xref: /linux/kernel/time/alarmtimer.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similar to hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corporation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30 
31 #include "posix-timers.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35 
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:		Lock for syncrhonized access to the base
39  * @timerqueue:		Timerqueue head managing the list of events
40  * @get_ktime:		Function to read the time correlating to the base
41  * @get_timespec:	Function to read the namespace time correlating to the base
42  * @base_clockid:	clockid for the base
43  */
44 static struct alarm_base {
45 	spinlock_t		lock;
46 	struct timerqueue_head	timerqueue;
47 	ktime_t			(*get_ktime)(void);
48 	void			(*get_timespec)(struct timespec64 *tp);
49 	clockid_t		base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51 
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59 
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer		rtctimer;
63 static struct rtc_device	*rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65 
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
alarmtimer_get_rtcdev(void)71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73 	unsigned long flags;
74 	struct rtc_device *ret;
75 
76 	spin_lock_irqsave(&rtcdev_lock, flags);
77 	ret = rtcdev;
78 	spin_unlock_irqrestore(&rtcdev_lock, flags);
79 
80 	return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83 
alarmtimer_rtc_add_device(struct device * dev)84 static int alarmtimer_rtc_add_device(struct device *dev)
85 {
86 	unsigned long flags;
87 	struct rtc_device *rtc = to_rtc_device(dev);
88 	struct platform_device *pdev;
89 	int ret = 0;
90 
91 	if (rtcdev)
92 		return -EBUSY;
93 
94 	if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 		return -1;
96 	if (!device_may_wakeup(rtc->dev.parent))
97 		return -1;
98 
99 	pdev = platform_device_register_data(dev, "alarmtimer",
100 					     PLATFORM_DEVID_AUTO, NULL, 0);
101 	if (!IS_ERR(pdev))
102 		device_init_wakeup(&pdev->dev, true);
103 
104 	spin_lock_irqsave(&rtcdev_lock, flags);
105 	if (!IS_ERR(pdev) && !rtcdev) {
106 		if (!try_module_get(rtc->owner)) {
107 			ret = -1;
108 			goto unlock;
109 		}
110 
111 		rtcdev = rtc;
112 		/* hold a reference so it doesn't go away */
113 		get_device(dev);
114 		pdev = NULL;
115 	} else {
116 		ret = -1;
117 	}
118 unlock:
119 	spin_unlock_irqrestore(&rtcdev_lock, flags);
120 
121 	platform_device_unregister(pdev);
122 
123 	return ret;
124 }
125 
alarmtimer_rtc_timer_init(void)126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128 	rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130 
131 static struct class_interface alarmtimer_rtc_interface = {
132 	.add_dev = &alarmtimer_rtc_add_device,
133 };
134 
alarmtimer_rtc_interface_setup(void)135 static int alarmtimer_rtc_interface_setup(void)
136 {
137 	alarmtimer_rtc_interface.class = &rtc_class;
138 	return class_interface_register(&alarmtimer_rtc_interface);
139 }
alarmtimer_rtc_interface_remove(void)140 static void alarmtimer_rtc_interface_remove(void)
141 {
142 	class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
alarmtimer_rtc_interface_setup(void)145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)146 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149 
150 /**
151  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152  * @base: pointer to the base where the timer is being run
153  * @alarm: pointer to alarm being enqueued.
154  *
155  * Adds alarm to a alarm_base timerqueue
156  *
157  * Must hold base->lock when calling.
158  */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 		timerqueue_del(&base->timerqueue, &alarm->node);
163 
164 	timerqueue_add(&base->timerqueue, &alarm->node);
165 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167 
168 /**
169  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170  * @base: pointer to the base where the timer is running
171  * @alarm: pointer to alarm being removed
172  *
173  * Removes alarm to a alarm_base timerqueue
174  *
175  * Must hold base->lock when calling.
176  */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 		return;
181 
182 	timerqueue_del(&base->timerqueue, &alarm->node);
183 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185 
186 
187 /**
188  * alarmtimer_fired - Handles alarm hrtimer being fired.
189  * @timer: pointer to hrtimer being run
190  *
191  * When a alarm timer fires, this runs through the timerqueue to
192  * see which alarms expired, and runs those. If there are more alarm
193  * timers queued for the future, we set the hrtimer to fire when
194  * the next future alarm timer expires.
195  */
alarmtimer_fired(struct hrtimer * timer)196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198 	struct alarm *alarm = container_of(timer, struct alarm, timer);
199 	struct alarm_base *base = &alarm_bases[alarm->type];
200 
201 	scoped_guard (spinlock_irqsave, &base->lock)
202 		alarmtimer_dequeue(base, alarm);
203 
204 	if (alarm->function)
205 		alarm->function(alarm, base->get_ktime());
206 
207 	trace_alarmtimer_fired(alarm, base->get_ktime());
208 	return HRTIMER_NORESTART;
209 }
210 
alarm_expires_remaining(const struct alarm * alarm)211 ktime_t alarm_expires_remaining(const struct alarm *alarm)
212 {
213 	struct alarm_base *base = &alarm_bases[alarm->type];
214 	return ktime_sub(alarm->node.expires, base->get_ktime());
215 }
216 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217 
218 #ifdef CONFIG_RTC_CLASS
219 /**
220  * alarmtimer_suspend - Suspend time callback
221  * @dev: unused
222  *
223  * When we are going into suspend, we look through the bases
224  * to see which is the soonest timer to expire. We then
225  * set an rtc timer to fire that far into the future, which
226  * will wake us from suspend.
227  */
alarmtimer_suspend(struct device * dev)228 static int alarmtimer_suspend(struct device *dev)
229 {
230 	ktime_t min, now, expires;
231 	int i, ret, type;
232 	struct rtc_device *rtc;
233 	unsigned long flags;
234 	struct rtc_time tm;
235 
236 	spin_lock_irqsave(&freezer_delta_lock, flags);
237 	min = freezer_delta;
238 	expires = freezer_expires;
239 	type = freezer_alarmtype;
240 	freezer_delta = 0;
241 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
242 
243 	rtc = alarmtimer_get_rtcdev();
244 	/* If we have no rtcdev, just return */
245 	if (!rtc)
246 		return 0;
247 
248 	/* Find the soonest timer to expire*/
249 	for (i = 0; i < ALARM_NUMTYPE; i++) {
250 		struct alarm_base *base = &alarm_bases[i];
251 		struct timerqueue_node *next;
252 		ktime_t delta;
253 
254 		spin_lock_irqsave(&base->lock, flags);
255 		next = timerqueue_getnext(&base->timerqueue);
256 		spin_unlock_irqrestore(&base->lock, flags);
257 		if (!next)
258 			continue;
259 		delta = ktime_sub(next->expires, base->get_ktime());
260 		if (!min || (delta < min)) {
261 			expires = next->expires;
262 			min = delta;
263 			type = i;
264 		}
265 	}
266 	if (min == 0)
267 		return 0;
268 
269 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270 		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271 		return -EBUSY;
272 	}
273 
274 	trace_alarmtimer_suspend(expires, type);
275 
276 	/* Setup an rtc timer to fire that far in the future */
277 	rtc_timer_cancel(rtc, &rtctimer);
278 	rtc_read_time(rtc, &tm);
279 	now = rtc_tm_to_ktime(tm);
280 
281 	/*
282 	 * If the RTC alarm timer only supports a limited time offset, set the
283 	 * alarm time to the maximum supported value.
284 	 * The system may wake up earlier (possibly much earlier) than expected
285 	 * when the alarmtimer runs. This is the best the kernel can do if
286 	 * the alarmtimer exceeds the time that the rtc device can be programmed
287 	 * for.
288 	 */
289 	min = rtc_bound_alarmtime(rtc, min);
290 
291 	now = ktime_add(now, min);
292 
293 	/* Set alarm, if in the past reject suspend briefly to handle */
294 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295 	if (ret < 0)
296 		pm_wakeup_event(dev, MSEC_PER_SEC);
297 	return ret;
298 }
299 
alarmtimer_resume(struct device * dev)300 static int alarmtimer_resume(struct device *dev)
301 {
302 	struct rtc_device *rtc;
303 
304 	rtc = alarmtimer_get_rtcdev();
305 	if (rtc)
306 		rtc_timer_cancel(rtc, &rtctimer);
307 	return 0;
308 }
309 
310 #else
alarmtimer_suspend(struct device * dev)311 static int alarmtimer_suspend(struct device *dev)
312 {
313 	return 0;
314 }
315 
alarmtimer_resume(struct device * dev)316 static int alarmtimer_resume(struct device *dev)
317 {
318 	return 0;
319 }
320 #endif
321 
322 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))323 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 	     void (*function)(struct alarm *, ktime_t))
325 {
326 	timerqueue_init(&alarm->node);
327 	alarm->function = function;
328 	alarm->type = type;
329 	alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331 
332 /**
333  * alarm_init - Initialize an alarm structure
334  * @alarm: ptr to alarm to be initialized
335  * @type: the type of the alarm
336  * @function: callback that is run when the alarm fires
337  */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))338 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339 		void (*function)(struct alarm *, ktime_t))
340 {
341 	hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342 		      HRTIMER_MODE_ABS);
343 	__alarm_init(alarm, type, function);
344 }
345 EXPORT_SYMBOL_GPL(alarm_init);
346 
347 /**
348  * alarm_start - Sets an absolute alarm to fire
349  * @alarm: ptr to alarm to set
350  * @start: time to run the alarm
351  */
alarm_start(struct alarm * alarm,ktime_t start)352 void alarm_start(struct alarm *alarm, ktime_t start)
353 {
354 	struct alarm_base *base = &alarm_bases[alarm->type];
355 	unsigned long flags;
356 
357 	spin_lock_irqsave(&base->lock, flags);
358 	alarm->node.expires = start;
359 	alarmtimer_enqueue(base, alarm);
360 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
361 	spin_unlock_irqrestore(&base->lock, flags);
362 
363 	trace_alarmtimer_start(alarm, base->get_ktime());
364 }
365 EXPORT_SYMBOL_GPL(alarm_start);
366 
367 /**
368  * alarm_start_relative - Sets a relative alarm to fire
369  * @alarm: ptr to alarm to set
370  * @start: time relative to now to run the alarm
371  */
alarm_start_relative(struct alarm * alarm,ktime_t start)372 void alarm_start_relative(struct alarm *alarm, ktime_t start)
373 {
374 	struct alarm_base *base = &alarm_bases[alarm->type];
375 
376 	start = ktime_add_safe(start, base->get_ktime());
377 	alarm_start(alarm, start);
378 }
379 EXPORT_SYMBOL_GPL(alarm_start_relative);
380 
alarm_restart(struct alarm * alarm)381 void alarm_restart(struct alarm *alarm)
382 {
383 	struct alarm_base *base = &alarm_bases[alarm->type];
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&base->lock, flags);
387 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388 	hrtimer_restart(&alarm->timer);
389 	alarmtimer_enqueue(base, alarm);
390 	spin_unlock_irqrestore(&base->lock, flags);
391 }
392 EXPORT_SYMBOL_GPL(alarm_restart);
393 
394 /**
395  * alarm_try_to_cancel - Tries to cancel an alarm timer
396  * @alarm: ptr to alarm to be canceled
397  *
398  * Returns 1 if the timer was canceled, 0 if it was not running,
399  * and -1 if the callback was running
400  */
alarm_try_to_cancel(struct alarm * alarm)401 int alarm_try_to_cancel(struct alarm *alarm)
402 {
403 	struct alarm_base *base = &alarm_bases[alarm->type];
404 	unsigned long flags;
405 	int ret;
406 
407 	spin_lock_irqsave(&base->lock, flags);
408 	ret = hrtimer_try_to_cancel(&alarm->timer);
409 	if (ret >= 0)
410 		alarmtimer_dequeue(base, alarm);
411 	spin_unlock_irqrestore(&base->lock, flags);
412 
413 	trace_alarmtimer_cancel(alarm, base->get_ktime());
414 	return ret;
415 }
416 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417 
418 
419 /**
420  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421  * @alarm: ptr to alarm to be canceled
422  *
423  * Returns 1 if the timer was canceled, 0 if it was not active.
424  */
alarm_cancel(struct alarm * alarm)425 int alarm_cancel(struct alarm *alarm)
426 {
427 	for (;;) {
428 		int ret = alarm_try_to_cancel(alarm);
429 		if (ret >= 0)
430 			return ret;
431 		hrtimer_cancel_wait_running(&alarm->timer);
432 	}
433 }
434 EXPORT_SYMBOL_GPL(alarm_cancel);
435 
436 
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)437 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438 {
439 	u64 overrun = 1;
440 	ktime_t delta;
441 
442 	delta = ktime_sub(now, alarm->node.expires);
443 
444 	if (delta < 0)
445 		return 0;
446 
447 	if (unlikely(delta >= interval)) {
448 		s64 incr = ktime_to_ns(interval);
449 
450 		overrun = ktime_divns(delta, incr);
451 
452 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
453 							incr*overrun);
454 
455 		if (alarm->node.expires > now)
456 			return overrun;
457 		/*
458 		 * This (and the ktime_add() below) is the
459 		 * correction for exact:
460 		 */
461 		overrun++;
462 	}
463 
464 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465 	return overrun;
466 }
467 EXPORT_SYMBOL_GPL(alarm_forward);
468 
alarm_forward_now(struct alarm * alarm,ktime_t interval)469 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470 {
471 	struct alarm_base *base = &alarm_bases[alarm->type];
472 
473 	return alarm_forward(alarm, base->get_ktime(), interval);
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward_now);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)479 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480 {
481 	struct alarm_base *base;
482 	unsigned long flags;
483 	ktime_t delta;
484 
485 	switch(type) {
486 	case ALARM_REALTIME:
487 		base = &alarm_bases[ALARM_REALTIME];
488 		type = ALARM_REALTIME_FREEZER;
489 		break;
490 	case ALARM_BOOTTIME:
491 		base = &alarm_bases[ALARM_BOOTTIME];
492 		type = ALARM_BOOTTIME_FREEZER;
493 		break;
494 	default:
495 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496 		return;
497 	}
498 
499 	delta = ktime_sub(absexp, base->get_ktime());
500 
501 	spin_lock_irqsave(&freezer_delta_lock, flags);
502 	if (!freezer_delta || (delta < freezer_delta)) {
503 		freezer_delta = delta;
504 		freezer_expires = absexp;
505 		freezer_alarmtype = type;
506 	}
507 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
508 }
509 
510 /**
511  * clock2alarm - helper that converts from clockid to alarmtypes
512  * @clockid: clockid.
513  */
clock2alarm(clockid_t clockid)514 static enum alarmtimer_type clock2alarm(clockid_t clockid)
515 {
516 	if (clockid == CLOCK_REALTIME_ALARM)
517 		return ALARM_REALTIME;
518 	if (clockid == CLOCK_BOOTTIME_ALARM)
519 		return ALARM_BOOTTIME;
520 	return -1;
521 }
522 
523 /**
524  * alarm_handle_timer - Callback for posix timers
525  * @alarm: alarm that fired
526  * @now: time at the timer expiration
527  *
528  * Posix timer callback for expired alarm timers.
529  *
530  * Return: whether the timer is to be restarted
531  */
alarm_handle_timer(struct alarm * alarm,ktime_t now)532 static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
533 {
534 	struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535 
536 	guard(spinlock_irqsave)(&ptr->it_lock);
537 	posix_timer_queue_signal(ptr);
538 }
539 
540 /**
541  * alarm_timer_rearm - Posix timer callback for rearming timer
542  * @timr:	Pointer to the posixtimer data struct
543  */
alarm_timer_rearm(struct k_itimer * timr)544 static void alarm_timer_rearm(struct k_itimer *timr)
545 {
546 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
547 
548 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549 	alarm_start(alarm, alarm->node.expires);
550 }
551 
552 /**
553  * alarm_timer_forward - Posix timer callback for forwarding timer
554  * @timr:	Pointer to the posixtimer data struct
555  * @now:	Current time to forward the timer against
556  */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)557 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558 {
559 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
560 
561 	return alarm_forward(alarm, timr->it_interval, now);
562 }
563 
564 /**
565  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566  * @timr:	Pointer to the posixtimer data struct
567  * @now:	Current time to calculate against
568  */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)569 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570 {
571 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
572 
573 	return ktime_sub(alarm->node.expires, now);
574 }
575 
576 /**
577  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578  * @timr:	Pointer to the posixtimer data struct
579  */
alarm_timer_try_to_cancel(struct k_itimer * timr)580 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581 {
582 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583 }
584 
585 /**
586  * alarm_timer_wait_running - Posix timer callback to wait for a timer
587  * @timr:	Pointer to the posixtimer data struct
588  *
589  * Called from the core code when timer cancel detected that the callback
590  * is running. @timr is unlocked and rcu read lock is held to prevent it
591  * from being freed.
592  */
alarm_timer_wait_running(struct k_itimer * timr)593 static void alarm_timer_wait_running(struct k_itimer *timr)
594 {
595 	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596 }
597 
598 /**
599  * alarm_timer_arm - Posix timer callback to arm a timer
600  * @timr:	Pointer to the posixtimer data struct
601  * @expires:	The new expiry time
602  * @absolute:	Expiry value is absolute time
603  * @sigev_none:	Posix timer does not deliver signals
604  */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)605 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606 			    bool absolute, bool sigev_none)
607 {
608 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
609 	struct alarm_base *base = &alarm_bases[alarm->type];
610 
611 	if (!absolute)
612 		expires = ktime_add_safe(expires, base->get_ktime());
613 	if (sigev_none)
614 		alarm->node.expires = expires;
615 	else
616 		alarm_start(&timr->it.alarm.alarmtimer, expires);
617 }
618 
619 /**
620  * alarm_clock_getres - posix getres interface
621  * @which_clock: clockid
622  * @tp: timespec to fill
623  *
624  * Returns the granularity of underlying alarm base clock
625  */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)626 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627 {
628 	if (!alarmtimer_get_rtcdev())
629 		return -EINVAL;
630 
631 	tp->tv_sec = 0;
632 	tp->tv_nsec = hrtimer_resolution;
633 	return 0;
634 }
635 
636 /**
637  * alarm_clock_get_timespec - posix clock_get_timespec interface
638  * @which_clock: clockid
639  * @tp: timespec to fill.
640  *
641  * Provides the underlying alarm base time in a tasks time namespace.
642  */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)643 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644 {
645 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
646 
647 	if (!alarmtimer_get_rtcdev())
648 		return -EINVAL;
649 
650 	base->get_timespec(tp);
651 
652 	return 0;
653 }
654 
655 /**
656  * alarm_clock_get_ktime - posix clock_get_ktime interface
657  * @which_clock: clockid
658  *
659  * Provides the underlying alarm base time in the root namespace.
660  */
alarm_clock_get_ktime(clockid_t which_clock)661 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
662 {
663 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664 
665 	if (!alarmtimer_get_rtcdev())
666 		return -EINVAL;
667 
668 	return base->get_ktime();
669 }
670 
671 /**
672  * alarm_timer_create - posix timer_create interface
673  * @new_timer: k_itimer pointer to manage
674  *
675  * Initializes the k_itimer structure.
676  */
alarm_timer_create(struct k_itimer * new_timer)677 static int alarm_timer_create(struct k_itimer *new_timer)
678 {
679 	enum  alarmtimer_type type;
680 
681 	if (!alarmtimer_get_rtcdev())
682 		return -EOPNOTSUPP;
683 
684 	if (!capable(CAP_WAKE_ALARM))
685 		return -EPERM;
686 
687 	type = clock2alarm(new_timer->it_clock);
688 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
689 	return 0;
690 }
691 
692 /**
693  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694  * @alarm: ptr to alarm that fired
695  * @now: time at the timer expiration
696  *
697  * Wakes up the task that set the alarmtimer
698  */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)699 static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
700 {
701 	struct task_struct *task = alarm->data;
702 
703 	alarm->data = NULL;
704 	if (task)
705 		wake_up_process(task);
706 }
707 
708 /**
709  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710  * @alarm: ptr to alarmtimer
711  * @absexp: absolute expiration time
712  * @type: alarm type (BOOTTIME/REALTIME).
713  *
714  * Sets the alarm timer and sleeps until it is fired or interrupted.
715  */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)716 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717 				enum alarmtimer_type type)
718 {
719 	struct restart_block *restart;
720 	alarm->data = (void *)current;
721 	do {
722 		set_current_state(TASK_INTERRUPTIBLE);
723 		alarm_start(alarm, absexp);
724 		if (likely(alarm->data))
725 			schedule();
726 
727 		alarm_cancel(alarm);
728 	} while (alarm->data && !signal_pending(current));
729 
730 	__set_current_state(TASK_RUNNING);
731 
732 	destroy_hrtimer_on_stack(&alarm->timer);
733 
734 	if (!alarm->data)
735 		return 0;
736 
737 	if (freezing(current))
738 		alarmtimer_freezerset(absexp, type);
739 	restart = &current->restart_block;
740 	if (restart->nanosleep.type != TT_NONE) {
741 		struct timespec64 rmt;
742 		ktime_t rem;
743 
744 		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
745 
746 		if (rem <= 0)
747 			return 0;
748 		rmt = ktime_to_timespec64(rem);
749 
750 		return nanosleep_copyout(restart, &rmt);
751 	}
752 	return -ERESTART_RESTARTBLOCK;
753 }
754 
755 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,void (* function)(struct alarm *,ktime_t))756 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757 		    void (*function)(struct alarm *, ktime_t))
758 {
759 	hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760 			       HRTIMER_MODE_ABS);
761 	__alarm_init(alarm, type, function);
762 }
763 
764 /**
765  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766  * @restart: ptr to restart block
767  *
768  * Handles restarted clock_nanosleep calls
769  */
alarm_timer_nsleep_restart(struct restart_block * restart)770 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771 {
772 	enum  alarmtimer_type type = restart->nanosleep.clockid;
773 	ktime_t exp = restart->nanosleep.expires;
774 	struct alarm alarm;
775 
776 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777 
778 	return alarmtimer_do_nsleep(&alarm, exp, type);
779 }
780 
781 /**
782  * alarm_timer_nsleep - alarmtimer nanosleep
783  * @which_clock: clockid
784  * @flags: determines abstime or relative
785  * @tsreq: requested sleep time (abs or rel)
786  *
787  * Handles clock_nanosleep calls against _ALARM clockids
788  */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 			      const struct timespec64 *tsreq)
791 {
792 	enum  alarmtimer_type type = clock2alarm(which_clock);
793 	struct restart_block *restart = &current->restart_block;
794 	struct alarm alarm;
795 	ktime_t exp;
796 	int ret;
797 
798 	if (!alarmtimer_get_rtcdev())
799 		return -EOPNOTSUPP;
800 
801 	if (flags & ~TIMER_ABSTIME)
802 		return -EINVAL;
803 
804 	if (!capable(CAP_WAKE_ALARM))
805 		return -EPERM;
806 
807 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808 
809 	exp = timespec64_to_ktime(*tsreq);
810 	/* Convert (if necessary) to absolute time */
811 	if (flags != TIMER_ABSTIME) {
812 		ktime_t now = alarm_bases[type].get_ktime();
813 
814 		exp = ktime_add_safe(now, exp);
815 	} else {
816 		exp = timens_ktime_to_host(which_clock, exp);
817 	}
818 
819 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
820 	if (ret != -ERESTART_RESTARTBLOCK)
821 		return ret;
822 
823 	/* abs timers don't set remaining time or restart */
824 	if (flags == TIMER_ABSTIME)
825 		return -ERESTARTNOHAND;
826 
827 	restart->nanosleep.clockid = type;
828 	restart->nanosleep.expires = exp;
829 	set_restart_fn(restart, alarm_timer_nsleep_restart);
830 	return ret;
831 }
832 
833 const struct k_clock alarm_clock = {
834 	.clock_getres		= alarm_clock_getres,
835 	.clock_get_ktime	= alarm_clock_get_ktime,
836 	.clock_get_timespec	= alarm_clock_get_timespec,
837 	.timer_create		= alarm_timer_create,
838 	.timer_set		= common_timer_set,
839 	.timer_del		= common_timer_del,
840 	.timer_get		= common_timer_get,
841 	.timer_arm		= alarm_timer_arm,
842 	.timer_rearm		= alarm_timer_rearm,
843 	.timer_forward		= alarm_timer_forward,
844 	.timer_remaining	= alarm_timer_remaining,
845 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
846 	.timer_wait_running	= alarm_timer_wait_running,
847 	.nsleep			= alarm_timer_nsleep,
848 };
849 #endif /* CONFIG_POSIX_TIMERS */
850 
851 
852 /* Suspend hook structures */
853 static const struct dev_pm_ops alarmtimer_pm_ops = {
854 	.suspend = alarmtimer_suspend,
855 	.resume = alarmtimer_resume,
856 };
857 
858 static struct platform_driver alarmtimer_driver = {
859 	.driver = {
860 		.name = "alarmtimer",
861 		.pm = &alarmtimer_pm_ops,
862 	}
863 };
864 
get_boottime_timespec(struct timespec64 * tp)865 static void get_boottime_timespec(struct timespec64 *tp)
866 {
867 	ktime_get_boottime_ts64(tp);
868 	timens_add_boottime(tp);
869 }
870 
871 /**
872  * alarmtimer_init - Initialize alarm timer code
873  *
874  * This function initializes the alarm bases and registers
875  * the posix clock ids.
876  */
alarmtimer_init(void)877 static int __init alarmtimer_init(void)
878 {
879 	int error;
880 	int i;
881 
882 	alarmtimer_rtc_timer_init();
883 
884 	/* Initialize alarm bases */
885 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886 	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887 	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889 	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890 	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891 	for (i = 0; i < ALARM_NUMTYPE; i++) {
892 		timerqueue_init_head(&alarm_bases[i].timerqueue);
893 		spin_lock_init(&alarm_bases[i].lock);
894 	}
895 
896 	error = alarmtimer_rtc_interface_setup();
897 	if (error)
898 		return error;
899 
900 	error = platform_driver_register(&alarmtimer_driver);
901 	if (error)
902 		goto out_if;
903 
904 	return 0;
905 out_if:
906 	alarmtimer_rtc_interface_remove();
907 	return error;
908 }
909 device_initcall(alarmtimer_init);
910