1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44 static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer rtctimer;
63 static struct rtc_device *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
alarmtimer_get_rtcdev(void)71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
alarmtimer_rtc_add_device(struct device * dev)84 static int alarmtimer_rtc_add_device(struct device *dev)
85 {
86 unsigned long flags;
87 struct rtc_device *rtc = to_rtc_device(dev);
88 struct platform_device *pdev;
89 int ret = 0;
90
91 if (rtcdev)
92 return -EBUSY;
93
94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 return -1;
96 if (!device_may_wakeup(rtc->dev.parent))
97 return -1;
98
99 pdev = platform_device_register_data(dev, "alarmtimer",
100 PLATFORM_DEVID_AUTO, NULL, 0);
101 if (!IS_ERR(pdev))
102 device_init_wakeup(&pdev->dev, true);
103
104 spin_lock_irqsave(&rtcdev_lock, flags);
105 if (!IS_ERR(pdev) && !rtcdev) {
106 if (!try_module_get(rtc->owner)) {
107 ret = -1;
108 goto unlock;
109 }
110
111 rtcdev = rtc;
112 /* hold a reference so it doesn't go away */
113 get_device(dev);
114 pdev = NULL;
115 } else {
116 ret = -1;
117 }
118 unlock:
119 spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121 platform_device_unregister(pdev);
122
123 return ret;
124 }
125
alarmtimer_rtc_timer_init(void)126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128 rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130
131 static struct class_interface alarmtimer_rtc_interface = {
132 .add_dev = &alarmtimer_rtc_add_device,
133 };
134
alarmtimer_rtc_interface_setup(void)135 static int alarmtimer_rtc_interface_setup(void)
136 {
137 alarmtimer_rtc_interface.class = &rtc_class;
138 return class_interface_register(&alarmtimer_rtc_interface);
139 }
alarmtimer_rtc_interface_remove(void)140 static void alarmtimer_rtc_interface_remove(void)
141 {
142 class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
alarmtimer_rtc_interface_setup(void)145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)146 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149
150 /**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 timerqueue_del(&base->timerqueue, &alarm->node);
163
164 timerqueue_add(&base->timerqueue, &alarm->node);
165 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167
168 /**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 return;
181
182 timerqueue_del(&base->timerqueue, &alarm->node);
183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185
186
187 /**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
alarmtimer_fired(struct hrtimer * timer)196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198 struct alarm *alarm = container_of(timer, struct alarm, timer);
199 struct alarm_base *base = &alarm_bases[alarm->type];
200
201 scoped_guard (spinlock_irqsave, &base->lock)
202 alarmtimer_dequeue(base, alarm);
203
204 if (alarm->function)
205 alarm->function(alarm, base->get_ktime());
206
207 trace_alarmtimer_fired(alarm, base->get_ktime());
208 return HRTIMER_NORESTART;
209 }
210
alarm_expires_remaining(const struct alarm * alarm)211 ktime_t alarm_expires_remaining(const struct alarm *alarm)
212 {
213 struct alarm_base *base = &alarm_bases[alarm->type];
214 return ktime_sub(alarm->node.expires, base->get_ktime());
215 }
216 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217
218 #ifdef CONFIG_RTC_CLASS
219 /**
220 * alarmtimer_suspend - Suspend time callback
221 * @dev: unused
222 *
223 * When we are going into suspend, we look through the bases
224 * to see which is the soonest timer to expire. We then
225 * set an rtc timer to fire that far into the future, which
226 * will wake us from suspend.
227 */
alarmtimer_suspend(struct device * dev)228 static int alarmtimer_suspend(struct device *dev)
229 {
230 ktime_t min, now, expires;
231 int i, ret, type;
232 struct rtc_device *rtc;
233 unsigned long flags;
234 struct rtc_time tm;
235
236 spin_lock_irqsave(&freezer_delta_lock, flags);
237 min = freezer_delta;
238 expires = freezer_expires;
239 type = freezer_alarmtype;
240 freezer_delta = 0;
241 spin_unlock_irqrestore(&freezer_delta_lock, flags);
242
243 rtc = alarmtimer_get_rtcdev();
244 /* If we have no rtcdev, just return */
245 if (!rtc)
246 return 0;
247
248 /* Find the soonest timer to expire*/
249 for (i = 0; i < ALARM_NUMTYPE; i++) {
250 struct alarm_base *base = &alarm_bases[i];
251 struct timerqueue_node *next;
252 ktime_t delta;
253
254 spin_lock_irqsave(&base->lock, flags);
255 next = timerqueue_getnext(&base->timerqueue);
256 spin_unlock_irqrestore(&base->lock, flags);
257 if (!next)
258 continue;
259 delta = ktime_sub(next->expires, base->get_ktime());
260 if (!min || (delta < min)) {
261 expires = next->expires;
262 min = delta;
263 type = i;
264 }
265 }
266 if (min == 0)
267 return 0;
268
269 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271 return -EBUSY;
272 }
273
274 trace_alarmtimer_suspend(expires, type);
275
276 /* Setup an rtc timer to fire that far in the future */
277 rtc_timer_cancel(rtc, &rtctimer);
278 rtc_read_time(rtc, &tm);
279 now = rtc_tm_to_ktime(tm);
280
281 /*
282 * If the RTC alarm timer only supports a limited time offset, set the
283 * alarm time to the maximum supported value.
284 * The system may wake up earlier (possibly much earlier) than expected
285 * when the alarmtimer runs. This is the best the kernel can do if
286 * the alarmtimer exceeds the time that the rtc device can be programmed
287 * for.
288 */
289 min = rtc_bound_alarmtime(rtc, min);
290
291 now = ktime_add(now, min);
292
293 /* Set alarm, if in the past reject suspend briefly to handle */
294 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295 if (ret < 0)
296 pm_wakeup_event(dev, MSEC_PER_SEC);
297 return ret;
298 }
299
alarmtimer_resume(struct device * dev)300 static int alarmtimer_resume(struct device *dev)
301 {
302 struct rtc_device *rtc;
303
304 rtc = alarmtimer_get_rtcdev();
305 if (rtc)
306 rtc_timer_cancel(rtc, &rtctimer);
307 return 0;
308 }
309
310 #else
alarmtimer_suspend(struct device * dev)311 static int alarmtimer_suspend(struct device *dev)
312 {
313 return 0;
314 }
315
alarmtimer_resume(struct device * dev)316 static int alarmtimer_resume(struct device *dev)
317 {
318 return 0;
319 }
320 #endif
321
322 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))323 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 void (*function)(struct alarm *, ktime_t))
325 {
326 timerqueue_init(&alarm->node);
327 alarm->function = function;
328 alarm->type = type;
329 alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331
332 /**
333 * alarm_init - Initialize an alarm structure
334 * @alarm: ptr to alarm to be initialized
335 * @type: the type of the alarm
336 * @function: callback that is run when the alarm fires
337 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))338 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339 void (*function)(struct alarm *, ktime_t))
340 {
341 hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342 HRTIMER_MODE_ABS);
343 __alarm_init(alarm, type, function);
344 }
345 EXPORT_SYMBOL_GPL(alarm_init);
346
347 /**
348 * alarm_start - Sets an absolute alarm to fire
349 * @alarm: ptr to alarm to set
350 * @start: time to run the alarm
351 */
alarm_start(struct alarm * alarm,ktime_t start)352 void alarm_start(struct alarm *alarm, ktime_t start)
353 {
354 struct alarm_base *base = &alarm_bases[alarm->type];
355 unsigned long flags;
356
357 spin_lock_irqsave(&base->lock, flags);
358 alarm->node.expires = start;
359 alarmtimer_enqueue(base, alarm);
360 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
361 spin_unlock_irqrestore(&base->lock, flags);
362
363 trace_alarmtimer_start(alarm, base->get_ktime());
364 }
365 EXPORT_SYMBOL_GPL(alarm_start);
366
367 /**
368 * alarm_start_relative - Sets a relative alarm to fire
369 * @alarm: ptr to alarm to set
370 * @start: time relative to now to run the alarm
371 */
alarm_start_relative(struct alarm * alarm,ktime_t start)372 void alarm_start_relative(struct alarm *alarm, ktime_t start)
373 {
374 struct alarm_base *base = &alarm_bases[alarm->type];
375
376 start = ktime_add_safe(start, base->get_ktime());
377 alarm_start(alarm, start);
378 }
379 EXPORT_SYMBOL_GPL(alarm_start_relative);
380
alarm_restart(struct alarm * alarm)381 void alarm_restart(struct alarm *alarm)
382 {
383 struct alarm_base *base = &alarm_bases[alarm->type];
384 unsigned long flags;
385
386 spin_lock_irqsave(&base->lock, flags);
387 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388 hrtimer_restart(&alarm->timer);
389 alarmtimer_enqueue(base, alarm);
390 spin_unlock_irqrestore(&base->lock, flags);
391 }
392 EXPORT_SYMBOL_GPL(alarm_restart);
393
394 /**
395 * alarm_try_to_cancel - Tries to cancel an alarm timer
396 * @alarm: ptr to alarm to be canceled
397 *
398 * Returns 1 if the timer was canceled, 0 if it was not running,
399 * and -1 if the callback was running
400 */
alarm_try_to_cancel(struct alarm * alarm)401 int alarm_try_to_cancel(struct alarm *alarm)
402 {
403 struct alarm_base *base = &alarm_bases[alarm->type];
404 unsigned long flags;
405 int ret;
406
407 spin_lock_irqsave(&base->lock, flags);
408 ret = hrtimer_try_to_cancel(&alarm->timer);
409 if (ret >= 0)
410 alarmtimer_dequeue(base, alarm);
411 spin_unlock_irqrestore(&base->lock, flags);
412
413 trace_alarmtimer_cancel(alarm, base->get_ktime());
414 return ret;
415 }
416 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417
418
419 /**
420 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421 * @alarm: ptr to alarm to be canceled
422 *
423 * Returns 1 if the timer was canceled, 0 if it was not active.
424 */
alarm_cancel(struct alarm * alarm)425 int alarm_cancel(struct alarm *alarm)
426 {
427 for (;;) {
428 int ret = alarm_try_to_cancel(alarm);
429 if (ret >= 0)
430 return ret;
431 hrtimer_cancel_wait_running(&alarm->timer);
432 }
433 }
434 EXPORT_SYMBOL_GPL(alarm_cancel);
435
436
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)437 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438 {
439 u64 overrun = 1;
440 ktime_t delta;
441
442 delta = ktime_sub(now, alarm->node.expires);
443
444 if (delta < 0)
445 return 0;
446
447 if (unlikely(delta >= interval)) {
448 s64 incr = ktime_to_ns(interval);
449
450 overrun = ktime_divns(delta, incr);
451
452 alarm->node.expires = ktime_add_ns(alarm->node.expires,
453 incr*overrun);
454
455 if (alarm->node.expires > now)
456 return overrun;
457 /*
458 * This (and the ktime_add() below) is the
459 * correction for exact:
460 */
461 overrun++;
462 }
463
464 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465 return overrun;
466 }
467 EXPORT_SYMBOL_GPL(alarm_forward);
468
alarm_forward_now(struct alarm * alarm,ktime_t interval)469 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470 {
471 struct alarm_base *base = &alarm_bases[alarm->type];
472
473 return alarm_forward(alarm, base->get_ktime(), interval);
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward_now);
476
477 #ifdef CONFIG_POSIX_TIMERS
478
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)479 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480 {
481 struct alarm_base *base;
482 unsigned long flags;
483 ktime_t delta;
484
485 switch(type) {
486 case ALARM_REALTIME:
487 base = &alarm_bases[ALARM_REALTIME];
488 type = ALARM_REALTIME_FREEZER;
489 break;
490 case ALARM_BOOTTIME:
491 base = &alarm_bases[ALARM_BOOTTIME];
492 type = ALARM_BOOTTIME_FREEZER;
493 break;
494 default:
495 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496 return;
497 }
498
499 delta = ktime_sub(absexp, base->get_ktime());
500
501 spin_lock_irqsave(&freezer_delta_lock, flags);
502 if (!freezer_delta || (delta < freezer_delta)) {
503 freezer_delta = delta;
504 freezer_expires = absexp;
505 freezer_alarmtype = type;
506 }
507 spin_unlock_irqrestore(&freezer_delta_lock, flags);
508 }
509
510 /**
511 * clock2alarm - helper that converts from clockid to alarmtypes
512 * @clockid: clockid.
513 */
clock2alarm(clockid_t clockid)514 static enum alarmtimer_type clock2alarm(clockid_t clockid)
515 {
516 if (clockid == CLOCK_REALTIME_ALARM)
517 return ALARM_REALTIME;
518 if (clockid == CLOCK_BOOTTIME_ALARM)
519 return ALARM_BOOTTIME;
520 return -1;
521 }
522
523 /**
524 * alarm_handle_timer - Callback for posix timers
525 * @alarm: alarm that fired
526 * @now: time at the timer expiration
527 *
528 * Posix timer callback for expired alarm timers.
529 *
530 * Return: whether the timer is to be restarted
531 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)532 static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
533 {
534 struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535
536 guard(spinlock_irqsave)(&ptr->it_lock);
537 posix_timer_queue_signal(ptr);
538 }
539
540 /**
541 * alarm_timer_rearm - Posix timer callback for rearming timer
542 * @timr: Pointer to the posixtimer data struct
543 */
alarm_timer_rearm(struct k_itimer * timr)544 static void alarm_timer_rearm(struct k_itimer *timr)
545 {
546 struct alarm *alarm = &timr->it.alarm.alarmtimer;
547
548 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549 alarm_start(alarm, alarm->node.expires);
550 }
551
552 /**
553 * alarm_timer_forward - Posix timer callback for forwarding timer
554 * @timr: Pointer to the posixtimer data struct
555 * @now: Current time to forward the timer against
556 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)557 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558 {
559 struct alarm *alarm = &timr->it.alarm.alarmtimer;
560
561 return alarm_forward(alarm, timr->it_interval, now);
562 }
563
564 /**
565 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566 * @timr: Pointer to the posixtimer data struct
567 * @now: Current time to calculate against
568 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)569 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570 {
571 struct alarm *alarm = &timr->it.alarm.alarmtimer;
572
573 return ktime_sub(alarm->node.expires, now);
574 }
575
576 /**
577 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578 * @timr: Pointer to the posixtimer data struct
579 */
alarm_timer_try_to_cancel(struct k_itimer * timr)580 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581 {
582 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583 }
584
585 /**
586 * alarm_timer_wait_running - Posix timer callback to wait for a timer
587 * @timr: Pointer to the posixtimer data struct
588 *
589 * Called from the core code when timer cancel detected that the callback
590 * is running. @timr is unlocked and rcu read lock is held to prevent it
591 * from being freed.
592 */
alarm_timer_wait_running(struct k_itimer * timr)593 static void alarm_timer_wait_running(struct k_itimer *timr)
594 {
595 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596 }
597
598 /**
599 * alarm_timer_arm - Posix timer callback to arm a timer
600 * @timr: Pointer to the posixtimer data struct
601 * @expires: The new expiry time
602 * @absolute: Expiry value is absolute time
603 * @sigev_none: Posix timer does not deliver signals
604 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)605 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606 bool absolute, bool sigev_none)
607 {
608 struct alarm *alarm = &timr->it.alarm.alarmtimer;
609 struct alarm_base *base = &alarm_bases[alarm->type];
610
611 if (!absolute)
612 expires = ktime_add_safe(expires, base->get_ktime());
613 if (sigev_none)
614 alarm->node.expires = expires;
615 else
616 alarm_start(&timr->it.alarm.alarmtimer, expires);
617 }
618
619 /**
620 * alarm_clock_getres - posix getres interface
621 * @which_clock: clockid
622 * @tp: timespec to fill
623 *
624 * Returns the granularity of underlying alarm base clock
625 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)626 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627 {
628 if (!alarmtimer_get_rtcdev())
629 return -EINVAL;
630
631 tp->tv_sec = 0;
632 tp->tv_nsec = hrtimer_resolution;
633 return 0;
634 }
635
636 /**
637 * alarm_clock_get_timespec - posix clock_get_timespec interface
638 * @which_clock: clockid
639 * @tp: timespec to fill.
640 *
641 * Provides the underlying alarm base time in a tasks time namespace.
642 */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)643 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644 {
645 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
646
647 if (!alarmtimer_get_rtcdev())
648 return -EINVAL;
649
650 base->get_timespec(tp);
651
652 return 0;
653 }
654
655 /**
656 * alarm_clock_get_ktime - posix clock_get_ktime interface
657 * @which_clock: clockid
658 *
659 * Provides the underlying alarm base time in the root namespace.
660 */
alarm_clock_get_ktime(clockid_t which_clock)661 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
662 {
663 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664
665 if (!alarmtimer_get_rtcdev())
666 return -EINVAL;
667
668 return base->get_ktime();
669 }
670
671 /**
672 * alarm_timer_create - posix timer_create interface
673 * @new_timer: k_itimer pointer to manage
674 *
675 * Initializes the k_itimer structure.
676 */
alarm_timer_create(struct k_itimer * new_timer)677 static int alarm_timer_create(struct k_itimer *new_timer)
678 {
679 enum alarmtimer_type type;
680
681 if (!alarmtimer_get_rtcdev())
682 return -EOPNOTSUPP;
683
684 if (!capable(CAP_WAKE_ALARM))
685 return -EPERM;
686
687 type = clock2alarm(new_timer->it_clock);
688 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
689 return 0;
690 }
691
692 /**
693 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694 * @alarm: ptr to alarm that fired
695 * @now: time at the timer expiration
696 *
697 * Wakes up the task that set the alarmtimer
698 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)699 static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
700 {
701 struct task_struct *task = alarm->data;
702
703 alarm->data = NULL;
704 if (task)
705 wake_up_process(task);
706 }
707
708 /**
709 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710 * @alarm: ptr to alarmtimer
711 * @absexp: absolute expiration time
712 * @type: alarm type (BOOTTIME/REALTIME).
713 *
714 * Sets the alarm timer and sleeps until it is fired or interrupted.
715 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)716 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717 enum alarmtimer_type type)
718 {
719 struct restart_block *restart;
720 alarm->data = (void *)current;
721 do {
722 set_current_state(TASK_INTERRUPTIBLE);
723 alarm_start(alarm, absexp);
724 if (likely(alarm->data))
725 schedule();
726
727 alarm_cancel(alarm);
728 } while (alarm->data && !signal_pending(current));
729
730 __set_current_state(TASK_RUNNING);
731
732 destroy_hrtimer_on_stack(&alarm->timer);
733
734 if (!alarm->data)
735 return 0;
736
737 if (freezing(current))
738 alarmtimer_freezerset(absexp, type);
739 restart = ¤t->restart_block;
740 if (restart->nanosleep.type != TT_NONE) {
741 struct timespec64 rmt;
742 ktime_t rem;
743
744 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
745
746 if (rem <= 0)
747 return 0;
748 rmt = ktime_to_timespec64(rem);
749
750 return nanosleep_copyout(restart, &rmt);
751 }
752 return -ERESTART_RESTARTBLOCK;
753 }
754
755 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))756 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757 void (*function)(struct alarm *, ktime_t))
758 {
759 hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760 HRTIMER_MODE_ABS);
761 __alarm_init(alarm, type, function);
762 }
763
764 /**
765 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766 * @restart: ptr to restart block
767 *
768 * Handles restarted clock_nanosleep calls
769 */
alarm_timer_nsleep_restart(struct restart_block * restart)770 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771 {
772 enum alarmtimer_type type = restart->nanosleep.clockid;
773 ktime_t exp = restart->nanosleep.expires;
774 struct alarm alarm;
775
776 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777
778 return alarmtimer_do_nsleep(&alarm, exp, type);
779 }
780
781 /**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determines abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 *
787 * Handles clock_nanosleep calls against _ALARM clockids
788 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 const struct timespec64 *tsreq)
791 {
792 enum alarmtimer_type type = clock2alarm(which_clock);
793 struct restart_block *restart = ¤t->restart_block;
794 struct alarm alarm;
795 ktime_t exp;
796 int ret;
797
798 if (!alarmtimer_get_rtcdev())
799 return -EOPNOTSUPP;
800
801 if (flags & ~TIMER_ABSTIME)
802 return -EINVAL;
803
804 if (!capable(CAP_WAKE_ALARM))
805 return -EPERM;
806
807 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809 exp = timespec64_to_ktime(*tsreq);
810 /* Convert (if necessary) to absolute time */
811 if (flags != TIMER_ABSTIME) {
812 ktime_t now = alarm_bases[type].get_ktime();
813
814 exp = ktime_add_safe(now, exp);
815 } else {
816 exp = timens_ktime_to_host(which_clock, exp);
817 }
818
819 ret = alarmtimer_do_nsleep(&alarm, exp, type);
820 if (ret != -ERESTART_RESTARTBLOCK)
821 return ret;
822
823 /* abs timers don't set remaining time or restart */
824 if (flags == TIMER_ABSTIME)
825 return -ERESTARTNOHAND;
826
827 restart->nanosleep.clockid = type;
828 restart->nanosleep.expires = exp;
829 set_restart_fn(restart, alarm_timer_nsleep_restart);
830 return ret;
831 }
832
833 const struct k_clock alarm_clock = {
834 .clock_getres = alarm_clock_getres,
835 .clock_get_ktime = alarm_clock_get_ktime,
836 .clock_get_timespec = alarm_clock_get_timespec,
837 .timer_create = alarm_timer_create,
838 .timer_set = common_timer_set,
839 .timer_del = common_timer_del,
840 .timer_get = common_timer_get,
841 .timer_arm = alarm_timer_arm,
842 .timer_rearm = alarm_timer_rearm,
843 .timer_forward = alarm_timer_forward,
844 .timer_remaining = alarm_timer_remaining,
845 .timer_try_to_cancel = alarm_timer_try_to_cancel,
846 .timer_wait_running = alarm_timer_wait_running,
847 .nsleep = alarm_timer_nsleep,
848 };
849 #endif /* CONFIG_POSIX_TIMERS */
850
851
852 /* Suspend hook structures */
853 static const struct dev_pm_ops alarmtimer_pm_ops = {
854 .suspend = alarmtimer_suspend,
855 .resume = alarmtimer_resume,
856 };
857
858 static struct platform_driver alarmtimer_driver = {
859 .driver = {
860 .name = "alarmtimer",
861 .pm = &alarmtimer_pm_ops,
862 }
863 };
864
get_boottime_timespec(struct timespec64 * tp)865 static void get_boottime_timespec(struct timespec64 *tp)
866 {
867 ktime_get_boottime_ts64(tp);
868 timens_add_boottime(tp);
869 }
870
871 /**
872 * alarmtimer_init - Initialize alarm timer code
873 *
874 * This function initializes the alarm bases and registers
875 * the posix clock ids.
876 */
alarmtimer_init(void)877 static int __init alarmtimer_init(void)
878 {
879 int error;
880 int i;
881
882 alarmtimer_rtc_timer_init();
883
884 /* Initialize alarm bases */
885 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891 for (i = 0; i < ALARM_NUMTYPE; i++) {
892 timerqueue_init_head(&alarm_bases[i].timerqueue);
893 spin_lock_init(&alarm_bases[i].lock);
894 }
895
896 error = alarmtimer_rtc_interface_setup();
897 if (error)
898 return error;
899
900 error = platform_driver_register(&alarmtimer_driver);
901 if (error)
902 goto out_if;
903
904 return 0;
905 out_if:
906 alarmtimer_rtc_interface_remove();
907 return error;
908 }
909 device_initcall(alarmtimer_init);
910