 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3364 /*
3365 * Already validated, skip check.
3366 */
3367 return true;
3368 }
3369
3370 if (hugetlb_bootmem_page_earlycma(m)) {
3371 valid = cma_validate_zones(m->cma);
3372 goto out;
3373 }
3374
3375 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3376
3377 valid = !pfn_range_intersects_zones(nid, start_pfn,
3378 pages_per_huge_page(m->hstate));
3379 out:
3380 if (!valid)
3381 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3382
3383 return valid;
3384 }
3385
3386 /*
3387 * Free a bootmem page that was found to be invalid (intersecting with
3388 * multiple zones).
3389 *
3390 * Since it intersects with multiple zones, we can't just do a free
3391 * operation on all pages at once, but instead have to walk all
3392 * pages, freeing them one by one.
3393 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3394 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3395 struct hstate *h)
3396 {
3397 unsigned long npages = pages_per_huge_page(h);
3398 unsigned long pfn;
3399
3400 while (npages--) {
3401 pfn = page_to_pfn(page);
3402 __init_page_from_nid(pfn, nid);
3403 free_reserved_page(page);
3404 page++;
3405 }
3406 }
3407
3408 /*
3409 * Put bootmem huge pages into the standard lists after mem_map is up.
3410 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3411 */
gather_bootmem_prealloc_node(unsigned long nid)3412 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3413 {
3414 LIST_HEAD(folio_list);
3415 struct huge_bootmem_page *m, *tm;
3416 struct hstate *h = NULL, *prev_h = NULL;
3417
3418 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3419 struct page *page = virt_to_page(m);
3420 struct folio *folio = (void *)page;
3421
3422 h = m->hstate;
3423 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3424 /*
3425 * Can't use this page. Initialize the
3426 * page structures if that hasn't already
3427 * been done, and give them to the page
3428 * allocator.
3429 */
3430 hugetlb_bootmem_free_invalid_page(nid, page, h);
3431 continue;
3432 }
3433
3434 /*
3435 * It is possible to have multiple huge page sizes (hstates)
3436 * in this list. If so, process each size separately.
3437 */
3438 if (h != prev_h && prev_h != NULL)
3439 prep_and_add_bootmem_folios(prev_h, &folio_list);
3440 prev_h = h;
3441
3442 VM_BUG_ON(!hstate_is_gigantic(h));
3443 WARN_ON(folio_ref_count(folio) != 1);
3444
3445 hugetlb_folio_init_vmemmap(folio, h,
3446 HUGETLB_VMEMMAP_RESERVE_PAGES);
3447 init_new_hugetlb_folio(h, folio);
3448
3449 if (hugetlb_bootmem_page_prehvo(m))
3450 /*
3451 * If pre-HVO was done, just set the
3452 * flag, the HVO code will then skip
3453 * this folio.
3454 */
3455 folio_set_hugetlb_vmemmap_optimized(folio);
3456
3457 if (hugetlb_bootmem_page_earlycma(m))
3458 folio_set_hugetlb_cma(folio);
3459
3460 list_add(&folio->lru, &folio_list);
3461
3462 /*
3463 * We need to restore the 'stolen' pages to totalram_pages
3464 * in order to fix confusing memory reports from free(1) and
3465 * other side-effects, like CommitLimit going negative.
3466 *
3467 * For CMA pages, this is done in init_cma_pageblock
3468 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3469 */
3470 if (!folio_test_hugetlb_cma(folio))
3471 adjust_managed_page_count(page, pages_per_huge_page(h));
3472 cond_resched();
3473 }
3474
3475 prep_and_add_bootmem_folios(h, &folio_list);
3476 }
3477
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3478 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3479 unsigned long end, void *arg)
3480 {
3481 int nid;
3482
3483 for (nid = start; nid < end; nid++)
3484 gather_bootmem_prealloc_node(nid);
3485 }
3486
gather_bootmem_prealloc(void)3487 static void __init gather_bootmem_prealloc(void)
3488 {
3489 struct padata_mt_job job = {
3490 .thread_fn = gather_bootmem_prealloc_parallel,
3491 .fn_arg = NULL,
3492 .start = 0,
3493 .size = nr_node_ids,
3494 .align = 1,
3495 .min_chunk = 1,
3496 .max_threads = num_node_state(N_MEMORY),
3497 .numa_aware = true,
3498 };
3499
3500 padata_do_multithreaded(&job);
3501 }
3502
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3503 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3504 {
3505 unsigned long i;
3506 char buf[32];
3507 LIST_HEAD(folio_list);
3508
3509 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3510 if (hstate_is_gigantic(h)) {
3511 if (!alloc_bootmem_huge_page(h, nid))
3512 break;
3513 } else {
3514 struct folio *folio;
3515 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3516
3517 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3518 &node_states[N_MEMORY], NULL);
3519 if (!folio)
3520 break;
3521 list_add(&folio->lru, &folio_list);
3522 }
3523 cond_resched();
3524 }
3525
3526 if (!list_empty(&folio_list))
3527 prep_and_add_allocated_folios(h, &folio_list);
3528
3529 if (i == h->max_huge_pages_node[nid])
3530 return;
3531
3532 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3533 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3534 h->max_huge_pages_node[nid], buf, nid, i);
3535 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3536 h->max_huge_pages_node[nid] = i;
3537 }
3538
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3539 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3540 {
3541 int i;
3542 bool node_specific_alloc = false;
3543
3544 for_each_online_node(i) {
3545 if (h->max_huge_pages_node[i] > 0) {
3546 hugetlb_hstate_alloc_pages_onenode(h, i);
3547 node_specific_alloc = true;
3548 }
3549 }
3550
3551 return node_specific_alloc;
3552 }
3553
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3554 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3555 {
3556 if (allocated < h->max_huge_pages) {
3557 char buf[32];
3558
3559 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3560 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3561 h->max_huge_pages, buf, allocated);
3562 h->max_huge_pages = allocated;
3563 }
3564 }
3565
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3566 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3567 {
3568 struct hstate *h = (struct hstate *)arg;
3569 int i, num = end - start;
3570 nodemask_t node_alloc_noretry;
3571 LIST_HEAD(folio_list);
3572 int next_node = first_online_node;
3573
3574 /* Bit mask controlling how hard we retry per-node allocations.*/
3575 nodes_clear(node_alloc_noretry);
3576
3577 for (i = 0; i < num; ++i) {
3578 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3579 &node_alloc_noretry, &next_node);
3580 if (!folio)
3581 break;
3582
3583 list_move(&folio->lru, &folio_list);
3584 cond_resched();
3585 }
3586
3587 prep_and_add_allocated_folios(h, &folio_list);
3588 }
3589
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3590 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3591 {
3592 unsigned long i;
3593
3594 for (i = 0; i < h->max_huge_pages; ++i) {
3595 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3596 break;
3597 cond_resched();
3598 }
3599
3600 return i;
3601 }
3602
hugetlb_pages_alloc_boot(struct hstate * h)3603 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3604 {
3605 struct padata_mt_job job = {
3606 .fn_arg = h,
3607 .align = 1,
3608 .numa_aware = true
3609 };
3610
3611 unsigned long jiffies_start;
3612 unsigned long jiffies_end;
3613
3614 job.thread_fn = hugetlb_pages_alloc_boot_node;
3615 job.start = 0;
3616 job.size = h->max_huge_pages;
3617
3618 /*
3619 * job.max_threads is 25% of the available cpu threads by default.
3620 *
3621 * On large servers with terabytes of memory, huge page allocation
3622 * can consume a considerably amount of time.
3623 *
3624 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3625 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3626 *
3627 * +-----------------------+-------+-------+-------+-------+-------+
3628 * | threads | 8 | 16 | 32 | 64 | 128 |
3629 * +-----------------------+-------+-------+-------+-------+-------+
3630 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3631 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3632 * +-----------------------+-------+-------+-------+-------+-------+
3633 */
3634 if (hugepage_allocation_threads == 0) {
3635 hugepage_allocation_threads = num_online_cpus() / 4;
3636 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3637 }
3638
3639 job.max_threads = hugepage_allocation_threads;
3640 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3641
3642 jiffies_start = jiffies;
3643 padata_do_multithreaded(&job);
3644 jiffies_end = jiffies;
3645
3646 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3647 jiffies_to_msecs(jiffies_end - jiffies_start),
3648 hugepage_allocation_threads);
3649
3650 return h->nr_huge_pages;
3651 }
3652
3653 /*
3654 * NOTE: this routine is called in different contexts for gigantic and
3655 * non-gigantic pages.
3656 * - For gigantic pages, this is called early in the boot process and
3657 * pages are allocated from memblock allocated or something similar.
3658 * Gigantic pages are actually added to pools later with the routine
3659 * gather_bootmem_prealloc.
3660 * - For non-gigantic pages, this is called later in the boot process after
3661 * all of mm is up and functional. Pages are allocated from buddy and
3662 * then added to hugetlb pools.
3663 */
hugetlb_hstate_alloc_pages(struct hstate * h)3664 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3665 {
3666 unsigned long allocated;
3667
3668 /*
3669 * Skip gigantic hugepages allocation if early CMA
3670 * reservations are not available.
3671 */
3672 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3673 !hugetlb_early_cma(h)) {
3674 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3675 return;
3676 }
3677
3678 /* do node specific alloc */
3679 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3680 return;
3681
3682 /* below will do all node balanced alloc */
3683 if (hstate_is_gigantic(h))
3684 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3685 else
3686 allocated = hugetlb_pages_alloc_boot(h);
3687
3688 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3689 }
3690
hugetlb_init_hstates(void)3691 static void __init hugetlb_init_hstates(void)
3692 {
3693 struct hstate *h, *h2;
3694
3695 for_each_hstate(h) {
3696 /*
3697 * Always reset to first_memory_node here, even if
3698 * next_nid_to_alloc was set before - we can't
3699 * reference hugetlb_bootmem_nodes after init, and
3700 * first_memory_node is right for all further allocations.
3701 */
3702 h->next_nid_to_alloc = first_memory_node;
3703 h->next_nid_to_free = first_memory_node;
3704
3705 /* oversize hugepages were init'ed in early boot */
3706 if (!hstate_is_gigantic(h))
3707 hugetlb_hstate_alloc_pages(h);
3708
3709 /*
3710 * Set demote order for each hstate. Note that
3711 * h->demote_order is initially 0.
3712 * - We can not demote gigantic pages if runtime freeing
3713 * is not supported, so skip this.
3714 * - If CMA allocation is possible, we can not demote
3715 * HUGETLB_PAGE_ORDER or smaller size pages.
3716 */
3717 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3718 continue;
3719 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3720 continue;
3721 for_each_hstate(h2) {
3722 if (h2 == h)
3723 continue;
3724 if (h2->order < h->order &&
3725 h2->order > h->demote_order)
3726 h->demote_order = h2->order;
3727 }
3728 }
3729 }
3730
report_hugepages(void)3731 static void __init report_hugepages(void)
3732 {
3733 struct hstate *h;
3734 unsigned long nrinvalid;
3735
3736 for_each_hstate(h) {
3737 char buf[32];
3738
3739 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3740 h->max_huge_pages -= nrinvalid;
3741
3742 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3743 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3744 buf, h->nr_huge_pages);
3745 if (nrinvalid)
3746 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3747 buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3748 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3749 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3750 }
3751 }
3752
3753 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3754 static void try_to_free_low(struct hstate *h, unsigned long count,
3755 nodemask_t *nodes_allowed)
3756 {
3757 int i;
3758 LIST_HEAD(page_list);
3759
3760 lockdep_assert_held(&hugetlb_lock);
3761 if (hstate_is_gigantic(h))
3762 return;
3763
3764 /*
3765 * Collect pages to be freed on a list, and free after dropping lock
3766 */
3767 for_each_node_mask(i, *nodes_allowed) {
3768 struct folio *folio, *next;
3769 struct list_head *freel = &h->hugepage_freelists[i];
3770 list_for_each_entry_safe(folio, next, freel, lru) {
3771 if (count >= h->nr_huge_pages)
3772 goto out;
3773 if (folio_test_highmem(folio))
3774 continue;
3775 remove_hugetlb_folio(h, folio, false);
3776 list_add(&folio->lru, &page_list);
3777 }
3778 }
3779
3780 out:
3781 spin_unlock_irq(&hugetlb_lock);
3782 update_and_free_pages_bulk(h, &page_list);
3783 spin_lock_irq(&hugetlb_lock);
3784 }
3785 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3786 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3787 nodemask_t *nodes_allowed)
3788 {
3789 }
3790 #endif
3791
3792 /*
3793 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3794 * balanced by operating on them in a round-robin fashion.
3795 * Returns 1 if an adjustment was made.
3796 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3797 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3798 int delta)
3799 {
3800 int nr_nodes, node;
3801
3802 lockdep_assert_held(&hugetlb_lock);
3803 VM_BUG_ON(delta != -1 && delta != 1);
3804
3805 if (delta < 0) {
3806 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3807 if (h->surplus_huge_pages_node[node])
3808 goto found;
3809 }
3810 } else {
3811 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3812 if (h->surplus_huge_pages_node[node] <
3813 h->nr_huge_pages_node[node])
3814 goto found;
3815 }
3816 }
3817 return 0;
3818
3819 found:
3820 h->surplus_huge_pages += delta;
3821 h->surplus_huge_pages_node[node] += delta;
3822 return 1;
3823 }
3824
3825 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3826 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3827 nodemask_t *nodes_allowed)
3828 {
3829 unsigned long persistent_free_count;
3830 unsigned long min_count;
3831 unsigned long allocated;
3832 struct folio *folio;
3833 LIST_HEAD(page_list);
3834 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3835
3836 /*
3837 * Bit mask controlling how hard we retry per-node allocations.
3838 * If we can not allocate the bit mask, do not attempt to allocate
3839 * the requested huge pages.
3840 */
3841 if (node_alloc_noretry)
3842 nodes_clear(*node_alloc_noretry);
3843 else
3844 return -ENOMEM;
3845
3846 /*
3847 * resize_lock mutex prevents concurrent adjustments to number of
3848 * pages in hstate via the proc/sysfs interfaces.
3849 */
3850 mutex_lock(&h->resize_lock);
3851 flush_free_hpage_work(h);
3852 spin_lock_irq(&hugetlb_lock);
3853
3854 /*
3855 * Check for a node specific request.
3856 * Changing node specific huge page count may require a corresponding
3857 * change to the global count. In any case, the passed node mask
3858 * (nodes_allowed) will restrict alloc/free to the specified node.
3859 */
3860 if (nid != NUMA_NO_NODE) {
3861 unsigned long old_count = count;
3862
3863 count += persistent_huge_pages(h) -
3864 (h->nr_huge_pages_node[nid] -
3865 h->surplus_huge_pages_node[nid]);
3866 /*
3867 * User may have specified a large count value which caused the
3868 * above calculation to overflow. In this case, they wanted
3869 * to allocate as many huge pages as possible. Set count to
3870 * largest possible value to align with their intention.
3871 */
3872 if (count < old_count)
3873 count = ULONG_MAX;
3874 }
3875
3876 /*
3877 * Gigantic pages runtime allocation depend on the capability for large
3878 * page range allocation.
3879 * If the system does not provide this feature, return an error when
3880 * the user tries to allocate gigantic pages but let the user free the
3881 * boottime allocated gigantic pages.
3882 */
3883 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3884 if (count > persistent_huge_pages(h)) {
3885 spin_unlock_irq(&hugetlb_lock);
3886 mutex_unlock(&h->resize_lock);
3887 NODEMASK_FREE(node_alloc_noretry);
3888 return -EINVAL;
3889 }
3890 /* Fall through to decrease pool */
3891 }
3892
3893 /*
3894 * Increase the pool size
3895 * First take pages out of surplus state. Then make up the
3896 * remaining difference by allocating fresh huge pages.
3897 *
3898 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3899 * to convert a surplus huge page to a normal huge page. That is
3900 * not critical, though, it just means the overall size of the
3901 * pool might be one hugepage larger than it needs to be, but
3902 * within all the constraints specified by the sysctls.
3903 */
3904 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3905 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3906 break;
3907 }
3908
3909 allocated = 0;
3910 while (count > (persistent_huge_pages(h) + allocated)) {
3911 /*
3912 * If this allocation races such that we no longer need the
3913 * page, free_huge_folio will handle it by freeing the page
3914 * and reducing the surplus.
3915 */
3916 spin_unlock_irq(&hugetlb_lock);
3917
3918 /* yield cpu to avoid soft lockup */
3919 cond_resched();
3920
3921 folio = alloc_pool_huge_folio(h, nodes_allowed,
3922 node_alloc_noretry,
3923 &h->next_nid_to_alloc);
3924 if (!folio) {
3925 prep_and_add_allocated_folios(h, &page_list);
3926 spin_lock_irq(&hugetlb_lock);
3927 goto out;
3928 }
3929
3930 list_add(&folio->lru, &page_list);
3931 allocated++;
3932
3933 /* Bail for signals. Probably ctrl-c from user */
3934 if (signal_pending(current)) {
3935 prep_and_add_allocated_folios(h, &page_list);
3936 spin_lock_irq(&hugetlb_lock);
3937 goto out;
3938 }
3939
3940 spin_lock_irq(&hugetlb_lock);
3941 }
3942
3943 /* Add allocated pages to the pool */
3944 if (!list_empty(&page_list)) {
3945 spin_unlock_irq(&hugetlb_lock);
3946 prep_and_add_allocated_folios(h, &page_list);
3947 spin_lock_irq(&hugetlb_lock);
3948 }
3949
3950 /*
3951 * Decrease the pool size
3952 * First return free pages to the buddy allocator (being careful
3953 * to keep enough around to satisfy reservations). Then place
3954 * pages into surplus state as needed so the pool will shrink
3955 * to the desired size as pages become free.
3956 *
3957 * By placing pages into the surplus state independent of the
3958 * overcommit value, we are allowing the surplus pool size to
3959 * exceed overcommit. There are few sane options here. Since
3960 * alloc_surplus_hugetlb_folio() is checking the global counter,
3961 * though, we'll note that we're not allowed to exceed surplus
3962 * and won't grow the pool anywhere else. Not until one of the
3963 * sysctls are changed, or the surplus pages go out of use.
3964 *
3965 * min_count is the expected number of persistent pages, we
3966 * shouldn't calculate min_count by using
3967 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3968 * because there may exist free surplus huge pages, and this will
3969 * lead to subtracting twice. Free surplus huge pages come from HVO
3970 * failing to restore vmemmap, see comments in the callers of
3971 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3972 * persistent free count first.
3973 */
3974 persistent_free_count = h->free_huge_pages;
3975 if (h->free_huge_pages > persistent_huge_pages(h)) {
3976 if (h->free_huge_pages > h->surplus_huge_pages)
3977 persistent_free_count -= h->surplus_huge_pages;
3978 else
3979 persistent_free_count = 0;
3980 }
3981 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3982 min_count = max(count, min_count);
3983 try_to_free_low(h, min_count, nodes_allowed);
3984
3985 /*
3986 * Collect pages to be removed on list without dropping lock
3987 */
3988 while (min_count < persistent_huge_pages(h)) {
3989 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3990 if (!folio)
3991 break;
3992
3993 list_add(&folio->lru, &page_list);
3994 }
3995 /* free the pages after dropping lock */
3996 spin_unlock_irq(&hugetlb_lock);
3997 update_and_free_pages_bulk(h, &page_list);
3998 flush_free_hpage_work(h);
3999 spin_lock_irq(&hugetlb_lock);
4000
4001 while (count < persistent_huge_pages(h)) {
4002 if (!adjust_pool_surplus(h, nodes_allowed, 1))
4003 break;
4004 }
4005 out:
4006 h->max_huge_pages = persistent_huge_pages(h);
4007 spin_unlock_irq(&hugetlb_lock);
4008 mutex_unlock(&h->resize_lock);
4009
4010 NODEMASK_FREE(node_alloc_noretry);
4011
4012 return 0;
4013 }
4014
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)4015 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
4016 struct list_head *src_list)
4017 {
4018 long rc;
4019 struct folio *folio, *next;
4020 LIST_HEAD(dst_list);
4021 LIST_HEAD(ret_list);
4022
4023 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4024 list_splice_init(&ret_list, src_list);
4025
4026 /*
4027 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4028 * Without the mutex, pages added to target hstate could be marked
4029 * as surplus.
4030 *
4031 * Note that we already hold src->resize_lock. To prevent deadlock,
4032 * use the convention of always taking larger size hstate mutex first.
4033 */
4034 mutex_lock(&dst->resize_lock);
4035
4036 list_for_each_entry_safe(folio, next, src_list, lru) {
4037 int i;
4038 bool cma;
4039
4040 if (folio_test_hugetlb_vmemmap_optimized(folio))
4041 continue;
4042
4043 cma = folio_test_hugetlb_cma(folio);
4044
4045 list_del(&folio->lru);
4046
4047 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4048 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4049
4050 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4051 struct page *page = folio_page(folio, i);
4052 /* Careful: see __split_huge_page_tail() */
4053 struct folio *new_folio = (struct folio *)page;
4054
4055 clear_compound_head(page);
4056 prep_compound_page(page, dst->order);
4057
4058 new_folio->mapping = NULL;
4059 init_new_hugetlb_folio(dst, new_folio);
4060 /* Copy the CMA flag so that it is freed correctly */
4061 if (cma)
4062 folio_set_hugetlb_cma(new_folio);
4063 list_add(&new_folio->lru, &dst_list);
4064 }
4065 }
4066
4067 prep_and_add_allocated_folios(dst, &dst_list);
4068
4069 mutex_unlock(&dst->resize_lock);
4070
4071 return rc;
4072 }
4073
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4074 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4075 unsigned long nr_to_demote)
4076 __must_hold(&hugetlb_lock)
4077 {
4078 int nr_nodes, node;
4079 struct hstate *dst;
4080 long rc = 0;
4081 long nr_demoted = 0;
4082
4083 lockdep_assert_held(&hugetlb_lock);
4084
4085 /* We should never get here if no demote order */
4086 if (!src->demote_order) {
4087 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4088 return -EINVAL; /* internal error */
4089 }
4090 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4091
4092 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4093 LIST_HEAD(list);
4094 struct folio *folio, *next;
4095
4096 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4097 if (folio_test_hwpoison(folio))
4098 continue;
4099
4100 remove_hugetlb_folio(src, folio, false);
4101 list_add(&folio->lru, &list);
4102
4103 if (++nr_demoted == nr_to_demote)
4104 break;
4105 }
4106
4107 spin_unlock_irq(&hugetlb_lock);
4108
4109 rc = demote_free_hugetlb_folios(src, dst, &list);
4110
4111 spin_lock_irq(&hugetlb_lock);
4112
4113 list_for_each_entry_safe(folio, next, &list, lru) {
4114 list_del(&folio->lru);
4115 add_hugetlb_folio(src, folio, false);
4116
4117 nr_demoted--;
4118 }
4119
4120 if (rc < 0 || nr_demoted == nr_to_demote)
4121 break;
4122 }
4123
4124 /*
4125 * Not absolutely necessary, but for consistency update max_huge_pages
4126 * based on pool changes for the demoted page.
4127 */
4128 src->max_huge_pages -= nr_demoted;
4129 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4130
4131 if (rc < 0)
4132 return rc;
4133
4134 if (nr_demoted)
4135 return nr_demoted;
4136 /*
4137 * Only way to get here is if all pages on free lists are poisoned.
4138 * Return -EBUSY so that caller will not retry.
4139 */
4140 return -EBUSY;
4141 }
4142
4143 #define HSTATE_ATTR_RO(_name) \
4144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4145
4146 #define HSTATE_ATTR_WO(_name) \
4147 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4148
4149 #define HSTATE_ATTR(_name) \
4150 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4151
4152 static struct kobject *hugepages_kobj;
4153 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4154
4155 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4156
kobj_to_hstate(struct kobject * kobj,int * nidp)4157 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4158 {
4159 int i;
4160
4161 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4162 if (hstate_kobjs[i] == kobj) {
4163 if (nidp)
4164 *nidp = NUMA_NO_NODE;
4165 return &hstates[i];
4166 }
4167
4168 return kobj_to_node_hstate(kobj, nidp);
4169 }
4170
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4171 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4172 struct kobj_attribute *attr, char *buf)
4173 {
4174 struct hstate *h;
4175 unsigned long nr_huge_pages;
4176 int nid;
4177
4178 h = kobj_to_hstate(kobj, &nid);
4179 if (nid == NUMA_NO_NODE)
4180 nr_huge_pages = h->nr_huge_pages;
4181 else
4182 nr_huge_pages = h->nr_huge_pages_node[nid];
4183
4184 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4185 }
4186
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4187 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4188 struct hstate *h, int nid,
4189 unsigned long count, size_t len)
4190 {
4191 int err;
4192 nodemask_t nodes_allowed, *n_mask;
4193
4194 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4195 return -EINVAL;
4196
4197 if (nid == NUMA_NO_NODE) {
4198 /*
4199 * global hstate attribute
4200 */
4201 if (!(obey_mempolicy &&
4202 init_nodemask_of_mempolicy(&nodes_allowed)))
4203 n_mask = &node_states[N_MEMORY];
4204 else
4205 n_mask = &nodes_allowed;
4206 } else {
4207 /*
4208 * Node specific request. count adjustment happens in
4209 * set_max_huge_pages() after acquiring hugetlb_lock.
4210 */
4211 init_nodemask_of_node(&nodes_allowed, nid);
4212 n_mask = &nodes_allowed;
4213 }
4214
4215 err = set_max_huge_pages(h, count, nid, n_mask);
4216
4217 return err ? err : len;
4218 }
4219
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4220 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4221 struct kobject *kobj, const char *buf,
4222 size_t len)
4223 {
4224 struct hstate *h;
4225 unsigned long count;
4226 int nid;
4227 int err;
4228
4229 err = kstrtoul(buf, 10, &count);
4230 if (err)
4231 return err;
4232
4233 h = kobj_to_hstate(kobj, &nid);
4234 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4235 }
4236
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4237 static ssize_t nr_hugepages_show(struct kobject *kobj,
4238 struct kobj_attribute *attr, char *buf)
4239 {
4240 return nr_hugepages_show_common(kobj, attr, buf);
4241 }
4242
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4243 static ssize_t nr_hugepages_store(struct kobject *kobj,
4244 struct kobj_attribute *attr, const char *buf, size_t len)
4245 {
4246 return nr_hugepages_store_common(false, kobj, buf, len);
4247 }
4248 HSTATE_ATTR(nr_hugepages);
4249
4250 #ifdef CONFIG_NUMA
4251
4252 /*
4253 * hstate attribute for optionally mempolicy-based constraint on persistent
4254 * huge page alloc/free.
4255 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4256 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4257 struct kobj_attribute *attr,
4258 char *buf)
4259 {
4260 return nr_hugepages_show_common(kobj, attr, buf);
4261 }
4262
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4263 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4264 struct kobj_attribute *attr, const char *buf, size_t len)
4265 {
4266 return nr_hugepages_store_common(true, kobj, buf, len);
4267 }
4268 HSTATE_ATTR(nr_hugepages_mempolicy);
4269 #endif
4270
4271
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4272 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4273 struct kobj_attribute *attr, char *buf)
4274 {
4275 struct hstate *h = kobj_to_hstate(kobj, NULL);
4276 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4277 }
4278
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4279 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4280 struct kobj_attribute *attr, const char *buf, size_t count)
4281 {
4282 int err;
4283 unsigned long input;
4284 struct hstate *h = kobj_to_hstate(kobj, NULL);
4285
4286 if (hstate_is_gigantic(h))
4287 return -EINVAL;
4288
4289 err = kstrtoul(buf, 10, &input);
4290 if (err)
4291 return err;
4292
4293 spin_lock_irq(&hugetlb_lock);
4294 h->nr_overcommit_huge_pages = input;
4295 spin_unlock_irq(&hugetlb_lock);
4296
4297 return count;
4298 }
4299 HSTATE_ATTR(nr_overcommit_hugepages);
4300
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4301 static ssize_t free_hugepages_show(struct kobject *kobj,
4302 struct kobj_attribute *attr, char *buf)
4303 {
4304 struct hstate *h;
4305 unsigned long free_huge_pages;
4306 int nid;
4307
4308 h = kobj_to_hstate(kobj, &nid);
4309 if (nid == NUMA_NO_NODE)
4310 free_huge_pages = h->free_huge_pages;
4311 else
4312 free_huge_pages = h->free_huge_pages_node[nid];
4313
4314 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4315 }
4316 HSTATE_ATTR_RO(free_hugepages);
4317
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4318 static ssize_t resv_hugepages_show(struct kobject *kobj,
4319 struct kobj_attribute *attr, char *buf)
4320 {
4321 struct hstate *h = kobj_to_hstate(kobj, NULL);
4322 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4323 }
4324 HSTATE_ATTR_RO(resv_hugepages);
4325
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4326 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4327 struct kobj_attribute *attr, char *buf)
4328 {
4329 struct hstate *h;
4330 unsigned long surplus_huge_pages;
4331 int nid;
4332
4333 h = kobj_to_hstate(kobj, &nid);
4334 if (nid == NUMA_NO_NODE)
4335 surplus_huge_pages = h->surplus_huge_pages;
4336 else
4337 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4338
4339 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4340 }
4341 HSTATE_ATTR_RO(surplus_hugepages);
4342
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4343 static ssize_t demote_store(struct kobject *kobj,
4344 struct kobj_attribute *attr, const char *buf, size_t len)
4345 {
4346 unsigned long nr_demote;
4347 unsigned long nr_available;
4348 nodemask_t nodes_allowed, *n_mask;
4349 struct hstate *h;
4350 int err;
4351 int nid;
4352
4353 err = kstrtoul(buf, 10, &nr_demote);
4354 if (err)
4355 return err;
4356 h = kobj_to_hstate(kobj, &nid);
4357
4358 if (nid != NUMA_NO_NODE) {
4359 init_nodemask_of_node(&nodes_allowed, nid);
4360 n_mask = &nodes_allowed;
4361 } else {
4362 n_mask = &node_states[N_MEMORY];
4363 }
4364
4365 /* Synchronize with other sysfs operations modifying huge pages */
4366 mutex_lock(&h->resize_lock);
4367 spin_lock_irq(&hugetlb_lock);
4368
4369 while (nr_demote) {
4370 long rc;
4371
4372 /*
4373 * Check for available pages to demote each time thorough the
4374 * loop as demote_pool_huge_page will drop hugetlb_lock.
4375 */
4376 if (nid != NUMA_NO_NODE)
4377 nr_available = h->free_huge_pages_node[nid];
4378 else
4379 nr_available = h->free_huge_pages;
4380 nr_available -= h->resv_huge_pages;
4381 if (!nr_available)
4382 break;
4383
4384 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4385 if (rc < 0) {
4386 err = rc;
4387 break;
4388 }
4389
4390 nr_demote -= rc;
4391 }
4392
4393 spin_unlock_irq(&hugetlb_lock);
4394 mutex_unlock(&h->resize_lock);
4395
4396 if (err)
4397 return err;
4398 return len;
4399 }
4400 HSTATE_ATTR_WO(demote);
4401
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4402 static ssize_t demote_size_show(struct kobject *kobj,
4403 struct kobj_attribute *attr, char *buf)
4404 {
4405 struct hstate *h = kobj_to_hstate(kobj, NULL);
4406 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4407
4408 return sysfs_emit(buf, "%lukB\n", demote_size);
4409 }
4410
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4411 static ssize_t demote_size_store(struct kobject *kobj,
4412 struct kobj_attribute *attr,
4413 const char *buf, size_t count)
4414 {
4415 struct hstate *h, *demote_hstate;
4416 unsigned long demote_size;
4417 unsigned int demote_order;
4418
4419 demote_size = (unsigned long)memparse(buf, NULL);
4420
4421 demote_hstate = size_to_hstate(demote_size);
4422 if (!demote_hstate)
4423 return -EINVAL;
4424 demote_order = demote_hstate->order;
4425 if (demote_order < HUGETLB_PAGE_ORDER)
4426 return -EINVAL;
4427
4428 /* demote order must be smaller than hstate order */
4429 h = kobj_to_hstate(kobj, NULL);
4430 if (demote_order >= h->order)
4431 return -EINVAL;
4432
4433 /* resize_lock synchronizes access to demote size and writes */
4434 mutex_lock(&h->resize_lock);
4435 h->demote_order = demote_order;
4436 mutex_unlock(&h->resize_lock);
4437
4438 return count;
4439 }
4440 HSTATE_ATTR(demote_size);
4441
4442 static struct attribute *hstate_attrs[] = {
4443 &nr_hugepages_attr.attr,
4444 &nr_overcommit_hugepages_attr.attr,
4445 &free_hugepages_attr.attr,
4446 &resv_hugepages_attr.attr,
4447 &surplus_hugepages_attr.attr,
4448 #ifdef CONFIG_NUMA
4449 &nr_hugepages_mempolicy_attr.attr,
4450 #endif
4451 NULL,
4452 };
4453
4454 static const struct attribute_group hstate_attr_group = {
4455 .attrs = hstate_attrs,
4456 };
4457
4458 static struct attribute *hstate_demote_attrs[] = {
4459 &demote_size_attr.attr,
4460 &demote_attr.attr,
4461 NULL,
4462 };
4463
4464 static const struct attribute_group hstate_demote_attr_group = {
4465 .attrs = hstate_demote_attrs,
4466 };
4467
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4468 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4469 struct kobject **hstate_kobjs,
4470 const struct attribute_group *hstate_attr_group)
4471 {
4472 int retval;
4473 int hi = hstate_index(h);
4474
4475 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4476 if (!hstate_kobjs[hi])
4477 return -ENOMEM;
4478
4479 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4480 if (retval) {
4481 kobject_put(hstate_kobjs[hi]);
4482 hstate_kobjs[hi] = NULL;
4483 return retval;
4484 }
4485
4486 if (h->demote_order) {
4487 retval = sysfs_create_group(hstate_kobjs[hi],
4488 &hstate_demote_attr_group);
4489 if (retval) {
4490 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4491 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4492 kobject_put(hstate_kobjs[hi]);
4493 hstate_kobjs[hi] = NULL;
4494 return retval;
4495 }
4496 }
4497
4498 return 0;
4499 }
4500
4501 #ifdef CONFIG_NUMA
4502 static bool hugetlb_sysfs_initialized __ro_after_init;
4503
4504 /*
4505 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4506 * with node devices in node_devices[] using a parallel array. The array
4507 * index of a node device or _hstate == node id.
4508 * This is here to avoid any static dependency of the node device driver, in
4509 * the base kernel, on the hugetlb module.
4510 */
4511 struct node_hstate {
4512 struct kobject *hugepages_kobj;
4513 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4514 };
4515 static struct node_hstate node_hstates[MAX_NUMNODES];
4516
4517 /*
4518 * A subset of global hstate attributes for node devices
4519 */
4520 static struct attribute *per_node_hstate_attrs[] = {
4521 &nr_hugepages_attr.attr,
4522 &free_hugepages_attr.attr,
4523 &surplus_hugepages_attr.attr,
4524 NULL,
4525 };
4526
4527 static const struct attribute_group per_node_hstate_attr_group = {
4528 .attrs = per_node_hstate_attrs,
4529 };
4530
4531 /*
4532 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4533 * Returns node id via non-NULL nidp.
4534 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4535 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4536 {
4537 int nid;
4538
4539 for (nid = 0; nid < nr_node_ids; nid++) {
4540 struct node_hstate *nhs = &node_hstates[nid];
4541 int i;
4542 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4543 if (nhs->hstate_kobjs[i] == kobj) {
4544 if (nidp)
4545 *nidp = nid;
4546 return &hstates[i];
4547 }
4548 }
4549
4550 BUG();
4551 return NULL;
4552 }
4553
4554 /*
4555 * Unregister hstate attributes from a single node device.
4556 * No-op if no hstate attributes attached.
4557 */
hugetlb_unregister_node(struct node * node)4558 void hugetlb_unregister_node(struct node *node)
4559 {
4560 struct hstate *h;
4561 struct node_hstate *nhs = &node_hstates[node->dev.id];
4562
4563 if (!nhs->hugepages_kobj)
4564 return; /* no hstate attributes */
4565
4566 for_each_hstate(h) {
4567 int idx = hstate_index(h);
4568 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4569
4570 if (!hstate_kobj)
4571 continue;
4572 if (h->demote_order)
4573 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4574 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4575 kobject_put(hstate_kobj);
4576 nhs->hstate_kobjs[idx] = NULL;
4577 }
4578
4579 kobject_put(nhs->hugepages_kobj);
4580 nhs->hugepages_kobj = NULL;
4581 }
4582
4583
4584 /*
4585 * Register hstate attributes for a single node device.
4586 * No-op if attributes already registered.
4587 */
hugetlb_register_node(struct node * node)4588 void hugetlb_register_node(struct node *node)
4589 {
4590 struct hstate *h;
4591 struct node_hstate *nhs = &node_hstates[node->dev.id];
4592 int err;
4593
4594 if (!hugetlb_sysfs_initialized)
4595 return;
4596
4597 if (nhs->hugepages_kobj)
4598 return; /* already allocated */
4599
4600 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4601 &node->dev.kobj);
4602 if (!nhs->hugepages_kobj)
4603 return;
4604
4605 for_each_hstate(h) {
4606 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4607 nhs->hstate_kobjs,
4608 &per_node_hstate_attr_group);
4609 if (err) {
4610 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4611 h->name, node->dev.id);
4612 hugetlb_unregister_node(node);
4613 break;
4614 }
4615 }
4616 }
4617
4618 /*
4619 * hugetlb init time: register hstate attributes for all registered node
4620 * devices of nodes that have memory. All on-line nodes should have
4621 * registered their associated device by this time.
4622 */
hugetlb_register_all_nodes(void)4623 static void __init hugetlb_register_all_nodes(void)
4624 {
4625 int nid;
4626
4627 for_each_online_node(nid)
4628 hugetlb_register_node(node_devices[nid]);
4629 }
4630 #else /* !CONFIG_NUMA */
4631
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4632 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4633 {
4634 BUG();
4635 if (nidp)
4636 *nidp = -1;
4637 return NULL;
4638 }
4639
hugetlb_register_all_nodes(void)4640 static void hugetlb_register_all_nodes(void) { }
4641
4642 #endif
4643
hugetlb_sysfs_init(void)4644 static void __init hugetlb_sysfs_init(void)
4645 {
4646 struct hstate *h;
4647 int err;
4648
4649 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4650 if (!hugepages_kobj)
4651 return;
4652
4653 for_each_hstate(h) {
4654 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4655 hstate_kobjs, &hstate_attr_group);
4656 if (err)
4657 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4658 }
4659
4660 #ifdef CONFIG_NUMA
4661 hugetlb_sysfs_initialized = true;
4662 #endif
4663 hugetlb_register_all_nodes();
4664 }
4665
4666 #ifdef CONFIG_SYSCTL
4667 static void hugetlb_sysctl_init(void);
4668 #else
hugetlb_sysctl_init(void)4669 static inline void hugetlb_sysctl_init(void) { }
4670 #endif
4671
hugetlb_init(void)4672 static int __init hugetlb_init(void)
4673 {
4674 int i;
4675
4676 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4677 __NR_HPAGEFLAGS);
4678
4679 if (!hugepages_supported()) {
4680 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4681 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4682 return 0;
4683 }
4684
4685 /*
4686 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4687 * architectures depend on setup being done here.
4688 */
4689 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4690 if (!parsed_default_hugepagesz) {
4691 /*
4692 * If we did not parse a default huge page size, set
4693 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4694 * number of huge pages for this default size was implicitly
4695 * specified, set that here as well.
4696 * Note that the implicit setting will overwrite an explicit
4697 * setting. A warning will be printed in this case.
4698 */
4699 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4700 if (default_hstate_max_huge_pages) {
4701 if (default_hstate.max_huge_pages) {
4702 char buf[32];
4703
4704 string_get_size(huge_page_size(&default_hstate),
4705 1, STRING_UNITS_2, buf, 32);
4706 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4707 default_hstate.max_huge_pages, buf);
4708 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4709 default_hstate_max_huge_pages);
4710 }
4711 default_hstate.max_huge_pages =
4712 default_hstate_max_huge_pages;
4713
4714 for_each_online_node(i)
4715 default_hstate.max_huge_pages_node[i] =
4716 default_hugepages_in_node[i];
4717 }
4718 }
4719
4720 hugetlb_cma_check();
4721 hugetlb_init_hstates();
4722 gather_bootmem_prealloc();
4723 report_hugepages();
4724
4725 hugetlb_sysfs_init();
4726 hugetlb_cgroup_file_init();
4727 hugetlb_sysctl_init();
4728
4729 #ifdef CONFIG_SMP
4730 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4731 #else
4732 num_fault_mutexes = 1;
4733 #endif
4734 hugetlb_fault_mutex_table =
4735 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4736 GFP_KERNEL);
4737 BUG_ON(!hugetlb_fault_mutex_table);
4738
4739 for (i = 0; i < num_fault_mutexes; i++)
4740 mutex_init(&hugetlb_fault_mutex_table[i]);
4741 return 0;
4742 }
4743 subsys_initcall(hugetlb_init);
4744
4745 /* Overwritten by architectures with more huge page sizes */
__init(weak)4746 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4747 {
4748 return size == HPAGE_SIZE;
4749 }
4750
hugetlb_add_hstate(unsigned int order)4751 void __init hugetlb_add_hstate(unsigned int order)
4752 {
4753 struct hstate *h;
4754 unsigned long i;
4755
4756 if (size_to_hstate(PAGE_SIZE << order)) {
4757 return;
4758 }
4759 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4760 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4761 h = &hstates[hugetlb_max_hstate++];
4762 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4763 h->order = order;
4764 h->mask = ~(huge_page_size(h) - 1);
4765 for (i = 0; i < MAX_NUMNODES; ++i)
4766 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4767 INIT_LIST_HEAD(&h->hugepage_activelist);
4768 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4769 huge_page_size(h)/SZ_1K);
4770
4771 parsed_hstate = h;
4772 }
4773
hugetlb_node_alloc_supported(void)4774 bool __init __weak hugetlb_node_alloc_supported(void)
4775 {
4776 return true;
4777 }
4778
hugepages_clear_pages_in_node(void)4779 static void __init hugepages_clear_pages_in_node(void)
4780 {
4781 if (!hugetlb_max_hstate) {
4782 default_hstate_max_huge_pages = 0;
4783 memset(default_hugepages_in_node, 0,
4784 sizeof(default_hugepages_in_node));
4785 } else {
4786 parsed_hstate->max_huge_pages = 0;
4787 memset(parsed_hstate->max_huge_pages_node, 0,
4788 sizeof(parsed_hstate->max_huge_pages_node));
4789 }
4790 }
4791
hugetlb_add_param(char * s,int (* setup)(char *))4792 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4793 {
4794 size_t len;
4795 char *p;
4796
4797 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4798 return -EINVAL;
4799
4800 len = strlen(s) + 1;
4801 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4802 return -EINVAL;
4803
4804 p = &hstate_cmdline_buf[hstate_cmdline_index];
4805 memcpy(p, s, len);
4806 hstate_cmdline_index += len;
4807
4808 hugetlb_params[hugetlb_param_index].val = p;
4809 hugetlb_params[hugetlb_param_index].setup = setup;
4810
4811 hugetlb_param_index++;
4812
4813 return 0;
4814 }
4815
hugetlb_parse_params(void)4816 static __init void hugetlb_parse_params(void)
4817 {
4818 int i;
4819 struct hugetlb_cmdline *hcp;
4820
4821 for (i = 0; i < hugetlb_param_index; i++) {
4822 hcp = &hugetlb_params[i];
4823
4824 hcp->setup(hcp->val);
4825 }
4826
4827 hugetlb_cma_validate_params();
4828 }
4829
4830 /*
4831 * hugepages command line processing
4832 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4833 * specification. If not, ignore the hugepages value. hugepages can also
4834 * be the first huge page command line option in which case it implicitly
4835 * specifies the number of huge pages for the default size.
4836 */
hugepages_setup(char * s)4837 static int __init hugepages_setup(char *s)
4838 {
4839 unsigned long *mhp;
4840 static unsigned long *last_mhp;
4841 int node = NUMA_NO_NODE;
4842 int count;
4843 unsigned long tmp;
4844 char *p = s;
4845
4846 if (!parsed_valid_hugepagesz) {
4847 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4848 parsed_valid_hugepagesz = true;
4849 return -EINVAL;
4850 }
4851
4852 /*
4853 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4854 * yet, so this hugepages= parameter goes to the "default hstate".
4855 * Otherwise, it goes with the previously parsed hugepagesz or
4856 * default_hugepagesz.
4857 */
4858 else if (!hugetlb_max_hstate)
4859 mhp = &default_hstate_max_huge_pages;
4860 else
4861 mhp = &parsed_hstate->max_huge_pages;
4862
4863 if (mhp == last_mhp) {
4864 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4865 return 1;
4866 }
4867
4868 while (*p) {
4869 count = 0;
4870 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4871 goto invalid;
4872 /* Parameter is node format */
4873 if (p[count] == ':') {
4874 if (!hugetlb_node_alloc_supported()) {
4875 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4876 return 1;
4877 }
4878 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4879 goto invalid;
4880 node = array_index_nospec(tmp, MAX_NUMNODES);
4881 p += count + 1;
4882 /* Parse hugepages */
4883 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4884 goto invalid;
4885 if (!hugetlb_max_hstate)
4886 default_hugepages_in_node[node] = tmp;
4887 else
4888 parsed_hstate->max_huge_pages_node[node] = tmp;
4889 *mhp += tmp;
4890 /* Go to parse next node*/
4891 if (p[count] == ',')
4892 p += count + 1;
4893 else
4894 break;
4895 } else {
4896 if (p != s)
4897 goto invalid;
4898 *mhp = tmp;
4899 break;
4900 }
4901 }
4902
4903 last_mhp = mhp;
4904
4905 return 0;
4906
4907 invalid:
4908 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4909 hugepages_clear_pages_in_node();
4910 return -EINVAL;
4911 }
4912 hugetlb_early_param("hugepages", hugepages_setup);
4913
4914 /*
4915 * hugepagesz command line processing
4916 * A specific huge page size can only be specified once with hugepagesz.
4917 * hugepagesz is followed by hugepages on the command line. The global
4918 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4919 * hugepagesz argument was valid.
4920 */
hugepagesz_setup(char * s)4921 static int __init hugepagesz_setup(char *s)
4922 {
4923 unsigned long size;
4924 struct hstate *h;
4925
4926 parsed_valid_hugepagesz = false;
4927 size = (unsigned long)memparse(s, NULL);
4928
4929 if (!arch_hugetlb_valid_size(size)) {
4930 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4931 return -EINVAL;
4932 }
4933
4934 h = size_to_hstate(size);
4935 if (h) {
4936 /*
4937 * hstate for this size already exists. This is normally
4938 * an error, but is allowed if the existing hstate is the
4939 * default hstate. More specifically, it is only allowed if
4940 * the number of huge pages for the default hstate was not
4941 * previously specified.
4942 */
4943 if (!parsed_default_hugepagesz || h != &default_hstate ||
4944 default_hstate.max_huge_pages) {
4945 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4946 return -EINVAL;
4947 }
4948
4949 /*
4950 * No need to call hugetlb_add_hstate() as hstate already
4951 * exists. But, do set parsed_hstate so that a following
4952 * hugepages= parameter will be applied to this hstate.
4953 */
4954 parsed_hstate = h;
4955 parsed_valid_hugepagesz = true;
4956 return 0;
4957 }
4958
4959 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4960 parsed_valid_hugepagesz = true;
4961 return 0;
4962 }
4963 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4964
4965 /*
4966 * default_hugepagesz command line input
4967 * Only one instance of default_hugepagesz allowed on command line.
4968 */
default_hugepagesz_setup(char * s)4969 static int __init default_hugepagesz_setup(char *s)
4970 {
4971 unsigned long size;
4972 int i;
4973
4974 parsed_valid_hugepagesz = false;
4975 if (parsed_default_hugepagesz) {
4976 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4977 return -EINVAL;
4978 }
4979
4980 size = (unsigned long)memparse(s, NULL);
4981
4982 if (!arch_hugetlb_valid_size(size)) {
4983 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4984 return -EINVAL;
4985 }
4986
4987 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4988 parsed_valid_hugepagesz = true;
4989 parsed_default_hugepagesz = true;
4990 default_hstate_idx = hstate_index(size_to_hstate(size));
4991
4992 /*
4993 * The number of default huge pages (for this size) could have been
4994 * specified as the first hugetlb parameter: hugepages=X. If so,
4995 * then default_hstate_max_huge_pages is set. If the default huge
4996 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4997 * allocated here from bootmem allocator.
4998 */
4999 if (default_hstate_max_huge_pages) {
5000 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
5001 /*
5002 * Since this is an early parameter, we can't check
5003 * NUMA node state yet, so loop through MAX_NUMNODES.
5004 */
5005 for (i = 0; i < MAX_NUMNODES; i++) {
5006 if (default_hugepages_in_node[i] != 0)
5007 default_hstate.max_huge_pages_node[i] =
5008 default_hugepages_in_node[i];
5009 }
5010 default_hstate_max_huge_pages = 0;
5011 }
5012
5013 return 0;
5014 }
5015 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
5016
hugetlb_bootmem_set_nodes(void)5017 void __init hugetlb_bootmem_set_nodes(void)
5018 {
5019 int i, nid;
5020 unsigned long start_pfn, end_pfn;
5021
5022 if (!nodes_empty(hugetlb_bootmem_nodes))
5023 return;
5024
5025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5026 if (end_pfn > start_pfn)
5027 node_set(nid, hugetlb_bootmem_nodes);
5028 }
5029 }
5030
5031 static bool __hugetlb_bootmem_allocated __initdata;
5032
hugetlb_bootmem_allocated(void)5033 bool __init hugetlb_bootmem_allocated(void)
5034 {
5035 return __hugetlb_bootmem_allocated;
5036 }
5037
hugetlb_bootmem_alloc(void)5038 void __init hugetlb_bootmem_alloc(void)
5039 {
5040 struct hstate *h;
5041 int i;
5042
5043 if (__hugetlb_bootmem_allocated)
5044 return;
5045
5046 hugetlb_bootmem_set_nodes();
5047
5048 for (i = 0; i < MAX_NUMNODES; i++)
5049 INIT_LIST_HEAD(&huge_boot_pages[i]);
5050
5051 hugetlb_parse_params();
5052
5053 for_each_hstate(h) {
5054 h->next_nid_to_alloc = first_online_node;
5055
5056 if (hstate_is_gigantic(h))
5057 hugetlb_hstate_alloc_pages(h);
5058 }
5059
5060 __hugetlb_bootmem_allocated = true;
5061 }
5062
5063 /*
5064 * hugepage_alloc_threads command line parsing.
5065 *
5066 * When set, use this specific number of threads for the boot
5067 * allocation of hugepages.
5068 */
hugepage_alloc_threads_setup(char * s)5069 static int __init hugepage_alloc_threads_setup(char *s)
5070 {
5071 unsigned long allocation_threads;
5072
5073 if (kstrtoul(s, 0, &allocation_threads) != 0)
5074 return 1;
5075
5076 if (allocation_threads == 0)
5077 return 1;
5078
5079 hugepage_allocation_threads = allocation_threads;
5080
5081 return 1;
5082 }
5083 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5084
allowed_mems_nr(struct hstate * h)5085 static unsigned int allowed_mems_nr(struct hstate *h)
5086 {
5087 int node;
5088 unsigned int nr = 0;
5089 nodemask_t *mbind_nodemask;
5090 unsigned int *array = h->free_huge_pages_node;
5091 gfp_t gfp_mask = htlb_alloc_mask(h);
5092
5093 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5094 for_each_node_mask(node, cpuset_current_mems_allowed) {
5095 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5096 nr += array[node];
5097 }
5098
5099 return nr;
5100 }
5101
5102 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5103 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5104 void *buffer, size_t *length,
5105 loff_t *ppos, unsigned long *out)
5106 {
5107 struct ctl_table dup_table;
5108
5109 /*
5110 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5111 * can duplicate the @table and alter the duplicate of it.
5112 */
5113 dup_table = *table;
5114 dup_table.data = out;
5115
5116 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5117 }
5118
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5119 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5120 const struct ctl_table *table, int write,
5121 void *buffer, size_t *length, loff_t *ppos)
5122 {
5123 struct hstate *h = &default_hstate;
5124 unsigned long tmp = h->max_huge_pages;
5125 int ret;
5126
5127 if (!hugepages_supported())
5128 return -EOPNOTSUPP;
5129
5130 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5131 &tmp);
5132 if (ret)
5133 goto out;
5134
5135 if (write)
5136 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5137 NUMA_NO_NODE, tmp, *length);
5138 out:
5139 return ret;
5140 }
5141
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5142 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5143 void *buffer, size_t *length, loff_t *ppos)
5144 {
5145
5146 return hugetlb_sysctl_handler_common(false, table, write,
5147 buffer, length, ppos);
5148 }
5149
5150 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5151 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5152 void *buffer, size_t *length, loff_t *ppos)
5153 {
5154 return hugetlb_sysctl_handler_common(true, table, write,
5155 buffer, length, ppos);
5156 }
5157 #endif /* CONFIG_NUMA */
5158
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5159 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5160 void *buffer, size_t *length, loff_t *ppos)
5161 {
5162 struct hstate *h = &default_hstate;
5163 unsigned long tmp;
5164 int ret;
5165
5166 if (!hugepages_supported())
5167 return -EOPNOTSUPP;
5168
5169 tmp = h->nr_overcommit_huge_pages;
5170
5171 if (write && hstate_is_gigantic(h))
5172 return -EINVAL;
5173
5174 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5175 &tmp);
5176 if (ret)
5177 goto out;
5178
5179 if (write) {
5180 spin_lock_irq(&hugetlb_lock);
5181 h->nr_overcommit_huge_pages = tmp;
5182 spin_unlock_irq(&hugetlb_lock);
5183 }
5184 out:
5185 return ret;
5186 }
5187
5188 static const struct ctl_table hugetlb_table[] = {
5189 {
5190 .procname = "nr_hugepages",
5191 .data = NULL,
5192 .maxlen = sizeof(unsigned long),
5193 .mode = 0644,
5194 .proc_handler = hugetlb_sysctl_handler,
5195 },
5196 #ifdef CONFIG_NUMA
5197 {
5198 .procname = "nr_hugepages_mempolicy",
5199 .data = NULL,
5200 .maxlen = sizeof(unsigned long),
5201 .mode = 0644,
5202 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5203 },
5204 #endif
5205 {
5206 .procname = "hugetlb_shm_group",
5207 .data = &sysctl_hugetlb_shm_group,
5208 .maxlen = sizeof(gid_t),
5209 .mode = 0644,
5210 .proc_handler = proc_dointvec,
5211 },
5212 {
5213 .procname = "nr_overcommit_hugepages",
5214 .data = NULL,
5215 .maxlen = sizeof(unsigned long),
5216 .mode = 0644,
5217 .proc_handler = hugetlb_overcommit_handler,
5218 },
5219 };
5220
hugetlb_sysctl_init(void)5221 static void __init hugetlb_sysctl_init(void)
5222 {
5223 register_sysctl_init("vm", hugetlb_table);
5224 }
5225 #endif /* CONFIG_SYSCTL */
5226
hugetlb_report_meminfo(struct seq_file * m)5227 void hugetlb_report_meminfo(struct seq_file *m)
5228 {
5229 struct hstate *h;
5230 unsigned long total = 0;
5231
5232 if (!hugepages_supported())
5233 return;
5234
5235 for_each_hstate(h) {
5236 unsigned long count = h->nr_huge_pages;
5237
5238 total += huge_page_size(h) * count;
5239
5240 if (h == &default_hstate)
5241 seq_printf(m,
5242 "HugePages_Total: %5lu\n"
5243 "HugePages_Free: %5lu\n"
5244 "HugePages_Rsvd: %5lu\n"
5245 "HugePages_Surp: %5lu\n"
5246 "Hugepagesize: %8lu kB\n",
5247 count,
5248 h->free_huge_pages,
5249 h->resv_huge_pages,
5250 h->surplus_huge_pages,
5251 huge_page_size(h) / SZ_1K);
5252 }
5253
5254 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5255 }
5256
hugetlb_report_node_meminfo(char * buf,int len,int nid)5257 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5258 {
5259 struct hstate *h = &default_hstate;
5260
5261 if (!hugepages_supported())
5262 return 0;
5263
5264 return sysfs_emit_at(buf, len,
5265 "Node %d HugePages_Total: %5u\n"
5266 "Node %d HugePages_Free: %5u\n"
5267 "Node %d HugePages_Surp: %5u\n",
5268 nid, h->nr_huge_pages_node[nid],
5269 nid, h->free_huge_pages_node[nid],
5270 nid, h->surplus_huge_pages_node[nid]);
5271 }
5272
hugetlb_show_meminfo_node(int nid)5273 void hugetlb_show_meminfo_node(int nid)
5274 {
5275 struct hstate *h;
5276
5277 if (!hugepages_supported())
5278 return;
5279
5280 for_each_hstate(h)
5281 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5282 nid,
5283 h->nr_huge_pages_node[nid],
5284 h->free_huge_pages_node[nid],
5285 h->surplus_huge_pages_node[nid],
5286 huge_page_size(h) / SZ_1K);
5287 }
5288
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5289 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5290 {
5291 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5292 K(atomic_long_read(&mm->hugetlb_usage)));
5293 }
5294
5295 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5296 unsigned long hugetlb_total_pages(void)
5297 {
5298 struct hstate *h;
5299 unsigned long nr_total_pages = 0;
5300
5301 for_each_hstate(h)
5302 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5303 return nr_total_pages;
5304 }
5305
hugetlb_acct_memory(struct hstate * h,long delta)5306 static int hugetlb_acct_memory(struct hstate *h, long delta)
5307 {
5308 int ret = -ENOMEM;
5309
5310 if (!delta)
5311 return 0;
5312
5313 spin_lock_irq(&hugetlb_lock);
5314 /*
5315 * When cpuset is configured, it breaks the strict hugetlb page
5316 * reservation as the accounting is done on a global variable. Such
5317 * reservation is completely rubbish in the presence of cpuset because
5318 * the reservation is not checked against page availability for the
5319 * current cpuset. Application can still potentially OOM'ed by kernel
5320 * with lack of free htlb page in cpuset that the task is in.
5321 * Attempt to enforce strict accounting with cpuset is almost
5322 * impossible (or too ugly) because cpuset is too fluid that
5323 * task or memory node can be dynamically moved between cpusets.
5324 *
5325 * The change of semantics for shared hugetlb mapping with cpuset is
5326 * undesirable. However, in order to preserve some of the semantics,
5327 * we fall back to check against current free page availability as
5328 * a best attempt and hopefully to minimize the impact of changing
5329 * semantics that cpuset has.
5330 *
5331 * Apart from cpuset, we also have memory policy mechanism that
5332 * also determines from which node the kernel will allocate memory
5333 * in a NUMA system. So similar to cpuset, we also should consider
5334 * the memory policy of the current task. Similar to the description
5335 * above.
5336 */
5337 if (delta > 0) {
5338 if (gather_surplus_pages(h, delta) < 0)
5339 goto out;
5340
5341 if (delta > allowed_mems_nr(h)) {
5342 return_unused_surplus_pages(h, delta);
5343 goto out;
5344 }
5345 }
5346
5347 ret = 0;
5348 if (delta < 0)
5349 return_unused_surplus_pages(h, (unsigned long) -delta);
5350
5351 out:
5352 spin_unlock_irq(&hugetlb_lock);
5353 return ret;
5354 }
5355
hugetlb_vm_op_open(struct vm_area_struct * vma)5356 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5357 {
5358 struct resv_map *resv = vma_resv_map(vma);
5359
5360 /*
5361 * HPAGE_RESV_OWNER indicates a private mapping.
5362 * This new VMA should share its siblings reservation map if present.
5363 * The VMA will only ever have a valid reservation map pointer where
5364 * it is being copied for another still existing VMA. As that VMA
5365 * has a reference to the reservation map it cannot disappear until
5366 * after this open call completes. It is therefore safe to take a
5367 * new reference here without additional locking.
5368 */
5369 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5370 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5371 kref_get(&resv->refs);
5372 }
5373
5374 /*
5375 * vma_lock structure for sharable mappings is vma specific.
5376 * Clear old pointer (if copied via vm_area_dup) and allocate
5377 * new structure. Before clearing, make sure vma_lock is not
5378 * for this vma.
5379 */
5380 if (vma->vm_flags & VM_MAYSHARE) {
5381 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5382
5383 if (vma_lock) {
5384 if (vma_lock->vma != vma) {
5385 vma->vm_private_data = NULL;
5386 hugetlb_vma_lock_alloc(vma);
5387 } else
5388 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5389 } else
5390 hugetlb_vma_lock_alloc(vma);
5391 }
5392 }
5393
hugetlb_vm_op_close(struct vm_area_struct * vma)5394 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5395 {
5396 struct hstate *h = hstate_vma(vma);
5397 struct resv_map *resv;
5398 struct hugepage_subpool *spool = subpool_vma(vma);
5399 unsigned long reserve, start, end;
5400 long gbl_reserve;
5401
5402 hugetlb_vma_lock_free(vma);
5403
5404 resv = vma_resv_map(vma);
5405 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5406 return;
5407
5408 start = vma_hugecache_offset(h, vma, vma->vm_start);
5409 end = vma_hugecache_offset(h, vma, vma->vm_end);
5410
5411 reserve = (end - start) - region_count(resv, start, end);
5412 hugetlb_cgroup_uncharge_counter(resv, start, end);
5413 if (reserve) {
5414 /*
5415 * Decrement reserve counts. The global reserve count may be
5416 * adjusted if the subpool has a minimum size.
5417 */
5418 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5419 hugetlb_acct_memory(h, -gbl_reserve);
5420 }
5421
5422 kref_put(&resv->refs, resv_map_release);
5423 }
5424
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5425 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5426 {
5427 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5428 return -EINVAL;
5429 return 0;
5430 }
5431
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5432 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5433 {
5434 /*
5435 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5436 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5437 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5438 * This function is called in the middle of a VMA split operation, with
5439 * MM, VMA and rmap all write-locked to prevent concurrent page table
5440 * walks (except hardware and gup_fast()).
5441 */
5442 vma_assert_write_locked(vma);
5443 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5444
5445 if (addr & ~PUD_MASK) {
5446 unsigned long floor = addr & PUD_MASK;
5447 unsigned long ceil = floor + PUD_SIZE;
5448
5449 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5450 /*
5451 * Locking:
5452 * Use take_locks=false here.
5453 * The file rmap lock is already held.
5454 * The hugetlb VMA lock can't be taken when we already
5455 * hold the file rmap lock, and we don't need it because
5456 * its purpose is to synchronize against concurrent page
5457 * table walks, which are not possible thanks to the
5458 * locks held by our caller.
5459 */
5460 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5461 }
5462 }
5463 }
5464
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5465 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5466 {
5467 return huge_page_size(hstate_vma(vma));
5468 }
5469
5470 /*
5471 * We cannot handle pagefaults against hugetlb pages at all. They cause
5472 * handle_mm_fault() to try to instantiate regular-sized pages in the
5473 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5474 * this far.
5475 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5476 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5477 {
5478 BUG();
5479 return 0;
5480 }
5481
5482 /*
5483 * When a new function is introduced to vm_operations_struct and added
5484 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5485 * This is because under System V memory model, mappings created via
5486 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5487 * their original vm_ops are overwritten with shm_vm_ops.
5488 */
5489 const struct vm_operations_struct hugetlb_vm_ops = {
5490 .fault = hugetlb_vm_op_fault,
5491 .open = hugetlb_vm_op_open,
5492 .close = hugetlb_vm_op_close,
5493 .may_split = hugetlb_vm_op_split,
5494 .pagesize = hugetlb_vm_op_pagesize,
5495 };
5496
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5497 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5498 bool try_mkwrite)
5499 {
5500 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5501 unsigned int shift = huge_page_shift(hstate_vma(vma));
5502
5503 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5504 entry = pte_mkwrite_novma(pte_mkdirty(entry));
5505 } else {
5506 entry = pte_wrprotect(entry);
5507 }
5508 entry = pte_mkyoung(entry);
5509 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5510
5511 return entry;
5512 }
5513
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5514 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5515 unsigned long address, pte_t *ptep)
5516 {
5517 pte_t entry;
5518
5519 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5520 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5521 update_mmu_cache(vma, address, ptep);
5522 }
5523
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5524 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5525 unsigned long address, pte_t *ptep)
5526 {
5527 if (vma->vm_flags & VM_WRITE)
5528 set_huge_ptep_writable(vma, address, ptep);
5529 }
5530
is_hugetlb_entry_migration(pte_t pte)5531 bool is_hugetlb_entry_migration(pte_t pte)
5532 {
5533 swp_entry_t swp;
5534
5535 if (huge_pte_none(pte) || pte_present(pte))
5536 return false;
5537 swp = pte_to_swp_entry(pte);
5538 if (is_migration_entry(swp))
5539 return true;
5540 else
5541 return false;
5542 }
5543
is_hugetlb_entry_hwpoisoned(pte_t pte)5544 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5545 {
5546 swp_entry_t swp;
5547
5548 if (huge_pte_none(pte) || pte_present(pte))
5549 return false;
5550 swp = pte_to_swp_entry(pte);
5551 if (is_hwpoison_entry(swp))
5552 return true;
5553 else
5554 return false;
5555 }
5556
5557 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5558 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5559 struct folio *new_folio, pte_t old, unsigned long sz)
5560 {
5561 pte_t newpte = make_huge_pte(vma, new_folio, true);
5562
5563 __folio_mark_uptodate(new_folio);
5564 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5565 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5566 newpte = huge_pte_mkuffd_wp(newpte);
5567 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5568 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5569 folio_set_hugetlb_migratable(new_folio);
5570 }
5571
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5572 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5573 struct vm_area_struct *dst_vma,
5574 struct vm_area_struct *src_vma)
5575 {
5576 pte_t *src_pte, *dst_pte, entry;
5577 struct folio *pte_folio;
5578 unsigned long addr;
5579 bool cow = is_cow_mapping(src_vma->vm_flags);
5580 struct hstate *h = hstate_vma(src_vma);
5581 unsigned long sz = huge_page_size(h);
5582 unsigned long npages = pages_per_huge_page(h);
5583 struct mmu_notifier_range range;
5584 unsigned long last_addr_mask;
5585 int ret = 0;
5586
5587 if (cow) {
5588 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5589 src_vma->vm_start,
5590 src_vma->vm_end);
5591 mmu_notifier_invalidate_range_start(&range);
5592 vma_assert_write_locked(src_vma);
5593 raw_write_seqcount_begin(&src->write_protect_seq);
5594 } else {
5595 /*
5596 * For shared mappings the vma lock must be held before
5597 * calling hugetlb_walk() in the src vma. Otherwise, the
5598 * returned ptep could go away if part of a shared pmd and
5599 * another thread calls huge_pmd_unshare.
5600 */
5601 hugetlb_vma_lock_read(src_vma);
5602 }
5603
5604 last_addr_mask = hugetlb_mask_last_page(h);
5605 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5606 spinlock_t *src_ptl, *dst_ptl;
5607 src_pte = hugetlb_walk(src_vma, addr, sz);
5608 if (!src_pte) {
5609 addr |= last_addr_mask;
5610 continue;
5611 }
5612 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5613 if (!dst_pte) {
5614 ret = -ENOMEM;
5615 break;
5616 }
5617
5618 /*
5619 * If the pagetables are shared don't copy or take references.
5620 *
5621 * dst_pte == src_pte is the common case of src/dest sharing.
5622 * However, src could have 'unshared' and dst shares with
5623 * another vma. So page_count of ptep page is checked instead
5624 * to reliably determine whether pte is shared.
5625 */
5626 if (page_count(virt_to_page(dst_pte)) > 1) {
5627 addr |= last_addr_mask;
5628 continue;
5629 }
5630
5631 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5632 src_ptl = huge_pte_lockptr(h, src, src_pte);
5633 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5634 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5635 again:
5636 if (huge_pte_none(entry)) {
5637 /*
5638 * Skip if src entry none.
5639 */
5640 ;
5641 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5642 if (!userfaultfd_wp(dst_vma))
5643 entry = huge_pte_clear_uffd_wp(entry);
5644 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5645 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5646 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5647 bool uffd_wp = pte_swp_uffd_wp(entry);
5648
5649 if (!is_readable_migration_entry(swp_entry) && cow) {
5650 /*
5651 * COW mappings require pages in both
5652 * parent and child to be set to read.
5653 */
5654 swp_entry = make_readable_migration_entry(
5655 swp_offset(swp_entry));
5656 entry = swp_entry_to_pte(swp_entry);
5657 if (userfaultfd_wp(src_vma) && uffd_wp)
5658 entry = pte_swp_mkuffd_wp(entry);
5659 set_huge_pte_at(src, addr, src_pte, entry, sz);
5660 }
5661 if (!userfaultfd_wp(dst_vma))
5662 entry = huge_pte_clear_uffd_wp(entry);
5663 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5664 } else if (unlikely(is_pte_marker(entry))) {
5665 pte_marker marker = copy_pte_marker(
5666 pte_to_swp_entry(entry), dst_vma);
5667
5668 if (marker)
5669 set_huge_pte_at(dst, addr, dst_pte,
5670 make_pte_marker(marker), sz);
5671 } else {
5672 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5673 pte_folio = page_folio(pte_page(entry));
5674 folio_get(pte_folio);
5675
5676 /*
5677 * Failing to duplicate the anon rmap is a rare case
5678 * where we see pinned hugetlb pages while they're
5679 * prone to COW. We need to do the COW earlier during
5680 * fork.
5681 *
5682 * When pre-allocating the page or copying data, we
5683 * need to be without the pgtable locks since we could
5684 * sleep during the process.
5685 */
5686 if (!folio_test_anon(pte_folio)) {
5687 hugetlb_add_file_rmap(pte_folio);
5688 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5689 pte_t src_pte_old = entry;
5690 struct folio *new_folio;
5691
5692 spin_unlock(src_ptl);
5693 spin_unlock(dst_ptl);
5694 /* Do not use reserve as it's private owned */
5695 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5696 if (IS_ERR(new_folio)) {
5697 folio_put(pte_folio);
5698 ret = PTR_ERR(new_folio);
5699 break;
5700 }
5701 ret = copy_user_large_folio(new_folio, pte_folio,
5702 addr, dst_vma);
5703 folio_put(pte_folio);
5704 if (ret) {
5705 folio_put(new_folio);
5706 break;
5707 }
5708
5709 /* Install the new hugetlb folio if src pte stable */
5710 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5711 src_ptl = huge_pte_lockptr(h, src, src_pte);
5712 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5713 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5714 if (!pte_same(src_pte_old, entry)) {
5715 restore_reserve_on_error(h, dst_vma, addr,
5716 new_folio);
5717 folio_put(new_folio);
5718 /* huge_ptep of dst_pte won't change as in child */
5719 goto again;
5720 }
5721 hugetlb_install_folio(dst_vma, dst_pte, addr,
5722 new_folio, src_pte_old, sz);
5723 spin_unlock(src_ptl);
5724 spin_unlock(dst_ptl);
5725 continue;
5726 }
5727
5728 if (cow) {
5729 /*
5730 * No need to notify as we are downgrading page
5731 * table protection not changing it to point
5732 * to a new page.
5733 *
5734 * See Documentation/mm/mmu_notifier.rst
5735 */
5736 huge_ptep_set_wrprotect(src, addr, src_pte);
5737 entry = huge_pte_wrprotect(entry);
5738 }
5739
5740 if (!userfaultfd_wp(dst_vma))
5741 entry = huge_pte_clear_uffd_wp(entry);
5742
5743 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5744 hugetlb_count_add(npages, dst);
5745 }
5746 spin_unlock(src_ptl);
5747 spin_unlock(dst_ptl);
5748 }
5749
5750 if (cow) {
5751 raw_write_seqcount_end(&src->write_protect_seq);
5752 mmu_notifier_invalidate_range_end(&range);
5753 } else {
5754 hugetlb_vma_unlock_read(src_vma);
5755 }
5756
5757 return ret;
5758 }
5759
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5760 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5761 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5762 unsigned long sz)
5763 {
5764 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5765 struct hstate *h = hstate_vma(vma);
5766 struct mm_struct *mm = vma->vm_mm;
5767 spinlock_t *src_ptl, *dst_ptl;
5768 pte_t pte;
5769
5770 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5771 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5772
5773 /*
5774 * We don't have to worry about the ordering of src and dst ptlocks
5775 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5776 */
5777 if (src_ptl != dst_ptl)
5778 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5779
5780 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5781
5782 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5783 huge_pte_clear(mm, new_addr, dst_pte, sz);
5784 else {
5785 if (need_clear_uffd_wp) {
5786 if (pte_present(pte))
5787 pte = huge_pte_clear_uffd_wp(pte);
5788 else if (is_swap_pte(pte))
5789 pte = pte_swp_clear_uffd_wp(pte);
5790 }
5791 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5792 }
5793
5794 if (src_ptl != dst_ptl)
5795 spin_unlock(src_ptl);
5796 spin_unlock(dst_ptl);
5797 }
5798
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5799 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5800 struct vm_area_struct *new_vma,
5801 unsigned long old_addr, unsigned long new_addr,
5802 unsigned long len)
5803 {
5804 struct hstate *h = hstate_vma(vma);
5805 struct address_space *mapping = vma->vm_file->f_mapping;
5806 unsigned long sz = huge_page_size(h);
5807 struct mm_struct *mm = vma->vm_mm;
5808 unsigned long old_end = old_addr + len;
5809 unsigned long last_addr_mask;
5810 pte_t *src_pte, *dst_pte;
5811 struct mmu_notifier_range range;
5812 bool shared_pmd = false;
5813
5814 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5815 old_end);
5816 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5817 /*
5818 * In case of shared PMDs, we should cover the maximum possible
5819 * range.
5820 */
5821 flush_cache_range(vma, range.start, range.end);
5822
5823 mmu_notifier_invalidate_range_start(&range);
5824 last_addr_mask = hugetlb_mask_last_page(h);
5825 /* Prevent race with file truncation */
5826 hugetlb_vma_lock_write(vma);
5827 i_mmap_lock_write(mapping);
5828 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5829 src_pte = hugetlb_walk(vma, old_addr, sz);
5830 if (!src_pte) {
5831 old_addr |= last_addr_mask;
5832 new_addr |= last_addr_mask;
5833 continue;
5834 }
5835 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5836 continue;
5837
5838 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5839 shared_pmd = true;
5840 old_addr |= last_addr_mask;
5841 new_addr |= last_addr_mask;
5842 continue;
5843 }
5844
5845 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5846 if (!dst_pte)
5847 break;
5848
5849 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5850 }
5851
5852 if (shared_pmd)
5853 flush_hugetlb_tlb_range(vma, range.start, range.end);
5854 else
5855 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5856 mmu_notifier_invalidate_range_end(&range);
5857 i_mmap_unlock_write(mapping);
5858 hugetlb_vma_unlock_write(vma);
5859
5860 return len + old_addr - old_end;
5861 }
5862
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5863 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5864 unsigned long start, unsigned long end,
5865 struct folio *folio, zap_flags_t zap_flags)
5866 {
5867 struct mm_struct *mm = vma->vm_mm;
5868 const bool folio_provided = !!folio;
5869 unsigned long address;
5870 pte_t *ptep;
5871 pte_t pte;
5872 spinlock_t *ptl;
5873 struct hstate *h = hstate_vma(vma);
5874 unsigned long sz = huge_page_size(h);
5875 bool adjust_reservation = false;
5876 unsigned long last_addr_mask;
5877 bool force_flush = false;
5878
5879 WARN_ON(!is_vm_hugetlb_page(vma));
5880 BUG_ON(start & ~huge_page_mask(h));
5881 BUG_ON(end & ~huge_page_mask(h));
5882
5883 /*
5884 * This is a hugetlb vma, all the pte entries should point
5885 * to huge page.
5886 */
5887 tlb_change_page_size(tlb, sz);
5888 tlb_start_vma(tlb, vma);
5889
5890 last_addr_mask = hugetlb_mask_last_page(h);
5891 address = start;
5892 for (; address < end; address += sz) {
5893 ptep = hugetlb_walk(vma, address, sz);
5894 if (!ptep) {
5895 address |= last_addr_mask;
5896 continue;
5897 }
5898
5899 ptl = huge_pte_lock(h, mm, ptep);
5900 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5901 spin_unlock(ptl);
5902 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5903 force_flush = true;
5904 address |= last_addr_mask;
5905 continue;
5906 }
5907
5908 pte = huge_ptep_get(mm, address, ptep);
5909 if (huge_pte_none(pte)) {
5910 spin_unlock(ptl);
5911 continue;
5912 }
5913
5914 /*
5915 * Migrating hugepage or HWPoisoned hugepage is already
5916 * unmapped and its refcount is dropped, so just clear pte here.
5917 */
5918 if (unlikely(!pte_present(pte))) {
5919 /*
5920 * If the pte was wr-protected by uffd-wp in any of the
5921 * swap forms, meanwhile the caller does not want to
5922 * drop the uffd-wp bit in this zap, then replace the
5923 * pte with a marker.
5924 */
5925 if (pte_swp_uffd_wp_any(pte) &&
5926 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5927 set_huge_pte_at(mm, address, ptep,
5928 make_pte_marker(PTE_MARKER_UFFD_WP),
5929 sz);
5930 else
5931 huge_pte_clear(mm, address, ptep, sz);
5932 spin_unlock(ptl);
5933 continue;
5934 }
5935
5936 /*
5937 * If a folio is supplied, it is because a specific
5938 * folio is being unmapped, not a range. Ensure the folio we
5939 * are about to unmap is the actual folio of interest.
5940 */
5941 if (folio_provided) {
5942 if (folio != page_folio(pte_page(pte))) {
5943 spin_unlock(ptl);
5944 continue;
5945 }
5946 /*
5947 * Mark the VMA as having unmapped its page so that
5948 * future faults in this VMA will fail rather than
5949 * looking like data was lost
5950 */
5951 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5952 } else {
5953 folio = page_folio(pte_page(pte));
5954 }
5955
5956 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5957 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5958 if (huge_pte_dirty(pte))
5959 folio_mark_dirty(folio);
5960 /* Leave a uffd-wp pte marker if needed */
5961 if (huge_pte_uffd_wp(pte) &&
5962 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5963 set_huge_pte_at(mm, address, ptep,
5964 make_pte_marker(PTE_MARKER_UFFD_WP),
5965 sz);
5966 hugetlb_count_sub(pages_per_huge_page(h), mm);
5967 hugetlb_remove_rmap(folio);
5968
5969 /*
5970 * Restore the reservation for anonymous page, otherwise the
5971 * backing page could be stolen by someone.
5972 * If there we are freeing a surplus, do not set the restore
5973 * reservation bit.
5974 */
5975 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5976 folio_test_anon(folio)) {
5977 folio_set_hugetlb_restore_reserve(folio);
5978 /* Reservation to be adjusted after the spin lock */
5979 adjust_reservation = true;
5980 }
5981
5982 spin_unlock(ptl);
5983
5984 /*
5985 * Adjust the reservation for the region that will have the
5986 * reserve restored. Keep in mind that vma_needs_reservation() changes
5987 * resv->adds_in_progress if it succeeds. If this is not done,
5988 * do_exit() will not see it, and will keep the reservation
5989 * forever.
5990 */
5991 if (adjust_reservation) {
5992 int rc = vma_needs_reservation(h, vma, address);
5993
5994 if (rc < 0)
5995 /* Pressumably allocate_file_region_entries failed
5996 * to allocate a file_region struct. Clear
5997 * hugetlb_restore_reserve so that global reserve
5998 * count will not be incremented by free_huge_folio.
5999 * Act as if we consumed the reservation.
6000 */
6001 folio_clear_hugetlb_restore_reserve(folio);
6002 else if (rc)
6003 vma_add_reservation(h, vma, address);
6004 }
6005
6006 tlb_remove_page_size(tlb, folio_page(folio, 0),
6007 folio_size(folio));
6008 /*
6009 * If we were instructed to unmap a specific folio, we're done.
6010 */
6011 if (folio_provided)
6012 break;
6013 }
6014 tlb_end_vma(tlb, vma);
6015
6016 /*
6017 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
6018 * could defer the flush until now, since by holding i_mmap_rwsem we
6019 * guaranteed that the last refernece would not be dropped. But we must
6020 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6021 * dropped and the last reference to the shared PMDs page might be
6022 * dropped as well.
6023 *
6024 * In theory we could defer the freeing of the PMD pages as well, but
6025 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6026 * detect sharing, so we cannot defer the release of the page either.
6027 * Instead, do flush now.
6028 */
6029 if (force_flush)
6030 tlb_flush_mmu_tlbonly(tlb);
6031 }
6032
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6033 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6034 unsigned long *start, unsigned long *end)
6035 {
6036 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6037 return;
6038
6039 adjust_range_if_pmd_sharing_possible(vma, start, end);
6040 hugetlb_vma_lock_write(vma);
6041 if (vma->vm_file)
6042 i_mmap_lock_write(vma->vm_file->f_mapping);
6043 }
6044
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6045 void __hugetlb_zap_end(struct vm_area_struct *vma,
6046 struct zap_details *details)
6047 {
6048 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6049
6050 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6051 return;
6052
6053 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6054 /*
6055 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6056 * When the vma_lock is freed, this makes the vma ineligible
6057 * for pmd sharing. And, i_mmap_rwsem is required to set up
6058 * pmd sharing. This is important as page tables for this
6059 * unmapped range will be asynchrously deleted. If the page
6060 * tables are shared, there will be issues when accessed by
6061 * someone else.
6062 */
6063 __hugetlb_vma_unlock_write_free(vma);
6064 } else {
6065 hugetlb_vma_unlock_write(vma);
6066 }
6067
6068 if (vma->vm_file)
6069 i_mmap_unlock_write(vma->vm_file->f_mapping);
6070 }
6071
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6072 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6073 unsigned long end, struct folio *folio,
6074 zap_flags_t zap_flags)
6075 {
6076 struct mmu_notifier_range range;
6077 struct mmu_gather tlb;
6078
6079 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6080 start, end);
6081 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6082 mmu_notifier_invalidate_range_start(&range);
6083 tlb_gather_mmu(&tlb, vma->vm_mm);
6084
6085 __unmap_hugepage_range(&tlb, vma, start, end,
6086 folio, zap_flags);
6087
6088 mmu_notifier_invalidate_range_end(&range);
6089 tlb_finish_mmu(&tlb);
6090 }
6091
6092 /*
6093 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6094 * mapping it owns the reserve page for. The intention is to unmap the page
6095 * from other VMAs and let the children be SIGKILLed if they are faulting the
6096 * same region.
6097 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6098 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6099 struct folio *folio, unsigned long address)
6100 {
6101 struct hstate *h = hstate_vma(vma);
6102 struct vm_area_struct *iter_vma;
6103 struct address_space *mapping;
6104 pgoff_t pgoff;
6105
6106 /*
6107 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6108 * from page cache lookup which is in HPAGE_SIZE units.
6109 */
6110 address = address & huge_page_mask(h);
6111 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6112 vma->vm_pgoff;
6113 mapping = vma->vm_file->f_mapping;
6114
6115 /*
6116 * Take the mapping lock for the duration of the table walk. As
6117 * this mapping should be shared between all the VMAs,
6118 * __unmap_hugepage_range() is called as the lock is already held
6119 */
6120 i_mmap_lock_write(mapping);
6121 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6122 /* Do not unmap the current VMA */
6123 if (iter_vma == vma)
6124 continue;
6125
6126 /*
6127 * Shared VMAs have their own reserves and do not affect
6128 * MAP_PRIVATE accounting but it is possible that a shared
6129 * VMA is using the same page so check and skip such VMAs.
6130 */
6131 if (iter_vma->vm_flags & VM_MAYSHARE)
6132 continue;
6133
6134 /*
6135 * Unmap the page from other VMAs without their own reserves.
6136 * They get marked to be SIGKILLed if they fault in these
6137 * areas. This is because a future no-page fault on this VMA
6138 * could insert a zeroed page instead of the data existing
6139 * from the time of fork. This would look like data corruption
6140 */
6141 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6142 unmap_hugepage_range(iter_vma, address,
6143 address + huge_page_size(h),
6144 folio, 0);
6145 }
6146 i_mmap_unlock_write(mapping);
6147 }
6148
6149 /*
6150 * hugetlb_wp() should be called with page lock of the original hugepage held.
6151 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6152 * cannot race with other handlers or page migration.
6153 * Keep the pte_same checks anyway to make transition from the mutex easier.
6154 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6155 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6156 struct vm_fault *vmf)
6157 {
6158 struct vm_area_struct *vma = vmf->vma;
6159 struct mm_struct *mm = vma->vm_mm;
6160 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6161 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6162 struct hstate *h = hstate_vma(vma);
6163 struct folio *old_folio;
6164 struct folio *new_folio;
6165 bool cow_from_owner = 0;
6166 vm_fault_t ret = 0;
6167 struct mmu_notifier_range range;
6168
6169 /*
6170 * Never handle CoW for uffd-wp protected pages. It should be only
6171 * handled when the uffd-wp protection is removed.
6172 *
6173 * Note that only the CoW optimization path (in hugetlb_no_page())
6174 * can trigger this, because hugetlb_fault() will always resolve
6175 * uffd-wp bit first.
6176 */
6177 if (!unshare && huge_pte_uffd_wp(pte))
6178 return 0;
6179
6180 /* Let's take out MAP_SHARED mappings first. */
6181 if (vma->vm_flags & VM_MAYSHARE) {
6182 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6183 return 0;
6184 }
6185
6186 old_folio = page_folio(pte_page(pte));
6187
6188 delayacct_wpcopy_start();
6189
6190 retry_avoidcopy:
6191 /*
6192 * If no-one else is actually using this page, we're the exclusive
6193 * owner and can reuse this page.
6194 *
6195 * Note that we don't rely on the (safer) folio refcount here, because
6196 * copying the hugetlb folio when there are unexpected (temporary)
6197 * folio references could harm simple fork()+exit() users when
6198 * we run out of free hugetlb folios: we would have to kill processes
6199 * in scenarios that used to work. As a side effect, there can still
6200 * be leaks between processes, for example, with FOLL_GET users.
6201 */
6202 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6203 if (!PageAnonExclusive(&old_folio->page)) {
6204 folio_move_anon_rmap(old_folio, vma);
6205 SetPageAnonExclusive(&old_folio->page);
6206 }
6207 if (likely(!unshare))
6208 set_huge_ptep_maybe_writable(vma, vmf->address,
6209 vmf->pte);
6210
6211 delayacct_wpcopy_end();
6212 return 0;
6213 }
6214 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6215 PageAnonExclusive(&old_folio->page), &old_folio->page);
6216
6217 /*
6218 * If the process that created a MAP_PRIVATE mapping is about to
6219 * perform a COW due to a shared page count, attempt to satisfy
6220 * the allocation without using the existing reserves. The pagecache
6221 * page is used to determine if the reserve at this address was
6222 * consumed or not. If reserves were used, a partial faulted mapping
6223 * at the time of fork() could consume its reserves on COW instead
6224 * of the full address range.
6225 */
6226 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6227 old_folio != pagecache_folio)
6228 cow_from_owner = true;
6229
6230 folio_get(old_folio);
6231
6232 /*
6233 * Drop page table lock as buddy allocator may be called. It will
6234 * be acquired again before returning to the caller, as expected.
6235 */
6236 spin_unlock(vmf->ptl);
6237 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6238
6239 if (IS_ERR(new_folio)) {
6240 /*
6241 * If a process owning a MAP_PRIVATE mapping fails to COW,
6242 * it is due to references held by a child and an insufficient
6243 * huge page pool. To guarantee the original mappers
6244 * reliability, unmap the page from child processes. The child
6245 * may get SIGKILLed if it later faults.
6246 */
6247 if (cow_from_owner) {
6248 struct address_space *mapping = vma->vm_file->f_mapping;
6249 pgoff_t idx;
6250 u32 hash;
6251
6252 folio_put(old_folio);
6253 /*
6254 * Drop hugetlb_fault_mutex and vma_lock before
6255 * unmapping. unmapping needs to hold vma_lock
6256 * in write mode. Dropping vma_lock in read mode
6257 * here is OK as COW mappings do not interact with
6258 * PMD sharing.
6259 *
6260 * Reacquire both after unmap operation.
6261 */
6262 idx = vma_hugecache_offset(h, vma, vmf->address);
6263 hash = hugetlb_fault_mutex_hash(mapping, idx);
6264 hugetlb_vma_unlock_read(vma);
6265 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6266
6267 unmap_ref_private(mm, vma, old_folio, vmf->address);
6268
6269 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6270 hugetlb_vma_lock_read(vma);
6271 spin_lock(vmf->ptl);
6272 vmf->pte = hugetlb_walk(vma, vmf->address,
6273 huge_page_size(h));
6274 if (likely(vmf->pte &&
6275 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6276 goto retry_avoidcopy;
6277 /*
6278 * race occurs while re-acquiring page table
6279 * lock, and our job is done.
6280 */
6281 delayacct_wpcopy_end();
6282 return 0;
6283 }
6284
6285 ret = vmf_error(PTR_ERR(new_folio));
6286 goto out_release_old;
6287 }
6288
6289 /*
6290 * When the original hugepage is shared one, it does not have
6291 * anon_vma prepared.
6292 */
6293 ret = __vmf_anon_prepare(vmf);
6294 if (unlikely(ret))
6295 goto out_release_all;
6296
6297 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6298 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6299 goto out_release_all;
6300 }
6301 __folio_mark_uptodate(new_folio);
6302
6303 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6304 vmf->address + huge_page_size(h));
6305 mmu_notifier_invalidate_range_start(&range);
6306
6307 /*
6308 * Retake the page table lock to check for racing updates
6309 * before the page tables are altered
6310 */
6311 spin_lock(vmf->ptl);
6312 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6313 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6314 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6315
6316 /* Break COW or unshare */
6317 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6318 hugetlb_remove_rmap(old_folio);
6319 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6320 if (huge_pte_uffd_wp(pte))
6321 newpte = huge_pte_mkuffd_wp(newpte);
6322 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6323 huge_page_size(h));
6324 folio_set_hugetlb_migratable(new_folio);
6325 /* Make the old page be freed below */
6326 new_folio = old_folio;
6327 }
6328 spin_unlock(vmf->ptl);
6329 mmu_notifier_invalidate_range_end(&range);
6330 out_release_all:
6331 /*
6332 * No restore in case of successful pagetable update (Break COW or
6333 * unshare)
6334 */
6335 if (new_folio != old_folio)
6336 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6337 folio_put(new_folio);
6338 out_release_old:
6339 folio_put(old_folio);
6340
6341 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6342
6343 delayacct_wpcopy_end();
6344 return ret;
6345 }
6346
6347 /*
6348 * Return whether there is a pagecache page to back given address within VMA.
6349 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6350 bool hugetlbfs_pagecache_present(struct hstate *h,
6351 struct vm_area_struct *vma, unsigned long address)
6352 {
6353 struct address_space *mapping = vma->vm_file->f_mapping;
6354 pgoff_t idx = linear_page_index(vma, address);
6355 struct folio *folio;
6356
6357 folio = filemap_get_folio(mapping, idx);
6358 if (IS_ERR(folio))
6359 return false;
6360 folio_put(folio);
6361 return true;
6362 }
6363
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6364 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6365 pgoff_t idx)
6366 {
6367 struct inode *inode = mapping->host;
6368 struct hstate *h = hstate_inode(inode);
6369 int err;
6370
6371 idx <<= huge_page_order(h);
6372 __folio_set_locked(folio);
6373 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6374
6375 if (unlikely(err)) {
6376 __folio_clear_locked(folio);
6377 return err;
6378 }
6379 folio_clear_hugetlb_restore_reserve(folio);
6380
6381 /*
6382 * mark folio dirty so that it will not be removed from cache/file
6383 * by non-hugetlbfs specific code paths.
6384 */
6385 folio_mark_dirty(folio);
6386
6387 spin_lock(&inode->i_lock);
6388 inode->i_blocks += blocks_per_huge_page(h);
6389 spin_unlock(&inode->i_lock);
6390 return 0;
6391 }
6392
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6393 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6394 struct address_space *mapping,
6395 unsigned long reason)
6396 {
6397 u32 hash;
6398
6399 /*
6400 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6401 * userfault. Also mmap_lock could be dropped due to handling
6402 * userfault, any vma operation should be careful from here.
6403 */
6404 hugetlb_vma_unlock_read(vmf->vma);
6405 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6406 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6407 return handle_userfault(vmf, reason);
6408 }
6409
6410 /*
6411 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6412 * false if pte changed or is changing.
6413 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6414 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6415 pte_t *ptep, pte_t old_pte)
6416 {
6417 spinlock_t *ptl;
6418 bool same;
6419
6420 ptl = huge_pte_lock(h, mm, ptep);
6421 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6422 spin_unlock(ptl);
6423
6424 return same;
6425 }
6426
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6427 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6428 struct vm_fault *vmf)
6429 {
6430 struct vm_area_struct *vma = vmf->vma;
6431 struct mm_struct *mm = vma->vm_mm;
6432 struct hstate *h = hstate_vma(vma);
6433 vm_fault_t ret = VM_FAULT_SIGBUS;
6434 int anon_rmap = 0;
6435 unsigned long size;
6436 struct folio *folio;
6437 pte_t new_pte;
6438 bool new_folio, new_pagecache_folio = false;
6439 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6440
6441 /*
6442 * Currently, we are forced to kill the process in the event the
6443 * original mapper has unmapped pages from the child due to a failed
6444 * COW/unsharing. Warn that such a situation has occurred as it may not
6445 * be obvious.
6446 */
6447 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6448 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6449 current->pid);
6450 goto out;
6451 }
6452
6453 /*
6454 * Use page lock to guard against racing truncation
6455 * before we get page_table_lock.
6456 */
6457 new_folio = false;
6458 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6459 if (IS_ERR(folio)) {
6460 size = i_size_read(mapping->host) >> huge_page_shift(h);
6461 if (vmf->pgoff >= size)
6462 goto out;
6463 /* Check for page in userfault range */
6464 if (userfaultfd_missing(vma)) {
6465 /*
6466 * Since hugetlb_no_page() was examining pte
6467 * without pgtable lock, we need to re-test under
6468 * lock because the pte may not be stable and could
6469 * have changed from under us. Try to detect
6470 * either changed or during-changing ptes and retry
6471 * properly when needed.
6472 *
6473 * Note that userfaultfd is actually fine with
6474 * false positives (e.g. caused by pte changed),
6475 * but not wrong logical events (e.g. caused by
6476 * reading a pte during changing). The latter can
6477 * confuse the userspace, so the strictness is very
6478 * much preferred. E.g., MISSING event should
6479 * never happen on the page after UFFDIO_COPY has
6480 * correctly installed the page and returned.
6481 */
6482 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6483 ret = 0;
6484 goto out;
6485 }
6486
6487 return hugetlb_handle_userfault(vmf, mapping,
6488 VM_UFFD_MISSING);
6489 }
6490
6491 if (!(vma->vm_flags & VM_MAYSHARE)) {
6492 ret = __vmf_anon_prepare(vmf);
6493 if (unlikely(ret))
6494 goto out;
6495 }
6496
6497 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6498 if (IS_ERR(folio)) {
6499 /*
6500 * Returning error will result in faulting task being
6501 * sent SIGBUS. The hugetlb fault mutex prevents two
6502 * tasks from racing to fault in the same page which
6503 * could result in false unable to allocate errors.
6504 * Page migration does not take the fault mutex, but
6505 * does a clear then write of pte's under page table
6506 * lock. Page fault code could race with migration,
6507 * notice the clear pte and try to allocate a page
6508 * here. Before returning error, get ptl and make
6509 * sure there really is no pte entry.
6510 */
6511 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6512 ret = vmf_error(PTR_ERR(folio));
6513 else
6514 ret = 0;
6515 goto out;
6516 }
6517 folio_zero_user(folio, vmf->real_address);
6518 __folio_mark_uptodate(folio);
6519 new_folio = true;
6520
6521 if (vma->vm_flags & VM_MAYSHARE) {
6522 int err = hugetlb_add_to_page_cache(folio, mapping,
6523 vmf->pgoff);
6524 if (err) {
6525 /*
6526 * err can't be -EEXIST which implies someone
6527 * else consumed the reservation since hugetlb
6528 * fault mutex is held when add a hugetlb page
6529 * to the page cache. So it's safe to call
6530 * restore_reserve_on_error() here.
6531 */
6532 restore_reserve_on_error(h, vma, vmf->address,
6533 folio);
6534 folio_put(folio);
6535 ret = VM_FAULT_SIGBUS;
6536 goto out;
6537 }
6538 new_pagecache_folio = true;
6539 } else {
6540 folio_lock(folio);
6541 anon_rmap = 1;
6542 }
6543 } else {
6544 /*
6545 * If memory error occurs between mmap() and fault, some process
6546 * don't have hwpoisoned swap entry for errored virtual address.
6547 * So we need to block hugepage fault by PG_hwpoison bit check.
6548 */
6549 if (unlikely(folio_test_hwpoison(folio))) {
6550 ret = VM_FAULT_HWPOISON_LARGE |
6551 VM_FAULT_SET_HINDEX(hstate_index(h));
6552 goto backout_unlocked;
6553 }
6554
6555 /* Check for page in userfault range. */
6556 if (userfaultfd_minor(vma)) {
6557 folio_unlock(folio);
6558 folio_put(folio);
6559 /* See comment in userfaultfd_missing() block above */
6560 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6561 ret = 0;
6562 goto out;
6563 }
6564 return hugetlb_handle_userfault(vmf, mapping,
6565 VM_UFFD_MINOR);
6566 }
6567 }
6568
6569 /*
6570 * If we are going to COW a private mapping later, we examine the
6571 * pending reservations for this page now. This will ensure that
6572 * any allocations necessary to record that reservation occur outside
6573 * the spinlock.
6574 */
6575 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6576 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6577 ret = VM_FAULT_OOM;
6578 goto backout_unlocked;
6579 }
6580 /* Just decrements count, does not deallocate */
6581 vma_end_reservation(h, vma, vmf->address);
6582 }
6583
6584 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6585 ret = 0;
6586 /* If pte changed from under us, retry */
6587 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6588 goto backout;
6589
6590 if (anon_rmap)
6591 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6592 else
6593 hugetlb_add_file_rmap(folio);
6594 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6595 /*
6596 * If this pte was previously wr-protected, keep it wr-protected even
6597 * if populated.
6598 */
6599 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6600 new_pte = huge_pte_mkuffd_wp(new_pte);
6601 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6602
6603 hugetlb_count_add(pages_per_huge_page(h), mm);
6604 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6605 /* Optimization, do the COW without a second fault */
6606 ret = hugetlb_wp(folio, vmf);
6607 }
6608
6609 spin_unlock(vmf->ptl);
6610
6611 /*
6612 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6613 * found in the pagecache may not have hugetlb_migratable if they have
6614 * been isolated for migration.
6615 */
6616 if (new_folio)
6617 folio_set_hugetlb_migratable(folio);
6618
6619 folio_unlock(folio);
6620 out:
6621 hugetlb_vma_unlock_read(vma);
6622
6623 /*
6624 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6625 * the only way ret can be set to VM_FAULT_RETRY.
6626 */
6627 if (unlikely(ret & VM_FAULT_RETRY))
6628 vma_end_read(vma);
6629
6630 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6631 return ret;
6632
6633 backout:
6634 spin_unlock(vmf->ptl);
6635 backout_unlocked:
6636 if (new_folio && !new_pagecache_folio)
6637 restore_reserve_on_error(h, vma, vmf->address, folio);
6638
6639 folio_unlock(folio);
6640 folio_put(folio);
6641 goto out;
6642 }
6643
6644 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6646 {
6647 unsigned long key[2];
6648 u32 hash;
6649
6650 key[0] = (unsigned long) mapping;
6651 key[1] = idx;
6652
6653 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6654
6655 return hash & (num_fault_mutexes - 1);
6656 }
6657 #else
6658 /*
6659 * For uniprocessor systems we always use a single mutex, so just
6660 * return 0 and avoid the hashing overhead.
6661 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6662 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6663 {
6664 return 0;
6665 }
6666 #endif
6667
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6668 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6669 unsigned long address, unsigned int flags)
6670 {
6671 vm_fault_t ret;
6672 u32 hash;
6673 struct folio *folio = NULL;
6674 struct folio *pagecache_folio = NULL;
6675 struct hstate *h = hstate_vma(vma);
6676 struct address_space *mapping;
6677 int need_wait_lock = 0;
6678 struct vm_fault vmf = {
6679 .vma = vma,
6680 .address = address & huge_page_mask(h),
6681 .real_address = address,
6682 .flags = flags,
6683 .pgoff = vma_hugecache_offset(h, vma,
6684 address & huge_page_mask(h)),
6685 /* TODO: Track hugetlb faults using vm_fault */
6686
6687 /*
6688 * Some fields may not be initialized, be careful as it may
6689 * be hard to debug if called functions make assumptions
6690 */
6691 };
6692
6693 /*
6694 * Serialize hugepage allocation and instantiation, so that we don't
6695 * get spurious allocation failures if two CPUs race to instantiate
6696 * the same page in the page cache.
6697 */
6698 mapping = vma->vm_file->f_mapping;
6699 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6700 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6701
6702 /*
6703 * Acquire vma lock before calling huge_pte_alloc and hold
6704 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6705 * being called elsewhere and making the vmf.pte no longer valid.
6706 */
6707 hugetlb_vma_lock_read(vma);
6708 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6709 if (!vmf.pte) {
6710 hugetlb_vma_unlock_read(vma);
6711 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6712 return VM_FAULT_OOM;
6713 }
6714
6715 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6716 if (huge_pte_none_mostly(vmf.orig_pte)) {
6717 if (is_pte_marker(vmf.orig_pte)) {
6718 pte_marker marker =
6719 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6720
6721 if (marker & PTE_MARKER_POISONED) {
6722 ret = VM_FAULT_HWPOISON_LARGE |
6723 VM_FAULT_SET_HINDEX(hstate_index(h));
6724 goto out_mutex;
6725 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6726 /* This isn't supported in hugetlb. */
6727 ret = VM_FAULT_SIGSEGV;
6728 goto out_mutex;
6729 }
6730 }
6731
6732 /*
6733 * Other PTE markers should be handled the same way as none PTE.
6734 *
6735 * hugetlb_no_page will drop vma lock and hugetlb fault
6736 * mutex internally, which make us return immediately.
6737 */
6738 return hugetlb_no_page(mapping, &vmf);
6739 }
6740
6741 ret = 0;
6742
6743 /*
6744 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6745 * point, so this check prevents the kernel from going below assuming
6746 * that we have an active hugepage in pagecache. This goto expects
6747 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6748 * check will properly handle it.
6749 */
6750 if (!pte_present(vmf.orig_pte)) {
6751 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6752 /*
6753 * Release the hugetlb fault lock now, but retain
6754 * the vma lock, because it is needed to guard the
6755 * huge_pte_lockptr() later in
6756 * migration_entry_wait_huge(). The vma lock will
6757 * be released there.
6758 */
6759 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6760 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6761 return 0;
6762 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6763 ret = VM_FAULT_HWPOISON_LARGE |
6764 VM_FAULT_SET_HINDEX(hstate_index(h));
6765 goto out_mutex;
6766 }
6767
6768 /*
6769 * If we are going to COW/unshare the mapping later, we examine the
6770 * pending reservations for this page now. This will ensure that any
6771 * allocations necessary to record that reservation occur outside the
6772 * spinlock. Also lookup the pagecache page now as it is used to
6773 * determine if a reservation has been consumed.
6774 */
6775 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6776 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6777 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6778 ret = VM_FAULT_OOM;
6779 goto out_mutex;
6780 }
6781 /* Just decrements count, does not deallocate */
6782 vma_end_reservation(h, vma, vmf.address);
6783
6784 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6785 vmf.pgoff);
6786 if (IS_ERR(pagecache_folio))
6787 pagecache_folio = NULL;
6788 }
6789
6790 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6791
6792 /* Check for a racing update before calling hugetlb_wp() */
6793 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6794 goto out_ptl;
6795
6796 /* Handle userfault-wp first, before trying to lock more pages */
6797 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6798 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6799 if (!userfaultfd_wp_async(vma)) {
6800 spin_unlock(vmf.ptl);
6801 if (pagecache_folio) {
6802 folio_unlock(pagecache_folio);
6803 folio_put(pagecache_folio);
6804 }
6805 hugetlb_vma_unlock_read(vma);
6806 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6807 return handle_userfault(&vmf, VM_UFFD_WP);
6808 }
6809
6810 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6811 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6812 huge_page_size(hstate_vma(vma)));
6813 /* Fallthrough to CoW */
6814 }
6815
6816 /*
6817 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6818 * pagecache_folio, so here we need take the former one
6819 * when folio != pagecache_folio or !pagecache_folio.
6820 */
6821 folio = page_folio(pte_page(vmf.orig_pte));
6822 if (folio != pagecache_folio)
6823 if (!folio_trylock(folio)) {
6824 need_wait_lock = 1;
6825 goto out_ptl;
6826 }
6827
6828 folio_get(folio);
6829
6830 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6831 if (!huge_pte_write(vmf.orig_pte)) {
6832 ret = hugetlb_wp(pagecache_folio, &vmf);
6833 goto out_put_page;
6834 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6835 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6836 }
6837 }
6838 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6839 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6840 flags & FAULT_FLAG_WRITE))
6841 update_mmu_cache(vma, vmf.address, vmf.pte);
6842 out_put_page:
6843 if (folio != pagecache_folio)
6844 folio_unlock(folio);
6845 folio_put(folio);
6846 out_ptl:
6847 spin_unlock(vmf.ptl);
6848
6849 if (pagecache_folio) {
6850 folio_unlock(pagecache_folio);
6851 folio_put(pagecache_folio);
6852 }
6853 out_mutex:
6854 hugetlb_vma_unlock_read(vma);
6855
6856 /*
6857 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6858 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6859 */
6860 if (unlikely(ret & VM_FAULT_RETRY))
6861 vma_end_read(vma);
6862
6863 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6864 /*
6865 * Generally it's safe to hold refcount during waiting page lock. But
6866 * here we just wait to defer the next page fault to avoid busy loop and
6867 * the page is not used after unlocked before returning from the current
6868 * page fault. So we are safe from accessing freed page, even if we wait
6869 * here without taking refcount.
6870 */
6871 if (need_wait_lock)
6872 folio_wait_locked(folio);
6873 return ret;
6874 }
6875
6876 #ifdef CONFIG_USERFAULTFD
6877 /*
6878 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6879 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6880 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6881 struct vm_area_struct *vma, unsigned long address)
6882 {
6883 struct mempolicy *mpol;
6884 nodemask_t *nodemask;
6885 struct folio *folio;
6886 gfp_t gfp_mask;
6887 int node;
6888
6889 gfp_mask = htlb_alloc_mask(h);
6890 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6891 /*
6892 * This is used to allocate a temporary hugetlb to hold the copied
6893 * content, which will then be copied again to the final hugetlb
6894 * consuming a reservation. Set the alloc_fallback to false to indicate
6895 * that breaking the per-node hugetlb pool is not allowed in this case.
6896 */
6897 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6898 mpol_cond_put(mpol);
6899
6900 return folio;
6901 }
6902
6903 /*
6904 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6905 * with modifications for hugetlb pages.
6906 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6907 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6908 struct vm_area_struct *dst_vma,
6909 unsigned long dst_addr,
6910 unsigned long src_addr,
6911 uffd_flags_t flags,
6912 struct folio **foliop)
6913 {
6914 struct mm_struct *dst_mm = dst_vma->vm_mm;
6915 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6916 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6917 struct hstate *h = hstate_vma(dst_vma);
6918 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6919 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6920 unsigned long size = huge_page_size(h);
6921 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6922 pte_t _dst_pte;
6923 spinlock_t *ptl;
6924 int ret = -ENOMEM;
6925 struct folio *folio;
6926 bool folio_in_pagecache = false;
6927
6928 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6929 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6930
6931 /* Don't overwrite any existing PTEs (even markers) */
6932 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6933 spin_unlock(ptl);
6934 return -EEXIST;
6935 }
6936
6937 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6938 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6939
6940 /* No need to invalidate - it was non-present before */
6941 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6942
6943 spin_unlock(ptl);
6944 return 0;
6945 }
6946
6947 if (is_continue) {
6948 ret = -EFAULT;
6949 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6950 if (IS_ERR(folio))
6951 goto out;
6952 folio_in_pagecache = true;
6953 } else if (!*foliop) {
6954 /* If a folio already exists, then it's UFFDIO_COPY for
6955 * a non-missing case. Return -EEXIST.
6956 */
6957 if (vm_shared &&
6958 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6959 ret = -EEXIST;
6960 goto out;
6961 }
6962
6963 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6964 if (IS_ERR(folio)) {
6965 ret = -ENOMEM;
6966 goto out;
6967 }
6968
6969 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6970 false);
6971
6972 /* fallback to copy_from_user outside mmap_lock */
6973 if (unlikely(ret)) {
6974 ret = -ENOENT;
6975 /* Free the allocated folio which may have
6976 * consumed a reservation.
6977 */
6978 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6979 folio_put(folio);
6980
6981 /* Allocate a temporary folio to hold the copied
6982 * contents.
6983 */
6984 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6985 if (!folio) {
6986 ret = -ENOMEM;
6987 goto out;
6988 }
6989 *foliop = folio;
6990 /* Set the outparam foliop and return to the caller to
6991 * copy the contents outside the lock. Don't free the
6992 * folio.
6993 */
6994 goto out;
6995 }
6996 } else {
6997 if (vm_shared &&
6998 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6999 folio_put(*foliop);
7000 ret = -EEXIST;
7001 *foliop = NULL;
7002 goto out;
7003 }
7004
7005 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
7006 if (IS_ERR(folio)) {
7007 folio_put(*foliop);
7008 ret = -ENOMEM;
7009 *foliop = NULL;
7010 goto out;
7011 }
7012 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
7013 folio_put(*foliop);
7014 *foliop = NULL;
7015 if (ret) {
7016 folio_put(folio);
7017 goto out;
7018 }
7019 }
7020
7021 /*
7022 * If we just allocated a new page, we need a memory barrier to ensure
7023 * that preceding stores to the page become visible before the
7024 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7025 * is what we need.
7026 *
7027 * In the case where we have not allocated a new page (is_continue),
7028 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7029 * an earlier smp_wmb() to ensure that prior stores will be visible
7030 * before the set_pte_at() write.
7031 */
7032 if (!is_continue)
7033 __folio_mark_uptodate(folio);
7034 else
7035 WARN_ON_ONCE(!folio_test_uptodate(folio));
7036
7037 /* Add shared, newly allocated pages to the page cache. */
7038 if (vm_shared && !is_continue) {
7039 ret = -EFAULT;
7040 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7041 goto out_release_nounlock;
7042
7043 /*
7044 * Serialization between remove_inode_hugepages() and
7045 * hugetlb_add_to_page_cache() below happens through the
7046 * hugetlb_fault_mutex_table that here must be hold by
7047 * the caller.
7048 */
7049 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7050 if (ret)
7051 goto out_release_nounlock;
7052 folio_in_pagecache = true;
7053 }
7054
7055 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7056
7057 ret = -EIO;
7058 if (folio_test_hwpoison(folio))
7059 goto out_release_unlock;
7060
7061 /*
7062 * We allow to overwrite a pte marker: consider when both MISSING|WP
7063 * registered, we firstly wr-protect a none pte which has no page cache
7064 * page backing it, then access the page.
7065 */
7066 ret = -EEXIST;
7067 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7068 goto out_release_unlock;
7069
7070 if (folio_in_pagecache)
7071 hugetlb_add_file_rmap(folio);
7072 else
7073 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7074
7075 /*
7076 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7077 * with wp flag set, don't set pte write bit.
7078 */
7079 _dst_pte = make_huge_pte(dst_vma, folio,
7080 !wp_enabled && !(is_continue && !vm_shared));
7081 /*
7082 * Always mark UFFDIO_COPY page dirty; note that this may not be
7083 * extremely important for hugetlbfs for now since swapping is not
7084 * supported, but we should still be clear in that this page cannot be
7085 * thrown away at will, even if write bit not set.
7086 */
7087 _dst_pte = huge_pte_mkdirty(_dst_pte);
7088 _dst_pte = pte_mkyoung(_dst_pte);
7089
7090 if (wp_enabled)
7091 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7092
7093 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7094
7095 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7096
7097 /* No need to invalidate - it was non-present before */
7098 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7099
7100 spin_unlock(ptl);
7101 if (!is_continue)
7102 folio_set_hugetlb_migratable(folio);
7103 if (vm_shared || is_continue)
7104 folio_unlock(folio);
7105 ret = 0;
7106 out:
7107 return ret;
7108 out_release_unlock:
7109 spin_unlock(ptl);
7110 if (vm_shared || is_continue)
7111 folio_unlock(folio);
7112 out_release_nounlock:
7113 if (!folio_in_pagecache)
7114 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7115 folio_put(folio);
7116 goto out;
7117 }
7118 #endif /* CONFIG_USERFAULTFD */
7119
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7120 long hugetlb_change_protection(struct vm_area_struct *vma,
7121 unsigned long address, unsigned long end,
7122 pgprot_t newprot, unsigned long cp_flags)
7123 {
7124 struct mm_struct *mm = vma->vm_mm;
7125 unsigned long start = address;
7126 pte_t *ptep;
7127 pte_t pte;
7128 struct hstate *h = hstate_vma(vma);
7129 long pages = 0, psize = huge_page_size(h);
7130 bool shared_pmd = false;
7131 struct mmu_notifier_range range;
7132 unsigned long last_addr_mask;
7133 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7134 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7135
7136 /*
7137 * In the case of shared PMDs, the area to flush could be beyond
7138 * start/end. Set range.start/range.end to cover the maximum possible
7139 * range if PMD sharing is possible.
7140 */
7141 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7142 0, mm, start, end);
7143 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7144
7145 BUG_ON(address >= end);
7146 flush_cache_range(vma, range.start, range.end);
7147
7148 mmu_notifier_invalidate_range_start(&range);
7149 hugetlb_vma_lock_write(vma);
7150 i_mmap_lock_write(vma->vm_file->f_mapping);
7151 last_addr_mask = hugetlb_mask_last_page(h);
7152 for (; address < end; address += psize) {
7153 spinlock_t *ptl;
7154 ptep = hugetlb_walk(vma, address, psize);
7155 if (!ptep) {
7156 if (!uffd_wp) {
7157 address |= last_addr_mask;
7158 continue;
7159 }
7160 /*
7161 * Userfaultfd wr-protect requires pgtable
7162 * pre-allocations to install pte markers.
7163 */
7164 ptep = huge_pte_alloc(mm, vma, address, psize);
7165 if (!ptep) {
7166 pages = -ENOMEM;
7167 break;
7168 }
7169 }
7170 ptl = huge_pte_lock(h, mm, ptep);
7171 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7172 /*
7173 * When uffd-wp is enabled on the vma, unshare
7174 * shouldn't happen at all. Warn about it if it
7175 * happened due to some reason.
7176 */
7177 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7178 pages++;
7179 spin_unlock(ptl);
7180 shared_pmd = true;
7181 address |= last_addr_mask;
7182 continue;
7183 }
7184 pte = huge_ptep_get(mm, address, ptep);
7185 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7186 /* Nothing to do. */
7187 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7188 swp_entry_t entry = pte_to_swp_entry(pte);
7189 struct page *page = pfn_swap_entry_to_page(entry);
7190 pte_t newpte = pte;
7191
7192 if (is_writable_migration_entry(entry)) {
7193 if (PageAnon(page))
7194 entry = make_readable_exclusive_migration_entry(
7195 swp_offset(entry));
7196 else
7197 entry = make_readable_migration_entry(
7198 swp_offset(entry));
7199 newpte = swp_entry_to_pte(entry);
7200 pages++;
7201 }
7202
7203 if (uffd_wp)
7204 newpte = pte_swp_mkuffd_wp(newpte);
7205 else if (uffd_wp_resolve)
7206 newpte = pte_swp_clear_uffd_wp(newpte);
7207 if (!pte_same(pte, newpte))
7208 set_huge_pte_at(mm, address, ptep, newpte, psize);
7209 } else if (unlikely(is_pte_marker(pte))) {
7210 /*
7211 * Do nothing on a poison marker; page is
7212 * corrupted, permissons do not apply. Here
7213 * pte_marker_uffd_wp()==true implies !poison
7214 * because they're mutual exclusive.
7215 */
7216 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7217 /* Safe to modify directly (non-present->none). */
7218 huge_pte_clear(mm, address, ptep, psize);
7219 } else if (!huge_pte_none(pte)) {
7220 pte_t old_pte;
7221 unsigned int shift = huge_page_shift(hstate_vma(vma));
7222
7223 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7224 pte = huge_pte_modify(old_pte, newprot);
7225 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7226 if (uffd_wp)
7227 pte = huge_pte_mkuffd_wp(pte);
7228 else if (uffd_wp_resolve)
7229 pte = huge_pte_clear_uffd_wp(pte);
7230 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7231 pages++;
7232 } else {
7233 /* None pte */
7234 if (unlikely(uffd_wp))
7235 /* Safe to modify directly (none->non-present). */
7236 set_huge_pte_at(mm, address, ptep,
7237 make_pte_marker(PTE_MARKER_UFFD_WP),
7238 psize);
7239 }
7240 spin_unlock(ptl);
7241 }
7242 /*
7243 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7244 * may have cleared our pud entry and done put_page on the page table:
7245 * once we release i_mmap_rwsem, another task can do the final put_page
7246 * and that page table be reused and filled with junk. If we actually
7247 * did unshare a page of pmds, flush the range corresponding to the pud.
7248 */
7249 if (shared_pmd)
7250 flush_hugetlb_tlb_range(vma, range.start, range.end);
7251 else
7252 flush_hugetlb_tlb_range(vma, start, end);
7253 /*
7254 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7255 * downgrading page table protection not changing it to point to a new
7256 * page.
7257 *
7258 * See Documentation/mm/mmu_notifier.rst
7259 */
7260 i_mmap_unlock_write(vma->vm_file->f_mapping);
7261 hugetlb_vma_unlock_write(vma);
7262 mmu_notifier_invalidate_range_end(&range);
7263
7264 return pages > 0 ? (pages << h->order) : pages;
7265 }
7266
7267 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7268 bool hugetlb_reserve_pages(struct inode *inode,
7269 long from, long to,
7270 struct vm_area_struct *vma,
7271 vm_flags_t vm_flags)
7272 {
7273 long chg = -1, add = -1, spool_resv, gbl_resv;
7274 struct hstate *h = hstate_inode(inode);
7275 struct hugepage_subpool *spool = subpool_inode(inode);
7276 struct resv_map *resv_map;
7277 struct hugetlb_cgroup *h_cg = NULL;
7278 long gbl_reserve, regions_needed = 0;
7279
7280 /* This should never happen */
7281 if (from > to) {
7282 VM_WARN(1, "%s called with a negative range\n", __func__);
7283 return false;
7284 }
7285
7286 /*
7287 * vma specific semaphore used for pmd sharing and fault/truncation
7288 * synchronization
7289 */
7290 hugetlb_vma_lock_alloc(vma);
7291
7292 /*
7293 * Only apply hugepage reservation if asked. At fault time, an
7294 * attempt will be made for VM_NORESERVE to allocate a page
7295 * without using reserves
7296 */
7297 if (vm_flags & VM_NORESERVE)
7298 return true;
7299
7300 /*
7301 * Shared mappings base their reservation on the number of pages that
7302 * are already allocated on behalf of the file. Private mappings need
7303 * to reserve the full area even if read-only as mprotect() may be
7304 * called to make the mapping read-write. Assume !vma is a shm mapping
7305 */
7306 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7307 /*
7308 * resv_map can not be NULL as hugetlb_reserve_pages is only
7309 * called for inodes for which resv_maps were created (see
7310 * hugetlbfs_get_inode).
7311 */
7312 resv_map = inode_resv_map(inode);
7313
7314 chg = region_chg(resv_map, from, to, ®ions_needed);
7315 } else {
7316 /* Private mapping. */
7317 resv_map = resv_map_alloc();
7318 if (!resv_map)
7319 goto out_err;
7320
7321 chg = to - from;
7322
7323 set_vma_resv_map(vma, resv_map);
7324 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7325 }
7326
7327 if (chg < 0)
7328 goto out_err;
7329
7330 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7331 chg * pages_per_huge_page(h), &h_cg) < 0)
7332 goto out_err;
7333
7334 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7335 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7336 * of the resv_map.
7337 */
7338 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7339 }
7340
7341 /*
7342 * There must be enough pages in the subpool for the mapping. If
7343 * the subpool has a minimum size, there may be some global
7344 * reservations already in place (gbl_reserve).
7345 */
7346 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7347 if (gbl_reserve < 0)
7348 goto out_uncharge_cgroup;
7349
7350 /*
7351 * Check enough hugepages are available for the reservation.
7352 * Hand the pages back to the subpool if there are not
7353 */
7354 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7355 goto out_put_pages;
7356
7357 /*
7358 * Account for the reservations made. Shared mappings record regions
7359 * that have reservations as they are shared by multiple VMAs.
7360 * When the last VMA disappears, the region map says how much
7361 * the reservation was and the page cache tells how much of
7362 * the reservation was consumed. Private mappings are per-VMA and
7363 * only the consumed reservations are tracked. When the VMA
7364 * disappears, the original reservation is the VMA size and the
7365 * consumed reservations are stored in the map. Hence, nothing
7366 * else has to be done for private mappings here
7367 */
7368 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7369 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7370
7371 if (unlikely(add < 0)) {
7372 hugetlb_acct_memory(h, -gbl_reserve);
7373 goto out_put_pages;
7374 } else if (unlikely(chg > add)) {
7375 /*
7376 * pages in this range were added to the reserve
7377 * map between region_chg and region_add. This
7378 * indicates a race with alloc_hugetlb_folio. Adjust
7379 * the subpool and reserve counts modified above
7380 * based on the difference.
7381 */
7382 long rsv_adjust;
7383
7384 /*
7385 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7386 * reference to h_cg->css. See comment below for detail.
7387 */
7388 hugetlb_cgroup_uncharge_cgroup_rsvd(
7389 hstate_index(h),
7390 (chg - add) * pages_per_huge_page(h), h_cg);
7391
7392 rsv_adjust = hugepage_subpool_put_pages(spool,
7393 chg - add);
7394 hugetlb_acct_memory(h, -rsv_adjust);
7395 } else if (h_cg) {
7396 /*
7397 * The file_regions will hold their own reference to
7398 * h_cg->css. So we should release the reference held
7399 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7400 * done.
7401 */
7402 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7403 }
7404 }
7405 return true;
7406
7407 out_put_pages:
7408 spool_resv = chg - gbl_reserve;
7409 if (spool_resv) {
7410 /* put sub pool's reservation back, chg - gbl_reserve */
7411 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7412 /*
7413 * subpool's reserved pages can not be put back due to race,
7414 * return to hstate.
7415 */
7416 hugetlb_acct_memory(h, -gbl_resv);
7417 }
7418 out_uncharge_cgroup:
7419 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7420 chg * pages_per_huge_page(h), h_cg);
7421 out_err:
7422 hugetlb_vma_lock_free(vma);
7423 if (!vma || vma->vm_flags & VM_MAYSHARE)
7424 /* Only call region_abort if the region_chg succeeded but the
7425 * region_add failed or didn't run.
7426 */
7427 if (chg >= 0 && add < 0)
7428 region_abort(resv_map, from, to, regions_needed);
7429 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7430 kref_put(&resv_map->refs, resv_map_release);
7431 set_vma_resv_map(vma, NULL);
7432 }
7433 return false;
7434 }
7435
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7436 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7437 long freed)
7438 {
7439 struct hstate *h = hstate_inode(inode);
7440 struct resv_map *resv_map = inode_resv_map(inode);
7441 long chg = 0;
7442 struct hugepage_subpool *spool = subpool_inode(inode);
7443 long gbl_reserve;
7444
7445 /*
7446 * Since this routine can be called in the evict inode path for all
7447 * hugetlbfs inodes, resv_map could be NULL.
7448 */
7449 if (resv_map) {
7450 chg = region_del(resv_map, start, end);
7451 /*
7452 * region_del() can fail in the rare case where a region
7453 * must be split and another region descriptor can not be
7454 * allocated. If end == LONG_MAX, it will not fail.
7455 */
7456 if (chg < 0)
7457 return chg;
7458 }
7459
7460 spin_lock(&inode->i_lock);
7461 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7462 spin_unlock(&inode->i_lock);
7463
7464 /*
7465 * If the subpool has a minimum size, the number of global
7466 * reservations to be released may be adjusted.
7467 *
7468 * Note that !resv_map implies freed == 0. So (chg - freed)
7469 * won't go negative.
7470 */
7471 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7472 hugetlb_acct_memory(h, -gbl_reserve);
7473
7474 return 0;
7475 }
7476
7477 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7478 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7479 struct vm_area_struct *vma,
7480 unsigned long addr, pgoff_t idx)
7481 {
7482 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7483 svma->vm_start;
7484 unsigned long sbase = saddr & PUD_MASK;
7485 unsigned long s_end = sbase + PUD_SIZE;
7486
7487 /* Allow segments to share if only one is marked locked */
7488 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7489 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7490
7491 /*
7492 * match the virtual addresses, permission and the alignment of the
7493 * page table page.
7494 *
7495 * Also, vma_lock (vm_private_data) is required for sharing.
7496 */
7497 if (pmd_index(addr) != pmd_index(saddr) ||
7498 vm_flags != svm_flags ||
7499 !range_in_vma(svma, sbase, s_end) ||
7500 !svma->vm_private_data)
7501 return 0;
7502
7503 return saddr;
7504 }
7505
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7506 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7507 {
7508 unsigned long start = addr & PUD_MASK;
7509 unsigned long end = start + PUD_SIZE;
7510
7511 #ifdef CONFIG_USERFAULTFD
7512 if (uffd_disable_huge_pmd_share(vma))
7513 return false;
7514 #endif
7515 /*
7516 * check on proper vm_flags and page table alignment
7517 */
7518 if (!(vma->vm_flags & VM_MAYSHARE))
7519 return false;
7520 if (!vma->vm_private_data) /* vma lock required for sharing */
7521 return false;
7522 if (!range_in_vma(vma, start, end))
7523 return false;
7524 return true;
7525 }
7526
7527 /*
7528 * Determine if start,end range within vma could be mapped by shared pmd.
7529 * If yes, adjust start and end to cover range associated with possible
7530 * shared pmd mappings.
7531 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7532 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7533 unsigned long *start, unsigned long *end)
7534 {
7535 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7536 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7537
7538 /*
7539 * vma needs to span at least one aligned PUD size, and the range
7540 * must be at least partially within in.
7541 */
7542 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7543 (*end <= v_start) || (*start >= v_end))
7544 return;
7545
7546 /* Extend the range to be PUD aligned for a worst case scenario */
7547 if (*start > v_start)
7548 *start = ALIGN_DOWN(*start, PUD_SIZE);
7549
7550 if (*end < v_end)
7551 *end = ALIGN(*end, PUD_SIZE);
7552 }
7553
7554 /*
7555 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7556 * and returns the corresponding pte. While this is not necessary for the
7557 * !shared pmd case because we can allocate the pmd later as well, it makes the
7558 * code much cleaner. pmd allocation is essential for the shared case because
7559 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7560 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7561 * bad pmd for sharing.
7562 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7563 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7564 unsigned long addr, pud_t *pud)
7565 {
7566 struct address_space *mapping = vma->vm_file->f_mapping;
7567 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7568 vma->vm_pgoff;
7569 struct vm_area_struct *svma;
7570 unsigned long saddr;
7571 pte_t *spte = NULL;
7572 pte_t *pte;
7573
7574 i_mmap_lock_read(mapping);
7575 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7576 if (svma == vma)
7577 continue;
7578
7579 saddr = page_table_shareable(svma, vma, addr, idx);
7580 if (saddr) {
7581 spte = hugetlb_walk(svma, saddr,
7582 vma_mmu_pagesize(svma));
7583 if (spte) {
7584 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7585 break;
7586 }
7587 }
7588 }
7589
7590 if (!spte)
7591 goto out;
7592
7593 spin_lock(&mm->page_table_lock);
7594 if (pud_none(*pud)) {
7595 pud_populate(mm, pud,
7596 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7597 mm_inc_nr_pmds(mm);
7598 } else {
7599 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7600 }
7601 spin_unlock(&mm->page_table_lock);
7602 out:
7603 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7604 i_mmap_unlock_read(mapping);
7605 return pte;
7606 }
7607
7608 /*
7609 * unmap huge page backed by shared pte.
7610 *
7611 * Called with page table lock held.
7612 *
7613 * returns: 1 successfully unmapped a shared pte page
7614 * 0 the underlying pte page is not shared, or it is the last user
7615 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7616 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7617 unsigned long addr, pte_t *ptep)
7618 {
7619 unsigned long sz = huge_page_size(hstate_vma(vma));
7620 pgd_t *pgd = pgd_offset(mm, addr);
7621 p4d_t *p4d = p4d_offset(pgd, addr);
7622 pud_t *pud = pud_offset(p4d, addr);
7623
7624 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7625 hugetlb_vma_assert_locked(vma);
7626 if (sz != PMD_SIZE)
7627 return 0;
7628 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7629 return 0;
7630
7631 pud_clear(pud);
7632 /*
7633 * Once our caller drops the rmap lock, some other process might be
7634 * using this page table as a normal, non-hugetlb page table.
7635 * Wait for pending gup_fast() in other threads to finish before letting
7636 * that happen.
7637 */
7638 tlb_remove_table_sync_one();
7639 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7640 mm_dec_nr_pmds(mm);
7641 return 1;
7642 }
7643
7644 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7645
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7646 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7647 unsigned long addr, pud_t *pud)
7648 {
7649 return NULL;
7650 }
7651
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7652 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7653 unsigned long addr, pte_t *ptep)
7654 {
7655 return 0;
7656 }
7657
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7658 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7659 unsigned long *start, unsigned long *end)
7660 {
7661 }
7662
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7663 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7664 {
7665 return false;
7666 }
7667 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7668
7669 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7670 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7671 unsigned long addr, unsigned long sz)
7672 {
7673 pgd_t *pgd;
7674 p4d_t *p4d;
7675 pud_t *pud;
7676 pte_t *pte = NULL;
7677
7678 pgd = pgd_offset(mm, addr);
7679 p4d = p4d_alloc(mm, pgd, addr);
7680 if (!p4d)
7681 return NULL;
7682 pud = pud_alloc(mm, p4d, addr);
7683 if (pud) {
7684 if (sz == PUD_SIZE) {
7685 pte = (pte_t *)pud;
7686 } else {
7687 BUG_ON(sz != PMD_SIZE);
7688 if (want_pmd_share(vma, addr) && pud_none(*pud))
7689 pte = huge_pmd_share(mm, vma, addr, pud);
7690 else
7691 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7692 }
7693 }
7694
7695 if (pte) {
7696 pte_t pteval = ptep_get_lockless(pte);
7697
7698 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7699 }
7700
7701 return pte;
7702 }
7703
7704 /*
7705 * huge_pte_offset() - Walk the page table to resolve the hugepage
7706 * entry at address @addr
7707 *
7708 * Return: Pointer to page table entry (PUD or PMD) for
7709 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7710 * size @sz doesn't match the hugepage size at this level of the page
7711 * table.
7712 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7713 pte_t *huge_pte_offset(struct mm_struct *mm,
7714 unsigned long addr, unsigned long sz)
7715 {
7716 pgd_t *pgd;
7717 p4d_t *p4d;
7718 pud_t *pud;
7719 pmd_t *pmd;
7720
7721 pgd = pgd_offset(mm, addr);
7722 if (!pgd_present(*pgd))
7723 return NULL;
7724 p4d = p4d_offset(pgd, addr);
7725 if (!p4d_present(*p4d))
7726 return NULL;
7727
7728 pud = pud_offset(p4d, addr);
7729 if (sz == PUD_SIZE)
7730 /* must be pud huge, non-present or none */
7731 return (pte_t *)pud;
7732 if (!pud_present(*pud))
7733 return NULL;
7734 /* must have a valid entry and size to go further */
7735
7736 pmd = pmd_offset(pud, addr);
7737 /* must be pmd huge, non-present or none */
7738 return (pte_t *)pmd;
7739 }
7740
7741 /*
7742 * Return a mask that can be used to update an address to the last huge
7743 * page in a page table page mapping size. Used to skip non-present
7744 * page table entries when linearly scanning address ranges. Architectures
7745 * with unique huge page to page table relationships can define their own
7746 * version of this routine.
7747 */
hugetlb_mask_last_page(struct hstate * h)7748 unsigned long hugetlb_mask_last_page(struct hstate *h)
7749 {
7750 unsigned long hp_size = huge_page_size(h);
7751
7752 if (hp_size == PUD_SIZE)
7753 return P4D_SIZE - PUD_SIZE;
7754 else if (hp_size == PMD_SIZE)
7755 return PUD_SIZE - PMD_SIZE;
7756 else
7757 return 0UL;
7758 }
7759
7760 #else
7761
7762 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7763 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7764 {
7765 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7766 if (huge_page_size(h) == PMD_SIZE)
7767 return PUD_SIZE - PMD_SIZE;
7768 #endif
7769 return 0UL;
7770 }
7771
7772 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7773
7774 /**
7775 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7776 * @folio: the folio to isolate
7777 * @list: the list to add the folio to on success
7778 *
7779 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7780 * isolated/non-migratable, and moving it from the active list to the
7781 * given list.
7782 *
7783 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7784 * it is already isolated/non-migratable.
7785 *
7786 * On success, an additional folio reference is taken that must be dropped
7787 * using folio_putback_hugetlb() to undo the isolation.
7788 *
7789 * Return: True if isolation worked, otherwise False.
7790 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7791 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7792 {
7793 bool ret = true;
7794
7795 spin_lock_irq(&hugetlb_lock);
7796 if (!folio_test_hugetlb(folio) ||
7797 !folio_test_hugetlb_migratable(folio) ||
7798 !folio_try_get(folio)) {
7799 ret = false;
7800 goto unlock;
7801 }
7802 folio_clear_hugetlb_migratable(folio);
7803 list_move_tail(&folio->lru, list);
7804 unlock:
7805 spin_unlock_irq(&hugetlb_lock);
7806 return ret;
7807 }
7808
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7809 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7810 {
7811 int ret = 0;
7812
7813 *hugetlb = false;
7814 spin_lock_irq(&hugetlb_lock);
7815 if (folio_test_hugetlb(folio)) {
7816 *hugetlb = true;
7817 if (folio_test_hugetlb_freed(folio))
7818 ret = 0;
7819 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7820 ret = folio_try_get(folio);
7821 else
7822 ret = -EBUSY;
7823 }
7824 spin_unlock_irq(&hugetlb_lock);
7825 return ret;
7826 }
7827
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7828 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7829 bool *migratable_cleared)
7830 {
7831 int ret;
7832
7833 spin_lock_irq(&hugetlb_lock);
7834 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7835 spin_unlock_irq(&hugetlb_lock);
7836 return ret;
7837 }
7838
7839 /**
7840 * folio_putback_hugetlb - unisolate a hugetlb folio
7841 * @folio: the isolated hugetlb folio
7842 *
7843 * Putback/un-isolate the hugetlb folio that was previous isolated using
7844 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7845 * back onto the active list.
7846 *
7847 * Will drop the additional folio reference obtained through
7848 * folio_isolate_hugetlb().
7849 */
folio_putback_hugetlb(struct folio * folio)7850 void folio_putback_hugetlb(struct folio *folio)
7851 {
7852 spin_lock_irq(&hugetlb_lock);
7853 folio_set_hugetlb_migratable(folio);
7854 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7855 spin_unlock_irq(&hugetlb_lock);
7856 folio_put(folio);
7857 }
7858
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7859 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7860 {
7861 struct hstate *h = folio_hstate(old_folio);
7862
7863 hugetlb_cgroup_migrate(old_folio, new_folio);
7864 set_page_owner_migrate_reason(&new_folio->page, reason);
7865
7866 /*
7867 * transfer temporary state of the new hugetlb folio. This is
7868 * reverse to other transitions because the newpage is going to
7869 * be final while the old one will be freed so it takes over
7870 * the temporary status.
7871 *
7872 * Also note that we have to transfer the per-node surplus state
7873 * here as well otherwise the global surplus count will not match
7874 * the per-node's.
7875 */
7876 if (folio_test_hugetlb_temporary(new_folio)) {
7877 int old_nid = folio_nid(old_folio);
7878 int new_nid = folio_nid(new_folio);
7879
7880 folio_set_hugetlb_temporary(old_folio);
7881 folio_clear_hugetlb_temporary(new_folio);
7882
7883
7884 /*
7885 * There is no need to transfer the per-node surplus state
7886 * when we do not cross the node.
7887 */
7888 if (new_nid == old_nid)
7889 return;
7890 spin_lock_irq(&hugetlb_lock);
7891 if (h->surplus_huge_pages_node[old_nid]) {
7892 h->surplus_huge_pages_node[old_nid]--;
7893 h->surplus_huge_pages_node[new_nid]++;
7894 }
7895 spin_unlock_irq(&hugetlb_lock);
7896 }
7897
7898 /*
7899 * Our old folio is isolated and has "migratable" cleared until it
7900 * is putback. As migration succeeded, set the new folio "migratable"
7901 * and add it to the active list.
7902 */
7903 spin_lock_irq(&hugetlb_lock);
7904 folio_set_hugetlb_migratable(new_folio);
7905 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7906 spin_unlock_irq(&hugetlb_lock);
7907 }
7908
7909 /*
7910 * If @take_locks is false, the caller must ensure that no concurrent page table
7911 * access can happen (except for gup_fast() and hardware page walks).
7912 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7913 * concurrent page fault handling) and the file rmap lock.
7914 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7915 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7916 unsigned long start,
7917 unsigned long end,
7918 bool take_locks)
7919 {
7920 struct hstate *h = hstate_vma(vma);
7921 unsigned long sz = huge_page_size(h);
7922 struct mm_struct *mm = vma->vm_mm;
7923 struct mmu_notifier_range range;
7924 unsigned long address;
7925 spinlock_t *ptl;
7926 pte_t *ptep;
7927
7928 if (!(vma->vm_flags & VM_MAYSHARE))
7929 return;
7930
7931 if (start >= end)
7932 return;
7933
7934 flush_cache_range(vma, start, end);
7935 /*
7936 * No need to call adjust_range_if_pmd_sharing_possible(), because
7937 * we have already done the PUD_SIZE alignment.
7938 */
7939 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7940 start, end);
7941 mmu_notifier_invalidate_range_start(&range);
7942 if (take_locks) {
7943 hugetlb_vma_lock_write(vma);
7944 i_mmap_lock_write(vma->vm_file->f_mapping);
7945 } else {
7946 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7947 }
7948 for (address = start; address < end; address += PUD_SIZE) {
7949 ptep = hugetlb_walk(vma, address, sz);
7950 if (!ptep)
7951 continue;
7952 ptl = huge_pte_lock(h, mm, ptep);
7953 huge_pmd_unshare(mm, vma, address, ptep);
7954 spin_unlock(ptl);
7955 }
7956 flush_hugetlb_tlb_range(vma, start, end);
7957 if (take_locks) {
7958 i_mmap_unlock_write(vma->vm_file->f_mapping);
7959 hugetlb_vma_unlock_write(vma);
7960 }
7961 /*
7962 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7963 * Documentation/mm/mmu_notifier.rst.
7964 */
7965 mmu_notifier_invalidate_range_end(&range);
7966 }
7967
7968 /*
7969 * This function will unconditionally remove all the shared pmd pgtable entries
7970 * within the specific vma for a hugetlbfs memory range.
7971 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7972 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7973 {
7974 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7975 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7976 /* take_locks = */ true);
7977 }
7978
7979 /*
7980 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7981 * performed, we permit both the old and new VMAs to reference the same
7982 * reservation.
7983 *
7984 * We fix this up after the operation succeeds, or if a newly allocated VMA
7985 * is closed as a result of a failure to allocate memory.
7986 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7987 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7988 {
7989 if (is_vm_hugetlb_page(vma))
7990 clear_vma_resv_huge_pages(vma);
7991 }
7992